prompt
large_stringlengths
72
9.34k
completion
large_stringlengths
0
7.61k
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): <|fim_middle|> class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}'
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): <|fim_middle|> def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
self.method = method self.url = url self.status = status self.body = response_text
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): <|fim_middle|> class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
return f'{self.method} {self.url}, unexpected response {self.status}'
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: <|fim_middle|> class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): <|fim_middle|> async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
self.settings = settings self.root = root_url.rstrip('/') + '/'
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: <|fim_middle|> async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data)
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: <|fim_middle|> async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data)
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: <|fim_middle|> async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data)
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: <|fim_middle|> async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data)
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: <|fim_middle|> def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): <|fim_middle|> class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
return method, url, data
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): <|fim_middle|> class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): <|fim_middle|> def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
super().__init__(settings.mandrill_url, settings)
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): <|fim_middle|> class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
data['key'] = self.settings.mandrill_key return method, url, data
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): <|fim_middle|> <|fim▁end|>
def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): <|fim_middle|> def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
super().__init__(settings.messagebird_url, settings)
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): <|fim_middle|> <|fim▁end|>
data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): <|fim_middle|> return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
try: return json.loads(v) except (ValueError, TypeError): pass
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: <|fim_middle|> if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
kwargs['headers'] = headers
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): <|fim_middle|> r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
kwargs['timeout'] = timeout
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): <|fim_middle|> if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
allowed_statuses = (allowed_statuses,)
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: <|fim_middle|> else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text)
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: <|fim_middle|> def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
logger.debug('%s /%s -> %s', method, uri, r.status_code) return r
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def <|fim_middle|>(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
lenient_json
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def <|fim_middle|>(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
__init__
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def <|fim_middle|>(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
__str__
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def <|fim_middle|>(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
__init__
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def <|fim_middle|>(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
get
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def <|fim_middle|>(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
delete
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def <|fim_middle|>(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
post
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def <|fim_middle|>(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
put
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def <|fim_middle|>(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
_request
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def <|fim_middle|>(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
_modify_request
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def <|fim_middle|>(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
__init__
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def <|fim_middle|>(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
_modify_request
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def <|fim_middle|>(self, settings): super().__init__(settings.messagebird_url, settings) def _modify_request(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
__init__
<|file_name|>ext.py<|end_file_name|><|fim▁begin|>import json import logging from foxglove import glove from httpx import Response from .settings import Settings logger = logging.getLogger('ext') def lenient_json(v): if isinstance(v, (str, bytes)): try: return json.loads(v) except (ValueError, TypeError): pass return v class ApiError(RuntimeError): def __init__(self, method, url, status, response_text): self.method = method self.url = url self.status = status self.body = response_text def __str__(self): return f'{self.method} {self.url}, unexpected response {self.status}' class ApiSession: def __init__(self, root_url, settings: Settings): self.settings = settings self.root = root_url.rstrip('/') + '/' async def get(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('GET', uri, allowed_statuses=allowed_statuses, **data) async def delete(self, uri, *, allowed_statuses=(200,), **data) -> Response: return await self._request('DELETE', uri, allowed_statuses=allowed_statuses, **data) async def post(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('POST', uri, allowed_statuses=allowed_statuses, **data) async def put(self, uri, *, allowed_statuses=(200, 201), **data) -> Response: return await self._request('PUT', uri, allowed_statuses=allowed_statuses, **data) async def _request(self, method, uri, allowed_statuses=(200, 201), **data) -> Response: method, url, data = self._modify_request(method, self.root + str(uri).lstrip('/'), data) kwargs = {} headers = data.pop('headers_', None) if headers is not None: kwargs['headers'] = headers if timeout := data.pop('timeout_', None): kwargs['timeout'] = timeout r = await glove.http.request(method, url, json=data or None, **kwargs) if isinstance(allowed_statuses, int): allowed_statuses = (allowed_statuses,) if allowed_statuses != '*' and r.status_code not in allowed_statuses: data = { 'request_real_url': str(r.request.url), 'request_headers': dict(r.request.headers), 'request_data': data, 'response_headers': dict(r.headers), 'response_content': lenient_json(r.text), } logger.warning( '%s unexpected response %s /%s -> %s', self.__class__.__name__, method, uri, r.status_code, extra={'data': data} if self.settings.verbose_http_errors else {}, ) raise ApiError(method, url, r.status_code, r.text) else: logger.debug('%s /%s -> %s', method, uri, r.status_code) return r def _modify_request(self, method, url, data): return method, url, data class Mandrill(ApiSession): def __init__(self, settings): super().__init__(settings.mandrill_url, settings) def _modify_request(self, method, url, data): data['key'] = self.settings.mandrill_key return method, url, data class MessageBird(ApiSession): def __init__(self, settings): super().__init__(settings.messagebird_url, settings) def <|fim_middle|>(self, method, url, data): data['headers_'] = {'Authorization': f'AccessKey {self.settings.messagebird_key}'} return method, url, data <|fim▁end|>
_modify_request
<|file_name|>config_parser.py<|end_file_name|><|fim▁begin|>import configparser CONFIG_PATH = 'accounting.conf' class MyConfigParser(): def __init__(self, config_path=CONFIG_PATH): self.config = configparser.ConfigParser(allow_no_value=True) self.config.read(config_path) def config_section_map(self, section): """ returns all configuration options in 'section' in a dict with key: config_option and value: the read value in the file""" dict1 = {} options = self.config.options(section) for option in options: try: dict1[option] = self.config.get(section, option) if dict1[option] == -1: DebugPrint("skip: %s" % option) except: dict1[option] = None return dict1<|fim▁hole|> # getint(section, option) # getboolean(section, option)<|fim▁end|>
<|file_name|>config_parser.py<|end_file_name|><|fim▁begin|>import configparser CONFIG_PATH = 'accounting.conf' class MyConfigParser(): <|fim_middle|> # getint(section, option) # getboolean(section, option) <|fim▁end|>
def __init__(self, config_path=CONFIG_PATH): self.config = configparser.ConfigParser(allow_no_value=True) self.config.read(config_path) def config_section_map(self, section): """ returns all configuration options in 'section' in a dict with key: config_option and value: the read value in the file""" dict1 = {} options = self.config.options(section) for option in options: try: dict1[option] = self.config.get(section, option) if dict1[option] == -1: DebugPrint("skip: %s" % option) except: dict1[option] = None return dict1
<|file_name|>config_parser.py<|end_file_name|><|fim▁begin|>import configparser CONFIG_PATH = 'accounting.conf' class MyConfigParser(): def __init__(self, config_path=CONFIG_PATH): <|fim_middle|> def config_section_map(self, section): """ returns all configuration options in 'section' in a dict with key: config_option and value: the read value in the file""" dict1 = {} options = self.config.options(section) for option in options: try: dict1[option] = self.config.get(section, option) if dict1[option] == -1: DebugPrint("skip: %s" % option) except: dict1[option] = None return dict1 # getint(section, option) # getboolean(section, option) <|fim▁end|>
self.config = configparser.ConfigParser(allow_no_value=True) self.config.read(config_path)
<|file_name|>config_parser.py<|end_file_name|><|fim▁begin|>import configparser CONFIG_PATH = 'accounting.conf' class MyConfigParser(): def __init__(self, config_path=CONFIG_PATH): self.config = configparser.ConfigParser(allow_no_value=True) self.config.read(config_path) def config_section_map(self, section): <|fim_middle|> # getint(section, option) # getboolean(section, option) <|fim▁end|>
""" returns all configuration options in 'section' in a dict with key: config_option and value: the read value in the file""" dict1 = {} options = self.config.options(section) for option in options: try: dict1[option] = self.config.get(section, option) if dict1[option] == -1: DebugPrint("skip: %s" % option) except: dict1[option] = None return dict1
<|file_name|>config_parser.py<|end_file_name|><|fim▁begin|>import configparser CONFIG_PATH = 'accounting.conf' class MyConfigParser(): def __init__(self, config_path=CONFIG_PATH): self.config = configparser.ConfigParser(allow_no_value=True) self.config.read(config_path) def config_section_map(self, section): """ returns all configuration options in 'section' in a dict with key: config_option and value: the read value in the file""" dict1 = {} options = self.config.options(section) for option in options: try: dict1[option] = self.config.get(section, option) if dict1[option] == -1: <|fim_middle|> except: dict1[option] = None return dict1 # getint(section, option) # getboolean(section, option) <|fim▁end|>
DebugPrint("skip: %s" % option)
<|file_name|>config_parser.py<|end_file_name|><|fim▁begin|>import configparser CONFIG_PATH = 'accounting.conf' class MyConfigParser(): def <|fim_middle|>(self, config_path=CONFIG_PATH): self.config = configparser.ConfigParser(allow_no_value=True) self.config.read(config_path) def config_section_map(self, section): """ returns all configuration options in 'section' in a dict with key: config_option and value: the read value in the file""" dict1 = {} options = self.config.options(section) for option in options: try: dict1[option] = self.config.get(section, option) if dict1[option] == -1: DebugPrint("skip: %s" % option) except: dict1[option] = None return dict1 # getint(section, option) # getboolean(section, option) <|fim▁end|>
__init__
<|file_name|>config_parser.py<|end_file_name|><|fim▁begin|>import configparser CONFIG_PATH = 'accounting.conf' class MyConfigParser(): def __init__(self, config_path=CONFIG_PATH): self.config = configparser.ConfigParser(allow_no_value=True) self.config.read(config_path) def <|fim_middle|>(self, section): """ returns all configuration options in 'section' in a dict with key: config_option and value: the read value in the file""" dict1 = {} options = self.config.options(section) for option in options: try: dict1[option] = self.config.get(section, option) if dict1[option] == -1: DebugPrint("skip: %s" % option) except: dict1[option] = None return dict1 # getint(section, option) # getboolean(section, option) <|fim▁end|>
config_section_map
<|file_name|>test_submain_package.py<|end_file_name|><|fim▁begin|>from mock import patch from nose.tools import eq_ from helper import TestCase import appvalidator.submain as submain class TestSubmainPackage(TestCase): @patch("appvalidator.submain.test_inner_package", lambda x, z: "success") def test_package_pass(self): "Tests the test_package function with simple data" self.setup_err() name = "tests/resources/submain/install_rdf.xpi" with open(name) as pack: result = submain.test_package(self.err, pack, name)<|fim▁hole|> @patch("appvalidator.submain.test_inner_package", lambda x, z: "success") def test_package_corrupt(self): "Tests the test_package function fails with a non-zip" self.setup_err() name = "tests/resources/junk.xpi" with open(name) as pack: result = submain.test_package(self.err, pack, name) self.assert_failed() def test_package_corrupt(self): "Tests the test_package function fails with a corrupt file" self.setup_err() name = "tests/resources/corrupt.xpi" result = submain.test_package(self.err, name, name) self.assert_failed(with_errors=True, with_warnings=True)<|fim▁end|>
self.assert_silent() eq_(result, "success")
<|file_name|>test_submain_package.py<|end_file_name|><|fim▁begin|>from mock import patch from nose.tools import eq_ from helper import TestCase import appvalidator.submain as submain class TestSubmainPackage(TestCase): <|fim_middle|> <|fim▁end|>
@patch("appvalidator.submain.test_inner_package", lambda x, z: "success") def test_package_pass(self): "Tests the test_package function with simple data" self.setup_err() name = "tests/resources/submain/install_rdf.xpi" with open(name) as pack: result = submain.test_package(self.err, pack, name) self.assert_silent() eq_(result, "success") @patch("appvalidator.submain.test_inner_package", lambda x, z: "success") def test_package_corrupt(self): "Tests the test_package function fails with a non-zip" self.setup_err() name = "tests/resources/junk.xpi" with open(name) as pack: result = submain.test_package(self.err, pack, name) self.assert_failed() def test_package_corrupt(self): "Tests the test_package function fails with a corrupt file" self.setup_err() name = "tests/resources/corrupt.xpi" result = submain.test_package(self.err, name, name) self.assert_failed(with_errors=True, with_warnings=True)
<|file_name|>test_submain_package.py<|end_file_name|><|fim▁begin|>from mock import patch from nose.tools import eq_ from helper import TestCase import appvalidator.submain as submain class TestSubmainPackage(TestCase): @patch("appvalidator.submain.test_inner_package", lambda x, z: "success") def test_package_pass(self): <|fim_middle|> @patch("appvalidator.submain.test_inner_package", lambda x, z: "success") def test_package_corrupt(self): "Tests the test_package function fails with a non-zip" self.setup_err() name = "tests/resources/junk.xpi" with open(name) as pack: result = submain.test_package(self.err, pack, name) self.assert_failed() def test_package_corrupt(self): "Tests the test_package function fails with a corrupt file" self.setup_err() name = "tests/resources/corrupt.xpi" result = submain.test_package(self.err, name, name) self.assert_failed(with_errors=True, with_warnings=True) <|fim▁end|>
"Tests the test_package function with simple data" self.setup_err() name = "tests/resources/submain/install_rdf.xpi" with open(name) as pack: result = submain.test_package(self.err, pack, name) self.assert_silent() eq_(result, "success")
<|file_name|>test_submain_package.py<|end_file_name|><|fim▁begin|>from mock import patch from nose.tools import eq_ from helper import TestCase import appvalidator.submain as submain class TestSubmainPackage(TestCase): @patch("appvalidator.submain.test_inner_package", lambda x, z: "success") def test_package_pass(self): "Tests the test_package function with simple data" self.setup_err() name = "tests/resources/submain/install_rdf.xpi" with open(name) as pack: result = submain.test_package(self.err, pack, name) self.assert_silent() eq_(result, "success") @patch("appvalidator.submain.test_inner_package", lambda x, z: "success") def test_package_corrupt(self): <|fim_middle|> def test_package_corrupt(self): "Tests the test_package function fails with a corrupt file" self.setup_err() name = "tests/resources/corrupt.xpi" result = submain.test_package(self.err, name, name) self.assert_failed(with_errors=True, with_warnings=True) <|fim▁end|>
"Tests the test_package function fails with a non-zip" self.setup_err() name = "tests/resources/junk.xpi" with open(name) as pack: result = submain.test_package(self.err, pack, name) self.assert_failed()
<|file_name|>test_submain_package.py<|end_file_name|><|fim▁begin|>from mock import patch from nose.tools import eq_ from helper import TestCase import appvalidator.submain as submain class TestSubmainPackage(TestCase): @patch("appvalidator.submain.test_inner_package", lambda x, z: "success") def test_package_pass(self): "Tests the test_package function with simple data" self.setup_err() name = "tests/resources/submain/install_rdf.xpi" with open(name) as pack: result = submain.test_package(self.err, pack, name) self.assert_silent() eq_(result, "success") @patch("appvalidator.submain.test_inner_package", lambda x, z: "success") def test_package_corrupt(self): "Tests the test_package function fails with a non-zip" self.setup_err() name = "tests/resources/junk.xpi" with open(name) as pack: result = submain.test_package(self.err, pack, name) self.assert_failed() def test_package_corrupt(self): <|fim_middle|> <|fim▁end|>
"Tests the test_package function fails with a corrupt file" self.setup_err() name = "tests/resources/corrupt.xpi" result = submain.test_package(self.err, name, name) self.assert_failed(with_errors=True, with_warnings=True)
<|file_name|>test_submain_package.py<|end_file_name|><|fim▁begin|>from mock import patch from nose.tools import eq_ from helper import TestCase import appvalidator.submain as submain class TestSubmainPackage(TestCase): @patch("appvalidator.submain.test_inner_package", lambda x, z: "success") def <|fim_middle|>(self): "Tests the test_package function with simple data" self.setup_err() name = "tests/resources/submain/install_rdf.xpi" with open(name) as pack: result = submain.test_package(self.err, pack, name) self.assert_silent() eq_(result, "success") @patch("appvalidator.submain.test_inner_package", lambda x, z: "success") def test_package_corrupt(self): "Tests the test_package function fails with a non-zip" self.setup_err() name = "tests/resources/junk.xpi" with open(name) as pack: result = submain.test_package(self.err, pack, name) self.assert_failed() def test_package_corrupt(self): "Tests the test_package function fails with a corrupt file" self.setup_err() name = "tests/resources/corrupt.xpi" result = submain.test_package(self.err, name, name) self.assert_failed(with_errors=True, with_warnings=True) <|fim▁end|>
test_package_pass
<|file_name|>test_submain_package.py<|end_file_name|><|fim▁begin|>from mock import patch from nose.tools import eq_ from helper import TestCase import appvalidator.submain as submain class TestSubmainPackage(TestCase): @patch("appvalidator.submain.test_inner_package", lambda x, z: "success") def test_package_pass(self): "Tests the test_package function with simple data" self.setup_err() name = "tests/resources/submain/install_rdf.xpi" with open(name) as pack: result = submain.test_package(self.err, pack, name) self.assert_silent() eq_(result, "success") @patch("appvalidator.submain.test_inner_package", lambda x, z: "success") def <|fim_middle|>(self): "Tests the test_package function fails with a non-zip" self.setup_err() name = "tests/resources/junk.xpi" with open(name) as pack: result = submain.test_package(self.err, pack, name) self.assert_failed() def test_package_corrupt(self): "Tests the test_package function fails with a corrupt file" self.setup_err() name = "tests/resources/corrupt.xpi" result = submain.test_package(self.err, name, name) self.assert_failed(with_errors=True, with_warnings=True) <|fim▁end|>
test_package_corrupt
<|file_name|>test_submain_package.py<|end_file_name|><|fim▁begin|>from mock import patch from nose.tools import eq_ from helper import TestCase import appvalidator.submain as submain class TestSubmainPackage(TestCase): @patch("appvalidator.submain.test_inner_package", lambda x, z: "success") def test_package_pass(self): "Tests the test_package function with simple data" self.setup_err() name = "tests/resources/submain/install_rdf.xpi" with open(name) as pack: result = submain.test_package(self.err, pack, name) self.assert_silent() eq_(result, "success") @patch("appvalidator.submain.test_inner_package", lambda x, z: "success") def test_package_corrupt(self): "Tests the test_package function fails with a non-zip" self.setup_err() name = "tests/resources/junk.xpi" with open(name) as pack: result = submain.test_package(self.err, pack, name) self.assert_failed() def <|fim_middle|>(self): "Tests the test_package function fails with a corrupt file" self.setup_err() name = "tests/resources/corrupt.xpi" result = submain.test_package(self.err, name, name) self.assert_failed(with_errors=True, with_warnings=True) <|fim▁end|>
test_package_corrupt
<|file_name|>th_logger.py<|end_file_name|><|fim▁begin|><|fim▁hole|>import logging from testProperty import TEST_OUTPUT_PATH test_logger = logging.getLogger('TEST_HARNESS') handler = logging.FileHandler(TEST_OUTPUT_PATH + 'runTest.log') formatter = logging.Formatter('%(asctime)s %(name)-10s %(levelname)-6s %(message)s') handler.setFormatter(formatter) test_logger.addHandler(handler) test_logger.setLevel(logging.DEBUG)<|fim▁end|>
#!C:\Python27\ """th_logger.py holds logging handler and config for the Regression test"""
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def debug_strings(self): print(self.strings) def show_me_plz(self, seek_note=None, seek_string=None): if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, <|fim▁hole|> Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position))<|fim▁end|>
found_position)) print(Fore.WHITE + \
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: <|fim_middle|> <|fim▁end|>
tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def debug_strings(self): print(self.strings) def show_me_plz(self, seek_note=None, seek_string=None): if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position))
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): <|fim_middle|> def debug_strings(self): print(self.strings) def show_me_plz(self, seek_note=None, seek_string=None): if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position)) <|fim▁end|>
self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding))
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def debug_strings(self): <|fim_middle|> def show_me_plz(self, seek_note=None, seek_string=None): if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position)) <|fim▁end|>
print(self.strings)
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def debug_strings(self): print(self.strings) def show_me_plz(self, seek_note=None, seek_string=None): <|fim_middle|> <|fim▁end|>
if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position))
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: <|fim_middle|> padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def debug_strings(self): print(self.strings) def show_me_plz(self, seek_note=None, seek_string=None): if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position)) <|fim▁end|>
self.max_string_name_len = len(string)
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def debug_strings(self): print(self.strings) def show_me_plz(self, seek_note=None, seek_string=None): if (seek_string): <|fim_middle|> upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position)) <|fim▁end|>
seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1]
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def debug_strings(self): print(self.strings) def show_me_plz(self, seek_note=None, seek_string=None): if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): <|fim_middle|> if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position)) <|fim▁end|>
lower_seek_note = seek_note[0:-1]
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def debug_strings(self): print(self.strings) def show_me_plz(self, seek_note=None, seek_string=None): if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: <|fim_middle|> upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position)) <|fim▁end|>
upper_seek_note = seek_note + '^'
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def debug_strings(self): print(self.strings) def show_me_plz(self, seek_note=None, seek_string=None): if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: <|fim_middle|> elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position)) <|fim▁end|>
color = Fore.WHITE + Back.RED found_position.append(string + "0")
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def debug_strings(self): print(self.strings) def show_me_plz(self, seek_note=None, seek_string=None): if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: <|fim_middle|> elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position)) <|fim▁end|>
color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0")
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def debug_strings(self): print(self.strings) def show_me_plz(self, seek_note=None, seek_string=None): if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: <|fim_middle|> print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position)) <|fim▁end|>
color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0")
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def debug_strings(self): print(self.strings) def show_me_plz(self, seek_note=None, seek_string=None): if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: <|fim_middle|> elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position)) <|fim▁end|>
color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr))
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def debug_strings(self): print(self.strings) def show_me_plz(self, seek_note=None, seek_string=None): if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: <|fim_middle|> elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position)) <|fim▁end|>
color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr))
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def debug_strings(self): print(self.strings) def show_me_plz(self, seek_note=None, seek_string=None): if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: <|fim_middle|> print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position)) <|fim▁end|>
color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr))
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def <|fim_middle|>(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def debug_strings(self): print(self.strings) def show_me_plz(self, seek_note=None, seek_string=None): if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position)) <|fim▁end|>
__init__
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def <|fim_middle|>(self): print(self.strings) def show_me_plz(self, seek_note=None, seek_string=None): if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position)) <|fim▁end|>
debug_strings
<|file_name|>frets.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python3 from colorama import Fore, Back class frets: tuning = list() max_string_name_len = 0; frets_count = 0; strings = dict() NOTES = ('E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B', 'C', 'C#', 'D', 'D#') def __init__(self, tuning=('E', 'A', 'D', 'G'), frets_count=24): self.tuning = tuning self.frets_count = frets_count for string in tuning: if len(string) > self.max_string_name_len: self.max_string_name_len = len(string) padding_count = 0; padding = '' self.strings[string] = list() starting_note = self.NOTES.index(string) + 1 for i in range(frets_count): padding = '^' * int(((starting_note + i) / len(self.NOTES))) self.strings[string].append(self.NOTES[(starting_note + i) % len(self.NOTES)] + padding) #print('{}{} ({}) = {}'.format(string, # i, # int(((starting_note + i) / len(self.NOTES))), # self.NOTES[(starting_note + i) % len(self.NOTES)] + padding)) def debug_strings(self): print(self.strings) def <|fim_middle|>(self, seek_note=None, seek_string=None): if (seek_string): seek_note = self.strings[seek_string[0]][int(seek_string[1]) - 1] upper_seek_note = None lower_seek_note = None if seek_note and seek_note.endswith('^'): lower_seek_note = seek_note[0:-1] if seek_note: upper_seek_note = seek_note + '^' upper_found_position = list() found_position = list() lower_found_position = list() print(Fore.WHITE + \ ' ' * (self.max_string_name_len + 2), end='') for fret_nr in range(1, self.frets_count + 1): print(Fore.WHITE + \ (' ' * (4 - len(str(fret_nr)))) + str(fret_nr), end='') print(Fore.YELLOW + '|', end='') print('') for string in reversed(self.tuning): color = Fore.WHITE + Back.BLACK if string == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + "0") elif string == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + "0") elif string == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + "0") print(color + \ (' ' * (self.max_string_name_len - len(string))) + \ string, end='') print(Fore.YELLOW + '||', end='') fret_nr = 1 for note in self.strings[string]: color = Fore.WHITE + Back.BLACK if note == seek_note: color = Fore.WHITE + Back.RED found_position.append(string + str(fret_nr)) elif note == upper_seek_note: color = Fore.WHITE + Back.CYAN upper_found_position.append(string + str(fret_nr)) elif note == lower_seek_note: color = Fore.WHITE + Back.MAGENTA lower_found_position.append(string + str(fret_nr)) print(color + \ note[0:4] + \ '-' * (4 - len(note)), end='') print(Fore.YELLOW + Back.BLACK + '|', end='') fret_nr += 1 print(Fore.WHITE + Back.BLACK + '') print(Fore.WHITE + '\n') print(Back.CYAN + ' ' + Back.BLACK + \ ' Found octave-higher note {} on: {}'.format(upper_seek_note, upper_found_position)) print(Back.RED + ' ' + Back.BLACK + \ ' Found note {} on: {}'.format(seek_note, found_position)) print(Fore.WHITE + \ Back.MAGENTA + ' ' + Back.BLACK + \ ' Found octave-lower note {} on: {}'.format(lower_seek_note, lower_found_position)) <|fim▁end|>
show_me_plz
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) <|fim▁hole|> num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x<|fim▁end|>
class Agent:
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): <|fim_middle|> def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): <|fim_middle|> def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
""" The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): <|fim_middle|> class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i))
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: <|fim_middle|> <|fim▁end|>
num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): <|fim_middle|> def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): <|fim_middle|> def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): <|fim_middle|> def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
assert(len(rt) == self.num_features) self.rt = rt
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): <|fim_middle|> def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
self.max_iter = max_iter
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): <|fim_middle|> def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:])
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): <|fim_middle|> def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
""" The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k])
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): <|fim_middle|> def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
""" Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i]
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): <|fim_middle|> def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
""" Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0]
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): <|fim_middle|> def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
""" The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt))
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): <|fim_middle|> def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): <|fim_middle|> def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): <|fim_middle|> def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
""" The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): <|fim_middle|> def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args)))
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): <|fim_middle|> def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): <|fim_middle|> <|fim▁end|>
print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def <|fim_middle|>(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
worker_func
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def <|fim_middle|>(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
optimized_func_i_der
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def <|fim_middle|>(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
worker_func_der
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def <|fim_middle|>(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
__init__
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def <|fim_middle|>(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
set_learning_factor
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def <|fim_middle|>(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
set_rt
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def <|fim_middle|>(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
set_iter
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def <|fim_middle|>(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def eval_func(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
set_data
<|file_name|>agent3.py<|end_file_name|><|fim▁begin|>import random from datetime import datetime from multiprocessing import Pool import numpy as np from scipy.optimize import minimize def worker_func(args): self = args[0] m = args[1] k = args[2] r = args[3] return (self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) ** 2 def optimized_func_i_der(args): """ The derivative of the optimized function with respect to the ith component of the vector r """ self = args[0] r = args[1] i = args[2] result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def worker_func_der(args): self = args[0] m = args[1] k = args[2] r = args[3] i = args[4] return ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) class Agent: num_features = 22 def __init__(self): self.lf = 0.2 # Learning factor lambda self.data = [] # The features' values for all the games self.rewards = [] # Reward values for moving from 1 state to the next self.rt = np.array([]) self.max_iter = 50 def set_learning_factor(self, learning_factor): assert(learning_factor >= 0 and learning_factor <= 1) self.lf = learning_factor def set_rt(self, rt): assert(len(rt) == self.num_features) self.rt = rt def set_iter(self, max_iter): self.max_iter = max_iter def set_data(self, data): self.data = [] self.rewards = [] for game in data: game = np.vstack((game, np.zeros(self.num_features + 1))) self.data.append(game[:, :-1]) self.rewards.append(game[:, -1:]) def <|fim_middle|>(self, m, k, r): """ The evaluation function value for the set of weights (vector) r at the mth game and kth board state """ return np.dot(r, self.data[m][k]) def eval_func_der(self, m, k, r, i): """ Find the derivative of the evaluation function with respect to the ith component of the vector r """ return self.data[m][k][i] def get_reward(self, m, s): """ Get reward for moving from state s to state (s + 1) """ return self.rewards[m][s + 1][0] def temporal_diff(self, m, s): """ The temporal diffence value for state s to state (s+1) in the mth game """ return (self.get_reward(m, s) + self.eval_func(m, s + 1, self.rt) - self.eval_func(m, s, self.rt)) def temporal_diff_sum(self, m, k): Nm = self.data[m].shape[0] - 1 result = 0 for s in range(k, Nm): result += self.lf**(s - k) * self.temporal_diff(m, s) return result def optimized_func(self, r): result = 0 M = len(self.data) pool = Pool(processes=4) for m in range(M): Nm = self.data[m].shape[0] - 1 k_args = range(Nm + 1) self_args = [self] * len(k_args) m_args = [m] * len(k_args) r_args = [r] * len(k_args) result += sum(pool.map(worker_func, zip(self_args, m_args, k_args, r_args))) return result def optimized_func_i_der(self, r, i): """ The derivative of the optimized function with respect to the ith component of the vector r """ result = 0 M = len(self.data) for m in range(M): Nm = self.data[m].shape[0] - 1 for k in range(Nm + 1): result += ((self.eval_func(m, k, r) - self.eval_func(m, k, self.rt) - self.temporal_diff_sum(m, k)) * 2 * self.eval_func_der(m, k, r, i)) return result def optimized_func_der(self, r): p = Pool(processes=4) self_args = [self] * len(r) i_args = range(len(r)) r_args = [r] * len(r) return np.array(p.map(optimized_func_i_der, zip(self_args, r_args, i_args))) def callback(self, r): print("Iteration %d completed at %s" % (self.cur_iter, datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter += 1 def compute_next_rt(self): print("Start computing at %s" % (datetime.now().strftime("%d/%m/%Y %H:%M:%S"))) self.cur_iter = 1 r0 = np.array([random.randint(-10, 10) for i in range(self.num_features)]) res = minimize(self.optimized_func, r0, method='BFGS', jac=self.optimized_func_der, options={'maxiter': self.max_iter, 'disp': True}, callback=self.callback) return res.x <|fim▁end|>
eval_func