|
### A Unified Interface for IQA Datasets |
|
|
|
This repository contains a unified interface for **downloading and loading** 20 popular Image Quality Assessment (IQA) datasets. We provide codes for both general **Python** and **PyTorch**. |
|
|
|
#### Citation |
|
|
|
This repository is part of our [Bayesian IQA project](http://ivc.uwaterloo.ca/research/bayesianIQA/) where we present an overview of IQA methods from a Bayesian perspective. More detailed summaries of both IQA models and datasets can be found in this [interactive webpage](http://ivc.uwaterloo.ca/research/bayesianIQA/). |
|
|
|
If you find our project useful, please cite our paper |
|
``` |
|
@article{duanmu2021biqa, |
|
author = {Duanmu, Zhengfang and Liu, Wentao and Wang, Zhongling and Wang, Zhou}, |
|
title = {Quantifying Visual Image Quality: A Bayesian View}, |
|
journal = {Annual Review of Vision Science}, |
|
volume = {7}, |
|
number = {1}, |
|
pages = {437-464}, |
|
year = {2021} |
|
} |
|
``` |
|
|
|
#### Supported Datasets |
|
|
|
| Dataset | Dis Img | Ref Img | MOS | DMOS | |
|
| :-----------------------------------------------------------------------------------: | :----------------: | :----------------: | :----------------: | :----------------: | |
|
| [LIVE](https://live.ece.utexas.edu/research/quality/subjective.htm) | β | β | | β | |
|
| [A57](http://vision.eng.shizuoka.ac.jp/mod/page/view.php?id=26) | β | β | | β | |
|
| [LIVE_MD](https://live.ece.utexas.edu/research/Quality/live_multidistortedimage.html) | β | β | | β | |
|
| [MDID2013](https://ieeexplore.ieee.org/document/6879255) | β | β | | β | |
|
| [CSIQ](http://vision.eng.shizuoka.ac.jp/mod/page/view.php?id=23) | β | β | | β | |
|
| [KADID-10k](http://database.mmsp-kn.de/kadid-10k-database.html) | β | β | β<sub>[(Note)](https://github.com/icbcbicc/IQA-Dataset/issues/3#issuecomment-2192649304)</sub> ~~~~| | |
|
| [TID2008](http://www.ponomarenko.info/tid2008.htm) | β | β | β | | |
|
| [TID2013](http://www.ponomarenko.info/tid2013.htm) | β | β | β | | |
|
| [CIDIQ_MOS100](https://www.ntnu.edu/web/colourlab/software) | β | β | β | | |
|
| [CIDIQ_MOS50](https://www.ntnu.edu/web/colourlab/software) | β | β | β | | |
|
| [MDID2016](https://www.sciencedirect.com/science/article/abs/pii/S0031320316301911) | β | β | β | | |
|
| [SDIVL](http://www.ivl.disco.unimib.it/activities/imagequality/) | β | β | β | | |
|
| [MDIVL](http://www.ivl.disco.unimib.it/activities/imagequality/) | β | β | β | | |
|
| [Toyama](http://mict.eng.u-toyama.ac.jp/mictdb.html) | β | β | β | | |
|
| [PDAP-HDDS](https://sites.google.com/site/eelab907/zi-liao-ku) | β | β | β | | |
|
| [VCLFER](https://www.vcl.fer.hr/quality/vclfer.html) | β | β | β | | |
|
| [LIVE_Challenge](https://live.ece.utexas.edu/research/ChallengeDB/index.html) | β | | β | | |
|
| [CID2013](https://zenodo.org/record/2647033#.YDSi73X0kUc) | β | | β | | |
|
| [KonIQ-10k](http://database.mmsp-kn.de/koniq-10k-database.html) | β | | β | | |
|
| [SPAQ](https://github.com/h4nwei/SPAQ) | β | | β | | |
|
| [Waterloo_Exploration](https://ece.uwaterloo.ca/~k29ma/exploration/) | β | β | | | |
|
| [<del>KADIS-700k</del>](http://database.mmsp-kn.de/kadid-10k-database.html) | β <sub>(code only)</sub> | β | | | |
|
|
|
#### Basic Usage |
|
|
|
0. Prerequisites |
|
```shell |
|
pip install wget |
|
``` |
|
|
|
1. General Python (please refer [```demo.py```](demo.py)) |
|
|
|
```python |
|
from load_dataset import load_dataset |
|
dataset = load_dataset("LIVE") |
|
``` |
|
|
|
2. PyTorch (please refer [```demo_pytorch.py```](demo_pytorch.py)) |
|
|
|
```python |
|
from load_dataset import load_dataset_pytorch |
|
dataset = load_dataset_pytorch("LIVE") |
|
``` |
|
|
|
#### Advanced Usage |
|
|
|
1. General Python (please refer [```demo.py```](demo.py)) |
|
|
|
```python |
|
from load_dataset import load_dataset |
|
dataset = load_dataset("LIVE", dataset_root="data", attributes=["dis_img_path", "dis_type", "ref_img_path", "score"], download=True) |
|
``` |
|
|
|
2. PyTorch (please refer [```demo_pytorch.py```](demo_pytorch.py)) |
|
|
|
```python |
|
from load_dataset import load_dataset_pytorch |
|
transform = transforms.Compose([transforms.RandomCrop(size=64), transforms.ToTensor()]) |
|
dataset = load_dataset_pytorch("LIVE", dataset_root="data", attributes=["dis_img_path", "dis_type", "ref_img_path", "score"], download=True, transform=transform) |
|
``` |
|
|
|
#### TODO |
|
|
|
- [ ] Add more datasets: [PaQ-2-PiQ](https://github.com/baidut/PaQ-2-PiQ), [AVA](https://github.com/mtobeiyf/ava_downloader), [PIPAL](https://www.jasongt.com/projectpages/pipal.html), [AADB](https://github.com/aimerykong/deepImageAestheticsAnalysis), [FLIVE](https://github.com/niu-haoran/FLIVE_Database/blob/master/database_prep.ipynb), [BIQ2021](https://github.com/nisarahmedrana/BIQ2021), [IVC](http://ivc.univ-nantes.fr/en/databases/Subjective_Database/) |
|
- [ ] PyPI package |
|
- [ ] HuggingFace dataset |
|
- [ ] Provide more attributes |
|
- [ ] ~~Add TensorFlow support~~ |
|
- [ ] ~~Add MATLAB support~~ |
|
|
|
#### Star History |
|
|
|
[](https://star-history.com/#icbcbicc/IQA-Dataset&Date) |