code
stringlengths 52
7.75k
| docs
stringlengths 1
5.85k
|
---|---|
def calc_average_parameters(parameter_layers):
mean_layers = [numpy.mean(x) if x[0] else 0 for x in parameter_layers]
overall_mean = numpy.mean([x for x in mean_layers if x])
return mean_layers, overall_mean | Takes a group of equal length lists and averages them across each index.
Returns
-------
mean_layers: [float]
List of values averaged by index
overall_mean: float
Mean of the averaged values. |
def heptad_register(self):
base_reg = 'abcdefg'
exp_base = base_reg * (self.cc_len//7+2)
ave_ca_layers = self.calc_average_parameters(self.ca_layers)[0][:-1]
reg_fit = fit_heptad_register(ave_ca_layers)
hep_pos = reg_fit[0][0]
return exp_base[hep_pos:hep_pos+self.cc_len], reg_fit[0][1:] | Returns the calculated register of the coiled coil and the fit quality. |
def buff_interaction_eval(cls, specification, sequences, parameters,
**kwargs):
instance = cls(specification,
sequences,
parameters,
build_fn=default_build,
eval_fn=buff_interaction_eval,
**kwargs)
return instance | Creates optimizer with default build and BUFF interaction eval.
Notes
-----
Any keyword arguments will be propagated down to BaseOptimizer.
Parameters
----------
specification : ampal.assembly.specification
Any assembly level specification.
sequences : [str]
A list of sequences, one for each polymer.
parameters : [base_ev_opt.Parameter]
A list of `Parameter` objects in the same order as the
function signature expects. |
def rmsd_eval(cls, specification, sequences, parameters, reference_ampal,
**kwargs):
eval_fn = make_rmsd_eval(reference_ampal)
instance = cls(specification,
sequences,
parameters,
build_fn=default_build,
eval_fn=eval_fn,
mp_disabled=True,
**kwargs)
return instance | Creates optimizer with default build and RMSD eval.
Notes
-----
Any keyword arguments will be propagated down to BaseOptimizer.
RMSD eval is restricted to a single core only, due to restrictions
on closure pickling.
Parameters
----------
specification : ampal.assembly.specification
Any assembly level specification.
sequences : [str]
A list of sequences, one for each polymer.
parameters : [base_ev_opt.Parameter]
A list of `Parameter` objects in the same order as the
function signature expects.
reference_ampal : ampal.Assembly
The target structure of the optimisation. |
def parse_individual(self, individual):
scaled_ind = []
for i in range(len(self.value_means)):
scaled_ind.append(self.value_means[i] + (
individual[i] * self.value_ranges[i]))
fullpars = list(self.arrangement)
for k in range(len(self.variable_parameters)):
for j in range(len(fullpars)):
if fullpars[j] == self.variable_parameters[k]:
fullpars[j] = scaled_ind[k]
return fullpars | Converts a deap individual into a full list of parameters.
Parameters
----------
individual: deap individual from optimization
Details vary according to type of optimization, but
parameters within deap individual are always between -1
and 1. This function converts them into the values used to
actually build the model
Returns
-------
fullpars: list
Full parameter list for model building. |
def _make_parameters(self):
self.value_means = []
self.value_ranges = []
self.arrangement = []
self.variable_parameters = []
current_var = 0
for parameter in self.parameters:
if parameter.type == ParameterType.DYNAMIC:
self.value_means.append(parameter.value[0])
if parameter.value[1] < 0:
raise AttributeError(
'"{}" parameter has an invalid range. Range values '
'must be greater than zero'.format(parameter.label))
self.value_ranges.append(parameter.value[1])
var_label = 'var{}'.format(current_var)
self.arrangement.append(var_label)
self.variable_parameters.append(var_label)
current_var += 1
elif parameter.type == ParameterType.STATIC:
self.arrangement.append(parameter.value)
else:
raise AttributeError(
'"{}"Unknown parameter type ({}). Parameters can be STATIC or'
' DYNAMIC.'.format(parameter.type))
return | Converts a list of Parameters into DEAP format. |
def assign_fitnesses(self, targets):
self._evals = len(targets)
px_parameters = zip([self.specification] * len(targets),
[self.sequences] * len(targets),
[self.parse_individual(x) for x in targets])
if (self._cores == 1) or (self.mp_disabled):
models = map(self.build_fn, px_parameters)
fitnesses = map(self.eval_fn, models)
else:
with futures.ProcessPoolExecutor(
max_workers=self._cores) as executor:
models = executor.map(self.build_fn, px_parameters)
fitnesses = executor.map(self.eval_fn, models)
tars_fits = list(zip(targets, fitnesses))
if self._store_params:
self.parameter_log.append(
[(self.parse_individual(x[0]), x[1]) for x in tars_fits])
for ind, fit in tars_fits:
ind.fitness.values = (fit,)
return | Assigns fitnesses to parameters.
Notes
-----
Uses `self.eval_fn` to evaluate each member of target.
Parameters
---------
targets
Parameter values for each member of the population. |
def log_results(self, output_path=None, run_id=None):
best_ind = self.halloffame[0]
model_params = self.parse_individual(
best_ind) # need to change name of 'params'
if output_path is None:
output_path = os.getcwd()
if run_id is None:
run_id = '{:%Y%m%d-%H%M%S}'.format(
datetime.datetime.now())
with open('{0}/{1}_opt_log.txt'.format(
output_path, run_id), 'w') as log_file:
log_file.write('\nEvaluated {0} models in total\n'.format(
self._model_count))
log_file.write('Run ID is {0}\n'.format(run_id))
log_file.write('Best fitness is {0}\n'.format(
self.halloffame[0].fitness))
log_file.write(
'Parameters of best model are {0}\n'.format(model_params))
log_file.write(
'Best individual is {0}\n'.format(self.halloffame[0]))
for i, entry in enumerate(self.halloffame[0]):
if entry > 0.95:
log_file.write(
"Warning! Parameter {0} is at or near maximum allowed "
"value\n".format(i + 1))
elif entry < -0.95:
log_file.write(
"Warning! Parameter {0} is at or near minimum allowed "
"value\n".format(i + 1))
log_file.write('Minimization history: \n{0}'.format(self.logbook))
with open('{0}/{1}_opt_best_model.pdb'.format(
output_path, run_id), 'w') as output_file:
output_file.write(self.best_model.pdb)
return | Saves files for the minimization.
Notes
-----
Currently saves a logfile with best individual and a pdb of
the best model. |
def best_model(self):
if not hasattr(self, 'halloffame'):
raise AttributeError(
'No best model found, have you ran the optimiser?')
model = self.build_fn(
(self.specification,
self.sequences,
self.parse_individual(self.halloffame[0])
))
return model | Rebuilds the top scoring model from an optimisation.
Returns
-------
model: AMPAL
Returns an AMPAL model of the top scoring parameters.
Raises
------
AttributeError
Raises a name error if the optimiser has not been run. |
def dynamic(cls, label, val_mean, val_range):
return cls(label, ParameterType.DYNAMIC, (val_mean, val_range)) | Creates a static parameter.
Parameters
----------
label : str
A human-readable label for the parameter.
val_mean : float
The mean value of the parameter.
val_range : float
The minimum and maximum variance from the mean allowed for
parameter. |
def parse_scwrl_out(scwrl_std_out, scwrl_pdb):
score = re.findall(
r'Total minimal energy of the graph = ([-0-9.]+)', scwrl_std_out)[0]
# Add temperature factors to SCWRL out
split_scwrl = scwrl_pdb.splitlines()
fixed_scwrl = []
for line in split_scwrl:
if len(line) < 80:
line += ' ' * (80 - len(line))
if re.search(r'H?E?T?ATO?M\s+\d+.+', line):
front = line[:61]
temp_factor = ' 0.00'
back = line[66:]
fixed_scwrl.append(''.join([front, temp_factor, back]))
else:
fixed_scwrl.append(line)
fixed_scwrl_str = '\n'.join(fixed_scwrl) + '\n'
return fixed_scwrl_str, float(score) | Parses SCWRL output and returns PDB and SCWRL score.
Parameters
----------
scwrl_std_out : str
Std out from SCWRL.
scwrl_pdb : str
String of packed SCWRL PDB.
Returns
-------
fixed_scwrl_str : str
String of packed SCWRL PDB, with correct PDB format.
score : float
SCWRL Score |
def pack_sidechains(pdb, sequence, path=False):
scwrl_std_out, scwrl_pdb = run_scwrl(pdb, sequence, path=path)
return parse_scwrl_out(scwrl_std_out, scwrl_pdb) | Packs sidechains onto a given PDB file or string.
Parameters
----------
pdb : str
PDB string or a path to a PDB file.
sequence : str
Amino acid sequence for SCWRL to pack in single-letter code.
path : bool, optional
True if pdb is a path.
Returns
-------
scwrl_pdb : str
String of packed SCWRL PDB.
scwrl_score : float
Scwrl packing score. |
def parse_pdb_file(self):
self.pdb_parse_tree = {'info': {},
'data': {
self.state: {}}
}
try:
for line in self.pdb_lines:
self.current_line = line
record_name = line[:6].strip()
if record_name in self.proc_functions:
self.proc_functions[record_name]()
else:
if record_name not in self.pdb_parse_tree['info']:
self.pdb_parse_tree['info'][record_name] = []
self.pdb_parse_tree['info'][record_name].append(line)
except EOFError:
# Raised by END record
pass
if self.new_labels:
ampal_data_session.commit()
return | Runs the PDB parser. |
def proc_atom(self):
atom_data = self.proc_line_coordinate(self.current_line)
(at_type, at_ser, at_name, alt_loc, res_name, chain_id, res_seq,
i_code, x, y, z, occupancy, temp_factor, element, charge) = atom_data
# currently active state
a_state = self.pdb_parse_tree['data'][self.state]
res_id = (res_seq, i_code)
if chain_id not in a_state:
a_state[chain_id] = (set(), OrderedDict())
if res_id not in a_state[chain_id][1]:
a_state[chain_id][1][res_id] = (set(), OrderedDict())
if at_type == 'ATOM':
if res_name in standard_amino_acids.values():
poly = 'P'
else:
poly = 'N'
else:
poly = 'H'
a_state[chain_id][0].add((chain_id, at_type, poly))
a_state[chain_id][1][res_id][0].add(
(at_type, res_seq, res_name, i_code))
if at_ser not in a_state[chain_id][1][res_id][1]:
a_state[chain_id][1][res_id][1][at_ser] = [atom_data]
else:
a_state[chain_id][1][res_id][1][at_ser].append(atom_data)
return | Processes an "ATOM" or "HETATM" record. |
def proc_line_coordinate(self, line):
pdb_atom_col_dict = global_settings['ampal']['pdb_atom_col_dict']
at_type = line[0:6].strip() # 0
at_ser = int(line[6:11].strip()) # 1
at_name = line[12:16].strip() # 2
alt_loc = line[16].strip() # 3
res_name = line[17:20].strip() # 4
chain_id = line[21].strip() # 5
res_seq = int(line[22:26].strip()) # 6
i_code = line[26].strip() # 7
x = float(line[30:38].strip()) # 8
y = float(line[38:46].strip()) # 9
z = float(line[46:54].strip()) # 10
occupancy = float(line[54:60].strip()) # 11
temp_factor = float(line[60:66].strip()) # 12
element = line[76:78].strip() # 13
charge = line[78:80].strip() # 14
if at_name not in pdb_atom_col_dict:
pdb_atom_col_dict[at_name] = line[12:16]
pdb_col_e = PDBColFormat(atom_name=at_name, atom_col=line[12:16])
ampal_data_session.add(pdb_col_e)
self.new_labels = True
return (at_type, at_ser, at_name, alt_loc, res_name, chain_id, res_seq,
i_code, x, y, z, occupancy, temp_factor, element, charge) | Extracts data from columns in ATOM/HETATM record. |
def make_ampal(self):
data = self.pdb_parse_tree['data']
if len(data) > 1:
ac = AmpalContainer(id=self.id)
for state, chains in sorted(data.items()):
if chains:
ac.append(self.proc_state(chains, self.id +
'_state_{}'.format(state + 1)))
return ac
elif len(data) == 1:
return self.proc_state(data[0], self.id)
else:
raise ValueError('Empty parse tree, check input PDB format.') | Generates an AMPAL object from the parse tree.
Notes
-----
Will create an `Assembly` if there is a single state in the
parese tree or an `AmpalContainer` if there is more than one. |
def proc_state(self, state_data, state_id):
assembly = Assembly(assembly_id=state_id)
for k, chain in sorted(state_data.items()):
assembly._molecules.append(self.proc_chain(chain, assembly))
return assembly | Processes a state into an `Assembly`.
Parameters
----------
state_data : dict
Contains information about the state, including all
the per line structural data.
state_id : str
ID given to `Assembly` that represents the state. |
def proc_monomer(self, monomer_info, parent, mon_cls=False):
monomer_labels, monomer_data = monomer_info
if len(monomer_labels) > 1:
raise ValueError(
'Malformed PDB, single monomer id with '
'multiple labels. {}'.format(monomer_labels))
else:
monomer_label = list(monomer_labels)[0]
if mon_cls:
monomer_class = mon_cls
het = True
elif monomer_label[0] == 'ATOM':
if monomer_label[2] in standard_amino_acids.values():
monomer_class = Residue
else:
monomer_class = Nucleotide
het = False
else:
raise ValueError('Unknown Monomer type.')
monomer = monomer_class(
atoms=None, mol_code=monomer_label[2], monomer_id=monomer_label[1],
insertion_code=monomer_label[3], is_hetero=het, ampal_parent=parent
)
monomer.states = self.gen_states(monomer_data.values(), monomer)
monomer._active_state = sorted(monomer.states.keys())[0]
return monomer | Processes a records into a `Monomer`.
Parameters
----------
monomer_info : (set, OrderedDict)
Labels and data for a monomer.
parent : ampal.Polymer
`Polymer` used to assign `ampal_parent` on created
`Monomer`.
mon_cls : `Monomer class or subclass`, optional
A `Monomer` class can be defined explicitly. |
def generate_antisense_sequence(sequence):
dna_antisense = {
'A': 'T',
'T': 'A',
'C': 'G',
'G': 'C'
}
antisense = [dna_antisense[x] for x in sequence[::-1]]
return ''.join(antisense) | Creates the antisense sequence of a DNA strand. |
def from_sequence(cls, sequence, phos_3_prime=False):
strand1 = NucleicAcidStrand(sequence, phos_3_prime=phos_3_prime)
duplex = cls(strand1)
return duplex | Creates a DNA duplex from a nucleotide sequence.
Parameters
----------
sequence: str
Nucleotide sequence.
phos_3_prime: bool, optional
If false the 5' and the 3' phosphor will be omitted. |
def from_start_and_end(cls, start, end, sequence, phos_3_prime=False):
strand1 = NucleicAcidStrand.from_start_and_end(
start, end, sequence, phos_3_prime=phos_3_prime)
duplex = cls(strand1)
return duplex | Creates a DNA duplex from a start and end point.
Parameters
----------
start: [float, float, float]
Start of the build axis.
end: [float, float, float]
End of build axis.
sequence: str
Nucleotide sequence.
phos_3_prime: bool, optional
If false the 5' and the 3' phosphor will be omitted. |
def generate_complementary_strand(strand1):
rise_adjust = (
strand1.rise_per_nucleotide * strand1.axis.unit_tangent) * 2
strand2 = NucleicAcidStrand.from_start_and_end(
strand1.helix_end - rise_adjust, strand1.helix_start - rise_adjust,
generate_antisense_sequence(strand1.base_sequence),
phos_3_prime=strand1.phos_3_prime)
ad_ang = dihedral(strand1[0]["C1'"]._vector, strand1.axis.start,
strand2.axis.start + rise_adjust,
strand2[-1]["C1'"]._vector)
strand2.rotate(
225.0 + ad_ang, strand2.axis.unit_tangent,
point=strand2.helix_start) # 225 is the base adjust
return strand2 | Takes a SingleStrandHelix and creates the antisense strand. |
def total_accessibility(in_rsa, path=True):
if path:
with open(in_rsa, 'r') as inf:
rsa = inf.read()
else:
rsa = in_rsa[:]
all_atoms, side_chains, main_chain, non_polar, polar = [
float(x) for x in rsa.splitlines()[-1].split()[1:]]
return all_atoms, side_chains, main_chain, non_polar, polar | Parses rsa file for the total surface accessibility data.
Parameters
----------
in_rsa : str
Path to naccess rsa file.
path : bool
Indicates if in_rsa is a path or a string.
Returns
-------
dssp_residues : 5-tuple(float)
Total accessibility values for:
[0] all atoms
[1] all side-chain atoms
[2] all main-chain atoms
[3] all non-polar atoms
[4] all polar atoms |
def extract_residue_accessibility(in_rsa, path=True, get_total=False):
if path:
with open(in_rsa, 'r') as inf:
rsa = inf.read()
else:
rsa = in_rsa[:]
residue_list = [x for x in rsa.splitlines()]
rel_solv_acc_all_atoms = [
float(x[22:28])
for x in residue_list
if x[0:3] == "RES" or x[0:3] == "HEM"]
if get_total:
(all_atoms, side_chains, main_chain,
non_polar, polar) = total_accessibility(
rsa, path=False)
return rel_solv_acc_all_atoms, all_atoms
else:
return rel_solv_acc_all_atoms, None | Parses rsa file for solvent accessibility for each residue.
Parameters
----------
in_rsa : str
Path to naccess rsa file
path : bool
Indicates if in_rsa is a path or a string
get_total : bool
Indicates if the total accessibility from the file needs to
be extracted. Convenience method for running the
total_accessibility function but only running NACCESS once
Returns
-------
rel_solv_ac_acc_atoms : list
Relative solvent accessibility of all atoms in each amino acid
get_total : float
Relative solvent accessibility of all atoms in the NACCESS rsa file |
def get_aa_code(aa_letter):
aa_code = None
if aa_letter != 'X':
for key, val in standard_amino_acids.items():
if key == aa_letter:
aa_code = val
return aa_code | Get three-letter aa code if possible. If not, return None.
If three-letter code is None, will have to find this later from the filesystem.
Parameters
----------
aa_letter : str
One-letter amino acid code.
Returns
-------
aa_code : str, or None
Three-letter aa code. |
def get_aa_letter(aa_code):
aa_letter = 'X'
for key, val in standard_amino_acids.items():
if val == aa_code:
aa_letter = key
return aa_letter | Get one-letter version of aa_code if possible. If not, return 'X'.
Parameters
----------
aa_code : str
Three-letter amino acid code.
Returns
-------
aa_letter : str
One-letter aa code.
Default value is 'X'. |
def get_aa_info(code):
letter = 'X'
# Try to get content from PDBE.
url_string = 'http://www.ebi.ac.uk/pdbe-srv/pdbechem/chemicalCompound/show/{0}'.format(code)
r = requests.get(url_string)
# Raise error if content not obtained.
if not r.ok:
raise IOError("Could not get to url {0}".format(url_string))
# Parse r.text in an ugly way to get the required information.
description = r.text.split('<h3>Molecule name')[1].split('</tr>')[0]
description = description.strip().split('\n')[3].strip()[:255]
modified = r.text.split("<h3>Standard parent ")[1].split('</tr>')[0]
modified = modified.replace(" ", "").replace('\n', '').split('<')[-3].split('>')[-1]
if modified == "NotAssigned":
modified = None
# Add the required information to a dictionary which can then be passed to add_amino_acid_to_json.
aa_dict = {'code': code, 'description': description, 'modified': modified, 'letter': letter}
return aa_dict | Get dictionary of information relating to a new amino acid code not currently in the database.
Notes
-----
Use this function to get a dictionary that is then to be sent to the function add_amino_acid_to_json().
use to fill in rows of amino_acid table for new amino acid code.
Parameters
----------
code : str
Three-letter amino acid code.
Raises
------
IOError
If unable to locate the page associated with the amino acid name on the PDBE site.
Returns
-------
aa_dict : dict
Keys are AminoAcidDB field names.
Values are the str values for the new amino acid, scraped from the PDBE if possible. None if not found. |
def add_amino_acid_to_json(code, description, letter='X', modified=None, force_add=False):
# If code is already in the dictionary, raise an error
if (not force_add) and code in amino_acids_dict.keys():
raise IOError("{0} is already in the amino_acids dictionary, with values: {1}".format(
code, amino_acids_dict[code]))
# Prepare data to be added.
add_code = code
add_code_dict = {'description': description, 'letter': letter, 'modified': modified}
# Check that data does not already exist, and if not, add it to the dictionary.
amino_acids_dict[add_code] = add_code_dict
# Write over json file with updated dictionary.
with open(_amino_acids_json_path, 'w') as foo:
foo.write(json.dumps(amino_acids_dict))
return | Add an amino acid to the amino_acids.json file used to populate the amino_acid table.
Parameters
----------
code : str
New code to be added to amino acid table.
description : str
Description of the amino acid, e.g. 'amidated terminal carboxy group'.
letter : str, optional
One letter code for the amino acid.
Defaults to 'X'
modified : str or None, optional
Code of modified amino acid, e.g. 'ALA', or None.
Defaults to None
force_add : bool, optional
If True, will over-write existing dictionary value for code if already in amino_acids.json.
If False, then an IOError is raised if code is already in amino_acids.json.
Raises
------
IOError
If code is already in amino_acids.json and force_add is False.
Returns
-------
None |
def from_polymers(cls, polymers):
n = len(polymers)
instance = cls(n=n, auto_build=False)
instance.major_radii = [x.major_radius for x in polymers]
instance.major_pitches = [x.major_pitch for x in polymers]
instance.major_handedness = [x.major_handedness for x in polymers]
instance.aas = [x.num_monomers for x in polymers]
instance.minor_helix_types = [x.minor_helix_type for x in polymers]
instance.orientations = [x.orientation for x in polymers]
instance.phi_c_alphas = [x.phi_c_alpha for x in polymers]
instance.minor_repeats = [x.minor_repeat for x in polymers]
instance.build()
return instance | Creates a `CoiledCoil` from a list of `HelicalHelices`.
Parameters
----------
polymers : [HelicalHelix]
List of `HelicalHelices`. |
def from_parameters(cls, n, aa=28, major_radius=None, major_pitch=None,
phi_c_alpha=26.42, minor_helix_type='alpha',
auto_build=True):
instance = cls(n=n, auto_build=False)
instance.aas = [aa] * n
instance.phi_c_alphas = [phi_c_alpha] * n
instance.minor_helix_types = [minor_helix_type] * n
if major_pitch is not None:
instance.major_pitches = [major_pitch] * n
if major_radius is not None:
instance.major_radii = [major_radius] * n
if auto_build:
instance.build()
return instance | Creates a `CoiledCoil` from defined super-helical parameters.
Parameters
----------
n : int
Oligomeric state
aa : int, optional
Number of amino acids per minor helix.
major_radius : float, optional
Radius of super helix.
major_pitch : float, optional
Pitch of super helix.
phi_c_alpha : float, optional
Rotation of minor helices relative to the super-helical
axis.
minor_helix_type : float, optional
Helix type of minor helices. Can be: 'alpha', 'pi', '3-10',
'PPI', 'PP2', 'collagen'.
auto_build : bool, optional
If `True`, the model will be built as part of instantiation. |
def tropocollagen(
cls, aa=28, major_radius=5.0, major_pitch=85.0, auto_build=True):
instance = cls.from_parameters(
n=3, aa=aa, major_radius=major_radius, major_pitch=major_pitch,
phi_c_alpha=0.0, minor_helix_type='collagen', auto_build=False)
instance.major_handedness = ['r'] * 3
# default z-shifts taken from rise_per_residue of collagen helix
rpr_collagen = _helix_parameters['collagen'][1]
instance.z_shifts = [-rpr_collagen * 2, -rpr_collagen, 0.0]
instance.minor_repeats = [None] * 3
if auto_build:
instance.build()
return instance | Creates a model of a collagen triple helix.
Parameters
----------
aa : int, optional
Number of amino acids per minor helix.
major_radius : float, optional
Radius of super helix.
major_pitch : float, optional
Pitch of super helix.
auto_build : bool, optional
If `True`, the model will be built as part of instantiation. |
def build(self):
monomers = [HelicalHelix(major_pitch=self.major_pitches[i],
major_radius=self.major_radii[i],
major_handedness=self.major_handedness[i],
aa=self.aas[i],
minor_helix_type=self.minor_helix_types[i],
orientation=self.orientations[i],
phi_c_alpha=self.phi_c_alphas[i],
minor_repeat=self.minor_repeats[i],
)
for i in range(self.oligomeric_state)]
axis_unit_vector = numpy.array([0, 0, 1])
for i, m in enumerate(monomers):
m.rotate(angle=self.rotational_offsets[i], axis=axis_unit_vector)
m.translate(axis_unit_vector * self.z_shifts[i])
self._molecules = monomers[:]
self.relabel_all()
for m in self._molecules:
m.ampal_parent = self
return | Builds a model of a coiled coil protein using input parameters. |
def find_max_rad_npnp(self):
max_rad = 0
max_npnp = 0
for res, atoms in self.items():
if res != 'KEY':
for atom, ff_params in self[res].items():
if max_rad < ff_params[1]:
max_rad = ff_params[1]
if max_npnp < ff_params[4]:
max_npnp = ff_params[4]
return max_rad, max_npnp | Finds the maximum radius and npnp in the force field.
Returns
-------
(max_rad, max_npnp): (float, float)
Maximum radius and npnp distance in the loaded force field. |
def parameter_struct_dict(self):
if self._parameter_struct_dict is None:
self._parameter_struct_dict = self._make_ff_params_dict()
elif self.auto_update_f_params:
new_hash = hash(
tuple([tuple(item)
for sublist in self.values()
for item in sublist.values()]))
if self._old_hash != new_hash:
self._parameter_struct_dict = self._make_ff_params_dict()
self._old_hash = new_hash
return self._parameter_struct_dict | Dictionary containing PyAtomData structs for the force field. |
def reduce_output_path(path=None, pdb_name=None):
if not path:
if not pdb_name:
raise NameError(
"Cannot save an output for a temporary file without a PDB"
"code specified")
pdb_name = pdb_name.lower()
output_path = Path(global_settings['structural_database']['path'],
pdb_name[1:3].lower(), pdb_name[:4].lower(),
'reduce', pdb_name + '_reduced.mmol')
else:
input_path = Path(path)
if len(input_path.parents) > 1:
output_path = input_path.parents[1] / 'reduce' / \
(input_path.stem + '_reduced' + input_path.suffix)
else:
output_path = input_path.parent / \
(input_path.stem + '_reduced' + input_path.suffix)
return output_path | Defines location of Reduce output files relative to input files. |
def output_reduce(input_file, path=True, pdb_name=None, force=False):
if path:
output_path = reduce_output_path(path=input_file)
else:
output_path = reduce_output_path(pdb_name=pdb_name)
if output_path.exists() and not force:
return output_path
reduce_mmol, reduce_message = run_reduce(input_file, path=path)
if not reduce_mmol:
return None
output_path.parent.mkdir(exist_ok=True)
output_path.write_text(reduce_mmol)
return output_path | Runs Reduce on a pdb or mmol file and creates a new file with the output.
Parameters
----------
input_file : str or pathlib.Path
Path to file to run Reduce on.
path : bool
True if input_file is a path.
pdb_name : str
PDB ID of protein. Required if providing string not path.
force : bool
True if existing reduce outputs should be overwritten.
Returns
-------
output_path : pathlib.Path
Location of output file. |
def output_reduce_list(path_list, force=False):
output_paths = []
for path in path_list:
output_path = output_reduce(path, force=force)
if output_path:
output_paths.append(output_path)
return output_paths | Generates structure file with protons from a list of structure files. |
def assembly_plus_protons(input_file, path=True, pdb_name=None,
save_output=False, force_save=False):
from ampal.pdb_parser import convert_pdb_to_ampal
if path:
input_path = Path(input_file)
if not pdb_name:
pdb_name = input_path.stem[:4]
reduced_path = reduce_output_path(path=input_path)
if reduced_path.exists() and not save_output and not force_save:
reduced_assembly = convert_pdb_to_ampal(
str(reduced_path), pdb_id=pdb_name)
return reduced_assembly
if save_output:
reduced_path = output_reduce(
input_file, path=path, pdb_name=pdb_name, force=force_save)
reduced_assembly = convert_pdb_to_ampal(str(reduced_path), path=True)
else:
reduce_mmol, reduce_message = run_reduce(input_file, path=path)
if not reduce_mmol:
return None
reduced_assembly = convert_pdb_to_ampal(
reduce_mmol, path=False, pdb_id=pdb_name)
return reduced_assembly | Returns an Assembly with protons added by Reduce.
Notes
-----
Looks for a pre-existing Reduce output in the standard location before
running Reduce. If the protein contains oligosaccharides or glycans,
use reduce_correct_carbohydrates.
Parameters
----------
input_file : str or pathlib.Path
Location of file to be converted to Assembly or PDB file as string.
path : bool
Whether we are looking at a file or a pdb string. Defaults to file.
pdb_name : str
PDB ID of protein. Required if providing string not path.
save_output : bool
If True will save the generated assembly.
force_save : bool
If True will overwrite existing reduced assembly.
Returns
-------
reduced_assembly : AMPAL Assembly
Assembly of protein with protons added by Reduce. |
def from_start_and_end(cls, start, end, aa=None, helix_type='alpha'):
start = numpy.array(start)
end = numpy.array(end)
if aa is None:
rise_per_residue = _helix_parameters[helix_type][1]
aa = int((numpy.linalg.norm(end - start) / rise_per_residue) + 1)
instance = cls(aa=aa, helix_type=helix_type)
instance.move_to(start=start, end=end)
return instance | Creates a `Helix` between `start` and `end`.
Parameters
----------
start : 3D Vector (tuple or list or numpy.array)
The coordinate of the start of the helix primitive.
end : 3D Vector (tuple or list or numpy.array)
The coordinate of the end of the helix primitive.
aa : int, optional
Number of amino acids in the `Helix`. If `None, an
appropriate number of residues are added.
helix_type : str, optional
Type of helix, can be: 'alpha', 'pi', '3-10',
'PPI', 'PPII', 'collagen'. |
def build(self):
ang_per_res = (2 * numpy.pi) / self.residues_per_turn
atom_offsets = _atom_offsets[self.helix_type]
if self.handedness == 'l':
handedness = -1
else:
handedness = 1
atom_labels = ['N', 'CA', 'C', 'O']
if all([x in atom_offsets.keys() for x in atom_labels]):
res_label = 'GLY'
else:
res_label = 'UNK'
monomers = []
for i in range(self.num_monomers):
residue = Residue(mol_code=res_label, ampal_parent=self)
atoms_dict = OrderedDict()
for atom_label in atom_labels:
r, zeta, z_shift = atom_offsets[atom_label]
rot_ang = ((i * ang_per_res) + zeta) * handedness
z = (self.rise_per_residue * i) + z_shift
coords = cylindrical_to_cartesian(
radius=r, azimuth=rot_ang, z=z, radians=True)
atom = Atom(
coordinates=coords, element=atom_label[0],
ampal_parent=residue, res_label=atom_label)
atoms_dict[atom_label] = atom
residue.atoms = atoms_dict
monomers.append(residue)
self._monomers = monomers
self.relabel_monomers()
self.relabel_atoms()
return | Build straight helix along z-axis, starting with CA1 on x-axis |
def from_start_and_end(cls, start, end, aa=None, major_pitch=225.8,
major_radius=5.07, major_handedness='l',
minor_helix_type='alpha', orientation=1,
phi_c_alpha=0.0, minor_repeat=None):
start = numpy.array(start)
end = numpy.array(end)
if aa is None:
minor_rise_per_residue = _helix_parameters[minor_helix_type][1]
aa = int((numpy.linalg.norm(end - start) /
minor_rise_per_residue) + 1)
instance = cls(
aa=aa, major_pitch=major_pitch, major_radius=major_radius,
major_handedness=major_handedness,
minor_helix_type=minor_helix_type, orientation=orientation,
phi_c_alpha=phi_c_alpha, minor_repeat=minor_repeat)
instance.move_to(start=start, end=end)
return instance | Creates a `HelicalHelix` between a `start` and `end` point. |
def curve(self):
return HelicalCurve.pitch_and_radius(
self.major_pitch, self.major_radius,
handedness=self.major_handedness) | Curve of the super helix. |
def curve_primitive(self):
curve = self.curve
curve.axis_start = self.helix_start
curve.axis_end = self.helix_end
coords = curve.get_coords(
n_points=(self.num_monomers + 1), spacing=self.minor_rise_per_residue)
if self.orientation == -1:
coords.reverse()
return Primitive.from_coordinates(coords) | `Primitive` of the super-helical curve. |
def major_rise_per_monomer(self):
return numpy.cos(numpy.deg2rad(self.curve.alpha)) * self.minor_rise_per_residue | Rise along super-helical axis per monomer. |
def minor_residues_per_turn(self, minor_repeat=None):
if minor_repeat is None:
minor_rpt = _helix_parameters[self.minor_helix_type][0]
else:
# precession angle in radians
precession = self.curve.t_from_arc_length(
minor_repeat * self.minor_rise_per_residue)
if self.orientation == -1:
precession = -precession
if self.major_handedness != self.minor_handedness:
precession = -precession
minor_rpt = ((minor_repeat * numpy.pi * 2) /
((2 * numpy.pi) + precession))
return minor_rpt | Calculates the number of residues per turn of the minor helix.
Parameters
----------
minor_repeat : float, optional
Hydrophobic repeat of the minor helix.
Returns
-------
minor_rpt : float
Residues per turn of the minor helix. |
def get_orient_angle(self, reference_point=numpy.array([0, 0, 0]),
monomer_index=0, res_label='CA', radians=False):
if (monomer_index < len(self)) and monomer_index != -1:
adjacent_index = monomer_index + 1
elif (monomer_index == len(self)) or monomer_index == -1:
adjacent_index = monomer_index - 1
else:
raise ValueError(
"centred_index ({0}) cannot be greater than the "
"length of the polymer ({1})".format(
monomer_index, len(self)))
angle = dihedral(reference_point,
self.curve_primitive[monomer_index]['CA'],
self.curve_primitive[adjacent_index]['CA'],
self[monomer_index][res_label])
if radians:
angle = numpy.deg2rad(angle)
return angle | Angle between reference_point and self[monomer_index][res_label].
Notes
-----
Angle is calculated using the dihedral angle, with the
second and third points coming from the curve_primitive.
Parameters
----------
reference_point : list, tuple or numpy.array of length 3.
monomer_index : int
Index of the Residue to centre.
res_label : str
Atom name for centred atom, e.g. "CA" or "OE1".
radians : bool
If True, then desired_angle is in radians instead of degrees. |
def rotate_monomers(self, angle, radians=False):
if radians:
angle = numpy.rad2deg(angle)
for i in range(len(self.primitive) - 1):
axis = self.primitive[i + 1]['CA'] - self.primitive[i]['CA']
point = self.primitive[i]['CA']._vector
self[i].rotate(angle=angle, axis=axis, point=point)
return | Rotates each Residue in the Polypeptide.
Notes
-----
Each monomer is rotated about the axis formed between its
corresponding primitive `PseudoAtom` and that of the
subsequent `Monomer`.
Parameters
----------
angle : float
Angle by which to rotate each monomer.
radians : bool
Indicates whether angle is in radians or degrees. |
def side_chain_centres(assembly, masses=False):
if masses:
elts = set([x.element for x in assembly.get_atoms()])
masses_dict = {e: element_data[e]['atomic mass'] for e in elts}
pseudo_monomers = []
for chain in assembly:
if isinstance(chain, Polypeptide):
centres = OrderedDict()
for r in chain.get_monomers(ligands=False):
side_chain = r.side_chain
if masses:
masses_list = [masses_dict[x.element] for x in side_chain]
else:
masses_list = None
if side_chain:
centre = centre_of_mass(points=[x._vector for x in side_chain], masses=masses_list)
# for Glycine residues.
else:
centre = r['CA']._vector
centres[r.unique_id] = PseudoAtom(coordinates=centre, name=r.unique_id, ampal_parent=r)
pseudo_monomers.append(PseudoMonomer(pseudo_atoms=centres, monomer_id=' ', ampal_parent=chain))
return PseudoGroup(monomers=pseudo_monomers, ampal_parent=assembly) | PseudoGroup containing side_chain centres of each Residue in each Polypeptide in Assembly.
Notes
-----
Each PseudoAtom is a side-chain centre.
There is one PseudoMonomer per chain in ampal (each containing len(chain) PseudoAtoms).
The PseudoGroup has len(ampal) PseudoMonomers.
Parameters
----------
assembly : Assembly
masses : bool
If True, side-chain centres are centres of mass.
If False, side-chain centres are centres of coordinates.
Returns
-------
PseudoGroup
containing all side_chain centres, and with ampal_parent=assembly. |
def cluster_helices(helices, cluster_distance=12.0):
condensed_distance_matrix = []
for h1, h2 in itertools.combinations(helices, 2):
md = minimal_distance_between_lines(h1[0]['CA']._vector, h1[-1]['CA']._vector,
h2[0]['CA']._vector, h2[-1]['CA']._vector, segments=True)
condensed_distance_matrix.append(md)
z = linkage(condensed_distance_matrix, method='single')
clusters = fcluster(z, t=cluster_distance, criterion='distance')
cluster_dict = {}
for h, k in zip(helices, clusters):
if k not in cluster_dict:
cluster_dict[k] = [h]
else:
cluster_dict[k].append(h)
return cluster_dict | Clusters helices according to the minimum distance between the line segments representing their backbone.
Notes
-----
Each helix is represented as a line segement joining the CA of its first Residue to the CA if its final Residue.
The minimal distance between pairwise line segments is calculated and stored in a condensed_distance_matrix.
This is clustered using the 'single' linkage metric
(all members of cluster i are at < cluster_distance away from at least one other member of cluster i).
Helices belonging to the same cluster are grouped together as values of the returned cluster_dict.
Parameters
----------
helices: Assembly
cluster_distance: float
Returns
-------
cluster_dict: dict
Keys: int
cluster number
Values: [Polymer] |
def find_kihs(assembly, hole_size=4, cutoff=7.0):
pseudo_group = side_chain_centres(assembly=assembly, masses=False)
pairs = itertools.permutations(pseudo_group, 2)
kihs = []
for pp_1, pp_2 in pairs:
for r in pp_1:
close_atoms = pp_2.is_within(cutoff, r)
# kihs occur between residue and (hole_size) closest side-chains on adjacent polypeptide.
if len(close_atoms) < hole_size:
continue
elif len(close_atoms) > hole_size:
close_atoms = sorted(close_atoms, key=lambda x: distance(x, r))[:hole_size]
kih = OrderedDict()
kih['k'] = r
for i, hole_atom in enumerate(close_atoms):
kih['h{0}'.format(i)] = hole_atom
knob_into_hole = KnobIntoHole(pseudo_atoms=kih)
kihs.append(knob_into_hole)
return kihs | KnobIntoHoles between residues of different chains in assembly.
Notes
-----
A KnobIntoHole is a found when the side-chain centre of a Residue a chain is close than (cutoff) Angstroms from at
least (hole_size) side-chain centres of Residues of a different chain.
Parameters
----------
assembly : Assembly
hole_size : int
Number of Residues required to form each hole.
cutoff : float
Maximum distance between the knob and each of the hole residues.
Returns
-------
kihs : [KnobIntoHole] |
def find_contiguous_packing_segments(polypeptide, residues, max_dist=10.0):
segments = Assembly(assembly_id=polypeptide.ampal_parent.id)
residues_in_polypeptide = list(sorted(residues.intersection(set(polypeptide.get_monomers())),
key=lambda x: int(x.id)))
if not residues_in_polypeptide:
return segments
# residue_pots contains separate pots of residues divided according to their separation distance.
residue_pots = []
pot = [residues_in_polypeptide[0]]
for r1, r2 in zip(residues_in_polypeptide, residues_in_polypeptide[1:]):
d = distance(r1['CA'], r2['CA'])
if d <= max_dist:
pot.append(r2)
if sum([len(x) for x in residue_pots] + [len(pot)]) == len(residues_in_polypeptide):
residue_pots.append(pot)
else:
residue_pots.append(pot)
pot = [r2]
for pot in residue_pots:
segment = polypeptide.get_slice_from_res_id(pot[0].id, pot[-1].id)
segment.ampal_parent = polypeptide.ampal_parent
segments.append(segment)
return segments | Assembly containing segments of polypeptide, divided according to separation of contiguous residues.
Parameters
----------
polypeptide : Polypeptide
residues : iterable containing Residues
max_dist : float
Separation beyond which splitting of Polymer occurs.
Returns
-------
segments : Assembly
Each segment contains a subset of residues, each not separated by more than max_dist from the previous Residue. |
def start_and_end_of_reference_axis(chains):
coords = [numpy.array(chains[0].primitive.coordinates)]
orient_vector = polypeptide_vector(chains[0])
# Append the coordinates for the remaining chains, reversing the direction in antiparallel arrangements.
for i, c in enumerate(chains[1:]):
if is_acute(polypeptide_vector(c), orient_vector):
coords.append(numpy.array(c.primitive.coordinates))
else:
coords.append(numpy.flipud(numpy.array(c.primitive.coordinates)))
start = numpy.mean([x[0] for x in coords], axis=0)
end = numpy.mean([x[-1] for x in coords], axis=0)
return start, end | Get start and end coordinates that approximate the reference axis for a collection of chains
(not necessarily all the same length).
Parameters
----------
chains : [Polypeptide]
Returns
-------
start, end : numpy.array
3D start and end coordinates for defining the reference axis. |
def gen_reference_primitive(polypeptide, start, end):
prim = polypeptide.primitive
q = find_foot(a=start, b=end, p=prim.coordinates[0])
ax = Axis(start=q, end=end)
# flip axis if antiparallel to polypeptide_vector
if not is_acute(polypeptide_vector(polypeptide), ax.unit_tangent):
ax = Axis(start=end, end=q)
arc_length = 0
points = [ax.start]
for rise in prim.rise_per_residue()[:-1]:
arc_length += rise
t = ax.t_from_arc_length(arc_length=arc_length)
point = ax.point(t)
points.append(point)
reference_primitive = Primitive.from_coordinates(points)
return reference_primitive | Generates a reference Primitive for a Polypeptide given start and end coordinates.
Notes
-----
Uses the rise_per_residue of the Polypeptide primitive to define the separation of points on the line joining
start and end.
Parameters
----------
polypeptide : Polypeptide
start : numpy.array
3D coordinates of reference axis start
end : numpy.array
3D coordinates of reference axis end
Returns
-------
reference_primitive : Primitive |
def tag_residues_with_heptad_register(helices):
base_reg = 'abcdefg'
start, end = start_and_end_of_reference_axis(helices)
for h in helices:
ref_axis = gen_reference_primitive(h, start=start, end=end)
crangles = crick_angles(h, reference_axis=ref_axis, tag=False)[:-1]
reg_fit = fit_heptad_register(crangles)
exp_base = base_reg * (len(h) // 7 + 2)
hep_pos = reg_fit[0][0]
register_string = exp_base[hep_pos:hep_pos + len(h)]
for i, register in enumerate(register_string):
h[i].tags['register'] = register
return | tags Residues in input helices with heptad register. (Helices not required to be the same length).
Parameters
----------
helices : [Polypeptide]
Returns
-------
None |
def knob_subgroup(self, cutoff=7.0):
if cutoff > self.cutoff:
raise ValueError("cutoff supplied ({0}) cannot be greater than self.cutoff ({1})".format(cutoff,
self.cutoff))
return KnobGroup(monomers=[x for x in self.get_monomers()
if x.max_kh_distance <= cutoff], ampal_parent=self.ampal_parent) | KnobGroup where all KnobsIntoHoles have max_kh_distance <= cutoff. |
def graph(self):
g = networkx.MultiDiGraph()
edge_list = [(x.knob_helix, x.hole_helix, x.id, {'kih': x}) for x in self.get_monomers()]
g.add_edges_from(edge_list)
return g | Returns MultiDiGraph from kihs. Nodes are helices and edges are kihs. |
def filter_graph(g, cutoff=7.0, min_kihs=2):
edge_list = [e for e in g.edges(keys=True, data=True) if e[3]['kih'].max_kh_distance <= cutoff]
if min_kihs > 0:
c = Counter([(e[0], e[1]) for e in edge_list])
# list of nodes that share > min_kihs edges with at least one other node.
node_list = set(list(itertools.chain.from_iterable([k for k, v in c.items() if v > min_kihs])))
edge_list = [e for e in edge_list if (e[0] in node_list) and (e[1] in node_list)]
return networkx.MultiDiGraph(edge_list) | Get subgraph formed from edges that have max_kh_distance < cutoff.
Parameters
----------
g : MultiDiGraph representing KIHs
g is the output from graph_from_protein
cutoff : float
Socket cutoff in Angstroms.
Default is 7.0.
min_kihs : int
Minimum number of KIHs shared between all pairs of connected nodes in the graph.
Returns
-------
networkx.MultiDigraph
subgraph formed from edges that have max_kh_distance < cutoff. |
def get_coiledcoil_region(self, cc_number=0, cutoff=7.0, min_kihs=2):
g = self.filter_graph(self.graph, cutoff=cutoff, min_kihs=min_kihs)
ccs = sorted(networkx.connected_component_subgraphs(g, copy=True),
key=lambda x: len(x.nodes()), reverse=True)
cc = ccs[cc_number]
helices = [x for x in g.nodes() if x.number in cc.nodes()]
assigned_regions = self.get_assigned_regions(helices=helices, include_alt_states=False, complementary_only=True)
coiledcoil_monomers = [h.get_slice_from_res_id(*assigned_regions[h.number]) for h in helices]
return Assembly(coiledcoil_monomers) | Assembly containing only assigned regions (i.e. regions with contiguous KnobsIntoHoles. |
def daisy_chain_graph(self):
g = networkx.DiGraph()
for x in self.get_monomers():
for h in x.hole:
g.add_edge(x.knob, h)
return g | Directed graph with edges from knob residue to each hole residue for each KnobIntoHole in self. |
def daisy_chains(self, kih, max_path_length=None):
if max_path_length is None:
max_path_length = len(self.ampal_parent)
g = self.daisy_chain_graph
paths = networkx.all_simple_paths(g, source=kih.knob, target=kih.knob, cutoff=max_path_length)
return paths | Generator for daisy chains (complementary kihs) associated with a knob.
Notes
-----
Daisy chain graph is the directed graph with edges from knob residue to each hole residue for each KnobIntoHole
in self.
Given a KnobIntoHole, the daisy chains are non-trivial paths in this graph (walks along the directed edges)
that begin and end at the knob.
These paths must be of length <= max_path_length
Parameters
----------
kih : KnobIntoHole interaction.
max_path_length : int or None
Maximum length of a daisy chain.
Defaults to number of chains in self.ampal_parent.
This is the maximum sensible value. Larger values than this will cause slow running of this function. |
def knob_end(self):
side_chain_atoms = self.knob_residue.side_chain
if not side_chain_atoms:
return self.knob_residue['CA']
distances = [distance(self.knob_residue['CB'], x) for x in side_chain_atoms]
max_d = max(distances)
knob_end_atoms = [atom for atom, d in zip(side_chain_atoms, distances) if d == max_d]
if len(knob_end_atoms) == 1:
return knob_end_atoms[0]._vector
else:
return numpy.mean([x._vector for x in knob_end_atoms], axis=0) | Coordinates of the end of the knob residue (atom in side-chain furthest from CB atom.
Returns CA coordinates for GLY. |
def packing_angle(self):
try:
knob_vector = self.knob_residue['CB'] - self.knob_residue['CA']
# exception for GLY residues (with no CB atom).
except KeyError:
return None
hole_vector = self.hole_residues[2]['CA'] - self.hole_residues[1]['CA']
return angle_between_vectors(knob_vector, hole_vector) | Angle between CA-CB of knob and CA(h1)-CA(h2). Returns None if knob is GLY. |
def max_knob_end_distance(self):
return max([distance(self.knob_end, h) for h in self.hole]) | Maximum distance between knob_end and each of the hole side-chain centres. |
def base_install():
# scwrl
scwrl = {}
print('{BOLD}{HEADER}Generating configuration files for ISAMBARD.{END_C}\n'
'All required input can use tab completion for paths.\n'
'{BOLD}Setting up SCWRL 4.0 (Recommended){END_C}'.format(**text_colours))
scwrl_path = get_user_path('Please provide a path to your SCWRL executable', required=False)
scwrl['path'] = str(scwrl_path)
pack_mode = get_user_option(
'Please choose your packing mode (flexible is significantly slower but is more accurate).',
['flexible', 'rigid'])
if pack_mode == 'rigid':
scwrl['rigid_rotamer_model'] = True
else:
scwrl['rigid_rotamer_model'] = False
settings['scwrl'] = scwrl
# dssp
print('{BOLD}Setting up DSSP (Recommended){END_C}'.format(**text_colours))
dssp = {}
dssp_path = get_user_path('Please provide a path to your DSSP executable.', required=False)
dssp['path'] = str(dssp_path)
settings['dssp'] = dssp
# buff
print('{BOLD}Setting up BUFF (Required){END_C}'.format(**text_colours))
buff = {}
ffs = []
ff_dir = isambard_path / 'buff' / 'force_fields'
for ff_file in os.listdir(str(ff_dir)):
ff = pathlib.Path(ff_file)
ffs.append(ff.stem)
force_field_choice = get_user_option(
'Please choose the default BUFF force field, this can be modified during runtime.',
ffs)
buff['default_force_field'] = force_field_choice
settings['buff'] = buff
return | Generates configuration setting for required functionality of ISAMBARD. |
def optional_install():
# reduce
print('{BOLD}Setting up Reduce (optional){END_C}'.format(**text_colours))
reduce = {}
reduce_path = get_user_path('Please provide a path to your reduce executable.', required=False)
reduce['path'] = str(reduce_path)
reduce['folder'] = str(reduce_path.parent) if reduce_path else ''
settings['reduce'] = reduce
# naccess
print('{BOLD}Setting up naccess (optional){END_C}'.format(**text_colours))
naccess = {}
naccess_path = get_user_path('Please provide a path to your naccess executable.', required=False)
naccess['path'] = str(naccess_path)
settings['naccess'] = naccess
# profit
print('{BOLD}Setting up ProFit (optional){END_C}'.format(**text_colours))
profit = {}
profit_path = get_user_path('Please provide a path to your ProFit executable.', required=False)
profit['path'] = str(profit_path)
settings['profit'] = profit
return | Generates configuration settings for optional functionality of ISAMBARD. |
def pdb(self):
pdb_str = write_pdb(
[self], ' ' if not self.tags['chain_id'] else self.tags['chain_id'])
return pdb_str | Generates a PDB string for the `PseudoMonomer`. |
def from_coordinates(cls, coordinates):
prim = cls()
for coord in coordinates:
pm = PseudoMonomer(ampal_parent=prim)
pa = PseudoAtom(coord, ampal_parent=pm)
pm.atoms = OrderedDict([('CA', pa)])
prim.append(pm)
prim.relabel_all()
return prim | Creates a `Primitive` from a list of coordinates. |
def rise_per_residue(self):
rprs = [distance(self[i]['CA'], self[i + 1]['CA'])
for i in range(len(self) - 1)]
rprs.append(None)
return rprs | The rise per residue at each point on the Primitive.
Notes
-----
Each element of the returned list is the rise per residue,
at a point on the Primitive. Element i is the distance
between primitive[i] and primitive[i + 1]. The final value
is None. |
def radii_of_curvature(self):
rocs = []
for i in range(len(self)):
if 0 < i < len(self) - 1:
rocs.append(radius_of_circumcircle(
self[i - 1]['CA'], self[i]['CA'], self[i + 1]['CA']))
else:
rocs.append(None)
return rocs | The radius of curvature at each point on the Polymer primitive.
Notes
-----
Each element of the returned list is the radius of curvature,
at a point on the Polymer primitive. Element i is the radius
of the circumcircle formed from indices [i-1, i, i+1] of the
primitve. The first and final values are None. |
def sequence(self):
seq = [x.mol_code for x in self._monomers]
return ' '.join(seq) | Returns the sequence of the `Polynucleotide` as a string.
Returns
-------
sequence : str
String of the monomer sequence of the `Polynucleotide`. |
def run_dssp(pdb, path=True, outfile=None):
if not path:
if type(pdb) == str:
pdb = pdb.encode()
try:
temp_pdb = tempfile.NamedTemporaryFile(delete=False)
temp_pdb.write(pdb)
temp_pdb.seek(0)
dssp_out = subprocess.check_output(
[global_settings['dssp']['path'], temp_pdb.name])
temp_pdb.close()
finally:
os.remove(temp_pdb.name)
else:
dssp_out = subprocess.check_output(
[global_settings['dssp']['path'], pdb])
# Python 3 string formatting.
dssp_out = dssp_out.decode()
if outfile:
with open(outfile, 'w') as outf:
outf.write(dssp_out)
return dssp_out | Uses DSSP to find helices and extracts helices from a pdb file or string.
Parameters
----------
pdb : str
Path to pdb file or string.
path : bool, optional
Indicates if pdb is a path or a string.
outfile : str, optional
Filepath for storing the dssp output.
Returns
-------
dssp_out : str
Std out from DSSP. |
def extract_solvent_accessibility_dssp(in_dssp, path=True):
if path:
with open(in_dssp, 'r') as inf:
dssp_out = inf.read()
else:
dssp_out = in_dssp[:]
dssp_residues = []
go = False
for line in dssp_out.splitlines():
if go:
try:
res_num = int(line[5:10].strip())
chain = line[10:12].strip()
residue = line[13]
acc = int(line[35:38].strip())
# It is IMPORTANT that acc remains the final value of the
# returned list, due to its usage in
# isambard.ampal.base_ampal.tag_dssp_solvent_accessibility
dssp_residues.append([res_num, chain, residue, acc])
except ValueError:
pass
else:
if line[2] == '#':
go = True
pass
return dssp_residues | Uses DSSP to extract solvent accessibilty information on every residue.
Notes
-----
For more information on the solvent accessibility metrics used in dssp, see:
http://swift.cmbi.ru.nl/gv/dssp/HTML/descrip.html#ACC
In the dssp files value is labeled 'ACC'.
Parameters
----------
in_dssp : str
Path to DSSP file.
path : bool
Indicates if in_dssp is a path or a string.
Returns
-------
dssp_residues : list
Each internal list contains:
[0] int Residue number
[1] str Chain identifier
[2] str Residue type
[3] int dssp solvent accessibilty |
def extract_helices_dssp(in_pdb):
from ampal.pdb_parser import split_pdb_lines
dssp_out = subprocess.check_output(
[global_settings['dssp']['path'], in_pdb])
helix = 0
helices = []
h_on = False
for line in dssp_out.splitlines():
dssp_line = line.split()
try:
if dssp_line[4] == 'H':
if helix not in [x[0] for x in helices]:
helices.append(
[helix, dssp_line[2], {int(dssp_line[1]): None}])
else:
helices[helix][2][int(dssp_line[1])] = None
h_on = True
else:
if h_on:
helix += 1
h_on = False
except IndexError:
pass
with open(in_pdb, 'r') as pdb:
pdb_atoms = split_pdb_lines(pdb.read())
for atom in pdb_atoms:
for helix in helices:
if (atom[2] == "CA") and (atom[5] == helix[1]) and (atom[6] in helix[2].keys()):
helix[2][atom[6]] = tuple(atom[8:11])
return helices | Uses DSSP to find alpha-helices and extracts helices from a pdb file.
Returns a length 3 list with a helix id, the chain id and a dict
containing the coordinates of each residues CA.
Parameters
----------
in_pdb : string
Path to a PDB file. |
def find_ss_regions(dssp_residues):
loops = [' ', 'B', 'S', 'T']
current_ele = None
fragment = []
fragments = []
first = True
for ele in dssp_residues:
if first:
first = False
fragment.append(ele)
elif current_ele in loops:
if ele[1] in loops:
fragment.append(ele)
else:
fragments.append(fragment)
fragment = [ele]
else:
if ele[1] == current_ele:
fragment.append(ele)
else:
fragments.append(fragment)
fragment = [ele]
current_ele = ele[1]
return fragments | Separates parsed DSSP data into groups of secondary structure.
Notes
-----
Example: all residues in a single helix/loop/strand will be gathered
into a list, then the next secondary structure element will be
gathered into a separate list, and so on.
Parameters
----------
dssp_residues : [list]
Each internal list contains:
[0] int Residue number
[1] str Secondary structure type
[2] str Chain identifier
[3] str Residue type
[4] float Phi torsion angle
[5] float Psi torsion angle
Returns
-------
fragments : [[list]]
Lists grouped in continuous regions of secondary structure.
Innermost list has the same format as above. |
def memory():
mem_info = {}
if platform.linux_distribution()[0]:
with open('/proc/meminfo') as file:
c = 0
for line in file:
lst = line.split()
if str(lst[0]) == 'MemTotal:':
mem_info['total'] = int(lst[1])
elif str(lst[0]) in ('MemFree:', 'Buffers:', 'Cached:'):
c += int(lst[1])
mem_info['free'] = c
mem_info['used'] = (mem_info['total']) - c
elif platform.mac_ver()[0]:
ps = subprocess.Popen(['ps', '-caxm', '-orss,comm'], stdout=subprocess.PIPE).communicate()[0]
vm = subprocess.Popen(['vm_stat'], stdout=subprocess.PIPE).communicate()[0]
# Iterate processes
process_lines = ps.split('\n')
sep = re.compile('[\s]+')
rss_total = 0 # kB
for row in range(1, len(process_lines)):
row_text = process_lines[row].strip()
row_elements = sep.split(row_text)
try:
rss = float(row_elements[0]) * 1024
except:
rss = 0 # ignore...
rss_total += rss
# Process vm_stat
vm_lines = vm.split('\n')
sep = re.compile(':[\s]+')
vm_stats = {}
for row in range(1, len(vm_lines) - 2):
row_text = vm_lines[row].strip()
row_elements = sep.split(row_text)
vm_stats[(row_elements[0])] = int(row_elements[1].strip('\.')) * 4096
mem_info['total'] = rss_total
mem_info['used'] = vm_stats["Pages active"]
mem_info['free'] = vm_stats["Pages free"]
else:
raise('Unsupported Operating System.\n')
exit(1)
return mem_info | Determine the machine's memory specifications.
Returns
-------
mem_info : dictonary
Holds the current values for the total, free and used memory of the system. |
def get_chunk_size(N, n):
mem_free = memory()['free']
if mem_free > 60000000:
chunks_size = int(((mem_free - 10000000) * 1000) / (4 * n * N))
return chunks_size
elif mem_free > 40000000:
chunks_size = int(((mem_free - 7000000) * 1000) / (4 * n * N))
return chunks_size
elif mem_free > 14000000:
chunks_size = int(((mem_free - 2000000) * 1000) / (4 * n * N))
return chunks_size
elif mem_free > 8000000:
chunks_size = int(((mem_free - 1400000) * 1000) / (4 * n * N))
return chunks_size
elif mem_free > 2000000:
chunks_size = int(((mem_free - 900000) * 1000) / (4 * n * N))
return chunks_size
elif mem_free > 1000000:
chunks_size = int(((mem_free - 400000) * 1000) / (4 * n * N))
return chunks_size
else:
raise MemoryError("\nERROR: DBSCAN_multiplex @ get_chunk_size:\n"
"this machine does not have enough free memory "
"to perform the remaining computations.\n") | Given a dimension of size 'N', determine the number of rows or columns
that can fit into memory.
Parameters
----------
N : int
The size of one of the dimension of a two-dimensional array.
n : int
The number of times an 'N' by 'chunks_size' array can fit in memory.
Returns
-------
chunks_size : int
The size of a dimension orthogonal to the dimension of size 'N'. |
def all_floating_ips(self):
if self.api_version == 2:
json = self.request('/floating_ips')
return json['floating_ips']
else:
raise DoError(v2_api_required_str) | Lists all of the Floating IPs available on the account. |
def new_floating_ip(self, **kwargs):
droplet_id = kwargs.get('droplet_id')
region = kwargs.get('region')
if self.api_version == 2:
if droplet_id is not None and region is not None:
raise DoError('Only one of droplet_id and region is required to create a Floating IP. ' \
'Set one of the variables and try again.')
elif droplet_id is None and region is None:
raise DoError('droplet_id or region is required to create a Floating IP. ' \
'Set one of the variables and try again.')
else:
if droplet_id is not None:
params = {'droplet_id': droplet_id}
else:
params = {'region': region}
json = self.request('/floating_ips', params=params, method='POST')
return json['floating_ip']
else:
raise DoError(v2_api_required_str) | Creates a Floating IP and assigns it to a Droplet or reserves it to a region. |
def destroy_floating_ip(self, ip_addr):
if self.api_version == 2:
self.request('/floating_ips/' + ip_addr, method='DELETE')
else:
raise DoError(v2_api_required_str) | Deletes a Floating IP and removes it from the account. |
def assign_floating_ip(self, ip_addr, droplet_id):
if self.api_version == 2:
params = {'type': 'assign','droplet_id': droplet_id}
json = self.request('/floating_ips/' + ip_addr + '/actions', params=params, method='POST')
return json['action']
else:
raise DoError(v2_api_required_str) | Assigns a Floating IP to a Droplet. |
def unassign_floating_ip(self, ip_addr):
if self.api_version == 2:
params = {'type': 'unassign'}
json = self.request('/floating_ips/' + ip_addr + '/actions', params=params, method='POST')
return json['action']
else:
raise DoError(v2_api_required_str) | Unassign a Floating IP from a Droplet.
The Floating IP will be reserved in the region but not assigned to a Droplet. |
def list_floating_ip_actions(self, ip_addr):
if self.api_version == 2:
json = self.request('/floating_ips/' + ip_addr + '/actions')
return json['actions']
else:
raise DoError(v2_api_required_str) | Retrieve a list of all actions that have been executed on a Floating IP. |
def get_floating_ip_action(self, ip_addr, action_id):
if self.api_version == 2:
json = self.request('/floating_ips/' + ip_addr + '/actions/' + action_id)
return json['action']
else:
raise DoError(v2_api_required_str) | Retrieve the status of a Floating IP action. |
def raw_sign(message, secret):
digest = hmac.new(secret, message, hashlib.sha256).digest()
return base64.b64encode(digest) | Sign a message. |
def http_signature(message, key_id, signature):
template = ('Signature keyId="%(keyId)s",algorithm="hmac-sha256",'
'headers="%(headers)s",signature="%(signature)s"')
headers = ['(request-target)', 'host', 'accept', 'date']
return template % {
'keyId': key_id,
'signature': signature,
'headers': ' '.join(headers),
} | Return a tuple (message signature, HTTP header message signature). |
def get_signature_from_signature_string(self, signature):
match = self.SIGNATURE_RE.search(signature)
if not match:
return None
return match.group(1) | Return the signature from the signature header or None. |
def get_headers_from_signature(self, signature):
match = self.SIGNATURE_HEADERS_RE.search(signature)
if not match:
return ['date']
headers_string = match.group(1)
return headers_string.split() | Returns a list of headers fields to sign.
According to http://tools.ietf.org/html/draft-cavage-http-signatures-03
section 2.1.3, the headers are optional. If not specified, the single
value of "Date" must be used. |
def header_canonical(self, header_name):
# Translate as stated in the docs:
# https://docs.djangoproject.com/en/1.6/ref/request-response/#django.http.HttpRequest.META
header_name = header_name.lower()
if header_name == 'content-type':
return 'CONTENT-TYPE'
elif header_name == 'content-length':
return 'CONTENT-LENGTH'
return 'HTTP_%s' % header_name.replace('-', '_').upper() | Translate HTTP headers to Django header names. |
def build_dict_to_sign(self, request, signature_headers):
d = {}
for header in signature_headers:
if header == '(request-target)':
continue
d[header] = request.META.get(self.header_canonical(header))
return d | Build a dict with headers and values used in the signature.
"signature_headers" is a list of lowercase header names. |
def build_signature(self, user_api_key, user_secret, request):
path = request.get_full_path()
sent_signature = request.META.get(
self.header_canonical('Authorization'))
signature_headers = self.get_headers_from_signature(sent_signature)
unsigned = self.build_dict_to_sign(request, signature_headers)
# Sign string and compare.
signer = HeaderSigner(
key_id=user_api_key, secret=user_secret,
headers=signature_headers, algorithm=self.ALGORITHM)
signed = signer.sign(unsigned, method=request.method, path=path)
return signed['authorization'] | Return the signature for the request. |
def camel_to_snake_case(string):
s = _1.sub(r'\1_\2', string)
return _2.sub(r'\1_\2', s).lower() | Converts 'string' presented in camel case to snake case.
e.g.: CamelCase => snake_case |
def url_assembler(query_string, no_redirect=0, no_html=0, skip_disambig=0):
params = [('q', query_string.encode("utf-8")), ('format', 'json')]
if no_redirect:
params.append(('no_redirect', 1))
if no_html:
params.append(('no_html', 1))
if skip_disambig:
params.append(('skip_disambig', 1))
return '/?' + urlencode(params) | Assembler of parameters for building request query.
Args:
query_string: Query to be passed to DuckDuckGo API.
no_redirect: Skip HTTP redirects (for !bang commands). Default - False.
no_html: Remove HTML from text, e.g. bold and italics. Default - False.
skip_disambig: Skip disambiguation (D) Type. Default - False.
Returns:
A “percent-encoded” string which is used as a part of the query. |
def _import(module, cls):
global Scanner
try:
cls = str(cls)
mod = __import__(str(module), globals(), locals(), [cls], 1)
Scanner = getattr(mod, cls)
except ImportError:
pass | A messy way to import library-specific classes.
TODO: I should really make a factory class or something, but I'm lazy.
Plus, factories remind me a lot of java... |
def create(type_dict, *type_parameters):
assert len(type_parameters) == 1
klazz = TypeFactory.new(type_dict, *type_parameters[0])
assert isclass(klazz)
assert issubclass(klazz, Object)
return TypeMetaclass('%sList' % klazz.__name__, (ListContainer,), {'TYPE': klazz}) | Construct a List containing type 'klazz'. |
def load_file(filename):
"Runs the given scent.py file."
mod_name = '.'.join(os.path.basename(filename).split('.')[:-1])
mod_path = os.path.dirname(filename)
if mod_name in sys.modules:
del sys.modules[mod_name]
if mod_path not in set(sys.modules.keys()):
sys.path.insert(0, mod_path)
return ScentModule(__import__(mod_name, g, g), filenamef load_file(filename):
"Runs the given scent.py file."
mod_name = '.'.join(os.path.basename(filename).split('.')[:-1])
mod_path = os.path.dirname(filename)
if mod_name in sys.modules:
del sys.modules[mod_name]
if mod_path not in set(sys.modules.keys()):
sys.path.insert(0, mod_path)
return ScentModule(__import__(mod_name, g, g), filename) | Runs the given scent.py file. |
def exec_from_dir(dirname=None, scent="scent.py"):
if dirname is None:
dirname = os.getcwd()
files = os.listdir(dirname)
if scent not in files:
return None
return load_file(os.path.join(dirname, scent)) | Runs the scent.py file from the given directory (cwd if None given).
Returns module if loaded a scent, None otherwise. |
def new(type_dict, type_factory, *type_parameters):
type_tuple = (type_factory,) + type_parameters
if type_tuple not in type_dict:
factory = TypeFactory.get_factory(type_factory)
reified_type = factory.create(type_dict, *type_parameters)
type_dict[type_tuple] = reified_type
return type_dict[type_tuple] | Create a fully reified type from a type schema. |
def load(type_tuple, into=None):
type_dict = {}
TypeFactory.new(type_dict, *type_tuple)
deposit = into if (into is not None and isinstance(into, dict)) else {}
for reified_type in type_dict.values():
deposit[reified_type.__name__] = reified_type
return deposit | Determine all types touched by loading the type and deposit them into
the particular namespace. |
def load_json(json_list, into=None):
def l2t(obj):
if isinstance(obj, list):
return tuple(l2t(L) for L in obj)
elif isinstance(obj, dict):
return frozendict(obj)
else:
return obj
return TypeFactory.load(l2t(json_list), into=into) | Determine all types touched by loading the type and deposit them into
the particular namespace. |
def create(type_dict, *type_parameters):
name, values = type_parameters
assert isinstance(values, (list, tuple))
for value in values:
assert isinstance(value, Compatibility.stringy)
return TypeMetaclass(str(name), (EnumContainer,), { 'VALUES': values }) | EnumFactory.create(*type_parameters) expects:
enumeration name, (enumeration values) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.