BibleMMS / README.md
Flux9665's picture
add list of languages to README
8d16c70 verified
|
raw
history blame
3.18 kB
metadata
license: mit
task_categories:
  - text-to-speech
dataset_info:
  features:
    - name: audio
      dtype: audio
    - name: transcript
      dtype: string
    - name: language_code
      dtype: string
  splits:
    - name: train
      num_bytes: 508120568184.992
      num_examples: 736272
  download_size: 597640766127
  dataset_size: 508120568184.992
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*

The Dataset associated with the Paper "Meta Learning Text-to-Speech Synthesis in over 7000 Languages" by Florian Lux, Sarina Meyer, Lyonel Behringer, Frank Zalkow, Phat Do, Matt Coler, Emanuël A. P. Habets and Ngoc Thang Vu (Interspeech 2024).

We generate 2000 spoken utterances per language using the subsets of the eBible dataset [1] that are under free licenses as the text input to the MMS TTS models [2].

The languages associated with the following ISO-639-3 codes are represented in this dataset:

acf, bss, deu, inb, nca, quh, wap, acr, bus, dgr, ind, maz, nch, qul, tav, wmw, acu, byr, dik, iou, mbb, ncj, qvc, tbc, xed, agd, bzh, djk, ipi, mbc, ncl, qve, tbg, xon, agg, bzj, dop, jac, mbh, ncu, qvh, tbl, xtd, agn, caa, jic, mbj, ndj, qvm, tbz, xtm, agr, cab, emp, jiv, mbt, nfa, qvn, tca, yaa, agu, cap, eng, jvn, mca, ngp, qvs, tcs, yad, aia, car, ese, mcb, ngu, qvw, yal, cax, kaq, mcd, nhe, qvz, tee, ycn, ake, cbc, far, mco, qwh, yka, alp, cbi, fra, kdc, mcp, nhu, qxh, ame, cbr, gai, kde, mcq, nhw, qxn, tew, yre, amf, cbs, gam, kdl, mdy, nhy, qxo, tfr, yva, amk, cbt, geb, kek, med, nin, rai, zaa, apb, cbu, glk, ken, mee, nko, rgu, zab, apr, cbv, meq, nld, tgo, zac, arl, cco, gng, kje, met, nlg, rop, tgp, zad, grc, klv, mgh, nnq, rro, zai, ata, cek, gub, kmu, mib, noa, ruf, tna, zam, atb, cgc, guh, kne, mie, not, rug, tnk, zao, atg, chf, knf, mih, npl, rus, tnn, zar, awb, chz, gum, knj, mil, sab, tnp, zas, cjo, guo, ksr, mio, obo, seh, toc, zav, azg, cle, gux, kue, mit, omw, sey, tos, zaw, azz, cme, gvc, kvn, miz, ood, sgb, tpi, zca, bao, cni, gwi, kwd, mkl, shp, tpt, zga, bba, cnl, gym, kwf, mkn, ote, sja, trc, ziw, bbb, cnt, gyr, kwi, mop, otq, snn, ttc, zlm, cof, hat, kyc, mox, pab, snp, tte, zos, bgt, con, kyf, mpm, pad, som, tue, zpc, bjr, cot, heb, kyg, mpp, soy, tuf, zpl, bjv, cpa, kyq, mpx, pao, spa, tuo, zpm, bjz, cpb, hlt, kyz, mqb, pib, spp, tur, zpo, bkd, cpu, hns, lac, mqj, pir, spy, txq, zpu, blz, crn, hto, lat, msy, pjt, sri, txu, zpz, bmr, cso, hub, lex, mto, pls, srm, udu, ztq, bmu, ctu, lgl, muy, poi, srn, ukr, zty, bnp, cuc, lid, mxb, pol, stp, upv, zyp, boa, cui, huu, mxq, por, sus, ura, boj, cuk, huv, llg, mxt, poy, suz, urb, box, cwe, hvn, prf, swe, urt, bpr, cya, ign, lww, myk, ptu, swh, usp, bps, daa, ikk, maj, myy, sxb, vid, bqc, dah, nab, qub, tac, vie, bqp, ded, imo, maq, nas, quf, taj, vmy

[1] V. Akerman, D. Baines, D. Daspit, U. Hermjakob et al., “The eBible Corpus: Data and Model Benchmarks for Bible Translation for Low-Resource Languages,” arXiv:2304.09919, 2023.
[2] V. Pratap, A. Tjandra, B. Shi, P. Tomasello, A. Babu, S. Kundu, A. Elkahky, Z. Ni et al., “Scaling speech technology to 1,000+ languages,” Journal of Machine Learning Research, 2024.