Datasets:
File size: 8,029 Bytes
e82a469 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import numpy as np
from sklearn import metrics
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
import time
import json
import copy
from src.datasets import get_time_dif, to_tensor, convert_onehot
from src.Models import *
# from src.losses import *
# from tensorboardX import SummaryWriter
from ray import tune
def train(config, train_iter, dev_iter, test_iter, task=1):
embed_model = Bert_Layer(config).to(config.device)
model = TwoLayerFFNNLayer(config).to(config.device)
model_name = '{}-NN_ML-{}_D-{}_B-{}_E-{}_Lr-{}_aplha-{}'.format(config.model_name, config.pad_size, config.dropout,
config.batch_size, config.num_epochs, config.learning_rate, config.alpha1)
embed_optimizer = optim.AdamW(embed_model.parameters(), lr=config.learning_rate)
model_optimizer = optim.AdamW(model.parameters(), lr=config.learning_rate)
# fgm = FGM(embed_model, epsilon=1, emb_name='word_embeddings.')
loss_fn = nn.BCEWithLogitsLoss()
# loss_fn = get_loss_func("FL", [0.4, 0.6], config.num_classes, config.alpha1)
max_score = 0
for epoch in range(config.num_epochs):
embed_model.train()
model.train()
start_time = time.time()
print("Model is training in epoch {}".format(epoch))
loss_all = 0.
preds = []
labels = []
for batch in tqdm(train_iter, desc='Training', colour = 'MAGENTA'):
embed_model.zero_grad()
model.zero_grad()
args = to_tensor(batch)
att_input, pooled_emb = embed_model(**args)
logit = model(att_input, pooled_emb).cpu()
label = args['toxic']
# label = args['toxic_type']
# label = args['expression']
# label = args['target']
loss = loss_fn(logit, label.float())
pred = get_preds(config, logit)
# pred = get_preds_task2_4(config, logit)
# pred = get_preds_task3(config, logit)
preds.extend(pred)
labels.extend(label.detach().numpy())
loss_all += loss.item()
embed_optimizer.zero_grad()
model_optimizer.zero_grad()
loss.backward()
embed_optimizer.step()
model_optimizer.step()
end_time = time.time()
print(" took: {:.1f} min".format((end_time - start_time)/60.))
print("TRAINED for {} epochs".format(epoch))
# 验证
if epoch >= config.num_warm:
# print("training loss: loss={}".format(loss_all/len(data)))
trn_scores = get_scores(preds, labels, loss_all, len(train_iter), data_name="TRAIN")
dev_scores, _ = eval(config, embed_model, model, loss_fn, dev_iter, data_name='DEV')
f = open('{}/{}.all_scores.txt'.format(config.result_path, model_name), 'a')
f.write(' ================================================== Epoch: {} ==================================================\n'.format(epoch))
f.write('TrainScore: \n{}\nEvalScore: \n{}\n'.format(json.dumps(trn_scores), json.dumps(dev_scores)))
max_score = save_best(config, epoch, model_name, embed_model, model, dev_scores, max_score)
print("ALLTRAINED for {} epochs".format(epoch))
path = '{}/ckp-{}-{}.tar'.format(config.checkpoint_path, model_name, 'BEST')
checkpoint = torch.load(path)
embed_model.load_state_dict(checkpoint['embed_model_state_dict'])
model.load_state_dict(checkpoint['model_state_dict'])
test_scores, _ = eval(config, embed_model, model, loss_fn, test_iter, data_name='DEV')
f = open('{}/{}.all_scores.txt'.format(config.result_path, model_name), 'a')
f.write('Test: \n{}\n'.format(json.dumps(test_scores)))
def eval(config, embed_model, model, loss_fn, dev_iter, data_name='DEV'):
loss_all = 0.
preds = []
labels = []
for batch in tqdm(dev_iter, desc='Evaling', colour = 'CYAN'):
with torch.no_grad():
args = to_tensor(batch)
att_input, pooled_emb = embed_model(**args)
logit = model(att_input, pooled_emb)
logit = logit.cpu()
label = args['toxic']
# label = args['toxic_type']
# label = args['expression']
# label = args['target']
loss = loss_fn(logit, label.float())
pred = get_preds(config, logit)
# pred = get_preds_task2_4(config, logit)
# pred = get_preds_task3(config, logit)
preds.extend(pred)
labels.extend(label.detach().numpy())
loss_all += loss.item()
dev_scores = get_scores(preds, labels, loss_all, len(dev_iter), data_name=data_name)
# if data_name != "TEST": # 2022.9.20 命令行输入为test模式时,不调用tune
# tune.report(metric=dev_scores)
return dev_scores, preds
# For Multi Classfication
def get_preds(config, logit):
results = torch.max(logit.data, 1)[1].cpu().numpy()
new_results = []
for result in results:
result = convert_onehot(config, result)
new_results.append(result)
return new_results
# Task 2 and 4: 多分类 Toxic Type Discrimination and d Expression Type Detection
def get_preds_task2_4(config, logit):
all_results = []
logit_ = torch.sigmoid(logit)
results_pred = torch.max(logit_.data, 1)[0].cpu().numpy()
results = torch.max(logit_.data, 1)[1].cpu().numpy() # index for maximum probability
for i in range(len(results)):
if results_pred[i] < 0.5:
result = [0 for i in range(config.num_classes)]
else:
result = convert_onehot(config, results[i])
all_results.append(result)
return all_results
# Task 3: 多标签分类 Targeted Group Detection
def get_preds_task3(config, logit):
all_results = []
logit_ = torch.sigmoid(logit)
results_pred = torch.max(logit_.data, 1)[0].cpu().numpy()
results = torch.max(logit_.data, 1)[1].cpu().numpy()
logit_ = logit_.detach().cpu().numpy()
for i in range(len(results)):
if results_pred[i] < 0.5:
result = [0 for i in range(config.num_classes)]
else:
result = get_pred_task3(logit_[i])
all_results.append(result)
return all_results
def get_pred_task3(logit):
result = [0 for i in range(len(logit))]
for i in range(len(logit)):
if logit[i] >= 0.5:
result[i] = 1
return result
def get_scores(all_preds, all_lebels, loss_all, len, data_name):
score_dict = dict()
f1 = f1_score(all_preds, all_lebels, average='weighted')
# acc = accuracy_score(all_preds, all_lebels)
all_f1 = f1_score(all_preds, all_lebels, average=None)
pre = precision_score(all_preds, all_lebels, average='weighted')
recall = recall_score(all_preds, all_lebels, average='weighted')
score_dict['F1'] = f1
# score_dict['accuracy'] = acc
score_dict['all_f1'] = all_f1.tolist()
score_dict['precision'] = pre
score_dict['recall'] = recall
score_dict['all_loss'] = loss_all/len
print("Evaling on \"{}\" data".format(data_name))
for s_name, s_val in score_dict.items():
print("{}: {}".format(s_name, s_val))
return score_dict
def save_best(config, epoch, model_name, embed_model, model, score, max_score):
score_key = config.score_key
curr_score = score[score_key]
print('The epoch_{} {}: {}\nCurrent max {}: {}'.format(epoch, score_key, curr_score, score_key, max_score))
if curr_score > max_score or epoch == 0:
torch.save({
'epoch': config.num_epochs,
'embed_model_state_dict': embed_model.state_dict(),
'model_state_dict': model.state_dict(),
}, '{}/ckp-{}-{}.tar'.format(config.checkpoint_path, model_name, 'BEST'))
return curr_score
else:
return max_score
|