code
stringlengths 52
7.75k
| docs
stringlengths 1
5.85k
|
---|---|
def members(self):
if self._members is None:
self._members = Feed(self.links["members"], pypump=self._pump)
return self._members | :class:`Feed <pypump.models.feed.Feed>` of collection members. |
def add(self, obj):
activity = {
"verb": "add",
"object": {
"objectType": obj.object_type,
"id": obj.id
},
"target": {
"objectType": self.object_type,
"id": self.id
}
}
self._post_activity(activity)
# Remove the cash so it's re-generated next time it's needed
self._members = None | Adds a member to the collection.
:param obj: Object to add.
Example:
>>> mycollection.add(pump.Person('[email protected]')) |
def remove(self, obj):
activity = {
"verb": "remove",
"object": {
"objectType": obj.object_type,
"id": obj.id
},
"target": {
"objectType": self.object_type,
"id": self.id
}
}
self._post_activity(activity)
# Remove the cash so it's re-generated next time it's needed
self._members = None | Removes a member from the collection.
:param obj: Object to remove.
Example:
>>> mycollection.remove(pump.Person('[email protected]')) |
def outbox(self):
if self._outbox is None:
self._outbox = Outbox(self.links['activity-outbox'], pypump=self._pump)
return self._outbox | :class:`Outbox feed <pypump.models.feed.Outbox>` with all
:class:`activities <pypump.models.activity.Activity>` sent by the person.
Example:
>>> for activity in pump.me.outbox[:2]:
... print(activity)
...
pypumptest2 unliked a comment in reply to a note
pypumptest2 deleted a note |
def followers(self):
if self._followers is None:
self._followers = Followers(self.links['followers'], pypump=self._pump)
return self._followers | :class:`Feed <pypump.models.feed.Feed>` with all
:class:`Person <pypump.models.person.Person>` objects following the person.
Example:
>>> alice = pump.Person('[email protected]')
>>> for follower in alice.followers[:2]:
... print(follower.id)
...
acct:[email protected]
acct:[email protected] |
def following(self):
if self._following is None:
self._following = Following(self.links['following'], pypump=self._pump)
return self._following | :class:`Feed <pypump.models.feed.Feed>` with all
:class:`Person <pypump.models.person.Person>` objects followed by the person.
Example:
>>> bob = pump.Person('[email protected]')
>>> for followee in bob.following[:3]:
... print(followee.id)
...
acct:[email protected]
acct:[email protected] |
def favorites(self):
if self._favorites is None:
self._favorites = Favorites(self.links['favorites'], pypump=self._pump)
return self._favorites | :class:`Feed <pypump.models.feed.Feed>` with all objects
liked/favorited by the person.
Example:
>>> for like in pump.me.favorites[:3]:
... print(like)
...
note by [email protected]
image by [email protected]
comment by [email protected] |
def lists(self):
if self._lists is None:
self._lists = Lists(self.links['lists'], pypump=self._pump)
return self._lists | :class:`Lists feed <pypump.models.feed.Lists>` with all lists
owned by the person.
Example:
>>> for list in pump.me.lists:
... print(list)
...
Acquaintances
Family
Coworkers
Friends |
def inbox(self):
if not self.isme:
raise PyPumpException("You can't read other people's inboxes")
if self._inbox is None:
self._inbox = Inbox(self.links['activity-inbox'], pypump=self._pump)
return self._inbox | :class:`Inbox feed <pypump.models.feed.Inbox>` with all
:class:`activities <pypump.models.activity.Activity>`
received by the person, can only be read if logged in as the owner.
Example:
>>> for activity in pump.me.inbox[:2]:
... print(activity.id)
...
https://microca.st/api/activity/BvqXQOwXShSey1HxYuJQBQ
https://pumpyourself.com/api/activity/iQGdnz5-T-auXnbUUdXh-A |
def _verb(self, verb):
activity = {
"verb": verb,
"object": {
"id": self.id,
"objectType": self.object_type,
}
}
self._post_activity(activity) | Posts minimal activity with verb and bare self object.
:param verb: verb to be used. |
def _post_activity(self, activity, unserialize=True):
# I think we always want to post to feed
feed_url = "{proto}://{server}/api/user/{username}/feed".format(
proto=self._pump.protocol,
server=self._pump.client.server,
username=self._pump.client.nickname
)
data = self._pump.request(feed_url, method="POST", data=activity)
if not data:
return False
if "error" in data:
raise PumpException(data["error"])
if unserialize:
if "target" in data:
# we probably want to unserialize target if it's there
# true for collection.{add,remove}
self.unserialize(data["target"])
else:
# copy activity attributes into object
if "author" not in data["object"]:
data["object"]["author"] = data["actor"]
for key in ["to", "cc", "bto", "bcc"]:
if key not in data["object"] and key in data:
data["object"][key] = data[key]
self.unserialize(data["object"])
return True | Posts a activity to feed |
def _add_links(self, links, key="href", proxy_key="proxyURL", endpoints=None):
if endpoints is None:
endpoints = ["likes", "replies", "shares", "self", "followers",
"following", "lists", "favorites", "members"]
if links.get("links"):
for endpoint in links['links']:
# It would seem occasionally the links["links"][endpoint] is
# just a string (what would be the href value). I don't know
# why, it's likely a bug in pump.io but for now we'll support
# this too.
if isinstance(links['links'][endpoint], dict):
self._add_link(endpoint, links['links'][endpoint]["href"])
else:
self._add_link(endpoint, links["links"][endpoint])
for endpoint in endpoints:
if links.get(endpoint, None) is None:
continue
if "pump_io" in links[endpoint]:
self._add_link(endpoint, links[endpoint]["pump_io"][proxy_key])
elif "url" in links[endpoint]:
self._add_link(endpoint, links[endpoint]["url"])
else:
self._add_link(endpoint, links[endpoint][key])
return self.links | Parses and adds block of links |
def parse_map(self, obj, mapping=None, *args, **kwargs):
mapping = mapping or obj._mapping
if "data" in kwargs:
for k, v in mapping.items():
if kwargs["data"].get(v, None) is not None:
val = kwargs["data"][v]
else:
val = None
self.add_attr(obj, k, val, from_json=True)
else:
for k, v in mapping.items():
if k in kwargs:
self.add_attr(obj, k, kwargs[k]) | Parses a dictionary of (model_attr, json_attr) items |
def likes(self):
endpoint = self.links["likes"]
if self._likes is None:
self._likes = Feed(endpoint, pypump=self._pump)
return self._likes | A :class:`Feed <pypump.models.feed.Feed>`
of the people who've liked the object.
Example:
>>> for person in mynote.likes:
... print(person.webfinger)
...
[email protected]
[email protected] |
def comments(self):
endpoint = self.links["replies"]
if self._comments is None:
self._comments = Feed(endpoint, pypump=self._pump)
return self._comments | A :class:`Feed <pypump.models.feed.Feed>`
of the comments for the object.
Example:
>>> for comment in mynote.comments:
... print(comment)
...
comment by [email protected] |
def comment(self, comment):
if isinstance(comment, six.string_types):
comment = self._pump.Comment(comment)
comment.in_reply_to = self
comment.send() | Add a :class:`Comment <pypump.models.comment.Comment>`
to the object.
:param comment: A :class:`Comment <pypump.models.comment.Comment>`
instance, text content is also accepted.
Example:
>>> anote.comment(pump.Comment('I agree!')) |
def shares(self):
endpoint = self.links["shares"]
if self._shares is None:
self._shares = Feed(endpoint, pypump=self._pump)
return self._shares | A :class:`Feed <pypump.models.feed.Feed>`
of the people who've shared the object.
Example:
>>> for person in mynote.shares:
... print(person.webfinger)
...
[email protected]
[email protected] |
def _set_people(self, people):
if hasattr(people, "object_type"):
people = [people]
elif hasattr(people, "__iter__"):
people = list(people)
return people | Sets who the object is sent to |
def from_file(self, filename):
mimetype = mimetypes.guess_type(filename)[0] or "application/octal-stream"
headers = {
"Content-Type": mimetype,
"Content-Length": str(os.path.getsize(filename)),
}
# upload file
file_data = self._pump.request(
"/api/user/{0}/uploads".format(self._pump.client.nickname),
method="POST",
data=open(filename, "rb").read(),
headers=headers,
)
# now post it to the feed
data = {
"verb": "post",
"object": file_data,
}
data.update(self.serialize())
if not self.content and not self.display_name and not self.license:
self._post_activity(data)
else:
self._post_activity(data, unserialize=False)
# update post with display_name and content
if self.content:
file_data['content'] = self.content
if self.display_name:
file_data['displayName'] = self.display_name
if self.license:
file_data['license'] = self.license
data = {
"verb": "update",
"object": file_data,
}
self._post_activity(data)
return self | Uploads a file from a filename on your system.
:param filename: Path to file on your system.
Example:
>>> myimage.from_file('/path/to/dinner.png') |
def unserialize(self, data):
# copy activity attributes into object
if "author" not in data["object"]:
data["object"]["author"] = data["actor"]
for key in ["to", "cc", "bto", "bcc"]:
if key not in data["object"] and key in data:
data["object"][key] = data[key]
Mapper(pypump=self._pump).parse_map(self, data=data)
self._add_links(data)
return self | From JSON -> Activity object |
def me(self):
if self._me is not None:
return self._me
self._me = self.Person("{username}@{server}".format(
username=self.client.nickname,
server=self.client.server,
))
return self._me | Returns :class:`Person <pypump.models.person.Person>` instance of
the logged in user.
Example:
>>> pump.me
<Person: [email protected]> |
def create_store(self):
if self.store_class is not None:
return self.store_class.load(self.client.webfinger, self)
raise NotImplementedError("You need to specify PyPump.store_class or override PyPump.create_store method.") | Creates store object |
def _build_url(self, endpoint):
server = None
if "://" in endpoint:
# looks like an url, let's break it down
server, endpoint = self._deconstruct_url(endpoint)
endpoint = endpoint.lstrip("/")
url = "{proto}://{server}/{endpoint}".format(
proto=self.protocol,
server=self.client.server if server is None else server,
endpoint=endpoint,
)
return url | Returns a fully qualified URL |
def _deconstruct_url(self, url):
url = url.split("://", 1)[-1]
server, endpoint = url.split("/", 1)
return (server, endpoint) | Breaks down URL and returns server and endpoint |
def _add_client(self, url, key=None, secret=None):
if "://" in url:
server, endpoint = self._deconstruct_url(url)
else:
server = url
if server not in self._server_cache:
if not (key and secret):
client = Client(
webfinger=self.client.webfinger,
name=self.client.name,
type=self.client.type,
)
client.set_pump(self)
client.register(server)
else:
client = Client(
webfinger=self.client.webfinger,
key=key,
secret=secret,
type=self.client.type,
name=self.client.name,
)
client.set_pump(self)
self._server_cache[server] = client | Creates Client object with key and secret for server
and adds it to _server_cache if it doesnt already exist |
def oauth_request(self):
# get tokens from server and make a dict of them.
self._server_tokens = self.request_token()
self.store["oauth-request-token"] = self._server_tokens["token"]
self.store["oauth-request-secret"] = self._server_tokens["token_secret"]
# now we need the user to authorize me to use their pump.io account
result = self.verifier_callback(self.construct_oauth_url())
if result is not None:
self.verifier(result) | Makes a oauth connection |
def construct_oauth_url(self):
response = self._requester(requests.head,
"{0}://{1}/".format(self.protocol, self.client.server),
allow_redirects=False
)
if response.is_redirect:
server = response.headers['location']
else:
server = response.url
path = "oauth/authorize?oauth_token={token}".format(
token=self.store["oauth-request-token"]
)
return "{server}{path}".format(
server=server,
path=path
) | Constructs verifier OAuth URL |
def setup_oauth_client(self, url=None):
if url and "://" in url:
server, endpoint = self._deconstruct_url(url)
else:
server = self.client.server
if server not in self._server_cache:
self._add_client(server)
if server == self.client.server:
self.oauth = OAuth1(
client_key=self.store["client-key"],
client_secret=self.store["client-secret"],
resource_owner_key=self.store["oauth-access-token"],
resource_owner_secret=self.store["oauth-access-secret"],
)
return self.oauth
else:
return OAuth1(
client_key=self._server_cache[server].key,
client_secret=self._server_cache[server].secret,
) | Sets up client for requests to pump |
def request_token(self):
client = OAuth1(
client_key=self._server_cache[self.client.server].key,
client_secret=self._server_cache[self.client.server].secret,
callback_uri=self.callback,
)
request = {"auth": client}
response = self._requester(
requests.post,
"oauth/request_token",
**request
)
data = parse.parse_qs(response.text)
data = {
'token': data[self.PARAM_TOKEN][0],
'token_secret': data[self.PARAM_TOKEN_SECRET][0]
}
return data | Gets OAuth request token |
def request_access(self, verifier):
client = OAuth1(
client_key=self._server_cache[self.client.server].key,
client_secret=self._server_cache[self.client.server].secret,
resource_owner_key=self.store["oauth-request-token"],
resource_owner_secret=self.store["oauth-request-secret"],
verifier=verifier,
)
request = {"auth": client}
response = self._requester(
requests.post,
"oauth/access_token",
**request
)
data = parse.parse_qs(response.text)
self.store["oauth-access-token"] = data[self.PARAM_TOKEN][0]
self.store["oauth-access-secret"] = data[self.PARAM_TOKEN_SECRET][0]
self._server_tokens = {} | Get OAuth access token so we can make requests |
def logged_in(self):
if "oauth-access-token" not in self.store:
return False
response = self.request("/api/whoami", allow_redirects=False)
# It should response with a redirect to our profile if it's logged in
if response.status_code != 302:
return False
# the location should be the profile we have
if response.headers["location"] != self.me.links["self"]:
return False
return True | Return boolean if is logged in |
def cudnnCreate():
handle = ctypes.c_void_p()
status = _libcudnn.cudnnCreate(ctypes.byref(handle))
cudnnCheckStatus(status)
return handle.value | Initialize cuDNN.
Initializes cuDNN and returns a handle to the cuDNN context.
Returns
-------
handle : cudnnHandle
cuDNN context |
def cudnnDestroy(handle):
status = _libcudnn.cudnnDestroy(ctypes.c_void_p(handle))
cudnnCheckStatus(status) | Release cuDNN resources.
Release hardware resources used by cuDNN.
Parameters
----------
handle : cudnnHandle
cuDNN context. |
def cudnnSetStream(handle, id):
status = _libcudnn.cudnnSetStream(handle, id)
cudnnCheckStatus(status) | Set current cuDNN library stream.
Parameters
----------
handle : cudnnHandle
cuDNN context.
id : cudaStream
Stream Id. |
def cudnnGetStream(handle):
id = ctypes.c_void_p()
status = _libcudnn.cudnnGetStream(handle, ctypes.byref(id))
cudnnCheckStatus(status)
return id.value | Get current cuDNN library stream.
Parameters
----------
handle : int
cuDNN context.
Returns
-------
id : int
Stream ID. |
def cudnnCreateTensorDescriptor():
tensor = ctypes.c_void_p()
status = _libcudnn.cudnnCreateTensorDescriptor(ctypes.byref(tensor))
cudnnCheckStatus(status)
return tensor.value | Create a Tensor descriptor object.
Allocates a cudnnTensorDescriptor_t structure and returns a pointer to it.
Returns
-------
tensor_descriptor : int
Tensor descriptor. |
def cudnnSetTensor4dDescriptor(tensorDesc, format, dataType, n, c, h, w):
status = _libcudnn.cudnnSetTensor4dDescriptor(tensorDesc, format, dataType,
n, c, h, w)
cudnnCheckStatus(status) | Initialize a previously created Tensor 4D object.
This function initializes a previously created Tensor4D descriptor object. The strides of
the four dimensions are inferred from the format parameter and set in such a way that
the data is contiguous in memory with no padding between dimensions.
Parameters
----------
tensorDesc : cudnnTensorDescriptor
Handle to a previously created tensor descriptor.
format : cudnnTensorFormat
Type of format.
dataType : cudnnDataType
Data type.
n : int
Number of images.
c : int
Number of feature maps per image.
h : int
Height of each feature map.
w : int
Width of each feature map. |
def cudnnSetTensor4dDescriptorEx(tensorDesc, dataType, n, c, h, w, nStride, cStride, hStride, wStride):
Initialize a Tensor descriptor object with strides.
This function initializes a previously created generic Tensor descriptor object into a
4D tensor, similarly to cudnnSetTensor4dDescriptor but with the strides explicitly
passed as parameters. This can be used to lay out the 4D tensor in any order or simply to
define gaps between dimensions.
Parameters
----------
tensorDesc : cudnnTensorDescriptor_t
Handle to a previously created tensor descriptor.
dataType : cudnnDataType
Data type.
n : int
Number of images.
c : int
Number of feature maps per image.
h : int
Height of each feature map.
w : int
Width of each feature map.
nStride : int
Stride between two consective images.
cStride : int
Stride between two consecutive feature maps.
hStride : int
Stride between two consecutive rows.
wStride : int
Stride between two consecutive columns.
"""
status = _libcudnn.cudnnSetTensor4dDescriptorEx(tensorDesc, dataType, n, c, h, w,
nStride, cStride, hStride, wStride)
cudnnCheckStatus(status) | Initialize a Tensor descriptor object with strides.
This function initializes a previously created generic Tensor descriptor object into a
4D tensor, similarly to cudnnSetTensor4dDescriptor but with the strides explicitly
passed as parameters. This can be used to lay out the 4D tensor in any order or simply to
define gaps between dimensions.
Parameters
----------
tensorDesc : cudnnTensorDescriptor_t
Handle to a previously created tensor descriptor.
dataType : cudnnDataType
Data type.
n : int
Number of images.
c : int
Number of feature maps per image.
h : int
Height of each feature map.
w : int
Width of each feature map.
nStride : int
Stride between two consective images.
cStride : int
Stride between two consecutive feature maps.
hStride : int
Stride between two consecutive rows.
wStride : int
Stride between two consecutive columns. |
def cudnnSetTensor(handle, srcDesc, srcData, value):
Set all data points of a tensor to a given value : srcDest = alpha.
Parameters
----------
handle : cudnnHandle
Handle to a previously created cuDNN context.
srcDesc : cudnnTensorDescriptor
Handle to a previously initialized tensor descriptor.
srcData : void_p
Pointer to data of the tensor described by srcDesc descriptor.
value : float
Value that all elements of the tensor will be set to.
"""
dataType, _, _, _, _, _, _, _, _ = cudnnGetTensor4dDescriptor(srcDesc)
if dataType == cudnnDataType['CUDNN_DATA_DOUBLE']:
alphaRef = ctypes.byref(ctypes.c_double(alpha))
else:
alphaRef = ctypes.byref(ctypes.c_float(alpha))
status = _libcudnn.cudnnSetTensor(handle, srcDesc, srcData, alphaRef)
cudnnCheckStatus(status) | Set all data points of a tensor to a given value : srcDest = alpha.
Parameters
----------
handle : cudnnHandle
Handle to a previously created cuDNN context.
srcDesc : cudnnTensorDescriptor
Handle to a previously initialized tensor descriptor.
srcData : void_p
Pointer to data of the tensor described by srcDesc descriptor.
value : float
Value that all elements of the tensor will be set to. |
def cudnnCreateFilterDescriptor():
Create a filter descriptor.
This function creates a filter descriptor object by allocating the memory needed
to hold its opaque structure.
Parameters
----------
Returns
-------
wDesc : cudnnFilterDescriptor
Handle to a newly allocated filter descriptor.
"""
wDesc = ctypes.c_void_p()
status = _libcudnn.cudnnCreateFilterDescriptor(ctypes.byref(wDesc))
cudnnCheckStatus(status)
return wDesc.value | Create a filter descriptor.
This function creates a filter descriptor object by allocating the memory needed
to hold its opaque structure.
Parameters
----------
Returns
-------
wDesc : cudnnFilterDescriptor
Handle to a newly allocated filter descriptor. |
def cudnnSetFilter4dDescriptor(wDesc, dataType, format, k, c, h, w):
Initialize a filter descriptor.
This function initializes a previously created filter descriptor object into a 4D filter.
Filters layout must be contiguous in memory.
Parameters
----------
wDesc : cudnnFilterDescriptor
Handle to a previously created filter descriptor.
dataType : cudnnDataType
Data type.
format: cudnnTensorFormat
Tensor format
k : int
Number of output feature maps.
c : int
Number of input feature maps.
h : int
Height of each filter.
w : int
Width of each filter.
"""
status = _libcudnn.cudnnSetFilter4dDescriptor(wDesc, dataType, format, k, c, h, w)
cudnnCheckStatus(status) | Initialize a filter descriptor.
This function initializes a previously created filter descriptor object into a 4D filter.
Filters layout must be contiguous in memory.
Parameters
----------
wDesc : cudnnFilterDescriptor
Handle to a previously created filter descriptor.
dataType : cudnnDataType
Data type.
format: cudnnTensorFormat
Tensor format
k : int
Number of output feature maps.
c : int
Number of input feature maps.
h : int
Height of each filter.
w : int
Width of each filter. |
def cudnnGetFilter4dDescriptor(wDesc):
Get parameters of filter descriptor.
This function queries the parameters of the previouly initialized filter descriptor object.
Parameters
----------
wDesc : cudnnFilterDescriptor
Handle to a previously created filter descriptor.
Returns
-------
dataType : cudnnDataType
Data type.
format: cudnnTensorFormat
Tensor format
k : int
Number of output feature maps.
c : int
Number of input feature maps.
h : int
Height of each filter.
w : int
Width of each filter.
"""
dataType = ctypes.c_int()
format = ctypes.c_int()
k = ctypes.c_int()
c = ctypes.c_int()
h = ctypes.c_int()
w = ctypes.c_int()
status = _libcudnn.cudnnGetFilter4dDescriptor(wDesc, ctypes.byref(dataType),
ctypes.byref(format),
ctypes.byref(k), ctypes.byref(c),
ctypes.byref(h), ctypes.byref(w))
cudnnCheckStatus(status)
return dataType.value, format.value, k.value, c.value, h.value, w.value | Get parameters of filter descriptor.
This function queries the parameters of the previouly initialized filter descriptor object.
Parameters
----------
wDesc : cudnnFilterDescriptor
Handle to a previously created filter descriptor.
Returns
-------
dataType : cudnnDataType
Data type.
format: cudnnTensorFormat
Tensor format
k : int
Number of output feature maps.
c : int
Number of input feature maps.
h : int
Height of each filter.
w : int
Width of each filter. |
def cudnnCreateConvolutionDescriptor():
Create a convolution descriptor.
This function creates a convolution descriptor object by allocating the memory needed to
hold its opaque structure.
Returns
-------
convDesc : cudnnConvolutionDescriptor
Handle to newly allocated convolution descriptor.
"""
convDesc = ctypes.c_void_p()
status = _libcudnn.cudnnCreateConvolutionDescriptor(ctypes.byref(convDesc))
cudnnCheckStatus(status)
return convDesc.value | Create a convolution descriptor.
This function creates a convolution descriptor object by allocating the memory needed to
hold its opaque structure.
Returns
-------
convDesc : cudnnConvolutionDescriptor
Handle to newly allocated convolution descriptor. |
def cudnnGetConvolutionForwardWorkspaceSize(handle, srcDesc, wDesc,
convDesc, destDesc, algo):
This function returns the amount of GPU memory workspace the user needs
to allocate to be able to call cudnnConvolutionForward with the specified algorithm.
Parameters
----------
handle : cudnnHandle
Handle to a previously created cuDNN context.
srcDesc : cudnnTensorDescriptor
Handle to a previously initialized tensor descriptor.
wDesc : cudnnFilterDescriptor
Handle to a previously initialized filter descriptor.
convDesc : cudnnConvolutionDescriptor
Previously initialized convolution descriptor.
destDesc : cudnnTensorDescriptor
Handle to a previously initialized tensor descriptor.
algo : cudnnConvolutionFwdAlgo
Enumerant that specifies the chosen convolution algorithm.
Returns
-------
sizeInBytes: c_size_t
Amount of GPU memory needed as workspace to be able to execute a
forward convolution with the sepcified algo.
"""
sizeInBytes = ctypes.c_size_t()
status = _libcudnn.cudnnGetConvolutionForwardWorkspaceSize(handle, srcDesc, wDesc,
convDesc, destDesc, algo,
ctypes.byref(sizeInBytes))
cudnnCheckStatus(status)
return sizeInBytes | This function returns the amount of GPU memory workspace the user needs
to allocate to be able to call cudnnConvolutionForward with the specified algorithm.
Parameters
----------
handle : cudnnHandle
Handle to a previously created cuDNN context.
srcDesc : cudnnTensorDescriptor
Handle to a previously initialized tensor descriptor.
wDesc : cudnnFilterDescriptor
Handle to a previously initialized filter descriptor.
convDesc : cudnnConvolutionDescriptor
Previously initialized convolution descriptor.
destDesc : cudnnTensorDescriptor
Handle to a previously initialized tensor descriptor.
algo : cudnnConvolutionFwdAlgo
Enumerant that specifies the chosen convolution algorithm.
Returns
-------
sizeInBytes: c_size_t
Amount of GPU memory needed as workspace to be able to execute a
forward convolution with the sepcified algo. |
def cudnnCreatePoolingDescriptor():
Create pooling descriptor.
This function creates a pooling descriptor object by allocating the memory needed to
hold its opaque structure,
Returns
-------
poolingDesc : cudnnPoolingDescriptor
Newly allocated pooling descriptor.
"""
poolingDesc = ctypes.c_void_p()
status = _libcudnn.cudnnCreatePoolingDescriptor(ctypes.byref(poolingDesc))
cudnnCheckStatus(status)
return poolingDesc.value | Create pooling descriptor.
This function creates a pooling descriptor object by allocating the memory needed to
hold its opaque structure,
Returns
-------
poolingDesc : cudnnPoolingDescriptor
Newly allocated pooling descriptor. |
def cudnnSetPooling2dDescriptor(poolingDesc, mode, windowHeight, windowWidth,
verticalPadding, horizontalPadding, verticalStride, horizontalStride):
Initialize a 2D pooling descriptor.
This function initializes a previously created pooling descriptor object.
Parameters
----------
poolingDesc : cudnnPoolingDescriptor
Handle to a previously created pooling descriptor.
mode : cudnnPoolingMode
Enumerant to specify the pooling mode.
windowHeight : int
Height of the pooling window.
windowWidth : int
Width of the pooling window.
verticalPadding: int
Size of vertical padding.
horizontalPadding: int
Size of horizontal padding.
verticalStride : int
Pooling vertical stride.
horizontalStride : int
Pooling horizontal stride.
"""
status = _libcudnn.cudnnSetPooling2dDescriptor(poolingDesc, mode, windowHeight,
windowWidth, verticalPadding, horizontalPadding,
verticalStride, horizontalStride)
cudnnCheckStatus(status) | Initialize a 2D pooling descriptor.
This function initializes a previously created pooling descriptor object.
Parameters
----------
poolingDesc : cudnnPoolingDescriptor
Handle to a previously created pooling descriptor.
mode : cudnnPoolingMode
Enumerant to specify the pooling mode.
windowHeight : int
Height of the pooling window.
windowWidth : int
Width of the pooling window.
verticalPadding: int
Size of vertical padding.
horizontalPadding: int
Size of horizontal padding.
verticalStride : int
Pooling vertical stride.
horizontalStride : int
Pooling horizontal stride. |
def cudnnGetPooling2dDescriptor(poolingDesc):
This function queries a previously created pooling descriptor object.
Parameters
----------
poolingDesc : cudnnPoolingDescriptor
Handle to a previously created 2D pooling descriptor.
Returns
-------
mode : cudnnPoolingMode
Enumerant to specify the pooling mode.
windowHeight : int
Height of the pooling window.
windowWidth : int
Width of the pooling window.
verticalPadding: int
Size of vertical padding.
horizontalPadding: int
Size of horizontal padding.
verticalStride : int
Pooling vertical stride.
horizontalStride : int
Pooling horizontal stride.
"""
mode = ctypes.c_int()
windowHeight = ctypes.c_int()
windowWidth = ctypes.c_int()
verticalPadding = ctypes.c_int()
horizontalPadding = ctypes.c_int()
verticalStride = ctypes.c_int()
horizontalStride = ctypes.c_int()
status = _libcudnn.cudnnGetPooling2dDescriptor(poolingDesc, ctypes.byref(mode), ctypes.byref(windowHeight),
ctypes.byref(windowWidth), ctypes.byref(verticalPadding),
ctypes.byref(horizontalPadding), ctypes.byref(verticalStride),
ctypes.byref(horizontalStride))
cudnnCheckStatus(status)
return mode.value, windowHeight.value, windowWidth.value, verticalStride.value, horizontalStride.value | This function queries a previously created pooling descriptor object.
Parameters
----------
poolingDesc : cudnnPoolingDescriptor
Handle to a previously created 2D pooling descriptor.
Returns
-------
mode : cudnnPoolingMode
Enumerant to specify the pooling mode.
windowHeight : int
Height of the pooling window.
windowWidth : int
Width of the pooling window.
verticalPadding: int
Size of vertical padding.
horizontalPadding: int
Size of horizontal padding.
verticalStride : int
Pooling vertical stride.
horizontalStride : int
Pooling horizontal stride. |
def __prefix_key(self, key):
# If there isn't a prefix don't bother
if self.prefix is None:
return key
# Don't prefix key if it already has it
if key.startswith(self.prefix + "-"):
return key
return "{0}-{1}".format(self.prefix, key) | This will add the prefix to the key if one exists on the store |
def export(self):
data = {}
for key, value in self.items():
data[key] = value
return data | Exports as dictionary |
def save(self):
if self.filename is None:
raise StoreException("Filename must be set to write store to disk")
# We need an atomic way of re-writing the settings, we also need to
# prevent only overwriting part of the settings file (see bug #116).
# Create a temp file and only then re-name it to the config
filename = "{filename}.{date}.tmp".format(
filename=self.filename,
date=datetime.datetime.utcnow().strftime('%Y-%m-%dT%H_%M_%S.%f')
)
# The `open` built-in doesn't allow us to set the mode
mode = stat.S_IRUSR | stat.S_IWUSR # 0600
fd = os.open(filename, os.O_WRONLY | os.O_CREAT, mode)
fout = os.fdopen(fd, "w")
fout.write(json.dumps(self.export()))
fout.close()
# Now we should remove the old config
if os.path.isfile(self.filename):
os.remove(self.filename)
# Now rename the temp file to the real config file
os.rename(filename, self.filename) | Saves dictionary to disk in JSON format. |
def get_filename(cls):
config_home = os.environ.get("XDG_CONFIG_HOME", "~/.config")
config_home = os.path.expanduser(config_home)
base_path = os.path.join(config_home, "PyPump")
if not os.path.isdir(base_path):
os.makedirs(base_path)
return os.path.join(base_path, "credentials.json") | Gets filename of store on disk |
def load(cls, webfinger, pypump):
filename = cls.get_filename()
if os.path.isfile(filename):
data = open(filename).read()
data = json.loads(data)
store = cls(data, filename=filename)
else:
store = cls(filename=filename)
store.prefix = webfinger
return store | Load JSON from disk into store object |
def pause(message='Press any key to continue . . . '):
if message is not None:
print(message, end='')
sys.stdout.flush()
getch()
print() | Prints the specified message if it's not None and waits for a keypress. |
def covalent_bonds(atoms, threshold=1.1):
bonds=[]
for a, b in atoms:
bond_distance=(
element_data[a.element.title()]['atomic radius'] + element_data[
b.element.title()]['atomic radius']) / 100
dist=distance(a._vector, b._vector)
if dist <= bond_distance * threshold:
bonds.append(CovalentBond(a, b, dist))
return bonds | Returns all the covalent bonds in a list of `Atom` pairs.
Notes
-----
Uses information `element_data`, which can be accessed directly
through this module i.e. `isambard.ampal.interactions.element_data`.
Parameters
----------
atoms : [(`Atom`, `Atom`)]
List of pairs of `Atoms`.
threshold : float, optional
Allows deviation from ideal covalent bond distance to be included.
For example, a value of 1.1 would allow interactions up to 10% further
from the ideal distance to be included. |
def find_covalent_bonds(ampal, max_range=2.2, threshold=1.1, tag=True):
sectors=gen_sectors(ampal.get_atoms(), max_range * 1.1)
bonds=[]
for sector in sectors.values():
atoms=itertools.combinations(sector, 2)
bonds.extend(covalent_bonds(atoms, threshold=threshold))
bond_set=list(set(bonds))
if tag:
for bond in bond_set:
a, b=bond.a, bond.b
if 'covalent_bonds' not in a.tags:
a.tags['covalent_bonds']=[b]
else:
a.tags['covalent_bonds'].append(b)
if 'covalent_bonds' not in b.tags:
b.tags['covalent_bonds']=[a]
else:
b.tags['covalent_bonds'].append(a)
return bond_set | Finds all covalent bonds in the AMPAL object.
Parameters
----------
ampal : AMPAL Object
Any AMPAL object with a `get_atoms` method.
max_range : float, optional
Used to define the sector size, so interactions at longer ranges
will not be found.
threshold : float, optional
Allows deviation from ideal covalent bond distance to be included.
For example, a value of 1.1 would allow interactions up to 10% further
from the ideal distance to be included.
tag : bool, optional
If `True`, will add the covalent bond to the tags dictionary of
each `Atom` involved in the interaction under the `covalent_bonds`
key. |
def generate_covalent_bond_graph(covalent_bonds):
bond_graph=networkx.Graph()
for inter in covalent_bonds:
bond_graph.add_edge(inter.a, inter.b)
return bond_graph | Generates a graph of the covalent bond network described by the interactions.
Parameters
----------
covalent_bonds: [CovalentBond]
List of `CovalentBond`.
Returns
-------
bond_graph: networkx.Graph
A graph of the covalent bond network. |
def generate_bond_subgraphs_from_break(bond_graph, atom1, atom2):
bond_graph.remove_edge(atom1, atom2)
try:
subgraphs=list(networkx.connected_component_subgraphs(
bond_graph, copy=False))
finally:
# Add edge
bond_graph.add_edge(atom1, atom2)
return subgraphs | Splits the bond graph between two atoms to producing subgraphs.
Notes
-----
This will not work if there are cycles in the bond graph.
Parameters
----------
bond_graph: networkx.Graph
Graph of covalent bond network
atom1: isambard.ampal.Atom
First atom in the bond.
atom2: isambard.ampal.Atom
Second atom in the bond.
Returns
-------
subgraphs: [networkx.Graph]
A list of subgraphs generated when a bond is broken in the covalent
bond network. |
def cap(v, l):
s = str(v)
return s if len(s) <= l else s[-l:] | Shortens string is above certain length. |
def find_atoms_within_distance(atoms, cutoff_distance, point):
return [x for x in atoms if distance(x, point) <= cutoff_distance] | Returns atoms within the distance from the point.
Parameters
----------
atoms : [ampal.atom]
A list of `ampal.atoms`.
cutoff_distance : float
Maximum distance from point.
point : (float, float, float)
Reference point, 3D coordinate.
Returns
-------
filtered_atoms : [ampal.atoms]
`atoms` list filtered by distance. |
def centre_of_atoms(atoms, mass_weighted=True):
points = [x._vector for x in atoms]
if mass_weighted:
masses = [x.mass for x in atoms]
else:
masses = []
return centre_of_mass(points=points, masses=masses) | Returns centre point of any list of atoms.
Parameters
----------
atoms : list
List of AMPAL atom objects.
mass_weighted : bool, optional
If True returns centre of mass, otherwise just geometric centre of points.
Returns
-------
centre_of_mass : numpy.array
3D coordinate for the centre of mass. |
def update_ff(self, ff, mol2=False, force_ff_assign=False):
aff = False
if force_ff_assign:
aff = True
elif 'assigned_ff' not in self.tags:
aff = True
elif not self.tags['assigned_ff']:
aff = True
if aff:
self.assign_force_field(ff, mol2=mol2)
return | Manages assigning the force field parameters.
The aim of this method is to avoid unnecessary assignment of the
force field.
Parameters
----------
ff: BuffForceField
The force field to be used for scoring.
mol2: bool, optional
If true, mol2 style labels will also be used.
force_ff_assign: bool, optional
If true, the force field will be completely reassigned, ignoring the
cached parameters. |
def get_internal_energy(self, assign_ff=True, ff=None, mol2=False,
force_ff_assign=False):
if not ff:
ff = global_settings['buff']['force_field']
if assign_ff:
self.update_ff(ff, mol2=mol2, force_ff_assign=force_ff_assign)
interactions = find_intra_ampal(self, ff.distance_cutoff)
buff_score = score_interactions(interactions, ff)
return buff_score | Calculates the internal energy of the AMPAL object.
This method is assigned to the buff_internal_energy property,
using the default arguments.
Parameters
----------
assign_ff: bool, optional
If true the force field will be updated if required.
ff: BuffForceField, optional
The force field to be used for scoring.
mol2: bool, optional
If true, mol2 style labels will also be used.
force_ff_assign: bool, optional
If true, the force field will be completely reassigned, ignoring the
cached parameters.
Returns
-------
BUFF_score: BUFFScore
A BUFFScore object with information about each of the interactions and
the atoms involved. |
def rotate(self, angle, axis, point=None, radians=False, inc_alt_states=True):
q = Quaternion.angle_and_axis(angle=angle, axis=axis, radians=radians)
for atom in self.get_atoms(inc_alt_states=inc_alt_states):
atom._vector = q.rotate_vector(v=atom._vector, point=point)
return | Rotates every atom in the AMPAL object.
Parameters
----------
angle : float
Angle that AMPAL object will be rotated.
axis : 3D Vector (tuple, list, numpy.array)
Axis about which the AMPAL object will be rotated.
point : 3D Vector (tuple, list, numpy.array), optional
Point that the axis lies upon. If `None` then the origin is used.
radians : bool, optional
True is `angle` is define in radians, False is degrees.
inc_alt_states : bool, optional
If true, will rotate atoms in all states i.e. includes
alternate conformations for sidechains. |
def translate(self, vector, inc_alt_states=True):
vector = numpy.array(vector)
for atom in self.get_atoms(inc_alt_states=inc_alt_states):
atom._vector += vector
return | Translates every atom in the AMPAL object.
Parameters
----------
vector : 3D Vector (tuple, list, numpy.array)
Vector used for translation.
inc_alt_states : bool, optional
If true, will rotate atoms in all states i.e. includes
alternate conformations for sidechains. |
def rmsd(self, other, backbone=False):
assert type(self) == type(other)
if backbone and hasattr(self, 'backbone'):
points1 = self.backbone.get_atoms()
points2 = other.backbone.get_atoms()
else:
points1 = self.get_atoms()
points2 = other.get_atoms()
points1 = [x._vector for x in points1]
points2 = [x._vector for x in points2]
return rmsd(points1=points1, points2=points2) | Calculates the RMSD between two AMPAL objects.
Notes
-----
No fitting operation is performs and both AMPAL objects must
have the same number of atoms.
Parameters
----------
other : AMPAL Object
Any AMPAL object with `get_atoms` method.
backbone : bool, optional
Calculates RMSD of backbone only. |
def append(self, item):
if isinstance(item, Monomer):
self._monomers.append(item)
else:
raise TypeError(
'Only Monomer objects can be appended to an Polymer.')
return | Appends a `Monomer to the `Polymer`.
Notes
-----
Does not update labelling. |
def extend(self, polymer):
if isinstance(polymer, Polymer):
self._monomers.extend(polymer)
else:
raise TypeError(
'Only Polymer objects may be merged with a Polymer using unary operator "+".')
return | Extends the `Polymer` with the contents of another `Polymer`.
Notes
-----
Does not update labelling. |
def get_monomers(self, ligands=True):
if ligands and self.ligands:
monomers = self._monomers + self.ligands._monomers
else:
monomers = self._monomers
return iter(monomers) | Retrieves all the `Monomers` from the AMPAL object.
Parameters
----------
ligands : bool, optional
If true, will include ligand `Monomers`. |
def get_atoms(self, ligands=True, inc_alt_states=False):
if ligands and self.ligands:
monomers = self._monomers + self.ligands._monomers
else:
monomers = self._monomers
atoms = itertools.chain(
*(list(m.get_atoms(inc_alt_states=inc_alt_states)) for m in monomers))
return atoms | Flat list of all the Atoms in the Polymer.
Parameters
----------
inc_alt_states : bool
If true atoms from alternate conformations are included rather
than only the "active" states.
Returns
-------
atoms : itertools.chain
Returns an iterator of all the atoms. Convert to list if you
require indexing. |
def relabel_monomers(self, labels=None):
if labels:
if len(self._monomers) == len(labels):
for monomer, label in zip(self._monomers, labels):
monomer.id = str(label)
else:
error_string = (
'Number of Monomers ({}) and number of labels '
'({}) must be equal.')
raise ValueError(error_string.format(
len(self._monomers), len(labels)))
else:
for i, monomer in enumerate(self._monomers):
monomer.id = str(i + 1)
return | Relabels the either in numerically or using a list of labels.
Parameters
----------
labels : list, optional
A list of new labels.
Raises
------
ValueError
Raised if the number of labels does not match the number of
component Monoer objects. |
def relabel_atoms(self, start=1):
counter = start
for atom in self.get_atoms():
atom.id = counter
counter += 1
return | Relabels all `Atoms` in numerical order.
Parameters
----------
start : int, optional
Offset the labelling by `start` residues. |
def make_pdb(self, alt_states=False, inc_ligands=True):
if any([False if x.id else True for x in self._monomers]):
self.relabel_monomers()
if self.ligands and inc_ligands:
monomers = self._monomers + self.ligands._monomers
else:
monomers = self._monomers
pdb_str = write_pdb(monomers, self.id, alt_states=alt_states)
return pdb_str | Generates a PDB string for the `Polymer`.
Parameters
----------
alt_states : bool, optional
Include alternate conformations for `Monomers` in PDB.
inc_ligands : bool, optional
Includes `Ligands` in PDB.
Returns
-------
pdb_str : str
String of the pdb for the `Polymer`. Generated using information
from the component `Monomers`. |
def make_pdb(self):
pdb_str = write_pdb(
[self], ' ' if not self.ampal_parent else self.ampal_parent.id)
return pdb_str | Generates a PDB string for the `Monomer`. |
def unique_id(self):
chain = self.ampal_parent.ampal_parent.id
residue = self.ampal_parent.id
return chain, residue, self.id | Creates a unique ID for the `Atom` based on its parents.
Returns
-------
unique_id : (str, str, str)
(polymer.id, residue.id, atom.id) |
def rotate(self, angle, axis, point=None, radians=False):
q = Quaternion.angle_and_axis(angle=angle, axis=axis, radians=radians)
self._vector = q.rotate_vector(v=self._vector, point=point)
return | Rotates `Atom` by `angle`.
Parameters
----------
angle : float
Angle that `Atom` will be rotated.
axis : 3D Vector (tuple, list, numpy.array)
Axis about which the `Atom` will be rotated.
point : 3D Vector (tuple, list, numpy.array), optional
Point that the `axis` lies upon. If `None` then the origin is used.
radians : bool, optional
True is `angle` is define in radians, False is degrees. |
def translate(self, vector):
vector = numpy.array(vector)
for atom in self.get_atoms(inc_alt_states=inc_alt_states):
atom._vector += vector
return
self._vector += numpy.array(vector)
return | Translates `Atom`.
Parameters
----------
vector : 3D Vector (tuple, list, numpy.array)
Vector used for translation.
inc_alt_states : bool, optional
If true, will rotate atoms in all states i.e. includes
alternate conformations for sidechains. |
def parse_PISCES_output(pisces_output, path=False):
pisces_dict = {}
if path:
pisces_path = Path(pisces_output)
pisces_content = pisces_path.read_text().splitlines()[1:]
else:
pisces_content = pisces_output.splitlines()[1:]
for line in pisces_content:
pdb = line.split()[0][:4].lower()
chain = line.split()[0][-1]
pdb_dict = {'length': line.split()[1],
'method': line.split()[2],
'resolution': line.split()[3],
'R-factor': line.split()[4],
'R-free': line.split()[5]}
if pdb in pisces_dict:
pisces_dict[pdb]['chains'].append(chain)
else:
pdb_dict['chains'] = [chain]
pisces_dict[pdb] = pdb_dict
return pisces_dict | Takes the output list of a PISCES cull and returns in a usable dictionary.
Notes
-----
Designed for outputs of protein sequence redundancy culls conducted using the PISCES server.
http://dunbrack.fccc.edu/PISCES.php
G. Wang and R. L. Dunbrack, Jr. PISCES: a protein sequence culling server. Bioinformatics, 19:1589-1591, 2003.
Parameters
----------
pisces_output : str or path
Output list of non-redundant protein chains from PISCES, or path to text file.
path : bool
True if path given rather than string.
Returns
-------
pisces_dict : dict
Data output by PISCES in dictionary form. |
def download_decode(URL, encoding='utf-8', verbose=True):
if verbose:
print("Downloading data from " + URL)
req = Request(URL)
try:
with urlopen(req) as u:
decoded_file = u.read().decode(encoding)
except URLError as e:
if hasattr(e, 'reason'):
print('Server could not be reached.')
print('Reason: ', e.reason)
elif hasattr(e, 'code'):
print('The server couldn\'t fulfill the request.')
print('Error code: ', e.code)
return None
return decoded_file | Downloads data from URL and returns decoded contents. |
def olderado_best_model(pdb_id):
pdb_code = pdb_id[:4].lower()
olderado_url = 'http://www.ebi.ac.uk/pdbe/nmr/olderado/searchEntry?pdbCode=' + pdb_code
olderado_page = download_decode(olderado_url, verbose=False)
if olderado_page:
parsed_page = BeautifulSoup(olderado_page, 'html.parser')
else:
return None
try:
best_model = parsed_page.find_all('td')[1]
except IndexError:
print("No model info could be found for {0} - ensure that it's an NMR structure.".format(pdb_id))
return None
try:
model_no = int(best_model.string)
except ValueError as v:
print("Did not find a number for best model.")
raise v
return model_no | Checks the Olderado web server and returns the most representative conformation for PDB NMR structures.
Notes
-----
Uses OLDERADO from the EBI.
See http://www.ebi.ac.uk/pdbe/nmr/olderado/ and citations therein.
Parameters
----------
pdb_id : str
The 4-character PDB code for the NMR structure of interest.
Returns
-------
model_no : int
The conformation number of the most-representative conformation.
Raises
------
ValueError
If the model number it finds is not an integer. This might indicate that the website format has changed. |
def buff_eval(params):
specification, sequence, parsed_ind = params
model = specification(*parsed_ind)
model.build()
model.pack_new_sequences(sequence)
return model.buff_interaction_energy.total_energy | Builds and evaluates BUFF energy of model in parallelization
Parameters
----------
params: list
Tuple containing the specification to be built, the sequence,
and the parameters for model building.
Returns
-------
model.bude_score: float
BUFF score for model to be assigned to particle fitness value. |
def buff_internal_eval(params):
specification, sequence, parsed_ind = params
model = specification(*parsed_ind)
model.build()
model.pack_new_sequences(sequence)
return model.buff_internal_energy.total_energy | Builds and evaluates BUFF internal energy of a model in parallelization
Parameters
----------
params: list
Tuple containing the specification to be built, the sequence
and the parameters for model building.
Returns
-------
model.bude_score: float
BUFF internal energy score to be assigned to particle fitness
value. |
def rmsd_eval(rmsd_params):
specification, sequence, parsed_ind, reference_pdb = rmsd_params
model = specification(*parsed_ind)
model.pack_new_sequences(sequence)
ca, bb, aa = run_profit(model.pdb, reference_pdb, path1=False, path2=False)
return bb | Builds a model and runs profit against a reference model.
Parameters
----------
rmsd_params
Returns
-------
rmsd: float
rmsd against reference model as calculated by profit. |
def comparator_eval(comparator_params):
top1, top2, params1, params2, seq1, seq2, movements = comparator_params
xrot, yrot, zrot, xtrans, ytrans, ztrans = movements
obj1 = top1(*params1)
obj2 = top2(*params2)
obj2.rotate(xrot, [1, 0, 0])
obj2.rotate(yrot, [0, 1, 0])
obj2.rotate(zrot, [0, 0, 1])
obj2.translate([xtrans, ytrans, ztrans])
model = obj1 + obj2
model.relabel_all()
model.pack_new_sequences(seq1 + seq2)
return model.buff_interaction_energy.total_energy | Gets BUFF score for interaction between two AMPAL objects |
def parse_individual(self, individual):
scaled_ind = []
for i in range(len(self._params['value_means'])):
scaled_ind.append(self._params['value_means'][i] + (
individual[i] * self._params['value_ranges'][i]))
fullpars = list(self._params['arrangement'])
for k in range(len(self._params['variable_parameters'])):
for j in range(len(fullpars)):
if fullpars[j] == self._params['variable_parameters'][k]:
fullpars[j] = scaled_ind[k]
return fullpars | Converts a deap individual into a full list of parameters.
Parameters
----------
individual: deap individual from optimization
Details vary according to type of optimization, but
parameters within deap individual are always between -1
and 1. This function converts them into the values used to
actually build the model
Returns
-------
fullpars: list
Full parameter list for model building. |
def parameters(self, sequence, value_means, value_ranges, arrangement):
self._params['sequence'] = sequence
self._params['value_means'] = value_means
self._params['value_ranges'] = value_ranges
self._params['arrangement'] = arrangement
if any(x <= 0 for x in self._params['value_ranges']):
raise ValueError("range values must be greater than zero")
self._params['variable_parameters'] = []
for i in range(len(self._params['value_means'])):
self._params['variable_parameters'].append(
"".join(['var', str(i)]))
if len(set(arrangement).intersection(
self._params['variable_parameters'])) != len(
self._params['value_means']):
raise ValueError("argument mismatch!")
if len(self._params['value_ranges']) != len(
self._params['value_means']):
raise ValueError("argument mismatch!") | Relates the individual to be evolved to the full parameter string.
Parameters
----------
sequence: str
Full amino acid sequence for specification object to be
optimized. Must be equal to the number of residues in the
model.
value_means: list
List containing mean values for parameters to be optimized.
value_ranges: list
List containing ranges for parameters to be optimized.
Values must be positive.
arrangement: list
Full list of fixed and variable parameters for model
building. Fixed values are the appropriate value. Values
to be varied should be listed as 'var0', 'var1' etc,
and must be in ascending numerical order.
Variables can be repeated if required. |
def log_results(self):
best_ind = self.halloffame[0]
model_params = self.parse_individual(
best_ind) # need to change name of 'params'
with open(
'{0}{1}_log.txt'.format(
self._params['output_path'],
self._params['run_id']), 'a+') as log_file:
log_file.write('\nEvaluated {0} models in total\n'.format(
self._params['model_count']))
log_file.write('Run ID is {0}\n'.format(self._params['run_id']))
log_file.write('Best fitness is {0}\n'.format(
self.halloffame[0].fitness))
log_file.write(
'Parameters of best model are {0}\n'.format(model_params))
log_file.write(
'Best individual is {0}\n'.format(self.halloffame[0]))
for i, entry in enumerate(self.halloffame[0]):
if entry > 0.95:
log_file.write(
"Warning! Parameter {0} is at or near maximum allowed "
"value\n".format(i + 1))
elif entry < -0.95:
log_file.write(
"Warning! Parameter {0} is at or near minimum allowed "
"value\n".format(i + 1))
log_file.write('Minimization history: \n{0}'.format(self.logbook))
with open('{0}{1}_bestmodel.pdb'.format(
self._params['output_path'],
self._params['run_id']), 'w') as output_file:
model = self._params['specification'](*model_params)
model.build()
model.pack_new_sequences(self._params['sequence'])
output_file.write(model.pdb) | Saves files for the minimization.
Notes
-----
Currently saves a logfile with best individual and a pdb of
the best model. |
def best_model(self):
if hasattr(self, 'halloffame'):
model = self._params['specification'](
*self.parse_individual(self.halloffame[0]))
model.pack_new_sequences(self._params['sequence'])
return model
else:
raise NameError('No best model found, have you ran the optimiser?') | Rebuilds the top scoring model from an optimisation.
Returns
-------
model: AMPAL
Returns an AMPAL model of the top scoring parameters.
Raises
------
NameError:
Raises a name error if the optimiser has not been run. |
def make_energy_funnel_data(self, cores=1):
if not self.parameter_log:
raise AttributeError(
'No parameter log data to make funnel, have you ran the '
'optimiser?')
model_cls = self._params['specification']
gen_tagged = []
for gen, models in enumerate(self.parameter_log):
for model in models:
gen_tagged.append((model[0], model[1], gen))
sorted_pps = sorted(gen_tagged, key=lambda x: x[1])
top_result = sorted_pps[0]
top_result_model = model_cls(*top_result[0])
if (cores == 1) or (sys.platform == 'win32'):
energy_rmsd_gen = map(
self.funnel_rebuild,
[(x, top_result_model,
self._params['specification']) for x in sorted_pps[1:]])
else:
with futures.ProcessPoolExecutor(
max_workers=self._params['processors']) as executor:
energy_rmsd_gen = executor.map(
self.funnel_rebuild,
[(x, top_result_model, self._params['specification'])
for x in sorted_pps[1:]])
return list(energy_rmsd_gen) | Compares models created during the minimisation to the best model.
Returns
-------
energy_rmsd_gen: [(float, float, int)]
A list of triples containing the BUFF score, RMSD to the
top model and generation of a model generated during the
minimisation. |
def funnel_rebuild(psg_trm_spec):
param_score_gen, top_result_model, specification = psg_trm_spec
params, score, gen = param_score_gen
model = specification(*params)
rmsd = top_result_model.rmsd(model)
return rmsd, score, gen | Rebuilds a model and compares it to a reference model.
Parameters
----------
psg_trm: (([float], float, int), AMPAL, specification)
A tuple containing the parameters, score and generation for a
model as well as a model of the best scoring parameters.
Returns
-------
energy_rmsd_gen: (float, float, int)
A triple containing the BUFF score, RMSD to the top model
and generation of a model generated during the minimisation. |
def initialize_pop(self):
self.toolbox.register("individual", self.generate)
self.toolbox.register("population", tools.initRepeat,
list, self.toolbox.individual)
self.population = self.toolbox.population(n=self._params['popsize'])
if self._params['neighbours']:
for i in range(len(self.population)):
self.population[i].ident = i
self.population[i].neighbours = list(
set(
[(i - x) % len(self.population)
for x in range(1, self._params['neighbours'] + 1)] +
[(i + x) % len(self.population)
for x in range(1, self._params['neighbours'] + 1)]
))
self.assign_fitnesses(self.population) | Assigns indices to individuals in population. |
def update_pop(self):
candidates = []
for ind in self.population:
candidates.append(self.crossover(ind))
self._params['model_count'] += len(candidates)
self.assign_fitnesses(candidates)
for i in range(len(self.population)):
if candidates[i].fitness > self.population[i].fitness:
self.population[i] = candidates[i] | Updates the population according to crossover and fitness criteria. |
def initialize_pop(self):
self.population = self.toolbox.swarm(n=self._params['popsize'])
if self._params['neighbours']:
for i in range(len(self.population)):
self.population[i].ident = i
self.population[i].neighbours = list(
set(
[(i - x) % len(self.population)
for x in range(1, self._params['neighbours'] + 1)] +
[i] +
[(i + x) % len(self.population)
for x in range(1, self._params['neighbours'] + 1)]
))
else:
for i in range(len(self.population)):
self.population[i].ident = i
self.population[i].neighbours = [
x for x in range(len(self.population))]
self.assign_fitnesses(self.population)
for part in self.population:
part.best = creator.Particle(part)
part.best.fitness.values = part.fitness.values | Generates initial population with random positions and speeds. |
def generate(self):
part = creator.Particle(
[random.uniform(-1, 1)
for _ in range(len(self._params['value_means']))])
part.speed = [
random.uniform(-self._params['max_speed'],
self._params['max_speed'])
for _ in range(len(self._params['value_means']))]
part.smin = -self._params['max_speed']
part.smax = self._params['max_speed']
part.ident = None
part.neighbours = None
return part | Generates a particle using the creator function.
Notes
-----
Position and speed are uniformly randomly seeded within
allowed bounds. The particle also has speed limit settings
taken from global values.
Returns
-------
particle object |
def update_pop(self):
valid_particles = []
invalid_particles = []
for part in self.population:
if any(x > 1 or x < -1 for x in part):
invalid_particles.append(part)
else:
valid_particles.append(part)
self._params['model_count'] += len(valid_particles)
for part in valid_particles:
self.update_particle(part)
self.assign_fitnesses(valid_particles)
for part in valid_particles:
if part.fitness > part.best.fitness:
part.best = creator.Particle(part)
part.best.fitness = part.fitness
for part in invalid_particles:
self.update_particle(part)
self.population[:] = valid_particles + invalid_particles
self.population.sort(key=lambda x: x.ident) | Assigns fitnesses to particles that are within bounds. |
def initialize_pop(self):
self.toolbox.register("individual", self.generate)
self.toolbox.register("population", tools.initRepeat,
list, self.toolbox.individual)
self.population = self.toolbox.population(n=self._params['popsize'])
self.assign_fitnesses(self.population)
self._params['model_count'] += len(self.population) | Assigns initial fitnesses. |
def initialize_pop(self):
self.initialize_cma_es(
sigma=self._params['sigma'], weights=self._params['weights'],
lambda_=self._params['popsize'],
centroid=[0] * len(self._params['value_means']))
self.toolbox.register("individual", self.make_individual)
self.toolbox.register("generate", self.generate,
self.toolbox.individual)
self.toolbox.register("population", tools.initRepeat,
list, self.initial_individual)
self.toolbox.register("update", self.update)
self.population = self.toolbox.population(n=self._params['popsize'])
self.assign_fitnesses(self.population)
self._params['model_count'] += len(self.population) | Generates the initial population and assigns fitnesses. |
def initial_individual(self):
ind = creator.Individual(
[random.uniform(-1, 1)
for _ in range(len(self._params['value_means']))])
return ind | Generates an individual with random parameters within bounds. |
def computeParams(self, params):
self.mu = params.get("mu", int(self.lambda_ / 2))
rweights = params.get("weights", "superlinear")
if rweights == "superlinear":
self.weights = numpy.log(self.mu + 0.5) - \
numpy.log(numpy.arange(1, self.mu + 1))
elif rweights == "linear":
self.weights = self.mu + 0.5 - numpy.arange(1, self.mu + 1)
elif rweights == "equal":
self.weights = numpy.ones(self.mu)
else:
raise RuntimeError("Unknown weights : %s" % rweights)
self.weights /= sum(self.weights)
self.mueff = 1. / sum(self.weights ** 2)
self.cc = params.get("ccum", 4. / (self.dim + 4.))
self.cs = params.get("cs", (self.mueff + 2.) /
(self.dim + self.mueff + 3.))
self.ccov1 = params.get(
"ccov1", 2. / ((self.dim + 1.3) ** 2 + self.mueff))
self.ccovmu = params.get("ccovmu", 2. * (
self.mueff - 2. + 1. / self.mueff) / (
(self.dim + 2.) ** 2 + self.mueff))
self.ccovmu = min(1 - self.ccov1, self.ccovmu)
self.damps = 1. + 2. * \
max(0, numpy.sqrt((self.mueff - 1.) / (self.dim + 1.)) - 1.) + \
self.cs
self.damps = params.get("damps", self.damps)
return | Computes the parameters depending on :math:`\lambda`.
Notes
-----
It needs to be called again if :math:`\lambda` changes during
evolution.
Parameters
----------
params:
A dictionary of the manually set parameters. |
def randomise_proposed_value(self):
if self.parameter_type is MMCParameterType.UNIFORM_DIST:
(a, b) = self.static_dist_or_list
self.proposed_value = random.uniform(a, b)
elif self.parameter_type is MMCParameterType.NORMAL_DIST:
(mu, sigma) = self.static_dist_or_list
self.proposed_value = random.normalvariate(mu, sigma)
elif self.parameter_type is MMCParameterType.DISCRETE_RANGE:
(min_v, max_v, step) = self.static_dist_or_list
self.proposed_value = random.choice(
numpy.arange(min_v, max_v, step))
elif self.parameter_type is MMCParameterType.LIST:
self.proposed_value = random.choice(self.static_dist_or_list)
elif self.parameter_type is MMCParameterType.STATIC_VALUE:
raise TypeError('This value is static, it cannot be mutated.')
else:
raise TypeError(
'Cannot randomise this parameter, unknown parameter type.')
return | Creates a randomly the proposed value.
Raises
------
TypeError
Raised if this method is called on a static value.
TypeError
Raised if the parameter type is unknown. |
def accept_proposed_value(self):
if self.proposed_value is not None:
self.current_value = self.proposed_value
self.proposed_value = None
return | Changes the current value to the proposed value. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.