code
stringlengths 52
7.75k
| docs
stringlengths 1
5.85k
|
---|---|
def _write(self, s, s_length=None, flush=False, ignore_overflow=False,
err_msg=None):
if not ignore_overflow:
s_length = len(s) if s_length is None else s_length
if err_msg is None:
err_msg = (
"Terminal has {} columns; attempted to write "
"a string {} of length {}.".format(
self.columns, repr(s), s_length)
)
ensure(s_length <= self.columns, WidthOverflowError, err_msg)
self.cursor.write(s)
if flush:
self.cursor.flush() | Write ``s``
:type s: str|unicode
:param s: String to write
:param s_length: Custom length of ``s``
:param flush: Set this to flush the terminal stream after writing
:param ignore_overflow: Set this to ignore if s will exceed
the terminal's width
:param err_msg: The error message given to WidthOverflowError
if it is triggered |
def get_text(nodelist):
value = []
for node in nodelist:
if node.nodeType == node.TEXT_NODE:
value.append(node.data)
return ''.join(value) | Get the value from a text node. |
def _request(self, url, params=None, timeout=10):
rsp = self._session.get(url, params=params, timeout=timeout)
rsp.raise_for_status()
return rsp.text.strip() | Send a request with parameters. |
def _login_request(self, username=None, secret=None):
url = 'http://' + self._host + '/login_sid.lua'
params = {}
if username:
params['username'] = username
if secret:
params['response'] = secret
plain = self._request(url, params)
dom = xml.dom.minidom.parseString(plain)
sid = get_text(dom.getElementsByTagName('SID')[0].childNodes)
challenge = get_text(
dom.getElementsByTagName('Challenge')[0].childNodes)
return (sid, challenge) | Send a login request with paramerters. |
def _logout_request(self):
_LOGGER.debug('logout')
url = 'http://' + self._host + '/login_sid.lua'
params = {
'security:command/logout': '1',
'sid': self._sid
}
self._request(url, params) | Send a logout request. |
def _create_login_secret(challenge, password):
to_hash = (challenge + '-' + password).encode('UTF-16LE')
hashed = hashlib.md5(to_hash).hexdigest()
return '{0}-{1}'.format(challenge, hashed) | Create a login secret. |
def _aha_request(self, cmd, ain=None, param=None, rf=str):
url = 'http://' + self._host + '/webservices/homeautoswitch.lua'
params = {
'switchcmd': cmd,
'sid': self._sid
}
if param:
params['param'] = param
if ain:
params['ain'] = ain
plain = self._request(url, params)
if plain == 'inval':
raise InvalidError
if rf == bool:
return bool(int(plain))
return rf(plain) | Send an AHA request. |
def login(self):
try:
(sid, challenge) = self._login_request()
if sid == '0000000000000000':
secret = self._create_login_secret(challenge, self._password)
(sid2, challenge) = self._login_request(username=self._user,
secret=secret)
if sid2 == '0000000000000000':
_LOGGER.warning("login failed %s", sid2)
raise LoginError(self._user)
self._sid = sid2
except xml.parsers.expat.ExpatError:
raise LoginError(self._user) | Login and get a valid session ID. |
def get_device_elements(self):
plain = self._aha_request('getdevicelistinfos')
dom = xml.dom.minidom.parseString(plain)
_LOGGER.debug(dom)
return dom.getElementsByTagName("device") | Get the DOM elements for the device list. |
def get_device_element(self, ain):
elements = self.get_device_elements()
for element in elements:
if element.getAttribute('identifier') == ain:
return element
return None | Get the DOM element for the specified device. |
def get_devices(self):
devices = []
for element in self.get_device_elements():
device = FritzhomeDevice(self, node=element)
devices.append(device)
return devices | Get the list of all known devices. |
def get_device_by_ain(self, ain):
devices = self.get_devices()
for device in devices:
if device.ain == ain:
return device | Returns a device specified by the AIN. |
def set_target_temperature(self, ain, temperature):
param = 16 + ((float(temperature) - 8) * 2)
if param < min(range(16, 56)):
param = 253
elif param > max(range(16, 56)):
param = 254
self._aha_request('sethkrtsoll', ain=ain, param=int(param)) | Set the thermostate target temperature. |
def update(self):
node = self._fritz.get_device_element(self.ain)
self._update_from_node(node) | Update the device values. |
def get_hkr_state(self):
self.update()
try:
return {
126.5: 'off',
127.0: 'on',
self.eco_temperature: 'eco',
self.comfort_temperature: 'comfort'
}[self.target_temperature]
except KeyError:
return 'manual' | Get the thermostate state. |
def set_hkr_state(self, state):
try:
value = {
'off': 0,
'on': 100,
'eco': self.eco_temperature,
'comfort': self.comfort_temperature
}[state]
except KeyError:
return
self.set_target_temperature(value) | Set the state of the thermostat.
Possible values for state are: 'on', 'off', 'comfort', 'eco'. |
def write(self, s):
should_write_s = os.getenv('PROGRESSIVE_NOWRITE') != "True"
if should_write_s:
self._stream.write(s) | Writes ``s`` to the terminal output stream
Writes can be disabled by setting the environment variable
`PROGRESSIVE_NOWRITE` to `'True'` |
def save(self):
self.write(self.term.save)
self._saved = True | Saves current cursor position, so that it can be restored later |
def newline(self):
self.write(self.term.move_down)
self.write(self.term.clear_bol) | Effects a newline by moving the cursor down and clearing |
def cmap_powerlaw_adjust(cmap, a):
if a < 0.:
return cmap
cdict = copy.copy(cmap._segmentdata)
fn = lambda x: (x[0] ** a, x[1], x[2])
for key in ('red', 'green', 'blue'):
cdict[key] = map(fn, cdict[key])
cdict[key].sort()
assert (cdict[key][0] < 0 or cdict[key][-1] > 1), \
"Resulting indices extend out of the [0, 1] segment."
return colors.LinearSegmentedColormap('colormap', cdict, 1024) | Returns a new colormap based on the one given
but adjusted via power-law, `newcmap = oldcmap**a`.
:param cmap: colormap instance (e.g., cm.jet)
:param a: power |
def cmap_center_adjust(cmap, center_ratio):
if not (0. < center_ratio) & (center_ratio < 1.):
return cmap
a = math.log(center_ratio) / math.log(0.5)
return cmap_powerlaw_adjust(cmap, a) | Returns a new colormap based on the one given
but adjusted so that the old center point higher
(>0.5) or lower (<0.5)
:param cmap: colormap instance (e.g., cm.jet)
:param center_ratio: |
def cmap_center_point_adjust(cmap, range, center):
if not ((range[0] < center) and (center < range[1])):
return cmap
return cmap_center_adjust(
cmap,
abs(center - range[0]) / abs(range[1] - range[0])) | Converts center to a ratio between 0 and 1 of the
range given and calls cmap_center_adjust(). returns
a new adjusted colormap accordingly
:param cmap: colormap instance
:param range: Tuple of (min, max)
:param center: New cmap center |
def attach_db(self, db):
if db is not None:
if isinstance(db, basestring):
db = gffutils.FeatureDB(db)
if not isinstance(db, gffutils.FeatureDB):
raise ValueError(
"`db` must be a filename or a gffutils.FeatureDB")
self._kwargs['db'] = db
self.db = db | Attach a gffutils.FeatureDB for access to features.
Useful if you want to attach a db after this instance has already been
created.
Parameters
----------
db : gffutils.FeatureDB |
def features(self, ignore_unknown=False):
if not self.db:
raise ValueError("Please attach a gffutils.FeatureDB")
for i in self.data.index:
try:
yield gffutils.helpers.asinterval(self.db[i])
except gffutils.FeatureNotFoundError:
if ignore_unknown:
continue
else:
raise gffutils.FeatureNotFoundError('%s not found' % i) | Generator of features.
If a gffutils.FeatureDB is attached, returns a pybedtools.Interval for
every feature in the dataframe's index.
Parameters
----------
ignore_unknown : bool
If True, silently ignores features that are not found in the db. |
def reindex_to(self, x, attribute="Name"):
names = [i[attribute] for i in x]
new = self.copy()
new.data = new.data.reindex(names)
return new | Returns a copy that only has rows corresponding to feature names in x.
Parameters
----------
x : str or pybedtools.BedTool
BED, GFF, GTF, or VCF where the "Name" field (that is, the value
returned by feature['Name']) or any arbitrary attribute
attribute : str
Attribute containing the name of the feature to use as the index. |
def five_prime(self, upstream=1, downstream=0):
return pybedtools.BedTool(self.features())\
.each(featurefuncs.five_prime, upstream, downstream)\
.saveas() | Creates a BED/GFF file of the 5' end of each feature represented in the
table and returns the resulting pybedtools.BedTool object. Needs an
attached database.
Parameters
----------
upstream, downstream : int
Number of basepairs up and downstream to include |
def align_with(self, other):
return self.__class__(self.data.reindex_like(other), **self._kwargs) | Align the dataframe's index with another. |
def strip_unknown_features(self):
if not self.db:
return self
ind = []
for i, gene_id in enumerate(self.data.index):
try:
self.db[gene_id]
ind.append(i)
except gffutils.FeatureNotFoundError:
pass
ind = np.array(ind)
return self.__class__(self.data.ix[ind], **self._kwargs) | Remove features not found in the `gffutils.FeatureDB`. This will
typically include 'ambiguous', 'no_feature', etc, but can also be
useful if the database was created from a different one than was used
to create the table. |
def changed(self, thresh=0.05, idx=True):
ind = self.data[self.pval_column] <= thresh
if idx:
return ind
return self[ind] | Changed features.
{threshdoc} |
def unchanged(self, thresh=0.05, idx=True):
ind = (
(self.data[self.pval_column] > thresh)
| np.isnan(self.data[self.pval_column])
)
if idx:
return ind
return self[ind] | Changed features.
{threshdoc} |
def enriched(self, thresh=0.05, idx=True):
return self.upregulated(thresh=thresh, idx=idx) | Enriched features.
{threshdoc} |
def upregulated(self, thresh=0.05, idx=True):
ind = (
(self.data[self.pval_column] <= thresh)
& (self.data[self.lfc_column] > 0)
)
if idx:
return ind
return self[ind] | Upregulated features.
{threshdoc} |
def disenriched(self, thresh=0.05, idx=True):
return self.downregulated(thresh=thresh, idx=idx) | Disenriched features.
{threshdoc} |
def ma_plot(self, thresh, up_kwargs=None, dn_kwargs=None,
zero_line=None, **kwargs):
genes_to_highlight = kwargs.pop('genes_to_highlight', [])
genes_to_highlight.append(
(self.upregulated(thresh),
up_kwargs or dict(color='r')))
genes_to_highlight.append(
(self.downregulated(thresh),
dn_kwargs or dict(color='b')))
if zero_line is None:
zero_line = {}
x = self.mean_column
y = self.lfc_column
if 'xfunc' not in kwargs:
kwargs['xfunc'] = np.log
ax = self.scatter(
x=x,
y=y,
genes_to_highlight=genes_to_highlight,
**kwargs)
if zero_line:
ax.axhline(0, **zero_line)
return ax | MA plot
Plots the average read count across treatments (x-axis) vs the log2
fold change (y-axis).
Additional kwargs are passed to self.scatter (useful ones might include
`genes_to_highlight`)
Parameters
----------
thresh : float
Features with values <= `thresh` will be highlighted in the plot.
up_kwargs, dn_kwargs : None or dict
Kwargs passed to matplotlib's scatter(), used for styling up/down
regulated features (defined by `thresh` and `col`)
zero_line : None or dict
Kwargs passed to matplotlib.axhline(0). |
def autosql_file(self):
fn = pybedtools.BedTool._tmp()
AUTOSQL = dedent(
"""
table example
"output from DESeq"
(
string chrom; "chromosome"
uint chromStart; "start coord"
uint chromEnd; "stop coord"
string name; "name of feature"
uint score; "always zero"
char[1] strand; "+ or - for strand"
uint thickStart; "Coding region start"
uint thickEnd; "Coding region end"
uint reserved; "color according to score"
string padj; "DESeq adjusted p value"
string pval; "DESeq raw p value"
string logfoldchange; "DESeq log2 fold change"
string basemeana; "DESeq baseMeanA"
string basemeanb; "DESeq baseMeanB"
)
""")
fout = open(fn, 'w')
fout.write(AUTOSQL)
fout.close()
return fn | Generate the autosql for DESeq results (to create bigBed)
Returns a temp filename containing the autosql defining the extra
fields.
This for creating bigBed files from BED files created by
colormapped_bed. When a user clicks on a feature, the DESeq results
will be reported. |
def _local_count(reader, feature, stranded=False):
if isinstance(feature, basestring):
feature = helpers.tointerval(feature)
if stranded:
strand = feature.strand
else:
strand = '.'
count = 0
for al in reader[feature]:
if stranded and al.strand != strand:
continue
count += 1
return count | The count of genomic signal (typcially BED features) found within an
interval.
Usually this only makes sense for BED or BAM (not bigWig) files.
:param feature: pybedtools.Interval object
:param stranded: If `stranded=True`, then only counts signal on the same
strand as `feature`. |
def _array_parallel(fn, cls, genelist, chunksize=250, processes=1, **kwargs):
pool = multiprocessing.Pool(processes)
chunks = list(chunker(genelist, chunksize))
# pool.map can only pass a single argument to the mapped function, so you
# need this trick for passing multiple arguments; idea from
# http://stackoverflow.com/questions/5442910/
# python-multiprocessing-pool-map-for-multiple-arguments
#
results = pool.map(
func=_array_star,
iterable=itertools.izip(
itertools.repeat(fn),
itertools.repeat(cls),
chunks,
itertools.repeat(kwargs)))
pool.close()
pool.join()
return results | Returns an array of genes in `genelist`, using `bins` bins.
`genelist` is a list of pybedtools.Interval objects
Splits `genelist` into pieces of size `chunksize`, creating an array
for each chunk and merging ret
A chunksize of 25-100 seems to work well on 8 cores. |
def _array_star(args):
fn, cls, genelist, kwargs = args
return _array(fn, cls, genelist, **kwargs) | Unpacks the tuple `args` and calls _array. Needed to pass multiple args to
a pool.map-ed function |
def _array(fn, cls, genelist, **kwargs):
reader = cls(fn)
_local_coverage_func = cls.local_coverage
biglist = []
if 'bins' in kwargs:
if isinstance(kwargs['bins'], int):
kwargs['bins'] = [kwargs['bins']]
for gene in genelist:
if not isinstance(gene, (list, tuple)):
gene = [gene]
coverage_x, coverage_y = _local_coverage_func(
reader, gene, **kwargs)
biglist.append(coverage_y)
return biglist | Returns a "meta-feature" array, with len(genelist) rows and `bins`
cols. Each row contains the number of reads falling in each bin of
that row's modified feature. |
def find_spelling(n):
r = 0
d = n - 1
# divmod used for large numbers
quotient, remainder = divmod(d, 2)
# while we can still divide 2's into n-1...
while remainder != 1:
r += 1
d = quotient # previous quotient before we overwrite it
quotient, remainder = divmod(d, 2)
return r, d | Finds d, r s.t. n-1 = 2^r * d |
def probably_prime(n, k=10):
if n == 2:
return True
if n % 2 == 0:
return False
r, d = find_spelling(n)
for check in range(k):
a = random.randint(2, n - 1)
x = pow(a, d, n) # a^d % n
if x == 1 or x == n - 1:
continue
for i in range(r):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True | Miller-Rabin primality test
Input: n > 3
k: accuracy of test
Output: True if n is "probably prime", False if it is composite
From psuedocode at https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test |
def _find_next_prime(N):
def is_prime(n):
if n % 2 == 0:
return False
i = 3
while i * i <= n:
if n % i:
i += 2
else:
return False
return True
if N < 3:
return 2
if N % 2 == 0:
N += 1
for n in range(N, 2*N, 2):
if is_prime(n):
return n
raise AssertionError("Failed to find a prime number between {0} and {1}...".format(N, 2*N)) | Find next prime >= N |
def save(c, prefix, relative_paths=True):
dirname = os.path.dirname(prefix)
pybedtools.BedTool(c.features).saveas(prefix + '.intervals')
def usepath(f):
if relative_paths:
return os.path.relpath(f, start=dirname)
else:
return os.path.abspath(f)
with open(prefix + '.info', 'w') as fout:
info = {
'ip_bam': usepath(c.ip.fn),
'control_bam': usepath(c.control.fn),
'array_kwargs': c.array_kwargs,
'dbfn': usepath(c.dbfn),
'browser_local_coverage_kwargs': c.browser_local_coverage_kwargs,
'relative_paths': relative_paths,
}
fout.write(yaml.dump(info, default_flow_style=False))
np.savez(
prefix,
diffed_array=c.diffed_array,
ip_array=c.ip_array,
control_array=c.control_array
) | Save data from a Chipseq object.
Parameters
----------
c : Chipseq object
Chipseq object, most likely after calling the `diffed_array` method
prefix : str
Prefix, including any leading directory paths, to save the data.
relative_paths : bool
If True (default), then the path names in the `prefix.info` file will
be relative to `prefix`. Otherwise, they will be absolute.
The following files will be created:
:prefix.intervals:
A BED file (or GFF, GTF, or VCF as appropriate) of the features used for the array
:prefix.info:
A YAML-format file indicating the IP and control BAM files, any array
kwargs, the database filename, and any minibrowser local coverage args.
These are all needed to reconstruct a new Chipseq object. Path names
will be relative to `prefix`.
:prefix.npz:
A NumPy .npz file with keys 'diffed_array', 'ip_array', and 'control_array' |
def xcorr(x, y, maxlags):
xlen = len(x)
ylen = len(y)
assert xlen == ylen
c = np.correlate(x, y, mode=2)
# normalize
c /= np.sqrt(np.dot(x, x) * np.dot(y, y))
lags = np.arange(-maxlags, maxlags + 1)
c = c[xlen - 1 - maxlags:xlen + maxlags]
return c | Streamlined version of matplotlib's `xcorr`, without the plots.
:param x, y: NumPy arrays to cross-correlate
:param maxlags: Max number of lags; result will be `2*maxlags+1` in length |
def callback(self, event):
artist = event.artist
ind = artist.ind
limit = 5
browser = True
if len(event.ind) > limit:
print "more than %s genes selected; not spawning browsers" % limit
browser = False
for i in event.ind:
feature = artist.features[ind[i]]
print feature,
if browser:
self.minibrowser.plot(feature) | Callback function to spawn a mini-browser when a feature is clicked. |
def observe(self, event, fn):
iscoroutine = asyncio.iscoroutinefunction(fn)
if not iscoroutine and not isfunction(fn):
raise TypeError('paco: fn param must be a callable '
'object or coroutine function')
observers = self._pool.get(event)
if not observers:
observers = self._pool[event] = []
# Register the observer
observers.append(fn if iscoroutine else coroutine_wrapper(fn)) | Arguments:
event (str): event to subscribe.
fn (function|coroutinefunction): function to trigger.
Raises:
TypeError: if fn argument is not valid |
def remove(self, event=None):
observers = self._pool.get(event)
if observers:
self._pool[event] = [] | Remove all the registered observers for the given event name.
Arguments:
event (str): event name to remove. |
def trigger(self, event, *args, **kw):
observers = self._pool.get(event)
# If no observers registered for the event, do no-op
if not observers or len(observers) == 0:
return None
# Trigger observers coroutines in FIFO sequentially
for fn in observers:
# Review: perhaps this should not wait
yield from fn(*args, **kw) | Triggers event observers for the given event name,
passing custom variadic arguments. |
def error(self, s, pos):
print("Lexical error:")
print("%s" % s[:pos+10]) # + 10 for trailing context
print("%s^" % (" "*(pos-1)))
for t in self.rv: print(t)
raise SystemExit | Show text and a caret under that. For example:
x = 2y + z
^ |
def until(coro, coro_test, assert_coro=None, *args, **kw):
@asyncio.coroutine
def assert_coro(value):
return not value
return (yield from whilst(coro, coro_test,
assert_coro=assert_coro, *args, **kw)) | Repeatedly call `coro` coroutine function until `coro_test` returns `True`.
This function is the inverse of `paco.whilst()`.
This function is a coroutine.
Arguments:
coro (coroutinefunction): coroutine function to execute.
coro_test (coroutinefunction): coroutine function to test.
assert_coro (coroutinefunction): optional assertion coroutine used
to determine if the test passed or not.
*args (mixed): optional variadic arguments to pass to `coro` function.
Raises:
TypeError: if input arguments are invalid.
Returns:
list: result values returned by `coro`.
Usage::
calls = 0
async def task():
nonlocal calls
calls += 1
return calls
async def calls_gt_4():
return calls > 4
await paco.until(task, calls_gt_4)
# => [1, 2, 3, 4, 5] |
def compose(*coros):
# Make list to inherit built-in type methods
coros = list(coros)
@asyncio.coroutine
def reducer(acc, coro):
return (yield from coro(acc))
@asyncio.coroutine
def wrapper(acc):
return (yield from reduce(reducer, coros,
initializer=acc, right=True))
return wrapper | Creates a coroutine function based on the composition of the passed
coroutine functions.
Each function consumes the yielded result of the coroutine that follows.
Composing coroutine functions f(), g(), and h() would produce
the result of f(g(h())).
Arguments:
*coros (coroutinefunction): variadic coroutine functions to compose.
Raises:
RuntimeError: if cannot execute a coroutine function.
Returns:
coroutinefunction
Usage::
async def sum_1(num):
return num + 1
async def mul_2(num):
return num * 2
coro = paco.compose(sum_1, mul_2, sum_1)
await coro(2)
# => 7 |
def add_config():
genius_key = input('Enter Genius key : ')
bing_key = input('Enter Bing key : ')
CONFIG['keys']['bing_key'] = bing_key
CONFIG['keys']['genius_key'] = genius_key
with open(config_path, 'w') as configfile:
CONFIG.write(configfile) | Prompts user for API keys, adds them in an .ini file stored in the same
location as that of the script |
def get_tracks_from_album(album_name):
'''
Gets tracks from an album using Spotify's API
'''
spotify = spotipy.Spotify()
album = spotify.search(q='album:' + album_name, limit=1)
album_id = album['tracks']['items'][0]['album']['id']
results = spotify.album_tracks(album_id=str(album_id))
songs = []
for items in results['items']:
songs.append(items['name'])
return songf get_tracks_from_album(album_name):
'''
Gets tracks from an album using Spotify's API
'''
spotify = spotipy.Spotify()
album = spotify.search(q='album:' + album_name, limit=1)
album_id = album['tracks']['items'][0]['album']['id']
results = spotify.album_tracks(album_id=str(album_id))
songs = []
for items in results['items']:
songs.append(items['name'])
return songs | Gets tracks from an album using Spotify's API |
def prompt(youtube_list):
'''
Prompts for song number from list of songs
'''
option = int(input('\nEnter song number > '))
try:
song_url = list(youtube_list.values())[option - 1]
song_title = list(youtube_list.keys())[option - 1]
except IndexError:
log.log_error('Invalid Input')
exit()
system('clear')
print('Download Song: ')
print(song_title)
print('Y/n?')
confirm = input('>')
if confirm == '' or confirm.lower() == 'y':
pass
elif confirm.lower() == 'n':
exit()
else:
log.log_error('Invalid Input')
exit()
return song_url, song_titlf prompt(youtube_list):
'''
Prompts for song number from list of songs
'''
option = int(input('\nEnter song number > '))
try:
song_url = list(youtube_list.values())[option - 1]
song_title = list(youtube_list.keys())[option - 1]
except IndexError:
log.log_error('Invalid Input')
exit()
system('clear')
print('Download Song: ')
print(song_title)
print('Y/n?')
confirm = input('>')
if confirm == '' or confirm.lower() == 'y':
pass
elif confirm.lower() == 'n':
exit()
else:
log.log_error('Invalid Input')
exit()
return song_url, song_title | Prompts for song number from list of songs |
def getRawReportDescriptor(self):
descriptor = _hidraw_report_descriptor()
size = ctypes.c_uint()
self._ioctl(_HIDIOCGRDESCSIZE, size, True)
descriptor.size = size
self._ioctl(_HIDIOCGRDESC, descriptor, True)
return ''.join(chr(x) for x in descriptor.value[:size.value]) | Return a binary string containing the raw HID report descriptor. |
def getInfo(self):
devinfo = _hidraw_devinfo()
self._ioctl(_HIDIOCGRAWINFO, devinfo, True)
return DevInfo(devinfo.bustype, devinfo.vendor, devinfo.product) | Returns a DevInfo instance, a named tuple with the following items:
- bustype: one of BUS_USB, BUS_HIL, BUS_BLUETOOTH or BUS_VIRTUAL
- vendor: device's vendor number
- product: device's product number |
def getName(self, length=512):
name = ctypes.create_string_buffer(length)
self._ioctl(_HIDIOCGRAWNAME(length), name, True)
return name.value.decode('UTF-8') | Returns device name as an unicode object. |
def getPhysicalAddress(self, length=512):
name = ctypes.create_string_buffer(length)
self._ioctl(_HIDIOCGRAWPHYS(length), name, True)
return name.value | Returns device physical address as a string.
See hidraw documentation for value signification, as it depends on
device's bus type. |
def sendFeatureReport(self, report, report_num=0):
length = len(report) + 1
buf = bytearray(length)
buf[0] = report_num
buf[1:] = report
self._ioctl(
_HIDIOCSFEATURE(length),
(ctypes.c_char * length).from_buffer(buf),
True,
) | Send a feature report. |
def getFeatureReport(self, report_num=0, length=63):
length += 1
buf = bytearray(length)
buf[0] = report_num
self._ioctl(
_HIDIOCGFEATURE(length),
(ctypes.c_char * length).from_buffer(buf),
True,
)
return buf | Receive a feature report.
Blocks, unless you configured provided file (descriptor) to be
non-blocking. |
def every(coro, iterable, limit=1, loop=None):
assert_corofunction(coro=coro)
assert_iter(iterable=iterable)
# Reduced accumulator value
passes = True
# Handle empty iterables
if len(iterable) == 0:
return passes
# Create concurrent executor
pool = ConcurrentExecutor(limit=limit, loop=loop)
# Tester function to guarantee the file is canceled.
@asyncio.coroutine
def tester(element):
nonlocal passes
if not passes:
return None
if not (yield from coro(element)):
# Flag as not test passed
passes = False
# Force ignoring pending coroutines
pool.cancel()
# Iterate and attach coroutine for defer scheduling
for element in iterable:
pool.add(partial(tester, element))
# Wait until all coroutines finish
yield from pool.run()
return passes | Returns `True` if every element in a given iterable satisfies the coroutine
asynchronous test.
If any iteratee coroutine call returns `False`, the process is inmediately
stopped, and `False` will be returned.
You can increase the concurrency limit for a fast race condition scenario.
This function is a coroutine.
This function can be composed in a pipeline chain with ``|`` operator.
Arguments:
coro (coroutine function): coroutine function to call with values
to reduce.
iterable (iterable): an iterable collection yielding
coroutines functions.
limit (int): max concurrency execution limit. Use ``0`` for no limit.
loop (asyncio.BaseEventLoop): optional event loop to use.
Raises:
TypeError: if input arguments are not valid.
Returns:
bool: `True` if all the values passes the test, otherwise `False`.
Usage::
async def gt_10(num):
return num > 10
await paco.every(gt_10, [1, 2, 3, 11])
# => False
await paco.every(gt_10, [11, 12, 13])
# => True |
def define_settings(ctx, model, values):
if isinstance(model, basestring):
model = ctx.env[model]
model.create(values).execute() | Define settings like being in the interface
Example :
- model = 'sale.config.settings' or ctx.env['sale.config.settings']
- values = {'default_invoice_policy': 'delivery'}
Be careful, settings onchange are not triggered with this function. |
def timeout(coro, timeout=None, loop=None):
@asyncio.coroutine
def _timeout(coro):
return (yield from asyncio.wait_for(coro, timeout, loop=loop))
@asyncio.coroutine
def wrapper(*args, **kw):
return (yield from _timeout(coro(*args, **kw)))
return _timeout(coro) if asyncio.iscoroutine(coro) else wrapper | Wraps a given coroutine function, that when executed, if it takes more
than the given timeout in seconds to execute, it will be canceled and
raise an `asyncio.TimeoutError`.
This function is equivalent to Python standard
`asyncio.wait_for()` function.
This function can be used as decorator.
Arguments:
coro (coroutinefunction|coroutine): coroutine to wrap.
timeout (int|float): max wait timeout in seconds.
loop (asyncio.BaseEventLoop): optional event loop to use.
Raises:
TypeError: if coro argument is not a coroutine function.
Returns:
coroutinefunction: wrapper coroutine function.
Usage::
await paco.timeout(coro, timeout=10) |
def overload(fn):
if not isfunction(fn):
raise TypeError('paco: fn must be a callable object')
spec = getargspec(fn)
args = spec.args
if not spec.varargs and (len(args) < 2 or args[1] != 'iterable'):
raise ValueError('paco: invalid function signature or arity')
@functools.wraps(fn)
def decorator(*args, **kw):
# Check function arity
if len(args) < 2:
return PipeOverloader(fn, args, kw)
# Otherwise, behave like a normal wrapper
return fn(*args, **kw)
return decorator | Overload a given callable object to be used with ``|`` operator
overloading.
This is especially used for composing a pipeline of
transformation over a single data set.
Arguments:
fn (function): target function to decorate.
Raises:
TypeError: if function or coroutine function is not provided.
Returns:
function: decorated function |
def debug_reduce(self, rule, tokens, parent, i):
prefix = ' '
if parent and tokens:
p_token = tokens[parent]
if hasattr(p_token, 'line'):
prefix = 'L.%3d.%03d: ' % (p_token.line, p_token.column)
pass
pass
print("%s%s ::= %s" % (prefix, rule[0], ' '.join(rule[1]))) | Customized format and print for our kind of tokens
which gets called in debugging grammar reduce rules |
def consume(generator): # pragma: no cover
# If synchronous generator, just consume and return as list
if hasattr(generator, '__next__'):
return list(generator)
if not PY_35:
raise RuntimeError(
'paco: asynchronous iterator protocol not supported')
# If asynchronous generator, consume it generator protocol manually
buf = []
while True:
try:
buf.append((yield from generator.__anext__()))
except StopAsyncIteration: # noqa
break
return buf | Helper function to consume a synchronous or asynchronous generator.
Arguments:
generator (generator|asyncgenerator): generator to consume.
Returns:
list |
def isfunc(x):
return any([
inspect.isfunction(x) and not asyncio.iscoroutinefunction(x),
inspect.ismethod(x) and not asyncio.iscoroutinefunction(x)
]) | Returns `True` if the given value is a function or method object.
Arguments:
x (mixed): value to check.
Returns:
bool |
def assert_corofunction(**kw):
for name, value in kw.items():
if not asyncio.iscoroutinefunction(value):
raise TypeError(
'paco: {} must be a coroutine function'.format(name)) | Asserts if a given values are a coroutine function.
Arguments:
**kw (mixed): value to check if it is an iterable.
Raises:
TypeError: if assertion fails. |
def assert_iter(**kw):
for name, value in kw.items():
if not isiter(value):
raise TypeError(
'paco: {} must be an iterable object'.format(name)) | Asserts if a given values implements a valid iterable interface.
Arguments:
**kw (mixed): value to check if it is an iterable.
Raises:
TypeError: if assertion fails. |
def interval(coro, interval=1, times=None, loop=None):
assert_corofunction(coro=coro)
# Store maximum allowed number of calls
times = int(times or 0) or float('inf')
@asyncio.coroutine
def schedule(times, *args, **kw):
while times > 0:
# Decrement times counter
times -= 1
# Schedule coroutine
yield from coro(*args, **kw)
yield from asyncio.sleep(interval)
def wrapper(*args, **kw):
return ensure_future(schedule(times, *args, **kw), loop=loop)
return wrapper | Schedules the execution of a coroutine function every `x` amount of
seconds.
The function returns an `asyncio.Task`, which implements also an
`asyncio.Future` interface, allowing the user to cancel the execution
cycle.
This function can be used as decorator.
Arguments:
coro (coroutinefunction): coroutine function to defer.
interval (int/float): number of seconds to repeat the coroutine
execution.
times (int): optional maximum time of executions. Infinite by default.
loop (asyncio.BaseEventLoop, optional): loop to run.
Defaults to asyncio.get_event_loop().
Raises:
TypeError: if coro argument is not a coroutine function.
Returns:
future (asyncio.Task): coroutine wrapped as task future.
Useful for cancellation and state checking.
Usage::
# Usage as function
future = paco.interval(coro, 1)
# Cancel it after a while...
await asyncio.sleep(5)
future.cancel()
# Usage as decorator
@paco.interval(10)
async def metrics():
await send_metrics()
future = await metrics() |
def remove_rules(self, doc):
# remove blanks lines and comment lines, e.g. lines starting with "#"
doc = os.linesep.join([s for s in doc.splitlines() if s and not re.match("^\s*#", s)])
rules = doc.split()
index = []
for i in range(len(rules)):
if rules[i] == '::=':
index.append(i-1)
index.append(len(rules))
for i in range(len(index)-1):
lhs = rules[index[i]]
rhs = rules[index[i]+2:index[i+1]]
rule = (lhs, tuple(rhs))
if lhs not in self.rules:
return
if rule in self.rules[lhs]:
self.rules[lhs].remove(rule)
del self.rule2func[rule]
del self.rule2name[rule]
self.ruleschanged = True
# If we are profiling, remove this rule from that as well
if self.profile_info is not None and len(rule[1]) > 0:
rule_str = self.reduce_string(rule)
if rule_str and rule_str in self.profile_info:
del self.profile_info[rule_str]
pass
pass
pass
return | Remove a grammar rules from _self.rules_, _self.rule2func_,
and _self.rule2name_ |
def errorstack(self, tokens, i, full=False):
print("\n-- Stacks of completed symbols:")
states = [s for s in self.edges.values() if s]
# States now has the set of states we are in
state_stack = set()
for state in states:
# Find rules which can follow, but keep only
# the part before the dot
for rule, dot in self.states[state].items:
lhs, rhs = rule
if dot > 0:
if full:
state_stack.add(
"%s ::= %s . %s" %
(lhs,
' '.join(rhs[:dot]),
' '.join(rhs[dot:])))
else:
state_stack.add(
"%s ::= %s" %
(lhs,
' '.join(rhs[:dot])))
pass
pass
pass
for stack in sorted(state_stack):
print(stack) | Show the stacks of completed symbols.
We get this by inspecting the current transitions
possible and from that extracting the set of states
we are in, and from there we look at the set of
symbols before the "dot". If full is True, we
show the entire rule with the dot placement.
Otherwise just the rule up to the dot. |
def parse(self, tokens, debug=None):
self.tokens = tokens
if debug:
self.debug = debug
sets = [ [(1, 0), (2, 0)] ]
self.links = {}
if self.ruleschanged:
self.computeNull()
self.newrules = {}
self.new2old = {}
self.makeNewRules()
self.ruleschanged = False
self.edges, self.cores = {}, {}
self.states = { 0: self.makeState0() }
self.makeState(0, self._BOF)
for i in range(len(tokens)):
sets.append([])
if sets[i] == []:
break
self.makeSet(tokens, sets, i)
else:
sets.append([])
self.makeSet(None, sets, len(tokens))
finalitem = (self.finalState(tokens), 0)
if finalitem not in sets[-2]:
if len(tokens) > 0:
if self.debug.get('errorstack', False):
self.errorstack(tokens, i-1, str(self.debug['errorstack']) == 'full')
self.error(tokens, i-1)
else:
self.error(None, None)
if self.profile_info is not None:
self.dump_profile_info()
return self.buildTree(self._START, finalitem,
tokens, len(sets)-2) | This is the main entry point from outside.
Passing in a debug dictionary changes the default debug
setting. |
def dump_grammar(self, out=sys.stdout):
for rule in sorted(self.rule2name.items()):
out.write("%s\n" % rule2str(rule[0]))
return | Print grammar rules |
def profile_rule(self, rule):
rule_str = self.reduce_string(rule)
if rule_str not in self.profile_info:
self.profile_info[rule_str] = 1
else:
self.profile_info[rule_str] += 1 | Bump count of the number of times _rule_ was used |
def get_profile_info(self):
return sorted(self.profile_info.items(),
key=lambda kv: kv[1],
reverse=False)
return | Show the accumulated results of how many times each rule was used |
def partial(coro, *args, **kw):
assert_corofunction(coro=coro)
@asyncio.coroutine
def wrapper(*_args, **_kw):
call_args = args + _args
kw.update(_kw)
return (yield from coro(*call_args, **kw))
return wrapper | Partial function implementation designed
for coroutines, allowing variadic input arguments.
This function can be used as decorator.
arguments:
coro (coroutinefunction): coroutine function to wrap.
*args (mixed): mixed variadic arguments for partial application.
Raises:
TypeError: if ``coro`` is not a coroutine function.
Returns:
coroutinefunction
Usage::
async def pow(x, y):
return x ** y
pow_2 = paco.partial(pow, 2)
await pow_2(4)
# => 16 |
def eval_expr(expr_str, show_tokens=False, showast=False,
showgrammar=False, compile_mode='exec'):
parser_debug = {'rules': False, 'transition': False,
'reduce': showgrammar,
'errorstack': True, 'context': True }
parsed = parse_expr(expr_str, show_tokens=show_tokens,
parser_debug=parser_debug)
if showast:
print(parsed)
assert parsed == 'expr', 'Should have parsed grammar start'
evaluator = ExprEvaluator()
# What we've been waiting for: Generate source from AST!
return evaluator.traverse(parsed) | evaluate simple expression |
def n_atom(self, node):
length = len(node)
if length == 1:
self.preorder(node[0])
node.value = node[0].value
self.prune()
elif length == 3:
self.preorder(node[1])
node.value = node[1].value
self.prune()
else:
assert False, "Expecting atom to have length 1 or 3" | atom ::= NUMBER | '(' expr ')' |
def n_term(self, node):
if len(node) == 1:
self.preorder(node[0])
node.value = node[0].value
self.prune()
else:
self.preorder(node[0])
self.preorder(node[2])
if node[1].attr == '*':
node.value = node[0].value * node[2].value
elif node[1].attr == '/':
node.value = node[0].value / node[2].value
else:
assert False, "Expecting operator to be '*' or '/'"
self.prune()
assert False, "Expecting atom to have length 1 or 3" | term ::= term MULT_OP atom | atom |
def setup():
global CONFIG, BING_KEY, GENIUS_KEY, config_path, LOG_FILENAME, LOG_LINE_SEPERATOR
LOG_FILENAME = 'musicrepair_log.txt'
LOG_LINE_SEPERATOR = '........................\n'
CONFIG = configparser.ConfigParser()
config_path = realpath(__file__).replace(basename(__file__),'')
config_path = config_path + 'config.ini'
CONFIG.read(config_path)
GENIUS_KEY = CONFIG['keys']['genius_key'] | Gathers all configs |
def matching_details(song_name, song_title, artist):
'''
Provides a score out of 10 that determines the
relevance of the search result
'''
match_name = difflib.SequenceMatcher(None, song_name, song_title).ratio()
match_title = difflib.SequenceMatcher(None, song_name, artist + song_title).ratio()
if max(match_name,match_title) >= 0.55:
return True, max(match_name,match_title)
else:
return False, (match_name + match_title) / f matching_details(song_name, song_title, artist):
'''
Provides a score out of 10 that determines the
relevance of the search result
'''
match_name = difflib.SequenceMatcher(None, song_name, song_title).ratio()
match_title = difflib.SequenceMatcher(None, song_name, artist + song_title).ratio()
if max(match_name,match_title) >= 0.55:
return True, max(match_name,match_title)
else:
return False, (match_name + match_title) / 2 | Provides a score out of 10 that determines the
relevance of the search result |
def get_lyrics_letssingit(song_name):
'''
Scrapes the lyrics of a song since spotify does not provide lyrics
takes song title as arguement
'''
lyrics = ""
url = "http://search.letssingit.com/cgi-exe/am.cgi?a=search&artist_id=&l=archive&s=" + \
quote(song_name.encode('utf-8'))
html = urlopen(url).read()
soup = BeautifulSoup(html, "html.parser")
link = soup.find('a', {'class': 'high_profile'})
try:
link = link.get('href')
link = urlopen(link).read()
soup = BeautifulSoup(link, "html.parser")
try:
lyrics = soup.find('div', {'id': 'lyrics'}).text
lyrics = lyrics[3:]
except AttributeError:
lyrics = ""
except:
lyrics = ""
return lyricf get_lyrics_letssingit(song_name):
'''
Scrapes the lyrics of a song since spotify does not provide lyrics
takes song title as arguement
'''
lyrics = ""
url = "http://search.letssingit.com/cgi-exe/am.cgi?a=search&artist_id=&l=archive&s=" + \
quote(song_name.encode('utf-8'))
html = urlopen(url).read()
soup = BeautifulSoup(html, "html.parser")
link = soup.find('a', {'class': 'high_profile'})
try:
link = link.get('href')
link = urlopen(link).read()
soup = BeautifulSoup(link, "html.parser")
try:
lyrics = soup.find('div', {'id': 'lyrics'}).text
lyrics = lyrics[3:]
except AttributeError:
lyrics = ""
except:
lyrics = ""
return lyrics | Scrapes the lyrics of a song since spotify does not provide lyrics
takes song title as arguement |
def add_albumart(albumart, song_title):
'''
Adds the album art to the song
'''
try:
img = urlopen(albumart) # Gets album art from url
except Exception:
log.log_error("* Could not add album art", indented=True)
return None
audio = EasyMP3(song_title, ID3=ID3)
try:
audio.add_tags()
except _util.error:
pass
audio.tags.add(
APIC(
encoding=3, # UTF-8
mime='image/png',
type=3, # 3 is for album art
desc='Cover',
data=img.read() # Reads and adds album art
)
)
audio.save()
log.log("> Added album art"f add_albumart(albumart, song_title):
'''
Adds the album art to the song
'''
try:
img = urlopen(albumart) # Gets album art from url
except Exception:
log.log_error("* Could not add album art", indented=True)
return None
audio = EasyMP3(song_title, ID3=ID3)
try:
audio.add_tags()
except _util.error:
pass
audio.tags.add(
APIC(
encoding=3, # UTF-8
mime='image/png',
type=3, # 3 is for album art
desc='Cover',
data=img.read() # Reads and adds album art
)
)
audio.save()
log.log("> Added album art") | Adds the album art to the song |
def add_details(file_name, title, artist, album, lyrics=""):
'''
Adds the details to song
'''
tags = EasyMP3(file_name)
tags["title"] = title
tags["artist"] = artist
tags["album"] = album
tags.save()
tags = ID3(file_name)
uslt_output = USLT(encoding=3, lang=u'eng', desc=u'desc', text=lyrics)
tags["USLT::'eng'"] = uslt_output
tags.save(file_name)
log.log("> Adding properties")
log.log_indented("[*] Title: %s" % title)
log.log_indented("[*] Artist: %s" % artist)
log.log_indented("[*] Album: %s " % albumf add_details(file_name, title, artist, album, lyrics=""):
'''
Adds the details to song
'''
tags = EasyMP3(file_name)
tags["title"] = title
tags["artist"] = artist
tags["album"] = album
tags.save()
tags = ID3(file_name)
uslt_output = USLT(encoding=3, lang=u'eng', desc=u'desc', text=lyrics)
tags["USLT::'eng'"] = uslt_output
tags.save(file_name)
log.log("> Adding properties")
log.log_indented("[*] Title: %s" % title)
log.log_indented("[*] Artist: %s" % artist)
log.log_indented("[*] Album: %s " % album) | Adds the details to song |
def filterfalse(coro, iterable, limit=0, loop=None):
return (yield from filter(coro, iterable,
assert_fn=assert_false,
limit=limit, loop=loop)) | Returns a list of all the values in coll which pass an asynchronous truth
test coroutine.
Operations are executed concurrently by default, but results
will be in order.
You can configure the concurrency via `limit` param.
This function is the asynchronous equivalent port Python built-in
`filterfalse()` function.
This function is a coroutine.
This function can be composed in a pipeline chain with ``|`` operator.
Arguments:
coro (coroutine function): coroutine filter function to call accepting
iterable values.
iterable (iterable): an iterable collection yielding
coroutines functions.
assert_fn (coroutinefunction): optional assertion function.
limit (int): max filtering concurrency limit. Use ``0`` for no limit.
loop (asyncio.BaseEventLoop): optional event loop to use.
Raises:
TypeError: if coro argument is not a coroutine function.
Returns:
filtered values (list): ordered list containing values that do not
passed the filter.
Usage::
async def iseven(num):
return num % 2 == 0
await paco.filterfalse(coro, [1, 2, 3, 4, 5])
# => [1, 3, 5] |
def map(coro, iterable, limit=0, loop=None, timeout=None,
return_exceptions=False, *args, **kw):
# Call each iterable but collecting yielded values
return (yield from each(coro, iterable,
limit=limit, loop=loop,
timeout=timeout, collect=True,
return_exceptions=return_exceptions)) | Concurrently maps values yielded from an iterable, passing then
into an asynchronous coroutine function.
Mapped values will be returned as list.
Items order will be preserved based on origin iterable order.
Concurrency level can be configurable via ``limit`` param.
This function is the asynchronous equivalent port Python built-in
`map()` function.
This function is a coroutine.
This function can be composed in a pipeline chain with ``|`` operator.
Arguments:
coro (coroutinefunction): map coroutine function to use.
iterable (iterable|asynchronousiterable): an iterable collection
yielding coroutines functions.
limit (int): max concurrency limit. Use ``0`` for no limit.
loop (asyncio.BaseEventLoop): optional event loop to use.
timeout (int|float): timeout can be used to control the maximum number
of seconds to wait before returning. timeout can be an int or
float. If timeout is not specified or None, there is no limit to
the wait time.
return_exceptions (bool): returns exceptions as valid results.
*args (mixed): optional variadic arguments to be passed to the
coroutine map function.
Returns:
list: ordered list of values yielded by coroutines
Usage::
async def mul_2(num):
return num * 2
await paco.map(mul_2, [1, 2, 3, 4, 5])
# => [2, 4, 6, 8, 10] |
def uninstall(ctx, module_list):
if not module_list:
raise AnthemError(u"You have to provide a list of "
"module's name to uninstall")
mods = ctx.env['ir.module.module'].search([('name', 'in', module_list)])
try:
mods.button_immediate_uninstall()
except Exception:
raise AnthemError(u'Cannot uninstall modules. See the logs') | uninstall module |
def update_translations(ctx, module_list):
if not module_list:
raise AnthemError(u"You have to provide a list of "
"module's name to update the translations")
for module in module_list:
ctx.env['ir.module.module'].with_context(overwrite=True).search(
[('name', '=', module)]).update_translations() | Update translations from module list |
def img_search_bing(album):
''' Bing image search '''
setup()
album = album + " Album Art"
api_key = "Key"
endpoint = "https://api.cognitive.microsoft.com/bing/v5.0/images/search"
links_dict = {}
headers = {'Ocp-Apim-Subscription-Key': str(BING_KEY)}
param = {'q': album, 'count': '1'}
response = requests.get(endpoint, headers=headers, params=param)
response = response.json()
key = 0
try:
for i in response['value']:
links_dict[str(key)] = str((i['contentUrl']))
key = key + 1
return links_dict["0"]
except KeyError:
return Nonf img_search_bing(album):
''' Bing image search '''
setup()
album = album + " Album Art"
api_key = "Key"
endpoint = "https://api.cognitive.microsoft.com/bing/v5.0/images/search"
links_dict = {}
headers = {'Ocp-Apim-Subscription-Key': str(BING_KEY)}
param = {'q': album, 'count': '1'}
response = requests.get(endpoint, headers=headers, params=param)
response = response.json()
key = 0
try:
for i in response['value']:
links_dict[str(key)] = str((i['contentUrl']))
key = key + 1
return links_dict["0"]
except KeyError:
return None | Bing image search |
def img_search_google(album):
'''
google image search
'''
album = album + " Album Art"
url = ("https://www.google.com/search?q=" +
quote(album.encode('utf-8')) + "&source=lnms&tbm=isch")
header = {'User-Agent':
'''Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit/537.36 (KHTML,like Gecko)
Chrome/43.0.2357.134 Safari/537.36'''
}
soup = BeautifulSoup(urlopen(Request(url, headers=header)), "html.parser")
albumart_div = soup.find("div", {"class": "rg_meta"})
albumart = json.loads(albumart_div.text)["ou"]
return albumarf img_search_google(album):
'''
google image search
'''
album = album + " Album Art"
url = ("https://www.google.com/search?q=" +
quote(album.encode('utf-8')) + "&source=lnms&tbm=isch")
header = {'User-Agent':
'''Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit/537.36 (KHTML,like Gecko)
Chrome/43.0.2357.134 Safari/537.36'''
}
soup = BeautifulSoup(urlopen(Request(url, headers=header)), "html.parser")
albumart_div = soup.find("div", {"class": "rg_meta"})
albumart = json.loads(albumart_div.text)["ou"]
return albumart | google image search |
def generator_consumer(coro): # pragma: no cover
if not asyncio.iscoroutinefunction(coro):
raise TypeError('paco: coro must be a coroutine function')
@functools.wraps(coro)
@asyncio.coroutine
def wrapper(*args, **kw):
if len(args) > 1 and isgenerator(args[1]):
args = list(args)
args[1] = (yield from consume(args[1])
if hasattr(args[1], '__anext__')
else list(args[1]))
args = tuple(args)
return (yield from coro(*args, **kw))
return wrapper | Decorator wrapper that consumes sync/async generators provided as
interable input argument.
This function is only intended to be used internally.
Arguments:
coro (coroutinefunction): function to decorate
Raises:
TypeError: if function or coroutine function is not provided.
Returns:
function: decorated function. |
def decorate(fn):
if not isfunction(fn):
raise TypeError('paco: fn must be a callable object')
@functools.wraps(fn)
def decorator(*args, **kw):
# If coroutine object is passed
for arg in args:
if iscoro_or_corofunc(arg):
return fn(*args, **kw)
# Explicit argument must be at least a coroutine
if len(args) and args[0] is None:
raise TypeError('paco: first argument cannot be empty')
def wrapper(coro, *_args, **_kw):
# coro must be a valid type
if not iscoro_or_corofunc(coro):
raise TypeError('paco: first argument must be a '
'coroutine or coroutine function')
# Merge call arguments
_args = ((coro,) + (args + _args))
kw.update(_kw)
# Trigger original decorated function
return fn(*_args, **kw)
return wrapper
return decorator | Generic decorator for coroutines helper functions allowing
multiple variadic initialization arguments.
This function is intended to be used internally.
Arguments:
fn (function): target function to decorate.
Raises:
TypeError: if function or coroutine function is not provided.
Returns:
function: decorated function. |
def _getRole(self, matchedVars):
role = matchedVars.get(ROLE)
if role is not None and role.strip() == '':
role = NULL
else:
valid = Authoriser.isValidRoleName(role)
if valid:
role = Authoriser.getRoleFromName(role)
else:
self.print("Invalid role. Valid roles are: {}".
format(", ".join(map(lambda r: r.name, Roles))),
Token.Error)
return False
return role | :param matchedVars:
:return: NULL or the role's integer value |
def whilst(coro, coro_test, assert_coro=None, *args, **kw):
assert_corofunction(coro=coro, coro_test=coro_test)
# Store yielded values by coroutine
results = []
# Set assertion coroutine
assert_coro = assert_coro or assert_true
# Execute coroutine until a certain
while (yield from assert_coro((yield from coro_test()))):
results.append((yield from coro(*args, **kw)))
return results | Repeatedly call `coro` coroutine function while `coro_test` returns `True`.
This function is the inverse of `paco.until()`.
This function is a coroutine.
Arguments:
coro (coroutinefunction): coroutine function to execute.
coro_test (coroutinefunction): coroutine function to test.
assert_coro (coroutinefunction): optional assertion coroutine used
to determine if the test passed or not.
*args (mixed): optional variadic arguments to pass to `coro` function.
Raises:
TypeError: if input arguments are invalid.
Returns:
list: result values returned by `coro`.
Usage::
calls = 0
async def task():
nonlocal calls
calls += 1
return calls
async def calls_lt_4():
return calls > 4
await paco.until(task, calls_lt_4)
# => [1, 2, 3, 4, 5] |
def load_csv(ctx, model, path, header=None, header_exclude=None, **fmtparams):
if not os.path.isabs(path):
if ctx.options.odoo_data_path:
path = os.path.join(ctx.options.odoo_data_path, path)
else:
raise AnthemError(
'Got a relative path. '
'Please, provide a value for `ODOO_DATA_PATH` '
'in your environment or set `--odoo-data-path` option.'
)
with open(path, 'rb') as data:
load_csv_stream(ctx, model, data,
header=header, header_exclude=header_exclude,
**fmtparams) | Load a CSV from a file path.
:param ctx: Anthem context
:param model: Odoo model name or model klass from env
:param path: absolute or relative path to CSV file.
If a relative path is given you must provide a value for
`ODOO_DATA_PATH` in your environment
or set `--odoo-data-path` option.
:param header: whitelist of CSV columns to load
:param header_exclude: blacklist of CSV columns to not load
:param fmtparams: keyword params for `csv_unireader`
Usage example::
from pkg_resources import Requirement, resource_string
req = Requirement.parse('my-project')
load_csv(ctx, ctx.env['res.users'],
resource_string(req, 'data/users.csv'),
delimiter=',') |
def load_csv_stream(ctx, model, data,
header=None, header_exclude=None, **fmtparams):
_header, _rows = read_csv(data, **fmtparams)
header = header if header else _header
if _rows:
# check if passed header contains all the fields
if header != _header and not header_exclude:
# if not, we exclude the rest of the fields
header_exclude = [x for x in _header if x not in header]
if header_exclude:
# exclude fields from header as well as respective values
header = [x for x in header if x not in header_exclude]
# we must loop trough all the rows too to pop values
# since odoo import works only w/ reader and not w/ dictreader
pop_idxs = [_header.index(x) for x in header_exclude]
rows = []
for i, row in enumerate(_rows):
rows.append(
[x for j, x in enumerate(row) if j not in pop_idxs]
)
else:
rows = list(_rows)
if rows:
load_rows(ctx, model, header, rows) | Load a CSV from a stream.
:param ctx: current anthem context
:param model: model name as string or model klass
:param data: csv data to load
:param header: csv fieldnames whitelist
:param header_exclude: csv fieldnames blacklist
Usage example::
from pkg_resources import Requirement, resource_stream
req = Requirement.parse('my-project')
load_csv_stream(ctx, ctx.env['res.users'],
resource_stream(req, 'data/users.csv'),
delimiter=',') |
def update_translations(ctx, module_list):
modules.update_translations(ctx, module_list)
ctx.log_line(u'Deprecated: use anthem.lyrics.modules.update_translations'
'instead of anthem.lyrics.loaders.update_translations') | Update translations from module list
:param module_list: a list of modules |
def format_python2_stmts(python_stmts, show_tokens=False, showast=False,
showgrammar=False, compile_mode='exec'):
parser_debug = {'rules': False, 'transition': False,
'reduce': showgrammar,
'errorstack': True, 'context': True, 'dups': True }
parsed = parse_python2(python_stmts, show_tokens=show_tokens,
parser_debug=parser_debug)
assert parsed == 'file_input', 'Should have parsed grammar start'
formatter = Python2Formatter()
if showast:
print(parsed)
# What we've been waiting for: Generate source from AST!
python2_formatted_str = formatter.traverse(parsed)
return python2_formatted_str | formats python2 statements |
def n_atom(self, node):
length = len(node)
if length == 1:
self.preorder(node[0])
elif length == 3:
self.preorder(node[0])
self.preorder(node[1])
self.preorder(node[2])
else:
assert False, "Expecting atom to have length 1 or 3"
self.prune() | atom ::=
('(' [yield_expr|testlist_gexp] ')'
| '[' [listmaker] ']'
| '{' [dictmaker] '}'
| '`' testlist1 '`'
| NAME | NUMBER | STRING+) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.