File size: 8,597 Bytes
e82a469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import re
import json, time, random, torch
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizer, AutoTokenizer
# from chinesebert import ChineseBertForMaskedLM, ChineseBertTokenizerFast, ChineseBertConfig
from tqdm import tqdm

import jieba
# from nltk.corpus import stopwords
# from src.helper import *
from importlib import import_module
import pickle as pkl
import time
from datetime import timedelta


MAX_VOCAB_SIZE = 10000
UNK, PAD = '<UNK>', '<PAD>'

def token_to_index(token, config): 
    vocab = pkl.load(open(config.vocab_path, 'rb'))
    # print(f"Vocab size: {len(vocab)}")

    words_line = []
    if len(token) < config.pad_size:
        token.extend([PAD] * (config.pad_size - len(token)))
    else:
        token = token[:config.pad_size]

    # word to id
    for word in token:
        words_line.append(vocab.get(word, vocab.get(UNK)))
    return words_line

# 获取dirty_word的索引
def get_dirty_words(path):
    with open(path, 'r') as f:
        data = json.load(f)    
    dirty_words = list(data.values())
    return dirty_words

def get_all_dirty_words(base_path):
    all_dirty_words = []
    paths = ["general.json", "LGBT.json", "region.json", "sexism.json", "racism.json"]
    for i in paths:
        all_dirty_words.append(get_dirty_words(base_path + i))
    return all_dirty_words

def get_toxic_id(text_idx, toxic_ids, dirty_words, toxic_index):
    for dirty_word in dirty_words:
        for index, token in enumerate(text_idx):
            if token == 0:
                break
            if token != dirty_word[0]:  # 第一个字符不是dirty_word的词首
                continue
            else:
                flag = 1
                start_index = index
                end_index = index+1
                for i in range(len(dirty_word[1:])):
                    if end_index >= len(text_idx):  # 越界
                        flag = 0
                        break
                    if text_idx[end_index] != dirty_word[1+i]:  # 后续单词非dirty词
                        flag = 0
                        break
                    end_index += 1
            if flag:
                for dirty_index in range(start_index, end_index):  # 对含脏词的span打上类别label
                    toxic_ids[dirty_index] = toxic_index
    # print(toxic_ids)
    return toxic_ids
       
def get_all_toxic_id(pad_size, text_idx, all_dirty_words):
    toxic_ids = [0 for i in range(pad_size)]
    for toxic_index, dirty_words in enumerate(all_dirty_words):
        toxic_ids = get_toxic_id(text_idx, toxic_ids, dirty_words, toxic_index+1)
    return toxic_ids

class Datasets(Dataset):
    '''
    The dataset based on Bert.
    '''
    def __init__(self, kwargs, data_name, add_special_tokens=True, not_test=True):
        self.kwargs = kwargs
        self.not_test = not_test
        self.data_name = data_name
        self.lexicon_base_path = kwargs.lexicon_path
        self.max_tok_len = kwargs.pad_size
        self.add_special_tokens = add_special_tokens  
        # self.tokenizer = BertTokenizer.from_pretrained('resources/scibert_scivocab_cased')
        # self.tokenizer = BertTokenizer.from_pretrained(kwargs.model_name)
        # BERT/Roberta
        self.tokenizer = AutoTokenizer.from_pretrained(kwargs.model_name)
        # ChineseBERT
        # self.tokenizer = ChineseBertTokenizerFast.from_pretrained(kwargs.model_name)
        # self.word2vec_path = kwargs.word2vec_path
        with open(data_name, 'r') as f:
            self.data_file = json.load(f)
        self.preprocess_data()

    def preprocess_data(self):
        print('Preprocessing Data {} ...'.format(self.data_name))
        # word2idx, embedding_matrix = load_word2vec_matrix(self.word2vec_path)
        data_time_start=time.time()
        all_dirty_words = get_all_dirty_words(self.lexicon_base_path)

        for row in tqdm(self.data_file):
            ori_text = row['content']
            text = self.tokenizer(ori_text, add_special_tokens=self.add_special_tokens,
                                  max_length=int(self.max_tok_len), padding='max_length', truncation=True)
            # For BERT
            row['text_idx'] = text['input_ids']
            row['text_ids'] = text['token_type_ids']
            row['text_mask'] = text['attention_mask']                
            row['toxic_ids'] = get_all_toxic_id(self.max_tok_len, row['text_idx'], all_dirty_words)

            # for glove
            # sub_text = re.sub(u"([^\u0030-\u0039\u0041-\u005a\u0061-\u007a])"," ",ori_text)
            # text_token = [w for w in ori_text]
            # row["text_token_ids"] = token_to_index(text_token, self.kwargs)
            # row["text_token_len"] = len(row["text_token_ids"])
            # row["text_token_ids"] = pad_token_seq(row["text_token_ids"], self.max_tok_len)

        data_time_end = time.time()
        print("... finished preprocessing cost {} ".format(data_time_end-data_time_start))

    # def get_key(self, index):
    #     path = "data/label/level_" + str(index) + '.json'
    #     with open(path, 'r+') as file:
    #         content=file.read()   
    #     key = json.loads(content)
    #     return key
    
    # def convert_one_hot(self, data, one_hot, length):
    #     data_ = [0 for i in range(length)]
    #     for i in data:
    #         data_[one_hot[i]] = 1
    #     return data_

    def __len__(self):
        return len(self.data_file)

    def __getitem__(self, idx, corpus=None):
        row = self.data_file[idx]
        sample = {
                    # For BERT
                    'text_idx': row['text_idx'], 'text_ids': row['text_ids'], 'text_mask': row['text_mask'], 'toxic_ids': row['toxic_ids'],
                    # For GloVe
                    # 'text_token_ids': row["text_token_ids"]
                    'toxic': row["toxic_one_hot"], 'toxic_type': row["toxic_type_one_hot"], 'expression': row["expression_one_hot"], 'target': row["target"]
                }
        # For label
        # sample['label'] = row['label']
        return sample


class Dataloader(DataLoader):
    '''
    A batch sampler of a dataset. 
    '''
    def __init__(self, data, batch_size, shuffle=True, SEED=0):
        self.data = data
        self.batch_size = batch_size
        self.shuffle = shuffle 
        self.SEED = SEED
        random.seed(self.SEED)

        self.indices = list(range(len(data))) 
        if shuffle:
            random.shuffle(self.indices) 
        self.batch_num = 0 

    def __len__(self):
        return int(len(self.data) / float(self.batch_size))

    def num_batches(self):
        return len(self.data) / float(self.batch_size)

    def __iter__(self):
        self.indices = list(range(len(self.data)))
        if self.shuffle:
            random.shuffle(self.indices)
        return self

    def __next__(self):
        if self.indices != []:
            idxs = self.indices[:self.batch_size]
            batch = [self.data.__getitem__(i) for i in idxs]
            self.indices = self.indices[self.batch_size:]
            return batch
        else:
            raise StopIteration

    def get(self):
        self.reset() 
        return self.__next__()

    def reset(self):
        self.indices = list(range(len(self.data)))
        if self.shuffle: random.shuffle(self.indices)

def to_tensor(batch):
    '''
    Convert a batch data into tensor
    '''
    args = {}
    # For label
    # args["label"] = torch.tensor([b['label'] for b in batch])

    # For BERT  
    args['text_idx'] = torch.tensor([b['text_idx'] for b in batch])
    args['text_ids'] = torch.tensor([b['text_ids'] for b in batch])
    args['text_mask'] = torch.tensor([b['text_mask'] for b in batch])
    args['toxic_ids'] = torch.tensor([b['toxic_ids'] for b in batch])

    # For GloVe
    # args['text_token_len'] = torch.tensor([b['text_token_len'] for b in batch])
    # args['text_token_ids'] = torch.tensor([b['text_token_ids'] for b in batch])
    args['toxic'] = torch.tensor([b['toxic'] for b in batch])
    args['toxic_type'] = torch.tensor([b['toxic_type'] for b in batch])
    args['expression'] = torch.tensor([b['expression'] for b in batch])
    args['target'] = torch.tensor([b['target'] for b in batch])

    return args

def get_time_dif(start_time):
    """获取已使用时间"""
    end_time = time.time()
    time_dif = end_time - start_time
    return timedelta(seconds=int(round(time_dif)))

def convert_onehot(config, label):
    onehot_label = [0 for i in range(config.num_classes)]
    onehot_label[int(label)] = 1
    return onehot_label