File size: 8,029 Bytes
e82a469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import numpy as np
from sklearn import metrics
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm

import time
import json
import copy
from src.datasets import get_time_dif, to_tensor, convert_onehot
from src.Models import *
# from src.losses import *

# from tensorboardX import SummaryWriter
from ray import tune


def train(config, train_iter, dev_iter, test_iter, task=1):
    embed_model = Bert_Layer(config).to(config.device)
    model = TwoLayerFFNNLayer(config).to(config.device)
    model_name = '{}-NN_ML-{}_D-{}_B-{}_E-{}_Lr-{}_aplha-{}'.format(config.model_name, config.pad_size, config.dropout, 
                                            config.batch_size, config.num_epochs, config.learning_rate, config.alpha1)
    embed_optimizer = optim.AdamW(embed_model.parameters(), lr=config.learning_rate)
    model_optimizer = optim.AdamW(model.parameters(), lr=config.learning_rate)
    # fgm = FGM(embed_model, epsilon=1, emb_name='word_embeddings.')
    loss_fn = nn.BCEWithLogitsLoss()
    # loss_fn = get_loss_func("FL", [0.4, 0.6], config.num_classes, config.alpha1)
    max_score = 0

    for epoch in range(config.num_epochs):
        embed_model.train()
        model.train()
        start_time = time.time()
        print("Model is training in epoch {}".format(epoch))
        loss_all = 0.
        preds = []
        labels = []

        for batch in tqdm(train_iter, desc='Training', colour = 'MAGENTA'):
            embed_model.zero_grad()
            model.zero_grad()
            args = to_tensor(batch)
            att_input, pooled_emb = embed_model(**args)

            logit = model(att_input, pooled_emb).cpu()

            label = args['toxic']
            # label = args['toxic_type']
            # label = args['expression']
            # label = args['target']
            loss = loss_fn(logit, label.float())
            pred = get_preds(config, logit)  
            # pred = get_preds_task2_4(config, logit)  
            # pred = get_preds_task3(config, logit)  
            preds.extend(pred)
            labels.extend(label.detach().numpy())

            loss_all += loss.item()
            embed_optimizer.zero_grad()
            model_optimizer.zero_grad()
            loss.backward()

            embed_optimizer.step()
            model_optimizer.step()

        end_time = time.time()
        print(" took: {:.1f} min".format((end_time - start_time)/60.))
        print("TRAINED for {} epochs".format(epoch))

        # 验证
        if epoch >= config.num_warm:
            # print("training loss: loss={}".format(loss_all/len(data)))
            trn_scores = get_scores(preds, labels, loss_all, len(train_iter), data_name="TRAIN")
            dev_scores, _ = eval(config, embed_model, model, loss_fn, dev_iter, data_name='DEV')
            f = open('{}/{}.all_scores.txt'.format(config.result_path, model_name), 'a')
            f.write(' ==================================================  Epoch: {}  ==================================================\n'.format(epoch))
            f.write('TrainScore: \n{}\nEvalScore: \n{}\n'.format(json.dumps(trn_scores), json.dumps(dev_scores))) 
            max_score = save_best(config, epoch, model_name, embed_model, model, dev_scores, max_score)
        print("ALLTRAINED for {} epochs".format(epoch))
    
    path = '{}/ckp-{}-{}.tar'.format(config.checkpoint_path, model_name, 'BEST')
    checkpoint = torch.load(path)
    embed_model.load_state_dict(checkpoint['embed_model_state_dict'])
    model.load_state_dict(checkpoint['model_state_dict'])
    test_scores, _ = eval(config, embed_model, model, loss_fn, test_iter, data_name='DEV')
    f = open('{}/{}.all_scores.txt'.format(config.result_path, model_name), 'a')
    f.write('Test: \n{}\n'.format(json.dumps(test_scores)))


def eval(config, embed_model, model, loss_fn, dev_iter, data_name='DEV'):
    loss_all = 0.
    preds = []
    labels = []
    for batch in tqdm(dev_iter, desc='Evaling', colour = 'CYAN'):
        with torch.no_grad():
            args = to_tensor(batch)
            att_input, pooled_emb = embed_model(**args)
            logit = model(att_input, pooled_emb)

            logit = logit.cpu()
            label = args['toxic']
            # label = args['toxic_type']
            # label = args['expression']
            # label = args['target']
            loss = loss_fn(logit, label.float())
            pred = get_preds(config, logit)  
            # pred = get_preds_task2_4(config, logit)  
            # pred = get_preds_task3(config, logit)  
            preds.extend(pred)
            labels.extend(label.detach().numpy())
            loss_all += loss.item()
            
    dev_scores = get_scores(preds, labels, loss_all, len(dev_iter), data_name=data_name)
    # if data_name != "TEST": # 2022.9.20 命令行输入为test模式时,不调用tune
    # tune.report(metric=dev_scores)

    return dev_scores, preds


# For Multi Classfication
def get_preds(config, logit):
    results = torch.max(logit.data, 1)[1].cpu().numpy()
    new_results = []
    for result in results:
        result = convert_onehot(config, result)
        new_results.append(result)
    return new_results

# Task 2 and 4: 多分类 Toxic Type Discrimination and d Expression Type Detection
def get_preds_task2_4(config, logit):
    all_results = []
    logit_ = torch.sigmoid(logit)
    results_pred = torch.max(logit_.data, 1)[0].cpu().numpy()
    results = torch.max(logit_.data, 1)[1].cpu().numpy() # index for maximum probability
    for i in range(len(results)):
        if results_pred[i] < 0.5:
            result = [0 for i in range(config.num_classes)]
        else:
            result = convert_onehot(config, results[i])
        all_results.append(result)
    return all_results

# Task 3: 多标签分类 Targeted Group Detection
def get_preds_task3(config, logit):
    all_results = []
    logit_ = torch.sigmoid(logit)
    results_pred = torch.max(logit_.data, 1)[0].cpu().numpy()
    results = torch.max(logit_.data, 1)[1].cpu().numpy()
    logit_ = logit_.detach().cpu().numpy()
    for i in range(len(results)):
        if results_pred[i] < 0.5:
            result = [0 for i in range(config.num_classes)]
        else:
            result = get_pred_task3(logit_[i])
        all_results.append(result)
    return all_results

def get_pred_task3(logit):
    result = [0 for i in range(len(logit))]
    for i in range(len(logit)):
        if logit[i] >= 0.5:
            result[i] = 1
    return result

def get_scores(all_preds, all_lebels, loss_all, len, data_name):
    score_dict = dict()
    f1 = f1_score(all_preds, all_lebels, average='weighted')
    # acc = accuracy_score(all_preds, all_lebels)
    all_f1 = f1_score(all_preds, all_lebels, average=None)
    pre = precision_score(all_preds, all_lebels, average='weighted')
    recall = recall_score(all_preds, all_lebels, average='weighted')

    score_dict['F1'] = f1
    # score_dict['accuracy'] = acc
    score_dict['all_f1'] = all_f1.tolist()
    score_dict['precision'] = pre
    score_dict['recall'] = recall

    score_dict['all_loss'] = loss_all/len
    print("Evaling on \"{}\" data".format(data_name))
    for s_name, s_val in score_dict.items(): 
        print("{}: {}".format(s_name, s_val)) 
    return score_dict

def save_best(config, epoch, model_name, embed_model, model, score, max_score):
    score_key = config.score_key
    curr_score = score[score_key]
    print('The epoch_{} {}: {}\nCurrent max {}: {}'.format(epoch, score_key, curr_score, score_key, max_score))

    if curr_score > max_score or epoch == 0:
        torch.save({
        'epoch': config.num_epochs,
        'embed_model_state_dict': embed_model.state_dict(),
        'model_state_dict': model.state_dict(),
        }, '{}/ckp-{}-{}.tar'.format(config.checkpoint_path, model_name, 'BEST'))
        return curr_score
    else:
        return max_score