|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
import os |
|
from os import path |
|
|
|
|
|
|
|
|
|
class Config_base(object): |
|
|
|
"""配置参数""" |
|
def __init__(self, model_name, dataset): |
|
|
|
self.model_name = model_name |
|
self.train_path = path.dirname(path.dirname(__file__))+'/'+ dataset + '/data/train.json' |
|
self.dev_path = path.dirname(path.dirname(__file__))+'/'+ dataset + '/data/test.json' |
|
self.test_path = path.dirname(path.dirname(__file__))+'/'+ dataset + '/data/test.json' |
|
|
|
self.vocab_path = path.dirname(path.dirname(__file__))+'/'+ dataset + '/data/vocab.pkl' |
|
self.lexicon_path = path.dirname(path.dirname(__file__))+'/'+ dataset + '/lexicon/' |
|
self.result_path = path.dirname(path.dirname(__file__))+'/' + dataset + '/result' |
|
self.checkpoint_path = path.dirname(path.dirname(__file__))+'/'+ dataset + '/saved_dict' |
|
self.data_path = self.checkpoint_path + '/data.tar' |
|
|
|
|
|
|
|
|
|
self.word2vec_path = path.dirname(path.dirname(path.dirname(__file__)))+"/glove/source/glove.6B.300d.bin" |
|
|
|
|
|
|
|
|
|
self.seed = 1 |
|
|
|
self.num_classes = 2 |
|
|
|
self.pad_size = 80 |
|
|
|
|
|
self.dropout = 0.5 |
|
self.vocab_dim = 768 |
|
self.fc_hidden_dim = 256 |
|
|
|
|
|
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') |
|
self.learning_rate = 1e-5 |
|
self.scheduler = False |
|
self.adversarial = False |
|
self.num_warm = 0 |
|
self.num_epochs = 5 |
|
self.batch_size = 32 |
|
|
|
|
|
self.alpha1 = 0.5 |
|
self.gamma1 = 4 |
|
|
|
|
|
self.threshold = 0.5 |
|
self.score_key = "F1" |
|
|
|
if __name__ == '__main__': |
|
config = Config_base("BERT", "SWSR") |
|
print(config.vocab_path) |
|
print(config.word2vec_path) |
|
print(path.dirname(__file__)) |
|
print(path.dirname(path.dirname(__file__))) |