id
int64
0
190k
prompt
stringlengths
21
13.4M
docstring
stringlengths
1
12k
188,834
from mmengine import Registry from mmdeploy.utils.config_utils import Backend def __build_backend_wrapper_class(backend: Backend, registry: Registry): return registry.module_dict[backend.value]
null
188,835
from mmengine import Registry from mmdeploy.utils.config_utils import Backend def get_backend_wrapper_class(backend: Backend) -> type: """Get the backend wrapper class from the registry. Args: backend (Backend): The backend enum type. Returns: type: The backend wrapper class """ return BACKEND_WRAPPER.build(backend) def get_backend_file_count(backend: Backend): backend_class = get_backend_wrapper_class(backend) return backend_class.get_backend_file_count()
null
188,836
from typing import Optional, Sequence from mmdeploy.utils.device import parse_cuda_device_id from .utils import create_runtime, register_engines def parse_cuda_device_id(device: str) -> int: """Parse cuda device index from a string. Args: device (str): The typical style of string specifying cuda device, e.g.: 'cuda:0'. Returns: int: The parsed device id, defaults to `0`. """ match_result = re.match('([^:]+)(:[0-9]+)?$', device) assert match_result is not None, f'Can not parse device {device}.' assert match_result.group(1).lower() == 'cuda', 'Not cuda device.' device_id = 0 if match_result.lastindex == 1 else int( match_result.group(2)[1:]) return device_id def create_runtime(onnx_file: str, engines: List[pplnn.Engine]) -> pplnn.Runtime: """Create runtime object for pplnn. Args: onnx_file (str): path to onnx model engines (List[pplnn.Engine]): engines used to create the runtime object Returns: pplnn.Runtime: created runtime object """ runtime_builder = pplnn.onnx.RuntimeBuilderFactory.Create() assert runtime_builder is not None, 'Failed to create '\ 'onnx.RuntimeBuilder.' status = runtime_builder.LoadModelFromFile(onnx_file) assert status == pplcommon.RC_SUCCESS, 'Failed to load ONNX model.' resources = pplnn.onnx.RuntimeBuilderResources() resources.engines = engines status = runtime_builder.SetResources(resources) assert status == pplcommon.RC_SUCCESS, 'runtime_builder.SetResources() ' \ 'Failed.' status = runtime_builder.Preprocess() assert status == pplcommon.RC_SUCCESS, 'runtime_builder.Preprocess() ' \ 'Failed.' runtime = runtime_builder.CreateRuntime() assert runtime is not None, 'Failed to create onnx.Runtime' return runtime def register_engines(device_id: int, disable_avx512: bool = False, quick_select: bool = False, input_shapes: Sequence[Sequence[int]] = None, export_algo_file: str = None, import_algo_file: str = None) -> List[pplnn.Engine]: """Register engines for pplnn runtime. Args: device_id (int): Specifying device index. `-1` for cpu. disable_avx512 (bool): Whether to disable avx512 for x86. Defaults to `False`. quick_select (bool): Whether to use default algorithms. Defaults to `False`. input_shapes (Sequence[Sequence[int]]): shapes for PPLNN optimization. export_algo_file (str): File path for exporting PPLNN optimization file. import_algo_file (str): File path for loading PPLNN optimization file. Returns: list[pplnn.Engine]: A list of registered pplnn engines. """ engines = [] logger = get_root_logger() if device_id == -1: x86_options = pplnn.x86.EngineOptions() x86_engine = pplnn.x86.EngineFactory.Create(x86_options) if not x86_engine: logger.error('Failed to create x86 engine') sys.exit(1) if disable_avx512: status = x86_engine.Configure(pplnn.x86.ENGINE_CONF_DISABLE_AVX512) if status != pplcommon.RC_SUCCESS: logger.error('x86 engine Configure() failed: ' + pplcommon.GetRetCodeStr(status)) sys.exit(1) engines.append(x86_engine) else: cuda_options = pplnn.cuda.EngineOptions() cuda_options.device_id = device_id cuda_options.mm_policy = pplnn.cuda.MM_BEST_FIT cuda_engine = pplnn.cuda.EngineFactory.Create(cuda_options) if not cuda_engine: logger.error('Failed to create cuda engine.') sys.exit(1) if quick_select: status = cuda_engine.Configure( pplnn.cuda.ENGINE_CONF_USE_DEFAULT_ALGORITHMS) if status != pplcommon.RC_SUCCESS: logger.error('cuda engine Configure() failed: ' + pplcommon.GetRetCodeStr(status)) sys.exit(1) if input_shapes is not None: status = cuda_engine.Configure( pplnn.cuda.ENGINE_CONF_SET_INPUT_DIMS, input_shapes) if status != pplcommon.RC_SUCCESS: logger.error( 'cuda engine Configure(ENGINE_CONF_SET_INPUT_DIMS) ' 'failed: ' + pplcommon.GetRetCodeStr(status)) sys.exit(1) if export_algo_file is not None: status = cuda_engine.Configure( pplnn.cuda.ENGINE_CONF_EXPORT_ALGORITHMS, export_algo_file) if status != pplcommon.RC_SUCCESS: logger.error( 'cuda engine Configure(ENGINE_CONF_EXPORT_ALGORITHMS) ' 'failed: ' + pplcommon.GetRetCodeStr(status)) sys.exit(1) if import_algo_file is not None: status = cuda_engine.Configure( pplnn.cuda.ENGINE_CONF_IMPORT_ALGORITHMS, import_algo_file) if status != pplcommon.RC_SUCCESS: logger.error( 'cuda engine Configure(ENGINE_CONF_IMPORT_ALGORITHMS) ' 'failed: ' + pplcommon.GetRetCodeStr(status)) sys.exit(1) engines.append(cuda_engine) return engines The provided code snippet includes necessary dependencies for implementing the `from_onnx` function. Write a Python function `def from_onnx(onnx_model: str, output_file_prefix: str, device: str = 'cuda:0', input_shapes: Optional[Sequence[Sequence[int]]] = None, **kwargs)` to solve the following problem: Convert ONNX to PPLNN. PPLNN is capable of optimizing onnx model. The optimized algorithm is saved into `algo_file` in json format. Note that `input_shapes` actually require multiple shapes of inputs in its original design. But in the pipeline of our codebase, we only pass one input shape which can be modified by users' own preferences. Args: output_file_prefix (str): File path to save PPLNN optimization algorithm and ONNX file onnx_model (str): Input onnx model. device (str): A string specifying device, defaults to 'cuda:0'. input_shapes (Sequence[Sequence[int]] | None): Shapes for PPLNN optimization, default to None. Examples: >>> from mmdeploy.apis.pplnn import from_onnx >>> >>> from_onnx(onnx_model = 'example.onnx', output_file_prefix = 'example') Here is the function: def from_onnx(onnx_model: str, output_file_prefix: str, device: str = 'cuda:0', input_shapes: Optional[Sequence[Sequence[int]]] = None, **kwargs): """Convert ONNX to PPLNN. PPLNN is capable of optimizing onnx model. The optimized algorithm is saved into `algo_file` in json format. Note that `input_shapes` actually require multiple shapes of inputs in its original design. But in the pipeline of our codebase, we only pass one input shape which can be modified by users' own preferences. Args: output_file_prefix (str): File path to save PPLNN optimization algorithm and ONNX file onnx_model (str): Input onnx model. device (str): A string specifying device, defaults to 'cuda:0'. input_shapes (Sequence[Sequence[int]] | None): Shapes for PPLNN optimization, default to None. Examples: >>> from mmdeploy.apis.pplnn import from_onnx >>> >>> from_onnx(onnx_model = 'example.onnx', output_file_prefix = 'example') """ if device == 'cpu': device_id = -1 else: assert 'cuda' in device, f'unexpected device: {device}, must contain ' '`cpu` or `cuda`' device_id = parse_cuda_device_id(device) if input_shapes is None: input_shapes = [[1, 3, 224, 224]] # PPLNN default shape for optimization algo_file = output_file_prefix + '.json' onnx_output_path = output_file_prefix + '.onnx' engines = register_engines( device_id, disable_avx512=False, quick_select=False, export_algo_file=algo_file, input_shapes=input_shapes) _ = create_runtime(onnx_model, engines) # side effect: export algorithms import shutil if onnx_output_path != onnx_model: shutil.copy2(onnx_model, onnx_output_path)
Convert ONNX to PPLNN. PPLNN is capable of optimizing onnx model. The optimized algorithm is saved into `algo_file` in json format. Note that `input_shapes` actually require multiple shapes of inputs in its original design. But in the pipeline of our codebase, we only pass one input shape which can be modified by users' own preferences. Args: output_file_prefix (str): File path to save PPLNN optimization algorithm and ONNX file onnx_model (str): Input onnx model. device (str): A string specifying device, defaults to 'cuda:0'. input_shapes (Sequence[Sequence[int]] | None): Shapes for PPLNN optimization, default to None. Examples: >>> from mmdeploy.apis.pplnn import from_onnx >>> >>> from_onnx(onnx_model = 'example.onnx', output_file_prefix = 'example')
188,837
import os import os.path as osp import tempfile from subprocess import call from typing import List, Optional, Union import onnx from .init_plugins import get_onnx2ncnn_path def mkdir_or_exist(dir_name, mode=0o777): if dir_name == '': return dir_name = osp.expanduser(dir_name) os.makedirs(dir_name, mode=mode, exist_ok=True) The provided code snippet includes necessary dependencies for implementing the `get_output_model_file` function. Write a Python function `def get_output_model_file(onnx_path: str, work_dir: Optional[str] = None) -> List[str]` to solve the following problem: Returns the path to the .param, .bin file with export result. Args: onnx_path (str): The path of the onnx model. work_dir (str|None): The path of the directory for saving the results. Defaults to `None`, which means using the directory of onnx_path. Returns: List[str]: The path of the files where the export result will be located. Here is the function: def get_output_model_file(onnx_path: str, work_dir: Optional[str] = None) -> List[str]: """Returns the path to the .param, .bin file with export result. Args: onnx_path (str): The path of the onnx model. work_dir (str|None): The path of the directory for saving the results. Defaults to `None`, which means using the directory of onnx_path. Returns: List[str]: The path of the files where the export result will be located. """ if work_dir is None: work_dir = osp.dirname(onnx_path) mkdir_or_exist(osp.abspath(work_dir)) file_name = osp.splitext(osp.split(onnx_path)[1])[0] save_param = osp.join(work_dir, file_name + '.param') save_bin = osp.join(work_dir, file_name + '.bin') return [save_param, save_bin]
Returns the path to the .param, .bin file with export result. Args: onnx_path (str): The path of the onnx model. work_dir (str|None): The path of the directory for saving the results. Defaults to `None`, which means using the directory of onnx_path. Returns: List[str]: The path of the files where the export result will be located.
188,838
import os import os.path as osp import tempfile from subprocess import call from typing import List, Optional, Union import onnx from .init_plugins import get_onnx2ncnn_path def get_onnx2ncnn_path() -> str: """Get mmdeploy_onnx2ncnn path. Returns: str: A path of mmdeploy_onnx2ncnn tool. """ candidates = ['./mmdeploy_onnx2ncnn', './mmdeploy_onnx2ncnn.exe'] onnx2ncnn_path = get_file_path(os.path.dirname(__file__), candidates) if onnx2ncnn_path is None or not os.path.exists(onnx2ncnn_path): onnx2ncnn_path = get_file_path('', candidates) if onnx2ncnn_path is None or not os.path.exists(onnx2ncnn_path): onnx2ncnn_path = shutil.which('mmdeploy_onnx2ncnn') onnx2ncnn_path = '' if onnx2ncnn_path is None else onnx2ncnn_path return onnx2ncnn_path The provided code snippet includes necessary dependencies for implementing the `from_onnx` function. Write a Python function `def from_onnx(onnx_model: Union[onnx.ModelProto, str], output_file_prefix: str)` to solve the following problem: Convert ONNX to ncnn. The inputs of ncnn include a model file and a weight file. We need to use an executable program to convert the `.onnx` file to a `.param` file and a `.bin` file. The output files will save to work_dir. Example: >>> from mmdeploy.apis.ncnn import from_onnx >>> onnx_path = 'work_dir/end2end.onnx' >>> output_file_prefix = 'work_dir/end2end' >>> from_onnx(onnx_path, output_file_prefix) Args: onnx_path (ModelProto|str): The path of the onnx model. output_file_prefix (str): The path to save the output ncnn file. Here is the function: def from_onnx(onnx_model: Union[onnx.ModelProto, str], output_file_prefix: str): """Convert ONNX to ncnn. The inputs of ncnn include a model file and a weight file. We need to use an executable program to convert the `.onnx` file to a `.param` file and a `.bin` file. The output files will save to work_dir. Example: >>> from mmdeploy.apis.ncnn import from_onnx >>> onnx_path = 'work_dir/end2end.onnx' >>> output_file_prefix = 'work_dir/end2end' >>> from_onnx(onnx_path, output_file_prefix) Args: onnx_path (ModelProto|str): The path of the onnx model. output_file_prefix (str): The path to save the output ncnn file. """ if not isinstance(onnx_model, str): onnx_path = tempfile.NamedTemporaryFile(suffix='.onnx').name onnx.save(onnx_model, onnx_path) else: onnx_path = onnx_model save_param = output_file_prefix + '.param' save_bin = output_file_prefix + '.bin' onnx2ncnn_path = get_onnx2ncnn_path() ret_code = call([onnx2ncnn_path, onnx_path, save_param, save_bin]) assert ret_code == 0, 'onnx2ncnn failed'
Convert ONNX to ncnn. The inputs of ncnn include a model file and a weight file. We need to use an executable program to convert the `.onnx` file to a `.param` file and a `.bin` file. The output files will save to work_dir. Example: >>> from mmdeploy.apis.ncnn import from_onnx >>> onnx_path = 'work_dir/end2end.onnx' >>> output_file_prefix = 'work_dir/end2end' >>> from_onnx(onnx_path, output_file_prefix) Args: onnx_path (ModelProto|str): The path of the onnx model. output_file_prefix (str): The path to save the output ncnn file.
188,839
import os import shutil from mmdeploy.utils import get_file_path import os if os.path.exists(ops_path): cdll.LoadLibrary(ops_path) The provided code snippet includes necessary dependencies for implementing the `get_ops_path` function. Write a Python function `def get_ops_path() -> str` to solve the following problem: Get ncnn custom ops library path. Returns: str: The library path of ncnn custom ops. Here is the function: def get_ops_path() -> str: """Get ncnn custom ops library path. Returns: str: The library path of ncnn custom ops. """ candidates = [ '../../lib/libmmdeploy_ncnn_ops.so', '../../lib/mmdeploy_ncnn_ops.dll' ] return get_file_path(os.path.dirname(__file__), candidates)
Get ncnn custom ops library path. Returns: str: The library path of ncnn custom ops.
188,840
import os.path as osp from subprocess import call from typing import List import mmengine from .init_plugins import get_ncnn2int8_path The provided code snippet includes necessary dependencies for implementing the `get_quant_model_file` function. Write a Python function `def get_quant_model_file(onnx_path: str, work_dir: str) -> List[str]` to solve the following problem: Returns the path to quant onnx and table with export result. Args: onnx_path (str): The path to the fp32 onnx model. work_dir (str): The path to the directory for saving the results. Returns: List[str]: The path to the files where the export result will be located. Here is the function: def get_quant_model_file(onnx_path: str, work_dir: str) -> List[str]: """Returns the path to quant onnx and table with export result. Args: onnx_path (str): The path to the fp32 onnx model. work_dir (str): The path to the directory for saving the results. Returns: List[str]: The path to the files where the export result will be located. """ mmengine.mkdir_or_exist(osp.abspath(work_dir)) base_name = osp.splitext(osp.split(onnx_path)[1])[0] quant_onnx = osp.join(work_dir, base_name + '_quant.onnx') quant_table = osp.join(work_dir, base_name + '.table') quant_param = osp.join(work_dir, base_name + '_int8.param') quant_bin = osp.join(work_dir, base_name + '_int8.bin') return [quant_onnx, quant_table, quant_param, quant_bin]
Returns the path to quant onnx and table with export result. Args: onnx_path (str): The path to the fp32 onnx model. work_dir (str): The path to the directory for saving the results. Returns: List[str]: The path to the files where the export result will be located.
188,841
import os.path as osp from subprocess import call from typing import List import mmengine from .init_plugins import get_ncnn2int8_path def get_ncnn2int8_path() -> str: """Get onnx2int8 path. Returns: str: A path of ncnn2int8 tool. """ ncnn2int8_path = shutil.which('ncnn2int8') if ncnn2int8_path is None: raise Exception( 'Cannot find ncnn2int8, try `export PATH=/path/to/ncnn2int8`') return ncnn2int8_path The provided code snippet includes necessary dependencies for implementing the `ncnn2int8` function. Write a Python function `def ncnn2int8(param: str, bin: str, table: str, int8_param: str, int8_bin: str)` to solve the following problem: Convert ncnn float model to quantized model. The inputs of ncnn include float model and weight file. We need to use a executable program to convert the float model to int8 model with calibration table. Example: >>> from mmdeploy.backend.ncnn.quant import ncnn2int8 >>> param = 'work_dir/end2end.param' >>> bin = 'work_dir/end2end.bin' >>> table = 'work_dir/end2end.table' >>> int8_param = 'work_dir/end2end_int8.param' >>> int8_bin = 'work_dir/end2end_int8.bin' >>> ncnn2int8(param, bin, table, int8_param, int8_bin) Args: param (str): The path of ncnn float model graph. bin (str): The path of ncnn float weight model weight. table (str): The path of ncnn calibration table. int8_param (str): The path of ncnn low bit model graph. int8_bin (str): The path of ncnn low bit weight model weight. Here is the function: def ncnn2int8(param: str, bin: str, table: str, int8_param: str, int8_bin: str): """Convert ncnn float model to quantized model. The inputs of ncnn include float model and weight file. We need to use a executable program to convert the float model to int8 model with calibration table. Example: >>> from mmdeploy.backend.ncnn.quant import ncnn2int8 >>> param = 'work_dir/end2end.param' >>> bin = 'work_dir/end2end.bin' >>> table = 'work_dir/end2end.table' >>> int8_param = 'work_dir/end2end_int8.param' >>> int8_bin = 'work_dir/end2end_int8.bin' >>> ncnn2int8(param, bin, table, int8_param, int8_bin) Args: param (str): The path of ncnn float model graph. bin (str): The path of ncnn float weight model weight. table (str): The path of ncnn calibration table. int8_param (str): The path of ncnn low bit model graph. int8_bin (str): The path of ncnn low bit weight model weight. """ ncnn2int8 = get_ncnn2int8_path() call([ncnn2int8, param, bin, int8_param, int8_bin, table])
Convert ncnn float model to quantized model. The inputs of ncnn include float model and weight file. We need to use a executable program to convert the float model to int8 model with calibration table. Example: >>> from mmdeploy.backend.ncnn.quant import ncnn2int8 >>> param = 'work_dir/end2end.param' >>> bin = 'work_dir/end2end.bin' >>> table = 'work_dir/end2end.table' >>> int8_param = 'work_dir/end2end_int8.param' >>> int8_bin = 'work_dir/end2end_int8.bin' >>> ncnn2int8(param, bin, table, int8_param, int8_bin) Args: param (str): The path of ncnn float model graph. bin (str): The path of ncnn float weight model weight. table (str): The path of ncnn calibration table. int8_param (str): The path of ncnn low bit model graph. int8_bin (str): The path of ncnn low bit weight model weight.
188,842
import glob import logging import os import sys import traceback from typing import Callable, Optional, Union from mmdeploy.utils.logging import get_logger import logging The provided code snippet includes necessary dependencies for implementing the `target_wrapper` function. Write a Python function `def target_wrapper(target: Callable, log_level: int, ret_value: Optional[mp.Value] = None, *args, **kwargs)` to solve the following problem: The wrapper used to start a new subprocess. Args: target (Callable): The target function to be wrapped. log_level (int): Log level for logging. ret_value (mp.Value): The success flag of target. Return: Any: The return of target. Here is the function: def target_wrapper(target: Callable, log_level: int, ret_value: Optional[mp.Value] = None, *args, **kwargs): """The wrapper used to start a new subprocess. Args: target (Callable): The target function to be wrapped. log_level (int): Log level for logging. ret_value (mp.Value): The success flag of target. Return: Any: The return of target. """ logger = logging.getLogger() logging.basicConfig( format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d:%H:%M:%S') logger.level logger.setLevel(log_level) if ret_value is not None: ret_value.value = -1 try: result = target(*args, **kwargs) if ret_value is not None: ret_value.value = 0 return result except Exception as e: logging.error(e) traceback.print_exc(file=sys.stdout)
The wrapper used to start a new subprocess. Args: target (Callable): The target function to be wrapped. log_level (int): Log level for logging. ret_value (mp.Value): The success flag of target. Return: Any: The return of target.
188,843
import glob import logging import os import sys import traceback from typing import Callable, Optional, Union from mmdeploy.utils.logging import get_logger def get_root_logger(log_file=None, log_level=logging.INFO) -> logging.Logger: """Get root logger. Args: log_file (str, optional): File path of log. Defaults to None. log_level (int, optional): The level of logger. Defaults to logging.INFO. Returns: logging.Logger: The obtained logger """ logger = get_logger( name='mmdeploy', log_file=log_file, log_level=log_level) return logger The provided code snippet includes necessary dependencies for implementing the `deprecate` function. Write a Python function `def deprecate(status: str = 'future', dst_obj: Optional[Union[object, str]] = None, msg: str = '', *args, **kwargs) -> None` to solve the following problem: Deprecate a function or a class. Args: status (str, optional): The status of the function or class. Defaults to future. dst_obj (str, object, optional): The object that will replace the original one. Defaults to None. msg (str): Additional message to be printed. Examples: >>> from math import ceil >>> from mmdeploy.utils.utils import deprecate >>> @deprecate(status='past', dst_obj=ceil, msg='') >>> def my_ceil(num): >>> num = num if(num==int(num)) else int(num) + 1 >>> return num Here is the function: def deprecate(status: str = 'future', dst_obj: Optional[Union[object, str]] = None, msg: str = '', *args, **kwargs) -> None: """Deprecate a function or a class. Args: status (str, optional): The status of the function or class. Defaults to future. dst_obj (str, object, optional): The object that will replace the original one. Defaults to None. msg (str): Additional message to be printed. Examples: >>> from math import ceil >>> from mmdeploy.utils.utils import deprecate >>> @deprecate(status='past', dst_obj=ceil, msg='') >>> def my_ceil(num): >>> num = num if(num==int(num)) else int(num) + 1 >>> return num """ logger = get_root_logger() def _register(src_obj): def fun(*args, **kwargs): if status == 'future': logger.warning( f'DeprecationWarning: {src_obj.__name__} will be ' f'deprecated in the future. {msg}') elif status == 'past': assert dst_obj is not None, 'for deprecated object, there' ' must be a destination object' logger.warning( f'DeprecationWarning: {src_obj.__name__} was deprecated,' f' use {dst_obj.__name__} instead. {msg}') else: raise KeyError(f'Unexpected key {status}') result = src_obj(*args, **kwargs) return result return fun return _register
Deprecate a function or a class. Args: status (str, optional): The status of the function or class. Defaults to future. dst_obj (str, object, optional): The object that will replace the original one. Defaults to None. msg (str): Additional message to be printed. Examples: >>> from math import ceil >>> from mmdeploy.utils.utils import deprecate >>> @deprecate(status='past', dst_obj=ceil, msg='') >>> def my_ceil(num): >>> num = num if(num==int(num)) else int(num) + 1 >>> return num
188,844
import glob import logging import os import sys import traceback from typing import Callable, Optional, Union from mmdeploy.utils.logging import get_logger The provided code snippet includes necessary dependencies for implementing the `get_file_path` function. Write a Python function `def get_file_path(prefix, candidates) -> str` to solve the following problem: Search for file in candidates. Args: prefix (str): Prefix of the paths. candidates (str): Candidate paths Returns: str: file path or '' if not found Here is the function: def get_file_path(prefix, candidates) -> str: """Search for file in candidates. Args: prefix (str): Prefix of the paths. candidates (str): Candidate paths Returns: str: file path or '' if not found """ for candidate in candidates: wildcard = os.path.abspath(os.path.join(prefix, candidate)) paths = glob.glob(wildcard) if paths: lib_path = paths[0] return lib_path return ''
Search for file in candidates. Args: prefix (str): Prefix of the paths. candidates (str): Candidate paths Returns: str: file path or '' if not found
188,845
from typing import Dict, List, Optional, Union import mmengine from .constants import Backend, Codebase, Task from .utils import deprecate, get_root_logger def get_ir_config(deploy_cfg: Union[str, mmengine.Config]) -> Dict: """Get the IR parameters in export() from config. Args: deploy_cfg (str | mmengine.Config): The path or content of config. Returns: Dict: The config dictionary of IR parameters """ deploy_cfg = load_config(deploy_cfg)[0] ir_config = deploy_cfg.get('ir_config', None) if ir_config is None: # TODO: deprecate in future ir_config = deploy_cfg.get('onnx_config', {}) return ir_config The provided code snippet includes necessary dependencies for implementing the `get_input_shape` function. Write a Python function `def get_input_shape(deploy_cfg: Union[str, mmengine.Config]) -> List[int]` to solve the following problem: Get the input shape for static exporting. Args: deploy_cfg (str | mmengine.Config): The path or content of config. Returns: List[int]: The input shape for backend model (axis 2 and 3), e.g [512, 512]. Here is the function: def get_input_shape(deploy_cfg: Union[str, mmengine.Config]) -> List[int]: """Get the input shape for static exporting. Args: deploy_cfg (str | mmengine.Config): The path or content of config. Returns: List[int]: The input shape for backend model (axis 2 and 3), e.g [512, 512]. """ input_shape = get_ir_config(deploy_cfg).get('input_shape', None) if input_shape is not None: assert len(input_shape) == 2, 'length of input_shape should equal to 2' return input_shape
Get the input shape for static exporting. Args: deploy_cfg (str | mmengine.Config): The path or content of config. Returns: List[int]: The input shape for backend model (axis 2 and 3), e.g [512, 512].
188,846
from typing import Dict, List, Optional, Union import mmengine from .constants import Backend, Codebase, Task from .utils import deprecate, get_root_logger The provided code snippet includes necessary dependencies for implementing the `cfg_apply_marks` function. Write a Python function `def cfg_apply_marks(deploy_cfg: Union[str, mmengine.Config]) -> Optional[bool]` to solve the following problem: Check if the model needs to be partitioned by checking if the config contains 'apply_marks'. Args: deploy_cfg (str | mmengine.Config): The path or content of config. Returns: bool or None: Whether config contains 'apply_marks'. Here is the function: def cfg_apply_marks(deploy_cfg: Union[str, mmengine.Config]) -> Optional[bool]: """Check if the model needs to be partitioned by checking if the config contains 'apply_marks'. Args: deploy_cfg (str | mmengine.Config): The path or content of config. Returns: bool or None: Whether config contains 'apply_marks'. """ partition_config = deploy_cfg.get('partition_config', None) if partition_config is None: return None apply_marks = partition_config.get('apply_marks', False) return apply_marks
Check if the model needs to be partitioned by checking if the config contains 'apply_marks'. Args: deploy_cfg (str | mmengine.Config): The path or content of config. Returns: bool or None: Whether config contains 'apply_marks'.
188,847
import importlib from mmdeploy.utils import Codebase def get_library_version(lib): """Try to get the version of a library if it has been installed. Args: lib (str): The name of library. Returns: None | str: If the library has been installed, return version. """ try: lib = importlib.import_module(lib) if hasattr(lib, '__version__'): version = lib.__version__ else: version = None except Exception: version = None return version The provided code snippet includes necessary dependencies for implementing the `get_codebase_version` function. Write a Python function `def get_codebase_version()` to solve the following problem: Get the version dictionary of all supported codebases. Returns: Dict: The name and the version of supported codebases. Here is the function: def get_codebase_version(): """Get the version dictionary of all supported codebases. Returns: Dict: The name and the version of supported codebases. """ version_dict = dict() for enum in Codebase: codebase = enum.value version_dict[codebase] = get_library_version(codebase) return version_dict
Get the version dictionary of all supported codebases. Returns: Dict: The name and the version of supported codebases.
188,848
import importlib from mmdeploy.utils import Codebase def get_library_version(lib): """Try to get the version of a library if it has been installed. Args: lib (str): The name of library. Returns: None | str: If the library has been installed, return version. """ try: lib = importlib.import_module(lib) if hasattr(lib, '__version__'): version = lib.__version__ else: version = None except Exception: version = None return version The provided code snippet includes necessary dependencies for implementing the `get_backend_version` function. Write a Python function `def get_backend_version()` to solve the following problem: Get the version dictionary of some supported backend. Returns: Dict: The name and the version of some supported backend. Here is the function: def get_backend_version(): """Get the version dictionary of some supported backend. Returns: Dict: The name and the version of some supported backend. """ backend_library_list = ['tensorrt', 'onnxruntime', 'ncnn', 'tvm'] version_dict = dict() for backend in backend_library_list: version_dict[backend] = get_library_version(backend) return version_dict
Get the version dictionary of some supported backend. Returns: Dict: The name and the version of some supported backend.
188,849
import re from typing import Optional def parse_cuda_device_id(device: str) -> int: """Parse cuda device index from a string. Args: device (str): The typical style of string specifying cuda device, e.g.: 'cuda:0'. Returns: int: The parsed device id, defaults to `0`. """ match_result = re.match('([^:]+)(:[0-9]+)?$', device) assert match_result is not None, f'Can not parse device {device}.' assert match_result.group(1).lower() == 'cuda', 'Not cuda device.' device_id = 0 if match_result.lastindex == 1 else int( match_result.group(2)[1:]) return device_id The provided code snippet includes necessary dependencies for implementing the `parse_device_id` function. Write a Python function `def parse_device_id(device: str) -> Optional[int]` to solve the following problem: Parse device index from a string. Args: device (str): The typical style of string specifying device, e.g.: 'cuda:0', 'cpu'. Returns: Optional[int]: The return value depends on the type of device. If device is 'cuda': cuda device index, defaults to `0`. If device is 'cpu': `-1`. Otherwise, `None` will be returned. Here is the function: def parse_device_id(device: str) -> Optional[int]: """Parse device index from a string. Args: device (str): The typical style of string specifying device, e.g.: 'cuda:0', 'cpu'. Returns: Optional[int]: The return value depends on the type of device. If device is 'cuda': cuda device index, defaults to `0`. If device is 'cpu': `-1`. Otherwise, `None` will be returned. """ if device == 'cpu': return -1 if 'cuda' in device: return parse_cuda_device_id(device) return None
Parse device index from a string. Args: device (str): The typical style of string specifying device, e.g.: 'cuda:0', 'cpu'. Returns: Optional[int]: The return value depends on the type of device. If device is 'cuda': cuda device index, defaults to `0`. If device is 'cpu': `-1`. Otherwise, `None` will be returned.
188,850
import re from typing import Optional The provided code snippet includes necessary dependencies for implementing the `parse_device_type` function. Write a Python function `def parse_device_type(device: str) -> str` to solve the following problem: Parse device type from a string. Args: device (str): The typical style of string specifying cuda device, e.g.: 'cuda:0', 'cpu', 'npu'. Returns: str: The parsed device type such as 'cuda', 'cpu', 'npu'. Here is the function: def parse_device_type(device: str) -> str: """Parse device type from a string. Args: device (str): The typical style of string specifying cuda device, e.g.: 'cuda:0', 'cpu', 'npu'. Returns: str: The parsed device type such as 'cuda', 'cpu', 'npu'. """ device_type = device if ':' in device: device_type = device.split(':')[0] return device_type
Parse device type from a string. Args: device (str): The typical style of string specifying cuda device, e.g.: 'cuda:0', 'cpu', 'npu'. Returns: str: The parsed device type such as 'cuda', 'cpu', 'npu'.
188,851
from torch.utils.data import Dataset The provided code snippet includes necessary dependencies for implementing the `is_can_sort_dataset` function. Write a Python function `def is_can_sort_dataset(dataset: Dataset) -> bool` to solve the following problem: Checking for the possibility of sorting the dataset by fields 'height' and 'width'. Args: dataset (Dataset): The dataset. Returns: bool: Is it possible or not to sort the dataset. Here is the function: def is_can_sort_dataset(dataset: Dataset) -> bool: """Checking for the possibility of sorting the dataset by fields 'height' and 'width'. Args: dataset (Dataset): The dataset. Returns: bool: Is it possible or not to sort the dataset. """ is_sort_possible = \ hasattr(dataset, 'data_infos') and \ dataset.data_infos and \ all(key in dataset.data_infos[0] for key in ('height', 'width')) return is_sort_possible
Checking for the possibility of sorting the dataset by fields 'height' and 'width'. Args: dataset (Dataset): The dataset. Returns: bool: Is it possible or not to sort the dataset.
188,852
from torch.utils.data import Dataset The provided code snippet includes necessary dependencies for implementing the `sort_dataset` function. Write a Python function `def sort_dataset(dataset: Dataset) -> Dataset` to solve the following problem: Sorts the dataset by image height and width. Args: dataset (Dataset): The dataset. Returns: Dataset: Sorted dataset. Here is the function: def sort_dataset(dataset: Dataset) -> Dataset: """Sorts the dataset by image height and width. Args: dataset (Dataset): The dataset. Returns: Dataset: Sorted dataset. """ sort_data_infos = sorted( dataset.data_infos, key=lambda e: (e['height'], e['width'])) sort_img_ids = [e['id'] for e in sort_data_infos] dataset.data_infos = sort_data_infos dataset.img_ids = sort_img_ids return dataset
Sorts the dataset by image height and width. Args: dataset (Dataset): The dataset. Returns: Dataset: Sorted dataset.
188,853
import asyncio import os import shutil import torch from pyppeteer import launch from torchvision.models import resnet18 from mmdeploy.core import FUNCTION_REWRITER, RewriterContext, patch_model from mmdeploy.utils import get_root_logger The provided code snippet includes necessary dependencies for implementing the `forward_of_resnet` function. Write a Python function `def forward_of_resnet(self, x)` to solve the following problem: Rewrite the forward implementation of resnet. Early return the feature map after two down-sampling steps. Here is the function: def forward_of_resnet(self, x): """Rewrite the forward implementation of resnet. Early return the feature map after two down-sampling steps. """ x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) return x
Rewrite the forward implementation of resnet. Early return the feature map after two down-sampling steps.
188,854
import asyncio import os import shutil import torch from pyppeteer import launch from torchvision.models import resnet18 from mmdeploy.core import FUNCTION_REWRITER, RewriterContext, patch_model from mmdeploy.utils import get_root_logger def rewrite_resnet18(original_path: str, rewritten_path: str): # prepare inputs and original model inputs = torch.rand(1, 3, 224, 224) original_model = resnet18(pretrained=False) # export original model torch.onnx.export(original_model, inputs, original_path) # patch model patched_model = patch_model(original_model, cfg={}, backend='default') # export rewritten onnx under a rewriter context manager with RewriterContext(cfg={}, backend='default'), torch.no_grad(): torch.onnx.export(patched_model, inputs, rewritten_path)
null
188,855
import asyncio import os import shutil import torch from pyppeteer import launch from torchvision.models import resnet18 from mmdeploy.core import FUNCTION_REWRITER, RewriterContext, patch_model from mmdeploy.utils import get_root_logger def screen_size(): async def visualize(original_path: str, rewritten_path: str): # launch a web browser browser = await launch(headless=False, args=['--start-maximized']) # create two new pages page2 = await browser.newPage() page1 = await browser.newPage() # go to netron.app width, height = screen_size() await page1.setViewport({'width': width, 'height': height}) await page2.setViewport({'width': width, 'height': height}) await page1.goto('https://netron.app/') await page2.goto('https://netron.app/') await asyncio.sleep(2) # open local two onnx files mupinput1 = await page1.querySelector("input[type='file']") mupinput2 = await page2.querySelector("input[type='file']") await mupinput1.uploadFile(original_file_path) await mupinput2.uploadFile(rewritten_file_path) await asyncio.sleep(4) for _ in range(6): await page1.click('#zoom-out-button') await asyncio.sleep(0.3) await asyncio.sleep(1) await page1.screenshot({'path': original_path.replace('.onnx', '.png')}, clip={ 'x': width / 4, 'y': 0, 'width': width / 2, 'height': height }) await page2.screenshot({'path': rewritten_path.replace('.onnx', '.png')}, clip={ 'x': width / 4, 'y': 0, 'width': width / 2, 'height': height }) await browser.close()
null
188,856
import argparse import math import cv2 from mmdeploy_runtime import Detector def parse_args(): parser = argparse.ArgumentParser( description='show how to use sdk python api') parser.add_argument('device_name', help='name of device, cuda or cpu') parser.add_argument( 'model_path', help='path of mmdeploy SDK model dumped by model converter') parser.add_argument('image_path', help='path of an image') args = parser.parse_args() return args
null
188,857
import argparse from math import cos, sin import cv2 import numpy as np from mmdeploy_runtime import RotatedDetector def parse_args(): parser = argparse.ArgumentParser( description='show how to use sdk python api') parser.add_argument('device_name', help='name of device, cuda or cpu') parser.add_argument( 'model_path', help='path of SDK model dumped by model converter') parser.add_argument('image_path', help='path of an image') args = parser.parse_args() return args
null
188,858
import argparse import cv2 from mmdeploy_runtime import TextDetector, TextRecognizer def parse_args(): parser = argparse.ArgumentParser( description='show how to use sdk python api') parser.add_argument('device_name', help='name of device, cuda or cpu') parser.add_argument('image_path', help='path of an image') parser.add_argument( '--textdet', default='', help='path of mmdeploy text-detector SDK model dumped by' 'model converter', ) parser.add_argument( '--textrecog', default='', help='path of mmdeploy text-recognizer SDK model dumped by' 'model converter', ) args = parser.parse_args() return args
null
188,859
import argparse import cv2 from mmdeploy_runtime import VideoRecognizer def parse_args(): parser = argparse.ArgumentParser( description='show how to use sdk python api') parser.add_argument('device_name', help='name of device, cuda or cpu') parser.add_argument( 'model_path', help='path of mmdeploy SDK model dumped by model converter') parser.add_argument('video_path', help='path of an video') parser.add_argument( '--clip_len', help='Frames of each sampled output clip', default=1) parser.add_argument( '--frame_interval', help='Temporal interval of adjacent sampled frames.', default=1) parser.add_argument( '--num_clips', help='Number of clips to be sampled', default=25) args = parser.parse_args() return args
null
188,860
import argparse import cv2 from mmdeploy_runtime import VideoRecognizer def SampleFrames(cap, clip_len, frame_interval, num_clips): if not cap.isOpened(): print('failed to load video') exit(-1) num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) ori_clip_len = clip_len * frame_interval avg_interval = (num_frames - ori_clip_len + 1) / float(num_clips) frame_inds = [] for i in range(num_clips): clip_offset = int(i * avg_interval + avg_interval / 2.0) for j in range(clip_len): ind = (j * frame_interval + clip_offset) % num_frames if num_frames <= ori_clip_len - 1: ind = j % num_frames frame_inds.append(ind) unique_inds = sorted(list(set(frame_inds))) buffer = {} ind = 0 for i, tid in enumerate(unique_inds): while ind < tid: _, mat = cap.read() ind += 1 _, mat = cap.read() buffer[tid] = mat ind += 1 clips = [] for tid in frame_inds: clips.append(buffer[tid]) info = (clip_len, num_clips) return clips, info
null
188,861
import argparse import cv2 import numpy as np from mmdeploy_runtime import Segmentor def parse_args(): parser = argparse.ArgumentParser( description='show how to use sdk python api') parser.add_argument('device_name', help='name of device, cuda or cpu') parser.add_argument( 'model_path', help='path of mmdeploy SDK model dumped by model converter') parser.add_argument('image_path', help='path of an image') args = parser.parse_args() return args
null
188,862
import argparse import cv2 import numpy as np from mmdeploy_runtime import Segmentor def get_palette(num_classes=256): state = np.random.get_state() # random color np.random.seed(42) palette = np.random.randint(0, 256, size=(num_classes, 3)) np.random.set_state(state) return [tuple(c) for c in palette]
null
188,863
import argparse import os import cv2 import numpy as np from mmdeploy_runtime import PoseTracker def parse_args(): parser = argparse.ArgumentParser( description='show how to use SDK Python API') parser.add_argument('device_name', help='name of device, cuda or cpu') parser.add_argument( 'det_model', help='path of mmdeploy SDK model dumped by model converter') parser.add_argument( 'pose_model', help='path of mmdeploy SDK model dumped by model converter') parser.add_argument('video', help='video path or camera index') parser.add_argument('--output_dir', help='output directory', default=None) parser.add_argument( '--skeleton', default='coco', choices=['coco', 'coco_wholebody'], help='skeleton for keypoints') args = parser.parse_args() if args.video.isnumeric(): args.video = int(args.video) return args
null
188,864
import argparse import os import cv2 import numpy as np from mmdeploy_runtime import PoseTracker VISUALIZATION_CFG = dict( coco=dict( skeleton=[(15, 13), (13, 11), (16, 14), (14, 12), (11, 12), (5, 11), (6, 12), (5, 6), (5, 7), (6, 8), (7, 9), (8, 10), (1, 2), (0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6)], palette=[(255, 128, 0), (255, 153, 51), (255, 178, 102), (230, 230, 0), (255, 153, 255), (153, 204, 255), (255, 102, 255), (255, 51, 255), (102, 178, 255), (51, 153, 255), (255, 153, 153), (255, 102, 102), (255, 51, 51), (153, 255, 153), (102, 255, 102), (51, 255, 51), (0, 255, 0), (0, 0, 255), (255, 0, 0), (255, 255, 255)], link_color=[ 0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16 ], point_color=[16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 ]), coco_wholebody=dict( skeleton=[(15, 13), (13, 11), (16, 14), (14, 12), (11, 12), (5, 11), (6, 12), (5, 6), (5, 7), (6, 8), (7, 9), (8, 10), (1, 2), (0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (15, 17), (15, 18), (15, 19), (16, 20), (16, 21), (16, 22), (91, 92), (92, 93), (93, 94), (94, 95), (91, 96), (96, 97), (97, 98), (98, 99), (91, 100), (100, 101), (101, 102), (102, 103), (91, 104), (104, 105), (105, 106), (106, 107), (91, 108), (108, 109), (109, 110), (110, 111), (112, 113), (113, 114), (114, 115), (115, 116), (112, 117), (117, 118), (118, 119), (119, 120), (112, 121), (121, 122), (122, 123), (123, 124), (112, 125), (125, 126), (126, 127), (127, 128), (112, 129), (129, 130), (130, 131), (131, 132)], palette=[(51, 153, 255), (0, 255, 0), (255, 128, 0), (255, 255, 255), (255, 153, 255), (102, 178, 255), (255, 51, 51)], link_color=[ 1, 1, 2, 2, 0, 0, 0, 0, 1, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 1, 1, 1, 1 ], point_color=[ 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 1, 1, 1, 1, 3, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 1, 1, 1, 1 ], sigmas=[ 0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089, 0.068, 0.066, 0.066, 0.092, 0.094, 0.094, 0.042, 0.043, 0.044, 0.043, 0.040, 0.035, 0.031, 0.025, 0.020, 0.023, 0.029, 0.032, 0.037, 0.038, 0.043, 0.041, 0.045, 0.013, 0.012, 0.011, 0.011, 0.012, 0.012, 0.011, 0.011, 0.013, 0.015, 0.009, 0.007, 0.007, 0.007, 0.012, 0.009, 0.008, 0.016, 0.010, 0.017, 0.011, 0.009, 0.011, 0.009, 0.007, 0.013, 0.008, 0.011, 0.012, 0.010, 0.034, 0.008, 0.008, 0.009, 0.008, 0.008, 0.007, 0.010, 0.008, 0.009, 0.009, 0.009, 0.007, 0.007, 0.008, 0.011, 0.008, 0.008, 0.008, 0.01, 0.008, 0.029, 0.022, 0.035, 0.037, 0.047, 0.026, 0.025, 0.024, 0.035, 0.018, 0.024, 0.022, 0.026, 0.017, 0.021, 0.021, 0.032, 0.02, 0.019, 0.022, 0.031, 0.029, 0.022, 0.035, 0.037, 0.047, 0.026, 0.025, 0.024, 0.035, 0.018, 0.024, 0.022, 0.026, 0.017, 0.021, 0.021, 0.032, 0.02, 0.019, 0.022, 0.031 ])) def visualize(frame, results, output_dir, frame_id, thr=0.5, resize=1280, skeleton_type='coco'): skeleton = VISUALIZATION_CFG[skeleton_type]['skeleton'] palette = VISUALIZATION_CFG[skeleton_type]['palette'] link_color = VISUALIZATION_CFG[skeleton_type]['link_color'] point_color = VISUALIZATION_CFG[skeleton_type]['point_color'] scale = resize / max(frame.shape[0], frame.shape[1]) keypoints, bboxes, _ = results scores = keypoints[..., 2] keypoints = (keypoints[..., :2] * scale).astype(int) bboxes *= scale img = cv2.resize(frame, (0, 0), fx=scale, fy=scale) for kpts, score, bbox in zip(keypoints, scores, bboxes): show = [1] * len(kpts) for (u, v), color in zip(skeleton, link_color): if score[u] > thr and score[v] > thr: cv2.line(img, kpts[u], tuple(kpts[v]), palette[color], 1, cv2.LINE_AA) else: show[u] = show[v] = 0 for kpt, show, color in zip(kpts, show, point_color): if show: cv2.circle(img, kpt, 1, palette[color], 2, cv2.LINE_AA) if output_dir: cv2.imwrite(f'{output_dir}/{str(frame_id).zfill(6)}.jpg', img) else: cv2.imshow('pose_tracker', img) return cv2.waitKey(1) != 'q' return True
null
188,865
import argparse import cv2 import numpy as np from mmdeploy_runtime import PoseDetector def parse_args(): parser = argparse.ArgumentParser( description='show how to use sdk python api') parser.add_argument('device_name', help='name of device, cuda or cpu') parser.add_argument( 'model_path', help='path of mmdeploy SDK model dumped by model converter') parser.add_argument('image_path', help='path of an image') parser.add_argument( '--bbox', default=None, nargs='+', type=int, help='bounding box of an object in format (x, y, w, h)') args = parser.parse_args() return args
null
188,866
import argparse import cv2 from mmdeploy_runtime import Restorer def parse_args(): parser = argparse.ArgumentParser( description='show how to use sdk python api') parser.add_argument('device_name', help='name of device, cuda or cpu') parser.add_argument( 'model_path', help='path of SDK model dumped by model converter') parser.add_argument('image_path', help='path of an image') args = parser.parse_args() return args
null
188,867
import argparse import cv2 import numpy as np from mmdeploy_runtime import Detector, PoseDetector def parse_args(): parser = argparse.ArgumentParser( description='show how to use SDK Python API') parser.add_argument('device_name', help='name of device, cuda or cpu') parser.add_argument( 'det_model_path', help='path of mmdeploy SDK model dumped by model converter') parser.add_argument( 'pose_model_path', help='path of mmdeploy SDK model dumped by model converter') parser.add_argument('image_path', help='path of input image') args = parser.parse_args() return args
null
188,868
import argparse import cv2 import numpy as np from mmdeploy_runtime import Detector, PoseDetector def visualize(frame, keypoints, filename, thr=0.5, resize=1280): skeleton = [(15, 13), (13, 11), (16, 14), (14, 12), (11, 12), (5, 11), (6, 12), (5, 6), (5, 7), (6, 8), (7, 9), (8, 10), (1, 2), (0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6)] palette = [(255, 128, 0), (255, 153, 51), (255, 178, 102), (230, 230, 0), (255, 153, 255), (153, 204, 255), (255, 102, 255), (255, 51, 255), (102, 178, 255), (51, 153, 255), (255, 153, 153), (255, 102, 102), (255, 51, 51), (153, 255, 153), (102, 255, 102), (51, 255, 51), (0, 255, 0), (0, 0, 255), (255, 0, 0), (255, 255, 255)] link_color = [ 0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16 ] point_color = [16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0] scale = resize / max(frame.shape[0], frame.shape[1]) scores = keypoints[..., 2] keypoints = (keypoints[..., :2] * scale).astype(int) img = cv2.resize(frame, (0, 0), fx=scale, fy=scale) for kpts, score in zip(keypoints, scores): show = [0] * len(kpts) for (u, v), color in zip(skeleton, link_color): if score[u] > thr and score[v] > thr: cv2.line(img, kpts[u], tuple(kpts[v]), palette[color], 1, cv2.LINE_AA) show[u] = show[v] = 1 for kpt, show, color in zip(kpts, show, point_color): if show: cv2.circle(img, kpt, 1, palette[color], 2, cv2.LINE_AA) cv2.imwrite(filename, img)
null
188,869
import argparse import cv2 from mmdeploy_runtime import Classifier def parse_args(): parser = argparse.ArgumentParser( description='show how to use sdk python api') parser.add_argument('device_name', help='name of device, cuda or cpu') parser.add_argument( 'model_path', help='path of mmdeploy SDK model dumped by model converter') parser.add_argument('image_path', help='path of an image') args = parser.parse_args() return args
null
188,870
import argparse import json import cv2 from mmdeploy_runtime import Context, Device, Model, Pipeline def parse_args(): parser = argparse.ArgumentParser( description='Demo of MMDeploy SDK pipeline API') parser.add_argument('device', help='name of device, cuda or cpu') parser.add_argument('det_model_path', help='path of detection model') parser.add_argument('cls_model_path', help='path of classification model') parser.add_argument('image_path', help='path to test image') args = parser.parse_args() return args
null
188,871
import grpc import inference_pb2 as inference__pb2 class Inference(object): """The inference service definition.""" def Echo(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary( request, target, '/mmdeploy.Inference/Echo', inference__pb2.Empty.SerializeToString, inference__pb2.Reply.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) def Init(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary( request, target, '/mmdeploy.Inference/Init', inference__pb2.Model.SerializeToString, inference__pb2.Reply.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) def OutputNames(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary( request, target, '/mmdeploy.Inference/OutputNames', inference__pb2.Empty.SerializeToString, inference__pb2.Names.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) def Inference(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary( request, target, '/mmdeploy.Inference/Inference', inference__pb2.TensorList.SerializeToString, inference__pb2.Reply.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) def Destroy(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary( request, target, '/mmdeploy.Inference/Destroy', inference__pb2.Empty.SerializeToString, inference__pb2.Reply.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) def add_InferenceServicer_to_server(servicer, server): rpc_method_handlers = { 'Echo': grpc.unary_unary_rpc_method_handler( servicer.Echo, request_deserializer=inference__pb2.Empty.FromString, response_serializer=inference__pb2.Reply.SerializeToString, ), 'Init': grpc.unary_unary_rpc_method_handler( servicer.Init, request_deserializer=inference__pb2.Model.FromString, response_serializer=inference__pb2.Reply.SerializeToString, ), 'OutputNames': grpc.unary_unary_rpc_method_handler( servicer.OutputNames, request_deserializer=inference__pb2.Empty.FromString, response_serializer=inference__pb2.Names.SerializeToString, ), 'Inference': grpc.unary_unary_rpc_method_handler( servicer.Inference, request_deserializer=inference__pb2.TensorList.FromString, response_serializer=inference__pb2.Reply.SerializeToString, ), 'Destroy': grpc.unary_unary_rpc_method_handler( servicer.Destroy, request_deserializer=inference__pb2.Empty.FromString, response_serializer=inference__pb2.Reply.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'mmdeploy.Inference', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler, ))
null
188,872
import argparse import logging from mmdeploy.backend.tensorrt import from_onnx from mmdeploy.backend.tensorrt.utils import get_trt_log_level from mmdeploy.utils import (get_common_config, get_model_inputs, get_root_logger, load_config) def parse_args(): parser = argparse.ArgumentParser(description='Convert ONNX to TensorRT.') parser.add_argument('deploy_cfg', help='deploy config path') parser.add_argument('onnx_path', help='ONNX model path') parser.add_argument('output_prefix', help='output TensorRT engine prefix') parser.add_argument('--device-id', help='`the CUDA device id', default=0) parser.add_argument( '--calib-file', help='`the calibration data used to calibrate engine to int8', default=None) parser.add_argument( '--log-level', help='set log level', default='INFO', choices=list(logging._nameToLevel.keys())) args = parser.parse_args() return args
null
188,873
import argparse import numpy as np from texttable import Texttable def parse_args(): parser = argparse.ArgumentParser( description='Analyze sdk profiler file tool.') parser.add_argument('profile_file', help='SDK profile file path') args = parser.parse_args() return args
null
188,874
import argparse import numpy as np from texttable import Texttable def get_name(addr, prev, addr2name, used_addr, depth, skip): node_name = addr2name[addr] if not skip else '' if addr not in prev: return ' ' * depth * 4 + node_name prev_addr = prev[addr] if prev_addr in used_addr: depth += 1 skip = True prev_name = get_name(prev[addr], prev, addr2name, used_addr, depth, skip) if len(prev_name.split()) == 0: return prev_name + node_name return prev_name + '/' + node_name
null
188,875
import argparse import os import os.path as osp import yaml from mmengine import Config from mmdeploy.utils import get_backend, get_task_type, load_config def parse_args(): parser = argparse.ArgumentParser( description='from yaml export markdown table') parser.add_argument('yml_file', help='input yml config path') parser.add_argument('output', help='output markdown file path') parser.add_argument( '--backends', nargs='+', help='backends you want to generate', default=[ 'onnxruntime', 'tensorrt', 'torchscript', 'pplnn', 'openvino', 'ncnn' ]) args = parser.parse_args() return args
null
188,876
import argparse import logging from copy import deepcopy from mmengine import Config from torch.utils.data import DataLoader from mmdeploy.apis.utils import build_task_processor from mmdeploy.utils import get_root_logger, load_config class QuantizationImageDataset(Dataset): def __init__( self, path: str, deploy_cfg: Config, model_cfg: Config, file_client_args: Optional[dict] = None, extensions: Sequence[str] = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif'), ): super().__init__() task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu') self.task_processor = task_processor self.samples = [] self.extensions = tuple(set([i.lower() for i in extensions])) self.file_client = FileClient.infer_client(file_client_args, path) self.path = path assert self.file_client.isdir(path) files = list( self.file_client.list_dir_or_file( path, list_dir=False, list_file=True, recursive=False, )) for file in files: if self.is_valid_file(self.file_client.join_path(file)): path = self.file_client.join_path(self.path, file) self.samples.append(path) def __len__(self): return len(self.samples) def __getitem__(self, index): sample = self.samples[index] image = mmcv.imread(sample) data = self.task_processor.create_input(image) return data[0] def is_valid_file(self, filename: str) -> bool: """Check if a file is a valid sample.""" return filename.lower().endswith(self.extensions) def get_table(onnx_path: str, deploy_cfg: Config, model_cfg: Config, output_onnx_path: str, output_quant_table_path: str, image_dir: str = None, device: str = 'cuda', dataset_type: str = 'val'): input_shape = None # setup input_shape if existed in `onnx_config` if 'onnx_config' in deploy_cfg and 'input_shape' in deploy_cfg.onnx_config: input_shape = deploy_cfg.onnx_config.input_shape task_processor = build_task_processor(model_cfg, deploy_cfg, device) calib_dataloader = deepcopy(model_cfg[f'{dataset_type}_dataloader']) calib_dataloader['batch_size'] = 1 # build calibration dataloader. If img dir not specified, use val dataset. if image_dir is not None: from quant_image_dataset import QuantizationImageDataset dataset = QuantizationImageDataset( path=image_dir, deploy_cfg=deploy_cfg, model_cfg=model_cfg) def collate(data_batch): return data_batch[0] dataloader = DataLoader(dataset, batch_size=1, collate_fn=collate) else: dataset = task_processor.build_dataset(calib_dataloader['dataset']) calib_dataloader['dataset'] = dataset dataloader = task_processor.build_dataloader(calib_dataloader) data_preprocessor = task_processor.build_data_preprocessor() # get an available input shape randomly for _, input_data in enumerate(dataloader): input_data = data_preprocessor(input_data) input_tensor = input_data['inputs'] input_shape = input_tensor.shape collate_fn = lambda x: data_preprocessor(x)['inputs'].to( # noqa: E731 device) from ppq import QuantizationSettingFactory, TargetPlatform from ppq.api import export_ppq_graph, quantize_onnx_model # settings for ncnn quantization quant_setting = QuantizationSettingFactory.default_setting() quant_setting.equalization = False quant_setting.dispatcher = 'conservative' # quantize the model quantized = quantize_onnx_model( onnx_import_file=onnx_path, calib_dataloader=dataloader, calib_steps=max(8, min(512, len(dataset))), input_shape=input_shape, setting=quant_setting, collate_fn=collate_fn, platform=TargetPlatform.NCNN_INT8, device=device, verbose=1) # export quantized graph and quant table export_ppq_graph( graph=quantized, platform=TargetPlatform.NCNN_INT8, graph_save_to=output_onnx_path, config_save_to=output_quant_table_path) return
null
188,877
import argparse import logging from copy import deepcopy from mmengine import Config from torch.utils.data import DataLoader from mmdeploy.apis.utils import build_task_processor from mmdeploy.utils import get_root_logger, load_config def parse_args(): parser = argparse.ArgumentParser( description='Generate ncnn quant table from ONNX.') parser.add_argument('--onnx', help='ONNX model path') parser.add_argument('--deploy-cfg', help='Input deploy config path') parser.add_argument('--model-cfg', help='Input model config path') parser.add_argument('--out-onnx', help='Output onnx path') parser.add_argument('--out-table', help='Output quant table path') parser.add_argument( '--image-dir', type=str, default=None, help='Calibration Image Directory.') parser.add_argument( '--log-level', help='set log level', default='INFO', choices=list(logging._nameToLevel.keys())) args = parser.parse_args() return args
null
188,878
import argparse import logging from mmdeploy.apis.ncnn import from_onnx from mmdeploy.utils import get_root_logger def parse_args(): parser = argparse.ArgumentParser(description='Convert ONNX to ncnn.') parser.add_argument('onnx_path', help='ONNX model path') parser.add_argument('output_prefix', help='output ncnn model path') parser.add_argument( '--log-level', help='set log level', default='INFO', choices=list(logging._nameToLevel.keys())) args = parser.parse_args() return args
null
188,879
import argparse import logging from mmdeploy.apis.snpe import from_onnx from mmdeploy.utils import get_root_logger def parse_args(): parser = argparse.ArgumentParser( description='Convert ONNX to snpe dlc format.') parser.add_argument('onnx_path', help='ONNX model path') parser.add_argument('output_prefix', help='output snpe dlc model path') parser.add_argument( '--log-level', help='set log level', default='INFO', choices=list(logging._nameToLevel.keys())) args = parser.parse_args() return args
null
188,880
from mmcv.utils import collect_env as collect_base_env from mmengine.utils import get_git_hash import mmdeploy from mmdeploy.utils import get_codebase_version, get_root_logger The provided code snippet includes necessary dependencies for implementing the `collect_env` function. Write a Python function `def collect_env()` to solve the following problem: Collect the information of the running environments. Here is the function: def collect_env(): """Collect the information of the running environments.""" env_info = collect_base_env() env_info['MMDeploy'] = f'{mmdeploy.__version__}+{get_git_hash()[:7]}' return env_info
Collect the information of the running environments.
188,881
from mmcv.utils import collect_env as collect_base_env from mmengine.utils import get_git_hash import mmdeploy from mmdeploy.utils import get_codebase_version, get_root_logger def check_backend(): from mmdeploy.backend.base import get_backend_manager from mmdeploy.utils import Backend exclude_backend_lists = [Backend.DEFAULT, Backend.PYTORCH, Backend.SDK] backend_lists = [ backend for backend in Backend if backend not in exclude_backend_lists ] for backend in backend_lists: backend_mgr = get_backend_manager(backend.value) backend_mgr.check_env(logger.info)
null
188,882
from mmcv.utils import collect_env as collect_base_env from mmengine.utils import get_git_hash import mmdeploy from mmdeploy.utils import get_codebase_version, get_root_logger def check_codebase(): codebase_versions = get_codebase_version() for k, v in codebase_versions.items(): logger.info(f'{k}:\t{v}')
null
188,883
import argparse import logging import os import os.path as osp from functools import partial import mmengine import torch.multiprocessing as mp from torch.multiprocessing import Process, set_start_method from mmdeploy.apis import (create_calib_input_data, extract_model, get_predefined_partition_cfg, torch2onnx, torch2torchscript, visualize_model) from mmdeploy.apis.core import PIPELINE_MANAGER from mmdeploy.apis.utils import to_backend from mmdeploy.backend.sdk.export_info import export2SDK from mmdeploy.utils import (IR, Backend, get_backend, get_calib_filename, get_ir_config, get_partition_config, get_root_logger, load_config, target_wrapper) def parse_args(): parser = argparse.ArgumentParser(description='Export model to backends.') parser.add_argument('deploy_cfg', help='deploy config path') parser.add_argument('model_cfg', help='model config path') parser.add_argument('checkpoint', help='model checkpoint path') parser.add_argument('img', help='image used to convert model model') parser.add_argument( '--test-img', default=None, type=str, nargs='+', help='image used to test model') parser.add_argument( '--work-dir', default=os.getcwd(), help='the dir to save logs and models') parser.add_argument( '--calib-dataset-cfg', help='dataset config path used to calibrate in int8 mode. If not \ specified, it will use "val" dataset in model config instead.', default=None) parser.add_argument( '--device', help='device used for conversion', default='cpu') parser.add_argument( '--log-level', help='set log level', default='INFO', choices=list(logging._nameToLevel.keys())) parser.add_argument( '--show', action='store_true', help='Show detection outputs') parser.add_argument( '--dump-info', action='store_true', help='Output information for SDK') parser.add_argument( '--quant-image-dir', default=None, help='Image directory for quantize model.') parser.add_argument( '--quant', action='store_true', help='Quantize model to low bit.') parser.add_argument( '--uri', default='192.168.1.1:60000', help='Remote ipv4:port or ipv6:port for inference on edge device.') args = parser.parse_args() return args
null
188,884
import argparse import logging import os import os.path as osp from functools import partial import mmengine import torch.multiprocessing as mp from torch.multiprocessing import Process, set_start_method from mmdeploy.apis import (create_calib_input_data, extract_model, get_predefined_partition_cfg, torch2onnx, torch2torchscript, visualize_model) from mmdeploy.apis.core import PIPELINE_MANAGER from mmdeploy.apis.utils import to_backend from mmdeploy.backend.sdk.export_info import export2SDK from mmdeploy.utils import (IR, Backend, get_backend, get_calib_filename, get_ir_config, get_partition_config, get_root_logger, load_config, target_wrapper) def create_process(name, target, args, kwargs, ret_value=None): logger = get_root_logger() logger.info(f'{name} start.') log_level = logger.level wrap_func = partial(target_wrapper, target, log_level, ret_value) process = Process(target=wrap_func, args=args, kwargs=kwargs) process.start() process.join() if ret_value is not None: if ret_value.value != 0: logger.error(f'{name} failed.') exit(1) else: logger.info(f'{name} success.')
null
188,885
import argparse import logging import os import os.path as osp from functools import partial import mmengine import torch.multiprocessing as mp from torch.multiprocessing import Process, set_start_method from mmdeploy.apis import (create_calib_input_data, extract_model, get_predefined_partition_cfg, torch2onnx, torch2torchscript, visualize_model) from mmdeploy.apis.core import PIPELINE_MANAGER from mmdeploy.apis.utils import to_backend from mmdeploy.backend.sdk.export_info import export2SDK from mmdeploy.utils import (IR, Backend, get_backend, get_calib_filename, get_ir_config, get_partition_config, get_root_logger, load_config, target_wrapper) The provided code snippet includes necessary dependencies for implementing the `torch2ir` function. Write a Python function `def torch2ir(ir_type: IR)` to solve the following problem: Return the conversion function from torch to the intermediate representation. Args: ir_type (IR): The type of the intermediate representation. Here is the function: def torch2ir(ir_type: IR): """Return the conversion function from torch to the intermediate representation. Args: ir_type (IR): The type of the intermediate representation. """ if ir_type == IR.ONNX: return torch2onnx elif ir_type == IR.TORCHSCRIPT: return torch2torchscript else: raise KeyError(f'Unexpected IR type {ir_type}')
Return the conversion function from torch to the intermediate representation. Args: ir_type (IR): The type of the intermediate representation.
188,886
import argparse import logging import os import os.path as osp from mmdeploy.apis import (extract_model, get_predefined_partition_cfg, torch2onnx) from mmdeploy.utils import (get_ir_config, get_partition_config, get_root_logger, load_config) def parse_args(): parser = argparse.ArgumentParser(description='Export model to ONNX.') parser.add_argument('deploy_cfg', help='deploy config path') parser.add_argument('model_cfg', help='model config path') parser.add_argument('checkpoint', help='model checkpoint path') parser.add_argument('img', help='image used to convert model model') parser.add_argument( '--work-dir', default='./work-dir', help='Directory to save output files.') parser.add_argument( '--device', help='device used for conversion', default='cpu') parser.add_argument( '--log-level', help='set log level', default='INFO', choices=list(logging._nameToLevel.keys())) args = parser.parse_args() return args
null
188,887
import argparse import logging import os.path as osp from copy import deepcopy from typing import Optional, Sequence import h5py import tqdm from mmengine import Config from mmdeploy.apis.utils import build_task_processor from mmdeploy.utils import get_root_logger, load_config def get_tensor_func(model, input_data): input_data = model.data_preprocessor(input_data) return input_data['inputs'] def process_model_config(model_cfg: Config, input_shape: Optional[Sequence[int]] = None): """Process the model config. Args: model_cfg (Config): The model config. input_shape (list[int]): A list of two integer in (width, height) format specifying input shape. Default: None. Returns: Config: the model config after processing. """ cfg = model_cfg.copy() pipeline = cfg.test_pipeline for i, transform in enumerate(pipeline): # for static exporting if transform.type == 'Resize': pipeline[i].keep_ratio = False pipeline[i].scale = tuple(input_shape) if transform.type in ('YOLOv5KeepRatioResize', 'LetterResize'): pipeline[i].scale = tuple(input_shape) pipeline = [ transform for transform in pipeline if transform.type != 'LoadAnnotations' ] cfg.test_pipeline = pipeline return cfg def get_quant(deploy_cfg: Config, model_cfg: Config, shape_dict: dict, checkpoint_path: str, work_dir: str, device: str = 'cpu', dataset_type: str = 'val'): model_shape = list(shape_dict.values())[0] model_cfg = process_model_config(model_cfg, (model_shape[3], model_shape[2])) task_processor = build_task_processor(model_cfg, deploy_cfg, device) model = task_processor.build_pytorch_model(checkpoint_path) calib_dataloader = deepcopy(model_cfg[f'{dataset_type}_dataloader']) calib_dataloader['batch_size'] = 1 dataloader = task_processor.build_dataloader(calib_dataloader) output_quant_dataset_path = osp.join(work_dir, 'calib_data.h5') with h5py.File(output_quant_dataset_path, mode='w') as file: calib_data_group = file.create_group('calib_data') input_data_group = calib_data_group.create_group('input') # get an available input shape randomly for data_id, input_data in enumerate(tqdm.tqdm(dataloader)): # input_data = data_preprocessor(input_data)['inputs'].numpy() input_data = get_tensor_func(model, input_data).numpy() calib_data_shape = input_data.shape assert model_shape[2] >= calib_data_shape[2] and model_shape[ 3] >= calib_data_shape[ 3], f'vacc backend model shape is {tuple(model_shape[2:])}, \ the calib_data shape {calib_data_shape[2:]} is bigger' input_data_group.create_dataset( str(data_id), shape=input_data.shape, compression='gzip', compression_opts=4, data=input_data)
null
188,888
import argparse import logging import os.path as osp from copy import deepcopy from typing import Optional, Sequence import h5py import tqdm from mmengine import Config from mmdeploy.apis.utils import build_task_processor from mmdeploy.utils import get_root_logger, load_config def parse_args(): parser = argparse.ArgumentParser( description='Generate vacc quant dataset from ONNX.') parser.add_argument('--deploy-cfg', help='Input deploy config path') parser.add_argument('--model-cfg', help='Input model config path') parser.add_argument('--shape-dict', help='Input model shape') parser.add_argument('--checkpoint-path', help='checkpoint path') parser.add_argument('--work-dir', help='Output quant dataset dir') parser.add_argument( '--log-level', help='set log level', default='INFO', choices=list(logging._nameToLevel.keys())) args = parser.parse_args() return args
null
188,889
import argparse import logging import os.path as osp import onnx import onnx.helper from mmdeploy.apis.onnx import extract_partition from mmdeploy.utils import get_root_logger def parse_args(): parser = argparse.ArgumentParser( description='Extract model based on markers.') parser.add_argument('input_model', help='Input ONNX model') parser.add_argument('output_model', help='Output ONNX model') parser.add_argument( '--start', help='Start markers, format: func:type, e.g. backbone:input') parser.add_argument('--end', help='End markers') parser.add_argument( '--log-level', help='set log level', default='INFO', choices=list(logging._nameToLevel.keys())) args = parser.parse_args() args.start = args.start.split(',') if args.start else [] args.end = args.end.split(',') if args.end else [] return args
null
188,890
import argparse import logging import os.path as osp import onnx import onnx.helper from mmdeploy.apis.onnx import extract_partition from mmdeploy.utils import get_root_logger def collect_avaiable_marks(model): marks = [] for node in model.graph.node: if node.op_type == 'Mark': for attr in node.attribute: if attr.name == 'func': func = str(onnx.helper.get_attribute_value(attr), 'utf-8') if func not in marks: marks.append(func) return marks
null
188,891
import argparse import os import os.path as osp import pathlib import shutil import subprocess from glob import glob import mmcv import yaml from mmdeploy.backend.sdk.export_info import (get_preprocess, get_transform_static) from mmdeploy.utils import get_root_logger, load_config def parse_args(): parser = argparse.ArgumentParser(description='Extract transform.') parser.add_argument( 'root_path', help='parent path to codebase(mmdetection for example)') args = parser.parse_args() return args
null
188,892
import argparse import os import os.path as osp import pathlib import shutil import subprocess from glob import glob import mmcv import yaml from mmdeploy.backend.sdk.export_info import (get_preprocess, get_transform_static) from mmdeploy.utils import get_root_logger, load_config MMDEPLOY_PATH = pathlib.Path(__file__).parent.parent.parent.resolve() DEPLOY_CFG = { 'Image Classification': 'configs/mmpretrain/classification_tensorrt_dynamic-224x224-224x224.py', 'Object Detection': 'configs/mmdet/detection/detection_tensorrt_static-800x1344.py', 'Instance Segmentation': 'configs/mmdet/instance-seg/instance-seg_tensorrt_static-800x1344.py', 'Semantic Segmentation': 'configs/mmseg/segmentation_tensorrt_static-512x512.py', 'Oriented Object Detection': 'configs/mmrotate/rotated-detection_tensorrt-fp16_dynamic-320x320-1024x1024.py', 'Text Recognition': 'configs/mmocr/text-recognition/text-recognition_tensorrt_static-32x32.py', 'Text Detection': 'configs/mmocr/text-detection/text-detection_tensorrt_static-512x512.py', 'Restorers': 'configs/mmagic/super-resolution/super-resolution_tensorrt_static-256x256.py' } def extract_one_model(deploy_cfg_, model_cfg_, args): deploy_cfg, model_cfg = load_config(deploy_cfg_, model_cfg_) preprocess = get_preprocess(deploy_cfg, model_cfg, 'cuda') preprocess['model_cfg'] = model_cfg_ transform_static, tag = get_transform_static(preprocess['transforms']) if tag is not None: generate_source_code(preprocess, transform_static, tag, args) def extract_one_metafile(metafile, codebase, args): with open(metafile, encoding='utf-8') as f: yaml_info = yaml.load(f, Loader=yaml.FullLoader) known_task = list(DEPLOY_CFG.keys()) for model in yaml_info['Models']: try: cfg = model['Config'] task_name = model['Results'][0]['Task'] if task_name not in known_task: continue deploy_cfg = osp.join(MMDEPLOY_PATH, DEPLOY_CFG[task_name]) model_cfg = osp.join(args.root_path, codebase, cfg) extract_one_model(deploy_cfg, model_cfg, args) except Exception: pass
null
188,893
import argparse import collections import logging from mmdeploy.apis.pplnn import from_onnx from mmdeploy.utils import get_root_logger def parse_args(): parser = argparse.ArgumentParser(description='Convert ONNX to PPLNN.') parser.add_argument('onnx_path', help='ONNX model path') parser.add_argument( 'output_prefix', help='output PPLNN algorithm prefix in json format') parser.add_argument( '--device', help='`the device of model during conversion', default='cuda:0') parser.add_argument( '--opt-shapes', help='`Optical shapes for PPLNN optimization. The shapes must be able' 'to be evaluated by python, e,g., `[1, 3, 224, 224]`', default='[1, 3, 224, 224]') parser.add_argument( '--log-level', help='set log level', default='INFO', choices=list(logging._nameToLevel.keys())) args = parser.parse_args() return args
null
188,894
import argparse import glob import os.path as osp import numpy as np import torch from mmengine import DictAction from prettytable import PrettyTable from mmdeploy.apis import build_task_processor from mmdeploy.utils import get_root_logger from mmdeploy.utils.config_utils import (Backend, get_backend, get_input_shape, load_config) from mmdeploy.utils.timer import TimeCounter def parse_args(): parser = argparse.ArgumentParser( description='MMDeploy Model Latency Test Tool.') parser.add_argument('deploy_cfg', help='Deploy config path') parser.add_argument('model_cfg', help='Model config path') parser.add_argument('image_dir', help='Input directory to image files') parser.add_argument( '--model', type=str, nargs='+', help='Input model files.') parser.add_argument( '--device', help='device type for inference', default='cuda:0') parser.add_argument( '--shape', type=str, help='Input shape to test in `HxW` format, e.g., `800x1344`', default=None) parser.add_argument( '--warmup', type=int, help='warmup iterations before counting inference latency.', default=10) parser.add_argument( '--num-iter', type=int, help='Number of iterations to run the inference.', default=100) parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--batch-size', type=int, default=1, help='the batch size for test.') parser.add_argument( '--img-ext', type=str, nargs='+', help='the file extensions for input images from `image_dir`.', default=['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']) args = parser.parse_args() return args
null
188,895
import argparse import glob import os.path as osp import numpy as np import torch from mmengine import DictAction from prettytable import PrettyTable from mmdeploy.apis import build_task_processor from mmdeploy.utils import get_root_logger from mmdeploy.utils.config_utils import (Backend, get_backend, get_input_shape, load_config) from mmdeploy.utils.timer import TimeCounter def get_images(image_dir, extensions): images = [] files = glob.glob(osp.join(image_dir, '**', '*'), recursive=True) for f in files: _, ext = osp.splitext(f) if ext.lower() in extensions: images.append(f) return images
null
188,896
import os import sys import time from pathlib import Path from ubuntu_utils import cmd_result, ensure_base_env, get_job def install_pplcv(dep_dir, build_cuda): print('-' * 10 + 'install pplcv' + '-' * 10) time.sleep(2) os.chdir(dep_dir) pplcv_dir = os.path.join(dep_dir, 'ppl.cv') # git clone if not os.path.exists(pplcv_dir): os.system( 'git clone --depth 1 --branch v0.7.0 https://github.com/openppl-public/ppl.cv/' # noqa: E501 ) # build os.chdir(pplcv_dir) if build_cuda is True: os.system('./build.sh cuda') pplcv_cmake_dir = os.path.join(pplcv_dir, 'cuda-build/install/lib/cmake/ppl') else: os.system('./build.sh x86_64') pplcv_cmake_dir = os.path.join(pplcv_dir, 'x86-64-build/install/lib/cmake/ppl') print('\n') return pplcv_cmake_dir
null
188,897
import os import sys import time from pathlib import Path from ubuntu_utils import cmd_result, ensure_base_env, get_job def install_pplnn(dep_dir, build_cuda): print('-' * 10 + 'install pplnn' + '-' * 10) time.sleep(2) # generate unzip and build dir os.chdir(dep_dir) pplnn_dir = os.path.join(dep_dir, 'ppl.nn') # git clone if not os.path.exists(pplnn_dir): os.system( 'git clone --depth 1 --branch v0.8.2 https://github.com/openppl-public/ppl.nn/' # noqa: E501 ) # build os.chdir(pplnn_dir) if build_cuda is True: os.system( './build.sh -DPPLNN_USE_CUDA=ON -DPPLNN_USE_X86_64=ON -DPPLNN_ENABLE_PYTHON_API=ON' # noqa: E501 ) else: os.system( './build.sh -DPPLNN_USE_X86_64=ON -DPPLNN_ENABLE_PYTHON_API=ON' # noqa: E501 ) os.system('cd python/package && ./build.sh') os.system( 'cd /tmp/pyppl-package/dist && python3 -m pip install pyppl*.whl --force-reinstall --user' # noqa: E501 ) pplnn_cmake_dir = os.path.join(pplnn_dir, 'pplnn-build/install/lib/cmake/ppl') print('\n') return pplnn_cmake_dir
null
188,898
import os import sys import time from pathlib import Path from ubuntu_utils import cmd_result, ensure_base_env, get_job g_jobs = 2 def install_mmdeploy(work_dir, pplnn_cmake_dir, pplcv_cmake_dir, build_cuda): print('-' * 10 + 'build and install mmdeploy' + '-' * 10) time.sleep(3) os.chdir(work_dir) os.system('git submodule init') os.system('git submodule update') if not os.path.exists('build'): os.system('mkdir build') os.system('rm -rf build/CMakeCache.txt') cmd = 'cd build && cmake ..' cmd += ' -DMMDEPLOY_BUILD_SDK=ON ' cmd += ' -DMMDEPLOY_BUILD_EXAMPLES=ON ' cmd += ' -DMMDEPLOY_BUILD_SDK_PYTHON_API=ON ' cmd += ' -DMMDEPLOY_TARGET_BACKENDS=pplnn ' if build_cuda is True: cmd += ' -DMMDEPLOY_TARGET_DEVICES="cuda;cpu" ' else: cmd += ' -DMMDEPLOY_TARGET_DEVICES=cpu ' cmd += ' -Dpplcv_DIR={} '.format(pplcv_cmake_dir) cmd += ' -Dpplnn_DIR={} '.format(pplnn_cmake_dir) os.system(cmd) os.system('cd build && make -j {} && make install'.format(g_jobs)) os.system('python3 -m pip install -e .') try: import mmcv print(mmcv.__version__) os.system('python3 tools/check_env.py') except Exception: print('Please install torch & mmcv later.. ∩▽∩') return 0
null
188,899
import os import os.path as osp import sys import time from ubuntu_utils import cmd_result, ensure_base_env, get_job def cmd_result(txt: str): def install_llvm(dep_dir): print('-' * 10 + 'install llvm' + '-' * 10) os.chdir(dep_dir) os.system( 'wget --no-check-certificate -O - https://apt.llvm.org/llvm-snapshot.gpg.key | sudo apt-key add -' # noqa: E501 ) ubuntu = cmd_result( """ lsb_release -a 2>/dev/null | grep "Release" | tail -n 1 | awk '{print $NF}' """ # noqa: E501 ) nickname_dict = { '18.04': 'bionic', '20.04': 'focal', '22.04': 'jammy', '22.10': 'kinetic' } nickname = nickname_dict.get(ubuntu, None) if nickname is None: raise NotImplementedError(f'Unsupported ubuntu version {ubuntu}.') os.system( f"add-apt-repository 'deb http://apt.llvm.org/{nickname}/ llvm-toolchain-{nickname}-10 main'" # noqa: E501 ) os.system('sudo apt update') os.system( 'sudo apt-get install llvm-10 lldb-10 llvm-10-dev libllvm10 llvm-10-runtime' # noqa: E501 )
null
188,900
import os import os.path as osp import sys import time from ubuntu_utils import cmd_result, ensure_base_env, get_job def install_tvm(dep_dir): print('-' * 10 + 'build and install tvm' + '-' * 10) time.sleep(2) os.system('sudo apt-get update') os.system( 'sudo apt-get install -y python3 python3-dev python3-setuptools gcc libtinfo-dev zlib1g-dev build-essential cmake libedit-dev libxml2-dev' # noqa: E501 ) # generate unzip and build dir os.chdir(dep_dir) # git clone if not osp.exists('tvm'): os.system( 'git clone --branch v0.10.0 --depth 1 --recursive https://github.com/apache/tvm tvm' # noqa: E501 ) tvm_dir = osp.join(dep_dir, 'tvm') os.chdir(tvm_dir) # build if not osp.exists('build'): os.system('mkdir build') os.system('cp cmake/config.cmake build') os.chdir(osp.join(tvm_dir, 'build')) os.system( """ sed -i "s@set(USE_LLVM OFF)@set(USE_LLVM /usr/bin/llvm-config-10)@g" config.cmake """ # noqa: E501 ) os.system('cmake .. && make -j {} && make runtime'.format(g_jobs)) # set env os.system( """ echo 'export LD_LIBRARY_PATH={}:$LD_LIBRARY_PATH' >> ~/mmdeploy.env """ # noqa: E501 .format(os.path.join(tvm_dir, 'build'))) # install python package os.chdir(osp.join(tvm_dir, 'python')) os.system(""" python3 setup.py install --user """) # install dependency os.system( """ python3 -m pip install xgboost decorator psutil scipy attrs tornado """ # noqa: E501 ) return tvm_dir
null
188,901
import os import os.path as osp import sys import time from ubuntu_utils import cmd_result, ensure_base_env, get_job def install_mmdeploy(work_dir, tvm_dir): print('-' * 10 + 'build and install mmdeploy' + '-' * 10) time.sleep(3) os.chdir(work_dir) os.system('git submodule init') os.system('git submodule update') if not os.path.exists('build'): os.system('mkdir build') os.system('rm -rf build/CMakeCache.txt') cmd = 'cd build && cmake ..' cmd += ' -DMMDEPLOY_BUILD_SDK=ON ' cmd += ' -DMMDEPLOY_BUILD_EXAMPLES=ON ' cmd += ' -DMMDEPLOY_BUILD_SDK_PYTHON_API=ON ' cmd += ' -DMMDEPLOY_TARGET_DEVICES=cpu ' cmd += ' -DMMDEPLOY_TARGET_BACKENDS=tvm ' cmd += ' -DTVM_DIR={} '.format(tvm_dir) os.system(cmd) os.system('cd build && make -j {} && make install'.format(g_jobs)) os.system('python3 -m pip install -v -e .') os.system(""" echo 'export PATH={}:$PATH' >> ~/mmdeploy.env """.format( os.path.join(work_dir, 'mmdeploy', 'backend', 'tvm'))) try: import mmcv print(mmcv.__version__) os.system('python3 tools/check_env.py') except Exception: print('Please install torch & mmcv later...') return 0
null
188,902
import os import re import time def cmd_result(txt: str): cmd = os.popen(txt) return cmd.read().rstrip().lstrip() def get_job(argv) -> int: # get nprocs, if user not specified, use max(1, nproc-2) job = 2 if len(argv) <= 1: print('your can use `python3 {} N` to set make -j [N]'.format(argv[0])) nproc = cmd_result('nproc') if nproc is not None and len(nproc) > 0: job = max(int(nproc) - 2, 1) else: job = int(argv[1]) return job
null
188,903
import os import re import time def version_minor(txt: str) -> int: return int(txt.split('.')[1])
null
188,904
import os import re import time def cmd_result(txt: str): def version_major(txt: str) -> int: def simple_check_install(bin: str, sudo: str) -> str: def ensure_base_env(work_dir, dep_dir): description = """ check python, root, pytorch version, auto install these binary: * make * g++ * git * wget * unzip * opencv * mmcv (not compulsory) """ print('-' * 10 + 'ensure base env' + '-' * 10) print(description) os.system('python3 -m ensurepip') os.system('python3 -m pip install wheel') sudo = 'sudo' if 'root' in cmd_result('whoami'): sudo = '' # check ubuntu ubuntu = cmd_result( """ lsb_release -a 2>/dev/null | grep "Release" | tail -n 1 | awk '{print $NF}' """ # noqa: E501 ) # check cmake version cmake = cmd_result('which cmake') if cmake is None or len(cmake) < 1: print('cmake not found, try install cmake ..', end='') os.system('python3 -m pip install cmake') cmake = cmd_result('which cmake') if cmake is None or len(cmake) < 1: env = 'export PATH=${PATH}:~/.local/bin' os.system(env) os.system(""" echo '{}' >> ~/mmdeploy.env """.format(env)) cmake = cmd_result('which cmake') if cmake is None or len(cmake) < 1: print('Check cmake failed.') return -1 print('success') # check make make = cmd_result('which make') if make is None or len(make) < 1: print('make not found, try install make ..', end='') os.system('{} apt update --fix-missing'.format(sudo)) os.system( '{} DEBIAN_FRONTEND="noninteractive" apt install make'.format( sudo)) make = cmd_result('which make') if make is None or len(make) < 1: print('Check make failed.') return -1 print('success') # check g++ version gplus = cmd_result('which g++') if gplus is None or len(gplus) < 1: # install g++ print('g++ not found, try install g++ ..', end='') os.system( '{} DEBIAN_FRONTEND="noninteractive" apt install software-properties-common -y' # noqa: E501 .format(sudo)) # noqa: E501 os.system('{} apt update'.format(sudo)) if ubuntu is None or len(ubuntu) < 1 or version_major(ubuntu) <= 18: os.system( '{} add-apt-repository ppa:ubuntu-toolchain-r/test -y'.format( sudo)) os.system('{} apt install gcc g++ -y'.format(sudo)) gplus = cmd_result('which g++') if gplus is None or len(gplus) < 1: print('Check g++ failed.') return -1 print('success') # wget wget = simple_check_install('wget', sudo) # check torch and mmcv, we try to install mmcv, it is not compulsory mmcv_version = None torch_version = None try: import torch torch_version = torch.__version__ try: import mmcv mmcv_version = mmcv.__version__ except Exception: # install mmcv print('mmcv not found, try install mmcv ..', end='') os.system('python3 -m pip install -U openmim') os.system('mim install mmcv-full==1.5.1') except Exception: pass # git git = simple_check_install('git', sudo) # unzip unzip = simple_check_install('unzip', sudo) # opencv ocv = cmd_result('which opencv_version') if ocv is None or len(ocv) < 1: print('ocv not found, try install ocv ..', end='') os.system('{} apt update'.format(sudo)) pattern = re.compile(r'[0-9]+\.[0-9]+\.[0-9]+') upstream = cmd_result('{} apt list libopencv-dev -a'.format(sudo)) add_ppa = True if upstream is not None and len(upstream) > 0: versions = pattern.findall(upstream) if versions is not None and len(versions) > 0: version = versions[0] major = int(version.split('.')[0]) if major >= 3: # Directly install upstream OCV, do not need add ppa add_ppa = False if add_ppa: os.system( '{} add-apt-repository ppa:ignaciovizzo/opencv3-nonfree -y'. format(sudo)) os.system( '{} DEBIAN_FRONTEND="noninteractive" apt install libopencv-dev -y' .format(sudo)) ocv = cmd_result('which opencv_version') if ocv is None or len(ocv) < 1: print('Check ocv failed.') return -1 print('success') # print all print('ubuntu \t\t:{}'.format(ubuntu)) # check python print('python bin\t:{}'.format(cmd_result('which python3'))) print('python version\t:{}'.format( cmd_result("python3 --version | awk '{print $2}'"))) print('cmake bin\t:{}'.format(cmake)) print('cmake version\t:{}'.format( cmd_result("cmake --version | head -n 1 | awk '{print $3}'"))) print('make bin\t:{}'.format(make)) print('make version\t:{}'.format( cmd_result(" make --version | head -n 1 | awk '{print $3}' "))) print('wget bin\t:{}'.format(wget)) print('g++ bin\t:{}'.format(gplus)) print('mmcv version\t:{}'.format(mmcv_version)) if mmcv_version is None: print('\t please install mmcv later.') time.sleep(2) print('torch version\t:{}'.format(torch_version)) if torch_version is None: print('\t please install pytorch later.') time.sleep(2) print('ocv version\t:{}'.format(cmd_result('opencv_version'))) print('git bin\t\t:{}'.format(git)) print('git version\t:{}'.format( cmd_result("git --version | awk '{print $3}' "))) print('unzip bin\t:{}'.format(unzip)) # work dir print('work dir \t:{}'.format(work_dir)) # dep dir print('dep dir \t:{}'.format(dep_dir)) print('\n') return 0
null
188,905
import os import sys import time from pathlib import Path from ubuntu_utils import ensure_base_env, get_job def install_ort(dep_dir): print('-' * 10 + 'install ort' + '-' * 10) time.sleep(2) # generate unzip and build dir os.chdir(dep_dir) # install python onnxruntime os.system('python3 -m pip install onnxruntime==1.8.1') # git clone if not os.path.exists('onnxruntime-linux-x64-1.8.1'): os.system( 'wget -q --show-progress https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-1.8.1.tgz' # noqa: E501 ) os.system('tar xvf onnxruntime-linux-x64-1.8.1.tgz') ort_dir = os.path.join(dep_dir, 'onnxruntime-linux-x64-1.8.1') print('onnxruntime dir \t:{}'.format(ort_dir)) print('\n') return ort_dir
null
188,906
import os import sys import time from pathlib import Path from ubuntu_utils import ensure_base_env, get_job g_jobs = 2 def install_mmdeploy(work_dir, ort_dir): print('-' * 10 + 'build and install mmdeploy' + '-' * 10) time.sleep(3) os.chdir(work_dir) os.system('git submodule init') os.system('git submodule update') if not os.path.exists('build'): os.system('mkdir build') os.system('rm -rf build/CMakeCache.txt') cmd = 'cd build && cmake ..' cmd += ' -DMMDEPLOY_BUILD_SDK=ON ' cmd += ' -DMMDEPLOY_BUILD_EXAMPLES=ON ' cmd += ' -DMMDEPLOY_BUILD_SDK_PYTHON_API=ON ' cmd += ' -DMMDEPLOY_TARGET_DEVICES=cpu ' cmd += ' -DMMDEPLOY_TARGET_BACKENDS=ort ' cmd += ' -DONNXRUNTIME_DIR={} '.format(ort_dir) os.system(cmd) os.system('cd build && make -j {} && make install'.format(g_jobs)) os.system('python3 -m pip install -e .') try: import mmcv print(mmcv.__version__) os.system('python3 tools/check_env.py') except Exception: print('Please install torch & mmcv later.. ⊙▽⊙') return 0
null
188,907
import os import sys import time from pathlib import Path from ubuntu_utils import (cmd_result, cu_version_name, ensure_base_env, get_job, pytorch_version) def pytorch_version(): def cmd_result(txt: str): def cu_version_name(version: str) -> str: def install_libtorch(dep_dir): print('-' * 10 + 'install libtorch' + '-' * 10) time.sleep(2) os.chdir(dep_dir) unzipped_name = 'libtorch' if os.path.exists(unzipped_name): return os.path.join(dep_dir, unzipped_name) torch_version = pytorch_version() if torch_version is None: print('torch version is None, try 1.11.0') torch_version = '1.11.0' version_name = None # first check `nvcc` version, if failed, use `nvidia-smi` cuda = cmd_result( " nvcc --version | grep release | awk '{print $5}' | awk -F , '{print $1}' " # noqa: E501 ) if cuda is None or len(cuda) < 1: cuda = cmd_result(" nvidia-smi | grep CUDA | awk '{print $9}' ") if cuda is not None and len(cuda) > 0: version_name = cu_version_name(cuda) else: version_name = 'cpu' filename = 'libtorch-shared-with-deps-{}%2B{}.zip'.format( torch_version, version_name) url = 'https://download.pytorch.org/libtorch/{}/{}'.format( version_name, filename) os.system('wget -q --show-progress {} -O libtorch.zip'.format(url)) os.system('unzip libtorch.zip') if not os.path.exists(unzipped_name): print( 'download or unzip libtorch from {} failed, please check https://pytorch.org/get-started/locally/' # noqa: E501 .format(url)) return None return os.path.join(dep_dir, unzipped_name)
null
188,908
import os import sys import time from pathlib import Path from ubuntu_utils import (cmd_result, cu_version_name, ensure_base_env, get_job, pytorch_version) g_jobs = 2 def install_mmdeploy(work_dir, libtorch_dir): print('-' * 10 + 'build and install mmdeploy' + '-' * 10) time.sleep(3) os.chdir(work_dir) os.system('git submodule init') os.system('git submodule update') if not os.path.exists('build'): os.system('mkdir build') os.system('rm -rf build/CMakeCache.txt') cmd = 'cd build && Torch_DIR={} cmake ..'.format(libtorch_dir) cmd += ' -DMMDEPLOY_BUILD_SDK=ON ' cmd += ' -DMMDEPLOY_BUILD_EXAMPLES=ON ' cmd += ' -DMMDEPLOY_BUILD_SDK_PYTHON_API=ON ' cmd += ' -DMMDEPLOY_TARGET_DEVICES=cpu ' cmd += ' -DMMDEPLOY_TARGET_BACKENDS=torchscript ' cmd += ' -DTORCHSCRIPT_DIR={} '.format(libtorch_dir) os.system(cmd) os.system('cd build && make -j {} && make install'.format(g_jobs)) os.system('python3 -m pip install -e .') try: import mmcv print(mmcv.__version__) os.system('python3 tools/check_env.py') except Exception: print('Please install torch & mmcv later.. ≥▽≤') return 0
null
188,909
import os import sys import time from pathlib import Path from ubuntu_utils import cmd_result, ensure_base_env, get_job g_jobs = 2 def cmd_result(txt: str): cmd = os.popen(txt) return cmd.read().rstrip().lstrip() The provided code snippet includes necessary dependencies for implementing the `install_protobuf` function. Write a Python function `def install_protobuf(dep_dir) -> int` to solve the following problem: build and install protobuf. protobuf seems not support repeated install, so clean build first. Args: wor_dir (_type_): _description_ Returns: : _description_ Here is the function: def install_protobuf(dep_dir) -> int: """build and install protobuf. protobuf seems not support repeated install, so clean build first. Args: wor_dir (_type_): _description_ Returns: : _description_ """ print('-' * 10 + 'install protobuf' + '-' * 10) os.chdir(dep_dir) if not os.path.exists('protobuf-3.20.0'): os.system( 'wget https://github.com/protocolbuffers/protobuf/releases/download/v3.20.0/protobuf-cpp-3.20.0.tar.gz' # noqa: E501 ) os.system('tar xvf protobuf-cpp-3.20.0.tar.gz') os.chdir(os.path.join(dep_dir, 'protobuf-3.20.0')) install_dir = os.path.join(dep_dir, 'pbinstall') if os.path.exists(install_dir): os.system('rm -rf {}'.format(install_dir)) os.system('make clean') os.system('./configure --prefix={}'.format(install_dir)) os.system('make -j {} && make install'.format(g_jobs)) protoc = os.path.join(install_dir, 'bin', 'protoc') print('protoc \t:{}'.format(cmd_result('{} --version'.format(protoc)))) os.system(""" echo 'export PATH={}:$PATH' >> ~/mmdeploy.env """.format( os.path.join(install_dir, 'bin'))) os.system( """ echo 'export LD_LIBRARY_PATH={}:$LD_LIBRARY_PATH' >> ~/mmdeploy.env """ # noqa: E501 .format(os.path.join(install_dir, 'lib'))) return 0
build and install protobuf. protobuf seems not support repeated install, so clean build first. Args: wor_dir (_type_): _description_ Returns: : _description_
188,910
import os import sys import time from pathlib import Path from ubuntu_utils import cmd_result, ensure_base_env, get_job g_jobs = 2 def install_pyncnn(dep_dir): print('-' * 10 + 'build and install pyncnn' + '-' * 10) time.sleep(2) # generate unzip and build dir os.chdir(dep_dir) # git clone if not os.path.exists('ncnn'): os.system( 'git clone --depth 1 --branch 20230816 https://github.com/tencent/ncnn && cd ncnn' # noqa: E501 ) ncnn_dir = os.path.join(dep_dir, 'ncnn') os.chdir(ncnn_dir) # update submodule pybind11, gslang not required os.system('git submodule init && git submodule update python/pybind11') # build if not os.path.exists('build'): os.system('mkdir build') os.chdir(os.path.join(ncnn_dir, 'build')) os.system('rm -rf CMakeCache.txt') pb_install = os.path.join(dep_dir, 'pbinstall') pb_bin = os.path.join(pb_install, 'bin', 'protoc') pb_lib = os.path.join(pb_install, 'lib', 'libprotobuf.so') pb_include = os.path.join(pb_install, 'include') cmd = 'cmake .. ' cmd += ' -DNCNN_PYTHON=ON ' cmd += ' -DProtobuf_LIBRARIES={} '.format(pb_lib) cmd += ' -DProtobuf_PROTOC_EXECUTABLE={} '.format(pb_bin) cmd += ' -DProtobuf_INCLUDE_DIR={} '.format(pb_include) cmd += ' && make -j {} '.format(g_jobs) cmd += ' && make install ' os.system(cmd) # install os.chdir(ncnn_dir) os.system('cd python && python -m pip install -e . --user --no-cache-dir') ncnn_cmake_dir = os.path.join(ncnn_dir, 'build', 'install', 'lib', 'cmake', 'ncnn') assert (os.path.exists(ncnn_cmake_dir)) print('ncnn cmake dir \t:{}'.format(ncnn_cmake_dir)) print('\n') return ncnn_cmake_dir
null
188,911
import os import sys import time from pathlib import Path from ubuntu_utils import cmd_result, ensure_base_env, get_job g_jobs = 2 def install_mmdeploy(work_dir, dep_dir, ncnn_cmake_dir): print('-' * 10 + 'build and install mmdeploy' + '-' * 10) time.sleep(3) os.chdir(work_dir) os.system('git submodule init') os.system('git submodule update') if not os.path.exists('build'): os.system('mkdir build') pb_install = os.path.join(dep_dir, 'pbinstall') pb_bin = os.path.join(pb_install, 'bin', 'protoc') pb_lib = os.path.join(pb_install, 'lib', 'libprotobuf.so') pb_include = os.path.join(pb_install, 'include') os.system('rm -rf build/CMakeCache.txt') cmd = 'cd build && cmake ..' cmd += ' -DMMDEPLOY_BUILD_SDK=ON ' cmd += ' -DMMDEPLOY_BUILD_EXAMPLES=ON ' cmd += ' -DMMDEPLOY_BUILD_SDK_PYTHON_API=ON ' cmd += ' -DMMDEPLOY_TARGET_DEVICES=cpu ' cmd += ' -DMMDEPLOY_TARGET_BACKENDS=ncnn ' cmd += ' -DProtobuf_PROTOC_EXECUTABLE={} '.format(pb_bin) cmd += ' -DProtobuf_LIBRARIES={} '.format(pb_lib) cmd += ' -DProtobuf_INCLUDE_DIR={} '.format(pb_include) cmd += ' -Dncnn_DIR={} '.format(ncnn_cmake_dir) os.system(cmd) os.system('cd build && make -j {} && make install'.format(g_jobs)) os.system('python3 -m pip install -v -e . --user --no-cache-dir') os.system(""" echo 'export PATH={}:$PATH' >> ~/mmdeploy.env """.format( os.path.join(work_dir, 'mmdeploy', 'backend', 'ncnn'))) try: import mmcv print(mmcv.__version__) os.system('python3 tools/check_env.py') except Exception: print('Please install torch & mmcv later.. ╮(╯▽╰)╭') return 0
null
188,912
import argparse import os import sys from distutils.util import get_platform import yaml def parse_arguments(): parser = argparse.ArgumentParser( description='MMDeploy create build config') parser.add_argument( '--backend', required=True, type=str, help='target backend. Eg: "ort;trt"') parser.add_argument( '--system', required=True, type=str, help='target system, Eg: windows/linux/jetson') parser.add_argument( '--build-mmdeploy', action='store_true', help='whether build mmdeploy runtime package') parser.add_argument( '--build-sdk', action='store_true', help='whether build sdk c/cpp api') parser.add_argument( '--sdk-dynamic-net', action='store_true', help='whether build mmdeploy sdk dynamic net') parser.add_argument('--device', type=str, help='target device. Eg: "cpu"') parser.add_argument( '--shared', action='store_true', help='whether build shared lib') parser.add_argument( '--build-sdk-monolithic', action='store_true', help='whether build sdk monolithic') parser.add_argument( '--build-sdk-python', action='store_true', help='whether build sdk python api') parser.add_argument( '--opencv-dir', type=str, help='opencv path that contains OpenCVConfig.cmake, ' 'default use $ENV{OpenCV_DIR}') parser.add_argument( '--pplcv-dir', type=str, help='pplcv path that contains pplcv-config.cmake, ' 'default use $ENV{pplcv_DIR}') parser.add_argument( '--onnxruntime-dir', type=str, help='onnxruntime root path, default use $ENV{ONNXRUNTIME_DIR}') parser.add_argument( '--tensorrt-dir', type=str, help='tensorrt root path, default use $ENV{TENSORRT_DIR}') parser.add_argument( '--cudnn-dir', type=str, help='cudnn root dir, default use $ENV{CUDNN_DIR}') parser.add_argument('--cxx11abi', action='store_true', help='new cxxabi') parser.add_argument( '--output', required=True, type=str, help='output config file path') return parser.parse_args()
null
188,913
import argparse import os import sys from distutils.util import get_platform import yaml def generate_config(args): config = {} cmake_cfg = {} # wheel platform tag if args.system in ['linux']: config['PLATFORM_TAG'] = 'manylinux2014_x86_64' elif args.system in ['jetson']: config['PLATFORM_TAG'] = 'any' else: config['PLATFORM_TAG'] = get_platform().replace('-', '_').replace('.', '_') config['BUILD_MMDEPLOY'] = 'ON' if args.build_mmdeploy else 'OFF' # deps for mmdeploy cmake_cfg['MMDEPLOY_TARGET_BACKENDS'] = args.backend if 'ort' in args.backend: if args.onnxruntime_dir: cmake_cfg['ONNXRUNTIME_DIR'] = args.onnxruntime_dir elif 'ONNXRUNTIME_DIR' in os.environ: cmake_cfg['ONNXRUNTIME_DIR'] = os.environ['ONNXRUNTIME_DIR'] else: raise Exception('please provide --onnxruntime-dir') if 'trt' in args.backend: if args.tensorrt_dir: cmake_cfg['TENSORRT_DIR'] = args.tensorrt_dir elif 'TENSORRT_DIR' in os.environ: cmake_cfg['TENSORRT_DIR'] = os.environ['TENSORRT_DIR'] else: raise Exception('please provide --tensorrt-dir') if args.cudnn_dir: cmake_cfg['CUDNN_DIR'] = args.cudnn_dir elif 'CUDNN_DIR' in os.environ: cmake_cfg['CUDNN_DIR'] = os.environ['CUDNN_DIR'] else: raise Exception('please provide --cudnn-dir') # deps for mmdeploy-python if args.build_sdk: cmake_cfg['MMDEPLOY_BUILD_SDK'] = 'ON' cmake_cfg[ 'MMDEPLOY_BUILD_SDK_MONOLITHIC'] = 'ON' \ if args.build_sdk_monolithic else 'OFF' cmake_cfg[ 'MMDEPLOY_BUILD_SDK_PYTHON_API'] = 'ON' \ if args.build_sdk_python else 'OFF' cmake_cfg['MMDEPLOY_SHARED_LIBS'] = 'ON' if args.shared else 'OFF' cmake_cfg['MMDEPLOY_TARGET_DEVICES'] = args.device cmake_cfg[ 'MMDEPLOY_DYNAMIC_BACKEND'] = 'ON' \ if args.sdk_dynamic_net else 'OFF' cmake_cfg['MMDEPLOY_ZIP_MODEL'] = 'ON' if args.opencv_dir: cmake_cfg['OpenCV_DIR'] = args.opencv_dir elif 'OpenCV_DIR' in os.environ: cmake_cfg['OpenCV_DIR'] = os.environ['OpenCV_DIR'] else: raise Exception('please provide --opencv-dir') if args.device == 'cuda': if args.pplcv_dir: cmake_cfg['pplcv_DIR'] = args.pplcv_dir elif 'pplcv_DIR' in os.environ: cmake_cfg['pplcv_DIR'] = os.environ['pplcv_DIR'] else: raise Exception('please provide --pplcv-dir') # sdk package template if args.system in ['windows', 'linux']: name = 'mmdeploy-{mmdeploy_v}-{system}-{machine}' if args.cxx11abi: name = name + '-cxx11abi' if args.device == 'cpu': pass elif args.device == 'cuda': name = '{}-cuda'.format(name) + '{cuda_v}' else: raise Exception('unsupported device') config['BUILD_SDK_NAME'] = name elif args.system == 'jetson': config['BUILD_SDK_NAME'] = 'mmdeploy-{mmdeploy_v}-jetson-{machine}' else: raise Exception('unsupported system') else: cmake_cfg['MMDEPLOY_BUILD_SDK'] = 'OFF' cmake_cfg['MMDEPLOY_BUILD_SDK_PYTHON_API'] = 'OFF' config['cmake_cfg'] = cmake_cfg return config
null
188,914
import argparse import copy import logging import os import os.path as osp import platform import re import shutil import sys from glob import glob from subprocess import check_output, run from typing import Dict import yaml from packaging import version def create_mmdeploy(cfg: Dict, work_dir: str): def create_mmdeploy_runtime(cfg: Dict, work_dir: str): def create_sdk(cfg: Dict, work_dir: str): def create_package(cfg: Dict, work_dir: str): create_mmdeploy(cfg, work_dir) create_sdk(cfg, work_dir) create_mmdeploy_runtime(cfg, work_dir)
null
188,915
import argparse import copy import logging import os import os.path as osp import platform import re import shutil import sys from glob import glob from subprocess import check_output, run from typing import Dict import yaml from packaging import version def parse_args(): parser = argparse.ArgumentParser(description='Build mmdeploy from yaml.') parser.add_argument('--config', help='The build config yaml file.') parser.add_argument( '--output-dir', default='.', help='Output package directory.') args = parser.parse_args() return args
null
188,916
import argparse import copy import logging import os import os.path as osp import platform import re import shutil import sys from glob import glob from subprocess import check_output, run from typing import Dict import yaml from packaging import version def parse_configs(cfg_path: str): with open(cfg_path, mode='r') as f: config = yaml.load(f, yaml.Loader) logging.info(f'Load config\n{yaml.dump(config)}') return config
null
188,917
import os import os.path as osp import platform import sys version_file = osp.join(CURDIR, 'mmdeploy_runtime', 'version.py') def get_version(): with open(version_file, 'r') as f: exec(compile(f.read(), version_file, 'exec')) return locals()['__version__']
null
188,918
import os import os.path as osp import platform import sys def get_platform_name(): return platform.machine()
null
188,919
import os import os.path as osp import platform import sys def parse_arg_remove_boolean(argv, arg_name): arg_value = False if arg_name in sys.argv: arg_value = True argv.remove(arg_name) return arg_value
null
188,920
import config import tiktoken import openai openai.api_key = config.openai_api_key async def is_content_acceptable(prompt): r = await openai.Moderation.acreate(input=prompt) return not all(r.results[0].categories.values())
null
188,921
import io import logging import asyncio import traceback import html import json from datetime import datetime import openai import telegram from telegram import ( Update, User, InlineKeyboardButton, InlineKeyboardMarkup, BotCommand ) from telegram.ext import ( Application, ApplicationBuilder, CallbackContext, CommandHandler, MessageHandler, CallbackQueryHandler, AIORateLimiter, filters ) from telegram.constants import ParseMode, ChatAction import config import database import openai_utils async def start_handle(update: Update, context: CallbackContext): await register_user_if_not_exists(update, context, update.message.from_user) user_id = update.message.from_user.id db.set_user_attribute(user_id, "last_interaction", datetime.now()) db.start_new_dialog(user_id) reply_text = "Hi! I'm <b>ChatGPT</b> bot implemented with OpenAI API 🤖\n\n" reply_text += HELP_MESSAGE await update.message.reply_text(reply_text, parse_mode=ParseMode.HTML) await show_chat_modes_handle(update, context) async def help_handle(update: Update, context: CallbackContext): await register_user_if_not_exists(update, context, update.message.from_user) user_id = update.message.from_user.id db.set_user_attribute(user_id, "last_interaction", datetime.now()) await update.message.reply_text(HELP_MESSAGE, parse_mode=ParseMode.HTML) async def help_group_chat_handle(update: Update, context: CallbackContext): await register_user_if_not_exists(update, context, update.message.from_user) user_id = update.message.from_user.id db.set_user_attribute(user_id, "last_interaction", datetime.now()) text = HELP_GROUP_CHAT_MESSAGE.format(bot_username="@" + context.bot.username) await update.message.reply_text(text, parse_mode=ParseMode.HTML) await update.message.reply_video(config.help_group_chat_video_path) async def retry_handle(update: Update, context: CallbackContext): await register_user_if_not_exists(update, context, update.message.from_user) if await is_previous_message_not_answered_yet(update, context): return user_id = update.message.from_user.id db.set_user_attribute(user_id, "last_interaction", datetime.now()) dialog_messages = db.get_dialog_messages(user_id, dialog_id=None) if len(dialog_messages) == 0: await update.message.reply_text("No message to retry 🤷‍♂️") return last_dialog_message = dialog_messages.pop() db.set_dialog_messages(user_id, dialog_messages, dialog_id=None) # last message was removed from the context await message_handle(update, context, message=last_dialog_message["user"], use_new_dialog_timeout=False) async def message_handle(update: Update, context: CallbackContext, message=None, use_new_dialog_timeout=True): # check if bot was mentioned (for group chats) if not await is_bot_mentioned(update, context): return # check if message is edited if update.edited_message is not None: await edited_message_handle(update, context) return _message = message or update.message.text # remove bot mention (in group chats) if update.message.chat.type != "private": _message = _message.replace("@" + context.bot.username, "").strip() await register_user_if_not_exists(update, context, update.message.from_user) if await is_previous_message_not_answered_yet(update, context): return user_id = update.message.from_user.id chat_mode = db.get_user_attribute(user_id, "current_chat_mode") if chat_mode == "artist": await generate_image_handle(update, context, message=message) return async def message_handle_fn(): # new dialog timeout if use_new_dialog_timeout: if (datetime.now() - db.get_user_attribute(user_id, "last_interaction")).seconds > config.new_dialog_timeout and len(db.get_dialog_messages(user_id)) > 0: db.start_new_dialog(user_id) await update.message.reply_text(f"Starting new dialog due to timeout (<b>{config.chat_modes[chat_mode]['name']}</b> mode) ✅", parse_mode=ParseMode.HTML) db.set_user_attribute(user_id, "last_interaction", datetime.now()) # in case of CancelledError n_input_tokens, n_output_tokens = 0, 0 current_model = db.get_user_attribute(user_id, "current_model") try: # send placeholder message to user placeholder_message = await update.message.reply_text("...") # send typing action await update.message.chat.send_action(action="typing") if _message is None or len(_message) == 0: await update.message.reply_text("🥲 You sent <b>empty message</b>. Please, try again!", parse_mode=ParseMode.HTML) return dialog_messages = db.get_dialog_messages(user_id, dialog_id=None) parse_mode = { "html": ParseMode.HTML, "markdown": ParseMode.MARKDOWN }[config.chat_modes[chat_mode]["parse_mode"]] chatgpt_instance = openai_utils.ChatGPT(model=current_model) if config.enable_message_streaming: gen = chatgpt_instance.send_message_stream(_message, dialog_messages=dialog_messages, chat_mode=chat_mode) else: answer, (n_input_tokens, n_output_tokens), n_first_dialog_messages_removed = await chatgpt_instance.send_message( _message, dialog_messages=dialog_messages, chat_mode=chat_mode ) async def fake_gen(): yield "finished", answer, (n_input_tokens, n_output_tokens), n_first_dialog_messages_removed gen = fake_gen() prev_answer = "" async for gen_item in gen: status, answer, (n_input_tokens, n_output_tokens), n_first_dialog_messages_removed = gen_item answer = answer[:4096] # telegram message limit # update only when 100 new symbols are ready if abs(len(answer) - len(prev_answer)) < 100 and status != "finished": continue try: await context.bot.edit_message_text(answer, chat_id=placeholder_message.chat_id, message_id=placeholder_message.message_id, parse_mode=parse_mode) except telegram.error.BadRequest as e: if str(e).startswith("Message is not modified"): continue else: await context.bot.edit_message_text(answer, chat_id=placeholder_message.chat_id, message_id=placeholder_message.message_id) await asyncio.sleep(0.01) # wait a bit to avoid flooding prev_answer = answer # update user data new_dialog_message = {"user": _message, "bot": answer, "date": datetime.now()} db.set_dialog_messages( user_id, db.get_dialog_messages(user_id, dialog_id=None) + [new_dialog_message], dialog_id=None ) db.update_n_used_tokens(user_id, current_model, n_input_tokens, n_output_tokens) except asyncio.CancelledError: # note: intermediate token updates only work when enable_message_streaming=True (config.yml) db.update_n_used_tokens(user_id, current_model, n_input_tokens, n_output_tokens) raise except Exception as e: error_text = f"Something went wrong during completion. Reason: {e}" logger.error(error_text) await update.message.reply_text(error_text) return # send message if some messages were removed from the context if n_first_dialog_messages_removed > 0: if n_first_dialog_messages_removed == 1: text = "✍️ <i>Note:</i> Your current dialog is too long, so your <b>first message</b> was removed from the context.\n Send /new command to start new dialog" else: text = f"✍️ <i>Note:</i> Your current dialog is too long, so <b>{n_first_dialog_messages_removed} first messages</b> were removed from the context.\n Send /new command to start new dialog" await update.message.reply_text(text, parse_mode=ParseMode.HTML) async with user_semaphores[user_id]: task = asyncio.create_task(message_handle_fn()) user_tasks[user_id] = task try: await task except asyncio.CancelledError: await update.message.reply_text("✅ Canceled", parse_mode=ParseMode.HTML) else: pass finally: if user_id in user_tasks: del user_tasks[user_id] async def voice_message_handle(update: Update, context: CallbackContext): # check if bot was mentioned (for group chats) if not await is_bot_mentioned(update, context): return await register_user_if_not_exists(update, context, update.message.from_user) if await is_previous_message_not_answered_yet(update, context): return user_id = update.message.from_user.id db.set_user_attribute(user_id, "last_interaction", datetime.now()) voice = update.message.voice voice_file = await context.bot.get_file(voice.file_id) # store file in memory, not on disk buf = io.BytesIO() await voice_file.download_to_memory(buf) buf.name = "voice.oga" # file extension is required buf.seek(0) # move cursor to the beginning of the buffer transcribed_text = await openai_utils.transcribe_audio(buf) text = f"🎤: <i>{transcribed_text}</i>" await update.message.reply_text(text, parse_mode=ParseMode.HTML) # update n_transcribed_seconds db.set_user_attribute(user_id, "n_transcribed_seconds", voice.duration + db.get_user_attribute(user_id, "n_transcribed_seconds")) await message_handle(update, context, message=transcribed_text) async def new_dialog_handle(update: Update, context: CallbackContext): await register_user_if_not_exists(update, context, update.message.from_user) if await is_previous_message_not_answered_yet(update, context): return user_id = update.message.from_user.id db.set_user_attribute(user_id, "last_interaction", datetime.now()) db.start_new_dialog(user_id) await update.message.reply_text("Starting new dialog ✅") chat_mode = db.get_user_attribute(user_id, "current_chat_mode") await update.message.reply_text(f"{config.chat_modes[chat_mode]['welcome_message']}", parse_mode=ParseMode.HTML) async def cancel_handle(update: Update, context: CallbackContext): await register_user_if_not_exists(update, context, update.message.from_user) user_id = update.message.from_user.id db.set_user_attribute(user_id, "last_interaction", datetime.now()) if user_id in user_tasks: task = user_tasks[user_id] task.cancel() else: await update.message.reply_text("<i>Nothing to cancel...</i>", parse_mode=ParseMode.HTML) async def show_chat_modes_handle(update: Update, context: CallbackContext): await register_user_if_not_exists(update, context, update.message.from_user) if await is_previous_message_not_answered_yet(update, context): return user_id = update.message.from_user.id db.set_user_attribute(user_id, "last_interaction", datetime.now()) text, reply_markup = get_chat_mode_menu(0) await update.message.reply_text(text, reply_markup=reply_markup, parse_mode=ParseMode.HTML) async def show_chat_modes_callback_handle(update: Update, context: CallbackContext): await register_user_if_not_exists(update.callback_query, context, update.callback_query.from_user) if await is_previous_message_not_answered_yet(update.callback_query, context): return user_id = update.callback_query.from_user.id db.set_user_attribute(user_id, "last_interaction", datetime.now()) query = update.callback_query await query.answer() page_index = int(query.data.split("|")[1]) if page_index < 0: return text, reply_markup = get_chat_mode_menu(page_index) try: await query.edit_message_text(text, reply_markup=reply_markup, parse_mode=ParseMode.HTML) except telegram.error.BadRequest as e: if str(e).startswith("Message is not modified"): pass async def set_chat_mode_handle(update: Update, context: CallbackContext): await register_user_if_not_exists(update.callback_query, context, update.callback_query.from_user) user_id = update.callback_query.from_user.id query = update.callback_query await query.answer() chat_mode = query.data.split("|")[1] db.set_user_attribute(user_id, "current_chat_mode", chat_mode) db.start_new_dialog(user_id) await context.bot.send_message( update.callback_query.message.chat.id, f"{config.chat_modes[chat_mode]['welcome_message']}", parse_mode=ParseMode.HTML ) async def settings_handle(update: Update, context: CallbackContext): await register_user_if_not_exists(update, context, update.message.from_user) if await is_previous_message_not_answered_yet(update, context): return user_id = update.message.from_user.id db.set_user_attribute(user_id, "last_interaction", datetime.now()) text, reply_markup = get_settings_menu(user_id) await update.message.reply_text(text, reply_markup=reply_markup, parse_mode=ParseMode.HTML) async def set_settings_handle(update: Update, context: CallbackContext): await register_user_if_not_exists(update.callback_query, context, update.callback_query.from_user) user_id = update.callback_query.from_user.id query = update.callback_query await query.answer() _, model_key = query.data.split("|") db.set_user_attribute(user_id, "current_model", model_key) db.start_new_dialog(user_id) text, reply_markup = get_settings_menu(user_id) try: await query.edit_message_text(text, reply_markup=reply_markup, parse_mode=ParseMode.HTML) except telegram.error.BadRequest as e: if str(e).startswith("Message is not modified"): pass async def show_balance_handle(update: Update, context: CallbackContext): await register_user_if_not_exists(update, context, update.message.from_user) user_id = update.message.from_user.id db.set_user_attribute(user_id, "last_interaction", datetime.now()) # count total usage statistics total_n_spent_dollars = 0 total_n_used_tokens = 0 n_used_tokens_dict = db.get_user_attribute(user_id, "n_used_tokens") n_generated_images = db.get_user_attribute(user_id, "n_generated_images") n_transcribed_seconds = db.get_user_attribute(user_id, "n_transcribed_seconds") details_text = "🏷️ Details:\n" for model_key in sorted(n_used_tokens_dict.keys()): n_input_tokens, n_output_tokens = n_used_tokens_dict[model_key]["n_input_tokens"], n_used_tokens_dict[model_key]["n_output_tokens"] total_n_used_tokens += n_input_tokens + n_output_tokens n_input_spent_dollars = config.models["info"][model_key]["price_per_1000_input_tokens"] * (n_input_tokens / 1000) n_output_spent_dollars = config.models["info"][model_key]["price_per_1000_output_tokens"] * (n_output_tokens / 1000) total_n_spent_dollars += n_input_spent_dollars + n_output_spent_dollars details_text += f"- {model_key}: <b>{n_input_spent_dollars + n_output_spent_dollars:.03f}$</b> / <b>{n_input_tokens + n_output_tokens} tokens</b>\n" # image generation image_generation_n_spent_dollars = config.models["info"]["dalle-2"]["price_per_1_image"] * n_generated_images if n_generated_images != 0: details_text += f"- DALL·E 2 (image generation): <b>{image_generation_n_spent_dollars:.03f}$</b> / <b>{n_generated_images} generated images</b>\n" total_n_spent_dollars += image_generation_n_spent_dollars # voice recognition voice_recognition_n_spent_dollars = config.models["info"]["whisper"]["price_per_1_min"] * (n_transcribed_seconds / 60) if n_transcribed_seconds != 0: details_text += f"- Whisper (voice recognition): <b>{voice_recognition_n_spent_dollars:.03f}$</b> / <b>{n_transcribed_seconds:.01f} seconds</b>\n" total_n_spent_dollars += voice_recognition_n_spent_dollars text = f"You spent <b>{total_n_spent_dollars:.03f}$</b>\n" text += f"You used <b>{total_n_used_tokens}</b> tokens\n\n" text += details_text await update.message.reply_text(text, parse_mode=ParseMode.HTML) async def error_handle(update: Update, context: CallbackContext) -> None: logger.error(msg="Exception while handling an update:", exc_info=context.error) try: # collect error message tb_list = traceback.format_exception(None, context.error, context.error.__traceback__) tb_string = "".join(tb_list) update_str = update.to_dict() if isinstance(update, Update) else str(update) message = ( f"An exception was raised while handling an update\n" f"<pre>update = {html.escape(json.dumps(update_str, indent=2, ensure_ascii=False))}" "</pre>\n\n" f"<pre>{html.escape(tb_string)}</pre>" ) # split text into multiple messages due to 4096 character limit for message_chunk in split_text_into_chunks(message, 4096): try: await context.bot.send_message(update.effective_chat.id, message_chunk, parse_mode=ParseMode.HTML) except telegram.error.BadRequest: # answer has invalid characters, so we send it without parse_mode await context.bot.send_message(update.effective_chat.id, message_chunk) except: await context.bot.send_message(update.effective_chat.id, "Some error in error handler") async def post_init(application: Application): await application.bot.set_my_commands([ BotCommand("/new", "Start new dialog"), BotCommand("/mode", "Select chat mode"), BotCommand("/retry", "Re-generate response for previous query"), BotCommand("/balance", "Show balance"), BotCommand("/settings", "Show settings"), BotCommand("/help", "Show help message"), ]) def run_bot() -> None: application = ( ApplicationBuilder() .token(config.telegram_token) .concurrent_updates(True) .rate_limiter(AIORateLimiter(max_retries=5)) .http_version("1.1") .get_updates_http_version("1.1") .post_init(post_init) .build() ) # add handlers user_filter = filters.ALL if len(config.allowed_telegram_usernames) > 0: usernames = [x for x in config.allowed_telegram_usernames if isinstance(x, str)] any_ids = [x for x in config.allowed_telegram_usernames if isinstance(x, int)] user_ids = [x for x in any_ids if x > 0] group_ids = [x for x in any_ids if x < 0] user_filter = filters.User(username=usernames) | filters.User(user_id=user_ids) | filters.Chat(chat_id=group_ids) application.add_handler(CommandHandler("start", start_handle, filters=user_filter)) application.add_handler(CommandHandler("help", help_handle, filters=user_filter)) application.add_handler(CommandHandler("help_group_chat", help_group_chat_handle, filters=user_filter)) application.add_handler(MessageHandler(filters.TEXT & ~filters.COMMAND & user_filter, message_handle)) application.add_handler(CommandHandler("retry", retry_handle, filters=user_filter)) application.add_handler(CommandHandler("new", new_dialog_handle, filters=user_filter)) application.add_handler(CommandHandler("cancel", cancel_handle, filters=user_filter)) application.add_handler(MessageHandler(filters.VOICE & user_filter, voice_message_handle)) application.add_handler(CommandHandler("mode", show_chat_modes_handle, filters=user_filter)) application.add_handler(CallbackQueryHandler(show_chat_modes_callback_handle, pattern="^show_chat_modes")) application.add_handler(CallbackQueryHandler(set_chat_mode_handle, pattern="^set_chat_mode")) application.add_handler(CommandHandler("settings", settings_handle, filters=user_filter)) application.add_handler(CallbackQueryHandler(set_settings_handle, pattern="^set_settings")) application.add_handler(CommandHandler("balance", show_balance_handle, filters=user_filter)) application.add_error_handler(error_handle) # start the bot application.run_polling()
null
188,922
import os from typing import Dict, List, Optional, Tuple, Union import torch from fastchat.conversation import (compute_skip_echo_len, get_default_conv_template) from fastchat.serve.inference import load_model as load_fastchat_model from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer from config import * CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE def torch_gc(): if torch.cuda.is_available(): with torch.cuda.device(CUDA_DEVICE): torch.cuda.empty_cache() torch.cuda.ipc_collect()
null
188,923
import os from typing import Dict, List, Optional, Tuple, Union import torch from fastchat.conversation import (compute_skip_echo_len, get_default_conv_template) from fastchat.serve.inference import load_model as load_fastchat_model from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer from config import * def auto_configure_device_map(num_gpus: int) -> Dict[str, int]: num_trans_layers = 28 per_gpu_layers = 30 / num_gpus device_map = { 'transformer.word_embeddings': 0, 'transformer.final_layernorm': 0, 'lm_head': 0 } used = 2 gpu_target = 0 for i in range(num_trans_layers): if used >= per_gpu_layers: gpu_target += 1 used = 0 assert gpu_target < num_gpus device_map[f'transformer.layers.{i}'] = gpu_target used += 1 return device_map
null
188,924
import os import gradio as gr import nltk import torch from chatglm_llm import ChatGLM from duckduckgo_search import ddg from duckduckgo_search.utils import SESSION from langchain.chains import RetrievalQA from langchain.document_loaders import UnstructuredFileLoader from langchain.prompts import PromptTemplate from langchain.vectorstores import FAISS from modelscope_hub import ModelScopeEmbeddings def clear_session(): return '', None
null
188,925
import os import gradio as gr import nltk import torch from chatglm_llm import ChatGLM from duckduckgo_search import ddg from duckduckgo_search.utils import SESSION from langchain.chains import RetrievalQA from langchain.document_loaders import UnstructuredFileLoader from langchain.prompts import PromptTemplate from langchain.vectorstores import FAISS from modelscope_hub import ModelScopeEmbeddings def search_web(query): def init_knowledge_vector_store(embedding_model, filepath): def get_knowledge_based_answer( query, large_language_model, vector_store, VECTOR_SEARCH_TOP_K, web_content, chat_history=[], history_len=3, temperature=0.01, top_p=0.9, ): def predict(input, large_language_model, embedding_model, file_obj, VECTOR_SEARCH_TOP_K, history_len, temperature, top_p, use_web, history=None): if history == None: history = [] print(file_obj.name) if use_web == 'True': web_content = search_web(query=input) else: web_content = '' vector_store = init_knowledge_vector_store(embedding_model, file_obj.name) resp = get_knowledge_based_answer( query=input, large_language_model=large_language_model, vector_store=vector_store, VECTOR_SEARCH_TOP_K=VECTOR_SEARCH_TOP_K, web_content=web_content, chat_history=history, history_len=history_len, temperature=temperature, top_p=top_p, ) print(resp) history.append((input, resp)) return '', history, history
null
188,926
import os from typing import List, Optional import torch from langchain.llms.base import LLM from langchain.llms.utils import enforce_stop_tokens from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE def torch_gc(): if torch.cuda.is_available(): with torch.cuda.device(CUDA_DEVICE): torch.cuda.empty_cache() torch.cuda.ipc_collect()
null
188,927
import os from typing import List import gradio as gr import nltk import sentence_transformers from duckduckgo_search import ddg from duckduckgo_search.utils import SESSION from langchain.chains import RetrievalQA from langchain_community.document_loaders import UnstructuredFileLoader from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.prompts import PromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain_community.vectorstores import FAISS from chatllm import ChatLLM from chinese_text_splitter import ChineseTextSplitter from config import * import torch def update_status(history, status): history = history + [[None, status]] print(status) return history
null
188,928
import os from typing import List import gradio as gr import nltk import sentence_transformers from duckduckgo_search import ddg from duckduckgo_search.utils import SESSION from langchain.chains import RetrievalQA from langchain_community.document_loaders import UnstructuredFileLoader from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.prompts import PromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain_community.vectorstores import FAISS from chatllm import ChatLLM from chinese_text_splitter import ChineseTextSplitter from config import * import torch knowladge_based_chat_llm = KnowledgeBasedChatLLM() def init_model(): try: print("开始加载模型配置") knowladge_based_chat_llm.init_model_config() print("模型配置加载成功") knowladge_based_chat_llm.llm._call("你好") return """初始模型已成功加载,可以开始对话""" except Exception as e: print(f"加载模型出错: {e}") # 打印详细的异常信息 return """模型未成功加载,请重新选择模型后点击"重新加载模型"按钮"""
null
188,929
import os from typing import List import gradio as gr import nltk import sentence_transformers from duckduckgo_search import ddg from duckduckgo_search.utils import SESSION from langchain.chains import RetrievalQA from langchain_community.document_loaders import UnstructuredFileLoader from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.prompts import PromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain_community.vectorstores import FAISS from chatllm import ChatLLM from chinese_text_splitter import ChineseTextSplitter from config import * import torch def clear_session(): return '', None
null
188,930
import os from typing import List import gradio as gr import nltk import sentence_transformers from duckduckgo_search import ddg from duckduckgo_search.utils import SESSION from langchain.chains import RetrievalQA from langchain_community.document_loaders import UnstructuredFileLoader from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.prompts import PromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain_community.vectorstores import FAISS from chatllm import ChatLLM from chinese_text_splitter import ChineseTextSplitter from config import * import torch knowladge_based_chat_llm = KnowledgeBasedChatLLM() model_status = init_model() def reinit_model(large_language_model, embedding_model, history): try: knowladge_based_chat_llm.init_model_config( large_language_model=large_language_model, embedding_model=embedding_model) model_status = """模型已成功重新加载,可以开始对话""" except Exception as e: model_status = """模型未成功重新加载,请点击重新加载模型""" return history + [[None, model_status]]
null
188,931
import os from typing import List import gradio as gr import nltk import sentence_transformers from duckduckgo_search import ddg from duckduckgo_search.utils import SESSION from langchain.chains import RetrievalQA from langchain_community.document_loaders import UnstructuredFileLoader from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.prompts import PromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain_community.vectorstores import FAISS from chatllm import ChatLLM from chinese_text_splitter import ChineseTextSplitter from config import * import torch knowladge_based_chat_llm = KnowledgeBasedChatLLM() def init_vector_store(file_obj): vector_store = knowladge_based_chat_llm.init_knowledge_vector_store( file_obj.name) return vector_store
null
188,932
import os from typing import List import gradio as gr import nltk import sentence_transformers from duckduckgo_search import ddg from duckduckgo_search.utils import SESSION from langchain.chains import RetrievalQA from langchain_community.document_loaders import UnstructuredFileLoader from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.prompts import PromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain_community.vectorstores import FAISS from chatllm import ChatLLM from chinese_text_splitter import ChineseTextSplitter from config import * import torch def search_web(query): SESSION.proxies = { "http": f"socks5h://localhost:7890", "https": f"socks5h://localhost:7890" } results = ddg(query) web_content = '' if results: for result in results: web_content += result['body'] return web_content knowladge_based_chat_llm = KnowledgeBasedChatLLM() def predict(input, use_web, top_k, history_len, temperature, top_p, history=None): if history == None: history = [] if use_web == 'True': web_content = search_web(query=input) else: web_content = '' resp = knowladge_based_chat_llm.get_knowledge_based_answer( query=input, web_content=web_content, top_k=top_k, history_len=history_len, temperature=temperature, top_p=top_p, history=history) history.append((input, resp['result'])) return '', history, history
null
188,933
import os import gradio as gr import nltk from langchain.chains import RetrievalQA from langchain.document_loaders import UnstructuredFileLoader from langchain.prompts import PromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.vectorstores import FAISS from paddle_embedding import PaddleNLPEmbeddings from chatllm import ChatLLM def clear_session(): return '', None
null