code
stringlengths 52
7.75k
| docs
stringlengths 1
5.85k
|
---|---|
def codemirror_parameters(field):
manifesto = CodemirrorAssetTagRender()
names = manifesto.register_from_fields(field)
config = manifesto.get_codemirror_parameters(names[0])
return mark_safe(json.dumps(config)) | Filter to include CodeMirror parameters as a JSON string for a single
field.
This must be called only on an allready rendered field, meaning you must
not use this filter on a field before a form. Else, the field widget won't
be correctly initialized.
Example:
::
{% load djangocodemirror_tags %}
{{ form.myfield|codemirror_parameters }}
Arguments:
field (djangocodemirror.fields.CodeMirrorField): A form field.
Returns:
string: JSON object for parameters, marked safe for Django templates. |
def codemirror_instance(config_name, varname, element_id, assets=True):
output = io.StringIO()
manifesto = CodemirrorAssetTagRender()
manifesto.register(config_name)
if assets:
output.write(manifesto.css_html())
output.write(manifesto.js_html())
html = manifesto.codemirror_html(config_name, varname, element_id)
output.write(html)
content = output.getvalue()
output.close()
return mark_safe(content) | Return HTML to init a CodeMirror instance for an element.
This will output the whole HTML needed to initialize a CodeMirror instance
with needed assets loading. Assets can be omitted with the ``assets``
option.
Example:
::
{% load djangocodemirror_tags %}
{% codemirror_instance 'a-config-name' 'foo_codemirror' 'foo' %}
Arguments:
config_name (string): A registred config name.
varname (string): A Javascript variable name.
element_id (string): An HTML element identifier (without
leading ``#``) to attach to a CodeMirror instance.
Keyword Arguments:
assets (Bool): Adds needed assets before the HTML if ``True``, else
only CodeMirror instance will be outputed. Default value is
``True``.
Returns:
string: HTML. |
def resolve_widget(self, field):
# When filter is used within template we have to reach the field
# instance through the BoundField.
if hasattr(field, 'field'):
widget = field.field.widget
# When used out of template, we have a direct field instance
else:
widget = field.widget
return widget | Given a Field or BoundField, return widget instance.
Todo:
Raise an exception if given field object does not have a
widget.
Arguments:
field (Field or BoundField): A field instance.
Returns:
django.forms.widgets.Widget: Retrieved widget from given field. |
def register_from_fields(self, *args):
names = []
for field in args:
widget = self.resolve_widget(field)
self.register(widget.config_name)
if widget.config_name not in names:
names.append(widget.config_name)
return names | Register config name from field widgets
Arguments:
*args: Fields that contains widget
:class:`djangocodemirror.widget.CodeMirrorWidget`.
Returns:
list: List of registered config names from fields. |
def render_asset_html(self, path, tag_template):
url = os.path.join(settings.STATIC_URL, path)
return tag_template.format(url=url) | Render HTML tag for a given path.
Arguments:
path (string): Relative path from static directory.
tag_template (string): Template string for HTML tag.
Returns:
string: HTML tag with url from given path. |
def css_html(self):
output = io.StringIO()
for item in self.css():
output.write(
self.render_asset_html(item, settings.CODEMIRROR_CSS_ASSET_TAG)
)
content = output.getvalue()
output.close()
return content | Render HTML tags for Javascript assets.
Returns:
string: HTML for CSS assets from every registered config. |
def js_html(self):
output = io.StringIO()
for item in self.js():
output.write(
self.render_asset_html(item, settings.CODEMIRROR_JS_ASSET_TAG)
)
content = output.getvalue()
output.close()
return content | Render HTML tags for Javascript assets.
Returns:
string: HTML for Javascript assets from every registered config. |
def codemirror_html(self, config_name, varname, element_id):
parameters = json.dumps(self.get_codemirror_parameters(config_name),
sort_keys=True)
return settings.CODEMIRROR_FIELD_INIT_JS.format(
varname=varname,
inputid=element_id,
settings=parameters,
) | Render HTML for a CodeMirror instance.
Since a CodeMirror instance have to be attached to a HTML element, this
method requires a HTML element identifier with or without the ``#``
prefix, it depends from template in
``settings.CODEMIRROR_FIELD_INIT_JS`` (default one require to not
prefix with ``#``).
Arguments:
config_name (string): A registred config name.
varname (string): A Javascript variable name.
element_id (string): An HTML element identifier (without
leading ``#``) to attach to a CodeMirror instance.
Returns:
string: HTML to instanciate CodeMirror for a field input. |
def get_language_settings(language_code, site_id=None):
if site_id is None:
site_id = getattr(settings, 'SITE_ID', None)
for lang_dict in FLUENT_BLOGS_LANGUAGES.get(site_id, ()):
if lang_dict['code'] == language_code:
return lang_dict
return FLUENT_BLOGS_LANGUAGES['default'] | Return the language settings for the current site |
def run_apidoc(_):
import better_apidoc
better_apidoc.main([
'better-apidoc',
'-t',
os.path.join('.', '_templates'),
'--force',
'--no-toc',
'--separate',
'-o',
os.path.join('.', 'API'),
os.path.join('..', 'src', 'qnet'),
]) | Generage API documentation |
def _shorten_render(renderer, max_len):
def short_renderer(expr):
res = renderer(expr)
if len(res) > max_len:
return '...'
else:
return res
return short_renderer | Return a modified that returns the representation of expr, or '...' if
that representation is longer than `max_len` |
def init_algebra(*, default_hs_cls='LocalSpace'):
from qnet.algebra.core.hilbert_space_algebra import LocalSpace
from qnet.algebra.core.abstract_quantum_algebra import QuantumExpression
default_hs_cls = getattr(importlib.import_module('qnet'), default_hs_cls)
if issubclass(default_hs_cls, LocalSpace):
QuantumExpression._default_hs_cls = default_hs_cls
else:
raise TypeError("default_hs_cls must be a subclass of LocalSpace") | Initialize the algebra system
Args:
default_hs_cls (str): The name of the :class:`.LocalSpace` subclass
that should be used when implicitly creating Hilbert spaces, e.g.
in :class:`.OperatorSymbol` |
def register(self, name):
if name not in settings.CODEMIRROR_SETTINGS:
msg = ("Given config name '{}' does not exists in "
"'settings.CODEMIRROR_SETTINGS'.")
raise UnknowConfigError(msg.format(name))
parameters = copy.deepcopy(self.default_internal_config)
parameters.update(copy.deepcopy(
settings.CODEMIRROR_SETTINGS[name]
))
# Add asset bundles name
if 'css_bundle_name' not in parameters:
css_template_name = settings.CODEMIRROR_BUNDLE_CSS_NAME
parameters['css_bundle_name'] = css_template_name.format(
settings_name=name
)
if 'js_bundle_name' not in parameters:
js_template_name = settings.CODEMIRROR_BUNDLE_JS_NAME
parameters['js_bundle_name'] = js_template_name.format(
settings_name=name
)
self.registry[name] = parameters
return parameters | Register configuration for an editor instance.
Arguments:
name (string): Config name from available ones in
``settings.CODEMIRROR_SETTINGS``.
Raises:
UnknowConfigError: If given config name does not exist in
``settings.CODEMIRROR_SETTINGS``.
Returns:
dict: Registred config dict. |
def register_many(self, *args):
params = []
for name in args:
params.append(self.register(name))
return params | Register many configuration names.
Arguments:
*args: Config names as strings.
Returns:
list: List of registered configs. |
def resolve_mode(self, name):
if name not in settings.CODEMIRROR_MODES:
msg = ("Given config name '{}' does not exists in "
"'settings.CODEMIRROR_MODES'.")
raise UnknowModeError(msg.format(name))
return settings.CODEMIRROR_MODES.get(name) | From given mode name, return mode file path from
``settings.CODEMIRROR_MODES`` map.
Arguments:
name (string): Mode name.
Raises:
KeyError: When given name does not exist in
``settings.CODEMIRROR_MODES``.
Returns:
string: Mode file path. |
def resolve_theme(self, name):
if name not in settings.CODEMIRROR_THEMES:
msg = ("Given theme name '{}' does not exists in "
"'settings.CODEMIRROR_THEMES'.")
raise UnknowThemeError(msg.format(name))
return settings.CODEMIRROR_THEMES.get(name) | From given theme name, return theme file path from
``settings.CODEMIRROR_THEMES`` map.
Arguments:
name (string): Theme name.
Raises:
KeyError: When given name does not exist in
``settings.CODEMIRROR_THEMES``.
Returns:
string: Theme file path. |
def get_configs(self, name=None):
if name:
if name not in self.registry:
msg = "Given config name '{}' is not registered."
raise NotRegisteredError(msg.format(name))
return {name: self.registry[name]}
return self.registry | Returns registred configurations.
* If ``name`` argument is not given, default behavior is to return
every config from all registred config;
* If ``name`` argument is given, just return its config and nothing
else;
Keyword Arguments:
name (string): Specific configuration name to return.
Raises:
NotRegisteredError: If given config name does not exist in
registry.
Returns:
dict: Configurations. |
def get_config(self, name):
if name not in self.registry:
msg = "Given config name '{}' is not registered."
raise NotRegisteredError(msg.format(name))
return copy.deepcopy(self.registry[name]) | Return a registred configuration for given config name.
Arguments:
name (string): A registred config name.
Raises:
NotRegisteredError: If given config name does not exist in
registry.
Returns:
dict: Configuration. |
def get_codemirror_parameters(self, name):
config = self.get_config(name)
return {k: config[k] for k in config if k not in self._internal_only} | Return CodeMirror parameters for given configuration name.
This is a reduced configuration from internal parameters.
Arguments:
name (string): Config name from available ones in
``settings.CODEMIRROR_SETTINGS``.
Returns:
dict: Parameters. |
def js(self, name=None):
filepaths = copy.copy(settings.CODEMIRROR_BASE_JS)
configs = self.get_configs(name)
names = sorted(configs)
# Addons first
for name in names:
opts = configs[name]
for item in opts.get('addons', []):
if item not in filepaths:
filepaths.append(item)
# Process modes
for name in names:
opts = configs[name]
for item in opts['modes']:
resolved = self.resolve_mode(item)
if resolved not in filepaths:
filepaths.append(resolved)
return filepaths | Returns all needed Javascript filepaths for given config name (if
given) or every registred config instead (if no name is given).
Keyword Arguments:
name (string): Specific config name to use instead of all.
Returns:
list: List of Javascript file paths. |
def js_bundle_names(self, name=None):
configs = self.get_configs(name)
names = []
for k, v in configs.items():
if v.get('js_bundle_name'):
names.append(v['js_bundle_name'])
return sorted(names) | Returns all needed Javascript Bundle names for given config name (if
given) or every registred config instead (if no name is given).
Keyword Arguments:
name (string): Specific config name to use instead of all.
Returns:
list: List of webasset bundle names. |
def css(self, name=None):
filepaths = copy.copy(settings.CODEMIRROR_BASE_CSS)
configs = self.get_configs(name)
names = sorted(configs)
# Process themes
for name in names:
opts = configs[name]
for item in opts.get('themes', []):
resolved = self.resolve_theme(item)
if resolved not in filepaths:
filepaths.append(resolved)
# Then process extra CSS files
for name in names:
opts = configs[name]
for item in opts.get('extra_css', []):
if item not in filepaths:
filepaths.append(item)
return filepaths | Returns all needed CSS filepaths for given config name (if
given) or every registred config instead (if no name is given).
Keyword Arguments:
name (string): Specific config name to use instead of all.
Returns:
list: List of CSS file paths. |
def commutator(A, B=None):
if B:
return A * B - B * A
return SPre(A) - SPost(A) | Commutator of `A` and `B`
If ``B != None``, return the commutator :math:`[A,B]`, otherwise return
the super-operator :math:`[A,\cdot]`. The super-operator :math:`[A,\cdot]`
maps any other operator ``B`` to the commutator :math:`[A, B] = A B - B A`.
Args:
A: The first operator to form the commutator of.
B: The second operator to form the commutator of, or None.
Returns:
SuperOperator: The linear superoperator :math:`[A,\cdot]` |
def anti_commutator(A, B=None):
if B:
return A * B + B * A
return SPre(A) + SPost(A) | If ``B != None``, return the anti-commutator :math:`\{A,B\}`, otherwise
return the super-operator :math:`\{A,\cdot\}`. The super-operator
:math:`\{A,\cdot\}` maps any other operator ``B`` to the anti-commutator
:math:`\{A, B\} = A B + B A`.
Args:
A: The first operator to form all anti-commutators of.
B: The second operator to form the anti-commutator of, or None.
Returns:
SuperOperator: The linear superoperator :math:`[A,\cdot]` |
def liouvillian(H, Ls=None):
r
if Ls is None:
Ls = []
elif isinstance(Ls, Matrix):
Ls = Ls.matrix.ravel().tolist()
summands = [-I * commutator(H), ]
summands.extend([lindblad(L) for L in Ls])
return SuperOperatorPlus.create(*summands) | r"""Return the Liouvillian super-operator associated with `H` and `Ls`
The Liouvillian :math:`\mathcal{L}` generates the Markovian-dynamics of a
system via the Master equation:
.. math::
\dot{\rho} = \mathcal{L}\rho
= -i[H,\rho] + \sum_{j=1}^n \mathcal{D}[L_j] \rho
Args:
H (Operator): The associated Hamilton operator
Ls (sequence or Matrix): A sequence of Lindblad operators.
Returns:
SuperOperator: The Liouvillian super-operator. |
def vstackm(matrices):
arr = np_vstack(tuple(m.matrix for m in matrices))
# print(tuple(m.matrix.dtype for m in matrices))
# print(arr.dtype)
return Matrix(arr) | Generalizes `numpy.vstack` to :class:`Matrix` objects. |
def block_matrix(A, B, C, D):
r
return vstackm((hstackm((A, B)), hstackm((C, D)))) | r"""Generate the operator matrix with quadrants
.. math::
\begin{pmatrix} A B \\ C D \end{pmatrix}
Args:
A (Matrix): Matrix of shape ``(n, m)``
B (Matrix): Matrix of shape ``(n, k)``
C (Matrix): Matrix of shape ``(l, m)``
D (Matrix): Matrix of shape ``(l, k)``
Returns:
Matrix: The combined block matrix ``[[A, B], [C, D]]``. |
def permutation_matrix(permutation):
r
assert check_permutation(permutation)
n = len(permutation)
op_matrix = np_zeros((n, n), dtype=int)
for i, j in enumerate(permutation):
op_matrix[j, i] = 1
return Matrix(op_matrix) | r"""Return orthogonal permutation matrix for permutation tuple
Return an orthogonal permutation matrix :math:`M_\sigma`
for a permutation :math:`\sigma` defined by the image tuple
:math:`(\sigma(1), \sigma(2),\dots \sigma(n))`,
such that
.. math::
M_\sigma \vec{e}_i = \vec{e}_{\sigma(i)}
where :math:`\vec{e}_k` is the k-th standard basis vector.
This definition ensures a composition law:
.. math::
M_{\sigma \cdot \tau} = M_\sigma M_\tau.
The column form of :math:`M_\sigma` is thus given by
.. math::
M = (
\vec{e}_{\sigma(1)},
\vec{e}_{\sigma(2)},
\dots \vec{e}_{\sigma(n)}).
Args:
permutation (tuple): A permutation image tuple (zero-based indices!) |
def block_structure(self):
n, m = self.shape
if n != m:
raise AttributeError("block_structure only defined for square "
"matrices")
for k in range(1, n):
if ((self.matrix[:k, k:] == 0).all() and
(self.matrix[k:, :k] == 0).all()):
return (k,) + self[k:, k:].block_structure
return n, | For square matrices this gives the block (-diagonal) structure of
the matrix as a tuple of integers that sum up to the full dimension.
:rtype: tuple |
def is_zero(self):
for o in self.matrix.ravel():
try:
if not o.is_zero:
return False
except AttributeError:
if not o == 0:
return False
return True | Are all elements of the matrix zero? |
def conjugate(self):
try:
return Matrix(np_conjugate(self.matrix))
except AttributeError:
raise NoConjugateMatrix(
"Matrix %s contains entries that have no defined "
"conjugate" % str(self)) | The element-wise conjugate matrix
This is defined only if all the entries in the matrix have a defined
conjugate (i.e., they have a `conjugate` method). This is *not* the
case for a matrix of operators. In such a case, only an
:meth:`elementwise` :func:`adjoint` would be applicable, but this is
mathematically different from a complex conjugate.
Raises:
NoConjugateMatrix: if any entries have no `conjugate` method |
def real(self):
def re(val):
if hasattr(val, 'real'):
return val.real
elif hasattr(val, 'as_real_imag'):
return val.as_real_imag()[0]
elif hasattr(val, 'conjugate'):
return (val.conjugate() + val) / 2
else:
raise NoConjugateMatrix(
"Matrix entry %s contains has no defined "
"conjugate" % str(val))
# Note: Do NOT use self.matrix.real! This will give wrong results, as
# numpy thinks of objects (Operators) as real, even if they have no
# defined real part
return self.element_wise(re) | Element-wise real part
Raises:
NoConjugateMatrix: if entries have no `conjugate` method and no
other way to determine the real part
Note:
A mathematically equivalent way to obtain a real matrix from a
complex matrix ``M`` is::
(M.conjugate() + M) / 2
However, the result may not be identical to ``M.real``, as the
latter tries to convert elements of the matrix to real values
directly, if possible, and only uses the conjugate as a fall-back |
def imag(self):
def im(val):
if hasattr(val, 'imag'):
return val.imag
elif hasattr(val, 'as_real_imag'):
return val.as_real_imag()[1]
elif hasattr(val, 'conjugate'):
return (val.conjugate() - val) / (2 * I)
else:
raise NoConjugateMatrix(
"Matrix entry %s contains has no defined "
"conjugate" % str(val))
# Note: Do NOT use self.matrix.real! This will give wrong results, as
# numpy thinks of objects (Operators) as real, even if they have no
# defined real part
return self.element_wise(im) | Element-wise imaginary part
Raises:
NoConjugateMatrix: if entries have no `conjugate` method and no
other way to determine the imaginary part
Note:
A mathematically equivalent way to obtain an imaginary matrix from
a complex matrix ``M`` is::
(M.conjugate() - M) / (I * 2)
with same same caveats as :attr:`real`. |
def element_wise(self, func, *args, **kwargs):
s = self.shape
emat = [func(o, *args, **kwargs) for o in self.matrix.ravel()]
return Matrix(np_array(emat).reshape(s)) | Apply a function to each matrix element and return the result in a
new operator matrix of the same shape.
Args:
func (FunctionType): A function to be applied to each element. It
must take the element as its first argument.
args: Additional positional arguments to be passed to `func`
kwargs: Additional keyword arguments to be passed to `func`
Returns:
Matrix: Matrix with results of `func`, applied element-wise. |
def series_expand(self, param: Symbol, about, order: int):
s = self.shape
emats = zip(*[o.series_expand(param, about, order)
for o in self.matrix.ravel()])
return tuple((Matrix(np_array(em).reshape(s)) for em in emats)) | Expand the matrix expression as a truncated power series in a scalar
parameter.
Args:
param: Expansion parameter.
about (.Scalar): Point about which to expand.
order: Maximum order of expansion >= 0
Returns:
tuple of length (order+1), where the entries are the expansion
coefficients. |
def expand(self):
return self.element_wise(
lambda o: o.expand() if isinstance(o, QuantumExpression) else o) | Expand each matrix element distributively.
Returns:
Matrix: Expanded matrix. |
def space(self):
arg_spaces = [o.space for o in self.matrix.ravel()
if hasattr(o, 'space')]
if len(arg_spaces) == 0:
return TrivialSpace
else:
return ProductSpace.create(*arg_spaces) | Combined Hilbert space of all matrix elements. |
def simplify_scalar(self, func=sympy.simplify):
def element_simplify(v):
if isinstance(v, sympy.Basic):
return func(v)
elif isinstance(v, QuantumExpression):
return v.simplify_scalar(func=func)
else:
return v
return self.element_wise(element_simplify) | Simplify all scalar expressions appearing in the Matrix. |
def get_initial(self):
initial = {}
if self.kwargs.get('mode', None):
filename = "{}.txt".format(self.kwargs['mode'])
filepath = os.path.join(settings.BASE_DIR, 'demo_datas', filename)
if os.path.exists(filepath):
with io.open(filepath, 'r', encoding='utf-8') as fp:
initial['foo'] = fp.read()
return initial | Try to find a demo source for given mode if any, if finded use it to
fill the demo textarea. |
def _get_order_by(order, orderby, order_by_fields):
try:
# Find the actual database fieldnames for the keyword.
db_fieldnames = order_by_fields[orderby]
except KeyError:
raise ValueError("Invalid value for 'orderby': '{0}', supported values are: {1}".format(orderby, ', '.join(sorted(order_by_fields.keys()))))
# Default to descending for some fields, otherwise be ascending
is_desc = (not order and orderby in ORDER_BY_DESC) \
or (order or 'asc').lower() in ('desc', 'descending')
if is_desc:
return map(lambda name: '-' + name, db_fieldnames)
else:
return db_fieldnames | Return the order by syntax for a model.
Checks whether use ascending or descending order, and maps the fieldnames. |
def query_tags(order=None, orderby=None, limit=None):
from taggit.models import Tag, TaggedItem # feature is still optional
# Get queryset filters for published entries
EntryModel = get_entry_model()
ct = ContentType.objects.get_for_model(EntryModel) # take advantage of local caching.
entry_filter = {
'status': EntryModel.PUBLISHED
}
if appsettings.FLUENT_BLOGS_FILTER_SITE_ID:
entry_filter['parent_site'] = settings.SITE_ID
entry_qs = EntryModel.objects.filter(**entry_filter).values_list('pk')
# get tags
queryset = Tag.objects.filter(
taggit_taggeditem_items__content_type=ct,
taggit_taggeditem_items__object_id__in=entry_qs
).annotate(
count=Count('taggit_taggeditem_items')
)
# Ordering
if orderby:
queryset = queryset.order_by(*_get_order_by(order, orderby, TAG_ORDER_BY_FIELDS))
else:
queryset = queryset.order_by('-count')
# Limit
if limit:
queryset = queryset[:limit]
return queryset | Query the tags, with usage count included.
This interface is mainly used by the ``get_tags`` template tag. |
def get_category_for_slug(slug, language_code=None):
Category = get_category_model()
if issubclass(Category, TranslatableModel):
return Category.objects.active_translations(language_code, slug=slug).get()
else:
return Category.objects.get(slug=slug) | Find the category for a given slug |
def get_date_range(year=None, month=None, day=None):
if year is None:
return None
if month is None:
# year only
start = datetime(year, 1, 1, 0, 0, 0, tzinfo=utc)
end = datetime(year, 12, 31, 23, 59, 59, 999, tzinfo=utc)
return (start, end)
if day is None:
# year + month only
start = datetime(year, month, 1, 0, 0, 0, tzinfo=utc)
end = start + timedelta(days=monthrange(year, month)[1], microseconds=-1)
return (start, end)
else:
# Exact day
start = datetime(year, month, day, 0, 0, 0, tzinfo=utc)
end = start + timedelta(days=1, microseconds=-1)
return (start, end) | Return a start..end range to query for a specific month, day or year. |
def singleton_object(cls):
assert isinstance(cls, Singleton), \
cls.__name__ + " must use Singleton metaclass"
def self_instantiate(self):
return self
cls.__call__ = self_instantiate
if hasattr(cls, '_hash_val'):
cls.__hash__ = lambda self: hash(cls._hash_val)
cls.__eq__ = lambda self, other: other == cls._hash_val
else:
cls.__hash__ = lambda self: hash(cls)
cls.__eq__ = lambda self, other: other is self
cls.__repr__ = lambda self: cls.__name__
cls.__reduce__ = lambda self: cls.__name__
obj = cls()
obj.__name__ = cls.__name__
obj.__qualname__ = cls.__qualname__
return obj | Class decorator that transforms (and replaces) a class definition (which
must have a Singleton metaclass) with the actual singleton object. Ensures
that the resulting object can still be "instantiated" (i.e., called),
returning the same object. Also ensures the object can be pickled, is
hashable, and has the correct string representation (the name of the
singleton)
If the class defines a `_hash_val` class attribute, the hash of the
singleton will be the hash of that value, and the singleton will compare
equal to that value. Otherwise, the singleton will have a unique hash and
compare equal only to itself. |
def pattern(head, *args, mode=1, wc_name=None, conditions=None, **kwargs) \
-> Pattern:
if len(args) == 0:
args = None
if len(kwargs) == 0:
kwargs = None
return Pattern(head, args, kwargs, mode=mode, wc_name=wc_name,
conditions=conditions) | Flat' constructor for the Pattern class
Positional and keyword arguments are mapped into `args` and `kwargs`,
respectively. Useful for defining rules that match an instantiated
Expression with specific arguments |
def pattern_head(*args, conditions=None, wc_name=None, **kwargs) -> Pattern:
# This routine is indented for the _rules and _binary_rules class
# attributes of algebraic objects, which the match_replace and
# match_replace_binary match against a ProtoExpr
if len(args) == 0:
args = None
if len(kwargs) == 0:
kwargs = None
if wc_name is not None:
raise ValueError("pattern_head cannot be used to set a wildcard "
"(`wc_name` must not be given")
pat = Pattern(head=ProtoExpr, args=args, kwargs=kwargs, wc_name=None,
conditions=conditions)
return pat | Constructor for a :class:`Pattern` matching a :class:`ProtoExpr`
The patterns associated with :attr:`_rules` and :attr:`_binary_rules`
of an :class:`Expression` subclass, or those passed to
:meth:`Expression.add_rule`, must be instantiated through this
routine. The function does not allow to set a wildcard name
(`wc_name` must not be given / be None) |
def wc(name_mode="_", head=None, args=None, kwargs=None, *, conditions=None) \
-> Pattern:
rx = re.compile(r"^([A-Za-z]?[A-Za-z0-9]*)(_{0,3})$")
m = rx.match(name_mode)
if not m:
raise ValueError("Invalid name_mode: %s" % name_mode)
wc_name, mode_underscores = m.groups()
if wc_name == '':
wc_name = None
mode = len(mode_underscores) or Pattern.single
return Pattern(head, args, kwargs, mode=mode, wc_name=wc_name,
conditions=conditions) | Constructor for a wildcard-:class:`Pattern`
Helper function to create a Pattern object with an emphasis on wildcard
patterns, if we don't care about the arguments of the matched expressions
(otherwise, use :func:`pattern`)
Args:
name_mode (str): Combined `wc_name` and `mode` for :class:`Pattern`
constructor argument. See below for syntax
head (type, or None): See :class:`Pattern`
args (list or None): See :class:`Pattern`
kwargs (dict or None): See :class:`Pattern`
conditions (list or None): See :class:`Pattern`
The `name_mode` argument uses trailing underscored to indicate the `mode`:
* ``A`` -> ``Pattern(wc_name="A", mode=Pattern.single, ...)``
* ``A_`` -> ``Pattern(wc_name="A", mode=Pattern.single, ...)``
* ``B__`` -> ``Pattern(wc_name="B", mode=Pattern.one_or_more, ...)``
* ``B___`` -> ``Pattern(wc_name="C", mode=Pattern.zero_or_more, ...)`` |
def match_pattern(expr_or_pattern: object, expr: object) -> MatchDict:
try: # first try expr_or_pattern as a Pattern
return expr_or_pattern.match(expr)
except AttributeError: # expr_or_pattern is an expr, not a Pattern
if expr_or_pattern == expr:
return MatchDict() # success
else:
res = MatchDict()
res.success = False
res.reason = "Expressions '%s' and '%s' are not the same" % (
repr(expr_or_pattern), repr(expr))
return res | Recursively match `expr` with the given `expr_or_pattern`
Args:
expr_or_pattern: either a direct expression (equal to `expr` for a
successful match), or an instance of :class:`Pattern`.
expr: the expression to be matched |
def update(self, *others):
for other in others:
for key, val in other.items():
self[key] = val
try:
if not other.success:
self.success = False
self.reason = other.reason
except AttributeError:
pass | Update dict with entries from `other`
If `other` has an attribute ``success=False`` and ``reason``, those
attributes are copied as well |
def extended_arg_patterns(self):
for arg in self._arg_iterator(self.args):
if isinstance(arg, Pattern):
if arg.mode > self.single:
while True:
yield arg
else:
yield arg
else:
yield arg | Iterator over patterns for positional arguments to be matched
This yields the elements of :attr:`args`, extended by their `mode`
value |
def _check_last_arg_pattern(self, current_arg_pattern, last_arg_pattern):
try:
if last_arg_pattern.mode == self.single:
raise ValueError("insufficient number of arguments")
elif last_arg_pattern.mode == self.zero_or_more:
if last_arg_pattern.wc_name is not None:
if last_arg_pattern != current_arg_pattern:
# we have to record an empty match
return {last_arg_pattern.wc_name: []}
elif last_arg_pattern.mode == self.one_or_more:
if last_arg_pattern != current_arg_pattern:
raise ValueError("insufficient number of arguments")
except AttributeError:
raise ValueError("insufficient number of arguments")
return {} | Given a "current" arg pattern (that was used to match the last
actual argument of an expression), and another ("last") argument
pattern, raise a ValueError, unless the "last" argument pattern is a
"zero or more" wildcard. In that case, return a dict that maps the
wildcard name to an empty list |
def findall(self, expr):
result = []
try:
for arg in expr.args:
result.extend(self.findall(arg))
for arg in expr.kwargs.values():
result.extend(self.findall(arg))
except AttributeError:
pass
if self.match(expr):
result.append(expr)
return result | list of all matching (sub-)expressions in `expr`
See also:
:meth:`finditer` yields the matches (:class:`MatchDict` instances)
for the matched expressions. |
def finditer(self, expr):
try:
for arg in expr.args:
for m in self.finditer(arg):
yield m
for arg in expr.kwargs.values():
for m in self.finditer(arg):
yield m
except AttributeError:
pass
m = self.match(expr)
if m:
yield m | Return an iterator over all matches in `expr`
Iterate over all :class:`MatchDict` results of matches for any
matching (sub-)expressions in `expr`. The order of the matches conforms
to the equivalent matched expressions returned by :meth:`findall`. |
def wc_names(self):
if self.wc_name is None:
res = set()
else:
res = set([self.wc_name])
if self.args is not None:
for arg in self.args:
if isinstance(arg, Pattern):
res.update(arg.wc_names)
if self.kwargs is not None:
for val in self.kwargs.values():
if isinstance(val, Pattern):
res.update(val.wc_names)
return res | Set of all wildcard names occurring in the pattern |
def instantiate(self, cls=None):
if cls is None:
cls = self.cls
if cls is None:
raise TypeError("cls must a class")
return cls.create(*self.args, **self.kwargs) | Return an instantiated Expression as
``cls.create(*self.args, **self.kwargs)``
Args:
cls (class): The class of the instantiated expression. If not
given, ``self.cls`` will be used. |
def from_expr(cls, expr):
return cls(expr.args, expr.kwargs, cls=expr.__class__) | Instantiate proto-expression from the given Expression |
def get_entry_model():
global _EntryModel
if _EntryModel is None:
# This method is likely called the first time when the admin initializes, the sitemaps module is imported, or BaseBlogMixin is used.
# Either way, it needs to happen after all apps have initialized, to make sure the model can be imported.
if not appsettings.FLUENT_BLOGS_ENTRY_MODEL:
_EntryModel = Entry
else:
app_label, model_name = appsettings.FLUENT_BLOGS_ENTRY_MODEL.rsplit('.', 1)
_EntryModel = apps.get_model(app_label, model_name)
if _EntryModel is None:
raise ImportError("{app_label}.{model_name} could not be imported.".format(app_label=app_label, model_name=model_name))
# Auto-register with django-fluent-comments moderation
if 'fluent_comments' in settings.INSTALLED_APPS and issubclass(_EntryModel, CommentsEntryMixin):
from fluent_comments.moderation import moderate_model
moderate_model(
_EntryModel,
publication_date_field='publication_date',
enable_comments_field='enable_comments',
)
# Auto-register with django-any-urlfield
if 'any_urlfield' in settings.INSTALLED_APPS:
from any_urlfield.models import AnyUrlField
from any_urlfield.forms.widgets import SimpleRawIdWidget
AnyUrlField.register_model(_EntryModel, widget=SimpleRawIdWidget(_EntryModel))
return _EntryModel | Return the actual entry model that is in use.
This function reads the :ref:`FLUENT_BLOGS_ENTRY_MODEL` setting to find the model.
The model is automatically registered with *django-fluent-comments*
and *django-any-urlfield* when it's installed. |
def get_category_model():
app_label, model_name = appsettings.FLUENT_BLOGS_CATEGORY_MODEL.rsplit('.', 1)
try:
return apps.get_model(app_label, model_name)
except Exception as e: # ImportError/LookupError
raise ImproperlyConfigured("Failed to import FLUENT_BLOGS_CATEGORY_MODEL '{0}': {1}".format(
appsettings.FLUENT_BLOGS_CATEGORY_MODEL, str(e)
)) | Return the category model to use.
This function reads the :ref:`FLUENT_BLOGS_CATEGORY_MODEL` setting to find the model. |
def blog_reverse(viewname, args=None, kwargs=None, current_app='fluent_blogs', **page_kwargs):
return mixed_reverse(viewname, args=args, kwargs=kwargs, current_app=current_app, **page_kwargs) | Reverse a URL to the blog, taking various configuration options into account.
This is a compatibility function to allow django-fluent-blogs to operate stand-alone.
Either the app can be hooked in the URLconf directly, or it can be added as a pagetype of *django-fluent-pages*. |
def expand_commutators_leibniz(expr, expand_expr=True):
recurse = partial(expand_commutators_leibniz, expand_expr=expand_expr)
A = wc('A', head=Operator)
C = wc('C', head=Operator)
AB = wc('AB', head=OperatorTimes)
BC = wc('BC', head=OperatorTimes)
def leibniz_right(A, BC):
"""[A, BC] -> [A, B] C + B [A, C]"""
B = BC.operands[0]
C = OperatorTimes.create(*BC.operands[1:])
return Commutator.create(A, B) * C + B * Commutator.create(A, C)
def leibniz_left(AB, C):
"""[AB, C] -> A [B, C] C + [A, C] B"""
A = AB.operands[0]
B = OperatorTimes(*AB.operands[1:])
return A * Commutator.create(B, C) + Commutator.create(A, C) * B
rules = OrderedDict([
('leibniz1', (
pattern(Commutator, A, BC),
lambda A, BC: recurse(leibniz_right(A, BC).expand()))),
('leibniz2', (
pattern(Commutator, AB, C),
lambda AB, C: recurse(leibniz_left(AB, C).expand())))])
if expand_expr:
res = _apply_rules(expr.expand(), rules).expand()
else:
res = _apply_rules(expr, rules)
return res | Recursively expand commutators in `expr` according to the Leibniz rule.
.. math::
[A B, C] = A [B, C] + [A, C] B
.. math::
[A, B C] = [A, B] C + B [A, C]
If `expand_expr` is True, expand products of sums in `expr`, as well as in
the result. |
def configure_printing(**kwargs):
freeze = init_printing(_freeze=True, **kwargs)
try:
yield
finally:
for obj, attr_map in freeze.items():
for attr, val in attr_map.items():
setattr(obj, attr, val) | Context manager for temporarily changing the printing system.
This takes the same parameters as :func:`init_printing`
Example:
>>> A = OperatorSymbol('A', hs=1); B = OperatorSymbol('B', hs=1)
>>> with configure_printing(show_hs_label=False):
... print(ascii(A + B))
A + B
>>> print(ascii(A + B))
A^(1) + B^(1) |
def ascii(expr, cache=None, **settings):
try:
if cache is None and len(settings) == 0:
return ascii.printer.doprint(expr)
else:
printer = ascii._printer_cls(cache, settings)
return printer.doprint(expr)
except AttributeError:
# init_printing was not called. Setting up defaults
ascii._printer_cls = QnetAsciiPrinter
ascii.printer = ascii._printer_cls()
return ascii(expr, cache, **settings) | Return an ASCII representation of the given object / expression
Args:
expr: Expression to print
cache (dict or None): dictionary to use for caching
show_hs_label (bool or str): Whether to a label for the Hilbert space
of `expr`. By default (``show_hs_label=True``), the label is shown
as a superscript. It can be shown as a subscript with
``show_hs_label='subscript'`` or suppressed entirely
(``show_hs_label=False``)
sig_as_ketbra (bool): Whether to render instances of
:class:`.LocalSigma` as a ket-bra (default), or as an operator
symbol
Examples:
>>> A = OperatorSymbol('A', hs=1); B = OperatorSymbol('B', hs=1)
>>> ascii(A + B)
'A^(1) + B^(1)'
>>> ascii(A + B, cache={A: 'A', B: 'B'})
'A + B'
>>> ascii(A + B, show_hs_label='subscript')
'A_(1) + B_(1)'
>>> ascii(A + B, show_hs_label=False)
'A + B'
>>> ascii(LocalSigma(0, 1, hs=1))
'|0><1|^(1)'
>>> ascii(LocalSigma(0, 1, hs=1), sig_as_ketbra=False)
'sigma_0,1^(1)'
Note that the accepted parameters and their default values may be changed
through :func:`init_printing` or :func:`configure_printing` |
def srepr(expr, indented=False, cache=None):
if indented:
printer = IndentedSReprPrinter(cache=cache)
else:
printer = QnetSReprPrinter(cache=cache)
return printer.doprint(expr) | Render the given expression into a string that can be evaluated in an
appropriate context to re-instantiate an identical expression. If
`indented` is False (default), the resulting string is a single line.
Otherwise, the result is a multiline string, and each positional and
keyword argument of each `Expression` is on a separate line, recursively
indented to produce a tree-like output. The `cache` may be used to generate
more readable expressions.
Example:
>>> hs = LocalSpace('1')
>>> A = OperatorSymbol('A', hs=hs); B = OperatorSymbol('B', hs=hs)
>>> expr = A + B
>>> srepr(expr)
"OperatorPlus(OperatorSymbol('A', hs=LocalSpace('1')), OperatorSymbol('B', hs=LocalSpace('1')))"
>>> eval(srepr(expr)) == expr
True
>>> srepr(expr, cache={hs:'hs'})
"OperatorPlus(OperatorSymbol('A', hs=hs), OperatorSymbol('B', hs=hs))"
>>> eval(srepr(expr, cache={hs:'hs'})) == expr
True
>>> print(srepr(expr, indented=True))
OperatorPlus(
OperatorSymbol(
'A',
hs=LocalSpace(
'1')),
OperatorSymbol(
'B',
hs=LocalSpace(
'1')))
>>> eval(srepr(expr, indented=True)) == expr
True
See also:
:func:`~qnet.printing.tree.print_tree`, respectively
:func:`qnet.printing.tree.tree`, produces an output similar to
the indented :func:`srepr`, for interactive use. Their result
cannot be evaluated and the exact output depends on
:func:`init_printing`.
:func:`~qnet.printing.dot.dotprint` provides a way to graphically
explore the tree structure of an expression. |
def lastmod(self, category):
lastitems = EntryModel.objects.published().order_by('-modification_date').filter(categories=category).only('modification_date')
return lastitems[0].modification_date | Return the last modification of the entry. |
def lastmod(self, author):
lastitems = EntryModel.objects.published().order_by('-modification_date').filter(author=author).only('modification_date')
return lastitems[0].modification_date | Return the last modification of the entry. |
def lastmod(self, tag):
lastitems = EntryModel.objects.published().order_by('-modification_date').filter(tags=tag).only('modification_date')
return lastitems[0].modification_date | Return the last modification of the entry. |
def ljust(text, width, fillchar=' '):
len_text = grapheme_len(text)
return text + fillchar * (width - len_text) | Left-justify text to a total of `width`
The `width` is based on graphemes::
>>> s = 'Â'
>>> s.ljust(2)
'Â'
>>> ljust(s, 2)
'Â ' |
def rjust(text, width, fillchar=' '):
len_text = grapheme_len(text)
return fillchar * (width - len_text) + text | Right-justify text for a total of `width` graphemes
The `width` is based on graphemes::
>>> s = 'Â'
>>> s.rjust(2)
'Â'
>>> rjust(s, 2)
' Â' |
def KroneckerDelta(i, j, simplify=True):
from qnet.algebra.core.scalar_algebra import ScalarValue, One
if not isinstance(i, (int, sympy.Basic)):
raise TypeError(
"i is not an integer or sympy expression: %s" % type(i))
if not isinstance(j, (int, sympy.Basic)):
raise TypeError(
"j is not an integer or sympy expression: %s" % type(j))
if i == j:
return One
else:
delta = sympy.KroneckerDelta(i, j)
if simplify:
delta = _simplify_delta(delta)
return ScalarValue.create(delta) | Kronecker delta symbol
Return :class:`One` (`i` equals `j`)), :class:`Zero` (`i` and `j` are
non-symbolic an unequal), or a :class:`ScalarValue` wrapping SymPy's
:class:`~sympy.functions.special.tensor_functions.KroneckerDelta`.
>>> i, j = IdxSym('i'), IdxSym('j')
>>> KroneckerDelta(i, i)
One
>>> KroneckerDelta(1, 2)
Zero
>>> KroneckerDelta(i, j)
KroneckerDelta(i, j)
By default, the Kronecker delta is returned in a simplified form, e.g::
>>> KroneckerDelta((i+1)/2, (j+1)/2)
KroneckerDelta(i, j)
This may be suppressed by setting `simplify` to False::
>>> KroneckerDelta((i+1)/2, (j+1)/2, simplify=False)
KroneckerDelta(i/2 + 1/2, j/2 + 1/2)
Raises:
TypeError: if `i` or `j` is not an integer or sympy expression. There
is no automatic sympification of `i` and `j`. |
def sqrt(scalar):
if isinstance(scalar, ScalarValue):
scalar = scalar.val
if scalar == 1:
return One
elif scalar == 0:
return Zero
elif isinstance(scalar, (float, complex, complex128, float64)):
return ScalarValue.create(numpy.sqrt(scalar))
elif isinstance(scalar, (int, sympy.Basic, int64)):
return ScalarValue.create(sympy.sqrt(scalar))
elif isinstance(scalar, Scalar):
return scalar**(sympy.sympify(1) / 2)
else:
raise TypeError("Unknown type of scalar: %r" % type(scalar)) | Square root of a :class:`Scalar` or scalar value
This always returns a :class:`Scalar`, and uses a symbolic square root if
possible (i.e., for non-floats)::
>>> sqrt(2)
sqrt(2)
>>> sqrt(2.0)
1.414213...
For a :class:`ScalarExpression` argument, it returns a
:class:`ScalarPower` instance::
>>> braket = KetSymbol('Psi', hs=0).dag() * KetSymbol('Phi', hs=0)
>>> nrm = sqrt(braket * braket.dag())
>>> print(srepr(nrm, indented=True))
ScalarPower(
ScalarTimes(
BraKet(
KetSymbol(
'Phi',
hs=LocalSpace(
'0')),
KetSymbol(
'Psi',
hs=LocalSpace(
'0'))),
BraKet(
KetSymbol(
'Psi',
hs=LocalSpace(
'0')),
KetSymbol(
'Phi',
hs=LocalSpace(
'0')))),
ScalarValue(
Rational(1, 2))) |
def create(cls, val):
if val in cls._invalid:
raise ValueError("Invalid value %r" % val)
if val == 0:
return Zero
elif val == 1:
return One
elif isinstance(val, Scalar):
return val
else:
# We instantiate ScalarValue directly to avoid the overhead of
# super().create(). Thus, there is no caching for scalars (which is
# probably a good thing)
return cls(val) | Instatiate the :class:`ScalarValue` while recognizing :class:`Zero`
and :class:`One`.
:class:`Scalar` instances as `val` (including
:class:`ScalarExpression` instances) are left unchanged. This makes
:meth:`ScalarValue.create` a safe method for converting unknown objects
to :class:`Scalar`. |
def real(self):
if hasattr(self.val, 'real'):
return self.val.real
else:
# SymPy
return self.val.as_real_imag()[0] | Real part |
def imag(self):
if hasattr(self.val, 'imag'):
return self.val.imag
else:
# SymPy
return self.val.as_real_imag()[1] | Imaginary part |
def create(cls, *operands, **kwargs):
converted_operands = []
for op in operands:
if not isinstance(op, Scalar):
op = ScalarValue.create(op)
converted_operands.append(op)
return super().create(*converted_operands, **kwargs) | Instantiate the product while applying simplification rules |
def conjugate(self):
return self.__class__.create(
*[arg.conjugate() for arg in reversed(self.args)]) | Complex conjugate of of the product |
def create(cls, term, *ranges):
if not isinstance(term, Scalar):
term = ScalarValue.create(term)
return super().create(term, *ranges) | Instantiate the indexed sum while applying simplification rules |
def conjugate(self):
return self.__class__.create(self.term.conjugate(), *self.ranges) | Complex conjugate of of the indexed sum |
def real(self):
return self.__class__.create(self.term.real, *self.ranges) | Real part |
def imag(self):
return self.__class__.create(self.term.imag, *self.ranges) | Imaginary part |
def assoc(cls, ops, kwargs):
expanded = [(o,) if not isinstance(o, cls) else o.operands for o in ops]
return sum(expanded, ()), kwargs | Associatively expand out nested arguments of the flat class.
E.g.::
>>> class Plus(Operation):
... simplifications = [assoc, ]
>>> Plus.create(1,Plus(2,3))
Plus(1, 2, 3) |
def assoc_indexed(cls, ops, kwargs):
r
from qnet.algebra.core.abstract_quantum_algebra import (
ScalarTimesQuantumExpression)
term, *ranges = ops
if isinstance(term, cls):
coeff = 1
elif isinstance(term, ScalarTimesQuantumExpression):
coeff = term.coeff
term = term.term
if not isinstance(term, cls):
return ops, kwargs
else:
return ops, kwargs
term = term.make_disjunct_indices(*ranges)
combined_ranges = tuple(ranges) + term.ranges
if coeff == 1:
return cls.create(term.term, *combined_ranges)
else:
bound_symbols = set([r.index_symbol for r in combined_ranges])
if len(coeff.free_symbols.intersection(bound_symbols)) == 0:
return coeff * cls.create(term.term, *combined_ranges)
else:
return cls.create(coeff * term.term, *combined_ranges) | r"""Flatten nested indexed structures while pulling out possible prefactors
For example, for an :class:`.IndexedSum`:
.. math::
\sum_j \left( a \sum_i \dots \right) = a \sum_{j, i} \dots |
def idem(cls, ops, kwargs):
return sorted(set(ops), key=cls.order_key), kwargs | Remove duplicate arguments and order them via the cls's order_key key
object/function.
E.g.::
>>> class Set(Operation):
... order_key = lambda val: val
... simplifications = [idem, ]
>>> Set.create(1,2,3,1,3)
Set(1, 2, 3) |
def orderby(cls, ops, kwargs):
return sorted(ops, key=cls.order_key), kwargs | Re-order arguments via the class's ``order_key`` key object/function.
Use this for commutative operations:
E.g.::
>>> class Times(Operation):
... order_key = lambda val: val
... simplifications = [orderby, ]
>>> Times.create(2,1)
Times(1, 2) |
def filter_neutral(cls, ops, kwargs):
c_n = cls._neutral_element
if len(ops) == 0:
return c_n
fops = [op for op in ops if c_n != op] # op != c_n does NOT work
if len(fops) > 1:
return fops, kwargs
elif len(fops) == 1:
# the remaining operand is the single non-trivial one
return fops[0]
else:
# the original list of operands consists only of neutral elements
return ops[0] | Remove occurrences of a neutral element from the argument/operand list,
if that list has at least two elements. To use this, one must also specify
a neutral element, which can be anything that allows for an equality check
with each argument. E.g.::
>>> class X(Operation):
... _neutral_element = 1
... simplifications = [filter_neutral, ]
>>> X.create(2,1,3,1)
X(2, 3) |
def collect_summands(cls, ops, kwargs):
from qnet.algebra.core.abstract_quantum_algebra import (
ScalarTimesQuantumExpression)
coeff_map = OrderedDict()
for op in ops:
if isinstance(op, ScalarTimesQuantumExpression):
coeff, term = op.coeff, op.term
else:
coeff, term = 1, op
if term in coeff_map:
coeff_map[term] += coeff
else:
coeff_map[term] = coeff
fops = []
for (term, coeff) in coeff_map.items():
op = coeff * term
if not op.is_zero:
fops.append(op)
if len(fops) == 0:
return cls._zero
elif len(fops) == 1:
return fops[0]
else:
return tuple(fops), kwargs | Collect summands that occur multiple times into a single summand
Also filters out zero-summands.
Example:
>>> A, B, C = (OperatorSymbol(s, hs=0) for s in ('A', 'B', 'C'))
>>> collect_summands(
... OperatorPlus, (A, B, C, ZeroOperator, 2 * A, B, -C) , {})
((3 * A^(0), 2 * B^(0)), {})
>>> collect_summands(OperatorPlus, (A, -A), {})
ZeroOperator
>>> collect_summands(OperatorPlus, (B, A, -B), {})
A^(0) |
def _get_binary_replacement(first, second, cls):
expr = ProtoExpr([first, second], {})
if LOG:
logger = logging.getLogger('QNET.create')
for key, rule in cls._binary_rules.items():
pat, replacement = rule
match_dict = match_pattern(pat, expr)
if match_dict:
try:
replaced = replacement(**match_dict)
if LOG:
logger.debug(
"%sRule %s.%s: (%s, %s) -> %s", (" " * (LEVEL)),
cls.__name__, key, expr.args, expr.kwargs, replaced)
return replaced
except CannotSimplify:
if LOG_NO_MATCH:
logger.debug(
"%sRule %s.%s: no match: CannotSimplify",
(" " * (LEVEL)), cls.__name__, key)
continue
else:
if LOG_NO_MATCH:
logger.debug(
"%sRule %s.%s: no match: %s", (" " * (LEVEL)),
cls.__name__, key, match_dict.reason)
return None | Helper function for match_replace_binary |
def match_replace_binary(cls, ops, kwargs):
assert assoc in cls.simplifications, (
cls.__name__ + " must be associative to use match_replace_binary")
assert hasattr(cls, '_neutral_element'), (
cls.__name__ + " must define a neutral element to use "
"match_replace_binary")
fops = _match_replace_binary(cls, list(ops))
if len(fops) == 1:
return fops[0]
elif len(fops) == 0:
return cls._neutral_element
else:
return fops, kwargs | Similar to func:`match_replace`, but for arbitrary length operations,
such that each two pairs of subsequent operands are matched pairwise.
>>> A = wc("A")
>>> class FilterDupes(Operation):
... _binary_rules = {
... 'filter_dupes': (pattern_head(A,A), lambda A: A)}
... simplifications = [match_replace_binary, assoc]
... _neutral_element = 0
>>> FilterDupes.create(1,2,3,4) # No duplicates
FilterDupes(1, 2, 3, 4)
>>> FilterDupes.create(1,2,2,3,4) # Some duplicates
FilterDupes(1, 2, 3, 4)
Note that this only works for *subsequent* duplicate entries:
>>> FilterDupes.create(1,2,3,2,4) # No *subsequent* duplicates
FilterDupes(1, 2, 3, 2, 4)
Any operation that uses binary reduction must be associative and define a
neutral element. The binary rules must be compatible with associativity,
i.e. there is no specific order in which the rules are applied to pairs of
operands. |
def _match_replace_binary(cls, ops: list) -> list:
n = len(ops)
if n <= 1:
return ops
ops_left = ops[:n // 2]
ops_right = ops[n // 2:]
return _match_replace_binary_combine(
cls,
_match_replace_binary(cls, ops_left),
_match_replace_binary(cls, ops_right)) | Reduce list of `ops` |
def _match_replace_binary_combine(cls, a: list, b: list) -> list:
if len(a) == 0 or len(b) == 0:
return a + b
r = _get_binary_replacement(a[-1], b[0], cls)
if r is None:
return a + b
if r == cls._neutral_element:
return _match_replace_binary_combine(cls, a[:-1], b[1:])
if isinstance(r, cls):
r = list(r.args)
else:
r = [r, ]
return _match_replace_binary_combine(
cls,
_match_replace_binary_combine(cls, a[:-1], r),
b[1:]) | combine two fully reduced lists a, b |
def check_cdims(cls, ops, kwargs):
if not len({o.cdim for o in ops}) == 1:
raise ValueError("Not all operands have the same cdim:" + str(ops))
return ops, kwargs | Check that all operands (`ops`) have equal channel dimension. |
def filter_cid(cls, ops, kwargs):
from qnet.algebra.core.circuit_algebra import CircuitZero, circuit_identity
if len(ops) == 0:
return CircuitZero
fops = [op for op in ops if op != circuit_identity(op.cdim)]
if len(fops) > 1:
return fops, kwargs
elif len(fops) == 1:
# the remaining operand is the single non-trivial one
return fops[0]
else:
# the original list of operands consists only of neutral elements
return ops[0] | Remove occurrences of the :func:`.circuit_identity` ``cid(n)`` for any
``n``. Cf. :func:`filter_neutral` |
def convert_to_spaces(cls, ops, kwargs):
from qnet.algebra.core.hilbert_space_algebra import (
HilbertSpace, LocalSpace)
cops = [o if isinstance(o, HilbertSpace) else LocalSpace(o) for o in ops]
return cops, kwargs | For all operands that are merely of type str or int, substitute
LocalSpace objects with corresponding labels:
For a string, just itself, for an int, a string version of that int. |
def empty_trivial(cls, ops, kwargs):
from qnet.algebra.core.hilbert_space_algebra import TrivialSpace
if len(ops) == 0:
return TrivialSpace
else:
return ops, kwargs | A ProductSpace of zero Hilbert spaces should yield the TrivialSpace |
def delegate_to_method(mtd):
def _delegate_to_method(cls, ops, kwargs):
assert len(ops) == 1
op, = ops
if hasattr(op, mtd):
return getattr(op, mtd)()
else:
return ops, kwargs
return _delegate_to_method | Create a simplification rule that delegates the instantiation to the
method `mtd` of the operand (if defined) |
def scalars_to_op(cls, ops, kwargs):
r'''Convert any scalar $\alpha$ in `ops` into an operator $\alpha
\identity$'''
from qnet.algebra.core.scalar_algebra import is_scalar
op_ops = []
for op in ops:
if is_scalar(op):
op_ops.append(op * cls._one)
else:
op_ops.append(op)
return op_ops, kwargf scalars_to_op(cls, ops, kwargs):
r'''Convert any scalar $\alpha$ in `ops` into an operator $\alpha
\identity$'''
from qnet.algebra.core.scalar_algebra import is_scalar
op_ops = []
for op in ops:
if is_scalar(op):
op_ops.append(op * cls._one)
else:
op_ops.append(op)
return op_ops, kwargs | r'''Convert any scalar $\alpha$ in `ops` into an operator $\alpha
\identity$ |
def convert_to_scalars(cls, ops, kwargs):
from qnet.algebra.core.scalar_algebra import Scalar, ScalarValue
scalar_ops = []
for op in ops:
if not isinstance(op, Scalar):
scalar_ops.append(ScalarValue(op))
else:
scalar_ops.append(op)
return scalar_ops, kwargs | Convert any entry in `ops` that is not a :class:`.Scalar` instance into
a :class:`.ScalarValue` instance |
def disjunct_hs_zero(cls, ops, kwargs):
from qnet.algebra.core.hilbert_space_algebra import TrivialSpace
from qnet.algebra.core.operator_algebra import ZeroOperator
hilbert_spaces = []
for op in ops:
try:
hs = op.space
except AttributeError: # scalars
hs = TrivialSpace
for hs_prev in hilbert_spaces:
if not hs.isdisjoint(hs_prev):
return ops, kwargs
hilbert_spaces.append(hs)
return ZeroOperator | Return ZeroOperator if all the operators in `ops` have a disjunct
Hilbert space, or an unchanged `ops`, `kwargs` otherwise |
def commutator_order(cls, ops, kwargs):
from qnet.algebra.core.operator_algebra import Commutator
assert len(ops) == 2
if cls.order_key(ops[1]) < cls.order_key(ops[0]):
return -1 * Commutator.create(ops[1], ops[0])
else:
return ops, kwargs | Apply anti-commutative property of the commutator to apply a standard
ordering of the commutator arguments |
def accept_bras(cls, ops, kwargs):
from qnet.algebra.core.state_algebra import Bra
kets = []
for bra in ops:
if isinstance(bra, Bra):
kets.append(bra.ket)
else:
return ops, kwargs
return Bra.create(cls.create(*kets, **kwargs)) | Accept operands that are all bras, and turn that into to bra of the
operation applied to all corresponding kets |
def basis_ket_zero_outside_hs(cls, ops, kwargs):
from qnet.algebra.core.state_algebra import ZeroKet
ind, = ops
hs = kwargs['hs']
if isinstance(ind, int):
if ind < 0 or (hs._dimension is not None and ind >= hs._dimension):
return ZeroKet
return ops, kwargs | For ``BasisKet.create(ind, hs)`` with an integer label `ind`, return a
:class:`ZeroKet` if `ind` is outside of the range of the underlying Hilbert
space |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.