id
int64
0
190k
prompt
stringlengths
21
13.4M
docstring
stringlengths
1
12k
188,634
from mmdeploy.core import SYMBOLIC_REWRITER The provided code snippet includes necessary dependencies for implementing the `deform_conv__default` function. Write a Python function `def deform_conv__default(g, input, offset, weight, stride, padding, dilation, groups, deform_groups, bias=False, im2col_step=32)` to solve the following problem: Rewrite symbolic function for default backend. Here is the function: def deform_conv__default(g, input, offset, weight, stride, padding, dilation, groups, deform_groups, bias=False, im2col_step=32): """Rewrite symbolic function for default backend.""" return g.op( 'mmdeploy::MMCVDeformConv2d', input, offset, weight, stride_i=stride, padding_i=[p for pair in zip(padding, padding) for p in pair], dilation_i=dilation, groups_i=groups, deform_groups_i=deform_groups)
Rewrite symbolic function for default backend.
188,635
from mmdeploy.core import SYMBOLIC_REWRITER The provided code snippet includes necessary dependencies for implementing the `deform_conv_openvino` function. Write a Python function `def deform_conv_openvino(g, input, offset, weight, stride, padding, dilation, groups, deform_groups, bias=False, im2col_step=32)` to solve the following problem: Rewrite symbolic function for OpenVINO backend. Here is the function: def deform_conv_openvino(g, input, offset, weight, stride, padding, dilation, groups, deform_groups, bias=False, im2col_step=32): """Rewrite symbolic function for OpenVINO backend.""" assert not bias, 'The "bias" parameter should be False.' assert groups == 1, 'The "groups" parameter should be 1.' kh, kw = weight.type().sizes()[2:] domain = 'org.openvinotoolkit' op_name = 'DeformableConv2D' return g.op( f'{domain}::{op_name}', input, offset, weight, strides_i=stride, pads_i=[p for pair in zip(padding, padding) for p in pair], dilations_i=dilation, groups_i=groups, deformable_groups_i=deform_groups, kernel_shape_i=[kh, kw])
Rewrite symbolic function for OpenVINO backend.
188,636
from mmdeploy.core import SYMBOLIC_REWRITER The provided code snippet includes necessary dependencies for implementing the `ms_deform_attn_default` function. Write a Python function `def ms_deform_attn_default( g, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step=64, )` to solve the following problem: Rewrite msda symbolic function for all backend. Here is the function: def ms_deform_attn_default( g, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step=64, ): """Rewrite msda symbolic function for all backend.""" return g.op( 'mmdeploy::MMCVMultiScaleDeformableAttention', value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step_i=im2col_step, )
Rewrite msda symbolic function for all backend.
188,637
import torch from mmdeploy.core import FUNCTION_REWRITER, SYMBOLIC_REWRITER from mmdeploy.utils import IR from mmdeploy.backend.torchscript import get_ops_path, ops_available assert ops_available(), 'torchscript custom ops is required.' torch.ops.load_library(get_ops_path()) from torch.nn.modules.utils import _pair kernel_h, kernel_w = weight.shape[-2:] with_bias = bias is not None if not with_bias: bias = input.new_empty(0) return torch.ops.mmdeploy.modulated_deform_conv( input, weight, bias, offset, mask, kernel_h, kernel_w, stride[1], stride[0], padding[1], padding[0], dilation[1], dilation[0], groups, deform_groups, with_bias) The provided code snippet includes necessary dependencies for implementing the `modulated_deform_conv__torchscript` function. Write a Python function `def modulated_deform_conv__torchscript(input, offset, mask, weight, bias, stride, padding, dilation, groups, deform_groups)` to solve the following problem: rewriter for the custom torchscript mdcn op. Here is the function: def modulated_deform_conv__torchscript(input, offset, mask, weight, bias, stride, padding, dilation, groups, deform_groups): """rewriter for the custom torchscript mdcn op.""" from mmdeploy.backend.torchscript import get_ops_path, ops_available assert ops_available(), 'torchscript custom ops is required.' torch.ops.load_library(get_ops_path()) from torch.nn.modules.utils import _pair kernel_h, kernel_w = weight.shape[-2:] stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) with_bias = bias is not None if not with_bias: bias = input.new_empty(0) return torch.ops.mmdeploy.modulated_deform_conv( input, weight, bias, offset, mask, kernel_h, kernel_w, stride[1], stride[0], padding[1], padding[0], dilation[1], dilation[0], groups, deform_groups, with_bias)
rewriter for the custom torchscript mdcn op.
188,638
import torch from mmdeploy.core import FUNCTION_REWRITER, SYMBOLIC_REWRITER from mmdeploy.utils import IR from mmdeploy.backend.torchscript import get_ops_path, ops_available from torch.nn.modules.utils import _pair The provided code snippet includes necessary dependencies for implementing the `modulated_deform_conv_default` function. Write a Python function `def modulated_deform_conv_default(g, input, offset, mask, weight, bias, stride, padding, dilation, groups, deform_groups)` to solve the following problem: Rewrite mdcn symbolic function for all backend. Here is the function: def modulated_deform_conv_default(g, input, offset, mask, weight, bias, stride, padding, dilation, groups, deform_groups): """Rewrite mdcn symbolic function for all backend.""" input_tensors = [input, offset, mask, weight] if bias is not None: input_tensors.append(bias) return g.op( 'mmdeploy::MMCVModulatedDeformConv2d', *input_tensors, stride_i=stride, padding_i=padding, dilation_i=dilation, groups_i=groups, deform_groups_i=deform_groups)
Rewrite mdcn symbolic function for all backend.
188,639
import torch.nn.functional as F from mmdeploy.core import FUNCTION_REWRITER from mmcv.ops.point_sample import denormalize add_dim = False output = F.grid_sample( input, denormalize(points), align_corners=align_corners, **kwargs) if add_dim: output = output.squeeze(3) return output The provided code snippet includes necessary dependencies for implementing the `point_sample__default` function. Write a Python function `def point_sample__default(input, points, align_corners=False, **kwargs)` to solve the following problem: A wrapper around :func:`grid_sample` to support 3D point_coords tensors Unlike :func:`torch.nn.functional.grid_sample` it assumes point_coords to lie inside ``[0, 1] x [0, 1]`` square. Args: input (torch.Tensor): Feature map, shape (N, C, H, W). points (torch.Tensor): Image based absolute point coordinates (normalized), range [0, 1] x [0, 1], shape (N, P, 2) or (N, Hgrid, Wgrid, 2). align_corners (bool, optional): Whether align_corners. Default: False Returns: torch.Tensor: Features of `point` on `input`, shape (N, C, P) or (N, C, Hgrid, Wgrid). Here is the function: def point_sample__default(input, points, align_corners=False, **kwargs): """A wrapper around :func:`grid_sample` to support 3D point_coords tensors Unlike :func:`torch.nn.functional.grid_sample` it assumes point_coords to lie inside ``[0, 1] x [0, 1]`` square. Args: input (torch.Tensor): Feature map, shape (N, C, H, W). points (torch.Tensor): Image based absolute point coordinates (normalized), range [0, 1] x [0, 1], shape (N, P, 2) or (N, Hgrid, Wgrid, 2). align_corners (bool, optional): Whether align_corners. Default: False Returns: torch.Tensor: Features of `point` on `input`, shape (N, C, P) or (N, C, Hgrid, Wgrid). """ from mmcv.ops.point_sample import denormalize add_dim = False if points.dim() == 3: add_dim = True points = points.unsqueeze(2) output = F.grid_sample( input, denormalize(points), align_corners=align_corners, **kwargs) if add_dim: output = output.squeeze(3) return output
A wrapper around :func:`grid_sample` to support 3D point_coords tensors Unlike :func:`torch.nn.functional.grid_sample` it assumes point_coords to lie inside ``[0, 1] x [0, 1]`` square. Args: input (torch.Tensor): Feature map, shape (N, C, H, W). points (torch.Tensor): Image based absolute point coordinates (normalized), range [0, 1] x [0, 1], shape (N, P, 2) or (N, Hgrid, Wgrid, 2). align_corners (bool, optional): Whether align_corners. Default: False Returns: torch.Tensor: Features of `point` on `input`, shape (N, C, P) or (N, C, Hgrid, Wgrid).
188,640
import torch.nn.functional as F from mmdeploy.core import FUNCTION_REWRITER from mmcv.ops.point_sample import denormalize The provided code snippet includes necessary dependencies for implementing the `simple_roialign__forward` function. Write a Python function `def simple_roialign__forward(self, features, rois)` to solve the following problem: Rewrite `forward` of SimpleRoIAlign. Args: features (torch.Tensor): Feature map, shape (N, C, H, W). rois (torch.Tensor): Returns: torch.Tensor: RoI features. Here is the function: def simple_roialign__forward(self, features, rois): """Rewrite `forward` of SimpleRoIAlign. Args: features (torch.Tensor): Feature map, shape (N, C, H, W). rois (torch.Tensor): Returns: torch.Tensor: RoI features. """ from mmcv.ops.point_sample import (generate_grid, point_sample, rel_roi_point_to_rel_img_point) num_imgs = features.size(0) num_rois = rois.size(0) rel_roi_points = generate_grid( num_rois, self.output_size, device=rois.device) rel_img_points = rel_roi_point_to_rel_img_point(rois, rel_roi_points, features, self.spatial_scale) rel_img_points = rel_img_points.reshape(num_imgs, -1, *rel_img_points.shape[1:]) point_feats = point_sample( features, rel_img_points, align_corners=not self.aligned) point_feats = point_feats.transpose(1, 2) channels = features.size(1) roi_feats = point_feats.reshape(num_rois, channels, *self.output_size) return roi_feats
Rewrite `forward` of SimpleRoIAlign. Args: features (torch.Tensor): Feature map, shape (N, C, H, W). rois (torch.Tensor): Returns: torch.Tensor: RoI features.
188,641
import torch from mmdeploy.codebase.mmdet.deploy import clip_bboxes from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `distance2bbox__default` function. Write a Python function `def distance2bbox__default(points, distance, max_shape=None)` to solve the following problem: Rewrite `mmdet.core.bbox.transforms.distance2bbox` Decode distance prediction to bounding box. Args: ctx (ContextCaller): The context with additional information. points (Tensor): Shape (B, N, 2) or (N, 2). distance (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4) max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B. Returns: Tensor: Boxes with shape (N, 4) or (B, N, 4) Here is the function: def distance2bbox__default(points, distance, max_shape=None): """Rewrite `mmdet.core.bbox.transforms.distance2bbox` Decode distance prediction to bounding box. Args: ctx (ContextCaller): The context with additional information. points (Tensor): Shape (B, N, 2) or (N, 2). distance (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4) max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B. Returns: Tensor: Boxes with shape (N, 4) or (B, N, 4) """ x1 = points[..., 0] - distance[..., 0] y1 = points[..., 1] - distance[..., 1] x2 = points[..., 0] + distance[..., 2] y2 = points[..., 1] + distance[..., 3] bboxes = torch.stack([x1, y1, x2, y2], -1) if max_shape is not None: # clip bboxes with dynamic `min` and `max` x1, y1, x2, y2 = clip_bboxes(x1, y1, x2, y2, max_shape) bboxes = torch.stack([x1, y1, x2, y2], dim=-1) return bboxes return bboxes
Rewrite `mmdet.core.bbox.transforms.distance2bbox` Decode distance prediction to bounding box. Args: ctx (ContextCaller): The context with additional information. points (Tensor): Shape (B, N, 2) or (N, 2). distance (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4) max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B. Returns: Tensor: Boxes with shape (N, 4) or (B, N, 4)
188,642
import copy import math from functools import partial from typing import Any, List, Optional, Sequence, Tuple, Union import numpy as np import torch import torch.nn.functional as F from mmengine import Config from mmengine.model.base_model.data_preprocessor import BaseDataPreprocessor from mmengine.registry import Registry from mmengine.structures import BaseDataElement, InstanceData from torch import Tensor, nn from mmdeploy.backend.base import get_backend_file_count from mmdeploy.codebase.base import BaseBackendModel from mmdeploy.codebase.mmdet.deploy import get_post_processing_params from mmdeploy.mmcv.ops import multiclass_nms from mmdeploy.utils import (Backend, get_backend, get_codebase_config, get_ir_config, get_partition_config, get_quantization_config, load_config) __BACKEND_MODEL = Registry('backend_detectors') The provided code snippet includes necessary dependencies for implementing the `build_object_detection_model` function. Write a Python function `def build_object_detection_model( model_files: Sequence[str], model_cfg: Union[str, Config], deploy_cfg: Union[str, Config], device: str, data_preprocessor: Optional[Union[Config, BaseDataPreprocessor]] = None, **kwargs)` to solve the following problem: Build object detection model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | Config): Input model config file or Config object. deploy_cfg (str | Config): Input deployment config file or Config object. device (str): Device to input model data_preprocessor (BaseDataPreprocessor | Config): The data preprocessor of the model. Returns: End2EndModel: Detector for a configured backend. Here is the function: def build_object_detection_model( model_files: Sequence[str], model_cfg: Union[str, Config], deploy_cfg: Union[str, Config], device: str, data_preprocessor: Optional[Union[Config, BaseDataPreprocessor]] = None, **kwargs): """Build object detection model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | Config): Input model config file or Config object. deploy_cfg (str | Config): Input deployment config file or Config object. device (str): Device to input model data_preprocessor (BaseDataPreprocessor | Config): The data preprocessor of the model. Returns: End2EndModel: Detector for a configured backend. """ # load cfg if necessary deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg) backend = get_backend(deploy_cfg) partition_config = get_partition_config(deploy_cfg) if partition_config is not None: partition_type = partition_config.get('type', None) else: codebase_config = get_codebase_config(deploy_cfg) # Default Config is 'end2end' partition_type = codebase_config.get('model_type', 'end2end') backend_detector = __BACKEND_MODEL.build( dict( type=partition_type, backend=backend, backend_files=model_files, device=device, model_cfg=model_cfg, deploy_cfg=deploy_cfg, data_preprocessor=data_preprocessor, **kwargs)) return backend_detector
Build object detection model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | Config): Input model config file or Config object. deploy_cfg (str | Config): Input deployment config file or Config object. device (str): Device to input model data_preprocessor (BaseDataPreprocessor | Config): The data preprocessor of the model. Returns: End2EndModel: Detector for a configured backend.
188,643
from typing import Any, Optional, Sequence, Tuple, Union import mmengine import torch from torch import Tensor from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.core.rewriters.rewriter_utils import LibVersionChecker from mmdeploy.utils import Backend, load_config The provided code snippet includes necessary dependencies for implementing the `get_post_processing_params` function. Write a Python function `def get_post_processing_params(deploy_cfg: Union[str, mmengine.Config])` to solve the following problem: Get mmdet post-processing parameters from config. Args: deploy_cfg (str | mmengine.Config): The path or content of config. Returns: dict: A dict of parameters for mmdet. Here is the function: def get_post_processing_params(deploy_cfg: Union[str, mmengine.Config]): """Get mmdet post-processing parameters from config. Args: deploy_cfg (str | mmengine.Config): The path or content of config. Returns: dict: A dict of parameters for mmdet. """ deploy_cfg = load_config(deploy_cfg)[0] codebase_key = 'codebase_config' assert codebase_key in deploy_cfg codebase_config = deploy_cfg[codebase_key] post_params = codebase_config.get('post_processing', None) assert post_params is not None, 'Failed to get `post_processing`.' return post_params
Get mmdet post-processing parameters from config. Args: deploy_cfg (str | mmengine.Config): The path or content of config. Returns: dict: A dict of parameters for mmdet.
188,644
from typing import Any, Optional, Sequence, Tuple, Union import mmengine import torch from torch import Tensor from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.core.rewriters.rewriter_utils import LibVersionChecker from mmdeploy.utils import Backend, load_config The provided code snippet includes necessary dependencies for implementing the `clip_bboxes` function. Write a Python function `def clip_bboxes(x1: Tensor, y1: Tensor, x2: Tensor, y2: Tensor, max_shape: Union[Tensor, Sequence[int]])` to solve the following problem: Clip bboxes for onnx. Since torch.clamp cannot have dynamic `min` and `max`, we scale the boxes by 1/max_shape and clamp in the range [0, 1] if necessary. Args: x1 (Tensor): The x1 for bounding boxes. y1 (Tensor): The y1 for bounding boxes. x2 (Tensor): The x2 for bounding boxes. y2 (Tensor): The y2 for bounding boxes. max_shape (Tensor | Sequence[int]): The (H,W) of original image. Returns: tuple(Tensor): The clipped x1, y1, x2, y2. Here is the function: def clip_bboxes(x1: Tensor, y1: Tensor, x2: Tensor, y2: Tensor, max_shape: Union[Tensor, Sequence[int]]): """Clip bboxes for onnx. Since torch.clamp cannot have dynamic `min` and `max`, we scale the boxes by 1/max_shape and clamp in the range [0, 1] if necessary. Args: x1 (Tensor): The x1 for bounding boxes. y1 (Tensor): The y1 for bounding boxes. x2 (Tensor): The x2 for bounding boxes. y2 (Tensor): The y2 for bounding boxes. max_shape (Tensor | Sequence[int]): The (H,W) of original image. Returns: tuple(Tensor): The clipped x1, y1, x2, y2. """ assert len(max_shape) == 2, '`max_shape` should be [h, w]' if isinstance(max_shape, torch.Tensor): # scale by 1/max_shape x1 = x1 / max_shape[1] y1 = y1 / max_shape[0] x2 = x2 / max_shape[1] y2 = y2 / max_shape[0] # clamp [0, 1] x1 = torch.clamp(x1, 0, 1) y1 = torch.clamp(y1, 0, 1) x2 = torch.clamp(x2, 0, 1) y2 = torch.clamp(y2, 0, 1) # scale back x1 = x1 * max_shape[1] y1 = y1 * max_shape[0] x2 = x2 * max_shape[1] y2 = y2 * max_shape[0] else: x1 = torch.clamp(x1, 0, max_shape[1]) y1 = torch.clamp(y1, 0, max_shape[0]) x2 = torch.clamp(x2, 0, max_shape[1]) y2 = torch.clamp(y2, 0, max_shape[0]) return x1, y1, x2, y2
Clip bboxes for onnx. Since torch.clamp cannot have dynamic `min` and `max`, we scale the boxes by 1/max_shape and clamp in the range [0, 1] if necessary. Args: x1 (Tensor): The x1 for bounding boxes. y1 (Tensor): The y1 for bounding boxes. x2 (Tensor): The x2 for bounding boxes. y2 (Tensor): The y2 for bounding boxes. max_shape (Tensor | Sequence[int]): The (H,W) of original image. Returns: tuple(Tensor): The clipped x1, y1, x2, y2.
188,645
from typing import Any, Optional, Sequence, Tuple, Union import mmengine import torch from torch import Tensor from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.core.rewriters.rewriter_utils import LibVersionChecker from mmdeploy.utils import Backend, load_config The provided code snippet includes necessary dependencies for implementing the `clip_bboxes__trt8` function. Write a Python function `def clip_bboxes__trt8(x1: Tensor, y1: Tensor, x2: Tensor, y2: Tensor, max_shape: Union[Tensor, Sequence[int]])` to solve the following problem: Clip bboxes for onnx. From TensorRT 8 we can do the operators on the tensors directly. Args: ctx (ContextCaller): The context with additional information. x1 (Tensor): The x1 for bounding boxes. y1 (Tensor): The y1 for bounding boxes. x2 (Tensor): The x2 for bounding boxes. y2 (Tensor): The y2 for bounding boxes. max_shape (Tensor | Sequence[int]): The (H,W) of original image. Returns: tuple(Tensor): The clipped x1, y1, x2, y2. Here is the function: def clip_bboxes__trt8(x1: Tensor, y1: Tensor, x2: Tensor, y2: Tensor, max_shape: Union[Tensor, Sequence[int]]): """Clip bboxes for onnx. From TensorRT 8 we can do the operators on the tensors directly. Args: ctx (ContextCaller): The context with additional information. x1 (Tensor): The x1 for bounding boxes. y1 (Tensor): The y1 for bounding boxes. x2 (Tensor): The x2 for bounding boxes. y2 (Tensor): The y2 for bounding boxes. max_shape (Tensor | Sequence[int]): The (H,W) of original image. Returns: tuple(Tensor): The clipped x1, y1, x2, y2. """ assert len(max_shape) == 2, '`max_shape` should be [h, w]' x1 = torch.clamp(x1, 0, max_shape[1]) y1 = torch.clamp(y1, 0, max_shape[0]) x2 = torch.clamp(x2, 0, max_shape[1]) y2 = torch.clamp(y2, 0, max_shape[0]) return x1, y1, x2, y2
Clip bboxes for onnx. From TensorRT 8 we can do the operators on the tensors directly. Args: ctx (ContextCaller): The context with additional information. x1 (Tensor): The x1 for bounding boxes. y1 (Tensor): The y1 for bounding boxes. x2 (Tensor): The x2 for bounding boxes. y2 (Tensor): The y2 for bounding boxes. max_shape (Tensor | Sequence[int]): The (H,W) of original image. Returns: tuple(Tensor): The clipped x1, y1, x2, y2.
188,646
from typing import Any, Optional, Sequence, Tuple, Union import mmengine import torch from torch import Tensor from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.core.rewriters.rewriter_utils import LibVersionChecker from mmdeploy.utils import Backend, load_config def __pad_with_value_if_necessary(x: Tensor, pad_dim: int, pad_size: int, pad_value: Optional[Any] = None) -> Tensor: """Pad a tensor with a value along some dim, do nothing on default. Args: x (Tensor): Input tensor. pad_dim (int): Along which dim to pad. pad_size (int): To which size to pad. pad_value (Any): Filled value for padding. Defaults to `None`. Returns: Tensor: Padded tensor. """ return x 'mmdeploy.codebase.mmdet.deploy.utils.__pad_with_value_if_necessary', backend=Backend.TENSORRT.value) The provided code snippet includes necessary dependencies for implementing the `pad_with_value_if_necessary` function. Write a Python function `def pad_with_value_if_necessary(x: Tensor, pad_dim: int, pad_size: int, pad_value: Optional[Any] = None) -> Tensor` to solve the following problem: Pad a tensor with a value along some dim if necessary. Args: x (Tensor): Input tensor. pad_dim (int): Along which dim to pad. pad_size (int): To which size to pad. pad_value (Any): Filled value for padding. Defaults to `None`. Returns: Tensor: Padded tensor. Here is the function: def pad_with_value_if_necessary(x: Tensor, pad_dim: int, pad_size: int, pad_value: Optional[Any] = None) -> Tensor: """Pad a tensor with a value along some dim if necessary. Args: x (Tensor): Input tensor. pad_dim (int): Along which dim to pad. pad_size (int): To which size to pad. pad_value (Any): Filled value for padding. Defaults to `None`. Returns: Tensor: Padded tensor. """ return __pad_with_value_if_necessary( x, pad_dim, pad_size=pad_size, pad_value=pad_value)
Pad a tensor with a value along some dim if necessary. Args: x (Tensor): Input tensor. pad_dim (int): Along which dim to pad. pad_size (int): To which size to pad. pad_value (Any): Filled value for padding. Defaults to `None`. Returns: Tensor: Padded tensor.
188,647
from typing import Any, Optional, Sequence, Tuple, Union import mmengine import torch from torch import Tensor from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.core.rewriters.rewriter_utils import LibVersionChecker from mmdeploy.utils import Backend, load_config def pad_with_value(x: Tensor, pad_dim: int, pad_size: int, pad_value: Optional[Any] = None): """Pad a tensor with a value along some dim. Args: x (Tensor): Input tensor. pad_dim (int): Along which dim to pad. pad_size (int): To which size to pad. pad_value (Any): Filled value for padding. Defaults to `None`. Returns: Tensor: Padded tensor. """ x_shape = list(x.shape) pad_shape = x_shape[:pad_dim] + [pad_size] + x_shape[pad_dim + 1:] x_pad = x.new_zeros(pad_shape) if pad_value is not None: x_pad = x_pad + pad_value x = torch.cat([x, x_pad], dim=pad_dim) return x The provided code snippet includes necessary dependencies for implementing the `__pad_with_value_if_necessary__tensorrt` function. Write a Python function `def __pad_with_value_if_necessary__tensorrt( x: Tensor, pad_dim: int, pad_size: int, pad_value: Optional[Any] = None) -> Tensor` to solve the following problem: Pad a tensor with a value along some dim. Args: x (Tensor): Input tensor. pad_dim (int): Along which dim to pad. pad_size (int): To which size to pad. pad_value (Any): Filled value for padding. Defaults to `None`. Returns: Tensor: Padded tensor. Here is the function: def __pad_with_value_if_necessary__tensorrt( x: Tensor, pad_dim: int, pad_size: int, pad_value: Optional[Any] = None) -> Tensor: """Pad a tensor with a value along some dim. Args: x (Tensor): Input tensor. pad_dim (int): Along which dim to pad. pad_size (int): To which size to pad. pad_value (Any): Filled value for padding. Defaults to `None`. Returns: Tensor: Padded tensor. """ return pad_with_value(x, pad_dim, pad_size=pad_size, pad_value=pad_value)
Pad a tensor with a value along some dim. Args: x (Tensor): Input tensor. pad_dim (int): Along which dim to pad. pad_size (int): To which size to pad. pad_value (Any): Filled value for padding. Defaults to `None`. Returns: Tensor: Padded tensor.
188,648
from typing import Any, Optional, Sequence, Tuple, Union import mmengine import torch from torch import Tensor from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.core.rewriters.rewriter_utils import LibVersionChecker from mmdeploy.utils import Backend, load_config class TRTGatherTopk(torch.autograd.Function): def forward(ctx, x: torch.Tensor, inds: torch.Tensor): """Implement of gather topk.""" batch_size = x.size(0) batch_inds = torch.arange(batch_size, device=inds.device).unsqueeze(-1) return x[batch_inds, inds, ...] def symbolic(g, x, inds): """symbolic of gather topk.""" out = g.op('mmdeploy::GatherTopk', x, inds, outputs=1) return out 'mmdeploy.codebase.mmdet.deploy.utils.__gather_topk', backend=Backend.TENSORRT.value) The provided code snippet includes necessary dependencies for implementing the `__gather_topk__trt` function. Write a Python function `def __gather_topk__trt(*inputs: Sequence[torch.Tensor], inds: torch.Tensor, batch_size: int, is_batched: bool = True) -> Tuple[torch.Tensor]` to solve the following problem: TensorRT gather_topk. Here is the function: def __gather_topk__trt(*inputs: Sequence[torch.Tensor], inds: torch.Tensor, batch_size: int, is_batched: bool = True) -> Tuple[torch.Tensor]: """TensorRT gather_topk.""" ctx = FUNCTION_REWRITER.get_context() _ = ctx if is_batched: index_shape = inds.shape index_dim = inds.dim() outputs = [None for _ in inputs] for i, x in enumerate(inputs): if x is None: continue out = TRTGatherTopk.apply(x, inds).to(x.dtype) out_shape = [*index_shape, *x.shape[index_dim:]] out = out.reshape(out_shape) outputs[i] = out else: prior_inds = inds.new_zeros((1, 1)) outputs = [ x[prior_inds, inds, ...] if x is not None else None for x in inputs ] return outputs
TensorRT gather_topk.
188,649
from typing import Any, Optional, Sequence, Tuple, Union import mmengine import torch from torch import Tensor from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.core.rewriters.rewriter_utils import LibVersionChecker from mmdeploy.utils import Backend, load_config The provided code snippet includes necessary dependencies for implementing the `__gather_topk__nonbatch` function. Write a Python function `def __gather_topk__nonbatch(*inputs: Sequence[torch.Tensor], inds: torch.Tensor, batch_size: int, is_batched: bool = True) -> Tuple[torch.Tensor]` to solve the following problem: Single batch gather_topk. Here is the function: def __gather_topk__nonbatch(*inputs: Sequence[torch.Tensor], inds: torch.Tensor, batch_size: int, is_batched: bool = True) -> Tuple[torch.Tensor]: """Single batch gather_topk.""" assert batch_size == 1 inds = inds.squeeze(0) outputs = [x[:, inds, ...] if x is not None else None for x in inputs] return outputs
Single batch gather_topk.
188,650
from typing import Any, Optional, Sequence, Tuple, Union import mmengine import torch from torch import Tensor from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.core.rewriters.rewriter_utils import LibVersionChecker from mmdeploy.utils import Backend, load_config def __gather_topk(*inputs: Sequence[torch.Tensor], inds: torch.Tensor, batch_size: int, is_batched: bool = True) -> Tuple[torch.Tensor]: """The default implementation of gather_topk.""" if is_batched: batch_inds = torch.arange(batch_size, device=inds.device).unsqueeze(-1) outputs = [ x[batch_inds, inds, ...] if x is not None else None for x in inputs ] else: prior_inds = inds.new_zeros((1, 1)) outputs = [ x[prior_inds, inds, ...] if x is not None else None for x in inputs ] return outputs The provided code snippet includes necessary dependencies for implementing the `gather_topk` function. Write a Python function `def gather_topk(*inputs: Sequence[torch.Tensor], inds: torch.Tensor, batch_size: int, is_batched: bool = True) -> Tuple[torch.Tensor]` to solve the following problem: Gather topk of each tensor. Args: inputs (Sequence[torch.Tensor]): Tensors to be gathered. inds (torch.Tensor): Topk index. batch_size (int): batch_size. is_batched (bool): Inputs is batched or not. Returns: Tuple[torch.Tensor]: Gathered tensors. Here is the function: def gather_topk(*inputs: Sequence[torch.Tensor], inds: torch.Tensor, batch_size: int, is_batched: bool = True) -> Tuple[torch.Tensor]: """Gather topk of each tensor. Args: inputs (Sequence[torch.Tensor]): Tensors to be gathered. inds (torch.Tensor): Topk index. batch_size (int): batch_size. is_batched (bool): Inputs is batched or not. Returns: Tuple[torch.Tensor]: Gathered tensors. """ import mmdeploy outputs = mmdeploy.codebase.mmdet.deploy.utils.__gather_topk( *inputs, inds=inds, batch_size=batch_size, is_batched=is_batched) if len(outputs) == 1: outputs = outputs[0] return outputs
Gather topk of each tensor. Args: inputs (Sequence[torch.Tensor]): Tensors to be gathered. inds (torch.Tensor): Topk index. batch_size (int): batch_size. is_batched (bool): Inputs is batched or not. Returns: Tuple[torch.Tensor]: Gathered tensors.
188,651
from copy import deepcopy from typing import Callable, Dict, Optional, Sequence, Tuple, Union import numpy as np import torch from mmengine import Config from mmengine.dataset import pseudo_collate from mmengine.model import BaseDataPreprocessor from mmengine.registry import Registry from mmdeploy.codebase.base import CODEBASE, BaseTask, MMCodebase from mmdeploy.utils import Backend, Codebase, Task from mmdeploy.utils.config_utils import (get_backend, get_input_shape, is_dynamic_shape) The provided code snippet includes necessary dependencies for implementing the `process_model_config` function. Write a Python function `def process_model_config(model_cfg: Config, imgs: Union[Sequence[str], Sequence[np.ndarray]], input_shape: Optional[Sequence[int]] = None)` to solve the following problem: Process the model config. Args: model_cfg (Config): The model config. imgs (Sequence[str] | Sequence[np.ndarray]): Input image(s), accepted data type are List[str], List[np.ndarray]. input_shape (list[int]): A list of two integer in (width, height) format specifying input shape. Default: None. Returns: Config: the model config after processing. Here is the function: def process_model_config(model_cfg: Config, imgs: Union[Sequence[str], Sequence[np.ndarray]], input_shape: Optional[Sequence[int]] = None): """Process the model config. Args: model_cfg (Config): The model config. imgs (Sequence[str] | Sequence[np.ndarray]): Input image(s), accepted data type are List[str], List[np.ndarray]. input_shape (list[int]): A list of two integer in (width, height) format specifying input shape. Default: None. Returns: Config: the model config after processing. """ cfg = model_cfg.copy() if isinstance(imgs[0], np.ndarray): cfg = cfg.copy() # set loading pipeline type cfg.test_pipeline[0].type = 'mmdet.LoadImageFromNDArray' pipeline = cfg.test_pipeline for i, transform in enumerate(pipeline): # for static exporting if input_shape is not None: if transform.type == 'Resize': pipeline[i].keep_ratio = False pipeline[i].scale = tuple(input_shape) elif transform.type in ('YOLOv5KeepRatioResize', 'LetterResize'): pipeline[i].scale = tuple(input_shape) elif transform.type == 'Pad' and 'size' in transform: pipeline[i].size = tuple(input_shape) pipeline = [ transform for transform in pipeline if transform.type != 'LoadAnnotations' ] cfg.test_pipeline = pipeline return cfg
Process the model config. Args: model_cfg (Config): The model config. imgs (Sequence[str] | Sequence[np.ndarray]): Input image(s), accepted data type are List[str], List[np.ndarray]. input_shape (list[int]): A list of two integer in (width, height) format specifying input shape. Default: None. Returns: Config: the model config after processing.
188,652
from copy import deepcopy from typing import Callable, Dict, Optional, Sequence, Tuple, Union import numpy as np import torch from mmengine import Config from mmengine.dataset import pseudo_collate from mmengine.model import BaseDataPreprocessor from mmengine.registry import Registry from mmdeploy.codebase.base import CODEBASE, BaseTask, MMCodebase from mmdeploy.utils import Backend, Codebase, Task from mmdeploy.utils.config_utils import (get_backend, get_input_shape, is_dynamic_shape) The provided code snippet includes necessary dependencies for implementing the `_get_dataset_metainfo` function. Write a Python function `def _get_dataset_metainfo(model_cfg: Config)` to solve the following problem: Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class. Here is the function: def _get_dataset_metainfo(model_cfg: Config): """Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class. """ from mmdet import datasets # noqa from mmdet.registry import DATASETS module_dict = DATASETS.module_dict for dataloader_name in [ 'test_dataloader', 'val_dataloader', 'train_dataloader' ]: if dataloader_name not in model_cfg: continue dataloader_cfg = model_cfg[dataloader_name] dataset_cfg = dataloader_cfg.dataset dataset_cls = module_dict.get(dataset_cfg.type, None) if dataset_cls is None: continue if hasattr(dataset_cls, '_load_metainfo') and isinstance( dataset_cls._load_metainfo, Callable): meta = dataset_cls._load_metainfo( dataset_cfg.get('metainfo', None)) if meta is not None: return meta if hasattr(dataset_cls, 'METAINFO'): return dataset_cls.METAINFO return None
Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class.
188,653
import torch from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.utils import get_common_config The provided code snippet includes necessary dependencies for implementing the `focus__forward__default` function. Write a Python function `def focus__forward__default(self, x)` to solve the following problem: Rewrite forward function of Focus class. Replace slice with transpose. Here is the function: def focus__forward__default(self, x): """Rewrite forward function of Focus class. Replace slice with transpose. """ # shape of x (b,c,w,h) -> y(b,4c,w/2,h/2) B, C, H, W = x.shape x = x.reshape(B, C, -1, 2, W) x = x.reshape(B, C, x.shape[2], 2, -1, 2) half_H = x.shape[2] half_W = x.shape[4] x = x.permute(0, 5, 3, 1, 2, 4) x = x.reshape(B, C * 4, half_H, half_W) return self.conv(x)
Rewrite forward function of Focus class. Replace slice with transpose.
188,654
import torch from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.utils import get_common_config The provided code snippet includes necessary dependencies for implementing the `focus__forward__ncnn` function. Write a Python function `def focus__forward__ncnn(self, x)` to solve the following problem: Rewrite forward function of Focus class for ncnn. Focus width and height information into channel space. ncnn does not support slice operator which step greater than 1, so we use another way to implement. Args: x (Tensor): The input tensor with shape (N, C, H, W). Returns: x (Tensor): The calculated tensor with shape (N, 4*C, H//2, W//2). Here is the function: def focus__forward__ncnn(self, x): """Rewrite forward function of Focus class for ncnn. Focus width and height information into channel space. ncnn does not support slice operator which step greater than 1, so we use another way to implement. Args: x (Tensor): The input tensor with shape (N, C, H, W). Returns: x (Tensor): The calculated tensor with shape (N, 4*C, H//2, W//2). """ batch_size, c, h, w = x.shape assert h % 2 == 0 and w % 2 == 0, f'focus for yolox needs even feature\ height and width, got {(h, w)}.' x = x.reshape(batch_size, c * h, 1, w) _b, _c, _h, _w = x.shape g = torch.div(_c, 2, rounding_mode='floor') # fuse to ncnn's shufflechannel x = x.view(_b, g, 2, _h, _w) x = torch.transpose(x, 1, 2).contiguous() x = x.view(_b, -1, _h, _w) x = x.reshape(_b, c * h * w, 1, 1) _b, _c, _h, _w = x.shape g = torch.div(_c, 2, rounding_mode='floor') # fuse to ncnn's shufflechannel x = x.view(_b, g, 2, _h, _w) x = torch.transpose(x, 1, 2).contiguous() x = x.view(_b, -1, _h, _w) x = x.reshape(_b, c * 4, torch.div(h, 2, rounding_mode='floor'), torch.div(w, 2, rounding_mode='floor')) return self.conv(x)
Rewrite forward function of Focus class for ncnn. Focus width and height information into channel space. ncnn does not support slice operator which step greater than 1, so we use another way to implement. Args: x (Tensor): The input tensor with shape (N, C, H, W). Returns: x (Tensor): The calculated tensor with shape (N, 4*C, H//2, W//2).
188,655
import torch from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.utils import get_common_config The provided code snippet includes necessary dependencies for implementing the `windowmsa__forward__tensorrt` function. Write a Python function `def windowmsa__forward__tensorrt(self, x, mask=None)` to solve the following problem: Rewrite forward function of WindowMSA class for TensorRT. 1. replace Gather operation of qkv with split. 2. replace SoftMax operation with a workaround done by PyTorch. Args: x (tensor): input features with shape of (num_windows*B, N, C) mask (tensor | None, Optional): mask with shape of (num_windows, Wh*Ww, Wh*Ww), value should be between (-inf, 0]. Here is the function: def windowmsa__forward__tensorrt(self, x, mask=None): """Rewrite forward function of WindowMSA class for TensorRT. 1. replace Gather operation of qkv with split. 2. replace SoftMax operation with a workaround done by PyTorch. Args: x (tensor): input features with shape of (num_windows*B, N, C) mask (tensor | None, Optional): mask with shape of (num_windows, Wh*Ww, Wh*Ww), value should be between (-inf, 0]. """ ctx = FUNCTION_REWRITER.get_context() B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4).contiguous() # replace the gather operation with the split q, k, v = [i.squeeze(0) for i in torch.split(qkv, 1, 0)] q = q * self.scale attn = (q @ k.transpose(-2, -1)) relative_position_bias = self.relative_position_bias_table[ self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute( 2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(-1, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) # replace softmax with a workaround # weird bug from TensorRT. softmax cannot be used here for fp32 and it # can be used in fp16, but softmax fp16 performance is not as good as # exp and log_softmax. Besides, only the UT of exp and log_softmax passed. fp16_mode = get_common_config(ctx.cfg).get('fp16_mode', False) if fp16_mode: attn = torch.exp(torch.log_softmax(attn, dim=self.softmax.dim)) else: means = torch.mean(attn, self.softmax.dim, keepdim=True)[0] attn_exp = torch.exp(attn - means) attn_exp_sum = torch.sum(attn_exp, self.softmax.dim, keepdim=True) attn = attn_exp / attn_exp_sum attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).contiguous().reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x
Rewrite forward function of WindowMSA class for TensorRT. 1. replace Gather operation of qkv with split. 2. replace SoftMax operation with a workaround done by PyTorch. Args: x (tensor): input features with shape of (num_windows*B, N, C) mask (tensor | None, Optional): mask with shape of (num_windows, Wh*Ww, Wh*Ww), value should be between (-inf, 0].
188,656
import torch from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.utils import get_common_config The provided code snippet includes necessary dependencies for implementing the `shift_window_msa__window_reverse__tensorrt` function. Write a Python function `def shift_window_msa__window_reverse__tensorrt(self, windows, H, W)` to solve the following problem: Rewrite window_reverse function of ShiftWindowMSA class for TensorRT. For TensorRT, seems radical shape transformations are not allowed. Replace them with soft ones. Args: windows: (num_windows*B, window_size, window_size, C) H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) Here is the function: def shift_window_msa__window_reverse__tensorrt(self, windows, H, W): """Rewrite window_reverse function of ShiftWindowMSA class for TensorRT. For TensorRT, seems radical shape transformations are not allowed. Replace them with soft ones. Args: windows: (num_windows*B, window_size, window_size, C) H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ window_size = self.window_size B = int(windows.shape[0] / (H * W / window_size / window_size)) # x = windows.view(B, H // window_size, W // window_size, window_size, # window_size, -1) x = windows.view(B, -1, W, window_size, windows.shape[-1]) x = x.view(B, x.shape[1], -1, window_size, window_size, x.shape[-1]) x = x.permute(0, 1, 3, 2, 4, 5).reshape(B, H, W, x.shape[-1]) return x
Rewrite window_reverse function of ShiftWindowMSA class for TensorRT. For TensorRT, seems radical shape transformations are not allowed. Replace them with soft ones. Args: windows: (num_windows*B, window_size, window_size, C) H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C)
188,657
import torch from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.utils import get_common_config The provided code snippet includes necessary dependencies for implementing the `shift_window_msa__window_partition__tensorrt` function. Write a Python function `def shift_window_msa__window_partition__tensorrt(self, x)` to solve the following problem: Rewrite window_partition function of ShiftWindowMSA class for TensorRT. For TensorRT, seems radical shape transformations are not allowed. Replace them with soft ones. Args: x: (B, H, W, C) Returns: windows: (num_windows*B, window_size, window_size, C) Here is the function: def shift_window_msa__window_partition__tensorrt(self, x): """Rewrite window_partition function of ShiftWindowMSA class for TensorRT. For TensorRT, seems radical shape transformations are not allowed. Replace them with soft ones. Args: x: (B, H, W, C) Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape window_size = self.window_size x = x.view(B, H, -1, window_size, C) x = x.view(B, -1, window_size, x.shape[-3], window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous() windows = windows.view(-1, window_size, window_size, C) return windows
Rewrite window_partition function of ShiftWindowMSA class for TensorRT. For TensorRT, seems radical shape transformations are not allowed. Replace them with soft ones. Args: x: (B, H, W, C) Returns: windows: (num_windows*B, window_size, window_size, C)
188,658
import torch from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.utils import get_common_config The provided code snippet includes necessary dependencies for implementing the `shift_window_msa__forward__default` function. Write a Python function `def shift_window_msa__forward__default(self, query, hw_shape)` to solve the following problem: Rewrite forward function of ShiftWindowMSA class. 1. replace dynamic padding with static padding and dynamic slice. 2. always do slice `x = x[:, :H, :W, :].contiguous()` for stability. Here is the function: def shift_window_msa__forward__default(self, query, hw_shape): """Rewrite forward function of ShiftWindowMSA class. 1. replace dynamic padding with static padding and dynamic slice. 2. always do slice `x = x[:, :H, :W, :].contiguous()` for stability. """ B, L, C = query.shape H, W = hw_shape assert L == H * W, 'input feature has wrong size' query = query.view(B, H, W, C) # pad feature maps to multiples of window size query = query.permute(0, 3, 1, 2).contiguous() # query = torch.nn.ZeroPad2d([0, self.window_size, 0, self.window_size])( # query) query = torch.cat( [query, query.new_zeros(B, C, H, self.window_size)], dim=-1) query = torch.cat( [query, query.new_zeros(B, C, self.window_size, query.shape[-1])], dim=-2) slice_h = torch.div( (H + self.window_size - 1), self.window_size, rounding_mode='floor') * self.window_size slice_w = torch.div( (W + self.window_size - 1), self.window_size, rounding_mode='floor') * self.window_size query = query[:, :, :slice_h, :slice_w] query = query.permute(0, 2, 3, 1).contiguous() H_pad, W_pad = query.shape[1], query.shape[2] # cyclic shift if self.shift_size > 0: shifted_query = torch.roll( query, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) # calculate attention mask for SW-MSA w_mask = torch.cat([ shifted_query.new_zeros(W_pad - self.window_size), shifted_query.new_full((self.window_size - self.shift_size, ), 1), shifted_query.new_full((self.shift_size, ), 2) ]) h_mask = torch.cat([ shifted_query.new_zeros(H_pad - self.window_size), shifted_query.new_full((self.window_size - self.shift_size, ), 3), shifted_query.new_full((self.shift_size, ), 6) ]) img_mask = w_mask.unsqueeze(0) + h_mask.unsqueeze(1) img_mask = img_mask.unsqueeze(0) img_mask = img_mask.unsqueeze(-1) # nW, window_size, window_size, 1 mask_windows = self.window_partition(img_mask) mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( attn_mask == 0, float(0.0)) else: shifted_query = query attn_mask = None # nW*B, window_size, window_size, C query_windows = self.window_partition(shifted_query) # nW*B, window_size*window_size, C query_windows = query_windows.view(-1, self.window_size**2, C) # W-MSA/SW-MSA (nW*B, window_size*window_size, C) attn_windows = self.w_msa(query_windows, mask=attn_mask) # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) # B H' W' C shifted_x = self.window_reverse(attn_windows, H_pad, W_pad) # reverse cyclic shift if self.shift_size > 0: x = torch.roll( shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x x = x[:, :H, :W, :].contiguous() x = x.view(B, H * W, C) x = self.drop(x) return x
Rewrite forward function of ShiftWindowMSA class. 1. replace dynamic padding with static padding and dynamic slice. 2. always do slice `x = x[:, :H, :W, :].contiguous()` for stability.
188,659
import torch from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `patch_merging__forward__tensorrt` function. Write a Python function `def patch_merging__forward__tensorrt(self, x, input_size)` to solve the following problem: Rewrite forward function of PatchMerging class for TensorRT. In original implementation, mmdet applies nn.unfold to accelerate the inference. However, the onnx graph of it can not be parsed correctly by TensorRT. In mmdeploy, it is replaced. Args: x (Tensor): Has shape (B, H*W, C_in). input_size (tuple[int]): The spatial shape of x, arrange as (H, W). Default: None. Returns: tuple: Contains merged results and its spatial shape. - x (Tensor): Has shape (B, Merged_H * Merged_W, C_out) - out_size (tuple[int]): Spatial shape of x, arrange as (Merged_H, Merged_W). Here is the function: def patch_merging__forward__tensorrt(self, x, input_size): """Rewrite forward function of PatchMerging class for TensorRT. In original implementation, mmdet applies nn.unfold to accelerate the inference. However, the onnx graph of it can not be parsed correctly by TensorRT. In mmdeploy, it is replaced. Args: x (Tensor): Has shape (B, H*W, C_in). input_size (tuple[int]): The spatial shape of x, arrange as (H, W). Default: None. Returns: tuple: Contains merged results and its spatial shape. - x (Tensor): Has shape (B, Merged_H * Merged_W, C_out) - out_size (tuple[int]): Spatial shape of x, arrange as (Merged_H, Merged_W). """ H, W = input_size B, L, C = x.shape assert L == H * W, 'input feature has wrong size' assert H % 2 == 0 and W % 2 == 0, f'x size ({H}*{W}) are not even.' x = x.view(B, H, W, C) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x2 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = x.view(x.shape[0], x.shape[1], 4, -1).permute(0, 1, 3, 2).reshape(x.shape[0], x.shape[1], -1) x = self.norm(x) if self.norm else x x = self.reduction(x) out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] * (self.sampler.kernel_size[0] - 1) - 1) // self.sampler.stride[0] + 1 out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] * (self.sampler.kernel_size[1] - 1) - 1) // self.sampler.stride[1] + 1 output_size = (out_h, out_w) return x, output_size
Rewrite forward function of PatchMerging class for TensorRT. In original implementation, mmdet applies nn.unfold to accelerate the inference. However, the onnx graph of it can not be parsed correctly by TensorRT. In mmdeploy, it is replaced. Args: x (Tensor): Has shape (B, H*W, C_in). input_size (tuple[int]): The spatial shape of x, arrange as (H, W). Default: None. Returns: tuple: Contains merged results and its spatial shape. - x (Tensor): Has shape (B, Merged_H * Merged_W, C_out) - out_size (tuple[int]): Spatial shape of x, arrange as (Merged_H, Merged_W).
188,660
import torch from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `mask_matrix_nms__default` function. Write a Python function `def mask_matrix_nms__default(masks, labels, scores, filter_thr=-1, nms_pre=-1, max_num=-1, kernel='gaussian', sigma=2.0, mask_area=None)` to solve the following problem: Matrix NMS for multi-class masks. Args: masks (Tensor): Has shape (num_instances, h, w) labels (Tensor): Labels of corresponding masks, has shape (num_instances,). scores (Tensor): Mask scores of corresponding masks, has shape (num_instances). filter_thr (float): Score threshold to filter the masks after matrix nms. Default: -1, which means do not use filter_thr. nms_pre (int): The max number of instances to do the matrix nms. Default: -1, which means do not use nms_pre. max_num (int, optional): If there are more than max_num masks after matrix, only top max_num will be kept. Default: -1, which means do not use max_num. kernel (str): 'linear' or 'gaussian'. sigma (float): std in gaussian method. mask_area (Tensor): The sum of seg_masks. Returns: tuple(Tensor): Processed mask results. - scores (Tensor): Updated scores, has shape (n,). - labels (Tensor): Remained labels, has shape (n,). - masks (Tensor): Remained masks, has shape (n, w, h). - keep_inds (Tensor): The indices number of the remaining mask in the input mask, has shape (n,). Here is the function: def mask_matrix_nms__default(masks, labels, scores, filter_thr=-1, nms_pre=-1, max_num=-1, kernel='gaussian', sigma=2.0, mask_area=None): """Matrix NMS for multi-class masks. Args: masks (Tensor): Has shape (num_instances, h, w) labels (Tensor): Labels of corresponding masks, has shape (num_instances,). scores (Tensor): Mask scores of corresponding masks, has shape (num_instances). filter_thr (float): Score threshold to filter the masks after matrix nms. Default: -1, which means do not use filter_thr. nms_pre (int): The max number of instances to do the matrix nms. Default: -1, which means do not use nms_pre. max_num (int, optional): If there are more than max_num masks after matrix, only top max_num will be kept. Default: -1, which means do not use max_num. kernel (str): 'linear' or 'gaussian'. sigma (float): std in gaussian method. mask_area (Tensor): The sum of seg_masks. Returns: tuple(Tensor): Processed mask results. - scores (Tensor): Updated scores, has shape (n,). - labels (Tensor): Remained labels, has shape (n,). - masks (Tensor): Remained masks, has shape (n, w, h). - keep_inds (Tensor): The indices number of the remaining mask in the input mask, has shape (n,). """ assert len(labels) == len(masks) == len(scores) assert len(masks) == len(mask_area) # sort and keep top nms_pre nms_pre = max(0, nms_pre) if nms_pre <= 0: nms_pre = scores.shape[0] scores, sort_inds = torch.topk(scores, nms_pre) keep_inds = sort_inds masks = masks[sort_inds] mask_area = mask_area[sort_inds] labels = labels[sort_inds] num_masks = labels.size(0) flatten_masks = masks.reshape(num_masks, -1).float() # inter. inter_matrix = torch.mm(flatten_masks, flatten_masks.transpose(1, 0)) expanded_mask_area = mask_area.unsqueeze(1) total_area = expanded_mask_area + expanded_mask_area.transpose( 1, 0) - inter_matrix total_mask = total_area > 0 total_area = total_area.where(total_mask, total_area.new_ones(1)) iou_matrix = (inter_matrix / total_area).triu(diagonal=1) expanded_labels = labels.unsqueeze(1) label_matrix = expanded_labels == expanded_labels.transpose(1, 0) # iou decay decay_iou = iou_matrix.where(label_matrix, iou_matrix.new_zeros(1)) # iou compensation compensate_iou, _ = decay_iou.max(0) compensate_iou = compensate_iou.expand(num_masks, num_masks).transpose(1, 0) # calculate the decay_coefficient if kernel == 'gaussian': decay_matrix = torch.exp(-1 * sigma * (decay_iou**2)) compensate_matrix = torch.exp(-1 * sigma * (compensate_iou**2)) decay_coefficient, _ = (decay_matrix / compensate_matrix).min(0) elif kernel == 'linear': decay_matrix = (1 - decay_iou) / (1 - compensate_iou) decay_coefficient, _ = decay_matrix.min(0) else: raise NotImplementedError( f'{kernel} kernel is not supported in matrix nms!') # update the score. scores = scores * decay_coefficient keep = scores >= filter_thr scores = scores.where(keep, scores.new_zeros(1)) # sort and keep top max_num scores, sort_inds = torch.topk(scores, max(max_num, 0)) keep_inds = keep_inds[sort_inds] masks = masks[sort_inds] labels = labels[sort_inds] return scores, labels, masks, keep_inds
Matrix NMS for multi-class masks. Args: masks (Tensor): Has shape (num_instances, h, w) labels (Tensor): Labels of corresponding masks, has shape (num_instances,). scores (Tensor): Mask scores of corresponding masks, has shape (num_instances). filter_thr (float): Score threshold to filter the masks after matrix nms. Default: -1, which means do not use filter_thr. nms_pre (int): The max number of instances to do the matrix nms. Default: -1, which means do not use nms_pre. max_num (int, optional): If there are more than max_num masks after matrix, only top max_num will be kept. Default: -1, which means do not use max_num. kernel (str): 'linear' or 'gaussian'. sigma (float): std in gaussian method. mask_area (Tensor): The sum of seg_masks. Returns: tuple(Tensor): Processed mask results. - scores (Tensor): Updated scores, has shape (n,). - labels (Tensor): Remained labels, has shape (n,). - masks (Tensor): Remained masks, has shape (n, w, h). - keep_inds (Tensor): The indices number of the remaining mask in the input mask, has shape (n,).
188,661
from typing import List, Optional import torch from mmengine.config import ConfigDict from mmengine.structures import InstanceData from torch import Tensor from mmdeploy.codebase.mmdet.deploy import get_post_processing_params from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.mmcv.ops import multiclass_nms The provided code snippet includes necessary dependencies for implementing the `fovea_head__predict_by_feat` function. Write a Python function `def fovea_head__predict_by_feat(self, cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True) -> InstanceData` to solve the following problem: Rewrite `predict_by_feat` of `FoveaHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. self (FoveaHead): The instance of the class FoveaHead. cls_scores (list[Tensor]): Box scores for each scale level with shape (N, num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W). score_factors (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Default None. batch_img_metas (list[dict]): Meta information of the image, e.g., image size, scaling factor, etc. cfg (mmengine.Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. rescale (bool): If True, return boxes in original image space. Default: False. Returns: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Here is the function: def fovea_head__predict_by_feat(self, cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True) -> InstanceData: """Rewrite `predict_by_feat` of `FoveaHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. self (FoveaHead): The instance of the class FoveaHead. cls_scores (list[Tensor]): Box scores for each scale level with shape (N, num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W). score_factors (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Default None. batch_img_metas (list[dict]): Meta information of the image, e.g., image size, scaling factor, etc. cfg (mmengine.Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. rescale (bool): If True, return boxes in original image space. Default: False. Returns: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. """ ctx = FUNCTION_REWRITER.get_context() assert len(cls_scores) == len(bbox_preds) cfg = self.test_cfg if cfg is None else cfg num_levels = len(cls_scores) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] mlvl_priors = self.prior_generator.grid_priors( featmap_sizes, dtype=bbox_preds[0].dtype, device=bbox_preds[0].device) cls_score_list = [cls_scores[i].detach() for i in range(num_levels)] bbox_pred_list = [bbox_preds[i].detach() for i in range(num_levels)] img_shape = batch_img_metas[0]['img_shape'] batch_size = cls_scores[0].shape[0] det_bboxes = [] det_scores = [] for cls_score, bbox_pred, base_len, point \ in zip(cls_score_list, bbox_pred_list, self.base_edge_list, mlvl_priors): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] x = point[:, 0] y = point[:, 1] scores = cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1, self.cls_out_channels).sigmoid() bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, 4).exp() x1 = (x - base_len * bbox_pred[:, :, 0]). \ clamp(min=0, max=img_shape[1] - 1) y1 = (y - base_len * bbox_pred[:, :, 1]). \ clamp(min=0, max=img_shape[0] - 1) x2 = (x + base_len * bbox_pred[:, :, 2]). \ clamp(min=0, max=img_shape[1] - 1) y2 = (y + base_len * bbox_pred[:, :, 3]). \ clamp(min=0, max=img_shape[0] - 1) bboxes = torch.stack([x1, y1, x2, y2], -1) det_bboxes.append(bboxes) det_scores.append(scores) det_bboxes = torch.cat(det_bboxes, dim=1) if rescale: scale_factor = batch_img_metas['scale_factor'] det_bboxes /= det_bboxes.new_tensor(scale_factor) det_scores = torch.cat(det_scores, dim=1) deploy_cfg = ctx.cfg post_params = get_post_processing_params(deploy_cfg) max_output_boxes_per_class = post_params.max_output_boxes_per_class iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) score_threshold = cfg.get('score_thr', post_params.score_threshold) nms_pre = cfg.get('deploy_nms_pre', -1) nms_type = cfg.nms.get('type') return multiclass_nms( det_bboxes, det_scores, max_output_boxes_per_class, nms_type=nms_type, iou_threshold=iou_threshold, score_threshold=score_threshold, pre_top_k=nms_pre, keep_top_k=cfg.max_per_img)
Rewrite `predict_by_feat` of `FoveaHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. self (FoveaHead): The instance of the class FoveaHead. cls_scores (list[Tensor]): Box scores for each scale level with shape (N, num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W). score_factors (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Default None. batch_img_metas (list[dict]): Meta information of the image, e.g., image size, scaling factor, etc. cfg (mmengine.Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. rescale (bool): If True, return boxes in original image space. Default: False. Returns: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det].
188,662
from typing import List from torch import Tensor from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `centernet_head__predict_by_feat__default` function. Write a Python function `def centernet_head__predict_by_feat__default( self, center_heatmap_preds: List[Tensor], wh_preds: List[Tensor], offset_preds: List[Tensor], batch_img_metas: List[dict], rescale: bool = True, with_nms: bool = False)` to solve the following problem: Rewrite `centernethead` of `CenterNetHead` for default backend. Here is the function: def centernet_head__predict_by_feat__default( self, center_heatmap_preds: List[Tensor], wh_preds: List[Tensor], offset_preds: List[Tensor], batch_img_metas: List[dict], rescale: bool = True, with_nms: bool = False): """Rewrite `centernethead` of `CenterNetHead` for default backend.""" # The dynamic shape deploy of CenterNet get wrong result on TensorRT-8.4.x # because of TensorRT bugs, https://github.com/NVIDIA/TensorRT/issues/2299, # FYI. assert len(center_heatmap_preds) == len(wh_preds) == len(offset_preds) == 1 batch_center_heatmap_preds = center_heatmap_preds[0] batch_wh_preds = wh_preds[0] batch_offset_preds = offset_preds[0] batch_size = batch_center_heatmap_preds.shape[0] img_shape = batch_img_metas[0]['img_shape'] batch_det_bboxes, batch_labels = self._decode_heatmap( batch_center_heatmap_preds, batch_wh_preds, batch_offset_preds, img_shape, k=self.test_cfg.topk, kernel=self.test_cfg.local_maximum_kernel) det_bboxes = batch_det_bboxes.reshape([batch_size, -1, 5]) det_labels = batch_labels.reshape(batch_size, -1) if with_nms: det_bboxes, det_labels = self._bboxes_nms(det_bboxes, det_labels, self.test_cfg) return det_bboxes, det_labels
Rewrite `centernethead` of `CenterNetHead` for default backend.
188,663
from typing import Dict, List, Optional import torch from mmdet.models.utils import aligned_bilinear from mmengine.config import ConfigDict from torch import Tensor from mmdeploy.codebase.mmdet.deploy import get_post_processing_params from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.mmcv.ops.nms import multiclass_nms def multiclass_nms(boxes: Tensor, scores: Tensor, max_output_boxes_per_class: int = 1000, iou_threshold: float = 0.5, score_threshold: float = 0.05, pre_top_k: int = -1, keep_top_k: int = -1, output_index: bool = False, nms_type='nms'): """Apis for multiclass nms.""" if nms_type == 'nms': return _multiclass_nms( boxes, scores, max_output_boxes_per_class=max_output_boxes_per_class, iou_threshold=iou_threshold, score_threshold=score_threshold, pre_top_k=pre_top_k, keep_top_k=keep_top_k, output_index=output_index) elif nms_type == 'nms_rotated': return multiclass_nms_rotated( boxes, scores, max_output_boxes_per_class=max_output_boxes_per_class, iou_threshold=iou_threshold, score_threshold=score_threshold, pre_top_k=pre_top_k, keep_top_k=keep_top_k) elif nms_type == 'nms_match': return multiclass_nms_match( boxes, scores, max_output_boxes_per_class=max_output_boxes_per_class, iou_threshold=iou_threshold, score_threshold=score_threshold, pre_top_k=pre_top_k, keep_top_k=keep_top_k) else: raise NotImplementedError(f'Unsupported nms type: {nms_type}.') func_name='mmdeploy.mmcv.ops.nms._multiclass_nms', backend=Backend.COREML.value) def condinst_bbox_head__predict_by_feat( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, param_preds: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True, ): ctx = FUNCTION_REWRITER.get_context() deploy_cfg = ctx.cfg assert len(cls_scores) == len(bbox_preds) device = bbox_preds[0].device cfg = self.test_cfg if cfg is None else cfg batch_size = bbox_preds[0].shape[0] featmap_sizes = [cls_score.shape[-2:] for cls_score in cls_scores] all_level_points_strides = self.prior_generator.grid_priors( featmap_sizes, device=device, with_stride=True) all_level_points = [i[:, :2] for i in all_level_points_strides] all_level_strides = [i[:, 2] for i in all_level_points_strides] flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1, self.cls_out_channels) for cls_score in cls_scores ] flatten_bbox_preds = [ bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, 4) for bbox_pred in bbox_preds ] flatten_score_factors = [ score_factor.permute(0, 2, 3, 1).reshape(batch_size, -1, 1) for score_factor in score_factors ] flatten_param_preds = [ param_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, self.num_params) for param_pred in param_preds ] flatten_cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid() flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1) flatten_score_factors = torch.cat(flatten_score_factors, dim=1).sigmoid() flatten_param_preds = torch.cat(flatten_param_preds, dim=1) points = torch.cat(all_level_points) strides = torch.cat(all_level_strides) tl_x = points[..., 0] - flatten_bbox_preds[..., 0] tl_y = points[..., 1] - flatten_bbox_preds[..., 1] br_x = points[..., 0] + flatten_bbox_preds[..., 2] br_y = points[..., 1] + flatten_bbox_preds[..., 3] bboxes = torch.stack([tl_x, tl_y, br_x, br_y], -1) scores = flatten_cls_scores score_factors = flatten_score_factors param_preds = flatten_param_preds scores = scores * score_factors # get post processing config post_params = get_post_processing_params(deploy_cfg) max_output_boxes_per_class = post_params.max_output_boxes_per_class iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) score_threshold = cfg.get('score_thr', post_params.score_threshold) pre_top_k = post_params.pre_top_k keep_top_k = cfg.get('max_per_img', post_params.keep_top_k) dets, labels, inds = multiclass_nms( bboxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold, pre_top_k=pre_top_k, keep_top_k=keep_top_k, output_index=True, ) batch_inds = torch.arange(batch_size, device=bboxes.device).view(-1, 1) points = points.unsqueeze(0).repeat(batch_size, 1, 1) strides = strides.unsqueeze(0).repeat(batch_size, 1) param_preds = param_preds[batch_inds, inds, :] points = points[batch_inds, inds, :] strides = strides[batch_inds, inds] results = dict( dets=dets, labels=labels, param_preds=param_preds, points=points, strides=strides) return results
null
188,664
from typing import Dict, List, Optional import torch from mmdet.models.utils import aligned_bilinear from mmengine.config import ConfigDict from torch import Tensor from mmdeploy.codebase.mmdet.deploy import get_post_processing_params from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.mmcv.ops.nms import multiclass_nms def _parse_dynamic_params(self, params: Tensor): """parse the dynamic params for dynamic conv.""" batch_size = params.shape[0] num_insts = params.shape[1] params = params.permute(1, 0, 2) params_splits = list( torch.split_with_sizes( params, self.weight_nums + self.bias_nums, dim=2)) weight_splits = params_splits[:self.num_layers] bias_splits = params_splits[self.num_layers:] for idx in range(self.num_layers): if idx < self.num_layers - 1: weight_splits[idx] = weight_splits[idx].reshape( batch_size, num_insts, self.in_channels, -1) else: weight_splits[idx] = weight_splits[idx].reshape( batch_size, num_insts, 1, -1) return weight_splits, bias_splits def _dynamic_conv_forward(features: Tensor, weights: List[Tensor], biases: List[Tensor]): """dynamic forward, each layer follow a relu.""" n_layers = len(weights) x = features.flatten(0, 1).flatten(2) for i, (w, b) in enumerate(zip(weights, biases)): # replace dynamic conv with bmm w = w.flatten(0, 1) b = b.flatten(0, 1).unsqueeze(2) x = torch.bmm(w, x) x = x + b if i < n_layers - 1: x = x.clamp_(min=0) return x def condinst_mask_head__forward(self, x: tuple, positive_infos: Dict[str, torch.Tensor]): mask_feats = self.mask_feature_head(x) param_preds = positive_infos['param_preds'] points = positive_infos['points'] strides = positive_infos['strides'] batch_size = points.shape[0] num_insts = points.shape[1] hw = mask_feats.size()[-2:] mask_feats = mask_feats.unsqueeze(1).repeat(1, num_insts, 1, 1, 1) points = points.reshape(-1, 1, 2).unsqueeze(0) locations = self.prior_generator.single_level_grid_priors( hw, level_idx=0, device=mask_feats.device) locations = locations.unsqueeze(0).repeat(batch_size, 1, 1).reshape(batch_size, 1, -1, 2) centers = points.reshape(batch_size, -1, 1, 2) rel_coordinates = (centers - locations).permute(0, 1, 3, 2).float() rel_coordinates /= (strides[:, :, None, None] * self.size_of_interest) rel_coords = rel_coordinates.reshape(batch_size, -1, 2, hw[0], hw[1]) mask_head_inputs = torch.cat([rel_coords, mask_feats], dim=2) weights, biases = _parse_dynamic_params(self, param_preds) mask_preds = _dynamic_conv_forward(mask_head_inputs, weights, biases) mask_preds = mask_preds.reshape(batch_size, num_insts, hw[0], hw[1]) mask_preds = aligned_bilinear( mask_preds, int(self.mask_feat_stride / self.mask_out_stride)) return (mask_preds, )
null
188,665
from typing import Dict, List, Optional import torch from mmdet.models.utils import aligned_bilinear from mmengine.config import ConfigDict from torch import Tensor from mmdeploy.codebase.mmdet.deploy import get_post_processing_params from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.mmcv.ops.nms import multiclass_nms def condinst_mask_head__predict_by_feat(self, mask_preds: Tensor, results_list: Dict[str, torch.Tensor], batch_img_metas: List[dict], rescale: bool = True, **kwargs): cfg = self.test_cfg dets = results_list['dets'] labels = results_list['labels'] img_hw = batch_img_metas[0]['img_shape'][:2] mask_preds = mask_preds.sigmoid() mask_preds = aligned_bilinear(mask_preds, self.mask_out_stride) mask_preds = mask_preds[:, :, :img_hw[0], :img_hw[1]] masks = (mask_preds > cfg.mask_thr).float() return dets, labels, masks
null
188,666
from typing import List import torch from torch import Tensor from torch.nn import functional as F from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `detrhead__predict_by_feat__default` function. Write a Python function `def detrhead__predict_by_feat__default(self, all_cls_scores_list: List[Tensor], all_bbox_preds_list: List[Tensor], batch_img_metas: List[dict], rescale: bool = True)` to solve the following problem: Rewrite `predict_by_feat` of `FoveaHead` for default backend. Here is the function: def detrhead__predict_by_feat__default(self, all_cls_scores_list: List[Tensor], all_bbox_preds_list: List[Tensor], batch_img_metas: List[dict], rescale: bool = True): """Rewrite `predict_by_feat` of `FoveaHead` for default backend.""" from mmdet.structures.bbox import bbox_cxcywh_to_xyxy cls_scores = all_cls_scores_list[-1] bbox_preds = all_bbox_preds_list[-1] img_shape = batch_img_metas[0]['img_shape'] if isinstance(img_shape, list): img_shape = torch.tensor( img_shape, dtype=torch.long, device=cls_scores.device) img_shape = img_shape.unsqueeze(0) max_per_img = self.test_cfg.get('max_per_img', len(cls_scores[0])) batch_size = cls_scores.size(0) # `batch_index_offset` is used for the gather of concatenated tensor # supports dynamical batch inference if self.loss_cls.use_sigmoid: batch_index_offset = torch.arange(batch_size).to( cls_scores.device) * max_per_img batch_index_offset = batch_index_offset.unsqueeze(1).expand( batch_size, max_per_img) cls_scores = cls_scores.sigmoid() scores, indexes = cls_scores.flatten(1).topk(max_per_img, dim=1) det_labels = indexes % self.num_classes bbox_index = indexes // self.num_classes bbox_index = (bbox_index + batch_index_offset).view(-1) bbox_preds = bbox_preds.view(-1, 4)[bbox_index] bbox_preds = bbox_preds.view(batch_size, -1, 4) else: scores, det_labels = F.softmax(cls_scores, dim=-1)[..., :-1].max(-1) scores, bbox_index = scores.topk(max_per_img, dim=1) batch_inds = torch.arange( batch_size, device=scores.device).unsqueeze(-1) bbox_preds = bbox_preds[batch_inds, bbox_index, ...] # add unsqueeze to support tensorrt det_labels = det_labels.unsqueeze(-1)[batch_inds, bbox_index, ...].squeeze(-1) det_bboxes = bbox_cxcywh_to_xyxy(bbox_preds) det_bboxes.clamp_(min=0., max=1.) shape_scale = img_shape.flip(1).repeat(1, 2).unsqueeze(1) det_bboxes = det_bboxes * shape_scale det_bboxes = torch.cat((det_bboxes, scores.unsqueeze(-1)), -1) return det_bboxes, det_labels
Rewrite `predict_by_feat` of `FoveaHead` for default backend.
188,667
from typing import List, Optional, Sequence import torch from mmengine.config import ConfigDict from mmengine.structures import InstanceData from torch import Tensor from mmdeploy.codebase.mmdet.deploy import (gather_topk, get_post_processing_params, pad_with_value_if_necessary) from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.mmcv.ops import multiclass_nms from mmdeploy.utils import is_dynamic_shape The provided code snippet includes necessary dependencies for implementing the `reppoints_head__points2bbox` function. Write a Python function `def reppoints_head__points2bbox(self, pts, y_first=True)` to solve the following problem: Rewrite of `points2bbox` in `RepPointsHead`. Use `self.moment_transfer` in `points2bbox` will cause error: RuntimeError: Input, output and indices must be on the current device Here is the function: def reppoints_head__points2bbox(self, pts, y_first=True): """Rewrite of `points2bbox` in `RepPointsHead`. Use `self.moment_transfer` in `points2bbox` will cause error: RuntimeError: Input, output and indices must be on the current device """ ctx = FUNCTION_REWRITER.get_context() update_moment = hasattr(self, 'moment_transfer') if update_moment: moment_transfer = self.moment_transfer delattr(self, 'moment_transfer') self.moment_transfer = torch.tensor(moment_transfer.data) ret = ctx.origin_func(self, pts, y_first=y_first) if update_moment: self.moment_transfer = moment_transfer return ret
Rewrite of `points2bbox` in `RepPointsHead`. Use `self.moment_transfer` in `points2bbox` will cause error: RuntimeError: Input, output and indices must be on the current device
188,668
from typing import List, Optional, Sequence import torch from mmengine.config import ConfigDict from mmengine.structures import InstanceData from torch import Tensor from mmdeploy.codebase.mmdet.deploy import (gather_topk, get_post_processing_params, pad_with_value_if_necessary) from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.mmcv.ops import multiclass_nms from mmdeploy.utils import is_dynamic_shape def _bbox_pre_decode(points: torch.Tensor, bbox_pred: torch.Tensor, stride: torch.Tensor): """compute real bboxes.""" points = points[..., :2] bbox_pos_center = torch.cat([points, points], dim=-1) bboxes = bbox_pred * stride + bbox_pos_center return bboxes def _bbox_post_decode(bboxes: torch.Tensor, max_shape: Sequence[int]): """clamp bbox.""" x1 = bboxes[..., 0].clamp(min=0, max=max_shape[1]) y1 = bboxes[..., 1].clamp(min=0, max=max_shape[0]) x2 = bboxes[..., 2].clamp(min=0, max=max_shape[1]) y2 = bboxes[..., 3].clamp(min=0, max=max_shape[0]) decoded_bboxes = torch.stack([x1, y1, x2, y2], dim=-1) return decoded_bboxes 'mmdet.models.dense_heads.reppoints_head.RepPointsHead.points2bbox') The provided code snippet includes necessary dependencies for implementing the `reppoints_head__predict_by_feat` function. Write a Python function `def reppoints_head__predict_by_feat( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True) -> InstanceData` to solve the following problem: Rewrite `predict_by_feat` of `RepPointsHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. self (RepPointsHead): The instance of the class RepPointsHead. cls_scores (list[Tensor]): Box scores for each scale level with shape (N, num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W). score_factors (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Default None. img_metas (list[dict]): Meta information of the image, e.g., image size, scaling factor, etc. cfg (mmengine.Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. rescale (bool): If True, return boxes in original image space. Default: False. Returns: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Here is the function: def reppoints_head__predict_by_feat( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True) -> InstanceData: """Rewrite `predict_by_feat` of `RepPointsHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. self (RepPointsHead): The instance of the class RepPointsHead. cls_scores (list[Tensor]): Box scores for each scale level with shape (N, num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W). score_factors (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Default None. img_metas (list[dict]): Meta information of the image, e.g., image size, scaling factor, etc. cfg (mmengine.Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. rescale (bool): If True, return boxes in original image space. Default: False. Returns: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. """ ctx = FUNCTION_REWRITER.get_context() deploy_cfg = ctx.cfg is_dynamic_flag = is_dynamic_shape(deploy_cfg) num_levels = len(cls_scores) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] mlvl_priors = self.prior_generator.grid_priors( featmap_sizes, dtype=bbox_preds[0].dtype, device=bbox_preds[0].device) mlvl_priors = [priors.unsqueeze(0) for priors in mlvl_priors] mlvl_cls_scores = [cls_scores[i].detach() for i in range(num_levels)] mlvl_bbox_preds = [bbox_preds[i].detach() for i in range(num_levels)] assert batch_img_metas is not None img_shape = batch_img_metas[0]['img_shape'] assert len(cls_scores) == len(bbox_preds) == len(mlvl_priors) batch_size = cls_scores[0].shape[0] cfg = self.test_cfg pre_topk = cfg.get('nms_pre', -1) mlvl_valid_bboxes = [] mlvl_valid_scores = [] for level_idx, (cls_score, bbox_pred, priors) in enumerate( zip(mlvl_cls_scores, mlvl_bbox_preds, mlvl_priors)): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] scores = cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1, self.cls_out_channels) if self.use_sigmoid_cls: scores = scores.sigmoid() else: scores = scores.softmax(-1) bbox_pred = bbox_pred.permute(0, 2, 3, 1) bbox_pred = bbox_pred.reshape(batch_size, -1) bbox_pred = (bbox_pred + 0).reshape(batch_size, -1, 4) if not is_dynamic_flag: priors = priors.data if pre_topk > 0: priors = pad_with_value_if_necessary(priors, 1, pre_topk) bbox_pred = pad_with_value_if_necessary(bbox_pred, 1, pre_topk) scores = pad_with_value_if_necessary(scores, 1, pre_topk, 0.) nms_pre_score = scores # Get maximum scores for foreground classes. if self.use_sigmoid_cls: max_scores, _ = nms_pre_score.max(-1) else: max_scores, _ = nms_pre_score[..., :-1].max(-1) _, topk_inds = max_scores.topk(pre_topk) bbox_pred, scores = gather_topk( bbox_pred, scores, inds=topk_inds, batch_size=batch_size, is_batched=True) priors = gather_topk( priors, inds=topk_inds, batch_size=batch_size, is_batched=False) bbox_pred = _bbox_pre_decode(priors, bbox_pred, self.point_strides[level_idx]) mlvl_valid_bboxes.append(bbox_pred) mlvl_valid_scores.append(scores) batch_mlvl_bboxes_pred = torch.cat(mlvl_valid_bboxes, dim=1) batch_scores = torch.cat(mlvl_valid_scores, dim=1) batch_bboxes = _bbox_post_decode( bboxes=batch_mlvl_bboxes_pred, max_shape=img_shape) if cfg.get('min_bbox_size', -1) >= 0: w = batch_bboxes[:, :, 2] - batch_bboxes[:, :, 0] h = batch_bboxes[:, :, 3] - batch_bboxes[:, :, 1] valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size) if not valid_mask.all(): batch_scores = batch_scores * valid_mask.unsqueeze(-1) if not self.use_sigmoid_cls: batch_scores = batch_scores[..., :self.num_classes] post_params = get_post_processing_params(deploy_cfg) max_output_boxes_per_class = post_params.max_output_boxes_per_class iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) score_threshold = cfg.get('score_thr', post_params.score_threshold) pre_top_k = post_params.pre_top_k keep_top_k = cfg.get('max_per_img', post_params.keep_top_k) nms_type = cfg.nms.get('type') return multiclass_nms( batch_bboxes, batch_scores, max_output_boxes_per_class, nms_type=nms_type, iou_threshold=iou_threshold, score_threshold=score_threshold, pre_top_k=pre_top_k, keep_top_k=keep_top_k)
Rewrite `predict_by_feat` of `RepPointsHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. self (RepPointsHead): The instance of the class RepPointsHead. cls_scores (list[Tensor]): Box scores for each scale level with shape (N, num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W). score_factors (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Default None. img_metas (list[dict]): Meta information of the image, e.g., image size, scaling factor, etc. cfg (mmengine.Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. rescale (bool): If True, return boxes in original image space. Default: False. Returns: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det].
188,669
from typing import Sequence import numpy as np import torch from mmdet.utils import OptConfigType from torch import Tensor from mmdeploy.codebase.mmdet.deploy import get_post_processing_params from mmdeploy.core import FUNCTION_REWRITER, mark from mmdeploy.mmcv.ops import multiclass_nms from mmdeploy.utils import Backend, is_dynamic_shape The provided code snippet includes necessary dependencies for implementing the `yolov3_head__predict_by_feat` function. Write a Python function `def yolov3_head__predict_by_feat(self, pred_maps: Sequence[Tensor], cfg: OptConfigType = None, rescale: bool = False, with_nms: bool = True, **kwargs)` to solve the following problem: Rewrite `predict_by_feat` of `YOLOV3Head` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. pred_maps (Sequence[Tensor]): Raw predictions for a batch of images. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores Here is the function: def yolov3_head__predict_by_feat(self, pred_maps: Sequence[Tensor], cfg: OptConfigType = None, rescale: bool = False, with_nms: bool = True, **kwargs): """Rewrite `predict_by_feat` of `YOLOV3Head` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. pred_maps (Sequence[Tensor]): Raw predictions for a batch of images. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores """ ctx = FUNCTION_REWRITER.get_context() deploy_cfg = ctx.cfg # mark pred_maps @mark('yolo_head', inputs=['pred_maps']) def __mark_pred_maps(pred_maps): return pred_maps pred_maps = __mark_pred_maps(pred_maps) is_dynamic_flag = is_dynamic_shape(ctx.cfg) num_levels = len(pred_maps) pred_maps_list = [pred_maps[i].detach() for i in range(num_levels)] cfg = self.test_cfg if cfg is None else cfg assert len(pred_maps_list) == self.num_levels device = pred_maps_list[0].device batch_size = pred_maps_list[0].shape[0] featmap_sizes = [ pred_maps_list[i].shape[-2:] for i in range(self.num_levels) ] multi_lvl_anchors = self.prior_generator.grid_anchors( featmap_sizes, device) pre_topk = cfg.get('nms_pre', -1) multi_lvl_bboxes = [] multi_lvl_cls_scores = [] multi_lvl_conf_scores = [] for i in range(self.num_levels): # get some key info for current scale pred_map = pred_maps_list[i] stride = self.featmap_strides[i] # (b,h, w, num_anchors*num_attrib) -> # (b,h*w*num_anchors, num_attrib) pred_map = pred_map.permute(0, 2, 3, 1).reshape(batch_size, -1, self.num_attrib) # Inplace operation like # ```pred_map[..., :2] = \torch.sigmoid(pred_map[..., :2])``` # would create constant tensor when exporting to onnx pred_map_conf = torch.sigmoid(pred_map[..., :2]) pred_map_rest = pred_map[..., 2:] pred_map = torch.cat([pred_map_conf, pred_map_rest], dim=-1) pred_map_boxes = pred_map[..., :4] multi_lvl_anchor = multi_lvl_anchors[i] # use static anchor if input shape is static if not is_dynamic_flag: multi_lvl_anchor = multi_lvl_anchor.data multi_lvl_anchor = multi_lvl_anchor.unsqueeze(0) bbox_pred = self.bbox_coder.decode(multi_lvl_anchor, pred_map_boxes, stride) # conf and cls conf_pred = torch.sigmoid(pred_map[..., 4]) cls_pred = torch.sigmoid(pred_map[..., 5:]).view( batch_size, -1, self.num_classes) # Cls pred one-hot. # Save the result of current scale multi_lvl_bboxes.append(bbox_pred) multi_lvl_cls_scores.append(cls_pred) multi_lvl_conf_scores.append(conf_pred) # Merge the results of different scales together batch_mlvl_bboxes = torch.cat(multi_lvl_bboxes, dim=1) batch_mlvl_scores = torch.cat(multi_lvl_cls_scores, dim=1) batch_mlvl_conf_scores = torch.cat(multi_lvl_conf_scores, dim=1) post_params = get_post_processing_params(deploy_cfg) if pre_topk > 0: _, topk_inds = conf_pred.topk(pre_topk) batch_inds = torch.arange( batch_size, device=device).unsqueeze(-1).long() # Avoid onnx2tensorrt issue in https://github.com/NVIDIA/TensorRT/issues/1134 # noqa: E501 transformed_inds = (bbox_pred.shape[1] * batch_inds + topk_inds.long()) bbox_pred = bbox_pred.reshape(-1, 4)[transformed_inds, :].reshape( batch_size, -1, 4) cls_pred = cls_pred.reshape( -1, self.num_classes)[transformed_inds, :].reshape( batch_size, -1, self.num_classes) conf_pred = conf_pred.reshape(-1, 1)[transformed_inds].reshape( batch_size, -1) batch_mlvl_conf_scores = batch_mlvl_conf_scores.unsqueeze(2) batch_mlvl_scores = batch_mlvl_scores * batch_mlvl_conf_scores if with_nms: max_output_boxes_per_class = post_params.max_output_boxes_per_class iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) pre_top_k = post_params.pre_top_k keep_top_k = cfg.get('max_per_img', post_params.keep_top_k) # keep aligned with original pipeline, improve # mAP by 1% for YOLOv3 in ONNX score_threshold = 0 nms_type = cfg.nms.get('type') return multiclass_nms( batch_mlvl_bboxes, batch_mlvl_scores, max_output_boxes_per_class, nms_type=nms_type, iou_threshold=iou_threshold, score_threshold=score_threshold, pre_top_k=pre_top_k, keep_top_k=keep_top_k) else: return batch_mlvl_bboxes, batch_mlvl_scores
Rewrite `predict_by_feat` of `YOLOV3Head` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. pred_maps (Sequence[Tensor]): Raw predictions for a batch of images. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores
188,670
from typing import Sequence import numpy as np import torch from mmdet.utils import OptConfigType from torch import Tensor from mmdeploy.codebase.mmdet.deploy import get_post_processing_params from mmdeploy.core import FUNCTION_REWRITER, mark from mmdeploy.mmcv.ops import multiclass_nms from mmdeploy.utils import Backend, is_dynamic_shape The provided code snippet includes necessary dependencies for implementing the `yolov3_head__predict_by_feat__ncnn` function. Write a Python function `def yolov3_head__predict_by_feat__ncnn(self, pred_maps, with_nms=True, cfg=None, **kwargs)` to solve the following problem: Rewrite `predict_by_feat` of YOLOV3Head for ncnn backend. 1. Shape node and batch inference is not supported by ncnn. This function transform dynamic shape to constant shape and remove batch inference. 2. Batch dimension is not supported by ncnn, but supported by pytorch. The negative value of axis in torch.cat is rewritten as corresponding positive value to avoid axis shift. 3. 2-dimension tensor broadcast of `BinaryOps` operator is not supported by ncnn. This function unsqueeze 2-dimension tensor to 3-dimension tensor for correct `BinaryOps` calculation by ncnn. Args: ctx (ContextCaller): The context with additional information. self: Represent the instance of the original class. pred_maps (list[Tensor]): Raw predictions for a batch of images. with_nms (bool): If True, do nms before return boxes. Default: True. cfg (mmengine.Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. Returns: Tensor: Detection_output of shape [num_boxes, 6], each row is [label, score, x1, y1, x2, y2]. Note that fore-ground class label in Yolov3DetectionOutput starts from `1`. x1, y1, x2, y2 are normalized in range(0,1). Here is the function: def yolov3_head__predict_by_feat__ncnn(self, pred_maps, with_nms=True, cfg=None, **kwargs): """Rewrite `predict_by_feat` of YOLOV3Head for ncnn backend. 1. Shape node and batch inference is not supported by ncnn. This function transform dynamic shape to constant shape and remove batch inference. 2. Batch dimension is not supported by ncnn, but supported by pytorch. The negative value of axis in torch.cat is rewritten as corresponding positive value to avoid axis shift. 3. 2-dimension tensor broadcast of `BinaryOps` operator is not supported by ncnn. This function unsqueeze 2-dimension tensor to 3-dimension tensor for correct `BinaryOps` calculation by ncnn. Args: ctx (ContextCaller): The context with additional information. self: Represent the instance of the original class. pred_maps (list[Tensor]): Raw predictions for a batch of images. with_nms (bool): If True, do nms before return boxes. Default: True. cfg (mmengine.Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. Returns: Tensor: Detection_output of shape [num_boxes, 6], each row is [label, score, x1, y1, x2, y2]. Note that fore-ground class label in Yolov3DetectionOutput starts from `1`. x1, y1, x2, y2 are normalized in range(0,1). """ ctx = FUNCTION_REWRITER.get_context() num_levels = len(pred_maps) cfg = self.test_cfg if cfg is None else cfg post_params = get_post_processing_params(ctx.cfg) confidence_threshold = cfg.get('conf_thr', post_params.confidence_threshold) iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) anchor_biases = np.array( self.prior_generator.base_sizes).reshape(-1).tolist() num_box = len(self.prior_generator.base_sizes[0]) bias_masks = list(range(num_levels * num_box)) def _create_yolov3_detection_output(): """Help create Yolov3DetectionOutput op in ONNX.""" class Yolov3DetectionOutputOp(torch.autograd.Function): """Create Yolov3DetectionOutput op. Args: *inputs (Tensor): Multiple predicted feature maps. num_class (int): Number of classes. num_box (int): Number of box per grid. confidence_threshold (float): Threshold of object score. nms_threshold (float): IoU threshold for NMS. biases (List[float]: Base sizes to compute anchors for each FPN. mask (List[float]): Used to select base sizes in biases. anchors_scale (List[float]): Down-sampling scales of each FPN layer, e.g.: [32, 16]. """ @staticmethod def forward(ctx, *args): # create dummpy output of shape [num_boxes, 6], # each row is [label, score, x1, y1, x2, y2] output = torch.rand(100, 6) return output @staticmethod def symbolic(g, *args): anchors_scale = args[-1] inputs = args[:len(anchors_scale)] assert len(args) == (len(anchors_scale) + 7) return g.op( 'mmdeploy::Yolov3DetectionOutput', *inputs, num_class_i=args[-7], num_box_i=args[-6], confidence_threshold_f=args[-5], nms_threshold_f=args[-4], biases_f=args[-3], mask_f=args[-2], anchors_scale_f=anchors_scale, outputs=1) return Yolov3DetectionOutputOp.apply(*pred_maps, self.num_classes, num_box, confidence_threshold, iou_threshold, anchor_biases, bias_masks, self.featmap_strides) output = _create_yolov3_detection_output() return output
Rewrite `predict_by_feat` of YOLOV3Head for ncnn backend. 1. Shape node and batch inference is not supported by ncnn. This function transform dynamic shape to constant shape and remove batch inference. 2. Batch dimension is not supported by ncnn, but supported by pytorch. The negative value of axis in torch.cat is rewritten as corresponding positive value to avoid axis shift. 3. 2-dimension tensor broadcast of `BinaryOps` operator is not supported by ncnn. This function unsqueeze 2-dimension tensor to 3-dimension tensor for correct `BinaryOps` calculation by ncnn. Args: ctx (ContextCaller): The context with additional information. self: Represent the instance of the original class. pred_maps (list[Tensor]): Raw predictions for a batch of images. with_nms (bool): If True, do nms before return boxes. Default: True. cfg (mmengine.Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. Returns: Tensor: Detection_output of shape [num_boxes, 6], each row is [label, score, x1, y1, x2, y2]. Note that fore-ground class label in Yolov3DetectionOutput starts from `1`. x1, y1, x2, y2 are normalized in range(0,1).
188,671
from typing import List, Optional import torch from mmengine import ConfigDict from torch import Tensor from mmdeploy.codebase.mmdet.deploy import (gather_topk, get_post_processing_params, pad_with_value_if_necessary) from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.mmcv.ops import multiclass_nms from mmdeploy.utils import Backend, is_dynamic_shape The provided code snippet includes necessary dependencies for implementing the `rpn_head__predict_by_feat` function. Write a Python function `def rpn_head__predict_by_feat(self, cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True, **kwargs)` to solve the following problem: Rewrite `predict_by_feat` of `RPNHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). score_factors (list[Tensor], optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Defaults to None. batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores, batch_mlvl_centerness Here is the function: def rpn_head__predict_by_feat(self, cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True, **kwargs): """Rewrite `predict_by_feat` of `RPNHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). score_factors (list[Tensor], optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Defaults to None. batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores, batch_mlvl_centerness """ ctx = FUNCTION_REWRITER.get_context() img_metas = batch_img_metas assert len(cls_scores) == len(bbox_preds) deploy_cfg = ctx.cfg is_dynamic_flag = is_dynamic_shape(deploy_cfg) num_levels = len(cls_scores) device = cls_scores[0].device featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] mlvl_anchors = self.anchor_generator.grid_anchors( featmap_sizes, device=device) mlvl_cls_scores = [cls_scores[i].detach() for i in range(num_levels)] mlvl_bbox_preds = [bbox_preds[i].detach() for i in range(num_levels)] assert len(mlvl_cls_scores) == len(mlvl_bbox_preds) == len(mlvl_anchors) cfg = self.test_cfg if cfg is None else cfg batch_size = mlvl_cls_scores[0].shape[0] pre_topk = cfg.get('nms_pre', -1) # loop over features, decode boxes mlvl_valid_bboxes = [] mlvl_scores = [] mlvl_valid_anchors = [] for level_id, cls_score, bbox_pred, anchors in zip( range(num_levels), mlvl_cls_scores, mlvl_bbox_preds, mlvl_anchors): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] cls_score = cls_score.permute(0, 2, 3, 1) if self.use_sigmoid_cls: cls_score = cls_score.reshape(batch_size, -1) scores = cls_score.sigmoid() else: cls_score = cls_score.reshape(batch_size, -1, 2) # We set FG labels to [0, num_class-1] and BG label to # num_class in RPN head since mmdet v2.5, which is unified to # be consistent with other head since mmdet v2.0. In mmdet v2.0 # to v2.4 we keep BG label as 0 and FG label as 1 in rpn head. scores = cls_score.softmax(-1)[..., 0] scores = scores.reshape(batch_size, -1, 1) dim = self.bbox_coder.encode_size bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, dim) # use static anchor if input shape is static if not is_dynamic_flag: anchors = anchors.data anchors = anchors.unsqueeze(0) # topk in tensorrt does not support shape<k # concate zero to enable topk, scores = pad_with_value_if_necessary(scores, 1, pre_topk, 0.) bbox_pred = pad_with_value_if_necessary(bbox_pred, 1, pre_topk) anchors = pad_with_value_if_necessary(anchors, 1, pre_topk) if pre_topk > 0: _, topk_inds = scores.squeeze(2).topk(pre_topk) bbox_pred, scores = gather_topk( bbox_pred, scores, inds=topk_inds, batch_size=batch_size, is_batched=True) anchors = gather_topk( anchors, inds=topk_inds, batch_size=batch_size, is_batched=False) mlvl_valid_bboxes.append(bbox_pred) mlvl_scores.append(scores) mlvl_valid_anchors.append(anchors) batch_mlvl_bboxes = torch.cat(mlvl_valid_bboxes, dim=1) batch_mlvl_scores = torch.cat(mlvl_scores, dim=1) batch_mlvl_anchors = torch.cat(mlvl_valid_anchors, dim=1) batch_mlvl_bboxes = self.bbox_coder.decode( batch_mlvl_anchors, batch_mlvl_bboxes, max_shape=img_metas[0]['img_shape']) # ignore background class if not self.use_sigmoid_cls: batch_mlvl_scores = batch_mlvl_scores[..., :self.num_classes] if not with_nms: return batch_mlvl_bboxes, batch_mlvl_scores post_params = get_post_processing_params(deploy_cfg) iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) score_threshold = cfg.get('score_thr', post_params.score_threshold) pre_top_k = post_params.pre_top_k keep_top_k = cfg.get('max_per_img', post_params.keep_top_k) # only one class in rpn max_output_boxes_per_class = keep_top_k nms_type = cfg.nms.get('type') return multiclass_nms( batch_mlvl_bboxes, batch_mlvl_scores, max_output_boxes_per_class, nms_type=nms_type, iou_threshold=iou_threshold, score_threshold=score_threshold, pre_top_k=pre_top_k, keep_top_k=keep_top_k)
Rewrite `predict_by_feat` of `RPNHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). score_factors (list[Tensor], optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Defaults to None. batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores, batch_mlvl_centerness
188,672
from typing import List, Optional import torch from mmengine import ConfigDict from torch import Tensor from mmdeploy.codebase.mmdet.deploy import (gather_topk, get_post_processing_params, pad_with_value_if_necessary) from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.mmcv.ops import multiclass_nms from mmdeploy.utils import Backend, is_dynamic_shape The provided code snippet includes necessary dependencies for implementing the `rpn_head__get_bboxes__ncnn` function. Write a Python function `def rpn_head__get_bboxes__ncnn(self, cls_scores, bbox_preds, img_metas, with_nms=True, cfg=None, **kwargs)` to solve the following problem: Rewrite `get_bboxes` of `RPNHead` for ncnn backend. Shape node and batch inference is not supported by ncnn. This function transform dynamic shape to constant shape and remove batch inference. Args: ctx (ContextCaller): The context with additional information. cls_scores (list[Tensor]): Box scores for each level in the feature pyramid, has shape (N, num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each level in the feature pyramid, has shape (N, num_anchors * 4, H, W). img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. with_nms (bool): If True, do nms before return boxes. Default: True. cfg (mmengine.Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores Here is the function: def rpn_head__get_bboxes__ncnn(self, cls_scores, bbox_preds, img_metas, with_nms=True, cfg=None, **kwargs): """Rewrite `get_bboxes` of `RPNHead` for ncnn backend. Shape node and batch inference is not supported by ncnn. This function transform dynamic shape to constant shape and remove batch inference. Args: ctx (ContextCaller): The context with additional information. cls_scores (list[Tensor]): Box scores for each level in the feature pyramid, has shape (N, num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each level in the feature pyramid, has shape (N, num_anchors * 4, H, W). img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. with_nms (bool): If True, do nms before return boxes. Default: True. cfg (mmengine.Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores """ ctx = FUNCTION_REWRITER.get_context() assert len(cls_scores) == len(bbox_preds) deploy_cfg = ctx.cfg assert not is_dynamic_shape(deploy_cfg) num_levels = len(cls_scores) device = cls_scores[0].device featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] mlvl_anchors = self.anchor_generator.grid_anchors( featmap_sizes, device=device) mlvl_cls_scores = [cls_scores[i].detach() for i in range(num_levels)] mlvl_bbox_preds = [bbox_preds[i].detach() for i in range(num_levels)] assert len(mlvl_cls_scores) == len(mlvl_bbox_preds) == len(mlvl_anchors) cfg = self.test_cfg if cfg is None else cfg batch_size = 1 pre_topk = cfg.get('nms_pre', -1) # loop over features, decode boxes mlvl_valid_bboxes = [] mlvl_scores = [] mlvl_valid_anchors = [] for level_id, cls_score, bbox_pred, anchors in zip( range(num_levels), mlvl_cls_scores, mlvl_bbox_preds, mlvl_anchors): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] cls_score = cls_score.permute(0, 2, 3, 1) if self.use_sigmoid_cls: cls_score = cls_score.reshape(batch_size, -1) scores = cls_score.sigmoid() else: cls_score = cls_score.reshape(batch_size, -1, 2) # We set FG labels to [0, num_class-1] and BG label to # num_class in RPN head since mmdet v2.5, which is unified to # be consistent with other head since mmdet v2.0. In mmdet v2.0 # to v2.4 we keep BG label as 0 and FG label as 1 in rpn head. scores = cls_score.softmax(-1)[..., 0] scores = scores.reshape(batch_size, -1, 1) dim = self.bbox_coder.encode_size bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, dim) anchors = anchors.expand_as(bbox_pred).data if pre_topk > 0: _, topk_inds = scores.squeeze(2).topk(pre_topk) topk_inds = topk_inds.view(-1) anchors = anchors[:, topk_inds, :] bbox_pred = bbox_pred[:, topk_inds, :] scores = scores[:, topk_inds, :] mlvl_valid_bboxes.append(bbox_pred) mlvl_scores.append(scores) mlvl_valid_anchors.append(anchors) batch_mlvl_bboxes = torch.cat(mlvl_valid_bboxes, dim=1) batch_mlvl_scores = torch.cat(mlvl_scores, dim=1) batch_mlvl_anchors = torch.cat(mlvl_valid_anchors, dim=1) batch_mlvl_bboxes = self.bbox_coder.decode( batch_mlvl_anchors, batch_mlvl_bboxes, max_shape=img_metas[0]['img_shape']) # ignore background class if not self.use_sigmoid_cls: batch_mlvl_scores = batch_mlvl_scores[..., :self.num_classes] if not with_nms: return batch_mlvl_bboxes, batch_mlvl_scores post_params = get_post_processing_params(deploy_cfg) iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) score_threshold = cfg.get('score_thr', post_params.score_threshold) pre_top_k = post_params.pre_top_k keep_top_k = cfg.get('max_per_img', post_params.keep_top_k) # only one class in rpn max_output_boxes_per_class = keep_top_k nms_type = cfg.nms.get('type') return multiclass_nms( batch_mlvl_bboxes, batch_mlvl_scores, max_output_boxes_per_class, nms_type=nms_type, iou_threshold=iou_threshold, score_threshold=score_threshold, pre_top_k=pre_top_k, keep_top_k=keep_top_k)
Rewrite `get_bboxes` of `RPNHead` for ncnn backend. Shape node and batch inference is not supported by ncnn. This function transform dynamic shape to constant shape and remove batch inference. Args: ctx (ContextCaller): The context with additional information. cls_scores (list[Tensor]): Box scores for each level in the feature pyramid, has shape (N, num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each level in the feature pyramid, has shape (N, num_anchors * 4, H, W). img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. with_nms (bool): If True, do nms before return boxes. Default: True. cfg (mmengine.Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores
188,673
from typing import Dict, List import torch import torch.nn.functional as F from mmdet.models.layers.matrix_nms import mask_matrix_nms from torch import Tensor from mmdeploy.codebase.mmdet.deploy import get_post_processing_params from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `solov2_head__predict_by_feat` function. Write a Python function `def solov2_head__predict_by_feat(self, mlvl_kernel_preds: List[Tensor], mlvl_cls_scores: List[Tensor], mask_feats: Tensor, batch_img_metas: List[Dict], **kwargs)` to solve the following problem: Rewrite `predict_by_feat` of `SOLOV2Head` for default backend. Args: mlvl_kernel_preds (list[Tensor]): Multi-level dynamic kernel prediction. The kernel is used to generate instance segmentation masks by dynamic convolution. Each element in the list has shape (batch_size, kernel_out_channels, num_grids, num_grids). mlvl_cls_scores (list[Tensor]): Multi-level scores. Each element in the list has shape (batch_size, num_classes, num_grids, num_grids). mask_feats (Tensor): Unified mask feature map used to generate instance segmentation masks by dynamic convolution. Has shape (batch_size, mask_out_channels, h, w). batch_img_metas (list[dict]): Meta information of all images. Returns: list[:obj:`InstanceData`]: Processed results of multiple images.Each :obj:`InstanceData` usually contains following keys. - scores (Tensor): Classification scores, has shape (num_instance,). - labels (Tensor): Has shape (num_instances,). - masks (Tensor): Processed mask results, has shape (num_instances, h, w). Here is the function: def solov2_head__predict_by_feat(self, mlvl_kernel_preds: List[Tensor], mlvl_cls_scores: List[Tensor], mask_feats: Tensor, batch_img_metas: List[Dict], **kwargs): """Rewrite `predict_by_feat` of `SOLOV2Head` for default backend. Args: mlvl_kernel_preds (list[Tensor]): Multi-level dynamic kernel prediction. The kernel is used to generate instance segmentation masks by dynamic convolution. Each element in the list has shape (batch_size, kernel_out_channels, num_grids, num_grids). mlvl_cls_scores (list[Tensor]): Multi-level scores. Each element in the list has shape (batch_size, num_classes, num_grids, num_grids). mask_feats (Tensor): Unified mask feature map used to generate instance segmentation masks by dynamic convolution. Has shape (batch_size, mask_out_channels, h, w). batch_img_metas (list[dict]): Meta information of all images. Returns: list[:obj:`InstanceData`]: Processed results of multiple images.Each :obj:`InstanceData` usually contains following keys. - scores (Tensor): Classification scores, has shape (num_instance,). - labels (Tensor): Has shape (num_instances,). - masks (Tensor): Processed mask results, has shape (num_instances, h, w). """ ctx = FUNCTION_REWRITER.get_context() cfg = self.test_cfg num_levels = len(mlvl_cls_scores) batch_size = mlvl_cls_scores[0].size(0) assert len(mlvl_kernel_preds) == len(mlvl_cls_scores) for lvl in range(num_levels): kernel_preds = mlvl_kernel_preds[lvl] cls_scores = mlvl_cls_scores[lvl] cls_scores = cls_scores.sigmoid() local_max = F.max_pool2d(cls_scores, 2, stride=1, padding=1) keep_mask = local_max[:, :, :-1, :-1] == cls_scores cls_scores = cls_scores * keep_mask mlvl_cls_scores[lvl] = cls_scores.permute(0, 2, 3, 1).view( batch_size, -1, self.cls_out_channels) mlvl_kernel_preds[lvl] = kernel_preds.permute(0, 2, 3, 1).view( batch_size, -1, self.kernel_out_channels) # Rewrite strides to avoid set_items. mlvl_strides = [ torch.ones_like(mlvl_cls_scores[lvl][0, :, 0]) * self.strides[lvl] for lvl in range(len(mlvl_cls_scores)) ] strides = torch.cat(mlvl_strides, 0) assert len(mlvl_kernel_preds) == len(mlvl_cls_scores) batch_mlvl_cls_scores = torch.cat(mlvl_cls_scores, dim=1) batch_mlvl_kernel_preds = torch.cat(mlvl_kernel_preds, dim=1) featmap_size = mask_feats.size()[-2:] h, w = batch_img_metas[0]['img_shape'][:2] batch_mlvl_cls_scores, cls_labels = torch.max(batch_mlvl_cls_scores, -1) score_mask = (batch_mlvl_cls_scores > cfg.score_thr) batch_mlvl_cls_scores = batch_mlvl_cls_scores.where( score_mask, batch_mlvl_cls_scores.new_zeros(1)).view(-1) cls_labels = cls_labels.view(-1) # mask encoding. kernel_preds = batch_mlvl_kernel_preds[0].unsqueeze(2).unsqueeze(3) mask_preds = F.conv2d( mask_feats, kernel_preds, stride=1).squeeze(0).sigmoid() aligned_score_mask = score_mask[0].unsqueeze(1).unsqueeze(2) mask_preds = mask_preds.where(aligned_score_mask, mask_preds.new_zeros(1)) # mask. masks = (mask_preds > cfg.mask_thr) sum_masks = masks.sum((1, 2)) keep = sum_masks > strides cls_scores = batch_mlvl_cls_scores.where( keep, batch_mlvl_cls_scores.new_zeros(1)) sum_masks = sum_masks.where(keep, sum_masks.new_ones(1)) # maskness. mask_scores = (mask_preds * masks).sum((1, 2)) / sum_masks cls_scores *= mask_scores sum_masks = sum_masks.where(keep, sum_masks.new_zeros(1)) scores, labels, _, keep_inds = mask_matrix_nms( masks, cls_labels, cls_scores, mask_area=sum_masks, nms_pre=cfg.nms_pre, max_num=cfg.max_per_img, kernel=cfg.kernel, sigma=cfg.sigma, filter_thr=cfg.filter_thr) mask_preds = mask_preds[keep_inds].unsqueeze(0) post_params = get_post_processing_params(ctx.cfg) export_postprocess_mask = post_params.get('export_postprocess_mask', True) if export_postprocess_mask: upsampled_size = (featmap_size[0] * self.mask_stride, featmap_size[1] * self.mask_stride) mask_preds = F.interpolate( mask_preds, size=upsampled_size, mode='bilinear') bboxes = scores.new_zeros(batch_size, scores.shape[-1], 4) else: bboxes = scores.new_zeros(batch_size, scores.shape[-1], 2) # full screen box so we can postprocess mask outside the model bboxes = torch.cat([ bboxes, bboxes.new_full((*bboxes.shape[:2], 1), w), bboxes.new_full((*bboxes.shape[:2], 1), h) ], dim=-1) labels = labels.reshape(batch_size, -1) dets = torch.cat([bboxes, scores.reshape(batch_size, -1, 1)], dim=-1) return dets, labels, mask_preds
Rewrite `predict_by_feat` of `SOLOV2Head` for default backend. Args: mlvl_kernel_preds (list[Tensor]): Multi-level dynamic kernel prediction. The kernel is used to generate instance segmentation masks by dynamic convolution. Each element in the list has shape (batch_size, kernel_out_channels, num_grids, num_grids). mlvl_cls_scores (list[Tensor]): Multi-level scores. Each element in the list has shape (batch_size, num_classes, num_grids, num_grids). mask_feats (Tensor): Unified mask feature map used to generate instance segmentation masks by dynamic convolution. Has shape (batch_size, mask_out_channels, h, w). batch_img_metas (list[dict]): Meta information of all images. Returns: list[:obj:`InstanceData`]: Processed results of multiple images.Each :obj:`InstanceData` usually contains following keys. - scores (Tensor): Classification scores, has shape (num_instance,). - labels (Tensor): Has shape (num_instances,). - masks (Tensor): Processed mask results, has shape (num_instances, h, w).
188,674
from typing import List, Optional import torch from mmengine.config import ConfigDict from mmengine.structures import InstanceData from torch import Tensor from mmdeploy.codebase.mmdet.deploy import get_post_processing_params from mmdeploy.core import FUNCTION_REWRITER, mark from mmdeploy.mmcv.ops import multiclass_nms from mmdeploy.utils import Backend The provided code snippet includes necessary dependencies for implementing the `yolox_head__predict_by_feat` function. Write a Python function `def yolox_head__predict_by_feat(self, cls_scores: List[Tensor], bbox_preds: List[Tensor], objectnesses: Optional[List[Tensor]], batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True) -> List[InstanceData]` to solve the following problem: Rewrite `predict_by_feat` of `YOLOXHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx: Context that contains original meta information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). objectnesses (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, 1, H, W). batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: tuple[Tensor, Tensor]: The first item is an (N, num_box, 5) tensor, where 5 represent (tl_x, tl_y, br_x, br_y, score), N is batch size and the score between 0 and 1. The shape of the second tensor in the tuple is (N, num_box), and each element represents the class label of the corresponding box. Here is the function: def yolox_head__predict_by_feat(self, cls_scores: List[Tensor], bbox_preds: List[Tensor], objectnesses: Optional[List[Tensor]], batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True) -> List[InstanceData]: """Rewrite `predict_by_feat` of `YOLOXHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx: Context that contains original meta information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). objectnesses (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, 1, H, W). batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: tuple[Tensor, Tensor]: The first item is an (N, num_box, 5) tensor, where 5 represent (tl_x, tl_y, br_x, br_y, score), N is batch size and the score between 0 and 1. The shape of the second tensor in the tuple is (N, num_box), and each element represents the class label of the corresponding box. """ ctx = FUNCTION_REWRITER.get_context() # mark pred_maps @mark('yolo_head', inputs=['cls_scores', 'bbox_preds', 'objectnesses']) def __mark_pred_maps(cls_scores, bbox_preds, objectnesses): return cls_scores, bbox_preds, objectnesses cls_scores, bbox_preds, objectnesses = __mark_pred_maps( cls_scores, bbox_preds, objectnesses) assert len(cls_scores) == len(bbox_preds) == len(objectnesses) device = cls_scores[0].device cfg = self.test_cfg if cfg is None else cfg batch_size = bbox_preds[0].shape[0] featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores] mlvl_priors = self.prior_generator.grid_priors( featmap_sizes, device=device, with_stride=True) flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1, self.cls_out_channels) for cls_score in cls_scores ] flatten_bbox_preds = [ bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, 4) for bbox_pred in bbox_preds ] flatten_objectness = [ objectness.permute(0, 2, 3, 1).reshape(batch_size, -1) for objectness in objectnesses ] cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid() score_factor = torch.cat(flatten_objectness, dim=1).sigmoid() flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1) flatten_priors = torch.cat(mlvl_priors) bboxes = self._bbox_decode(flatten_priors, flatten_bbox_preds) # directly multiply score factor and feed to nms scores = cls_scores * (score_factor.unsqueeze(-1)) if not with_nms: return bboxes, scores deploy_cfg = ctx.cfg post_params = get_post_processing_params(deploy_cfg) max_output_boxes_per_class = post_params.max_output_boxes_per_class iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) score_threshold = cfg.get('score_thr', post_params.score_threshold) pre_top_k = post_params.pre_top_k keep_top_k = cfg.get('max_per_img', post_params.keep_top_k) nms_type = cfg.nms.get('type') return multiclass_nms( bboxes, scores, max_output_boxes_per_class, nms_type=nms_type, iou_threshold=iou_threshold, score_threshold=score_threshold, pre_top_k=pre_top_k, keep_top_k=keep_top_k)
Rewrite `predict_by_feat` of `YOLOXHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx: Context that contains original meta information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). objectnesses (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, 1, H, W). batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: tuple[Tensor, Tensor]: The first item is an (N, num_box, 5) tensor, where 5 represent (tl_x, tl_y, br_x, br_y, score), N is batch size and the score between 0 and 1. The shape of the second tensor in the tuple is (N, num_box), and each element represents the class label of the corresponding box.
188,675
from typing import List, Optional import torch from mmengine.config import ConfigDict from mmengine.structures import InstanceData from torch import Tensor from mmdeploy.codebase.mmdet.deploy import get_post_processing_params from mmdeploy.core import FUNCTION_REWRITER, mark from mmdeploy.mmcv.ops import multiclass_nms from mmdeploy.utils import Backend def is_dynamic_shape(deploy_cfg: Union[str, mmengine.Config], input_name: Optional[str] = None) -> bool: """Check if input shape is dynamic. Args: deploy_cfg (str | mmengine.Config): The path or content of config. input_name (Optional[str]): The name of input in onnx export parameter. Returns: bool: Is config set dynamic shape (axis 2 and 3). """ # Always dynamic for exporting torchscript if get_backend(deploy_cfg) == Backend.TORCHSCRIPT: return True deploy_cfg = load_config(deploy_cfg)[0] ir_config = get_ir_config(deploy_cfg) # check if input name is in the config input_names = ir_config.get('input_names', None) if input_name is None: input_name = input_names[0] if input_names else 'input' # check if dynamic axes exist # TODO: update this when we have more IR dynamic_axes = get_dynamic_axes(deploy_cfg) if dynamic_axes is None: return False # check if given input name exist input_axes = dynamic_axes.get(input_name, None) if input_axes is None: return False # check if 2 (height) and 3 (width) in input axes if 2 in input_axes or 3 in input_axes: return True return False The provided code snippet includes necessary dependencies for implementing the `yolox_head__predict_by_feat__ncnn` function. Write a Python function `def yolox_head__predict_by_feat__ncnn( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], objectnesses: Optional[List[Tensor]], batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True)` to solve the following problem: Rewrite `predict_by_feat` of YOLOXHead for ncnn backend. 1. Decode the prior to a box format for ncnn DetectionOutput layer to do the post-processing. 2. Batch dimension is not supported by ncnn, but supported by pytorch. The negative value of axis in torch.cat is rewritten as corresponding positive value to avoid axis shift. 3. 2-dimension tensor broadcast of `BinaryOps` operator is not supported by ncnn. This function unsqueeze 2-dimension tensor to 3-dimension tensor for correct `BinaryOps` calculation by ncnn. Args: ctx: Context that contains original meta information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). objectnesses (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, 1, H, W). batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: output__ncnn (Tensor): outputs, shape is [N, num_det, 6]. Here is the function: def yolox_head__predict_by_feat__ncnn( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], objectnesses: Optional[List[Tensor]], batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True): """Rewrite `predict_by_feat` of YOLOXHead for ncnn backend. 1. Decode the prior to a box format for ncnn DetectionOutput layer to do the post-processing. 2. Batch dimension is not supported by ncnn, but supported by pytorch. The negative value of axis in torch.cat is rewritten as corresponding positive value to avoid axis shift. 3. 2-dimension tensor broadcast of `BinaryOps` operator is not supported by ncnn. This function unsqueeze 2-dimension tensor to 3-dimension tensor for correct `BinaryOps` calculation by ncnn. Args: ctx: Context that contains original meta information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). objectnesses (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, 1, H, W). batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: output__ncnn (Tensor): outputs, shape is [N, num_det, 6]. """ ctx = FUNCTION_REWRITER.get_context() from mmdeploy.codebase.mmdet.ops import ncnn_detection_output_forward from mmdeploy.utils import get_root_logger from mmdeploy.utils.config_utils import is_dynamic_shape dynamic_flag = is_dynamic_shape(ctx.cfg) if dynamic_flag: logger = get_root_logger() logger.warning('YOLOX does not support dynamic shape with ncnn.') img_height = int(batch_img_metas[0]['img_shape'][0]) img_width = int(batch_img_metas[0]['img_shape'][1]) assert len(cls_scores) == len(bbox_preds) == len(objectnesses) device = cls_scores[0].device cfg = self.test_cfg if cfg is None else cfg batch_size = bbox_preds[0].shape[0] featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores] mlvl_priors = self.prior_generator.grid_priors( featmap_sizes, device=device, with_stride=True) mlvl_priors = [mlvl_prior.unsqueeze(0) for mlvl_prior in mlvl_priors] flatten_priors = torch.cat(mlvl_priors, dim=1) flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1, self.cls_out_channels) for cls_score in cls_scores ] flatten_bbox_preds = [ bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, 4) for bbox_pred in bbox_preds ] flatten_objectness = [ objectness.permute(0, 2, 3, 1).reshape(batch_size, -1, 1) for objectness in objectnesses ] cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid() dummy_cls_scores = torch.zeros( batch_size, cls_scores.shape[-2], 1, device=cls_scores.device) batch_mlvl_scores = torch.cat([dummy_cls_scores, cls_scores], dim=2) score_factor = torch.cat(flatten_objectness, dim=1).sigmoid() flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1) assert flatten_priors.shape[-1] == 4, f'yolox needs (B, N, 4) priors, got\ (B, N, {flatten_priors.shape[-1]})' prior_box_x1 = (flatten_priors[:, :, 0:1] - flatten_priors[:, :, 2:3] / 2)\ / img_width prior_box_y1 = (flatten_priors[:, :, 1:2] - flatten_priors[:, :, 3:4] / 2)\ / img_height prior_box_x2 = (flatten_priors[:, :, 0:1] + flatten_priors[:, :, 2:3] / 2)\ / img_width prior_box_y2 = (flatten_priors[:, :, 1:2] + flatten_priors[:, :, 3:4] / 2)\ / img_height prior_box_ncnn = torch.cat( [prior_box_x1, prior_box_y1, prior_box_x2, prior_box_y2], dim=2) scores = batch_mlvl_scores.permute(0, 2, 1).unsqueeze(3) * \ score_factor.permute(0, 2, 1).unsqueeze(3) scores = scores.squeeze(3).permute(0, 2, 1) batch_mlvl_bboxes = flatten_bbox_preds.reshape(batch_size, 1, -1) batch_mlvl_scores = scores.reshape(batch_size, 1, -1) batch_mlvl_priors = prior_box_ncnn.reshape(batch_size, 1, -1) batch_mlvl_vars = torch.ones_like(batch_mlvl_priors) batch_mlvl_priors = torch.cat([batch_mlvl_priors, batch_mlvl_vars], dim=1) deploy_cfg = ctx.cfg post_params = get_post_processing_params(deploy_cfg) iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) score_threshold = cfg.get('score_thr', post_params.score_threshold) pre_top_k = post_params.pre_top_k keep_top_k = cfg.get('max_per_img', post_params.keep_top_k) vars = torch.tensor([1, 1, 1, 1], dtype=torch.float32) output__ncnn = ncnn_detection_output_forward( batch_mlvl_bboxes, batch_mlvl_scores, batch_mlvl_priors, score_threshold, iou_threshold, pre_top_k, keep_top_k, self.num_classes + 1, vars.cpu().detach().numpy()) return output__ncnn
Rewrite `predict_by_feat` of YOLOXHead for ncnn backend. 1. Decode the prior to a box format for ncnn DetectionOutput layer to do the post-processing. 2. Batch dimension is not supported by ncnn, but supported by pytorch. The negative value of axis in torch.cat is rewritten as corresponding positive value to avoid axis shift. 3. 2-dimension tensor broadcast of `BinaryOps` operator is not supported by ncnn. This function unsqueeze 2-dimension tensor to 3-dimension tensor for correct `BinaryOps` calculation by ncnn. Args: ctx: Context that contains original meta information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). objectnesses (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, 1, H, W). batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: output__ncnn (Tensor): outputs, shape is [N, num_det, 6].
188,676
from typing import Dict, List import torch from mmdet.models.layers import mask_matrix_nms from mmdet.utils import OptConfigType from torch import Tensor from torch.nn import functional as F from mmdeploy.codebase.mmdet.deploy import get_post_processing_params from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `solohead__predict_by_feat` function. Write a Python function `def solohead__predict_by_feat(self, mlvl_mask_preds: List[Tensor], mlvl_cls_scores: List[Tensor], batch_img_metas: List[Dict], cfg: OptConfigType = None, **kwargs)` to solve the following problem: Rewrite `predict_by_feat` of `SOLOHead` for default backend. Here is the function: def solohead__predict_by_feat(self, mlvl_mask_preds: List[Tensor], mlvl_cls_scores: List[Tensor], batch_img_metas: List[Dict], cfg: OptConfigType = None, **kwargs): """Rewrite `predict_by_feat` of `SOLOHead` for default backend.""" ctx = FUNCTION_REWRITER.get_context() batch_size = mlvl_cls_scores[0].size(0) cfg = self.test_cfg mlvl_cls_scores = [ item.permute(0, 2, 3, 1).view(item.size(0), -1, self.cls_out_channels) for item in mlvl_cls_scores ] # avoid setting items lvl_strides = [ torch.ones_like(mlvl_cls_scores[lvl][0, :, 0]) * self.strides[lvl] for lvl in range(len(mlvl_cls_scores)) ] strides = torch.cat(lvl_strides, 0) assert len(mlvl_mask_preds) == len(mlvl_cls_scores) batch_mlvl_cls_scores = torch.cat(mlvl_cls_scores, dim=1) batch_mlvl_mask_preds = torch.cat(mlvl_mask_preds, dim=1) featmap_size = batch_mlvl_mask_preds.size()[-2:] batch_mlvl_cls_scores, cls_labels = torch.max(batch_mlvl_cls_scores, -1) score_mask = (batch_mlvl_cls_scores > cfg.score_thr) # pad zero to filter items batch_mlvl_cls_scores = batch_mlvl_cls_scores.where( score_mask, batch_mlvl_cls_scores.new_zeros(1)).view(-1) cls_labels = cls_labels.view(-1) mask_preds = batch_mlvl_mask_preds.view(-1, featmap_size[0], featmap_size[1]) masks = (mask_preds > cfg.mask_thr) sum_masks = masks.sum((1, 2)) keep = sum_masks > strides # pad zero to filter items cls_scores = batch_mlvl_cls_scores.where( keep, batch_mlvl_cls_scores.new_zeros(1)) sum_masks = sum_masks.where(keep, sum_masks.new_ones(1)) # maskness mask_scores = (mask_preds * masks).sum((1, 2)) / sum_masks cls_scores *= mask_scores sum_masks = sum_masks.where(keep, sum_masks.new_zeros(1)) scores, labels, _, keep_inds = mask_matrix_nms( masks, cls_labels, cls_scores, mask_area=sum_masks, nms_pre=cfg.nms_pre, max_num=cfg.max_per_img, kernel=cfg.kernel, sigma=cfg.sigma, filter_thr=cfg.filter_thr) h, w = batch_img_metas[0]['img_shape'][:2] mask_preds = mask_preds[keep_inds].unsqueeze(0) mmdet_params = get_post_processing_params(ctx.cfg) export_postprocess_mask = mmdet_params.get('export_postprocess_mask', True) if export_postprocess_mask: upsampled_size = (featmap_size[0] * 4, featmap_size[1] * 4) mask_preds = F.interpolate( mask_preds, size=upsampled_size, mode='bilinear') bboxes = scores.new_zeros(batch_size, scores.shape[-1], 4) else: bboxes = scores.new_zeros(batch_size, scores.shape[-1], 2) # full screen box so we can postprocess mask outside the model bboxes = torch.cat([ bboxes, bboxes.new_full((*bboxes.shape[:2], 1), w), bboxes.new_full((*bboxes.shape[:2], 1), h) ], dim=-1) labels = labels.reshape(batch_size, -1) dets = torch.cat([bboxes, scores.reshape(batch_size, -1, 1)], dim=-1) return dets, labels, mask_preds
Rewrite `predict_by_feat` of `SOLOHead` for default backend.
188,677
from typing import List, Optional import torch from mmengine.config import ConfigDict from mmengine.structures import InstanceData from torch import Tensor from mmdeploy.codebase.mmdet import get_post_processing_params from mmdeploy.core import FUNCTION_REWRITER, mark from mmdeploy.mmcv.ops import multiclass_nms from mmdeploy.utils import Backend The provided code snippet includes necessary dependencies for implementing the `rtmdet_head__predict_by_feat` function. Write a Python function `def rtmdet_head__predict_by_feat(self, cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True) -> List[InstanceData]` to solve the following problem: Rewrite `predict_by_feat` of `RTMDet` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx: Context that contains original meta information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: tuple[Tensor, Tensor]: The first item is an (N, num_box, 5) tensor, where 5 represent (tl_x, tl_y, br_x, br_y, score), N is batch size and the score between 0 and 1. The shape of the second tensor in the tuple is (N, num_box), and each element represents the class label of the corresponding box. Here is the function: def rtmdet_head__predict_by_feat(self, cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True) -> List[InstanceData]: """Rewrite `predict_by_feat` of `RTMDet` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx: Context that contains original meta information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: tuple[Tensor, Tensor]: The first item is an (N, num_box, 5) tensor, where 5 represent (tl_x, tl_y, br_x, br_y, score), N is batch size and the score between 0 and 1. The shape of the second tensor in the tuple is (N, num_box), and each element represents the class label of the corresponding box. """ @mark('rtmdet_head', inputs=['cls_scores', 'bbox_preds']) def __mark_pred_maps(cls_scores, bbox_preds): return cls_scores, bbox_preds cls_scores, bbox_preds = __mark_pred_maps(cls_scores, bbox_preds) ctx = FUNCTION_REWRITER.get_context() assert len(cls_scores) == len(bbox_preds) device = cls_scores[0].device cfg = self.test_cfg if cfg is None else cfg batch_size = bbox_preds[0].shape[0] featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores] mlvl_priors = self.prior_generator.grid_priors( featmap_sizes, device=device) flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1, self.cls_out_channels) for cls_score in cls_scores ] flatten_bbox_preds = [ bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, 4) for bbox_pred in bbox_preds ] flatten_cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid() flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1) priors = torch.cat(mlvl_priors) tl_x = (priors[..., 0] - flatten_bbox_preds[..., 0]) tl_y = (priors[..., 1] - flatten_bbox_preds[..., 1]) br_x = (priors[..., 0] + flatten_bbox_preds[..., 2]) br_y = (priors[..., 1] + flatten_bbox_preds[..., 3]) bboxes = torch.stack([tl_x, tl_y, br_x, br_y], -1) scores = flatten_cls_scores if not with_nms: return bboxes, scores deploy_cfg = ctx.cfg post_params = get_post_processing_params(deploy_cfg) max_output_boxes_per_class = post_params.max_output_boxes_per_class iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) score_threshold = cfg.get('score_thr', post_params.score_threshold) pre_top_k = post_params.pre_top_k keep_top_k = cfg.get('max_per_img', post_params.keep_top_k) nms_type = cfg.nms.get('type') return multiclass_nms( bboxes, scores, max_output_boxes_per_class, nms_type=nms_type, iou_threshold=iou_threshold, score_threshold=score_threshold, pre_top_k=pre_top_k, keep_top_k=keep_top_k)
Rewrite `predict_by_feat` of `RTMDet` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx: Context that contains original meta information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: tuple[Tensor, Tensor]: The first item is an (N, num_box, 5) tensor, where 5 represent (tl_x, tl_y, br_x, br_y, score), N is batch size and the score between 0 and 1. The shape of the second tensor in the tuple is (N, num_box), and each element represents the class label of the corresponding box.
188,678
from typing import List, Optional import torch from mmengine.config import ConfigDict from mmengine.structures import InstanceData from torch import Tensor from mmdeploy.codebase.mmdet import get_post_processing_params from mmdeploy.core import FUNCTION_REWRITER, mark from mmdeploy.mmcv.ops import multiclass_nms from mmdeploy.utils import Backend def is_dynamic_shape(deploy_cfg: Union[str, mmengine.Config], input_name: Optional[str] = None) -> bool: """Check if input shape is dynamic. Args: deploy_cfg (str | mmengine.Config): The path or content of config. input_name (Optional[str]): The name of input in onnx export parameter. Returns: bool: Is config set dynamic shape (axis 2 and 3). """ # Always dynamic for exporting torchscript if get_backend(deploy_cfg) == Backend.TORCHSCRIPT: return True deploy_cfg = load_config(deploy_cfg)[0] ir_config = get_ir_config(deploy_cfg) # check if input name is in the config input_names = ir_config.get('input_names', None) if input_name is None: input_name = input_names[0] if input_names else 'input' # check if dynamic axes exist # TODO: update this when we have more IR dynamic_axes = get_dynamic_axes(deploy_cfg) if dynamic_axes is None: return False # check if given input name exist input_axes = dynamic_axes.get(input_name, None) if input_axes is None: return False # check if 2 (height) and 3 (width) in input axes if 2 in input_axes or 3 in input_axes: return True return False The provided code snippet includes necessary dependencies for implementing the `rtmdet_head__predict_by_feat__ncnn` function. Write a Python function `def rtmdet_head__predict_by_feat__ncnn( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True)` to solve the following problem: Rewrite `predict_by_feat` of RTMDetHead for ncnn backend. 1. Decode the prior to a box format for ncnn DetectionOutput layer to do the post-processing. 2. Batch dimension is not supported by ncnn, but supported by pytorch. The negative value of axis in torch.cat is rewritten as corresponding positive value to avoid axis shift. 3. 2-dimension tensor broadcast of `BinaryOps` operator is not supported by ncnn. This function unsqueeze 2-dimension tensor to 3-dimension tensor for correct `BinaryOps` calculation by ncnn. Args: cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). objectnesses (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, 1, H, W). batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: output__ncnn (Tensor): outputs, shape is [N, num_det, 6]. Here is the function: def rtmdet_head__predict_by_feat__ncnn( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True): """Rewrite `predict_by_feat` of RTMDetHead for ncnn backend. 1. Decode the prior to a box format for ncnn DetectionOutput layer to do the post-processing. 2. Batch dimension is not supported by ncnn, but supported by pytorch. The negative value of axis in torch.cat is rewritten as corresponding positive value to avoid axis shift. 3. 2-dimension tensor broadcast of `BinaryOps` operator is not supported by ncnn. This function unsqueeze 2-dimension tensor to 3-dimension tensor for correct `BinaryOps` calculation by ncnn. Args: cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). objectnesses (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, 1, H, W). batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: output__ncnn (Tensor): outputs, shape is [N, num_det, 6]. """ ctx = FUNCTION_REWRITER.get_context() from mmdeploy.codebase.mmdet.ops import ncnn_detection_output_forward from mmdeploy.utils import get_root_logger from mmdeploy.utils.config_utils import is_dynamic_shape dynamic_flag = is_dynamic_shape(ctx.cfg) if dynamic_flag: logger = get_root_logger() logger.warning('RTMDet does not support dynamic shape with ncnn.') img_height = int(batch_img_metas[0]['img_shape'][0]) img_width = int(batch_img_metas[0]['img_shape'][1]) assert len(cls_scores) == len(bbox_preds) device = cls_scores[0].device cfg = self.test_cfg if cfg is None else cfg batch_size = bbox_preds[0].shape[0] featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores] mlvl_priors = self.prior_generator.grid_priors( featmap_sizes, device=device, with_stride=True) mlvl_priors = [mlvl_prior.unsqueeze(0) for mlvl_prior in mlvl_priors] flatten_priors = torch.cat(mlvl_priors, dim=1) flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1, self.cls_out_channels) for cls_score in cls_scores ] flatten_bbox_preds = [ bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, 4) for bbox_pred in bbox_preds ] cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid() dummy_cls_scores = torch.zeros( batch_size, cls_scores.shape[-2], 1, device=cls_scores.device) batch_mlvl_scores = torch.cat([dummy_cls_scores, cls_scores], dim=2) flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1) assert flatten_priors.shape[-1] == 4, f'rtmdet needs (B, N, 4) priors, got\ (B, N, {flatten_priors.shape[-1]})' tl_x = (flatten_priors[:, :, 0:1] - flatten_bbox_preds[:, :, 0:1]) / img_width tl_y = (flatten_priors[:, :, 1:2] - flatten_bbox_preds[:, :, 1:2]) / img_height br_x = (flatten_priors[:, :, 0:1] + flatten_bbox_preds[:, :, 2:3]) / img_width br_y = (flatten_priors[:, :, 1:2] + flatten_bbox_preds[:, :, 3:4]) / img_height prior_box_ncnn = torch.stack([tl_x, tl_y, br_x, br_y], -1) scores = batch_mlvl_scores batch_mlvl_bboxes = flatten_bbox_preds.reshape(batch_size, 1, -1) batch_mlvl_scores = scores.reshape(batch_size, 1, -1) batch_mlvl_priors = prior_box_ncnn.reshape(batch_size, 1, -1) batch_mlvl_vars = torch.ones_like(batch_mlvl_priors) batch_mlvl_priors = torch.cat([batch_mlvl_priors, batch_mlvl_vars], dim=1) deploy_cfg = ctx.cfg post_params = get_post_processing_params(deploy_cfg) iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) score_threshold = cfg.get('score_thr', post_params.score_threshold) pre_top_k = post_params.pre_top_k keep_top_k = cfg.get('max_per_img', post_params.keep_top_k) vars = torch.tensor([1, 1, 1, 1], dtype=torch.float32) output__ncnn = ncnn_detection_output_forward( batch_mlvl_bboxes, batch_mlvl_scores, batch_mlvl_priors, score_threshold, iou_threshold, pre_top_k, keep_top_k, self.num_classes + 1, vars.cpu().detach().numpy()) return output__ncnn
Rewrite `predict_by_feat` of RTMDetHead for ncnn backend. 1. Decode the prior to a box format for ncnn DetectionOutput layer to do the post-processing. 2. Batch dimension is not supported by ncnn, but supported by pytorch. The negative value of axis in torch.cat is rewritten as corresponding positive value to avoid axis shift. 3. 2-dimension tensor broadcast of `BinaryOps` operator is not supported by ncnn. This function unsqueeze 2-dimension tensor to 3-dimension tensor for correct `BinaryOps` calculation by ncnn. Args: cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). objectnesses (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, 1, H, W). batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: output__ncnn (Tensor): outputs, shape is [N, num_det, 6].
188,679
from typing import List, Optional import torch import torch.nn.functional as F from mmengine.config import ConfigDict from torch import Tensor from mmdeploy.codebase.mmdet import get_post_processing_params from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.mmcv.ops.nms import multiclass_nms def _nms_with_mask_static(self, priors: Tensor, bboxes: Tensor, scores: Tensor, kernels: Tensor, mask_feats: Tensor, max_output_boxes_per_class: int = 1000, iou_threshold: float = 0.5, score_threshold: float = 0.05, pre_top_k: int = -1, keep_top_k: int = -1, mask_thr_binary: float = 0.5): """Wrapper for `multiclass_nms` with ONNXRuntime. Args: ctx (ContextCaller): The context with additional information. bboxes (Tensor): The bounding boxes of shape [N, num_boxes, 4]. scores (Tensor): The detection scores of shape [N, num_boxes, num_classes]. max_output_boxes_per_class (int): Maximum number of output boxes per class of nms. Defaults to 1000. iou_threshold (float): IOU threshold of nms. Defaults to 0.5. score_threshold (float): score threshold of nms. Defaults to 0.05. pre_top_k (int): Number of top K boxes to keep before nms. Defaults to -1. keep_top_k (int): Number of top K boxes to keep after nms. Defaults to -1. Returns: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. """ dets, labels, inds = multiclass_nms( bboxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold, pre_top_k=pre_top_k, keep_top_k=keep_top_k, output_index=True) batch_size = bboxes.shape[0] batch_inds = torch.arange(batch_size, device=bboxes.device).view(-1, 1) kernels = kernels[batch_inds, inds, :] priors = priors.unsqueeze(0).repeat(batch_size, 1, 1) priors = priors[batch_inds, inds, :] mask_logits = _mask_predict_by_feat_single(self, mask_feats, kernels, priors) stride = self.prior_generator.strides[0][0] mask_logits = F.interpolate( mask_logits, scale_factor=stride, mode='bilinear') masks = mask_logits.sigmoid() return dets, labels, masks The provided code snippet includes necessary dependencies for implementing the `rtmdet_ins_head__predict_by_feat` function. Write a Python function `def rtmdet_ins_head__predict_by_feat( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], kernel_preds: List[Tensor], mask_feat: Tensor, score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True)` to solve the following problem: Rewrite `predict_by_feat` of `RTMDet-Ins` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx: Context that contains original meta information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: tuple[Tensor, Tensor]: The first item is an (N, num_box, 5) tensor, where 5 represent (tl_x, tl_y, br_x, br_y, score), N is batch size and the score between 0 and 1. The shape of the second tensor in the tuple is (N, num_box), and each element represents the class label of the corresponding box. Here is the function: def rtmdet_ins_head__predict_by_feat( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], kernel_preds: List[Tensor], mask_feat: Tensor, score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True): """Rewrite `predict_by_feat` of `RTMDet-Ins` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx: Context that contains original meta information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: tuple[Tensor, Tensor]: The first item is an (N, num_box, 5) tensor, where 5 represent (tl_x, tl_y, br_x, br_y, score), N is batch size and the score between 0 and 1. The shape of the second tensor in the tuple is (N, num_box), and each element represents the class label of the corresponding box. """ assert len(cls_scores) == len(bbox_preds) device = cls_scores[0].device cfg = self.test_cfg if cfg is None else cfg batch_size = bbox_preds[0].shape[0] featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores] mlvl_priors = self.prior_generator.grid_priors( featmap_sizes, device=device, with_stride=True) flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1, self.cls_out_channels) for cls_score in cls_scores ] flatten_bbox_preds = [ bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, 4) for bbox_pred in bbox_preds ] flatten_kernel_preds = [ kernel_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, self.num_gen_params) for kernel_pred in kernel_preds ] flatten_cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid() flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1) flatten_kernel_preds = torch.cat(flatten_kernel_preds, dim=1) priors = torch.cat(mlvl_priors) tl_x = (priors[..., 0] - flatten_bbox_preds[..., 0]) tl_y = (priors[..., 1] - flatten_bbox_preds[..., 1]) br_x = (priors[..., 0] + flatten_bbox_preds[..., 2]) br_y = (priors[..., 1] + flatten_bbox_preds[..., 3]) bboxes = torch.stack([tl_x, tl_y, br_x, br_y], -1) scores = flatten_cls_scores ctx = FUNCTION_REWRITER.get_context() deploy_cfg = ctx.cfg post_params = get_post_processing_params(deploy_cfg) max_output_boxes_per_class = post_params.max_output_boxes_per_class iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) score_threshold = cfg.get('score_thr', post_params.score_threshold) pre_top_k = post_params.pre_top_k keep_top_k = cfg.get('max_per_img', post_params.keep_top_k) mask_thr_binary = cfg.get('mask_thr_binary', 0.5) return _nms_with_mask_static(self, priors, bboxes, scores, flatten_kernel_preds, mask_feat, max_output_boxes_per_class, iou_threshold, score_threshold, pre_top_k, keep_top_k, mask_thr_binary)
Rewrite `predict_by_feat` of `RTMDet-Ins` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx: Context that contains original meta information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: tuple[Tensor, Tensor]: The first item is an (N, num_box, 5) tensor, where 5 represent (tl_x, tl_y, br_x, br_y, score), N is batch size and the score between 0 and 1. The shape of the second tensor in the tuple is (N, num_box), and each element represents the class label of the corresponding box.
188,680
from typing import List, Optional import torch from mmdet.models.dense_heads import PAAHead from mmdet.models.task_modules.coders import (DeltaXYWHBBoxCoder, DistancePointBBoxCoder, TBLRBBoxCoder) from mmdet.structures.bbox import BaseBoxes, get_box_tensor from mmdet.structures.bbox.transforms import distance2bbox from mmengine import ConfigDict from torch import Tensor from mmdeploy.codebase.mmdet.deploy import (gather_topk, get_post_processing_params, pad_with_value_if_necessary) from mmdeploy.codebase.mmdet.ops import ncnn_detection_output_forward from mmdeploy.core import FUNCTION_REWRITER, mark from mmdeploy.mmcv.ops import multiclass_nms from mmdeploy.utils import Backend, is_dynamic_shape The provided code snippet includes necessary dependencies for implementing the `base_dense_head__predict_by_feat` function. Write a Python function `def base_dense_head__predict_by_feat( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True, **kwargs)` to solve the following problem: Rewrite `predict_by_feat` of `BaseDenseHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). score_factors (list[Tensor], optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Defaults to None. batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores, batch_mlvl_centerness Here is the function: def base_dense_head__predict_by_feat( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True, **kwargs): """Rewrite `predict_by_feat` of `BaseDenseHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). score_factors (list[Tensor], optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Defaults to None. batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores, batch_mlvl_centerness """ ctx = FUNCTION_REWRITER.get_context() deploy_cfg = ctx.cfg is_dynamic_flag = is_dynamic_shape(deploy_cfg) num_levels = len(cls_scores) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] mlvl_priors = self.prior_generator.grid_priors( featmap_sizes, dtype=bbox_preds[0].dtype, device=bbox_preds[0].device) # anchor could be subclass of BaseBoxes in mmrotate prior_type = type(mlvl_priors[0]) mlvl_priors = [get_box_tensor(priors) for priors in mlvl_priors] mlvl_priors = [priors.unsqueeze(0) for priors in mlvl_priors] mlvl_cls_scores = [cls_scores[i].detach() for i in range(num_levels)] mlvl_bbox_preds = [bbox_preds[i].detach() for i in range(num_levels)] if score_factors is None: with_score_factors = False mlvl_score_factor = [None for _ in range(num_levels)] else: with_score_factors = True mlvl_score_factor = [ score_factors[i].detach() for i in range(num_levels) ] mlvl_score_factors = [] assert batch_img_metas is not None img_shape = batch_img_metas[0]['img_shape'] assert len(cls_scores) == len(bbox_preds) == len(mlvl_priors) batch_size = cls_scores[0].shape[0] cfg = self.test_cfg pre_topk = cfg.get('nms_pre', -1) mlvl_valid_bboxes = [] mlvl_valid_scores = [] mlvl_valid_priors = [] for cls_score, bbox_pred, score_factors, priors in zip( mlvl_cls_scores, mlvl_bbox_preds, mlvl_score_factor, mlvl_priors): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] scores = cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1, self.cls_out_channels) if self.use_sigmoid_cls: scores = scores.sigmoid() else: scores = scores.softmax(-1)[:, :, :-1] if with_score_factors: score_factors = score_factors.permute(0, 2, 3, 1).reshape(batch_size, -1).sigmoid() score_factors = score_factors.unsqueeze(2) dim = self.bbox_coder.encode_size bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, dim) if not is_dynamic_flag: priors = priors.data if pre_topk > 0: priors = pad_with_value_if_necessary(priors, 1, pre_topk) bbox_pred = pad_with_value_if_necessary(bbox_pred, 1, pre_topk) scores = pad_with_value_if_necessary(scores, 1, pre_topk, 0.) if with_score_factors: score_factors = pad_with_value_if_necessary( score_factors, 1, pre_topk, 0.) nms_pre_score = scores if with_score_factors: nms_pre_score = nms_pre_score * score_factors if isinstance(self, PAAHead): nms_pre_score = nms_pre_score.sqrt() # Get maximum scores for foreground classes. if self.use_sigmoid_cls: max_scores, _ = nms_pre_score.max(-1) else: max_scores, _ = nms_pre_score[..., :-1].max(-1) _, topk_inds = max_scores.topk(pre_topk) bbox_pred, scores, score_factors = gather_topk( bbox_pred, scores, score_factors, inds=topk_inds, batch_size=batch_size, is_batched=True) priors = gather_topk( priors, inds=topk_inds, batch_size=batch_size, is_batched=False) mlvl_valid_bboxes.append(bbox_pred) mlvl_valid_scores.append(scores) mlvl_valid_priors.append(priors) if with_score_factors: mlvl_score_factors.append(score_factors) batch_mlvl_bboxes_pred = torch.cat(mlvl_valid_bboxes, dim=1) batch_scores = torch.cat(mlvl_valid_scores, dim=1) batch_priors = torch.cat(mlvl_valid_priors, dim=1) if issubclass(prior_type, BaseBoxes): batch_priors = prior_type(batch_priors, clone=False) batch_bboxes = self.bbox_coder.decode( batch_priors, batch_mlvl_bboxes_pred, max_shape=img_shape) batch_bboxes = get_box_tensor(batch_bboxes) if with_score_factors: batch_score_factors = torch.cat(mlvl_score_factors, dim=1) if not self.use_sigmoid_cls: batch_scores = batch_scores[..., :self.num_classes] if with_score_factors: batch_scores = batch_scores * batch_score_factors if isinstance(self, PAAHead): batch_scores = batch_scores.sqrt() if not with_nms: return batch_bboxes, batch_scores post_params = get_post_processing_params(deploy_cfg) max_output_boxes_per_class = post_params.max_output_boxes_per_class iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) score_threshold = cfg.get('score_thr', post_params.score_threshold) pre_top_k = post_params.pre_top_k keep_top_k = cfg.get('max_per_img', post_params.keep_top_k) nms_type = cfg.nms.get('type') return multiclass_nms( batch_bboxes, batch_scores, max_output_boxes_per_class, nms_type=nms_type, iou_threshold=iou_threshold, score_threshold=score_threshold, pre_top_k=pre_top_k, keep_top_k=keep_top_k)
Rewrite `predict_by_feat` of `BaseDenseHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). score_factors (list[Tensor], optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Defaults to None. batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores, batch_mlvl_centerness
188,681
from typing import List, Optional import torch from mmdet.models.dense_heads import PAAHead from mmdet.models.task_modules.coders import (DeltaXYWHBBoxCoder, DistancePointBBoxCoder, TBLRBBoxCoder) from mmdet.structures.bbox import BaseBoxes, get_box_tensor from mmdet.structures.bbox.transforms import distance2bbox from mmengine import ConfigDict from torch import Tensor from mmdeploy.codebase.mmdet.deploy import (gather_topk, get_post_processing_params, pad_with_value_if_necessary) from mmdeploy.codebase.mmdet.ops import ncnn_detection_output_forward from mmdeploy.core import FUNCTION_REWRITER, mark from mmdeploy.mmcv.ops import multiclass_nms from mmdeploy.utils import Backend, is_dynamic_shape The provided code snippet includes necessary dependencies for implementing the `base_dense_head__predict_by_feat__rknn` function. Write a Python function `def base_dense_head__predict_by_feat__rknn( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True, **kwargs)` to solve the following problem: Rewrite `predict_by_feat` of `BaseDenseHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). score_factors (list[Tensor], optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Defaults to None. batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores, batch_mlvl_centerness Here is the function: def base_dense_head__predict_by_feat__rknn( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True, **kwargs): """Rewrite `predict_by_feat` of `BaseDenseHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). score_factors (list[Tensor], optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Defaults to None. batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores, batch_mlvl_centerness """ ctx = FUNCTION_REWRITER.get_context() # mark nodes for partition @mark('BaseDenseHead', outputs=['BaseDenseHead.cls', 'BaseDenseHead.loc']) def __mark_dense_head(cls_scores, bbox_preds): return cls_scores, bbox_preds cls_scores, bbox_preds = __mark_dense_head(cls_scores, bbox_preds) deploy_cfg = ctx.cfg is_dynamic_flag = is_dynamic_shape(deploy_cfg) num_levels = len(cls_scores) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] mlvl_priors = self.prior_generator.grid_priors( featmap_sizes, dtype=bbox_preds[0].dtype, device=bbox_preds[0].device) mlvl_priors = [priors.unsqueeze(0) for priors in mlvl_priors] mlvl_cls_scores = [cls_scores[i].detach() for i in range(num_levels)] mlvl_bbox_preds = [bbox_preds[i].detach() for i in range(num_levels)] if score_factors is None: with_score_factors = False mlvl_score_factor = [None for _ in range(num_levels)] else: with_score_factors = True mlvl_score_factor = [ score_factors[i].detach() for i in range(num_levels) ] mlvl_score_factors = [] assert batch_img_metas is not None img_shape = batch_img_metas[0]['img_shape'] assert len(cls_scores) == len(bbox_preds) == len(mlvl_priors) batch_size = cls_scores[0].shape[0] mlvl_valid_bboxes = [] mlvl_valid_scores = [] mlvl_valid_priors = [] for cls_score, bbox_pred, score_factors, priors in zip( mlvl_cls_scores, mlvl_bbox_preds, mlvl_score_factor, mlvl_priors): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] scores = cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1, self.cls_out_channels) if self.use_sigmoid_cls: scores = scores.sigmoid() else: scores = scores.softmax(-1)[:, :, :-1] if with_score_factors: score_factors = score_factors.permute(0, 2, 3, 1).reshape(batch_size, -1).sigmoid() score_factors = score_factors.unsqueeze(2) bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, 4) if not is_dynamic_flag: priors = priors.data mlvl_valid_bboxes.append(bbox_pred) mlvl_valid_scores.append(scores) mlvl_valid_priors.append(priors) if with_score_factors: mlvl_score_factors.append(score_factors) batch_mlvl_bboxes_pred = torch.cat(mlvl_valid_bboxes, dim=1) batch_scores = torch.cat(mlvl_valid_scores, dim=1) batch_priors = torch.cat(mlvl_valid_priors, dim=1) batch_bboxes = self.bbox_coder.decode( batch_priors, batch_mlvl_bboxes_pred, max_shape=img_shape) if with_score_factors: batch_score_factors = torch.cat(mlvl_score_factors, dim=1) if not self.use_sigmoid_cls: batch_scores = batch_scores[..., :self.num_classes] if with_score_factors: batch_scores = batch_scores * batch_score_factors if isinstance(self, PAAHead): batch_scores = batch_scores.sqrt() return batch_bboxes, batch_scores
Rewrite `predict_by_feat` of `BaseDenseHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). score_factors (list[Tensor], optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Defaults to None. batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores, batch_mlvl_centerness
188,682
from typing import List, Optional import torch from mmdet.models.dense_heads import PAAHead from mmdet.models.task_modules.coders import (DeltaXYWHBBoxCoder, DistancePointBBoxCoder, TBLRBBoxCoder) from mmdet.structures.bbox import BaseBoxes, get_box_tensor from mmdet.structures.bbox.transforms import distance2bbox from mmengine import ConfigDict from torch import Tensor from mmdeploy.codebase.mmdet.deploy import (gather_topk, get_post_processing_params, pad_with_value_if_necessary) from mmdeploy.codebase.mmdet.ops import ncnn_detection_output_forward from mmdeploy.core import FUNCTION_REWRITER, mark from mmdeploy.mmcv.ops import multiclass_nms from mmdeploy.utils import Backend, is_dynamic_shape def _tblr_pred_to_delta_xywh_pred(bbox_pred: torch.Tensor, normalizer: torch.Tensor) -> torch.Tensor: """Transform tblr format bbox prediction to delta_xywh format for ncnn. An internal function for transforming tblr format bbox prediction to delta_xywh format. ncnn DetectionOutput layer needs delta_xywh format bbox_pred as input. Args: bbox_pred (Tensor): The bbox prediction of tblr format, has shape (N, num_det, 4). normalizer (Tensor): The normalizer scale of bbox horizon and vertical coordinates, has shape (2,). Returns: Tensor: The delta_xywh format bbox predictions. """ top = bbox_pred[:, :, 0:1] bottom = bbox_pred[:, :, 1:2] left = bbox_pred[:, :, 2:3] right = bbox_pred[:, :, 3:4] h = (top + bottom) * normalizer[0] w = (left + right) * normalizer[1] _dwh = torch.cat([w, h], dim=2) assert torch.all(_dwh >= 0), 'wh must be positive before log.' dwh = torch.log(_dwh) return torch.cat([(right - left) / 2, (bottom - top) / 2, dwh], dim=2) The provided code snippet includes necessary dependencies for implementing the `base_dense_head__predict_by_feat__ncnn` function. Write a Python function `def base_dense_head__predict_by_feat__ncnn( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True, **kwargs)` to solve the following problem: Rewrite `predict_by_feat` of BaseDenseHead for ncnn backend. Shape node and batch inference is not supported by ncnn. This function transform dynamic shape to constant shape and remove batch inference. Args: ctx (ContextCaller): The context with additional information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). score_factors (list[Tensor], optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Defaults to None. batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: output__ncnn (Tensor): outputs, shape is [N, num_det, 6]. Here is the function: def base_dense_head__predict_by_feat__ncnn( self, cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True, **kwargs): """Rewrite `predict_by_feat` of BaseDenseHead for ncnn backend. Shape node and batch inference is not supported by ncnn. This function transform dynamic shape to constant shape and remove batch inference. Args: ctx (ContextCaller): The context with additional information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). score_factors (list[Tensor], optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Defaults to None. batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: output__ncnn (Tensor): outputs, shape is [N, num_det, 6]. """ ctx = FUNCTION_REWRITER.get_context() assert len(cls_scores) == len(bbox_preds) deploy_cfg = ctx.cfg assert not is_dynamic_shape(deploy_cfg), 'base_dense_head for ncnn\ only supports static shape.' if score_factors is None: # e.g. Retina, FreeAnchor, Foveabox, etc. with_score_factors = False else: # e.g. FCOS, PAA, ATSS, AutoAssign, etc. with_score_factors = True assert len(cls_scores) == len(score_factors) batch_size = cls_scores[0].shape[0] assert batch_size == 1, f'ncnn deployment requires batch size 1, \ got {batch_size}.' num_levels = len(cls_scores) if with_score_factors: score_factor_list = score_factors else: score_factor_list = [None for _ in range(num_levels)] if isinstance(self.bbox_coder, DeltaXYWHBBoxCoder): vars = torch.tensor(self.bbox_coder.stds) elif isinstance(self.bbox_coder, TBLRBBoxCoder): normalizer = self.bbox_coder.normalizer if isinstance(normalizer, float): vars = torch.tensor([normalizer, normalizer, 1, 1], dtype=torch.float32) else: assert len(normalizer) == 4, f'normalizer of tblr must be 4,\ got {len(normalizer)}' assert (normalizer[0] == normalizer[1] and normalizer[2] == normalizer[3]), 'normalizer between top \ and bottom, left and right must be the same value, or \ we can not transform it to delta_xywh format.' vars = torch.tensor([normalizer[0], normalizer[2], 1, 1], dtype=torch.float32) elif isinstance(self.bbox_coder, DistancePointBBoxCoder): vars = torch.tensor([0, 0, 0, 0], dtype=torch.float32) else: vars = torch.tensor([1, 1, 1, 1], dtype=torch.float32) if isinstance(batch_img_metas[0]['img_shape'][0], int): assert isinstance(batch_img_metas[0]['img_shape'][1], int) img_height = batch_img_metas[0]['img_shape'][0] img_width = batch_img_metas[0]['img_shape'][1] else: img_height = batch_img_metas[0]['img_shape'][0].item() img_width = batch_img_metas[0]['img_shape'][1].item() featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] mlvl_priors = self.prior_generator.grid_priors( featmap_sizes, device=cls_scores[0].device) batch_mlvl_priors = [] for i in range(num_levels): _priors = mlvl_priors[i].reshape(1, -1, mlvl_priors[i].shape[-1]) x1 = _priors[:, :, 0:1] / img_width y1 = _priors[:, :, 1:2] / img_height x2 = _priors[:, :, 2:3] / img_width y2 = _priors[:, :, 3:4] / img_height priors = torch.cat([x1, y1, x2, y2], dim=2).data batch_mlvl_priors.append(priors) cfg = self.test_cfg if cfg is None else cfg batch_mlvl_bboxes = [] batch_mlvl_scores = [] batch_mlvl_score_factors = [] for level_idx, (cls_score, bbox_pred, score_factor, priors) in \ enumerate(zip(cls_scores, bbox_preds, score_factor_list, batch_mlvl_priors)): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] # ncnn needs 3 dimensions to reshape when including -1 parameter in # width or height dimension. bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(batch_size, -1, 4) if with_score_factors: score_factor = score_factor.permute(0, 2, 3, 1).\ reshape(batch_size, -1, 1).sigmoid() cls_score = cls_score.permute(0, 2, 3, 1).\ reshape(batch_size, -1, self.cls_out_channels) # ncnn DetectionOutput op needs num_class + 1 classes. So if sigmoid # score, we should padding background class according to mmdetection # num_class definition. if self.use_sigmoid_cls: scores = cls_score.sigmoid() dummy_background_score = torch.zeros( batch_size, cls_score.shape[1], 1, device=cls_score.device) scores = torch.cat([scores, dummy_background_score], dim=2) else: scores = cls_score.softmax(-1) batch_mlvl_bboxes.append(bbox_pred) batch_mlvl_scores.append(scores) batch_mlvl_score_factors.append(score_factor) batch_mlvl_priors = torch.cat(batch_mlvl_priors, dim=1) batch_mlvl_scores = torch.cat(batch_mlvl_scores, dim=1) batch_mlvl_bboxes = torch.cat(batch_mlvl_bboxes, dim=1) batch_mlvl_scores = torch.cat([ batch_mlvl_scores[:, :, self.num_classes:], batch_mlvl_scores[:, :, 0:self.num_classes] ], dim=2) if isinstance(self.bbox_coder, TBLRBBoxCoder): batch_mlvl_bboxes = _tblr_pred_to_delta_xywh_pred( batch_mlvl_bboxes, vars[0:2]) elif isinstance(self.bbox_coder, DistancePointBBoxCoder): bboxes_x0 = batch_mlvl_bboxes[:, :, 0:1] / img_width bboxes_y0 = batch_mlvl_bboxes[:, :, 1:2] / img_height bboxes_x1 = batch_mlvl_bboxes[:, :, 2:3] / img_width bboxes_y1 = batch_mlvl_bboxes[:, :, 3:4] / img_height batch_mlvl_bboxes = torch.cat( [bboxes_x0, bboxes_y0, bboxes_x1, bboxes_y1], dim=2) batch_mlvl_priors = distance2bbox(batch_mlvl_priors, batch_mlvl_bboxes) if with_score_factors: batch_mlvl_score_factors = torch.cat(batch_mlvl_score_factors, dim=1) batch_mlvl_scores = batch_mlvl_scores.permute( 0, 2, 1).unsqueeze(3) * batch_mlvl_score_factors.permute( 0, 2, 1).unsqueeze(3) batch_mlvl_scores = batch_mlvl_scores.squeeze(3).permute(0, 2, 1) if isinstance(self, PAAHead): batch_mlvl_scores = batch_mlvl_scores.sqrt() # flatten for ncnn DetectionOutput op inputs. batch_mlvl_vars = vars.expand_as(batch_mlvl_priors) batch_mlvl_bboxes = batch_mlvl_bboxes.reshape(batch_size, 1, -1) batch_mlvl_scores = batch_mlvl_scores.reshape(batch_size, 1, -1) batch_mlvl_priors = batch_mlvl_priors.reshape(batch_size, 1, -1) batch_mlvl_vars = batch_mlvl_vars.reshape(batch_size, 1, -1) batch_mlvl_priors = torch.cat([batch_mlvl_priors, batch_mlvl_vars], dim=1) if not isinstance(self.bbox_coder, DistancePointBBoxCoder): batch_mlvl_priors = batch_mlvl_priors.data post_params = get_post_processing_params(ctx.cfg) iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) score_threshold = cfg.get('score_thr', post_params.score_threshold) pre_top_k = post_params.pre_top_k keep_top_k = cfg.get('max_per_img', post_params.keep_top_k) output__ncnn = ncnn_detection_output_forward( batch_mlvl_bboxes, batch_mlvl_scores, batch_mlvl_priors, score_threshold, iou_threshold, pre_top_k, keep_top_k, self.num_classes + 1, vars.cpu().detach().numpy()) return output__ncnn
Rewrite `predict_by_feat` of BaseDenseHead for ncnn backend. Shape node and batch inference is not supported by ncnn. This function transform dynamic shape to constant shape and remove batch inference. Args: ctx (ContextCaller): The context with additional information. cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). score_factors (list[Tensor], optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Defaults to None. batch_img_metas (list[dict], Optional): Batch image meta info. Defaults to None. cfg (ConfigDict, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. with_nms (bool): If True, do nms before return boxes. Defaults to True. Returns: output__ncnn (Tensor): outputs, shape is [N, num_det, 6].
188,683
from typing import List, Optional import torch import torch.nn.functional as F from mmengine.config import ConfigDict from mmengine.structures import InstanceData from torch import Tensor from mmdeploy.codebase.mmdet.deploy import (gather_topk, get_post_processing_params, pad_with_value) from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.mmcv.ops import multiclass_nms from mmdeploy.utils import Backend, get_backend, is_dynamic_shape The provided code snippet includes necessary dependencies for implementing the `gfl_head__predict_by_feat` function. Write a Python function `def gfl_head__predict_by_feat(self, cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True) -> InstanceData` to solve the following problem: Rewrite `predict_by_feat` of `GFLHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. self (FoveaHead): The instance of the class FoveaHead. cls_scores (list[Tensor]): Box scores for each scale level with shape (N, num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W). score_factors (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Default None. batch_img_metas (list[dict]): Meta information of the image, e.g., image size, scaling factor, etc. cfg (Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. rescale (bool): If True, return boxes in original image space. Default: False. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores, batch_mlvl_centerness Here is the function: def gfl_head__predict_by_feat(self, cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True) -> InstanceData: """Rewrite `predict_by_feat` of `GFLHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. self (FoveaHead): The instance of the class FoveaHead. cls_scores (list[Tensor]): Box scores for each scale level with shape (N, num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W). score_factors (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Default None. batch_img_metas (list[dict]): Meta information of the image, e.g., image size, scaling factor, etc. cfg (Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. rescale (bool): If True, return boxes in original image space. Default: False. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores, batch_mlvl_centerness """ ctx = FUNCTION_REWRITER.get_context() deploy_cfg = ctx.cfg is_dynamic_flag = is_dynamic_shape(deploy_cfg) backend = get_backend(deploy_cfg) num_levels = len(cls_scores) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] mlvl_priors = self.prior_generator.grid_priors( featmap_sizes, dtype=bbox_preds[0].dtype, device=bbox_preds[0].device) mlvl_priors = [priors.unsqueeze(0) for priors in mlvl_priors] mlvl_cls_scores = [cls_scores[i].detach() for i in range(num_levels)] mlvl_bbox_preds = [bbox_preds[i].detach() for i in range(num_levels)] if score_factors is None: with_score_factors = False mlvl_score_factor = [None for _ in range(num_levels)] else: with_score_factors = True mlvl_score_factor = [ score_factors[i].detach() for i in range(num_levels) ] mlvl_score_factors = [] assert batch_img_metas is not None img_shape = batch_img_metas[0]['img_shape'] assert len(cls_scores) == len(bbox_preds) == len(mlvl_priors) batch_size = cls_scores[0].shape[0] cfg = self.test_cfg pre_topk = cfg.get('nms_pre', -1) mlvl_valid_bboxes = [] mlvl_valid_scores = [] mlvl_valid_priors = [] for cls_score, bbox_pred, score_factors, priors, stride in zip( mlvl_cls_scores, mlvl_bbox_preds, mlvl_score_factor, mlvl_priors, self.prior_generator.strides): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] assert stride[0] == stride[1] scores = cls_score.permute(0, 2, 3, 1).reshape(batch_size, -1, self.cls_out_channels) if self.use_sigmoid_cls: scores = scores.sigmoid() nms_pre_score = scores else: scores = scores.softmax(-1) nms_pre_score = scores if with_score_factors: score_factors = score_factors.permute(0, 2, 3, 1).reshape(batch_size, -1).sigmoid() score_factors = score_factors.unsqueeze(2) def _batched_integral(intergral, x): batch_size = x.size(0) x = F.softmax( x.reshape(batch_size, -1, intergral.reg_max + 1), dim=2) x = F.linear(x, intergral.project.type_as(x).unsqueeze(0)).reshape( batch_size, -1, 4) return x bbox_pred = _batched_integral( self.integral, bbox_pred.permute(0, 2, 3, 1)) * stride[0] if not is_dynamic_flag: priors = priors.data if pre_topk > 0: if with_score_factors: nms_pre_score = nms_pre_score * score_factors if backend == Backend.TENSORRT: priors = pad_with_value(priors, 1, pre_topk) bbox_pred = pad_with_value(bbox_pred, 1, pre_topk) scores = pad_with_value(scores, 1, pre_topk, 0.) nms_pre_score = pad_with_value(nms_pre_score, 1, pre_topk, 0.) if with_score_factors: score_factors = pad_with_value(score_factors, 1, pre_topk, 0.) # Get maximum scores for foreground classes. if self.use_sigmoid_cls: max_scores, _ = nms_pre_score.max(-1) else: max_scores, _ = nms_pre_score[..., :-1].max(-1) _, topk_inds = max_scores.topk(pre_topk) bbox_pred, scores, score_factors = gather_topk( bbox_pred, scores, score_factors, inds=topk_inds, batch_size=batch_size, is_batched=True) priors = gather_topk( priors, inds=topk_inds, batch_size=batch_size, is_batched=False) mlvl_valid_bboxes.append(bbox_pred) mlvl_valid_scores.append(scores) priors = self.anchor_center(priors) mlvl_valid_priors.append(priors) if with_score_factors: mlvl_score_factors.append(score_factors) batch_mlvl_bboxes_pred = torch.cat(mlvl_valid_bboxes, dim=1) batch_scores = torch.cat(mlvl_valid_scores, dim=1) batch_priors = torch.cat(mlvl_valid_priors, dim=1) batch_bboxes = self.bbox_coder.decode( batch_priors, batch_mlvl_bboxes_pred, max_shape=img_shape) if with_score_factors: batch_score_factors = torch.cat(mlvl_score_factors, dim=1) if not self.use_sigmoid_cls: batch_scores = batch_scores[..., :self.num_classes] if with_score_factors: batch_scores = batch_scores * batch_score_factors if not with_nms: return batch_bboxes, batch_scores post_params = get_post_processing_params(deploy_cfg) max_output_boxes_per_class = post_params.max_output_boxes_per_class iou_threshold = cfg.nms.get('iou_threshold', post_params.iou_threshold) score_threshold = cfg.get('score_thr', post_params.score_threshold) pre_top_k = post_params.pre_top_k keep_top_k = cfg.get('max_per_img', post_params.keep_top_k) nms_type = cfg.nms.get('type') return multiclass_nms( batch_bboxes, batch_scores, max_output_boxes_per_class, nms_type=nms_type, iou_threshold=iou_threshold, score_threshold=score_threshold, pre_top_k=pre_top_k, keep_top_k=keep_top_k)
Rewrite `predict_by_feat` of `GFLHead` for default backend. Rewrite this function to deploy model, transform network output for a batch into bbox predictions. Args: ctx (ContextCaller): The context with additional information. self (FoveaHead): The instance of the class FoveaHead. cls_scores (list[Tensor]): Box scores for each scale level with shape (N, num_anchors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W). score_factors (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Default None. batch_img_metas (list[dict]): Meta information of the image, e.g., image size, scaling factor, etc. cfg (Config | None): Test / postprocessing configuration, if None, test_cfg would be used. Default: None. rescale (bool): If True, return boxes in original image space. Default: False. Returns: If with_nms == True: tuple[Tensor, Tensor]: tuple[Tensor, Tensor]: (dets, labels), `dets` of shape [N, num_det, 5] and `labels` of shape [N, num_det]. Else: tuple[Tensor, Tensor, Tensor]: batch_mlvl_bboxes, batch_mlvl_scores, batch_mlvl_centerness
188,684
import torch.nn.functional as F from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `base_semantic_head__predict` function. Write a Python function `def base_semantic_head__predict(self, x, batch_img_metas, rescale=False)` to solve the following problem: Rewrite `predict` for default backend. Support configured dynamic/static shape for model input and return semantic-segmentation result as Tensor instead of numpy array. Args: x (Union[Tensor, Tuple[Tensor]]): Feature maps. batch_img_metas (List[dict]): List of image information. rescale (bool): Whether to rescale the results. Defaults to False. Returns: Tensor: `semseg` of shape [N, num_sem_class, H, W] Here is the function: def base_semantic_head__predict(self, x, batch_img_metas, rescale=False): """Rewrite `predict` for default backend. Support configured dynamic/static shape for model input and return semantic-segmentation result as Tensor instead of numpy array. Args: x (Union[Tensor, Tuple[Tensor]]): Feature maps. batch_img_metas (List[dict]): List of image information. rescale (bool): Whether to rescale the results. Defaults to False. Returns: Tensor: `semseg` of shape [N, num_sem_class, H, W] """ seg_preds = self.forward(x)['seg_preds'] img_shape = batch_img_metas[0]['batch_input_shape'] seg_preds = F.interpolate( seg_preds, size=(img_shape[0], img_shape[1]), mode='bilinear', align_corners=False) return seg_preds
Rewrite `predict` for default backend. Support configured dynamic/static shape for model input and return semantic-segmentation result as Tensor instead of numpy array. Args: x (Union[Tensor, Tuple[Tensor]]): Feature maps. batch_img_metas (List[dict]): List of image information. rescale (bool): Whether to rescale the results. Defaults to False. Returns: Tensor: `semseg` of shape [N, num_sem_class, H, W]
188,685
from typing import Tuple import torch from torch.onnx import symbolic_helper from mmdeploy.core import FUNCTION_REWRITER class GridPriorsTRTOp(torch.autograd.Function): def forward(ctx, base_anchors, feat_h, feat_w, stride_h: int, stride_w: int): """Generate grid priors by base anchors.""" # torch>=1.13 has runtime error # when using torch.arange in autograd function output = getattr(GridPriorsTRTOp, 'output', None) if output is not None: return output device = base_anchors.device dtype = base_anchors.dtype shift_x = torch.arange(0, feat_w, device=device).to(dtype) * stride_w shift_y = torch.arange(0, feat_h, device=device).to(dtype) * stride_h def _meshgrid(x, y, row_major=True): # use shape instead of len to keep tracing while exporting to onnx xx = x.repeat(y.shape[0]) yy = y.view(-1, 1).repeat(1, x.shape[0]).view(-1) if row_major: return xx, yy else: return yy, xx shift_xx, shift_yy = _meshgrid(shift_x, shift_y) shifts = torch.stack([shift_xx, shift_yy, shift_xx, shift_yy], dim=-1) all_anchors = base_anchors[None, :, :] + shifts[:, None, :] all_anchors = all_anchors.view(-1, 4) # then (0, 1), (0, 2), ... return all_anchors def symbolic(g, base_anchors, feat_h, feat_w, stride_h: int, stride_w: int): """Map ops to onnx symbolics.""" # zero_h and zero_w is used to provide shape to GridPriorsTRT feat_h = symbolic_helper._unsqueeze_helper(g, feat_h, [0]) feat_w = symbolic_helper._unsqueeze_helper(g, feat_w, [0]) zero_h = g.op( 'ConstantOfShape', feat_h, value_t=torch.tensor([0], dtype=torch.long), ) zero_w = g.op( 'ConstantOfShape', feat_w, value_t=torch.tensor([0], dtype=torch.long), ) return g.op( 'mmdeploy::GridPriorsTRT', base_anchors, zero_h, zero_w, stride_h_i=stride_h, stride_w_i=stride_w) grid_priors_trt = GridPriorsTRTOp.apply The provided code snippet includes necessary dependencies for implementing the `anchorgenerator__single_level_grid_priors__trt` function. Write a Python function `def anchorgenerator__single_level_grid_priors__trt( self, featmap_size: Tuple[int], level_idx: int, dtype: torch.dtype = torch.float32, device: str = 'cuda') -> torch.Tensor` to solve the following problem: This is a rewrite to replace ONNX anchor generator to TensorRT custom op. Args: ctx : The rewriter context featmap_size (tuple[int]): Size of the feature maps. level_idx (int): The index of corresponding feature map level. dtype (obj:`torch.dtype`): Date type of points.Defaults to ``torch.float32``. device (str, optional): The device the tensor will be put on. Defaults to 'cuda'. Returns: torch.Tensor: Anchors in the overall feature maps. Here is the function: def anchorgenerator__single_level_grid_priors__trt( self, featmap_size: Tuple[int], level_idx: int, dtype: torch.dtype = torch.float32, device: str = 'cuda') -> torch.Tensor: """This is a rewrite to replace ONNX anchor generator to TensorRT custom op. Args: ctx : The rewriter context featmap_size (tuple[int]): Size of the feature maps. level_idx (int): The index of corresponding feature map level. dtype (obj:`torch.dtype`): Date type of points.Defaults to ``torch.float32``. device (str, optional): The device the tensor will be put on. Defaults to 'cuda'. Returns: torch.Tensor: Anchors in the overall feature maps. """ ctx = FUNCTION_REWRITER.get_context() from mmdet.models.task_modules.prior_generators import AnchorGenerator if type(self) != AnchorGenerator: # only use custom node on default generator. return ctx.origin_func( self, featmap_size=featmap_size, level_idx=level_idx, dtype=dtype, device=device) feat_h, feat_w = featmap_size output = ctx.origin_func(self, featmap_size, level_idx, dtype, device).data if isinstance(feat_h, int) and isinstance(feat_w, int): return output base_anchors = self.base_anchors[level_idx].to(device).to(dtype) stride_w, stride_h = self.strides[level_idx] GridPriorsTRTOp.output = output return grid_priors_trt(base_anchors, feat_h, feat_w, stride_h, stride_w)
This is a rewrite to replace ONNX anchor generator to TensorRT custom op. Args: ctx : The rewriter context featmap_size (tuple[int]): Size of the feature maps. level_idx (int): The index of corresponding feature map level. dtype (obj:`torch.dtype`): Date type of points.Defaults to ``torch.float32``. device (str, optional): The device the tensor will be put on. Defaults to 'cuda'. Returns: torch.Tensor: Anchors in the overall feature maps.
188,686
import torch from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.utils.constants import Backend func_name='mmdet.models.task_modules.prior_generators.MlvlPointGenerator' '.single_level_grid_priors', backend=Backend.TENSORRT.value) def mlvl_point_generator__single_level_grid_priors__tensorrt( self, featmap_size, level_idx, dtype=torch.float32, device='cuda', with_stride=False): """Rewrite `single_level_grid_priors` of `MlvlPointGenerator` as onnx2tensorrt raise the error of shape inference for YOLOX with some versions of TensorRT. Args: featmap_size (tuple[int]): Size of the feature maps, arrange as (h, w). level_idx (int): The index of corresponding feature map level. dtype (:obj:`dtype`): Dtype of priors. Default: torch.float32. device (str, optional): The device the tensor will be put on. Defaults to 'cuda'. with_stride (bool): Concatenate the stride to the last dimension of points. Return: Tensor: Points of single feature levels. The shape of tensor should be (N, 2) when with stride is ``False``, where N = width * height, width and height are the sizes of the corresponding feature level, and the last dimension 2 represent (coord_x, coord_y), otherwise the shape should be (N, 4), and the last dimension 4 represent (coord_x, coord_y, stride_w, stride_h). """ feat_h, feat_w = featmap_size stride_w, stride_h = self.strides[level_idx] shift_x = (torch.arange(0, feat_w, device=device) + self.offset) * stride_w # keep featmap_size as Tensor instead of int, so that we # can convert to ONNX correctly shift_x = shift_x.to(dtype) shift_y = (torch.arange(0, feat_h, device=device) + self.offset) * stride_h # keep featmap_size as Tensor instead of int, so that we # can convert to ONNX correctly shift_y = shift_y.to(dtype) shift_xx, shift_yy = self._meshgrid(shift_x, shift_y) if not with_stride: shifts = torch.stack([shift_xx, shift_yy], dim=-1) else: # use `feat_w * feat_h` instead of `shift_xx.shape[0]` for TensorRT stride_w = shift_xx.new_full((feat_w * feat_h, ), stride_w).to(dtype) stride_h = shift_xx.new_full((feat_w * feat_h, ), stride_h).to(dtype) shifts = torch.stack([shift_xx, shift_yy, stride_w, stride_h], dim=-1) all_points = shifts.to(device) return all_points The provided code snippet includes necessary dependencies for implementing the `mlvl_point_generator__single_level_grid_priors__tensorrt` function. Write a Python function `def mlvl_point_generator__single_level_grid_priors__tensorrt( self, featmap_size, level_idx, dtype=torch.float32, device='cuda', with_stride=False)` to solve the following problem: Rewrite `single_level_grid_priors` of `MlvlPointGenerator` as onnx2tensorrt raise the error of shape inference for YOLOX with some versions of TensorRT. Args: featmap_size (tuple[int]): Size of the feature maps, arrange as (h, w). level_idx (int): The index of corresponding feature map level. dtype (:obj:`dtype`): Dtype of priors. Default: torch.float32. device (str, optional): The device the tensor will be put on. Defaults to 'cuda'. with_stride (bool): Concatenate the stride to the last dimension of points. Return: Tensor: Points of single feature levels. The shape of tensor should be (N, 2) when with stride is ``False``, where N = width * height, width and height are the sizes of the corresponding feature level, and the last dimension 2 represent (coord_x, coord_y), otherwise the shape should be (N, 4), and the last dimension 4 represent (coord_x, coord_y, stride_w, stride_h). Here is the function: def mlvl_point_generator__single_level_grid_priors__tensorrt( self, featmap_size, level_idx, dtype=torch.float32, device='cuda', with_stride=False): """Rewrite `single_level_grid_priors` of `MlvlPointGenerator` as onnx2tensorrt raise the error of shape inference for YOLOX with some versions of TensorRT. Args: featmap_size (tuple[int]): Size of the feature maps, arrange as (h, w). level_idx (int): The index of corresponding feature map level. dtype (:obj:`dtype`): Dtype of priors. Default: torch.float32. device (str, optional): The device the tensor will be put on. Defaults to 'cuda'. with_stride (bool): Concatenate the stride to the last dimension of points. Return: Tensor: Points of single feature levels. The shape of tensor should be (N, 2) when with stride is ``False``, where N = width * height, width and height are the sizes of the corresponding feature level, and the last dimension 2 represent (coord_x, coord_y), otherwise the shape should be (N, 4), and the last dimension 4 represent (coord_x, coord_y, stride_w, stride_h). """ feat_h, feat_w = featmap_size stride_w, stride_h = self.strides[level_idx] shift_x = (torch.arange(0, feat_w, device=device) + self.offset) * stride_w # keep featmap_size as Tensor instead of int, so that we # can convert to ONNX correctly shift_x = shift_x.to(dtype) shift_y = (torch.arange(0, feat_h, device=device) + self.offset) * stride_h # keep featmap_size as Tensor instead of int, so that we # can convert to ONNX correctly shift_y = shift_y.to(dtype) shift_xx, shift_yy = self._meshgrid(shift_x, shift_y) if not with_stride: shifts = torch.stack([shift_xx, shift_yy], dim=-1) else: # use `feat_w * feat_h` instead of `shift_xx.shape[0]` for TensorRT stride_w = shift_xx.new_full((feat_w * feat_h, ), stride_w).to(dtype) stride_h = shift_xx.new_full((feat_w * feat_h, ), stride_h).to(dtype) shifts = torch.stack([shift_xx, shift_yy, stride_w, stride_h], dim=-1) all_points = shifts.to(device) return all_points
Rewrite `single_level_grid_priors` of `MlvlPointGenerator` as onnx2tensorrt raise the error of shape inference for YOLOX with some versions of TensorRT. Args: featmap_size (tuple[int]): Size of the feature maps, arrange as (h, w). level_idx (int): The index of corresponding feature map level. dtype (:obj:`dtype`): Dtype of priors. Default: torch.float32. device (str, optional): The device the tensor will be put on. Defaults to 'cuda'. with_stride (bool): Concatenate the stride to the last dimension of points. Return: Tensor: Points of single feature levels. The shape of tensor should be (N, 2) when with stride is ``False``, where N = width * height, width and height are the sizes of the corresponding feature level, and the last dimension 2 represent (coord_x, coord_y), otherwise the shape should be (N, 4), and the last dimension 4 represent (coord_x, coord_y, stride_w, stride_h).
188,687
import numpy as np import torch from mmdeploy.core import FUNCTION_REWRITER def delta2bbox(rois, deltas, means=(0., 0., 0., 0.), stds=(1., 1., 1., 1.), max_shape=None, wh_ratio_clip=16 / 1000, clip_border=True, add_ctr_clamp=False, ctr_clamp=32): """Rewrite `delta2bbox` for default backend. Since the need of clip op with dynamic min and max, this function uses clip_bboxes function to support dynamic shape. Args: ctx (ContextCaller): The context with additional information. rois (Tensor): Boxes to be transformed. Has shape (N, 4). deltas (Tensor): Encoded offsets relative to each roi. Has shape (N, num_classes * 4) or (N, 4). Note N = num_base_anchors * W * H, when rois is a grid of anchors. Offset encoding follows [1]_. means (Sequence[float]): Denormalizing means for delta coordinates. Default (0., 0., 0., 0.). stds (Sequence[float]): Denormalizing standard deviation for delta coordinates. Default (1., 1., 1., 1.). max_shape (tuple[int, int]): Maximum bounds for boxes, specifies (H, W). Default None. wh_ratio_clip (float): Maximum aspect ratio for boxes. Default 16 / 1000. clip_border (bool, optional): Whether clip the objects outside the border of the image. Default True. add_ctr_clamp (bool): Whether to add center clamp. When set to True, the center of the prediction bounding box will be clamped to avoid being too far away from the center of the anchor. Only used by YOLOF. Default False. ctr_clamp (int): the maximum pixel shift to clamp. Only used by YOLOF. Default 32. Return: bboxes (Tensor): Boxes with shape (N, num_classes * 4) or (N, 4), where 4 represent tl_x, tl_y, br_x, br_y. """ means = deltas.new_tensor(means).view(1, -1) stds = deltas.new_tensor(stds).view(1, -1) delta_shape = deltas.shape reshaped_deltas = deltas.view(delta_shape[:-1] + (-1, 4)) denorm_deltas = reshaped_deltas * stds + means dxy = denorm_deltas[..., :2] dwh = denorm_deltas[..., 2:] # fix openvino on torch1.13 xy1 = rois[..., :2].unsqueeze(2) xy2 = rois[..., 2:].unsqueeze(2) pxy = (xy1 + xy2) * 0.5 pwh = xy2 - xy1 dxy_wh = pwh * dxy max_ratio = np.abs(np.log(wh_ratio_clip)) if add_ctr_clamp: dxy_wh = torch.clamp(dxy_wh, max=ctr_clamp, min=-ctr_clamp) dwh = torch.clamp(dwh, max=max_ratio) else: dwh = dwh.clamp(min=-max_ratio, max=max_ratio) # Use exp(network energy) to enlarge/shrink each roi half_gwh = pwh * dwh.exp() * 0.5 # Use network energy to shift the center of each roi gxy = pxy + dxy_wh # Convert center-xy/width/height to top-left, bottom-right xy1 = gxy - half_gwh xy2 = gxy + half_gwh x1 = xy1[..., 0] y1 = xy1[..., 1] x2 = xy2[..., 0] y2 = xy2[..., 1] if clip_border and max_shape is not None: from mmdeploy.codebase.mmdet.deploy import clip_bboxes x1, y1, x2, y2 = clip_bboxes(x1, y1, x2, y2, max_shape) bboxes = torch.stack([x1, y1, x2, y2], dim=-1).view(deltas.size()) return bboxes func_name='mmdet.models.task_modules.coders.' 'delta_xywh_bbox_coder.delta2bbox', backend='ncnn') 'DeltaXYWHBBoxCoder.decode', def delta2bbox(rois, deltas, means=(0., 0., 0., 0.), stds=(1., 1., 1., 1.), max_shape=None, wh_ratio_clip=16 / 1000, clip_border=True, add_ctr_clamp=False, ctr_clamp=32): """Rewrite `delta2bbox` for default backend. Since the need of clip op with dynamic min and max, this function uses clip_bboxes function to support dynamic shape. Args: ctx (ContextCaller): The context with additional information. rois (Tensor): Boxes to be transformed. Has shape (N, 4). deltas (Tensor): Encoded offsets relative to each roi. Has shape (N, num_classes * 4) or (N, 4). Note N = num_base_anchors * W * H, when rois is a grid of anchors. Offset encoding follows [1]_. means (Sequence[float]): Denormalizing means for delta coordinates. Default (0., 0., 0., 0.). stds (Sequence[float]): Denormalizing standard deviation for delta coordinates. Default (1., 1., 1., 1.). max_shape (tuple[int, int]): Maximum bounds for boxes, specifies (H, W). Default None. wh_ratio_clip (float): Maximum aspect ratio for boxes. Default 16 / 1000. clip_border (bool, optional): Whether clip the objects outside the border of the image. Default True. add_ctr_clamp (bool): Whether to add center clamp. When set to True, the center of the prediction bounding box will be clamped to avoid being too far away from the center of the anchor. Only used by YOLOF. Default False. ctr_clamp (int): the maximum pixel shift to clamp. Only used by YOLOF. Default 32. Return: bboxes (Tensor): Boxes with shape (N, num_classes * 4) or (N, 4), where 4 represent tl_x, tl_y, br_x, br_y. """ means = deltas.new_tensor(means).view(1, -1) stds = deltas.new_tensor(stds).view(1, -1) delta_shape = deltas.shape reshaped_deltas = deltas.view(delta_shape[:-1] + (-1, 4)) denorm_deltas = reshaped_deltas * stds + means dxy = denorm_deltas[..., :2] dwh = denorm_deltas[..., 2:] # fix openvino on torch1.13 xy1 = rois[..., :2].unsqueeze(2) xy2 = rois[..., 2:].unsqueeze(2) pxy = (xy1 + xy2) * 0.5 pwh = xy2 - xy1 dxy_wh = pwh * dxy max_ratio = np.abs(np.log(wh_ratio_clip)) if add_ctr_clamp: dxy_wh = torch.clamp(dxy_wh, max=ctr_clamp, min=-ctr_clamp) dwh = torch.clamp(dwh, max=max_ratio) else: dwh = dwh.clamp(min=-max_ratio, max=max_ratio) # Use exp(network energy) to enlarge/shrink each roi half_gwh = pwh * dwh.exp() * 0.5 # Use network energy to shift the center of each roi gxy = pxy + dxy_wh # Convert center-xy/width/height to top-left, bottom-right xy1 = gxy - half_gwh xy2 = gxy + half_gwh x1 = xy1[..., 0] y1 = xy1[..., 1] x2 = xy2[..., 0] y2 = xy2[..., 1] if clip_border and max_shape is not None: from mmdeploy.codebase.mmdet.deploy import clip_bboxes x1, y1, x2, y2 = clip_bboxes(x1, y1, x2, y2, max_shape) bboxes = torch.stack([x1, y1, x2, y2], dim=-1).view(deltas.size()) return bboxes func_name='mmdet.models.task_modules.coders.' 'delta_xywh_bbox_coder.delta2bbox', backend='ncnn') The provided code snippet includes necessary dependencies for implementing the `deltaxywhbboxcoder__decode` function. Write a Python function `def deltaxywhbboxcoder__decode(self, bboxes, pred_bboxes, max_shape=None, wh_ratio_clip=16 / 1000)` to solve the following problem: Rewrite `decode` of `DeltaXYWHBBoxCoder` for default backend. Rewrite this func to call `delta2bbox` directly. Args: bboxes (torch.Tensor): Basic boxes. Shape (B, N, 4) or (N, 4) pred_bboxes (Tensor): Encoded offsets with respect to each roi. Has shape (B, N, num_classes * 4) or (B, N, 4) or (N, num_classes * 4) or (N, 4). Note N = num_anchors * W * H when rois is a grid of anchors.Offset encoding follows [1]_. max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If bboxes shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B. wh_ratio_clip (float, optional): The allowed ratio between width and height. Returns: torch.Tensor: Decoded boxes. Here is the function: def deltaxywhbboxcoder__decode(self, bboxes, pred_bboxes, max_shape=None, wh_ratio_clip=16 / 1000): """Rewrite `decode` of `DeltaXYWHBBoxCoder` for default backend. Rewrite this func to call `delta2bbox` directly. Args: bboxes (torch.Tensor): Basic boxes. Shape (B, N, 4) or (N, 4) pred_bboxes (Tensor): Encoded offsets with respect to each roi. Has shape (B, N, num_classes * 4) or (B, N, 4) or (N, num_classes * 4) or (N, 4). Note N = num_anchors * W * H when rois is a grid of anchors.Offset encoding follows [1]_. max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If bboxes shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B. wh_ratio_clip (float, optional): The allowed ratio between width and height. Returns: torch.Tensor: Decoded boxes. """ assert pred_bboxes.size(0) == bboxes.size(0) if pred_bboxes.ndim == 3: assert pred_bboxes.size(1) == bboxes.size(1) from mmdet.models.task_modules.coders.delta_xywh_bbox_coder import \ delta2bbox decoded_bboxes = delta2bbox(bboxes, pred_bboxes, self.means, self.stds, max_shape, wh_ratio_clip, self.clip_border, self.add_ctr_clamp, self.ctr_clamp) return decoded_bboxes
Rewrite `decode` of `DeltaXYWHBBoxCoder` for default backend. Rewrite this func to call `delta2bbox` directly. Args: bboxes (torch.Tensor): Basic boxes. Shape (B, N, 4) or (N, 4) pred_bboxes (Tensor): Encoded offsets with respect to each roi. Has shape (B, N, num_classes * 4) or (B, N, 4) or (N, num_classes * 4) or (N, 4). Note N = num_anchors * W * H when rois is a grid of anchors.Offset encoding follows [1]_. max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If bboxes shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B. wh_ratio_clip (float, optional): The allowed ratio between width and height. Returns: torch.Tensor: Decoded boxes.
188,688
import numpy as np import torch from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `delta2bbox__ncnn` function. Write a Python function `def delta2bbox__ncnn(rois, deltas, means=(0., 0., 0., 0.), stds=(1., 1., 1., 1.), max_shape=None, wh_ratio_clip=16 / 1000, clip_border=True, add_ctr_clamp=False, ctr_clamp=32)` to solve the following problem: Rewrite `delta2bbox` for ncnn backend. Batch dimension is not supported by ncnn, but supported by pytorch. ncnn regards the lowest two dimensions as continuous address with byte alignment, so the lowest two dimensions are not absolutely independent. Reshape operator with -1 arguments should operates ncnn::Mat with dimension >= 3. Args: ctx (ContextCaller): The context with additional information. rois (Tensor): Boxes to be transformed. Has shape (N, 4) or (B, N, 4) deltas (Tensor): Encoded offsets with respect to each roi. Has shape (B, N, num_classes * 4) or (B, N, 4) or (N, num_classes * 4) or (N, 4). Note N = num_anchors * W * H when rois is a grid of anchors.Offset encoding follows [1]_. means (Sequence[float]): Denormalizing means for delta coordinates stds (Sequence[float]): Denormalizing standard deviation for delta coordinates max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If rois shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B. wh_ratio_clip (float): Maximum aspect ratio for boxes. clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. add_ctr_clamp (bool): Whether to add center clamp, when added, the predicted box is clamped is its center is too far away from the original anchor's center. Only used by YOLOF. Default False. ctr_clamp (int): the maximum pixel shift to clamp. Only used by YOLOF. Default 32. Return: bboxes (Tensor): Boxes with shape (B, N, num_classes * 4) or (B, N, 4) or (N, num_classes * 4) or (N, 4), where 4 represent tl_x, tl_y, br_x, br_y. Here is the function: def delta2bbox__ncnn(rois, deltas, means=(0., 0., 0., 0.), stds=(1., 1., 1., 1.), max_shape=None, wh_ratio_clip=16 / 1000, clip_border=True, add_ctr_clamp=False, ctr_clamp=32): """Rewrite `delta2bbox` for ncnn backend. Batch dimension is not supported by ncnn, but supported by pytorch. ncnn regards the lowest two dimensions as continuous address with byte alignment, so the lowest two dimensions are not absolutely independent. Reshape operator with -1 arguments should operates ncnn::Mat with dimension >= 3. Args: ctx (ContextCaller): The context with additional information. rois (Tensor): Boxes to be transformed. Has shape (N, 4) or (B, N, 4) deltas (Tensor): Encoded offsets with respect to each roi. Has shape (B, N, num_classes * 4) or (B, N, 4) or (N, num_classes * 4) or (N, 4). Note N = num_anchors * W * H when rois is a grid of anchors.Offset encoding follows [1]_. means (Sequence[float]): Denormalizing means for delta coordinates stds (Sequence[float]): Denormalizing standard deviation for delta coordinates max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If rois shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B. wh_ratio_clip (float): Maximum aspect ratio for boxes. clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. add_ctr_clamp (bool): Whether to add center clamp, when added, the predicted box is clamped is its center is too far away from the original anchor's center. Only used by YOLOF. Default False. ctr_clamp (int): the maximum pixel shift to clamp. Only used by YOLOF. Default 32. Return: bboxes (Tensor): Boxes with shape (B, N, num_classes * 4) or (B, N, 4) or (N, num_classes * 4) or (N, 4), where 4 represent tl_x, tl_y, br_x, br_y. """ means = deltas.new_tensor(means).view(1, 1, 1, -1).data stds = deltas.new_tensor(stds).view(1, 1, 1, -1).data delta_shape = deltas.shape reshaped_deltas = deltas.view(delta_shape[:-1] + (-1, 4)) denorm_deltas = reshaped_deltas * stds + means dxy = denorm_deltas[..., :2] dwh = denorm_deltas[..., 2:] xy1 = rois[..., None, :2] xy2 = rois[..., None, 2:] pxy = (xy1 + xy2) * 0.5 pwh = xy2 - xy1 dxy_wh = pwh * dxy max_ratio = np.abs(np.log(wh_ratio_clip)) if add_ctr_clamp: dxy_wh = torch.clamp(dxy_wh, max=ctr_clamp, min=-ctr_clamp) dwh = torch.clamp(dwh, max=max_ratio) else: dwh = dwh.clamp(min=-max_ratio, max=max_ratio) # Use exp(network energy) to enlarge/shrink each roi half_gwh = pwh * dwh.exp() * 0.5 # Use network energy to shift the center of each roi gxy = pxy + dxy_wh # Convert center-xy/width/height to top-left, bottom-right xy1 = gxy - half_gwh xy2 = gxy + half_gwh x1 = xy1[..., 0] y1 = xy1[..., 1] x2 = xy2[..., 0] y2 = xy2[..., 1] if clip_border and max_shape is not None: from mmdeploy.codebase.mmdet.deploy import clip_bboxes x1, y1, x2, y2 = clip_bboxes(x1, y1, x2, y2, max_shape) bboxes = torch.stack([x1, y1, x2, y2], dim=-1).view(deltas.size()) return bboxes
Rewrite `delta2bbox` for ncnn backend. Batch dimension is not supported by ncnn, but supported by pytorch. ncnn regards the lowest two dimensions as continuous address with byte alignment, so the lowest two dimensions are not absolutely independent. Reshape operator with -1 arguments should operates ncnn::Mat with dimension >= 3. Args: ctx (ContextCaller): The context with additional information. rois (Tensor): Boxes to be transformed. Has shape (N, 4) or (B, N, 4) deltas (Tensor): Encoded offsets with respect to each roi. Has shape (B, N, num_classes * 4) or (B, N, 4) or (N, num_classes * 4) or (N, 4). Note N = num_anchors * W * H when rois is a grid of anchors.Offset encoding follows [1]_. means (Sequence[float]): Denormalizing means for delta coordinates stds (Sequence[float]): Denormalizing standard deviation for delta coordinates max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If rois shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B. wh_ratio_clip (float): Maximum aspect ratio for boxes. clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. add_ctr_clamp (bool): Whether to add center clamp, when added, the predicted box is clamped is its center is too far away from the original anchor's center. Only used by YOLOF. Default False. ctr_clamp (int): the maximum pixel shift to clamp. Only used by YOLOF. Default 32. Return: bboxes (Tensor): Boxes with shape (B, N, num_classes * 4) or (B, N, 4) or (N, num_classes * 4) or (N, 4), where 4 represent tl_x, tl_y, br_x, br_y.
188,689
import mmdet.structures.bbox.transforms from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `distancepointbboxcoder__decode` function. Write a Python function `def distancepointbboxcoder__decode(self, points, pred_bboxes, max_shape=None)` to solve the following problem: Rewrite `mmdet.models.task_modules.coders.distance_point_bbox_coder. \ DistancePointBBoxCoder.decode` Decode distance prediction to bounding box. Args: ctx (ContextCaller): The context with additional information. self (DistancePointBBoxCoder): The instance of the class DistancePointBBoxCoder. points (Tensor): Shape (B, N, 2) or (N, 2). pred_bboxes (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4) max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]], and the length of max_shape should also be B. Default None. Returns: Tensor: Boxes with shape (N, 4) or (B, N, 4) Here is the function: def distancepointbboxcoder__decode(self, points, pred_bboxes, max_shape=None): """Rewrite `mmdet.models.task_modules.coders.distance_point_bbox_coder. \ DistancePointBBoxCoder.decode` Decode distance prediction to bounding box. Args: ctx (ContextCaller): The context with additional information. self (DistancePointBBoxCoder): The instance of the class DistancePointBBoxCoder. points (Tensor): Shape (B, N, 2) or (N, 2). pred_bboxes (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4) max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]], and the length of max_shape should also be B. Default None. Returns: Tensor: Boxes with shape (N, 4) or (B, N, 4) """ assert points.size(0) == pred_bboxes.size(0) assert points.size(-1) == 2 assert pred_bboxes.size(-1) == 4 if self.clip_border is False: max_shape = None # Rewrite add mmdet.core.bbox.transforms to find correct # rewriter, or you will not find correct rewriter. return mmdet.structures.bbox.transforms.distance2bbox( points, pred_bboxes, max_shape)
Rewrite `mmdet.models.task_modules.coders.distance_point_bbox_coder. \ DistancePointBBoxCoder.decode` Decode distance prediction to bounding box. Args: ctx (ContextCaller): The context with additional information. self (DistancePointBBoxCoder): The instance of the class DistancePointBBoxCoder. points (Tensor): Shape (B, N, 2) or (N, 2). pred_bboxes (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4) max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]], and the length of max_shape should also be B. Default None. Returns: Tensor: Boxes with shape (N, 4) or (B, N, 4)
188,690
import torch from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `tblr2bboxes` function. Write a Python function `def tblr2bboxes(priors, tblr, normalizer=4.0, normalize_by_wh=True, max_shape=None, clip_border=True)` to solve the following problem: Rewrite `tblr2bboxes` for default backend. Since the need of clip op with dynamic min and max, this function uses clip_bboxes function to support dynamic shape. Args: ctx (ContextCaller): The context with additional information. priors (Tensor): Prior boxes in point form (x0, y0, x1, y1) Shape: (N,4) or (B, N, 4). tblr (Tensor): Coords of network output in tblr form Shape: (N, 4) or (B, N, 4). normalizer (Sequence[float] | float): Normalization parameter of encoded boxes. By list, it represents the normalization factors at tblr dims. By float, it is the unified normalization factor at all dims. Default: 4.0 normalize_by_wh (bool): Whether the tblr coordinates have been normalized by the side length (wh) of prior bboxes. max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B. clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. Return: bboxes (Tensor): Boxes with shape (N, 4) or (B, N, 4) Here is the function: def tblr2bboxes(priors, tblr, normalizer=4.0, normalize_by_wh=True, max_shape=None, clip_border=True): """Rewrite `tblr2bboxes` for default backend. Since the need of clip op with dynamic min and max, this function uses clip_bboxes function to support dynamic shape. Args: ctx (ContextCaller): The context with additional information. priors (Tensor): Prior boxes in point form (x0, y0, x1, y1) Shape: (N,4) or (B, N, 4). tblr (Tensor): Coords of network output in tblr form Shape: (N, 4) or (B, N, 4). normalizer (Sequence[float] | float): Normalization parameter of encoded boxes. By list, it represents the normalization factors at tblr dims. By float, it is the unified normalization factor at all dims. Default: 4.0 normalize_by_wh (bool): Whether the tblr coordinates have been normalized by the side length (wh) of prior bboxes. max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B. clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. Return: bboxes (Tensor): Boxes with shape (N, 4) or (B, N, 4) """ if not isinstance(normalizer, float): normalizer = torch.tensor(normalizer, device=priors.device) assert len(normalizer) == 4, 'Normalizer must have length = 4' assert priors.size(0) == tblr.size(0) if priors.ndim == 3: assert priors.size(1) == tblr.size(1) loc_decode = tblr * normalizer prior_centers = (priors[..., 0:2] + priors[..., 2:4]) / 2 if normalize_by_wh: wh = priors[..., 2:4] - priors[..., 0:2] w, h = torch.split(wh, 1, dim=-1) # Inplace operation with slice would fail for exporting to ONNX th = h * loc_decode[..., :2] # tb tw = w * loc_decode[..., 2:] # lr loc_decode = torch.cat([th, tw], dim=-1) top, bottom, left, right = loc_decode.split((1, 1, 1, 1), dim=-1) xmin = prior_centers[..., 0].unsqueeze(-1) - left xmax = prior_centers[..., 0].unsqueeze(-1) + right ymin = prior_centers[..., 1].unsqueeze(-1) - top ymax = prior_centers[..., 1].unsqueeze(-1) + bottom if clip_border and max_shape is not None: from mmdeploy.codebase.mmdet.deploy import clip_bboxes xmin, ymin, xmax, ymax = clip_bboxes(xmin, ymin, xmax, ymax, max_shape) bboxes = torch.cat([xmin, ymin, xmax, ymax], dim=-1).view(priors.size()) return bboxes
Rewrite `tblr2bboxes` for default backend. Since the need of clip op with dynamic min and max, this function uses clip_bboxes function to support dynamic shape. Args: ctx (ContextCaller): The context with additional information. priors (Tensor): Prior boxes in point form (x0, y0, x1, y1) Shape: (N,4) or (B, N, 4). tblr (Tensor): Coords of network output in tblr form Shape: (N, 4) or (B, N, 4). normalizer (Sequence[float] | float): Normalization parameter of encoded boxes. By list, it represents the normalization factors at tblr dims. By float, it is the unified normalization factor at all dims. Default: 4.0 normalize_by_wh (bool): Whether the tblr coordinates have been normalized by the side length (wh) of prior bboxes. max_shape (Sequence[int] or torch.Tensor or Sequence[ Sequence[int]],optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B. clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. Return: bboxes (Tensor): Boxes with shape (N, 4) or (B, N, 4)
188,691
from typing import List, Optional, Tuple import torch import torch.nn.functional as F from mmdet.structures.bbox import get_box_tensor from mmengine import ConfigDict from torch import Tensor from mmdeploy.codebase.mmdet.deploy import get_post_processing_params from mmdeploy.core import FUNCTION_REWRITER, mark from mmdeploy.mmcv.ops import multiclass_nms The provided code snippet includes necessary dependencies for implementing the `bbox_head__forward` function. Write a Python function `def bbox_head__forward(self, x)` to solve the following problem: Rewrite `forward` for default backend. This function uses the specific `forward` function for the BBoxHead or ConvFCBBoxHead after adding marks. Args: ctx (ContextCaller): The context with additional information. self: The instance of the original class. x (Tensor): Input image tensor. Returns: tuple(Tensor, Tensor): The (cls_score, bbox_pred). The cls_score has shape (N, num_det, num_cls) and the bbox_pred has shape (N, num_det, 4). Here is the function: def bbox_head__forward(self, x): """Rewrite `forward` for default backend. This function uses the specific `forward` function for the BBoxHead or ConvFCBBoxHead after adding marks. Args: ctx (ContextCaller): The context with additional information. self: The instance of the original class. x (Tensor): Input image tensor. Returns: tuple(Tensor, Tensor): The (cls_score, bbox_pred). The cls_score has shape (N, num_det, num_cls) and the bbox_pred has shape (N, num_det, 4). """ ctx = FUNCTION_REWRITER.get_context() @mark( 'bbox_head_forward', inputs=['bbox_feats'], outputs=['cls_score', 'bbox_pred']) def __forward(self, x): return ctx.origin_func(self, x) return __forward(self, x)
Rewrite `forward` for default backend. This function uses the specific `forward` function for the BBoxHead or ConvFCBBoxHead after adding marks. Args: ctx (ContextCaller): The context with additional information. self: The instance of the original class. x (Tensor): Input image tensor. Returns: tuple(Tensor, Tensor): The (cls_score, bbox_pred). The cls_score has shape (N, num_det, num_cls) and the bbox_pred has shape (N, num_det, 4).
188,692
from typing import List, Optional, Tuple import torch import torch.nn.functional as F from mmdet.structures.bbox import get_box_tensor from mmengine import ConfigDict from torch import Tensor from mmdeploy.codebase.mmdet.deploy import get_post_processing_params from mmdeploy.core import FUNCTION_REWRITER, mark from mmdeploy.mmcv.ops import multiclass_nms The provided code snippet includes necessary dependencies for implementing the `bbox_head__predict_by_feat` function. Write a Python function `def bbox_head__predict_by_feat(self, rois: Tuple[Tensor], cls_scores: Tuple[Tensor], bbox_preds: Tuple[Tensor], batch_img_metas: List[dict], rcnn_test_cfg: Optional[ConfigDict] = None, rescale: bool = False) -> Tuple[Tensor]` to solve the following problem: Rewrite `predict_by_feat` of `BBoxHead` for default backend. Transform network output for a batch into bbox predictions. Support `reg_class_agnostic == False` case. Args: rois (tuple[Tensor]): Tuple of boxes to be transformed. Each has shape (num_boxes, 5). last dimension 5 arrange as (batch_index, x1, y1, x2, y2). cls_scores (tuple[Tensor]): Tuple of box scores, each has shape (num_boxes, num_classes + 1). bbox_preds (tuple[Tensor]): Tuple of box energies / deltas, each has shape (num_boxes, num_classes * 4). batch_img_metas (list[dict]): List of image information. rcnn_test_cfg (obj:`ConfigDict`, optional): `test_cfg` of R-CNN. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: - dets (Tensor): Classification bboxes and scores, has a shape (num_instance, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). Here is the function: def bbox_head__predict_by_feat(self, rois: Tuple[Tensor], cls_scores: Tuple[Tensor], bbox_preds: Tuple[Tensor], batch_img_metas: List[dict], rcnn_test_cfg: Optional[ConfigDict] = None, rescale: bool = False) -> Tuple[Tensor]: """Rewrite `predict_by_feat` of `BBoxHead` for default backend. Transform network output for a batch into bbox predictions. Support `reg_class_agnostic == False` case. Args: rois (tuple[Tensor]): Tuple of boxes to be transformed. Each has shape (num_boxes, 5). last dimension 5 arrange as (batch_index, x1, y1, x2, y2). cls_scores (tuple[Tensor]): Tuple of box scores, each has shape (num_boxes, num_classes + 1). bbox_preds (tuple[Tensor]): Tuple of box energies / deltas, each has shape (num_boxes, num_classes * 4). batch_img_metas (list[dict]): List of image information. rcnn_test_cfg (obj:`ConfigDict`, optional): `test_cfg` of R-CNN. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: - dets (Tensor): Classification bboxes and scores, has a shape (num_instance, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). """ ctx = FUNCTION_REWRITER.get_context() assert rois.ndim == 3, 'Only support export two stage ' \ 'model to ONNX ' \ 'with batch dimension. ' img_shape = batch_img_metas[0]['img_shape'] if self.custom_cls_channels: scores = self.loss_cls.get_activation(cls_scores) else: scores = F.softmax( cls_scores, dim=-1) if cls_scores is not None else None if bbox_preds is not None: # num_classes = 1 if self.reg_class_agnostic else self.num_classes # if num_classes > 1: # rois = rois.repeat_interleave(num_classes, dim=1) bboxes = self.bbox_coder.decode( rois[..., 1:], bbox_preds, max_shape=img_shape) bboxes = get_box_tensor(bboxes) else: bboxes = rois[..., 1:].clone() if img_shape is not None: max_shape = bboxes.new_tensor(img_shape)[..., :2] min_xy = bboxes.new_tensor(0) max_xy = torch.cat([max_shape] * 2, dim=-1).flip(-1).unsqueeze(-2) bboxes = torch.where(bboxes < min_xy, min_xy, bboxes) bboxes = torch.where(bboxes > max_xy, max_xy, bboxes) batch_size = scores.shape[0] device = scores.device # ignore background class scores = scores[..., :self.num_classes] if not self.reg_class_agnostic: # only keep boxes with the max scores max_inds = scores.reshape(-1, self.num_classes).argmax(1, keepdim=True) encode_size = self.bbox_coder.encode_size bboxes = bboxes.reshape(-1, self.num_classes, encode_size) dim0_inds = torch.arange(bboxes.shape[0], device=device).unsqueeze(-1) bboxes = bboxes[dim0_inds, max_inds].reshape(batch_size, -1, encode_size) # get nms params post_params = get_post_processing_params(ctx.cfg) max_output_boxes_per_class = post_params.max_output_boxes_per_class iou_threshold = rcnn_test_cfg.nms.get('iou_threshold', post_params.iou_threshold) score_threshold = rcnn_test_cfg.get('score_thr', post_params.score_threshold) if torch.onnx.is_in_onnx_export(): pre_top_k = post_params.pre_top_k else: # For two stage partition post processing pre_top_k = -1 if post_params.pre_top_k >= bboxes.shape[1] \ else post_params.pre_top_k keep_top_k = rcnn_test_cfg.get('max_per_img', post_params.keep_top_k) nms_type = rcnn_test_cfg.nms.get('type') dets, labels = multiclass_nms( bboxes, scores, max_output_boxes_per_class, nms_type=nms_type, iou_threshold=iou_threshold, score_threshold=score_threshold, pre_top_k=pre_top_k, keep_top_k=keep_top_k) return dets, labels
Rewrite `predict_by_feat` of `BBoxHead` for default backend. Transform network output for a batch into bbox predictions. Support `reg_class_agnostic == False` case. Args: rois (tuple[Tensor]): Tuple of boxes to be transformed. Each has shape (num_boxes, 5). last dimension 5 arrange as (batch_index, x1, y1, x2, y2). cls_scores (tuple[Tensor]): Tuple of box scores, each has shape (num_boxes, num_classes + 1). bbox_preds (tuple[Tensor]): Tuple of box energies / deltas, each has shape (num_boxes, num_classes * 4). batch_img_metas (list[dict]): List of image information. rcnn_test_cfg (obj:`ConfigDict`, optional): `test_cfg` of R-CNN. Defaults to None. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: - dets (Tensor): Classification bboxes and scores, has a shape (num_instance, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
188,693
import torch from mmcv.ops import RoIAlign from torch.autograd import Function from mmdeploy.core.optimizers import mark from mmdeploy.core.rewriters import FUNCTION_REWRITER from mmdeploy.utils import get_backend from mmdeploy.utils.constants import Backend class MultiLevelRoiAlign(Function): """Create MMCVMultiLevelRoiAlign op. This class is used to create a MultiLevelRoiAlign in ONNX for the TensorRT backend. """ def symbolic(g, *args): """Symbolic function for creating onnx op.""" aligned = args[-1] featmap_strides = args[-2] finest_scale = args[-3] roi_scale_factor = args[-4] sampling_ratio = args[-5] pool_mode = args[-6] pool_mode_flag = 0 if pool_mode == 'max' else 1 output_size = args[-7] inputs = args[:len(featmap_strides)] rois = args[len(featmap_strides)] return g.op( 'mmdeploy::MMCVMultiLevelRoiAlign', rois, *inputs, output_height_i=output_size[1], output_width_i=output_size[0], pool_mode_i=pool_mode_flag, sampling_ratio_i=sampling_ratio, roi_scale_factor_f=roi_scale_factor, finest_scale_i=finest_scale, featmap_strides_f=featmap_strides, aligned_i=aligned) def forward(g, *args): """Run forward.""" # aligned = args[-1] featmap_strides = args[-2] # finest_scale = args[-3] # roi_scale_factor = args[-4] # sampling_ratio = args[-5] output_size = args[-7] inputs = args[:len(featmap_strides)] rois = args[len(featmap_strides)] num_proposals = rois.shape[0] channel = inputs[0].shape[1] return rois.new_zeros( (num_proposals, channel, output_size[1], output_size[0])) 'mmdet.models.roi_heads.roi_extractors.' 'single_level_roi_extractor.SingleRoIExtractor.forward', backend='tensorrt') The provided code snippet includes necessary dependencies for implementing the `single_roi_extractor__forward__tensorrt` function. Write a Python function `def single_roi_extractor__forward__tensorrt(self, feats, rois, roi_scale_factor=None)` to solve the following problem: Rewrite `forward` of `SingleRoIExtractor` for TensorRT backend. This function uses MMCVMultiLevelRoiAlign op for TensorRT deployment. Here is the function: def single_roi_extractor__forward__tensorrt(self, feats, rois, roi_scale_factor=None): """Rewrite `forward` of `SingleRoIExtractor` for TensorRT backend. This function uses MMCVMultiLevelRoiAlign op for TensorRT deployment. """ featmap_strides = self.featmap_strides finest_scale = self.finest_scale for roi_layer in self.roi_layers: assert isinstance( roi_layer, RoIAlign), f'{type(roi_layer)} is not supported in TensorRT.' roi_layer = self.roi_layers[0] out_size = roi_layer.output_size sampling_ratio = roi_layer.sampling_ratio pool_mode = roi_layer.pool_mode aligned = roi_layer.aligned if roi_scale_factor is None: roi_scale_factor = 1.0 featmap_strides = [float(s) for s in featmap_strides] return MultiLevelRoiAlign.apply(*feats, rois, out_size, pool_mode, sampling_ratio, roi_scale_factor, finest_scale, featmap_strides, aligned)
Rewrite `forward` of `SingleRoIExtractor` for TensorRT backend. This function uses MMCVMultiLevelRoiAlign op for TensorRT deployment.
188,694
import torch from mmcv.ops import RoIAlign from torch.autograd import Function from mmdeploy.core.optimizers import mark from mmdeploy.core.rewriters import FUNCTION_REWRITER from mmdeploy.utils import get_backend from mmdeploy.utils.constants import Backend class AscendRoiExtractor(Function): """Create AscendRoiExtractor op. This class is used to create a AscendRoiExtractor in ONNX for the Ascend backend. """ def symbolic(g, *args): """Symbolic function for creating onnx op.""" aligned = args[-1] featmap_strides = [1 / stride for stride in args[-2]] finest_scale = args[-3] roi_scale_factor = args[-4] sampling_ratio = args[-5] pool_mode = args[-6] output_size = args[-7] inputs = args[:len(featmap_strides)] rois = args[len(featmap_strides)] return g.op( 'mmdeploy::RoiExtractor', *inputs, rois, pooled_height_i=output_size[1], pooled_width_i=output_size[0], pool_mode_s=pool_mode, sample_num_i=sampling_ratio, roi_scale_factor_f=roi_scale_factor, finest_scale_i=finest_scale, spatial_scale_f=featmap_strides, aligned_i=aligned, outputs=1) def forward(ctx, *args): """Run forward.""" # aligned = args[-1] featmap_strides = args[-2] # finest_scale = args[-3] # roi_scale_factor = args[-4] # sampling_ratio = args[-5] output_size = args[-7] inputs = args[:len(featmap_strides)] rois = args[len(featmap_strides)] num_proposals = rois.shape[0] channel = inputs[0].shape[1] return rois.new_zeros( (num_proposals, channel, output_size[1], output_size[0])) 'mmdet.models.roi_heads.roi_extractors.' 'single_level_roi_extractor.SingleRoIExtractor.forward', backend='ascend') The provided code snippet includes necessary dependencies for implementing the `single_roi_extractor__forward__ascend` function. Write a Python function `def single_roi_extractor__forward__ascend(self, feats, rois, roi_scale_factor=None)` to solve the following problem: Rewrite `forward` of `SingleRoIExtractor` for Ascend backend. This function uses RoiExtractor op for Ascend deployment. Here is the function: def single_roi_extractor__forward__ascend(self, feats, rois, roi_scale_factor=None): """Rewrite `forward` of `SingleRoIExtractor` for Ascend backend. This function uses RoiExtractor op for Ascend deployment. """ featmap_strides = self.featmap_strides finest_scale = self.finest_scale for roi_layer in self.roi_layers: assert isinstance( roi_layer, RoIAlign), f'{type(roi_layer)} is not supported in Ascend.' roi_layer = self.roi_layers[0] out_size = roi_layer.output_size sampling_ratio = roi_layer.sampling_ratio pool_mode = roi_layer.pool_mode aligned = roi_layer.aligned if roi_scale_factor is None: roi_scale_factor = 1.0 featmap_strides = [float(s) for s in featmap_strides] return AscendRoiExtractor.apply(*feats, rois, out_size, pool_mode, sampling_ratio, roi_scale_factor, finest_scale, featmap_strides, aligned)
Rewrite `forward` of `SingleRoIExtractor` for Ascend backend. This function uses RoiExtractor op for Ascend deployment.
188,695
import torch from mmcv.ops import RoIAlign from torch.autograd import Function from mmdeploy.core.optimizers import mark from mmdeploy.core.rewriters import FUNCTION_REWRITER from mmdeploy.utils import get_backend from mmdeploy.utils.constants import Backend class Backend(AdvancedEnum): """Define backend enumerations.""" PYTORCH = 'pytorch' TENSORRT = 'tensorrt' ONNXRUNTIME = 'onnxruntime' PPLNN = 'pplnn' NCNN = 'ncnn' SNPE = 'snpe' OPENVINO = 'openvino' SDK = 'sdk' TORCHSCRIPT = 'torchscript' RKNN = 'rknn' ASCEND = 'ascend' COREML = 'coreml' TVM = 'tvm' VACC = 'vacc' DEFAULT = 'default' The provided code snippet includes necessary dependencies for implementing the `single_roi_extractor__forward` function. Write a Python function `def single_roi_extractor__forward(self, feats, rois, roi_scale_factor=None)` to solve the following problem: Rewrite `forward` of SingleRoIExtractor for default backend. Rewrite this function to: 1. enable exporting to IR even though the input image contains no targets. Note that, `ScatterND` of onnx may conflict with `Reshape` if a tensor have a dim size of 0. Thus, we have to cat zeros to the dim 0 of `roi_feats` and recover back after all roi align finished. 2. this function adds mark for roi_extractor forward and remove unnecessary code of origin forward function when using ONNX as IR. 3. use the roi align in torhcvision to accelerate the inference. Here is the function: def single_roi_extractor__forward(self, feats, rois, roi_scale_factor=None): """Rewrite `forward` of SingleRoIExtractor for default backend. Rewrite this function to: 1. enable exporting to IR even though the input image contains no targets. Note that, `ScatterND` of onnx may conflict with `Reshape` if a tensor have a dim size of 0. Thus, we have to cat zeros to the dim 0 of `roi_feats` and recover back after all roi align finished. 2. this function adds mark for roi_extractor forward and remove unnecessary code of origin forward function when using ONNX as IR. 3. use the roi align in torhcvision to accelerate the inference. """ ctx = FUNCTION_REWRITER.get_context( 'mmdet.models.roi_heads.SingleRoIExtractor.forward') backend = get_backend(ctx.cfg) out_size = self.roi_layers[0].output_size num_levels = len(feats) roi_feats = feats[0].new_zeros(rois.shape[0], self.out_channels, *out_size) if num_levels == 1: assert len(rois) > 0, 'The number of rois should be positive' if backend == Backend.TORCHSCRIPT or backend == Backend.COREML: self.roi_layers[0].use_torchvision = True return self.roi_layers[0](feats[0], rois) target_lvls = self.map_roi_levels(rois, num_levels) if roi_scale_factor is not None: rois = self.roi_rescale(rois, roi_scale_factor) # concate zeros to rois and roi_feats for empty tensor cases roi_feats = torch.cat( (roi_feats.new_zeros(num_levels * 2, *roi_feats.shape[-3:]), roi_feats)) rois = torch.cat((rois.new_zeros(num_levels * 2, 5), rois)) _tmp = torch.linspace( 0, num_levels - 1, num_levels, dtype=target_lvls.dtype, device=target_lvls.device) target_lvls = torch.cat((_tmp, _tmp, target_lvls)) for i in range(num_levels): mask = target_lvls == i inds = mask.nonzero(as_tuple=False).squeeze(1) rois_t = rois[inds] # use the roi align in torhcvision if backend == Backend.TORCHSCRIPT or backend == Backend.COREML: self.roi_layers[i].use_torchvision = True roi_feats_t = self.roi_layers[i](feats[i], rois_t) roi_feats[inds] = roi_feats_t # slice to recover original size roi_feats = roi_feats[num_levels * 2:] return roi_feats
Rewrite `forward` of SingleRoIExtractor for default backend. Rewrite this function to: 1. enable exporting to IR even though the input image contains no targets. Note that, `ScatterND` of onnx may conflict with `Reshape` if a tensor have a dim size of 0. Thus, we have to cat zeros to the dim 0 of `roi_feats` and recover back after all roi align finished. 2. this function adds mark for roi_extractor forward and remove unnecessary code of origin forward function when using ONNX as IR. 3. use the roi align in torhcvision to accelerate the inference.
188,696
import torch from mmcv.ops import RoIAlign from torch.autograd import Function from mmdeploy.core.optimizers import mark from mmdeploy.core.rewriters import FUNCTION_REWRITER from mmdeploy.utils import get_backend from mmdeploy.utils.constants import Backend class SingleRoIExtractorOpenVINO(Function): """This class adds support for ExperimentalDetectronROIFeatureExtractor when exporting to OpenVINO. The `forward` method returns the original output, which is calculated in advance and added to the SingleRoIExtractorOpenVINO class. In addition, the list of arguments is changed here to be more suitable for ExperimentalDetectronROIFeatureExtractor. """ def __init__(self) -> None: super().__init__() def forward(g, output_size, featmap_strides, sample_num, rois, *feats): """Run forward.""" return SingleRoIExtractorOpenVINO.origin_output def symbolic(g, output_size, featmap_strides, sample_num, rois, *feats): """Symbolic function for creating onnx op.""" from torch.onnx.symbolic_opset10 import _slice rois = _slice(g, rois, axes=[1], starts=[1], ends=[5]) domain = 'org.openvinotoolkit' op_name = 'ExperimentalDetectronROIFeatureExtractor' roi_feats = g.op( f'{domain}::{op_name}', rois, *feats, output_size_i=output_size, pyramid_scales_i=featmap_strides, sampling_ratio_i=sample_num, image_id_i=0, distribute_rois_between_levels_i=1, preserve_rois_order_i=0, aligned_i=1, outputs=1) return roi_feats 'mmdet.models.roi_heads.roi_extractors.' 'single_level_roi_extractor.SingleRoIExtractor.forward', backend='openvino') The provided code snippet includes necessary dependencies for implementing the `single_roi_extractor__forward__openvino` function. Write a Python function `def single_roi_extractor__forward__openvino(self, feats, rois, roi_scale_factor=None)` to solve the following problem: Replaces SingleRoIExtractor with SingleRoIExtractorOpenVINO when exporting to OpenVINO. This function uses ExperimentalDetectronROIFeatureExtractor for OpenVINO. Here is the function: def single_roi_extractor__forward__openvino(self, feats, rois, roi_scale_factor=None): """Replaces SingleRoIExtractor with SingleRoIExtractorOpenVINO when exporting to OpenVINO. This function uses ExperimentalDetectronROIFeatureExtractor for OpenVINO. """ ctx = FUNCTION_REWRITER.get_context() # Adding original output to SingleRoIExtractorOpenVINO. state = torch._C._get_tracing_state() origin_output = ctx.origin_func(self, feats, rois, roi_scale_factor) setattr(SingleRoIExtractorOpenVINO, 'origin_output', origin_output) torch._C._set_tracing_state(state) output_size = self.roi_layers[0].output_size[0] featmap_strides = self.featmap_strides sample_num = self.roi_layers[0].sampling_ratio args = (output_size, featmap_strides, sample_num, rois, *feats) result = SingleRoIExtractorOpenVINO.apply(*args) return result
Replaces SingleRoIExtractor with SingleRoIExtractorOpenVINO when exporting to OpenVINO. This function uses ExperimentalDetectronROIFeatureExtractor for OpenVINO.
188,697
import torch from mmcv.ops import RoIAlign from torch.autograd import Function from mmdeploy.core.optimizers import mark from mmdeploy.core.rewriters import FUNCTION_REWRITER from mmdeploy.utils import get_backend from mmdeploy.utils.constants import Backend class Backend(AdvancedEnum): """Define backend enumerations.""" PYTORCH = 'pytorch' TENSORRT = 'tensorrt' ONNXRUNTIME = 'onnxruntime' PPLNN = 'pplnn' NCNN = 'ncnn' SNPE = 'snpe' OPENVINO = 'openvino' SDK = 'sdk' TORCHSCRIPT = 'torchscript' RKNN = 'rknn' ASCEND = 'ascend' COREML = 'coreml' TVM = 'tvm' VACC = 'vacc' DEFAULT = 'default' The provided code snippet includes necessary dependencies for implementing the `single_roi_extractor__forward__coreml` function. Write a Python function `def single_roi_extractor__forward__coreml(self, feats, rois, roi_scale_factor=None)` to solve the following problem: Rewrite `forward` of SingleRoIExtractor for coreml. Here is the function: def single_roi_extractor__forward__coreml(self, feats, rois, roi_scale_factor=None): """Rewrite `forward` of SingleRoIExtractor for coreml.""" ctx = FUNCTION_REWRITER.get_context() backend = get_backend(ctx.cfg) out_size = self.roi_layers[0].output_size num_levels = len(feats) roi_feats = feats[0].new_zeros(rois.shape[0], self.out_channels, *out_size) if num_levels == 1: assert len(rois) > 0, 'The number of rois should be positive' self.roi_layers[0].use_torchvision = True return self.roi_layers[0](feats[0], rois) target_lvls = self.map_roi_levels(rois, num_levels) if roi_scale_factor is not None: rois = self.roi_rescale(rois, roi_scale_factor) for i in range(num_levels): mask = target_lvls == i # inds = mask.nonzero(as_tuple=False).squeeze(1) rois_t = rois * mask.unsqueeze(-1) # use the roi align in torhcvision if backend == Backend.COREML: self.roi_layers[i].use_torchvision = True roi_feats_t = self.roi_layers[i](feats[i], rois_t) roi_feats = roi_feats + roi_feats_t * (rois_t[:, -1] > 0).reshape( -1, 1, 1, 1) # slice to recover original size return roi_feats
Rewrite `forward` of SingleRoIExtractor for coreml.
188,698
from typing import List, Tuple import torch from mmdet.utils import ConfigType from torch import Tensor from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `standard_roi_head__predict_bbox` function. Write a Python function `def standard_roi_head__predict_bbox(self, x: Tuple[Tensor], batch_img_metas: List[dict], rpn_results_list: List[Tensor], rcnn_test_cfg: ConfigType, rescale: bool = False) -> List[Tensor]` to solve the following problem: Rewrite `predict_bbox` of `StandardRoIHead` for default backend. Args: x (tuple[Tensor]): Feature maps of all scale level. batch_img_metas (list[dict]): List of image information. rpn_results_list (list[Tensor]): List of region proposals. rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: list[Tensor]: Detection results of each image after the post process. Each item usually contains following keys. - dets (Tensor): Classification bboxes and scores, has a shape (num_instance, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). Here is the function: def standard_roi_head__predict_bbox(self, x: Tuple[Tensor], batch_img_metas: List[dict], rpn_results_list: List[Tensor], rcnn_test_cfg: ConfigType, rescale: bool = False) -> List[Tensor]: """Rewrite `predict_bbox` of `StandardRoIHead` for default backend. Args: x (tuple[Tensor]): Feature maps of all scale level. batch_img_metas (list[dict]): List of image information. rpn_results_list (list[Tensor]): List of region proposals. rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: list[Tensor]: Detection results of each image after the post process. Each item usually contains following keys. - dets (Tensor): Classification bboxes and scores, has a shape (num_instance, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). """ rois = rpn_results_list[0] rois_dims = int(rois.shape[-1]) batch_index = torch.arange( rois.shape[0], device=rois.device).float().view(-1, 1, 1).expand( rois.size(0), rois.size(1), 1) rois = torch.cat([batch_index, rois[..., :rois_dims - 1]], dim=-1) batch_size = rois.shape[0] num_proposals_per_img = rois.shape[1] # Eliminate the batch dimension rois = rois.view(-1, rois_dims) bbox_results = self._bbox_forward(x, rois) cls_scores = bbox_results['cls_score'] bbox_preds = bbox_results['bbox_pred'] # Recover the batch dimension rois = rois.reshape(batch_size, num_proposals_per_img, rois.size(-1)) cls_scores = cls_scores.reshape(batch_size, num_proposals_per_img, cls_scores.size(-1)) bbox_preds = bbox_preds.reshape(batch_size, num_proposals_per_img, bbox_preds.size(-1)) result_list = self.bbox_head.predict_by_feat( rois=rois, cls_scores=cls_scores, bbox_preds=bbox_preds, batch_img_metas=batch_img_metas, rcnn_test_cfg=rcnn_test_cfg, rescale=rescale) return result_list
Rewrite `predict_bbox` of `StandardRoIHead` for default backend. Args: x (tuple[Tensor]): Feature maps of all scale level. batch_img_metas (list[dict]): List of image information. rpn_results_list (list[Tensor]): List of region proposals. rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: list[Tensor]: Detection results of each image after the post process. Each item usually contains following keys. - dets (Tensor): Classification bboxes and scores, has a shape (num_instance, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
188,699
from typing import List, Tuple import torch from mmdet.utils import ConfigType from torch import Tensor from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `standard_roi_head__predict_mask` function. Write a Python function `def standard_roi_head__predict_mask(self, x: Tuple[Tensor], batch_img_metas: List[dict], results_list: List[Tensor], rescale: bool = False) -> List[Tensor]` to solve the following problem: Perform forward propagation of the mask head and predict detection results on the features of the upstream network. Args: x (tuple[Tensor]): Feature maps of all scale level. batch_img_metas (list[dict]): List of image information. results_list (list[:obj:`InstanceData`]): Detection results of each image. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: list[Tensor]: Detection results of each image after the post process. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). - masks (Tensor): Has a shape (num_instances, H, W). Here is the function: def standard_roi_head__predict_mask(self, x: Tuple[Tensor], batch_img_metas: List[dict], results_list: List[Tensor], rescale: bool = False) -> List[Tensor]: """Perform forward propagation of the mask head and predict detection results on the features of the upstream network. Args: x (tuple[Tensor]): Feature maps of all scale level. batch_img_metas (list[dict]): List of image information. results_list (list[:obj:`InstanceData`]): Detection results of each image. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: list[Tensor]: Detection results of each image after the post process. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). - masks (Tensor): Has a shape (num_instances, H, W). """ dets, det_labels = results_list batch_size = dets.size(0) det_bboxes = dets[..., :4] # expand might lead to static shape, use broadcast instead batch_index = torch.arange( det_bboxes.size(0), device=det_bboxes.device).float().view( -1, 1, 1) + det_bboxes.new_zeros( (det_bboxes.size(0), det_bboxes.size(1))).unsqueeze(-1) mask_rois = torch.cat([batch_index, det_bboxes], dim=-1) mask_rois = mask_rois.view(-1, 5) mask_results = self._mask_forward(x, mask_rois) mask_preds = mask_results['mask_preds'] num_det = det_bboxes.shape[1] segm_results = self.mask_head.predict_by_feat( mask_preds, results_list, batch_img_metas, self.test_cfg, rescale=rescale) segm_results = segm_results.reshape(batch_size, num_det, segm_results.shape[-2], segm_results.shape[-1]) return dets, det_labels, segm_results
Perform forward propagation of the mask head and predict detection results on the features of the upstream network. Args: x (tuple[Tensor]): Feature maps of all scale level. batch_img_metas (list[dict]): List of image information. results_list (list[:obj:`InstanceData`]): Detection results of each image. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: list[Tensor]: Detection results of each image after the post process. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). - masks (Tensor): Has a shape (num_instances, H, W).
188,700
from typing import List, Tuple import torch import torch.nn.functional as F from mmengine import ConfigDict from torch import Tensor from mmdeploy.codebase.mmdet.deploy import get_post_processing_params from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.utils import Backend, get_backend def _do_paste_mask(masks, boxes, img_h, img_w, skip_empty=True): """Paste instance masks according to boxes. This implementation is modified from https://github.com/facebookresearch/detectron2/ Args: masks (Tensor): N, 1, H, W boxes (Tensor): N, 4 img_h (int): Height of the image to be pasted. img_w (int): Width of the image to be pasted. skip_empty (bool): Only paste masks within the region that tightly bound all boxes, and returns the results this region only. An important optimization for CPU. Returns: tuple: (Tensor, tuple). The first item is mask tensor, the second one is the slice object. If skip_empty == False, the whole image will be pasted. It will return a mask of shape (N, img_h, img_w) and an empty tuple. If skip_empty == True, only area around the mask will be pasted. A mask of shape (N, h', w') and its start and end coordinates in the original image will be returned. """ # On GPU, paste all masks together (up to chunk size) # by using the entire image to sample the masks # Compared to pasting them one by one, # this has more operations but is faster on COCO-scale dataset. device = masks.device if skip_empty: x0_int, y0_int = torch.clamp( boxes.min(dim=0).values.floor()[:2] - 1, min=0).to(dtype=torch.int32) x1_int = torch.clamp( boxes[:, 2].max().ceil() + 1, max=img_w).to(dtype=torch.int32) y1_int = torch.clamp( boxes[:, 3].max().ceil() + 1, max=img_h).to(dtype=torch.int32) else: x0_int, y0_int = 0, 0 x1_int, y1_int = img_w, img_h x0, y0, x1, y1 = torch.split(boxes, 1, dim=1) # each is Nx1 N = masks.shape[0] img_y = torch.arange(y0_int, y1_int, device=device).to(torch.float32) + 0.5 img_x = torch.arange(x0_int, x1_int, device=device).to(torch.float32) + 0.5 img_y = (img_y - y0) / (y1 - y0) * 2 - 1 img_x = (img_x - x0) / (x1 - x0) * 2 - 1 gx = img_x[:, None, :].expand(N, img_y.size(1), img_x.size(1)) gy = img_y[:, :, None].expand(N, img_y.size(1), img_x.size(1)) grid = torch.stack([gx, gy], dim=3) img_masks = F.grid_sample( masks.to(dtype=torch.float32), grid, align_corners=False) if skip_empty: return img_masks[:, 0], (slice(y0_int, y1_int), slice(x0_int, x1_int)) else: return img_masks[:, 0], () The provided code snippet includes necessary dependencies for implementing the `fcn_mask_head__predict_by_feat` function. Write a Python function `def fcn_mask_head__predict_by_feat(self, mask_preds: Tuple[Tensor], results_list: List[Tensor], batch_img_metas: List[dict], rcnn_test_cfg: ConfigDict, rescale: bool = False, activate_map: bool = False) -> List[Tensor]` to solve the following problem: Transform a batch of output features extracted from the head into mask results. Args: mask_preds (tuple[Tensor]): Tuple of predicted foreground masks, each has shape (n, num_classes, h, w). results_list (list[Tensor]): Detection results of each image. batch_img_metas (list[dict]): List of image information. rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head. rescale (bool): If True, return boxes in original image space. Defaults to False. activate_map (book): Whether get results with augmentations test. If True, the `mask_preds` will not process with sigmoid. Defaults to False. Returns: list[Tensor]: Detection results of each image after the post process. Each item usually contains following keys. - dets (Tensor): Classification scores, has a shape (num_instance, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - masks (Tensor): Has a shape (num_instances, H, W). Here is the function: def fcn_mask_head__predict_by_feat(self, mask_preds: Tuple[Tensor], results_list: List[Tensor], batch_img_metas: List[dict], rcnn_test_cfg: ConfigDict, rescale: bool = False, activate_map: bool = False) -> List[Tensor]: """Transform a batch of output features extracted from the head into mask results. Args: mask_preds (tuple[Tensor]): Tuple of predicted foreground masks, each has shape (n, num_classes, h, w). results_list (list[Tensor]): Detection results of each image. batch_img_metas (list[dict]): List of image information. rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head. rescale (bool): If True, return boxes in original image space. Defaults to False. activate_map (book): Whether get results with augmentations test. If True, the `mask_preds` will not process with sigmoid. Defaults to False. Returns: list[Tensor]: Detection results of each image after the post process. Each item usually contains following keys. - dets (Tensor): Classification scores, has a shape (num_instance, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - masks (Tensor): Has a shape (num_instances, H, W). """ ctx = FUNCTION_REWRITER.get_context() ori_shape = batch_img_metas[0]['img_shape'] dets, det_labels = results_list dets = dets.view(-1, 5) det_labels = det_labels.view(-1) backend = get_backend(ctx.cfg) mask_preds = mask_preds.sigmoid() bboxes = dets[:, :4] labels = det_labels threshold = rcnn_test_cfg.mask_thr_binary if not self.class_agnostic: box_inds = torch.arange(mask_preds.shape[0], device=bboxes.device) mask_pred = mask_preds[box_inds, labels][:, None] # grid sample is not supported by most engine # so we add a flag to disable it. mmdet_params = get_post_processing_params(ctx.cfg) export_postprocess_mask = mmdet_params.get('export_postprocess_mask', False) if not export_postprocess_mask: return mask_pred masks, _ = _do_paste_mask( mask_pred, bboxes, ori_shape[0], ori_shape[1], skip_empty=False) if backend == Backend.TENSORRT: return masks if threshold >= 0: masks = (masks >= threshold).to(dtype=torch.bool) return masks
Transform a batch of output features extracted from the head into mask results. Args: mask_preds (tuple[Tensor]): Tuple of predicted foreground masks, each has shape (n, num_classes, h, w). results_list (list[Tensor]): Detection results of each image. batch_img_metas (list[dict]): List of image information. rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head. rescale (bool): If True, return boxes in original image space. Defaults to False. activate_map (book): Whether get results with augmentations test. If True, the `mask_preds` will not process with sigmoid. Defaults to False. Returns: list[Tensor]: Detection results of each image after the post process. Each item usually contains following keys. - dets (Tensor): Classification scores, has a shape (num_instance, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - masks (Tensor): Has a shape (num_instances, H, W).
188,701
from typing import List, Tuple import torch from torch import Tensor from mmdeploy.core import FUNCTION_REWRITER def htc_roi_head__predict_mask(self, x: Tuple[Tensor], semantic_heat: Tensor, batch_img_metas: List[dict], results_list: List[Tensor], rescale: bool = False) -> List[Tensor]: dets, det_labels = results_list batch_size = dets.size(0) det_bboxes = dets[..., :4] batch_index = torch.arange( det_bboxes.size(0), device=det_bboxes.device).float().view(-1, 1, 1).expand( det_bboxes.size(0), det_bboxes.size(1), 1) mask_rois = torch.cat([batch_index, det_bboxes], dim=-1) mask_rois = mask_rois.view(-1, 5) mask_results = self._mask_forward( stage=-1, x=x, rois=mask_rois, semantic_feat=semantic_heat, training=False) mask_preds = mask_results['mask_preds'][0] num_det = det_bboxes.shape[1] segm_results = self.mask_head[-1].predict_by_feat( mask_preds, results_list, batch_img_metas, self.test_cfg, rescale=rescale) segm_results = segm_results.reshape(batch_size, num_det, segm_results.shape[-2], segm_results.shape[-1]) return dets, det_labels, segm_results
null
188,702
from typing import List, Tuple import torch from mmdet.structures.bbox import get_box_tensor from mmdet.utils import ConfigType from torch import Tensor from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `cascade_roi_head__predict_bbox` function. Write a Python function `def cascade_roi_head__predict_bbox(self, x: Tuple[Tensor], batch_img_metas: List[dict], rpn_results_list: List[Tensor], rcnn_test_cfg: ConfigType, rescale: bool = False, **kwargs) -> List[Tensor]` to solve the following problem: Rewrite `predict_bbox` of `CascadeRoIHead` for default backend. Args: x (tuple[Tensor]): Feature maps of all scale level. batch_img_metas (list[dict]): List of image information. rpn_results_list (list[Tensor]): List of region proposals. rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: list[Tensor]: Detection results of each image after the post process. Each item usually contains following keys. - dets (Tensor): Classification bboxes and scores, has a shape (num_instance, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). Here is the function: def cascade_roi_head__predict_bbox(self, x: Tuple[Tensor], batch_img_metas: List[dict], rpn_results_list: List[Tensor], rcnn_test_cfg: ConfigType, rescale: bool = False, **kwargs) -> List[Tensor]: """Rewrite `predict_bbox` of `CascadeRoIHead` for default backend. Args: x (tuple[Tensor]): Feature maps of all scale level. batch_img_metas (list[dict]): List of image information. rpn_results_list (list[Tensor]): List of region proposals. rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: list[Tensor]: Detection results of each image after the post process. Each item usually contains following keys. - dets (Tensor): Classification bboxes and scores, has a shape (num_instance, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). """ rois = rpn_results_list[0] rois_dims = rois.shape[-1] batch_index = torch.arange( rois.shape[0], device=rois.device).float().view(-1, 1, 1).expand( rois.size(0), rois.size(1), 1) rois = torch.cat([batch_index, rois[..., :rois_dims - 1]], dim=-1) batch_size = rois.shape[0] num_proposals_per_img = rois.shape[1] # Eliminate the batch dimension rois = rois.view(-1, rois_dims) ms_scores = [] max_shape = batch_img_metas[0]['img_shape'] for i in range(self.num_stages): bbox_results = self._bbox_forward(i, x, rois, **kwargs) cls_score = bbox_results['cls_score'] bbox_pred = bbox_results['bbox_pred'] # Recover the batch dimension rois = rois.reshape(batch_size, num_proposals_per_img, rois.size(-1)) cls_score = cls_score.reshape(batch_size, num_proposals_per_img, cls_score.size(-1)) bbox_pred = bbox_pred.reshape(batch_size, num_proposals_per_img, -1) ms_scores.append(cls_score) if i < self.num_stages - 1: assert self.bbox_head[i].reg_class_agnostic new_rois = self.bbox_head[i].bbox_coder.decode( rois[..., 1:], bbox_pred, max_shape=max_shape) new_rois = get_box_tensor(new_rois) rois = new_rois.reshape(-1, new_rois.shape[-1]) # Add dummy batch index rois = torch.cat([batch_index.flatten(0, 1), rois], dim=-1) cls_scores = sum(ms_scores) / float(len(ms_scores)) bbox_preds = bbox_pred.reshape(batch_size, num_proposals_per_img, -1) rois = rois.reshape(batch_size, num_proposals_per_img, -1) result_list = self.bbox_head[-1].predict_by_feat( rois=rois, cls_scores=cls_scores, bbox_preds=bbox_preds, batch_img_metas=batch_img_metas, rcnn_test_cfg=rcnn_test_cfg, rescale=rescale) return result_list
Rewrite `predict_bbox` of `CascadeRoIHead` for default backend. Args: x (tuple[Tensor]): Feature maps of all scale level. batch_img_metas (list[dict]): List of image information. rpn_results_list (list[Tensor]): List of region proposals. rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: list[Tensor]: Detection results of each image after the post process. Each item usually contains following keys. - dets (Tensor): Classification bboxes and scores, has a shape (num_instance, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
188,703
from typing import List, Tuple import torch from mmdet.structures.bbox import get_box_tensor from mmdet.utils import ConfigType from torch import Tensor from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `cascade_roi_head__predict_mask` function. Write a Python function `def cascade_roi_head__predict_mask(self, x: Tuple[Tensor], batch_img_metas: List[dict], results_list: List[Tensor], rescale: bool = False) -> List[Tensor]` to solve the following problem: Perform forward propagation of the mask head and predict detection results on the features of the upstream network. Args: x (tuple[Tensor]): Feature maps of all scale level. batch_img_metas (list[dict]): List of image information. results_list (list[Tensor]): Detection results of each image. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: list[Tensor]: Detection results of each image after the post process. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). - masks (Tensor): Has a shape (num_instances, H, W). Here is the function: def cascade_roi_head__predict_mask(self, x: Tuple[Tensor], batch_img_metas: List[dict], results_list: List[Tensor], rescale: bool = False) -> List[Tensor]: """Perform forward propagation of the mask head and predict detection results on the features of the upstream network. Args: x (tuple[Tensor]): Feature maps of all scale level. batch_img_metas (list[dict]): List of image information. results_list (list[Tensor]): Detection results of each image. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: list[Tensor]: Detection results of each image after the post process. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). - masks (Tensor): Has a shape (num_instances, H, W). """ dets, det_labels = results_list batch_size = dets.size(0) det_bboxes = dets[..., :4] batch_index = torch.arange( det_bboxes.size(0), device=det_bboxes.device).float().view(-1, 1, 1).expand( det_bboxes.size(0), det_bboxes.size(1), 1) mask_rois = torch.cat([batch_index, det_bboxes], dim=-1) mask_rois = mask_rois.view(-1, 5) aug_masks = [] for i in range(self.num_stages): mask_results = self._mask_forward(i, x, mask_rois) mask_pred = mask_results['mask_preds'] aug_masks.append(mask_pred) mask_preds = sum(aug_masks) / len(aug_masks) num_det = det_bboxes.shape[1] segm_results = self.mask_head[-1].predict_by_feat( mask_preds, results_list, batch_img_metas, self.test_cfg, rescale=rescale) segm_results = segm_results.reshape(batch_size, num_det, segm_results.shape[-2], segm_results.shape[-1]) return dets, det_labels, segm_results
Perform forward propagation of the mask head and predict detection results on the features of the upstream network. Args: x (tuple[Tensor]): Feature maps of all scale level. batch_img_metas (list[dict]): List of image information. results_list (list[Tensor]): Detection results of each image. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: list[Tensor]: Detection results of each image after the post process. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). - masks (Tensor): Has a shape (num_instances, H, W).
188,704
import torch from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.utils import Backend, get_root_logger def l2norm__forward__default(self, x): """Default rewriter for l2norm. Implement with functinoal.normalize . """ return torch.nn.functional.normalize( x, dim=1) * self.weight[None, :, None, None] func_name='mmdet.models.necks.ssd_neck.L2Norm.forward', backend=Backend.TENSORRT.value) The provided code snippet includes necessary dependencies for implementing the `l2norm__forward__tensorrt` function. Write a Python function `def l2norm__forward__tensorrt(self, x)` to solve the following problem: rewrite `l2norm` for TensorRT. TensorRT7 does not support dynamic clamp, which is used in normalize. Here is the function: def l2norm__forward__tensorrt(self, x): """rewrite `l2norm` for TensorRT. TensorRT7 does not support dynamic clamp, which is used in normalize. """ ctx = FUNCTION_REWRITER.get_context() logger = get_root_logger() trt_version_major = 8 try: import tensorrt as trt from packaging import version trt_version = version.parse(trt.__version__) trt_version_major = trt_version.major except Exception: logger.warning('Can not get TensorRT version.') if trt_version_major >= 8: return l2norm__forward__default(self, x) else: return ctx.origin_func(self, x)
rewrite `l2norm` for TensorRT. TensorRT7 does not support dynamic clamp, which is used in normalize.
188,705
import torch from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.utils import is_dynamic_shape The provided code snippet includes necessary dependencies for implementing the `maskformer__forward` function. Write a Python function `def maskformer__forward(self, batch_inputs, data_samples, mode='tensor', **kwargs)` to solve the following problem: Rewrite `forward` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). batch_data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. rescale (bool): Whether to rescale the results. Defaults to True. Returns: tuple[Tensor, Tensor, Tensor, Tensor]: (bboxes, labels, masks, semseg), `bboxes` of shape [N, num_det, 5], `labels` of shape [N, num_det], `masks` of shape [N, roi_H, roi_W], `semseg` of shape [N, num_sem_class, sem_H, sem_W]. Here is the function: def maskformer__forward(self, batch_inputs, data_samples, mode='tensor', **kwargs): """Rewrite `forward` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). batch_data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. rescale (bool): Whether to rescale the results. Defaults to True. Returns: tuple[Tensor, Tensor, Tensor, Tensor]: (bboxes, labels, masks, semseg), `bboxes` of shape [N, num_det, 5], `labels` of shape [N, num_det], `masks` of shape [N, roi_H, roi_W], `semseg` of shape [N, num_sem_class, sem_H, sem_W]. """ ctx = FUNCTION_REWRITER.get_context() deploy_cfg = ctx.cfg # get origin input shape as tensor to support onnx dynamic shape is_dynamic_flag = is_dynamic_shape(deploy_cfg) img_shape = torch._shape_as_tensor(batch_inputs)[2:] if not is_dynamic_flag: img_shape = [int(val) for val in img_shape] # set the metainfo # note that we can not use `set_metainfo`, deepcopy would crash the # onnx trace. for data_sample in data_samples: data_sample.set_field( name='img_shape', value=img_shape, field_type='metainfo') data_sample.set_field( name='batch_input_shape', value=img_shape, field_type='metainfo') feats = self.extract_feat(batch_inputs) mask_cls_results, mask_pred_results = self.panoptic_head.predict( feats, data_samples) # do not export panoptic_fusion_head return mask_cls_results, mask_pred_results
Rewrite `forward` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). batch_data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. rescale (bool): Whether to rescale the results. Defaults to True. Returns: tuple[Tensor, Tensor, Tensor, Tensor]: (bboxes, labels, masks, semseg), `bboxes` of shape [N, num_det, 5], `labels` of shape [N, num_det], `masks` of shape [N, roi_H, roi_W], `semseg` of shape [N, num_sem_class, sem_H, sem_W].
188,706
import torch from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.utils import is_dynamic_shape The provided code snippet includes necessary dependencies for implementing the `two_stage_panoptic_segmentor__forward` function. Write a Python function `def two_stage_panoptic_segmentor__forward(self, batch_inputs, data_samples, mode='tensor', **kwargs)` to solve the following problem: Rewrite `forward` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). batch_data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. rescale (bool): Whether to rescale the results. Defaults to True. Returns: tuple[Tensor, Tensor, Tensor, Tensor]: (bboxes, labels, masks, semseg), `bboxes` of shape [N, num_det, 5], `labels` of shape [N, num_det], `masks` of shape [N, roi_H, roi_W], `semseg` of shape [N, num_sem_class, sem_H, sem_W]. Here is the function: def two_stage_panoptic_segmentor__forward(self, batch_inputs, data_samples, mode='tensor', **kwargs): """Rewrite `forward` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). batch_data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. rescale (bool): Whether to rescale the results. Defaults to True. Returns: tuple[Tensor, Tensor, Tensor, Tensor]: (bboxes, labels, masks, semseg), `bboxes` of shape [N, num_det, 5], `labels` of shape [N, num_det], `masks` of shape [N, roi_H, roi_W], `semseg` of shape [N, num_sem_class, sem_H, sem_W]. """ ctx = FUNCTION_REWRITER.get_context() deploy_cfg = ctx.cfg # get origin input shape as tensor to support onnx dynamic shape is_dynamic_flag = is_dynamic_shape(deploy_cfg) img_shape = torch._shape_as_tensor(batch_inputs)[2:].to( batch_inputs.device) if not is_dynamic_flag: img_shape = [int(val) for val in img_shape] # set the metainfo # note that we can not use `set_metainfo`, deepcopy would crash the # onnx trace. for data_sample in data_samples: data_sample.set_field( name='img_shape', value=img_shape, field_type='metainfo') data_sample.set_field( name='batch_input_shape', value=img_shape, field_type='metainfo') img_metas = [data_samples.metainfo for data_samples in data_samples] x = self.extract_feat(batch_inputs) if data_samples[0].get('proposals', None) is None: proposals = self.rpn_head.predict(x, data_samples, rescale=False) else: proposals = [data_sample.proposals for data_sample in data_samples] bboxes, labels, masks = self.roi_head.predict( x, proposals, data_samples, rescale=False) semseg = self.semantic_head.predict(x, img_metas, rescale=False) # do not export panoptic_fusion_head return bboxes, labels, masks, semseg
Rewrite `forward` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). batch_data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. rescale (bool): Whether to rescale the results. Defaults to True. Returns: tuple[Tensor, Tensor, Tensor, Tensor]: (bboxes, labels, masks, semseg), `bboxes` of shape [N, num_det, 5], `labels` of shape [N, num_det], `masks` of shape [N, roi_H, roi_W], `semseg` of shape [N, num_sem_class, sem_H, sem_W].
188,707
import copy import torch from mmdet.models.detectors.base import ForwardResults from mmdet.structures import DetDataSample from mmdet.structures.det_data_sample import OptSampleList from mmdeploy.core import FUNCTION_REWRITER, mark from mmdeploy.utils import is_dynamic_shape def __predict_impl(self, batch_inputs, data_samples, rescale): """Rewrite and adding mark for `predict`. Encapsulate this function for rewriting `predict` of DetectionTransformer. 1. Add mark for DetectionTransformer. 2. Support both dynamic and static export to onnx. """ img_feats = self.extract_feat(batch_inputs) head_inputs_dict = self.forward_transformer(img_feats, data_samples) results_list = self.bbox_head.predict( **head_inputs_dict, rescale=rescale, batch_data_samples=data_samples) return results_list def _set_metainfo(data_samples, img_shape): """Set the metainfo. Code in this function cannot be traced by fx. """ # fx can not trace deepcopy correctly data_samples = copy.deepcopy(data_samples) if data_samples is None: data_samples = [DetDataSample()] # note that we can not use `set_metainfo`, deepcopy would crash the # onnx trace. for data_sample in data_samples: data_sample.set_field( name='img_shape', value=img_shape, field_type='metainfo') return data_samples 'mmdet.models.detectors.base_detr.DetectionTransformer.forward') The provided code snippet includes necessary dependencies for implementing the `detection_transformer__forward` function. Write a Python function `def detection_transformer__forward(self, batch_inputs: torch.Tensor, data_samples: OptSampleList = None, rescale: bool = True, **kwargs) -> ForwardResults` to solve the following problem: Rewrite `predict` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. rescale (Boolean): rescale result or not. Returns: tuple[Tensor]: Detection results of the input images. - dets (Tensor): Classification bboxes and scores. Has a shape (num_instances, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). Here is the function: def detection_transformer__forward(self, batch_inputs: torch.Tensor, data_samples: OptSampleList = None, rescale: bool = True, **kwargs) -> ForwardResults: """Rewrite `predict` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. rescale (Boolean): rescale result or not. Returns: tuple[Tensor]: Detection results of the input images. - dets (Tensor): Classification bboxes and scores. Has a shape (num_instances, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). """ ctx = FUNCTION_REWRITER.get_context() deploy_cfg = ctx.cfg # get origin input shape as tensor to support onnx dynamic shape is_dynamic_flag = is_dynamic_shape(deploy_cfg) img_shape = torch._shape_as_tensor(batch_inputs)[2:].to( batch_inputs.device) if not is_dynamic_flag: img_shape = [int(val) for val in img_shape] # set the metainfo data_samples = _set_metainfo(data_samples, img_shape) return __predict_impl(self, batch_inputs, data_samples, rescale)
Rewrite `predict` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. rescale (Boolean): rescale result or not. Returns: tuple[Tensor]: Detection results of the input images. - dets (Tensor): Classification bboxes and scores. Has a shape (num_instances, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
188,708
import torch from mmdet.models.detectors.base import ForwardResults from mmdet.structures import DetDataSample from mmdet.structures.det_data_sample import OptSampleList from mmdeploy.core import FUNCTION_REWRITER, mark from mmdeploy.utils import is_dynamic_shape def _set_metainfo(data_samples, img_shape): The provided code snippet includes necessary dependencies for implementing the `single_stage_detector__forward` function. Write a Python function `def single_stage_detector__forward(self, batch_inputs: torch.Tensor, data_samples: OptSampleList = None, mode: str = 'tensor', **kwargs) -> ForwardResults` to solve the following problem: Rewrite `forward` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. mode (str): export mode, not used. Returns: tuple[Tensor]: Detection results of the input images. - dets (Tensor): Classification bboxes and scores. Has a shape (num_instances, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). Here is the function: def single_stage_detector__forward(self, batch_inputs: torch.Tensor, data_samples: OptSampleList = None, mode: str = 'tensor', **kwargs) -> ForwardResults: """Rewrite `forward` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. mode (str): export mode, not used. Returns: tuple[Tensor]: Detection results of the input images. - dets (Tensor): Classification bboxes and scores. Has a shape (num_instances, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). """ ctx = FUNCTION_REWRITER.get_context() deploy_cfg = ctx.cfg # get origin input shape as tensor to support onnx dynamic shape is_dynamic_flag = is_dynamic_shape(deploy_cfg) img_shape = torch._shape_as_tensor(batch_inputs)[2:] if not is_dynamic_flag: img_shape = [int(val) for val in img_shape] # set the metainfo data_samples = _set_metainfo(data_samples, img_shape) return __forward_impl(self, batch_inputs, data_samples=data_samples)
Rewrite `forward` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. mode (str): export mode, not used. Returns: tuple[Tensor]: Detection results of the input images. - dets (Tensor): Classification bboxes and scores. Has a shape (num_instances, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
188,709
import torch from mmdet.models.detectors.base import ForwardResults from mmdet.structures.det_data_sample import OptSampleList from mmdeploy.core import FUNCTION_REWRITER, mark from mmdeploy.utils import is_dynamic_shape The provided code snippet includes necessary dependencies for implementing the `two_stage_detector__extract_feat` function. Write a Python function `def two_stage_detector__extract_feat(self, img)` to solve the following problem: Rewrite `extract_feat` for default backend. This function uses the specific `extract_feat` function for the two stage detector after adding marks. Args: ctx (ContextCaller): The context with additional information. self: The instance of the original class. img (Tensor | List[Tensor]): Input image tensor(s). Returns: list[Tensor]: Each item with shape (N, C, H, W) corresponds one level of backbone and neck features. Here is the function: def two_stage_detector__extract_feat(self, img): """Rewrite `extract_feat` for default backend. This function uses the specific `extract_feat` function for the two stage detector after adding marks. Args: ctx (ContextCaller): The context with additional information. self: The instance of the original class. img (Tensor | List[Tensor]): Input image tensor(s). Returns: list[Tensor]: Each item with shape (N, C, H, W) corresponds one level of backbone and neck features. """ ctx = FUNCTION_REWRITER.get_context() @mark('extract_feat', inputs='img', outputs='feat') def __extract_feat_impl(self, img): return ctx.origin_func(self, img) return __extract_feat_impl(self, img)
Rewrite `extract_feat` for default backend. This function uses the specific `extract_feat` function for the two stage detector after adding marks. Args: ctx (ContextCaller): The context with additional information. self: The instance of the original class. img (Tensor | List[Tensor]): Input image tensor(s). Returns: list[Tensor]: Each item with shape (N, C, H, W) corresponds one level of backbone and neck features.
188,710
import torch from mmdet.models.detectors.base import ForwardResults from mmdet.structures.det_data_sample import OptSampleList from mmdeploy.core import FUNCTION_REWRITER, mark from mmdeploy.utils import is_dynamic_shape The provided code snippet includes necessary dependencies for implementing the `two_stage_detector__forward` function. Write a Python function `def two_stage_detector__forward(self, batch_inputs: torch.Tensor, data_samples: OptSampleList = None, mode: str = 'tensor', **kwargs) -> ForwardResults` to solve the following problem: Rewrite `forward` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. mode (str): export mode, not used. Returns: tuple[Tensor]: Detection results of the input images. - dets (Tensor): Classification bboxes and scores. Has a shape (num_instances, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). Here is the function: def two_stage_detector__forward(self, batch_inputs: torch.Tensor, data_samples: OptSampleList = None, mode: str = 'tensor', **kwargs) -> ForwardResults: """Rewrite `forward` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. mode (str): export mode, not used. Returns: tuple[Tensor]: Detection results of the input images. - dets (Tensor): Classification bboxes and scores. Has a shape (num_instances, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). """ ctx = FUNCTION_REWRITER.get_context() deploy_cfg = ctx.cfg # get origin input shape as tensor to support onnx dynamic shape is_dynamic_flag = is_dynamic_shape(deploy_cfg) img_shape = torch._shape_as_tensor(batch_inputs)[2:] if not is_dynamic_flag: img_shape = [int(val) for val in img_shape] # set the metainfo # note that we can not use `set_metainfo`, deepcopy would crash the # onnx trace. for data_sample in data_samples: data_sample.set_field( name='img_shape', value=img_shape, field_type='metainfo') x = self.extract_feat(batch_inputs) if data_samples[0].get('proposals', None) is None: rpn_results_list = self.rpn_head.predict( x, data_samples, rescale=False) else: rpn_results_list = [ data_sample.proposals for data_sample in data_samples ] output = self.roi_head.predict( x, rpn_results_list, data_samples, rescale=False) return output
Rewrite `forward` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. mode (str): export mode, not used. Returns: tuple[Tensor]: Detection results of the input images. - dets (Tensor): Classification bboxes and scores. Has a shape (num_instances, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
188,711
import torch from mmdet.models.detectors.base import ForwardResults from mmdet.structures.det_data_sample import OptSampleList from mmdeploy.core import FUNCTION_REWRITER, mark from mmdeploy.utils import is_dynamic_shape from .single_stage import _set_metainfo def __forward_impl_instance_seg(self, batch_inputs, data_samples, rescale=True, **kwargs): """Rewrite and adding mark for `forward`. Encapsulate this function for rewriting `forward` of BaseDetector. 1. Add mark for BaseDetector. 2. Support both dynamic and static export to onnx. """ x = self.extract_feat(batch_inputs) if self.with_bbox: # the bbox branch does not need to be scaled to the original # image scale, because the mask branch will scale both bbox # and mask at the same time. bbox_rescale = rescale if not self.with_mask else False results_list = self.bbox_head.predict( x, data_samples, rescale=bbox_rescale) else: results_list = None mask_outs = self.mask_head.predict( x, data_samples, rescale=rescale, results_list=results_list) return mask_outs 'mmdet.models.detectors.single_stage_instance_seg.' 'SingleStageInstanceSegmentor.forward') """Rewrite and adding mark for `forward`. Encapsulate this function for rewriting `forward` of BaseDetector. 1. Add mark for BaseDetector. 2. Support both dynamic and static export to onnx. """ def _set_metainfo(data_samples, img_shape): """Set the metainfo. Code in this function cannot be traced by fx. """ # note that we can not use `set_metainfo`, deepcopy would crash the # onnx trace. 'mmdet.models.detectors.single_stage.SingleStageDetector.forward') The provided code snippet includes necessary dependencies for implementing the `single_stage_instance_segmentor__forward` function. Write a Python function `def single_stage_instance_segmentor__forward( self, batch_inputs: torch.Tensor, data_samples: OptSampleList = None, mode: str = 'tensor', **kwargs) -> ForwardResults` to solve the following problem: Rewrite `forward` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. rescale (bool): Whether to rescale the results. Defaults to True. Returns: tuple[Tensor]: Detection results of the input images. - dets (Tensor): Classification bboxes and scores. Has a shape (num_instances, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). Here is the function: def single_stage_instance_segmentor__forward( self, batch_inputs: torch.Tensor, data_samples: OptSampleList = None, mode: str = 'tensor', **kwargs) -> ForwardResults: """Rewrite `forward` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. rescale (bool): Whether to rescale the results. Defaults to True. Returns: tuple[Tensor]: Detection results of the input images. - dets (Tensor): Classification bboxes and scores. Has a shape (num_instances, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). """ ctx = FUNCTION_REWRITER.get_context() deploy_cfg = ctx.cfg # get origin input shape as tensor to support onnx dynamic shape is_dynamic_flag = is_dynamic_shape(deploy_cfg) img_shape = torch._shape_as_tensor(batch_inputs)[2:] if not is_dynamic_flag: img_shape = [int(val) for val in img_shape] # set the metainfo data_samples = _set_metainfo(data_samples, img_shape) return __forward_impl_instance_seg( self, batch_inputs, data_samples=data_samples, **kwargs)
Rewrite `forward` for default backend. Support configured dynamic/static shape for model input and return detection result as Tensor instead of numpy array. Args: batch_inputs (Tensor): Inputs with shape (N, C, H, W). data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. rescale (bool): Whether to rescale the results. Defaults to True. Returns: tuple[Tensor]: Detection results of the input images. - dets (Tensor): Classification bboxes and scores. Has a shape (num_instances, 5) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
188,712
import torch from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `get_topk_from_heatmap__default` function. Write a Python function `def get_topk_from_heatmap__default(scores, k=20)` to solve the following problem: Get top k positions from heatmap. Replace view(batch, -1) with flatten Here is the function: def get_topk_from_heatmap__default(scores, k=20): """Get top k positions from heatmap. Replace view(batch, -1) with flatten """ height, width = scores.size()[2:] topk_scores, topk_inds = torch.topk(scores.flatten(1), k) topk_clses = topk_inds // (height * width) topk_inds = topk_inds % (height * width) topk_ys = topk_inds // width topk_xs = (topk_inds % width).int().float() return topk_scores, topk_inds, topk_clses, topk_ys, topk_xs
Get top k positions from heatmap. Replace view(batch, -1) with flatten
188,713
from copy import deepcopy from typing import Dict, Optional, Sequence, Tuple, Union import mmengine import numpy as np import torch from mmdet3d.structures import get_box_type from mmengine import Config from mmengine.dataset import Compose, pseudo_collate from mmengine.model import BaseDataPreprocessor from mmdeploy.codebase.base import BaseTask from mmdeploy.utils import Task from .mmdet3d import MMDET3D_TASK The provided code snippet includes necessary dependencies for implementing the `_get_dataset_metainfo` function. Write a Python function `def _get_dataset_metainfo(model_cfg: Config)` to solve the following problem: Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class. Here is the function: def _get_dataset_metainfo(model_cfg: Config): """Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class. """ for dataloader_name in [ 'test_dataloader', 'val_dataloader', 'train_dataloader' ]: if dataloader_name not in model_cfg: continue dataloader_cfg = model_cfg[dataloader_name] dataset_cfg = dataloader_cfg.dataset if 'metainfo' in dataset_cfg: return dataset_cfg.metainfo return None
Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class.
188,714
from typing import Any, Dict, List, Optional, Sequence, Union import torch from mmdet3d.structures.det3d_data_sample import SampleList from mmengine import Config from mmengine.model.base_model.data_preprocessor import BaseDataPreprocessor from mmengine.registry import Registry from mmengine.structures import BaseDataElement, InstanceData from mmdeploy.codebase.base import BaseBackendModel from mmdeploy.utils import (Backend, get_backend, get_codebase_config, load_config) __BACKEND_MODEL = Registry('backend_mono_detectors') The provided code snippet includes necessary dependencies for implementing the `build_mono_detection_model` function. Write a Python function `def build_mono_detection_model( model_files: Sequence[str], model_cfg: Union[str, Config], deploy_cfg: Union[str, Config], device: str, data_preprocessor: Optional[Union[Config, BaseDataPreprocessor]] = None, **kwargs)` to solve the following problem: Build monocular 3d object detection model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | Config): Input model config file or Config object. deploy_cfg (str | Config): Input deployment config file or Config object. device (str): Device to input model data_preprocessor (BaseDataPreprocessor | Config): The data preprocessor of the model. Returns: VoxelDetectionModel: Detector for a configured backend. Here is the function: def build_mono_detection_model( model_files: Sequence[str], model_cfg: Union[str, Config], deploy_cfg: Union[str, Config], device: str, data_preprocessor: Optional[Union[Config, BaseDataPreprocessor]] = None, **kwargs): """Build monocular 3d object detection model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | Config): Input model config file or Config object. deploy_cfg (str | Config): Input deployment config file or Config object. device (str): Device to input model data_preprocessor (BaseDataPreprocessor | Config): The data preprocessor of the model. Returns: VoxelDetectionModel: Detector for a configured backend. """ deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg) backend = get_backend(deploy_cfg) model_type = get_codebase_config(deploy_cfg).get('model_type', 'end2end') backend_detector = __BACKEND_MODEL.build( dict( type=model_type, backend=backend, backend_files=model_files, device=device, model_cfg=model_cfg, deploy_cfg=deploy_cfg, data_preprocessor=data_preprocessor, **kwargs)) return backend_detector
Build monocular 3d object detection model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | Config): Input model config file or Config object. deploy_cfg (str | Config): Input deployment config file or Config object. device (str): Device to input model data_preprocessor (BaseDataPreprocessor | Config): The data preprocessor of the model. Returns: VoxelDetectionModel: Detector for a configured backend.
188,715
from typing import Any, Dict, List, Optional, Sequence, Union import mmcv import torch from mmdet3d.structures.det3d_data_sample import SampleList from mmengine import Config from mmengine.model.base_model.data_preprocessor import BaseDataPreprocessor from mmengine.registry import Registry from mmengine.structures import BaseDataElement, InstanceData from mmdeploy.codebase.base import BaseBackendModel from mmdeploy.utils import (Backend, get_backend, get_codebase_config, load_config) __BACKEND_MODEL = Registry('backend_voxel_detectors') The provided code snippet includes necessary dependencies for implementing the `build_voxel_detection_model` function. Write a Python function `def build_voxel_detection_model( model_files: Sequence[str], model_cfg: Union[str, Config], deploy_cfg: Union[str, Config], device: str, data_preprocessor: Optional[Union[Config, BaseDataPreprocessor]] = None, **kwargs)` to solve the following problem: Build 3d voxel object detection model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | Config): Input model config file or Config object. deploy_cfg (str | Config): Input deployment config file or Config object. device (str): Device to input model data_preprocessor (BaseDataPreprocessor | Config): The data preprocessor of the model. Returns: VoxelDetectionModel: Detector for a configured backend. Here is the function: def build_voxel_detection_model( model_files: Sequence[str], model_cfg: Union[str, Config], deploy_cfg: Union[str, Config], device: str, data_preprocessor: Optional[Union[Config, BaseDataPreprocessor]] = None, **kwargs): """Build 3d voxel object detection model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | Config): Input model config file or Config object. deploy_cfg (str | Config): Input deployment config file or Config object. device (str): Device to input model data_preprocessor (BaseDataPreprocessor | Config): The data preprocessor of the model. Returns: VoxelDetectionModel: Detector for a configured backend. """ deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg) backend = get_backend(deploy_cfg) model_type = get_codebase_config(deploy_cfg).get('model_type', 'end2end') backend_detector = __BACKEND_MODEL.build( dict( type=model_type, backend=backend, backend_files=model_files, device=device, model_cfg=model_cfg, deploy_cfg=deploy_cfg, data_preprocessor=data_preprocessor, **kwargs)) return backend_detector
Build 3d voxel object detection model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | Config): Input model config file or Config object. deploy_cfg (str | Config): Input deployment config file or Config object. device (str): Device to input model data_preprocessor (BaseDataPreprocessor | Config): The data preprocessor of the model. Returns: VoxelDetectionModel: Detector for a configured backend.
188,716
import os from copy import deepcopy from typing import Dict, Optional, Sequence, Tuple, Union import mmengine import numpy as np import torch from mmdet3d.structures import get_box_type from mmengine import Config from mmengine.dataset import Compose, pseudo_collate from mmengine.model import BaseDataPreprocessor from mmdeploy.codebase.base import BaseTask from mmdeploy.utils import Task from .mmdet3d import MMDET3D_TASK The provided code snippet includes necessary dependencies for implementing the `_get_dataset_metainfo` function. Write a Python function `def _get_dataset_metainfo(model_cfg: Config)` to solve the following problem: Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class. Here is the function: def _get_dataset_metainfo(model_cfg: Config): """Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class. """ for dataloader_name in [ 'test_dataloader', 'val_dataloader', 'train_dataloader' ]: if dataloader_name not in model_cfg: continue dataloader_cfg = model_cfg[dataloader_name] dataset_cfg = dataloader_cfg.dataset if 'metainfo' in dataset_cfg: return dataset_cfg.metainfo return None
Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class.
188,717
from torch import Tensor from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `singlestagemono3ddetector__forward` function. Write a Python function `def singlestagemono3ddetector__forward(self, inputs: Tensor, **kwargs)` to solve the following problem: Rewrite to support feed inputs of Tensor type. Args: inputs (Tensor): Input image Returns: list: two torch.Tensor Here is the function: def singlestagemono3ddetector__forward(self, inputs: Tensor, **kwargs): """Rewrite to support feed inputs of Tensor type. Args: inputs (Tensor): Input image Returns: list: two torch.Tensor """ x = self.extract_feat({'imgs': inputs}) results = self.bbox_head.forward(x) return results[0], results[1]
Rewrite to support feed inputs of Tensor type. Args: inputs (Tensor): Input image Returns: list: two torch.Tensor
188,718
import torch from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.utils import get_ir_config The provided code snippet includes necessary dependencies for implementing the `mvxtwostagedetector__extract_img_feat` function. Write a Python function `def mvxtwostagedetector__extract_img_feat(self, img: torch.Tensor) -> dict` to solve the following problem: Extract features of images. Here is the function: def mvxtwostagedetector__extract_img_feat(self, img: torch.Tensor) -> dict: """Extract features of images.""" if self.with_img_backbone and img is not None: if img.dim() == 5 and img.size(0) == 1: img.squeeze_() elif img.dim() == 5 and img.size(0) > 1: B, N, C, H, W = img.size() img = img.view(B * N, C, H, W) img_feats = self.img_backbone(img) else: return None if self.with_img_neck: img_feats = self.img_neck(img_feats) return img_feats
Extract features of images.
188,719
import torch from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.utils import get_ir_config The provided code snippet includes necessary dependencies for implementing the `mvxtwostagedetector__extract_feat` function. Write a Python function `def mvxtwostagedetector__extract_feat(self, batch_inputs_dict: dict) -> tuple` to solve the following problem: Rewrite this func to remove voxelize op. Args: batch_inputs_dict (dict): Input dict comprises `voxels`, `num_points` and `coors` Returns: tuple(torch.Tensor) : image feature and points feather. Here is the function: def mvxtwostagedetector__extract_feat(self, batch_inputs_dict: dict) -> tuple: """Rewrite this func to remove voxelize op. Args: batch_inputs_dict (dict): Input dict comprises `voxels`, `num_points` and `coors` Returns: tuple(torch.Tensor) : image feature and points feather. """ voxel_dict = batch_inputs_dict.get('voxels', None) imgs = batch_inputs_dict.get('imgs', None) points = batch_inputs_dict.get('points', None) img_feats = self.extract_img_feat(imgs) pts_feats = self.extract_pts_feat( voxel_dict, points=points, img_feats=img_feats) return (img_feats, pts_feats)
Rewrite this func to remove voxelize op. Args: batch_inputs_dict (dict): Input dict comprises `voxels`, `num_points` and `coors` Returns: tuple(torch.Tensor) : image feature and points feather.
188,720
import torch from mmdeploy.core import FUNCTION_REWRITER from mmdeploy.utils import get_ir_config The provided code snippet includes necessary dependencies for implementing the `mvxtwostagedetector__forward` function. Write a Python function `def mvxtwostagedetector__forward(self, voxels: torch.Tensor, num_points: torch.Tensor, coors: torch.Tensor, **kwargs)` to solve the following problem: Rewrite this func to remove voxelize op. Args: voxels (Tensor): input voxels num_points (Tensor): input num_points coors (Tensor): input coors Returns: tuple: A tuple of classification scores, bbox and direction classification prediction. - cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * num_classes. - bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * C. - dir_cls_preds (list[Tensor|None]): Direction classification predictions for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 2. Here is the function: def mvxtwostagedetector__forward(self, voxels: torch.Tensor, num_points: torch.Tensor, coors: torch.Tensor, **kwargs): """Rewrite this func to remove voxelize op. Args: voxels (Tensor): input voxels num_points (Tensor): input num_points coors (Tensor): input coors Returns: tuple: A tuple of classification scores, bbox and direction classification prediction. - cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * num_classes. - bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * C. - dir_cls_preds (list[Tensor|None]): Direction classification predictions for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 2. """ ctx = FUNCTION_REWRITER.get_context() deploy_cfg = ctx.cfg batch_inputs_dict = { 'voxels': { 'voxels': voxels, 'num_points': num_points, 'coors': coors } } _, pts_feats = self.extract_feat(batch_inputs_dict=batch_inputs_dict) outs = self.pts_bbox_head(pts_feats) if type(outs[0][0]) is dict: bbox_preds, scores, dir_scores = [], [], [] for task_res in outs: bbox_preds.append(task_res[0]['reg']) bbox_preds.append(task_res[0]['height']) bbox_preds.append(task_res[0]['dim']) if 'vel' in task_res[0].keys(): bbox_preds.append(task_res[0]['vel']) scores.append(task_res[0]['heatmap']) dir_scores.append(task_res[0]['rot']) bbox_preds = torch.cat(bbox_preds, dim=1) scores = torch.cat(scores, dim=1) dir_scores = torch.cat(dir_scores, dim=1) return scores, bbox_preds, dir_scores else: preds = [] expect_names = [] for i in range(len(outs[0])): preds += [outs[0][i], outs[1][i], outs[2][i]] expect_names += [ f'cls_score{i}', f'bbox_pred{i}', f'dir_cls_pred{i}' ] # check if output_names is set correctly. onnx_cfg = get_ir_config(deploy_cfg) output_names = onnx_cfg['output_names'] if output_names != list(expect_names): raise RuntimeError(f'`output_names` should be {expect_names} ' f'but given {output_names}\n' f'Deploy config:\n{deploy_cfg.pretty_text}') return tuple(preds)
Rewrite this func to remove voxelize op. Args: voxels (Tensor): input voxels num_points (Tensor): input num_points coors (Tensor): input coors Returns: tuple: A tuple of classification scores, bbox and direction classification prediction. - cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * num_classes. - bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * C. - dir_cls_preds (list[Tensor|None]): Direction classification predictions for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 2.
188,721
import torch from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `pointpillarsscatter__forward` function. Write a Python function `def pointpillarsscatter__forward(self, voxel_features, coors, batch_size=1)` to solve the following problem: Scatter features of single sample. Args: voxel_features (torch.Tensor): Voxel features from voxel encoder layer. coors (torch.Tensor): Coordinates of each voxel. The first column indicates the sample ID. batch_size (int): Number of samples in the current batch, batch_size=1 by default. Here is the function: def pointpillarsscatter__forward(self, voxel_features, coors, batch_size=1): """Scatter features of single sample. Args: voxel_features (torch.Tensor): Voxel features from voxel encoder layer. coors (torch.Tensor): Coordinates of each voxel. The first column indicates the sample ID. batch_size (int): Number of samples in the current batch, batch_size=1 by default. """ canvas = torch.zeros( self.in_channels, self.nx * self.ny, dtype=voxel_features.dtype, device=voxel_features.device) indices = coors[:, 2] * self.nx + coors[:, 3] indices = indices.long() voxels = voxel_features.t() # Now scatter the blob back to the canvas. canvas.scatter_( dim=1, index=indices.expand(canvas.shape[0], -1), src=voxels) # Undo the column stacking to final 4-dim tensor canvas = canvas.view(1, self.in_channels, self.ny, self.nx) return canvas
Scatter features of single sample. Args: voxel_features (torch.Tensor): Voxel features from voxel encoder layer. coors (torch.Tensor): Coordinates of each voxel. The first column indicates the sample ID. batch_size (int): Number of samples in the current batch, batch_size=1 by default.
188,722
from typing import List, Tuple import torch from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `basedetector__forward` function. Write a Python function `def basedetector__forward(self, voxels: torch.Tensor, num_points: torch.Tensor, coors: torch.Tensor, data_samples=None, **kwargs) -> Tuple[List[torch.Tensor]]` to solve the following problem: Extract features of images. Here is the function: def basedetector__forward(self, voxels: torch.Tensor, num_points: torch.Tensor, coors: torch.Tensor, data_samples=None, **kwargs) -> Tuple[List[torch.Tensor]]: """Extract features of images.""" batch_inputs_dict = { 'voxels': { 'voxels': voxels, 'num_points': num_points, 'coors': coors } } return self._forward(batch_inputs_dict, data_samples, **kwargs)
Extract features of images.
188,723
import torch from mmdet3d.models.voxel_encoders.utils import get_paddings_indicator from mmdeploy.core import FUNCTION_REWRITER The provided code snippet includes necessary dependencies for implementing the `pillar_encoder__forward` function. Write a Python function `def pillar_encoder__forward(self, features, num_points, coors, *args, **kwargs)` to solve the following problem: Rewrite this func to optimize node. Modify the code at _with_voxel_center and use slice instead of the original operation. Args: features (torch.Tensor): Point features or raw points in shape (N, M, C). num_points (torch.Tensor): Number of points in each pillar. coors (torch.Tensor): Coordinates of each voxel. Returns: torch.Tensor: Features of pillars. Here is the function: def pillar_encoder__forward(self, features, num_points, coors, *args, **kwargs): """Rewrite this func to optimize node. Modify the code at _with_voxel_center and use slice instead of the original operation. Args: features (torch.Tensor): Point features or raw points in shape (N, M, C). num_points (torch.Tensor): Number of points in each pillar. coors (torch.Tensor): Coordinates of each voxel. Returns: torch.Tensor: Features of pillars. """ features_ls = [features] # Find distance of x, y, and z from cluster center if self._with_cluster_center: points_mean = features[:, :, :3].sum( dim=1, keepdim=True) / num_points.type_as(features).view(-1, 1, 1) f_cluster = features[:, :, :3] - points_mean features_ls.append(f_cluster) # Find distance of x, y, and z from pillar center device = features.device if self._with_voxel_center: if not self.legacy: f_center = features[..., :3] - (coors[..., 1:] * torch.tensor( [self.vz, self.vy, self.vx]).to(device) + torch.tensor([ self.z_offset, self.y_offset, self.x_offset ]).to(device)).unsqueeze(1).flip(2) else: f_center = features[..., :3] - (coors[..., 1:] * torch.tensor( [self.vz, self.vy, self.vx]).to(device) + torch.tensor([ self.z_offset, self.y_offset, self.x_offset ]).to(device)).unsqueeze(1).flip(2) features_ls[0] = torch.cat((f_center, features[..., 3:]), dim=-1) features_ls.append(f_center) if self._with_distance: points_dist = torch.norm(features[:, :, :3], 2, 2, keepdim=True) features_ls.append(points_dist) # Combine together feature decorations features = torch.cat(features_ls, dim=-1) # The feature decorations were calculated without regard to whether # pillar was empty. Need to ensure that # empty pillars remain set to zeros. voxel_count = features.shape[1] mask = get_paddings_indicator(num_points, voxel_count, axis=0) mask = torch.unsqueeze(mask, -1).type_as(features) features *= mask for pfn in self.pfn_layers: features = pfn(features, num_points) return features.squeeze(1)
Rewrite this func to optimize node. Modify the code at _with_voxel_center and use slice instead of the original operation. Args: features (torch.Tensor): Point features or raw points in shape (N, M, C). num_points (torch.Tensor): Number of points in each pillar. coors (torch.Tensor): Coordinates of each voxel. Returns: torch.Tensor: Features of pillars.
188,724
from typing import List, Optional, Sequence, Union import mmengine import torch from mmagic.structures import DataSample from mmengine import Config from mmengine.model.base_model.data_preprocessor import BaseDataPreprocessor from mmengine.registry import Registry from mmengine.structures import BaseDataElement from torch import nn from mmdeploy.codebase.base import BaseBackendModel from mmdeploy.utils import (Backend, get_backend, get_codebase_config, get_root_logger, load_config) __BACKEND_MODEL = Registry('backend_models') The provided code snippet includes necessary dependencies for implementing the `build_super_resolution_model` function. Write a Python function `def build_super_resolution_model( model_files: Sequence[str], model_cfg: Union[str, mmengine.Config], deploy_cfg: Union[str, mmengine.Config], device: str, data_preprocessor: Optional[Union[Config, BaseDataPreprocessor]] = None, **kwargs)` to solve the following problem: Build super resolution model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | Config): Input model config file or Config object. deploy_cfg (str | Config): Input deployment config file or Config object. device (str): Device to input model data_preprocessor (BaseDataPreprocessor | Config): The data preprocessor of the model. Returns: End2EndModel: Super Resolution model for a configured backend. Here is the function: def build_super_resolution_model( model_files: Sequence[str], model_cfg: Union[str, mmengine.Config], deploy_cfg: Union[str, mmengine.Config], device: str, data_preprocessor: Optional[Union[Config, BaseDataPreprocessor]] = None, **kwargs): """Build super resolution model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | Config): Input model config file or Config object. deploy_cfg (str | Config): Input deployment config file or Config object. device (str): Device to input model data_preprocessor (BaseDataPreprocessor | Config): The data preprocessor of the model. Returns: End2EndModel: Super Resolution model for a configured backend. """ model_cfg = load_config(model_cfg)[0] deploy_cfg = load_config(deploy_cfg)[0] backend = get_backend(deploy_cfg) model_type = get_codebase_config(deploy_cfg).get('model_type', 'end2end') backend_model = __BACKEND_MODEL.build( dict( type=model_type, backend=backend, backend_files=model_files, device=device, model_cfg=model_cfg, deploy_cfg=deploy_cfg, data_preprocessor=data_preprocessor, **kwargs)) return backend_model
Build super resolution model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | Config): Input model config file or Config object. deploy_cfg (str | Config): Input deployment config file or Config object. device (str): Device to input model data_preprocessor (BaseDataPreprocessor | Config): The data preprocessor of the model. Returns: End2EndModel: Super Resolution model for a configured backend.
188,725
from copy import deepcopy from typing import Any, Callable, Dict, Optional, Sequence, Tuple, Union import mmengine import numpy as np import torch from mmengine import Config from mmengine.dataset import pseudo_collate from mmengine.model import BaseDataPreprocessor from mmdeploy.codebase.base import BaseTask from mmdeploy.codebase.mmagic.deploy.mmagic import MMAGIC_TASK from mmdeploy.utils import Task, get_input_shape The provided code snippet includes necessary dependencies for implementing the `process_model_config` function. Write a Python function `def process_model_config(model_cfg: mmengine.Config, imgs: Union[Sequence[str], Sequence[np.ndarray]], input_shape: Optional[Sequence[int]] = None)` to solve the following problem: Process the model config. Args: model_cfg (mmengine.Config): The model config. imgs (Sequence[str] | Sequence[np.ndarray]): Input image(s), accepted data type are List[str], List[np.ndarray]. input_shape (list[int]): A list of two integer in (width, height) format specifying input shape. Default: None. Returns: mmengine.Config: the model config after processing. Here is the function: def process_model_config(model_cfg: mmengine.Config, imgs: Union[Sequence[str], Sequence[np.ndarray]], input_shape: Optional[Sequence[int]] = None): """Process the model config. Args: model_cfg (mmengine.Config): The model config. imgs (Sequence[str] | Sequence[np.ndarray]): Input image(s), accepted data type are List[str], List[np.ndarray]. input_shape (list[int]): A list of two integer in (width, height) format specifying input shape. Default: None. Returns: mmengine.Config: the model config after processing. """ config = deepcopy(model_cfg) if not hasattr(config, 'test_pipeline'): config.__setattr__('test_pipeline', config.val_pipeline) keys_to_remove = ['gt', 'gt_path'] # MMagic doesn't support LoadImageFromWebcam. # Remove "LoadImageFromFile" and related metakeys. load_from_file = isinstance(imgs[0], str) is_static_cfg = input_shape is not None if not load_from_file: config.test_pipeline.pop(0) keys_to_remove.append('lq_path') # Fix the input shape by 'Resize' if is_static_cfg: resize = { 'type': 'Resize', 'scale': (input_shape[0], input_shape[1]), 'keys': ['img'] } config.test_pipeline.insert(1, resize) for key in keys_to_remove: for pipeline in list(config.test_pipeline): if 'key' in pipeline and key == pipeline['key']: config.test_pipeline.remove(pipeline) if 'keys' in pipeline: while key in pipeline['keys']: pipeline['keys'].remove(key) if len(pipeline['keys']) == 0: config.test_pipeline.remove(pipeline) if 'meta_keys' in pipeline: while key in pipeline['meta_keys']: pipeline['meta_keys'].remove(key) return config
Process the model config. Args: model_cfg (mmengine.Config): The model config. imgs (Sequence[str] | Sequence[np.ndarray]): Input image(s), accepted data type are List[str], List[np.ndarray]. input_shape (list[int]): A list of two integer in (width, height) format specifying input shape. Default: None. Returns: mmengine.Config: the model config after processing.
188,726
from copy import deepcopy from typing import Any, Callable, Dict, Optional, Sequence, Tuple, Union import mmengine import numpy as np import torch from mmengine import Config from mmengine.dataset import pseudo_collate from mmengine.model import BaseDataPreprocessor from mmdeploy.codebase.base import BaseTask from mmdeploy.codebase.mmagic.deploy.mmagic import MMAGIC_TASK from mmdeploy.utils import Task, get_input_shape The provided code snippet includes necessary dependencies for implementing the `_get_dataset_metainfo` function. Write a Python function `def _get_dataset_metainfo(model_cfg: Config)` to solve the following problem: Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class. Here is the function: def _get_dataset_metainfo(model_cfg: Config): """Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class. """ from mmagic import datasets # noqa from mmagic.registry import DATASETS module_dict = DATASETS.module_dict for dataloader_name in [ 'test_dataloader', 'val_dataloader', 'train_dataloader' ]: if dataloader_name not in model_cfg: continue dataloader_cfg = model_cfg[dataloader_name] if isinstance(dataloader_cfg, list): dataset_cfg = [loader.dataset for loader in dataloader_cfg] dataset_list = [ module_dict.get(dataset.type, None) for dataset in dataset_cfg ] if len(dataset_list) == 0: continue meta_list = [] for i, dataset in enumerate(dataset_list): if hasattr(dataset, '_load_metainfo') and \ isinstance(dataset._load_metainfo, Callable): meta = dataset._load_metainfo(dataset_cfg[i].get( 'metainfo', None)) meta_list.append(meta) if hasattr(dataset, 'METAINFO'): meta_list.append(dataset.METAINFO) return meta_list else: dataset_cfg = dataloader_cfg.get('dataset', None) dataset_cls = module_dict.get(dataset_cfg.type, None) if dataset_cls is None: continue if hasattr(dataset_cls, '_load_metainfo') and isinstance( dataset_cls._load_metainfo, Callable): meta = dataset_cls._load_metainfo( dataset_cfg.get('metainfo', None)) if meta is not None: return meta if hasattr(dataset_cls, 'METAINFO'): return dataset_cls.METAINFO return None
Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class.
188,727
The provided code snippet includes necessary dependencies for implementing the `base_edit_model__forward` function. Write a Python function `def base_edit_model__forward( self, batch_inputs: Tensor, data_samples: Optional[List[BaseDataElement]] = None, mode: str = 'predict')` to solve the following problem: Rewrite `forward` of BaseEditModel for default backend. Args: batch_inputs (torch.Tensor): The input tensor with shape (N, C, ...) in general. data_samples (List[BaseDataElement], optional): The annotation data of every samples. It's required if ``mode="loss"``. Defaults to None. mode (str): Return what kind of value. Defaults to 'predict'. Returns: return a list of :obj:`mmengine.BaseDataElement`. Here is the function: def base_edit_model__forward( self, batch_inputs: Tensor, data_samples: Optional[List[BaseDataElement]] = None, mode: str = 'predict'): """Rewrite `forward` of BaseEditModel for default backend. Args: batch_inputs (torch.Tensor): The input tensor with shape (N, C, ...) in general. data_samples (List[BaseDataElement], optional): The annotation data of every samples. It's required if ``mode="loss"``. Defaults to None. mode (str): Return what kind of value. Defaults to 'predict'. Returns: return a list of :obj:`mmengine.BaseDataElement`. """ return self.forward_tensor(batch_inputs, data_samples)
Rewrite `forward` of BaseEditModel for default backend. Args: batch_inputs (torch.Tensor): The input tensor with shape (N, C, ...) in general. data_samples (List[BaseDataElement], optional): The annotation data of every samples. It's required if ``mode="loss"``. Defaults to None. mode (str): Return what kind of value. Defaults to 'predict'. Returns: return a list of :obj:`mmengine.BaseDataElement`.
188,728
from copy import deepcopy from typing import Callable, Dict, Optional, Sequence, Tuple, Union import mmengine import numpy as np import torch from mmengine import Config from mmengine.dataset import pseudo_collate from mmengine.dist import cast_data_device from mmengine.model import BaseDataPreprocessor from mmdeploy.codebase.base import BaseTask from mmdeploy.utils import Task, get_input_shape from .mmocr import MMOCR_TASK The provided code snippet includes necessary dependencies for implementing the `process_model_config` function. Write a Python function `def process_model_config(model_cfg: mmengine.Config, imgs: Union[Sequence[str], Sequence[np.ndarray]], input_shape: Optional[Sequence[int]] = None)` to solve the following problem: Process the model config. Args: model_cfg (mmengine.Config): The model config. imgs (Sequence[str] | Sequence[np.ndarray]): Input image(s), accepted data type are List[str], List[np.ndarray]. input_shape (list[int]): A list of two integer in (width, height) format specifying input shape. Default: None. Returns: mmengine.Config: the model config after processing. Here is the function: def process_model_config(model_cfg: mmengine.Config, imgs: Union[Sequence[str], Sequence[np.ndarray]], input_shape: Optional[Sequence[int]] = None): """Process the model config. Args: model_cfg (mmengine.Config): The model config. imgs (Sequence[str] | Sequence[np.ndarray]): Input image(s), accepted data type are List[str], List[np.ndarray]. input_shape (list[int]): A list of two integer in (width, height) format specifying input shape. Default: None. Returns: mmengine.Config: the model config after processing. """ if isinstance(imgs[0], np.ndarray): # set loading pipeline type model_cfg.test_pipeline[0].type = 'LoadImageFromNDArray' test_pipeline = model_cfg._cfg_dict.test_pipeline for i, transform in enumerate(test_pipeline): if transform.type == 'PackTextRecogInputs': test_pipeline[i].meta_keys = tuple( j for j in test_pipeline[i].meta_keys if j != 'instances') # for static exporting if input_shape is not None and transform.type == 'RescaleToHeight': resize = { 'height': input_shape[1], 'min_width': input_shape[0], 'max_width': input_shape[0] } test_pipeline[i].update(resize) test_pipeline = [ transform for transform in test_pipeline if transform.type != 'LoadOCRAnnotations' ] model_cfg.test_pipeline = test_pipeline return model_cfg
Process the model config. Args: model_cfg (mmengine.Config): The model config. imgs (Sequence[str] | Sequence[np.ndarray]): Input image(s), accepted data type are List[str], List[np.ndarray]. input_shape (list[int]): A list of two integer in (width, height) format specifying input shape. Default: None. Returns: mmengine.Config: the model config after processing.
188,729
from copy import deepcopy from typing import Callable, Dict, Optional, Sequence, Tuple, Union import mmengine import numpy as np import torch from mmengine import Config from mmengine.dataset import pseudo_collate from mmengine.dist import cast_data_device from mmengine.model import BaseDataPreprocessor from mmdeploy.codebase.base import BaseTask from mmdeploy.utils import Task, get_input_shape from .mmocr import MMOCR_TASK The provided code snippet includes necessary dependencies for implementing the `_get_dataset_metainfo` function. Write a Python function `def _get_dataset_metainfo(model_cfg: Config)` to solve the following problem: Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class. Here is the function: def _get_dataset_metainfo(model_cfg: Config): """Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class. """ from mmocr import datasets # noqa from mmocr.registry import DATASETS module_dict = DATASETS.module_dict for dataloader_name in [ 'test_dataloader', 'val_dataloader', 'train_dataloader' ]: if dataloader_name not in model_cfg: continue dataloader_cfg = model_cfg[dataloader_name] if isinstance(dataloader_cfg, list): dataloader_cfg = dataloader_cfg[0] dataset_cfg = dataloader_cfg.dataset dataset_cls = module_dict.get(dataset_cfg.type, None) if dataset_cls is None: continue if hasattr(dataset_cls, '_load_metainfo') and isinstance( dataset_cls._load_metainfo, Callable): meta = dataset_cls._load_metainfo( dataset_cfg.get('metainfo', None)) if meta is not None: return meta if hasattr(dataset_cls, 'METAINFO'): return dataset_cls.METAINFO return None
Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class.
188,730
from typing import List, Optional, Sequence, Union import cv2 import mmengine import torch from mmengine.registry import Registry from mmengine.structures import BaseDataElement, InstanceData from mmocr.structures import TextDetDataSample from mmdeploy.codebase.base import BaseBackendModel from mmdeploy.utils import (Backend, get_backend, get_codebase_config, load_config) __BACKEND_MODEL = Registry('backend_text_detectors') The provided code snippet includes necessary dependencies for implementing the `build_text_detection_model` function. Write a Python function `def build_text_detection_model(model_files: Sequence[str], model_cfg: Union[str, mmengine.Config], deploy_cfg: Union[str, mmengine.Config], device: str, **kwargs)` to solve the following problem: Build text detection model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | mmengine.Config): Input model config file or Config object. deploy_cfg (str | mmengine.Config): Input deployment config file or Config object. device (str): Device to input model. Returns: BaseBackendModel: Text detector for a configured backend. Here is the function: def build_text_detection_model(model_files: Sequence[str], model_cfg: Union[str, mmengine.Config], deploy_cfg: Union[str, mmengine.Config], device: str, **kwargs): """Build text detection model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | mmengine.Config): Input model config file or Config object. deploy_cfg (str | mmengine.Config): Input deployment config file or Config object. device (str): Device to input model. Returns: BaseBackendModel: Text detector for a configured backend. """ # load cfg if necessary deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg) backend = get_backend(deploy_cfg) model_type = get_codebase_config(deploy_cfg).get('model_type', 'end2end') backend_text_detector = __BACKEND_MODEL.build( dict( type=model_type, backend=backend, backend_files=model_files, device=device, deploy_cfg=deploy_cfg, model_cfg=model_cfg, **kwargs)) backend_text_detector = backend_text_detector.to(device) return backend_text_detector
Build text detection model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | mmengine.Config): Input model config file or Config object. deploy_cfg (str | mmengine.Config): Input deployment config file or Config object. device (str): Device to input model. Returns: BaseBackendModel: Text detector for a configured backend.
188,731
from typing import Optional, Sequence, Union import mmengine import torch from mmengine.registry import Registry from mmengine.structures import LabelData from mmocr.utils.typing_utils import RecSampleList from mmdeploy.codebase.base import BaseBackendModel from mmdeploy.utils import (Backend, get_backend, get_codebase_config, load_config) __BACKEND_MODEL = Registry('backend_text_recognizer') The provided code snippet includes necessary dependencies for implementing the `build_text_recognition_model` function. Write a Python function `def build_text_recognition_model(model_files: Sequence[str], model_cfg: Union[str, mmengine.Config], deploy_cfg: Union[str, mmengine.Config], device: str, **kwargs)` to solve the following problem: Build text recognition model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | mmengine.Config): Input model config file or Config object. deploy_cfg (str | mmengine.Config): Input deployment config file or Config object. device (str): Device to input model. Returns: BaseBackendModel: Text recognizer for a configured backend. Here is the function: def build_text_recognition_model(model_files: Sequence[str], model_cfg: Union[str, mmengine.Config], deploy_cfg: Union[str, mmengine.Config], device: str, **kwargs): """Build text recognition model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | mmengine.Config): Input model config file or Config object. deploy_cfg (str | mmengine.Config): Input deployment config file or Config object. device (str): Device to input model. Returns: BaseBackendModel: Text recognizer for a configured backend. """ # load cfg if necessary deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg) backend = get_backend(deploy_cfg) model_type = get_codebase_config(deploy_cfg).get('model_type', 'end2end') backend_text_recognizer = __BACKEND_MODEL.build( dict( type=model_type, backend=backend, backend_files=model_files, device=device, deploy_cfg=deploy_cfg, model_cfg=model_cfg, **kwargs)) backend_text_recognizer = backend_text_recognizer.to(device) return backend_text_recognizer
Build text recognition model for different backends. Args: model_files (Sequence[str]): Input model file(s). model_cfg (str | mmengine.Config): Input model config file or Config object. deploy_cfg (str | mmengine.Config): Input deployment config file or Config object. device (str): Device to input model. Returns: BaseBackendModel: Text recognizer for a configured backend.
188,732
from copy import deepcopy from typing import Callable, Dict, Optional, Sequence, Tuple, Union import mmengine import numpy as np import torch from mmengine import Config from mmengine.dataset import pseudo_collate from mmengine.dist import cast_data_device from mmengine.model import BaseDataPreprocessor from mmdeploy.codebase.base import BaseTask from mmdeploy.utils import Task, get_input_shape from .mmocr import MMOCR_TASK The provided code snippet includes necessary dependencies for implementing the `process_model_config` function. Write a Python function `def process_model_config(model_cfg: mmengine.Config, imgs: Union[Sequence[str], Sequence[np.ndarray]], input_shape: Optional[Sequence[int]] = None)` to solve the following problem: Process the model config. Args: model_cfg (mmengine.Config): The model config. imgs (Sequence[str] | Sequence[np.ndarray]): Input image(s), accepted data type are List[str], List[np.ndarray]. input_shape (list[int]): A list of two integer in (width, height) format specifying input shape. Default: None. Returns: mmengine.Config: the model config after processing. Here is the function: def process_model_config(model_cfg: mmengine.Config, imgs: Union[Sequence[str], Sequence[np.ndarray]], input_shape: Optional[Sequence[int]] = None): """Process the model config. Args: model_cfg (mmengine.Config): The model config. imgs (Sequence[str] | Sequence[np.ndarray]): Input image(s), accepted data type are List[str], List[np.ndarray]. input_shape (list[int]): A list of two integer in (width, height) format specifying input shape. Default: None. Returns: mmengine.Config: the model config after processing. """ pipeline = model_cfg.test_dataloader.dataset.pipeline if isinstance(imgs[0], np.ndarray): # set loading pipeline type pipeline[0].type = 'LoadImageFromNDArray' for i, transform in enumerate(pipeline): if transform.type == 'PackTextDetInputs': pipeline[i].meta_keys = tuple(j for j in pipeline[i].meta_keys if j != 'instances') # for static exporting if input_shape is not None: if transform.type in ('Resize', 'ShortScaleAspectJitter'): pipeline[i] = mmengine.ConfigDict( dict(type='Resize', scale=input_shape, keep_ratio=False)) pipeline = [ transform for transform in pipeline if transform.type != 'LoadOCRAnnotations' ] model_cfg.test_dataloader.dataset.pipeline = pipeline return model_cfg
Process the model config. Args: model_cfg (mmengine.Config): The model config. imgs (Sequence[str] | Sequence[np.ndarray]): Input image(s), accepted data type are List[str], List[np.ndarray]. input_shape (list[int]): A list of two integer in (width, height) format specifying input shape. Default: None. Returns: mmengine.Config: the model config after processing.
188,733
from copy import deepcopy from typing import Callable, Dict, Optional, Sequence, Tuple, Union import mmengine import numpy as np import torch from mmengine import Config from mmengine.dataset import pseudo_collate from mmengine.dist import cast_data_device from mmengine.model import BaseDataPreprocessor from mmdeploy.codebase.base import BaseTask from mmdeploy.utils import Task, get_input_shape from .mmocr import MMOCR_TASK The provided code snippet includes necessary dependencies for implementing the `_get_dataset_metainfo` function. Write a Python function `def _get_dataset_metainfo(model_cfg: Config)` to solve the following problem: Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class. Here is the function: def _get_dataset_metainfo(model_cfg: Config): """Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class. """ from mmocr import datasets # noqa from mmocr.registry import DATASETS module_dict = DATASETS.module_dict for dataloader_name in [ 'test_dataloader', 'val_dataloader', 'train_dataloader' ]: if dataloader_name not in model_cfg: continue dataloader_cfg = model_cfg[dataloader_name] dataset_cfg = dataloader_cfg.dataset dataset_cls = module_dict.get(dataset_cfg.type, None) if dataset_cls is None: continue if hasattr(dataset_cls, '_load_metainfo') and isinstance( dataset_cls._load_metainfo, Callable): meta = dataset_cls._load_metainfo( dataset_cfg.get('metainfo', None)) if meta is not None: return meta if hasattr(dataset_cls, 'METAINFO'): return dataset_cls.METAINFO return None
Get metainfo of dataset. Args: model_cfg Config: Input model Config object. Returns: list[str]: A list of string specifying names of different class.