prompt
large_stringlengths 72
9.34k
| completion
large_stringlengths 0
7.61k
|
---|---|
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
<|fim_middle|>
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}' |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
<|fim_middle|>
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | self.method = method
self.url = url
self.status = status
self.body = response_text |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
<|fim_middle|>
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | return f'{self.method} {self.url}, unexpected response {self.status}' |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
<|fim_middle|>
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
<|fim_middle|>
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | self.settings = settings
self.root = root_url.rstrip('/') + '/' |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
<|fim_middle|>
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
<|fim_middle|>
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
<|fim_middle|>
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
<|fim_middle|>
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
<|fim_middle|>
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
<|fim_middle|>
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | return method, url, data |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
<|fim_middle|>
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
<|fim_middle|>
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | super().__init__(settings.mandrill_url, settings) |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
<|fim_middle|>
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | data['key'] = self.settings.mandrill_key
return method, url, data |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
<|fim_middle|>
<|fim▁end|> | def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
<|fim_middle|>
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | super().__init__(settings.messagebird_url, settings) |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
<|fim_middle|>
<|fim▁end|> | data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
<|fim_middle|>
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | try:
return json.loads(v)
except (ValueError, TypeError):
pass |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
<|fim_middle|>
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | kwargs['headers'] = headers |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
<|fim_middle|>
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | kwargs['timeout'] = timeout |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
<|fim_middle|>
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | allowed_statuses = (allowed_statuses,) |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
<|fim_middle|>
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text) |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
<|fim_middle|>
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def <|fim_middle|>(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | lenient_json |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def <|fim_middle|>(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | __init__ |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def <|fim_middle|>(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | __str__ |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def <|fim_middle|>(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | __init__ |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def <|fim_middle|>(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | get |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def <|fim_middle|>(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | delete |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def <|fim_middle|>(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | post |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def <|fim_middle|>(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | put |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def <|fim_middle|>(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | _request |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def <|fim_middle|>(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | _modify_request |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def <|fim_middle|>(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | __init__ |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def <|fim_middle|>(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | _modify_request |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def <|fim_middle|>(self, settings):
super().__init__(settings.messagebird_url, settings)
def _modify_request(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | __init__ |
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json
import logging
from foxglove import glove
from httpx import Response
from .settings import Settings
logger = logging.getLogger('ext')
def lenient_json(v):
if isinstance(v, (str, bytes)):
try:
return json.loads(v)
except (ValueError, TypeError):
pass
return v
class ApiError(RuntimeError):
def __init__(self, method, url, status, response_text):
self.method = method
self.url = url
self.status = status
self.body = response_text
def __str__(self):
return f'{self.method} {self.url}, unexpected response {self.status}'
class ApiSession:
def __init__(self, root_url, settings: Settings):
self.settings = settings
self.root = root_url.rstrip('/') + '/'
async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response:
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response:
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response:
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data)
kwargs = {}
headers = data.pop('headers_', None)
if headers is not None:
kwargs['headers'] = headers
if timeout := data.pop('timeout_', None):
kwargs['timeout'] = timeout
r = await glove.http.request(method, url, json=data or None, **kwargs)
if isinstance(allowed_statuses, int):
allowed_statuses = (allowed_statuses,)
if allowed_statuses != '*' and r.status_code not in allowed_statuses:
data = {
'request_real_url': str(r.request.url),
'request_headers': dict(r.request.headers),
'request_data': data,
'response_headers': dict(r.headers),
'response_content': lenient_json(r.text),
}
logger.warning(
'%s unexpected response %s /%s -> %s',
self.__class__.__name__,
method,
uri,
r.status_code,
extra={'data': data} if self.settings.verbose_http_errors else {},
)
raise ApiError(method, url, r.status_code, r.text)
else:
logger.debug('%s /%s -> %s', method, uri, r.status_code)
return r
def _modify_request(self, method, url, data):
return method, url, data
class Mandrill(ApiSession):
def __init__(self, settings):
super().__init__(settings.mandrill_url, settings)
def _modify_request(self, method, url, data):
data['key'] = self.settings.mandrill_key
return method, url, data
class MessageBird(ApiSession):
def __init__(self, settings):
super().__init__(settings.messagebird_url, settings)
def <|fim_middle|>(self, method, url, data):
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'}
return method, url, data
<|fim▁end|> | _modify_request |
<|file_name|>config_parser.py<|end_file_name|><|fim▁begin|>import configparser
CONFIG_PATH = 'accounting.conf'
class MyConfigParser():
def __init__(self, config_path=CONFIG_PATH):
self.config = configparser.ConfigParser(allow_no_value=True)
self.config.read(config_path)
def config_section_map(self, section):
""" returns all configuration options in 'section' in a dict with
key: config_option and value: the read value in the file"""
dict1 = {}
options = self.config.options(section)
for option in options:
try:
dict1[option] = self.config.get(section, option)
if dict1[option] == -1:
DebugPrint("skip: %s" % option)
except:
dict1[option] = None
return dict1<|fim▁hole|>
# getint(section, option)
# getboolean(section, option)<|fim▁end|> | |
<|file_name|>config_parser.py<|end_file_name|><|fim▁begin|>import configparser
CONFIG_PATH = 'accounting.conf'
class MyConfigParser():
<|fim_middle|>
# getint(section, option)
# getboolean(section, option)
<|fim▁end|> | def __init__(self, config_path=CONFIG_PATH):
self.config = configparser.ConfigParser(allow_no_value=True)
self.config.read(config_path)
def config_section_map(self, section):
""" returns all configuration options in 'section' in a dict with
key: config_option and value: the read value in the file"""
dict1 = {}
options = self.config.options(section)
for option in options:
try:
dict1[option] = self.config.get(section, option)
if dict1[option] == -1:
DebugPrint("skip: %s" % option)
except:
dict1[option] = None
return dict1 |
<|file_name|>config_parser.py<|end_file_name|><|fim▁begin|>import configparser
CONFIG_PATH = 'accounting.conf'
class MyConfigParser():
def __init__(self, config_path=CONFIG_PATH):
<|fim_middle|>
def config_section_map(self, section):
""" returns all configuration options in 'section' in a dict with
key: config_option and value: the read value in the file"""
dict1 = {}
options = self.config.options(section)
for option in options:
try:
dict1[option] = self.config.get(section, option)
if dict1[option] == -1:
DebugPrint("skip: %s" % option)
except:
dict1[option] = None
return dict1
# getint(section, option)
# getboolean(section, option)
<|fim▁end|> | self.config = configparser.ConfigParser(allow_no_value=True)
self.config.read(config_path) |
<|file_name|>config_parser.py<|end_file_name|><|fim▁begin|>import configparser
CONFIG_PATH = 'accounting.conf'
class MyConfigParser():
def __init__(self, config_path=CONFIG_PATH):
self.config = configparser.ConfigParser(allow_no_value=True)
self.config.read(config_path)
def config_section_map(self, section):
<|fim_middle|>
# getint(section, option)
# getboolean(section, option)
<|fim▁end|> | """ returns all configuration options in 'section' in a dict with
key: config_option and value: the read value in the file"""
dict1 = {}
options = self.config.options(section)
for option in options:
try:
dict1[option] = self.config.get(section, option)
if dict1[option] == -1:
DebugPrint("skip: %s" % option)
except:
dict1[option] = None
return dict1 |
<|file_name|>config_parser.py<|end_file_name|><|fim▁begin|>import configparser
CONFIG_PATH = 'accounting.conf'
class MyConfigParser():
def __init__(self, config_path=CONFIG_PATH):
self.config = configparser.ConfigParser(allow_no_value=True)
self.config.read(config_path)
def config_section_map(self, section):
""" returns all configuration options in 'section' in a dict with
key: config_option and value: the read value in the file"""
dict1 = {}
options = self.config.options(section)
for option in options:
try:
dict1[option] = self.config.get(section, option)
if dict1[option] == -1:
<|fim_middle|>
except:
dict1[option] = None
return dict1
# getint(section, option)
# getboolean(section, option)
<|fim▁end|> | DebugPrint("skip: %s" % option) |
<|file_name|>config_parser.py<|end_file_name|><|fim▁begin|>import configparser
CONFIG_PATH = 'accounting.conf'
class MyConfigParser():
def <|fim_middle|>(self, config_path=CONFIG_PATH):
self.config = configparser.ConfigParser(allow_no_value=True)
self.config.read(config_path)
def config_section_map(self, section):
""" returns all configuration options in 'section' in a dict with
key: config_option and value: the read value in the file"""
dict1 = {}
options = self.config.options(section)
for option in options:
try:
dict1[option] = self.config.get(section, option)
if dict1[option] == -1:
DebugPrint("skip: %s" % option)
except:
dict1[option] = None
return dict1
# getint(section, option)
# getboolean(section, option)
<|fim▁end|> | __init__ |
<|file_name|>config_parser.py<|end_file_name|><|fim▁begin|>import configparser
CONFIG_PATH = 'accounting.conf'
class MyConfigParser():
def __init__(self, config_path=CONFIG_PATH):
self.config = configparser.ConfigParser(allow_no_value=True)
self.config.read(config_path)
def <|fim_middle|>(self, section):
""" returns all configuration options in 'section' in a dict with
key: config_option and value: the read value in the file"""
dict1 = {}
options = self.config.options(section)
for option in options:
try:
dict1[option] = self.config.get(section, option)
if dict1[option] == -1:
DebugPrint("skip: %s" % option)
except:
dict1[option] = None
return dict1
# getint(section, option)
# getboolean(section, option)
<|fim▁end|> | config_section_map |
<|file_name|>test_submain_package.py<|end_file_name|><|fim▁begin|>from mock import patch
from nose.tools import eq_
from helper import TestCase
import appvalidator.submain as submain
class TestSubmainPackage(TestCase):
@patch("appvalidator.submain.test_inner_package",
lambda x, z: "success")
def test_package_pass(self):
"Tests the test_package function with simple data"
self.setup_err()
name = "tests/resources/submain/install_rdf.xpi"
with open(name) as pack:
result = submain.test_package(self.err, pack, name)<|fim▁hole|> @patch("appvalidator.submain.test_inner_package",
lambda x, z: "success")
def test_package_corrupt(self):
"Tests the test_package function fails with a non-zip"
self.setup_err()
name = "tests/resources/junk.xpi"
with open(name) as pack:
result = submain.test_package(self.err, pack, name)
self.assert_failed()
def test_package_corrupt(self):
"Tests the test_package function fails with a corrupt file"
self.setup_err()
name = "tests/resources/corrupt.xpi"
result = submain.test_package(self.err, name, name)
self.assert_failed(with_errors=True, with_warnings=True)<|fim▁end|> |
self.assert_silent()
eq_(result, "success")
|
<|file_name|>test_submain_package.py<|end_file_name|><|fim▁begin|>from mock import patch
from nose.tools import eq_
from helper import TestCase
import appvalidator.submain as submain
class TestSubmainPackage(TestCase):
<|fim_middle|>
<|fim▁end|> | @patch("appvalidator.submain.test_inner_package",
lambda x, z: "success")
def test_package_pass(self):
"Tests the test_package function with simple data"
self.setup_err()
name = "tests/resources/submain/install_rdf.xpi"
with open(name) as pack:
result = submain.test_package(self.err, pack, name)
self.assert_silent()
eq_(result, "success")
@patch("appvalidator.submain.test_inner_package",
lambda x, z: "success")
def test_package_corrupt(self):
"Tests the test_package function fails with a non-zip"
self.setup_err()
name = "tests/resources/junk.xpi"
with open(name) as pack:
result = submain.test_package(self.err, pack, name)
self.assert_failed()
def test_package_corrupt(self):
"Tests the test_package function fails with a corrupt file"
self.setup_err()
name = "tests/resources/corrupt.xpi"
result = submain.test_package(self.err, name, name)
self.assert_failed(with_errors=True, with_warnings=True) |
<|file_name|>test_submain_package.py<|end_file_name|><|fim▁begin|>from mock import patch
from nose.tools import eq_
from helper import TestCase
import appvalidator.submain as submain
class TestSubmainPackage(TestCase):
@patch("appvalidator.submain.test_inner_package",
lambda x, z: "success")
def test_package_pass(self):
<|fim_middle|>
@patch("appvalidator.submain.test_inner_package",
lambda x, z: "success")
def test_package_corrupt(self):
"Tests the test_package function fails with a non-zip"
self.setup_err()
name = "tests/resources/junk.xpi"
with open(name) as pack:
result = submain.test_package(self.err, pack, name)
self.assert_failed()
def test_package_corrupt(self):
"Tests the test_package function fails with a corrupt file"
self.setup_err()
name = "tests/resources/corrupt.xpi"
result = submain.test_package(self.err, name, name)
self.assert_failed(with_errors=True, with_warnings=True)
<|fim▁end|> | "Tests the test_package function with simple data"
self.setup_err()
name = "tests/resources/submain/install_rdf.xpi"
with open(name) as pack:
result = submain.test_package(self.err, pack, name)
self.assert_silent()
eq_(result, "success") |
<|file_name|>test_submain_package.py<|end_file_name|><|fim▁begin|>from mock import patch
from nose.tools import eq_
from helper import TestCase
import appvalidator.submain as submain
class TestSubmainPackage(TestCase):
@patch("appvalidator.submain.test_inner_package",
lambda x, z: "success")
def test_package_pass(self):
"Tests the test_package function with simple data"
self.setup_err()
name = "tests/resources/submain/install_rdf.xpi"
with open(name) as pack:
result = submain.test_package(self.err, pack, name)
self.assert_silent()
eq_(result, "success")
@patch("appvalidator.submain.test_inner_package",
lambda x, z: "success")
def test_package_corrupt(self):
<|fim_middle|>
def test_package_corrupt(self):
"Tests the test_package function fails with a corrupt file"
self.setup_err()
name = "tests/resources/corrupt.xpi"
result = submain.test_package(self.err, name, name)
self.assert_failed(with_errors=True, with_warnings=True)
<|fim▁end|> | "Tests the test_package function fails with a non-zip"
self.setup_err()
name = "tests/resources/junk.xpi"
with open(name) as pack:
result = submain.test_package(self.err, pack, name)
self.assert_failed() |
<|file_name|>test_submain_package.py<|end_file_name|><|fim▁begin|>from mock import patch
from nose.tools import eq_
from helper import TestCase
import appvalidator.submain as submain
class TestSubmainPackage(TestCase):
@patch("appvalidator.submain.test_inner_package",
lambda x, z: "success")
def test_package_pass(self):
"Tests the test_package function with simple data"
self.setup_err()
name = "tests/resources/submain/install_rdf.xpi"
with open(name) as pack:
result = submain.test_package(self.err, pack, name)
self.assert_silent()
eq_(result, "success")
@patch("appvalidator.submain.test_inner_package",
lambda x, z: "success")
def test_package_corrupt(self):
"Tests the test_package function fails with a non-zip"
self.setup_err()
name = "tests/resources/junk.xpi"
with open(name) as pack:
result = submain.test_package(self.err, pack, name)
self.assert_failed()
def test_package_corrupt(self):
<|fim_middle|>
<|fim▁end|> | "Tests the test_package function fails with a corrupt file"
self.setup_err()
name = "tests/resources/corrupt.xpi"
result = submain.test_package(self.err, name, name)
self.assert_failed(with_errors=True, with_warnings=True) |
<|file_name|>test_submain_package.py<|end_file_name|><|fim▁begin|>from mock import patch
from nose.tools import eq_
from helper import TestCase
import appvalidator.submain as submain
class TestSubmainPackage(TestCase):
@patch("appvalidator.submain.test_inner_package",
lambda x, z: "success")
def <|fim_middle|>(self):
"Tests the test_package function with simple data"
self.setup_err()
name = "tests/resources/submain/install_rdf.xpi"
with open(name) as pack:
result = submain.test_package(self.err, pack, name)
self.assert_silent()
eq_(result, "success")
@patch("appvalidator.submain.test_inner_package",
lambda x, z: "success")
def test_package_corrupt(self):
"Tests the test_package function fails with a non-zip"
self.setup_err()
name = "tests/resources/junk.xpi"
with open(name) as pack:
result = submain.test_package(self.err, pack, name)
self.assert_failed()
def test_package_corrupt(self):
"Tests the test_package function fails with a corrupt file"
self.setup_err()
name = "tests/resources/corrupt.xpi"
result = submain.test_package(self.err, name, name)
self.assert_failed(with_errors=True, with_warnings=True)
<|fim▁end|> | test_package_pass |
<|file_name|>test_submain_package.py<|end_file_name|><|fim▁begin|>from mock import patch
from nose.tools import eq_
from helper import TestCase
import appvalidator.submain as submain
class TestSubmainPackage(TestCase):
@patch("appvalidator.submain.test_inner_package",
lambda x, z: "success")
def test_package_pass(self):
"Tests the test_package function with simple data"
self.setup_err()
name = "tests/resources/submain/install_rdf.xpi"
with open(name) as pack:
result = submain.test_package(self.err, pack, name)
self.assert_silent()
eq_(result, "success")
@patch("appvalidator.submain.test_inner_package",
lambda x, z: "success")
def <|fim_middle|>(self):
"Tests the test_package function fails with a non-zip"
self.setup_err()
name = "tests/resources/junk.xpi"
with open(name) as pack:
result = submain.test_package(self.err, pack, name)
self.assert_failed()
def test_package_corrupt(self):
"Tests the test_package function fails with a corrupt file"
self.setup_err()
name = "tests/resources/corrupt.xpi"
result = submain.test_package(self.err, name, name)
self.assert_failed(with_errors=True, with_warnings=True)
<|fim▁end|> | test_package_corrupt |
<|file_name|>test_submain_package.py<|end_file_name|><|fim▁begin|>from mock import patch
from nose.tools import eq_
from helper import TestCase
import appvalidator.submain as submain
class TestSubmainPackage(TestCase):
@patch("appvalidator.submain.test_inner_package",
lambda x, z: "success")
def test_package_pass(self):
"Tests the test_package function with simple data"
self.setup_err()
name = "tests/resources/submain/install_rdf.xpi"
with open(name) as pack:
result = submain.test_package(self.err, pack, name)
self.assert_silent()
eq_(result, "success")
@patch("appvalidator.submain.test_inner_package",
lambda x, z: "success")
def test_package_corrupt(self):
"Tests the test_package function fails with a non-zip"
self.setup_err()
name = "tests/resources/junk.xpi"
with open(name) as pack:
result = submain.test_package(self.err, pack, name)
self.assert_failed()
def <|fim_middle|>(self):
"Tests the test_package function fails with a corrupt file"
self.setup_err()
name = "tests/resources/corrupt.xpi"
result = submain.test_package(self.err, name, name)
self.assert_failed(with_errors=True, with_warnings=True)
<|fim▁end|> | test_package_corrupt |
<|file_name|>th_logger.py<|end_file_name|><|fim▁begin|><|fim▁hole|>import logging
from testProperty import TEST_OUTPUT_PATH
test_logger = logging.getLogger('TEST_HARNESS')
handler = logging.FileHandler(TEST_OUTPUT_PATH + 'runTest.log')
formatter = logging.Formatter('%(asctime)s %(name)-10s %(levelname)-6s %(message)s')
handler.setFormatter(formatter)
test_logger.addHandler(handler)
test_logger.setLevel(logging.DEBUG)<|fim▁end|> | #!C:\Python27\
"""th_logger.py holds logging handler and config for the Regression test"""
|
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def debug_strings(self):
print(self.strings)
def show_me_plz(self,
seek_note=None,
seek_string=None):
if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note, <|fim▁hole|> Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position))<|fim▁end|> | found_position))
print(Fore.WHITE + \ |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
<|fim_middle|>
<|fim▁end|> | tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def debug_strings(self):
print(self.strings)
def show_me_plz(self,
seek_note=None,
seek_string=None):
if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position)) |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
<|fim_middle|>
def debug_strings(self):
print(self.strings)
def show_me_plz(self,
seek_note=None,
seek_string=None):
if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position))
<|fim▁end|> | self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def debug_strings(self):
<|fim_middle|>
def show_me_plz(self,
seek_note=None,
seek_string=None):
if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position))
<|fim▁end|> | print(self.strings) |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def debug_strings(self):
print(self.strings)
def show_me_plz(self,
seek_note=None,
seek_string=None):
<|fim_middle|>
<|fim▁end|> | if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position)) |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
<|fim_middle|>
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def debug_strings(self):
print(self.strings)
def show_me_plz(self,
seek_note=None,
seek_string=None):
if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position))
<|fim▁end|> | self.max_string_name_len = len(string) |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def debug_strings(self):
print(self.strings)
def show_me_plz(self,
seek_note=None,
seek_string=None):
if (seek_string):
<|fim_middle|>
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position))
<|fim▁end|> | seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def debug_strings(self):
print(self.strings)
def show_me_plz(self,
seek_note=None,
seek_string=None):
if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
<|fim_middle|>
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position))
<|fim▁end|> | lower_seek_note = seek_note[0:-1] |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def debug_strings(self):
print(self.strings)
def show_me_plz(self,
seek_note=None,
seek_string=None):
if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
<|fim_middle|>
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position))
<|fim▁end|> | upper_seek_note = seek_note + '^' |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def debug_strings(self):
print(self.strings)
def show_me_plz(self,
seek_note=None,
seek_string=None):
if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
<|fim_middle|>
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position))
<|fim▁end|> | color = Fore.WHITE + Back.RED
found_position.append(string + "0") |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def debug_strings(self):
print(self.strings)
def show_me_plz(self,
seek_note=None,
seek_string=None):
if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
<|fim_middle|>
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position))
<|fim▁end|> | color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0") |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def debug_strings(self):
print(self.strings)
def show_me_plz(self,
seek_note=None,
seek_string=None):
if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
<|fim_middle|>
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position))
<|fim▁end|> | color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0") |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def debug_strings(self):
print(self.strings)
def show_me_plz(self,
seek_note=None,
seek_string=None):
if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
<|fim_middle|>
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position))
<|fim▁end|> | color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr)) |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def debug_strings(self):
print(self.strings)
def show_me_plz(self,
seek_note=None,
seek_string=None):
if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
<|fim_middle|>
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position))
<|fim▁end|> | color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr)) |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def debug_strings(self):
print(self.strings)
def show_me_plz(self,
seek_note=None,
seek_string=None):
if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
<|fim_middle|>
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position))
<|fim▁end|> | color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr)) |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def <|fim_middle|>(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def debug_strings(self):
print(self.strings)
def show_me_plz(self,
seek_note=None,
seek_string=None):
if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position))
<|fim▁end|> | __init__ |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def <|fim_middle|>(self):
print(self.strings)
def show_me_plz(self,
seek_note=None,
seek_string=None):
if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position))
<|fim▁end|> | debug_strings |
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3
from colorama import Fore, Back
class frets:
tuning = list()
max_string_name_len = 0;
frets_count = 0;
strings = dict()
NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#')
def __init__(self,
tuning=('E', 'A', 'D', 'G'),
frets_count=24):
self.tuning = tuning
self.frets_count = frets_count
for string in tuning:
if len(string) > self.max_string_name_len:
self.max_string_name_len = len(string)
padding_count = 0;
padding = ''
self.strings[string] = list()
starting_note = self.NOTES.index(string) + 1
for i in range(frets_count):
padding = '^' * int(((starting_note + i) / len(self.NOTES)))
self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)
#print('{}{} ({}) = {}'.format(string,
# i,
# int(((starting_note + i) / len(self.NOTES))),
# self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
def debug_strings(self):
print(self.strings)
def <|fim_middle|>(self,
seek_note=None,
seek_string=None):
if (seek_string):
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
upper_seek_note = None
lower_seek_note = None
if seek_note and seek_note.endswith('^'):
lower_seek_note = seek_note[0:-1]
if seek_note:
upper_seek_note = seek_note + '^'
upper_found_position = list()
found_position = list()
lower_found_position = list()
print(Fore.WHITE + \
' ' * (self.max_string_name_len + 2),
end='')
for fret_nr in range(1, self.frets_count + 1):
print(Fore.WHITE + \
(' ' * (4 - len(str(fret_nr)))) + str(fret_nr),
end='')
print(Fore.YELLOW + '|', end='')
print('')
for string in reversed(self.tuning):
color = Fore.WHITE + Back.BLACK
if string == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + "0")
elif string == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + "0")
elif string == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + "0")
print(color + \
(' ' * (self.max_string_name_len - len(string))) + \
string, end='')
print(Fore.YELLOW + '||', end='')
fret_nr = 1
for note in self.strings[string]:
color = Fore.WHITE + Back.BLACK
if note == seek_note:
color = Fore.WHITE + Back.RED
found_position.append(string + str(fret_nr))
elif note == upper_seek_note:
color = Fore.WHITE + Back.CYAN
upper_found_position.append(string + str(fret_nr))
elif note == lower_seek_note:
color = Fore.WHITE + Back.MAGENTA
lower_found_position.append(string + str(fret_nr))
print(color + \
note[0:4] + \
'-' * (4 - len(note)), end='')
print(Fore.YELLOW + Back.BLACK + '|', end='')
fret_nr += 1
print(Fore.WHITE + Back.BLACK + '')
print(Fore.WHITE + '\n')
print(Back.CYAN + ' ' + Back.BLACK + \
' Found octave-higher note {} on: {}'.format(upper_seek_note,
upper_found_position))
print(Back.RED + ' ' + Back.BLACK + \
' Found note {} on: {}'.format(seek_note,
found_position))
print(Fore.WHITE + \
Back.MAGENTA + ' ' + Back.BLACK + \
' Found octave-lower note {} on: {}'.format(lower_seek_note,
lower_found_position))
<|fim▁end|> | show_me_plz |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
<|fim▁hole|> num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x<|fim▁end|> | class Agent: |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
<|fim_middle|>
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2 |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
<|fim_middle|>
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | """
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
<|fim_middle|>
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i)) |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
<|fim_middle|>
<|fim▁end|> | num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
<|fim_middle|>
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50 |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
<|fim_middle|>
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
<|fim_middle|>
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | assert(len(rt) == self.num_features)
self.rt = rt |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
<|fim_middle|>
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | self.max_iter = max_iter |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
<|fim_middle|>
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:]) |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
<|fim_middle|>
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | """
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k]) |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
<|fim_middle|>
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | """
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i] |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
<|fim_middle|>
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | """
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0] |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
<|fim_middle|>
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | """
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt)) |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
<|fim_middle|>
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
<|fim_middle|>
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
<|fim_middle|>
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | """
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
<|fim_middle|>
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args))) |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
<|fim_middle|>
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1 |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
<|fim_middle|>
<|fim▁end|> | print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def <|fim_middle|>(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | worker_func |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def <|fim_middle|>(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | optimized_func_i_der |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def <|fim_middle|>(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | worker_func_der |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def <|fim_middle|>(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | __init__ |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def <|fim_middle|>(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | set_learning_factor |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def <|fim_middle|>(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | set_rt |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def <|fim_middle|>(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | set_iter |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def <|fim_middle|>(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def eval_func(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | set_data |
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random
from datetime import datetime
from multiprocessing import Pool
import numpy as np
from scipy.optimize import minimize
def worker_func(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
return (self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) ** 2
def optimized_func_i_der(args):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
self = args[0]
r = args[1]
i = args[2]
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def worker_func_der(args):
self = args[0]
m = args[1]
k = args[2]
r = args[3]
i = args[4]
return ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
class Agent:
num_features = 22
def __init__(self):
self.lf = 0.2 # Learning factor lambda
self.data = [] # The features' values for all the games
self.rewards = [] # Reward values for moving from 1 state to the next
self.rt = np.array([])
self.max_iter = 50
def set_learning_factor(self, learning_factor):
assert(learning_factor >= 0 and learning_factor <= 1)
self.lf = learning_factor
def set_rt(self, rt):
assert(len(rt) == self.num_features)
self.rt = rt
def set_iter(self, max_iter):
self.max_iter = max_iter
def set_data(self, data):
self.data = []
self.rewards = []
for game in data:
game = np.vstack((game, np.zeros(self.num_features + 1)))
self.data.append(game[:, :-1])
self.rewards.append(game[:, -1:])
def <|fim_middle|>(self, m, k, r):
"""
The evaluation function value for the set of weights (vector) r
at the mth game and kth board state """
return np.dot(r, self.data[m][k])
def eval_func_der(self, m, k, r, i):
"""
Find the derivative of the evaluation function with respect
to the ith component of the vector r
"""
return self.data[m][k][i]
def get_reward(self, m, s):
"""
Get reward for moving from state s to state (s + 1)
"""
return self.rewards[m][s + 1][0]
def temporal_diff(self, m, s):
"""
The temporal diffence value for state s to state (s+1) in the mth game
"""
return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) -
self.eval_func(m, s, self.rt))
def temporal_diff_sum(self, m, k):
Nm = self.data[m].shape[0] - 1
result = 0
for s in range(k, Nm):
result += self.lf**(s - k) * self.temporal_diff(m, s)
return result
def optimized_func(self, r):
result = 0
M = len(self.data)
pool = Pool(processes=4)
for m in range(M):
Nm = self.data[m].shape[0] - 1
k_args = range(Nm + 1)
self_args = [self] * len(k_args)
m_args = [m] * len(k_args)
r_args = [r] * len(k_args)
result += sum(pool.map(worker_func,
zip(self_args, m_args, k_args, r_args)))
return result
def optimized_func_i_der(self, r, i):
"""
The derivative of the optimized function with respect to the
ith component of the vector r
"""
result = 0
M = len(self.data)
for m in range(M):
Nm = self.data[m].shape[0] - 1
for k in range(Nm + 1):
result += ((self.eval_func(m, k, r) -
self.eval_func(m, k, self.rt) -
self.temporal_diff_sum(m, k)) * 2 *
self.eval_func_der(m, k, r, i))
return result
def optimized_func_der(self, r):
p = Pool(processes=4)
self_args = [self] * len(r)
i_args = range(len(r))
r_args = [r] * len(r)
return np.array(p.map(optimized_func_i_der,
zip(self_args, r_args, i_args)))
def callback(self, r):
print("Iteration %d completed at %s" %
(self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter += 1
def compute_next_rt(self):
print("Start computing at %s" %
(datetime.now().strftime("%d/%m/%Y %H:%M:%S")))
self.cur_iter = 1
r0 = np.array([random.randint(-10, 10)
for i in range(self.num_features)])
res = minimize(self.optimized_func, r0, method='BFGS',
jac=self.optimized_func_der,
options={'maxiter': self.max_iter, 'disp': True},
callback=self.callback)
return res.x
<|fim▁end|> | eval_func |
Subsets and Splits