text
stringlengths 7
328k
| id
stringlengths 14
166
| metadata
dict | __index_level_0__
int64 0
459
|
---|---|---|---|
use std::error::Error;
use vergen::EmitBuilder;
fn main() -> Result<(), Box<dyn Error>> {
// Emit cargo and rustc compile time values
EmitBuilder::builder().all_cargo().all_rustc().emit()?;
// Try to get the git sha from the local git repository
if EmitBuilder::builder()
.fail_on_error()
.git_sha(false)
.emit()
.is_err()
{
// Unable to get the git sha
if let Ok(sha) = std::env::var("GIT_SHA") {
// Set it from an env var
println!("cargo:rustc-env=VERGEN_GIT_SHA={sha}");
}
}
// Set docker label if present
if let Ok(label) = std::env::var("DOCKER_LABEL") {
// Set it from an env var
println!("cargo:rustc-env=DOCKER_LABEL={label}");
}
Ok(())
}
| text-generation-inference/launcher/build.rs/0 | {
"file_path": "text-generation-inference/launcher/build.rs",
"repo_id": "text-generation-inference",
"token_count": 363
} | 209 |
use crate::client::{DecodeTimings, PrefillTimings};
/// Multi shard Client
use crate::{Batch, CachedBatch, Client, Generation, HealthResponse, ShardInfo};
use crate::{ClientError, Result};
use futures::future::join_all;
use tonic::transport::Uri;
use tracing::instrument;
#[derive(Debug, Clone)]
/// Text Generation Inference gRPC multi client
pub struct ShardedClient {
clients: Vec<Client>,
}
impl ShardedClient {
fn new(clients: Vec<Client>) -> Self {
Self { clients }
}
/// Create a new ShardedClient from a master client. The master client will communicate with
/// the other shards and returns all uris/unix sockets with the `service_discovery` gRPC method.
async fn from_master_client(mut master_client: Client) -> Result<Self> {
// Get all uris/unix sockets from the master client
let uris = master_client.service_discovery().await?;
let futures = uris.into_iter().map(Client::connect_uds);
let clients: Result<Vec<Client>> = join_all(futures).await.into_iter().collect();
Ok(Self::new(clients?))
}
/// Returns a client connected to the given uri
pub async fn connect(uri: Uri) -> Result<Self> {
let master_client = Client::connect(uri).await?;
Self::from_master_client(master_client).await
}
/// Returns a client connected to the given unix socket
pub async fn connect_uds(path: String) -> Result<Self> {
let master_client = Client::connect_uds(path).await?;
Self::from_master_client(master_client).await
}
/// Get the model info
#[instrument(skip(self))]
pub async fn info(&mut self) -> Result<ShardInfo> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| client.info())
.collect();
join_all(futures).await.pop().unwrap()
}
/// GRPC health check
#[instrument(skip(self))]
pub async fn health(&mut self) -> Result<HealthResponse> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| client.health())
.collect();
join_all(futures).await.pop().unwrap()
}
/// Clear the past generations cache
#[instrument(skip(self))]
pub async fn clear_cache(&mut self, batch_id: Option<u64>) -> Result<()> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| client.clear_cache(batch_id))
.collect();
join_all(futures).await.into_iter().collect()
}
/// Filter a cached batch
#[instrument(skip(self))]
pub async fn filter_batch(
&mut self,
batch_id: u64,
request_ids: Vec<u64>,
) -> Result<Option<CachedBatch>> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| Box::pin(client.filter_batch(batch_id, request_ids.clone())))
.collect();
// all shards return the same message
join_all(futures).await.pop().unwrap()
}
/// Warmup on a max size batch
///
/// Returns the maximum amount of tokens supported by the hardware
#[instrument(skip(self))]
pub async fn warmup(
&mut self,
max_input_length: u32,
max_prefill_tokens: u32,
max_total_tokens: u32,
max_batch_size: Option<usize>,
) -> Result<Option<u32>> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| {
Box::pin(client.warmup(
max_input_length,
max_prefill_tokens,
max_total_tokens,
max_batch_size,
))
})
.collect();
// Take the minimum value
let results = join_all(futures)
.await
.into_iter()
.collect::<Result<Vec<Option<u32>>>>()?;
Ok(results.into_iter().flatten().min())
}
/// Generate one token for each request in the given batch
///
/// Returns Generation for each request in batch
/// and the next cached batch
#[instrument(skip_all, fields(id = & batch.id, size = & batch.size))]
pub async fn prefill(
&mut self,
batch: Batch,
) -> Result<(Vec<Generation>, Option<CachedBatch>, PrefillTimings)> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| Box::pin(client.prefill(batch.clone())))
.collect();
#[allow(clippy::type_complexity)]
let results: Result<Vec<(Vec<Generation>, Option<CachedBatch>, PrefillTimings)>> =
join_all(futures).await.into_iter().collect();
let mut results = results?;
let (mut generations, next_batch, mut timings) =
results.pop().ok_or(ClientError::EmptyResults)?;
// Merge generations from different model shards
for (mut shard_generations, _, shard_timings) in results.into_iter() {
generations.append(&mut shard_generations);
// Return the timings of the slowest shard
if shard_timings.total > timings.total {
timings = shard_timings;
}
}
Ok((generations, next_batch, timings))
}
/// Generate one token for each request in the given cached batches
///
/// Returns Generation for each request in batches
/// and the next cached batch
#[instrument(skip_all, fields(size = batches.iter().map(| batch | {batch.size}).sum::< u32 > ()))]
pub async fn decode(
&mut self,
batches: Vec<CachedBatch>,
) -> Result<(Vec<Generation>, Option<CachedBatch>, DecodeTimings)> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| Box::pin(client.decode(batches.clone())))
.collect();
#[allow(clippy::type_complexity)]
let results: Result<Vec<(Vec<Generation>, Option<CachedBatch>, DecodeTimings)>> =
join_all(futures).await.into_iter().collect();
let mut results = results?;
let (mut generations, next_batch, mut timings) =
results.pop().ok_or(ClientError::EmptyResults)?;
// Merge generations from different model shards
for (mut shard_generations, _, shard_timings) in results.into_iter() {
generations.append(&mut shard_generations);
// Return the timings of the slowest shard
if shard_timings.total > timings.total {
timings = shard_timings;
}
}
Ok((generations, next_batch, timings))
}
}
| text-generation-inference/router/client/src/sharded_client.rs/0 | {
"file_path": "text-generation-inference/router/client/src/sharded_client.rs",
"repo_id": "text-generation-inference",
"token_count": 2959
} | 210 |
flash_att_commit := 3a9bfd076f98746c73362328958dbc68d145fbec
flash-attention:
# Clone flash attention
pip install -U packaging ninja --no-cache-dir
git clone https://github.com/HazyResearch/flash-attention.git
build-flash-attention: flash-attention
cd flash-attention && git fetch && git checkout $(flash_att_commit)
cd flash-attention && python setup.py build
cd flash-attention/csrc/rotary && python setup.py build
cd flash-attention/csrc/layer_norm && python setup.py build
install-flash-attention: build-flash-attention
pip uninstall flash_attn rotary_emb dropout_layer_norm -y || true
cd flash-attention && python setup.py install && cd csrc/layer_norm && python setup.py install && cd ../rotary && python setup.py install
| text-generation-inference/server/Makefile-flash-att/0 | {
"file_path": "text-generation-inference/server/Makefile-flash-att",
"repo_id": "text-generation-inference",
"token_count": 243
} | 211 |
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
#ifndef _q4_matrix_cuh
#define _q4_matrix_cuh
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cstdint>
class Q4Matrix
{
public:
int device;
int height;
int width;
int groups;
int groupsize;
uint32_t* cuda_qweight = NULL;
uint32_t* cuda_qzeros = NULL;
half* cuda_scales = NULL;
uint32_t* cuda_x_map = NULL;
Q4Matrix
(
const int _height,
const int _width,
const int _groups,
uint32_t* _qweight,
uint32_t* _qzeros,
half* _scales,
uint32_t* _g_idx,
const int _device
);
~Q4Matrix();
void reconstruct(half* out);
private:
void make_sequential(const uint32_t* cpu_g_idx);
};
void g_q4_keep_matrix(Q4Matrix* m);
void g_q4_free_matrices();
#endif
| text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_func/q4_matrix.cuh/0 | {
"file_path": "text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_func/q4_matrix.cuh",
"repo_id": "text-generation-inference",
"token_count": 420
} | 212 |
#ifndef _q_matrix_cuh
#define _q_matrix_cuh
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cstdint>
#include <cstdio>
#define MAX_SUPERGROUPS 16
class QMatrix
{
public:
int device;
bool is_gptq;
int height;
int width;
int groups;
int gptq_groupsize;
int rows_8;
int rows_6;
int rows_5;
int rows_4;
int rows_3;
int rows_2;
uint32_t* cuda_q_weight = NULL;
uint16_t* cuda_q_perm = NULL;
uint16_t* cuda_q_invperm = NULL;
uint32_t* cuda_q_scale = NULL;
half* cuda_q_scale_max = NULL;
uint16_t* cuda_q_groups = NULL;
uint16_t* cuda_q_group_map = NULL;
uint32_t* cuda_gptq_qzeros = NULL;
half* cuda_gptq_scales = NULL;
half* temp_dq;
bool failed;
QMatrix
(
const int _device,
const int _height,
const int _width,
const int _groups,
uint32_t* _q_weight,
uint16_t* _q_perm,
uint16_t* _q_invperm,
uint32_t* _q_scale,
half* _q_scale_max,
uint16_t* _q_groups,
uint16_t* _q_group_map,
uint32_t* _gptq_qzeros,
half* _gptq_scales,
uint32_t* _gptq_g_idx,
half* _temp_dq
);
~QMatrix();
void reconstruct(half* out);
bool make_sequential(const uint32_t* cpu_g_idx);
private:
};
#endif
| text-generation-inference/server/exllamav2_kernels/exllamav2_kernels/cuda/q_matrix.cuh/0 | {
"file_path": "text-generation-inference/server/exllamav2_kernels/exllamav2_kernels/cuda/q_matrix.cuh",
"repo_id": "text-generation-inference",
"token_count": 702
} | 213 |
import pytest
from text_generation_server.pb import generate_pb2
@pytest.fixture
def default_pb_parameters():
return generate_pb2.NextTokenChooserParameters(
temperature=1.0,
repetition_penalty=1.0,
top_k=0,
top_p=1.0,
typical_p=1.0,
do_sample=False,
)
@pytest.fixture
def default_pb_stop_parameters():
return generate_pb2.StoppingCriteriaParameters(stop_sequences=[], max_new_tokens=10)
| text-generation-inference/server/tests/conftest.py/0 | {
"file_path": "text-generation-inference/server/tests/conftest.py",
"repo_id": "text-generation-inference",
"token_count": 199
} | 214 |
import torch
import torch.distributed
from typing import Optional, Type
from transformers import (
AutoTokenizer,
AutoConfig,
PreTrainedTokenizerBase,
)
from text_generation_server.models.custom_modeling.bloom_modeling import (
BloomForCausalLM,
)
from text_generation_server.models import CausalLM
from text_generation_server.models.causal_lm import CausalLMBatch
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import (
initialize_torch_distributed,
weight_files,
Weights,
)
class BloomCausalLMBatch(CausalLMBatch):
@classmethod
def from_pb(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
dtype: torch.dtype,
device: torch.device,
) -> "CausalLMBatch":
batch = super().from_pb(pb=pb, tokenizer=tokenizer, dtype=dtype, device=device)
batch.keys_head_dim_last = False
return batch
class BLOOMSharded(CausalLM):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = torch.float16 if dtype is None else dtype
else:
device = torch.device("cpu")
dtype = torch.float32 if dtype is None else dtype
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
config = AutoConfig.from_pretrained(
model_id,
revision=revision,
slow_but_exact=False,
tp_parallel=True,
trust_remote_code=trust_remote_code,
)
config.pad_token_id = 3
config.quantize = quantize
config.use_medusa = use_medusa
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
weights = Weights(
filenames,
device=device,
dtype=dtype,
process_group=self.process_group,
prefix="transformer",
)
if config.quantize == "gptq":
weights._set_gptq_params(model_id, revision)
model = BloomForCausalLM(config, weights)
torch.distributed.barrier(group=self.process_group)
super(CausalLM, self).__init__(
model=model,
tokenizer=tokenizer,
requires_padding=True,
dtype=dtype,
device=device,
rank=rank,
world_size=world_size,
)
@property
def batch_type(self) -> Type[CausalLMBatch]:
return BloomCausalLMBatch
def forward(
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
):
outputs, speculative_logits = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=True,
)
logits = outputs.logits
return logits, speculative_logits, outputs.past_key_values
| text-generation-inference/server/text_generation_server/models/bloom.py/0 | {
"file_path": "text-generation-inference/server/text_generation_server/models/bloom.py",
"repo_id": "text-generation-inference",
"token_count": 1630
} | 215 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Idefics."""
from typing import Callable, Dict, List, Optional, Union, Iterable
import numpy as np
from PIL import Image
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.image_transforms import (
resize,
to_channel_dimension_format,
rescale,
normalize,
)
from transformers.image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from io import BytesIO
import base64
import requests
from transformers import TensorType, is_torch_available
IDEFICS_STANDARD_MEAN = [0.48145466, 0.4578275, 0.40821073]
IDEFICS_STANDARD_STD = [0.26862954, 0.26130258, 0.27577711]
def convert_to_rgb(image):
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
# for transparent images. The call to `alpha_composite` handles this case
if image.mode == "RGB":
return image
image_rgba = image.convert("RGBA")
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
alpha_composite = Image.alpha_composite(background, image_rgba)
alpha_composite = alpha_composite.convert("RGB")
return alpha_composite
class IdeficsImageProcessor(BaseImageProcessor):
r"""
Constructs a Idefics image processor.
Args:
image_size (`int`, *optional*, defaults to `224`):
Resize to image size
image_num_channels (`int`, *optional*, defaults to `3`):
Number of image channels.
image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
image_size: int = 224,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
image_num_channels: Optional[int] = 3,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.image_size = image_size
self.image_num_channels = image_num_channels
self.image_mean = image_mean
self.image_std = image_std
def preprocess(
self,
images: ImageInput,
image_num_channels: Optional[int] = 3,
image_size: Optional[Dict[str, int]] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
transform: Callable = None,
**kwargs,
) -> TensorType.PYTORCH:
"""
Preprocess a batch of images.
Args:
images (`ImageInput`):
A list of images to preprocess.
image_size (`int`, *optional*, defaults to `self.image_size`):
Resize to image size
image_num_channels (`int`, *optional*, defaults to `self.image_num_channels`):
Number of image channels.
image_mean (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can
be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IDEFICS_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess`
method. Can be overridden by the `image_std` parameter in the `preprocess` method.
transform (`Callable`, *optional*, defaults to `None`):
A custom transform function that accepts a single image can be passed for training. For example,
`torchvision.Compose` can be used to compose multiple transforms. If `None` - an inference mode is
assumed - and then a preset of inference-specific transforms will be applied to the images
Returns:
a PyTorch tensor of the processed images
"""
image_size = image_size if image_size is not None else self.image_size
image_num_channels = (
image_num_channels
if image_num_channels is not None
else self.image_num_channels
)
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = (image_size, image_size)
if len(images) == 0:
return []
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
# For training a user needs to pass their own set of transforms as a Callable.
# For reference this is what was used in the original IDEFICS training:
# transform = transforms.Compose([
# convert_to_rgb,
# transforms.RandomResizedCrop((size, size), scale=(0.9, 1.0), interpolation=transforms.InterpolationMode.BICUBIC),
# transforms.ToTensor(),
# transforms.Normalize(mean=image_mean, std=image_std),
# ])
if transform is not None:
if not is_torch_available():
raise ImportError("To pass in `transform` torch must be installed")
import torch
images = [transform(x) for x in images]
return torch.stack(images)
# for inference we do the exact transforms that were used to train IDEFICS
images = [convert_to_rgb(x) for x in images]
# further transforms expect numpy arrays
images = [to_numpy_array(x) for x in images]
images = [resize(x, size, resample=PILImageResampling.BICUBIC) for x in images]
images = [self.rescale(image=image, scale=1 / 255) for image in images]
images = [self.normalize(x, mean=image_mean, std=image_std) for x in images]
images = [
to_channel_dimension_format(x, ChannelDimension.FIRST) for x in images
]
# TODO: this converts to torch tensors - switch to convert_to_tensors once it becomes available
images = BatchFeature(
data={"pixel_values": images}, tensor_type=TensorType.PYTORCH
)["pixel_values"]
return images
def fetch_images(self, image_url_or_urls: Union[str, List[str]]):
"""
Convert a single or a list of urls into the corresponding `PIL.Image` objects.
If a single url is passed, the return value will be a single object. If a list is passed a list of objects is
returned.
"""
headers = {
"User-Agent": (
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0"
" Safari/537.36"
)
}
if isinstance(image_url_or_urls, list):
return [self.fetch_images(x) for x in image_url_or_urls]
elif isinstance(image_url_or_urls, str):
image = image_url_or_urls
if image.startswith("http://") or image.startswith("https://"):
response = requests.get(
image_url_or_urls, stream=True, headers=headers, timeout=(1, 5)
)
response.raise_for_status()
content = response.content
elif image.startswith("data:"):
# https://stackoverflow.com/questions/17090571/is-there-a-way-to-set-background-image-as-a-base64-encoded-image
# 
image = image.split(",")[-1]
content = base64.b64decode(image)
else:
raise ValueError(f"Unrecognized image {image}")
try:
image = Image.open(BytesIO(content))
# image.verify()
except Exception:
raise ValueError(f"Could not load image from url {image_url_or_urls}")
return image
else:
raise ValueError(
f"only a single or a list of entries is supported but got type={type(image_url_or_urls)}"
)
def rescale(
self,
image: np.ndarray,
scale: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`float`):
The scaling factor to rescale pixel values by.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The rescaled image.
"""
# return rescale(image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs)
# requires 4.32
return rescale(image, scale=scale, data_format=data_format, **kwargs)
def normalize(
self,
image: np.ndarray,
mean: Union[float, Iterable[float]],
std: Union[float, Iterable[float]],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
mean (`float` or `Iterable[float]`):
Image mean to use for normalization.
std (`float` or `Iterable[float]`):
Image standard deviation to use for normalization.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The normalized image.
"""
# TODO 4.32
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
import transformers
transformers.IdeficsImageProcessor = IdeficsImageProcessor
| text-generation-inference/server/text_generation_server/models/custom_modeling/idefics_image_processing.py/0 | {
"file_path": "text-generation-inference/server/text_generation_server/models/custom_modeling/idefics_image_processing.py",
"repo_id": "text-generation-inference",
"token_count": 5687
} | 216 |
import torch
import torch.distributed
from opentelemetry import trace
from transformers import AutoTokenizer, AutoConfig
from typing import Optional
from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_neox_modeling import (
FlashGPTNeoXForCausalLM,
)
from text_generation_server.utils import (
initialize_torch_distributed,
weight_files,
Weights,
)
tracer = trace.get_tracer(__name__)
class FlashNeoXSharded(FlashCausalLM):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = torch.float16 if dtype is None else dtype
else:
raise NotImplementedError("FlashNeoX is only available on GPU")
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
config = AutoConfig.from_pretrained(
model_id, revision=revision, trust_remote_code=trust_remote_code
)
config.quantize = quantize
config.use_medusa = use_medusa
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
weights = Weights(
filenames, device=device, dtype=dtype, process_group=self.process_group
)
if config.quantize == "gptq":
weights._set_gptq_params(model_id, revision)
model = FlashGPTNeoXForCausalLM(config, weights)
torch.distributed.barrier(group=self.process_group)
super(FlashNeoXSharded, self).__init__(
model=model.to(device),
tokenizer=tokenizer,
num_layers=len(model.gpt_neox.layers),
num_kv_heads=model.gpt_neox.num_heads,
head_size=model.gpt_neox.head_size,
dtype=dtype,
device=device,
rank=rank,
world_size=world_size,
)
| text-generation-inference/server/text_generation_server/models/flash_neox.py/0 | {
"file_path": "text-generation-inference/server/text_generation_server/models/flash_neox.py",
"repo_id": "text-generation-inference",
"token_count": 1087
} | 217 |
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from typing import List, Optional, Tuple
from text_generation_server.models import CausalLM
class RW(CausalLM):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
if use_medusa:
raise RuntimeError("Medusa decoding is not enabled for AutoModel")
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.float16 if dtype is None else dtype
else:
if quantize:
raise ValueError("quantization is not available on CPU")
device = torch.device("cpu")
dtype = torch.float32 if dtype is None else dtype
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
model = AutoModelForCausalLM.from_pretrained(
model_id,
revision=revision,
torch_dtype=dtype,
device_map=(
"auto"
if torch.cuda.is_available() and torch.cuda.device_count() > 1
else None
),
load_in_8bit=quantize == "bitsandbytes",
trust_remote_code=trust_remote_code,
)
if torch.cuda.is_available() and torch.cuda.device_count() == 1:
model = model.cuda()
if tokenizer.pad_token_id is None:
if model.config.pad_token_id is not None:
tokenizer.pad_token_id = model.config.pad_token_id
elif model.config.eos_token_id is not None:
tokenizer.pad_token_id = model.config.eos_token_id
elif tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
else:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
super(CausalLM, self).__init__(
model=model,
tokenizer=tokenizer,
requires_padding=True,
dtype=dtype,
device=device,
)
def forward(
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
# Model Forward
outputs = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
)
return outputs.logits, outputs.past_key_values
| text-generation-inference/server/text_generation_server/models/rw.py/0 | {
"file_path": "text-generation-inference/server/text_generation_server/models/rw.py",
"repo_id": "text-generation-inference",
"token_count": 1367
} | 218 |
# Adapted from turboderp exllama: https://github.com/turboderp/exllamav2
import torch
import torch.nn as nn
from loguru import logger
try:
from exllamav2_kernels import make_q_matrix, gemm_half_q_half
except ImportError:
logger.error("exllamav2_kernels not installed.")
raise
# Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension
none_tensor = torch.empty((1, 1), device="meta")
def ext_gemm_half_q_half(x, q_handle, q4_width, force_cuda):
"""Matrix multiplication, returns x @ q4"""
output_shape = x.shape[:-1] + (q4_width,)
x = x.view(-1, x.shape[-1])
output = torch.empty((x.shape[0], q4_width), dtype=torch.half, device=x.device)
gemm_half_q_half(x, q_handle, output, force_cuda)
return output.view(output_shape)
# Group map needed for irregular group sizes
def make_group_map(q_groups, num_qrows):
gr = q_groups.tolist()
group_map = []
num_groups = len(gr) // 2
for i in range(num_groups):
bits = gr[i * 2]
if i < num_groups - 1:
qrows = gr[i * 2 + 3] - gr[i * 2 + 1]
else:
qrows = num_qrows - gr[i * 2 + 1]
rows = qrows * 32 // bits
for j in range(rows):
group_map += [i]
group_map += [rows - j]
return torch.tensor(group_map, dtype=torch.short, device=q_groups.device)
# Create Q matrix
def ext_make_q_matrix(w: dict, temp_dq, key: str = None):
"""
Create Q matrix
"""
# EXL2
# won't work as the moment because the tensors are not the same.
if "q_weight" in w:
w["q_scale_max"] /= 256
w["q_perm"] = w["q_perm"].short()
w["q_invperm"] = w["q_invperm"].short()
if "q_group_map" not in w:
w["q_group_map"] = make_group_map(w["q_groups"], w["q_weight"].shape[0])
return make_q_matrix(
w["q_weight"],
w["q_perm"],
w["q_invperm"],
w["q_scale"],
w["q_scale_max"],
w["q_groups"],
w["q_group_map"],
none_tensor,
none_tensor,
none_tensor,
temp_dq,
)
# GPTQ
elif "qweight" in w:
if w["scales"].dtype == torch.float:
w["scales"] = w["scales"].half()
# GPTQ with g_idx (act_order)
if w.get("g_idx", None) is not None and not (w["g_idx"] == 0).all().item():
w["q_perm"] = torch.empty(
(w["qweight"].shape[0] * 8,),
dtype=torch.short,
device=w["qweight"].device,
)
w["q_invperm"] = torch.empty_like(w["q_perm"])
# make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx.
return make_q_matrix(
w["qweight"],
w["q_perm"],
w["q_invperm"],
none_tensor,
none_tensor,
none_tensor,
none_tensor,
w["qzeros"],
w["scales"],
w["g_idx"].cpu(),
temp_dq,
)
# GPTQ without g_idx
else:
return make_q_matrix(
w["qweight"],
none_tensor,
none_tensor,
none_tensor,
none_tensor,
none_tensor,
none_tensor,
w["qzeros"],
w["scales"],
none_tensor,
temp_dq,
)
DEVICE = None
FIXED_BYTES = 0
LAYERS = []
def set_device(device):
global DEVICE
DEVICE = device
def create_exllama_buffers(max_total_tokens: int):
global FIXED_BYTES, LAYERS, DEVICE
temp_dq = ExLlamaV2DeviceTensors(DEVICE, FIXED_BYTES)
for layer in LAYERS:
layer.post_init(temp_dq)
class QuantLinear(nn.Module):
QUANT_TYPE = "exllamav2"
"""Linear layer implementation with per-group 4-bit quantization of the weights"""
# def __init__(self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs):
def __init__(self, qweight, qzeros, scales, g_idx, bias, bits, groupsize):
super().__init__()
if bits != 4:
raise ValueError(
f"Exllamav2 kernel supports only bits=4, requested bits={bits}. Something is wrong in the model initialization."
)
self.q_handle = None
self.q_tensors = None
self.bits = bits
self.maxq = 2**self.bits - 1
self.infeatures = qweight.shape[0] // self.bits * 32
self.outfeatures = qweight.shape[1]
self.padding = -self.outfeatures % 32
self.outfeatures = self.outfeatures + self.padding
self.device = qweight.device
self.qweight = qweight
self.qzeros = qzeros
self.scales = scales
self.g_idx = g_idx
self.bias = bias if bias is not None else None
self.group_size = groupsize
global FIXED_BYTES, LAYERS
FIXED_BYTES = max(FIXED_BYTES, self.scratch_space_fixed())
LAYERS.append(self)
def post_init(self, temp_dq):
assert self.qweight.device.type == "cuda"
assert self.qweight.device.index is not None
self.q_tensors = {
"qweight": self.qweight,
"qzeros": self.qzeros,
"scales": self.scales,
"g_idx": self.g_idx,
}
temp_dq = temp_dq.get_scratch_slice(self.temp_dq_size())
# We NEED to keep a pointer on Python side, otherwise the garbage collector will mess with us,
# and `Memory access fault by GPU node-2` will EAT you.
self.temp_dq = temp_dq
self.q_handle = ext_make_q_matrix(self.q_tensors, temp_dq)
def forward(self, x, force_cuda=False):
output = ext_gemm_half_q_half(x, self.q_handle, self.outfeatures, force_cuda)
if self.bias is not None:
output.add_(self.bias)
return output
def temp_dq_size(self):
return self.infeatures * self.outfeatures * 2 + 128
def temp_fwd_size(self, max_input_len, max_batch_size):
return self.outfeatures * max_input_len * max_batch_size * 4 + 128
def scratch_space_fixed(self, max_input_len=4096, max_batch_size=16):
return self.temp_dq_size() + self.temp_fwd_size(max_input_len, max_batch_size)
class ExLlamaV2DeviceTensors:
device_idx: int
scratch_bytes: int
scratch_idx: int
scratch: torch.tensor = None
def __init__(self, device, scratch_bytes):
self.device = device
self.scratch_bytes = scratch_bytes
def prepare(self):
self.scratch = torch.empty(
(self.scratch_bytes // 2,), dtype=torch.half, device=self.device
)
def get_scratch_slice(self, size_bytes):
if self.scratch is None:
self.prepare()
size_bytes = ((size_bytes + 127) // 128) * 128
size_half = size_bytes // 2
scratch_slice = self.scratch.narrow(0, 0, size_half)
return scratch_slice
| text-generation-inference/server/text_generation_server/utils/gptq/exllamav2.py/0 | {
"file_path": "text-generation-inference/server/text_generation_server/utils/gptq/exllamav2.py",
"repo_id": "text-generation-inference",
"token_count": 3518
} | 219 |
[target.aarch64-unknown-linux-musl]
linker = "aarch64-linux-musl-gcc"
rustflags = ["-C", "target-feature=-crt-static"]
| tokenizers/bindings/node/.cargo/config.toml/0 | {
"file_path": "tokenizers/bindings/node/.cargo/config.toml",
"repo_id": "tokenizers",
"token_count": 50
} | 220 |
/* tslint:disable */
/* eslint-disable */
/* auto-generated by NAPI-RS */
export function bpeDecoder(suffix?: string | undefined | null): Decoder
export function byteFallbackDecoder(): Decoder
export function ctcDecoder(
padToken?: string = '<pad>',
wordDelimiterToken?: string | undefined | null,
cleanup?: boolean | undefined | null,
): Decoder
export function fuseDecoder(): Decoder
export function metaspaceDecoder(replacement?: string = '▁', addPrefixSpace?: bool = true): Decoder
export function replaceDecoder(pattern: string, content: string): Decoder
export function sequenceDecoder(decoders: Array<Decoder>): Decoder
export function stripDecoder(content: string, left: number, right: number): Decoder
export function wordPieceDecoder(prefix?: string = '##', cleanup?: bool = true): Decoder
export const enum TruncationDirection {
Left = 'Left',
Right = 'Right',
}
export const enum TruncationStrategy {
LongestFirst = 'LongestFirst',
OnlyFirst = 'OnlyFirst',
OnlySecond = 'OnlySecond',
}
export interface BpeOptions {
cacheCapacity?: number
dropout?: number
unkToken?: string
continuingSubwordPrefix?: string
endOfWordSuffix?: string
fuseUnk?: boolean
byteFallback?: boolean
}
export interface WordPieceOptions {
unkToken?: string
continuingSubwordPrefix?: string
maxInputCharsPerWord?: number
}
export interface WordLevelOptions {
unkToken?: string
}
export interface UnigramOptions {
unkId?: number
byteFallback?: boolean
}
export function prependNormalizer(prepend: string): Normalizer
export function stripAccentsNormalizer(): Normalizer
export interface BertNormalizerOptions {
cleanText?: boolean
handleChineseChars?: boolean
stripAccents?: boolean
lowercase?: boolean
}
/**
* bert_normalizer(options?: {
* cleanText?: bool = true,
* handleChineseChars?: bool = true,
* stripAccents?: bool = true,
* lowercase?: bool = true
* })
*/
export function bertNormalizer(options?: BertNormalizerOptions | undefined | null): Normalizer
export function nfdNormalizer(): Normalizer
export function nfkdNormalizer(): Normalizer
export function nfcNormalizer(): Normalizer
export function nfkcNormalizer(): Normalizer
export function stripNormalizer(left?: boolean | undefined | null, right?: boolean | undefined | null): Normalizer
export function sequenceNormalizer(normalizers: Array<Normalizer>): Normalizer
export function lowercase(): Normalizer
export function replace(pattern: string, content: string): Normalizer
export function nmt(): Normalizer
export function precompiled(bytes: Array<number>): Normalizer
export const enum JsSplitDelimiterBehavior {
Removed = 'Removed',
Isolated = 'Isolated',
MergedWithPrevious = 'MergedWithPrevious',
MergedWithNext = 'MergedWithNext',
Contiguous = 'Contiguous',
}
/** byte_level(addPrefixSpace: bool = true, useRegex: bool = true) */
export function byteLevelPreTokenizer(
addPrefixSpace?: boolean | undefined | null,
useRegex?: boolean | undefined | null,
): PreTokenizer
export function byteLevelAlphabet(): Array<string>
export function whitespacePreTokenizer(): PreTokenizer
export function whitespaceSplitPreTokenizer(): PreTokenizer
export function bertPreTokenizer(): PreTokenizer
export function metaspacePreTokenizer(replacement?: string = '▁', addPrefixSpace?: bool = true): PreTokenizer
export function splitPreTokenizer(pattern: string, behavior: string, invert?: boolean | undefined | null): PreTokenizer
export function punctuationPreTokenizer(behavior?: string | undefined | null): PreTokenizer
export function sequencePreTokenizer(preTokenizers: Array<PreTokenizer>): PreTokenizer
export function charDelimiterSplit(delimiter: string): PreTokenizer
export function digitsPreTokenizer(individualDigits?: boolean | undefined | null): PreTokenizer
export function bertProcessing(sep: [string, number], cls: [string, number]): Processor
export function robertaProcessing(
sep: [string, number],
cls: [string, number],
trimOffsets?: boolean | undefined | null,
addPrefixSpace?: boolean | undefined | null,
): Processor
export function byteLevelProcessing(trimOffsets?: boolean | undefined | null): Processor
export function templateProcessing(
single: string,
pair?: string | undefined | null,
specialTokens?: Array<[string, number]> | undefined | null,
): Processor
export function sequenceProcessing(processors: Array<Processor>): Processor
export const enum PaddingDirection {
Left = 0,
Right = 1,
}
export interface PaddingOptions {
maxLength?: number
direction?: string | PaddingDirection
padToMultipleOf?: number
padId?: number
padTypeId?: number
padToken?: string
}
export interface EncodeOptions {
isPretokenized?: boolean
addSpecialTokens?: boolean
}
export interface TruncationOptions {
maxLength?: number
strategy?: TruncationStrategy
direction?: string | TruncationDirection
stride?: number
}
export interface AddedTokenOptions {
singleWord?: boolean
leftStrip?: boolean
rightStrip?: boolean
normalized?: boolean
}
export interface JsFromPretrainedParameters {
revision?: string
authToken?: string
}
export function slice(s: string, beginIndex?: number | undefined | null, endIndex?: number | undefined | null): string
export function mergeEncodings(encodings: Array<Encoding>, growingOffsets?: boolean | undefined | null): Encoding
/** Decoder */
export class Decoder {
decode(tokens: Array<string>): string
}
export type JsEncoding = Encoding
export class Encoding {
constructor()
getLength(): number
getNSequences(): number
getIds(): Array<number>
getTypeIds(): Array<number>
getAttentionMask(): Array<number>
getSpecialTokensMask(): Array<number>
getTokens(): Array<string>
getOffsets(): Array<Array<number>>
getWordIds(): Array<number | undefined | null>
charToToken(pos: number, seqId?: number | undefined | null): number | null
charToWord(pos: number, seqId?: number | undefined | null): number | null
pad(length: number, options?: PaddingOptions | undefined | null): void
truncate(
length: number,
stride?: number | undefined | null,
direction?: string | TruncationDirection | undefined | null,
): void
wordToTokens(word: number, seqId?: number | undefined | null): [number, number] | null | undefined
wordToChars(word: number, seqId?: number | undefined | null): [number, number] | null | undefined
tokenToChars(token: number): [number, [number, number]] | null | undefined
tokenToWord(token: number): number | null
getOverflowing(): Array<Encoding>
getSequenceIds(): Array<number | undefined | null>
tokenToSequence(token: number): number | null
}
export class Model {}
export type Bpe = BPE
export class BPE {
static empty(): Model
static init(vocab: Vocab, merges: Merges, options?: BpeOptions | undefined | null): Model
static fromFile(vocab: string, merges: string, options?: BpeOptions | undefined | null): Promise<Model>
}
export class WordPiece {
static init(vocab: Vocab, options?: WordPieceOptions | undefined | null): Model
static empty(): WordPiece
static fromFile(vocab: string, options?: WordPieceOptions | undefined | null): Promise<Model>
}
export class WordLevel {
static init(vocab: Vocab, options?: WordLevelOptions | undefined | null): Model
static empty(): WordLevel
static fromFile(vocab: string, options?: WordLevelOptions | undefined | null): Promise<Model>
}
export class Unigram {
static init(vocab: Array<[string, number]>, options?: UnigramOptions | undefined | null): Model
static empty(): Model
}
/** Normalizer */
export class Normalizer {
normalizeString(sequence: string): string
}
/** PreTokenizers */
export class PreTokenizer {
preTokenizeString(sequence: string): [string, [number, number]][]
}
export class Processor {}
export class AddedToken {
constructor(token: string, isSpecial: boolean, options?: AddedTokenOptions | undefined | null)
getContent(): string
}
export class Tokenizer {
constructor(model: Model)
setPreTokenizer(preTokenizer: PreTokenizer): void
setDecoder(decoder: Decoder): void
setModel(model: Model): void
setPostProcessor(postProcessor: Processor): void
setNormalizer(normalizer: Normalizer): void
save(path: string, pretty?: boolean | undefined | null): void
addAddedTokens(tokens: Array<AddedToken>): number
addTokens(tokens: Array<string>): number
encode(
sentence: InputSequence,
pair?: InputSequence | null,
encodeOptions?: EncodeOptions | undefined | null,
): Promise<JsEncoding>
encodeBatch(sentences: EncodeInput[], encodeOptions?: EncodeOptions | undefined | null): Promise<JsEncoding[]>
decode(ids: Array<number>, skipSpecialTokens: boolean): Promise<string>
decodeBatch(ids: Array<Array<number>>, skipSpecialTokens: boolean): Promise<string[]>
static fromString(s: string): Tokenizer
static fromFile(file: string): Tokenizer
addSpecialTokens(tokens: Array<string>): void
setTruncation(maxLength: number, options?: TruncationOptions | undefined | null): void
disableTruncation(): void
setPadding(options?: PaddingOptions | undefined | null): void
disablePadding(): void
getDecoder(): Decoder | null
getNormalizer(): Normalizer | null
getPreTokenizer(): PreTokenizer | null
getPostProcessor(): Processor | null
getVocab(withAddedTokens?: boolean | undefined | null): Record<string, number>
getVocabSize(withAddedTokens?: boolean | undefined | null): number
idToToken(id: number): string | null
tokenToId(token: string): number | null
train(files: Array<string>): void
runningTasks(): number
postProcess(
encoding: Encoding,
pair?: Encoding | undefined | null,
addSpecialTokens?: boolean | undefined | null,
): Encoding
}
export class Trainer {}
| tokenizers/bindings/node/index.d.ts/0 | {
"file_path": "tokenizers/bindings/node/index.d.ts",
"repo_id": "tokenizers",
"token_count": 2717
} | 221 |
# `tokenizers-android-arm64`
This is the **aarch64-linux-android** binary for `tokenizers`
| tokenizers/bindings/node/npm/android-arm64/README.md/0 | {
"file_path": "tokenizers/bindings/node/npm/android-arm64/README.md",
"repo_id": "tokenizers",
"token_count": 31
} | 222 |
# `tokenizers-linux-x64-musl`
This is the **x86_64-unknown-linux-musl** binary for `tokenizers`
| tokenizers/bindings/node/npm/linux-x64-musl/README.md/0 | {
"file_path": "tokenizers/bindings/node/npm/linux-x64-musl/README.md",
"repo_id": "tokenizers",
"token_count": 38
} | 223 |
use crate::arc_rwlock_serde;
use napi::bindgen_prelude::*;
use napi_derive::napi;
use serde::{Deserialize, Serialize};
use std::sync::{Arc, RwLock};
use tk::pre_tokenizers::PreTokenizerWrapper;
use tk::PreTokenizedString;
use tk::SplitDelimiterBehavior;
use tokenizers as tk;
#[napi(string_enum)]
pub enum JsSplitDelimiterBehavior {
Removed,
Isolated,
MergedWithPrevious,
MergedWithNext,
Contiguous,
}
impl TryFrom<String> for JsSplitDelimiterBehavior {
type Error = Error;
fn try_from(value: String) -> Result<Self> {
match &value[..] {
"removed" => Ok(JsSplitDelimiterBehavior::Removed),
"isolated" => Ok(JsSplitDelimiterBehavior::Isolated),
"mergedWithPrevious" => Ok(JsSplitDelimiterBehavior::MergedWithPrevious),
"mergedWithNext" => Ok(JsSplitDelimiterBehavior::MergedWithNext),
"contiguous" => Ok(JsSplitDelimiterBehavior::Contiguous),
_ => Err(Error::from_reason(
"Wrong value for SplitDelimiterBehavior, expected one of: \
`removed, isolated, mergedWithPrevious, mergedWithNext, contiguous`"
.to_string(),
)),
}
}
}
impl From<JsSplitDelimiterBehavior> for SplitDelimiterBehavior {
fn from(value: JsSplitDelimiterBehavior) -> Self {
match value {
JsSplitDelimiterBehavior::Removed => SplitDelimiterBehavior::Removed,
JsSplitDelimiterBehavior::Isolated => SplitDelimiterBehavior::Isolated,
JsSplitDelimiterBehavior::MergedWithPrevious => SplitDelimiterBehavior::MergedWithPrevious,
JsSplitDelimiterBehavior::MergedWithNext => SplitDelimiterBehavior::MergedWithNext,
JsSplitDelimiterBehavior::Contiguous => SplitDelimiterBehavior::Contiguous,
}
}
}
/// PreTokenizers
#[derive(Clone, Debug, Serialize, Deserialize)]
#[napi]
pub struct PreTokenizer {
#[serde(flatten, with = "arc_rwlock_serde")]
pretok: Option<Arc<RwLock<PreTokenizerWrapper>>>,
}
impl tk::PreTokenizer for PreTokenizer {
fn pre_tokenize(&self, pretokenized: &mut PreTokenizedString) -> tk::Result<()> {
self
.pretok
.as_ref()
.ok_or("Uninitialized PreTokenizer")?
.read()
.unwrap()
.pre_tokenize(pretokenized)?;
Ok(())
}
}
#[napi]
impl PreTokenizer {
#[napi(ts_return_type = "[string, [number, number]][]")]
pub fn pre_tokenize_string(&self, sequence: String, env: Env) -> Result<Vec<Array>> {
use tk::PreTokenizer;
let mut pretokenized = PreTokenizedString::from(sequence);
self
.pre_tokenize(&mut pretokenized)
.map_err(|e| Error::from_reason(format!("{}", e)))?;
pretokenized
.get_splits(tk::OffsetReferential::Original, tk::OffsetType::Char)
.into_iter()
.map(|(s, (start, end), _)| -> Result<Array> {
let mut arr = env.create_array(2)?;
let mut offset = env.create_array(2)?;
offset.set(0, env.create_uint32(start as u32)?)?;
offset.set(1, env.create_uint32(end as u32)?)?;
arr.set(0, env.create_string(s)?)?;
arr.set(1, offset)?;
Ok(arr)
})
.collect::<Result<Vec<_>>>()
}
}
/// byte_level(addPrefixSpace: bool = true, useRegex: bool = true)
#[napi]
pub fn byte_level_pre_tokenizer(
add_prefix_space: Option<bool>,
use_regex: Option<bool>,
) -> PreTokenizer {
let mut byte_level = tk::pre_tokenizers::byte_level::ByteLevel::default();
if let Some(add_prefix_space) = add_prefix_space {
byte_level = byte_level.add_prefix_space(add_prefix_space);
}
if let Some(use_regex) = use_regex {
byte_level = byte_level.use_regex(use_regex);
}
PreTokenizer {
pretok: Some(Arc::new(RwLock::new(byte_level.into()))),
}
}
#[napi]
pub fn byte_level_alphabet() -> Vec<String> {
tk::pre_tokenizers::byte_level::ByteLevel::alphabet()
.into_iter()
.map(|c| c.to_string())
.collect::<Vec<_>>()
}
#[napi]
pub fn whitespace_pre_tokenizer() -> PreTokenizer {
PreTokenizer {
pretok: Some(Arc::new(RwLock::new(
tk::pre_tokenizers::whitespace::Whitespace.into(),
))),
}
}
#[napi]
pub fn whitespace_split_pre_tokenizer() -> PreTokenizer {
PreTokenizer {
pretok: Some(Arc::new(RwLock::new(
tk::pre_tokenizers::whitespace::WhitespaceSplit.into(),
))),
}
}
#[napi]
pub fn bert_pre_tokenizer() -> PreTokenizer {
PreTokenizer {
pretok: Some(Arc::new(RwLock::new(
tk::pre_tokenizers::bert::BertPreTokenizer.into(),
))),
}
}
#[napi]
pub fn metaspace_pre_tokenizer(
#[napi(ts_arg_type = "string = '▁'")] replacement: Option<String>,
#[napi(ts_arg_type = "bool = true")] add_prefix_space: Option<bool>,
) -> Result<PreTokenizer> {
let add_prefix_space = add_prefix_space.unwrap_or(true);
let replacement = replacement.unwrap_or("▁".to_string());
if replacement.chars().count() != 1 {
return Err(Error::from_reason(
"replacement is supposed to be a single char",
));
}
let replacement = replacement.chars().next().unwrap();
Ok(PreTokenizer {
pretok: Some(Arc::new(RwLock::new(
tk::pre_tokenizers::metaspace::Metaspace::new(replacement, add_prefix_space).into(),
))),
})
}
#[napi]
pub fn split_pre_tokenizer(
pattern: String,
behavior: String,
invert: Option<bool>,
) -> Result<PreTokenizer> {
let behavior: JsSplitDelimiterBehavior = behavior.try_into()?;
let invert = invert.unwrap_or(false);
Ok(PreTokenizer {
pretok: Some(Arc::new(RwLock::new(
tk::pre_tokenizers::split::Split::new(pattern, behavior.into(), invert)
.map_err(|e| Error::from_reason(e.to_string()))?
.into(),
))),
})
}
#[napi]
pub fn punctuation_pre_tokenizer(behavior: Option<String>) -> Result<PreTokenizer> {
let behavior = match behavior {
Some(behavior) => behavior.try_into()?,
None => JsSplitDelimiterBehavior::Isolated,
};
Ok(PreTokenizer {
pretok: Some(Arc::new(RwLock::new(
tk::pre_tokenizers::punctuation::Punctuation::new(behavior.into()).into(),
))),
})
}
#[napi]
pub fn sequence_pre_tokenizer(pre_tokenizers: Vec<&PreTokenizer>) -> PreTokenizer {
let mut sequence: Vec<PreTokenizerWrapper> = Vec::with_capacity(pre_tokenizers.len());
pre_tokenizers.into_iter().for_each(|pre_tokenizer| {
if let Some(pre_tokenizer) = &pre_tokenizer.pretok {
sequence.push((**pre_tokenizer).read().unwrap().clone())
}
});
PreTokenizer {
pretok: Some(Arc::new(RwLock::new(PreTokenizerWrapper::Sequence(
tk::pre_tokenizers::sequence::Sequence::new(sequence),
)))),
}
}
#[napi]
pub fn char_delimiter_split(delimiter: String) -> Result<PreTokenizer> {
if delimiter.chars().count() != 1 {
return Err(Error::from_reason(
"delimiter is supposed to be a single char",
));
}
let delimiter = delimiter.chars().next().unwrap();
Ok(PreTokenizer {
pretok: Some(Arc::new(RwLock::new(
tk::pre_tokenizers::delimiter::CharDelimiterSplit::new(delimiter).into(),
))),
})
}
#[napi]
pub fn digits_pre_tokenizer(individual_digits: Option<bool>) -> PreTokenizer {
let individual_digits = individual_digits.unwrap_or(false);
PreTokenizer {
pretok: Some(Arc::new(RwLock::new(
tk::pre_tokenizers::digits::Digits::new(individual_digits).into(),
))),
}
}
| tokenizers/bindings/node/src/pre_tokenizers.rs/0 | {
"file_path": "tokenizers/bindings/node/src/pre_tokenizers.rs",
"repo_id": "tokenizers",
"token_count": 2935
} | 224 |
.PHONY: style check-style test
DATA_DIR = data
dir_guard=@mkdir -p $(@D)
check_dirs := examples py_src/tokenizers tests
# Format source code automatically
style:
python stub.py
ruff check $(check_dirs) --fix
ruff format $(check_dirs)t
# Check the source code is formatted correctly
check-style:
python stub.py --check
ruff check examples py_src/tokenizers tests
ruff format --check examples py_src/tokenizers tests
TESTS_RESOURCES = $(DATA_DIR)/small.txt $(DATA_DIR)/roberta.json
# Launch the test suite
test: $(TESTS_RESOURCES)
pip install pytest requests setuptools_rust numpy pyarrow datasets
python -m pytest -s -v tests
cargo test --no-default-features
$(DATA_DIR)/big.txt :
$(dir_guard)
wget https://norvig.com/big.txt -O $@
$(DATA_DIR)/small.txt : $(DATA_DIR)/big.txt
head -100 $(DATA_DIR)/big.txt > $@
$(DATA_DIR)/roberta.json :
$(dir_guard)
wget https://huggingface.co/roberta-large/raw/main/tokenizer.json -O $@
| tokenizers/bindings/python/Makefile/0 | {
"file_path": "tokenizers/bindings/python/Makefile",
"repo_id": "tokenizers",
"token_count": 357
} | 225 |
from typing import Dict, Iterator, List, Optional, Tuple, Union
from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, processors, trainers
from tokenizers.models import BPE
from tokenizers.normalizers import Lowercase, Sequence, unicode_normalizer_from_str
from .base_tokenizer import BaseTokenizer
class ByteLevelBPETokenizer(BaseTokenizer):
"""ByteLevelBPETokenizer
Represents a Byte-level BPE as introduced by OpenAI with their GPT-2 model
"""
def __init__(
self,
vocab: Optional[Union[str, Dict[str, int]]] = None,
merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None,
add_prefix_space: bool = False,
lowercase: bool = False,
dropout: Optional[float] = None,
unicode_normalizer: Optional[str] = None,
continuing_subword_prefix: Optional[str] = None,
end_of_word_suffix: Optional[str] = None,
trim_offsets: bool = False,
):
if vocab is not None and merges is not None:
tokenizer = Tokenizer(
BPE(
vocab,
merges,
dropout=dropout,
continuing_subword_prefix=continuing_subword_prefix or "",
end_of_word_suffix=end_of_word_suffix or "",
)
)
else:
tokenizer = Tokenizer(BPE())
# Check for Unicode normalization first (before everything else)
normalizers = []
if unicode_normalizer:
normalizers += [unicode_normalizer_from_str(unicode_normalizer)]
if lowercase:
normalizers += [Lowercase()]
# Create the normalizer structure
if len(normalizers) > 0:
if len(normalizers) > 1:
tokenizer.normalizer = Sequence(normalizers)
else:
tokenizer.normalizer = normalizers[0]
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=add_prefix_space)
tokenizer.decoder = decoders.ByteLevel()
tokenizer.post_processor = processors.ByteLevel(trim_offsets=trim_offsets)
parameters = {
"model": "ByteLevelBPE",
"add_prefix_space": add_prefix_space,
"lowercase": lowercase,
"dropout": dropout,
"unicode_normalizer": unicode_normalizer,
"continuing_subword_prefix": continuing_subword_prefix,
"end_of_word_suffix": end_of_word_suffix,
"trim_offsets": trim_offsets,
}
super().__init__(tokenizer, parameters)
@staticmethod
def from_file(vocab_filename: str, merges_filename: str, **kwargs):
vocab, merges = BPE.read_file(vocab_filename, merges_filename)
return ByteLevelBPETokenizer(vocab, merges, **kwargs)
def train(
self,
files: Union[str, List[str]],
vocab_size: int = 30000,
min_frequency: int = 2,
show_progress: bool = True,
special_tokens: List[Union[str, AddedToken]] = [],
):
"""Train the model using the given files"""
trainer = trainers.BpeTrainer(
vocab_size=vocab_size,
min_frequency=min_frequency,
show_progress=show_progress,
special_tokens=special_tokens,
initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
)
if isinstance(files, str):
files = [files]
self._tokenizer.train(files, trainer=trainer)
def train_from_iterator(
self,
iterator: Union[Iterator[str], Iterator[Iterator[str]]],
vocab_size: int = 30000,
min_frequency: int = 2,
show_progress: bool = True,
special_tokens: List[Union[str, AddedToken]] = [],
length: Optional[int] = None,
):
"""Train the model using the given iterator"""
trainer = trainers.BpeTrainer(
vocab_size=vocab_size,
min_frequency=min_frequency,
show_progress=show_progress,
special_tokens=special_tokens,
initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
)
self._tokenizer.train_from_iterator(
iterator,
trainer=trainer,
length=length,
)
| tokenizers/bindings/python/py_src/tokenizers/implementations/byte_level_bpe.py/0 | {
"file_path": "tokenizers/bindings/python/py_src/tokenizers/implementations/byte_level_bpe.py",
"repo_id": "tokenizers",
"token_count": 1978
} | 226 |
# Generated content DO NOT EDIT
class Trainer:
"""
Base class for all trainers
This class is not supposed to be instantiated directly. Instead, any implementation of a
Trainer will return an instance of this class when instantiated.
"""
class BpeTrainer(Trainer):
"""
Trainer capable of training a BPE model
Args:
vocab_size (:obj:`int`, `optional`):
The size of the final vocabulary, including all tokens and alphabet.
min_frequency (:obj:`int`, `optional`):
The minimum frequency a pair should have in order to be merged.
show_progress (:obj:`bool`, `optional`):
Whether to show progress bars while training.
special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`):
A list of special tokens the model should know of.
limit_alphabet (:obj:`int`, `optional`):
The maximum different characters to keep in the alphabet.
initial_alphabet (:obj:`List[str]`, `optional`):
A list of characters to include in the initial alphabet, even
if not seen in the training dataset.
If the strings contain more than one character, only the first one
is kept.
continuing_subword_prefix (:obj:`str`, `optional`):
A prefix to be used for every subword that is not a beginning-of-word.
end_of_word_suffix (:obj:`str`, `optional`):
A suffix to be used for every subword that is a end-of-word.
max_token_length (:obj:`int`, `optional`):
Prevents creating tokens longer than the specified size.
This can help with reducing polluting your vocabulary with
highly repetitive tokens like `======` for wikipedia
"""
class UnigramTrainer(Trainer):
"""
Trainer capable of training a Unigram model
Args:
vocab_size (:obj:`int`):
The size of the final vocabulary, including all tokens and alphabet.
show_progress (:obj:`bool`):
Whether to show progress bars while training.
special_tokens (:obj:`List[Union[str, AddedToken]]`):
A list of special tokens the model should know of.
initial_alphabet (:obj:`List[str]`):
A list of characters to include in the initial alphabet, even
if not seen in the training dataset.
If the strings contain more than one character, only the first one
is kept.
shrinking_factor (:obj:`float`):
The shrinking factor used at each step of the training to prune the
vocabulary.
unk_token (:obj:`str`):
The token used for out-of-vocabulary tokens.
max_piece_length (:obj:`int`):
The maximum length of a given token.
n_sub_iterations (:obj:`int`):
The number of iterations of the EM algorithm to perform before
pruning the vocabulary.
"""
def __init__(
self,
vocab_size=8000,
show_progress=True,
special_tokens=[],
shrinking_factor=0.75,
unk_token=None,
max_piece_length=16,
n_sub_iterations=2,
):
pass
class WordLevelTrainer(Trainer):
"""
Trainer capable of training a WorldLevel model
Args:
vocab_size (:obj:`int`, `optional`):
The size of the final vocabulary, including all tokens and alphabet.
min_frequency (:obj:`int`, `optional`):
The minimum frequency a pair should have in order to be merged.
show_progress (:obj:`bool`, `optional`):
Whether to show progress bars while training.
special_tokens (:obj:`List[Union[str, AddedToken]]`):
A list of special tokens the model should know of.
"""
class WordPieceTrainer(Trainer):
"""
Trainer capable of training a WordPiece model
Args:
vocab_size (:obj:`int`, `optional`):
The size of the final vocabulary, including all tokens and alphabet.
min_frequency (:obj:`int`, `optional`):
The minimum frequency a pair should have in order to be merged.
show_progress (:obj:`bool`, `optional`):
Whether to show progress bars while training.
special_tokens (:obj:`List[Union[str, AddedToken]]`, `optional`):
A list of special tokens the model should know of.
limit_alphabet (:obj:`int`, `optional`):
The maximum different characters to keep in the alphabet.
initial_alphabet (:obj:`List[str]`, `optional`):
A list of characters to include in the initial alphabet, even
if not seen in the training dataset.
If the strings contain more than one character, only the first one
is kept.
continuing_subword_prefix (:obj:`str`, `optional`):
A prefix to be used for every subword that is not a beginning-of-word.
end_of_word_suffix (:obj:`str`, `optional`):
A suffix to be used for every subword that is a end-of-word.
"""
def __init__(
self,
vocab_size=30000,
min_frequency=0,
show_progress=True,
special_tokens=[],
limit_alphabet=None,
initial_alphabet=[],
continuing_subword_prefix="##",
end_of_word_suffix=None,
):
pass
| tokenizers/bindings/python/py_src/tokenizers/trainers/__init__.pyi/0 | {
"file_path": "tokenizers/bindings/python/py_src/tokenizers/trainers/__init__.pyi",
"repo_id": "tokenizers",
"token_count": 2178
} | 227 |
use std::collections::{hash_map::DefaultHasher, HashMap};
use std::hash::{Hash, Hasher};
use numpy::{npyffi, PyArray1};
use pyo3::class::basic::CompareOp;
use pyo3::exceptions;
use pyo3::intern;
use pyo3::prelude::*;
use pyo3::types::*;
use tk::models::bpe::BPE;
use tk::tokenizer::{
Model, PaddingDirection, PaddingParams, PaddingStrategy, PostProcessor, TokenizerImpl,
TruncationDirection, TruncationParams, TruncationStrategy,
};
use tk::utils::iter::ResultShunt;
use tokenizers as tk;
use super::decoders::PyDecoder;
use super::encoding::PyEncoding;
use super::error::{PyError, ToPyResult};
use super::models::PyModel;
use super::normalizers::PyNormalizer;
use super::pre_tokenizers::PyPreTokenizer;
use super::trainers::PyTrainer;
use crate::processors::PyPostProcessor;
use crate::utils::{MaybeSizedIterator, PyBufferedIterator};
use std::collections::BTreeMap;
/// Represents a token that can be be added to a :class:`~tokenizers.Tokenizer`.
/// It can have special options that defines the way it should behave.
///
/// Args:
/// content (:obj:`str`): The content of the token
///
/// single_word (:obj:`bool`, defaults to :obj:`False`):
/// Defines whether this token should only match single words. If :obj:`True`, this
/// token will never match inside of a word. For example the token ``ing`` would match
/// on ``tokenizing`` if this option is :obj:`False`, but not if it is :obj:`True`.
/// The notion of "`inside of a word`" is defined by the word boundaries pattern in
/// regular expressions (ie. the token should start and end with word boundaries).
///
/// lstrip (:obj:`bool`, defaults to :obj:`False`):
/// Defines whether this token should strip all potential whitespaces on its left side.
/// If :obj:`True`, this token will greedily match any whitespace on its left. For
/// example if we try to match the token ``[MASK]`` with ``lstrip=True``, in the text
/// ``"I saw a [MASK]"``, we would match on ``" [MASK]"``. (Note the space on the left).
///
/// rstrip (:obj:`bool`, defaults to :obj:`False`):
/// Defines whether this token should strip all potential whitespaces on its right
/// side. If :obj:`True`, this token will greedily match any whitespace on its right.
/// It works just like :obj:`lstrip` but on the right.
///
/// normalized (:obj:`bool`, defaults to :obj:`True` with :meth:`~tokenizers.Tokenizer.add_tokens` and :obj:`False` with :meth:`~tokenizers.Tokenizer.add_special_tokens`):
/// Defines whether this token should match against the normalized version of the input
/// text. For example, with the added token ``"yesterday"``, and a normalizer in charge of
/// lowercasing the text, the token could be extract from the input ``"I saw a lion
/// Yesterday"``.
/// special (:obj:`bool`, defaults to :obj:`False` with :meth:`~tokenizers.Tokenizer.add_tokens` and :obj:`False` with :meth:`~tokenizers.Tokenizer.add_special_tokens`):
/// Defines whether this token should be skipped when decoding.
///
#[pyclass(dict, module = "tokenizers", name = "AddedToken")]
pub struct PyAddedToken {
pub content: String,
pub special: bool,
pub single_word: Option<bool>,
pub lstrip: Option<bool>,
pub rstrip: Option<bool>,
pub normalized: Option<bool>,
}
impl PyAddedToken {
pub fn from<S: Into<String>>(content: S, special: Option<bool>) -> Self {
Self {
content: content.into(),
special: special.unwrap_or(false),
single_word: None,
lstrip: None,
rstrip: None,
normalized: None,
}
}
pub fn get_token(&self) -> tk::tokenizer::AddedToken {
let mut token = tk::AddedToken::from(&self.content, self.special);
if let Some(sw) = self.single_word {
token = token.single_word(sw);
}
if let Some(ls) = self.lstrip {
token = token.lstrip(ls);
}
if let Some(rs) = self.rstrip {
token = token.rstrip(rs);
}
if let Some(n) = self.normalized {
token = token.normalized(n);
}
token
}
pub fn as_pydict<'py>(&self, py: Python<'py>) -> PyResult<&'py PyDict> {
let dict = PyDict::new(py);
let token = self.get_token();
dict.set_item("content", token.content)?;
dict.set_item("single_word", token.single_word)?;
dict.set_item("lstrip", token.lstrip)?;
dict.set_item("rstrip", token.rstrip)?;
dict.set_item("normalized", token.normalized)?;
dict.set_item("special", token.special)?;
Ok(dict)
}
}
impl From<tk::AddedToken> for PyAddedToken {
fn from(token: tk::AddedToken) -> Self {
Self {
content: token.content,
single_word: Some(token.single_word),
lstrip: Some(token.lstrip),
rstrip: Some(token.rstrip),
normalized: Some(token.normalized),
special: token.special,
}
}
}
#[pymethods]
impl PyAddedToken {
#[new]
#[pyo3(signature = (content=None, **kwargs), text_signature = "(self, content, single_word=False, lstrip=False, rstrip=False, normalized=True, special=False)")]
fn __new__(content: Option<&str>, kwargs: Option<&PyDict>) -> PyResult<Self> {
let mut token = PyAddedToken::from(content.unwrap_or(""), None);
if let Some(kwargs) = kwargs {
for (key, value) in kwargs {
let key: &str = key.extract()?;
match key {
"single_word" => token.single_word = Some(value.extract()?),
"lstrip" => token.lstrip = Some(value.extract()?),
"rstrip" => token.rstrip = Some(value.extract()?),
"normalized" => token.normalized = Some(value.extract()?),
"special" => token.special = value.extract()?,
_ => println!("Ignored unknown kwarg option {}", key),
}
}
}
Ok(token)
}
fn __getstate__<'py>(&self, py: Python<'py>) -> PyResult<&'py PyDict> {
self.as_pydict(py)
}
fn __setstate__(&mut self, py: Python, state: PyObject) -> PyResult<()> {
match state.extract::<&PyDict>(py) {
Ok(state) => {
for (key, value) in state {
let key: &str = key.extract()?;
match key {
"content" => self.content = value.extract()?,
"single_word" => self.single_word = Some(value.extract()?),
"lstrip" => self.lstrip = Some(value.extract()?),
"rstrip" => self.rstrip = Some(value.extract()?),
"normalized" => self.normalized = Some(value.extract()?),
"special" => self.special = value.extract()?,
_ => {}
}
}
Ok(())
}
Err(e) => Err(e),
}
}
/// Get the content of this :obj:`AddedToken`
#[getter]
fn get_content(&self) -> &str {
&self.content
}
/// Set the content of this :obj:`AddedToken`
#[setter]
fn set_content(&mut self, content: String) {
self.content = content;
}
/// Get the value of the :obj:`rstrip` option
#[getter]
fn get_rstrip(&self) -> bool {
self.get_token().rstrip
}
/// Get the value of the :obj:`lstrip` option
#[getter]
fn get_lstrip(&self) -> bool {
self.get_token().lstrip
}
/// Get the value of the :obj:`single_word` option
#[getter]
fn get_single_word(&self) -> bool {
self.get_token().single_word
}
/// Get the value of the :obj:`normalized` option
#[getter]
fn get_normalized(&self) -> bool {
self.get_token().normalized
}
/// Get the value of the :obj:`special` option
#[getter]
fn get_special(&self) -> bool {
self.get_token().special
}
/// Set the value of the :obj:`special` option
#[setter]
fn set_special(&mut self, special: bool) {
self.special = special;
}
fn __str__(&self) -> PyResult<&str> {
Ok(&self.content)
}
fn __repr__(&self) -> PyResult<String> {
let bool_to_python = |p| match p {
true => "True",
false => "False",
};
let token = self.get_token();
Ok(format!(
"AddedToken(\"{}\", rstrip={}, lstrip={}, single_word={}, normalized={}, special={})",
self.content,
bool_to_python(token.rstrip),
bool_to_python(token.lstrip),
bool_to_python(token.single_word),
bool_to_python(token.normalized),
bool_to_python(token.special)
))
}
fn __richcmp__(&self, other: Py<PyAddedToken>, op: CompareOp) -> bool {
use CompareOp::*;
Python::with_gil(|py| match op {
Lt | Le | Gt | Ge => false,
Eq => self.get_token() == other.borrow(py).get_token(),
Ne => self.get_token() != other.borrow(py).get_token(),
})
}
fn __hash__(&self) -> u64 {
let mut hasher = DefaultHasher::new();
self.get_token().hash(&mut hasher);
hasher.finish()
}
}
struct TextInputSequence<'s>(tk::InputSequence<'s>);
impl<'s> FromPyObject<'s> for TextInputSequence<'s> {
fn extract(ob: &'s PyAny) -> PyResult<Self> {
let err = exceptions::PyTypeError::new_err("TextInputSequence must be str");
if let Ok(s) = ob.downcast::<PyString>() {
Ok(Self(s.to_string_lossy().into()))
} else {
Err(err)
}
}
}
impl<'s> From<TextInputSequence<'s>> for tk::InputSequence<'s> {
fn from(s: TextInputSequence<'s>) -> Self {
s.0
}
}
struct PyArrayUnicode(Vec<String>);
impl FromPyObject<'_> for PyArrayUnicode {
fn extract(ob: &PyAny) -> PyResult<Self> {
// SAFETY Making sure the pointer is a valid numpy array requires calling numpy C code
if unsafe { npyffi::PyArray_Check(ob.py(), ob.as_ptr()) } == 0 {
return Err(exceptions::PyTypeError::new_err("Expected an np.array"));
}
let arr = ob.as_ptr() as *mut npyffi::PyArrayObject;
// SAFETY Getting all the metadata about the numpy array to check its sanity
let (type_num, elsize, alignment, data, nd, flags) = unsafe {
let desc = (*arr).descr;
(
(*desc).type_num,
(*desc).elsize as usize,
(*desc).alignment as usize,
(*arr).data,
(*arr).nd,
(*arr).flags,
)
};
if nd != 1 {
return Err(exceptions::PyTypeError::new_err(
"Expected a 1 dimensional np.array",
));
}
if flags & (npyffi::NPY_ARRAY_C_CONTIGUOUS | npyffi::NPY_ARRAY_F_CONTIGUOUS) == 0 {
return Err(exceptions::PyTypeError::new_err(
"Expected a contiguous np.array",
));
}
if type_num != npyffi::types::NPY_TYPES::NPY_UNICODE as i32 {
return Err(exceptions::PyTypeError::new_err(
"Expected a np.array[dtype='U']",
));
}
// SAFETY Looking at the raw numpy data to create new owned Rust strings via copies (so it's safe afterwards).
unsafe {
let n_elem = *(*arr).dimensions as usize;
let all_bytes = std::slice::from_raw_parts(data as *const u8, elsize * n_elem);
let seq = (0..n_elem)
.map(|i| {
let bytes = &all_bytes[i * elsize..(i + 1) * elsize];
let unicode = pyo3::ffi::PyUnicode_FromKindAndData(
pyo3::ffi::PyUnicode_4BYTE_KIND as _,
bytes.as_ptr() as *const _,
elsize as isize / alignment as isize,
);
let py = ob.py();
let obj = PyObject::from_owned_ptr(py, unicode);
let s = obj.downcast::<PyString>(py)?;
Ok(s.to_string_lossy().trim_matches(char::from(0)).to_owned())
})
.collect::<PyResult<Vec<_>>>()?;
Ok(Self(seq))
}
}
}
impl From<PyArrayUnicode> for tk::InputSequence<'_> {
fn from(s: PyArrayUnicode) -> Self {
s.0.into()
}
}
struct PyArrayStr(Vec<String>);
impl FromPyObject<'_> for PyArrayStr {
fn extract(ob: &PyAny) -> PyResult<Self> {
let array = ob.downcast::<PyArray1<PyObject>>()?;
let seq = array
.readonly()
.as_array()
.iter()
.map(|obj| {
let s = obj.downcast::<PyString>(ob.py())?;
Ok(s.to_string_lossy().into_owned())
})
.collect::<PyResult<Vec<_>>>()?;
Ok(Self(seq))
}
}
impl From<PyArrayStr> for tk::InputSequence<'_> {
fn from(s: PyArrayStr) -> Self {
s.0.into()
}
}
struct PreTokenizedInputSequence<'s>(tk::InputSequence<'s>);
impl<'s> FromPyObject<'s> for PreTokenizedInputSequence<'s> {
fn extract(ob: &'s PyAny) -> PyResult<Self> {
if let Ok(seq) = ob.extract::<PyArrayUnicode>() {
return Ok(Self(seq.into()));
}
if let Ok(seq) = ob.extract::<PyArrayStr>() {
return Ok(Self(seq.into()));
}
if let Ok(s) = ob.downcast::<PyList>() {
if let Ok(seq) = s.extract::<Vec<&str>>() {
return Ok(Self(seq.into()));
}
}
if let Ok(s) = ob.downcast::<PyTuple>() {
if let Ok(seq) = s.extract::<Vec<&str>>() {
return Ok(Self(seq.into()));
}
}
Err(exceptions::PyTypeError::new_err(
"PreTokenizedInputSequence must be Union[List[str], Tuple[str]]",
))
}
}
impl<'s> From<PreTokenizedInputSequence<'s>> for tk::InputSequence<'s> {
fn from(s: PreTokenizedInputSequence<'s>) -> Self {
s.0
}
}
struct TextEncodeInput<'s>(tk::EncodeInput<'s>);
impl<'s> FromPyObject<'s> for TextEncodeInput<'s> {
fn extract(ob: &'s PyAny) -> PyResult<Self> {
if let Ok(i) = ob.extract::<TextInputSequence>() {
return Ok(Self(i.into()));
}
if let Ok((i1, i2)) = ob.extract::<(TextInputSequence, TextInputSequence)>() {
return Ok(Self((i1, i2).into()));
}
if let Ok(arr) = ob.extract::<Vec<&PyAny>>() {
if arr.len() == 2 {
let first = arr[0].extract::<TextInputSequence>()?;
let second = arr[1].extract::<TextInputSequence>()?;
return Ok(Self((first, second).into()));
}
}
Err(exceptions::PyTypeError::new_err(
"TextEncodeInput must be Union[TextInputSequence, Tuple[InputSequence, InputSequence]]",
))
}
}
impl<'s> From<TextEncodeInput<'s>> for tk::tokenizer::EncodeInput<'s> {
fn from(i: TextEncodeInput<'s>) -> Self {
i.0
}
}
struct PreTokenizedEncodeInput<'s>(tk::EncodeInput<'s>);
impl<'s> FromPyObject<'s> for PreTokenizedEncodeInput<'s> {
fn extract(ob: &'s PyAny) -> PyResult<Self> {
if let Ok(i) = ob.extract::<PreTokenizedInputSequence>() {
return Ok(Self(i.into()));
}
if let Ok((i1, i2)) = ob.extract::<(PreTokenizedInputSequence, PreTokenizedInputSequence)>()
{
return Ok(Self((i1, i2).into()));
}
if let Ok(arr) = ob.extract::<Vec<&PyAny>>() {
if arr.len() == 2 {
let first = arr[0].extract::<PreTokenizedInputSequence>()?;
let second = arr[1].extract::<PreTokenizedInputSequence>()?;
return Ok(Self((first, second).into()));
}
}
Err(exceptions::PyTypeError::new_err(
"PreTokenizedEncodeInput must be Union[PreTokenizedInputSequence, \
Tuple[PreTokenizedInputSequence, PreTokenizedInputSequence]]",
))
}
}
impl<'s> From<PreTokenizedEncodeInput<'s>> for tk::tokenizer::EncodeInput<'s> {
fn from(i: PreTokenizedEncodeInput<'s>) -> Self {
i.0
}
}
type Tokenizer = TokenizerImpl<PyModel, PyNormalizer, PyPreTokenizer, PyPostProcessor, PyDecoder>;
/// A :obj:`Tokenizer` works as a pipeline. It processes some raw text as input
/// and outputs an :class:`~tokenizers.Encoding`.
///
/// Args:
/// model (:class:`~tokenizers.models.Model`):
/// The core algorithm that this :obj:`Tokenizer` should be using.
///
#[pyclass(dict, module = "tokenizers", name = "Tokenizer")]
#[derive(Clone)]
pub struct PyTokenizer {
tokenizer: Tokenizer,
}
impl PyTokenizer {
fn new(tokenizer: Tokenizer) -> Self {
PyTokenizer { tokenizer }
}
fn from_model(model: PyModel) -> Self {
PyTokenizer::new(TokenizerImpl::new(model))
}
}
#[pymethods]
impl PyTokenizer {
#[new]
#[pyo3(text_signature = "(self, model)")]
fn __new__(model: PyRef<PyModel>) -> Self {
PyTokenizer::from_model(model.clone())
}
fn __getstate__(&self, py: Python) -> PyResult<PyObject> {
let data = serde_json::to_string(&self.tokenizer).map_err(|e| {
exceptions::PyException::new_err(format!(
"Error while attempting to pickle Tokenizer: {}",
e
))
})?;
Ok(PyBytes::new(py, data.as_bytes()).to_object(py))
}
fn __setstate__(&mut self, py: Python, state: PyObject) -> PyResult<()> {
match state.extract::<&PyBytes>(py) {
Ok(s) => {
self.tokenizer = serde_json::from_slice(s.as_bytes()).map_err(|e| {
exceptions::PyException::new_err(format!(
"Error while attempting to unpickle Tokenizer: {}",
e
))
})?;
Ok(())
}
Err(e) => Err(e),
}
}
fn __getnewargs__<'p>(&self, py: Python<'p>) -> &'p PyTuple {
let model = PyModel::from(BPE::default()).into_py(py);
PyTuple::new(py, vec![model])
}
/// Instantiate a new :class:`~tokenizers.Tokenizer` from the given JSON string.
///
/// Args:
/// json (:obj:`str`):
/// A valid JSON string representing a previously serialized
/// :class:`~tokenizers.Tokenizer`
///
/// Returns:
/// :class:`~tokenizers.Tokenizer`: The new tokenizer
#[staticmethod]
#[pyo3(text_signature = "(json)")]
fn from_str(json: &str) -> PyResult<Self> {
let tokenizer: PyResult<_> = ToPyResult(json.parse()).into();
Ok(Self::new(tokenizer?))
}
/// Instantiate a new :class:`~tokenizers.Tokenizer` from the file at the given path.
///
/// Args:
/// path (:obj:`str`):
/// A path to a local JSON file representing a previously serialized
/// :class:`~tokenizers.Tokenizer`
///
/// Returns:
/// :class:`~tokenizers.Tokenizer`: The new tokenizer
#[staticmethod]
#[pyo3(text_signature = "(path)")]
fn from_file(path: &str) -> PyResult<Self> {
let tokenizer: PyResult<_> = ToPyResult(Tokenizer::from_file(path)).into();
Ok(Self::new(tokenizer?))
}
/// Instantiate a new :class:`~tokenizers.Tokenizer` from the given buffer.
///
/// Args:
/// buffer (:obj:`bytes`):
/// A buffer containing a previously serialized :class:`~tokenizers.Tokenizer`
///
/// Returns:
/// :class:`~tokenizers.Tokenizer`: The new tokenizer
#[staticmethod]
#[pyo3(text_signature = "(buffer)")]
fn from_buffer(buffer: &PyBytes) -> PyResult<Self> {
let tokenizer = serde_json::from_slice(buffer.as_bytes()).map_err(|e| {
exceptions::PyValueError::new_err(format!(
"Cannot instantiate Tokenizer from buffer: {}",
e
))
})?;
Ok(Self { tokenizer })
}
/// Instantiate a new :class:`~tokenizers.Tokenizer` from an existing file on the
/// Hugging Face Hub.
///
/// Args:
/// identifier (:obj:`str`):
/// The identifier of a Model on the Hugging Face Hub, that contains
/// a tokenizer.json file
/// revision (:obj:`str`, defaults to `main`):
/// A branch or commit id
/// auth_token (:obj:`str`, `optional`, defaults to `None`):
/// An optional auth token used to access private repositories on the
/// Hugging Face Hub
///
/// Returns:
/// :class:`~tokenizers.Tokenizer`: The new tokenizer
#[staticmethod]
#[pyo3(signature = (identifier, revision = String::from("main"), auth_token = None))]
#[pyo3(text_signature = "(identifier, revision=\"main\", auth_token=None)")]
fn from_pretrained(
identifier: &str,
revision: String,
auth_token: Option<String>,
) -> PyResult<Self> {
let path = Python::with_gil(|py| -> PyResult<String> {
let huggingface_hub = PyModule::import(py, intern!(py, "huggingface_hub"))?;
let hf_hub_download = huggingface_hub.getattr(intern!(py, "hf_hub_download"))?;
let kwargs = [
(intern!(py, "repo_id"), identifier),
(intern!(py, "filename"), "tokenizer.json"),
(intern!(py, "revision"), &revision),
]
.into_py_dict(py);
if let Some(auth_token) = auth_token {
kwargs.set_item(intern!(py, "token"), auth_token)?;
}
let path: String = hf_hub_download.call((), Some(kwargs))?.extract()?;
Ok(path)
})?;
let tokenizer: PyResult<_> = ToPyResult(Tokenizer::from_file(path)).into();
Ok(Self::new(tokenizer?))
}
/// Gets a serialized string representing this :class:`~tokenizers.Tokenizer`.
///
/// Args:
/// pretty (:obj:`bool`, defaults to :obj:`False`):
/// Whether the JSON string should be pretty formatted.
///
/// Returns:
/// :obj:`str`: A string representing the serialized Tokenizer
#[pyo3(signature = (pretty = false))]
#[pyo3(text_signature = "(self, pretty=False)")]
fn to_str(&self, pretty: bool) -> PyResult<String> {
ToPyResult(self.tokenizer.to_string(pretty)).into()
}
/// Save the :class:`~tokenizers.Tokenizer` to the file at the given path.
///
/// Args:
/// path (:obj:`str`):
/// A path to a file in which to save the serialized tokenizer.
///
/// pretty (:obj:`bool`, defaults to :obj:`True`):
/// Whether the JSON file should be pretty formatted.
#[pyo3(signature = (path, pretty = true))]
#[pyo3(text_signature = "(self, path, pretty=True)")]
fn save(&self, path: &str, pretty: bool) -> PyResult<()> {
ToPyResult(self.tokenizer.save(path, pretty)).into()
}
/// Return the number of special tokens that would be added for single/pair sentences.
/// :param is_pair: Boolean indicating if the input would be a single sentence or a pair
/// :return:
#[pyo3(text_signature = "(self, is_pair)")]
fn num_special_tokens_to_add(&self, is_pair: bool) -> usize {
self.tokenizer
.get_post_processor()
.map_or(0, |p| p.added_tokens(is_pair))
}
/// Get the underlying vocabulary
///
/// Args:
/// with_added_tokens (:obj:`bool`, defaults to :obj:`True`):
/// Whether to include the added tokens
///
/// Returns:
/// :obj:`Dict[str, int]`: The vocabulary
#[pyo3(signature = (with_added_tokens = true))]
#[pyo3(text_signature = "(self, with_added_tokens=True)")]
fn get_vocab(&self, with_added_tokens: bool) -> HashMap<String, u32> {
self.tokenizer.get_vocab(with_added_tokens)
}
/// Get the underlying vocabulary
///
/// Returns:
/// :obj:`Dict[int, AddedToken]`: The vocabulary
#[pyo3(signature = ())]
#[pyo3(text_signature = "(self)")]
fn get_added_tokens_decoder(&self) -> BTreeMap<u32, PyAddedToken> {
let mut sorted_map = BTreeMap::new();
for (key, value) in self.tokenizer.get_added_tokens_decoder() {
sorted_map.insert(key, value.into());
}
sorted_map
}
/// Get the size of the underlying vocabulary
///
/// Args:
/// with_added_tokens (:obj:`bool`, defaults to :obj:`True`):
/// Whether to include the added tokens
///
/// Returns:
/// :obj:`int`: The size of the vocabulary
#[pyo3(signature = (with_added_tokens = true))]
#[pyo3(text_signature = "(self, with_added_tokens=True)")]
fn get_vocab_size(&self, with_added_tokens: bool) -> usize {
self.tokenizer.get_vocab_size(with_added_tokens)
}
/// Enable truncation
///
/// Args:
/// max_length (:obj:`int`):
/// The max length at which to truncate
///
/// stride (:obj:`int`, `optional`):
/// The length of the previous first sequence to be included in the overflowing
/// sequence
///
/// strategy (:obj:`str`, `optional`, defaults to :obj:`longest_first`):
/// The strategy used to truncation. Can be one of ``longest_first``, ``only_first`` or
/// ``only_second``.
///
/// direction (:obj:`str`, defaults to :obj:`right`):
/// Truncate direction
#[pyo3(signature = (max_length, **kwargs))]
#[pyo3(
text_signature = "(self, max_length, stride=0, strategy='longest_first', direction='right')"
)]
fn enable_truncation(&mut self, max_length: usize, kwargs: Option<&PyDict>) -> PyResult<()> {
let mut params = TruncationParams {
max_length,
..Default::default()
};
if let Some(kwargs) = kwargs {
for (key, value) in kwargs {
let key: &str = key.extract()?;
match key {
"stride" => params.stride = value.extract()?,
"strategy" => {
let value: &str = value.extract()?;
params.strategy = match value {
"longest_first" => Ok(TruncationStrategy::LongestFirst),
"only_first" => Ok(TruncationStrategy::OnlyFirst),
"only_second" => Ok(TruncationStrategy::OnlySecond),
_ => Err(PyError(format!(
"Unknown `strategy`: `{}`. Use \
one of `longest_first`, `only_first`, or `only_second`",
value
))
.into_pyerr::<exceptions::PyValueError>()),
}?
}
"direction" => {
let value: &str = value.extract()?;
params.direction = match value {
"left" => Ok(TruncationDirection::Left),
"right" => Ok(TruncationDirection::Right),
_ => Err(PyError(format!(
"Unknown `direction`: `{}`. Use \
one of `left` or `right`.",
value
))
.into_pyerr::<exceptions::PyValueError>()),
}?
}
_ => println!("Ignored unknown kwarg option {}", key),
}
}
}
if let Err(error_message) = self.tokenizer.with_truncation(Some(params)) {
return Err(PyError(error_message.to_string()).into_pyerr::<exceptions::PyValueError>());
}
Ok(())
}
/// Disable truncation
#[pyo3(text_signature = "(self)")]
fn no_truncation(&mut self) {
self.tokenizer
.with_truncation(None)
.expect("Failed to set truncation to `None`! This should never happen");
}
/// Get the currently set truncation parameters
///
/// `Cannot set, use` :meth:`~tokenizers.Tokenizer.enable_truncation` `instead`
///
/// Returns:
/// (:obj:`dict`, `optional`):
/// A dict with the current truncation parameters if truncation is enabled
#[getter]
fn get_truncation<'py>(&self, py: Python<'py>) -> PyResult<Option<&'py PyDict>> {
self.tokenizer.get_truncation().map_or(Ok(None), |params| {
let dict = PyDict::new(py);
dict.set_item("max_length", params.max_length)?;
dict.set_item("stride", params.stride)?;
dict.set_item("strategy", params.strategy.as_ref())?;
dict.set_item("direction", params.direction.as_ref())?;
Ok(Some(dict))
})
}
/// Enable the padding
///
/// Args:
/// direction (:obj:`str`, `optional`, defaults to :obj:`right`):
/// The direction in which to pad. Can be either ``right`` or ``left``
///
/// pad_to_multiple_of (:obj:`int`, `optional`):
/// If specified, the padding length should always snap to the next multiple of the
/// given value. For example if we were going to pad witha length of 250 but
/// ``pad_to_multiple_of=8`` then we will pad to 256.
///
/// pad_id (:obj:`int`, defaults to 0):
/// The id to be used when padding
///
/// pad_type_id (:obj:`int`, defaults to 0):
/// The type id to be used when padding
///
/// pad_token (:obj:`str`, defaults to :obj:`[PAD]`):
/// The pad token to be used when padding
///
/// length (:obj:`int`, `optional`):
/// If specified, the length at which to pad. If not specified we pad using the size of
/// the longest sequence in a batch.
#[pyo3(signature = (**kwargs))]
#[pyo3(
text_signature = "(self, direction='right', pad_id=0, pad_type_id=0, pad_token='[PAD]', length=None, pad_to_multiple_of=None)"
)]
fn enable_padding(&mut self, kwargs: Option<&PyDict>) -> PyResult<()> {
let mut params = PaddingParams::default();
if let Some(kwargs) = kwargs {
for (key, value) in kwargs {
let key: &str = key.extract()?;
match key {
"direction" => {
let value: &str = value.extract()?;
params.direction = match value {
"left" => Ok(PaddingDirection::Left),
"right" => Ok(PaddingDirection::Right),
other => Err(PyError(format!(
"Unknown `direction`: `{}`. Use \
one of `left` or `right`",
other
))
.into_pyerr::<exceptions::PyValueError>()),
}?;
}
"pad_to_multiple_of" => {
if let Some(multiple) = value.extract()? {
params.pad_to_multiple_of = multiple;
}
}
"pad_id" => params.pad_id = value.extract()?,
"pad_type_id" => params.pad_type_id = value.extract()?,
"pad_token" => params.pad_token = value.extract()?,
"max_length" => {
println!(
"enable_padding(max_length=X) is deprecated, \
use enable_padding(length=X) instead"
);
if let Some(l) = value.extract()? {
params.strategy = PaddingStrategy::Fixed(l);
} else {
params.strategy = PaddingStrategy::BatchLongest;
}
}
"length" => {
if let Some(l) = value.extract()? {
params.strategy = PaddingStrategy::Fixed(l);
} else {
params.strategy = PaddingStrategy::BatchLongest;
}
}
_ => println!("Ignored unknown kwarg option {}", key),
}
}
}
self.tokenizer.with_padding(Some(params));
Ok(())
}
/// Disable padding
#[pyo3(text_signature = "(self)")]
fn no_padding(&mut self) {
self.tokenizer.with_padding(None);
}
/// Get the current padding parameters
///
/// `Cannot be set, use` :meth:`~tokenizers.Tokenizer.enable_padding` `instead`
///
/// Returns:
/// (:obj:`dict`, `optional`):
/// A dict with the current padding parameters if padding is enabled
#[getter]
fn get_padding<'py>(&self, py: Python<'py>) -> PyResult<Option<&'py PyDict>> {
self.tokenizer.get_padding().map_or(Ok(None), |params| {
let dict = PyDict::new(py);
dict.set_item(
"length",
match params.strategy {
tk::PaddingStrategy::BatchLongest => None,
tk::PaddingStrategy::Fixed(size) => Some(size),
},
)?;
dict.set_item("pad_to_multiple_of", params.pad_to_multiple_of)?;
dict.set_item("pad_id", params.pad_id)?;
dict.set_item("pad_token", ¶ms.pad_token)?;
dict.set_item("pad_type_id", params.pad_type_id)?;
dict.set_item("direction", params.direction.as_ref())?;
Ok(Some(dict))
})
}
/// Encode the given sequence and pair. This method can process raw text sequences
/// as well as already pre-tokenized sequences.
///
/// Example:
/// Here are some examples of the inputs that are accepted::
///
/// encode("A single sequence")`
/// encode("A sequence", "And its pair")`
/// encode([ "A", "pre", "tokenized", "sequence" ], is_pretokenized=True)`
/// encode(
/// [ "A", "pre", "tokenized", "sequence" ], [ "And", "its", "pair" ],
/// is_pretokenized=True
/// )
///
/// Args:
/// sequence (:obj:`~tokenizers.InputSequence`):
/// The main input sequence we want to encode. This sequence can be either raw
/// text or pre-tokenized, according to the ``is_pretokenized`` argument:
///
/// - If ``is_pretokenized=False``: :class:`~tokenizers.TextInputSequence`
/// - If ``is_pretokenized=True``: :class:`~tokenizers.PreTokenizedInputSequence`
///
/// pair (:obj:`~tokenizers.InputSequence`, `optional`):
/// An optional input sequence. The expected format is the same that for ``sequence``.
///
/// is_pretokenized (:obj:`bool`, defaults to :obj:`False`):
/// Whether the input is already pre-tokenized
///
/// add_special_tokens (:obj:`bool`, defaults to :obj:`True`):
/// Whether to add the special tokens
///
/// Returns:
/// :class:`~tokenizers.Encoding`: The encoded result
///
#[pyo3(signature = (sequence, pair = None, is_pretokenized = false, add_special_tokens = true))]
#[pyo3(
text_signature = "(self, sequence, pair=None, is_pretokenized=False, add_special_tokens=True)"
)]
fn encode(
&self,
sequence: &PyAny,
pair: Option<&PyAny>,
is_pretokenized: bool,
add_special_tokens: bool,
) -> PyResult<PyEncoding> {
let sequence: tk::InputSequence = if is_pretokenized {
sequence.extract::<PreTokenizedInputSequence>()?.into()
} else {
sequence.extract::<TextInputSequence>()?.into()
};
let input = match pair {
Some(pair) => {
let pair: tk::InputSequence = if is_pretokenized {
pair.extract::<PreTokenizedInputSequence>()?.into()
} else {
pair.extract::<TextInputSequence>()?.into()
};
tk::EncodeInput::Dual(sequence, pair)
}
None => tk::EncodeInput::Single(sequence),
};
ToPyResult(
self.tokenizer
.encode_char_offsets(input, add_special_tokens)
.map(|e| e.into()),
)
.into()
}
/// Encode the given batch of inputs. This method accept both raw text sequences
/// as well as already pre-tokenized sequences.
///
/// Example:
/// Here are some examples of the inputs that are accepted::
///
/// encode_batch([
/// "A single sequence",
/// ("A tuple with a sequence", "And its pair"),
/// [ "A", "pre", "tokenized", "sequence" ],
/// ([ "A", "pre", "tokenized", "sequence" ], "And its pair")
/// ])
///
/// Args:
/// input (A :obj:`List`/:obj:`Tuple` of :obj:`~tokenizers.EncodeInput`):
/// A list of single sequences or pair sequences to encode. Each sequence
/// can be either raw text or pre-tokenized, according to the ``is_pretokenized``
/// argument:
///
/// - If ``is_pretokenized=False``: :class:`~tokenizers.TextEncodeInput`
/// - If ``is_pretokenized=True``: :class:`~tokenizers.PreTokenizedEncodeInput`
///
/// is_pretokenized (:obj:`bool`, defaults to :obj:`False`):
/// Whether the input is already pre-tokenized
///
/// add_special_tokens (:obj:`bool`, defaults to :obj:`True`):
/// Whether to add the special tokens
///
/// Returns:
/// A :obj:`List` of :class:`~tokenizers.Encoding`: The encoded batch
///
#[pyo3(signature = (input, is_pretokenized = false, add_special_tokens = true))]
#[pyo3(text_signature = "(self, input, is_pretokenized=False, add_special_tokens=True)")]
fn encode_batch(
&self,
py: Python<'_>,
input: Vec<&PyAny>,
is_pretokenized: bool,
add_special_tokens: bool,
) -> PyResult<Vec<PyEncoding>> {
let input: Vec<tk::EncodeInput> = input
.into_iter()
.map(|o| {
let input: tk::EncodeInput = if is_pretokenized {
o.extract::<PreTokenizedEncodeInput>()?.into()
} else {
o.extract::<TextEncodeInput>()?.into()
};
Ok(input)
})
.collect::<PyResult<Vec<tk::EncodeInput>>>()?;
py.allow_threads(|| {
ToPyResult(
self.tokenizer
.encode_batch_char_offsets(input, add_special_tokens)
.map(|encodings| encodings.into_iter().map(|e| e.into()).collect()),
)
.into()
})
}
/// Decode the given list of ids back to a string
///
/// This is used to decode anything coming back from a Language Model
///
/// Args:
/// ids (A :obj:`List/Tuple` of :obj:`int`):
/// The list of ids that we want to decode
///
/// skip_special_tokens (:obj:`bool`, defaults to :obj:`True`):
/// Whether the special tokens should be removed from the decoded string
///
/// Returns:
/// :obj:`str`: The decoded string
#[pyo3(signature = (ids, skip_special_tokens = true))]
#[pyo3(text_signature = "(self, ids, skip_special_tokens=True)")]
fn decode(&self, ids: Vec<u32>, skip_special_tokens: bool) -> PyResult<String> {
ToPyResult(self.tokenizer.decode(&ids, skip_special_tokens)).into()
}
/// Decode a batch of ids back to their corresponding string
///
/// Args:
/// sequences (:obj:`List` of :obj:`List[int]`):
/// The batch of sequences we want to decode
///
/// skip_special_tokens (:obj:`bool`, defaults to :obj:`True`):
/// Whether the special tokens should be removed from the decoded strings
///
/// Returns:
/// :obj:`List[str]`: A list of decoded strings
#[pyo3(signature = (sequences, skip_special_tokens = true))]
#[pyo3(text_signature = "(self, sequences, skip_special_tokens=True)")]
fn decode_batch(
&self,
py: Python<'_>,
sequences: Vec<Vec<u32>>,
skip_special_tokens: bool,
) -> PyResult<Vec<String>> {
py.allow_threads(|| {
let slices = sequences.iter().map(|v| &v[..]).collect::<Vec<&[u32]>>();
ToPyResult(self.tokenizer.decode_batch(&slices, skip_special_tokens)).into()
})
}
/// Convert the given token to its corresponding id if it exists
///
/// Args:
/// token (:obj:`str`):
/// The token to convert
///
/// Returns:
/// :obj:`Optional[int]`: An optional id, :obj:`None` if out of vocabulary
#[pyo3(text_signature = "(self, token)")]
fn token_to_id(&self, token: &str) -> Option<u32> {
self.tokenizer.token_to_id(token)
}
/// Convert the given id to its corresponding token if it exists
///
/// Args:
/// id (:obj:`int`):
/// The id to convert
///
/// Returns:
/// :obj:`Optional[str]`: An optional token, :obj:`None` if out of vocabulary
#[pyo3(text_signature = "(self, id)")]
fn id_to_token(&self, id: u32) -> Option<String> {
self.tokenizer.id_to_token(id)
}
/// Modifies the tokenizer in order to use or not the special tokens
/// during encoding.
///
/// Args:
/// value (:obj:`bool`):
/// Whether to use the special tokens or not
///
#[setter]
fn set_encode_special_tokens(&mut self, value: bool) {
self.tokenizer.set_encode_special_tokens(value);
}
/// Get the value of the `encode_special_tokens` attribute
///
/// Returns:
/// :obj:`bool`: the tokenizer's encode_special_tokens attribute
#[getter]
fn get_encode_special_tokens(&self) -> bool {
self.tokenizer.get_encode_special_tokens()
}
/// Add the given tokens to the vocabulary
///
/// The given tokens are added only if they don't already exist in the vocabulary.
/// Each token then gets a new attributed id.
///
/// Args:
/// tokens (A :obj:`List` of :class:`~tokenizers.AddedToken` or :obj:`str`):
/// The list of tokens we want to add to the vocabulary. Each token can be either a
/// string or an instance of :class:`~tokenizers.AddedToken` for more customization.
///
/// Returns:
/// :obj:`int`: The number of tokens that were created in the vocabulary
#[pyo3(text_signature = "(self, tokens)")]
fn add_tokens(&mut self, tokens: &PyList) -> PyResult<usize> {
let tokens = tokens
.into_iter()
.map(|token| {
if let Ok(content) = token.extract::<String>() {
Ok(PyAddedToken::from(content, Some(false)).get_token())
} else if let Ok(mut token) = token.extract::<PyRefMut<PyAddedToken>>() {
token.special = false;
Ok(token.get_token())
} else {
Err(exceptions::PyTypeError::new_err(
"Input must be a List[Union[str, AddedToken]]",
))
}
})
.collect::<PyResult<Vec<_>>>()?;
Ok(self.tokenizer.add_tokens(&tokens))
}
/// Add the given special tokens to the Tokenizer.
///
/// If these tokens are already part of the vocabulary, it just let the Tokenizer know about
/// them. If they don't exist, the Tokenizer creates them, giving them a new id.
///
/// These special tokens will never be processed by the model (ie won't be split into
/// multiple tokens), and they can be removed from the output when decoding.
///
/// Args:
/// tokens (A :obj:`List` of :class:`~tokenizers.AddedToken` or :obj:`str`):
/// The list of special tokens we want to add to the vocabulary. Each token can either
/// be a string or an instance of :class:`~tokenizers.AddedToken` for more
/// customization.
///
/// Returns:
/// :obj:`int`: The number of tokens that were created in the vocabulary
#[pyo3(text_signature = "(self, tokens)")]
fn add_special_tokens(&mut self, tokens: &PyList) -> PyResult<usize> {
let tokens = tokens
.into_iter()
.map(|token| {
if let Ok(content) = token.extract::<String>() {
Ok(tk::tokenizer::AddedToken::from(content, true))
} else if let Ok(mut token) = token.extract::<PyRefMut<PyAddedToken>>() {
token.special = true;
Ok(token.get_token())
} else {
Err(exceptions::PyTypeError::new_err(
"Input must be a List[Union[str, AddedToken]]",
))
}
})
.collect::<PyResult<Vec<_>>>()?;
Ok(self.tokenizer.add_special_tokens(&tokens))
}
/// Train the Tokenizer using the given files.
///
/// Reads the files line by line, while keeping all the whitespace, even new lines.
/// If you want to train from data store in-memory, you can check
/// :meth:`~tokenizers.Tokenizer.train_from_iterator`
///
/// Args:
/// files (:obj:`List[str]`):
/// A list of path to the files that we should use for training
///
/// trainer (:obj:`~tokenizers.trainers.Trainer`, `optional`):
/// An optional trainer that should be used to train our Model
#[pyo3(signature = (files, trainer = None))]
#[pyo3(text_signature = "(self, files, trainer = None)")]
fn train(&mut self, files: Vec<String>, trainer: Option<&mut PyTrainer>) -> PyResult<()> {
let mut trainer =
trainer.map_or_else(|| self.tokenizer.get_model().get_trainer(), |t| t.clone());
Python::with_gil(|py| {
py.allow_threads(|| {
ToPyResult(
self.tokenizer
.train_from_files(&mut trainer, files)
.map(|_| {}),
)
.into()
})
})
}
/// Train the Tokenizer using the provided iterator.
///
/// You can provide anything that is a Python Iterator
///
/// * A list of sequences :obj:`List[str]`
/// * A generator that yields :obj:`str` or :obj:`List[str]`
/// * A Numpy array of strings
/// * ...
///
/// Args:
/// iterator (:obj:`Iterator`):
/// Any iterator over strings or list of strings
///
/// trainer (:obj:`~tokenizers.trainers.Trainer`, `optional`):
/// An optional trainer that should be used to train our Model
///
/// length (:obj:`int`, `optional`):
/// The total number of sequences in the iterator. This is used to
/// provide meaningful progress tracking
#[pyo3(signature = (iterator, trainer = None, length = None))]
#[pyo3(text_signature = "(self, iterator, trainer=None, length=None)")]
fn train_from_iterator(
&mut self,
py: Python,
iterator: &PyAny,
trainer: Option<&mut PyTrainer>,
length: Option<usize>,
) -> PyResult<()> {
let mut trainer =
trainer.map_or_else(|| self.tokenizer.get_model().get_trainer(), |t| t.clone());
let buffered_iter = PyBufferedIterator::new(
iterator,
|element| {
// Each element of the iterator can either be:
// - An iterator, to allow batching
// - A string
if let Ok(s) = element.downcast::<PyString>() {
itertools::Either::Right(std::iter::once(s.to_str().map(|s| s.to_owned())))
} else {
match element.iter() {
Ok(iter) => itertools::Either::Left(
iter.map(|i| i?.extract::<String>())
.collect::<Vec<_>>()
.into_iter(),
),
Err(e) => itertools::Either::Right(std::iter::once(Err(e))),
}
}
},
256,
)?;
py.allow_threads(|| {
ResultShunt::process(buffered_iter, |iter| {
self.tokenizer
.train(&mut trainer, MaybeSizedIterator::new(iter, length))
.map(|_| {})
.map_err(|e| exceptions::PyException::new_err(e.to_string()))
})?
})
}
/// Apply all the post-processing steps to the given encodings.
///
/// The various steps are:
///
/// 1. Truncate according to the set truncation params (provided with
/// :meth:`~tokenizers.Tokenizer.enable_truncation`)
/// 2. Apply the :class:`~tokenizers.processors.PostProcessor`
/// 3. Pad according to the set padding params (provided with
/// :meth:`~tokenizers.Tokenizer.enable_padding`)
///
/// Args:
/// encoding (:class:`~tokenizers.Encoding`):
/// The :class:`~tokenizers.Encoding` corresponding to the main sequence.
///
/// pair (:class:`~tokenizers.Encoding`, `optional`):
/// An optional :class:`~tokenizers.Encoding` corresponding to the pair sequence.
///
/// add_special_tokens (:obj:`bool`):
/// Whether to add the special tokens
///
/// Returns:
/// :class:`~tokenizers.Encoding`: The final post-processed encoding
#[pyo3(signature = (encoding, pair = None, add_special_tokens = true))]
#[pyo3(text_signature = "(self, encoding, pair=None, add_special_tokens=True)")]
fn post_process(
&self,
encoding: &PyEncoding,
pair: Option<&PyEncoding>,
add_special_tokens: bool,
) -> PyResult<PyEncoding> {
ToPyResult(
self.tokenizer
.post_process(
encoding.encoding.clone(),
pair.map(|p| p.encoding.clone()),
add_special_tokens,
)
.map(|e| e.into()),
)
.into()
}
/// The :class:`~tokenizers.models.Model` in use by the Tokenizer
#[getter]
fn get_model(&self, py: Python<'_>) -> PyResult<PyObject> {
self.tokenizer.get_model().get_as_subtype(py)
}
/// Set the :class:`~tokenizers.models.Model`
#[setter]
fn set_model(&mut self, model: PyRef<PyModel>) {
self.tokenizer.with_model(model.clone());
}
/// The `optional` :class:`~tokenizers.normalizers.Normalizer` in use by the Tokenizer
#[getter]
fn get_normalizer(&self, py: Python<'_>) -> PyResult<PyObject> {
if let Some(n) = self.tokenizer.get_normalizer() {
n.get_as_subtype(py)
} else {
Ok(py.None())
}
}
/// Set the :class:`~tokenizers.normalizers.Normalizer`
#[setter]
fn set_normalizer(&mut self, normalizer: PyRef<PyNormalizer>) {
self.tokenizer.with_normalizer(normalizer.clone());
}
/// The `optional` :class:`~tokenizers.pre_tokenizers.PreTokenizer` in use by the Tokenizer
#[getter]
fn get_pre_tokenizer(&self, py: Python<'_>) -> PyResult<PyObject> {
if let Some(pt) = self.tokenizer.get_pre_tokenizer() {
pt.get_as_subtype(py)
} else {
Ok(py.None())
}
}
/// Set the :class:`~tokenizers.normalizers.Normalizer`
#[setter]
fn set_pre_tokenizer(&mut self, pretok: PyRef<PyPreTokenizer>) {
self.tokenizer.with_pre_tokenizer(pretok.clone());
}
/// The `optional` :class:`~tokenizers.processors.PostProcessor` in use by the Tokenizer
#[getter]
fn get_post_processor(&self, py: Python<'_>) -> PyResult<PyObject> {
if let Some(n) = self.tokenizer.get_post_processor() {
n.get_as_subtype(py)
} else {
Ok(py.None())
}
}
/// Set the :class:`~tokenizers.processors.PostProcessor`
#[setter]
fn set_post_processor(&mut self, processor: PyRef<PyPostProcessor>) {
self.tokenizer.with_post_processor(processor.clone());
}
/// The `optional` :class:`~tokenizers.decoders.Decoder` in use by the Tokenizer
#[getter]
fn get_decoder(&self, py: Python<'_>) -> PyResult<PyObject> {
if let Some(dec) = self.tokenizer.get_decoder() {
dec.get_as_subtype(py)
} else {
Ok(py.None())
}
}
/// Set the :class:`~tokenizers.decoders.Decoder`
#[setter]
fn set_decoder(&mut self, decoder: PyRef<PyDecoder>) {
self.tokenizer.with_decoder(decoder.clone());
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::models::PyModel;
use crate::normalizers::{PyNormalizer, PyNormalizerTypeWrapper};
use std::sync::{Arc, RwLock};
use tempfile::NamedTempFile;
use tk::normalizers::{Lowercase, NFKC};
#[test]
fn serialize() {
let mut tokenizer = Tokenizer::new(PyModel::from(BPE::default()));
tokenizer.with_normalizer(PyNormalizer::new(PyNormalizerTypeWrapper::Sequence(vec![
Arc::new(RwLock::new(NFKC.into())),
Arc::new(RwLock::new(Lowercase.into())),
])));
let tmp = NamedTempFile::new().unwrap().into_temp_path();
tokenizer.save(&tmp, false).unwrap();
Tokenizer::from_file(&tmp).unwrap();
}
}
| tokenizers/bindings/python/src/tokenizer.rs/0 | {
"file_path": "tokenizers/bindings/python/src/tokenizer.rs",
"repo_id": "tokenizers",
"token_count": 26008
} | 228 |
import json
import pickle
import pytest
from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.pre_tokenizers import ByteLevel as ByteLevelPreTokenizer
from tokenizers.processors import (
BertProcessing,
ByteLevel,
PostProcessor,
RobertaProcessing,
Sequence,
TemplateProcessing,
)
from ..utils import data_dir, roberta_files
class TestBertProcessing:
def test_instantiate(self):
processor = BertProcessing(("[SEP]", 0), ("[CLS]", 1))
assert processor is not None
assert isinstance(processor, PostProcessor)
assert isinstance(processor, BertProcessing)
assert isinstance(
pickle.loads(pickle.dumps(BertProcessing(("[SEP]", 0), ("[CLS]", 1)))),
BertProcessing,
)
def test_processing(self):
tokenizer = Tokenizer(BPE())
tokenizer.add_special_tokens(["[SEP]", "[CLS]"])
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
tokenizer.post_processor = BertProcessing(("[SEP]", 0), ("[CLS]", 1))
output = tokenizer.encode("my name", "pair")
assert output.tokens == ["[CLS]", "my", "name", "[SEP]", "pair", "[SEP]"]
assert output.ids == [1, 2, 3, 0, 6, 0]
class TestRobertaProcessing:
def test_instantiate(self):
processor = RobertaProcessing(("</s>", 1), ("<s>", 0))
assert processor is not None
assert isinstance(processor, PostProcessor)
assert isinstance(processor, RobertaProcessing)
assert isinstance(
pickle.loads(pickle.dumps(RobertaProcessing(("</s>", 1), ("<s>", 0)))),
RobertaProcessing,
)
def test_processing(self):
tokenizer = Tokenizer(BPE())
tokenizer.add_special_tokens(["<s>", "</s>"])
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
tokenizer.post_processor = RobertaProcessing(("</s>", 1), ("<s>", 0))
output = tokenizer.encode("my name", "pair")
assert output.tokens == ["<s>", "my", "name", "</s>", "</s>", "pair", "</s>"]
assert output.ids == [0, 2, 3, 1, 1, 6, 1]
class TestByteLevelProcessing:
def test_instantiate(self):
assert ByteLevel() is not None
assert ByteLevel(trim_offsets=True) is not None
assert isinstance(ByteLevel(), PostProcessor)
assert isinstance(ByteLevel(), ByteLevel)
assert isinstance(pickle.loads(pickle.dumps(ByteLevel())), ByteLevel)
def test_processing(self, roberta_files):
# Deprecated in 0.9
with pytest.deprecated_call():
tokenizer = Tokenizer(BPE(roberta_files["vocab"], roberta_files["merges"]))
tokenizer.pre_tokenizer = ByteLevelPreTokenizer(add_prefix_space=True)
# Keeps original offsets
output = tokenizer.encode("My name is John")
assert output.tokens == ["ĠMy", "Ġname", "Ġis", "ĠJohn"]
assert output.offsets == [(0, 2), (2, 7), (7, 10), (10, 15)]
# Trims offsets when activated
tokenizer.post_processor = ByteLevel(trim_offsets=True)
output = tokenizer.encode("My name is John")
assert output.tokens == ["ĠMy", "Ġname", "Ġis", "ĠJohn"]
assert output.offsets == [(0, 2), (3, 7), (8, 10), (11, 15)]
def test_manual_reload(self):
byte_level = ByteLevel()
state = json.loads(byte_level.__getstate__())
reloaded = ByteLevel(**state)
assert isinstance(reloaded, ByteLevel)
class TestTemplateProcessing:
def get_bert(self):
return TemplateProcessing(
single=["[CLS]", "$0", "[SEP]"],
pair=["[CLS]", "$A", "[SEP]", "$B:1", "[SEP]:1"],
special_tokens=[("[CLS]", 1), ("[SEP]", 0)],
)
def get_roberta(self):
return TemplateProcessing(
single="<s> $0 </s>",
pair="<s> $A </s> </s> $B </s>",
special_tokens=[("<s>", 0), ("</s>", 1)],
)
def get_t5_squad(self):
# >>> from transformers import AutoTokenizer
# >>> tok = AutoTokenizer.from_pretrained("t5-small")
# >>> tok.tokenize("question: ")
# ['▁question', ':']
# >>> tok.tokenize("context: ")
# ['▁context', ':']
# >>> tok.encode("context: ")
# [2625, 10]
# >>> tok.encode("question: ")
# [822, 10]
return TemplateProcessing(
single=["$0"],
pair=["Q", "$A", "C", "$B"],
special_tokens=[
{
"id": "Q",
"ids": [2625, 10],
"tokens": ["_question", ":"],
},
{
"id": "C",
"ids": [822, 10],
"tokens": ["_context", ":"],
},
],
)
def test_instantiate(self):
bert = self.get_bert()
assert bert is not None
assert isinstance(bert, PostProcessor)
assert isinstance(bert, TemplateProcessing)
assert isinstance(pickle.loads(pickle.dumps(bert)), TemplateProcessing)
# It is absolutely legal to have tokens with spaces in the name:
TemplateProcessing(
single=["[ C L S ]", "Token with space"],
special_tokens=[("[ C L S ]", 0), ("Token with space", 1)],
)
# Sequence identifiers must be well formed:
with pytest.raises(Exception, match="Cannot build Piece"):
TemplateProcessing(single="[CLS] $$ [SEP]")
with pytest.raises(Exception, match="Cannot build Piece"):
TemplateProcessing(single="[CLS] $A: [SEP]")
# Special tokens must be provided when used in template:
with pytest.raises(Exception, match="Missing SpecialToken\\(s\\) with id\\(s\\)"):
TemplateProcessing(single=["[CLS]"])
def test_bert_parity(self):
tokenizer = Tokenizer(BPE())
tokenizer.add_special_tokens(["[SEP]", "[CLS]"])
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
tokenizer.post_processor = BertProcessing(("[SEP]", 0), ("[CLS]", 1))
original = tokenizer.encode("my name", "pair")
tokenizer.post_processor = self.get_bert()
template = tokenizer.encode("my name", "pair")
assert original.ids == template.ids
def test_roberta_parity(self):
tokenizer = Tokenizer(BPE())
tokenizer.add_special_tokens(["<s>", "</s>"])
tokenizer.add_tokens(["my", "name", "is", "john", "pair"])
tokenizer.post_processor = RobertaProcessing(("</s>", 1), ("<s>", 0))
original = tokenizer.encode("my name is john", "pair")
tokenizer.post_processor = self.get_roberta()
template = tokenizer.encode("my name is john", "pair")
assert original.ids == template.ids
class TestSequenceProcessing:
def test_sequence_processing(self):
assert Sequence([]) is not None
assert Sequence([ByteLevel()]) is not None
assert isinstance(Sequence([]), PostProcessor)
assert isinstance(Sequence([]), Sequence)
serialized = pickle.dumps(Sequence([]))
assert isinstance(pickle.loads(serialized), Sequence)
def test_post_process(self):
byte_level = ByteLevel(trim_offsets=True)
template = TemplateProcessing(
single=["[CLS]", "$0", "[SEP]"],
pair=["[CLS]:0", "$A", "[SEP]:0", "$B:1", "[SEP]:1"],
special_tokens=[("[CLS]", 1), ("[SEP]", 0)],
)
tokenizer = Tokenizer(BPE())
tokenizer.add_special_tokens(["[SEP]", "[CLS]"])
tokenizer.add_tokens(["my", "name", "is", "Ġjohn", "pair"])
tokenizer.post_processor = template
# Before the sequence
original = tokenizer.encode("my name is Ġjohn")
assert original.ids == [1, 2, 3, 4, 5, 0]
assert original.type_ids == [0, 0, 0, 0, 0, 0]
assert original.offsets == [(0, 0), (0, 2), (3, 7), (8, 10), (11, 16), (0, 0)]
pair = tokenizer.encode("my name is Ġjohn", "pair")
# assert pair.ids == [1, 2, 3, 4, 5, 0, 6, 0]
assert pair.type_ids == [0, 0, 0, 0, 0, 0, 1, 1]
assert pair.offsets == [(0, 0), (0, 2), (3, 7), (8, 10), (11, 16), (0, 0), (0, 4), (0, 0)]
processor = Sequence([byte_level, template])
tokenizer.post_processor = processor
original = tokenizer.encode("my name is Ġjohn")
assert original.ids == [1, 2, 3, 4, 5, 0]
assert original.type_ids == [0, 0, 0, 0, 0, 0]
# Offsets ARE trimmed
assert original.offsets == [(0, 0), (0, 2), (3, 7), (8, 10), (12, 16), (0, 0)]
pair = tokenizer.encode("my name is Ġjohn", "pair")
# assert pair.ids == [1, 2, 3, 4, 5, 0, 6, 0]
assert pair.type_ids == [0, 0, 0, 0, 0, 0, 1, 1]
assert pair.offsets == [(0, 0), (0, 2), (3, 7), (8, 10), (12, 16), (0, 0), (0, 4), (0, 0)]
| tokenizers/bindings/python/tests/bindings/test_processors.py/0 | {
"file_path": "tokenizers/bindings/python/tests/bindings/test_processors.py",
"repo_id": "tokenizers",
"token_count": 4124
} | 229 |
## Requirements
In order to generate the documentation, it is necessary to have a Python environment with the
following:
```python
pip install sphinx sphinx_rtd_theme setuptools_rust
```
It is also necessary to have the `tokenizers` library in this same environment, for Sphinx to
generate all the API Reference and links properly. If you want to visualize the documentation with
some modifications made to the Python bindings, make sure you build it from source.
## Building the documentation
Once everything is setup, you can build the documentation automatically for all the languages
using the following command in the `/docs` folder:
```bash
make html_all
```
If you want to build only for a specific language, you can use:
```bash
make html O="-t python"
```
(Replacing `python` by the target language among `rust`, `node`, and `python`)
**NOTE**
If you are making any structural change to the documentation, it is recommended to clean the build
directory before rebuilding:
```bash
make clean && make html_all
```
| tokenizers/docs/README.md/0 | {
"file_path": "tokenizers/docs/README.md",
"repo_id": "tokenizers",
"token_count": 266
} | 230 |
# Installation
<tokenizerslangcontent>
<python>
🤗 Tokenizers is tested on Python 3.5+.
You should install 🤗 Tokenizers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're
unfamiliar with Python virtual environments, check out the [user
guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Create a virtual environment with the version of Python you're going to
use and activate it.
## Installation with pip
🤗 Tokenizers can be installed using pip as follows:
```bash
pip install tokenizers
```
## Installation from sources
To use this method, you need to have the Rust language installed. You
can follow [the official
guide](https://www.rust-lang.org/learn/get-started) for more
information.
If you are using a unix based OS, the installation should be as simple
as running:
```bash
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
```
Or you can easiy update it with the following command:
```bash
rustup update
```
Once rust is installed, we can start retrieving the sources for 🤗
Tokenizers:
```bash
git clone https://github.com/huggingface/tokenizers
```
Then we go into the python bindings folder:
```bash
cd tokenizers/bindings/python
```
At this point you should have your [virtual environment]() already
activated. In order to compile 🤗 Tokenizers, you need to:
```bash
pip install -e .
```
</python>
<rust>
## Crates.io
🤗 Tokenizers is available on [crates.io](https://crates.io/crates/tokenizers).
You just need to add it to your `Cargo.toml`:
```bash
cargo add tokenizers
```
</rust>
<node>
## Installation with npm
You can simply install 🤗 Tokenizers with npm using:
```bash
npm install tokenizers
```
</node>
</tokenizerslangcontent>
| tokenizers/docs/source-doc-builder/installation.mdx/0 | {
"file_path": "tokenizers/docs/source-doc-builder/installation.mdx",
"repo_id": "tokenizers",
"token_count": 554
} | 231 |
DATA_DIR = data
BENCHMARK_DIR = benches
TESTS_DIR = tests
dir_guard=@mkdir -p $(@D)
SHARED_RESOURCES = $(DATA_DIR)/gpt2-vocab.json $(DATA_DIR)/gpt2-merges.txt $(DATA_DIR)/bert-base-uncased-vocab.txt $(DATA_DIR)/big.txt $(DATA_DIR)/small.txt $(DATA_DIR)/albert-base-v1-tokenizer.json
BENCHMARK_RESOURCES = $(SHARED_RESOURCES)
TESTS_RESOURCES = $(SHARED_RESOURCES) $(DATA_DIR)/unigram.json $(DATA_DIR)/unigram_wagahaiwa_nekodearu.txt $(DATA_DIR)/roberta.json $(DATA_DIR)/tokenizer-wiki.json $(DATA_DIR)/bert-wiki.json
.PHONY : build
build :
cargo build --all-targets
.PHONY : release
release :
cargo build --release
.PHONY : format
format :
cargo fmt --
.PHONY : lint
lint :
cargo fmt -- --check
cargo fmt -- $(BENCHMARK_DIR)/*.rs --check
cargo clippy --all-targets --all-features -- -D warnings
.PHONY : test
test : $(TESTS_RESOURCES)
cargo test
.PHONY : doc
doc :
cargo doc
.PHONY : publish
publish :
cargo publish
.PHONY : all-checks
all-checks : lint test doc
.PHONY : bench
bench : $(BENCHMARK_RESOURCES)
cargo bench -- --verbose
$(DATA_DIR)/gpt2-% :
$(dir_guard)
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-$* -O $@
$(DATA_DIR)/bert-% :
$(dir_guard)
wget https://s3.amazonaws.com/models.huggingface.co/bert/bert-$* -O $@
$(DATA_DIR)/unigram% :
$(dir_guard)
wget https://huggingface.co/Narsil/small/raw/main/unigram$* -O $@
$(DATA_DIR)/albert-base-v1-tokenizer.json :
$(dir_guard)
wget https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-v1-tokenizer.json -O $@
$(DATA_DIR)/big.txt :
$(dir_guard)
wget https://norvig.com/big.txt -O $@
$(DATA_DIR)/small.txt : $(DATA_DIR)/big.txt
head -100 $(DATA_DIR)/big.txt > $@
$(DATA_DIR)/roberta.json :
$(dir_guard)
wget https://huggingface.co/Narsil/small/raw/main/roberta.json -O $@
$(DATA_DIR)/tokenizer-wiki.json :
$(dir_guard)
wget https://s3.amazonaws.com/models.huggingface.co/bert/anthony/doc-quicktour/tokenizer.json -O $@
$(DATA_DIR)/bert-wiki.json :
$(dir_guard)
wget https://s3.amazonaws.com/models.huggingface.co/bert/anthony/doc-pipeline/tokenizer.json -O $@
| tokenizers/tokenizers/Makefile/0 | {
"file_path": "tokenizers/tokenizers/Makefile",
"repo_id": "tokenizers",
"token_count": 939
} | 232 |
pub mod bpe;
pub mod byte_fallback;
pub mod ctc;
pub mod fuse;
pub mod sequence;
pub mod strip;
pub mod wordpiece;
// Re-export these as decoders
pub use super::pre_tokenizers::byte_level;
pub use super::pre_tokenizers::metaspace;
use serde::{Deserialize, Serialize};
use crate::decoders::bpe::BPEDecoder;
use crate::decoders::byte_fallback::ByteFallback;
use crate::decoders::ctc::CTC;
use crate::decoders::fuse::Fuse;
use crate::decoders::sequence::Sequence;
use crate::decoders::strip::Strip;
use crate::decoders::wordpiece::WordPiece;
use crate::normalizers::replace::Replace;
use crate::pre_tokenizers::byte_level::ByteLevel;
use crate::pre_tokenizers::metaspace::Metaspace;
use crate::{Decoder, Result};
#[derive(Serialize, Deserialize, Clone, Debug)]
#[serde(untagged)]
pub enum DecoderWrapper {
BPE(BPEDecoder),
ByteLevel(ByteLevel),
WordPiece(WordPiece),
Metaspace(Metaspace),
CTC(CTC),
Sequence(Sequence),
Replace(Replace),
Fuse(Fuse),
Strip(Strip),
ByteFallback(ByteFallback),
}
impl Decoder for DecoderWrapper {
fn decode_chain(&self, tokens: Vec<String>) -> Result<Vec<String>> {
match self {
Self::BPE(bpe) => bpe.decode_chain(tokens),
Self::ByteLevel(bl) => bl.decode_chain(tokens),
Self::Metaspace(ms) => ms.decode_chain(tokens),
Self::WordPiece(wp) => wp.decode_chain(tokens),
Self::CTC(ctc) => ctc.decode_chain(tokens),
Self::Sequence(seq) => seq.decode_chain(tokens),
Self::Replace(seq) => seq.decode_chain(tokens),
Self::ByteFallback(bf) => bf.decode_chain(tokens),
Self::Strip(bf) => bf.decode_chain(tokens),
Self::Fuse(bf) => bf.decode_chain(tokens),
}
}
}
impl_enum_from!(BPEDecoder, DecoderWrapper, BPE);
impl_enum_from!(ByteLevel, DecoderWrapper, ByteLevel);
impl_enum_from!(ByteFallback, DecoderWrapper, ByteFallback);
impl_enum_from!(Fuse, DecoderWrapper, Fuse);
impl_enum_from!(Strip, DecoderWrapper, Strip);
impl_enum_from!(Metaspace, DecoderWrapper, Metaspace);
impl_enum_from!(WordPiece, DecoderWrapper, WordPiece);
impl_enum_from!(CTC, DecoderWrapper, CTC);
impl_enum_from!(Sequence, DecoderWrapper, Sequence);
impl_enum_from!(Replace, DecoderWrapper, Replace);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn decoder_serialization() {
let json = r#"{"type":"Sequence","decoders":[{"type":"ByteFallback"},{"type":"Metaspace","replacement":"▁","add_prefix_space":true,"prepend_scheme":"always"}]}"#;
let decoder: DecoderWrapper = serde_json::from_str(json).unwrap();
let serialized = serde_json::to_string(&decoder).unwrap();
assert_eq!(serialized, json);
}
#[test]
fn decoder_serialization_other_no_arg() {
let json = r#"{"type":"Sequence","decoders":[{"type":"Fuse"},{"type":"Metaspace","replacement":"▁","add_prefix_space":true,"prepend_scheme":"always"}]}"#;
let decoder: DecoderWrapper = serde_json::from_str(json).unwrap();
let serialized = serde_json::to_string(&decoder).unwrap();
assert_eq!(serialized, json);
}
#[test]
fn decoder_serialization_no_decode() {
let json = r#"{"type":"Sequence","decoders":[{},{"type":"Metaspace","replacement":"▁","add_prefix_space":true,"prepend_scheme":"always"}]}"#;
assert!(serde_json::from_str::<DecoderWrapper>(json).is_err());
}
}
| tokenizers/tokenizers/src/decoders/mod.rs/0 | {
"file_path": "tokenizers/tokenizers/src/decoders/mod.rs",
"repo_id": "tokenizers",
"token_count": 1434
} | 233 |
use std::collections::HashMap;
use std::hash::Hash;
#[derive(Default)]
pub struct TrieBuilder<Label> {
trie: Trie<Label>,
}
impl<Label: Eq + Hash + Copy> TrieBuilder<Label> {
pub fn push(&mut self, element: &[Label]) {
self.trie.push(element);
}
pub fn build(self) -> Trie<Label> {
self.trie
}
}
#[derive(Clone)]
pub struct Trie<Label> {
root: Node<Label>,
}
impl<Label: Eq + Hash + Copy> Trie<Label> {
pub fn push(&mut self, element: &[Label]) {
let mut node = &mut self.root;
for label in element.iter() {
node = node.children.entry(*label).or_default();
}
node.is_leaf = true;
}
pub fn common_prefix_search<T>(&self, iterator: T) -> TrieIterator<Label, T>
where
T: Iterator<Item = Label>,
{
TrieIterator {
node: &self.root,
prefix: vec![],
iterator,
}
}
}
pub struct TrieIterator<'a, Label, T> {
node: &'a Node<Label>,
prefix: Vec<Label>,
iterator: T,
}
impl<Label, T> Iterator for TrieIterator<'_, Label, T>
where
Label: Eq + Hash + Copy,
T: Iterator<Item = Label>,
{
type Item = Vec<Label>;
fn next(&mut self) -> Option<Self::Item> {
loop {
let label = self.iterator.next()?;
self.prefix.push(label);
let child = self.node.children.get(&label)?;
self.node = child;
if self.node.is_leaf {
return Some(self.prefix.clone());
}
}
}
}
impl<Label> Default for Trie<Label> {
fn default() -> Self {
Self {
root: Node::default(),
}
}
}
#[derive(Clone)]
pub struct Node<Label> {
is_leaf: bool,
children: HashMap<Label, Node<Label>>,
}
impl<Label> Default for Node<Label> {
fn default() -> Self {
Self {
is_leaf: false,
children: HashMap::new(),
}
}
}
| tokenizers/tokenizers/src/models/unigram/trie.rs/0 | {
"file_path": "tokenizers/tokenizers/src/models/unigram/trie.rs",
"repo_id": "tokenizers",
"token_count": 944
} | 234 |
use std::collections::{HashMap, HashSet};
use crate::utils::SysRegex;
use serde::{Deserialize, Serialize};
use crate::tokenizer::{
Decoder, Encoding, PostProcessor, PreTokenizedString, PreTokenizer, Result,
SplitDelimiterBehavior,
};
use crate::utils::macro_rules_attribute;
/// Converts bytes to unicode characters.
/// See https://github.com/openai/gpt-2/blob/master/src/encoder.py#L9
fn bytes_char() -> HashMap<u8, char> {
let mut bs: Vec<u8> = vec![];
bs.extend(b'!'..=b'~');
bs.extend(b'\xA1'..=b'\xAC');
bs.extend(b'\xAE'..=b'\xFF');
let mut cs: Vec<u32> = bs.iter().map(|i| *i as u32).collect();
let mut n = 0;
for b in 0..=255u8 {
if !bs.contains(&b) {
bs.push(b);
cs.push(u32::pow(2, 8) + n);
n += 1;
}
}
bs.into_iter()
.zip(cs)
.map(|(f, t)| (f, unsafe { std::char::from_u32_unchecked(t) }))
.collect()
}
lazy_static! {
/// Regex that matches exactly one token.
/// See https://github.com/openai/gpt-2/blob/master/src/encoder.py#L98
static ref RE: SysRegex = SysRegex::new(
r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"
)
.unwrap();
static ref BYTES_CHAR: HashMap<u8, char> = bytes_char();
static ref CHAR_BYTES: HashMap<char, u8> =
bytes_char().into_iter().map(|(c, b)| (b, c)).collect();
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
/// Provides all the necessary steps to handle the BPE tokenization at the byte-level. Takes care
/// of all the required processing steps to transform a UTF-8 string as needed before and after the
/// BPE model does its job.
#[macro_rules_attribute(impl_serde_type!)]
#[non_exhaustive]
pub struct ByteLevel {
/// Whether to add a leading space to the first word. This allows to treat the leading word
/// just as any other word.
pub add_prefix_space: bool,
/// Whether the post processing step should trim offsets to avoid including whitespaces.
pub trim_offsets: bool,
/// Whether to use the standard GPT2 regex for whitespace splitting
/// Set it to False if you want to use your own splitting.
#[serde(default = "default_true")]
pub use_regex: bool,
}
fn default_true() -> bool {
true
}
impl Default for ByteLevel {
fn default() -> Self {
Self {
add_prefix_space: true,
trim_offsets: true,
use_regex: true,
}
}
}
impl ByteLevel {
pub fn new(add_prefix_space: bool, trim_offsets: bool, use_regex: bool) -> Self {
Self {
add_prefix_space,
trim_offsets,
use_regex,
}
}
pub fn alphabet() -> HashSet<char> {
BYTES_CHAR.values().copied().collect()
}
#[must_use]
pub fn add_prefix_space(mut self, v: bool) -> Self {
self.add_prefix_space = v;
self
}
#[must_use]
pub fn trim_offsets(mut self, v: bool) -> Self {
self.trim_offsets = v;
self
}
#[must_use]
pub fn use_regex(mut self, v: bool) -> Self {
self.use_regex = v;
self
}
}
/// As a `PreTokenizer`, `ByteLevel` is in charge of transforming all the unicode characters into
/// their byte-level counterpart. It also splits the input according to the configured regex.
// TODO: Give the ability to modify this regex
impl PreTokenizer for ByteLevel {
fn pre_tokenize(&self, pretokenized: &mut PreTokenizedString) -> Result<()> {
let re_ref: &SysRegex = &RE;
pretokenized.split(|_, mut normalized| {
if self.add_prefix_space && !normalized.get().starts_with(' ') {
normalized.prepend(" ");
}
if self.use_regex {
normalized.split(re_ref, SplitDelimiterBehavior::Isolated)
} else {
Ok(vec![normalized])
}
})?;
pretokenized.normalize(|normalized| {
let s = normalized.get();
let mut transformations: Vec<(char, isize)> = Vec::with_capacity(s.len());
let mut i = 0;
for cur_char in s.chars() {
let size = cur_char.len_utf8();
let bytes = s[i..i + size].as_bytes();
i += size;
transformations.extend(
bytes
.iter()
.enumerate()
.map(|(i, b)| (BYTES_CHAR[b], isize::from(i > 0))),
);
}
normalized.transform(transformations, 0);
Ok(())
})
}
}
/// As a `Decoder`, `ByteLevel` is in charge of converting any byte-level characters to their
/// unicode counterpart, before merging everything back into a single String.
/// This decoder will consume the tokens and merge them in one step to alleviate
/// the fact that single token decoded might be a byte not representable as
/// as String.
impl Decoder for ByteLevel {
fn decode_chain(&self, tokens: Vec<String>) -> Result<Vec<String>> {
let toks = tokens
.into_iter()
.flat_map(|t| {
t.chars()
.try_fold(vec![], |mut acc, c| {
CHAR_BYTES.get(&c).map(|b| {
acc.push(*b);
acc
})
})
.unwrap_or_else(|| t.as_bytes().to_vec())
})
.collect::<Vec<u8>>();
Ok(vec![String::from_utf8_lossy(&toks).to_string()])
}
}
/// As a `PostProcessor`, `ByteLevel` is in charge of trimming the offsets if necessary.
impl PostProcessor for ByteLevel {
fn added_tokens(&self, _is_pair: bool) -> usize {
0
}
fn process_encodings(
&self,
mut encodings: Vec<Encoding>,
_add_special_tokens: bool,
) -> Result<Vec<Encoding>> {
if self.trim_offsets {
for encoding in encodings.iter_mut() {
process_offsets(encoding, self.add_prefix_space);
encoding
.get_overflowing_mut()
.iter_mut()
.for_each(|encoding| process_offsets(encoding, self.add_prefix_space));
}
}
for (i, encoding) in encodings.iter_mut().enumerate() {
encoding.set_sequence_id(i);
}
Ok(encodings)
//<dyn PostProcessor>::default_process(encodings, add_special_tokens)
}
}
pub fn process_offsets(encoding: &mut Encoding, add_prefix_space: bool) {
encoding.process_tokens_with_offsets_mut(|(i, (token, offsets))| {
let mut leading_spaces = token
.chars()
.take_while(|c| *c == BYTES_CHAR[&b' '] || c.is_whitespace())
.count();
let trailing_spaces = token
.chars()
.rev()
.take_while(|c| *c == BYTES_CHAR[&b' '] || c.is_whitespace())
.count();
if leading_spaces > 0 || trailing_spaces > 0 {
if leading_spaces > 0 {
// If user uses `is_pretokenized=True` we might have
// offsets that might begin at the start of the string but are
// NOT the first token.
let is_first = i == 0 || offsets.0 == 0;
if is_first && add_prefix_space && leading_spaces == 1 {
// If we are processing the first pair of offsets, with `add_prefix_space`,
// then we shouldn't remove anything we added. If there are more than one
// leading spaces though, it means we didn't add them, and they should be
// removed.
leading_spaces = 0;
}
offsets.0 = std::cmp::min(offsets.0 + leading_spaces, offsets.1);
}
if trailing_spaces > 0 && offsets.1 >= trailing_spaces {
offsets.1 = std::cmp::max(offsets.1 - trailing_spaces, offsets.0);
}
}
});
}
#[cfg(test)]
mod tests {
use super::*;
use crate::tokenizer::{
Decoder, Encoding, OffsetReferential, OffsetType, PostProcessor, PreTokenizedString,
PreTokenizer,
};
use std::iter::FromIterator;
#[test]
fn pre_tokenization() {
let bytelevel = ByteLevel::default().add_prefix_space(false);
let mut pretokenized: PreTokenizedString = "Hello my friend, how is your day going?".into();
bytelevel.pre_tokenize(&mut pretokenized).unwrap();
assert_eq!(
pretokenized
.get_splits(OffsetReferential::Original, OffsetType::Byte)
.into_iter()
.map(|(s, o, _)| (s, o))
.collect::<Vec<_>>(),
vec![
("Hello", (0, 5)),
("Ġmy", (5, 8)),
("Ġfriend", (8, 15)),
(",", (15, 16)),
("Ġhow", (16, 20)),
("Ġis", (20, 23)),
("Ġyour", (23, 28)),
("Ġday", (28, 32)),
("Ġgoing", (32, 38)),
("?", (38, 39))
]
);
}
#[test]
fn pre_tokenization_no_regex() {
let bytelevel = ByteLevel::default().use_regex(false);
let mut pretokenized: PreTokenizedString = "Hello my friend, how is your day going?".into();
bytelevel.pre_tokenize(&mut pretokenized).unwrap();
assert_eq!(
pretokenized
.get_splits(OffsetReferential::Original, OffsetType::Byte)
.into_iter()
.map(|(s, o, _)| (s, o))
.collect::<Vec<_>>(),
vec![("ĠHelloĠmyĠfriend,ĠhowĠisĠyourĠdayĠgoing?", (0, 39))]
);
}
#[test]
fn decoding() {
let bytelevel = ByteLevel::default().add_prefix_space(false);
assert_eq!(
bytelevel
.decode_chain(
vec![
"Hello", "Ġmy", "Ġfriend", ",", "Ġhow", "Ġis", "Ġyour", "Ġday", "Ġgoing",
"?"
]
.into_iter()
.map(|s| s.into())
.collect::<Vec<String>>()
)
.unwrap(),
vec!["Hello my friend, how is your day going?"]
);
}
#[test]
fn add_prefix_space() {
let bytelevel = ByteLevel::default().add_prefix_space(true);
for s in &[
" Hello my friend, how is your day going?",
"Hello my friend, how is your day going?",
] {
let mut pretokenized = PreTokenizedString::from(*s);
bytelevel.pre_tokenize(&mut pretokenized).unwrap();
assert_eq!(
pretokenized
.get_splits(OffsetReferential::Normalized, OffsetType::Byte)
.into_iter()
.map(|(s, o, _)| (s, o))
.collect::<Vec<_>>(),
vec![
("ĠHello", (0, 7)),
("Ġmy", (7, 11)),
("Ġfriend", (11, 19)),
(",", (19, 20)),
("Ġhow", (20, 25)),
("Ġis", (25, 29)),
("Ġyour", (29, 35)),
("Ġday", (35, 40)),
("Ġgoing", (40, 47)),
("?", (47, 48))
]
);
}
}
#[test]
fn decode_works_on_separated_tokens() {
let samples = vec![
"A Nuskhuri abbreviation of იესუ ქრისტე ( iesu kriste ) \" Jesus Christ \"",
"An equal number have descenders , like p or q in English \
: გ , დ , ე , ვ , კ , ლ , ჟ , ტ , უ , ფ , ღ , ყ , ც",
];
let bytelevel = ByteLevel::default().add_prefix_space(false);
for sample in samples {
let mut pretokenized = PreTokenizedString::from(sample);
bytelevel.pre_tokenize(&mut pretokenized).unwrap();
let separated_tokens = pretokenized
.get_splits(OffsetReferential::Original, OffsetType::Byte)
.iter()
.flat_map(|(s, _, _)| s.split("").map(|t| t.into()))
.collect::<Vec<_>>();
assert_eq!(
sample,
bytelevel.decode_chain(separated_tokens).unwrap().join("")
);
}
}
#[test]
fn handling_of_newlines() {
let mut pretokenized = PreTokenizedString::from("Hello there\nHello there");
let bytelevel = ByteLevel::default().add_prefix_space(false);
bytelevel.pre_tokenize(&mut pretokenized).unwrap();
assert_eq!(
pretokenized
.get_splits(OffsetReferential::Original, OffsetType::Byte)
.into_iter()
.map(|(s, o, _)| (s, o))
.collect::<Vec<_>>(),
vec![
("Hello", (0, 5)),
("Ġthere", (5, 11)),
("Ċ", (11, 12)),
("Hello", (12, 17)),
("Ġthere", (17, 23))
]
);
}
#[test]
fn handling_of_multiple_whitespaces() {
let mut pretokenized = PreTokenizedString::from("Hello there dear");
let bytelevel = ByteLevel::default().add_prefix_space(false);
bytelevel.pre_tokenize(&mut pretokenized).unwrap();
assert_eq!(
pretokenized
.get_splits(OffsetReferential::Original, OffsetType::Byte)
.into_iter()
.map(|(s, o, _)| (s, o))
.collect::<Vec<_>>(),
vec![
("Hello", (0, 5)),
("Ġthere", (5, 11)),
("ĠĠĠĠĠĠ", (11, 17)),
("Ġdear", (17, 22))
]
);
}
#[test]
fn offsets_when_char_split_up() {
let input = "i⭢j";
let mut pretokenized = PreTokenizedString::from(input);
let bytelevel = ByteLevel::default().add_prefix_space(false);
bytelevel.pre_tokenize(&mut pretokenized).unwrap();
assert_eq!(
pretokenized
.get_splits(OffsetReferential::Original, OffsetType::Byte)
.into_iter()
.map(|(s, o, _)| (s, o))
.collect::<Vec<_>>(),
vec![("i", (0, 1)), ("âŃ¢", (1, 4)), ("j", (4, 5))]
);
assert_eq!(
pretokenized
.get_splits(OffsetReferential::Normalized, OffsetType::Byte)
.into_iter()
.map(|(s, o, _)| (s, o))
.collect::<Vec<_>>(),
vec![("i", (0, 1)), ("âŃ¢", (1, 7)), ("j", (7, 8))]
);
assert_eq!(
pretokenized
.get_splits(OffsetReferential::Original, OffsetType::Byte)
.into_iter()
.map(|(_, o, _)| &input[o.0..o.1])
.collect::<Vec<_>>(),
vec!["i", "⭢", "j"]
);
}
#[test]
fn processor_trims_offsets_pre_tokenized() {
// If user uses `is_pretokenized=True` we might have
// offsets that might begin at the start of the string but are
// NOT the first token.
let mut encoding = Encoding::new(
vec![0; 5],
vec![],
vec!["Ġl".into(), "ove".into(), "Ġl".into(), "ove".into()],
vec![],
vec![(0, 1), (1, 4), (0, 1), (1, 4)],
vec![],
vec![],
vec![],
HashMap::new(),
);
process_offsets(&mut encoding, true);
assert_eq!(
encoding,
Encoding::new(
vec![0; 5],
vec![],
vec!["Ġl".into(), "ove".into(), "Ġl".into(), "ove".into()],
vec![],
vec![(0, 1), (1, 4), (0, 1), (1, 4)],
vec![],
vec![],
vec![],
HashMap::new(),
)
);
}
#[test]
fn processor_trims_offsets() {
let start = Encoding::new(
vec![0; 5],
vec![],
vec![
"Ġ".into(),
"ĠĠĠĠHelloĠĠ".into(),
"ĠĠHello".into(),
"HelloĠĠ".into(),
"ĠĠĠĠ".into(),
],
vec![],
vec![(0, 1), (0, 11), (11, 18), (18, 25), (25, 29)],
vec![],
vec![],
vec![],
HashMap::new(),
);
let expected = Encoding::new(
vec![0; 5],
vec![0; 5],
vec![
"Ġ".into(),
"ĠĠĠĠHelloĠĠ".into(),
"ĠĠHello".into(),
"HelloĠĠ".into(),
"ĠĠĠĠ".into(),
],
vec![],
vec![(0, 0), (4, 9), (13, 18), (18, 23), (29, 29)],
vec![],
vec![],
vec![],
HashMap::from_iter(vec![(0, 0..5)]),
);
let bytelevel = ByteLevel::default().trim_offsets(true);
assert_eq!(
expected,
bytelevel.process(start.clone(), None, false).unwrap()
);
let pair_expected = Encoding::new(
vec![0; 10],
vec![0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
vec![
"Ġ".into(),
"ĠĠĠĠHelloĠĠ".into(),
"ĠĠHello".into(),
"HelloĠĠ".into(),
"ĠĠĠĠ".into(),
"Ġ".into(),
"ĠĠĠĠHelloĠĠ".into(),
"ĠĠHello".into(),
"HelloĠĠ".into(),
"ĠĠĠĠ".into(),
],
vec![],
vec![
(0, 0),
(4, 9),
(13, 18),
(18, 23),
(29, 29),
(0, 0),
(4, 9),
(13, 18),
(18, 23),
(29, 29),
],
vec![],
vec![],
vec![],
HashMap::from_iter(vec![(0, 0..5), (1, 5..10)]),
);
assert_eq!(
pair_expected,
bytelevel
.process(start.clone(), Some(start), false)
.unwrap()
);
}
#[test]
fn decode_unknown_characters() {
let byte_level = ByteLevel::default();
assert_eq!(
byte_level
.decode_chain(vec![
"Hello".into(),
"Ġthere".into(),
"Ġdear".into(),
"Ġfriend!".into(),
"Ġ".into(),
"[PA D]".into()
])
.unwrap(),
vec!["Hello there dear friend! [PA D]"]
);
}
#[test]
fn deserialization() {
// Before use_regex
let byte_level: ByteLevel = serde_json::from_str(
r#"{"type": "ByteLevel", "add_prefix_space": true, "trim_offsets": false}"#,
)
.unwrap();
assert!(byte_level.use_regex);
// Loading works, new future BC test.
let byte_level: ByteLevel = serde_json::from_str(
r#"{"type": "ByteLevel", "add_prefix_space": true, "trim_offsets": false, "use_regex": true}"#,
)
.unwrap();
assert!(byte_level.use_regex);
let byte_level: ByteLevel = serde_json::from_str(
r#"{"type": "ByteLevel", "add_prefix_space": true, "trim_offsets": false, "use_regex": false}"#,
)
.unwrap();
assert!(!byte_level.use_regex);
}
}
| tokenizers/tokenizers/src/pre_tokenizers/byte_level.rs/0 | {
"file_path": "tokenizers/tokenizers/src/pre_tokenizers/byte_level.rs",
"repo_id": "tokenizers",
"token_count": 10930
} | 235 |
//! # Template Processing
//!
//! Provides a way to specify templates in order to add the special tokens to each
//! input sequence as relevant.
//!
//! ## Example
//!
//! Let's take `BERT` tokenizer as an example. It uses two special tokens, used to
//! delimitate each sequence. `[CLS]` is always used at the beginning of the first
//! sequence, and `[SEP]` is added at the end of both the first, and the pair
//! sequences. The final result looks like this:
//! - Single sequence: `[CLS] Hello there [SEP]`
//! - Pair sequences: `[CLS] My name is Anthony [SEP] What is my name? [SEP]`
//! With the type ids as following:
//! ```markdown
//! [CLS] ... [SEP] ... [SEP]
//! 0 0 0 1 1
//! ```
//!
//! So, we can define a [`TemplateProcessing`] that will achieve this result:
//! ```
//! # use tokenizers::processors::template::TemplateProcessing;
//! let template = TemplateProcessing::builder()
//! // The template when we only have a single sequence:
//! .try_single(vec!["[CLS]", "$0", "[SEP]"]).unwrap()
//! // Same as:
//! .try_single("[CLS] $0 [SEP]").unwrap()
//!
//! // The template when we have both sequences:
//! .try_pair(vec!["[CLS]:0", "$A:0", "[SEP]:0", "$B:1", "[SEP]:1"]).unwrap()
//! // Same as:
//! .try_pair("[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1").unwrap()
//! // Or:
//! .try_pair("[CLS] $0 [SEP] $B:1 [SEP]:1").unwrap()
//!
//! // The list of special tokens used by each sequences
//! .special_tokens(vec![("[CLS]", 1), ("[SEP]", 0)])
//! .build()
//! .unwrap();
//! ```
//!
//! In this example, each input sequence is identified using a `$` construct. This identifier
//! lets us specify each input sequence, and the type_id to use. When nothing is specified,
//! it uses the default values. Here are the different ways to specify it:
//! - Specifying the sequence, with default `type_id == 0`: `$A` or `$B`
//! - Specifying the `type_id` with default `sequence == A`: `$0`, `$1`, `$2`, ...
//! - Specifying both: `$A:0`, `$B:1`, ...
//!
//! The same construct is used for special tokens: `<identifier>(:<type_id>)?`.
//!
//! **Warning**: You must ensure that you are giving the correct tokens/ids as these will
//! be added to the `Encoding` without any further check. If the given ids correspond to
//! something totally different in a `Tokenizer` using this `PostProcessor`, it might lead
//! to unexpected results.
//!
//! [`TemplateProcessing`]: struct.TemplateProcessing.html
//!
use crate::{Encoding, PostProcessor, Result};
use itertools::Itertools;
use serde::{Deserialize, Serialize};
use std::collections::{HashMap, HashSet};
use std::convert::{TryFrom, TryInto};
use std::result::Result as StdResult;
/// Represents any sequences received as input of the PostProcessor
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)]
pub enum Sequence {
/// This is the first sequence, the one that is always specified
A,
/// This is the pair sequence, that is optional
B,
}
/// Represents the different kind of pieces that constitute a template.
/// It can be either the input sequence or a [`SpecialToken`]:
///
/// - The `Sequence` has an associated `type_id` which is used by default
/// for any token inside this sequence. The `Sequence` corresponds to one
/// of the input sequence given as input of the `PostProcessor`.
///
/// - The `SpecialToken` has an associated `id`. It corresponds to a [`SpecialToken`].
///
/// The easiest way to build a `Piece` is actually by converting it from a string:
/// ```
/// # use tokenizers::processors::template::Piece;
/// # use std::convert::TryFrom;
/// let sequence_with_type_id_0 = Piece::try_from("$0").unwrap();
/// let sequence_with_type_id_1 = Piece::try_from("$1").unwrap();
/// let special_token_cls = Piece::try_from("[CLS]").unwrap();
/// ```
///
/// [`SpecialToken`]: struct.SpecialToken.html
///
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)]
pub enum Piece {
Sequence { id: Sequence, type_id: u32 },
SpecialToken { id: String, type_id: u32 },
}
impl Piece {
fn extract_id(s: &str) -> Option<Self> {
if s.starts_with('$') {
let rest = &s['$'.len_utf8()..];
// If the id is just `$`, we use 0 as type_id, and Sequence A
match rest {
"" => Some(Self::Sequence {
id: Sequence::A,
type_id: 0,
}),
"A" | "a" => Some(Self::Sequence {
id: Sequence::A,
type_id: 0,
}),
"B" | "b" => Some(Self::Sequence {
id: Sequence::B,
type_id: 0,
}),
n => {
if let Ok(type_id) = n.parse::<u32>() {
Some(Self::Sequence {
id: Sequence::A,
type_id,
})
} else {
None
}
}
}
} else {
Some(Self::SpecialToken {
id: s.to_owned(),
type_id: 0,
})
}
}
fn with_type_id(self, type_id: u32) -> Self {
match self {
Self::Sequence { id, .. } => Self::Sequence { id, type_id },
Self::SpecialToken { id, .. } => Self::SpecialToken { id, type_id },
}
}
}
impl TryFrom<String> for Piece {
type Error = String;
fn try_from(s: String) -> StdResult<Self, Self::Error> {
let parts = s.split(':').collect::<Vec<_>>();
let err = || format!("Cannot build Piece from string \"{}\"", s);
match parts.as_slice() {
[id, type_id] => {
let type_id: u32 = type_id.parse().map_err(|_| err())?;
let piece = Self::extract_id(id).ok_or_else(err)?;
Ok(piece.with_type_id(type_id))
}
[id] => Self::extract_id(id).ok_or_else(err),
_ => Err(err()),
}
}
}
impl TryFrom<&str> for Piece {
type Error = String;
fn try_from(s: &str) -> StdResult<Self, Self::Error> {
Piece::try_from(s.to_owned())
}
}
/// Represents a bunch of tokens to be used in a template.
/// Usually, special tokens have only one associated id/token but in
/// some cases, it might be interesting to have multiple ids/tokens.
///
/// # Examples
/// ```
/// # use tokenizers::processors::template::SpecialToken;
/// // Simple cases, where a single id/token is necessary:
/// let cls = SpecialToken::from(("[CLS]", 1));
/// let sep = SpecialToken::from((0, "[SEP]")); // The order in the tuple is not important
///
/// // More complex case with multiple values:
/// let complex = SpecialToken::new(
/// "A complex special token:".into(),
/// vec![0, 1, 2, 3, 4],
/// vec!["A".into(), "complex".into(), "special".into(), "token".into(), ":".into()]
/// ).unwrap();
/// ```
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)]
pub struct SpecialToken {
/// A unique id used to identify this SpecialToken in the template
id: String,
/// The list of associated ids
ids: Vec<u32>,
/// The list of associated tokens
tokens: Vec<String>,
}
impl From<(String, u32)> for SpecialToken {
fn from(v: (String, u32)) -> Self {
Self {
id: v.0.clone(),
ids: vec![v.1],
tokens: vec![v.0],
}
}
}
impl From<(&str, u32)> for SpecialToken {
fn from(v: (&str, u32)) -> Self {
Self::from((v.0.to_owned(), v.1))
}
}
impl From<(u32, String)> for SpecialToken {
fn from(v: (u32, String)) -> Self {
Self::from((v.1, v.0))
}
}
impl From<(u32, &str)> for SpecialToken {
fn from(v: (u32, &str)) -> Self {
Self::from((v.1.to_owned(), v.0))
}
}
impl SpecialToken {
pub fn new(id: String, ids: Vec<u32>, tokens: Vec<String>) -> Result<Self> {
if ids.len() != tokens.len() {
Err("SpecialToken: ids and tokens must be of the same length".into())
} else {
Ok(Self { id, ids, tokens })
}
}
}
/// A Template represents a Vec<[`Piece`]>.
///
/// We can easily build one as follows
/// ```
/// # use tokenizers::processors::template::Template;
/// # use std::convert::TryFrom;
/// // By providing a `String` or `&str`, we just split on whitespaces:
/// let template = Template::try_from("[CLS] $0 [SEP]").unwrap();
///
/// // By providing pieces directly:
/// let template = Template::try_from(vec!["[CLS]", "$0", "[SEP]"]).unwrap();
/// ```
/// Both of these methods give the same result.
///
/// [`Piece`]: enum.Piece.html
///
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)]
#[serde(transparent)]
pub struct Template(Vec<Piece>);
impl<T> TryFrom<Vec<T>> for Template
where
T: TryInto<Piece, Error = String>,
{
type Error = String;
fn try_from(v: Vec<T>) -> StdResult<Self, Self::Error> {
Ok(Self(
v.into_iter()
.map(|p| p.try_into())
.collect::<StdResult<Vec<_>, Self::Error>>()?,
))
}
}
impl TryFrom<String> for Template {
type Error = String;
fn try_from(s: String) -> StdResult<Self, Self::Error> {
Self::try_from(s.as_ref())
}
}
impl TryFrom<&str> for Template {
type Error = String;
fn try_from(s: &str) -> StdResult<Self, Self::Error> {
Self::try_from(s.split(' ').collect::<Vec<_>>())
}
}
/// A bunch of [`SpecialToken`] represented by their ID.
/// Internally, `Tokens` is a `HashMap<String, SpecialToken>` and can be built
/// from a HashMap or a Vec<[`SpecialToken`]>.
///
/// [`SpecialToken`]: struct.SpecialToken.html
#[derive(Debug, Clone, PartialEq, Default, Serialize, Deserialize, Eq)]
#[serde(transparent)]
pub struct Tokens(
#[serde(serialize_with = "crate::utils::ordered_map")] pub HashMap<String, SpecialToken>,
);
impl<T: Into<SpecialToken>> From<Vec<T>> for Tokens {
fn from(v: Vec<T>) -> Self {
Self(
v.into_iter()
.map(|t| {
let token: SpecialToken = t.into();
(token.id.clone(), token)
})
.collect(),
)
}
}
impl From<HashMap<String, SpecialToken>> for Tokens {
fn from(v: HashMap<String, SpecialToken>) -> Self {
Self(v)
}
}
/// This PostProcessor takes care of processing each input `Encoding` by applying
/// the corresponding template, before merging them in the final Encoding.
///
/// A `Template` is actually a sequence of `Piece` that will be
/// concatenated together in the given order. Each `Piece` represents either
/// one of the input `Encoding` or a `SpecialToken`.
///
/// ## Example
/// ```
/// # use tokenizers::processors::template::TemplateProcessing;
/// let template = TemplateProcessing::builder()
/// .try_single("[CLS] $A [SEP]").unwrap()
/// .try_pair("[CLS] $A [SEP] $B:1 [SEP]:1").unwrap()
/// .special_tokens(vec![("[CLS]", 1), ("[SEP]", 0)])
/// .build()
/// .unwrap();
/// ```
///
#[derive(Debug, Clone, PartialEq, Builder, Serialize, Deserialize, Eq)]
#[serde(tag = "type", from = "TemplateProcessingDeserializer")]
#[builder(build_fn(validate = "Self::validate"))]
pub struct TemplateProcessing {
#[builder(try_setter, default = "\"$0\".try_into().unwrap()")]
single: Template,
#[builder(try_setter, default = "\"$A:0 $B:1\".try_into().unwrap()")]
pair: Template,
#[builder(setter(skip), default = "self.default_added(true)")]
#[serde(skip)]
added_single: usize,
#[builder(setter(skip), default = "self.default_added(false)")]
#[serde(skip)]
added_pair: usize,
#[builder(setter(into), default)]
special_tokens: Tokens,
}
impl From<&str> for TemplateProcessingBuilderError {
fn from(e: &str) -> Self {
e.to_string().into()
}
}
impl PartialEq for TemplateProcessingBuilderError {
fn eq(&self, other: &Self) -> bool {
self.to_string() == other.to_string()
}
}
/// We use this custom deserializer to provided the values for `added_single`
/// and `added_pair` during deserialization, while not having to serialize them
#[doc(hidden)]
#[derive(Deserialize)]
#[serde(tag = "type")]
struct TemplateProcessingDeserializer {
single: Template,
pair: Template,
special_tokens: Tokens,
}
impl From<TemplateProcessingDeserializer> for TemplateProcessing {
fn from(t: TemplateProcessingDeserializer) -> Self {
let added_single = count_added(&t.single, Some(&t.special_tokens));
let added_pair = count_added(&t.pair, Some(&t.special_tokens));
Self {
single: t.single,
pair: t.pair,
added_single,
added_pair,
special_tokens: t.special_tokens,
}
}
}
/// Count the number of added tokens in the given template
fn count_added(container: &Template, special_tokens: Option<&Tokens>) -> usize {
container
.0
.iter()
.map(|p| match p {
Piece::Sequence { .. } => 0,
Piece::SpecialToken { id, .. } => {
special_tokens.map_or(0, |spt| spt.0.get(id).map_or(0, |s| s.ids.len()))
}
})
.sum()
}
impl TemplateProcessingBuilder {
fn default_added(&self, is_single: bool) -> usize {
let container = if is_single {
self.single.as_ref()
} else {
self.pair.as_ref()
};
container.map_or(0, |pieces| {
count_added(pieces, self.special_tokens.as_ref())
})
}
fn validate(&self) -> std::result::Result<(), String> {
let pair_has_both = self.pair.as_ref().map_or(true, |pair| {
let mut has_a = false;
let mut has_b = false;
for piece in &pair.0 {
if let Piece::Sequence {
id: Sequence::A, ..
} = piece
{
has_a = true;
}
if let Piece::Sequence {
id: Sequence::B, ..
} = piece
{
has_b = true;
}
}
has_a && has_b
});
if !pair_has_both {
return Err("Template for `pair` must use both sequences".into());
}
let check = |sp| {
let exist = self
.special_tokens
.as_ref()
.map_or(false, |map| map.0.contains_key(sp));
match exist {
false => Some(sp),
true => None,
}
};
let empty = vec![];
let missing: HashSet<&str> = self
.single
.as_ref()
.map_or(empty.iter(), |s| s.0.iter())
.chain(self.pair.as_ref().map_or(empty.iter(), |s| s.0.iter()))
.filter_map(|piece| match piece {
Piece::Sequence { .. } => None,
Piece::SpecialToken { id, .. } => check(id.as_ref()),
})
.collect::<HashSet<_>>();
if missing.is_empty() {
Ok(())
} else {
Err(format!(
"Missing SpecialToken(s) with id(s) `{}`",
missing.iter().join(", ")
))
}
}
}
impl Default for TemplateProcessing {
fn default() -> Self {
Self {
single: "$0".try_into().unwrap(),
pair: "$1".try_into().unwrap(),
added_single: 0,
added_pair: 0,
special_tokens: Tokens::default(),
}
}
}
impl TemplateProcessing {
pub fn builder() -> TemplateProcessingBuilder {
TemplateProcessingBuilder::default()
}
fn apply_template(
&self,
template: &[Piece],
mut encodings: Vec<Encoding>,
add_special_tokens: bool,
) -> Result<Vec<Encoding>> {
let final_encodings: Vec<Encoding> = template
.iter()
.flat_map(|piece| {
match piece {
Piece::Sequence { id, type_id } => {
let i = usize::from(*id != Sequence::A);
let encoding = &mut encodings[i];
encoding.set_type_ids(vec![*type_id; encoding.len()]);
encoding.set_sequence_id(i);
Some(encoding.clone())
}
Piece::SpecialToken { id, type_id } => {
if add_special_tokens {
let tok = &self.special_tokens.0[id]; // We already checked existance above
let len = tok.ids.len();
let encoding = Encoding::new(
tok.ids.clone(),
std::iter::repeat(*type_id).take(len).collect(),
tok.tokens.clone(),
// words
std::iter::repeat(None).take(len).collect(),
// offsets
std::iter::repeat((0, 0)).take(len).collect(),
// special_tokens_mask
std::iter::repeat(1).take(len).collect(),
// attention_mask
std::iter::repeat(1).take(len).collect(),
// overflowing
vec![],
// sequence_range
HashMap::new(),
);
Some(encoding)
} else {
None
}
}
}
})
.collect();
//let mut pair = if encodings.len() > 1 {
// Some(encodings.pop().unwrap())
//} else {
// None
//};
//let mut encoding = encodings.pop().unwrap();
//let pair_overflowing = pair.as_mut().map_or(vec![], |e| e.take_overflowing());
//let mut overflowing: Vec<Encoding> = encoding
// .take_overflowing()
// .iter()
// .map(|encoding| -> Result<Vec<Encoding>> {
// // 1. The pair itself
// let mut overflowings = self.apply_template(
// template,
// if encodings.len() > 1 {
// vec![encoding.clone(), encodings[1].clone()]
// } else {
// vec![encoding.clone()]
// },
// add_special_tokens,
// )?;
// // 2. Its overflowings
// for other_o in &pair_overflowing {
// overflowings.extend(self.apply_template(
// template,
// vec![encoding.clone(), other_o.clone()],
// add_special_tokens,
// )?);
// }
// Ok(overflowings)
// })
// .collect::<Result<Vec<Vec<Encoding>>>>()?
// .into_iter()
// .flatten()
// .collect();
//// We also need to combine the first sequence with all other overflowings
//overflowing.extend(
// pair_overflowing
// .into_iter()
// .map(|pair| {
// self.apply_template(template, vec![encoding.clone(), pair], add_special_tokens)
// })
// .collect::<Result<Vec<_>>>()?
// .into_iter()
// .flatten(),
//);
Ok(final_encodings)
}
}
impl PostProcessor for TemplateProcessing {
fn added_tokens(&self, is_pair: bool) -> usize {
if is_pair {
self.added_pair
} else {
self.added_single
}
}
fn process_encodings(
&self,
encodings: Vec<Encoding>,
add_special_tokens: bool,
) -> Result<Vec<Encoding>> {
// let (encoding, pair): (Encoding, Option<Encoding>) = match encodings.len() {
// 1 => (
// encodings
// .pop()
// .ok_or(ProcessorError::InvalidEncodingsVecLength)?,
// None,
// ),
// 2 => {
// let pair = encodings
// .pop()
// .ok_or(ProcessorError::InvalidEncodingsVecLength)?;
// let encoding = encodings
// .pop()
// .ok_or(ProcessorError::InvalidEncodingsVecLength)?;
// (encoding, Some(pair))
// }
// _ => return Err(Box::new(ProcessorError::InvalidEncodingsVecLength)),
// };
let template = match encodings.len() {
2 => &self.pair.0,
1 => &self.single.0,
_ => todo!(),
};
let encodings = self.apply_template(template, encodings, add_special_tokens)?;
Ok(encodings)
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::convert::TryInto;
use std::iter::FromIterator;
#[test]
fn piece_serde() {
let seq_0 = Piece::Sequence {
id: Sequence::A,
type_id: 0,
};
let seq_0_s = r#"{"Sequence":{"id":"A","type_id":0}}"#;
assert_eq!(serde_json::to_string(&seq_0).unwrap(), seq_0_s);
assert_eq!(serde_json::from_str::<Piece>(seq_0_s).unwrap(), seq_0);
let seq_1 = Piece::Sequence {
id: Sequence::B,
type_id: 1,
};
let seq_1_s = r#"{"Sequence":{"id":"B","type_id":1}}"#;
assert_eq!(serde_json::to_string(&seq_1).unwrap(), seq_1_s);
assert_eq!(serde_json::from_str::<Piece>(seq_1_s).unwrap(), seq_1);
let spe = Piece::SpecialToken {
id: "[CLS]".into(),
type_id: 0,
};
let spe_s = r#"{"SpecialToken":{"id":"[CLS]","type_id":0}}"#;
assert_eq!(serde_json::to_string(&spe).unwrap(), spe_s);
assert_eq!(serde_json::from_str::<Piece>(spe_s).unwrap(), spe);
}
#[test]
fn piece() {
assert_eq!(
Ok(Piece::Sequence {
id: Sequence::A,
type_id: 0
}),
"$".try_into()
);
assert_eq!(
Ok(Piece::Sequence {
id: Sequence::B,
type_id: 0
}),
"$B".try_into()
);
assert_eq!(
Ok(Piece::Sequence {
id: Sequence::A,
type_id: 1
}),
"$1".try_into()
);
assert_eq!(
Ok(Piece::Sequence {
id: Sequence::B,
type_id: 2
}),
"$B:2".try_into()
);
assert_eq!(
Ok(Piece::Sequence {
id: Sequence::A,
type_id: 1
}),
"$:1".try_into()
);
assert!(Piece::try_from("$C:1").is_err());
assert!(Piece::try_from("$A:").is_err());
}
#[test]
fn special_token_serde() {
let simple = SpecialToken::from(("[CLS]", 0));
let simple_s = r#"{"id":"[CLS]","ids":[0],"tokens":["[CLS]"]}"#;
assert_eq!(serde_json::to_string(&simple).unwrap(), simple_s);
assert_eq!(
serde_json::from_str::<SpecialToken>(simple_s).unwrap(),
simple
);
let complete = SpecialToken::new(
"[2FR]".into(),
vec![1, 2, 3],
vec!["convert".into(), "to".into(), "FR".into()],
)
.unwrap();
let complete_s = r#"{"id":"[2FR]","ids":[1,2,3],"tokens":["convert","to","FR"]}"#;
assert_eq!(serde_json::to_string(&complete).unwrap(), complete_s);
assert_eq!(
serde_json::from_str::<SpecialToken>(complete_s).unwrap(),
complete
);
let malformed = SpecialToken::new(
"[2FR]".into(),
vec![1, 2],
vec!["convert".into(), "to".into(), "FR".into()],
);
assert!(malformed.is_err());
let malformed = SpecialToken::new(
"[2FR]".into(),
vec![1, 2, 3],
vec!["convert".into(), "FR".into()],
);
assert!(malformed.is_err());
}
#[test]
fn template_serde() {
let template = Template(vec![
Piece::Sequence {
id: Sequence::A,
type_id: 0,
},
Piece::SpecialToken {
id: "[CLS]".into(),
type_id: 0,
},
]);
let template_s =
r#"[{"Sequence":{"id":"A","type_id":0}},{"SpecialToken":{"id":"[CLS]","type_id":0}}]"#;
assert_eq!(serde_json::to_string(&template).unwrap(), template_s);
assert_eq!(
serde_json::from_str::<Template>(template_s).unwrap(),
template
);
}
#[test]
fn tokens_serde() {
let tokens = Tokens::from(vec![("[CLS]", 1), ("[SEP]", 0)]);
let tokens_s = r#"{"[CLS]":{"id":"[CLS]","ids":[1],"tokens":["[CLS]"]},"[SEP]":{"id":"[SEP]","ids":[0],"tokens":["[SEP]"]}}"#;
let tokens_ser = serde_json::to_string(&tokens).unwrap();
assert_eq!(tokens_ser, tokens_s);
assert_eq!(serde_json::from_str::<Tokens>(tokens_s).unwrap(), tokens);
}
fn get_bert_template() -> TemplateProcessing {
TemplateProcessing::builder()
.try_single(vec!["[CLS]", "$0", "[SEP]"])
.unwrap()
.try_pair("[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1")
.unwrap()
.special_tokens(vec![("[CLS]", 1), ("[SEP]", 0)])
.build()
.unwrap()
}
#[test]
fn template_processing_serde() {
let template = tests::get_bert_template();
let template_s = "{\
\"type\":\"TemplateProcessing\",\
\"single\":[\
{\"SpecialToken\":{\"id\":\"[CLS]\",\"type_id\":0}},\
{\"Sequence\":{\"id\":\"A\",\"type_id\":0}},\
{\"SpecialToken\":{\"id\":\"[SEP]\",\"type_id\":0}}\
],\
\"pair\":[\
{\"SpecialToken\":{\"id\":\"[CLS]\",\"type_id\":0}},\
{\"Sequence\":{\"id\":\"A\",\"type_id\":0}},\
{\"SpecialToken\":{\"id\":\"[SEP]\",\"type_id\":0}},\
{\"Sequence\":{\"id\":\"B\",\"type_id\":1}},\
{\"SpecialToken\":{\"id\":\"[SEP]\",\"type_id\":1}}\
],\
\"special_tokens\":{\
\"[CLS]\":{\
\"id\":\"[CLS]\",\"ids\":[1],\"tokens\":[\"[CLS]\"]\
},\
\"[SEP]\":{\
\"id\":\"[SEP]\",\"ids\":[0],\"tokens\":[\"[SEP]\"]\
}\
}}";
let template_ser = serde_json::to_string(&template).unwrap();
assert_eq!(template_ser, template_s);
assert_eq!(
serde_json::from_str::<TemplateProcessing>(template_s).unwrap(),
template
);
}
#[test]
fn missing_special_tokens() {
let processor = TemplateProcessing::builder()
.try_single("[CLS] $0 [SEP]")
.unwrap()
.try_pair("[CLS] $A:0 [SEP] $B:1 [SEP]")
.unwrap()
.build();
let err_a = Err("Missing SpecialToken(s) with id(s) `[SEP], [CLS]`".into());
let err_b = Err("Missing SpecialToken(s) with id(s) `[CLS], [SEP]`".into());
assert!(processor == err_a || processor == err_b);
}
#[test]
fn template_processing() {
let processor = tests::get_bert_template();
assert_eq!(processor.added_tokens(false), 2);
assert_eq!(processor.added_tokens(true), 3);
use crate::Token;
let encoding = Encoding::from_tokens(
vec![
Token::new(12, "Hello".into(), (0, 5)),
Token::new(14, "there".into(), (6, 11)),
],
0,
);
let pair = Encoding::from_tokens(vec![Token::new(15, "pair".into(), (0, 4))], 0);
let single_encoding = processor.process(encoding.clone(), None, true).unwrap();
assert_eq!(
single_encoding,
Encoding::new(
vec![1, 12, 14, 0],
vec![0, 0, 0, 0],
vec![
"[CLS]".into(),
"Hello".into(),
"there".into(),
"[SEP]".into()
],
vec![None, None, None, None],
vec![(0, 0), (0, 5), (6, 11), (0, 0)],
vec![1, 0, 0, 1],
vec![1, 1, 1, 1],
vec![],
HashMap::from_iter(vec![(0, 1..3)]),
)
);
assert_eq!(single_encoding.token_to_sequence(2), Some(0));
assert_eq!(single_encoding.token_to_sequence(3), None);
let pair_encoding = processor.process(encoding, Some(pair), true).unwrap();
assert_eq!(
pair_encoding,
Encoding::new(
vec![1, 12, 14, 0, 15, 0],
vec![0, 0, 0, 0, 1, 1],
vec![
"[CLS]".into(),
"Hello".into(),
"there".into(),
"[SEP]".into(),
"pair".into(),
"[SEP]".into()
],
vec![None, None, None, None, None, None],
vec![(0, 0), (0, 5), (6, 11), (0, 0), (0, 4), (0, 0)],
vec![1, 0, 0, 1, 0, 1],
vec![1, 1, 1, 1, 1, 1],
vec![],
HashMap::from_iter(vec![(0, 1..3), (1, 4..5)]),
)
);
assert_eq!(pair_encoding.token_to_sequence(2), Some(0));
assert_eq!(pair_encoding.token_to_sequence(3), None);
assert_eq!(pair_encoding.token_to_sequence(4), Some(1));
assert_eq!(pair_encoding.token_to_sequence(5), None);
}
#[test]
fn template_processing_overflowing() {
let processor = tests::get_bert_template();
assert_eq!(processor.added_tokens(false), 2);
assert_eq!(processor.added_tokens(true), 3);
use crate::Token;
let mut encoding = Encoding::from_tokens(
vec![
Token::new(12, "Hello".into(), (0, 5)),
Token::new(14, "there".into(), (6, 11)),
],
0,
);
let overflowing = Encoding::from_tokens(vec![Token::new(13, "you".into(), (12, 15))], 0);
encoding.set_overflowing(vec![overflowing]);
let mut pair = Encoding::from_tokens(
vec![
Token::new(15, "pair".into(), (0, 4)),
Token::new(16, "with".into(), (5, 9)),
],
0,
);
let pair_overflowing =
Encoding::from_tokens(vec![Token::new(17, "info".into(), (10, 14))], 0);
pair.set_overflowing(vec![pair_overflowing]);
let single_encoding = processor.process(encoding.clone(), None, true).unwrap();
assert_eq!(
single_encoding,
Encoding::new(
vec![1, 12, 14, 0],
vec![0, 0, 0, 0],
vec![
"[CLS]".into(),
"Hello".into(),
"there".into(),
"[SEP]".into()
],
vec![None, None, None, None],
vec![(0, 0), (0, 5), (6, 11), (0, 0)],
vec![1, 0, 0, 1],
vec![1, 1, 1, 1],
vec![Encoding::new(
vec![1, 13, 0],
vec![0, 0, 0],
vec!["[CLS]".into(), "you".into(), "[SEP]".into()],
vec![None, None, None],
vec![(0, 0), (12, 15), (0, 0)],
vec![1, 0, 1],
vec![1, 1, 1],
vec![],
HashMap::from_iter(vec![(0, 1..2)]),
)],
HashMap::from_iter(vec![(0, 1..3)]),
)
);
assert_eq!(single_encoding.token_to_sequence(2), Some(0));
assert_eq!(single_encoding.token_to_sequence(3), None);
let pair_encoding = processor.process(encoding, Some(pair), true).unwrap();
println!("{pair_encoding:#?}");
assert_eq!(
pair_encoding,
Encoding::new(
vec![1, 12, 14, 0, 15, 16, 0],
vec![0, 0, 0, 0, 1, 1, 1],
vec![
"[CLS]".into(),
"Hello".into(),
"there".into(),
"[SEP]".into(),
"pair".into(),
"with".into(),
"[SEP]".into()
],
vec![None, None, None, None, None, None, None],
vec![(0, 0), (0, 5), (6, 11), (0, 0), (0, 4), (5, 9), (0, 0)],
vec![1, 0, 0, 1, 0, 0, 1],
vec![1, 1, 1, 1, 1, 1, 1],
vec![
Encoding::new(
vec![1, 13, 0, 15, 16, 0],
vec![0, 0, 0, 1, 1, 1],
vec![
"[CLS]".into(),
"you".into(),
"[SEP]".into(),
"pair".into(),
"with".into(),
"[SEP]".into()
],
vec![None, None, None, None, None, None],
vec![(0, 0), (12, 15), (0, 0), (0, 4), (5, 9), (0, 0)],
vec![1, 0, 1, 0, 0, 1],
vec![1, 1, 1, 1, 1, 1],
vec![Encoding::new(
vec![1, 13, 0, 17, 0],
vec![0, 0, 0, 0, 1],
vec![
"[CLS]".into(),
"you".into(),
"[SEP]".into(),
"info".into(),
"[SEP]".into()
],
vec![None, None, None, None, None,],
vec![(0, 0), (12, 15), (0, 0), (10, 14), (0, 0)],
vec![1, 0, 1, 0, 1],
vec![1, 1, 1, 1, 1],
vec![],
HashMap::from_iter(vec![(0, 1..2), (1, 3..4)]),
),],
HashMap::from_iter(vec![(1, 3..5), (0, 1..2)]),
),
Encoding::new(
vec![1, 13, 0, 17, 0],
vec![0, 0, 0, 0, 1],
vec![
"[CLS]".into(),
"you".into(),
"[SEP]".into(),
"info".into(),
"[SEP]".into()
],
vec![None, None, None, None, None,],
vec![(0, 0), (12, 15), (0, 0), (10, 14), (0, 0)],
vec![1, 0, 1, 0, 1],
vec![1, 1, 1, 1, 1],
vec![],
HashMap::from_iter(vec![(0, 1..2), (1, 3..4)]),
),
Encoding::new(
vec![1, 12, 14, 0, 17, 0],
vec![0, 0, 0, 0, 0, 1],
vec![
"[CLS]".into(),
"Hello".into(),
"there".into(),
"[SEP]".into(),
"info".into(),
"[SEP]".into()
],
vec![None, None, None, None, None, None],
vec![(0, 0), (0, 5), (6, 11), (0, 0), (10, 14), (0, 0)],
vec![1, 0, 0, 1, 0, 1],
vec![1, 1, 1, 1, 1, 1],
vec![Encoding::new(
vec![1, 13, 0, 17, 0],
vec![0, 0, 0, 0, 1],
vec![
"[CLS]".into(),
"you".into(),
"[SEP]".into(),
"info".into(),
"[SEP]".into()
],
vec![None, None, None, None, None,],
vec![(0, 0), (12, 15), (0, 0), (10, 14), (0, 0)],
vec![1, 0, 1, 0, 1],
vec![1, 1, 1, 1, 1],
vec![],
HashMap::from_iter(vec![(0, 1..2), (1, 3..4)]),
),],
HashMap::from_iter(vec![(0, 1..3), (1, 4..5)]),
)
],
HashMap::from_iter(vec![(0, 1..3), (1, 4..6)]),
)
);
assert_eq!(pair_encoding.token_to_sequence(2), Some(0));
assert_eq!(pair_encoding.token_to_sequence(3), None);
assert_eq!(pair_encoding.token_to_sequence(4), Some(1));
assert_eq!(pair_encoding.token_to_sequence(5), Some(1));
assert_eq!(pair_encoding.token_to_sequence(6), None);
}
#[test]
fn pair_must_use_both_sequences() {
let processor = TemplateProcessing::builder()
.try_single("$0")
.unwrap()
.try_pair("$0 $1")
.unwrap()
.build();
assert_eq!(
processor,
Err("Template for `pair` must use both sequences".into())
);
}
#[test]
fn expect_wrong_error_message() {
let processor = TemplateProcessing::builder()
.try_single("$0")
.unwrap()
.try_pair("$0 $1")
.unwrap()
.build();
assert_ne!(
processor,
Err("Expect the left side error message to be different from the right side!".into())
);
}
}
| tokenizers/tokenizers/src/processors/template.rs/0 | {
"file_path": "tokenizers/tokenizers/src/processors/template.rs",
"repo_id": "tokenizers",
"token_count": 21195
} | 236 |
#[cfg(feature = "progressbar")]
pub(crate) use indicatif::{ProgressBar, ProgressStyle};
#[cfg(not(feature = "progressbar"))]
mod progressbar {
use std::borrow::Cow;
pub struct ProgressBar;
impl ProgressBar {
pub fn new(_length: u64) -> Self {
Self {}
}
pub fn set_length(&self, _length: u64) {}
pub fn set_message(&self, _message: impl Into<Cow<'static, str>>) {}
pub fn finish(&self) {}
pub fn reset(&self) {}
pub fn inc(&self, _inc: u64) {}
pub fn set_style(&self, _style: ProgressStyle) {}
}
pub struct ProgressStyle {}
impl ProgressStyle {
pub fn default_bar() -> Self {
Self {}
}
pub fn template(self, _template: &str) -> Result<Self, String> {
Ok(self)
}
}
}
#[cfg(not(feature = "progressbar"))]
pub(crate) use progressbar::{ProgressBar, ProgressStyle};
| tokenizers/tokenizers/src/utils/progress.rs/0 | {
"file_path": "tokenizers/tokenizers/src/utils/progress.rs",
"repo_id": "tokenizers",
"token_count": 403
} | 237 |
apiVersion: v1
kind: PersistentVolume
metadata:
name: huggingface-cluster-disk
spec:
storageClassName: ""
capacity:
storage: 500Gi
accessModes:
- ReadOnlyMany
claimRef:
namespace: default
name: huggingface-cluster-disk-claim
gcePersistentDisk:
pdName: huggingface-cluster-disk
fsType: ext4
readOnly: true
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: huggingface-cluster-disk-claim
spec:
# Specify "" as the storageClassName so it matches the PersistentVolume's StorageClass.
# A nil storageClassName value uses the default StorageClass. For details, see
# https://kubernetes.io/docs/concepts/storage/persistent-volumes/#class-1
storageClassName: ""
accessModes:
- ReadOnlyMany
resources:
requests:
storage: 1Ki
| transformers/docker/transformers-pytorch-tpu/dataset.yaml/0 | {
"file_path": "transformers/docker/transformers-pytorch-tpu/dataset.yaml",
"repo_id": "transformers",
"token_count": 274
} | 238 |
<!---
Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Installation
Installieren Sie 🤗 Transformers für die Deep-Learning-Bibliothek, mit der Sie arbeiten, richten Sie Ihren Cache ein und konfigurieren Sie 🤗 Transformers optional für den Offline-Betrieb.
🤗 Transformers wurde unter Python 3.6+, PyTorch 1.1.0+, TensorFlow 2.0+, und Flax getestet. Folgen Sie den Installationsanweisungen unten für die von Ihnen verwendete Deep-Learning-Bibliothek:
* [PyTorch](https://pytorch.org/get-started/locally/) installation instructions.
* [TensorFlow 2.0](https://www.tensorflow.org/install/pip) installation instructions.
* [Flax](https://flax.readthedocs.io/en/latest/) installation instructions.
## Installation mit pip
Sie sollten 🤗 Transformers in einer [virtuellen Umgebung](https://docs.python.org/3/library/venv.html) installieren. Wenn Sie mit virtuellen Python-Umgebungen nicht vertraut sind, werfen Sie einen Blick auf diese [Anleitung](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). Eine virtuelle Umgebung macht es einfacher, verschiedene Projekte zu verwalten und Kompatibilitätsprobleme zwischen Abhängigkeiten zu vermeiden.
Beginnen wir mit der Erstellung einer virtuellen Umgebung in Ihrem Projektverzeichnis:
```bash
python -m venv .env
```
Aktivieren wir die virtuelle Umgebung. Unter Linux und MacOs:
```bash
source .env/bin/activate
```
Aktivieren wir die virtuelle Umgebung unter Windows
```bash
.env/Scripts/activate
```
Jetzt können wir die 🤗 Transformers mit dem folgenden Befehl installieren:
```bash
pip install transformers
```
Bei reiner CPU-Unterstützung können wir 🤗 Transformers und eine Deep-Learning-Bibliothek bequem in einer Zeile installieren. Installieren wir zum Beispiel 🤗 Transformers und PyTorch mit:
```bash
pip install transformers[torch]
```
🤗 Transformers und TensorFlow 2.0:
```bash
pip install transformers[tf-cpu]
```
🤗 Transformers und Flax:
```bash
pip install transformers[flax]
```
Überprüfen wir abschließend, ob 🤗 Transformers ordnungsgemäß installiert wurde, indem wir den folgenden Befehl ausführen. Es wird ein vortrainiertes Modell heruntergeladen:
```bash
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))"
```
Dann wird die Kategorie und die Wahrscheinlichkeit ausgegeben:
```bash
[{'label': 'POSITIVE', 'score': 0.9998704791069031}]
```
## Installation aus dem Code
Installieren wir 🤗 Transformers aus dem Quellcode mit dem folgenden Befehl:
```bash
pip install git+https://github.com/huggingface/transformers
```
Dieser Befehl installiert die aktuelle `main` Version und nicht die neueste `stable` Version. Die `main`-Version ist nützlich, um mit den neuesten Entwicklungen Schritt zu halten. Zum Beispiel, wenn ein Fehler seit der letzten offiziellen Version behoben wurde, aber eine neue Version noch nicht veröffentlicht wurde. Das bedeutet jedoch, dass die "Hauptversion" nicht immer stabil ist. Wir bemühen uns, die Hauptversion einsatzbereit zu halten, und die meisten Probleme werden normalerweise innerhalb weniger Stunden oder eines Tages behoben. Wenn Sie auf ein Problem stoßen, öffnen Sie bitte ein [Issue](https://github.com/huggingface/transformers/issues), damit wir es noch schneller beheben können!
Überprüfen wir, ob 🤗 Transformers richtig installiert wurde, indem Sie den folgenden Befehl ausführen:
```bash
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))"
```
## Editierbare Installation
Sie benötigen eine bearbeitbare Installation, wenn Sie:
* die "Haupt"-Version des Quellcodes verwenden möchten.
* Zu 🤗 Transformers beitragen und Änderungen am Code testen wollen.
Klonen Sie das Repository und installieren 🤗 Transformers mit den folgenden Befehlen:
```bash
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install -e .
```
Diese Befehle verknüpfen den Ordner, in den Sie das Repository geklont haben, mit den Pfaden Ihrer Python-Bibliotheken. Python wird nun in dem Ordner suchen, in den Sie geklont haben, zusätzlich zu den normalen Bibliothekspfaden. Wenn zum Beispiel Ihre Python-Pakete normalerweise in `~/anaconda3/envs/main/lib/python3.7/site-packages/` installiert sind, wird Python auch den Ordner durchsuchen, in den Sie geklont haben: `~/transformers/`.
<Tip warning={true}>
Sie müssen den Ordner `transformers` behalten, wenn Sie die Bibliothek weiter verwenden wollen.
</Tip>
Jetzt können Sie Ihren Klon mit dem folgenden Befehl ganz einfach auf die neueste Version von 🤗 Transformers aktualisieren:
```bash
cd ~/transformers/
git pull
```
Ihre Python-Umgebung wird beim nächsten Ausführen die `main`-Version von 🤗 Transformers finden.
## Installation mit conda
Installation von dem conda Kanal `conda-forge`:
```bash
conda install conda-forge::transformers
```
## Cache Einrichtung
Vorgefertigte Modelle werden heruntergeladen und lokal zwischengespeichert unter: `~/.cache/huggingface/hub`. Dies ist das Standardverzeichnis, das durch die Shell-Umgebungsvariable "TRANSFORMERS_CACHE" vorgegeben ist. Unter Windows wird das Standardverzeichnis durch `C:\Benutzer\Benutzername\.cache\huggingface\hub` angegeben. Sie können die unten aufgeführten Shell-Umgebungsvariablen - in der Reihenfolge ihrer Priorität - ändern, um ein anderes Cache-Verzeichnis anzugeben:
1. Shell-Umgebungsvariable (Standard): `HUGGINGFACE_HUB_CACHE` oder `TRANSFORMERS_CACHE`.
2. Shell-Umgebungsvariable: `HF_HOME`.
3. Shell-Umgebungsvariable: `XDG_CACHE_HOME` + `/huggingface`.
<Tip>
Transformers verwendet die Shell-Umgebungsvariablen `PYTORCH_TRANSFORMERS_CACHE` oder `PYTORCH_PRETRAINED_BERT_CACHE`, wenn Sie von einer früheren Iteration dieser Bibliothek kommen und diese Umgebungsvariablen gesetzt haben, sofern Sie nicht die Shell-Umgebungsvariable `TRANSFORMERS_CACHE` angeben.
</Tip>
## Offline Modus
Transformers ist in der Lage, in einer Firewall- oder Offline-Umgebung zu laufen, indem es nur lokale Dateien verwendet. Setzen Sie die Umgebungsvariable `TRANSFORMERS_OFFLINE=1`, um dieses Verhalten zu aktivieren.
<Tip>
Fügen sie [🤗 Datasets](https://huggingface.co/docs/datasets/) zu Ihrem Offline-Trainingsworkflow hinzufügen, indem Sie die Umgebungsvariable `HF_DATASETS_OFFLINE=1` setzen.
</Tip>
So würden Sie beispielsweise ein Programm in einem normalen Netzwerk mit einer Firewall für externe Instanzen mit dem folgenden Befehl ausführen:
```bash
python examples/pytorch/translation/run_translation.py --model_name_or_path google-t5/t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
Führen Sie das gleiche Programm in einer Offline-Instanz mit aus:
```bash
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \
python examples/pytorch/translation/run_translation.py --model_name_or_path google-t5/t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
Das Skript sollte nun laufen, ohne sich aufzuhängen oder eine Zeitüberschreitung abzuwarten, da es weiß, dass es nur nach lokalen Dateien suchen soll.
### Abrufen von Modellen und Tokenizern zur Offline-Verwendung
Eine andere Möglichkeit, 🤗 Transformers offline zu verwenden, besteht darin, die Dateien im Voraus herunterzuladen und dann auf ihren lokalen Pfad zu verweisen, wenn Sie sie offline verwenden müssen. Es gibt drei Möglichkeiten, dies zu tun:
* Laden Sie eine Datei über die Benutzeroberfläche des [Model Hub](https://huggingface.co/models) herunter, indem Sie auf das ↓-Symbol klicken.

* Verwenden Sie den [PreTrainedModel.from_pretrained] und [PreTrainedModel.save_pretrained] Workflow:
1. Laden Sie Ihre Dateien im Voraus mit [`PreTrainedModel.from_pretrained`] herunter:
```py
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/T0_3B")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0_3B")
```
2. Speichern Sie Ihre Dateien in einem bestimmten Verzeichnis mit [`PreTrainedModel.save_pretrained`]:
```py
>>> tokenizer.save_pretrained("./your/path/bigscience_t0")
>>> model.save_pretrained("./your/path/bigscience_t0")
```
3. Wenn Sie nun offline sind, laden Sie Ihre Dateien mit [`PreTrainedModel.from_pretrained`] aus dem bestimmten Verzeichnis:
```py
>>> tokenizer = AutoTokenizer.from_pretrained("./your/path/bigscience_t0")
>>> model = AutoModel.from_pretrained("./your/path/bigscience_t0")
```
* Programmatisches Herunterladen von Dateien mit der [huggingface_hub](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub) Bibliothek:
1. Installieren Sie die "huggingface_hub"-Bibliothek in Ihrer virtuellen Umgebung:
```bash
python -m pip install huggingface_hub
```
2. Verwenden Sie die Funktion [`hf_hub_download`](https://huggingface.co/docs/hub/adding-a-library#download-files-from-the-hub), um eine Datei in einen bestimmten Pfad herunterzuladen. Der folgende Befehl lädt zum Beispiel die Datei "config.json" aus dem Modell [T0](https://huggingface.co/bigscience/T0_3B) in den gewünschten Pfad herunter:
```py
>>> from huggingface_hub import hf_hub_download
>>> hf_hub_download(repo_id="bigscience/T0_3B", filename="config.json", cache_dir="./your/path/bigscience_t0")
```
Sobald Ihre Datei heruntergeladen und lokal zwischengespeichert ist, geben Sie den lokalen Pfad an, um sie zu laden und zu verwenden:
```py
>>> from transformers import AutoConfig
>>> config = AutoConfig.from_pretrained("./your/path/bigscience_t0/config.json")
```
<Tip>
Weitere Informationen zum Herunterladen von Dateien, die auf dem Hub gespeichert sind, finden Sie im Abschnitt [Wie man Dateien vom Hub herunterlädt](https://huggingface.co/docs/hub/how-to-downstream).
</Tip>
| transformers/docs/source/de/installation.md/0 | {
"file_path": "transformers/docs/source/de/installation.md",
"repo_id": "transformers",
"token_count": 3999
} | 239 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Use tokenizers from 🤗 Tokenizers
The [`PreTrainedTokenizerFast`] depends on the [🤗 Tokenizers](https://huggingface.co/docs/tokenizers) library. The tokenizers obtained from the 🤗 Tokenizers library can be
loaded very simply into 🤗 Transformers.
Before getting in the specifics, let's first start by creating a dummy tokenizer in a few lines:
```python
>>> from tokenizers import Tokenizer
>>> from tokenizers.models import BPE
>>> from tokenizers.trainers import BpeTrainer
>>> from tokenizers.pre_tokenizers import Whitespace
>>> tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
>>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
>>> tokenizer.pre_tokenizer = Whitespace()
>>> files = [...]
>>> tokenizer.train(files, trainer)
```
We now have a tokenizer trained on the files we defined. We can either continue using it in that runtime, or save it to
a JSON file for future re-use.
## Loading directly from the tokenizer object
Let's see how to leverage this tokenizer object in the 🤗 Transformers library. The
[`PreTrainedTokenizerFast`] class allows for easy instantiation, by accepting the instantiated
*tokenizer* object as an argument:
```python
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
```
This object can now be used with all the methods shared by the 🤗 Transformers tokenizers! Head to [the tokenizer
page](main_classes/tokenizer) for more information.
## Loading from a JSON file
In order to load a tokenizer from a JSON file, let's first start by saving our tokenizer:
```python
>>> tokenizer.save("tokenizer.json")
```
The path to which we saved this file can be passed to the [`PreTrainedTokenizerFast`] initialization
method using the `tokenizer_file` parameter:
```python
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
```
This object can now be used with all the methods shared by the 🤗 Transformers tokenizers! Head to [the tokenizer
page](main_classes/tokenizer) for more information.
| transformers/docs/source/en/fast_tokenizers.md/0 | {
"file_path": "transformers/docs/source/en/fast_tokenizers.md",
"repo_id": "transformers",
"token_count": 792
} | 240 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# BARTpho
## Overview
The BARTpho model was proposed in [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
The abstract from the paper is the following:
*We present BARTpho with two versions -- BARTpho_word and BARTpho_syllable -- the first public large-scale monolingual
sequence-to-sequence models pre-trained for Vietnamese. Our BARTpho uses the "large" architecture and pre-training
scheme of the sequence-to-sequence denoising model BART, thus especially suitable for generative NLP tasks. Experiments
on a downstream task of Vietnamese text summarization show that in both automatic and human evaluations, our BARTpho
outperforms the strong baseline mBART and improves the state-of-the-art. We release BARTpho to facilitate future
research and applications of generative Vietnamese NLP tasks.*
This model was contributed by [dqnguyen](https://huggingface.co/dqnguyen). The original code can be found [here](https://github.com/VinAIResearch/BARTpho).
## Usage example
```python
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer
>>> bartpho = AutoModel.from_pretrained("vinai/bartpho-syllable")
>>> tokenizer = AutoTokenizer.from_pretrained("vinai/bartpho-syllable")
>>> line = "Chúng tôi là những nghiên cứu viên."
>>> input_ids = tokenizer(line, return_tensors="pt")
>>> with torch.no_grad():
... features = bartpho(**input_ids) # Models outputs are now tuples
>>> # With TensorFlow 2.0+:
>>> from transformers import TFAutoModel
>>> bartpho = TFAutoModel.from_pretrained("vinai/bartpho-syllable")
>>> input_ids = tokenizer(line, return_tensors="tf")
>>> features = bartpho(**input_ids)
```
## Usage tips
- Following mBART, BARTpho uses the "large" architecture of BART with an additional layer-normalization layer on top of
both the encoder and decoder. Thus, usage examples in the [documentation of BART](bart), when adapting to use
with BARTpho, should be adjusted by replacing the BART-specialized classes with the mBART-specialized counterparts.
For example:
```python
>>> from transformers import MBartForConditionalGeneration
>>> bartpho = MBartForConditionalGeneration.from_pretrained("vinai/bartpho-syllable")
>>> TXT = "Chúng tôi là <mask> nghiên cứu viên."
>>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
>>> logits = bartpho(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> print(tokenizer.decode(predictions).split())
```
- This implementation is only for tokenization: "monolingual_vocab_file" consists of Vietnamese-specialized types
extracted from the pre-trained SentencePiece model "vocab_file" that is available from the multilingual XLM-RoBERTa.
Other languages, if employing this pre-trained multilingual SentencePiece model "vocab_file" for subword
segmentation, can reuse BartphoTokenizer with their own language-specialized "monolingual_vocab_file".
## BartphoTokenizer
[[autodoc]] BartphoTokenizer
| transformers/docs/source/en/model_doc/bartpho.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/bartpho.md",
"repo_id": "transformers",
"token_count": 1166
} | 241 |
<!--Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# BridgeTower
## Overview
The BridgeTower model was proposed in [BridgeTower: Building Bridges Between Encoders in Vision-Language Representative Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. The goal of this model is to build a
bridge between each uni-modal encoder and the cross-modal encoder to enable comprehensive and detailed interaction at each layer of the cross-modal encoder thus achieving remarkable performance on various downstream tasks with almost negligible additional performance and computational costs.
This paper has been accepted to the [AAAI'23](https://aaai.org/Conferences/AAAI-23/) conference.
The abstract from the paper is the following:
*Vision-Language (VL) models with the TWO-TOWER architecture have dominated visual-language representation learning in recent years.
Current VL models either use lightweight uni-modal encoders and learn to extract, align and fuse both modalities simultaneously in a deep cross-modal encoder, or feed the last-layer uni-modal representations from the deep pre-trained uni-modal encoders into the top cross-modal encoder.
Both approaches potentially restrict vision-language representation learning and limit model performance. In this paper, we propose BRIDGETOWER, which introduces multiple bridge layers that build a connection between the top layers of uni-modal encoders and each layer of the crossmodal encoder.
This enables effective bottom-up cross-modal alignment and fusion between visual and textual representations of different semantic levels of pre-trained uni-modal encoders in the cross-modal encoder. Pre-trained with only 4M images, BRIDGETOWER achieves state-of-the-art performance on various downstream vision-language tasks.
In particular, on the VQAv2 test-std set, BRIDGETOWER achieves an accuracy of 78.73%, outperforming the previous state-of-the-art model METER by 1.09% with the same pre-training data and almost negligible additional parameters and computational costs.
Notably, when further scaling the model, BRIDGETOWER achieves an accuracy of 81.15%, surpassing models that are pre-trained on orders-of-magnitude larger datasets.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/bridgetower_architecture%20.jpg"
alt="drawing" width="600"/>
<small> BridgeTower architecture. Taken from the <a href="https://arxiv.org/abs/2206.08657">original paper.</a> </small>
This model was contributed by [Anahita Bhiwandiwalla](https://huggingface.co/anahita-b), [Tiep Le](https://huggingface.co/Tile) and [Shaoyen Tseng](https://huggingface.co/shaoyent). The original code can be found [here](https://github.com/microsoft/BridgeTower).
## Usage tips and examples
BridgeTower consists of a visual encoder, a textual encoder and cross-modal encoder with multiple lightweight bridge layers.
The goal of this approach was to build a bridge between each uni-modal encoder and the cross-modal encoder to enable comprehensive and detailed interaction at each layer of the cross-modal encoder.
In principle, one can apply any visual, textual or cross-modal encoder in the proposed architecture.
The [`BridgeTowerProcessor`] wraps [`RobertaTokenizer`] and [`BridgeTowerImageProcessor`] into a single instance to both
encode the text and prepare the images respectively.
The following example shows how to run contrastive learning using [`BridgeTowerProcessor`] and [`BridgeTowerForContrastiveLearning`].
```python
>>> from transformers import BridgeTowerProcessor, BridgeTowerForContrastiveLearning
>>> import requests
>>> from PIL import Image
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc")
>>> model = BridgeTowerForContrastiveLearning.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc")
>>> # forward pass
>>> scores = dict()
>>> for text in texts:
... # prepare inputs
... encoding = processor(image, text, return_tensors="pt")
... outputs = model(**encoding)
... scores[text] = outputs
```
The following example shows how to run image-text retrieval using [`BridgeTowerProcessor`] and [`BridgeTowerForImageAndTextRetrieval`].
```python
>>> from transformers import BridgeTowerProcessor, BridgeTowerForImageAndTextRetrieval
>>> import requests
>>> from PIL import Image
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
>>> model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
>>> # forward pass
>>> scores = dict()
>>> for text in texts:
... # prepare inputs
... encoding = processor(image, text, return_tensors="pt")
... outputs = model(**encoding)
... scores[text] = outputs.logits[0, 1].item()
```
The following example shows how to run masked language modeling using [`BridgeTowerProcessor`] and [`BridgeTowerForMaskedLM`].
```python
>>> from transformers import BridgeTowerProcessor, BridgeTowerForMaskedLM
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000360943.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
>>> text = "a <mask> looking out of the window"
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
>>> model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
>>> # prepare inputs
>>> encoding = processor(image, text, return_tensors="pt")
>>> # forward pass
>>> outputs = model(**encoding)
>>> results = processor.decode(outputs.logits.argmax(dim=-1).squeeze(0).tolist())
>>> print(results)
.a cat looking out of the window.
```
Tips:
- This implementation of BridgeTower uses [`RobertaTokenizer`] to generate text embeddings and OpenAI's CLIP/ViT model to compute visual embeddings.
- Checkpoints for pre-trained [bridgeTower-base](https://huggingface.co/BridgeTower/bridgetower-base) and [bridgetower masked language modeling and image text matching](https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm) are released.
- Please refer to [Table 5](https://arxiv.org/pdf/2206.08657.pdf) for BridgeTower's performance on Image Retrieval and other down stream tasks.
- The PyTorch version of this model is only available in torch 1.10 and higher.
## BridgeTowerConfig
[[autodoc]] BridgeTowerConfig
## BridgeTowerTextConfig
[[autodoc]] BridgeTowerTextConfig
## BridgeTowerVisionConfig
[[autodoc]] BridgeTowerVisionConfig
## BridgeTowerImageProcessor
[[autodoc]] BridgeTowerImageProcessor
- preprocess
## BridgeTowerProcessor
[[autodoc]] BridgeTowerProcessor
- __call__
## BridgeTowerModel
[[autodoc]] BridgeTowerModel
- forward
## BridgeTowerForContrastiveLearning
[[autodoc]] BridgeTowerForContrastiveLearning
- forward
## BridgeTowerForMaskedLM
[[autodoc]] BridgeTowerForMaskedLM
- forward
## BridgeTowerForImageAndTextRetrieval
[[autodoc]] BridgeTowerForImageAndTextRetrieval
- forward
| transformers/docs/source/en/model_doc/bridgetower.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/bridgetower.md",
"repo_id": "transformers",
"token_count": 2392
} | 242 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Dilated Neighborhood Attention Transformer
## Overview
DiNAT was proposed in [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001)
by Ali Hassani and Humphrey Shi.
It extends [NAT](nat) by adding a Dilated Neighborhood Attention pattern to capture global context,
and shows significant performance improvements over it.
The abstract from the paper is the following:
*Transformers are quickly becoming one of the most heavily applied deep learning architectures across modalities,
domains, and tasks. In vision, on top of ongoing efforts into plain transformers, hierarchical transformers have
also gained significant attention, thanks to their performance and easy integration into existing frameworks.
These models typically employ localized attention mechanisms, such as the sliding-window Neighborhood Attention (NA)
or Swin Transformer's Shifted Window Self Attention. While effective at reducing self attention's quadratic complexity,
local attention weakens two of the most desirable properties of self attention: long range inter-dependency modeling,
and global receptive field. In this paper, we introduce Dilated Neighborhood Attention (DiNA), a natural, flexible and
efficient extension to NA that can capture more global context and expand receptive fields exponentially at no
additional cost. NA's local attention and DiNA's sparse global attention complement each other, and therefore we
introduce Dilated Neighborhood Attention Transformer (DiNAT), a new hierarchical vision transformer built upon both.
DiNAT variants enjoy significant improvements over strong baselines such as NAT, Swin, and ConvNeXt.
Our large model is faster and ahead of its Swin counterpart by 1.5% box AP in COCO object detection,
1.3% mask AP in COCO instance segmentation, and 1.1% mIoU in ADE20K semantic segmentation.
Paired with new frameworks, our large variant is the new state of the art panoptic segmentation model on COCO (58.2 PQ)
and ADE20K (48.5 PQ), and instance segmentation model on Cityscapes (44.5 AP) and ADE20K (35.4 AP) (no extra data).
It also matches the state of the art specialized semantic segmentation models on ADE20K (58.2 mIoU),
and ranks second on Cityscapes (84.5 mIoU) (no extra data). *
<img
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dilated-neighborhood-attention-pattern.jpg"
alt="drawing" width="600"/>
<small> Neighborhood Attention with different dilation values.
Taken from the <a href="https://arxiv.org/abs/2209.15001">original paper</a>.</small>
This model was contributed by [Ali Hassani](https://huggingface.co/alihassanijr).
The original code can be found [here](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer).
## Usage tips
DiNAT can be used as a *backbone*. When `output_hidden_states = True`,
it will output both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, height, width, num_channels)`.
Notes:
- DiNAT depends on [NATTEN](https://github.com/SHI-Labs/NATTEN/)'s implementation of Neighborhood Attention and Dilated Neighborhood Attention.
You can install it with pre-built wheels for Linux by referring to [shi-labs.com/natten](https://shi-labs.com/natten), or build on your system by running `pip install natten`.
Note that the latter will likely take time to compile. NATTEN does not support Windows devices yet.
- Patch size of 4 is only supported at the moment.
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DiNAT.
<PipelineTag pipeline="image-classification"/>
- [`DinatForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## DinatConfig
[[autodoc]] DinatConfig
## DinatModel
[[autodoc]] DinatModel
- forward
## DinatForImageClassification
[[autodoc]] DinatForImageClassification
- forward
| transformers/docs/source/en/model_doc/dinat.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/dinat.md",
"repo_id": "transformers",
"token_count": 1371
} | 243 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# GPT Neo
## Overview
The GPTNeo model was released in the [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) repository by Sid
Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy. It is a GPT2 like causal language model trained on the
[Pile](https://pile.eleuther.ai/) dataset.
The architecture is similar to GPT2 except that GPT Neo uses local attention in every other layer with a window size of
256 tokens.
This model was contributed by [valhalla](https://huggingface.co/valhalla).
## Usage example
The `generate()` method can be used to generate text using GPT Neo model.
```python
>>> from transformers import GPTNeoForCausalLM, GPT2Tokenizer
>>> model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> prompt = (
... "In a shocking finding, scientists discovered a herd of unicorns living in a remote, "
... "previously unexplored valley, in the Andes Mountains. Even more surprising to the "
... "researchers was the fact that the unicorns spoke perfect English."
... )
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids
>>> gen_tokens = model.generate(
... input_ids,
... do_sample=True,
... temperature=0.9,
... max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]
```
## Combining GPT-Neo and Flash Attention 2
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature, and make sure your hardware is compatible with Flash-Attention 2. More details are available [here](https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2) concerning the installation.
Make sure as well to load your model in half-precision (e.g. `torch.float16`).
To load and run a model using Flash Attention 2, refer to the snippet below:
```python
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
>>> model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-2.7B", torch_dtype=torch.float16, attn_implementation="flash_attention_2")
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
>>> prompt = "def hello_world():"
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
>>> model.to(device)
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"def hello_world():\n >>> run_script("hello.py")\n >>> exit(0)\n<|endoftext|>"
```
### Expected speedups
Below is an expected speedup diagram that compares pure inference time between the native implementation in transformers using `EleutherAI/gpt-neo-2.7B` checkpoint and the Flash Attention 2 version of the model.
Note that for GPT-Neo it is not possible to train / run on very long context as the max [position embeddings](https://huggingface.co/EleutherAI/gpt-neo-2.7B/blob/main/config.json#L58 ) is limited to 2048 - but this is applicable to all gpt-neo models and not specific to FA-2
<div style="text-align: center">
<img src="https://user-images.githubusercontent.com/49240599/272241893-b1c66b75-3a48-4265-bc47-688448568b3d.png">
</div>
## Resources
- [Text classification task guide](../tasks/sequence_classification)
- [Causal language modeling task guide](../tasks/language_modeling)
## GPTNeoConfig
[[autodoc]] GPTNeoConfig
<frameworkcontent>
<pt>
## GPTNeoModel
[[autodoc]] GPTNeoModel
- forward
## GPTNeoForCausalLM
[[autodoc]] GPTNeoForCausalLM
- forward
## GPTNeoForQuestionAnswering
[[autodoc]] GPTNeoForQuestionAnswering
- forward
## GPTNeoForSequenceClassification
[[autodoc]] GPTNeoForSequenceClassification
- forward
## GPTNeoForTokenClassification
[[autodoc]] GPTNeoForTokenClassification
- forward
</pt>
<jax>
## FlaxGPTNeoModel
[[autodoc]] FlaxGPTNeoModel
- __call__
## FlaxGPTNeoForCausalLM
[[autodoc]] FlaxGPTNeoForCausalLM
- __call__
</jax>
</frameworkcontent>
| transformers/docs/source/en/model_doc/gpt_neo.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/gpt_neo.md",
"repo_id": "transformers",
"token_count": 1582
} | 244 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# LayoutLM
<a id='Overview'></a>
## Overview
The LayoutLM model was proposed in the paper [LayoutLM: Pre-training of Text and Layout for Document Image
Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and
Ming Zhou. It's a simple but effective pretraining method of text and layout for document image understanding and
information extraction tasks, such as form understanding and receipt understanding. It obtains state-of-the-art results
on several downstream tasks:
- form understanding: the [FUNSD](https://guillaumejaume.github.io/FUNSD/) dataset (a collection of 199 annotated
forms comprising more than 30,000 words).
- receipt understanding: the [SROIE](https://rrc.cvc.uab.es/?ch=13) dataset (a collection of 626 receipts for
training and 347 receipts for testing).
- document image classification: the [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset (a collection of
400,000 images belonging to one of 16 classes).
The abstract from the paper is the following:
*Pre-training techniques have been verified successfully in a variety of NLP tasks in recent years. Despite the
widespread use of pretraining models for NLP applications, they almost exclusively focus on text-level manipulation,
while neglecting layout and style information that is vital for document image understanding. In this paper, we propose
the LayoutLM to jointly model interactions between text and layout information across scanned document images, which is
beneficial for a great number of real-world document image understanding tasks such as information extraction from
scanned documents. Furthermore, we also leverage image features to incorporate words' visual information into LayoutLM.
To the best of our knowledge, this is the first time that text and layout are jointly learned in a single framework for
document-level pretraining. It achieves new state-of-the-art results in several downstream tasks, including form
understanding (from 70.72 to 79.27), receipt understanding (from 94.02 to 95.24) and document image classification
(from 93.07 to 94.42).*
## Usage tips
- In addition to *input_ids*, [`~transformers.LayoutLMModel.forward`] also expects the input `bbox`, which are
the bounding boxes (i.e. 2D-positions) of the input tokens. These can be obtained using an external OCR engine such
as Google's [Tesseract](https://github.com/tesseract-ocr/tesseract) (there's a [Python wrapper](https://pypi.org/project/pytesseract/) available). Each bounding box should be in (x0, y0, x1, y1) format, where
(x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1) represents the
position of the lower right corner. Note that one first needs to normalize the bounding boxes to be on a 0-1000
scale. To normalize, you can use the following function:
```python
def normalize_bbox(bbox, width, height):
return [
int(1000 * (bbox[0] / width)),
int(1000 * (bbox[1] / height)),
int(1000 * (bbox[2] / width)),
int(1000 * (bbox[3] / height)),
]
```
Here, `width` and `height` correspond to the width and height of the original document in which the token
occurs. Those can be obtained using the Python Image Library (PIL) library for example, as follows:
```python
from PIL import Image
# Document can be a png, jpg, etc. PDFs must be converted to images.
image = Image.open(name_of_your_document).convert("RGB")
width, height = image.size
```
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with LayoutLM. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="document-question-answering" />
- A blog post on [fine-tuning
LayoutLM for document-understanding using Keras & Hugging Face
Transformers](https://www.philschmid.de/fine-tuning-layoutlm-keras).
- A blog post on how to [fine-tune LayoutLM for document-understanding using only Hugging Face Transformers](https://www.philschmid.de/fine-tuning-layoutlm).
- A notebook on how to [fine-tune LayoutLM on the FUNSD dataset with image embeddings](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Add_image_embeddings_to_LayoutLM.ipynb).
- See also: [Document question answering task guide](../tasks/document_question_answering)
<PipelineTag pipeline="text-classification" />
- A notebook on how to [fine-tune LayoutLM for sequence classification on the RVL-CDIP dataset](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForSequenceClassification_on_RVL_CDIP.ipynb).
- [Text classification task guide](../tasks/sequence_classification)
<PipelineTag pipeline="token-classification" />
- A notebook on how to [ fine-tune LayoutLM for token classification on the FUNSD dataset](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/LayoutLM/Fine_tuning_LayoutLMForTokenClassification_on_FUNSD.ipynb).
- [Token classification task guide](../tasks/token_classification)
**Other resources**
- [Masked language modeling task guide](../tasks/masked_language_modeling)
🚀 Deploy
- A blog post on how to [Deploy LayoutLM with Hugging Face Inference Endpoints](https://www.philschmid.de/inference-endpoints-layoutlm).
## LayoutLMConfig
[[autodoc]] LayoutLMConfig
## LayoutLMTokenizer
[[autodoc]] LayoutLMTokenizer
## LayoutLMTokenizerFast
[[autodoc]] LayoutLMTokenizerFast
<frameworkcontent>
<pt>
## LayoutLMModel
[[autodoc]] LayoutLMModel
## LayoutLMForMaskedLM
[[autodoc]] LayoutLMForMaskedLM
## LayoutLMForSequenceClassification
[[autodoc]] LayoutLMForSequenceClassification
## LayoutLMForTokenClassification
[[autodoc]] LayoutLMForTokenClassification
## LayoutLMForQuestionAnswering
[[autodoc]] LayoutLMForQuestionAnswering
</pt>
<tf>
## TFLayoutLMModel
[[autodoc]] TFLayoutLMModel
## TFLayoutLMForMaskedLM
[[autodoc]] TFLayoutLMForMaskedLM
## TFLayoutLMForSequenceClassification
[[autodoc]] TFLayoutLMForSequenceClassification
## TFLayoutLMForTokenClassification
[[autodoc]] TFLayoutLMForTokenClassification
## TFLayoutLMForQuestionAnswering
[[autodoc]] TFLayoutLMForQuestionAnswering
</tf>
</frameworkcontent>
| transformers/docs/source/en/model_doc/layoutlm.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/layoutlm.md",
"repo_id": "transformers",
"token_count": 2088
} | 245 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# MADLAD-400
## Overview
MADLAD-400 models were released in the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](MADLAD-400: A Multilingual And Document-Level Large Audited Dataset).
The abstract from the paper is the following:
*We introduce MADLAD-400, a manually audited, general domain 3T token monolingual dataset based on CommonCrawl, spanning 419 languages. We discuss
the limitations revealed by self-auditing MADLAD-400, and the role data auditing
had in the dataset creation process. We then train and release a 10.7B-parameter
multilingual machine translation model on 250 billion tokens covering over 450
languages using publicly available data, and find that it is competitive with models
that are significantly larger, and report the results on different domains. In addition, we train a 8B-parameter language model, and assess the results on few-shot
translation. We make the baseline models 1
available to the research community.*
This model was added by [Juarez Bochi](https://huggingface.co/jbochi). The original checkpoints can be found [here](https://github.com/google-research/google-research/tree/master/madlad_400).
This is a machine translation model that supports many low-resource languages, and that is competitive with models that are significantly larger.
One can directly use MADLAD-400 weights without finetuning the model:
```python
>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
>>> model = AutoModelForSeq2SeqLM.from_pretrained("google/madlad400-3b-mt")
>>> tokenizer = AutoTokenizer.from_pretrained("google/madlad400-3b-mt")
>>> inputs = tokenizer("<2pt> I love pizza!", return_tensors="pt")
>>> outputs = model.generate(**inputs)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['Eu amo pizza!']
```
Google has released the following variants:
- [google/madlad400-3b-mt](https://huggingface.co/google/madlad400-3b-mt)
- [google/madlad400-7b-mt](https://huggingface.co/google/madlad400-7b-mt)
- [google/madlad400-7b-mt-bt](https://huggingface.co/google/madlad400-7b-mt-bt)
- [google/madlad400-10b-mt](https://huggingface.co/google/madlad400-10b-mt)
The original checkpoints can be found [here](https://github.com/google-research/google-research/tree/master/madlad_400).
<Tip>
Refer to [T5's documentation page](t5) for all API references, code examples, and notebooks. For more details regarding training and evaluation of the MADLAD-400, refer to the model card.
</Tip>
| transformers/docs/source/en/model_doc/madlad-400.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/madlad-400.md",
"repo_id": "transformers",
"token_count": 930
} | 246 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# MMS
## Overview
The MMS model was proposed in [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516)
by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli
The abstract from the paper is the following:
*Expanding the language coverage of speech technology has the potential to improve access to information for many more people.
However, current speech technology is restricted to about one hundred languages which is a small fraction of the over 7,000
languages spoken around the world.
The Massively Multilingual Speech (MMS) project increases the number of supported languages by 10-40x, depending on the task.
The main ingredients are a new dataset based on readings of publicly available religious texts and effectively leveraging
self-supervised learning. We built pre-trained wav2vec 2.0 models covering 1,406 languages,
a single multilingual automatic speech recognition model for 1,107 languages, speech synthesis models
for the same number of languages, as well as a language identification model for 4,017 languages.
Experiments show that our multilingual speech recognition model more than halves the word error rate of
Whisper on 54 languages of the FLEURS benchmark while being trained on a small fraction of the labeled data.*
Here are the different models open sourced in the MMS project. The models and code are originally released [here](https://github.com/facebookresearch/fairseq/tree/main/examples/mms). We have add them to the `transformers` framework, making them easier to use.
### Automatic Speech Recognition (ASR)
The ASR model checkpoints can be found here : [mms-1b-fl102](https://huggingface.co/facebook/mms-1b-fl102), [mms-1b-l1107](https://huggingface.co/facebook/mms-1b-l1107), [mms-1b-all](https://huggingface.co/facebook/mms-1b-all). For best accuracy, use the `mms-1b-all` model.
Tips:
- All ASR models accept a float array corresponding to the raw waveform of the speech signal. The raw waveform should be pre-processed with [`Wav2Vec2FeatureExtractor`].
- The models were trained using connectionist temporal classification (CTC) so the model output has to be decoded using
[`Wav2Vec2CTCTokenizer`].
- You can load different language adapter weights for different languages via [`~Wav2Vec2PreTrainedModel.load_adapter`]. Language adapters only consists of roughly 2 million parameters
and can therefore be efficiently loaded on the fly when needed.
#### Loading
By default MMS loads adapter weights for English. If you want to load adapter weights of another language
make sure to specify `target_lang=<your-chosen-target-lang>` as well as `"ignore_mismatched_sizes=True`.
The `ignore_mismatched_sizes=True` keyword has to be passed to allow the language model head to be resized according
to the vocabulary of the specified language.
Similarly, the processor should be loaded with the same target language
```py
from transformers import Wav2Vec2ForCTC, AutoProcessor
model_id = "facebook/mms-1b-all"
target_lang = "fra"
processor = AutoProcessor.from_pretrained(model_id, target_lang=target_lang)
model = Wav2Vec2ForCTC.from_pretrained(model_id, target_lang=target_lang, ignore_mismatched_sizes=True)
```
<Tip>
You can safely ignore a warning such as:
```text
Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/mms-1b-all and are newly initialized because the shapes did not match:
- lm_head.bias: found shape torch.Size([154]) in the checkpoint and torch.Size([314]) in the model instantiated
- lm_head.weight: found shape torch.Size([154, 1280]) in the checkpoint and torch.Size([314, 1280]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
</Tip>
If you want to use the ASR pipeline, you can load your chosen target language as such:
```py
from transformers import pipeline
model_id = "facebook/mms-1b-all"
target_lang = "fra"
pipe = pipeline(model=model_id, model_kwargs={"target_lang": "fra", "ignore_mismatched_sizes": True})
```
#### Inference
Next, let's look at how we can run MMS in inference and change adapter layers after having called [`~PretrainedModel.from_pretrained`]
First, we load audio data in different languages using the [Datasets](https://github.com/huggingface/datasets).
```py
from datasets import load_dataset, Audio
# English
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
en_sample = next(iter(stream_data))["audio"]["array"]
# French
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "fr", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
fr_sample = next(iter(stream_data))["audio"]["array"]
```
Next, we load the model and processor
```py
from transformers import Wav2Vec2ForCTC, AutoProcessor
import torch
model_id = "facebook/mms-1b-all"
processor = AutoProcessor.from_pretrained(model_id)
model = Wav2Vec2ForCTC.from_pretrained(model_id)
```
Now we process the audio data, pass the processed audio data to the model and transcribe the model output,
just like we usually do for [`Wav2Vec2ForCTC`].
```py
inputs = processor(en_sample, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
# 'joe keton disapproved of films and buster also had reservations about the media'
```
We can now keep the same model in memory and simply switch out the language adapters by
calling the convenient [`~Wav2Vec2ForCTC.load_adapter`] function for the model and [`~Wav2Vec2CTCTokenizer.set_target_lang`] for the tokenizer.
We pass the target language as an input - `"fra"` for French.
```py
processor.tokenizer.set_target_lang("fra")
model.load_adapter("fra")
inputs = processor(fr_sample, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
# "ce dernier est volé tout au long de l'histoire romaine"
```
In the same way the language can be switched out for all other supported languages. Please have a look at:
```py
processor.tokenizer.vocab.keys()
```
to see all supported languages.
To further improve performance from ASR models, language model decoding can be used. See the documentation [here](https://huggingface.co/facebook/mms-1b-all) for further details.
### Speech Synthesis (TTS)
MMS-TTS uses the same model architecture as VITS, which was added to 🤗 Transformers in v4.33. MMS trains a separate
model checkpoint for each of the 1100+ languages in the project. All available checkpoints can be found on the Hugging
Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts), and the inference
documentation under [VITS](https://huggingface.co/docs/transformers/main/en/model_doc/vits).
#### Inference
To use the MMS model, first update to the latest version of the Transformers library:
```bash
pip install --upgrade transformers accelerate
```
Since the flow-based model in VITS is non-deterministic, it is good practice to set a seed to ensure reproducibility of
the outputs.
- For languages with a Roman alphabet, such as English or French, the tokenizer can be used directly to
pre-process the text inputs. The following code example runs a forward pass using the MMS-TTS English checkpoint:
```python
import torch
from transformers import VitsTokenizer, VitsModel, set_seed
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")
model = VitsModel.from_pretrained("facebook/mms-tts-eng")
inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt")
set_seed(555) # make deterministic
with torch.no_grad():
outputs = model(**inputs)
waveform = outputs.waveform[0]
```
The resulting waveform can be saved as a `.wav` file:
```python
import scipy
scipy.io.wavfile.write("synthesized_speech.wav", rate=model.config.sampling_rate, data=waveform)
```
Or displayed in a Jupyter Notebook / Google Colab:
```python
from IPython.display import Audio
Audio(waveform, rate=model.config.sampling_rate)
```
For certain languages with non-Roman alphabets, such as Arabic, Mandarin or Hindi, the [`uroman`](https://github.com/isi-nlp/uroman)
perl package is required to pre-process the text inputs to the Roman alphabet.
You can check whether you require the `uroman` package for your language by inspecting the `is_uroman` attribute of
the pre-trained `tokenizer`:
```python
from transformers import VitsTokenizer
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")
print(tokenizer.is_uroman)
```
If required, you should apply the uroman package to your text inputs **prior** to passing them to the `VitsTokenizer`,
since currently the tokenizer does not support performing the pre-processing itself.
To do this, first clone the uroman repository to your local machine and set the bash variable `UROMAN` to the local path:
```bash
git clone https://github.com/isi-nlp/uroman.git
cd uroman
export UROMAN=$(pwd)
```
You can then pre-process the text input using the following code snippet. You can either rely on using the bash variable
`UROMAN` to point to the uroman repository, or you can pass the uroman directory as an argument to the `uromaize` function:
```python
import torch
from transformers import VitsTokenizer, VitsModel, set_seed
import os
import subprocess
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-kor")
model = VitsModel.from_pretrained("facebook/mms-tts-kor")
def uromanize(input_string, uroman_path):
"""Convert non-Roman strings to Roman using the `uroman` perl package."""
script_path = os.path.join(uroman_path, "bin", "uroman.pl")
command = ["perl", script_path]
process = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# Execute the perl command
stdout, stderr = process.communicate(input=input_string.encode())
if process.returncode != 0:
raise ValueError(f"Error {process.returncode}: {stderr.decode()}")
# Return the output as a string and skip the new-line character at the end
return stdout.decode()[:-1]
text = "이봐 무슨 일이야"
uromaized_text = uromanize(text, uroman_path=os.environ["UROMAN"])
inputs = tokenizer(text=uromaized_text, return_tensors="pt")
set_seed(555) # make deterministic
with torch.no_grad():
outputs = model(inputs["input_ids"])
waveform = outputs.waveform[0]
```
**Tips:**
* The MMS-TTS checkpoints are trained on lower-cased, un-punctuated text. By default, the `VitsTokenizer` *normalizes* the inputs by removing any casing and punctuation, to avoid passing out-of-vocabulary characters to the model. Hence, the model is agnostic to casing and punctuation, so these should be avoided in the text prompt. You can disable normalisation by setting `normalize=False` in the call to the tokenizer, but this will lead to un-expected behaviour and is discouraged.
* The speaking rate can be varied by setting the attribute `model.speaking_rate` to a chosen value. Likewise, the randomness of the noise is controlled by `model.noise_scale`:
```python
import torch
from transformers import VitsTokenizer, VitsModel, set_seed
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")
model = VitsModel.from_pretrained("facebook/mms-tts-eng")
inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt")
# make deterministic
set_seed(555)
# make speech faster and more noisy
model.speaking_rate = 1.5
model.noise_scale = 0.8
with torch.no_grad():
outputs = model(**inputs)
```
### Language Identification (LID)
Different LID models are available based on the number of languages they can recognize - [126](https://huggingface.co/facebook/mms-lid-126), [256](https://huggingface.co/facebook/mms-lid-256), [512](https://huggingface.co/facebook/mms-lid-512), [1024](https://huggingface.co/facebook/mms-lid-1024), [2048](https://huggingface.co/facebook/mms-lid-2048), [4017](https://huggingface.co/facebook/mms-lid-4017).
#### Inference
First, we install transformers and some other libraries
```bash
pip install torch accelerate datasets[audio]
pip install --upgrade transformers
````
Next, we load a couple of audio samples via `datasets`. Make sure that the audio data is sampled to 16000 kHz.
```py
from datasets import load_dataset, Audio
# English
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
en_sample = next(iter(stream_data))["audio"]["array"]
# Arabic
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "ar", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
ar_sample = next(iter(stream_data))["audio"]["array"]
```
Next, we load the model and processor
```py
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
import torch
model_id = "facebook/mms-lid-126"
processor = AutoFeatureExtractor.from_pretrained(model_id)
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id)
```
Now we process the audio data, pass the processed audio data to the model to classify it into a language, just like we usually do for Wav2Vec2 audio classification models such as [ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition](https://huggingface.co/harshit345/xlsr-wav2vec-speech-emotion-recognition)
```py
# English
inputs = processor(en_sample, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
lang_id = torch.argmax(outputs, dim=-1)[0].item()
detected_lang = model.config.id2label[lang_id]
# 'eng'
# Arabic
inputs = processor(ar_sample, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
lang_id = torch.argmax(outputs, dim=-1)[0].item()
detected_lang = model.config.id2label[lang_id]
# 'ara'
```
To see all the supported languages of a checkpoint, you can print out the language ids as follows:
```py
processor.id2label.values()
```
### Audio Pretrained Models
Pretrained models are available for two different sizes - [300M](https://huggingface.co/facebook/mms-300m) ,
[1Bil](https://huggingface.co/facebook/mms-1b).
<Tip>
The MMS for ASR architecture is based on the Wav2Vec2 model, refer to [Wav2Vec2's documentation page](wav2vec2) for further
details on how to finetune with models for various downstream tasks.
MMS-TTS uses the same model architecture as VITS, refer to [VITS's documentation page](vits) for API reference.
</Tip>
| transformers/docs/source/en/model_doc/mms.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/mms.md",
"repo_id": "transformers",
"token_count": 4924
} | 247 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# PhoBERT
## Overview
The PhoBERT model was proposed in [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92.pdf) by Dat Quoc Nguyen, Anh Tuan Nguyen.
The abstract from the paper is the following:
*We present PhoBERT with two versions, PhoBERT-base and PhoBERT-large, the first public large-scale monolingual
language models pre-trained for Vietnamese. Experimental results show that PhoBERT consistently outperforms the recent
best pre-trained multilingual model XLM-R (Conneau et al., 2020) and improves the state-of-the-art in multiple
Vietnamese-specific NLP tasks including Part-of-speech tagging, Dependency parsing, Named-entity recognition and
Natural language inference.*
This model was contributed by [dqnguyen](https://huggingface.co/dqnguyen). The original code can be found [here](https://github.com/VinAIResearch/PhoBERT).
## Usage example
```python
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer
>>> phobert = AutoModel.from_pretrained("vinai/phobert-base")
>>> tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")
>>> # INPUT TEXT MUST BE ALREADY WORD-SEGMENTED!
>>> line = "Tôi là sinh_viên trường đại_học Công_nghệ ."
>>> input_ids = torch.tensor([tokenizer.encode(line)])
>>> with torch.no_grad():
... features = phobert(input_ids) # Models outputs are now tuples
>>> # With TensorFlow 2.0+:
>>> # from transformers import TFAutoModel
>>> # phobert = TFAutoModel.from_pretrained("vinai/phobert-base")
```
<Tip>
PhoBERT implementation is the same as BERT, except for tokenization. Refer to [EART documentation](bert) for information on
configuration classes and their parameters. PhoBERT-specific tokenizer is documented below.
</Tip>
## PhobertTokenizer
[[autodoc]] PhobertTokenizer
| transformers/docs/source/en/model_doc/phobert.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/phobert.md",
"repo_id": "transformers",
"token_count": 776
} | 248 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# RetriBERT
<Tip warning={true}>
This model is in maintenance mode only, so we won't accept any new PRs changing its code.
If you run into any issues running this model, please reinstall the last version that supported this model: v4.30.0.
You can do so by running the following command: `pip install -U transformers==4.30.0`.
</Tip>
## Overview
The RetriBERT model was proposed in the blog post [Explain Anything Like I'm Five: A Model for Open Domain Long Form
Question Answering](https://yjernite.github.io/lfqa.html). RetriBERT is a small model that uses either a single or
pair of BERT encoders with lower-dimension projection for dense semantic indexing of text.
This model was contributed by [yjernite](https://huggingface.co/yjernite). Code to train and use the model can be
found [here](https://github.com/huggingface/transformers/tree/main/examples/research-projects/distillation).
## RetriBertConfig
[[autodoc]] RetriBertConfig
## RetriBertTokenizer
[[autodoc]] RetriBertTokenizer
## RetriBertTokenizerFast
[[autodoc]] RetriBertTokenizerFast
## RetriBertModel
[[autodoc]] RetriBertModel
- forward
| transformers/docs/source/en/model_doc/retribert.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/retribert.md",
"repo_id": "transformers",
"token_count": 536
} | 249 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Speech2Text2
## Overview
The Speech2Text2 model is used together with [Wav2Vec2](wav2vec2) for Speech Translation models proposed in
[Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by
Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
Speech2Text2 is a *decoder-only* transformer model that can be used with any speech *encoder-only*, such as
[Wav2Vec2](wav2vec2) or [HuBERT](hubert) for Speech-to-Text tasks. Please refer to the
[SpeechEncoderDecoder](speech-encoder-decoder) class on how to combine Speech2Text2 with any speech *encoder-only*
model.
This model was contributed by [Patrick von Platen](https://huggingface.co/patrickvonplaten).
The original code can be found [here](https://github.com/pytorch/fairseq/blob/1f7ef9ed1e1061f8c7f88f8b94c7186834398690/fairseq/models/wav2vec/wav2vec2_asr.py#L266).
## Usage tips
- Speech2Text2 achieves state-of-the-art results on the CoVoST Speech Translation dataset. For more information, see
the [official models](https://huggingface.co/models?other=speech2text2) .
- Speech2Text2 is always used within the [SpeechEncoderDecoder](speech-encoder-decoder) framework.
- Speech2Text2's tokenizer is based on [fastBPE](https://github.com/glample/fastBPE).
## Inference
Speech2Text2's [`SpeechEncoderDecoderModel`] model accepts raw waveform input values from speech and
makes use of [`~generation.GenerationMixin.generate`] to translate the input speech
autoregressively to the target language.
The [`Wav2Vec2FeatureExtractor`] class is responsible for preprocessing the input speech and
[`Speech2Text2Tokenizer`] decodes the generated target tokens to the target string. The
[`Speech2Text2Processor`] wraps [`Wav2Vec2FeatureExtractor`] and
[`Speech2Text2Tokenizer`] into a single instance to both extract the input features and decode the
predicted token ids.
- Step-by-step Speech Translation
```python
>>> import torch
>>> from transformers import Speech2Text2Processor, SpeechEncoderDecoderModel
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> model = SpeechEncoderDecoderModel.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
>>> processor = Speech2Text2Processor.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
>>> def map_to_array(batch):
... speech, _ = sf.read(batch["file"])
... batch["speech"] = speech
... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> inputs = processor(ds["speech"][0], sampling_rate=16_000, return_tensors="pt")
>>> generated_ids = model.generate(inputs=inputs["input_values"], attention_mask=inputs["attention_mask"])
>>> transcription = processor.batch_decode(generated_ids)
```
- Speech Translation via Pipelines
The automatic speech recognition pipeline can also be used to translate speech in just a couple lines of code
```python
>>> from datasets import load_dataset
>>> from transformers import pipeline
>>> librispeech_en = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> asr = pipeline(
... "automatic-speech-recognition",
... model="facebook/s2t-wav2vec2-large-en-de",
... feature_extractor="facebook/s2t-wav2vec2-large-en-de",
... )
>>> translation_de = asr(librispeech_en[0]["file"])
```
See [model hub](https://huggingface.co/models?filter=speech2text2) to look for Speech2Text2 checkpoints.
## Resources
- [Causal language modeling task guide](../tasks/language_modeling)
## Speech2Text2Config
[[autodoc]] Speech2Text2Config
## Speech2TextTokenizer
[[autodoc]] Speech2Text2Tokenizer
- batch_decode
- decode
- save_vocabulary
## Speech2Text2Processor
[[autodoc]] Speech2Text2Processor
- __call__
- from_pretrained
- save_pretrained
- batch_decode
- decode
## Speech2Text2ForCausalLM
[[autodoc]] Speech2Text2ForCausalLM
- forward
| transformers/docs/source/en/model_doc/speech_to_text_2.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/speech_to_text_2.md",
"repo_id": "transformers",
"token_count": 1517
} | 250 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# TAPEX
<Tip warning={true}>
This model is in maintenance mode only, we don't accept any new PRs changing its code.
If you run into any issues running this model, please reinstall the last version that supported this model: v4.30.0.
You can do so by running the following command: `pip install -U transformers==4.30.0`.
</Tip>
## Overview
The TAPEX model was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu,
Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. TAPEX pre-trains a BART model to solve synthetic SQL queries, after
which it can be fine-tuned to answer natural language questions related to tabular data, as well as performing table fact checking.
TAPEX has been fine-tuned on several datasets:
- [SQA](https://www.microsoft.com/en-us/download/details.aspx?id=54253) (Sequential Question Answering by Microsoft)
- [WTQ](https://github.com/ppasupat/WikiTableQuestions) (Wiki Table Questions by Stanford University)
- [WikiSQL](https://github.com/salesforce/WikiSQL) (by Salesforce)
- [TabFact](https://tabfact.github.io/) (by USCB NLP Lab).
The abstract from the paper is the following:
*Recent progress in language model pre-training has achieved a great success via leveraging large-scale unstructured textual data. However, it is
still a challenge to apply pre-training on structured tabular data due to the absence of large-scale high-quality tabular data. In this paper, we
propose TAPEX to show that table pre-training can be achieved by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically
synthesizing executable SQL queries and their execution outputs. TAPEX addresses the data scarcity challenge via guiding the language model to mimic a SQL
executor on the diverse, large-scale and high-quality synthetic corpus. We evaluate TAPEX on four benchmark datasets. Experimental results demonstrate that
TAPEX outperforms previous table pre-training approaches by a large margin and achieves new state-of-the-art results on all of them. This includes improvements
on the weakly-supervised WikiSQL denotation accuracy to 89.5% (+2.3%), the WikiTableQuestions denotation accuracy to 57.5% (+4.8%), the SQA denotation accuracy
to 74.5% (+3.5%), and the TabFact accuracy to 84.2% (+3.2%). To our knowledge, this is the first work to exploit table pre-training via synthetic executable programs
and to achieve new state-of-the-art results on various downstream tasks.*
## Usage tips
- TAPEX is a generative (seq2seq) model. One can directly plug in the weights of TAPEX into a BART model.
- TAPEX has checkpoints on the hub that are either pre-trained only, or fine-tuned on WTQ, SQA, WikiSQL and TabFact.
- Sentences + tables are presented to the model as `sentence + " " + linearized table`. The linearized table has the following format:
`col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ...`.
- TAPEX has its own tokenizer, that allows to prepare all data for the model easily. One can pass Pandas DataFrames and strings to the tokenizer,
and it will automatically create the `input_ids` and `attention_mask` (as shown in the usage examples below).
### Usage: inference
Below, we illustrate how to use TAPEX for table question answering. As one can see, one can directly plug in the weights of TAPEX into a BART model.
We use the [Auto API](auto), which will automatically instantiate the appropriate tokenizer ([`TapexTokenizer`]) and model ([`BartForConditionalGeneration`]) for us,
based on the configuration file of the checkpoint on the hub.
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> import pandas as pd
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/tapex-large-finetuned-wtq")
>>> # prepare table + question
>>> data = {"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Number of movies": ["87", "53", "69"]}
>>> table = pd.DataFrame.from_dict(data)
>>> question = "how many movies does Leonardo Di Caprio have?"
>>> encoding = tokenizer(table, question, return_tensors="pt")
>>> # let the model generate an answer autoregressively
>>> outputs = model.generate(**encoding)
>>> # decode back to text
>>> predicted_answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
>>> print(predicted_answer)
53
```
Note that [`TapexTokenizer`] also supports batched inference. Hence, one can provide a batch of different tables/questions, or a batch of a single table
and multiple questions, or a batch of a single query and multiple tables. Let's illustrate this:
```python
>>> # prepare table + question
>>> data = {"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Number of movies": ["87", "53", "69"]}
>>> table = pd.DataFrame.from_dict(data)
>>> questions = [
... "how many movies does Leonardo Di Caprio have?",
... "which actor has 69 movies?",
... "what's the first name of the actor who has 87 movies?",
... ]
>>> encoding = tokenizer(table, questions, padding=True, return_tensors="pt")
>>> # let the model generate an answer autoregressively
>>> outputs = model.generate(**encoding)
>>> # decode back to text
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
[' 53', ' george clooney', ' brad pitt']
```
In case one wants to do table verification (i.e. the task of determining whether a given sentence is supported or refuted by the contents
of a table), one can instantiate a [`BartForSequenceClassification`] model. TAPEX has checkpoints on the hub fine-tuned on TabFact, an important
benchmark for table fact checking (it achieves 84% accuracy). The code example below again leverages the [Auto API](auto).
```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/tapex-large-finetuned-tabfact")
>>> model = AutoModelForSequenceClassification.from_pretrained("microsoft/tapex-large-finetuned-tabfact")
>>> # prepare table + sentence
>>> data = {"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Number of movies": ["87", "53", "69"]}
>>> table = pd.DataFrame.from_dict(data)
>>> sentence = "George Clooney has 30 movies"
>>> encoding = tokenizer(table, sentence, return_tensors="pt")
>>> # forward pass
>>> outputs = model(**encoding)
>>> # print prediction
>>> predicted_class_idx = outputs.logits[0].argmax(dim=0).item()
>>> print(model.config.id2label[predicted_class_idx])
Refused
```
<Tip>
TAPEX architecture is the same as BART, except for tokenization. Refer to [BART documentation](bart) for information on
configuration classes and their parameters. TAPEX-specific tokenizer is documented below.
</Tip>
## TapexTokenizer
[[autodoc]] TapexTokenizer
- __call__
- save_vocabulary | transformers/docs/source/en/model_doc/tapex.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/tapex.md",
"repo_id": "transformers",
"token_count": 2167
} | 251 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Wav2Vec2
## Overview
The Wav2Vec2 model was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
The abstract from the paper is the following:
*We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on
transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks
the speech input in the latent space and solves a contrastive task defined over a quantization of the latent
representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the
clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state
of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and
pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech
recognition with limited amounts of labeled data.*
This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten).
## Usage tips
- Wav2Vec2 is a speech model that accepts a float array corresponding to the raw waveform of the speech signal.
- Wav2Vec2 model was trained using connectionist temporal classification (CTC) so the model output has to be decoded
using [`Wav2Vec2CTCTokenizer`].
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Wav2Vec2. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="audio-classification"/>
- A notebook on how to [leverage a pretrained Wav2Vec2 model for emotion classification](https://colab.research.google.com/github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb). 🌎
- [`Wav2Vec2ForCTC`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb).
- [Audio classification task guide](../tasks/audio_classification)
<PipelineTag pipeline="automatic-speech-recognition"/>
- A blog post on [boosting Wav2Vec2 with n-grams in 🤗 Transformers](https://huggingface.co/blog/wav2vec2-with-ngram).
- A blog post on how to [finetune Wav2Vec2 for English ASR with 🤗 Transformers](https://huggingface.co/blog/fine-tune-wav2vec2-english).
- A blog post on [finetuning XLS-R for Multi-Lingual ASR with 🤗 Transformers](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2).
- A notebook on how to [create YouTube captions from any video by transcribing audio with Wav2Vec2](https://colab.research.google.com/github/Muennighoff/ytclipcc/blob/main/wav2vec_youtube_captions.ipynb). 🌎
- [`Wav2Vec2ForCTC`] is supported by a notebook on [how to finetune a speech recognition model in English](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/speech_recognition.ipynb), and [how to finetune a speech recognition model in any language](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multi_lingual_speech_recognition.ipynb).
- [Automatic speech recognition task guide](../tasks/asr)
🚀 Deploy
- A blog post on how to deploy Wav2Vec2 for [Automatic Speech Recognition with Hugging Face's Transformers & Amazon SageMaker](https://www.philschmid.de/automatic-speech-recognition-sagemaker).
## Wav2Vec2Config
[[autodoc]] Wav2Vec2Config
## Wav2Vec2CTCTokenizer
[[autodoc]] Wav2Vec2CTCTokenizer
- __call__
- save_vocabulary
- decode
- batch_decode
- set_target_lang
## Wav2Vec2FeatureExtractor
[[autodoc]] Wav2Vec2FeatureExtractor
- __call__
## Wav2Vec2Processor
[[autodoc]] Wav2Vec2Processor
- __call__
- pad
- from_pretrained
- save_pretrained
- batch_decode
- decode
## Wav2Vec2ProcessorWithLM
[[autodoc]] Wav2Vec2ProcessorWithLM
- __call__
- pad
- from_pretrained
- save_pretrained
- batch_decode
- decode
### Decoding multiple audios
If you are planning to decode multiple batches of audios, you should consider using [`~Wav2Vec2ProcessorWithLM.batch_decode`] and passing an instantiated `multiprocessing.Pool`.
Otherwise, [`~Wav2Vec2ProcessorWithLM.batch_decode`] performance will be slower than calling [`~Wav2Vec2ProcessorWithLM.decode`] for each audio individually, as it internally instantiates a new `Pool` for every call. See the example below:
```python
>>> # Let's see how to use a user-managed pool for batch decoding multiple audios
>>> from multiprocessing import get_context
>>> from transformers import AutoTokenizer, AutoProcessor, AutoModelForCTC
>>> from datasets import load_dataset
>>> import datasets
>>> import torch
>>> # import model, feature extractor, tokenizer
>>> model = AutoModelForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm").to("cuda")
>>> processor = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm")
>>> # load example dataset
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000))
>>> def map_to_array(batch):
... batch["speech"] = batch["audio"]["array"]
... return batch
>>> # prepare speech data for batch inference
>>> dataset = dataset.map(map_to_array, remove_columns=["audio"])
>>> def map_to_pred(batch, pool):
... inputs = processor(batch["speech"], sampling_rate=16_000, padding=True, return_tensors="pt")
... inputs = {k: v.to("cuda") for k, v in inputs.items()}
... with torch.no_grad():
... logits = model(**inputs).logits
... transcription = processor.batch_decode(logits.cpu().numpy(), pool).text
... batch["transcription"] = transcription
... return batch
>>> # note: pool should be instantiated *after* `Wav2Vec2ProcessorWithLM`.
>>> # otherwise, the LM won't be available to the pool's sub-processes
>>> # select number of processes and batch_size based on number of CPU cores available and on dataset size
>>> with get_context("fork").Pool(processes=2) as pool:
... result = dataset.map(
... map_to_pred, batched=True, batch_size=2, fn_kwargs={"pool": pool}, remove_columns=["speech"]
... )
>>> result["transcription"][:2]
['MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL', "NOR IS MISTER COULTER'S MANNER LESS INTERESTING THAN HIS MATTER"]
```
## Wav2Vec2 specific outputs
[[autodoc]] models.wav2vec2_with_lm.processing_wav2vec2_with_lm.Wav2Vec2DecoderWithLMOutput
[[autodoc]] models.wav2vec2.modeling_wav2vec2.Wav2Vec2BaseModelOutput
[[autodoc]] models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTrainingOutput
[[autodoc]] models.wav2vec2.modeling_flax_wav2vec2.FlaxWav2Vec2BaseModelOutput
[[autodoc]] models.wav2vec2.modeling_flax_wav2vec2.FlaxWav2Vec2ForPreTrainingOutput
<frameworkcontent>
<pt>
## Wav2Vec2Model
[[autodoc]] Wav2Vec2Model
- forward
## Wav2Vec2ForCTC
[[autodoc]] Wav2Vec2ForCTC
- forward
- load_adapter
## Wav2Vec2ForSequenceClassification
[[autodoc]] Wav2Vec2ForSequenceClassification
- forward
## Wav2Vec2ForAudioFrameClassification
[[autodoc]] Wav2Vec2ForAudioFrameClassification
- forward
## Wav2Vec2ForXVector
[[autodoc]] Wav2Vec2ForXVector
- forward
## Wav2Vec2ForPreTraining
[[autodoc]] Wav2Vec2ForPreTraining
- forward
</pt>
<tf>
## TFWav2Vec2Model
[[autodoc]] TFWav2Vec2Model
- call
## TFWav2Vec2ForSequenceClassification
[[autodoc]] TFWav2Vec2ForSequenceClassification
- call
## TFWav2Vec2ForCTC
[[autodoc]] TFWav2Vec2ForCTC
- call
</tf>
<jax>
## FlaxWav2Vec2Model
[[autodoc]] FlaxWav2Vec2Model
- __call__
## FlaxWav2Vec2ForCTC
[[autodoc]] FlaxWav2Vec2ForCTC
- __call__
## FlaxWav2Vec2ForPreTraining
[[autodoc]] FlaxWav2Vec2ForPreTraining
- __call__
</jax>
</frameworkcontent>
| transformers/docs/source/en/model_doc/wav2vec2.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/wav2vec2.md",
"repo_id": "transformers",
"token_count": 3092
} | 252 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# YOSO
## Overview
The YOSO model was proposed in [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714)
by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh. YOSO approximates standard softmax self-attention
via a Bernoulli sampling scheme based on Locality Sensitive Hashing (LSH). In principle, all the Bernoulli random variables can be sampled with
a single hash.
The abstract from the paper is the following:
*Transformer-based models are widely used in natural language processing (NLP). Central to the transformer model is
the self-attention mechanism, which captures the interactions of token pairs in the input sequences and depends quadratically
on the sequence length. Training such models on longer sequences is expensive. In this paper, we show that a Bernoulli sampling
attention mechanism based on Locality Sensitive Hashing (LSH), decreases the quadratic complexity of such models to linear.
We bypass the quadratic cost by considering self-attention as a sum of individual tokens associated with Bernoulli random
variables that can, in principle, be sampled at once by a single hash (although in practice, this number may be a small constant).
This leads to an efficient sampling scheme to estimate self-attention which relies on specific modifications of
LSH (to enable deployment on GPU architectures). We evaluate our algorithm on the GLUE benchmark with standard 512 sequence
length where we see favorable performance relative to a standard pretrained Transformer. On the Long Range Arena (LRA) benchmark,
for evaluating performance on long sequences, our method achieves results consistent with softmax self-attention but with sizable
speed-ups and memory savings and often outperforms other efficient self-attention methods. Our code is available at this https URL*
This model was contributed by [novice03](https://huggingface.co/novice03). The original code can be found [here](https://github.com/mlpen/YOSO).
## Usage tips
- The YOSO attention algorithm is implemented through custom CUDA kernels, functions written in CUDA C++ that can be executed multiple times
in parallel on a GPU.
- The kernels provide a `fast_hash` function, which approximates the random projections of the queries and keys using the Fast Hadamard Transform. Using these
hash codes, the `lsh_cumulation` function approximates self-attention via LSH-based Bernoulli sampling.
- To use the custom kernels, the user should set `config.use_expectation = False`. To ensure that the kernels are compiled successfully,
the user must install the correct version of PyTorch and cudatoolkit. By default, `config.use_expectation = True`, which uses YOSO-E and
does not require compiling CUDA kernels.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/yoso_architecture.jpg"
alt="drawing" width="600"/>
<small> YOSO Attention Algorithm. Taken from the <a href="https://arxiv.org/abs/2111.09714">original paper</a>.</small>
## Resources
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
## YosoConfig
[[autodoc]] YosoConfig
## YosoModel
[[autodoc]] YosoModel
- forward
## YosoForMaskedLM
[[autodoc]] YosoForMaskedLM
- forward
## YosoForSequenceClassification
[[autodoc]] YosoForSequenceClassification
- forward
## YosoForMultipleChoice
[[autodoc]] YosoForMultipleChoice
- forward
## YosoForTokenClassification
[[autodoc]] YosoForTokenClassification
- forward
## YosoForQuestionAnswering
[[autodoc]] YosoForQuestionAnswering
- forward | transformers/docs/source/en/model_doc/yoso.md/0 | {
"file_path": "transformers/docs/source/en/model_doc/yoso.md",
"repo_id": "transformers",
"token_count": 1243
} | 253 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# PyTorch training on Apple silicon
Previously, training models on a Mac was limited to the CPU only. With the release of PyTorch v1.12, you can take advantage of training models with Apple's silicon GPUs for significantly faster performance and training. This is powered in PyTorch by integrating Apple's Metal Performance Shaders (MPS) as a backend. The [MPS backend](https://pytorch.org/docs/stable/notes/mps.html) implements PyTorch operations as custom Metal shaders and places these modules on a `mps` device.
<Tip warning={true}>
Some PyTorch operations are not implemented in MPS yet and will throw an error. To avoid this, you should set the environment variable `PYTORCH_ENABLE_MPS_FALLBACK=1` to use the CPU kernels instead (you'll still see a `UserWarning`).
<br>
If you run into any other errors, please open an issue in the [PyTorch](https://github.com/pytorch/pytorch/issues) repository because the [`Trainer`] only integrates the MPS backend.
</Tip>
With the `mps` device set, you can:
* train larger networks or batch sizes locally
* reduce data retrieval latency because the GPU's unified memory architecture allows direct access to the full memory store
* reduce costs because you don't need to train on cloud-based GPUs or add additional local GPUs
Get started by making sure you have PyTorch installed. MPS acceleration is supported on macOS 12.3+.
```bash
pip install torch torchvision torchaudio
```
[`TrainingArguments`] uses the `mps` device by default if it's available which means you don't need to explicitly set the device. For example, you can run the [run_glue.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py) script with the MPS backend automatically enabled without making any changes.
```diff
export TASK_NAME=mrpc
python examples/pytorch/text-classification/run_glue.py \
--model_name_or_path google-bert/bert-base-cased \
--task_name $TASK_NAME \
- --use_mps_device \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3 \
--output_dir /tmp/$TASK_NAME/ \
--overwrite_output_dir
```
Backends for [distributed setups](https://pytorch.org/docs/stable/distributed.html#backends) like `gloo` and `nccl` are not supported by the `mps` device which means you can only train on a single GPU with the MPS backend.
You can learn more about the MPS backend in the [Introducing Accelerated PyTorch Training on Mac](https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac/) blog post.
| transformers/docs/source/en/perf_train_special.md/0 | {
"file_path": "transformers/docs/source/en/perf_train_special.md",
"repo_id": "transformers",
"token_count": 936
} | 254 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Audio classification
[[open-in-colab]]
<Youtube id="KWwzcmG98Ds"/>
Audio classification - just like with text - assigns a class label output from the input data. The only difference is instead of text inputs, you have raw audio waveforms. Some practical applications of audio classification include identifying speaker intent, language classification, and even animal species by their sounds.
This guide will show you how to:
1. Finetune [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) on the [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) dataset to classify speaker intent.
2. Use your finetuned model for inference.
<Tip>
The task illustrated in this tutorial is supported by the following model architectures:
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
[Audio Spectrogram Transformer](../model_doc/audio-spectrogram-transformer), [Data2VecAudio](../model_doc/data2vec-audio), [Hubert](../model_doc/hubert), [SEW](../model_doc/sew), [SEW-D](../model_doc/sew-d), [UniSpeech](../model_doc/unispeech), [UniSpeechSat](../model_doc/unispeech-sat), [Wav2Vec2](../model_doc/wav2vec2), [Wav2Vec2-BERT](../model_doc/wav2vec2-bert), [Wav2Vec2-Conformer](../model_doc/wav2vec2-conformer), [WavLM](../model_doc/wavlm), [Whisper](../model_doc/whisper)
<!--End of the generated tip-->
</Tip>
Before you begin, make sure you have all the necessary libraries installed:
```bash
pip install transformers datasets evaluate
```
We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login:
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## Load MInDS-14 dataset
Start by loading the MInDS-14 dataset from the 🤗 Datasets library:
```py
>>> from datasets import load_dataset, Audio
>>> minds = load_dataset("PolyAI/minds14", name="en-US", split="train")
```
Split the dataset's `train` split into a smaller train and test set with the [`~datasets.Dataset.train_test_split`] method. This'll give you a chance to experiment and make sure everything works before spending more time on the full dataset.
```py
>>> minds = minds.train_test_split(test_size=0.2)
```
Then take a look at the dataset:
```py
>>> minds
DatasetDict({
train: Dataset({
features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],
num_rows: 450
})
test: Dataset({
features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],
num_rows: 113
})
})
```
While the dataset contains a lot of useful information, like `lang_id` and `english_transcription`, you'll focus on the `audio` and `intent_class` in this guide. Remove the other columns with the [`~datasets.Dataset.remove_columns`] method:
```py
>>> minds = minds.remove_columns(["path", "transcription", "english_transcription", "lang_id"])
```
Take a look at an example now:
```py
>>> minds["train"][0]
{'audio': {'array': array([ 0. , 0. , 0. , ..., -0.00048828,
-0.00024414, -0.00024414], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602b9a5fbb1e6d0fbce91f52.wav',
'sampling_rate': 8000},
'intent_class': 2}
```
There are two fields:
- `audio`: a 1-dimensional `array` of the speech signal that must be called to load and resample the audio file.
- `intent_class`: represents the class id of the speaker's intent.
To make it easier for the model to get the label name from the label id, create a dictionary that maps the label name to an integer and vice versa:
```py
>>> labels = minds["train"].features["intent_class"].names
>>> label2id, id2label = dict(), dict()
>>> for i, label in enumerate(labels):
... label2id[label] = str(i)
... id2label[str(i)] = label
```
Now you can convert the label id to a label name:
```py
>>> id2label[str(2)]
'app_error'
```
## Preprocess
The next step is to load a Wav2Vec2 feature extractor to process the audio signal:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
```
The MInDS-14 dataset has a sampling rate of 8000khz (you can find this information in it's [dataset card](https://huggingface.co/datasets/PolyAI/minds14)), which means you'll need to resample the dataset to 16000kHz to use the pretrained Wav2Vec2 model:
```py
>>> minds = minds.cast_column("audio", Audio(sampling_rate=16_000))
>>> minds["train"][0]
{'audio': {'array': array([ 2.2098757e-05, 4.6582241e-05, -2.2803260e-05, ...,
-2.8419291e-04, -2.3305941e-04, -1.1425107e-04], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602b9a5fbb1e6d0fbce91f52.wav',
'sampling_rate': 16000},
'intent_class': 2}
```
Now create a preprocessing function that:
1. Calls the `audio` column to load, and if necessary, resample the audio file.
2. Checks if the sampling rate of the audio file matches the sampling rate of the audio data a model was pretrained with. You can find this information in the Wav2Vec2 [model card](https://huggingface.co/facebook/wav2vec2-base).
3. Set a maximum input length to batch longer inputs without truncating them.
```py
>>> def preprocess_function(examples):
... audio_arrays = [x["array"] for x in examples["audio"]]
... inputs = feature_extractor(
... audio_arrays, sampling_rate=feature_extractor.sampling_rate, max_length=16000, truncation=True
... )
... return inputs
```
To apply the preprocessing function over the entire dataset, use 🤗 Datasets [`~datasets.Dataset.map`] function. You can speed up `map` by setting `batched=True` to process multiple elements of the dataset at once. Remove the columns you don't need, and rename `intent_class` to `label` because that's the name the model expects:
```py
>>> encoded_minds = minds.map(preprocess_function, remove_columns="audio", batched=True)
>>> encoded_minds = encoded_minds.rename_column("intent_class", "label")
```
## Evaluate
Including a metric during training is often helpful for evaluating your model's performance. You can quickly load a evaluation method with the 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy) metric (see the 🤗 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric):
```py
>>> import evaluate
>>> accuracy = evaluate.load("accuracy")
```
Then create a function that passes your predictions and labels to [`~evaluate.EvaluationModule.compute`] to calculate the accuracy:
```py
>>> import numpy as np
>>> def compute_metrics(eval_pred):
... predictions = np.argmax(eval_pred.predictions, axis=1)
... return accuracy.compute(predictions=predictions, references=eval_pred.label_ids)
```
Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training.
## Train
<frameworkcontent>
<pt>
<Tip>
If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#train-with-pytorch-trainer)!
</Tip>
You're ready to start training your model now! Load Wav2Vec2 with [`AutoModelForAudioClassification`] along with the number of expected labels, and the label mappings:
```py
>>> from transformers import AutoModelForAudioClassification, TrainingArguments, Trainer
>>> num_labels = len(id2label)
>>> model = AutoModelForAudioClassification.from_pretrained(
... "facebook/wav2vec2-base", num_labels=num_labels, label2id=label2id, id2label=id2label
... )
```
At this point, only three steps remain:
1. Define your training hyperparameters in [`TrainingArguments`]. The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the accuracy and save the training checkpoint.
2. Pass the training arguments to [`Trainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function.
3. Call [`~Trainer.train`] to finetune your model.
```py
>>> training_args = TrainingArguments(
... output_dir="my_awesome_mind_model",
... evaluation_strategy="epoch",
... save_strategy="epoch",
... learning_rate=3e-5,
... per_device_train_batch_size=32,
... gradient_accumulation_steps=4,
... per_device_eval_batch_size=32,
... num_train_epochs=10,
... warmup_ratio=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",
... push_to_hub=True,
... )
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=encoded_minds["train"],
... eval_dataset=encoded_minds["test"],
... tokenizer=feature_extractor,
... compute_metrics=compute_metrics,
... )
>>> trainer.train()
```
Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model:
```py
>>> trainer.push_to_hub()
```
</pt>
</frameworkcontent>
<Tip>
For a more in-depth example of how to finetune a model for audio classification, take a look at the corresponding [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb).
</Tip>
## Inference
Great, now that you've finetuned a model, you can use it for inference!
Load an audio file you'd like to run inference on. Remember to resample the sampling rate of the audio file to match the sampling rate of the model if you need to!
```py
>>> from datasets import load_dataset, Audio
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
>>> sampling_rate = dataset.features["audio"].sampling_rate
>>> audio_file = dataset[0]["audio"]["path"]
```
The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for audio classification with your model, and pass your audio file to it:
```py
>>> from transformers import pipeline
>>> classifier = pipeline("audio-classification", model="stevhliu/my_awesome_minds_model")
>>> classifier(audio_file)
[
{'score': 0.09766869246959686, 'label': 'cash_deposit'},
{'score': 0.07998877018690109, 'label': 'app_error'},
{'score': 0.0781070664525032, 'label': 'joint_account'},
{'score': 0.07667109370231628, 'label': 'pay_bill'},
{'score': 0.0755252093076706, 'label': 'balance'}
]
```
You can also manually replicate the results of the `pipeline` if you'd like:
<frameworkcontent>
<pt>
Load a feature extractor to preprocess the audio file and return the `input` as PyTorch tensors:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("stevhliu/my_awesome_minds_model")
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
```
Pass your inputs to the model and return the logits:
```py
>>> from transformers import AutoModelForAudioClassification
>>> model = AutoModelForAudioClassification.from_pretrained("stevhliu/my_awesome_minds_model")
>>> with torch.no_grad():
... logits = model(**inputs).logits
```
Get the class with the highest probability, and use the model's `id2label` mapping to convert it to a label:
```py
>>> import torch
>>> predicted_class_ids = torch.argmax(logits).item()
>>> predicted_label = model.config.id2label[predicted_class_ids]
>>> predicted_label
'cash_deposit'
```
</pt>
</frameworkcontent> | transformers/docs/source/en/tasks/audio_classification.md/0 | {
"file_path": "transformers/docs/source/en/tasks/audio_classification.md",
"repo_id": "transformers",
"token_count": 4267
} | 255 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Image Segmentation
[[open-in-colab]]
<Youtube id="dKE8SIt9C-w"/>
Image segmentation models separate areas corresponding to different areas of interest in an image. These models work by assigning a label to each pixel. There are several types of segmentation: semantic segmentation, instance segmentation, and panoptic segmentation.
In this guide, we will:
1. [Take a look at different types of segmentation](#types-of-segmentation).
2. [Have an end-to-end fine-tuning example for semantic segmentation](#fine-tuning-a-model-for-segmentation).
Before you begin, make sure you have all the necessary libraries installed:
```bash
pip install -q datasets transformers evaluate
```
We encourage you to log in to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to log in:
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## Types of Segmentation
Semantic segmentation assigns a label or class to every single pixel in an image. Let's take a look at a semantic segmentation model output. It will assign the same class to every instance of an object it comes across in an image, for example, all cats will be labeled as "cat" instead of "cat-1", "cat-2".
We can use transformers' image segmentation pipeline to quickly infer a semantic segmentation model. Let's take a look at the example image.
```python
from transformers import pipeline
from PIL import Image
import requests
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/segmentation_input.jpg"
image = Image.open(requests.get(url, stream=True).raw)
image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/segmentation_input.jpg" alt="Segmentation Input"/>
</div>
We will use [nvidia/segformer-b1-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b1-finetuned-cityscapes-1024-1024).
```python
semantic_segmentation = pipeline("image-segmentation", "nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
results = semantic_segmentation(image)
results
```
The segmentation pipeline output includes a mask for every predicted class.
```bash
[{'score': None,
'label': 'road',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': None,
'label': 'sidewalk',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': None,
'label': 'building',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': None,
'label': 'wall',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': None,
'label': 'pole',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': None,
'label': 'traffic sign',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': None,
'label': 'vegetation',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': None,
'label': 'terrain',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': None,
'label': 'sky',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': None,
'label': 'car',
'mask': <PIL.Image.Image image mode=L size=612x415>}]
```
Taking a look at the mask for the car class, we can see every car is classified with the same mask.
```python
results[-1]["mask"]
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/semantic_segmentation_output.png" alt="Semantic Segmentation Output"/>
</div>
In instance segmentation, the goal is not to classify every pixel, but to predict a mask for **every instance of an object** in a given image. It works very similar to object detection, where there is a bounding box for every instance, there's a segmentation mask instead. We will use [facebook/mask2former-swin-large-cityscapes-instance](https://huggingface.co/facebook/mask2former-swin-large-cityscapes-instance) for this.
```python
instance_segmentation = pipeline("image-segmentation", "facebook/mask2former-swin-large-cityscapes-instance")
results = instance_segmentation(Image.open(image))
results
```
As you can see below, there are multiple cars classified, and there's no classification for pixels other than pixels that belong to car and person instances.
```bash
[{'score': 0.999944,
'label': 'car',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': 0.999945,
'label': 'car',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': 0.999652,
'label': 'car',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': 0.903529,
'label': 'person',
'mask': <PIL.Image.Image image mode=L size=612x415>}]
```
Checking out one of the car masks below.
```python
results[2]["mask"]
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/instance_segmentation_output.png" alt="Semantic Segmentation Output"/>
</div>
Panoptic segmentation combines semantic segmentation and instance segmentation, where every pixel is classified into a class and an instance of that class, and there are multiple masks for each instance of a class. We can use [facebook/mask2former-swin-large-cityscapes-panoptic](https://huggingface.co/facebook/mask2former-swin-large-cityscapes-panoptic) for this.
```python
panoptic_segmentation = pipeline("image-segmentation", "facebook/mask2former-swin-large-cityscapes-panoptic")
results = panoptic_segmentation(Image.open(image))
results
```
As you can see below, we have more classes. We will later illustrate to see that every pixel is classified into one of the classes.
```bash
[{'score': 0.999981,
'label': 'car',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': 0.999958,
'label': 'car',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': 0.99997,
'label': 'vegetation',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': 0.999575,
'label': 'pole',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': 0.999958,
'label': 'building',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': 0.999634,
'label': 'road',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': 0.996092,
'label': 'sidewalk',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': 0.999221,
'label': 'car',
'mask': <PIL.Image.Image image mode=L size=612x415>},
{'score': 0.99987,
'label': 'sky',
'mask': <PIL.Image.Image image mode=L size=612x415>}]
```
Let's have a side by side comparison for all types of segmentation.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/segmentation-comparison.png" alt="Segmentation Maps Compared"/>
</div>
Seeing all types of segmentation, let's have a deep dive on fine-tuning a model for semantic segmentation.
Common real-world applications of semantic segmentation include training self-driving cars to identify pedestrians and important traffic information, identifying cells and abnormalities in medical imagery, and monitoring environmental changes from satellite imagery.
## Fine-tuning a Model for Segmentation
We will now:
1. Finetune [SegFormer](https://huggingface.co/docs/transformers/main/en/model_doc/segformer#segformer) on the [SceneParse150](https://huggingface.co/datasets/scene_parse_150) dataset.
2. Use your fine-tuned model for inference.
<Tip>
The task illustrated in this tutorial is supported by the following model architectures:
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
[BEiT](../model_doc/beit), [Data2VecVision](../model_doc/data2vec-vision), [DPT](../model_doc/dpt), [MobileNetV2](../model_doc/mobilenet_v2), [MobileViT](../model_doc/mobilevit), [MobileViTV2](../model_doc/mobilevitv2), [SegFormer](../model_doc/segformer), [UPerNet](../model_doc/upernet)
<!--End of the generated tip-->
</Tip>
### Load SceneParse150 dataset
Start by loading a smaller subset of the SceneParse150 dataset from the 🤗 Datasets library. This'll give you a chance to experiment and make sure everything works before spending more time training on the full dataset.
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("scene_parse_150", split="train[:50]")
```
Split the dataset's `train` split into a train and test set with the [`~datasets.Dataset.train_test_split`] method:
```py
>>> ds = ds.train_test_split(test_size=0.2)
>>> train_ds = ds["train"]
>>> test_ds = ds["test"]
```
Then take a look at an example:
```py
>>> train_ds[0]
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x683 at 0x7F9B0C201F90>,
'annotation': <PIL.PngImagePlugin.PngImageFile image mode=L size=512x683 at 0x7F9B0C201DD0>,
'scene_category': 368}
```
- `image`: a PIL image of the scene.
- `annotation`: a PIL image of the segmentation map, which is also the model's target.
- `scene_category`: a category id that describes the image scene like "kitchen" or "office". In this guide, you'll only need `image` and `annotation`, both of which are PIL images.
You'll also want to create a dictionary that maps a label id to a label class which will be useful when you set up the model later. Download the mappings from the Hub and create the `id2label` and `label2id` dictionaries:
```py
>>> import json
>>> from huggingface_hub import cached_download, hf_hub_url
>>> repo_id = "huggingface/label-files"
>>> filename = "ade20k-id2label.json"
>>> id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r"))
>>> id2label = {int(k): v for k, v in id2label.items()}
>>> label2id = {v: k for k, v in id2label.items()}
>>> num_labels = len(id2label)
```
#### Custom dataset
You could also create and use your own dataset if you prefer to train with the [run_semantic_segmentation.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/semantic-segmentation/run_semantic_segmentation.py) script instead of a notebook instance. The script requires:
1. a [`~datasets.DatasetDict`] with two [`~datasets.Image`] columns, "image" and "label"
```py
from datasets import Dataset, DatasetDict, Image
image_paths_train = ["path/to/image_1.jpg/jpg", "path/to/image_2.jpg/jpg", ..., "path/to/image_n.jpg/jpg"]
label_paths_train = ["path/to/annotation_1.png", "path/to/annotation_2.png", ..., "path/to/annotation_n.png"]
image_paths_validation = [...]
label_paths_validation = [...]
def create_dataset(image_paths, label_paths):
dataset = Dataset.from_dict({"image": sorted(image_paths),
"label": sorted(label_paths)})
dataset = dataset.cast_column("image", Image())
dataset = dataset.cast_column("label", Image())
return dataset
# step 1: create Dataset objects
train_dataset = create_dataset(image_paths_train, label_paths_train)
validation_dataset = create_dataset(image_paths_validation, label_paths_validation)
# step 2: create DatasetDict
dataset = DatasetDict({
"train": train_dataset,
"validation": validation_dataset,
}
)
# step 3: push to Hub (assumes you have ran the huggingface-cli login command in a terminal/notebook)
dataset.push_to_hub("your-name/dataset-repo")
# optionally, you can push to a private repo on the Hub
# dataset.push_to_hub("name of repo on the hub", private=True)
```
2. an id2label dictionary mapping the class integers to their class names
```py
import json
# simple example
id2label = {0: 'cat', 1: 'dog'}
with open('id2label.json', 'w') as fp:
json.dump(id2label, fp)
```
As an example, take a look at this [example dataset](https://huggingface.co/datasets/nielsr/ade20k-demo) which was created with the steps shown above.
### Preprocess
The next step is to load a SegFormer image processor to prepare the images and annotations for the model. Some datasets, like this one, use the zero-index as the background class. However, the background class isn't actually included in the 150 classes, so you'll need to set `reduce_labels=True` to subtract one from all the labels. The zero-index is replaced by `255` so it's ignored by SegFormer's loss function:
```py
>>> from transformers import AutoImageProcessor
>>> checkpoint = "nvidia/mit-b0"
>>> image_processor = AutoImageProcessor.from_pretrained(checkpoint, reduce_labels=True)
```
<frameworkcontent>
<pt>
It is common to apply some data augmentations to an image dataset to make a model more robust against overfitting. In this guide, you'll use the [`ColorJitter`](https://pytorch.org/vision/stable/generated/torchvision.transforms.ColorJitter.html) function from [torchvision](https://pytorch.org/vision/stable/index.html) to randomly change the color properties of an image, but you can also use any image library you like.
```py
>>> from torchvision.transforms import ColorJitter
>>> jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)
```
Now create two preprocessing functions to prepare the images and annotations for the model. These functions convert the images into `pixel_values` and annotations to `labels`. For the training set, `jitter` is applied before providing the images to the image processor. For the test set, the image processor crops and normalizes the `images`, and only crops the `labels` because no data augmentation is applied during testing.
```py
>>> def train_transforms(example_batch):
... images = [jitter(x) for x in example_batch["image"]]
... labels = [x for x in example_batch["annotation"]]
... inputs = image_processor(images, labels)
... return inputs
>>> def val_transforms(example_batch):
... images = [x for x in example_batch["image"]]
... labels = [x for x in example_batch["annotation"]]
... inputs = image_processor(images, labels)
... return inputs
```
To apply the `jitter` over the entire dataset, use the 🤗 Datasets [`~datasets.Dataset.set_transform`] function. The transform is applied on the fly which is faster and consumes less disk space:
```py
>>> train_ds.set_transform(train_transforms)
>>> test_ds.set_transform(val_transforms)
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
It is common to apply some data augmentations to an image dataset to make a model more robust against overfitting.
In this guide, you'll use [`tf.image`](https://www.tensorflow.org/api_docs/python/tf/image) to randomly change the color properties of an image, but you can also use any image
library you like.
Define two separate transformation functions:
- training data transformations that include image augmentation
- validation data transformations that only transpose the images, since computer vision models in 🤗 Transformers expect channels-first layout
```py
>>> import tensorflow as tf
>>> def aug_transforms(image):
... image = tf.keras.utils.img_to_array(image)
... image = tf.image.random_brightness(image, 0.25)
... image = tf.image.random_contrast(image, 0.5, 2.0)
... image = tf.image.random_saturation(image, 0.75, 1.25)
... image = tf.image.random_hue(image, 0.1)
... image = tf.transpose(image, (2, 0, 1))
... return image
>>> def transforms(image):
... image = tf.keras.utils.img_to_array(image)
... image = tf.transpose(image, (2, 0, 1))
... return image
```
Next, create two preprocessing functions to prepare batches of images and annotations for the model. These functions apply
the image transformations and use the earlier loaded `image_processor` to convert the images into `pixel_values` and
annotations to `labels`. `ImageProcessor` also takes care of resizing and normalizing the images.
```py
>>> def train_transforms(example_batch):
... images = [aug_transforms(x.convert("RGB")) for x in example_batch["image"]]
... labels = [x for x in example_batch["annotation"]]
... inputs = image_processor(images, labels)
... return inputs
>>> def val_transforms(example_batch):
... images = [transforms(x.convert("RGB")) for x in example_batch["image"]]
... labels = [x for x in example_batch["annotation"]]
... inputs = image_processor(images, labels)
... return inputs
```
To apply the preprocessing transformations over the entire dataset, use the 🤗 Datasets [`~datasets.Dataset.set_transform`] function.
The transform is applied on the fly which is faster and consumes less disk space:
```py
>>> train_ds.set_transform(train_transforms)
>>> test_ds.set_transform(val_transforms)
```
</tf>
</frameworkcontent>
### Evaluate
Including a metric during training is often helpful for evaluating your model's performance. You can quickly load an evaluation method with the 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [mean Intersection over Union](https://huggingface.co/spaces/evaluate-metric/accuracy) (IoU) metric (see the 🤗 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric):
```py
>>> import evaluate
>>> metric = evaluate.load("mean_iou")
```
Then create a function to [`~evaluate.EvaluationModule.compute`] the metrics. Your predictions need to be converted to
logits first, and then reshaped to match the size of the labels before you can call [`~evaluate.EvaluationModule.compute`]:
<frameworkcontent>
<pt>
```py
>>> import numpy as np
>>> import torch
>>> from torch import nn
>>> def compute_metrics(eval_pred):
... with torch.no_grad():
... logits, labels = eval_pred
... logits_tensor = torch.from_numpy(logits)
... logits_tensor = nn.functional.interpolate(
... logits_tensor,
... size=labels.shape[-2:],
... mode="bilinear",
... align_corners=False,
... ).argmax(dim=1)
... pred_labels = logits_tensor.detach().cpu().numpy()
... metrics = metric.compute(
... predictions=pred_labels,
... references=labels,
... num_labels=num_labels,
... ignore_index=255,
... reduce_labels=False,
... )
... for key, value in metrics.items():
... if isinstance(value, np.ndarray):
... metrics[key] = value.tolist()
... return metrics
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
```py
>>> def compute_metrics(eval_pred):
... logits, labels = eval_pred
... logits = tf.transpose(logits, perm=[0, 2, 3, 1])
... logits_resized = tf.image.resize(
... logits,
... size=tf.shape(labels)[1:],
... method="bilinear",
... )
... pred_labels = tf.argmax(logits_resized, axis=-1)
... metrics = metric.compute(
... predictions=pred_labels,
... references=labels,
... num_labels=num_labels,
... ignore_index=-1,
... reduce_labels=image_processor.do_reduce_labels,
... )
... per_category_accuracy = metrics.pop("per_category_accuracy").tolist()
... per_category_iou = metrics.pop("per_category_iou").tolist()
... metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)})
... metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)})
... return {"val_" + k: v for k, v in metrics.items()}
```
</tf>
</frameworkcontent>
Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training.
### Train
<frameworkcontent>
<pt>
<Tip>
If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#finetune-with-trainer)!
</Tip>
You're ready to start training your model now! Load SegFormer with [`AutoModelForSemanticSegmentation`], and pass the model the mapping between label ids and label classes:
```py
>>> from transformers import AutoModelForSemanticSegmentation, TrainingArguments, Trainer
>>> model = AutoModelForSemanticSegmentation.from_pretrained(checkpoint, id2label=id2label, label2id=label2id)
```
At this point, only three steps remain:
1. Define your training hyperparameters in [`TrainingArguments`]. It is important you don't remove unused columns because this'll drop the `image` column. Without the `image` column, you can't create `pixel_values`. Set `remove_unused_columns=False` to prevent this behavior! The only other required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the IoU metric and save the training checkpoint.
2. Pass the training arguments to [`Trainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function.
3. Call [`~Trainer.train`] to finetune your model.
```py
>>> training_args = TrainingArguments(
... output_dir="segformer-b0-scene-parse-150",
... learning_rate=6e-5,
... num_train_epochs=50,
... per_device_train_batch_size=2,
... per_device_eval_batch_size=2,
... save_total_limit=3,
... evaluation_strategy="steps",
... save_strategy="steps",
... save_steps=20,
... eval_steps=20,
... logging_steps=1,
... eval_accumulation_steps=5,
... remove_unused_columns=False,
... push_to_hub=True,
... )
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=train_ds,
... eval_dataset=test_ds,
... compute_metrics=compute_metrics,
... )
>>> trainer.train()
```
Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model:
```py
>>> trainer.push_to_hub()
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
<Tip>
If you are unfamiliar with fine-tuning a model with Keras, check out the [basic tutorial](./training#train-a-tensorflow-model-with-keras) first!
</Tip>
To fine-tune a model in TensorFlow, follow these steps:
1. Define the training hyperparameters, and set up an optimizer and a learning rate schedule.
2. Instantiate a pretrained model.
3. Convert a 🤗 Dataset to a `tf.data.Dataset`.
4. Compile your model.
5. Add callbacks to calculate metrics and upload your model to 🤗 Hub
6. Use the `fit()` method to run the training.
Start by defining the hyperparameters, optimizer and learning rate schedule:
```py
>>> from transformers import create_optimizer
>>> batch_size = 2
>>> num_epochs = 50
>>> num_train_steps = len(train_ds) * num_epochs
>>> learning_rate = 6e-5
>>> weight_decay_rate = 0.01
>>> optimizer, lr_schedule = create_optimizer(
... init_lr=learning_rate,
... num_train_steps=num_train_steps,
... weight_decay_rate=weight_decay_rate,
... num_warmup_steps=0,
... )
```
Then, load SegFormer with [`TFAutoModelForSemanticSegmentation`] along with the label mappings, and compile it with the
optimizer. Note that Transformers models all have a default task-relevant loss function, so you don't need to specify one unless you want to:
```py
>>> from transformers import TFAutoModelForSemanticSegmentation
>>> model = TFAutoModelForSemanticSegmentation.from_pretrained(
... checkpoint,
... id2label=id2label,
... label2id=label2id,
... )
>>> model.compile(optimizer=optimizer) # No loss argument!
```
Convert your datasets to the `tf.data.Dataset` format using the [`~datasets.Dataset.to_tf_dataset`] and the [`DefaultDataCollator`]:
```py
>>> from transformers import DefaultDataCollator
>>> data_collator = DefaultDataCollator(return_tensors="tf")
>>> tf_train_dataset = train_ds.to_tf_dataset(
... columns=["pixel_values", "label"],
... shuffle=True,
... batch_size=batch_size,
... collate_fn=data_collator,
... )
>>> tf_eval_dataset = test_ds.to_tf_dataset(
... columns=["pixel_values", "label"],
... shuffle=True,
... batch_size=batch_size,
... collate_fn=data_collator,
... )
```
To compute the accuracy from the predictions and push your model to the 🤗 Hub, use [Keras callbacks](../main_classes/keras_callbacks).
Pass your `compute_metrics` function to [`KerasMetricCallback`],
and use the [`PushToHubCallback`] to upload the model:
```py
>>> from transformers.keras_callbacks import KerasMetricCallback, PushToHubCallback
>>> metric_callback = KerasMetricCallback(
... metric_fn=compute_metrics, eval_dataset=tf_eval_dataset, batch_size=batch_size, label_cols=["labels"]
... )
>>> push_to_hub_callback = PushToHubCallback(output_dir="scene_segmentation", tokenizer=image_processor)
>>> callbacks = [metric_callback, push_to_hub_callback]
```
Finally, you are ready to train your model! Call `fit()` with your training and validation datasets, the number of epochs,
and your callbacks to fine-tune the model:
```py
>>> model.fit(
... tf_train_dataset,
... validation_data=tf_eval_dataset,
... callbacks=callbacks,
... epochs=num_epochs,
... )
```
Congratulations! You have fine-tuned your model and shared it on the 🤗 Hub. You can now use it for inference!
</tf>
</frameworkcontent>
### Inference
Great, now that you've finetuned a model, you can use it for inference!
Load an image for inference:
```py
>>> image = ds[0]["image"]
>>> image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-image.png" alt="Image of bedroom"/>
</div>
<frameworkcontent>
<pt>
We will now see how to infer without a pipeline. Process the image with an image processor and place the `pixel_values` on a GPU:
```py
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # use GPU if available, otherwise use a CPU
>>> encoding = image_processor(image, return_tensors="pt")
>>> pixel_values = encoding.pixel_values.to(device)
```
Pass your input to the model and return the `logits`:
```py
>>> outputs = model(pixel_values=pixel_values)
>>> logits = outputs.logits.cpu()
```
Next, rescale the logits to the original image size:
```py
>>> upsampled_logits = nn.functional.interpolate(
... logits,
... size=image.size[::-1],
... mode="bilinear",
... align_corners=False,
... )
>>> pred_seg = upsampled_logits.argmax(dim=1)[0]
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
Load an image processor to preprocess the image and return the input as TensorFlow tensors:
```py
>>> from transformers import AutoImageProcessor
>>> image_processor = AutoImageProcessor.from_pretrained("MariaK/scene_segmentation")
>>> inputs = image_processor(image, return_tensors="tf")
```
Pass your input to the model and return the `logits`:
```py
>>> from transformers import TFAutoModelForSemanticSegmentation
>>> model = TFAutoModelForSemanticSegmentation.from_pretrained("MariaK/scene_segmentation")
>>> logits = model(**inputs).logits
```
Next, rescale the logits to the original image size and apply argmax on the class dimension:
```py
>>> logits = tf.transpose(logits, [0, 2, 3, 1])
>>> upsampled_logits = tf.image.resize(
... logits,
... # We reverse the shape of `image` because `image.size` returns width and height.
... image.size[::-1],
... )
>>> pred_seg = tf.math.argmax(upsampled_logits, axis=-1)[0]
```
</tf>
</frameworkcontent>
To visualize the results, load the [dataset color palette](https://github.com/tensorflow/models/blob/3f1ca33afe3c1631b733ea7e40c294273b9e406d/research/deeplab/utils/get_dataset_colormap.py#L51) as `ade_palette()` that maps each class to their RGB values. Then you can combine and plot your image and the predicted segmentation map:
```py
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8)
>>> palette = np.array(ade_palette())
>>> for label, color in enumerate(palette):
... color_seg[pred_seg == label, :] = color
>>> color_seg = color_seg[..., ::-1] # convert to BGR
>>> img = np.array(image) * 0.5 + color_seg * 0.5 # plot the image with the segmentation map
>>> img = img.astype(np.uint8)
>>> plt.figure(figsize=(15, 10))
>>> plt.imshow(img)
>>> plt.show()
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-preds.png" alt="Image of bedroom overlaid with segmentation map"/>
</div>
| transformers/docs/source/en/tasks/semantic_segmentation.md/0 | {
"file_path": "transformers/docs/source/en/tasks/semantic_segmentation.md",
"repo_id": "transformers",
"token_count": 10076
} | 256 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Trainer
The [`Trainer`] is a complete training and evaluation loop for PyTorch models implemented in the Transformers library. You only need to pass it the necessary pieces for training (model, tokenizer, dataset, evaluation function, training hyperparameters, etc.), and the [`Trainer`] class takes care of the rest. This makes it easier to start training faster without manually writing your own training loop. But at the same time, [`Trainer`] is very customizable and offers a ton of training options so you can tailor it to your exact training needs.
<Tip>
In addition to the [`Trainer`] class, Transformers also provides a [`Seq2SeqTrainer`] class for sequence-to-sequence tasks like translation or summarization. There is also the [`~trl.SFTTrainer`] class from the [TRL](https://hf.co/docs/trl) library which wraps the [`Trainer`] class and is optimized for training language models like Llama-2 and Mistral with autoregressive techniques. [`~trl.SFTTrainer`] also supports features like sequence packing, LoRA, quantization, and DeepSpeed for efficiently scaling to any model size.
<br>
Feel free to check out the [API reference](./main_classes/trainer) for these other [`Trainer`]-type classes to learn more about when to use which one. In general, [`Trainer`] is the most versatile option and is appropriate for a broad spectrum of tasks. [`Seq2SeqTrainer`] is designed for sequence-to-sequence tasks and [`~trl.SFTTrainer`] is designed for training language models.
</Tip>
Before you start, make sure [Accelerate](https://hf.co/docs/accelerate) - a library for enabling and running PyTorch training across distributed environments - is installed.
```bash
pip install accelerate
# upgrade
pip install accelerate --upgrade
```
This guide provides an overview of the [`Trainer`] class.
## Basic usage
[`Trainer`] includes all the code you'll find in a basic training loop:
1. perform a training step to calculate the loss
2. calculate the gradients with the [`~accelerate.Accelerator.backward`] method
3. update the weights based on the gradients
4. repeat this process until you've reached a predetermined number of epochs
The [`Trainer`] class abstracts all of this code away so you don't have to worry about manually writing a training loop every time or if you're just getting started with PyTorch and training. You only need to provide the essential components required for training, such as a model and a dataset, and the [`Trainer`] class handles everything else.
If you want to specify any training options or hyperparameters, you can find them in the [`TrainingArguments`] class. For example, let's define where to save the model in `output_dir` and push the model to the Hub after training with `push_to_hub=True`.
```py
from transformers import TrainingArguments
training_args = TrainingArguments(
output_dir="your-model",
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=2,
weight_decay=0.01,
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
push_to_hub=True,
)
```
Pass `training_args` to the [`Trainer`] along with a model, dataset, something to preprocess the dataset with (depending on your data type it could be a tokenizer, feature extractor or image processor), a data collator, and a function to compute the metrics you want to track during training.
Finally, call [`~Trainer.train`] to start training!
```py
from transformers import Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
trainer.train()
```
### Checkpoints
The [`Trainer`] class saves your model checkpoints to the directory specified in the `output_dir` parameter of [`TrainingArguments`]. You'll find the checkpoints saved in a `checkpoint-000` subfolder where the numbers at the end correspond to the training step. Saving checkpoints are useful for resuming training later.
```py
# resume from latest checkpoint
trainer.train(resume_from_checkpoint=True)
# resume from specific checkpoint saved in output directory
trainer.train(resume_from_checkpoint="your-model/checkpoint-1000")
```
You can save your checkpoints (the optimizer state is not saved by default) to the Hub by setting `push_to_hub=True` in [`TrainingArguments`] to commit and push them. Other options for deciding how your checkpoints are saved are set up in the [`hub_strategy`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.hub_strategy) parameter:
* `hub_strategy="checkpoint"` pushes the latest checkpoint to a subfolder named "last-checkpoint" from which you can resume training
* `hub_strategy="all_checkpoints"` pushes all checkpoints to the directory defined in `output_dir` (you'll see one checkpoint per folder in your model repository)
When you resume training from a checkpoint, the [`Trainer`] tries to keep the Python, NumPy, and PyTorch RNG states the same as they were when the checkpoint was saved. But because PyTorch has various non-deterministic default settings, the RNG states aren't guaranteed to be the same. If you want to enable full determinism, take a look at the [Controlling sources of randomness](https://pytorch.org/docs/stable/notes/randomness#controlling-sources-of-randomness) guide to learn what you can enable to make your training fully deterministic. Keep in mind though that by making certain settings deterministic, training may be slower.
## Customize the Trainer
While the [`Trainer`] class is designed to be accessible and easy-to-use, it also offers a lot of customizability for more adventurous users. Many of the [`Trainer`]'s method can be subclassed and overridden to support the functionality you want, without having to rewrite the entire training loop from scratch to accommodate it. These methods include:
* [`~Trainer.get_train_dataloader`] creates a training DataLoader
* [`~Trainer.get_eval_dataloader`] creates an evaluation DataLoader
* [`~Trainer.get_test_dataloader`] creates a test DataLoader
* [`~Trainer.log`] logs information on the various objects that watch training
* [`~Trainer.create_optimizer_and_scheduler`] creates an optimizer and learning rate scheduler if they weren't passed in the `__init__`; these can also be separately customized with [`~Trainer.create_optimizer`] and [`~Trainer.create_scheduler`] respectively
* [`~Trainer.compute_loss`] computes the loss on a batch of training inputs
* [`~Trainer.training_step`] performs the training step
* [`~Trainer.prediction_step`] performs the prediction and test step
* [`~Trainer.evaluate`] evaluates the model and returns the evaluation metrics
* [`~Trainer.predict`] makes predictions (with metrics if labels are available) on the test set
For example, if you want to customize the [`~Trainer.compute_loss`] method to use a weighted loss instead.
```py
from torch import nn
from transformers import Trainer
class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
labels = inputs.pop("labels")
# forward pass
outputs = model(**inputs)
logits = outputs.get("logits")
# compute custom loss for 3 labels with different weights
loss_fct = nn.CrossEntropyLoss(weight=torch.tensor([1.0, 2.0, 3.0], device=model.device))
loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1))
return (loss, outputs) if return_outputs else loss
```
### Callbacks
Another option for customizing the [`Trainer`] is to use [callbacks](callbacks). Callbacks *don't change* anything in the training loop. They inspect the training loop state and then execute some action (early stopping, logging results, etc.) depending on the state. In other words, a callback can't be used to implement something like a custom loss function and you'll need to subclass and override the [`~Trainer.compute_loss`] method for that.
For example, if you want to add an early stopping callback to the training loop after 10 steps.
```py
from transformers import TrainerCallback
class EarlyStoppingCallback(TrainerCallback):
def __init__(self, num_steps=10):
self.num_steps = num_steps
def on_step_end(self, args, state, control, **kwargs):
if state.global_step >= self.num_steps:
return {"should_training_stop": True}
else:
return {}
```
Then pass it to the [`Trainer`]'s `callback` parameter.
```py
from transformers import Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
callback=[EarlyStoppingCallback()],
)
```
## Logging
<Tip>
Check out the [logging](./main_classes/logging) API reference for more information about the different logging levels.
</Tip>
The [`Trainer`] is set to `logging.INFO` by default which reports errors, warnings, and other basic information. A [`Trainer`] replica - in distributed environments - is set to `logging.WARNING` which only reports errors and warnings. You can change the logging level with the [`log_level`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.log_level) and [`log_level_replica`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.log_level_replica) parameters in [`TrainingArguments`].
To configure the log level setting for each node, use the [`log_on_each_node`](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments.log_on_each_node) parameter to determine whether to use the log level on each node or only on the main node.
<Tip>
[`Trainer`] sets the log level separately for each node in the [`Trainer.__init__`] method, so you may want to consider setting this sooner if you're using other Transformers functionalities before creating the [`Trainer`] object.
</Tip>
For example, to set your main code and modules to use the same log level according to each node:
```py
logger = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
trainer = Trainer(...)
```
Use different combinations of `log_level` and `log_level_replica` to configure what gets logged on each of the nodes.
<hfoptions id="logging">
<hfoption id="single node">
```bash
my_app.py ... --log_level warning --log_level_replica error
```
</hfoption>
<hfoption id="multi-node">
Add the `log_on_each_node 0` parameter for multi-node environments.
```bash
my_app.py ... --log_level warning --log_level_replica error --log_on_each_node 0
# set to only report errors
my_app.py ... --log_level error --log_level_replica error --log_on_each_node 0
```
</hfoption>
</hfoptions>
## NEFTune
[NEFTune](https://hf.co/papers/2310.05914) is a technique that can improve performance by adding noise to the embedding vectors during training. To enable it in [`Trainer`], set the `neftune_noise_alpha` parameter in [`TrainingArguments`] to control how much noise is added.
```py
from transformers import TrainingArguments, Trainer
training_args = TrainingArguments(..., neftune_noise_alpha=0.1)
trainer = Trainer(..., args=training_args)
```
NEFTune is disabled after training to restore the original embedding layer to avoid any unexpected behavior.
## GaLore
Gradient Low-Rank Projection (GaLore) is a memory-efficient low-rank training strategy that allows full-parameter learning but is more memory-efficient than common low-rank adaptation methods, such as LoRA.
First make sure to install GaLore official repository:
```bash
pip install galore-torch
```
Then simply add one of `["galore_adamw", "galore_adafactor", "galore_adamw_8bit"]` in `optim` together with `optim_target_modules`, which can be a list of strings, regex or full path corresponding to the target module names you want to adapt. Below is an end-to-end example script (make sure to `pip install trl datasets`):
```python
import torch
import datasets
import trl
from transformers import TrainingArguments, AutoConfig, AutoTokenizer, AutoModelForCausalLM
train_dataset = datasets.load_dataset('imdb', split='train')
args = TrainingArguments(
output_dir="./test-galore",
max_steps=100,
per_device_train_batch_size=2,
optim="galore_adamw",
optim_target_modules=["attn", "mlp"]
)
model_id = "google/gemma-2b"
config = AutoConfig.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_config(config).to(0)
trainer = trl.SFTTrainer(
model=model,
args=args,
train_dataset=train_dataset,
dataset_text_field='text',
max_seq_length=512,
)
trainer.train()
```
To pass extra arguments supports by GaLore, you should pass correctly `optim_args`, for example:
```python
import torch
import datasets
import trl
from transformers import TrainingArguments, AutoConfig, AutoTokenizer, AutoModelForCausalLM
train_dataset = datasets.load_dataset('imdb', split='train')
args = TrainingArguments(
output_dir="./test-galore",
max_steps=100,
per_device_train_batch_size=2,
optim="galore_adamw",
optim_target_modules=["attn", "mlp"],
optim_args="rank=64, update_proj_gap=100, scale=0.10",
)
model_id = "google/gemma-2b"
config = AutoConfig.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_config(config).to(0)
trainer = trl.SFTTrainer(
model=model,
args=args,
train_dataset=train_dataset,
dataset_text_field='text',
max_seq_length=512,
)
trainer.train()
```
You can read more about the method in the [original repository](https://github.com/jiaweizzhao/GaLore) or the [paper](https://arxiv.org/abs/2403.03507).
Currently you can only train Linear layers that are considered as GaLore layers and will use low-rank decomposition to be trained while remaining layers will be optimized in the conventional manner.
Note it will take a bit of time before starting the training (~3 minutes for a 2B model on a NVIDIA A100), but training should go smoothly afterwards.
You can also perform layer-wise optimization by post-pending the optimizer name with `layerwise` like below:
```python
import torch
import datasets
import trl
from transformers import TrainingArguments, AutoConfig, AutoTokenizer, AutoModelForCausalLM
train_dataset = datasets.load_dataset('imdb', split='train')
args = TrainingArguments(
output_dir="./test-galore",
max_steps=100,
per_device_train_batch_size=2,
optim="galore_adamw_layerwise",
optim_target_modules=["attn", "mlp"]
)
model_id = "google/gemma-2b"
config = AutoConfig.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_config(config).to(0)
trainer = trl.SFTTrainer(
model=model,
args=args,
train_dataset=train_dataset,
dataset_text_field='text',
max_seq_length=512,
)
trainer.train()
```
Note layerwise optimization is a bit experimental and does not support DDP (Distributed Data Parallel), thus you can run the training script only on a single GPU. Please see [this appropriate section](https://github.com/jiaweizzhao/GaLore?tab=readme-ov-file#train-7b-model-with-a-single-gpu-with-24gb-memory) for more details. Other features such as gradient clipping, DeepSpeed, etc might not be supported out of the box. Please [raise an issue on GitHub](https://github.com/huggingface/transformers/issues) if you encounter such issue.
## Accelerate and Trainer
The [`Trainer`] class is powered by [Accelerate](https://hf.co/docs/accelerate), a library for easily training PyTorch models in distributed environments with support for integrations such as [FullyShardedDataParallel (FSDP)](https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/) and [DeepSpeed](https://www.deepspeed.ai/).
<Tip>
Learn more about FSDP sharding strategies, CPU offloading, and more with the [`Trainer`] in the [Fully Sharded Data Parallel](fsdp) guide.
</Tip>
To use Accelerate with [`Trainer`], run the [`accelerate.config`](https://huggingface.co/docs/accelerate/package_reference/cli#accelerate-config) command to set up training for your training environment. This command creates a `config_file.yaml` that'll be used when you launch your training script. For example, some example configurations you can setup are:
<hfoptions id="config">
<hfoption id="DistributedDataParallel">
```yml
compute_environment: LOCAL_MACHINE
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0 #change rank as per the node
main_process_ip: 192.168.20.1
main_process_port: 9898
main_training_function: main
mixed_precision: fp16
num_machines: 2
num_processes: 8
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
```
</hfoption>
<hfoption id="FSDP">
```yml
compute_environment: LOCAL_MACHINE
distributed_type: FSDP
downcast_bf16: 'no'
fsdp_config:
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_backward_prefetch_policy: BACKWARD_PRE
fsdp_forward_prefetch: true
fsdp_offload_params: false
fsdp_sharding_strategy: 1
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sync_module_states: true
fsdp_transformer_layer_cls_to_wrap: BertLayer
fsdp_use_orig_params: true
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 2
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
```
</hfoption>
<hfoption id="DeepSpeed">
```yml
compute_environment: LOCAL_MACHINE
deepspeed_config:
deepspeed_config_file: /home/user/configs/ds_zero3_config.json
zero3_init_flag: true
distributed_type: DEEPSPEED
downcast_bf16: 'no'
machine_rank: 0
main_training_function: main
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
```
</hfoption>
<hfoption id="DeepSpeed with Accelerate plugin">
```yml
compute_environment: LOCAL_MACHINE
deepspeed_config:
gradient_accumulation_steps: 1
gradient_clipping: 0.7
offload_optimizer_device: cpu
offload_param_device: cpu
zero3_init_flag: true
zero_stage: 2
distributed_type: DEEPSPEED
downcast_bf16: 'no'
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
```
</hfoption>
</hfoptions>
The [`accelerate_launch`](https://huggingface.co/docs/accelerate/package_reference/cli#accelerate-launch) command is the recommended way to launch your training script on a distributed system with Accelerate and [`Trainer`] with the parameters specified in `config_file.yaml`. This file is saved to the Accelerate cache folder and automatically loaded when you run `accelerate_launch`.
For example, to run the [run_glue.py](https://github.com/huggingface/transformers/blob/f4db565b695582891e43a5e042e5d318e28f20b8/examples/pytorch/text-classification/run_glue.py#L4) training script with the FSDP configuration:
```bash
accelerate launch \
./examples/pytorch/text-classification/run_glue.py \
--model_name_or_path google-bert/bert-base-cased \
--task_name $TASK_NAME \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 16 \
--learning_rate 5e-5 \
--num_train_epochs 3 \
--output_dir /tmp/$TASK_NAME/ \
--overwrite_output_dir
```
You could also specify the parameters from the `config_file.yaml` file directly in the command line:
```bash
accelerate launch --num_processes=2 \
--use_fsdp \
--mixed_precision=bf16 \
--fsdp_auto_wrap_policy=TRANSFORMER_BASED_WRAP \
--fsdp_transformer_layer_cls_to_wrap="BertLayer" \
--fsdp_sharding_strategy=1 \
--fsdp_state_dict_type=FULL_STATE_DICT \
./examples/pytorch/text-classification/run_glue.py
--model_name_or_path google-bert/bert-base-cased \
--task_name $TASK_NAME \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 16 \
--learning_rate 5e-5 \
--num_train_epochs 3 \
--output_dir /tmp/$TASK_NAME/ \
--overwrite_output_dir
```
Check out the [Launching your Accelerate scripts](https://huggingface.co/docs/accelerate/basic_tutorials/launch) tutorial to learn more about `accelerate_launch` and custom configurations.
| transformers/docs/source/en/trainer.md/0 | {
"file_path": "transformers/docs/source/en/trainer.md",
"repo_id": "transformers",
"token_count": 7415
} | 257 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Debugging
## Debug de problemas de Network multi-GPU
Cuando entrenas o infieres con `DistributedDataParallel` y varias GPUs, si encuentras problemas de intercomunicación entre procesos y/o nodos, puedes usar el siguiente script para diagnosticar problemas de red.
```bash
wget https://raw.githubusercontent.com/huggingface/transformers/main/scripts/distributed/torch-distributed-gpu-test.py
```
Por ejemplo, para probar cómo interactúan 2 GPUs, haz lo siguiente:
```bash
python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
```
Si ambos procesos pueden hablar entre sí y asignar la memoria de la GPU, cada uno imprimirá un status OK.
Para más GPUs o nodos, ajusta los argumentos en el script.
Encontrarás muchos más detalles dentro del script de diagnóstico e incluso una receta de cómo ejecutarlo en un entorno SLURM.
Un nivel adicional de debug es agregar la variable de entorno `NCCL_DEBUG=INFO` de la siguiente manera:
```bash
NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
```
Esto mostrará mucha información de debug relacionada con NCCL, que luego puedes buscar online si encuentras que reporta algún problema. O si no estás seguro de cómo interpretar el output, puedes compartir el archivo de log en un Issue.
## Detección de Underflow y Overflow
<Tip>
Esta función está disponible actualmente sólo para PyTorch.
</Tip>
<Tip>
Para el entrenamiento multi-GPU, requiere DDP (`torch.distributed.launch`).
</Tip>
<Tip>
Esta función puede utilizarse con cualquier modelo basado en `nn.Module`.
</Tip>
Si empiezas a obtener `loss=NaN` o el modelo muestra algún otro comportamiento anormal debido a `inf` o `nan` en
activations o weights hay que descubrir dónde se produce el primer underflow o overflow y qué lo ha provocado. Por suerte
puedes lograrlo fácilmente activando un módulo especial que hará la detección automáticamente.
Si estás usando [`Trainer`], solo necesitas añadir:
```bash
--debug underflow_overflow
```
a los argumentos normales de la línea de comandos, o pasar `debug="underflow_overflow"` al crear el objeto [`TrainingArguments`].
Si estás usando tu propio bucle de entrenamiento u otro Trainer puedes lograr lo mismo con:
```python
from .debug_utils import DebugUnderflowOverflow
debug_overflow = DebugUnderflowOverflow(model)
```
[`~debug_utils.DebugUnderflowOverflow`] inserta hooks en el modelo que inmediatamente después de cada forward
testeará las variables de input y output y también los weights del módulo correspondiente. Tan pronto como se detecte `inf` o
`nan` se detecta en al menos un elemento de las activations o weights, el programa afirmará e imprimirá un informe
como este (esto fue capturado con `google/mt5-small` bajo fp16 mixed precision):
```
Detected inf/nan during batch_number=0
Last 21 forward frames:
abs min abs max metadata
encoder.block.1.layer.1.DenseReluDense.dropout Dropout
0.00e+00 2.57e+02 input[0]
0.00e+00 2.85e+02 output
[...]
encoder.block.2.layer.0 T5LayerSelfAttention
6.78e-04 3.15e+03 input[0]
2.65e-04 3.42e+03 output[0]
None output[1]
2.25e-01 1.00e+04 output[2]
encoder.block.2.layer.1.layer_norm T5LayerNorm
8.69e-02 4.18e-01 weight
2.65e-04 3.42e+03 input[0]
1.79e-06 4.65e+00 output
encoder.block.2.layer.1.DenseReluDense.wi_0 Linear
2.17e-07 4.50e+00 weight
1.79e-06 4.65e+00 input[0]
2.68e-06 3.70e+01 output
encoder.block.2.layer.1.DenseReluDense.wi_1 Linear
8.08e-07 2.66e+01 weight
1.79e-06 4.65e+00 input[0]
1.27e-04 2.37e+02 output
encoder.block.2.layer.1.DenseReluDense.dropout Dropout
0.00e+00 8.76e+03 input[0]
0.00e+00 9.74e+03 output
encoder.block.2.layer.1.DenseReluDense.wo Linear
1.01e-06 6.44e+00 weight
0.00e+00 9.74e+03 input[0]
3.18e-04 6.27e+04 output
encoder.block.2.layer.1.DenseReluDense T5DenseGatedGeluDense
1.79e-06 4.65e+00 input[0]
3.18e-04 6.27e+04 output
encoder.block.2.layer.1.dropout Dropout
3.18e-04 6.27e+04 input[0]
0.00e+00 inf output
```
El output del ejemplo se ha recortado en el centro por razones de brevedad.
La segunda columna muestra el valor del elemento más grande en términos absolutos, por lo que si observas con detenimiento los últimos fotogramas,
los inputs y outputs estaban en el rango de `1e4`. Así que cuando este entrenamiento se hizo con fp16 mixed precision,
el último paso sufrió overflow (ya que bajo `fp16` el mayor número antes de `inf` es `64e3`). Para evitar overflows en
`fp16` las activations deben permanecer muy por debajo de `1e4`, porque `1e4 * 1e4 = 1e8` por lo que cualquier matrix multiplication con
grandes activations va a llevar a una condición de overflow numérico.
Al principio del output puedes descubrir en qué número de batch se produjo el problema (aquí `Detected inf/nan during batch_number=0` significa que el problema se produjo en el primer batch).
Cada frame del informe comienza declarando la entrada completamente calificada para el módulo correspondiente que este frame está reportando.
Si nos fijamos sólo en este frame:
```
encoder.block.2.layer.1.layer_norm T5LayerNorm
8.69e-02 4.18e-01 weight
2.65e-04 3.42e+03 input[0]
1.79e-06 4.65e+00 output
```
Aquí, `encoder.block.2.layer.1.layer_norm` indica que era una layer norm para la primera capa, del segundo
block del encoder. Y la call específica del `forward` es `T5LayerNorm`.
Veamos los últimos frames de ese informe:
```
Detected inf/nan during batch_number=0
Last 21 forward frames:
abs min abs max metadata
[...]
encoder.block.2.layer.1.DenseReluDense.wi_0 Linear
2.17e-07 4.50e+00 weight
1.79e-06 4.65e+00 input[0]
2.68e-06 3.70e+01 output
encoder.block.2.layer.1.DenseReluDense.wi_1 Linear
8.08e-07 2.66e+01 weight
1.79e-06 4.65e+00 input[0]
1.27e-04 2.37e+02 output
encoder.block.2.layer.1.DenseReluDense.wo Linear
1.01e-06 6.44e+00 weight
0.00e+00 9.74e+03 input[0]
3.18e-04 6.27e+04 output
encoder.block.2.layer.1.DenseReluDense T5DenseGatedGeluDense
1.79e-06 4.65e+00 input[0]
3.18e-04 6.27e+04 output
encoder.block.2.layer.1.dropout Dropout
3.18e-04 6.27e+04 input[0]
0.00e+00 inf output
```
El último frame informa para la función `Dropout.forward` con la primera entrada para el único input y la segunda para el
único output. Puedes ver que fue llamada desde un atributo `dropout` dentro de la clase `DenseReluDense`. Podemos ver
que ocurrió durante la primera capa, del segundo block, durante el primer batch. Por último, el mayor absoluto
elementos de input fue `6.27e+04` y el mismo para el output fue `inf`.
Puedes ver aquí, que `T5DenseGatedGeluDense.forward` resultó en output activations, cuyo valor máximo absoluto fue
alrededor de 62.7K, que está muy cerca del límite máximo de fp16 de 64K. En el siguiente frame tenemos `Dropout`, el cual renormaliza
los weights, después de poner a cero algunos de los elementos, lo que empuja el valor máximo absoluto a más de 64K, y obtenemos un
overflow (`inf`).
Como puedes ver son los frames anteriores los que tenemos que mirar cuando los números empiezan a ser muy grandes para números fp16.
Combinemos el informe con el código de `models/t5/modeling_t5.py`:
```python
class T5DenseGatedGeluDense(nn.Module):
def __init__(self, config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.gelu_act = ACT2FN["gelu_new"]
def forward(self, hidden_states):
hidden_gelu = self.gelu_act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
```
Ahora es fácil ver la call `dropout`, y también todas las calls anteriores.
Dado que la detección se produce en un forward hook, estos informes se imprimen inmediatamente después de que cada `forward`
responda.
Volviendo al informe completo, para actuar sobre él y arreglar el problema, tenemos que subir unos cuantos frames donde los números
empezaron a subir y probablemente cambiar al modo `fp32` aquí, para que los números no sufran overflow cuando se multipliquen
o al sumarlos. Por supuesto, puede haber otras soluciones. Por ejemplo, podríamos desactivar `amp` temporalmente si está
activado, después de mover el original `forward` dentro de un helper wrapper, así:
```python
def _forward(self, hidden_states):
hidden_gelu = self.gelu_act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
import torch
def forward(self, hidden_states):
if torch.is_autocast_enabled():
with torch.cuda.amp.autocast(enabled=False):
return self._forward(hidden_states)
else:
return self._forward(hidden_states)
```
Como el detector automático sólo informa de los inputs y outputs de los frames completos, una vez que sepas dónde buscar, puedes
analizar también las etapas intermedias de una función específica de `forward`. En este caso, puede utilizar la función
función de ayuda `detect_overflow` para inyectar el detector donde quieras, por ejemplo:
```python
from debug_utils import detect_overflow
class T5LayerFF(nn.Module):
[...]
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
detect_overflow(forwarded_states, "after layer_norm")
forwarded_states = self.DenseReluDense(forwarded_states)
detect_overflow(forwarded_states, "after DenseReluDense")
return hidden_states + self.dropout(forwarded_states)
```
Puedes ver que hemos añadido 2 de estos y ahora se trackea si `inf` o `nan` para `forwarded_states` fue detectado
en algún punto intermedio.
De hecho, el detector ya informa de esto porque cada una de las llamadas en el ejemplo anterior es un `nn.Module`, pero
digamos que si tuvieras algunos cálculos directos locales, así es como lo harías.
Además, si estás instanciando el debugger en tu propio código, puedes ajustar el número de frames impresos de
su valor por defecto, por ejemplo:
```python
from .debug_utils import DebugUnderflowOverflow
debug_overflow = DebugUnderflowOverflow(model, max_frames_to_save=100)
```
### Rastreo de valores mínimos y máximos absolutos de batches específicos
La misma clase de debugging se puede utilizar para el rastreo por batches con la función de detección de underflow/overflow desactivada.
Digamos que quieres ver los valores mínimos y máximos absolutos de todos los ingredientes de cada call `forward` de un determinado
batch, y sólo hacerlo para los batches 1 y 3. Entonces instancias esta clase como:
```python
debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3])
```
Y ahora los batches 1 y 3 completos serán rastreados usando el mismo formato que el detector de underflow/overflow.
Los batches son 0-index.
Esto es muy útil si sabes que el programa empieza a comportarse mal después de un determinado número de batch, para que puedas avanzar rápidamente
hasta esa área. Aquí hay un ejemplo de output recortado para tal configuración:
```
*** Starting batch number=1 ***
abs min abs max metadata
shared Embedding
1.01e-06 7.92e+02 weight
0.00e+00 2.47e+04 input[0]
5.36e-05 7.92e+02 output
[...]
decoder.dropout Dropout
1.60e-07 2.27e+01 input[0]
0.00e+00 2.52e+01 output
decoder T5Stack
not a tensor output
lm_head Linear
1.01e-06 7.92e+02 weight
0.00e+00 1.11e+00 input[0]
6.06e-02 8.39e+01 output
T5ForConditionalGeneration
not a tensor output
*** Starting batch number=3 ***
abs min abs max metadata
shared Embedding
1.01e-06 7.92e+02 weight
0.00e+00 2.78e+04 input[0]
5.36e-05 7.92e+02 output
[...]
```
Aquí obtendrás un gran número de frames mostrados - tantos como forward calls haya en tu modelo, por lo que puede o no ser lo que quieras, pero a veces puede ser más fácil de usar para debug que un debugger normal.
Por ejemplo, si un problema comienza a ocurrir en el batch 150. Entonces puedes mostrar las trazas de los batches 149 y 150 y comparar dónde
los números empezaron a divergir.
También puedes especificar el número de batch después del cual se debe detener el entrenamiento, con:
```python
debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3], abort_after_batch_num=3)
```
| transformers/docs/source/es/debugging.md/0 | {
"file_path": "transformers/docs/source/es/debugging.md",
"repo_id": "transformers",
"token_count": 5532
} | 258 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Chargement d'instances pré-entraînées avec une AutoClass
Avec autant d'architectures Transformer différentes, il peut être difficile d'en créer une pour votre ensemble de poids (aussi appelés "weights" ou "checkpoint" en anglais). Dans l'idée de créer une librairie facile, simple et flexible à utiliser, 🤗 Transformers fournit une `AutoClass` qui infère et charge automatiquement l'architecture correcte à partir d'un ensemble de poids donné. La fonction `from_pretrained()` vous permet de charger rapidement un modèle pré-entraîné pour n'importe quelle architecture afin que vous n'ayez pas à consacrer du temps et des ressources à l'entraînement d'un modèle à partir de zéro. Produire un tel code indépendant d'un ensemble de poids signifie que si votre code fonctionne pour un ensemble de poids, il fonctionnera avec un autre ensemble - tant qu'il a été entraîné pour une tâche similaire - même si l'architecture est différente.
<Tip>
Rappel, l'architecture fait référence au squelette du modèle et l'ensemble de poids contient les poids pour une architecture donnée. Par exemple, [BERT](https://huggingface.co/google-bert/bert-base-uncased) est une architecture, tandis que `google-bert/bert-base-uncased` est un ensemble de poids. Le terme modèle est général et peut signifier soit architecture soit ensemble de poids.
</Tip>
Dans ce tutoriel, vous apprendrez à:
* Charger un tokenizer pré-entraîné.
* Charger un processeur d'image pré-entraîné.
* Charger un extracteur de caractéristiques pré-entraîné.
* Charger un processeur pré-entraîné.
* Charger un modèle pré-entraîné.
## AutoTokenizer
Quasiment toutes les tâches de traitement du langage (NLP) commencent avec un tokenizer. Un tokenizer convertit votre texte initial dans un format qui peut être traité par le modèle.
Chargez un tokenizer avec [`AutoTokenizer.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
```
Puis, transformez votre texte initial comme montré ci-dessous:
```py
>>> sequence = "In a hole in the ground there lived a hobbit."
>>> print(tokenizer(sequence))
{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
## AutoImageProcessor
Pour les tâches de vision, un processeur d'image traite l'image pour la formater correctment.
```py
>>> from transformers import AutoImageProcessor
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
```
## AutoFeatureExtractor
Pour les tâches audio, un extracteur de caractéristiques (aussi appelés "features" en anglais) traite le signal audio pour le formater correctement.
Chargez un extracteur de caractéristiques avec [`AutoFeatureExtractor.from_pretrained`]:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(
... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
... )
```
## AutoProcessor
Les tâches multimodales nécessitent un processeur qui combine deux types d'outils de prétraitement. Par exemple, le modèle [LayoutLMV2](model_doc/layoutlmv2) nécessite un processeur d'image pour traiter les images et un tokenizer pour traiter le texte ; un processeur combine les deux.
Chargez un processeur avec [`AutoProcessor.from_pretrained`]:
```py
>>> from transformers import AutoProcessor
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
```
## AutoModel
<frameworkcontent>
<pt>
Enfin, les classes `AutoModelFor` vous permettent de charger un modèle pré-entraîné pour une tâche donnée (voir [ici](model_doc/auto) pour une liste complète des tâches disponibles). Par exemple, chargez un modèle pour la classification de séquence avec [`AutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
Réutilisez facilement le même ensemble de poids pour charger une architecture pour une tâche différente :
```py
>>> from transformers import AutoModelForTokenClassification
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
<Tip warning={true}>
Pour les modèles PyTorch, la fonction `from_pretrained()` utilise `torch.load()` qui utilise `pickle` en interne et est connu pour être non sécurisé. En général, ne chargez jamais un modèle qui pourrait provenir d'une source non fiable, ou qui pourrait avoir été altéré. Ce risque de sécurité est partiellement atténué pour les modèles hébergés publiquement sur le Hugging Face Hub, qui sont [scannés pour les logiciels malveillants](https://huggingface.co/docs/hub/security-malware) à chaque modification. Consultez la [documentation du Hub](https://huggingface.co/docs/hub/security) pour connaître les meilleures pratiques comme la [vérification des modifications signées](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg) avec GPG.
Les points de contrôle TensorFlow et Flax ne sont pas concernés, et peuvent être chargés dans des architectures PyTorch en utilisant les arguments `from_tf` et `from_flax` de la fonction `from_pretrained` pour contourner ce problème.
</Tip>
En général, nous recommandons d'utiliser les classes `AutoTokenizer` et `AutoModelFor` pour charger des instances pré-entraînées de tokenizers et modèles respectivement. Cela vous permettra de charger la bonne architecture à chaque fois. Dans le prochain [tutoriel](preprocessing), vous apprenez à utiliser un tokenizer, processeur d'image, extracteur de caractéristiques et processeur pour pré-traiter un jeu de données pour le fine-tuning.
</pt>
<tf>
Enfin, les classes `TFAutoModelFor` vous permettent de charger un modèle pré-entraîné pour une tâche donnée (voir [ici](model_doc/auto) pour une liste complète des tâches disponibles). Par exemple, chargez un modèle pour la classification de séquence avec [`TFAutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
Réutilisez facilement le même ensemble de poids pour charger une architecture pour une tâche différente :
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
En général, nous recommandons d'utiliser les classes `AutoTokenizer` et `TFAutoModelFor` pour charger des instances pré-entraînées de tokenizers et modèles respectivement. Cela vous permettra de charger la bonne architecture à chaque fois. Dans le prochain [tutoriel](preprocessing), vous apprenez à utiliser un tokenizer, processeur d'image, extracteur de caractéristiques et processeur pour pré-traiter un jeu de données pour le fine-tuning.
</tf>
</frameworkcontent>
| transformers/docs/source/fr/autoclass_tutorial.md/0 | {
"file_path": "transformers/docs/source/fr/autoclass_tutorial.md",
"repo_id": "transformers",
"token_count": 2619
} | 259 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Crea un'architettura personalizzata
Una [`AutoClass`](model_doc/auto) deduce automaticamente il modello dell'architettura e scarica la configurazione e i pesi pre-allenati. Generalmente, noi consigliamo di usare un `AutoClass` per produrre un codice indipendente dal checkpoint. Ma gli utenti che desiderano un controllo maggiore su parametri specifici del modello possono creare un modello 🤗 Transformers personalizzato da poche classi base. Questo potrebbe essere particolarmente utile per qualunque persona sia interessata nel studiare, allenare o sperimentare con un modello 🤗 Transformers. In questa guida, approfondisci la creazione di un modello personalizzato senza `AutoClass`. Impara come:
- Caricare e personalizzare una configurazione del modello.
- Creare un'architettura modello.
- Creare un tokenizer lento e veloce per il testo.
- Creare un estrattore di caratteristiche per attività riguardanti audio o immagini.
- Creare un processore per attività multimodali.
## Configurazione
Una [configurazione](main_classes/configuration) si riferisce agli attributi specifici di un modello. Ogni configurazione del modello ha attributi diversi; per esempio, tutti i modelli npl hanno questi attributi in comune `hidden_size`, `num_attention_heads`, `num_hidden_layers` e `vocab_size`. Questi attributi specificano il numero di attention heads o strati nascosti con cui costruire un modello.
Dai un'occhiata più da vicino a [DistilBERT](model_doc/distilbert) accedendo a [`DistilBertConfig`] per ispezionare i suoi attributi:
```py
>>> from transformers import DistilBertConfig
>>> config = DistilBertConfig()
>>> print(config)
DistilBertConfig {
"activation": "gelu",
"attention_dropout": 0.1,
"dim": 768,
"dropout": 0.1,
"hidden_dim": 3072,
"initializer_range": 0.02,
"max_position_embeddings": 512,
"model_type": "distilbert",
"n_heads": 12,
"n_layers": 6,
"pad_token_id": 0,
"qa_dropout": 0.1,
"seq_classif_dropout": 0.2,
"sinusoidal_pos_embds": false,
"transformers_version": "4.16.2",
"vocab_size": 30522
}
```
[`DistilBertConfig`] mostra tutti gli attributi predefiniti usati per costruire una base [`DistilBertModel`]. Tutti gli attributi sono personalizzabili, creando uno spazio per sperimentare. Per esempio, puoi configurare un modello predefinito per:
- Provare un funzione di attivazione diversa con il parametro `activation`.
- Utilizzare tasso di drop out più elevato per le probalità di attention con il parametro `attention_dropout`.
```py
>>> my_config = DistilBertConfig(activation="relu", attention_dropout=0.4)
>>> print(my_config)
DistilBertConfig {
"activation": "relu",
"attention_dropout": 0.4,
"dim": 768,
"dropout": 0.1,
"hidden_dim": 3072,
"initializer_range": 0.02,
"max_position_embeddings": 512,
"model_type": "distilbert",
"n_heads": 12,
"n_layers": 6,
"pad_token_id": 0,
"qa_dropout": 0.1,
"seq_classif_dropout": 0.2,
"sinusoidal_pos_embds": false,
"transformers_version": "4.16.2",
"vocab_size": 30522
}
```
Nella funzione [`~PretrainedConfig.from_pretrained`] possono essere modificati gli attributi del modello pre-allenato:
```py
>>> my_config = DistilBertConfig.from_pretrained("distilbert/distilbert-base-uncased", activation="relu", attention_dropout=0.4)
```
Quando la configurazione del modello ti soddisfa, la puoi salvare con [`~PretrainedConfig.save_pretrained`]. Il file della tua configurazione è memorizzato come file JSON nella save directory specificata:
```py
>>> my_config.save_pretrained(save_directory="./your_model_save_path")
```
Per riutilizzare la configurazione del file, caricalo con [`~PretrainedConfig.from_pretrained`]:
```py
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
```
<Tip>
Puoi anche salvare il file di configurazione come dizionario oppure come la differenza tra gli attributi della tua configurazione personalizzata e gli attributi della configurazione predefinita! Guarda la documentazione [configuration](main_classes/configuration) per più dettagli.
</Tip>
## Modello
Il prossimo passo e di creare [modello](main_classes/models). Il modello - vagamente riferito anche come architettura - definisce cosa ogni strato deve fare e quali operazioni stanno succedendo. Attributi come `num_hidden_layers` provenienti dalla configurazione sono usati per definire l'architettura. Ogni modello condivide la classe base [`PreTrainedModel`] e alcuni metodi comuni come il ridimensionamento degli input embeddings e la soppressione delle self-attention heads . Inoltre, tutti i modelli sono la sottoclasse di [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html), [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) o [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html). Cio significa che i modelli sono compatibili con l'uso di ciascun di framework.
<frameworkcontent>
<pt>
Carica gli attributi della tua configurazione personalizzata nel modello:
```py
>>> from transformers import DistilBertModel
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
>>> model = DistilBertModel(my_config)
```
Questo crea modelli con valori casuali invece di pesi pre-allenati. Non sarai in grado di usare questo modello per niente di utile finché non lo alleni. L'allenamento è un processo costoso e che richiede tempo . Generalmente è meglio usare un modello pre-allenato per ottenere risultati migliori velocemente, utilizzando solo una frazione delle risorse neccesarie per l'allenamento.
Crea un modello pre-allenato con [`~PreTrainedModel.from_pretrained`]:
```py
>>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased")
```
Quando carichi pesi pre-allenati, la configurazione del modello predefinito è automaticamente caricata se il modello è fornito da 🤗 Transformers. Tuttavia, puoi ancora sostituire gli attributi - alcuni o tutti - di configurazione del modello predefinito con i tuoi se lo desideri:
```py
>>> model = DistilBertModel.from_pretrained("distilbert/distilbert-base-uncased", config=my_config)
```
</pt>
<tf>
Carica gli attributi di configurazione personalizzati nel modello:
```py
>>> from transformers import TFDistilBertModel
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
>>> tf_model = TFDistilBertModel(my_config)
```
Questo crea modelli con valori casuali invece di pesi pre-allenati. Non sarai in grado di usare questo modello per niente di utile finché non lo alleni. L'allenamento è un processo costoso e che richiede tempo . Generalmente è meglio usare un modello pre-allenato per ottenere risultati migliori velocemente, utilizzando solo una frazione delle risorse neccesarie per l'allenamento.
Crea un modello pre-allenoto con [`~TFPreTrainedModel.from_pretrained`]:
```py
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased")
```
Quando carichi pesi pre-allenati, la configurazione del modello predefinito è automaticamente caricato se il modello è fornito da 🤗 Transformers. Tuttavia, puoi ancora sostituire gli attributi - alcuni o tutti - di configurazione del modello predefinito con i tuoi se lo desideri:
```py
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert/distilbert-base-uncased", config=my_config)
```
</tf>
</frameworkcontent>
### Model head
A questo punto, hai un modello DistilBERT base i cui output sono gli *hidden states* (in italiano stati nascosti). Gli stati nascosti sono passati come input a un model head per produrre l'output finale. 🤗 Transformers fornisce un model head diverso per ogni attività fintanto che il modello supporta l'attività (i.e., non puoi usare DistilBERT per un attività sequence-to-sequence come la traduzione).
<frameworkcontent>
<pt>
Per esempio, [`DistilBertForSequenceClassification`] è un modello DistilBERT base con una testa di classificazione per sequenze. La sequenza di classificazione head è uno strato lineare sopra gli output ragruppati.
```py
>>> from transformers import DistilBertForSequenceClassification
>>> model = DistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
Riutilizza facilmente questo checkpoint per un'altra attività passando ad un model head differente. Per un attività di risposta alle domande, utilizzerai il model head [`DistilBertForQuestionAnswering`]. La head per compiti di question answering è simile alla classificazione di sequenza head tranne per il fatto che è uno strato lineare sopra l'output degli stati nascosti (hidden states in inglese)
```py
>>> from transformers import DistilBertForQuestionAnswering
>>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
```
</pt>
<tf>
Per esempio, [`TFDistilBertForSequenceClassification`] è un modello DistilBERT base con classificazione di sequenza head. La classificazione di sequenza head è uno strato lineare sopra gli output raggruppati.
```py
>>> from transformers import TFDistilBertForSequenceClassification
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
Riutilizza facilmente questo checkpoint per un altra attività passando ad un modello head diverso. Per un attività di risposta alle domande, utilizzerai il model head [`TFDistilBertForQuestionAnswering`]. Il head di risposta alle domande è simile alla sequenza di classificazione head tranne per il fatto che è uno strato lineare sopra l'output degli stati nascosti (hidden states in inglese)
```py
>>> from transformers import TFDistilBertForQuestionAnswering
>>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert/distilbert-base-uncased")
```
</tf>
</frameworkcontent>
## Tokenizer
L'ultima classe base di cui hai bisogno prima di utilizzare un modello per i dati testuali è un [tokenizer](main_classes/tokenizer) per convertire il testo grezzo in tensori. Ci sono due tipi di tokenizer che puoi usare con 🤗 Transformers:
- [`PreTrainedTokenizer`]: un'implementazione Python di un tokenizer.
- [`PreTrainedTokenizerFast`]: un tokenizer dalla nostra libreria [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/) basata su Rust. Questo tipo di tokenizer è significativamente più veloce, specialmente durante la batch tokenization, grazie alla sua implementazione Rust. Il tokenizer veloce offre anche metodi aggiuntivi come *offset mapping* che associa i token alle loro parole o caratteri originali.
Entrambi i tokenizer supportano metodi comuni come la codifica e la decodifica, l'aggiunta di nuovi token e la gestione di token speciali.
<Tip warning={true}>
Non tutti i modelli supportano un tokenizer veloce. Dai un'occhiata a questo [tabella](index#supported-frameworks) per verificare se un modello ha il supporto per tokenizer veloce.
</Tip>
Se hai addestrato il tuo tokenizer, puoi crearne uno dal tuo file *vocabolario*:
```py
>>> from transformers import DistilBertTokenizer
>>> my_tokenizer = DistilBertTokenizer(vocab_file="my_vocab_file.txt", do_lower_case=False, padding_side="left")
```
È importante ricordare che il vocabolario di un tokenizer personalizzato sarà diverso dal vocabolario generato dal tokenizer di un modello preallenato. È necessario utilizzare il vocabolario di un modello preallenato se si utilizza un modello preallenato, altrimenti gli input non avranno senso. Crea un tokenizer con il vocabolario di un modello preallenato con la classe [`DistilBertTokenizer`]:
```py
>>> from transformers import DistilBertTokenizer
>>> slow_tokenizer = DistilBertTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
```
Crea un tokenizer veloce con la classe [`DistilBertTokenizerFast`]:
```py
>>> from transformers import DistilBertTokenizerFast
>>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert/distilbert-base-uncased")
```
<Tip>
Per l'impostazione predefinita, [`AutoTokenizer`] proverà a caricare un tokenizer veloce. Puoi disabilitare questo comportamento impostando `use_fast=False` in `from_pretrained`.
</Tip>
## Estrattore Di Feature
Un estrattore di caratteristiche (feature in inglese) elabora input audio o immagini. Eredita dalla classe [`~feature_extraction_utils.FeatureExtractionMixin`] base e può anche ereditare dalla classe [`ImageFeatureExtractionMixin`] per l'elaborazione delle caratteristiche dell'immagine o dalla classe [`SequenceFeatureExtractor`] per l'elaborazione degli input audio.
A seconda che tu stia lavorando a un'attività audio o visiva, crea un estrattore di caratteristiche associato al modello che stai utilizzando. Ad esempio, crea un [`ViTFeatureExtractor`] predefinito se stai usando [ViT](model_doc/vit) per la classificazione delle immagini:
```py
>>> from transformers import ViTFeatureExtractor
>>> vit_extractor = ViTFeatureExtractor()
>>> print(vit_extractor)
ViTFeatureExtractor {
"do_normalize": true,
"do_resize": true,
"feature_extractor_type": "ViTFeatureExtractor",
"image_mean": [
0.5,
0.5,
0.5
],
"image_std": [
0.5,
0.5,
0.5
],
"resample": 2,
"size": 224
}
```
<Tip>
Se non stai cercando alcuna personalizzazione, usa il metodo `from_pretrained` per caricare i parametri di default dell'estrattore di caratteristiche di un modello.
</Tip>
Modifica uno qualsiasi dei parametri [`ViTFeatureExtractor`] per creare il tuo estrattore di caratteristiche personalizzato:
```py
>>> from transformers import ViTFeatureExtractor
>>> my_vit_extractor = ViTFeatureExtractor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3])
>>> print(my_vit_extractor)
ViTFeatureExtractor {
"do_normalize": false,
"do_resize": true,
"feature_extractor_type": "ViTFeatureExtractor",
"image_mean": [
0.3,
0.3,
0.3
],
"image_std": [
0.5,
0.5,
0.5
],
"resample": "PIL.Image.BOX",
"size": 224
}
```
Per gli input audio, puoi creare un [`Wav2Vec2FeatureExtractor`] e personalizzare i parametri in modo simile:
```py
>>> from transformers import Wav2Vec2FeatureExtractor
>>> w2v2_extractor = Wav2Vec2FeatureExtractor()
>>> print(w2v2_extractor)
Wav2Vec2FeatureExtractor {
"do_normalize": true,
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
"feature_size": 1,
"padding_side": "right",
"padding_value": 0.0,
"return_attention_mask": false,
"sampling_rate": 16000
}
```
## Processore
Per modelli che supportano attività multimodali, 🤗 Transformers offre una classe di processore che racchiude comodamente un estrattore di caratteristiche e un tokenizer in un unico oggetto. Ad esempio, utilizziamo [`Wav2Vec2Processor`] per un'attività di riconoscimento vocale automatico (ASR). ASR trascrive l'audio in testo, quindi avrai bisogno di un estrattore di caratteristiche e di un tokenizer.
Crea un estrattore di feature per gestire gli input audio:
```py
>>> from transformers import Wav2Vec2FeatureExtractor
>>> feature_extractor = Wav2Vec2FeatureExtractor(padding_value=1.0, do_normalize=True)
```
Crea un tokenizer per gestire gli input di testo:
```py
>>> from transformers import Wav2Vec2CTCTokenizer
>>> tokenizer = Wav2Vec2CTCTokenizer(vocab_file="my_vocab_file.txt")
```
Combinare l'estrattore di caratteristiche e il tokenizer in [`Wav2Vec2Processor`]:
```py
>>> from transformers import Wav2Vec2Processor
>>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
```
Con due classi di base - configurazione e modello - e una classe di preelaborazione aggiuntiva (tokenizer, estrattore di caratteristiche o processore), puoi creare qualsiasi modello supportato da 🤗 Transformers. Ognuna di queste classi base è configurabile, consentendoti di utilizzare gli attributi specifici che desideri. È possibile impostare facilmente un modello per l'addestramento o modificare un modello preallenato esistente per la messa a punto. | transformers/docs/source/it/create_a_model.md/0 | {
"file_path": "transformers/docs/source/it/create_a_model.md",
"repo_id": "transformers",
"token_count": 5882
} | 260 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# BART
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/models?filter=bart">
<img alt="Models" src="https://img.shields.io/badge/All_model_pages-bart-blueviolet">
</a>
<a href="https://huggingface.co/spaces/docs-demos/bart-large-mnli">
<img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">
</a>
</div>
**免責事項:** 何か奇妙なものを見つけた場合は、[Github 問題](https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title) を提出し、割り当ててください。
@patrickvonplaten
## Overview
Bart モデルは、[BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation、
翻訳と理解](https://arxiv.org/abs/1910.13461) Mike Lewis、Yinhan Liu、Naman Goyal、Marjan 著
ガズビニネジャド、アブデルラフマン・モハメド、オメル・レヴィ、ベス・ストヤノフ、ルーク・ゼトルモイヤー、2019年10月29日。
要約によると、
- Bart は、双方向エンコーダ (BERT など) を備えた標準の seq2seq/機械翻訳アーキテクチャを使用します。
左から右へのデコーダ (GPT など)。
- 事前トレーニング タスクには、元の文の順序をランダムにシャッフルし、新しい埋め込みスキームが含まれます。
ここで、テキストの範囲は単一のマスク トークンに置き換えられます。
- BART は、テキスト生成用に微調整した場合に特に効果的ですが、理解タスクにも適しています。それ
RoBERTa のパフォーマンスを GLUE および SQuAD の同等のトレーニング リソースと同等にし、新たな成果を達成します。
さまざまな抽象的な対話、質問応答、要約タスクに関する最先端の結果が得られ、成果が得られます。
ルージュは最大6枚まで。
チップ:
- BART は絶対位置埋め込みを備えたモデルであるため、通常は入力を右側にパディングすることをお勧めします。
左。
- エンコーダーとデコーダーを備えたシーケンスツーシーケンス モデル。エンコーダには破損したバージョンのトークンが供給され、デコーダには元のトークンが供給されます(ただし、通常のトランスフォーマー デコーダと同様に、将来のワードを隠すためのマスクがあります)。次の変換の構成は、エンコーダーの事前トレーニング タスクに適用されます。
* ランダムなトークンをマスクします (BERT と同様)
* ランダムなトークンを削除します
* k 個のトークンのスパンを 1 つのマスク トークンでマスクします (0 トークンのスパンはマスク トークンの挿入です)
* 文を並べ替えます
* ドキュメントを回転して特定のトークンから開始するようにします
このモデルは [sshleifer](https://huggingface.co/sshleifer) によって提供されました。著者のコードは [ここ](https://github.com/pytorch/fairseq/tree/master/examples/bart) にあります。
### Examples
- シーケンス間タスク用の BART およびその他のモデルを微調整するための例とスクリプトは、次の場所にあります。
[examples/pytorch/summarization/](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization/README.md)。
- Hugging Face `datasets` を使用して [`BartForConditionalGeneration`] をトレーニングする方法の例
オブジェクトは、この [フォーラム ディスカッション](https://discuss.huggingface.co/t/train-bart-for-conditional-generation-e-g-summarization/1904) で見つけることができます。
- [抽出されたチェックポイント](https://huggingface.co/models?search=distilbart) は、この [論文](https://arxiv.org/abs/2010.13002) で説明されています。
## Implementation Notes
- Bart はシーケンスの分類に `token_type_ids` を使用しません。 [`BartTokenizer`] を使用するか、
[`~BartTokenizer.encode`] を使用して適切に分割します。
- [`BartModel`] のフォワードパスは、渡されなかった場合、`decoder_input_ids` を作成します。
これは、他のモデリング API とは異なります。この機能の一般的な使用例は、マスクの塗りつぶしです。
- モデルの予測は、次の場合に元の実装と同一になるように意図されています。
`forced_bos_token_id=0`。ただし、これは、渡す文字列が次の場合にのみ機能します。
[`fairseq.encode`] はスペースで始まります。
- [`~generation.GenerationMixin.generate`] は、次のような条件付き生成タスクに使用する必要があります。
要約については、その docstring の例を参照してください。
- *facebook/bart-large-cnn* 重みをロードするモデルには `mask_token_id` がないか、実行できません。
マスクを埋めるタスク。
## Mask Filling
`facebook/bart-base` および `facebook/bart-large` チェックポイントを使用して、マルチトークン マスクを埋めることができます。
```python
from transformers import BartForConditionalGeneration, BartTokenizer
model = BartForConditionalGeneration.from_pretrained("facebook/bart-large", forced_bos_token_id=0)
tok = BartTokenizer.from_pretrained("facebook/bart-large")
example_english_phrase = "UN Chief Says There Is No <mask> in Syria"
batch = tok(example_english_phrase, return_tensors="pt")
generated_ids = model.generate(batch["input_ids"])
assert tok.batch_decode(generated_ids, skip_special_tokens=True) == [
"UN Chief Says There Is No Plan to Stop Chemical Weapons in Syria"
]
```
## Resources
BART を始めるのに役立つ公式 Hugging Face およびコミュニティ (🌎 で示されている) リソースのリスト。ここに含めるリソースの送信に興味がある場合は、お気軽にプル リクエストを開いてください。審査させていただきます。リソースは、既存のリソースを複製するのではなく、何か新しいものを示すことが理想的です。
<PipelineTag pipeline="summarization"/>
- に関するブログ投稿 [分散トレーニング: 🤗 Transformers と Amazon SageMaker を使用した要約のための BART/T5 のトレーニング](https://huggingface.co/blog/sagemaker-distributed-training-seq2seq)。
- 方法に関するノートブック [blurr を使用して fastai で要約するために BART を微調整する](https://colab.research.google.com/github/ohmeow/ohmeow_website/blob/master/posts/2021-05-25-mbart-sequence-classification-with-blurr.ipynb). 🌎 🌎
- 方法に関するノートブック [トレーナー クラスを使用して 2 つの言語で要約するために BART を微調整する](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb)。 🌎
- [`BartForConditionalGeneration`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)。
- [`TFBartForConditionalGeneration`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb)。
- [`FlaxBartForConditionalGeneration`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/flax/summarization) でサポートされています。
- [要約](https://huggingface.co/course/chapter7/5?fw=pt#summarization) 🤗 ハグフェイスコースの章。
- [要約タスクガイド](../tasks/summarization.md)
<PipelineTag pipeline="fill-mask"/>
- [`BartForConditionalGeneration`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) でサポートされており、 [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)。
- [`TFBartForConditionalGeneration`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)。
- [`FlaxBartForConditionalGeneration`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) および [ノートブック]( https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb)。
- [マスクされた言語モデリング](https://huggingface.co/course/chapter7/3?fw=pt) 🤗 顔ハグ コースの章。
- [マスクされた言語モデリング タスク ガイド](../tasks/masked_lang_modeling)
<PipelineTag pipeline="translation"/>
- [ヒンディー語から英語への翻訳に Seq2SeqTrainer を使用して mBART を微調整する方法に関するノート](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb)。 🌎
- [`BartForConditionalGeneration`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/translation) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)。
- [`TFBartForConditionalGeneration`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/translation) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb)。
- [翻訳タスクガイド](../tasks/translation)
以下も参照してください。
- [テキスト分類タスクガイド](../tasks/sequence_classification)
- [質問回答タスク ガイド](../tasks/question_answering)
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
- [抽出されたチェックポイント](https://huggingface.co/models?search=distilbart) は、この [論文](https://arxiv.org/abs/2010.13002) で説明されています。
## BartConfig
[[autodoc]] BartConfig
- all
## BartTokenizer
[[autodoc]] BartTokenizer
- all
## BartTokenizerFast
[[autodoc]] BartTokenizerFast
- all
## BartModel
[[autodoc]] BartModel
- forward
## BartForConditionalGeneration
[[autodoc]] BartForConditionalGeneration
- forward
## BartForSequenceClassification
[[autodoc]] BartForSequenceClassification
- forward
## BartForQuestionAnswering
[[autodoc]] BartForQuestionAnswering
- forward
## BartForCausalLM
[[autodoc]] BartForCausalLM
- forward
## TFBartModel
[[autodoc]] TFBartModel
- call
## TFBartForConditionalGeneration
[[autodoc]] TFBartForConditionalGeneration
- call
## TFBartForSequenceClassification
[[autodoc]] TFBartForSequenceClassification
- call
## FlaxBartModel
[[autodoc]] FlaxBartModel
- __call__
- encode
- decode
## FlaxBartForConditionalGeneration
[[autodoc]] FlaxBartForConditionalGeneration
- __call__
- encode
- decode
## FlaxBartForSequenceClassification
[[autodoc]] FlaxBartForSequenceClassification
- __call__
- encode
- decode
## FlaxBartForQuestionAnswering
[[autodoc]] FlaxBartForQuestionAnswering
- __call__
- encode
- decode
## FlaxBartForCausalLM
[[autodoc]] FlaxBartForCausalLM
- __call__
| transformers/docs/source/ja/model_doc/bart.md/0 | {
"file_path": "transformers/docs/source/ja/model_doc/bart.md",
"repo_id": "transformers",
"token_count": 5122
} | 261 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# ConvNeXT
## Overview
ConvNeXT モデルは、[A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) で Zhuang Liu、Hanzi Mao、Chao-Yuan Wu、Christoph Feichtenhofer、Trevor Darrell、Saining Xie によって提案されました。
ConvNeXT は、ビジョン トランスフォーマーの設計からインスピレーションを得た純粋な畳み込みモデル (ConvNet) であり、ビジョン トランスフォーマーよりも優れたパフォーマンスを発揮すると主張しています。
論文の要約は次のとおりです。
*視覚認識の「狂騒の 20 年代」は、最先端の画像分類モデルとして ConvNet にすぐに取って代わられた Vision Transformers (ViT) の導入から始まりました。
一方、バニラ ViT は、オブジェクト検出やセマンティック セグメンテーションなどの一般的なコンピューター ビジョン タスクに適用すると困難に直面します。階層型トランスフォーマーです
(Swin Transformers など) は、いくつかの ConvNet の以前の機能を再導入し、Transformers を汎用ビジョン バックボーンとして実用的に可能にし、幅広い環境で顕著なパフォーマンスを実証しました。
さまざまな視覚タスク。ただし、このようなハイブリッド アプローチの有効性は、依然として、固有の誘導性ではなく、トランスフォーマーの本質的な優位性によるところが大きいと考えられています。
畳み込みのバイアス。この作業では、設計空間を再検討し、純粋な ConvNet が達成できる限界をテストします。標準 ResNet を設計に向けて徐々に「最新化」します。
ビジョン Transformer の概要を確認し、途中でパフォーマンスの違いに寄与するいくつかの重要なコンポーネントを発見します。この調査の結果は、純粋な ConvNet モデルのファミリーです。
ConvNextと呼ばれます。 ConvNeXts は完全に標準の ConvNet モジュールから構築されており、精度と拡張性の点で Transformers と有利に競合し、87.8% の ImageNet トップ 1 精度を達成しています。
標準 ConvNet のシンプルさと効率を維持しながら、COCO 検出と ADE20K セグメンテーションでは Swin Transformers よりも優れたパフォーマンスを発揮します。*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnext_architecture.jpg"
alt="描画" width="600"/>
<small> ConvNeXT アーキテクチャ。 <a href="https://arxiv.org/abs/2201.03545">元の論文</a>から抜粋。</small>
このモデルは、[nielsr](https://huggingface.co/nielsr) によって提供されました。 TensorFlow バージョンのモデルは [ariG23498](https://github.com/ariG23498) によって提供されました。
[gante](https://github.com/gante)、および [sayakpaul](https://github.com/sayakpaul) (同等の貢献)。元のコードは [こちら](https://github.com/facebookresearch/ConvNeXt) にあります。
## Resources
ConvNeXT の使用を開始するのに役立つ公式 Hugging Face およびコミュニティ (🌎 で示される) リソースのリスト。
<PipelineTag pipeline="image-classification"/>
- [`ConvNextForImageClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)。
- 参照: [画像分類タスク ガイド](../tasks/image_classification)
ここに含めるリソースの送信に興味がある場合は、お気軽にプル リクエストを開いてください。審査させていただきます。リソースは、既存のリソースを複製するのではなく、何か新しいものを示すことが理想的です。
## ConvNextConfig
[[autodoc]] ConvNextConfig
## ConvNextFeatureExtractor
[[autodoc]] ConvNextFeatureExtractor
## ConvNextImageProcessor
[[autodoc]] ConvNextImageProcessor
- preprocess
<frameworkcontent>
<pt>
## ConvNextModel
[[autodoc]] ConvNextModel
- forward
## ConvNextForImageClassification
[[autodoc]] ConvNextForImageClassification
- forward
</pt>
<tf>
## TFConvNextModel
[[autodoc]] TFConvNextModel
- call
## TFConvNextForImageClassification
[[autodoc]] TFConvNextForImageClassification
- call
</tf>
</frameworkcontent> | transformers/docs/source/ja/model_doc/convnext.md/0 | {
"file_path": "transformers/docs/source/ja/model_doc/convnext.md",
"repo_id": "transformers",
"token_count": 2141
} | 262 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Dilated Neighborhood Attention Transformer
## Overview
DiNAT は [Dilated Neighborhood Attender Transformer](https://arxiv.org/abs/2209.15001) で提案されました。
Ali Hassani and Humphrey Shi.
[NAT](nat) を拡張するために、拡張近隣アテンション パターンを追加してグローバル コンテキストをキャプチャします。
そしてそれと比較して大幅なパフォーマンスの向上が見られます。
論文の要約は次のとおりです。
*トランスフォーマーは急速に、さまざまなモダリティにわたって最も頻繁に適用される深層学習アーキテクチャの 1 つになりつつあります。
ドメインとタスク。ビジョンでは、単純なトランスフォーマーへの継続的な取り組みに加えて、階層型トランスフォーマーが
また、そのパフォーマンスと既存のフレームワークへの簡単な統合のおかげで、大きな注目を集めました。
これらのモデルは通常、スライディング ウィンドウの近隣アテンション (NA) などの局所的な注意メカニズムを採用しています。
または Swin Transformer のシフト ウィンドウ セルフ アテンション。自己注意の二次複雑さを軽減するのに効果的ですが、
局所的な注意は、自己注意の最も望ましい 2 つの特性を弱めます。それは、長距離の相互依存性モデリングです。
そして全体的な受容野。このペーパーでは、自然で柔軟で、
NA への効率的な拡張により、よりグローバルなコンテキストを捕捉し、受容野をゼロから指数関数的に拡張することができます。
追加費用。 NA のローカルな注目と DiNA のまばらなグローバルな注目は相互に補完し合うため、私たちは
両方に基づいて構築された新しい階層型ビジョン トランスフォーマーである Dilated Neighborhood Attendant Transformer (DiNAT) を導入します。
DiNAT のバリアントは、NAT、Swin、ConvNeXt などの強力なベースラインに比べて大幅に改善されています。
私たちの大規模モデルは、COCO オブジェクト検出において Swin モデルよりも高速で、ボックス AP が 1.5% 優れています。
COCO インスタンス セグメンテーションでは 1.3% のマスク AP、ADE20K セマンティック セグメンテーションでは 1.1% の mIoU。
新しいフレームワークと組み合わせた当社の大規模バリアントは、COCO (58.2 PQ) 上の新しい最先端のパノプティック セグメンテーション モデルです。
および ADE20K (48.5 PQ)、および Cityscapes (44.5 AP) および ADE20K (35.4 AP) のインスタンス セグメンテーション モデル (追加データなし)。
また、ADE20K (58.2 mIoU) 上の最先端の特殊なセマンティック セグメンテーション モデルとも一致します。
都市景観 (84.5 mIoU) では 2 位にランクされています (追加データなし)。 *
<img
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dilated-neighborhood-attention-pattern.jpg"
alt="drawing" width="600"/>
<small> 異なる拡張値を使用した近隣アテンション。
<a href="https://arxiv.org/abs/2209.15001">元の論文</a>から抜粋。</small>
このモデルは [Ali Hassani](https://huggingface.co/alihassanijr) によって提供されました。
元のコードは [ここ](https://github.com/SHI-Labs/Neighborhood-Attendance-Transformer) にあります。
## Usage tips
DiNAT は *バックボーン* として使用できます。 「output_hidden_states = True」の場合、
`hidden_states` と `reshaped_hidden_states` の両方を出力します。 `reshape_hidden_states` は、`(batch_size, height, width, num_channels)` ではなく、`(batch, num_channels, height, width)` の形状を持っています。
ノート:
- DiNAT は、[NATTEN](https://github.com/SHI-Labs/NATTEN/) による近隣アテンションと拡張近隣アテンションの実装に依存しています。
[shi-labs.com/natten](https://shi-labs.com/natten) を参照して、Linux 用のビルド済みホイールを使用してインストールするか、`pip install natten` を実行してシステム上に構築できます。
後者はコンパイルに時間がかかる可能性があることに注意してください。 NATTEN はまだ Windows デバイスをサポートしていません。
- 現時点ではパッチ サイズ 4 のみがサポートされています。
## Resources
DiNAT の使用を開始するのに役立つ公式 Hugging Face およびコミュニティ (🌎 で示されている) リソースのリスト。
<PipelineTag pipeline="image-classification"/>
- [`DinatForImageClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)。
- 参照: [画像分類タスク ガイド](../tasks/image_classification)
ここに含めるリソースの送信に興味がある場合は、お気軽にプル リクエストを開いてください。審査させていただきます。リソースは、既存のリソースを複製するのではなく、何か新しいものを示すことが理想的です。
## DinatConfig
[[autodoc]] DinatConfig
## DinatModel
[[autodoc]] DinatModel
- forward
## DinatForImageClassification
[[autodoc]] DinatForImageClassification
- forward
| transformers/docs/source/ja/model_doc/dinat.md/0 | {
"file_path": "transformers/docs/source/ja/model_doc/dinat.md",
"repo_id": "transformers",
"token_count": 2666
} | 263 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Methods and tools for efficient training on a single GPU
このガイドでは、メモリの利用効率を最適化し、トレーニングを高速化することで、モデルのトレーニング効率を向上させるために使用できる実用的なテクニックを紹介します。トレーニング中にGPUがどのように利用されるかを理解したい場合は、最初に「[モデルトレーニングの解剖学](model_memory_anatomy)」のコンセプトガイドを参照してください。このガイドは実用的なテクニックに焦点を当てています。
<Tip>
複数のGPUを搭載したマシンにアクセスできる場合、これらのアプローチは依然として有効です。さらに、[マルチGPUセクション](perf_train_gpu_many)で説明されている追加の方法を活用できます。
</Tip>
大規模なモデルをトレーニングする際、同時に考慮すべき2つの側面があります:
* データのスループット/トレーニング時間
* モデルのパフォーマンス
スループット(サンプル/秒)を最大化することは、トレーニングコストを低減させます。これは一般的に、GPUをできるだけ効果的に活用し、GPUメモリを限界まで埋めることによって達成されます。希望するバッチサイズがGPUメモリの制限を超える場合、勾配蓄積などのメモリ最適化テクニックが役立ちます。
しかし、好みのバッチサイズがメモリに収まる場合、メモリを最適化するテクニックを適用する理由はありません。大きなバッチサイズを使用できるからといって、それを必ずしも使用すべきではありません。ハイパーパラメータの調整の一環として、どのバッチサイズが最良の結果を生み出すかを決定し、リソースを適切に最適化する必要があります。
このガイドでカバーされている方法とツールは、トレーニングプロセスに与える影響に基づいて分類できます:
| Method/tool | Improves training speed | Optimizes memory utilization |
|:-----------------------------------------------------------|:------------------------|:-----------------------------|
| [Batch size choice](#batch-size-choice) | Yes | Yes |
| [Gradient accumulation](#gradient-accumulation) | No | Yes |
| [Gradient checkpointing](#gradient-checkpointing) | No | Yes |
| [Mixed precision training](#mixed-precision-training) | Yes | (No) |
| [Optimizer choice](#optimizer-choice) | Yes | Yes |
| [Data preloading](#data-preloading) | Yes | No |
| [DeepSpeed Zero](#deepspeed-zero) | No | Yes |
| [torch.compile](#using-torchcompile) | Yes | No |
<Tip>
**注意**: 小さなモデルと大きなバッチサイズを使用する場合、メモリの節約が行われますが、大きなモデルと小さなバッチサイズを使用する場合、メモリの使用量が増加します。
</Tip>
これらのテクニックは、[`Trainer`]でモデルをトレーニングしている場合や、純粋なPyTorchループを記述している場合の両方で利用できます。詳細な最適化の設定については、🤗 Accelerateを使用して[これらの最適化を設定できます](#using--accelerate)。
これらの方法が十分な利益をもたらさない場合、以下のオプションを検討できます:
* [効率的なソフトウェアプリビルドを備えたカスタムDockerコンテナの作成](#efficient-software-prebuilds)
* [Mixture of Experts(MoE)を使用するモデルを検討](#mixture-of-experts)
* [モデルをBetterTransformerに変換して、PyTorchネイティブのアテンションを活用](#using-pytorch-native-attention)
最後に、これらの方法がまだ十分でない場合、A100などのサーバーグレードGPUに切り替えても、さらなる改善が必要かもしれません。これらのアプローチは、マルチGPUセットアップでも有効であり、[マルチGPUセクション](perf_train_gpu_many)で説明されている追加の並列化技術を活用できます。
## Batch size choice
最適なパフォーマンスを実現するために、適切なバッチサイズを特定することから始めましょう。2^Nのサイズのバッチサイズと入力/出力ニューロン数を使用することが推奨されています。通常、これは8の倍数ですが、使用するハードウェアとモデルのデータ型に依存することがあります。
参考までに、NVIDIAの[入力/出力ニューロン数の推奨事項](https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html#input-features)と[バッチサイズ](https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html#batch-size)を確認してください(これらはGEMM(一般的な行列乗算)に関与します)。
[Tensor Core要件](https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc)では、データ型とハードウェアに基づいて乗数が定義されています。たとえば、fp16データ型の場合、64の倍数を使用することが推奨されます(A100 GPUの場合を除く)。
小さなパラメータの場合、[次元量子化効果](https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#dim-quantization)も考慮してください。これはタイリングが行われ、適切な乗数が大幅な高速化をもたらす場合があります。
## Gradient Accumulation
**勾配蓄積**メソッドは、GPUのメモリ容量の制約によって課せられる制限を超えた効果的なバッチサイズを実現するために、勾配を小さな増分で計算することを目的としています。このアプローチでは、モデルを順方向および逆方向に小さなバッチで反復的に計算し、その過程で勾配を蓄積します。十分な数の勾配が蓄積されたら、モデルの最適化ステップを実行します。勾配蓄積を使用することで、GPUのメモリ容量による制約を超えて**効果的なバッチサイズ**を増やすことができますが、勾配蓄積によって導入される追加の順方向および逆方向の計算はトレーニングプロセスを遅くする可能性があることに注意が必要です。
`TrainingArguments`に`gradient_accumulation_steps`引数を追加することで、勾配蓄積を有効にすることができます:
```py
training_args = TrainingArguments(per_device_train_batch_size=1, gradient_accumulation_steps=4, **default_args)
```
上記の例では、効果的なバッチサイズは4になります。
また、トレーニングループを完全に制御するために🤗 Accelerateを使用することもできます。🤗 Accelerateの例は、[このガイドの後半にある](#using--accelerate)で見つけることができます。
できるだけGPUの使用率を最大限にすることが推奨されていますが、高い勾配蓄積ステップ数はトレーニングの遅延をより顕著にすることがあります。以下の例を考えてみましょう。`per_device_train_batch_size=4`の場合、勾配蓄積を使用しないとGPUの制限に達します。バッチサイズ64でトレーニングしたい場合、`per_device_train_batch_size`を1に設定し、`gradient_accumulation_steps`を64に設定しないでください。代わりに、`per_device_train_batch_size=4`を保持し、`gradient_accumulation_steps=16`を設定します。これにより、同じ効果的なバッチサイズが得られ、利用可能なGPUリソースが効果的に活用されます。
詳細な情報については、[RTX-3090用のバッチサイズと勾配蓄積のベンチマーク](https://github.com/huggingface/transformers/issues/14608#issuecomment-1004392537)および[A100用のバッチサイズと勾配蓄積のベンチマーク](https://github.com/huggingface/transformers/issues/15026#issuecomment-1005033957)を参照してください。
## Gradient Checkpointing
一部の大きなモデルは、バッチサイズを1に設定し、勾配蓄積を使用している場合でもメモリの問題に直面することがあります。これは、メモリストレージが必要な他のコンポーネントも存在するためです。
前向きパスからのすべてのアクティベーションを保存して、逆向きパスで勾配を計算すると、かなりのメモリオーバーヘッドが発生します。逆向きパスで必要なときにアクティベーションを破棄して再計算する代替アプローチは、計算オーバーヘッドが大幅に増加し、トレーニングプロセスが遅くなります。
**勾配チェックポイント**は、これらの2つのアプローチの折衷案を提供し、計算グラフ全体で戦略的に選択されたアクティベーションのみを保存するため、勾配を再計算する必要があるアクティベーションの一部だけを節約します。勾配チェックポイントの詳細については、[この素晴らしい記事](https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9)を参照してください。
[`Trainer`]で勾配チェックポイントを有効にするには、[`TrainingArguments`]に対応するフラグを渡します:
```py
training_args = TrainingArguments(
per_device_train_batch_size=1, gradient_accumulation_steps=4, gradient_checkpointing=True, **default_args
)
```
代替手段として、🤗 Accelerateを使用することもできます - 🤗 Accelerateの例は[このガイドのさらに後ろにあります](#using--accelerate)。
<Tip>
勾配チェックポイントを使用することでメモリ効率が向上する場合がありますが、トレーニング速度は約20%遅くなることに注意してください。
</Tip>
## Mixed precision training
**混合精度トレーニング**は、モデルのトレーニングの計算効率を最適化する技術で、特定の変数に対して低精度の数値フォーマットを利用します。従来、ほとんどのモデルは変数を表現し処理するために32ビット浮動小数点精度(fp32またはfloat32)を使用しています。しかし、すべての変数が正確な結果を得るためにこの高精度のレベルを必要としない場合があります。一部の変数の精度を16ビット浮動小数点(fp16またはfloat16)などのより低い数値フォーマットに変更することで、計算を高速化できます。このアプローチでは、一部の計算は半精度で行われ、一部はまだ完全な精度で行われるため、このアプローチは混合精度トレーニングと呼ばれています。
最も一般的に混合精度トレーニングは、fp16(float16)データ型を使用して実現されますが、一部のGPUアーキテクチャ(アンペアアーキテクチャなど)ではbf16およびtf32(CUDA内部データ型)データ型も提供されています。これらのデータ型の違いについて詳しく知りたい場合は、[NVIDIAのブログ](https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/)を確認してください。
### fp16
混合精度トレーニングの主な利点は、半精度(fp16)でアクティベーションを保存することから得られます。
勾配も半精度で計算されますが、最適化ステップでは再び完全精度に変換されるため、ここではメモリは保存されません。
混合精度トレーニングは計算速度を向上させる一方、特に小さなバッチサイズの場合、より多くのGPUメモリを使用することがあります。
これは、モデルがGPU上に16ビットおよび32ビット精度の両方で存在するためです(GPU上の元のモデルの1.5倍)。
混合精度トレーニングを有効にするには、`fp16`フラグを`True`に設定します:
```py
training_args = TrainingArguments(per_device_train_batch_size=4, fp16=True, **default_args)
```
🤗 Accelerateを使用する場合、🤗 Accelerateの例は[このガイドのさらに後ろにあります](#using--accelerate)。
### BF16
Ampereまたはそれ以降のハードウェアにアクセスできる場合、混合精度トレーニングと評価にbf16を使用できます。bf16はfp16よりも精度が劣りますが、はるかに大きな動的範囲を持っています。fp16では、持つことができる最大の数は `65535` であり、それを超える数値はオーバーフローを引き起こします。一方、bf16の数値は `3.39e+38` のように大きく、これはfp32とほぼ同じです - どちらも数値範囲に8ビットを使用しているためです。
BF16を有効にするには、🤗 Trainerで以下のように設定します:
```python
training_args = TrainingArguments(bf16=True, **default_args)
```
### TF32
アンペアハードウェアは、tf32という特別なデータ型を使用します。これは、fp32と同じ数値範囲(8ビット)を持っていますが、23ビットの精度ではなく、10ビットの精度(fp16と同じ)を持ち、合計で19ビットしか使用しません。これは通常のfp32トレーニングおよび推論コードを使用し、tf32サポートを有効にすることで、最大3倍のスループットの向上が得られる点で「魔法のよう」です。行う必要があるのは、次のコードを追加するだけです:
```python
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
```
使用されているGPUがアンペアシリーズであると仮定し、CUDAは可能な限りtf32を使用するように自動的に切り替えます。
[NVIDIAの研究によれば](https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/)、ほとんどの機械学習トレーニングワークロードはtf32トレーニングとfp32トレーニングで同じ難解度と収束を示します。すでにfp16またはbf16混合精度を使用している場合、スループットの向上に役立つこともあります。
🤗 Trainerでこのモードを有効にすることができます:
```python
TrainingArguments(tf32=True, **default_args)
```
<Tip>
tf32は`tensor.to(dtype=torch.tf32)`を介して直接アクセスできません。これは内部のCUDAデータ型です。tf32データ型を使用するには、`torch>=1.7`が必要です。
</Tip>
tf32と他の精度に関する詳細な情報については、以下のベンチマークを参照してください:
[RTX-3090](https://github.com/huggingface/transformers/issues/14608#issuecomment-1004390803)および
[A100](https://github.com/huggingface/transformers/issues/15026#issuecomment-1004543189)。
## Flash Attention 2
transformersでFlash Attention 2統合を使用することで、トレーニングのスループットを向上させることができます。Flash Attention 2モジュールを含むモデルの読み込み方法については、[single GPU section](./perf_infer_gpu_one#Flash-Attention-2)の適切なセクションを確認して詳細を学びましょう。
## オプティマイザの選択
Transformerモデルをトレーニングするために最も一般的に使用されるオプティマイザはAdamまたはAdamW(重み減衰を伴うAdam)です。Adamは前回の勾配の移動平均を保存することで収束を達成しますが、モデルパラメータの数のオーダーの追加メモリフットプリントを追加します。これを解消するために、代替オプティマイザを使用できます。たとえば、[NVIDIA/apex](https://github.com/NVIDIA/apex)がインストールされている場合、`adamw_apex_fused`はすべてのサポートされているAdamWオプティマイザの中で最も高速なトレーニング体験を提供します。
[`Trainer`]は、直接使用できるさまざまなオプティマイザを統合しており、`adamw_hf`、`adamw_torch`、`adamw_torch_fused`、`adamw_apex_fused`、`adamw_anyprecision`、`adafactor`、または`adamw_bnb_8bit`が含まれています。サードパーティの実装を介してさらに多くのオプティマイザを追加できます。
AdamWオプティマイザの代替手段について詳しく見てみましょう:
1. [`Trainer`]で使用可能な`adafactor`
2. Trainerで使用可能な`adamw_bnb_8bit`は、デモンストレーション用に以下でサードパーティの統合が提供されています。
比較のため、3Bパラメータモデル(例:「google-t5/t5-3b」)の場合:
* 標準のAdamWオプティマイザは、各パラメータに8バイトを使用するため、24GBのGPUメモリが必要です(8 * 3 => 24GB)。
* Adafactorオプティマイザは12GB以上必要です。各パラメータにわずか4バイト以上を使用するため、4 * 3と少し余分になります。
* 8ビットのBNB量子化オプティマイザは、すべてのオプティマイザの状態が量子化されている場合、わずか6GBしか使用しません。
### Adafactor
Adafactorは、重み行列の各要素のために前回の平均を保存しません。代わりに、(行ごとと列ごとの平均の合計など)集
```py
training_args = TrainingArguments(per_device_train_batch_size=4, optim="adafactor", **default_args)
```
他のアプローチ(勾配蓄積、勾配チェックポイント、混合精度トレーニング)と組み合わせることで、スループットを維持しながら最大3倍の向上が見られることがあります!ただし、前述のように、Adafactorの収束性はAdamよりも悪いことがあります。
### 8ビット Adam
Adafactorのようにオプティマイザの状態を集約する代わりに、8ビットのAdamは完全な状態を保持し、それを量子化します。量子化とは、状態を低い精度で保存し、最適化のためだけに非量子化することを意味します。これは混合精度トレーニングの背後にあるアイデアと似ています。
`adamw_bnb_8bit`を使用するには、単に[`TrainingArguments`]で`optim="adamw_bnb_8bit"`を設定するだけです:
```py
training_args = TrainingArguments(per_device_train_batch_size=4, optim="adamw_bnb_8bit", **default_args)
```
ただし、デモンストレーション目的で8ビットオプティマイザをサードパーティの実装を使用することもできます。これを統合する方法を確認するためです。
まず、8ビットAdamオプティマイザを実装した`bitsandbytes`ライブラリをインストールするために、GitHub [リポジトリ](https://github.com/TimDettmers/bitsandbytes)内のインストールガイドに従ってください。
次に、オプティマイザを初期化する必要があります。これには2つのステップが含まれます:
* まず、モデルのパラメータを2つのグループに分けます - 重み減衰を適用するべきグループと、適用すべきでないグループです。通常、バイアスとレイヤー正規化パラメータは重み減衰されません。
* 次に、以前に使用したAdamWオプティマイザと同じパラメータを使用するために、いくつかの引数の調整を行います。
```py
import bitsandbytes as bnb
from torch import nn
from transformers.trainer_pt_utils import get_parameter_names
training_args = TrainingArguments(per_device_train_batch_size=4, **default_args)
decay_parameters = get_parameter_names(model, [nn.LayerNorm])
decay_parameters = [name for name in decay_parameters if "bias" not in name]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if n in decay_parameters],
"weight_decay": training_args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if n not in decay_parameters],
"weight_decay": 0.0,
},
]
optimizer_kwargs = {
"betas": (training_args.adam_beta1, training_args.adam_beta2),
"eps": training_args.adam_epsilon,
}
optimizer_kwargs["lr"] = training_args.learning_rate
adam_bnb_optim = bnb.optim.Adam8bit(
optimizer_grouped_parameters,
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
lr=training_args.learning_rate,
)
```
最後に、カスタムオプティマイザを`Trainer`に引数として渡します:
```py
trainer = Trainer(model=model, args=training_args, train_dataset=ds, optimizers=(adam_bnb_optim, None))
```
他のアプローチ(勾配蓄積、勾配チェックポイント、混合精度トレーニング)と組み合わせることで、Adafactorの使用と同等以上の3倍のメモリ改善およびわずかに高いスループットを期待できます。
### multi_tensor
pytorch-nightlyは、多くの小さな特徴テンソルがある状況のオプティマイザを大幅に高速化するはずの`torch.optim._multi_tensor`を導入しました。これは最終的にはデフォルトになるはずですが、それを早く試してみたい場合は、このGitHub [issue](https://github.com/huggingface/transformers/issues/9965)をご覧ください。
## データの事前読み込み
優れたトレーニング速度に到達するための重要な要件の1つは、GPUが処理できる最大速度でデータを供給できる能力です。デフォルトではすべてがメインプロセスで行われ、データをディスクから十分速く読み取ることができない場合、GPUのアンダーユーティリゼーションを引き起こすボトルネックが発生する可能性があります。ボトルネックを減らすために、以下の引数を設定します:
- `DataLoader(pin_memory=True, ...)` - データをCPUのピンメモリに事前読み込みし、通常、CPUからGPUメモリへの転送がはるかに高速化されます。
- `DataLoader(num_workers=4, ...)` - データをより速く事前読み込みするために複数のワーカーを生成します。トレーニング中にGPUの利用状況の統計情報を確認し、100%から遠い場合、ワーカーの数を増やす実験を行ってください。もちろん、問題は他の場所にあるかもしれませんので、多くのワーカーが必ずしも性能向上につながるわけではありません。
[`Trainer`]を使用する場合、対応する[`TrainingArguments`]は`dataloader_pin_memory`(デフォルトでは`True`)および`dataloader_num_workers`(デフォルトは`0`)です。
## DeepSpeed ZeRO
DeepSpeedは、🤗 Transformersと🤗 Accelerateと統合されたオープンソースのディープラーニング最適化ライブラリです。
大規模なディープラーニングトレーニングの効率とスケーラビリティを向上させるために設計されたさまざまな機能と最適化を提供します。
モデルが単一のGPUに収まり、小さなバッチサイズを収めるスペースがある場合、DeepSpeedを使用する必要はありません。それはむしろ遅くなります。ただし、モデルが単一のGPUに収まらない場合、または小さなバッチを収めることができない場合、DeepSpeed ZeRO + CPU OffloadまたはNVMe Offloadを利用できます。この場合、[ライブラリを別途インストール](main_classes/deepspeed#installation)し、設定ファイルを作成し、DeepSpeedを起動するためのガイドをフォローする必要があります:
* [`Trainer`]とのDeepSpeed統合の詳細ガイドについては、[該当するドキュメンテーション](main_classes/deepspeed)を確認してください。特に、[単一GPU用のデプロイメント](main_classes/deepspeed#deployment-with-one-gpu)に関するセクションです。DeepSpeedをノートブックで使用するにはいくつかの調整が必要ですので、[該当するガイド](main_classes/deepspeed#deployment-in-notebooks)もご覧ください。
* 🤗 Accelerateを使用する場合は、[🤗 Accelerate DeepSpeedガイド](https://huggingface.co/docs/accelerate/en/usage_guides/deepspeed)を参照してください。
## torch.compileの使用
PyTorch 2.0は新しいコンパイル関数を導入しました。これは既存のPyTorchコードを変更する必要はありませんが、1行のコードを追加することでコードを最適化できます:`model = torch.compile(model)`。
[`Trainer`]を使用する場合、[`TrainingArguments`]内の`torch_compile`オプションを渡すだけです:
```python
training_args = TrainingArguments(torch_compile=True, **default_args)
```
`torch.compile`は、既存のPyTorchプログラムからグラフを自動的に作成するためにPythonのフレーム評価APIを使用します。グラフをキャプチャした後、異なるバックエンドを展開して最適化されたエンジンに変換できます。
詳細およびベンチマークについては、[PyTorchドキュメント](https://pytorch.org/get-started/pytorch-2.0/)を参照してください。
`torch.compile`には、オプションの依存関係を持つ成長中のバックエンドのリストがあり、`torchdynamo.list_backends()`を呼び出して確認できます。最も一般的に使用される一部のバックエンドは次のとおりです。
**デバッグ用バックエンド**:
* `dynamo.optimize("eager")` - 抽出されたGraphModuleを実行するためにPyTorchを使用します。これはTorchDynamoの問題をデバッグする際に非常に役立ちます。
* `dynamo.optimize("aot_eager")` - コンパイラーを使用しないAotAutogradを使用してAotAutogradの抽出されたフォワードおよびバックワードグラフに対して単にPyTorch eagerを使用します。これはデバッグに役立ち、高速化は期待できません。
**トレーニングおよび推論バックエンド**:
* `dynamo.optimize("inductor")` - TorchInductorバックエンドを使用し、AotAutogradおよびcudagraphsを活用してコード生成されたTritonカーネルを使用します [詳細はこちら](https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747)
* `dynamo.optimize("nvfuser")` - nvFuser with TorchScriptを使用します。 [詳細はこちら](https://dev-discuss.pytorch.org/t/tracing-with-primitives-update-1-nvfuser-and-its-primitives/593)
* `dynamo.optimize("aot_nvfuser")` - nvFuser with AotAutogradを使用します。 [詳細はこちら](https://dev-discuss.pytorch.org/t/tracing-with-primitives-update-1-nvfuser-and-its-primitives/593)
* `dynamo.optimize("aot_cudagraphs")` - AotAutogradを使用してcudagraphsを使用します。 [詳細はこちら](https://github.com/pytorch/torchdynamo/pull/757)
**推論専用バックエンド**:
* `dynamo.optimize("ofi")` - Torchscriptの`optimize_for_inference`を使用します。 [詳細はこちら](https://pytorch.org/docs/stable/generated/torch.jit.optimize_for_inference.html)
* `dynamo.optimize("fx2trt")` - Nvidia TensorRTを使用した推論の最適化にNvidia TensorRTを使用します。 [詳細はこちら](https://pytorch.org/TensorRT/tutorials/getting_started_with_fx_path.html)
* `dynamo.optimize("onnxrt")` - CPU/GPUでの推論にONNX Runtimeを使用します。 [詳細はこちら](https://onnxruntime.ai/)
* `dynamo.optimize("ipex")` - CPUでの推論にIPEXを使用します。 [詳細はこちら](https://github.com/intel/intel-extension-for-pytorch)
🤗 Transformersを使用した`torch.compile`の使用例については、この[ブログ記事](https://www.philschmid.de/getting-started-pytorch-2-0-transformers)をご覧ください。
## Using 🤗 Accelerate
[🤗 Accelerate](https://huggingface.co/docs/accelerate/index)を使用すると、上記の方法を使用しながらトレーニングループを完全に制御でき、基本的には純粋なPyTorchでループを書くことができます。
次に、[`TrainingArguments`]内で方法を組み合わせた場合を想
```py
training_args = TrainingArguments(
per_device_train_batch_size=1,
gradient_accumulation_steps=4,
gradient_checkpointing=True,
fp16=True,
**default_args,
)
```
🤗 Accelerateを使用した完全なトレーニングループの例は、ほんの数行のコードです:
```py
from accelerate import Accelerator
from torch.utils.data.dataloader import DataLoader
dataloader = DataLoader(ds, batch_size=training_args.per_device_train_batch_size)
if training_args.gradient_checkpointing:
model.gradient_checkpointing_enable()
accelerator = Accelerator(fp16=training_args.fp16)
model, optimizer, dataloader = accelerator.prepare(model, adam_bnb_optim, dataloader)
model.train()
for step, batch in enumerate(dataloader, start=1):
loss = model(**batch).loss
loss = loss / training_args.gradient_accumulation_steps
accelerator.backward(loss)
if step % training_args.gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
```
まず、データセットを[`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader)でラップします。
次に、モデルの[`~PreTrainedModel.gradient_checkpointing_enable`]メソッドを呼び出すことで勾配チェックポイントを有効にできます。
[`Accelerator`](https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator)を初期化する際に、混合精度トレーニングを使用するかどうかを[`prepare`](https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.prepare)の呼び出しで指定し、複数のGPUを使用する場合、`prepare`の間にデータローダーもワーカー間で分散されます。同じ[8ビットオプティマイザ](#8-bit-adam)を前の例から使用します。
最後に、主要なトレーニングループを追加できます。`backward`の呼び出しは🤗 Accelerateによって処理されることに注意してください。また、勾配の蓄積がどのように機能するかも確認できます。損失を正規化しているため、蓄積の最後に平均を得て、十分なステップがあると最適化が実行されます。
これらの最適化技術を🤗 Accelerateを使用して実装するのは、わずかなコード行で行うことができ、トレーニングループの柔軟性が向上します。すべての機能の詳細については、[Accelerateのドキュメント](https://huggingface.co/docs/accelerate/index)を参照してください。
## Efficient Software Prebuilds
PyTorchの[pipとcondaビルド](https://pytorch.org/get-started/locally/#start-locally)は、PyTorchを実行するのに十分なcudaツールキットで事前にビルドされていますが、cuda拡張をビルドする必要がある場合には不十分です。
時折、追加の努力が必要な場合があります。たとえば、事前にコンパイルされていない`apex`などのライブラリを使用している場合です。また、システム全体で適切なcudaツールキットをインストールする方法を見つけることが難しい場合もあります。
これらのシナリオに対処するために、PyTorchとNVIDIAはcuda拡張がすでに事前にビルドされているNGC dockerコンテナの新しいバージョンをリリースしました。プログラムをインストールするだけで、そのまま実行できます。
このアプローチは、PyTorchのソースを調整したり、新しいカスタマイズされたビルドを作成したりしたい場合にも役立ちます。
欲しいdockerイメージバージョンを見つけるには、まず[PyTorchのリリースノート](https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/)から始め、最新の月次リリースのいずれかを選択します。希望のリリースのリリースノートに移動し、環境のコンポーネントが必要なものと一致していることを確認します(NVIDIA Driverの要件も含む!)、その文書の一番上に行き、対応するNGCページに移動します。なぜかわからない場合は、[すべてのPyTorch NGCイメージのインデックス](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch)です。
次に、dockerイメージをダウンロードして展開する手順に従います。
## Mixture of Experts
最近の論文によれば、Transformerモデルに専門家の混合(MoE)を統合することで、トレーニング速度が4〜5倍向上し、推論も高速化されることが報告されています。
より多くのパラメータがより良いパフォーマンスにつながることがわかっているため、この技術はトレーニングコストを増やすことなくパラメータの数を桁違いに増やすことを可能にします。
このアプローチでは、他のFFN層の代わりにMoE層が配置され、各専門家をトークンの位置に応じてバランスよくトレーニングするゲート関数で構成されます。

(出典: [GLAM](https://ai.googleblog.com/2021/12/more-efficient-in-context-learning-with.html))
このアプローチの主な欠点は、GPUメモリをほぼ桁違いに多く必要とすることです。メモリ要件がはるかに大きいことがそのまま反映されます。より高いメモリ要件を克服する方法については、さまざまな蒸留およびアプローチが提案されています。
ただし、直接のトレードオフがあります。数人の専門家を使用してベースモデルを2〜3倍小さくすることで、5倍小さなモデルにし、トレーニング速度を適度に向上させ、メモリ要件を適度に増やすことができます。
関連するほとんどの論文および実装はTensorflow/TPUを中心に構築されています。
- [GShard: Conditional Computation and Automatic Shardingを活用した巨大モデルのスケーリング](https://arxiv.org/abs/2006.16668)
- [Switch Transformers: シンプルで効率的なスパース性を備えたトリリオンパラメータモデルへのスケーリング](https://arxiv.org/abs/2101.03961)
- [GLaM: Generalist Language Model (GLaM)](https://ai.googleblog.com/2021/12/more-efficient-in-context-learning-with.html)
PytorchにはDeepSpeedが構築したものもあります: [DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale](https://arxiv.org/abs/2201.05596)、[Mixture of Experts](https://www.deepspeed.ai/tutorials/mixture-of-experts/) - ブログ記事: [1](https://www.microsoft.com/en-us/research/blog/deepspeed-powers-8x-larger-moe-model-training-with-high-performance/)、[2](https://www.microsoft.com/en-us/research/publication/scalable-and-efficient-moe-training-for-multitask-multilingual-models/)、大規模なTransformerベースの自然言語生成モデルの具体的な展開については、[ブログ記事](https://www.deepspeed.ai/2021/12/09/deepspeed-moe-nlg.html)、[Megatron-Deepspeedブランチ](https://github.com/microsoft/Megatron-DeepSpeed/tree/moe-training)を参照してください。
## PyTorchネイティブアテンションとFlash Attentionの使用
PyTorch 2.0では、ネイティブの[`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html)(SDPA)がリリースされ、[メモリ効率の高いアテンション](https://arxiv.org/abs/2112.05682)や[フラッシュアテンション](https://arxiv.org/abs/2205.14135)などの融合されたGPUカーネルの使用を可能にします。
[`optimum`](https://github.com/huggingface/optimum)パッケージをインストールした後、関連する内部モジュールを置き換えて、PyTorchのネイティブアテンションを使用できます。以下のように設定します:
```python
model = model.to_bettertransformer()
```
変換後、通常通りモデルをトレーニングしてください。
<Tip warning={true}>
PyTorchネイティブの`scaled_dot_product_attention`演算子は、`attention_mask`が提供されていない場合にのみFlash Attentionにディスパッチできます。
デフォルトでは、トレーニングモードでBetterTransformer統合はマスクサポートを削除し、バッチトレーニングにパディングマスクが必要ないトレーニングにしか使用できません。これは、例えばマスク言語モデリングや因果言語モデリングのような、バッチトレーニングにパディングマスクが不要なトレーニングの場合に該当します。BetterTransformerはパディングマスクが必要なタスクに対するモデルの微調整には適していません。
</Tip>
SDPAを使用したアクセラレーションとメモリの節約について詳しく知りたい場合は、この[ブログ記事](https://pytorch.org/blog/out-of-the-box-acceleration/)をチェックしてください。
| transformers/docs/source/ja/perf_train_gpu_one.md/0 | {
"file_path": "transformers/docs/source/ja/perf_train_gpu_one.md",
"repo_id": "transformers",
"token_count": 17123
} | 264 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Audio classification
[[open-in-colab]]
<Youtube id="KWwzcmG98Ds"/>
音声分類では、テキストと同様に、入力データから出力されたクラス ラベルを割り当てます。唯一の違いは、テキスト入力の代わりに生のオーディオ波形があることです。音声分類の実際的な応用例には、話者の意図、言語分類、さらには音による動物の種類の識別などがあります。
このガイドでは、次の方法を説明します。
1. [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) データセットで [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) を微調整して話者の意図を分類します。
2. 微調整したモデルを推論に使用します。
<Tip>
このチュートリアルで説明するタスクは、次のモデル アーキテクチャでサポートされています。
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
[Audio Spectrogram Transformer](../model_doc/audio-spectrogram-transformer), [Data2VecAudio](../model_doc/data2vec-audio), [Hubert](../model_doc/hubert), [SEW](../model_doc/sew), [SEW-D](../model_doc/sew-d), [UniSpeech](../model_doc/unispeech), [UniSpeechSat](../model_doc/unispeech-sat), [Wav2Vec2](../model_doc/wav2vec2), [Wav2Vec2-Conformer](../model_doc/wav2vec2-conformer), [WavLM](../model_doc/wavlm), [Whisper](../model_doc/whisper)
<!--End of the generated tip-->
</Tip>
始める前に、必要なライブラリがすべてインストールされていることを確認してください。
```bash
pip install transformers datasets evaluate
```
モデルをアップロードしてコミュニティと共有できるように、Hugging Face アカウントにログインすることをお勧めします。プロンプトが表示されたら、トークンを入力してログインします。
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## Load MInDS-14 dataset
まず、🤗 データセット ライブラリから MInDS-14 データセットをロードします。
```py
>>> from datasets import load_dataset, Audio
>>> minds = load_dataset("PolyAI/minds14", name="en-US", split="train")
```
[`~datasets.Dataset.train_test_split`] メソッドを使用して、データセットの `train` をより小さなトレインとテスト セットに分割します。これにより、完全なデータセットにさらに時間を費やす前に、実験してすべてが機能することを確認する機会が得られます。
```py
>>> minds = minds.train_test_split(test_size=0.2)
```
次に、データセットを見てみましょう。
```py
>>> minds
DatasetDict({
train: Dataset({
features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],
num_rows: 450
})
test: Dataset({
features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],
num_rows: 113
})
})
```
データセットには`lang_id`や`english_transcription`などの多くの有用な情報が含まれていますが、このガイドでは`audio`と`intent_class`に焦点を当てます。 [`~datasets.Dataset.remove_columns`] メソッドを使用して他の列を削除します。
```py
>>> minds = minds.remove_columns(["path", "transcription", "english_transcription", "lang_id"])
```
ここで例を見てみましょう。
```py
>>> minds["train"][0]
{'audio': {'array': array([ 0. , 0. , 0. , ..., -0.00048828,
-0.00024414, -0.00024414], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602b9a5fbb1e6d0fbce91f52.wav',
'sampling_rate': 8000},
'intent_class': 2}
```
次の 2 つのフィールドがあります。
- `audio`: 音声ファイルをロードしてリサンプリングするために呼び出す必要がある音声信号の 1 次元の `array`。
- `intent_class`: スピーカーのインテントのクラス ID を表します。
モデルがラベル ID からラベル名を取得しやすくするために、ラベル名を整数に、またはその逆にマップする辞書を作成します。
```py
>>> labels = minds["train"].features["intent_class"].names
>>> label2id, id2label = dict(), dict()
>>> for i, label in enumerate(labels):
... label2id[label] = str(i)
... id2label[str(i)] = label
```
これで、ラベル ID をラベル名に変換できるようになりました。
```py
>>> id2label[str(2)]
'app_error'
```
## Preprocess
次のステップでは、Wav2Vec2 特徴抽出プログラムをロードしてオーディオ信号を処理します。
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
```
MInDS-14 データセットのサンプリング レートは 8000khz です (この情報は [データセット カード](https://huggingface.co/datasets/PolyAI/minds14) で確認できます)。つまり、データセットを再サンプリングする必要があります。事前トレーニングされた Wav2Vec2 モデルを使用するには、16000kHz に設定します。
```py
>>> minds = minds.cast_column("audio", Audio(sampling_rate=16_000))
>>> minds["train"][0]
{'audio': {'array': array([ 2.2098757e-05, 4.6582241e-05, -2.2803260e-05, ...,
-2.8419291e-04, -2.3305941e-04, -1.1425107e-04], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602b9a5fbb1e6d0fbce91f52.wav',
'sampling_rate': 16000},
'intent_class': 2}
```
次に、次の前処理関数を作成します。
1. `audio`列を呼び出してロードし、必要に応じてオーディオ ファイルをリサンプリングします。
2. オーディオ ファイルのサンプリング レートが、モデルが事前トレーニングされたオーディオ データのサンプリング レートと一致するかどうかを確認します。この情報は、Wav2Vec2 [モデル カード](https://huggingface.co/facebook/wav2vec2-base) で見つけることができます。
3. 入力の最大長を設定して、長い入力を切り捨てずにバッチ処理します。
```py
>>> def preprocess_function(examples):
... audio_arrays = [x["array"] for x in examples["audio"]]
... inputs = feature_extractor(
... audio_arrays, sampling_rate=feature_extractor.sampling_rate, max_length=16000, truncation=True
... )
... return inputs
```
データセット全体に前処理関数を適用するには、🤗 Datasets [`~datasets.Dataset.map`] 関数を使用します。 `batched=True` を設定してデータセットの複数の要素を一度に処理することで、`map` を高速化できます。不要な列を削除し、`intent_class` の名前を `label` に変更します。これはモデルが期待する名前であるためです。
```py
>>> encoded_minds = minds.map(preprocess_function, remove_columns="audio", batched=True)
>>> encoded_minds = encoded_minds.rename_column("intent_class", "label")
```
## Evaluate
トレーニング中にメトリクスを含めると、多くの場合、モデルのパフォーマンスを評価するのに役立ちます。 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) ライブラリを使用して、評価メソッドをすばやくロードできます。このタスクでは、[accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy) メトリクスを読み込みます (🤗 Evaluate [クイック ツアー](https://huggingface.co/docs/evaluate/a_quick_tour) を参照してください) メトリクスの読み込みと計算方法の詳細については、次を参照してください。
```py
>>> import evaluate
>>> accuracy = evaluate.load("accuracy")
```
次に、予測とラベルを [`~evaluate.EvaluationModule.compute`] に渡して精度を計算する関数を作成します。
```py
>>> import numpy as np
>>> def compute_metrics(eval_pred):
... predictions = np.argmax(eval_pred.predictions, axis=1)
... return accuracy.compute(predictions=predictions, references=eval_pred.label_ids)
```
これで`compute_metrics`関数の準備が整いました。トレーニングをセットアップするときにこの関数に戻ります。
## Train
<frameworkcontent>
<pt>
<Tip>
[`Trainer`] を使用したモデルの微調整に慣れていない場合は、[こちら](../training#train-with-pytorch-trainer) の基本的なチュートリアルをご覧ください。
</Tip>
これでモデルのトレーニングを開始する準備が整いました。 [`AutoModelForAudioClassification`] を使用して、予期されるラベルの数とラベル マッピングを使用して Wav2Vec2 を読み込みます。
```py
>>> from transformers import AutoModelForAudioClassification, TrainingArguments, Trainer
>>> num_labels = len(id2label)
>>> model = AutoModelForAudioClassification.from_pretrained(
... "facebook/wav2vec2-base", num_labels=num_labels, label2id=label2id, id2label=id2label
... )
```
この時点で残っている手順は次の 3 つだけです。
1. [`TrainingArguments`] でトレーニング ハイパーパラメータを定義します。唯一の必須パラメータは、モデルの保存場所を指定する `output_dir` です。 `push_to_hub=True`を設定して、このモデルをハブにプッシュします (モデルをアップロードするには、Hugging Face にサインインする必要があります)。各エポックの終了時に、[`トレーナー`] は精度を評価し、トレーニング チェックポイントを保存します。
2. トレーニング引数を、モデル、データセット、トークナイザー、データ照合器、および `compute_metrics` 関数とともに [`Trainer`] に渡します。
3. [`~Trainer.train`] を呼び出してモデルを微調整します。
```py
>>> training_args = TrainingArguments(
... output_dir="my_awesome_mind_model",
... evaluation_strategy="epoch",
... save_strategy="epoch",
... learning_rate=3e-5,
... per_device_train_batch_size=32,
... gradient_accumulation_steps=4,
... per_device_eval_batch_size=32,
... num_train_epochs=10,
... warmup_ratio=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",
... push_to_hub=True,
... )
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=encoded_minds["train"],
... eval_dataset=encoded_minds["test"],
... tokenizer=feature_extractor,
... compute_metrics=compute_metrics,
... )
>>> trainer.train()
```
トレーニングが完了したら、 [`~transformers.Trainer.push_to_hub`] メソッドを使用してモデルをハブに共有し、誰もがモデルを使用できるようにします。
```py
>>> trainer.push_to_hub()
```
</pt>
</frameworkcontent>
<Tip>
音声分類用のモデルを微調整する方法の詳細な例については、対応する [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb).
</Tip>
## Inference
モデルを微調整したので、それを推論に使用できるようになりました。
推論を実行したい音声ファイルをロードします。必要に応じて、オーディオ ファイルのサンプリング レートをモデルのサンプリング レートと一致するようにリサンプリングすることを忘れないでください。
```py
>>> from datasets import load_dataset, Audio
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
>>> sampling_rate = dataset.features["audio"].sampling_rate
>>> audio_file = dataset[0]["audio"]["path"]
```
推論用に微調整されたモデルを試す最も簡単な方法は、それを [`pipeline`] で使用することです。モデルを使用して音声分類用の`pipeline`をインスタンス化し、それに音声ファイルを渡します。
```py
>>> from transformers import pipeline
>>> classifier = pipeline("audio-classification", model="stevhliu/my_awesome_minds_model")
>>> classifier(audio_file)
[
{'score': 0.09766869246959686, 'label': 'cash_deposit'},
{'score': 0.07998877018690109, 'label': 'app_error'},
{'score': 0.0781070664525032, 'label': 'joint_account'},
{'score': 0.07667109370231628, 'label': 'pay_bill'},
{'score': 0.0755252093076706, 'label': 'balance'}
]
```
必要に応じて、`pipeline` の結果を手動で複製することもできます。
<frameworkcontent>
<pt>
特徴抽出器をロードしてオーディオ ファイルを前処理し、`input`を PyTorch テンソルとして返します。
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("stevhliu/my_awesome_minds_model")
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
```
入力をモデルに渡し、ロジットを返します。
```py
>>> from transformers import AutoModelForAudioClassification
>>> model = AutoModelForAudioClassification.from_pretrained("stevhliu/my_awesome_minds_model")
>>> with torch.no_grad():
... logits = model(**inputs).logits
```
最も高い確率でクラスを取得し、モデルの `id2label` マッピングを使用してそれをラベルに変換します。
```py
>>> import torch
>>> predicted_class_ids = torch.argmax(logits).item()
>>> predicted_label = model.config.id2label[predicted_class_ids]
>>> predicted_label
'cash_deposit'
```
</pt>
</frameworkcontent> | transformers/docs/source/ja/tasks/audio_classification.md/0 | {
"file_path": "transformers/docs/source/ja/tasks/audio_classification.md",
"repo_id": "transformers",
"token_count": 6120
} | 265 |
<!---
Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Troubleshoot
時にはエラーが発生することがありますが、私たちはここにいます!このガイドでは、私たちがよく見る最も一般的な問題と、それらを解決する方法について説明します。ただし、このガイドはすべての 🤗 Transformers の問題の包括的なコレクションではありません。問題をトラブルシューティングするための詳細なヘルプが必要な場合は、以下の方法を試してみてください:
<Youtube id="S2EEG3JIt2A"/>
1. [フォーラム](https://discuss.huggingface.co/)で助けを求める。 [初心者向け](https://discuss.huggingface.co/c/beginners/5) または [🤗 Transformers](https://discuss.huggingface.co/c/transformers/9) など、質問を投稿できる特定のカテゴリがあります。問題が解決される可能性を最大限にするために、再現可能なコードを含む良い説明的なフォーラム投稿を書くことを確認してください!
<Youtube id="_PAli-V4wj0"/>
2. バグがライブラリに関連する場合は、🤗 Transformers リポジトリで [Issue](https://github.com/huggingface/transformers/issues/new/choose) を作成してください。バグを説明するためのできるだけ多くの情報を含めるように心がけ、何が問題で、どのように修正できるかをより良く理解できるようにしてください。
3. より古いバージョンの 🤗 Transformers を使用している場合は、[Migration](migration) ガイドを確認してください。バージョン間で重要な変更が導入されているためです。
トラブルシューティングとヘルプの詳細については、Hugging Faceコースの [第8章](https://huggingface.co/course/chapter8/1?fw=pt) を参照してください。
## Firewalled environments
一部のクラウド上のGPUインスタンスやイントラネットセットアップは、外部接続に対してファイアウォールで保護されているため、接続エラーが発生することがあります。スクリプトがモデルの重みやデータセットをダウンロードしようとすると、ダウンロードが途中で止まり、次のメッセージとタイムアウトエラーが表示されます:
```
ValueError: Connection error, and we cannot find the requested files in the cached path.
Please try again or make sure your Internet connection is on.
```
この場合、接続エラーを回避するために[オフラインモード](installation#offline-mode)で🤗 Transformersを実行してみてください。
## CUDA out of memory
数百万のパラメータを持つ大規模なモデルのトレーニングは、適切なハードウェアなしでは課題です。GPUのメモリが不足するとよくあるエラーの1つは次のとおりです:
以下はメモリ使用量を減らすために試すことができるいくつかの解決策です:
- [`TrainingArguments`]の中で [`per_device_train_batch_size`](main_classes/trainer#transformers.TrainingArguments.per_device_train_batch_size) の値を減らす。
- [`TrainingArguments`]の中で [`gradient_accumulation_steps`](main_classes/trainer#transformers.TrainingArguments.gradient_accumulation_steps) を使用して、全体的なバッチサイズを効果的に増やすことを試す。
<Tip>
メモリ節約のテクニックについての詳細は、[ガイド](performance)を参照してください。
</Tip>
## Unable to load a saved TensorFlow model
TensorFlowの[model.save](https://www.tensorflow.org/tutorials/keras/save_and_load#save_the_entire_model)メソッドは、モデル全体 - アーキテクチャ、重み、トレーニング設定 - を1つのファイルに保存します。しかし、モデルファイルを再度読み込む際にエラーが発生することがあります。これは、🤗 Transformersがモデルファイル内のすべてのTensorFlow関連オブジェクトを読み込まないためです。TensorFlowモデルの保存と読み込みに関する問題を回避するために、次のことをお勧めします:
- モデルの重みを`h5`ファイル拡張子で保存し、[`~TFPreTrainedModel.from_pretrained`]を使用してモデルを再読み込みする:
```py
>>> from transformers import TFPreTrainedModel
>>> model.save_weights("some_folder/tf_model.h5")
>>> model = TFPreTrainedModel.from_pretrained("some_folder")
```
- Save the model with [`~TFPretrainedModel.save_pretrained`] and load it again with [`~TFPreTrainedModel.from_pretrained`]:
```py
>>> from transformers import TFPreTrainedModel
>>> model.save_pretrained("path_to/model")
>>> model = TFPreTrainedModel.from_pretrained("path_to/model")
```
## ImportError
もう一つよくあるエラーは、特に新しくリリースされたモデルの場合に遭遇することがある `ImportError` です:
```
ImportError: cannot import name 'ImageGPTImageProcessor' from 'transformers' (unknown location)
```
これらのエラータイプに関しては、最新バージョンの 🤗 Transformers がインストールされていることを確認して、最新のモデルにアクセスできるようにしてください:
```bash
pip install transformers --upgrade
```
## CUDA error: device-side assert triggered
時々、デバイスコードでエラーが発生したという一般的な CUDA エラーに遭遇することがあります。
```
RuntimeError: CUDA error: device-side assert triggered
```
より具体的なエラーメッセージを取得するために、まずはCPU上でコードを実行してみることをお勧めします。以下の環境変数をコードの冒頭に追加して、CPUに切り替えてみてください:
```py
>>> import os
>>> os.environ["CUDA_VISIBLE_DEVICES"] = ""
```
GPUからより良いトレースバックを取得する別のオプションは、次の環境変数をコードの先頭に追加することです。これにより、エラーの発生源を指すトレースバックが得られます:
```py
>>> import os
>>> os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
```
## Incorrect output when padding tokens aren't masked
一部のケースでは、`input_ids`にパディングトークンが含まれている場合、出力の`hidden_state`が正しくないことがあります。デモンストレーションのために、モデルとトークナイザーをロードします。モデルの`pad_token_id`にアクセスして、その値を確認できます。一部のモデルでは`pad_token_id`が`None`になることもありますが、常に手動で設定することができます。
```py
>>> from transformers import AutoModelForSequenceClassification
>>> import torch
>>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-uncased")
>>> model.config.pad_token_id
0
```
以下の例は、パディングトークンをマスクせずに出力を表示したものです:
```py
>>> input_ids = torch.tensor([[7592, 2057, 2097, 2393, 9611, 2115], [7592, 0, 0, 0, 0, 0]])
>>> output = model(input_ids)
>>> print(output.logits)
tensor([[ 0.0082, -0.2307],
[ 0.1317, -0.1683]], grad_fn=<AddmmBackward0>)
```
以下は、第2のシーケンスの実際の出力です:
```py
>>> input_ids = torch.tensor([[7592]])
>>> output = model(input_ids)
>>> print(output.logits)
tensor([[-0.1008, -0.4061]], grad_fn=<AddmmBackward0>)
```
大抵の場合、モデルには `attention_mask` を提供して、パディングトークンを無視し、このような無音のエラーを回避する必要があります。これにより、2番目のシーケンスの出力が実際の出力と一致するようになります。
<Tip>
デフォルトでは、トークナイザは、トークナイザのデフォルトに基づいて `attention_mask` を自動で作成します。
</Tip>
```py
>>> attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0]])
>>> output = model(input_ids, attention_mask=attention_mask)
>>> print(output.logits)
tensor([[ 0.0082, -0.2307],
[-0.1008, -0.4061]], grad_fn=<AddmmBackward0>)
```
🤗 Transformersは、提供されるパディングトークンをマスクするために自動的に`attention_mask`を作成しません。その理由は以下の通りです:
- 一部のモデルにはパディングトークンが存在しない場合があるためです。
- 一部のユースケースでは、ユーザーがパディングトークンにアテンションを向けることを望む場合があるためです。
## ValueError: Unrecognized configuration class XYZ for this kind of AutoModel
一般的に、事前学習済みモデルのインスタンスをロードするためには[`AutoModel`]クラスを使用することをお勧めします。このクラスは、設定に基づいて与えられたチェックポイントから正しいアーキテクチャを自動的に推測およびロードできます。モデルをロードする際にこの`ValueError`が表示される場合、Autoクラスは与えられたチェックポイントの設定から、ロードしようとしているモデルの種類へのマッピングを見つけることができなかったことを意味します。最も一般的には、特定のタスクをサポートしないチェックポイントがある場合にこのエラーが発生します。
例えば、質問応答のためのGPT2が存在しない場合、次の例でこのエラーが表示されます:
上記のテキストを日本語に翻訳し、Markdownファイルとしてフォーマットしました。
```py
>>> from transformers import AutoProcessor, AutoModelForQuestionAnswering
>>> processor = AutoProcessor.from_pretrained("openai-community/gpt2-medium")
>>> model = AutoModelForQuestionAnswering.from_pretrained("openai-community/gpt2-medium")
ValueError: Unrecognized configuration class <class 'transformers.models.gpt2.configuration_gpt2.GPT2Config'> for this kind of AutoModel: AutoModelForQuestionAnswering.
Model type should be one of AlbertConfig, BartConfig, BertConfig, BigBirdConfig, BigBirdPegasusConfig, BloomConfig, ...
```
| transformers/docs/source/ja/troubleshooting.md/0 | {
"file_path": "transformers/docs/source/ja/troubleshooting.md",
"repo_id": "transformers",
"token_count": 4434
} | 266 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 디버깅 [[debugging]]
## Multi-GPU 네트워크 문제 디버그 [[multigpu-network-issues-debug]]
`DistributedDataParallel` 및 다중 GPU를 사용하여 훈련하거나 추론할 때, 프로세스 및/또는 노드 간의 상호 통신 문제가 발생하는 경우, 다음 스크립트를 사용하여 네트워크 문제를 진단할 수 있습니다.
```bash
wget https://raw.githubusercontent.com/huggingface/transformers/main/scripts/distributed/torch-distributed-gpu-test.py
```
예를 들어, 2개의 GPU가 상호 작용하는 방식을 테스트하려면 다음을 실행하세요:
```bash
python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
```
두 프로세스가 서로 통신하고 GPU 메모리를 할당하는 경우, 각각 "OK" 상태를 출력합니다.
더 많은 GPU 또는 노드의 경우 스크립트의 인수를 조정하면 됩니다.
진단 스크립트 내에서 더 많은 세부 정보와 SLURM 환경에서 실행하는 방법에 대한 레시피를 찾을 수 있습니다.
추가적인 디버그 수준은 다음과 같이 `NCCL_DEBUG=INFO` 환경 변수를 추가하는 것입니다:
```bash
NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
```
이렇게 하면 NCCL 관련 디버그 정보가 많이 출력되며, 문제가 보고된 경우에는 인터넷에서 검색할 수 있습니다. 또는 출력을 해석하는 방법을 잘 모르는 경우 로그 파일을 이슈에 공유할 수 있습니다.
## 언더플로 및 오버플로 감지 [[underflow-and-overflow-detection]]
<Tip>
이 기능은 현재 PyTorch에서만 사용할 수 있습니다.
</Tip>
<Tip>
다중 GPU 훈련을 위해서는 DDP (`torch.distributed.launch`)가 필요합니다.
</Tip>
<Tip>
이 기능은 `nn.Module`을 기반으로 하는 모델과 함께 사용할 수 있습니다.
</Tip>
`loss=NaN`이 나타나거나 모델이 `inf` 또는 `nan`으로 인해 다른 이상한 동작을 하는 경우, 언더플로 또는 오버플로의 첫 번째 발생 위치와 그 원인을 파악해야 합니다. 다행히도 이를 자동으로 감지하는 특수 모듈을 활성화하여 쉽게 알아낼 수 있습니다.
[`Trainer`]를 사용하는 경우, 다음을 기존의 명령줄 인수에 추가하면 됩니다.
```bash
--debug underflow_overflow
```
또는 [`TrainingArguments`] 객체를 생성할 때 `debug="underflow_overflow"`를 전달합니다.
자체 훈련 루프나 다른 Trainer를 사용하는 경우, 다음과 같이 수행할 수 있습니다.
```python
from transformers.debug_utils import DebugUnderflowOverflow
debug_overflow = DebugUnderflowOverflow(model)
```
[`~debug_utils.DebugUnderflowOverflow`]는 모델에 후크를 삽입하여 각 forward 호출 직후에 입력 및 출력 변수 및 해당 모듈의 가중치를 테스트합니다. 활성화나 가중치의 최소한 하나의 요소에서 `inf` 또는 `nan`이 감지되면 프로그램이 어설트되고 다음과 같은 보고서가 출력됩니다. (이 예제는 fp16 혼합 정밀도에서 `google/mt5-small`에서 캡처된 것입니다):
```
Detected inf/nan during batch_number=0
Last 21 forward frames:
abs min abs max metadata
encoder.block.1.layer.1.DenseReluDense.dropout Dropout
0.00e+00 2.57e+02 input[0]
0.00e+00 2.85e+02 output
[...]
encoder.block.2.layer.0 T5LayerSelfAttention
6.78e-04 3.15e+03 input[0]
2.65e-04 3.42e+03 output[0]
None output[1]
2.25e-01 1.00e+04 output[2]
encoder.block.2.layer.1.layer_norm T5LayerNorm
8.69e-02 4.18e-01 weight
2.65e-04 3.42e+03 input[0]
1.79e-06 4.65e+00 output
encoder.block.2.layer.1.DenseReluDense.wi_0 Linear
2.17e-07 4.50e+00 weight
1.79e-06 4.65e+00 input[0]
2.68e-06 3.70e+01 output
encoder.block.2.layer.1.DenseReluDense.wi_1 Linear
8.08e-07 2.66e+01 weight
1.79e-06 4.65e+00 input[0]
1.27e-04 2.37e+02 output
encoder.block.2.layer.1.DenseReluDense.dropout Dropout
0.00e+00 8.76e+03 input[0]
0.00e+00 9.74e+03 output
encoder.block.2.layer.1.DenseReluDense.wo Linear
1.01e-06 6.44e+00 weight
0.00e+00 9.74e+03 input[0]
3.18e-04 6.27e+04 output
encoder.block.2.layer.1.DenseReluDense T5DenseGatedGeluDense
1.79e-06 4.65e+00 input[0]
3.18e-04 6.27e+04 output
encoder.block.2.layer.1.dropout Dropout
3.18e-04 6.27e+04 input[0]
0.00e+00 inf output
```
예제 출력은 간략성을 위해 중간 부분이 잘려 있습니다.
두 번째 열은 절대적으로 가장 큰 요소의 값이며, 따라서 마지막 몇 개의 프레임을 자세히 살펴보면 입력과 출력이 `1e4` 범위에 있음을 알 수 있습니다. 따라서 이 훈련은 `fp16` 혼합 정밀도로 수행될 때 가장 마지막 단계에서 오버플로우가 발생했습니다 (`fp16`에서 `inf` 이전의 가장 큰 숫자는 `64e3`입니다). `fp16` 아래에서 오버플로우를 피하기 위해서는 활성화는 `1e4`보다 훨씬 작아야 합니다. 왜냐하면 `1e4 * 1e4 = 1e8`이기 때문에 큰 활성화와의 행렬 곱은 수치적인 오버플로우 조건으로 이어질 것입니다.
추적의 맨 처음에서 어느 배치 번호에서 문제가 발생했는지 알 수 있습니다 (여기서 `Detected inf/nan during batch_number=0`은 문제가 첫 번째 배치에서 발생했음을 의미합니다).
각 보고된 프레임은 해당 프레임이 보고하는 해당 모듈에 대한 완전한 항목을 선언하며, 이 프레임만 살펴보면 다음과 같습니다.
```
encoder.block.2.layer.1.layer_norm T5LayerNorm
8.69e-02 4.18e-01 weight
2.65e-04 3.42e+03 input[0]
1.79e-06 4.65e+00 output
```
여기서 `encoder.block.2.layer.1.layer_norm`은 인코더의 두 번째 블록의 첫 번째 레이어에 대한 레이어 정규화를 의미하며, `forward`의 특정 호출은 `T5LayerNorm`입니다.
이 보고서의 마지막 몇 개 프레임을 살펴보겠습니다:
```
Detected inf/nan during batch_number=0
Last 21 forward frames:
abs min abs max metadata
[...]
encoder.block.2.layer.1.DenseReluDense.wi_0 Linear
2.17e-07 4.50e+00 weight
1.79e-06 4.65e+00 input[0]
2.68e-06 3.70e+01 output
encoder.block.2.layer.1.DenseReluDense.wi_1 Linear
8.08e-07 2.66e+01 weight
1.79e-06 4.65e+00 input[0]
1.27e-04 2.37e+02 output
encoder.block.2.layer.1.DenseReluDense.wo Linear
1.01e-06 6.44e+00 weight
0.00e+00 9.74e+03 input[0]
3.18e-04 6.27e+04 output
encoder.block.2.layer.1.DenseReluDense T5DenseGatedGeluDense
1.79e-06 4.65e+00 input[0]
3.18e-04 6.27e+04 output
encoder.block.2.layer.1.dropout Dropout
3.18e-04 6.27e+04 input[0]
0.00e+00 inf output
```
마지막 프레임은 `Dropout.forward` 함수에 대한 보고입니다. 첫 번째 항목은 유일한 입력을 나타내고 두 번째 항목은 유일한 출력을 나타냅니다. 이 함수가 `DenseReluDense` 클래스 내부의 `dropout` 속성에서 호출된 것을 볼 수 있습니다. 이는 첫 번째 레이어의 두 번째 블록에서 첫 번째 배치 중에 발생했다는 것을 알 수 있습니다. 마지막으로, 절대적으로 가장 큰 입력 요소는 `6.27e+04`이고 출력도 마찬가지로 `inf`입니다.
여기에서는 `T5DenseGatedGeluDense.forward`가 출력 활성화를 생성하는데, 절대적으로 가장 큰 값이 약 62.7K인 것을 볼 수 있습니다. 이 값은 fp16의 최대 제한인 64K에 매우 근접합니다. 다음 프레임에서는 일부 요소를 0으로 만든 후 가중치를 재정규화하는 `Dropout`이 있습니다. 이로 인해 절대 최대값이 64K를 초과하고 오버플로우(`inf`)가 발생합니다.
보시다시피, fp16 숫자의 경우 숫자가 매우 커질 때 이전 프레임을 살펴보아야 합니다.
보고서를 `models/t5/modeling_t5.py`의 코드와 일치시켜 보겠습니다.
```python
class T5DenseGatedGeluDense(nn.Module):
def __init__(self, config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.gelu_act = ACT2FN["gelu_new"]
def forward(self, hidden_states):
hidden_gelu = self.gelu_act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
```
이제 `dropout` 호출과 이전의 모든 호출을 쉽게 확인할 수 있습니다.
감지는 `forward` 후크에서 발생하므로, 이러한 보고서는 각 `forward`가 반환된 직후에 즉시 출력됩니다.
전체 보고서로 돌아가서 문제에 대한 조치 및 수정을 하려면, 숫자가 증가하기 시작한 몇 개의 프레임 위로 이동해서 여기서 `fp32` 모드로 전환해야 합니다. 이렇게 해야 숫자가 곱해지거나 합쳐질 때 오버플로우되지 않을 가능성이 높습니다. 물론 다른 해결책도 있을 수 있습니다. 예를 들어, `amp`가 활성화된 경우 일시적으로 끄고 원래의 `forward`를 도우미 래퍼로 이동한 후 다음과 같이 할 수 있습니다:
```python
def _forward(self, hidden_states):
hidden_gelu = self.gelu_act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
import torch
def forward(self, hidden_states):
if torch.is_autocast_enabled():
with torch.cuda.amp.autocast(enabled=False):
return self._forward(hidden_states)
else:
return self._forward(hidden_states)
```
자동 감지기는 전체 프레임의 입력과 출력에 대해서만 보고하므로, 어디를 살펴봐야 하는지 알면 특정 `forward` 함수의 중간 단계도 분석할 수 있습니다. 이 경우에는 `detect_overflow` 도우미 함수를 사용하여 원하는 위치에 감지기를 삽입할 수 있습니다. 예를 들어:
```python
from debug_utils import detect_overflow
class T5LayerFF(nn.Module):
[...]
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
detect_overflow(forwarded_states, "after layer_norm")
forwarded_states = self.DenseReluDense(forwarded_states)
detect_overflow(forwarded_states, "after DenseReluDense")
return hidden_states + self.dropout(forwarded_states)
```
여기서는 이를 추가하여 2개의 것을 추적하고 이제 `forwarded_states`의 `inf` 또는 `nan`이 중간에 감지되었는지를 추적합니다.
실제로 위의 예제에서 각 호출이 `nn.Module`이기 때문에 탐지기가 이미 이를 보고합니다. 로컬에서 직접 계산하는 경우 이렇게 수행한다고 가정해 봅시다.
또한, 자체 코드에서 디버거를 인스턴스화하는 경우 기본값에서 출력되는 프레임 수를 조정할 수 있습니다. 예를 들어:
```python
from transformers.debug_utils import DebugUnderflowOverflow
debug_overflow = DebugUnderflowOverflow(model, max_frames_to_save=100)
```
### 특정 배치의 절댓값 최소 및 최대 값 추적 [[specific-batch-absolute-min-and-max-value-tracing]]
동일한 디버깅 클래스는 언더플로우/오버플로우 감지 기능이 꺼진 상태에서 배치별 추적에도 사용할 수 있습니다.
예를 들어, 특정 배치의 각 `forward` 호출의 모든 구성 성분에 대한 절대 최솟값과 최댓값을 확인하고, 이를 배치 1과 3에 대해서만 수행하려면 다음과 같이 이 클래스를 인스턴스화합니다:
```python
debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3])
```
그러면 이제 배치 1과 3 전체가 언더플로우/오버플로우 감지기와 동일한 형식으로 추적됩니다.
배치는 0부터 시작합니다.
이는 프로그램이 특정 배치 번호 이후에 오작동하기 시작하는 것을 알고 있는 경우에 유용합니다. 그렇기 때문에 해당 영역으로 바로 이동할 수 있습니다. 이런 구성에 대한 샘플 축소된 출력은 다음과 같습니다.
```
*** Starting batch number=1 ***
abs min abs max metadata
shared Embedding
1.01e-06 7.92e+02 weight
0.00e+00 2.47e+04 input[0]
5.36e-05 7.92e+02 output
[...]
decoder.dropout Dropout
1.60e-07 2.27e+01 input[0]
0.00e+00 2.52e+01 output
decoder T5Stack
not a tensor output
lm_head Linear
1.01e-06 7.92e+02 weight
0.00e+00 1.11e+00 input[0]
6.06e-02 8.39e+01 output
T5ForConditionalGeneration
not a tensor output
*** Starting batch number=3 ***
abs min abs max metadata
shared Embedding
1.01e-06 7.92e+02 weight
0.00e+00 2.78e+04 input[0]
5.36e-05 7.92e+02 output
[...]
```
여기에서는 모델의 forward 호출 수와 동일한 수의 프레임이 덤프되므로 많은 수의 프레임이 생성됩니다. 따라서 원하는 것일 수도 있고 아닐 수도 있습니다. 그러나 때로는 일반 디버거보다 디버깅 목적으로 더 쉽게 사용할 수 있습니다. 예를 들어, 문제가 배치 번호 150에서 시작하는 경우 149와 150의 추적을 덤프하고 숫자가 어디서부터 다르게 되었는지 비교할 수 있습니다.
또한, 훈련을 중지할 배치 번호를 지정할 수도 있습니다. 다음과 같이 지정할 수 있습니다.
```python
debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3], abort_after_batch_num=3)
```
| transformers/docs/source/ko/debugging.md/0 | {
"file_path": "transformers/docs/source/ko/debugging.md",
"repo_id": "transformers",
"token_count": 9860
} | 267 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 🤗 PEFT로 어댑터 가져오기 [[load-adapters-with-peft]]
[[open-in-colab]]
[Parameter-Efficient Fine Tuning (PEFT)](https://huggingface.co/blog/peft) 방법은 사전훈련된 모델의 매개변수를 미세 조정 중 고정시키고, 그 위에 훈련할 수 있는 매우 적은 수의 매개변수(어댑터)를 추가합니다. 어댑터는 작업별 정보를 학습하도록 훈련됩니다. 이 접근 방식은 완전히 미세 조정된 모델에 필적하는 결과를 생성하면서, 메모리 효율적이고 비교적 적은 컴퓨팅 리소스를 사용합니다.
또한 PEFT로 훈련된 어댑터는 일반적으로 전체 모델보다 훨씬 작기 때문에 공유, 저장 및 가져오기가 편리합니다.
<div class="flex flex-col justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/PEFT-hub-screenshot.png"/>
<figcaption class="text-center">Hub에 저장된 OPTForCausalLM 모델의 어댑터 가중치는 최대 700MB에 달하는 모델 가중치의 전체 크기에 비해 약 6MB에 불과합니다.</figcaption>
</div>
🤗 PEFT 라이브러리에 대해 자세히 알아보려면 [문서](https://huggingface.co/docs/peft/index)를 확인하세요.
## 설정 [[setup]]
🤗 PEFT를 설치하여 시작하세요:
```bash
pip install peft
```
새로운 기능을 사용해보고 싶다면, 다음 소스에서 라이브러리를 설치하는 것이 좋습니다:
```bash
pip install git+https://github.com/huggingface/peft.git
```
## 지원되는 PEFT 모델 [[supported-peft-models]]
🤗 Transformers는 기본적으로 일부 PEFT 방법을 지원하며, 로컬이나 Hub에 저장된 어댑터 가중치를 가져오고 몇 줄의 코드만으로 쉽게 실행하거나 훈련할 수 있습니다. 다음 방법을 지원합니다:
- [Low Rank Adapters](https://huggingface.co/docs/peft/conceptual_guides/lora)
- [IA3](https://huggingface.co/docs/peft/conceptual_guides/ia3)
- [AdaLoRA](https://arxiv.org/abs/2303.10512)
🤗 PEFT와 관련된 다른 방법(예: 프롬프트 훈련 또는 프롬프트 튜닝) 또는 일반적인 🤗 PEFT 라이브러리에 대해 자세히 알아보려면 [문서](https://huggingface.co/docs/peft/index)를 참조하세요.
## PEFT 어댑터 가져오기 [[load-a-peft-adapter]]
🤗 Transformers에서 PEFT 어댑터 모델을 가져오고 사용하려면 Hub 저장소나 로컬 디렉터리에 `adapter_config.json` 파일과 어댑터 가중치가 포함되어 있는지 확인하십시오. 그런 다음 `AutoModelFor` 클래스를 사용하여 PEFT 어댑터 모델을 가져올 수 있습니다. 예를 들어 인과 관계 언어 모델용 PEFT 어댑터 모델을 가져오려면 다음 단계를 따르십시오:
1. PEFT 모델 ID를 지정하십시오.
2. [`AutoModelForCausalLM`] 클래스에 전달하십시오.
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id)
```
<Tip>
`AutoModelFor` 클래스나 기본 모델 클래스(예: `OPTForCausalLM` 또는 `LlamaForCausalLM`) 중 하나를 사용하여 PEFT 어댑터를 가져올 수 있습니다.
</Tip>
`load_adapter` 메소드를 호출하여 PEFT 어댑터를 가져올 수도 있습니다.
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "facebook/opt-350m"
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(model_id)
model.load_adapter(peft_model_id)
```
## 8비트 또는 4비트로 가져오기 [[load-in-8bit-or-4bit]]
`bitsandbytes` 통합은 8비트와 4비트 정밀도 데이터 유형을 지원하므로 큰 모델을 가져올 때 유용하면서 메모리도 절약합니다. 모델을 하드웨어에 효과적으로 분배하려면 [`~PreTrainedModel.from_pretrained`]에 `load_in_8bit` 또는 `load_in_4bit` 매개변수를 추가하고 `device_map="auto"`를 설정하세요:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id, device_map="auto", load_in_8bit=True)
```
## 새 어댑터 추가 [[add-a-new-adapter]]
새 어댑터가 현재 어댑터와 동일한 유형인 경우에 한해 기존 어댑터가 있는 모델에 새 어댑터를 추가하려면 [`~peft.PeftModel.add_adapter`]를 사용할 수 있습니다. 예를 들어 모델에 기존 LoRA 어댑터가 연결되어 있는 경우:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig
model_id = "facebook/opt-350m"
model = AutoModelForCausalLM.from_pretrained(model_id)
lora_config = LoraConfig(
target_modules=["q_proj", "k_proj"],
init_lora_weights=False
)
model.add_adapter(lora_config, adapter_name="adapter_1")
```
새 어댑터를 추가하려면:
```py
# attach new adapter with same config
model.add_adapter(lora_config, adapter_name="adapter_2")
```
이제 [`~peft.PeftModel.set_adapter`]를 사용하여 어댑터를 사용할 어댑터로 설정할 수 있습니다:
```py
# use adapter_1
model.set_adapter("adapter_1")
output = model.generate(**inputs)
print(tokenizer.decode(output_disabled[0], skip_special_tokens=True))
# use adapter_2
model.set_adapter("adapter_2")
output_enabled = model.generate(**inputs)
print(tokenizer.decode(output_enabled[0], skip_special_tokens=True))
```
## 어댑터 활성화 및 비활성화 [[enable-and-disable-adapters]]
모델에 어댑터를 추가한 후 어댑터 모듈을 활성화 또는 비활성화할 수 있습니다. 어댑터 모듈을 활성화하려면:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig
model_id = "facebook/opt-350m"
adapter_model_id = "ybelkada/opt-350m-lora"
tokenizer = AutoTokenizer.from_pretrained(model_id)
text = "Hello"
inputs = tokenizer(text, return_tensors="pt")
model = AutoModelForCausalLM.from_pretrained(model_id)
peft_config = PeftConfig.from_pretrained(adapter_model_id)
# to initiate with random weights
peft_config.init_lora_weights = False
model.add_adapter(peft_config)
model.enable_adapters()
output = model.generate(**inputs)
```
어댑터 모듈을 비활성화하려면:
```py
model.disable_adapters()
output = model.generate(**inputs)
```
## PEFT 어댑터 훈련 [[train-a-peft-adapter]]
PEFT 어댑터는 [`Trainer`] 클래스에서 지원되므로 특정 사용 사례에 맞게 어댑터를 훈련할 수 있습니다. 몇 줄의 코드를 추가하기만 하면 됩니다. 예를 들어 LoRA 어댑터를 훈련하려면:
<Tip>
[`Trainer`]를 사용하여 모델을 미세 조정하는 것이 익숙하지 않다면 [사전훈련된 모델을 미세 조정하기](training) 튜토리얼을 확인하세요.
</Tip>
1. 작업 유형 및 하이퍼파라미터를 지정하여 어댑터 구성을 정의합니다. 하이퍼파라미터에 대한 자세한 내용은 [`~peft.LoraConfig`]를 참조하세요.
```py
from peft import LoraConfig
peft_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias="none",
task_type="CAUSAL_LM",
)
```
2. 모델에 어댑터를 추가합니다.
```py
model.add_adapter(peft_config)
```
3. 이제 모델을 [`Trainer`]에 전달할 수 있습니다!
```py
trainer = Trainer(model=model, ...)
trainer.train()
```
훈련한 어댑터를 저장하고 다시 가져오려면:
```py
model.save_pretrained(save_dir)
model = AutoModelForCausalLM.from_pretrained(save_dir)
```
| transformers/docs/source/ko/peft.md/0 | {
"file_path": "transformers/docs/source/ko/peft.md",
"repo_id": "transformers",
"token_count": 5049
} | 268 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 둘러보기 [[quick-tour]]
[[open-in-colab]]
🤗 Transformers를 시작해보세요! 개발해본 적이 없더라도 쉽게 읽을 수 있도록 쓰인 이 글은 [`pipeline`](./main_classes/pipelines)을 사용하여 추론하고, 사전학습된 모델과 전처리기를 [AutoClass](./model_doc/auto)로 로드하고, PyTorch 또는 TensorFlow로 모델을 빠르게 학습시키는 방법을 소개해 드릴 것입니다. 본 가이드에서 소개되는 개념을 (특히 초보자의 관점으로) 더 친절하게 접하고 싶다면, 튜토리얼이나 [코스](https://huggingface.co/course/chapter1/1)를 참조하기를 권장합니다.
시작하기 전에 필요한 라이브러리가 모두 설치되어 있는지 확인하세요:
```bash
!pip install transformers datasets
```
또한 선호하는 머신 러닝 프레임워크를 설치해야 합니다:
<frameworkcontent>
<pt>
```bash
pip install torch
```
</pt>
<tf>
```bash
pip install tensorflow
```
</tf>
</frameworkcontent>
## 파이프라인 [[pipeline]]
<Youtube id="tiZFewofSLM"/>
[`pipeline`](./main_classes/pipelines)은 사전 훈련된 모델로 추론하기에 가장 쉽고 빠른 방법입니다. [`pipeline`]은 여러 모달리티에서 다양한 과업을 쉽게 처리할 수 있으며, 아래 표에 표시된 몇 가지 과업을 기본적으로 지원합니다:
<Tip>
사용 가능한 작업의 전체 목록은 [Pipelines API 참조](./main_classes/pipelines)를 확인하세요.
</Tip>
| **태스크** | **설명** | **모달리티** | **파이프라인 ID** |
|-----------------|----------------------------------------------------------------------|------------------|-----------------------------------------------|
| 텍스트 분류 | 텍스트에 알맞은 레이블 붙이기 | 자연어 처리(NLP) | pipeline(task="sentiment-analysis") |
| 텍스트 생성 | 주어진 문자열 입력과 이어지는 텍스트 생성하기 | 자연어 처리(NLP) | pipeline(task="text-generation") |
| 개체명 인식 | 문자열의 각 토큰마다 알맞은 레이블 붙이기 (인물, 조직, 장소 등등) | 자연어 처리(NLP) | pipeline(task="ner") |
| 질의응답 | 주어진 문맥과 질문에 따라 올바른 대답하기 | 자연어 처리(NLP) | pipeline(task="question-answering") |
| 빈칸 채우기 | 문자열의 빈칸에 알맞은 토큰 맞추기 | 자연어 처리(NLP) | pipeline(task="fill-mask") |
| 요약 | 텍스트나 문서를 요약하기 | 자연어 처리(NLP) | pipeline(task="summarization") |
| 번역 | 텍스트를 한 언어에서 다른 언어로 번역하기 | 자연어 처리(NLP) | pipeline(task="translation") |
| 이미지 분류 | 이미지에 알맞은 레이블 붙이기 | 컴퓨터 비전(CV) | pipeline(task="image-classification") |
| 이미지 분할 | 이미지의 픽셀마다 레이블 붙이기(시맨틱, 파놉틱 및 인스턴스 분할 포함) | 컴퓨터 비전(CV) | pipeline(task="image-segmentation") |
| 객체 탐지 | 이미지 속 객체의 경계 상자를 그리고 클래스를 예측하기 | 컴퓨터 비전(CV) | pipeline(task="object-detection") |
| 오디오 분류 | 오디오 파일에 알맞은 레이블 붙이기 | 오디오 | pipeline(task="audio-classification") |
| 자동 음성 인식 | 오디오 파일 속 음성을 텍스트로 바꾸기 | 오디오 | pipeline(task="automatic-speech-recognition") |
| 시각 질의응답 | 주어진 이미지와 질문에 대해 올바르게 대답하기 | 멀티모달 | pipeline(task="vqa") |
| 문서 질의응답 | 주어진 문서와 질문에 대해 올바르게 대답하기 | 멀티모달 | pipeline(task="document-question-answering") |
| 이미지 캡션 달기 | 주어진 이미지의 캡션 생성하기 | 멀티모달 | pipeline(task="image-to-text") |
먼저 [`pipeline`]의 인스턴스를 생성하고 사용할 작업을 지정합니다. 이 가이드에서는 감정 분석을 위해 [`pipeline`]을 사용하는 예제를 보여드리겠습니다:
```py
>>> from transformers import pipeline
>>> classifier = pipeline("sentiment-analysis")
```
[`pipeline`]은 감정 분석을 위한 [사전 훈련된 모델](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english)과 토크나이저를 자동으로 다운로드하고 캐시합니다. 이제 `classifier`를 대상 텍스트에 사용할 수 있습니다:
```py
>>> classifier("We are very happy to show you the 🤗 Transformers library.")
[{'label': 'POSITIVE', 'score': 0.9998}]
```
만약 입력이 여러 개 있는 경우, 입력을 리스트로 [`pipeline`]에 전달하여, 사전 훈련된 모델의 출력을 딕셔너리로 이루어진 리스트 형태로 받을 수 있습니다:
```py
>>> results = classifier(["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."])
>>> for result in results:
... print(f"label: {result['label']}, with score: {round(result['score'], 4)}")
label: POSITIVE, with score: 0.9998
label: NEGATIVE, with score: 0.5309
```
[`pipeline`]은 주어진 과업에 관계없이 데이터셋 전부를 순회할 수도 있습니다. 이 예제에서는 자동 음성 인식을 과업으로 선택해 보겠습니다:
```py
>>> import torch
>>> from transformers import pipeline
>>> speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
```
데이터셋을 로드할 차례입니다. (자세한 내용은 🤗 Datasets [시작하기](https://huggingface.co/docs/datasets/quickstart#audio)을 참조하세요) 여기에서는 [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) 데이터셋을 로드하겠습니다:
```py
>>> from datasets import load_dataset, Audio
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") # doctest: +IGNORE_RESULT
```
데이터셋의 샘플링 레이트가 기존 모델인 [`facebook/wav2vec2-base-960h`](https://huggingface.co/facebook/wav2vec2-base-960h)의 훈련 당시 샘플링 레이트와 일치하는지 확인해야 합니다:
```py
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate))
```
`"audio"` 열을 호출하면 자동으로 오디오 파일을 가져와서 리샘플링합니다. 첫 4개 샘플에서 원시 웨이브폼 배열을 추출하고 파이프라인에 리스트로 전달하세요:
```py
>>> result = speech_recognizer(dataset[:4]["audio"])
>>> print([d["text"] for d in result])
['I WOULD LIKE TO SET UP A JOINT ACCOUNT WITH MY PARTNER HOW DO I PROCEED WITH DOING THAT', "FONDERING HOW I'D SET UP A JOIN TO HELL T WITH MY WIFE AND WHERE THE AP MIGHT BE", "I I'D LIKE TOY SET UP A JOINT ACCOUNT WITH MY PARTNER I'M NOT SEEING THE OPTION TO DO IT ON THE APSO I CALLED IN TO GET SOME HELP CAN I JUST DO IT OVER THE PHONE WITH YOU AND GIVE YOU THE INFORMATION OR SHOULD I DO IT IN THE AP AN I'M MISSING SOMETHING UQUETTE HAD PREFERRED TO JUST DO IT OVER THE PHONE OF POSSIBLE THINGS", 'HOW DO I FURN A JOINA COUT']
```
음성이나 비전과 같이 입력이 큰 대규모 데이터셋의 경우, 모든 입력을 메모리에 로드하려면 리스트 대신 제너레이터 형태로 전달해야 합니다. 자세한 내용은 [Pipelines API 참조](./main_classes/pipelines)를 확인하세요.
### 파이프라인에서 다른 모델과 토크나이저 사용하기 [[use-another-model-and-tokenizer-in-the-pipeline]]
[`pipeline`]은 [Hub](https://huggingface.co/models)의 모든 모델을 사용할 수 있기 때문에, [`pipeline`]을 다른 용도에 맞게 쉽게 수정할 수 있습니다. 예를 들어, 프랑스어 텍스트를 처리할 수 있는 모델을 사용하기 위해선 Hub의 태그를 사용하여 적절한 모델을 필터링하면 됩니다. 필터링된 결과의 상위 항목으로는 프랑스어 텍스트에 사용할 수 있는 다국어 [BERT 모델](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment)이 반환됩니다:
```py
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
```
<frameworkcontent>
<pt>
[`AutoModelForSequenceClassification`]과 [`AutoTokenizer`]를 사용하여 사전 훈련된 모델과 관련된 토크나이저를 로드하세요 (다음 섹션에서 [`AutoClass`]에 대해 더 자세히 알아보겠습니다):
```py
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
</pt>
<tf>
[`TFAutoModelForSequenceClassification`]과 [`AutoTokenizer`]를 사용하여 사전 훈련된 모델과 관련된 토크나이저를 로드하세요 (다음 섹션에서 [`TFAutoClass`]에 대해 더 자세히 알아보겠습니다):
```py
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
</tf>
</frameworkcontent>
[`pipeline`]에서 모델과 토크나이저를 지정하면, 이제 `classifier`를 프랑스어 텍스트에 적용할 수 있습니다:
```py
>>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
>>> classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.")
[{'label': '5 stars', 'score': 0.7273}]
```
마땅한 모델을 찾을 수 없는 경우 데이터를 기반으로 사전 훈련된 모델을 미세조정해야 합니다. 미세조정 방법에 대한 자세한 내용은 [미세조정 튜토리얼](./training)을 참조하세요. 사전 훈련된 모델을 미세조정한 후에는 모델을 Hub의 커뮤니티와 공유하여 머신러닝 민주화에 기여해주세요! 🤗
## AutoClass [[autoclass]]
<Youtube id="AhChOFRegn4"/>
[`AutoModelForSequenceClassification`]과 [`AutoTokenizer`] 클래스는 위에서 다룬 [`pipeline`]의 기능을 구현하는 데 사용됩니다. [AutoClass](./model_doc/auto)는 사전 훈련된 모델의 아키텍처를 이름이나 경로에서 자동으로 가져오는 '바로가기'입니다. 과업에 적합한 `AutoClass`를 선택하고 해당 전처리 클래스를 선택하기만 하면 됩니다.
이전 섹션의 예제로 돌아가서 [`pipeline`]의 결과를 `AutoClass`를 활용해 복제하는 방법을 살펴보겠습니다.
### AutoTokenizer [[autotokenizer]]
토크나이저는 텍스트를 모델의 입력으로 사용하기 위해 숫자 배열 형태로 전처리하는 역할을 담당합니다. 토큰화 과정에는 단어를 어디에서 끊을지, 어느 수준까지 나눌지와 같은 여러 규칙들이 있습니다 (토큰화에 대한 자세한 내용은 [토크나이저 요약](./tokenizer_summary)을 참조하세요). 가장 중요한 점은 모델이 사전 훈련된 모델과 동일한 토큰화 규칙을 사용하도록 동일한 모델 이름으로 토크나이저를 인스턴스화해야 한다는 것입니다.
[`AutoTokenizer`]로 토크나이저를 로드하세요:
```py
>>> from transformers import AutoTokenizer
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
텍스트를 토크나이저에 전달하세요:
```py
>>> encoding = tokenizer("We are very happy to show you the 🤗 Transformers library.")
>>> print(encoding)
{'input_ids': [101, 11312, 10320, 12495, 19308, 10114, 11391, 10855, 10103, 100, 58263, 13299, 119, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
토크나이저는 다음을 포함한 딕셔너리를 반환합니다:
* [input_ids](./glossary#input-ids): 토큰의 숫자 표현.
* [attention_mask](.glossary#attention-mask): 어떤 토큰에 주의를 기울여야 하는지를 나타냅니다.
토크나이저는 입력을 리스트 형태로도 받을 수 있으며, 텍스트를 패딩하고 잘라내어 일정한 길이의 묶음을 반환할 수도 있습니다:
<frameworkcontent>
<pt>
```py
>>> pt_batch = tokenizer(
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
... padding=True,
... truncation=True,
... max_length=512,
... return_tensors="pt",
... )
```
</pt>
<tf>
```py
>>> tf_batch = tokenizer(
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
... padding=True,
... truncation=True,
... max_length=512,
... return_tensors="tf",
... )
```
</tf>
</frameworkcontent>
<Tip>
[전처리](./preprocessing) 튜토리얼을 참조하시면 토큰화에 대한 자세한 설명과 함께 이미지, 오디오와 멀티모달 입력을 전처리하기 위한 [`AutoImageProcessor`]와 [`AutoFeatureExtractor`], [`AutoProcessor`]의 사용방법도 알 수 있습니다.
</Tip>
### AutoModel [[automodel]]
<frameworkcontent>
<pt>
🤗 Transformers는 사전 훈련된 인스턴스를 간단하고 통합된 방법으로 로드할 수 있습니다. 즉, [`AutoTokenizer`]처럼 [`AutoModel`]을 로드할 수 있습니다. 유일한 차이점은 과업에 알맞은 [`AutoModel`]을 선택해야 한다는 점입니다. 텍스트 (또는 시퀀스) 분류의 경우 [`AutoModelForSequenceClassification`]을 로드해야 합니다:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name)
```
<Tip>
[`AutoModel`] 클래스에서 지원하는 과업에 대해서는 [과업 요약](./task_summary)을 참조하세요.
</Tip>
이제 전처리된 입력 묶음을 직접 모델에 전달해야 합니다. 아래처럼 `**`를 앞에 붙여 딕셔너리를 풀어주면 됩니다:
```py
>>> pt_outputs = pt_model(**pt_batch)
```
모델의 최종 활성화 함수 출력은 `logits` 속성에 담겨있습니다. `logits`에 softmax 함수를 적용하여 확률을 얻을 수 있습니다:
```py
>>> from torch import nn
>>> pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=-1)
>>> print(pt_predictions)
tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
[0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>)
```
</pt>
<tf>
🤗 Transformers는 사전 훈련된 인스턴스를 간단하고 통합된 방법으로 로드할 수 있습니다. 즉, [`AutoTokenizer`]처럼 [`TFAutoModel`]을 로드할 수 있습니다. 유일한 차이점은 과업에 알맞은 [`TFAutoModel`]을 선택해야 한다는 점입니다. 텍스트 (또는 시퀀스) 분류의 경우 [`TFAutoModelForSequenceClassification`]을 로드해야 합니다:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
```
<Tip>
[`AutoModel`] 클래스에서 지원하는 과업에 대해서는 [과업 요약](./task_summary)을 참조하세요.
</Tip>
이제 전처리된 입력 묶음을 직접 모델에 전달해야 합니다. 아래처럼 그대로 텐서를 전달하면 됩니다:
```py
>>> tf_outputs = tf_model(tf_batch)
```
모델의 최종 활성화 함수 출력은 `logits` 속성에 담겨있습니다. `logits`에 softmax 함수를 적용하여 확률을 얻을 수 있습니다:
```py
>>> import tensorflow as tf
>>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
>>> tf_predictions # doctest: +IGNORE_RESULT
```
</tf>
</frameworkcontent>
<Tip>
모든 🤗 Transformers 모델(PyTorch 또는 TensorFlow)은 (softmax와 같은) 최종 활성화 함수 *이전에* 텐서를 출력합니다. 왜냐하면 최종 활성화 함수의 출력은 종종 손실 함수 출력과 결합되기 때문입니다. 모델 출력은 특수한 데이터 클래스이므로 IDE에서 자동 완성됩니다. 모델 출력은 튜플이나 딕셔너리처럼 동작하며 (정수, 슬라이스 또는 문자열로 인덱싱 가능), None인 속성은 무시됩니다.
</Tip>
### 모델 저장하기 [[save-a-model]]
<frameworkcontent>
<pt>
미세조정된 모델을 토크나이저와 함께 저장하려면 [`PreTrainedModel.save_pretrained`]를 사용하세요:
```py
>>> pt_save_directory = "./pt_save_pretrained"
>>> tokenizer.save_pretrained(pt_save_directory) # doctest: +IGNORE_RESULT
>>> pt_model.save_pretrained(pt_save_directory)
```
모델을 다시 사용하려면 [`PreTrainedModel.from_pretrained`]로 모델을 다시 로드하세요:
```py
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained")
```
</pt>
<tf>
미세조정된 모델을 토크나이저와 함께 저장하려면 [`TFPreTrainedModel.save_pretrained`]를 사용하세요:
```py
>>> tf_save_directory = "./tf_save_pretrained"
>>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT
>>> tf_model.save_pretrained(tf_save_directory)
```
모델을 다시 사용하려면 [`TFPreTrainedModel.from_pretrained`]로 모델을 다시 로드하세요:
```py
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained")
```
</tf>
</frameworkcontent>
🤗 Transformers의 멋진 기능 중 하나는 모델을 PyTorch 또는 TensorFlow 모델로 저장해뒀다가 다른 프레임워크로 다시 로드할 수 있는 점입니다. `from_pt` 또는 `from_tf` 매개변수를 사용하여 모델을 한 프레임워크에서 다른 프레임워크로 변환할 수 있습니다:
<frameworkcontent>
<pt>
```py
>>> from transformers import AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
```
</pt>
<tf>
```py
>>> from transformers import TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
</tf>
</frameworkcontent>
## 커스텀 모델 구축하기 [[custom-model-builds]]
모델의 구성 클래스를 수정하여 모델의 구조를 바꿀 수 있습니다. (은닉층이나 어텐션 헤드의 수와 같은) 모델의 속성은 구성에서 지정되기 때문입니다. 커스텀 구성 클래스로 모델을 만들면 처음부터 시작해야 합니다. 모델 속성은 무작위로 초기화되므로 의미 있는 결과를 얻으려면 먼저 모델을 훈련시켜야 합니다.
먼저 [`AutoConfig`]를 가져오고 수정하고 싶은 사전학습된 모델을 로드하세요. [`AutoConfig.from_pretrained`] 내부에서 (어텐션 헤드 수와 같이) 변경하려는 속성를 지정할 수 있습니다:
```py
>>> from transformers import AutoConfig
>>> my_config = AutoConfig.from_pretrained("distilbert/distilbert-base-uncased", n_heads=12)
```
<frameworkcontent>
<pt>
[`AutoModel.from_config`]를 사용하여 바꾼 구성대로 모델을 생성하세요:
```py
>>> from transformers import AutoModel
>>> my_model = AutoModel.from_config(my_config)
```
</pt>
<tf>
[`TFAutoModel.from_config`]를 사용하여 바꾼 구성대로 모델을 생성하세요:
```py
>>> from transformers import TFAutoModel
>>> my_model = TFAutoModel.from_config(my_config)
```
</tf>
</frameworkcontent>
커스텀 구성에 대한 자세한 내용은 [커스텀 아키텍처 만들기](./create_a_model) 가이드를 확인하세요.
## Trainer - PyTorch에 최적화된 훈련 루프 [[trainer-a-pytorch-optimized-training-loop]]
모든 모델은 [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)이므로 일반적인 훈련 루프에서 사용할 수 있습니다. 직접 훈련 루프를 작성할 수도 있지만, 🤗 Transformers는 PyTorch를 위한 [`Trainer`] 클래스를 제공합니다. 이 클래스에는 기본 훈련 루프가 포함되어 있으며 분산 훈련, 혼합 정밀도 등과 같은 기능을 추가로 제공합니다.
과업에 따라 다르지만 일반적으로 [`Trainer`]에 다음 매개변수를 전달합니다:
1. [`PreTrainedModel`] 또는 [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)로 시작합니다:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
2. [`TrainingArguments`]는 학습률, 배치 크기, 훈련할 에포크 수와 같은 모델 하이퍼파라미터를 포함합니다. 훈련 인자를 지정하지 않으면 기본값이 사용됩니다:
```py
>>> from transformers import TrainingArguments
>>> training_args = TrainingArguments(
... output_dir="path/to/save/folder/",
... learning_rate=2e-5,
... per_device_train_batch_size=8,
... per_device_eval_batch_size=8,
... num_train_epochs=2,
... )
```
3. 토크나이저, 이미지 프로세서, 특징 추출기(feature extractor) 또는 프로세서와 전처리 클래스를 로드하세요:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
```
4. 데이터셋을 로드하세요:
```py
>>> from datasets import load_dataset
>>> dataset = load_dataset("rotten_tomatoes") # doctest: +IGNORE_RESULT
```
5. 데이터셋을 토큰화하는 함수를 생성하세요:
```py
>>> def tokenize_dataset(dataset):
... return tokenizer(dataset["text"])
```
그리고 [`~datasets.Dataset.map`]로 데이터셋 전체에 적용하세요:
```py
>>> dataset = dataset.map(tokenize_dataset, batched=True)
```
6. [`DataCollatorWithPadding`]을 사용하여 데이터셋의 표본 묶음을 만드세요:
```py
>>> from transformers import DataCollatorWithPadding
>>> data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
```
이제 위의 모든 클래스를 [`Trainer`]로 모으세요:
```py
>>> from transformers import Trainer
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=dataset["train"],
... eval_dataset=dataset["test"],
... tokenizer=tokenizer,
... data_collator=data_collator,
... ) # doctest: +SKIP
```
준비가 되었으면 [`~Trainer.train`]을 호출하여 훈련을 시작하세요:
```py
>>> trainer.train() # doctest: +SKIP
```
<Tip>
번역이나 요약과 같이 시퀀스-시퀀스 모델을 사용하는 과업에는 [`Seq2SeqTrainer`] 및 [`Seq2SeqTrainingArguments`] 클래스를 사용하세요.
</Tip>
[`Trainer`] 내의 메서드를 서브클래스화하여 훈련 루프를 바꿀 수도 있습니다. 이러면 손실 함수, 옵티마이저, 스케줄러와 같은 기능 또한 바꿀 수 있게 됩니다. 변경 가능한 메소드에 대해서는 [`Trainer`] 문서를 참고하세요.
훈련 루프를 수정하는 다른 방법은 [Callbacks](./main_classes/callbacks)를 사용하는 것입니다. Callbacks로 다른 라이브러리와 통합하고, 훈련 루프를 체크하여 진행 상황을 보고받거나, 훈련을 조기에 중단할 수 있습니다. Callbacks은 훈련 루프 자체를 바꾸지는 않습니다. 손실 함수와 같은 것을 바꾸려면 [`Trainer`]를 서브클래스화해야 합니다.
## TensorFlow로 훈련시키기 [[train-with-tensorflow]]
모든 모델은 [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)이므로 [Keras](https://keras.io/) API를 통해 TensorFlow에서 훈련시킬 수 있습니다. 🤗 Transformers는 데이터셋을 쉽게 `tf.data.Dataset` 형태로 쉽게 로드할 수 있는 [`~TFPreTrainedModel.prepare_tf_dataset`] 메소드를 제공하기 때문에, Keras의 [`compile`](https://keras.io/api/models/model_training_apis/#compile-method) 및 [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) 메소드로 바로 훈련을 시작할 수 있습니다.
1. [`TFPreTrainedModel`] 또는 [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)로 시작합니다:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
```
2. 토크나이저, 이미지 프로세서, 특징 추출기(feature extractor) 또는 프로세서와 같은 전처리 클래스를 로드하세요:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
```
3. 데이터셋을 토큰화하는 함수를 생성하세요:
```py
>>> def tokenize_dataset(dataset):
... return tokenizer(dataset["text"]) # doctest: +SKIP
```
4. [`~datasets.Dataset.map`]을 사용하여 전체 데이터셋에 토큰화 함수를 적용하고, 데이터셋과 토크나이저를 [`~TFPreTrainedModel.prepare_tf_dataset`]에 전달하세요. 배치 크기를 변경하거나 데이터셋을 섞을 수도 있습니다:
```py
>>> dataset = dataset.map(tokenize_dataset) # doctest: +SKIP
>>> tf_dataset = model.prepare_tf_dataset(
... dataset["train"], batch_size=16, shuffle=True, tokenizer=tokenizer
... ) # doctest: +SKIP
```
5. 준비되었으면 `compile` 및 `fit`를 호출하여 훈련을 시작하세요. 🤗 Transformers의 모든 모델은 과업과 관련된 기본 손실 함수를 가지고 있으므로 명시적으로 지정하지 않아도 됩니다:
```py
>>> from tensorflow.keras.optimizers import Adam
>>> model.compile(optimizer=Adam(3e-5)) # No loss argument!
>>> model.fit(tf_dataset) # doctest: +SKIP
```
## 다음 단계는 무엇인가요? [[whats-next]]
🤗 Transformers 둘러보기를 모두 읽으셨다면, 가이드를 살펴보고 더 구체적인 것을 수행하는 방법을 알아보세요. 이를테면 커스텀 모델 구축하는 방법, 과업에 알맞게 모델을 미세조정하는 방법, 스크립트로 모델 훈련하는 방법 등이 있습니다. 🤗 Transformers 핵심 개념에 대해 더 알아보려면 커피 한 잔 들고 개념 가이드를 살펴보세요! | transformers/docs/source/ko/quicktour.md/0 | {
"file_path": "transformers/docs/source/ko/quicktour.md",
"repo_id": "transformers",
"token_count": 17529
} | 269 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 의미적 분할(Semantic segmentation)[[semantic-segmentation]]
[[open-in-colab]]
<Youtube id="dKE8SIt9C-w"/>
의미적 분할(semantic segmentation)은 이미지의 각 픽셀에 레이블 또는 클래스를 할당합니다. 분할(segmentation)에는 여러 종류가 있으며, 의미적 분할의 경우 동일한 물체의 고유 인스턴스를 구분하지 않습니다. 두 물체 모두 동일한 레이블이 지정됩니다(예시로, "car-1" 과 "car-2" 대신 "car"로 지정합니다).
실생활에서 흔히 볼 수 있는 의미적 분할의 적용 사례로는 보행자와 중요한 교통 정보를 식별하는 자율 주행 자동차 학습, 의료 이미지의 세포와 이상 징후 식별, 그리고 위성 이미지의 환경 변화 모니터링등이 있습니다.
이번 가이드에서 배울 내용은 다음과 같습니다:
1. [SceneParse150](https://huggingface.co/datasets/scene_parse_150) 데이터 세트를 이용해 [SegFormer](https://huggingface.co/docs/transformers/main/en/model_doc/segformer#segformer) 미세 조정하기.
2. 미세 조정된 모델을 추론에 사용하기.
<Tip>
이 튜토리얼에서 설명하는 작업은 다음 모델 아키텍처에서 지원됩니다:
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
[BEiT](../model_doc/beit), [Data2VecVision](../model_doc/data2vec-vision), [DPT](../model_doc/dpt), [MobileNetV2](../model_doc/mobilenet_v2), [MobileViT](../model_doc/mobilevit), [MobileViTV2](../model_doc/mobilevitv2), [SegFormer](../model_doc/segformer), [UPerNet](../model_doc/upernet)
<!--End of the generated tip-->
</Tip>
시작하기 전에 필요한 모든 라이브러리가 설치되었는지 확인하세요:
```bash
pip install -q datasets transformers evaluate
```
커뮤니티에 모델을 업로드하고 공유할 수 있도록 Hugging Face 계정에 로그인하는 것을 권장합니다. 프롬프트가 나타나면 토큰을 입력하여 로그인하세요:
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## SceneParse150 데이터 세트 불러오기[[load-sceneparse150-dataset]]
🤗 Datasets 라이브러리에서 SceneParse150 데이터 세트의 더 작은 부분 집합을 가져오는 것으로 시작합니다. 이렇게 하면 데이터 세트 전체에 대한 훈련에 많은 시간을 할애하기 전에 실험을 통해 모든 것이 제대로 작동하는지 확인할 수 있습니다.
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("scene_parse_150", split="train[:50]")
```
데이터 세트의 `train`을 [`~datasets.Dataset.train_test_split`] 메소드를 사용하여 훈련 및 테스트 세트로 분할하세요:
```py
>>> ds = ds.train_test_split(test_size=0.2)
>>> train_ds = ds["train"]
>>> test_ds = ds["test"]
```
그리고 예시를 살펴보세요:
```py
>>> train_ds[0]
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x683 at 0x7F9B0C201F90>,
'annotation': <PIL.PngImagePlugin.PngImageFile image mode=L size=512x683 at 0x7F9B0C201DD0>,
'scene_category': 368}
```
- `image`: 장면의 PIL 이미지입니다.
- `annotation`: 분할 지도(segmentation map)의 PIL 이미지입니다. 모델의 타겟이기도 합니다.
- `scene_category`: "주방" 또는 "사무실"과 같이 이미지 장면을 설명하는 카테고리 ID입니다. 이 가이드에서는 둘 다 PIL 이미지인 `image`와 `annotation`만을 사용합니다.
나중에 모델을 설정할 때 유용하게 사용할 수 있도록 레이블 ID를 레이블 클래스에 매핑하는 사전도 만들고 싶을 것입니다. Hub에서 매핑을 다운로드하고 `id2label` 및 `label2id` 사전을 만드세요:
```py
>>> import json
>>> from huggingface_hub import cached_download, hf_hub_url
>>> repo_id = "huggingface/label-files"
>>> filename = "ade20k-id2label.json"
>>> id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r"))
>>> id2label = {int(k): v for k, v in id2label.items()}
>>> label2id = {v: k for k, v in id2label.items()}
>>> num_labels = len(id2label)
```
## 전처리하기[[preprocess]
다음 단계는 모델에 사용할 이미지와 주석을 준비하기 위해 SegFormer 이미지 프로세서를 불러오는 것입니다. 우리가 사용하는 데이터 세트와 같은 일부 데이터 세트는 배경 클래스로 제로 인덱스를 사용합니다. 하지만 배경 클래스는 150개의 클래스에 실제로는 포함되지 않기 때문에 `reduce_labels=True` 를 설정해 모든 레이블에서 배경 클래스를 제거해야 합니다. 제로 인덱스는 `255`로 대체되므로 SegFormer의 손실 함수에서 무시됩니다:
```py
>>> from transformers import AutoImageProcessor
>>> checkpoint = "nvidia/mit-b0"
>>> image_processor = AutoImageProcessor.from_pretrained(checkpoint, reduce_labels=True)
```
<frameworkcontent>
<pt>
이미지 데이터 세트에 데이터 증강을 적용하여 과적합에 대해 모델을 보다 강건하게 만드는 것이 일반적입니다. 이 가이드에서는 [torchvision](https://pytorch.org/vision/stable/index.html)의 [`ColorJitter`](https://pytorch.org/vision/stable/generated/torchvision.transforms.ColorJitter.html)를 사용하여 이미지의 색상 속성을 임의로 변경합니다. 하지만, 자신이 원하는 이미지 라이브러리를 사용할 수도 있습니다.
```py
>>> from torchvision.transforms import ColorJitter
>>> jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)
```
이제 모델에 사용할 이미지와 주석을 준비하기 위해 두 개의 전처리 함수를 만듭니다. 이 함수들은 이미지를 `pixel_values`로, 주석을 `labels`로 변환합니다. 훈련 세트의 경우 이미지 프로세서에 이미지를 제공하기 전에 `jitter`를 적용합니다. 테스트 세트의 경우 이미지 프로세서는 `images`를 자르고 정규화하며, 테스트 중에는 데이터 증강이 적용되지 않으므로 `labels`만 자릅니다.
```py
>>> def train_transforms(example_batch):
... images = [jitter(x) for x in example_batch["image"]]
... labels = [x for x in example_batch["annotation"]]
... inputs = image_processor(images, labels)
... return inputs
>>> def val_transforms(example_batch):
... images = [x for x in example_batch["image"]]
... labels = [x for x in example_batch["annotation"]]
... inputs = image_processor(images, labels)
... return inputs
```
모든 데이터 세트에 `jitter`를 적용하려면, 🤗 Datasets [`~datasets.Dataset.set_transform`] 함수를 사용하세요. 즉시 변환이 적용되기 때문에 더 빠르고 디스크 공간을 덜 차지합니다:
```py
>>> train_ds.set_transform(train_transforms)
>>> test_ds.set_transform(val_transforms)
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
이미지 데이터 세트에 데이터 증강을 적용하여 과적합에 대해 모델을 보다 강건하게 만드는 것이 일반적입니다. 이 가이드에서는 [`tf.image`](https://www.tensorflow.org/api_docs/python/tf/image)를 사용하여 이미지의 색상 속성을 임의로 변경합니다. 하지만, 자신이 원하는 이미지 라이브러리를 사용할 수도 있습니다.
별개의 두 변환 함수를 정의합니다:
- 이미지 증강을 포함하는 학습 데이터 변환
- 🤗 Transformers의 컴퓨터 비전 모델은 채널 우선 레이아웃을 기대하기 때문에, 이미지만 바꾸는 검증 데이터 변환
```py
>>> import tensorflow as tf
>>> def aug_transforms(image):
... image = tf.keras.utils.img_to_array(image)
... image = tf.image.random_brightness(image, 0.25)
... image = tf.image.random_contrast(image, 0.5, 2.0)
... image = tf.image.random_saturation(image, 0.75, 1.25)
... image = tf.image.random_hue(image, 0.1)
... image = tf.transpose(image, (2, 0, 1))
... return image
>>> def transforms(image):
... image = tf.keras.utils.img_to_array(image)
... image = tf.transpose(image, (2, 0, 1))
... return image
```
그런 다음 모델을 위해 두 개의 전처리 함수를 만들어 이미지 및 주석 배치를 준비합니다. 이 함수들은 이미지 변환을 적용하고 이전에 로드한 `image_processor`를 사용하여 이미지를 `pixel_values`로, 주석을 `label`로 변환합니다. `ImageProcessor` 는 이미지의 크기 조정과 정규화도 처리합니다.
```py
>>> def train_transforms(example_batch):
... images = [aug_transforms(x.convert("RGB")) for x in example_batch["image"]]
... labels = [x for x in example_batch["annotation"]]
... inputs = image_processor(images, labels)
... return inputs
>>> def val_transforms(example_batch):
... images = [transforms(x.convert("RGB")) for x in example_batch["image"]]
... labels = [x for x in example_batch["annotation"]]
... inputs = image_processor(images, labels)
... return inputs
```
전체 데이터 집합에 전처리 변환을 적용하려면 🤗 Datasets [`~datasets.Dataset.set_transform`] 함수를 사용하세요.
즉시 변환이 적용되기 때문에 더 빠르고 디스크 공간을 덜 차지합니다:
```py
>>> train_ds.set_transform(train_transforms)
>>> test_ds.set_transform(val_transforms)
```
</tf>
</frameworkcontent>
## 평가하기[[evaluate]]
훈련 중에 메트릭을 포함하면 모델의 성능을 평가하는 데 도움이 되는 경우가 많습니다. 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) 라이브러리를 사용하여 평가 방법을 빠르게 로드할 수 있습니다. 이 태스크에서는 [mean Intersection over Union](https://huggingface.co/spaces/evaluate-metric/accuracy) (IoU) 메트릭을 로드하세요 (메트릭을 로드하고 계산하는 방법에 대해 자세히 알아보려면 🤗 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour)를 살펴보세요).
```py
>>> import evaluate
>>> metric = evaluate.load("mean_iou")
```
그런 다음 메트릭을 [`~evaluate.EvaluationModule.compute`]하는 함수를 만듭니다. 예측을 먼저 로짓으로 변환한 다음, 레이블의 크기에 맞게 모양을 다시 지정해야 [`~evaluate.EvaluationModule.compute`]를 호출할 수 있습니다:
<frameworkcontent>
<pt>
```py
>>> import numpy as np
>>> import torch
>>> from torch import nn
>>> def compute_metrics(eval_pred):
... with torch.no_grad():
... logits, labels = eval_pred
... logits_tensor = torch.from_numpy(logits)
... logits_tensor = nn.functional.interpolate(
... logits_tensor,
... size=labels.shape[-2:],
... mode="bilinear",
... align_corners=False,
... ).argmax(dim=1)
... pred_labels = logits_tensor.detach().cpu().numpy()
... metrics = metric.compute(
... predictions=pred_labels,
... references=labels,
... num_labels=num_labels,
... ignore_index=255,
... reduce_labels=False,
... )
... for key, value in metrics.items():
... if isinstance(value, np.ndarray):
... metrics[key] = value.tolist()
... return metrics
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
```py
>>> def compute_metrics(eval_pred):
... logits, labels = eval_pred
... logits = tf.transpose(logits, perm=[0, 2, 3, 1])
... logits_resized = tf.image.resize(
... logits,
... size=tf.shape(labels)[1:],
... method="bilinear",
... )
... pred_labels = tf.argmax(logits_resized, axis=-1)
... metrics = metric.compute(
... predictions=pred_labels,
... references=labels,
... num_labels=num_labels,
... ignore_index=-1,
... reduce_labels=image_processor.do_reduce_labels,
... )
... per_category_accuracy = metrics.pop("per_category_accuracy").tolist()
... per_category_iou = metrics.pop("per_category_iou").tolist()
... metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)})
... metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)})
... return {"val_" + k: v for k, v in metrics.items()}
```
</tf>
</frameworkcontent>
이제 `compute_metrics` 함수를 사용할 준비가 되었습니다. 트레이닝을 설정할 때 이 함수로 돌아가게 됩니다.
## 학습하기[[train]]
<frameworkcontent>
<pt>
<Tip>
만약 [`Trainer`]를 사용해 모델을 미세 조정하는 것에 익숙하지 않다면, [여기](../training#finetune-with-trainer)에서 기본 튜토리얼을 살펴보세요!
</Tip>
이제 모델 학습을 시작할 준비가 되었습니다! [`AutoModelForSemanticSegmentation`]로 SegFormer를 불러오고, 모델에 레이블 ID와 레이블 클래스 간의 매핑을 전달합니다:
```py
>>> from transformers import AutoModelForSemanticSegmentation, TrainingArguments, Trainer
>>> model = AutoModelForSemanticSegmentation.from_pretrained(checkpoint, id2label=id2label, label2id=label2id)
```
이제 세 단계만 남았습니다:
1. 학습 하이퍼파라미터를 [`TrainingArguments`]에 정의합니다. `image` 열이 삭제되기 때문에 사용하지 않는 열을 제거하지 않는 것이 중요합니다. `image` 열이 없으면 `pixel_values`을 생성할 수 없습니다. 이런 경우를 방지하려면 `remove_unused_columns=False`로 설정하세요! 유일하게 필요한 다른 매개변수는 모델을 저장할 위치를 지정하는 `output_dir`입니다. `push_to_hub=True`를 설정하여 이 모델을 Hub에 푸시합니다(모델을 업로드하려면 Hugging Face에 로그인해야 합니다). 각 에포크가 끝날 때마다 [`Trainer`]가 IoU 메트릭을 평가하고 학습 체크포인트를 저장합니다.
2. 모델, 데이터 세트, 토크나이저, 데이터 콜레이터, `compute_metrics` 함수와 함께 학습 인자를 [`Trainer`]에 전달하세요.
3. 모델을 미세 조정하기 위해 [`~Trainer.train`]를 호출하세요.
```py
>>> training_args = TrainingArguments(
... output_dir="segformer-b0-scene-parse-150",
... learning_rate=6e-5,
... num_train_epochs=50,
... per_device_train_batch_size=2,
... per_device_eval_batch_size=2,
... save_total_limit=3,
... evaluation_strategy="steps",
... save_strategy="steps",
... save_steps=20,
... eval_steps=20,
... logging_steps=1,
... eval_accumulation_steps=5,
... remove_unused_columns=False,
... push_to_hub=True,
... )
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=train_ds,
... eval_dataset=test_ds,
... compute_metrics=compute_metrics,
... )
>>> trainer.train()
```
학습이 완료되면, 누구나 모델을 사용할 수 있도록 [`~transformers.Trainer.push_to_hub`] 메서드를 사용해 Hub에 모델을 공유하세요:
```py
>>> trainer.push_to_hub()
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
<Tip>
Keras로 모델을 미세 조정하는 데 익숙하지 않은 경우, 먼저 [기본 튜토리얼](../training#train-a-tensorflow-model-with-keras)을 확인해보세요!
</Tip>
TensorFlow에서 모델을 미세 조정하려면 다음 단계를 따르세요:
1. 학습 하이퍼파라미터를 정의하고 옵티마이저와 학습률 스케쥴러를 설정하세요.
2. 사전 학습된 모델을 인스턴스화하세요.
3. 🤗 Dataset을 `tf.data.Dataset`로 변환하세요.
4. 모델을 컴파일하세요.
5. 콜백을 추가하여 메트릭을 계산하고 🤗 Hub에 모델을 업로드하세요.
6. `fit()` 메서드를 사용하여 훈련을 실행하세요.
하이퍼파라미터, 옵티마이저, 학습률 스케쥴러를 정의하는 것으로 시작하세요:
```py
>>> from transformers import create_optimizer
>>> batch_size = 2
>>> num_epochs = 50
>>> num_train_steps = len(train_ds) * num_epochs
>>> learning_rate = 6e-5
>>> weight_decay_rate = 0.01
>>> optimizer, lr_schedule = create_optimizer(
... init_lr=learning_rate,
... num_train_steps=num_train_steps,
... weight_decay_rate=weight_decay_rate,
... num_warmup_steps=0,
... )
```
그런 다음 레이블 매핑과 함께 [`TFAutoModelForSemanticSegmentation`]을 사용하여 SegFormer를 불러오고 옵티마이저로 컴파일합니다. 트랜스포머 모델은 모두 디폴트로 태스크 관련 손실 함수가 있으므로 원치 않으면 지정할 필요가 없습니다:
```py
>>> from transformers import TFAutoModelForSemanticSegmentation
>>> model = TFAutoModelForSemanticSegmentation.from_pretrained(
... checkpoint,
... id2label=id2label,
... label2id=label2id,
... )
>>> model.compile(optimizer=optimizer) # 손실 함수 인자가 없습니다!
```
[`~datasets.Dataset.to_tf_dataset`] 와 [`DefaultDataCollator`]를 사용해 데이터 세트를 `tf.data.Dataset` 포맷으로 변환하세요:
```py
>>> from transformers import DefaultDataCollator
>>> data_collator = DefaultDataCollator(return_tensors="tf")
>>> tf_train_dataset = train_ds.to_tf_dataset(
... columns=["pixel_values", "label"],
... shuffle=True,
... batch_size=batch_size,
... collate_fn=data_collator,
... )
>>> tf_eval_dataset = test_ds.to_tf_dataset(
... columns=["pixel_values", "label"],
... shuffle=True,
... batch_size=batch_size,
... collate_fn=data_collator,
... )
```
예측으로 정확도를 계산하고 모델을 🤗 Hub로 푸시하려면 [Keras callbacks](../main_classes/keras_callbacks)를 사용하세요. `compute_metrics` 함수를 [`KerasMetricCallback`]에 전달하고, 모델 업로드를 위해 [`PushToHubCallback`]를 사용하세요:
```py
>>> from transformers.keras_callbacks import KerasMetricCallback, PushToHubCallback
>>> metric_callback = KerasMetricCallback(
... metric_fn=compute_metrics, eval_dataset=tf_eval_dataset, batch_size=batch_size, label_cols=["labels"]
... )
>>> push_to_hub_callback = PushToHubCallback(output_dir="scene_segmentation", tokenizer=image_processor)
>>> callbacks = [metric_callback, push_to_hub_callback]
```
이제 모델을 훈련할 준비가 되었습니다! 훈련 및 검증 데이터 세트, 에포크 수와 함께 `fit()`을 호출하고, 콜백을 사용하여 모델을 미세 조정합니다:
```py
>>> model.fit(
... tf_train_dataset,
... validation_data=tf_eval_dataset,
... callbacks=callbacks,
... epochs=num_epochs,
... )
```
축하합니다! 모델을 미세 조정하고 🤗 Hub에 공유했습니다. 이제 추론에 사용할 수 있습니다!
</tf>
</frameworkcontent>
## 추론하기[[inference]]
이제 모델을 미세 조정했으니 추론에 사용할 수 있습니다!
추론할 이미지를 로드하세요:
```py
>>> image = ds[0]["image"]
>>> image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-image.png" alt="Image of bedroom"/>
</div>
<frameworkcontent>
<pt>
추론을 위해 미세 조정한 모델을 시험해 보는 가장 간단한 방법은 [`pipeline`]에서 사용하는 것입니다. 모델을 사용하여 이미지 분할을 위한 `pipeline`을 인스턴스화하고 이미지를 전달합니다:
```py
>>> from transformers import pipeline
>>> segmenter = pipeline("image-segmentation", model="my_awesome_seg_model")
>>> segmenter(image)
[{'score': None,
'label': 'wall',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062690>},
{'score': None,
'label': 'sky',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062A50>},
{'score': None,
'label': 'floor',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062B50>},
{'score': None,
'label': 'ceiling',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062A10>},
{'score': None,
'label': 'bed ',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062E90>},
{'score': None,
'label': 'windowpane',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062390>},
{'score': None,
'label': 'cabinet',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062550>},
{'score': None,
'label': 'chair',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062D90>},
{'score': None,
'label': 'armchair',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062E10>}]
```
원하는 경우 `pipeline`의 결과를 수동으로 복제할 수도 있습니다. 이미지 프로세서로 이미지를 처리하고 `pixel_values`을 GPU에 배치합니다:
```py
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 가능하다면 GPU를 사용하고, 그렇지 않다면 CPU를 사용하세요
>>> encoding = image_processor(image, return_tensors="pt")
>>> pixel_values = encoding.pixel_values.to(device)
```
모델에 입력을 전달하고 `logits`를 반환합니다:
```py
>>> outputs = model(pixel_values=pixel_values)
>>> logits = outputs.logits.cpu()
```
그런 다음 로짓의 크기를 원본 이미지 크기로 다시 조정합니다:
```py
>>> upsampled_logits = nn.functional.interpolate(
... logits,
... size=image.size[::-1],
... mode="bilinear",
... align_corners=False,
... )
>>> pred_seg = upsampled_logits.argmax(dim=1)[0]
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
이미지 프로세서를 로드하여 이미지를 전처리하고 입력을 TensorFlow 텐서로 반환합니다:
```py
>>> from transformers import AutoImageProcessor
>>> image_processor = AutoImageProcessor.from_pretrained("MariaK/scene_segmentation")
>>> inputs = image_processor(image, return_tensors="tf")
```
모델에 입력을 전달하고 `logits`를 반환합니다:
```py
>>> from transformers import TFAutoModelForSemanticSegmentation
>>> model = TFAutoModelForSemanticSegmentation.from_pretrained("MariaK/scene_segmentation")
>>> logits = model(**inputs).logits
```
그런 다음 로그를 원본 이미지 크기로 재조정하고 클래스 차원에 argmax를 적용합니다:
```py
>>> logits = tf.transpose(logits, [0, 2, 3, 1])
>>> upsampled_logits = tf.image.resize(
... logits,
... # `image.size`가 너비와 높이를 반환하기 때문에 `image`의 모양을 반전시킵니다
... image.size[::-1],
... )
>>> pred_seg = tf.math.argmax(upsampled_logits, axis=-1)[0]
```
</tf>
</frameworkcontent>
결과를 시각화하려면 [dataset color palette](https://github.com/tensorflow/models/blob/3f1ca33afe3c1631b733ea7e40c294273b9e406d/research/deeplab/utils/get_dataset_colormap.py#L51)를 각 클래스를 RGB 값에 매핑하는 `ade_palette()`로 로드합니다. 그런 다음 이미지와 예측된 분할 지도(segmentation map)을 결합하여 구성할 수 있습니다:
```py
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8)
>>> palette = np.array(ade_palette())
>>> for label, color in enumerate(palette):
... color_seg[pred_seg == label, :] = color
>>> color_seg = color_seg[..., ::-1] # BGR로 변환
>>> img = np.array(image) * 0.5 + color_seg * 0.5 # 분할 지도으로 이미지 구성
>>> img = img.astype(np.uint8)
>>> plt.figure(figsize=(15, 10))
>>> plt.imshow(img)
>>> plt.show()
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-preds.png" alt="Image of bedroom overlaid with segmentation map"/>
</div>
| transformers/docs/source/ko/tasks/semantic_segmentation.md/0 | {
"file_path": "transformers/docs/source/ko/tasks/semantic_segmentation.md",
"repo_id": "transformers",
"token_count": 14135
} | 270 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Transformers Agent [[transformers-agent]]
<Tip warning={true}>
Transformers Agent는 실험 중인 API로 언제든지 변경될 수 있습니다.
API 또는 기반 모델이 변경되기 쉽기 때문에 에이전트가 반환하는 결과도 달라질 수 있습니다.
</Tip>
Transformers 버전 4.29.0.에서 *도구*와 *에이전트*라는 컨셉을 도입했습니다. [이 colab](https://colab.research.google.com/drive/1c7MHD-T1forUPGcC_jlwsIptOzpG3hSj)에서 사용해볼 수 있습니다.
간단히 말하면, Agent는 트랜스포머 위에 자연어 API를 제공합니다.
엄선된 도구 세트를 정의하고, 자연어를 해석하여 이러한 도구를 사용할 수 있는 에이전트를 설계했습니다.
이 API는 확장이 가능하도록 설계 되었습니다.
주요 도구를 선별해두었지만, 커뮤니티에서 개발한 모든 도구를 사용할 수 있도록 시스템을 쉽게 확장할 수 있는 방법도 보여드리겠습니다.
몇 가지 예를 통해 새로운 API로 무엇을 할 수 있는지 살펴보겠습니다.
이 API는 특히 멀티모달 작업에서 강력하므로 이미지를 생성하고 텍스트를 소리내어 읽어보겠습니다.
```py
agent.run("Caption the following image", image=image)
```
| **Input** | **Output** |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/beaver.png" width=200> | A beaver is swimming in the water |
---
```py
agent.run("Read the following text out loud", text=text)
```
| **Input** | **Output** |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| A beaver is swimming in the water | <audio controls><source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tts_example.wav" type="audio/wav"> your browser does not support the audio element. </audio>
---
```py
agent.run(
"In the following `document`, where will the TRRF Scientific Advisory Council Meeting take place?",
document=document,
)
```
| **Input** | **Output** |
|-----------------------------------------------------------------------------------------------------------------------------|----------------|
| <img src="https://datasets-server.huggingface.co/assets/hf-internal-testing/example-documents/--/hf-internal-testing--example-documents/test/0/image/image.jpg" width=200> | ballroom foyer |
## 바로 시작하기 [[quickstart]]
`agent.run`을 사용하려면 먼저 대규모 언어 모델(LLM)인 에이전트를 인스턴스화해야 합니다.
저희는 openAI 모델뿐만 아니라 BigCode 및 OpenAssistant의 오픈소스 대체 모델도 지원합니다.
openAI 모델의 성능이 더 우수하지만(단, openAI API 키가 필요하므로 무료로 사용할 수 없음),
Hugging Face는 BigCode와 OpenAssistant 모델의 엔드포인트에 대한 무료 액세스를 제공하고 있습니다.
우선 모든 기본 종속성을 설치하려면 `agents`를 추가로 설치하세요.
```bash
pip install transformers[agents]
```
openAI 모델을 사용하려면 `openai` 종속성을 설치한 후 [`OpenAiAgent`]를 인스턴스화합니다:
```bash
pip install openai
```
```py
from transformers import OpenAiAgent
agent = OpenAiAgent(model="text-davinci-003", api_key="<your_api_key>")
```
BigCode 또는 OpenAssistant를 사용하려면 먼저 로그인하여 Inference API에 액세스하세요:
```py
from huggingface_hub import login
login("<YOUR_TOKEN>")
```
그런 다음 에이전트를 인스턴스화합니다.
```py
from transformers import HfAgent
# Starcoder
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
# StarcoderBase
# agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoderbase")
# OpenAssistant
# agent = HfAgent(url_endpoint="https://api-inference.huggingface.co/models/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5")
```
현재 Hugging Face에서 무료로 제공하는 추론 API를 사용하고 있습니다.
이 모델에 대한 자체 추론 엔드포인트가 있는 경우(또는 다른 엔드포인트가 있는 경우) 위의 URL을 해당 URL 엔드포인트로 바꿀 수 있습니다.
<Tip>
StarCoder와 OpenAssistant는 무료로 사용할 수 있으며 간단한 작업에서 놀라울 정도로 잘 작동합니다.
그러나 더 복잡한 프롬프트를 처리할 때는 체크포인트가 잘 작동하지 않습니다.
이러한 문제가 발생하면 OpenAI 모델을 사용해 보시기 바랍니다. 아쉽게도 오픈소스는 아니지만 현재로서는 더 나은 성능을 제공합니다.
</Tip>
이제 준비가 완료되었습니다! 이제 자유롭게 사용할 수 있는 두 가지 API에 대해 자세히 알아보겠습니다.
### 단일 실행 (run) [[single-execution-(run)]]
단일 실행 방법은 에이전트의 [`~Agent.run`] 메소드를 사용하는 경우입니다:
```py
agent.run("Draw me a picture of rivers and lakes.")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200>
수행하려는 작업에 적합한 도구를 자동으로 선택하여 적절하게 실행합니다.
동일한 명령어에서 하나 또는 여러 개의 작업을 수행할 수 있습니다
(다만, 명령어가 복잡할수록 에이전트가 실패할 가능성이 높아집니다).
```py
agent.run("Draw me a picture of the sea then transform the picture to add an island")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/sea_and_island.png" width=200>
<br/>
모든 [`~Agent.run`] 작업은 독립적이므로 다른 작업으로 여러 번 연속해서 실행할 수 있습니다.
`agent`는 큰 언어 모델일 뿐이므로 프롬프트에 약간의 변화를 주면 완전히 다른 결과가 나올 수 있다는 점에 유의하세요.
수행하려는 작업을 최대한 명확하게 설명하는 것이 중요합니다.
좋은 프롬프트를 작성하는 방법은 [여기](custom_tools#writing-good-user-inputs)에서 자세히 확인할 수 있습니다.
여러 실행에 걸쳐 상태를 유지하거나 텍스트가 아닌 개체를 에이전트에게 전달하려는 경우에는 에이전트가 사용할 변수를 지정할 수 있습니다.
예를 들어 강과 호수의 첫 번째 이미지를 생성한 뒤,
모델이 해당 그림에 섬을 추가하도록 다음과 같이 요청할 수 있습니다:
```python
picture = agent.run("Generate a picture of rivers and lakes.")
updated_picture = agent.run("Transform the image in `picture` to add an island to it.", picture=picture)
```
<Tip>
이 방법은 모델이 요청을 이해하지 못하고 도구를 혼합할 때 유용할 수 있습니다. 예를 들면 다음과 같습니다:
```py
agent.run("Draw me the picture of a capybara swimming in the sea")
```
여기서 모델은 두 가지 방식으로 해석할 수 있습니다:
- `text-to-image`이 바다에서 헤엄치는 카피바라를 생성하도록 합니다.
- 또는 `text-to-image`이 카피바라를 생성한 다음 `image-transformation` 도구를 사용하여 바다에서 헤엄치도록 합니다.
첫 번째 시나리오를 강제로 실행하려면 프롬프트를 인수로 전달하여 실행할 수 있습니다:
```py
agent.run("Draw me a picture of the `prompt`", prompt="a capybara swimming in the sea")
```
</Tip>
### 대화 기반 실행 (chat) [[chat-based-execution-(chat)]]
에이전트는 [`~Agent.chat`] 메소드를 사용하는 대화 기반 접근 방식도 있습니다:
```py
agent.chat("Generate a picture of rivers and lakes")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200>
```py
agent.chat("Transform the picture so that there is a rock in there")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes_and_beaver.png" width=200>
<br/>
이 방식은 여러 명령어에 걸쳐 상태를 유지하고자 할 때 흥미로운 접근 방식입니다.
실험용으로 더 좋지만 복잡한 명령어보다는
단일 명령어([`~Agent.run`] 메소드가 더 잘 처리하는 명령어)에 훨씬 더 잘 작동하는 경향이 있습니다.
이 메소드는 텍스트가 아닌 유형이나 특정 프롬프트를 전달하려는 경우 인수를 받을 수도 있습니다.
### ⚠️ 원격 실행 [[remote-execution]]
데모 목적과 모든 설정에서 사용할 수 있도록
에이전트가 접근할 수 있는 몇 가지 기본 도구에 대한 원격 실행기를 만들었습니다.
이러한 도구는 [inference endpoints](https://huggingface.co/inference-endpoints)를 사용하여 만들어졌습니다.
원격 실행기 도구를 직접 설정하는 방법을 보려면 [사용자 정의 도구 가이드](./custom_tools)를 읽어보시기 바랍니다.
원격 도구로 실행하려면 [`~Agent.run`] 또는 [`~Agent.chat`] 중 하나에 `remote=True`를 지정하기만 하면 됩니다.
예를 들어 다음 명령은 많은 RAM이나 GPU 없이도 모든 장치에서 효율적으로 실행할 수 있습니다:
```py
agent.run("Draw me a picture of rivers and lakes", remote=True)
```
[`~Agent.chat`]도 마찬가지입니다:
```py
agent.chat("Draw me a picture of rivers and lakes", remote=True)
```
### 여기서 무슨 일이 일어나는 거죠? 도구란 무엇이고, 에이전트란 무엇인가요? [[whats-happening-here-what-are-tools-and-what-are-agents]]
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/diagram.png">
#### 에이전트 [[agents]]
여기서 "에이전트"는 대규모 언어 모델이며, 특정 도구 모음에 접근할 수 있도록 프롬프트하고 있습니다.
LLM은 작은 코드 샘플을 생성하는 데 상당히 능숙하므로,
이 장점을 활용해 도구 모음을 사용하여 작업을 수행하는 작은 코드 샘플을 제공하라는 메시지를 표시합니다.
그런 다음 에이전트에게 제공하는 작업과 제공하는 도구에 대한 설명으로 이 프롬프트가 완료됩니다.
이렇게 하면 사용 중인 도구들의 문서에 접근할 수 있으며, 해당 도구들의 입력과 출력을 예상하고, 관련된 코드를 생성할 수 있습니다.
#### 도구 [[tools]]
도구는 매우 간단합니다. 이름과 설명이 있는 단일 기능으로 구성되어 있습니다.
그런 다음 이러한 도구의 설명을 사용하여 상담원에게 프롬프트를 표시합니다.
이 프롬프트를 통해 상담원에게 쿼리에서 요청된 작업을 수행하기 위해 도구를 활용하는 방법을 보여줍니다.
에이전트가 매우 원자적인 도구를 사용하여 더 나은 코드를 작성하기 때문에 파이프라인이 아닌 완전히 새로운 도구를 사용합니다.
파이프라인은 더 많이 리팩터링되며 종종 여러 작업을 하나로 결합합니다.
도구는 하나의 매우 간단한 작업에만 집중하도록 되어 있습니다.
#### 코드 실행?! [[code-execution]]
그런 다음 이 코드는 도구와 함께 전달된 입력 세트에 대해 작은 Python 인터프리터를 사용하여 실행됩니다.
"임의 코드 실행이라니!"이라고 비명을 지르는 소리가 들리겠지만, 그렇지 않은 이유를 설명하겠습니다.
호출할 수 있는 함수는 제공한 도구와 인쇄 기능뿐이므로 이미 실행할 수 있는 기능이 제한되어 있습니다.
Hugging Face 도구로 제한되어 있다면 안전할 것입니다.
그리고 어트리뷰트 조회나 가져오기를 허용하지 않으므로
(어차피 작은 함수 집합에 입/출력을 전달할 때는 필요하지 않아야 합니다)
가장 명백한 공격(어차피 LLM에 출력하라는 메시지를 표시해야 합니다)은 문제가 되지 않습니다.
매우 안전하게 하고 싶다면 추가 인수 return_code=True를 사용하여 run() 메소드를 실행하면 됩니다.
이 경우 에이전트가 실행할 코드를 반환하고 실행할지 여부를 결정할 수 있습니다.
불법적인 연산을 수행하려고 하거나 에이전트가 생성한 코드에 일반적인 파이썬 오류가 있는 경우
실행이 중지됩니다.
### 엄선된 도구 모음 [[a-curated-set-of-tools]]
저희는 이러한 에이전트들의 역량을 강화할 수 있는 일련의 도구를 확인하고 있습니다.
다음은 연동된 도구의 최신 목록입니다:
- **문서 질문 답변**: 이미지 형식의 문서(예: PDF)가 주어지면 이 문서에 대한 질문에 답변합니다. ([Donut](./model_doc/donut))
- **텍스트 질문 답변**: 긴 텍스트와 질문이 주어지면 텍스트에서 질문에 답변합니다. ([Flan-T5](./model_doc/flan-t5))
- **무조건 이미지 캡셔닝**: 이미지에 캡션을 답니다! ([BLIP](./model_doc/blip))
- **이미지 질문 답변**: 이미지가 주어지면 이 이미지에 대한 질문에 답변하기. ([VILT](./model_doc/vilt))
- **이미지 분할**: 이미지와 프롬프트가 주어지면 해당 프롬프트의 분할 마스크를 출력합니다. ([CLIPSeg](./model_doc/clipseg))
- **음성을 텍스트로 변환**: 사람이 말하는 오디오 녹음이 주어지면 음성을 텍스트로 변환합니다. ([Whisper](./model_doc/whisper))
- **텍스트 음성 변환**: 텍스트를 음성으로 변환합니다. ([SpeechT5](./model_doc/speecht5))
- **제로 샷(zero-shot) 텍스트 분류**: 텍스트와 레이블 목록이 주어지면 텍스트와 가장 관련 있는 레이블을 식별합니다. ([BART](./model_doc/bart))
- **텍스트 요약**: 긴 텍스트를 한 문장 또는 몇 문장으로 요약합니다. ([BART](./model_doc/bart))
- **번역**: 텍스트를 지정된 언어로 번역합니다. ([NLLB](./model_doc/nllb))
이러한 도구는 트랜스포머에 통합되어 있으며, 예를 들어 수동으로도 사용할 수 있습니다:
```py
from transformers import load_tool
tool = load_tool("text-to-speech")
audio = tool("This is a text to speech tool")
```
### 사용자 정의 도구 [[custom-tools]]
엄선된 도구 세트도 있지만, 이 구현이 제공하는 가장 큰 가치는 사용자 지정 도구를 빠르게 만들고 공유할 수 있다는 점입니다.
도구의 코드를 Hugging Face Space나 모델 저장소에 푸시하면 에이전트에게 직접 도구를 활용할 수 있습니다. [`huggingface-tools` organization](https://huggingface.co/huggingface-tools)에 몇 가지 **트랜스포머에 구애받지 않는** 툴을 추가했습니다:
- **텍스트 다운로더**: 웹 URL에서 텍스트를 다운로드합니다.
- **텍스트 이미지 변환**: 프롬프트에 따라 이미지를 생성하여 안정적인 확산을 활용합니다.
- **이미지 변환**: 초기 이미지와 프롬프트가 주어진 이미지를 수정하고, 안정적인 확산을 활용하는 지시 픽셀 2 픽셀을 활용합니다.
- **텍스트 비디오 변환**: 프롬프트에 따라 작은 비디오를 생성하며, damo-vilab을 활용합니다.
저희가 처음부터 사용하고 있는 텍스트-이미지 변환 도구는 [*huggingface-tools/text-to-image*](https://huggingface.co/spaces/huggingface-tools/text-to-image)에 있는 원격 도구입니다! 저희는 이 도구와 다른 조직에 이러한 도구를 계속 출시하여 이 구현을 더욱 강화할 것입니다.
에이전트는 기본적으로 [`huggingface-tools`](https://huggingface.co/huggingface-tools)에 있는 도구에 접근할 수 있습니다.
[다음 가이드](custom_tools)에서 도구를 작성하고 공유하는 방법과 Hub에 있는 사용자 지정 도구를 활용하는 방법에 대해 설명합니다.
### 코드 생성[[code-generation]]
지금까지 에이전트를 사용하여 작업을 수행하는 방법을 보여드렸습니다. 하지만 에이전트는 매우 제한된 Python 인터프리터를 사용하여 실행할 코드만 생성하고 있습니다. 다른 설정에서 생성된 코드를 사용하려는 경우 에이전트에게 도구 정의 및 정확한 가져오기와 함께 코드를 반환하라는 메시지를 표시할 수 있습니다.
예를 들어 다음 명령어는
```python
agent.run("Draw me a picture of rivers and lakes", return_code=True)
```
다음 코드를 반환합니다.
```python
from transformers import load_tool
image_generator = load_tool("huggingface-tools/text-to-image")
image = image_generator(prompt="rivers and lakes")
```
이 코드는 직접 수정하고 실행할 수 있습니다. | transformers/docs/source/ko/transformers_agents.md/0 | {
"file_path": "transformers/docs/source/ko/transformers_agents.md",
"repo_id": "transformers",
"token_count": 12340
} | 271 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Treinamento a partir de um script
Junto com os 🤗 Transformers [notebooks](./noteboks/README), também há scripts de exemplo demonstrando como treinar um modelo para uma tarefa com [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch), [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow) ou [JAX/Flax](https://github.com/huggingface/transformers/tree/main/examples/flax).
Você também encontrará scripts que usamos em nossos [projetos de pesquisa](https://github.com/huggingface/transformers/tree/main/examples/research_projects) e [exemplos legados](https://github.com/huggingface/transformers/tree/main/examples/legacy) que são principalmente contribuições da comunidade. Esses scripts não são mantidos ativamente e exigem uma versão específica de 🤗 Transformers que provavelmente será incompatível com a versão mais recente da biblioteca.
Não se espera que os scripts de exemplo funcionem imediatamente em todos os problemas, você pode precisar adaptar o script ao problema que está tentando resolver. Para ajudá-lo com isso, a maioria dos scripts expõe totalmente como os dados são pré-processados, permitindo que você os edite conforme necessário para seu caso de uso.
Para qualquer recurso que você gostaria de implementar em um script de exemplo, discuta-o no [fórum](https://discuss.huggingface.co/) ou em uma [issue](https://github.com/huggingface/transformers/issues) antes de enviar um Pull Request. Embora recebamos correções de bugs, é improvável que mesclaremos um Pull Request que adicione mais funcionalidades ao custo de legibilidade.
Este guia mostrará como executar um exemplo de script de treinamento de sumarização em [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) e [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization). Espera-se que todos os exemplos funcionem com ambas as estruturas, a menos que especificado de outra forma.
## Configuração
Para executar com êxito a versão mais recente dos scripts de exemplo, você precisa **instalar o 🤗 Transformers da fonte** em um novo ambiente virtual:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
pip install .
```
Para versões mais antigas dos scripts de exemplo, clique no botão abaixo:
<details>
<summary>Exemplos para versões antigas dos 🤗 Transformers</summary>
<ul>
<li><a href="https://github.com/huggingface/transformers/tree/v4.5.1/examples">v4.5.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.4.2/examples">v4.4.2</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.3.3/examples">v4.3.3</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.2.2/examples">v4.2.2</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.1.1/examples">v4.1.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v4.0.1/examples">v4.0.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.5.1/examples">v3.5.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.4.0/examples">v3.4.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.3.1/examples">v3.3.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.2.0/examples">v3.2.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.1.0/examples">v3.1.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v3.0.2/examples">v3.0.2</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.11.0/examples">v2.11.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.10.0/examples">v2.10.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.9.1/examples">v2.9.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.8.0/examples">v2.8.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.7.0/examples">v2.7.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.6.0/examples">v2.6.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.5.1/examples">v2.5.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.4.0/examples">v2.4.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.3.0/examples">v2.3.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.2.0/examples">v2.2.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.1.0/examples">v2.1.1</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v2.0.0/examples">v2.0.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v1.2.0/examples">v1.2.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v1.1.0/examples">v1.1.0</a></li>
<li><a href="https://github.com/huggingface/transformers/tree/v1.0.0/examples">v1.0.0</a></li>
</ul>
</details>
Em seguida, mude seu clone atual dos 🤗 Transformers para uma versão específica, como v3.5.1, por exemplo:
```bash
git checkout tags/v3.5.1
```
Depois de configurar a versão correta da biblioteca, navegue até a pasta de exemplo de sua escolha e instale os requisitos específicos do exemplo:
```bash
pip install -r requirements.txt
```
## Executando um script
<frameworkcontent>
<pt>
O script de exemplo baixa e pré-processa um conjunto de dados da biblioteca 🤗 [Datasets](https://huggingface.co/docs/datasets/). Em seguida, o script ajusta um conjunto de dados com o [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) em uma arquitetura que oferece suporte à sumarização. O exemplo a seguir mostra como ajustar [T5-small](https://huggingface.co/google-t5/t5-small) no conjunto de dados [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail). O modelo T5 requer um argumento `source_prefix` adicional devido à forma como foi treinado. Este prompt informa ao T5 que esta é uma tarefa de sumarização.
```bash
python examples/pytorch/summarization/run_summarization.py \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
</pt>
<tf>
Este outro script de exemplo baixa e pré-processa um conjunto de dados da biblioteca 🤗 [Datasets](https://huggingface.co/docs/datasets/). Em seguida, o script ajusta um conjunto de dados usando Keras em uma arquitetura que oferece suporte à sumarização. O exemplo a seguir mostra como ajustar [T5-small](https://huggingface.co/google-t5/t5-small) no conjunto de dados [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail). O modelo T5 requer um argumento `source_prefix` adicional devido à forma como foi treinado. Este prompt informa ao T5 que esta é uma tarefa de sumarização.
```bash
python examples/tensorflow/summarization/run_summarization.py \
--model_name_or_path google-t5/t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 16 \
--num_train_epochs 3 \
--do_train \
--do_eval
```
</tf>
</frameworkcontent>
## Treinamento distribuído e precisão mista
O [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) oferece suporte a treinamento distribuído e precisão mista, o que significa que você também pode usá-lo em um script. Para habilitar esses dois recursos:
- Adicione o argumento `fp16` para habilitar a precisão mista.
- Defina o número de GPUs a serem usadas com o argumento `nproc_per_node`.
```bash
torchrun \
--nproc_per_node 8 pytorch/summarization/run_summarization.py \
--fp16 \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
Os scripts do TensorFlow utilizam um [`MirroredStrategy`](https://www.tensorflow.org/guide/distributed_training#mirroredstrategy) para treinamento distribuído, e você não precisa adicionar argumentos adicionais ao script de treinamento. O script do TensorFlow usará várias GPUs por padrão, se estiverem disponíveis.
## Executando um script em uma TPU
<frameworkcontent>
<pt>
As Unidades de Processamento de Tensor (TPUs) são projetadas especificamente para acelerar o desempenho. O PyTorch oferece suporte a TPUs com o compilador de aprendizado profundo [XLA](https://www.tensorflow.org/xla) (consulte [aqui](https://github.com/pytorch/xla/blob/master/README.md) para mais detalhes). Para usar uma TPU, inicie o script `xla_spawn.py` e use o argumento `num_cores` para definir o número de núcleos de TPU que você deseja usar.
```bash
python xla_spawn.py --num_cores 8 \
summarization/run_summarization.py \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
</pt>
<tf>
As Unidades de Processamento de Tensor (TPUs) são projetadas especificamente para acelerar o desempenho. Os scripts do TensorFlow utilizam uma [`TPUStrategy`](https://www.tensorflow.org/guide/distributed_training#tpustrategy) para treinamento em TPUs. Para usar uma TPU, passe o nome do recurso TPU para o argumento `tpu`.
```bash
python run_summarization.py \
--tpu name_of_tpu_resource \
--model_name_or_path google-t5/t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 16 \
--num_train_epochs 3 \
--do_train \
--do_eval
```
</tf>
</frameworkcontent>
## Execute um script com 🤗 Accelerate
🤗 [Accelerate](https://huggingface.co/docs/accelerate) é uma biblioteca somente do PyTorch que oferece um método unificado para treinar um modelo em vários tipos de configurações (CPU, multiplas GPUs, TPUs), mantendo visibilidade no loop de treinamento do PyTorch. Certifique-se de ter o 🤗 Accelerate instalado se ainda não o tiver:
> Nota: Como o Accelerate está se desenvolvendo rapidamente, a versão git do Accelerate deve ser instalada para executar os scripts
```bash
pip install git+https://github.com/huggingface/accelerate
```
Em vez do script `run_summarization.py`, você precisa usar o script `run_summarization_no_trainer.py`. Os scripts suportados pelo 🤗 Accelerate terão um arquivo `task_no_trainer.py` na pasta. Comece executando o seguinte comando para criar e salvar um arquivo de configuração:
```bash
accelerate config
```
Teste sua configuração para garantir que ela esteja corretamente configurada :
```bash
accelerate test
```
Agora você está pronto para iniciar o treinamento:
```bash
accelerate launch run_summarization_no_trainer.py \
--model_name_or_path google-t5/t5-small \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir ~/tmp/tst-summarization
```
## Usando um conjunto de dados personalizado
O script de resumo oferece suporte a conjuntos de dados personalizados, desde que sejam um arquivo CSV ou JSON. Ao usar seu próprio conjunto de dados, você precisa especificar vários argumentos adicionais:
- `train_file` e `validation_file` especificam o caminho para seus arquivos de treinamento e validação respectivamente.
- `text_column` é o texto de entrada para sumarização.
- `summary_column` é o texto de destino para saída.
Um script para sumarização usando um conjunto de dados customizado ficaria assim:
```bash
python examples/pytorch/summarization/run_summarization.py \
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--train_file path_to_csv_or_jsonlines_file \
--validation_file path_to_csv_or_jsonlines_file \
--text_column text_column_name \
--summary_column summary_column_name \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--overwrite_output_dir \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--predict_with_generate
```
## Testando um script
Geralmente, é uma boa ideia executar seu script em um número menor de exemplos de conjuntos de dados para garantir que tudo funcione conforme o esperado antes de se comprometer com um conjunto de dados inteiro, que pode levar horas para ser concluído. Use os seguintes argumentos para truncar o conjunto de dados para um número máximo de amostras:
- `max_train_samples`
- `max_eval_samples`
- `max_predict_samples`
```bash
python examples/pytorch/summarization/run_summarization.py \
--model_name_or_path google-t5/t5-small \
--max_train_samples 50 \
--max_eval_samples 50 \
--max_predict_samples 50 \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
Nem todos os scripts de exemplo suportam o argumento `max_predict_samples`. Se você não tiver certeza se seu script suporta este argumento, adicione o argumento `-h` para verificar:
```bash
examples/pytorch/summarization/run_summarization.py -h
```
## Retomar o treinamento a partir de um checkpoint
Outra opção útil para habilitar é retomar o treinamento de um checkpoint anterior. Isso garantirá que você possa continuar de onde parou sem recomeçar se o seu treinamento for interrompido. Existem dois métodos para retomar o treinamento a partir de um checkpoint.
O primeiro método usa o argumento `output_dir previous_output_dir` para retomar o treinamento do último checkpoint armazenado em `output_dir`. Neste caso, você deve remover `overwrite_output_dir`:
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--output_dir previous_output_dir \
--predict_with_generate
```
O segundo método usa o argumento `resume_from_checkpoint path_to_specific_checkpoint` para retomar o treinamento de uma pasta de checkpoint específica.
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--resume_from_checkpoint path_to_specific_checkpoint \
--predict_with_generate
```
## Compartilhando seu modelo
Todos os scripts podem enviar seu modelo final para o [Model Hub](https://huggingface.co/models). Certifique-se de estar conectado ao Hugging Face antes de começar:
```bash
huggingface-cli login
```
Em seguida, adicione o argumento `push_to_hub` ao script. Este argumento criará um repositório com seu nome de usuário do Hugging Face e o nome da pasta especificado em `output_dir`.
Para dar um nome específico ao seu repositório, use o argumento `push_to_hub_model_id` para adicioná-lo. O repositório será listado automaticamente em seu namespace.
O exemplo a seguir mostra como fazer upload de um modelo com um nome de repositório específico:
```bash
python examples/pytorch/summarization/run_summarization.py
--model_name_or_path google-t5/t5-small \
--do_train \
--do_eval \
--dataset_name cnn_dailymail \
--dataset_config "3.0.0" \
--source_prefix "summarize: " \
--push_to_hub \
--push_to_hub_model_id finetuned-t5-cnn_dailymail \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
--overwrite_output_dir \
--predict_with_generate
```
| transformers/docs/source/pt/run_scripts.md/0 | {
"file_path": "transformers/docs/source/pt/run_scripts.md",
"repo_id": "transformers",
"token_count": 6981
} | 272 |
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# 为 🤗 Transformers 做贡献
欢迎所有人为 🤗 Transformers 做出贡献,我们重视每个人的贡献。代码贡献并不是帮助社区的唯一途径。回答问题、帮助他人和改进文档也非常有价值。
宣传 🤗 Transformers 也会帮助我们!比如在博客文章里介绍一下这个库是如何帮助你完成了很棒的项目,每次它帮助你时都在 Twitter 上大声宣传,或者给这个代码仓库点⭐️来表示感谢。
无论你选择以哪种方式做出贡献,请注意并尊重我们的[行为准则](https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md)。
**本指南的灵感来源于 [scikit-learn贡献指南](https://github.com/scikit-learn/scikit-learn/blob/main/CONTRIBUTING.md) ,它令人印象深刻.**
## 做贡献的方法
有多种方法可以为 🤗 Transformers 做贡献:
* 修复现有代码中尚未解决的问题。
* 提交与 bug 或所需新功能相关的 issue。
* 实现新的模型。
* 为示例或文档做贡献。
如果你不知道从哪里开始,有一个特别的 [Good First Issue](https://github.com/huggingface/transformers/contribute) 列表。它会列出一些适合初学者的开放的 issues,并帮助你开始为开源项目做贡献。只需要在你想要处理的 issue 下发表评论就行。
如果想要稍微更有挑战性的内容,你也可以查看 [Good Second Issue](https://github.com/huggingface/transformers/labels/Good%20Second%20Issue) 列表。总的来说,如果你觉得自己知道该怎么做,就去做吧,我们会帮助你达到目标的!🚀
> 所有的贡献对社区来说都同样宝贵。🥰
## 修复尚未解决的问题
如果你发现现有代码中存在问题,并且已经想到了解决方法,请随时[开始贡献](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md/#create-a-pull-request) 并创建一个 Pull Request!
## 提交与 bug 相关的 issue 或功能请求
在提交与错误相关的 issue 或功能请求时,请尽量遵循下面的指南。这能让我们更容易迅速回复你,并提供良好的反馈意见。
### 你发现了 bug 吗?
🤗 Transformers 之所以强大可靠,要感谢用户报告了他们遇到的问题。
在提出issue之前,请你**确认该 bug 尚未被报告**(使用 GitHub 的 Issues 下面的搜索栏)。issue 也应该是与库本身的 bug 有关,而不是与你的代码有关。如果不确定 bug 是在你的代码中还是在库中,请先在[论坛](https://discuss.huggingface.co/)中询问。这有助于我们更快地解决与库相关的问题。
一旦你确认该 bug 尚未被报告,请在你的 issue 中包含以下信息,以便我们快速解决:
* 使用的**操作系统类型和版本**,以及 **Python**、**PyTorch** 和 **TensorFlow** 的版本。
* 一个简短、独立的代码片段,可以让我们在不到30秒内重现这个问题。
* 如果发生异常,请提供*完整的* traceback。
* 附上你认为可能有帮助的任何其他附加信息,如屏幕截图。
想要自动获取操作系统和软件版本,请运行以下命令:
```bash
transformers-cli env
```
你也可以从代码仓库的根目录下运行相同的命令:
```bash
python src/transformers/commands/transformers_cli.py env
```
### 你想要新功能吗?
如果你希望在 🤗 Transformers 中看到新功能,请提出一个 issue 并包含以下内容:
1. 这个新功能的*动机*是什么呢?是因为使用这个库时遇到了问题或者感到了某种不满吗?是因为你的项目需要这个功能吗?或者是你自己开发了某项内容,并且认为它可能会对社区有所帮助?
不管是什么,我们都很想听!
2. 请尽可能详细地描述你想要的功能。你告诉我们的越多,我们就能更好地帮助你。
3. 请提供一个*代码片段*,演示该功能的使用方法。
4. 如果这个功能与某篇论文相关,请包含链接。
如果你描述得足够清晰,那么在你创建 issue 时,我们已经完成了80%的工作。
我们已经添加了[模板](https://github.com/huggingface/transformers/tree/main/templates),可能有助于你提出 issue。
## 你想要实现一个新模型吗?
我们会持续发布新模型,如果你想要实现一个新模型,请提供以下信息:
* 模型的简要描述和论文链接。
* 如果实现是开源的,请提供实现的链接。
* 如果模型权重可用,请提供模型权重的链接。
如果你想亲自贡献模型,请告诉我们。让我们帮你把它添加到 🤗 Transformers!
我们已经添加了[详细的指南和模板](https://github.com/huggingface/transformers/tree/main/templates)来帮助你添加新模型。我们还有一个更技术性的指南,告诉你[如何将模型添加到 🤗 Transformers](https://huggingface.co/docs/transformers/add_new_model)。
## 你想要添加文档吗?
我们始终在寻求改进文档,使其更清晰准确。请告诉我们如何改进文档,比如拼写错误以及任何缺失、不清楚或不准确的内容。我们非常乐意进行修改,如果你有兴趣,我们也可以帮助你做出贡献!
有关如何生成、构建和编写文档的更多详细信息,请查看文档 [README](https://github.com/huggingface/transformers/tree/main/docs)。
## 创建 Pull Request
在开始编写任何代码之前,我们强烈建议你先搜索现有的 PR(Pull Request) 或 issue,以确保没有其他人已经在做同样的事情。如果你不确定,提出 issue 来获取反馈意见是一个好办法。
要为 🤗 Transformers 做贡献,你需要基本的 `git` 使用技能。虽然 `git` 不是一个很容易使用的工具,但它提供了非常全面的手册,在命令行中输入 `git --help` 并享受吧!如果你更喜欢书籍,[Pro Git](https://git-scm.com/book/en/v2)是一本很好的参考书。
要为 🤗 Transformers 做贡献,你需要 **[Python 3.8](https://github.com/huggingface/transformers/blob/main/setup.py#L426)** 或更高版本。请按照以下步骤开始贡献:
1. 点击[仓库](https://github.com/huggingface/transformers)页面上的 **[Fork](https://github.com/huggingface/transformers/fork)** 按钮,这会在你的 GitHub 账号下拷贝一份代码。
2. 把派生仓库克隆到本地磁盘,并将基础仓库添加为远程仓库:
```bash
git clone [email protected]:<your Github handle>/transformers.git
cd transformers
git remote add upstream https://github.com/huggingface/transformers.git
```
3. 创建一个新的分支来保存你的更改:
```bash
git checkout -b a-descriptive-name-for-my-changes
```
🚨 **不要**在 `main` 分支工作!
4. 在虚拟环境中运行以下命令来设置开发环境:
```bash
pip install -e ".[dev]"
```
如果在虚拟环境中已经安装了 🤗 Transformers,请先使用 `pip uninstall transformers` 卸载它,然后再用 `-e` 参数以可编辑模式重新安装。
根据你的操作系统,以及 Transformers 的可选依赖项数量的增加,可能会在执行此命令时出现失败。如果出现这种情况,请确保已经安装了你想使用的深度学习框架(PyTorch, TensorFlow 和 Flax),然后执行以下操作:
```bash
pip install -e ".[quality]"
```
大多数情况下,这些应该够用了。
5. 在你的分支上开发相关功能。
在编写代码时,请确保测试套件通过。用下面的方式运行受你的更改影响的测试:
```bash
pytest tests/<TEST_TO_RUN>.py
```
想了解更多关于测试的信息,请阅读[测试](https://huggingface.co/docs/transformers/testing)指南。
🤗 Transformers 使用 `black` 和 `ruff` 来保持代码风格的一致性。进行更改后,使用以下命令自动执行格式更正和代码验证:
```bash
make fixup
```
它已经被优化为仅适用于你创建的 PR 所修改过的文件。
如果想要逐个运行检查,可以使用以下命令:
```bash
make style
```
🤗 Transformers 还使用了 `ruff` 和一些自定义脚本来检查编码错误。虽然质量管理是通过 CI 进行的,但你也可以使用以下命令来运行相同的检查:
```bash
make quality
```
最后,我们有许多脚本来确保在添加新模型时不会忘记更新某些文件。你可以使用以下命令运行这些脚本:
```bash
make repo-consistency
```
想要了解有关这些检查及如何解决相关问题的更多信息,请阅读 [检查 Pull Request](https://huggingface.co/docs/transformers/pr_checks) 指南。
如果你修改了 `docs/source` 目录下的文档,请确保文档仍然能够被构建。这个检查也会在你创建 PR 时在 CI 中运行。如果要进行本地检查,请确保安装了文档构建工具:
```bash
pip install ".[docs]"
```
在仓库的根目录下运行以下命令:
```bash
doc-builder build transformers docs/source/en --build_dir ~/tmp/test-build
```
这将会在 `~/tmp/test-build` 文件夹中构建文档,你可以使用自己喜欢的编辑器查看生成的 Markdown 文件。当你创建 PR 时,也可以在GitHub上预览文档。
当你对修改满意后,使用 `git add` 把修改的文件添加到暂存区,然后使用 `git commit` 在本地记录你的更改:
```bash
git add modified_file.py
git commit
```
请记得写一个[好的提交信息](https://chris.beams.io/posts/git-commit/)来清晰地传达你所做的更改!
为了保持你的代码副本与原始仓库的最新状态一致,在你创建 PR *之前*或者在管理员要求的情况下,把你的分支在 `upstream/branch` 上进行 rebase:
```bash
git fetch upstream
git rebase upstream/main
```
把你的更改推送到你的分支:
```bash
git push -u origin a-descriptive-name-for-my-changes
```
如果你已经创建了一个 PR,你需要使用 `--force` 参数进行强制推送。如果 PR 还没有被创建,你可以正常推送你的更改。
6. 现在你可以转到 GitHub 上你的账号下的派生仓库,点击 **Pull Request** 来创建一个 PR。 请确保勾选我们 [checklist](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md/#pull-request-checklist) 下的所有项目。准备好这些后,可以将你的更改发送给项目管理员进行审查。
7. 如果管理员要求你进行更改,别气馁,我们的核心贡献者也会经历相同的事情!请在你的本地分支上进行工作,并将更改推送到派生仓库,以便于每个人都可以在 PR 中看到你的更改。这样它们会自动出现在 PR 中。
### Pull request 的检查清单
☐ Pull request 的标题应该总结你的贡献内容。<br>
☐ 如果你的 Pull request 解决了一个issue,请在 Pull request 描述中提及该 issue 的编号,以确保它们被关联起来(这样查看 issue 的人就知道你正在处理它)。<br>
☐ 如果是正在进行中的工作,请在标题前加上 [WIP]。这有助于避免重复工作和区分哪些 PR 可以合并。<br>
☐ 确保可以通过现有的测试。<br>
☐ 如果添加了新功能,请同时添加对应的测试。<br>
- 如果添加一个新模型,请使用 `ModelTester.all_model_classes = (MyModel, MyModelWithLMHead,...)` 来触发通用测试。
- 如果你正在添加新的 `@slow` 测试,请确保通过以下检查:`RUN_SLOW=1 python -m pytest tests/models/my_new_model/test_my_new_model.py`
- 如果你正在添加一个新的分词器,请编写测试并确保通过以下检查:`RUN_SLOW=1 python -m pytest tests/models/{your_model_name}/test_tokenization_{your_model_name}.py`
- CircleCI 不会运行时间较长的测试,但 GitHub Actions 每晚会运行所有测试!<br>
☐ 所有公共 method 必须具有信息文档(比如 [`modeling_bert.py`](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py))。<br>
☐ 由于代码仓库的体积正在迅速增长,请避免添加图像、视频和其他非文本文件,它们会增加仓库的负担。请使用 [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) 等 Hub 仓库来托管这些文件,并通过 URL 引用它们。我们建议将与文档相关的图片放置在以下仓库中:[huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images)。你可以在这个数据集仓库上创建一个 PR,并请求 Hugging Face 成员进行合并。
要了解更多有关在 Pull request 上运行的检查的信息,请查看我们的 [检查 Pull Request](https://huggingface.co/docs/transformers/pr_checks) 指南。
### 测试
包含了广泛的测试套件来测试库的行为和一些示例。库测试可以在 [tests](https://github.com/huggingface/transformers/tree/main/tests) 文件夹中找到,示例测试可以在 [examples](https://github.com/huggingface/transformers/tree/main/examples) 文件夹中找到。
我们喜欢使用 `pytest` 和 `pytest-xdist`,因为它运行更快。在仓库的根目录,指定一个*子文件夹的路径或测试文件*来运行测试:
```bash
python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model
```
同样地,在 `examples` 目录,指定一个*子文件夹的路径或测试文件* 来运行测试。例如,以下命令会测试 PyTorch `examples` 目录中的文本分类子文件夹:
```bash
pip install -r examples/xxx/requirements.txt # 仅在第一次需要
python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification
```
实际上这就是我们的 `make test` 和 `make test-examples` 命令的实现方式(不包括 `pip install`)!
你也可以指定一个较小的测试集来仅测试特定功能。
默认情况下,会跳过时间较长的测试,但你可以将 `RUN_SLOW` 环境变量设置为 `yes` 来运行它们。这将下载以 GB 为单位的模型文件,所以确保你有足够的磁盘空间、良好的网络连接和足够的耐心!
<Tip warning={true}>
记得指定一个*子文件夹的路径或测试文件*来运行测试。否则你将会运行 `tests` 或 `examples` 文件夹中的所有测试,它会花费很长时间!
</Tip>
```bash
RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_new_model
RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification
```
和时间较长的测试一样,还有其他环境变量在测试过程中,在默认情况下是未启用的:
- `RUN_CUSTOM_TOKENIZERS`: 启用自定义分词器的测试。
- `RUN_PT_FLAX_CROSS_TESTS`: 启用 PyTorch + Flax 整合的测试。
- `RUN_PT_TF_CROSS_TESTS`: 启用 TensorFlow + PyTorch 整合的测试。
更多环境变量和额外信息可以在 [testing_utils.py](src/transformers/testing_utils.py) 中找到。
🤗 Transformers 只是使用 `pytest` 作为测试运行程序,但测试套件本身没用任何与 `pytest` 相关的功能。
这意味着完全支持 `unittest` 。以下是如何使用 `unittest` 运行测试的方法:
```bash
python -m unittest discover -s tests -t . -v
python -m unittest discover -s examples -t examples -v
```
### 风格指南
🤗 Transformers 的文档遵循 [Google Python Style Guide](https://google.github.io/styleguide/pyguide.html)。请查看我们的 [文档编写指南](https://github.com/huggingface/transformers/tree/main/docs#writing-documentation---specification) 来获取更多信息。
### 在 Windows 上开发
在 Windows 上(除非你正在使用 [Windows Subsystem for Linux](https://learn.microsoft.com/en-us/windows/wsl/) 或 WSL),你需要配置 git 将 Windows 的 `CRLF` 行结束符转换为 Linux 的 `LF` 行结束符:
```bash
git config core.autocrlf input
```
在 Windows 上有一种方法可以运行 `make` 命令,那就是使用 MSYS2:
1. [下载 MSYS2](https://www.msys2.org/),假设已经安装在 `C:\msys64`。
2. 从命令行打开 `C:\msys64\msys2.exe` (可以在 **开始** 菜单中找到)。
3. 在 shell 中运行: `pacman -Syu` ,并使用 `pacman -S make` 安装 `make`。
4. 把 `C:\msys64\usr\bin` 添加到你的 PATH 环境变量中。
现在你可以在任何终端(PowerShell、cmd.exe 等)中使用 `make` 命令了! 🎉
### 将派生仓库与上游主仓库(Hugging Face 仓库)同步
更新派生仓库的主分支时,请按照以下步骤操作。这是为了避免向每个上游 PR 添加参考注释,同时避免向参与这些 PR 的开发人员发送不必要的通知。
1. 可以的话,请避免使用派生仓库上的分支和 PR 来与上游进行同步,而是直接合并到派生仓库的主分支。
2. 如果确实需要一个 PR,在检查你的分支后,请按照以下步骤操作:
```bash
git checkout -b your-branch-for-syncing
git pull --squash --no-commit upstream main
git commit -m '<your message without GitHub references>'
git push --set-upstream origin your-branch-for-syncing
```
| transformers/docs/source/zh/contributing.md/0 | {
"file_path": "transformers/docs/source/zh/contributing.md",
"repo_id": "transformers",
"token_count": 10637
} | 273 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 导出为 ONNX
在生产环境中部署 🤗 Transformers 模型通常需要或者能够受益于,将模型导出为可在专门的运行时和硬件上加载和执行的序列化格式。
🤗 Optimum 是 Transformers 的扩展,可以通过其 `exporters` 模块将模型从 PyTorch 或 TensorFlow 导出为 ONNX 及 TFLite 等序列化格式。🤗 Optimum 还提供了一套性能优化工具,可以在目标硬件上以最高效率训练和运行模型。
本指南演示了如何使用 🤗 Optimum 将 🤗 Transformers 模型导出为 ONNX。有关将模型导出为 TFLite 的指南,请参考 [导出为 TFLite 页面](tflite)。
## 导出为 ONNX
[ONNX (Open Neural Network eXchange 开放神经网络交换)](http://onnx.ai) 是一个开放的标准,它定义了一组通用的运算符和一种通用的文件格式,用于表示包括 PyTorch 和 TensorFlow 在内的各种框架中的深度学习模型。当一个模型被导出为 ONNX时,这些运算符被用于构建计算图(通常被称为*中间表示*),该图表示数据在神经网络中的流动。
通过公开具有标准化运算符和数据类型的图,ONNX使得模型能够轻松在不同深度学习框架间切换。例如,在 PyTorch 中训练的模型可以被导出为 ONNX,然后再导入到 TensorFlow(反之亦然)。
导出为 ONNX 后,模型可以:
- 通过 [图优化(graph optimization)](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/optimization) 和 [量化(quantization)](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/quantization) 等技术进行推理优化。
- 通过 [`ORTModelForXXX` 类](https://huggingface.co/docs/optimum/onnxruntime/package_reference/modeling_ort) 使用 ONNX Runtime 运行,它同样遵循你熟悉的 Transformers 中的 `AutoModel` API。
- 使用 [优化推理流水线(pipeline)](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/pipelines) 运行,其 API 与 🤗 Transformers 中的 [`pipeline`] 函数相同。
🤗 Optimum 通过利用配置对象提供对 ONNX 导出的支持。多种模型架构已经有现成的配置对象,并且配置对象也被设计得易于扩展以适用于其他架构。
现有的配置列表请参考 [🤗 Optimum 文档](https://huggingface.co/docs/optimum/exporters/onnx/overview)。
有两种方式可以将 🤗 Transformers 模型导出为 ONNX,这里我们展示这两种方法:
- 使用 🤗 Optimum 的 CLI(命令行)导出。
- 使用 🤗 Optimum 的 `optimum.onnxruntime` 模块导出。
### 使用 CLI 将 🤗 Transformers 模型导出为 ONNX
要将 🤗 Transformers 模型导出为 ONNX,首先需要安装额外的依赖项:
```bash
pip install optimum[exporters]
```
请参阅 [🤗 Optimum 文档](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli) 以查看所有可用参数,或者在命令行中查看帮助:
```bash
optimum-cli export onnx --help
```
运行以下命令,以从 🤗 Hub 导出模型的检查点(checkpoint),以 `distilbert/distilbert-base-uncased-distilled-squad` 为例:
```bash
optimum-cli export onnx --model distilbert/distilbert-base-uncased-distilled-squad distilbert_base_uncased_squad_onnx/
```
你应该能在日志中看到导出进度以及生成的 `model.onnx` 文件的保存位置,如下所示:
```bash
Validating ONNX model distilbert_base_uncased_squad_onnx/model.onnx...
-[✓] ONNX model output names match reference model (start_logits, end_logits)
- Validating ONNX Model output "start_logits":
-[✓] (2, 16) matches (2, 16)
-[✓] all values close (atol: 0.0001)
- Validating ONNX Model output "end_logits":
-[✓] (2, 16) matches (2, 16)
-[✓] all values close (atol: 0.0001)
The ONNX export succeeded and the exported model was saved at: distilbert_base_uncased_squad_onnx
```
上面的示例说明了从 🤗 Hub 导出检查点的过程。导出本地模型时,首先需要确保将模型的权重和分词器文件保存在同一目录(`local_path`)中。在使用 CLI 时,将 `local_path` 传递给 `model` 参数,而不是 🤗 Hub 上的检查点名称,并提供 `--task` 参数。你可以在 [🤗 Optimum 文档](https://huggingface.co/docs/optimum/exporters/task_manager)中查看支持的任务列表。如果未提供 `task` 参数,将默认导出不带特定任务头的模型架构。
```bash
optimum-cli export onnx --model local_path --task question-answering distilbert_base_uncased_squad_onnx/
```
生成的 `model.onnx` 文件可以在支持 ONNX 标准的 [许多加速引擎(accelerators)](https://onnx.ai/supported-tools.html#deployModel) 之一上运行。例如,我们可以使用 [ONNX Runtime](https://onnxruntime.ai/) 加载和运行模型,如下所示:
```python
>>> from transformers import AutoTokenizer
>>> from optimum.onnxruntime import ORTModelForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert_base_uncased_squad_onnx")
>>> model = ORTModelForQuestionAnswering.from_pretrained("distilbert_base_uncased_squad_onnx")
>>> inputs = tokenizer("What am I using?", "Using DistilBERT with ONNX Runtime!", return_tensors="pt")
>>> outputs = model(**inputs)
```
从 Hub 导出 TensorFlow 检查点的过程也一样。例如,以下是从 [Keras 组织](https://huggingface.co/keras-io) 导出纯 TensorFlow 检查点的命令:
```bash
optimum-cli export onnx --model keras-io/transformers-qa distilbert_base_cased_squad_onnx/
```
### 使用 `optimum.onnxruntime` 将 🤗 Transformers 模型导出为 ONNX
除了 CLI 之外,你还可以使用代码将 🤗 Transformers 模型导出为 ONNX,如下所示:
```python
>>> from optimum.onnxruntime import ORTModelForSequenceClassification
>>> from transformers import AutoTokenizer
>>> model_checkpoint = "distilbert_base_uncased_squad"
>>> save_directory = "onnx/"
>>> # 从 transformers 加载模型并将其导出为 ONNX
>>> ort_model = ORTModelForSequenceClassification.from_pretrained(model_checkpoint, export=True)
>>> tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
>>> # 保存 onnx 模型以及分词器
>>> ort_model.save_pretrained(save_directory)
>>> tokenizer.save_pretrained(save_directory)
```
### 导出尚未支持的架构的模型
如果你想要为当前无法导出的模型添加支持,请先检查 [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview) 是否支持该模型,如果不支持,你可以 [直接为 🤗 Optimum 贡献代码](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute)。
### 使用 `transformers.onnx` 导出模型
<Tip warning={true}>
`tranformers.onnx` 不再进行维护,请如上所述,使用 🤗 Optimum 导出模型。这部分内容将在未来版本中删除。
</Tip>
要使用 `tranformers.onnx` 将 🤗 Transformers 模型导出为 ONNX,请安装额外的依赖项:
```bash
pip install transformers[onnx]
```
将 `transformers.onnx` 包作为 Python 模块使用,以使用现成的配置导出检查点:
```bash
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
```
以上代码将导出由 `--model` 参数定义的检查点的 ONNX 图。传入任何 🤗 Hub 上或者存储与本地的检查点。生成的 `model.onnx` 文件可以在支持 ONNX 标准的众多加速引擎上运行。例如,使用 ONNX Runtime 加载并运行模型,如下所示:
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
可以通过查看每个模型的 ONNX 配置来获取所需的输出名(例如 `["last_hidden_state"]`)。例如,对于 DistilBERT,可以用以下代码获取输出名称:
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
```
从 Hub 导出 TensorFlow 检查点的过程也一样。导出纯 TensorFlow 检查点的示例代码如下:
```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```
要导出本地存储的模型,请将模型的权重和分词器文件保存在同一目录中(例如 `local-pt-checkpoint`),然后通过将 `transformers.onnx` 包的 `--model` 参数指向该目录,将其导出为 ONNX:
```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
``` | transformers/docs/source/zh/serialization.md/0 | {
"file_path": "transformers/docs/source/zh/serialization.md",
"repo_id": "transformers",
"token_count": 4933
} | 274 |
<!---
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Language model training examples
The following example showcases how to train a language model from scratch
using the JAX/Flax backend.
JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU.
Models written in JAX/Flax are **immutable** and updated in a purely functional
way which enables simple and efficient model parallelism.
## Masked language modeling
In the following, we demonstrate how to train a bi-directional transformer model
using masked language modeling objective as introduced in [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805).
More specifically, we demonstrate how JAX/Flax can be leveraged
to pre-train [**`FacebookAI/roberta-base`**](https://huggingface.co/FacebookAI/roberta-base)
in Norwegian on a single TPUv3-8 pod.
The example script uses the 🤗 Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.
To setup all relevant files for training, let's create a directory.
```bash
mkdir ./norwegian-roberta-base
```
### Train tokenizer
In the first step, we train a tokenizer to efficiently process the text input for the model. Similar to how it is shown in [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train), we use a **`ByteLevelBPETokenizer`**.
The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in the cloned model directory.
This can take up to 10 minutes depending on your hardware ☕.
```python
from datasets import load_dataset
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
# load dataset
dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train")
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=1000):
for i in range(0, len(dataset), batch_size):
yield dataset[i: i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[
"<s>",
"<pad>",
"</s>",
"<unk>",
"<mask>",
])
# Save files to disk
tokenizer.save("./norwegian-roberta-base/tokenizer.json")
```
### Create configuration
Next, we create the model's configuration file. This is as simple
as loading and storing [`**FacebookAI/roberta-base**`](https://huggingface.co/FacebookAI/roberta-base)
in the local model folder:
```python
from transformers import RobertaConfig
config = RobertaConfig.from_pretrained("FacebookAI/roberta-base", vocab_size=50265)
config.save_pretrained("./norwegian-roberta-base")
```
Great, we have set up our model repository. During training, we will automatically
push the training logs and model weights to the repo.
### Train model
Next we can run the example script to pretrain the model:
```bash
python run_mlm_flax.py \
--output_dir="./norwegian-roberta-base" \
--model_type="roberta" \
--config_name="./norwegian-roberta-base" \
--tokenizer_name="./norwegian-roberta-base" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--max_seq_length="128" \
--weight_decay="0.01" \
--per_device_train_batch_size="128" \
--per_device_eval_batch_size="128" \
--learning_rate="3e-4" \
--warmup_steps="1000" \
--overwrite_output_dir \
--num_train_epochs="18" \
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--logging_steps="500" \
--save_steps="2500" \
--eval_steps="2500" \
--push_to_hub
```
Training should converge at a loss and accuracy
of 1.78 and 0.64 respectively after 18 epochs on a single TPUv3-8.
This should take less than 18 hours.
Training statistics can be accessed on [tfhub.dev](https://tensorboard.dev/experiment/GdYmdak2TWeVz0DDRYOrrg).
For a step-by-step walkthrough of how to do masked language modeling in Flax, please have a
look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb) google colab.
## Causal language modeling
In the following, we demonstrate how to train an auto-regressive causal transformer model
in JAX/Flax.
More specifically, we pretrain a randomly initialized [**`openai-community/gpt2`**](https://huggingface.co/openai-community/gpt2) model in Norwegian on a single TPUv3-8.
to pre-train 124M [**`openai-community/gpt2`**](https://huggingface.co/openai-community/gpt2)
in Norwegian on a single TPUv3-8 pod.
The example script uses the 🤗 Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.
To setup all relevant files for training, let's create a directory.
```bash
mkdir ./norwegian-gpt2
```
### Train tokenizer
In the first step, we train a tokenizer to efficiently process the text input for the model. Similar to how it is shown in [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train), we use a **`ByteLevelBPETokenizer`**.
The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in the cloned model directory.
This can take up to 10 minutes depending on your hardware ☕.
```python
from datasets import load_dataset
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
# load dataset
dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train")
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=1000):
for i in range(0, len(dataset), batch_size):
yield dataset[i: i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50257, min_frequency=2, special_tokens=[
"<s>",
"<pad>",
"</s>",
"<unk>",
"<mask>",
])
# Save files to disk
tokenizer.save("./norwegian-gpt2/tokenizer.json")
```
### Create configuration
Next, we create the model's configuration file. This is as simple
as loading and storing [`**openai-community/gpt2**`](https://huggingface.co/openai-community/gpt2)
in the local model folder:
```python
from transformers import GPT2Config
config = GPT2Config.from_pretrained("openai-community/gpt2", resid_pdrop=0.0, embd_pdrop=0.0, attn_pdrop=0.0, vocab_size=50257)
config.save_pretrained("./norwegian-gpt2")
```
Great, we have set up our model repository. During training, we will now automatically
push the training logs and model weights to the repo.
### Train model
Finally, we can run the example script to pretrain the model:
```bash
python run_clm_flax.py \
--output_dir="./norwegian-gpt2" \
--model_type="openai-community/gpt2" \
--config_name="./norwegian-gpt2" \
--tokenizer_name="./norwegian-gpt2" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--do_train --do_eval \
--block_size="512" \
--per_device_train_batch_size="64" \
--per_device_eval_batch_size="64" \
--learning_rate="5e-3" --warmup_steps="1000" \
--adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" \
--overwrite_output_dir \
--num_train_epochs="20" \
--logging_steps="500" \
--save_steps="2500" \
--eval_steps="2500" \
--push_to_hub
```
Training should converge at a loss and perplexity
of 3.24 and 25.72 respectively after 20 epochs on a single TPUv3-8.
This should take less than ~21 hours.
Training statistics can be accessed on [tfhub.de](https://tensorboard.dev/experiment/2zEhLwJ0Qp2FAkI3WVH9qA).
For a step-by-step walkthrough of how to do causal language modeling in Flax, please have a
look at [this](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/causal_language_modeling_flax.ipynb) google colab.
## T5-like span-masked language modeling
In the following, we demonstrate how to train a T5 model using the span-masked language model
objective as proposed in the [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683).
More specifically, we demonstrate how JAX/Flax can be leveraged
to pre-train [**`google/t5-v1_1-base`**](https://huggingface.co/google/t5-v1_1-base)
in Norwegian on a single TPUv3-8 pod.
The example script uses the 🤗 Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.
Let's start by creating a model repository to save the trained model and logs.
Here we call the model `"norwegian-t5-base"`, but you can change the model name as you like.
To setup all relevant files for training, let's create a directory.
```bash
cd ./norwegian-t5-base
```
### Train tokenizer
In the first step, we train a tokenizer to efficiently process the text input for the model.
We make use of the [tokenizers](https://github.com/huggingface/tokenizers) library to train
a sentencepiece unigram tokenizer as shown in [t5_tokenizer_model.py](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling/t5_tokenizer_model.py)
which is heavily inspired from [yandex-research/DeDLOC's tokenizer model](https://github.com/yandex-research/DeDLOC/blob/5c994bc64e573702a9a79add3ecd68b38f14b548/sahajbert/tokenizer/tokenizer_model.py) .
The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in the cloned model directory.
This can take up to 120 minutes depending on your hardware ☕☕☕ .
```python
import datasets
from t5_tokenizer_model import SentencePieceUnigramTokenizer
vocab_size = 32_000
input_sentence_size = None
# Initialize a dataset
dataset = datasets.load_dataset("oscar", name="unshuffled_deduplicated_no", split="train")
tokenizer = SentencePieceUnigramTokenizer(unk_token="<unk>", eos_token="</s>", pad_token="<pad>")
# Build an iterator over this dataset
def batch_iterator(input_sentence_size=None):
if input_sentence_size is None:
input_sentence_size = len(dataset)
batch_length = 100
for i in range(0, input_sentence_size, batch_length):
yield dataset[i: i + batch_length]["text"]
# Train tokenizer
tokenizer.train_from_iterator(
iterator=batch_iterator(input_sentence_size=input_sentence_size),
vocab_size=vocab_size,
show_progress=True,
)
# Save files to disk
tokenizer.save("./norwegian-t5-base/tokenizer.json")
```
### Create configuration
Next, we create the model's configuration file. This is as simple
as loading and storing [`**google/t5-v1_1-base**`](https://huggingface.co/google/t5-v1_1-base)
in the local model folder:
```python
from transformers import T5Config
config = T5Config.from_pretrained("google/t5-v1_1-base", vocab_size=tokenizer.get_vocab_size())
config.save_pretrained("./norwegian-t5-base")
```
Great, we have set up our model repository. During training, we will automatically
push the training logs and model weights to the repo.
### Train model
Next we can run the example script to pretrain the model:
```bash
python run_t5_mlm_flax.py \
--output_dir="./norwegian-t5-base" \
--model_type="t5" \
--config_name="./norwegian-t5-base" \
--tokenizer_name="./norwegian-t5-base" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--max_seq_length="512" \
--per_device_train_batch_size="32" \
--per_device_eval_batch_size="32" \
--adafactor \
--learning_rate="0.005" \
--weight_decay="0.001" \
--warmup_steps="2000" \
--overwrite_output_dir \
--logging_steps="500" \
--save_steps="10000" \
--eval_steps="2500" \
--push_to_hub
```
Training should converge at a loss and accuracy
of 2.36 and 57.0 respectively after 3 epochs on a single TPUv3-8.
This should take around 4.5 hours.
Training statistics can be accessed on directly on the 🤗 [hub](https://huggingface.co/patrickvonplaten/t5-base-norwegian/tensorboard)
## BART: Denoising language modeling
In the following, we demonstrate how to train a BART model
using denoising language modeling objective as introduced in [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461).
More specifically, we demonstrate how JAX/Flax can be leveraged
to pre-train [**`bart-base`**](https://huggingface.co/facebook/bart-base)
in Norwegian on a single TPUv3-8 pod.
The example script uses the 🤗 Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.
To setup all relevant files for training, let's create a directory.
```bash
mkdir ./norwegian-bart-base
```
### Train tokenizer
In the first step, we train a tokenizer to efficiently process the text input for the model. Similar to how it is shown in [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train), we use a **`ByteLevelBPETokenizer`**.
The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in the cloned model directory.
This can take up to 10 minutes depending on your hardware ☕.
```python
from datasets import load_dataset
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
# load dataset
dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train")
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=1000):
for i in range(0, len(dataset), batch_size):
yield dataset[i: i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[
"<s>",
"<pad>",
"</s>",
"<unk>",
"<mask>",
])
# Save files to disk
tokenizer.save("./norwegian-bart-base/tokenizer.json")
```
### Create configuration
Next, we create the model's configuration file. This is as simple
as loading and storing [`**facebook/bart-base**`](https://huggingface.co/facebook/bart-base)
in the local model folder:
```python
from transformers import BartConfig
config = BartConfig.from_pretrained("facebook/bart-base", vocab_size=50265)
config.save_pretrained("./norwegian-bart-base")
```
Great, we have set up our model repository. During training, we will automatically
push the training logs and model weights to the repo.
### Train model
Next we can run the example script to pretrain the model:
```bash
python run_bart_dlm_flax.py \
--output_dir="./norwegian-bart-base" \
--config_name="./norwegian-bart-base" \
--tokenizer_name="./norwegian-bart-base" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--max_seq_length="1024" \
--per_device_train_batch_size="32" \
--per_device_eval_batch_size="32" \
--learning_rate="1e-4" \
--warmup_steps="2000" \
--overwrite_output_dir \
--logging_steps="500" \
--save_steps="2000" \
--eval_steps="2000" \
--push_to_hub
```
Training should converge at a loss and accuracy
of 1.36 and 0.77 respectively after 3 epochs on a single TPUv3-8.
This should take less than 6 hours.
Training statistics can be accessed on [tfhub.dev](https://tensorboard.dev/experiment/Maw62QlaSXWS0MOf2V2lbg/).
## Runtime evaluation
We also ran masked language modeling using PyTorch/XLA on a TPUv3-8, and PyTorch on 8 V100 GPUs. We report the
overall training time below.
For reproducibility, we state the training commands used for PyTorch/XLA and PyTorch further below.
| Task | [TPU v3-8 (Flax)](https://tensorboard.dev/experiment/GdYmdak2TWeVz0DDRYOrrg/) | [TPU v3-8 (Pytorch/XLA)](https://tensorboard.dev/experiment/7Jq1kcQQRAmy12KOdXek7A/)| [8 GPU (PyTorch)](https://tensorboard.dev/experiment/PJneV8FQRxa2unPw1QnVHA) |
|-------|-----------|------------|------------|
| MLM | 15h32m | 23h46m | 44h14m |
*All experiments are ran on Google Cloud Platform.
GPU experiments are ran without further optimizations besides JAX
transformations. GPU experiments are ran with full precision (fp32). "TPU v3-8"
are 8 TPU cores on 4 chips (each chips has 2 cores), while "8 GPU" are 8 GPU chips.
### Script to run MLM with PyTorch/XLA on TPUv3-8
For comparison one can run the same pre-training with PyTorch/XLA on TPU. To set up PyTorch/XLA on Cloud TPU VMs, please
refer to [this](https://cloud.google.com/tpu/docs/pytorch-xla-ug-tpu-vm) guide.
Having created the tokenizer and configuration in `norwegian-roberta-base`, we create the following symbolic links:
```bash
ln -s ~/transformers/examples/pytorch/language-modeling/run_mlm.py ./
ln -s ~/transformers/examples/pytorch/xla_spawn.py ./
```
, set the following environment variables:
```bash
export XRT_TPU_CONFIG="localservice;0;localhost:51011"
unset LD_PRELOAD
export NUM_TPUS=8
export TOKENIZERS_PARALLELISM=0
export MODEL_DIR="./norwegian-roberta-base"
mkdir -p ${MODEL_DIR}
```
, and start training as follows:
```bash
python3 xla_spawn.py --num_cores ${NUM_TPUS} run_mlm.py --output_dir="./runs" \
--model_type="roberta" \
--config_name="${MODEL_DIR}" \
--tokenizer_name="${MODEL_DIR}" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--max_seq_length="128" \
--weight_decay="0.01" \
--per_device_train_batch_size="128" \
--per_device_eval_batch_size="128" \
--learning_rate="3e-4" \
--warmup_steps="1000" \
--overwrite_output_dir \
--num_train_epochs="18" \
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--do_train \
--do_eval \
--logging_steps="500" \
--evaluation_strategy="epoch" \
--report_to="tensorboard" \
--save_strategy="no"
```
### Script to compare pre-training with PyTorch on 8 GPU V100's
For comparison you can run the same pre-training with PyTorch on GPU. Note that we have to make use of `gradient_accumulation`
because the maximum batch size that fits on a single V100 GPU is 32 instead of 128.
Having created the tokenizer and configuration in `norwegian-roberta-base`, we create the following symbolic links:
```bash
ln -s ~/transformers/examples/pytorch/language-modeling/run_mlm.py ./
```
, set some environment variables:
```bash
export NUM_GPUS=8
export TOKENIZERS_PARALLELISM=0
export MODEL_DIR="./norwegian-roberta-base"
mkdir -p ${MODEL_DIR}
```
, and can start training as follows:
```bash
python3 -m torch.distributed.launch --nproc_per_node ${NUM_GPUS} run_mlm.py \
--output_dir="${MODEL_DIR}" \
--model_type="roberta" \
--config_name="${MODEL_DIR}" \
--tokenizer_name="${MODEL_DIR}" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--max_seq_length="128" \
--weight_decay="0.01" \
--per_device_train_batch_size="32" \
--per_device_eval_batch_size="32" \
--gradient_accumulation="4" \
--learning_rate="3e-4" \
--warmup_steps="1000" \
--overwrite_output_dir \
--num_train_epochs="18" \
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--do_train \
--do_eval \
--logging_steps="500" \
--evaluation_strategy="steps" \
--report_to="tensorboard" \
--save_strategy="no"
```
| transformers/examples/flax/language-modeling/README.md/0 | {
"file_path": "transformers/examples/flax/language-modeling/README.md",
"repo_id": "transformers",
"token_count": 6875
} | 275 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for summarization.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import json
import logging
import math
import os
import sys
import time
import warnings
from dataclasses import asdict, dataclass, field
from enum import Enum
from functools import partial
from pathlib import Path
from typing import Callable, Optional
import datasets
import evaluate
import jax
import jax.numpy as jnp
import nltk # Here to have a nice missing dependency error message early on
import numpy as np
import optax
from datasets import Dataset, load_dataset
from filelock import FileLock
from flax import jax_utils, traverse_util
from flax.jax_utils import pad_shard_unpad, unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
from huggingface_hub import HfApi
from tqdm import tqdm
import transformers
from transformers import (
CONFIG_MAPPING,
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
AutoConfig,
AutoTokenizer,
FlaxAutoModelForSeq2SeqLM,
HfArgumentParser,
is_tensorboard_available,
)
from transformers.utils import is_offline_mode, send_example_telemetry
logger = logging.getLogger(__name__)
try:
nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
if is_offline_mode():
raise LookupError(
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
)
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class TrainingArguments:
output_dir: str = field(
metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
)
overwrite_output_dir: bool = field(
default=False,
metadata={
"help": (
"Overwrite the content of the output directory. "
"Use this to continue training if output_dir points to a checkpoint directory."
)
},
)
do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."})
per_device_train_batch_size: int = field(
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
)
per_device_eval_batch_size: int = field(
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
)
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
label_smoothing_factor: float = field(
default=0.0, metadata={"help": "The label smoothing epsilon to apply (zero means no label smoothing)."}
)
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."})
eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
push_to_hub: bool = field(
default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
)
hub_model_id: str = field(
default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
)
hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
gradient_checkpointing: bool = field(
default=False,
metadata={
"help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass."
},
)
def __post_init__(self):
if self.output_dir is not None:
self.output_dir = os.path.expanduser(self.output_dir)
def to_dict(self):
"""
Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
the token values by removing their value.
"""
d = asdict(self)
for k, v in d.items():
if isinstance(v, Enum):
d[k] = v.value
if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
d[k] = [x.value for x in v]
if k.endswith("_token"):
d[k] = f"<{k.upper()}>"
return d
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
)
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": (
"Floating-point format in which the model weights should be initialized and trained. Choose one of"
" `[float32, float16, bfloat16]`."
)
},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
"execute code present on the Hub on your local machine."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
text_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
)
summary_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input predict data file to do prediction on (a text file)."},
)
max_source_length: Optional[int] = field(
default=1024,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
val_max_target_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. "
"This argument is also used to override the `max_length` param of `model.generate`, which is used "
"during evaluation."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
source_prefix: Optional[str] = field(
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
predict_with_generate: bool = field(
default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."}
)
num_beams: Optional[int] = field(
default=1,
metadata={
"help": (
"Number of beams to use for evaluation. This argument will be passed to `model.generate`, "
"which is used during evaluation."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
def __post_init__(self):
if (
self.dataset_name is None
and self.train_file is None
and self.validation_file is None
and self.test_file is None
):
raise ValueError("Need either a dataset name or a training, validation, or test file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if self.test_file is not None:
extension = self.test_file.split(".")[-1]
assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
if self.val_max_target_length is None:
self.val_max_target_length = self.max_target_length
summarization_name_mapping = {
"amazon_reviews_multi": ("review_body", "review_title"),
"big_patent": ("description", "abstract"),
"cnn_dailymail": ("article", "highlights"),
"orange_sum": ("text", "summary"),
"pn_summary": ("article", "summary"),
"psc": ("extract_text", "summary_text"),
"samsum": ("dialogue", "summary"),
"thaisum": ("body", "summary"),
"xglue": ("news_body", "news_title"),
"xsum": ("document", "summary"),
"wiki_summary": ("article", "highlights"),
}
class TrainState(train_state.TrainState):
dropout_rng: jnp.ndarray
def replicate(self):
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False, drop_last=True):
"""
Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete,
and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`.
"""
if shuffle:
batch_idx = jax.random.permutation(rng, len(dataset))
batch_idx = np.asarray(batch_idx)
else:
batch_idx = np.arange(len(dataset))
if drop_last:
steps_per_epoch = len(dataset) // batch_size
batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch.
batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
else:
steps_per_epoch = math.ceil(len(dataset) / batch_size)
batch_idx = np.array_split(batch_idx, steps_per_epoch)
for idx in batch_idx:
batch = dataset[idx]
batch = {k: np.array(v) for k, v in batch.items()}
yield batch
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
summary_writer.scalar("train_time", train_time, step)
train_metrics = get_metrics(train_metrics)
for key, vals in train_metrics.items():
tag = f"train_{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"eval_{metric_name}", value, step)
def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.ndarray]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
decay_fn = optax.linear_schedule(
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
)
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
return schedule_fn
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
FutureWarning,
)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_summarization", model_args, data_args, framework="flax")
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
if jax.process_index() == 0:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Handle the repository creation
if training_args.push_to_hub:
# Retrieve of infer repo_name
repo_name = training_args.hub_model_id
if repo_name is None:
repo_name = Path(training_args.output_dir).absolute().name
# Create repo and retrieve repo_id
api = HfApi()
repo_id = api.create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files this script will use the first column for the full texts and the second column for the
# summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
#
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
keep_in_memory=False,
token=model_args.token,
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
dataset = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.
# Load pretrained model and tokenizer
if model_args.config_name:
config = AutoConfig.from_pretrained(
model_args.config_name,
cache_dir=model_args.cache_dir,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script. "
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if model_args.model_name_or_path:
model = FlaxAutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
config=config,
seed=training_args.seed,
dtype=getattr(jnp, model_args.dtype),
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
model = FlaxAutoModelForSeq2SeqLM.from_config(
config,
seed=training_args.seed,
dtype=getattr(jnp, model_args.dtype),
trust_remote_code=model_args.trust_remote_code,
)
if training_args.gradient_checkpointing:
model.enable_gradient_checkpointing()
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
if training_args.do_train:
if "train" not in dataset:
raise ValueError("--do_train requires a train dataset")
column_names = dataset["train"].column_names
elif training_args.do_eval:
if "validation" not in dataset:
raise ValueError("--do_eval requires a validation dataset")
column_names = dataset["validation"].column_names
elif training_args.do_predict:
if "test" not in dataset:
raise ValueError("--do_predict requires a test dataset")
column_names = dataset["test"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
# Get the column names for input/target.
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
if data_args.text_column is None:
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
text_column = data_args.text_column
if text_column not in column_names:
raise ValueError(
f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
)
if data_args.summary_column is None:
summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
summary_column = data_args.summary_column
if summary_column not in column_names:
raise ValueError(
f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
)
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
# In Flax, for seq2seq models we need to pass `decoder_input_ids`
# as the Flax models don't accept `labels`, we need to prepare the decoder_input_ids here
# for that dynamically import the `shift_tokens_right` function from the model file
model_module = __import__(model.__module__, fromlist=["shift_tokens_tight"])
shift_tokens_right_fn = getattr(model_module, "shift_tokens_right")
# Setting padding="max_length" as we need fixed length inputs for jitted functions
def preprocess_function(examples):
inputs = examples[text_column]
targets = examples[summary_column]
inputs = [prefix + inp for inp in inputs]
model_inputs = tokenizer(
inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np"
)
# Setup the tokenizer for targets
labels = tokenizer(
text_target=targets,
max_length=max_target_length,
padding="max_length",
truncation=True,
return_tensors="np",
)
model_inputs["labels"] = labels["input_ids"]
decoder_input_ids = shift_tokens_right_fn(
labels["input_ids"], config.pad_token_id, config.decoder_start_token_id
)
model_inputs["decoder_input_ids"] = np.asarray(decoder_input_ids)
# We need decoder_attention_mask so we can ignore pad tokens from loss
model_inputs["decoder_attention_mask"] = labels["attention_mask"]
return model_inputs
if training_args.do_train:
train_dataset = dataset["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
eval_dataset = dataset["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if training_args.do_predict:
max_target_length = data_args.val_max_target_length
predict_dataset = dataset["test"]
if data_args.max_predict_samples is not None:
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
predict_dataset = predict_dataset.select(range(max_predict_samples))
predict_dataset = predict_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
# Metric
metric = evaluate.load("rouge", cache_dir=model_args.cache_dir)
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
# rougeLSum expects newline after each sentence
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
return preds, labels
def compute_metrics(preds, labels):
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
result = {k: round(v * 100, 4) for k, v in result.items()}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
return result
# Enable tensorboard only on the master node
has_tensorboard = is_tensorboard_available()
if has_tensorboard and jax.process_index() == 0:
try:
from flax.metrics.tensorboard import SummaryWriter
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
except ImportError as ie:
has_tensorboard = False
logger.warning(
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
)
else:
logger.warning(
"Unable to display metrics through TensorBoard because the package is not installed: "
"Please run pip install tensorboard to enable."
)
# Initialize our training
rng = jax.random.PRNGKey(training_args.seed)
rng, dropout_rng = jax.random.split(rng)
# Store some constant
num_epochs = int(training_args.num_train_epochs)
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
eval_batch_size = per_device_eval_batch_size * jax.device_count()
steps_per_epoch = len(train_dataset) // train_batch_size
total_train_steps = steps_per_epoch * num_epochs
# Create learning rate schedule
linear_decay_lr_schedule_fn = create_learning_rate_fn(
len(train_dataset),
train_batch_size,
training_args.num_train_epochs,
training_args.warmup_steps,
training_args.learning_rate,
)
# We use Optax's "masking" functionality to not apply weight decay
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
# mask boolean with the same structure as the parameters.
# The mask is True for parameters that should be decayed.
def decay_mask_fn(params):
flat_params = traverse_util.flatten_dict(params)
# find out all LayerNorm parameters
layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
layer_norm_named_params = {
layer[-2:]
for layer_norm_name in layer_norm_candidates
for layer in flat_params.keys()
if layer_norm_name in "".join(layer).lower()
}
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
return traverse_util.unflatten_dict(flat_mask)
# create adam optimizer
adamw = optax.adamw(
learning_rate=linear_decay_lr_schedule_fn,
b1=training_args.adam_beta1,
b2=training_args.adam_beta2,
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
mask=decay_mask_fn,
)
# Setup train state
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng)
# label smoothed cross entropy
def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0):
"""
The label smoothing implementation is adapted from Flax's official example:
https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104
"""
vocab_size = logits.shape[-1]
confidence = 1.0 - label_smoothing_factor
low_confidence = (1.0 - confidence) / (vocab_size - 1)
normalizing_constant = -(
confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20)
)
soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence)
loss = optax.softmax_cross_entropy(logits, soft_labels)
loss = loss - normalizing_constant
# ignore padded tokens from loss
loss = loss * padding_mask
loss = loss.sum()
num_labels = padding_mask.sum()
return loss, num_labels
# Define gradient update step fn
def train_step(state, batch, label_smoothing_factor=0.0):
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
def compute_loss(params):
labels = batch.pop("labels")
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
loss, num_labels = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor)
return loss, num_labels
grad_fn = jax.value_and_grad(compute_loss, has_aux=True)
(loss, num_labels), grad = grad_fn(state.params)
num_labels = jax.lax.psum(num_labels, "batch")
# true loss = total loss / total samples
loss = jax.lax.psum(loss, "batch")
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)
# true grad = total grad / total samples
grad = jax.lax.psum(grad, "batch")
grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad)
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
return new_state, metrics
# Define eval fn
def eval_step(params, batch, label_smoothing_factor=0.0):
labels = batch.pop("labels")
logits = model(**batch, params=params, train=False)[0]
loss, num_labels = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor)
num_labels = jax.lax.psum(num_labels, "batch")
# true loss = total loss / total samples
loss = jax.lax.psum(loss, "batch")
loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss)
metrics = {"loss": loss}
return metrics
# Define generation function
max_length = (
data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length
)
num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def generate_step(params, batch):
model.params = params
output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs)
return output_ids.sequences
# Create parallel version of the train and eval step
p_train_step = jax.pmap(
partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch", donate_argnums=(0,)
)
p_eval_step = jax.pmap(partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch")
p_generate_step = jax.pmap(generate_step, "batch")
# Replicate the train state on each device
state = state.replicate()
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_epochs}")
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}")
logger.info(f" Total optimization steps = {total_train_steps}")
train_time = 0
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
for epoch in epochs:
# ======================== Training ================================
train_start = time.time()
# Create sampling rng
rng, input_rng = jax.random.split(rng)
train_metrics = []
# Generate an epoch by shuffling sampling indices from the train dataset
train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
steps_per_epoch = len(train_dataset) // train_batch_size
# train
for _ in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
batch = next(train_loader)
batch = shard(batch)
state, train_metric = p_train_step(state, batch)
train_metrics.append(train_metric)
train_time += time.time() - train_start
train_metric = unreplicate(train_metric)
epochs.write(
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate:"
f" {train_metric['learning_rate']})"
)
# ======================== Evaluating ==============================
eval_metrics = []
eval_preds = []
eval_labels = []
eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False)
eval_steps = math.ceil(len(eval_dataset) / eval_batch_size)
for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
# Model forward
batch = next(eval_loader)
labels = batch["labels"]
metrics = pad_shard_unpad(p_eval_step, static_return=True)(
state.params, batch, min_device_batch=per_device_eval_batch_size
)
eval_metrics.append(metrics)
# generation
if data_args.predict_with_generate:
generated_ids = pad_shard_unpad(p_generate_step)(state.params, batch)
eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
eval_labels.extend(labels)
# normalize eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics)
# compute ROUGE metrics
rouge_desc = ""
if data_args.predict_with_generate:
rouge_metrics = compute_metrics(eval_preds, eval_labels)
eval_metrics.update(rouge_metrics)
rouge_desc = " ".join([f"Eval {key}: {value} |" for key, value in rouge_metrics.items()])
# Print metrics and update progress bar
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {rouge_desc})"
epochs.write(desc)
epochs.desc = desc
# Save metrics
if has_tensorboard and jax.process_index() == 0:
cur_step = epoch * (len(train_dataset) // train_batch_size)
write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step)
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params))
model.save_pretrained(training_args.output_dir, params=params)
tokenizer.save_pretrained(training_args.output_dir)
if training_args.push_to_hub:
api.upload_folder(
commit_message=f"Saving weights and logs of epoch {epoch}",
folder_path=training_args.output_dir,
repo_id=repo_id,
repo_type="model",
token=training_args.hub_token,
)
# ======================== Prediction loop ==============================
if training_args.do_predict:
logger.info("*** Predict ***")
pred_metrics = []
pred_generations = []
pred_labels = []
pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size, drop_last=False)
pred_steps = math.ceil(len(predict_dataset) / eval_batch_size)
for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False):
# Model forward
batch = next(pred_loader)
labels = batch["labels"]
metrics = pad_shard_unpad(p_eval_step, static_return=True)(
state.params, batch, min_device_batch=per_device_eval_batch_size
)
pred_metrics.append(metrics)
# generation
if data_args.predict_with_generate:
generated_ids = pad_shard_unpad(p_generate_step)(state.params, batch)
pred_generations.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
pred_labels.extend(labels)
# normalize prediction metrics
pred_metrics = get_metrics(pred_metrics)
pred_metrics = jax.tree_util.tree_map(jnp.mean, pred_metrics)
# compute ROUGE metrics
rouge_desc = ""
if data_args.predict_with_generate:
rouge_metrics = compute_metrics(pred_generations, pred_labels)
pred_metrics.update(rouge_metrics)
rouge_desc = " ".join([f"Predict {key}: {value} |" for key, value in rouge_metrics.items()])
# Print metrics
desc = f"Predict Loss: {pred_metrics['loss']} | {rouge_desc})"
logger.info(desc)
# save final metrics in json
if jax.process_index() == 0:
rouge_metrics = {f"test_{metric_name}": value for metric_name, value in rouge_metrics.items()}
path = os.path.join(training_args.output_dir, "test_results.json")
with open(path, "w") as f:
json.dump(rouge_metrics, f, indent=4, sort_keys=True)
if __name__ == "__main__":
main()
| transformers/examples/flax/summarization/run_summarization_flax.py/0 | {
"file_path": "transformers/examples/flax/summarization/run_summarization_flax.py",
"repo_id": "transformers",
"token_count": 18287
} | 276 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for multiple choice (Bert, Roberta, XLNet)."""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
logger = logging.getLogger(__name__)
def simple_accuracy(preds, labels):
return (preds == labels).mean()
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task_name: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys())})
data_dir: str = field(metadata={"help": "Should contain the data files for the task."})
max_seq_length: int = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
" --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
try:
processor = processors[data_args.task_name]()
label_list = processor.get_labels()
num_labels = len(label_list)
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
model = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
# Get datasets
train_dataset = (
MultipleChoiceDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
mode=Split.train,
)
if training_args.do_train
else None
)
eval_dataset = (
MultipleChoiceDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
mode=Split.dev,
)
if training_args.do_eval
else None
)
def compute_metrics(p: EvalPrediction) -> Dict:
preds = np.argmax(p.predictions, axis=1)
return {"acc": simple_accuracy(preds, p.label_ids)}
# Data collator
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) if training_args.fp16 else None
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
data_collator=data_collator,
)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
result = trainer.evaluate()
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
if trainer.is_world_master():
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
results.update(result)
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| transformers/examples/legacy/multiple_choice/run_multiple_choice.py/0 | {
"file_path": "transformers/examples/legacy/multiple_choice/run_multiple_choice.py",
"repo_id": "transformers",
"token_count": 3303
} | 277 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner.
Finetuning the library models for multiple choice on SWAG (Bert).
"""
import argparse
import csv
import glob
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
import transformers
from transformers import (
WEIGHTS_NAME,
AdamW,
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
get_linear_schedule_with_warmup,
)
from transformers.trainer_utils import is_main_process
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
class SwagExample(object):
"""A single training/test example for the SWAG dataset."""
def __init__(self, swag_id, context_sentence, start_ending, ending_0, ending_1, ending_2, ending_3, label=None):
self.swag_id = swag_id
self.context_sentence = context_sentence
self.start_ending = start_ending
self.endings = [
ending_0,
ending_1,
ending_2,
ending_3,
]
self.label = label
def __str__(self):
return self.__repr__()
def __repr__(self):
attributes = [
"swag_id: {}".format(self.swag_id),
"context_sentence: {}".format(self.context_sentence),
"start_ending: {}".format(self.start_ending),
"ending_0: {}".format(self.endings[0]),
"ending_1: {}".format(self.endings[1]),
"ending_2: {}".format(self.endings[2]),
"ending_3: {}".format(self.endings[3]),
]
if self.label is not None:
attributes.append("label: {}".format(self.label))
return ", ".join(attributes)
class InputFeatures(object):
def __init__(self, example_id, choices_features, label):
self.example_id = example_id
self.choices_features = [
{"input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids}
for _, input_ids, input_mask, segment_ids in choices_features
]
self.label = label
def read_swag_examples(input_file, is_training=True):
with open(input_file, "r", encoding="utf-8") as f:
lines = list(csv.reader(f))
if is_training and lines[0][-1] != "label":
raise ValueError("For training, the input file must contain a label column.")
examples = [
SwagExample(
swag_id=line[2],
context_sentence=line[4],
start_ending=line[5], # in the swag dataset, the
# common beginning of each
# choice is stored in "sent2".
ending_0=line[7],
ending_1=line[8],
ending_2=line[9],
ending_3=line[10],
label=int(line[11]) if is_training else None,
)
for line in lines[1:] # we skip the line with the column names
]
return examples
def convert_examples_to_features(examples, tokenizer, max_seq_length, is_training):
"""Loads a data file into a list of `InputBatch`s."""
# Swag is a multiple choice task. To perform this task using Bert,
# we will use the formatting proposed in "Improving Language
# Understanding by Generative Pre-Training" and suggested by
# @jacobdevlin-google in this issue
# https://github.com/google-research/bert/issues/38.
#
# Each choice will correspond to a sample on which we run the
# inference. For a given Swag example, we will create the 4
# following inputs:
# - [CLS] context [SEP] choice_1 [SEP]
# - [CLS] context [SEP] choice_2 [SEP]
# - [CLS] context [SEP] choice_3 [SEP]
# - [CLS] context [SEP] choice_4 [SEP]
# The model will output a single value for each input. To get the
# final decision of the model, we will run a softmax over these 4
# outputs.
features = []
for example_index, example in tqdm(enumerate(examples)):
context_tokens = tokenizer.tokenize(example.context_sentence)
start_ending_tokens = tokenizer.tokenize(example.start_ending)
choices_features = []
for ending_index, ending in enumerate(example.endings):
# We create a copy of the context tokens in order to be
# able to shrink it according to ending_tokens
context_tokens_choice = context_tokens[:]
ending_tokens = start_ending_tokens + tokenizer.tokenize(ending)
# Modifies `context_tokens_choice` and `ending_tokens` in
# place so that the total length is less than the
# specified length. Account for [CLS], [SEP], [SEP] with
# "- 3"
_truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3)
tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"]
segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
choices_features.append((tokens, input_ids, input_mask, segment_ids))
label = example.label
if example_index < 5:
logger.info("*** Example ***")
logger.info("swag_id: {}".format(example.swag_id))
for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
logger.info("choice: {}".format(choice_idx))
logger.info("tokens: {}".format(" ".join(tokens)))
logger.info("input_ids: {}".format(" ".join(map(str, input_ids))))
logger.info("input_mask: {}".format(" ".join(map(str, input_mask))))
logger.info("segment_ids: {}".format(" ".join(map(str, segment_ids))))
if is_training:
logger.info("label: {}".format(label))
features.append(InputFeatures(example_id=example.swag_id, choices_features=choices_features, label=label))
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def select_field(features, field):
return [[choice[field] for choice in feature.choices_features] for feature in features]
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Load data features from cache or dataset file
input_file = args.predict_file if evaluate else args.train_file
cached_features_file = os.path.join(
os.path.dirname(input_file),
"cached_{}_{}_{}".format(
"dev" if evaluate else "train",
list(filter(None, args.model_name_or_path.split("/"))).pop(),
str(args.max_seq_length),
),
)
if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", input_file)
examples = read_swag_examples(input_file)
features = convert_examples_to_features(examples, tokenizer, args.max_seq_length, not evaluate)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor(select_field(features, "input_ids"), dtype=torch.long)
all_input_mask = torch.tensor(select_field(features, "input_mask"), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(features, "segment_ids"), dtype=torch.long)
all_label = torch.tensor([f.label for f in features], dtype=torch.long)
if evaluate:
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
else:
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
if output_examples:
return dataset, examples, features
return dataset
def train(args, train_dataset, model, tokenizer):
"""Train the model"""
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproducibility
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
# 'token_type_ids': None if args.model_type == 'xlm' else batch[2],
"token_type_ids": batch[2],
"labels": batch[3],
}
# if args.model_type in ['xlnet', 'xlm']:
# inputs.update({'cls_index': batch[5],
# 'p_mask': batch[6]})
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_vocabulary(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
# 'token_type_ids': None if args.model_type == 'xlm' else batch[2] # XLM don't use segment_ids
"token_type_ids": batch[2],
"labels": batch[3],
}
# if args.model_type in ['xlnet', 'xlm']:
# inputs.update({'cls_index': batch[4],
# 'p_mask': batch[5]})
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
logits = logits.detach().cpu().numpy()
label_ids = inputs["labels"].to("cpu").numpy()
tmp_eval_accuracy = accuracy(logits, label_ids)
eval_accuracy += tmp_eval_accuracy
nb_eval_steps += 1
nb_eval_examples += inputs["input_ids"].size(0)
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
result = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info("%s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return result
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--train_file", default=None, type=str, required=True, help="SWAG csv for training. E.g., train.csv"
)
parser.add_argument(
"--predict_file",
default=None,
type=str,
required=True,
help="SWAG csv for predictions. E.g., val.csv or test.csv",
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints and predictions will be written.",
)
# Other parameters
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--max_seq_length",
default=384,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded."
),
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument(
"--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
)
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. "
"See details at https://nvidia.github.io/apex/amp.html"
),
)
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
args = parser.parse_args()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
)
model = AutoModelForMultipleChoice.from_pretrained(
args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config
)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Save the trained model and the tokenizer
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model = AutoModelForMultipleChoice.from_pretrained(args.output_dir)
tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
model.to(args.device)
# Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
if args.do_train:
checkpoints = [args.output_dir]
else:
# if do_train is False and do_eval is true, load model directly from pretrained.
checkpoints = [args.model_name_or_path]
if args.eval_all_checkpoints:
checkpoints = [
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
]
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
# Reload the model
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
model = AutoModelForMultipleChoice.from_pretrained(checkpoint)
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model.to(args.device)
# Evaluate
result = evaluate(args, model, tokenizer, prefix=global_step)
result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()}
results.update(result)
logger.info("Results: {}".format(results))
return results
if __name__ == "__main__":
main()
| transformers/examples/legacy/run_swag.py/0 | {
"file_path": "transformers/examples/legacy/run_swag.py",
"repo_id": "transformers",
"token_count": 12598
} | 278 |
#!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fill examples with bitext up to max_tokens without breaking up examples.
[['I went', 'yo fui'],
['to the store', 'a la tienda']
]
=> ['I went to the store', 'yo fui a la tienda']
"""
import argparse
import shutil
from pathlib import Path
from tqdm import tqdm
from transformers import AutoTokenizer
def pack_examples(tok, src_examples, tgt_examples, max_tokens=1024):
finished_src, finished_tgt = [], []
sorted_examples = list(zip(src_examples, tgt_examples))
new_src, new_tgt = sorted_examples[0]
def is_too_big(strang):
return tok(strang, return_tensors="pt").input_ids.shape[1] > max_tokens
for src, tgt in tqdm(sorted_examples[1:]):
cand_src = new_src + " " + src
cand_tgt = new_tgt + " " + tgt
if is_too_big(cand_src) or is_too_big(cand_tgt): # cant fit, finalize example
finished_src.append(new_src)
finished_tgt.append(new_tgt)
new_src, new_tgt = src, tgt
else: # can fit, keep adding
new_src, new_tgt = cand_src, cand_tgt
# cleanup
if new_src:
assert new_tgt
finished_src.append(new_src)
finished_tgt.append(new_tgt)
return finished_src, finished_tgt
def pack_data_dir(tok, data_dir: Path, max_tokens, save_path):
save_path = Path(save_path)
save_path.mkdir(exist_ok=True)
for split in ["train"]:
src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target"
src_docs = [x.rstrip() for x in Path(src_path).open().readlines()]
tgt_docs = [x.rstrip() for x in Path(tgt_path).open().readlines()]
packed_src, packed_tgt = pack_examples(tok, src_docs, tgt_docs, max_tokens)
print(f"packed {split} split from {len(src_docs)} examples -> {len(packed_src)}.")
Path(save_path / f"{split}.source").open("w").write("\n".join(packed_src))
Path(save_path / f"{split}.target").open("w").write("\n".join(packed_tgt))
for split in ["val", "test"]:
src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target"
shutil.copyfile(src_path, save_path / f"{split}.source")
shutil.copyfile(tgt_path, save_path / f"{split}.target")
def packer_cli():
parser = argparse.ArgumentParser()
parser.add_argument("--tok_name", type=str, help="like facebook/bart-large-cnn,google-t5/t5-base, etc.")
parser.add_argument("--max_seq_len", type=int, default=128)
parser.add_argument("--data_dir", type=str)
parser.add_argument("--save_path", type=str)
args = parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained(args.tok_name)
return pack_data_dir(tokenizer, Path(args.data_dir), args.max_seq_len, args.save_path)
if __name__ == "__main__":
packer_cli()
| transformers/examples/legacy/seq2seq/pack_dataset.py/0 | {
"file_path": "transformers/examples/legacy/seq2seq/pack_dataset.py",
"repo_id": "transformers",
"token_count": 1363
} | 279 |
if ! [ -f ./dev.txt ]; then
echo "Download dev dataset...."
curl -L -o ./dev.txt 'https://github.com/UniversalDependencies/UD_English-EWT/raw/master/en_ewt-ud-dev.conllu'
fi
if ! [ -f ./test.txt ]; then
echo "Download test dataset...."
curl -L -o ./test.txt 'https://github.com/UniversalDependencies/UD_English-EWT/raw/master/en_ewt-ud-test.conllu'
fi
if ! [ -f ./train.txt ]; then
echo "Download train dataset...."
curl -L -o ./train.txt 'https://github.com/UniversalDependencies/UD_English-EWT/raw/master/en_ewt-ud-train.conllu'
fi
export MAX_LENGTH=200
export BERT_MODEL=bert-base-uncased
export OUTPUT_DIR=postagger-model
export BATCH_SIZE=32
export NUM_EPOCHS=3
export SAVE_STEPS=750
export SEED=1
python3 run_ner.py \
--task_type POS \
--data_dir . \
--model_name_or_path $BERT_MODEL \
--output_dir $OUTPUT_DIR \
--max_seq_length $MAX_LENGTH \
--num_train_epochs $NUM_EPOCHS \
--per_gpu_train_batch_size $BATCH_SIZE \
--save_steps $SAVE_STEPS \
--seed $SEED \
--do_train \
--do_eval \
--do_predict
| transformers/examples/legacy/token-classification/run_pos.sh/0 | {
"file_path": "transformers/examples/legacy/token-classification/run_pos.sh",
"repo_id": "transformers",
"token_count": 416
} | 280 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning any 🤗 Transformers model for image classification leveraging 🤗 Accelerate."""
import argparse
import json
import logging
import math
import os
from pathlib import Path
import datasets
import evaluate
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
from huggingface_hub import HfApi
from torch.utils.data import DataLoader
from torchvision.transforms import (
CenterCrop,
Compose,
Lambda,
Normalize,
RandomHorizontalFlip,
RandomResizedCrop,
Resize,
ToTensor,
)
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, AutoImageProcessor, AutoModelForImageClassification, SchedulerType, get_scheduler
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.40.0.dev0")
logger = get_logger(__name__)
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
def parse_args():
parser = argparse.ArgumentParser(description="Fine-tune a Transformers model on an image classification dataset")
parser.add_argument(
"--dataset_name",
type=str,
default="cifar10",
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset)."
),
)
parser.add_argument("--train_dir", type=str, default=None, help="A folder containing the training data.")
parser.add_argument("--validation_dir", type=str, default=None, help="A folder containing the validation data.")
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--max_eval_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
),
)
parser.add_argument(
"--train_val_split",
type=float,
default=0.15,
help="Percent to split off of train for validation",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
default="google/vit-base-patch16-224-in21k",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--trust_remote_code",
type=bool,
default=False,
help=(
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
"execute code present on the Hub on your local machine."
),
)
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--with_tracking",
action="store_true",
help="Whether to enable experiment trackers for logging.",
)
parser.add_argument(
"--report_to",
type=str,
default="all",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations. '
"Only applicable when `--with_tracking` is passed."
),
)
parser.add_argument(
"--ignore_mismatched_sizes",
action="store_true",
help="Whether or not to enable to load a pretrained model whose head dimensions are different.",
)
parser.add_argument(
"--image_column_name",
type=str,
default="image",
help="The name of the dataset column containing the image data. Defaults to 'image'.",
)
parser.add_argument(
"--label_column_name",
type=str,
default="label",
help="The name of the dataset column containing the labels. Defaults to 'label'.",
)
args = parser.parse_args()
# Sanity checks
if args.dataset_name is None and args.train_dir is None and args.validation_dir is None:
raise ValueError("Need either a dataset name or a training/validation folder.")
if args.push_to_hub or args.with_tracking:
if args.output_dir is None:
raise ValueError(
"Need an `output_dir` to create a repo when `--push_to_hub` or `with_tracking` is specified."
)
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
return args
def main():
args = parse_args()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_image_classification_no_trainer", args)
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
# If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
# in the environment
accelerator_log_kwargs = {}
if args.with_tracking:
accelerator_log_kwargs["log_with"] = args.report_to
accelerator_log_kwargs["project_dir"] = args.output_dir
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, **accelerator_log_kwargs)
logger.info(accelerator.state)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
# Retrieve of infer repo_name
repo_name = args.hub_model_id
if repo_name is None:
repo_name = Path(args.output_dir).absolute().name
# Create repo and retrieve repo_id
api = HfApi()
repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Get the datasets: you can either provide your own training and evaluation files (see below)
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(args.dataset_name)
else:
data_files = {}
if args.train_dir is not None:
data_files["train"] = os.path.join(args.train_dir, "**")
if args.validation_dir is not None:
data_files["validation"] = os.path.join(args.validation_dir, "**")
dataset = load_dataset(
"imagefolder",
data_files=data_files,
)
# See more about loading custom images at
# https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder.
dataset_column_names = dataset["train"].column_names if "train" in dataset else dataset["validation"].column_names
if args.image_column_name not in dataset_column_names:
raise ValueError(
f"--image_column_name {args.image_column_name} not found in dataset '{args.dataset_name}'. "
"Make sure to set `--image_column_name` to the correct audio column - one of "
f"{', '.join(dataset_column_names)}."
)
if args.label_column_name not in dataset_column_names:
raise ValueError(
f"--label_column_name {args.label_column_name} not found in dataset '{args.dataset_name}'. "
"Make sure to set `--label_column_name` to the correct text column - one of "
f"{', '.join(dataset_column_names)}."
)
# If we don't have a validation split, split off a percentage of train as validation.
args.train_val_split = None if "validation" in dataset.keys() else args.train_val_split
if isinstance(args.train_val_split, float) and args.train_val_split > 0.0:
split = dataset["train"].train_test_split(args.train_val_split)
dataset["train"] = split["train"]
dataset["validation"] = split["test"]
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
labels = dataset["train"].features[args.label_column_name].names
label2id = {label: str(i) for i, label in enumerate(labels)}
id2label = {str(i): label for i, label in enumerate(labels)}
# Load pretrained model and image processor
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
args.model_name_or_path,
num_labels=len(labels),
i2label=id2label,
label2id=label2id,
finetuning_task="image-classification",
trust_remote_code=args.trust_remote_code,
)
image_processor = AutoImageProcessor.from_pretrained(
args.model_name_or_path,
trust_remote_code=args.trust_remote_code,
)
model = AutoModelForImageClassification.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
ignore_mismatched_sizes=args.ignore_mismatched_sizes,
trust_remote_code=args.trust_remote_code,
)
# Preprocessing the datasets
# Define torchvision transforms to be applied to each image.
if "shortest_edge" in image_processor.size:
size = image_processor.size["shortest_edge"]
else:
size = (image_processor.size["height"], image_processor.size["width"])
normalize = (
Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
if hasattr(image_processor, "image_mean") and hasattr(image_processor, "image_std")
else Lambda(lambda x: x)
)
train_transforms = Compose(
[
RandomResizedCrop(size),
RandomHorizontalFlip(),
ToTensor(),
normalize,
]
)
val_transforms = Compose(
[
Resize(size),
CenterCrop(size),
ToTensor(),
normalize,
]
)
def preprocess_train(example_batch):
"""Apply _train_transforms across a batch."""
example_batch["pixel_values"] = [
train_transforms(image.convert("RGB")) for image in example_batch[args.image_column_name]
]
return example_batch
def preprocess_val(example_batch):
"""Apply _val_transforms across a batch."""
example_batch["pixel_values"] = [
val_transforms(image.convert("RGB")) for image in example_batch[args.image_column_name]
]
return example_batch
with accelerator.main_process_first():
if args.max_train_samples is not None:
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
# Set the training transforms
train_dataset = dataset["train"].with_transform(preprocess_train)
if args.max_eval_samples is not None:
dataset["validation"] = dataset["validation"].shuffle(seed=args.seed).select(range(args.max_eval_samples))
# Set the validation transforms
eval_dataset = dataset["validation"].with_transform(preprocess_val)
# DataLoaders creation:
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
labels = torch.tensor([example[args.label_column_name] for example in examples])
return {"pixel_values": pixel_values, "labels": labels}
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=collate_fn, batch_size=args.per_device_eval_batch_size)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps
if overrode_max_train_steps
else args.max_train_steps * accelerator.num_processes,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is not None and checkpointing_steps.isdigit():
checkpointing_steps = int(checkpointing_steps)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if args.with_tracking:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("image_classification_no_trainer", experiment_config)
# Get the metric function
metric = evaluate.load("accuracy")
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
checkpoint_path = args.resume_from_checkpoint
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
checkpoint_path = path
path = os.path.basename(checkpoint_path)
accelerator.print(f"Resumed from checkpoint: {checkpoint_path}")
accelerator.load_state(checkpoint_path)
# Extract `epoch_{i}` or `step_{i}`
training_difference = os.path.splitext(path)[0]
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
completed_steps = resume_step // args.gradient_accumulation_steps
resume_step -= starting_epoch * len(train_dataloader)
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We skip the first `n` batches in the dataloader when resuming from a checkpoint
active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
else:
active_dataloader = train_dataloader
for step, batch in enumerate(active_dataloader):
with accelerator.accumulate(model):
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
output_dir = f"step_{completed_steps}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir,
is_main_process=accelerator.is_main_process,
save_function=accelerator.save,
)
if accelerator.is_main_process:
image_processor.save_pretrained(args.output_dir)
api.upload_folder(
commit_message=f"Training in progress epoch {epoch}",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
if completed_steps >= args.max_train_steps:
break
model.eval()
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=predictions,
references=references,
)
eval_metric = metric.compute()
logger.info(f"epoch {epoch}: {eval_metric}")
if args.with_tracking:
accelerator.log(
{
"accuracy": eval_metric,
"train_loss": total_loss.item() / len(train_dataloader),
"epoch": epoch,
"step": completed_steps,
},
step=completed_steps,
)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
image_processor.save_pretrained(args.output_dir)
api.upload_folder(
commit_message=f"Training in progress epoch {epoch}",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
if args.checkpointing_steps == "epoch":
output_dir = f"epoch_{epoch}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if args.with_tracking:
accelerator.end_training()
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
image_processor.save_pretrained(args.output_dir)
if args.push_to_hub:
api.upload_folder(
commit_message="End of training",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
all_results = {f"eval_{k}": v for k, v in eval_metric.items()}
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
json.dump(all_results, f)
if __name__ == "__main__":
main()
| transformers/examples/pytorch/image-classification/run_image_classification_no_trainer.py/0 | {
"file_path": "transformers/examples/pytorch/image-classification/run_image_classification_no_trainer.py",
"repo_id": "transformers",
"token_count": 11481
} | 281 |
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers import ViTMAEForPreTraining, Wav2Vec2ForPreTraining
from transformers.testing_utils import (
CaptureLogger,
TestCasePlus,
backend_device_count,
is_torch_fp16_available_on_device,
slow,
torch_device,
)
SRC_DIRS = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
"text-generation",
"text-classification",
"token-classification",
"language-modeling",
"multiple-choice",
"question-answering",
"summarization",
"translation",
"image-classification",
"speech-recognition",
"audio-classification",
"speech-pretraining",
"image-pretraining",
"semantic-segmentation",
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_audio_classification
import run_clm
import run_generation
import run_glue
import run_image_classification
import run_mae
import run_mlm
import run_ner
import run_qa as run_squad
import run_semantic_segmentation
import run_seq2seq_qa as run_squad_seq2seq
import run_speech_recognition_ctc
import run_speech_recognition_ctc_adapter
import run_speech_recognition_seq2seq
import run_summarization
import run_swag
import run_translation
import run_wav2vec2_pretraining_no_trainer
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
def get_results(output_dir):
results = {}
path = os.path.join(output_dir, "all_results.json")
if os.path.exists(path):
with open(path, "r") as f:
results = json.load(f)
else:
raise ValueError(f"can't find {path}")
return results
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class ExamplesTests(TestCasePlus):
def test_run_glue(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_glue.py
--model_name_or_path distilbert/distilbert-base-uncased
--output_dir {tmp_dir}
--overwrite_output_dir
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--do_train
--do_eval
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--max_steps=10
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
if is_torch_fp16_available_on_device(torch_device):
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_glue.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.75)
def test_run_clm(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_clm.py
--model_name_or_path distilbert/distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
if backend_device_count(torch_device) > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
if torch_device == "cpu":
testargs.append("--use_cpu")
with patch.object(sys, "argv", testargs):
run_clm.main()
result = get_results(tmp_dir)
self.assertLess(result["perplexity"], 100)
def test_run_clm_config_overrides(self):
# test that config_overrides works, despite the misleading dumps of default un-updated
# config via tokenizer
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_clm.py
--model_type gpt2
--tokenizer_name openai-community/gpt2
--train_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--config_overrides n_embd=10,n_head=2
""".split()
if torch_device == "cpu":
testargs.append("--use_cpu")
logger = run_clm.logger
with patch.object(sys, "argv", testargs):
with CaptureLogger(logger) as cl:
run_clm.main()
self.assertIn('"n_embd": 10', cl.out)
self.assertIn('"n_head": 2', cl.out)
def test_run_mlm(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_mlm.py
--model_name_or_path distilbert/distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--prediction_loss_only
--num_train_epochs=1
""".split()
if torch_device == "cpu":
testargs.append("--use_cpu")
with patch.object(sys, "argv", testargs):
run_mlm.main()
result = get_results(tmp_dir)
self.assertLess(result["perplexity"], 42)
def test_run_ner(self):
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
epochs = 7 if backend_device_count(torch_device) > 1 else 2
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_ner.py
--model_name_or_path google-bert/bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
if torch_device == "cpu":
testargs.append("--use_cpu")
with patch.object(sys, "argv", testargs):
run_ner.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.75)
self.assertLess(result["eval_loss"], 0.5)
def test_run_squad(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_qa.py
--model_name_or_path google-bert/bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=10
--warmup_steps=2
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(sys, "argv", testargs):
run_squad.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_f1"], 30)
self.assertGreaterEqual(result["eval_exact"], 30)
def test_run_squad_seq2seq(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_seq2seq_qa.py
--model_name_or_path google-t5/t5-small
--context_column context
--question_column question
--answer_column answers
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=10
--warmup_steps=2
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(sys, "argv", testargs):
run_squad_seq2seq.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_f1"], 30)
self.assertGreaterEqual(result["eval_exact"], 30)
def test_run_swag(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_swag.py
--model_name_or_path google-bert/bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=20
--warmup_steps=2
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(sys, "argv", testargs):
run_swag.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.8)
def test_generation(self):
testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"]
if is_torch_fp16_available_on_device(torch_device):
testargs.append("--fp16")
model_type, model_name = (
"--model_type=gpt2",
"--model_name_or_path=sshleifer/tiny-gpt2",
)
with patch.object(sys, "argv", testargs + [model_type, model_name]):
result = run_generation.main()
self.assertGreaterEqual(len(result[0]), 10)
@slow
def test_run_summarization(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_summarization.py
--model_name_or_path google-t5/t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=50
--warmup_steps=8
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(sys, "argv", testargs):
run_summarization.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_rouge1"], 10)
self.assertGreaterEqual(result["eval_rouge2"], 2)
self.assertGreaterEqual(result["eval_rougeL"], 7)
self.assertGreaterEqual(result["eval_rougeLsum"], 7)
@slow
def test_run_translation(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_translation.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=50
--warmup_steps=8
--do_train
--do_eval
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
--source_lang en_XX
--target_lang ro_RO
""".split()
with patch.object(sys, "argv", testargs):
run_translation.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_bleu"], 30)
def test_run_image_classification(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_image_classification.py
--output_dir {tmp_dir}
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--remove_unused_columns False
--overwrite_output_dir True
--dataloader_num_workers 16
--metric_for_best_model accuracy
--max_steps 10
--train_val_split 0.1
--seed 42
--label_column_name labels
""".split()
if is_torch_fp16_available_on_device(torch_device):
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_image_classification.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.8)
def test_run_speech_recognition_ctc(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_speech_recognition_ctc.py
--output_dir {tmp_dir}
--model_name_or_path hf-internal-testing/tiny-random-wav2vec2
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--eval_split_name validation
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--remove_unused_columns False
--overwrite_output_dir True
--preprocessing_num_workers 16
--max_steps 10
--seed 42
""".split()
if is_torch_fp16_available_on_device(torch_device):
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_speech_recognition_ctc.main()
result = get_results(tmp_dir)
self.assertLess(result["eval_loss"], result["train_loss"])
def test_run_speech_recognition_ctc_adapter(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_speech_recognition_ctc_adapter.py
--output_dir {tmp_dir}
--model_name_or_path hf-internal-testing/tiny-random-wav2vec2
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--eval_split_name validation
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--remove_unused_columns False
--overwrite_output_dir True
--preprocessing_num_workers 16
--max_steps 10
--target_language tur
--seed 42
""".split()
if is_torch_fp16_available_on_device(torch_device):
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_speech_recognition_ctc_adapter.main()
result = get_results(tmp_dir)
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "./adapter.tur.safetensors")))
self.assertLess(result["eval_loss"], result["train_loss"])
def test_run_speech_recognition_seq2seq(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_speech_recognition_seq2seq.py
--output_dir {tmp_dir}
--model_name_or_path hf-internal-testing/tiny-random-speech-encoder-decoder
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--eval_split_name validation
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 4
--remove_unused_columns False
--overwrite_output_dir True
--preprocessing_num_workers 16
--max_steps 10
--seed 42
""".split()
if is_torch_fp16_available_on_device(torch_device):
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_speech_recognition_seq2seq.main()
result = get_results(tmp_dir)
self.assertLess(result["eval_loss"], result["train_loss"])
def test_run_audio_classification(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_audio_classification.py
--output_dir {tmp_dir}
--model_name_or_path hf-internal-testing/tiny-random-wav2vec2
--dataset_name anton-l/superb_demo
--dataset_config_name ks
--train_split_name test
--eval_split_name test
--audio_column_name audio
--label_column_name label
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--remove_unused_columns False
--overwrite_output_dir True
--num_train_epochs 10
--max_steps 50
--seed 42
""".split()
if is_torch_fp16_available_on_device(torch_device):
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_audio_classification.main()
result = get_results(tmp_dir)
self.assertLess(result["eval_loss"], result["train_loss"])
def test_run_wav2vec2_pretraining(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_wav2vec2_pretraining_no_trainer.py
--output_dir {tmp_dir}
--model_name_or_path hf-internal-testing/tiny-random-wav2vec2
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_names clean
--dataset_split_names validation
--learning_rate 1e-4
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--preprocessing_num_workers 16
--max_train_steps 2
--validation_split_percentage 5
--seed 42
""".split()
with patch.object(sys, "argv", testargs):
run_wav2vec2_pretraining_no_trainer.main()
model = Wav2Vec2ForPreTraining.from_pretrained(tmp_dir)
self.assertIsNotNone(model)
def test_run_vit_mae_pretraining(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_mae.py
--output_dir {tmp_dir}
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--remove_unused_columns False
--overwrite_output_dir True
--dataloader_num_workers 16
--metric_for_best_model accuracy
--max_steps 10
--train_val_split 0.1
--seed 42
""".split()
if is_torch_fp16_available_on_device(torch_device):
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_mae.main()
model = ViTMAEForPreTraining.from_pretrained(tmp_dir)
self.assertIsNotNone(model)
def test_run_semantic_segmentation(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_semantic_segmentation.py
--output_dir {tmp_dir}
--dataset_name huggingface/semantic-segmentation-test-sample
--do_train
--do_eval
--remove_unused_columns False
--overwrite_output_dir True
--max_steps 10
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--seed 32
""".split()
if is_torch_fp16_available_on_device(torch_device):
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_semantic_segmentation.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_overall_accuracy"], 0.1)
| transformers/examples/pytorch/test_pytorch_examples.py/0 | {
"file_path": "transformers/examples/pytorch/test_pytorch_examples.py",
"repo_id": "transformers",
"token_count": 10775
} | 282 |
# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and Microsoft Corporation.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Training and inference using the library models for sequence classification on GLUE (Bert, Albert) with PABEE."""
import argparse
import glob
import json
import logging
import os
import random
import numpy as np
import torch
from pabee.modeling_pabee_albert import AlbertForSequenceClassificationWithPabee
from pabee.modeling_pabee_bert import BertForSequenceClassificationWithPabee
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
import transformers
from transformers import (
WEIGHTS_NAME,
AdamW,
AlbertConfig,
AlbertTokenizer,
BertConfig,
BertTokenizer,
get_linear_schedule_with_warmup,
)
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
from transformers.trainer_utils import is_main_process
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
"bert": (BertConfig, BertForSequenceClassificationWithPabee, BertTokenizer),
"albert": (AlbertConfig, AlbertForSequenceClassificationWithPabee, AlbertTokenizer),
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, train_dataset, model, tokenizer):
"""Train the model"""
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = nn.parallel.DistributedDataParallel(
model,
device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True,
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path):
# set global_step to global_step of last saved checkpoint from model path
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(
" Will skip the first %d steps in the first epoch",
steps_trained_in_current_epoch,
)
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained,
int(args.num_train_epochs),
desc="Epoch",
disable=args.local_rank not in [-1, 0],
)
set_seed(args) # Added here for reproducibility
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"labels": batch[3],
}
inputs["token_type_ids"] = batch[2]
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
logs = {}
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
eval_key = "eval_{}".format(key)
logs[eval_key] = value
loss_scalar = (tr_loss - logging_loss) / args.logging_steps
learning_rate_scalar = scheduler.get_lr()[0]
logs["learning_rate"] = learning_rate_scalar
logs["loss"] = loss_scalar
logging_loss = tr_loss
for key, value in logs.items():
tb_writer.add_scalar(key, value, global_step)
print(json.dumps({**logs, **{"step": global_step}}))
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix="", patience=0):
if args.model_type == "albert":
model.albert.set_regression_threshold(args.regression_threshold)
model.albert.set_patience(patience)
model.albert.reset_stats()
elif args.model_type == "bert":
model.bert.set_regression_threshold(args.regression_threshold)
model.bert.set_patience(patience)
model.bert.reset_stats()
else:
raise NotImplementedError()
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,)
results = {}
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu eval
if args.n_gpu > 1 and not isinstance(model, nn.DataParallel):
model = nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"labels": batch[3],
}
inputs["token_type_ids"] = batch[2]
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
if args.output_mode == "classification":
preds = np.argmax(preds, axis=1)
elif args.output_mode == "regression":
preds = np.squeeze(preds)
result = compute_metrics(eval_task, preds, out_label_ids)
results.update(result)
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
print(" %s = %s" % (key, str(result[key])))
writer.write("%s = %s\n" % (key, str(result[key])))
if args.eval_all_checkpoints and patience != 0:
if args.model_type == "albert":
model.albert.log_stats()
elif args.model_type == "bert":
model.bert.log_stats()
else:
raise NotImplementedError()
return results
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
processor = processors[task]()
output_mode = output_modes[task]
# Load data features from cache or dataset file
cached_features_file = os.path.join(
args.data_dir,
"cached_{}_{}_{}_{}".format(
"dev" if evaluate else "train",
list(filter(None, args.model_name_or_path.split("/"))).pop(),
str(args.max_seq_length),
str(task),
),
)
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels()
if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]:
# HACK(label indices are swapped in RoBERTa pretrained model)
label_list[1], label_list[2] = label_list[2], label_list[1]
examples = (
processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
)
features = convert_examples_to_features(
examples,
tokenizer,
label_list=label_list,
max_length=args.max_seq_length,
output_mode=output_mode,
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
if output_mode == "classification":
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
elif output_mode == "regression":
all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
return dataset
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
)
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pre-trained model or shortcut name.",
)
parser.add_argument(
"--task_name",
default=None,
type=str,
required=True,
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()),
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--patience",
default="0",
type=str,
required=False,
)
parser.add_argument(
"--regression_threshold",
default=0,
type=float,
required=False,
)
# Other parameters
parser.add_argument(
"--config_name",
default="",
type=str,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from huggingface.co",
)
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument(
"--evaluate_during_training",
action="store_true",
help="Run evaluation during training at each logging step.",
)
parser.add_argument(
"--do_lower_case",
action="store_true",
help="Set this flag if you are using an uncased model.",
)
parser.add_argument(
"--per_gpu_train_batch_size",
default=8,
type=int,
help="Batch size per GPU/CPU for training.",
)
parser.add_argument(
"--per_gpu_eval_batch_size",
default=1,
type=int,
help="Batch size per GPU/CPU for evaluation.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.",
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
parser.add_argument(
"--save_steps",
type=int,
default=500,
help="Save checkpoint every X updates steps.",
)
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument(
"--overwrite_output_dir",
action="store_true",
help="Overwrite the content of the output directory",
)
parser.add_argument(
"--overwrite_cache",
action="store_true",
help="Overwrite the cached training and evaluation sets",
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. "
"See details at https://nvidia.github.io/apex/amp.html"
),
)
parser.add_argument(
"--local_rank",
type=int,
default=-1,
help="For distributed training: local_rank",
)
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
args = parser.parse_args()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set seed
set_seed(args)
# Prepare GLUE task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
args.output_mode = output_modes[args.task_name]
label_list = processor.get_labels()
num_labels = len(label_list)
if args.patience != "0" and args.per_gpu_eval_batch_size != 1:
raise ValueError("The eval batch size must be 1 with PABEE inference on.")
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels,
finetuning_task=args.task_name,
cache_dir=args.cache_dir if args.cache_dir else None,
)
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model = model_class.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
print("Total Model Parameters:", sum(param.numel() for param in model.parameters()))
output_layers_param_num = sum(param.numel() for param in model.classifiers.parameters())
print("Output Layers Parameters:", output_layers_param_num)
single_output_layer_param_num = sum(param.numel() for param in model.classifiers[0].parameters())
print(
"Added Output Layers Parameters:",
output_layers_param_num - single_output_layer_param_num,
)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir)
model.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
patience_list = [int(x) for x in args.patience.split(",")]
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = [
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
]
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
print(f"Evaluation for checkpoint {prefix}")
for patience in patience_list:
result = evaluate(args, model, tokenizer, prefix=prefix, patience=patience)
result = {k + "_{}".format(global_step): v for k, v in result.items()}
results.update(result)
return results
if __name__ == "__main__":
main()
| transformers/examples/research_projects/bert-loses-patience/run_glue_with_pabee.py/0 | {
"file_path": "transformers/examples/research_projects/bert-loses-patience/run_glue_with_pabee.py",
"repo_id": "transformers",
"token_count": 12995
} | 283 |
# DeeBERT: Early Exiting for *BERT
This is the code base for the paper [DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference](https://www.aclweb.org/anthology/2020.acl-main.204/), modified from its [original code base](https://github.com/castorini/deebert).
The original code base also has information for downloading sample models that we have trained in advance.
## Usage
There are three scripts in the folder which can be run directly.
In each script, there are several things to modify before running:
* `PATH_TO_DATA`: path to the GLUE dataset.
* `--output_dir`: path for saving fine-tuned models. Default: `./saved_models`.
* `--plot_data_dir`: path for saving evaluation results. Default: `./results`. Results are printed to stdout and also saved to `npy` files in this directory to facilitate plotting figures and further analyses.
* `MODEL_TYPE`: bert or roberta
* `MODEL_SIZE`: base or large
* `DATASET`: SST-2, MRPC, RTE, QNLI, QQP, or MNLI
#### train_deebert.sh
This is for fine-tuning DeeBERT models.
#### eval_deebert.sh
This is for evaluating each exit layer for fine-tuned DeeBERT models.
#### entropy_eval.sh
This is for evaluating fine-tuned DeeBERT models, given a number of different early exit entropy thresholds.
## Citation
Please cite our paper if you find the resource useful:
```bibtex
@inproceedings{xin-etal-2020-deebert,
title = "{D}ee{BERT}: Dynamic Early Exiting for Accelerating {BERT} Inference",
author = "Xin, Ji and
Tang, Raphael and
Lee, Jaejun and
Yu, Yaoliang and
Lin, Jimmy",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.204",
pages = "2246--2251",
}
```
| transformers/examples/research_projects/deebert/README.md/0 | {
"file_path": "transformers/examples/research_projects/deebert/README.md",
"repo_id": "transformers",
"token_count": 621
} | 284 |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocessing script before distillation.
"""
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPT2Tokenizer, RobertaTokenizer
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser(
description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)."
)
parser.add_argument("--file_path", type=str, default="data/dump.txt", help="The path to the data.")
parser.add_argument("--tokenizer_type", type=str, default="bert", choices=["bert", "roberta", "gpt2"])
parser.add_argument("--tokenizer_name", type=str, default="bert-base-uncased", help="The tokenizer to use.")
parser.add_argument("--dump_file", type=str, default="data/dump", help="The dump file prefix.")
args = parser.parse_args()
logger.info(f"Loading Tokenizer ({args.tokenizer_name})")
if args.tokenizer_type == "bert":
tokenizer = BertTokenizer.from_pretrained(args.tokenizer_name)
bos = tokenizer.special_tokens_map["cls_token"] # `[CLS]`
sep = tokenizer.special_tokens_map["sep_token"] # `[SEP]`
elif args.tokenizer_type == "roberta":
tokenizer = RobertaTokenizer.from_pretrained(args.tokenizer_name)
bos = tokenizer.special_tokens_map["cls_token"] # `<s>`
sep = tokenizer.special_tokens_map["sep_token"] # `</s>`
elif args.tokenizer_type == "gpt2":
tokenizer = GPT2Tokenizer.from_pretrained(args.tokenizer_name)
bos = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>`
sep = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>`
logger.info(f"Loading text from {args.file_path}")
with open(args.file_path, "r", encoding="utf8") as fp:
data = fp.readlines()
logger.info("Start encoding")
logger.info(f"{len(data)} examples to process.")
rslt = []
iter = 0
interval = 10000
start = time.time()
for text in data:
text = f"{bos} {text.strip()} {sep}"
token_ids = tokenizer.encode(text, add_special_tokens=False)
rslt.append(token_ids)
iter += 1
if iter % interval == 0:
end = time.time()
logger.info(f"{iter} examples processed. - {(end-start):.2f}s/{interval}expl")
start = time.time()
logger.info("Finished binarization")
logger.info(f"{len(data)} examples processed.")
dp_file = f"{args.dump_file}.{args.tokenizer_name}.pickle"
vocab_size = tokenizer.vocab_size
if vocab_size < (1 << 16):
rslt_ = [np.uint16(d) for d in rslt]
else:
rslt_ = [np.int32(d) for d in rslt]
random.shuffle(rslt_)
logger.info(f"Dump to {dp_file}")
with open(dp_file, "wb") as handle:
pickle.dump(rslt_, handle, protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == "__main__":
main()
| transformers/examples/research_projects/distillation/scripts/binarized_data.py/0 | {
"file_path": "transformers/examples/research_projects/distillation/scripts/binarized_data.py",
"repo_id": "transformers",
"token_count": 1428
} | 285 |
import torch
from transformers import AutoModel
class FSNERModel(torch.nn.Module):
"""
The FSNER model implements a few-shot named entity recognition method from the paper `Example-Based Named Entity Recognition <https://arxiv.org/abs/2008.10570>`__ by
Morteza Ziyadi, Yuting Sun, Abhishek Goswami, Jade Huang, Weizhu Chen. To identify entity spans in a new domain, it
uses a train-free few-shot learning approach inspired by question-answering.
"""
def __init__(self, pretrained_model_name_or_path="sayef/fsner-bert-base-uncased"):
super(FSNERModel, self).__init__()
self.bert = AutoModel.from_pretrained(pretrained_model_name_or_path, return_dict=True)
self.cos = torch.nn.CosineSimilarity(3, 1e-08)
self.softmax = torch.nn.Softmax(dim=1)
def BERT(self, **inputs):
return self.bert(**inputs).last_hidden_state
def VectorSum(self, token_embeddings):
return token_embeddings.sum(2, keepdim=True)
def Atten(self, q_rep, S_rep, T=1):
return self.softmax(T * self.cos(q_rep, S_rep))
def forward(self, W_query, W_supports):
"""
Find scores of each token being start and end token for an entity.
Args:
W_query (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of query sequence tokens in the vocabulary.
W_supports (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of support sequence tokens in the vocabulary.
Returns:
p_start (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Scores of each token as
being start token of an entity
p_end (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Scores of each token as
being end token of an entity
"""
support_sizes = W_supports["sizes"].tolist()
start_token_id = W_supports["start_token_id"].item()
end_token_id = W_supports["end_token_id"].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
q = self.BERT(**W_query)
S = self.BERT(**W_supports)
p_starts = None
p_ends = None
start_token_masks = W_supports["input_ids"] == start_token_id
end_token_masks = W_supports["input_ids"] == end_token_id
for i, size in enumerate(support_sizes):
if i == 0:
s = 0
else:
s = support_sizes[i - 1]
s_start = S[s : s + size][start_token_masks[s : s + size]]
s_end = S[s : s + size][end_token_masks[s : s + size]]
p_start = torch.matmul(q[i], s_start.T).sum(1).softmax(0)
p_end = torch.matmul(q[i], s_end.T).sum(1).softmax(0)
if p_starts is not None:
p_starts = torch.vstack((p_starts, p_start))
p_ends = torch.vstack((p_ends, p_end))
else:
p_starts = p_start
p_ends = p_end
return p_starts, p_ends
| transformers/examples/research_projects/fsner/src/fsner/model.py/0 | {
"file_path": "transformers/examples/research_projects/fsner/src/fsner/model.py",
"repo_id": "transformers",
"token_count": 1436
} | 286 |
import os
from dataclasses import replace
import jax
import wandb
from bigbird_flax import Args, DataCollator, FlaxBigBirdForNaturalQuestions, Trainer, build_tx, train_step, val_step
from datasets import load_dataset
from flax import jax_utils
from transformers import BigBirdTokenizerFast
if __name__ == "__main__":
print("#################### AVAILABLE DEVICES ####################")
print(jax.devices())
print("###########################################################")
# setup for wandb sweep
args = Args()
logger = wandb.init(project="bigbird-natural-questions", config=args.__dict__)
wandb_args = dict(logger.config)
del wandb_args["batch_size"]
args = replace(args, **wandb_args)
base_dir = args.base_dir + "-" + wandb.run.id
args = replace(args, base_dir=base_dir)
print(args)
tr_dataset = load_dataset("json", data_files=args.tr_data_path)["train"]
val_dataset = load_dataset("json", data_files=args.val_data_path)["train"]
# drop extra batch for now
indices = range(len(tr_dataset) - len(tr_dataset) % args.batch_size)
tr_dataset = tr_dataset.shuffle().select(indices)
indices = range(len(val_dataset) - len(val_dataset) % args.batch_size)
val_dataset = val_dataset.shuffle().select(indices)
if os.environ.get("TRAIN_ON_SMALL", "false") == "true":
tr_dataset = tr_dataset.shuffle().select(range(80000))
val_dataset = val_dataset.shuffle().select(range(8000))
print(tr_dataset)
print(val_dataset)
model = FlaxBigBirdForNaturalQuestions.from_pretrained(
args.model_id, block_size=args.block_size, num_random_blocks=args.num_random_blocks
)
tokenizer = BigBirdTokenizerFast.from_pretrained(args.model_id)
data_collator = DataCollator(pad_id=tokenizer.pad_token_id, max_length=4096)
tx_args = {
"lr": args.lr,
"init_lr": args.init_lr,
"warmup_steps": args.warmup_steps,
"num_train_steps": args.max_epochs * (len(tr_dataset) // args.batch_size),
"weight_decay": args.weight_decay,
}
tx, lr = build_tx(**tx_args)
trainer = Trainer(
args=args,
data_collator=data_collator,
model_save_fn=model.save_pretrained,
train_step_fn=train_step,
val_step_fn=val_step,
logger=logger,
scheduler_fn=lr,
)
ckpt_dir = None
state = trainer.create_state(model, tx, num_train_steps=tx_args["num_train_steps"], ckpt_dir=ckpt_dir)
try:
trainer.train(state, tr_dataset, val_dataset)
except KeyboardInterrupt:
print("Oooops; TRAINING STOPPED UNFORTUNATELY")
print("SAVING WEIGHTS IN `final-weights`")
params = jax_utils.unreplicate(state.params)
model.save_pretrained(os.path.join(args.base_dir, "final-weights"), params=params)
| transformers/examples/research_projects/jax-projects/big_bird/train.py/0 | {
"file_path": "transformers/examples/research_projects/jax-projects/big_bird/train.py",
"repo_id": "transformers",
"token_count": 1164
} | 287 |
# Long Form Question Answering
Author: @yjernite
This folder contains the code for the Long Form Question answering [demo](http://35.226.96.115:8080/) as well as methods to train and use a fully end-to-end Long Form Question Answering system using the [🤗transformers](https://github.com/huggingface/transformers) and [🤗datasets](https://github.com/huggingface/datasets) libraries.
You can use these methods to train your own system by following along the associate [notebook](https://github.com/huggingface/notebooks/blob/master/longform-qa/Long_Form_Question_Answering_with_ELI5_and_Wikipedia.ipynb) or [blog post](https://yjernite.github.io/lfqa.html).
| transformers/examples/research_projects/longform-qa/README.md/0 | {
"file_path": "transformers/examples/research_projects/longform-qa/README.md",
"repo_id": "transformers",
"token_count": 208
} | 288 |
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, T5Tokenizer
def encode_line(tokenizer, line, max_length, padding_side, pad_to_max_length=True, return_tensors="pt"):
extra_kw = {"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) and not line.startswith(" ") else {}
tokenizer.padding_side = padding_side
return tokenizer(
[line],
max_length=max_length,
padding="max_length" if pad_to_max_length else None,
truncation=True,
return_tensors=return_tensors,
add_special_tokens=True,
**extra_kw,
)
def trim_batch(
input_ids,
pad_token_id,
attention_mask=None,
):
"""Remove columns that are populated exclusively by pad_token_id"""
keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class Seq2SeqDataset(Dataset):
def __init__(
self,
tokenizer,
data_dir,
max_source_length,
max_target_length,
type_path="train",
n_obs=None,
src_lang=None,
tgt_lang=None,
prefix="",
):
super().__init__()
self.src_file = Path(data_dir).joinpath(type_path + ".source")
self.tgt_file = Path(data_dir).joinpath(type_path + ".target")
self.src_lens = self.get_char_lens(self.src_file)
self.max_source_length = max_source_length
self.max_target_length = max_target_length
assert min(self.src_lens) > 0, f"found empty line in {self.src_file}"
self.tokenizer = tokenizer
self.prefix = prefix
if n_obs is not None:
self.src_lens = self.src_lens[:n_obs]
self.src_lang = src_lang
self.tgt_lang = tgt_lang
def __len__(self):
return len(self.src_lens)
def __getitem__(self, index) -> Dict[str, torch.Tensor]:
index = index + 1 # linecache starts at 1
source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
assert source_line, f"empty source line for index {index}"
assert tgt_line, f"empty tgt line for index {index}"
# Need to add eos token manually for T5
if isinstance(self.tokenizer, T5Tokenizer):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
source_tokenizer = (
self.tokenizer.question_encoder if isinstance(self.tokenizer, RagTokenizer) else self.tokenizer
)
target_tokenizer = self.tokenizer.generator if isinstance(self.tokenizer, RagTokenizer) else self.tokenizer
source_inputs = encode_line(source_tokenizer, source_line, self.max_source_length, "right")
target_inputs = encode_line(target_tokenizer, tgt_line, self.max_target_length, "right")
source_ids = source_inputs["input_ids"].squeeze()
target_ids = target_inputs["input_ids"].squeeze()
src_mask = source_inputs["attention_mask"].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def get_char_lens(data_file):
return [len(x) for x in Path(data_file).open().readlines()]
def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
input_ids = torch.stack([x["input_ids"] for x in batch])
masks = torch.stack([x["attention_mask"] for x in batch])
target_ids = torch.stack([x["decoder_input_ids"] for x in batch])
tgt_pad_token_id = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer, RagTokenizer)
else self.tokenizer.pad_token_id
)
src_pad_token_id = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer, RagTokenizer)
else self.tokenizer.pad_token_id
)
y = trim_batch(target_ids, tgt_pad_token_id)
source_ids, source_mask = trim_batch(input_ids, src_pad_token_id, attention_mask=masks)
batch = {
"input_ids": source_ids,
"attention_mask": source_mask,
"decoder_input_ids": y,
}
return batch
logger = getLogger(__name__)
def flatten_list(summary_ids: List[List]):
return list(itertools.chain.from_iterable(summary_ids))
def save_git_info(folder_path: str) -> None:
"""Save git information to output_dir/git_log.json"""
repo_infos = get_git_info()
save_json(repo_infos, os.path.join(folder_path, "git_log.json"))
def save_json(content, path, indent=4, **json_dump_kwargs):
with open(path, "w") as f:
json.dump(content, f, indent=indent, **json_dump_kwargs)
def load_json(path):
with open(path) as f:
return json.load(f)
def get_git_info():
repo = git.Repo(search_parent_directories=True)
repo_infos = {
"repo_id": str(repo),
"repo_sha": str(repo.head.object.hexsha),
"repo_branch": str(repo.active_branch),
"hostname": str(socket.gethostname()),
}
return repo_infos
def lmap(f: Callable, x: Iterable) -> List:
"""list(map(f, x))"""
return list(map(f, x))
def pickle_save(obj, path):
"""pickle.dump(obj, path)"""
with open(path, "wb") as f:
return pickle.dump(obj, f)
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
return normalize_answer(prediction) == normalize_answer(ground_truth)
def calculate_exact_match(output_lns: List[str], reference_lns: List[str]) -> Dict:
assert len(output_lns) == len(reference_lns)
em = 0
for hypo, pred in zip(output_lns, reference_lns):
em += exact_match_score(hypo, pred)
if len(output_lns) > 0:
em /= len(output_lns)
return {"em": em}
def is_rag_model(model_prefix):
return model_prefix.startswith("rag")
def set_extra_model_params(extra_params, hparams, config):
equivalent_param = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
equivalent_param["dropout"] = "dropout_rate"
for p in extra_params:
if getattr(hparams, p, None):
if not hasattr(config, p) and not hasattr(config, equivalent_param[p]):
logger.info("config doesn't have a `{}` attribute".format(p))
delattr(hparams, p)
continue
set_p = p if hasattr(config, p) else equivalent_param[p]
setattr(config, set_p, getattr(hparams, p))
delattr(hparams, p)
return hparams, config
| transformers/examples/research_projects/rag-end2end-retriever/utils_rag.py/0 | {
"file_path": "transformers/examples/research_projects/rag-end2end-retriever/utils_rag.py",
"repo_id": "transformers",
"token_count": 3495
} | 289 |
import json
import os
import shutil
import sys
import tempfile
import unittest
from unittest import TestCase
from unittest.mock import patch
import faiss
import numpy as np
from datasets import Dataset
from transformers import BartConfig, BartTokenizer, DPRConfig, DPRQuestionEncoderTokenizer, RagConfig
from transformers.file_utils import is_datasets_available, is_faiss_available, is_psutil_available, is_torch_available
from transformers.integrations import is_ray_available
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_ray
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # noqa: E402 # isort:skip
if is_torch_available():
from distributed_pytorch_retriever import RagPyTorchDistributedRetriever # noqa: E402 # isort:skip
else:
RagPyTorchDistributedRetriever = None
if is_ray_available():
import ray # noqa: E402 # isort:skip
from distributed_ray_retriever import RagRayDistributedRetriever, RayRetriever # noqa: E402 # isort:skip
else:
ray = None
RagRayDistributedRetriever = None
RayRetriever = None
def require_distributed_retrieval(test_case):
"""
Decorator marking a test that requires a set of dependencies necessary for pefrorm retrieval with
:class:`~transformers.RagRetriever`.
These tests are skipped when respective libraries are not installed.
"""
if not (is_datasets_available() and is_faiss_available() and is_psutil_available()):
test_case = unittest.skip("test requires Datasets, Faiss, psutil")(test_case)
return test_case
@require_distributed_retrieval
class RagRetrieverTest(TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
self.retrieval_vector_size = 8
# DPR tok
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer")
os.makedirs(dpr_tokenizer_path, exist_ok=True)
self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
# BART tok
vocab = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer")
os.makedirs(bart_tokenizer_path, exist_ok=True)
self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer:
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))
def get_bart_tokenizer(self) -> BartTokenizer:
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer"))
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def get_dummy_dataset(self):
dataset = Dataset.from_dict(
{
"id": ["0", "1"],
"text": ["foo", "bar"],
"title": ["Foo", "Bar"],
"embeddings": [np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size)],
}
)
dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT)
return dataset
def get_dummy_pytorch_distributed_retriever(
self, init_retrieval: bool, port=12345
) -> RagPyTorchDistributedRetriever:
dataset = self.get_dummy_dataset()
config = RagConfig(
retrieval_vector_size=self.retrieval_vector_size,
question_encoder=DPRConfig().to_dict(),
generator=BartConfig().to_dict(),
)
with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset:
mock_load_dataset.return_value = dataset
retriever = RagPyTorchDistributedRetriever(
config,
question_encoder_tokenizer=self.get_dpr_tokenizer(),
generator_tokenizer=self.get_bart_tokenizer(),
)
if init_retrieval:
retriever.init_retrieval(port)
return retriever
def get_dummy_ray_distributed_retriever(self, init_retrieval: bool) -> RagRayDistributedRetriever:
# Have to run in local mode because sys.path modifications at top of
# file are not propogated to remote workers.
# https://stackoverflow.com/questions/54338013/parallel-import-a-python-file-from-sibling-folder
ray.init(local_mode=True)
config = RagConfig(
retrieval_vector_size=self.retrieval_vector_size,
question_encoder=DPRConfig().to_dict(),
generator=BartConfig().to_dict(),
)
remote_cls = ray.remote(RayRetriever)
workers = [remote_cls.remote() for _ in range(1)]
with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset:
mock_load_dataset.return_value = self.get_dummy_dataset()
retriever = RagRayDistributedRetriever(
config,
question_encoder_tokenizer=self.get_dpr_tokenizer(),
generator_tokenizer=self.get_bart_tokenizer(),
retrieval_workers=workers,
)
if init_retrieval:
retriever.init_retrieval()
return retriever
def get_dummy_custom_hf_index_pytorch_retriever(self, init_retrieval: bool, from_disk: bool, port=12345):
dataset = self.get_dummy_dataset()
config = RagConfig(
retrieval_vector_size=self.retrieval_vector_size,
question_encoder=DPRConfig().to_dict(),
generator=BartConfig().to_dict(),
index_name="custom",
)
if from_disk:
config.passages_path = os.path.join(self.tmpdirname, "dataset")
config.index_path = os.path.join(self.tmpdirname, "index.faiss")
dataset.get_index("embeddings").save(os.path.join(self.tmpdirname, "index.faiss"))
dataset.drop_index("embeddings")
dataset.save_to_disk(os.path.join(self.tmpdirname, "dataset"))
del dataset
retriever = RagPyTorchDistributedRetriever(
config,
question_encoder_tokenizer=self.get_dpr_tokenizer(),
generator_tokenizer=self.get_bart_tokenizer(),
)
else:
retriever = RagPyTorchDistributedRetriever(
config,
question_encoder_tokenizer=self.get_dpr_tokenizer(),
generator_tokenizer=self.get_bart_tokenizer(),
index=CustomHFIndex(config.retrieval_vector_size, dataset),
)
if init_retrieval:
retriever.init_retrieval(port)
return retriever
def get_dummy_custom_hf_index_ray_retriever(self, init_retrieval: bool, from_disk: bool):
# Have to run in local mode because sys.path modifications at top of
# file are not propogated to remote workers.
# https://stackoverflow.com/questions/54338013/parallel-import-a-python-file-from-sibling-folder
ray.init(local_mode=True)
dataset = self.get_dummy_dataset()
config = RagConfig(
retrieval_vector_size=self.retrieval_vector_size,
question_encoder=DPRConfig().to_dict(),
generator=BartConfig().to_dict(),
index_name="custom",
)
remote_cls = ray.remote(RayRetriever)
workers = [remote_cls.remote() for _ in range(1)]
if from_disk:
config.passages_path = os.path.join(self.tmpdirname, "dataset")
config.index_path = os.path.join(self.tmpdirname, "index.faiss")
dataset.get_index("embeddings").save(os.path.join(self.tmpdirname, "index.faiss"))
dataset.drop_index("embeddings")
dataset.save_to_disk(os.path.join(self.tmpdirname, "dataset"))
del dataset
retriever = RagRayDistributedRetriever(
config,
question_encoder_tokenizer=self.get_dpr_tokenizer(),
generator_tokenizer=self.get_bart_tokenizer(),
retrieval_workers=workers,
index=CustomHFIndex.load_from_disk(
vector_size=config.retrieval_vector_size,
dataset_path=config.passages_path,
index_path=config.index_path,
),
)
else:
retriever = RagRayDistributedRetriever(
config,
question_encoder_tokenizer=self.get_dpr_tokenizer(),
generator_tokenizer=self.get_bart_tokenizer(),
retrieval_workers=workers,
index=CustomHFIndex(config.retrieval_vector_size, dataset),
)
if init_retrieval:
retriever.init_retrieval()
return retriever
def distributed_retriever_check(self, retriever: RagRetriever, hidden_states: np.array, n_docs: int) -> None:
retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
self.assertEqual(len(doc_dicts), 2)
self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"])
self.assertEqual(len(doc_dicts[0]["id"]), n_docs)
self.assertEqual(doc_dicts[0]["id"][0], "1") # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0], "0") # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist(), [[1], [0]])
def test_pytorch_distributed_retriever_retrieve(self):
n_docs = 1
hidden_states = np.array(
[np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
)
self.distributed_retriever_check(
self.get_dummy_pytorch_distributed_retriever(init_retrieval=True), hidden_states, n_docs
)
def test_custom_hf_index_pytorch_retriever_retrieve(self):
n_docs = 1
hidden_states = np.array(
[np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
)
self.distributed_retriever_check(
self.get_dummy_custom_hf_index_pytorch_retriever(init_retrieval=True, from_disk=False),
hidden_states,
n_docs,
)
def test_custom_pytorch_distributed_retriever_retrieve_from_disk(self):
n_docs = 1
hidden_states = np.array(
[np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
)
self.distributed_retriever_check(
self.get_dummy_custom_hf_index_pytorch_retriever(init_retrieval=True, from_disk=True),
hidden_states,
n_docs,
)
@require_ray
def test_ray_distributed_retriever_retrieve(self):
n_docs = 1
hidden_states = np.array(
[np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
)
self.distributed_retriever_check(
self.get_dummy_ray_distributed_retriever(init_retrieval=True), hidden_states, n_docs
)
ray.shutdown()
@require_ray
def test_custom_hf_index_ray_retriever_retrieve(self):
n_docs = 1
hidden_states = np.array(
[np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
)
with self.assertRaises(ValueError):
self.distributed_retriever_check(
self.get_dummy_custom_hf_index_ray_retriever(init_retrieval=True, from_disk=False),
hidden_states,
n_docs,
)
ray.shutdown()
@require_ray
def test_custom_ray_distributed_retriever_retrieve_from_disk(self):
n_docs = 1
hidden_states = np.array(
[np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
)
self.distributed_retriever_check(
self.get_dummy_custom_hf_index_ray_retriever(init_retrieval=True, from_disk=True), hidden_states, n_docs
)
ray.shutdown()
| transformers/examples/research_projects/rag/test_distributed_retriever.py/0 | {
"file_path": "transformers/examples/research_projects/rag/test_distributed_retriever.py",
"repo_id": "transformers",
"token_count": 6637
} | 290 |
# as due to their complexity multi-gpu tests could impact other tests, and to aid debug we have those in a separate module.
import os
import sys
from pathlib import Path
import torch
from transformers.testing_utils import TestCasePlus, execute_subprocess_async, require_torch_multi_gpu
from utils import load_json
CUDA_AVAILABLE = torch.cuda.is_available()
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
CHEAP_ARGS = {
"max_tokens_per_batch": None,
"supervise_forward": True,
"normalize_hidden": True,
"label_smoothing": 0.2,
"eval_max_gen_length": None,
"eval_beams": 1,
"val_metric": "loss",
"save_top_k": 1,
"adafactor": True,
"early_stopping_patience": 2,
"logger_name": "default",
"length_penalty": 0.5,
"cache_dir": "",
"task": "summarization",
"num_workers": 2,
"alpha_hid": 0,
"freeze_embeds": True,
"enc_only": False,
"tgt_suffix": "",
"resume_from_checkpoint": None,
"sortish_sampler": True,
"student_decoder_layers": 1,
"val_check_interval": 1.0,
"output_dir": "",
"fp16": False, # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp
"no_teacher": False,
"fp16_opt_level": "O1",
"gpus": 1 if CUDA_AVAILABLE else 0,
"n_tpu_cores": 0,
"max_grad_norm": 1.0,
"do_train": True,
"do_predict": True,
"accumulate_grad_batches": 1,
"server_ip": "",
"server_port": "",
"seed": 42,
"model_name_or_path": "sshleifer/bart-tiny-random",
"config_name": "",
"tokenizer_name": "facebook/bart-large",
"do_lower_case": False,
"learning_rate": 0.3,
"lr_scheduler": "linear",
"weight_decay": 0.0,
"adam_epsilon": 1e-08,
"warmup_steps": 0,
"max_epochs": 1,
"train_batch_size": 2,
"eval_batch_size": 2,
"max_source_length": 12,
"max_target_length": 12,
"val_max_target_length": 12,
"test_max_target_length": 12,
"fast_dev_run": False,
"no_cache": False,
"n_train": -1,
"n_val": -1,
"n_test": -1,
"student_encoder_layers": 1,
"freeze_encoder": False,
"auto_scale_batch_size": False,
"overwrite_output_dir": False,
"student": None,
}
def _dump_articles(path: Path, articles: list):
content = "\n".join(articles)
Path(path).open("w").writelines(content)
def make_test_data_dir(tmp_dir):
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(tmp_dir, f"{split}.source"), ARTICLES)
_dump_articles(os.path.join(tmp_dir, f"{split}.target"), SUMMARIES)
return tmp_dir
class TestSummarizationDistillerMultiGPU(TestCasePlus):
@classmethod
def setUpClass(cls):
return cls
@require_torch_multi_gpu
def test_multi_gpu(self):
updates = {
"no_teacher": True,
"freeze_encoder": True,
"gpus": 2,
"overwrite_output_dir": True,
"sortish_sampler": True,
}
self._test_distiller_cli_fork(updates, check_contents=False)
def _test_distiller_cli_fork(self, updates, check_contents=True):
default_updates = {
"label_smoothing": 0.0,
"early_stopping_patience": -1,
"train_batch_size": 1,
"eval_batch_size": 2,
"max_epochs": 2,
"alpha_mlm": 0.2,
"alpha_ce": 0.8,
"do_predict": True,
"model_name_or_path": "sshleifer/tinier_bart",
"teacher": CHEAP_ARGS["model_name_or_path"],
"val_check_interval": 0.5,
}
default_updates.update(updates)
args_d: dict = CHEAP_ARGS.copy()
tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
output_dir = self.get_auto_remove_tmp_dir()
args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
def convert(k, v):
if k in ["tgt_suffix", "server_ip", "server_port", "out", "n_tpu_cores"]:
return ""
if v is False or v is None:
return ""
if v is True: # or len(str(v))==0:
return f"--{k}"
return f"--{k}={v}"
cli_args = [x for x in (convert(k, v) for k, v in args_d.items()) if len(x)]
cmd = [sys.executable, f"{self.test_file_dir}/distillation.py"] + cli_args
execute_subprocess_async(cmd, env=self.get_env())
contents = os.listdir(output_dir)
contents = {os.path.basename(p) for p in contents}
ckpt_files = [p for p in contents if p.endswith("ckpt")]
assert len(ckpt_files) > 0
self.assertIn("test_generations.txt", contents)
self.assertIn("test_results.txt", contents)
# get the following from the module, (we don't have access to `model` here)
metrics_save_path = os.path.join(output_dir, "metrics.json")
val_metric = "rouge2"
metrics = load_json(metrics_save_path)
# {'test': [{'test_avg_loss': 10.63731575012207, 'test_avg_rouge1': 0.0, 'test_avg_rouge2': 0.0, 'test_avg_rougeL': 0.0, 'test_avg_gen_time': 0.1822289228439331, 'test_avg_gen_len': 142.0, 'step_count': 1}]}
print(metrics)
last_step_stats = metrics["val"][-1]
self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
self.assertIsInstance(last_step_stats[f"val_avg_{val_metric}"], float)
self.assertEqual(len(metrics["test"]), 1)
desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) / 2 + 1)
self.assertEqual(len(metrics["val"]), desired_n_evals)
| transformers/examples/research_projects/seq2seq-distillation/_test_seq2seq_examples_multi_gpu.py/0 | {
"file_path": "transformers/examples/research_projects/seq2seq-distillation/_test_seq2seq_examples_multi_gpu.py",
"repo_id": "transformers",
"token_count": 2691
} | 291 |
#!/usr/bin/env python
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
logger = getLogger(__name__)
DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def generate_summaries_or_translations(
examples: List[str],
out_file: str,
model_name: str,
batch_size: int = 8,
device: str = DEFAULT_DEVICE,
fp16=False,
task="summarization",
prefix=None,
**generate_kwargs,
) -> Dict:
"""Save model.generate results to <out_file>, and return how long it took."""
fout = Path(out_file).open("w", encoding="utf-8")
model_name = str(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
if fp16:
model = model.half()
tokenizer = AutoTokenizer.from_pretrained(model_name)
logger.info(f"Inferred tokenizer type: {tokenizer.__class__}") # if this is wrong, check config.model_type.
start_time = time.time()
# update config with task specific params
use_task_specific_params(model, task)
if prefix is None:
prefix = prefix or getattr(model.config, "prefix", "") or ""
for examples_chunk in tqdm(list(chunks(examples, batch_size))):
examples_chunk = [prefix + text for text in examples_chunk]
batch = tokenizer(examples_chunk, return_tensors="pt", truncation=True, padding="longest").to(device)
summaries = model.generate(
input_ids=batch.input_ids,
attention_mask=batch.attention_mask,
**generate_kwargs,
)
dec = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False)
for hypothesis in dec:
fout.write(hypothesis + "\n")
fout.flush()
fout.close()
runtime = int(time.time() - start_time) # seconds
n_obs = len(examples)
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs, 4)}
def datetime_now():
return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
def run_generate(verbose=True):
"""
Takes input text, generates output, and then using reference calculates the BLEU scores.
The results are saved to a file and returned to the caller, and printed out unless ``verbose=False`` is passed.
Args:
verbose (:obj:`bool`, `optional`, defaults to :obj:`True`): print results to stdout
Returns:
a tuple: ``(scores, params}``
- ``scores``: a dict of scores data ``{'bleu': 39.6501, 'n_obs': 2000, 'runtime': 186, 'seconds_per_sample': 0.093}``
- ``params``: a dict of custom params, e.g. ``{'num_beams': 5, 'length_penalty': 0.8}``
"""
parser = argparse.ArgumentParser()
parser.add_argument("model_name", type=str, help="like facebook/bart-large-cnn,t5-base, etc.")
parser.add_argument("input_path", type=str, help="like cnn_dm/test.source")
parser.add_argument("save_path", type=str, help="where to save summaries")
parser.add_argument("--reference_path", type=str, required=False, help="like cnn_dm/test.target")
parser.add_argument("--score_path", type=str, required=False, default="metrics.json", help="where to save metrics")
parser.add_argument("--device", type=str, required=False, default=DEFAULT_DEVICE, help="cuda, cuda:1, cpu etc.")
parser.add_argument(
"--prefix", type=str, required=False, default=None, help="will be added to the beginning of src examples"
)
parser.add_argument("--task", type=str, default="summarization", help="used for task_specific_params + metrics")
parser.add_argument("--bs", type=int, default=8, required=False, help="batch size")
parser.add_argument(
"--n_obs", type=int, default=-1, required=False, help="How many observations. Defaults to all."
)
parser.add_argument("--fp16", action="store_true")
parser.add_argument("--dump-args", action="store_true", help="print the custom hparams with the results")
parser.add_argument(
"--info",
nargs="?",
type=str,
const=datetime_now(),
help=(
"use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g."
" lang=en-ru. If no value is passed, the current datetime string will be used."
),
)
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
args, rest = parser.parse_known_args()
parsed_args = parse_numeric_n_bool_cl_kwargs(rest)
if parsed_args and verbose:
print(f"parsed the following generate kwargs: {parsed_args}")
with open(args.input_path) as f:
examples = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in f.readlines()]
if args.n_obs > 0:
examples = examples[: args.n_obs]
Path(args.save_path).parent.mkdir(exist_ok=True)
if args.reference_path is None and Path(args.score_path).exists():
warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c.")
runtime_metrics = generate_summaries_or_translations(
examples,
args.save_path,
args.model_name,
batch_size=args.bs,
device=args.device,
fp16=args.fp16,
task=args.task,
prefix=args.prefix,
**parsed_args,
)
if args.reference_path is None:
return {}
# Compute scores
score_fn = calculate_bleu if "translation" in args.task else calculate_rouge
output_lns = [x.rstrip() for x in open(args.save_path).readlines()]
reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()][: len(output_lns)]
scores: dict = score_fn(output_lns, reference_lns)
scores.update(runtime_metrics)
if args.dump_args:
scores.update(parsed_args)
if args.info:
scores["info"] = args.info
if verbose:
print(scores)
if args.score_path is not None:
json.dump(scores, open(args.score_path, "w"))
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| transformers/examples/research_projects/seq2seq-distillation/run_eval.py/0 | {
"file_path": "transformers/examples/research_projects/seq2seq-distillation/run_eval.py",
"repo_id": "transformers",
"token_count": 2580
} | 292 |
#!/usr/bin/env bash
python run_asr.py \
--output_dir="./wav2vec2-base-timit-asr" \
--num_train_epochs="30" \
--per_device_train_batch_size="20" \
--per_device_eval_batch_size="20" \
--evaluation_strategy="steps" \
--save_steps="500" \
--eval_steps="100" \
--logging_steps="50" \
--learning_rate="5e-4" \
--warmup_steps="3000" \
--model_name_or_path="facebook/wav2vec2-base" \
--fp16 \
--dataset_name="timit_asr" \
--train_split_name="train" \
--validation_split_name="test" \
--orthography="timit" \
--preprocessing_num_workers="$(nproc)" \
--group_by_length \
--freeze_feature_extractor \
--verbose_logging \
| transformers/examples/research_projects/wav2vec2/finetune_base_timit_asr.sh/0 | {
"file_path": "transformers/examples/research_projects/wav2vec2/finetune_base_timit_asr.sh",
"repo_id": "transformers",
"token_count": 257
} | 293 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import List, Optional
import torch
from datasets import Dataset
from torch import nn
from tqdm.auto import tqdm
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
utils,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
DESCRIPTION = """
Distills an NLI-based zero-shot classifier to a smaller, more efficient model with a fixed set of candidate class
names. Useful for speeding up zero-shot classification in cases where labeled training data is not available, but
when only a single fixed set of classes is needed. Takes a teacher NLI model, student classifier model, unlabeled
dataset, and set of K possible class names. Yields a single classifier with K outputs corresponding to the provided
class names.
"""
logger = logging.getLogger(__name__)
@dataclass
class TeacherModelArguments:
teacher_name_or_path: Optional[str] = field(
default="roberta-large-mnli", metadata={"help": "The NLI/zero-shot teacher model to be distilled."}
)
hypothesis_template: Optional[str] = field(
default="This example is {}.",
metadata={
"help": (
"Template used to turn class names into mock hypotheses for teacher NLI model. Must include {{}} "
"where class name is inserted."
)
},
)
teacher_batch_size: Optional[int] = field(
default=32, metadata={"help": "Batch size for generating teacher predictions."}
)
multi_label: Optional[bool] = field(
default=False,
metadata={
"help": (
"Allow multiple classes to be true rather than forcing them to sum to 1 (sometimes called "
"multi-class multi-label classification)."
)
},
)
temperature: Optional[float] = field(
default=1.0, metadata={"help": "Temperature applied to teacher softmax for distillation."}
)
@dataclass
class StudentModelArguments:
student_name_or_path: Optional[str] = field(
default="distilbert-base-uncased", metadata={"help": "The NLI/zero-shot teacher model to be distilled."}
)
@dataclass
class DataTrainingArguments:
data_file: str = field(metadata={"help": "Text file with one unlabeled instance per line."})
class_names_file: str = field(metadata={"help": "Text file with one class name per line."})
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the Rust tokenizers library) or not."},
)
@dataclass
class DistillTrainingArguments(TrainingArguments):
output_dir: Optional[str] = field(
default=None,
metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
)
per_device_train_batch_size: int = field(
default=32, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
)
per_device_eval_batch_size: int = field(
default=128, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
)
num_train_epochs: float = field(default=1.0, metadata={"help": "Total number of training epochs to perform."})
do_train: bool = field(default=True, metadata={"help": "Whether to run training of student model."})
do_eval: bool = field(
default=True,
metadata={
"help": (
"Whether to evaluate the agreement of the final student predictions and the teacher predictions "
"after training."
)
},
)
save_total_limit: Optional[int] = field(
default=0,
metadata={
"help": (
"Limit the total amount of checkpoints. "
"Deletes the older checkpoints in the output_dir. Default is 0 (no checkpoints)."
)
},
)
class DistillationTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
target_p = inputs["labels"]
outputs = model(inputs["input_ids"], attention_mask=inputs["attention_mask"])
logits = outputs[0]
loss = -torch.sum(target_p * logits.log_softmax(dim=-1), axis=-1).mean()
if return_outputs:
return loss, outputs
return loss
def read_lines(path):
lines = []
with open(path, "r") as f:
for line in f:
line = line.strip()
if len(line) > 0:
lines.append(line)
return lines
def get_premise_hypothesis_pairs(examples, class_names, hypothesis_template):
premises = []
hypotheses = []
for example in examples:
for name in class_names:
premises.append(example)
hypotheses.append(hypothesis_template.format(name))
return premises, hypotheses
def get_entailment_id(config):
for label, ind in config.label2id.items():
if label.lower().startswith("entail"):
return ind
logger.warning("Could not identify entailment dimension from teacher config label2id. Setting to -1.")
return -1
def get_teacher_predictions(
model_path: str,
examples: List[str],
class_names: List[str],
hypothesis_template: str,
batch_size: int,
temperature: float,
multi_label: bool,
use_fast_tokenizer: bool,
no_cuda: bool,
fp16: bool,
):
"""
Gets predictions by the same method as the zero-shot pipeline but with DataParallel & more efficient batching
"""
model = AutoModelForSequenceClassification.from_pretrained(model_path)
model_config = model.config
if not no_cuda and torch.cuda.is_available():
model = nn.DataParallel(model.cuda())
batch_size *= len(model.device_ids)
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=use_fast_tokenizer)
premises, hypotheses = get_premise_hypothesis_pairs(examples, class_names, hypothesis_template)
logits = []
for i in tqdm(range(0, len(premises), batch_size)):
batch_premises = premises[i : i + batch_size]
batch_hypotheses = hypotheses[i : i + batch_size]
encodings = tokenizer(
batch_premises,
batch_hypotheses,
padding=True,
truncation="only_first",
return_tensors="pt",
)
with torch.cuda.amp.autocast(enabled=fp16):
with torch.no_grad():
outputs = model(**encodings)
logits.append(outputs.logits.detach().cpu().float())
entail_id = get_entailment_id(model_config)
contr_id = -1 if entail_id == 0 else 0
logits = torch.cat(logits, dim=0) # N*K x 3
nli_logits = logits.reshape(len(examples), len(class_names), -1)[..., [contr_id, entail_id]] # N x K x 2
if multi_label:
# softmax over (contr, entail) logits for each class independently
nli_prob = (nli_logits / temperature).softmax(-1)
else:
# softmax over entail logits across classes s.t. class probabilities sum to 1.
nli_prob = (nli_logits / temperature).softmax(1)
return nli_prob[..., 1] # N x K
def main():
parser = HfArgumentParser(
(DataTrainingArguments, TeacherModelArguments, StudentModelArguments, DistillTrainingArguments),
description=DESCRIPTION,
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
data_args, teacher_args, student_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
data_args, teacher_args, student_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
utils.logging.set_verbosity_info()
utils.logging.enable_default_handler()
utils.logging.enable_explicit_format()
if training_args.local_rank != -1:
raise ValueError("Distributed training is not currently supported.")
if training_args.tpu_num_cores is not None:
raise ValueError("TPU acceleration is not currently supported.")
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# 1. read in data
examples = read_lines(data_args.data_file)
class_names = read_lines(data_args.class_names_file)
# 2. get teacher predictions and load into dataset
logger.info("Generating predictions from zero-shot teacher model")
teacher_soft_preds = get_teacher_predictions(
teacher_args.teacher_name_or_path,
examples,
class_names,
teacher_args.hypothesis_template,
teacher_args.teacher_batch_size,
teacher_args.temperature,
teacher_args.multi_label,
data_args.use_fast_tokenizer,
training_args.no_cuda,
training_args.fp16,
)
dataset = Dataset.from_dict(
{
"text": examples,
"labels": teacher_soft_preds,
}
)
# 3. create student
logger.info("Initializing student model")
model = AutoModelForSequenceClassification.from_pretrained(
student_args.student_name_or_path, num_labels=len(class_names)
)
tokenizer = AutoTokenizer.from_pretrained(student_args.student_name_or_path, use_fast=data_args.use_fast_tokenizer)
model.config.id2label = dict(enumerate(class_names))
model.config.label2id = {label: i for i, label in enumerate(class_names)}
# 4. train student on teacher predictions
dataset = dataset.map(tokenizer, input_columns="text")
dataset.set_format("torch")
def compute_metrics(p, return_outputs=False):
preds = p.predictions.argmax(-1)
proxy_labels = p.label_ids.argmax(-1) # "label_ids" are actually distributions
return {"agreement": (preds == proxy_labels).mean().item()}
trainer = DistillationTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=dataset,
compute_metrics=compute_metrics,
)
if training_args.do_train:
logger.info("Training student model on teacher predictions")
trainer.train()
if training_args.do_eval:
agreement = trainer.evaluate(eval_dataset=dataset)["eval_agreement"]
logger.info(f"Agreement of student and teacher predictions: {agreement * 100:0.2f}%")
trainer.save_model()
if __name__ == "__main__":
main()
| transformers/examples/research_projects/zero-shot-distillation/distill_classifier.py/0 | {
"file_path": "transformers/examples/research_projects/zero-shot-distillation/distill_classifier.py",
"repo_id": "transformers",
"token_count": 4815
} | 294 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for summarization.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import json
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import nltk # Here to have a nice missing dependency error message early on
import numpy as np
import tensorflow as tf
from datasets import load_dataset
from filelock import FileLock
import transformers
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForSeq2Seq,
HfArgumentParser,
KerasMetricCallback,
PushToHubCallback,
TFAutoModelForSeq2SeqLM,
TFTrainingArguments,
create_optimizer,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, is_offline_mode, send_example_telemetry
from transformers.utils.versions import require_version
# region Checking dependencies
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.40.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
logger = logging.getLogger(__name__)
try:
nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
if is_offline_mode():
raise LookupError(
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
)
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
# endregion
# region Arguments
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
"execute code present on the Hub on your local machine."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
text_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
)
summary_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={
"help": (
"An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
)
},
)
test_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_source_length: Optional[int] = field(
default=1024,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
val_max_target_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
num_beams: Optional[int] = field(
default=1,
metadata={
"help": (
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
"which is used during ``evaluate`` and ``predict``."
)
},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
},
)
source_prefix: Optional[str] = field(
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if self.val_max_target_length is None:
self.val_max_target_length = self.max_target_length
# endregion
# region Dataset name mappings
summarization_name_mapping = {
"amazon_reviews_multi": ("review_body", "review_title"),
"big_patent": ("description", "abstract"),
"cnn_dailymail": ("article", "highlights"),
"orange_sum": ("text", "summary"),
"pn_summary": ("article", "summary"),
"psc": ("extract_text", "summary_text"),
"samsum": ("dialogue", "summary"),
"thaisum": ("body", "summary"),
"xglue": ("news_body", "news_title"),
"xsum": ("document", "summary"),
"wiki_summary": ("article", "highlights"),
"multi_news": ("document", "summary"),
}
# endregion
def main():
# region Argument parsing
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
FutureWarning,
)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_summarization", model_args, data_args, framework="tensorflow")
# endregion
# region Logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO)
datasets.utils.logging.set_verbosity(logging.INFO)
transformers.utils.logging.set_verbosity(logging.INFO)
# Log on each process the small summary:
logger.info(f"Training/evaluation parameters {training_args}")
# endregion
# region T5 special-casing
if data_args.source_prefix is None and model_args.model_name_or_path in [
"google-t5/t5-small",
"google-t5/t5-base",
"google-t5/t5-large",
"google-t5/t5-3b",
"google-t5/t5-11b",
]:
logger.warning(
"You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
"`--source_prefix 'summarize: ' `"
)
# endregion
# region Detecting last checkpoint
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# endregion
# Set seed before initializing model.
set_seed(training_args.seed)
# region Load datasets
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files this script will use the first column for the full texts and the second column for the
# summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
token=model_args.token,
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
raw_datasets = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.
# endregion
# region Load model config and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
# endregion
# region Dataset preprocessing
# We need to tokenize inputs and targets.
if training_args.do_train:
column_names = raw_datasets["train"].column_names
elif training_args.do_eval:
column_names = raw_datasets["validation"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, and/or `do_eval`.")
return
# Get the column names for input/target.
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
if data_args.text_column is None:
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
text_column = data_args.text_column
if text_column not in column_names:
raise ValueError(
f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
)
if data_args.summary_column is None:
summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
summary_column = data_args.summary_column
if summary_column not in column_names:
raise ValueError(
f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
)
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
padding = "max_length" if data_args.pad_to_max_length else False
def preprocess_function(examples):
inputs = examples[text_column]
targets = examples[summary_column]
inputs = [prefix + inp for inp in inputs]
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
# Tokenize targets with the `text_target` keyword argument
labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
return model_inputs
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
else:
train_dataset = None
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
else:
eval_dataset = None
# endregion
# region Text preprocessing
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
# rougeLSum expects newline after each sentence
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
return preds, labels
# endregion
with training_args.strategy.scope():
# region Prepare model
model = TFAutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embeddings = model.get_input_embeddings()
# Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings.
# As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and
# the weights will always be in embeddings.embeddings.
if hasattr(embeddings, "embeddings"):
embedding_size = embeddings.embeddings.shape[0]
else:
embedding_size = embeddings.weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# endregion
# region Prepare TF Dataset objects
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=128, # Reduce the number of unique shapes for XLA, especially for generation
return_tensors="np",
)
dataset_options = tf.data.Options()
dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
num_replicas = training_args.strategy.num_replicas_in_sync
total_train_batch_size = training_args.per_device_train_batch_size * num_replicas
total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas
# model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in
# training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also
# use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names
# yourself if you use this method, whereas they are automatically inferred from the model input names when
# using model.prepare_tf_dataset()
# For more info see the docs:
# https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset
# https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset
tf_train_dataset = model.prepare_tf_dataset(
train_dataset,
collate_fn=data_collator,
batch_size=total_train_batch_size,
shuffle=True,
).with_options(dataset_options)
tf_eval_dataset = model.prepare_tf_dataset(
eval_dataset,
collate_fn=data_collator,
batch_size=total_eval_batch_size,
shuffle=False,
).with_options(dataset_options)
# endregion
# region Optimizer, loss and LR scheduling
num_train_steps = int(len(tf_train_dataset) * training_args.num_train_epochs)
if training_args.warmup_steps > 0:
num_warmup_steps = training_args.warmup_steps
elif training_args.warmup_ratio > 0:
num_warmup_steps = int(num_train_steps * training_args.warmup_ratio)
else:
num_warmup_steps = 0
if training_args.do_train:
optimizer, lr_schedule = create_optimizer(
init_lr=training_args.learning_rate,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps,
adam_beta1=training_args.adam_beta1,
adam_beta2=training_args.adam_beta2,
adam_epsilon=training_args.adam_epsilon,
weight_decay_rate=training_args.weight_decay,
adam_global_clipnorm=training_args.max_grad_norm,
)
else:
optimizer = "sgd" # Just write anything because we won't be using it
# endregion
# region Metric and KerasMetricCallback
if training_args.do_eval:
metric = evaluate.load("rouge", cache_dir=model_args.cache_dir)
if data_args.val_max_target_length is None:
data_args.val_max_target_length = data_args.max_target_length
gen_kwargs = {
"max_length": data_args.val_max_target_length if data_args is not None else config.max_length,
"num_beams": data_args.num_beams,
"no_repeat_ngram_size": 0, # Not supported under XLA right now, and some models set it by default
}
def compute_metrics(preds):
predictions, labels = preds
if isinstance(predictions, tuple):
predictions = predictions[0]
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
metrics = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
# Only print the mid f-measures, but there are a lot of other statistics in there too!
metrics = {key: round(val.mid.fmeasure * 100, 4) for key, val in metrics.items()}
return metrics
# The KerasMetricCallback allows metrics that are too complex to write as standard Keras metrics
# to be computed each epoch. Any Python code can be included in the metric_fn. This is especially
# useful for metrics like BLEU and ROUGE that perform string comparisons on decoded model outputs.
# For more information, see the docs at
# https://huggingface.co/docs/transformers/main_classes/keras_callbacks#transformers.KerasMetricCallback
metric_callback = KerasMetricCallback(
metric_fn=compute_metrics,
eval_dataset=tf_eval_dataset,
predict_with_generate=True,
use_xla_generation=True,
generate_kwargs=gen_kwargs,
)
callbacks = [metric_callback]
else:
callbacks = []
# endregion
# region Preparing push_to_hub and model card
push_to_hub_model_id = training_args.push_to_hub_model_id
model_name = model_args.model_name_or_path.split("/")[-1]
if not push_to_hub_model_id:
if data_args.dataset_name is not None:
push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}"
else:
push_to_hub_model_id = f"{model_name}-finetuned-summarization"
model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"}
if data_args.dataset_name is not None:
model_card_kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
model_card_kwargs["dataset_args"] = data_args.dataset_config_name
model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
else:
model_card_kwargs["dataset"] = data_args.dataset_name
if training_args.push_to_hub:
# Because this training can be quite long, we save once per epoch.
callbacks.append(
PushToHubCallback(
output_dir=training_args.output_dir,
hub_model_id=push_to_hub_model_id,
hub_token=training_args.push_to_hub_token,
tokenizer=tokenizer,
**model_card_kwargs,
)
)
# endregion
# region Training
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=optimizer, jit_compile=training_args.xla)
eval_metrics = None
if training_args.do_train:
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {training_args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
logger.info(f" Total train batch size = {total_train_batch_size}")
logger.info(f" Total optimization steps = {num_train_steps}")
if training_args.xla and not data_args.pad_to_max_length:
logger.warning(
"XLA training may be slow at first when --pad_to_max_length is not set "
"until all possible shapes have been compiled."
)
history = model.fit(tf_train_dataset, epochs=int(training_args.num_train_epochs), callbacks=callbacks)
eval_metrics = {key: val[-1] for key, val in history.history.items()}
# endregion
# region Validation
if training_args.do_eval and not training_args.do_train:
# Do a standalone evaluation run
logger.info("Evaluation...")
# Compiling generation with XLA yields enormous speedups, see https://huggingface.co/blog/tf-xla-generate
@tf.function(jit_compile=True)
def generate(**kwargs):
return model.generate(**kwargs)
for batch, labels in tf_eval_dataset:
batch.update(gen_kwargs)
generated_tokens = generate(**batch)
if isinstance(generated_tokens, tuple):
generated_tokens = generated_tokens[0]
decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
metric.add_batch(predictions=decoded_preds, references=decoded_labels)
eval_metrics = metric.compute(use_stemmer=True)
result = {key: round(val.mid.fmeasure * 100, 4) for key, val in eval_metrics.items()}
logger.info(result)
# endregion
if training_args.output_dir is not None and eval_metrics is not None:
output_eval_file = os.path.join(training_args.output_dir, "all_results.json")
with open(output_eval_file, "w") as writer:
writer.write(json.dumps(eval_metrics))
if training_args.output_dir is not None and not training_args.push_to_hub:
# If we're not pushing to hub, at least save a local copy when we're done
model.save_pretrained(training_args.output_dir)
if __name__ == "__main__":
main()
| transformers/examples/tensorflow/summarization/run_summarization.py/0 | {
"file_path": "transformers/examples/tensorflow/summarization/run_summarization.py",
"repo_id": "transformers",
"token_count": 13881
} | 295 |
#!/usr/bin/env python
# HF Trainer benchmarking tool
#
# This tool can be used to run and compare multiple dimensions of the HF Trainers args.
#
# It then prints a report once in github format with all the information that needs to be shared
# with others and second time in a console-friendly format, so it's easier to use for tuning things up.
#
# The main idea is:
#
# ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \
# --target-metric-key train_samples_per_second
#
# The variations can be any command line argument that you want to compare and not just dtype as in
# the example.
#
# --variations allows you to compare variations in multiple dimensions.
#
# as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6
# times adding one of:
#
# 1. --tf32 0 --fp16 0
# 2. --tf32 0 --fp16 1
# 3. --tf32 0 --bf16 1
# 4. --tf32 1 --fp16 0
# 5. --tf32 1 --fp16 1
# 6. --tf32 1 --bf16 1
#
# and print the results. This is just a cartesian product - and more than 2 dimensions can be used.
#
# If you want to rely on defaults, this:
# --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1'
# is identical to this:
# --variations '--tf32 0|--tf32 1' '|--fp16|--bf16'
#
# the leading empty variation in the 2nd dimension is a valid variation.
#
# So here we get the following 6 variations:
#
# 1. --tf32 0
# 2. --tf32 0 --fp16
# 3. --tf32 0 --bf16
# 4. --tf32 1
# 5. --tf32 1 --fp16
# 6. --tf32 1 --bf16
#
# In this particular case we don't know what the default tf32 setting is as it's normally
# pytorch-version dependent). That's why it's best to do an explicit setting of each variation:
# `--tf32 0|--tf32 1`
#
# Here is a full example of a train:
#
# CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \
# --base-cmd \
# ' examples/pytorch/translation/run_translation.py --model_name_or_path google-t5/t5-small \
# --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \
# --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \
# --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \
# --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \
# --source_prefix "translate English to Romanian: " --warmup_steps 50 \
# --max_train_samples 20000 --dataloader_num_workers 2 ' \
# --target-metric-key train_samples_per_second --repeat-times 1 --variations \
# '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \
# --repeat-times 1 --base-variation '--tf32 0'
#
# and here is a possible output:
#
#
# | Variation | Train | Diff | Train |
# | | samples | % | loss |
# | | per | | |
# | | second | | |
# |:----------------|----------:|-------:|--------:|
# | --tf32 0 | 285.11 | 0 | 2.51 |
# | --tf32 1 | 342.09 | 20 | 2.51 |
# | --fp16 --tf32 0 | 423.49 | 49 | 2.51 |
# | --fp16 --tf32 1 | 423.13 | 48 | 2.51 |
# | --bf16 --tf32 0 | 416.80 | 46 | 2.52 |
# | --bf16 --tf32 1 | 415.87 | 46 | 2.52 |
#
#
# So you can quickly compare the different outcomes.
#
# Typically running each experiment once is enough, but if the environment is unstable you can
# re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results.
#
# By default it'll use the lowest result as the base line to use as 100% and then compare the rest to
# it as can be seen from the table above, but you can also specify which combination is the one to use as
# the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0'
#
# --target-metric-key is there to tell the program which metrics to compare - the different metric keys are
# inside output_dir/all_results.json. e.g., to measure eval performance instead of train use:
# --target-metric-key eval_samples_per_second
# but of course you will need to adjust the --base-cmd value in the example to perform evaluation as
# well (as currently it doesn't)
#
import argparse
import datetime
import io
import itertools
import json
import math
import os
import platform
import re
import shlex
import subprocess
import sys
from pathlib import Path
from statistics import fmean
import pandas as pd
import torch
from tqdm import tqdm
import transformers
nan = float("nan")
class Tee:
"""
A helper class to tee print's output into a file.
Usage:
sys.stdout = Tee(filename)
"""
def __init__(self, filename):
self.stdout = sys.stdout
self.file = open(filename, "a")
def __getattr__(self, attr):
return getattr(self.stdout, attr)
def write(self, msg):
self.stdout.write(msg)
# strip tqdm codes
self.file.write(re.sub(r"^.*\r", "", msg, 0, re.M))
def get_original_command(max_width=80, full_python_path=False):
"""
Return the original command line string that can be replayed nicely and wrapped for 80 char width.
Args:
max_width (`int`, `optional`, defaults to 80):
The width to wrap for.
full_python_path (`bool`, `optional`, defaults to `False`):
Whether to replicate the full path or just the last segment (i.e. `python`).
"""
cmd = []
# deal with critical env vars
env_keys = ["CUDA_VISIBLE_DEVICES"]
for key in env_keys:
val = os.environ.get(key, None)
if val is not None:
cmd.append(f"{key}={val}")
# python executable (not always needed if the script is executable)
python = sys.executable if full_python_path else sys.executable.split("/")[-1]
cmd.append(python)
# now the normal args
cmd += list(map(shlex.quote, sys.argv))
# split up into up to MAX_WIDTH lines with shell multi-line escapes
lines = []
current_line = ""
while len(cmd) > 0:
current_line += f"{cmd.pop(0)} "
if len(cmd) == 0 or len(current_line) + len(cmd[0]) + 1 > max_width - 1:
lines.append(current_line)
current_line = ""
return "\\\n".join(lines)
def get_base_command(args, output_dir):
# unwrap multi-line input
args.base_cmd = re.sub(r"[\\\n]+", " ", args.base_cmd)
# remove --output_dir if any and set our own
args.base_cmd = re.sub("--output_dir\s+[^\s]+", "", args.base_cmd)
args.base_cmd += f" --output_dir {output_dir}"
# ensure we have --overwrite_output_dir
args.base_cmd = re.sub("--overwrite_output_dir\s+", "", args.base_cmd)
args.base_cmd += " --overwrite_output_dir"
return [sys.executable] + shlex.split(args.base_cmd)
def process_run_single(id, cmd, variation, output_dir, target_metric_key, metric_keys, verbose):
# Enable to debug everything but the run itself, to do it fast and see the progress.
# This is useful for debugging the output formatting quickly - we can remove it later once
# everybody is happy with the output
if 0:
import random
from time import sleep
sleep(0)
return dict(
{k: random.uniform(0, 100) for k in metric_keys},
**{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.22222222])},
)
result = subprocess.run(cmd, capture_output=True, text=True)
if verbose:
print("STDOUT", result.stdout)
print("STDERR", result.stderr)
# save the streams
prefix = variation.replace(" ", "-")
with open(Path(output_dir) / f"log.{prefix}.stdout.txt", "w") as f:
f.write(result.stdout)
with open(Path(output_dir) / f"log.{prefix}.stderr.txt", "w") as f:
f.write(result.stderr)
if result.returncode != 0:
if verbose:
print("failed")
return {target_metric_key: nan}
with io.open(f"{output_dir}/all_results.json", "r", encoding="utf-8") as f:
metrics = json.load(f)
# filter out just the keys we want
return {k: v for k, v in metrics.items() if k in metric_keys}
def process_run(
id,
cmd,
variation_key,
variation,
longest_variation_len,
target_metric_key,
report_metric_keys,
repeat_times,
output_dir,
verbose,
):
results = []
metrics = []
preamble = f"{id}: {variation:<{longest_variation_len}}"
outcome = f"{preamble}: "
metric_keys = set(report_metric_keys + [target_metric_key])
for i in tqdm(range(repeat_times), desc=preamble, leave=False):
single_run_metrics = process_run_single(
id, cmd, variation, output_dir, target_metric_key, metric_keys, verbose
)
result = single_run_metrics[target_metric_key]
if not math.isnan(result):
metrics.append(single_run_metrics)
results.append(result)
outcome += "✓"
else:
outcome += "✘"
outcome = f"\33[2K\r{outcome}"
if len(metrics) > 0:
mean_metrics = {k: fmean([x[k] for x in metrics]) for k in metrics[0].keys()}
mean_target = round(mean_metrics[target_metric_key], 2)
results_str = f"{outcome} {mean_target}"
if len(metrics) > 1:
results_str += f" {tuple(round(x, 2) for x in results)}"
print(results_str)
mean_metrics[variation_key] = variation
return mean_metrics
else:
print(outcome)
return {variation_key: variation, target_metric_key: nan}
def get_versions():
properties = torch.cuda.get_device_properties(torch.device("cuda"))
return f"""
Datetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
Software:
transformers: {transformers.__version__}
torch : {torch.__version__}
cuda : {torch.version.cuda}
python : {platform.python_version()}
Hardware:
{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB
"""
def process_results(results, target_metric_key, report_metric_keys, base_variation, output_dir):
df = pd.DataFrame(results)
variation_key = "variation"
diff_key = "diff_%"
sentinel_value = nan
if base_variation is not None and len(df[df[variation_key] == base_variation]):
# this may still return nan
sentinel_value = df.loc[df[variation_key] == base_variation][target_metric_key].item()
if math.isnan(sentinel_value):
# as a fallback, use the minimal value as the sentinel
sentinel_value = df.loc[df[target_metric_key] != nan][target_metric_key].min()
# create diff column if possible
if not math.isnan(sentinel_value):
df[diff_key] = df.apply(
lambda r: round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value)
if not math.isnan(r[target_metric_key])
else 0,
axis="columns",
)
# re-order columns
cols = [variation_key, target_metric_key, diff_key, *report_metric_keys]
df = df.reindex(cols, axis="columns") # reorder cols
# capitalize
df = df.rename(str.capitalize, axis="columns")
# make the cols as narrow as possible
df_github = df.rename(lambda c: c.replace("_", "<br>"), axis="columns")
df_console = df.rename(lambda c: c.replace("_", "\n"), axis="columns")
report = ["", "Copy between the cut-here-lines and paste as is to github or a forum"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results:", df_github.to_markdown(index=False, floatfmt=".2f")]
report += ["```"]
report += ["*** Setup:", get_versions()]
report += ["*** The benchmark command line was:", get_original_command()]
report += ["```"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results (console):", df_console.to_markdown(index=False, floatfmt=".2f")]
print("\n\n".join(report))
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--base-cmd",
default=None,
type=str,
required=True,
help="Base cmd",
)
parser.add_argument(
"--variations",
default=None,
type=str,
nargs="+",
required=True,
help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'",
)
parser.add_argument(
"--base-variation",
default=None,
type=str,
help="Baseline variation to compare to. if None the minimal target value will be used to compare against",
)
parser.add_argument(
"--target-metric-key",
default=None,
type=str,
required=True,
help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second",
)
parser.add_argument(
"--report-metric-keys",
default="",
type=str,
help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples",
)
parser.add_argument(
"--repeat-times",
default=1,
type=int,
help="How many times to re-run each variation - an average will be reported",
)
parser.add_argument(
"--output_dir",
default="output_benchmark",
type=str,
help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked",
)
parser.add_argument(
"--verbose",
default=False,
action="store_true",
help="Whether to show the outputs of each run or just the benchmark progress",
)
args = parser.parse_args()
output_dir = args.output_dir
Path(output_dir).mkdir(exist_ok=True)
base_cmd = get_base_command(args, output_dir)
# split each dimension into its --foo variations
dims = [list(map(str.strip, re.split(r"\|", x))) for x in args.variations]
# build a cartesian product of dimensions and convert those back into cmd-line arg strings,
# while stripping white space for inputs that were empty
variations = list(map(str.strip, map(" ".join, itertools.product(*dims))))
longest_variation_len = max(len(x) for x in variations)
# split wanted keys
report_metric_keys = args.report_metric_keys.split()
# capture prints into a log file for convenience
report_fn = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}.txt"
print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt")
print(f"and this script's output is also piped into {report_fn}")
sys.stdout = Tee(report_fn)
print(f"\n*** Running {len(variations)} benchmarks:")
print(f"Base command: {' '.join(base_cmd)}")
variation_key = "variation"
results = []
for id, variation in enumerate(tqdm(variations, desc="Total completion: ", leave=False)):
cmd = base_cmd + variation.split()
results.append(
process_run(
id + 1,
cmd,
variation_key,
variation,
longest_variation_len,
args.target_metric_key,
report_metric_keys,
args.repeat_times,
output_dir,
args.verbose,
)
)
process_results(results, args.target_metric_key, report_metric_keys, args.base_variation, output_dir)
if __name__ == "__main__":
main()
| transformers/scripts/benchmark/trainer-benchmark.py/0 | {
"file_path": "transformers/scripts/benchmark/trainer-benchmark.py",
"repo_id": "transformers",
"token_count": 6341
} | 296 |
#!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script builds a small sample spm file tests/fixtures/test_sentencepiece_no_bos.model, with features needed by pegasus
# 1. pip install sentencepiece
#
# 2. wget https://raw.githubusercontent.com/google/sentencepiece/master/data/botchan.txt
# 3. build
import sentencepiece as spm
# pegasus:
# 1. no bos
# 2. eos_id is 1
# 3. unk_id is 2
# build a sample spm file accordingly
spm.SentencePieceTrainer.train('--input=botchan.txt --model_prefix=test_sentencepiece_no_bos --bos_id=-1 --unk_id=2 --eos_id=1 --vocab_size=1000')
# 4. now update the fixture
# mv test_sentencepiece_no_bos.model ../../tests/fixtures/
| transformers/scripts/pegasus/build_test_sample_spm_no_bos.py/0 | {
"file_path": "transformers/scripts/pegasus/build_test_sample_spm_no_bos.py",
"repo_id": "transformers",
"token_count": 391
} | 297 |
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple
import torch
from .configuration_utils import PretrainedConfig
from .utils import logging
logger = logging.get_logger(__name__)
@dataclass
class Cache:
"""
Base, abstract class for all caches. The actual data structure is specific to each subclass.
"""
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
cache to be created.
Return:
A tuple containing the updated key and value states.
"""
raise NotImplementedError("Make sure to implement `update` in a subclass.")
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
raise NotImplementedError("Make sure to implement `get_seq_length` in a subclass.")
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states, if there is any."""
raise NotImplementedError("Make sure to implement `get_max_length` in a subclass.")
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
# Cache without size limit -> all cache is usable
# Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
# length, we will need to evict part of the cache (and thus not all cache is usable)
max_length = self.get_max_length()
previous_seq_length = self.get_seq_length(layer_idx)
if max_length is not None and previous_seq_length + new_seq_length > max_length:
return max_length - new_seq_length
return previous_seq_length
@property
def seen_tokens(self):
logger.warning_once(
"The `seen_tokens` attribute is deprecated and will be removed in v4.41. Use the `cache_position` "
"model input instead."
)
if hasattr(self, "_seen_tokens"):
return self._seen_tokens
else:
return None
class DynamicCache(Cache):
"""
A cache that grows dynamically as more tokens are generated. This is the default for generative models.
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
`[batch_size, num_heads, seq_len, head_dim]`.
"""
def __init__(self) -> None:
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
"""
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
sequence length.
"""
if layer_idx < len(self):
return (self.key_cache[layer_idx], self.value_cache[layer_idx])
else:
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
def __iter__(self):
"""
Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
keys and values
"""
for layer_idx in range(len(self)):
yield (self.key_cache[layer_idx], self.value_cache[layer_idx])
def __len__(self):
"""
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
to the number of layers in the model.
"""
return len(self.key_cache)
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
Return:
A tuple containing the updated key and value states.
"""
# Update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += key_states.shape[-2]
# Update the cache
if len(self.key_cache) <= layer_idx:
self.key_cache.append(key_states)
self.value_cache.append(value_states)
else:
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
if len(self.key_cache) <= layer_idx:
return 0
return self.key_cache[layer_idx].shape[-2]
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
return None
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
for layer_idx in range(len(self.key_cache)):
device = self.key_cache[layer_idx].device
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.value_cache[layer_idx].device
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
"""Converts the `DynamicCache` instance into the its equivalent in the legacy cache format."""
legacy_cache = ()
for layer_idx in range(len(self)):
legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx]),)
return legacy_cache
@classmethod
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
"""Converts a cache in the legacy cache format into an equivalent `DynamicCache`."""
cache = cls()
if past_key_values is not None:
for layer_idx in range(len(past_key_values)):
key_states, value_states = past_key_values[layer_idx]
cache.update(key_states, value_states, layer_idx)
return cache
class SinkCache(Cache):
"""
A cache that as described in the [Attention Sinks paper](https://arxiv.org/abs/2309.17453). It allows the model to
generate beyond the length of its context window, without losing fluency in the conversation. As it discards past
tokens, the model will lose the ability to generate tokens that depend on the context that was discarded.
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
`[batch_size, num_heads, seq_len, head_dim]`.
Parameters:
window_length (`int`):
The length of the context window.
num_sink_tokens (`int`):
The number of sink tokens. See the original paper for more information.
"""
def __init__(self, window_length: int, num_sink_tokens: int) -> None:
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
self.window_length = window_length
self.num_sink_tokens = num_sink_tokens
self.cos_sin_cache = {}
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
@staticmethod
def _rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def _apply_key_rotary_pos_emb(
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> torch.Tensor:
rotated_key_states = (key_states * cos) + (self._rotate_half(key_states) * sin)
return rotated_key_states
def _get_rerotation_cos_sin(
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
if key_states.shape[-2] not in self.cos_sin_cache:
# Upcast to float32 temporarily for better accuracy
cos = cos.to(torch.float32)
sin = sin.to(torch.float32)
# Compute the cos and sin required for back- and forward-rotating to one position earlier in the sequence
original_cos = cos[self.num_sink_tokens + key_states.shape[-2] :]
shifted_cos = cos[self.num_sink_tokens : -key_states.shape[-2]]
original_sin = sin[self.num_sink_tokens + key_states.shape[-2] :]
shifted_sin = sin[self.num_sink_tokens : -key_states.shape[-2]]
rerotation_cos = original_cos * shifted_cos + original_sin * shifted_sin
rerotation_sin = -original_sin * shifted_cos + original_cos * shifted_sin
self.cos_sin_cache[key_states.shape[-2]] = (
rerotation_cos.to(key_states.dtype).unsqueeze(0),
rerotation_sin.to(key_states.dtype).unsqueeze(0),
)
return self.cos_sin_cache[key_states.shape[-2]]
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
# Workaround to make 'key_states.shape[-2] + past_key_value.get_seq_length(self.layer_idx)' <= window_length
if len(self.key_cache) <= layer_idx:
return 0
return self.key_cache[layer_idx].shape[-2]
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states."""
return self.window_length
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. The following arguments can be used in `SinkCache`: `sin`,
`cos` and `partial_rotation_size`. These arguments are used with models using RoPE, to recompute the
rotation as the tokens are shifted.
Return:
A tuple containing the updated key and value states.
"""
# Optional kwargs for `SinkCache` -- needed on models using RoPE. `partial_rotation_size` is used on models
# with partially rotated position embeddings, like Phi or Persimmon.
sin = cache_kwargs.get("sin")
cos = cache_kwargs.get("cos")
partial_rotation_size = cache_kwargs.get("partial_rotation_size")
using_rope = cos is not None and sin is not None
# Update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += key_states.shape[-2]
# [bsz, num_heads, seq_len, head_dim]
if len(self.key_cache) <= layer_idx:
# Empty cache
self.key_cache.append(key_states)
self.value_cache.append(value_states)
elif key_states.shape[-2] + self.get_seq_length(layer_idx) < self.window_length:
# Growing cache
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
else:
# Shifting cache
keys_to_keep = self.key_cache[layer_idx][
:, :, -self.window_length + self.num_sink_tokens + key_states.shape[-2] :
]
# On RoPE models, we need to recompute the Key rotation as the tokens are shifted
if using_rope:
rerotation_cos, rerotation_sin = self._get_rerotation_cos_sin(
key_states, cos[: self.window_length], sin[: self.window_length]
)
if partial_rotation_size is not None:
keys_to_keep, keys_pass = (
keys_to_keep[..., :partial_rotation_size],
keys_to_keep[..., partial_rotation_size:],
)
keys_to_keep = self._apply_key_rotary_pos_emb(keys_to_keep, rerotation_cos, rerotation_sin)
if partial_rotation_size is not None:
keys_to_keep = torch.cat((keys_to_keep, keys_pass), dim=-1)
# Concatenate sink tokens, shifted & rotated tokens (if needed), and new tokens
sink_keys = self.key_cache[layer_idx][:, :, : self.num_sink_tokens]
self.key_cache[layer_idx] = torch.cat([sink_keys, keys_to_keep, key_states], dim=-2)
sink_values = self.value_cache[layer_idx][:, :, : self.num_sink_tokens]
values_to_keep = self.value_cache[layer_idx][
:, :, -self.window_length + self.num_sink_tokens + value_states.shape[-2] :
]
self.value_cache[layer_idx] = torch.cat([sink_values, values_to_keep, value_states], dim=-2)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
for layer_idx in range(len(self.key_cache)):
device = self.key_cache[layer_idx].device
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.value_cache[layer_idx].device
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
class StaticCache(Cache):
"""
Static Cache class to be used with `torch.compile(model)`.
Parameters:
config (`PretrainedConfig):
The configuration file defining the `max_position_embeddings`, `hidden_size` and `num_attention_heads`
required to initialize the static cache.
max_batch_size (`int`):
The maximum batch size with which the model will be used.
max_cache_len (`int`):
The maximum sequence length with which the model will be used.
device (`torch.device`):
The device on which the cache should be initialized. Should be the same as the layer.
dtype (*optional*, defaults to `torch.float32`):
The default `dtype` to use when initializing the layer.
"""
def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
super().__init__()
self.max_batch_size = max_batch_size
self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
self.head_dim = (
config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
)
self.dtype = dtype if dtype is not None else torch.float32
self.num_key_value_heads = (
config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
)
cache_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
self.key_cache: torch.Tensor = torch.zeros(cache_shape, dtype=self.dtype, device=device)
self.value_cache: torch.Tensor = torch.zeros(cache_shape, dtype=self.dtype, device=device)
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
It is VERY important to index using a tensor, otherwise you introduce a copy to the device.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for. Kept for backward compatibility
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. The `StaticCache` just needs the `q_len`
to know how much of the cache it should overwrite.
Return:
A tuple containing the updated key and value states.
"""
new_cache_positions = cache_kwargs.get("cache_position")
k_out = self.key_cache
v_out = self.value_cache
k_out[:, :, new_cache_positions] = key_states
v_out[:, :, new_cache_positions] = value_states
return k_out, v_out
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states that were seen by the model. `layer_idx` kept for BC"""
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
# limit the check to the first batch member and head dimension.
# TODO: This is error prone, a filled cache may be `0.0`. Let's use a stateless integer instead, after
# https://github.com/pytorch/pytorch/issues/120248 is fixed
return (self.key_cache[0, 0].any(dim=-1)).sum()
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
return self.max_cache_len
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
device = self.key_cache.device
self.key_cache = self.key_cache.index_select(0, beam_idx.to(device))
device = self.value_cache.device
self.value_cache = self.value_cache.index_select(0, beam_idx.to(device))
def to_legacy_cache(self):
"""Dummy function for BC. We have to keep it because otherwise the call in the forward of models will break it"""
return None
| transformers/src/transformers/cache_utils.py/0 | {
"file_path": "transformers/src/transformers/cache_utils.py",
"repo_id": "transformers",
"token_count": 8543
} | 298 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Convert pytorch checkpoints to TensorFlow"""
import argparse
import os
from . import (
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
AlbertConfig,
BartConfig,
BertConfig,
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPT2Config,
LayoutLMConfig,
LxmertConfig,
OpenAIGPTConfig,
RobertaConfig,
T5Config,
TFAlbertForPreTraining,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFCamembertForMaskedLM,
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPT2LMHeadModel,
TFLayoutLMForMaskedLM,
TFLxmertForPreTraining,
TFLxmertVisualFeatureEncoder,
TFOpenAIGPTLMHeadModel,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForSequenceClassification,
TFT5ForConditionalGeneration,
TFTransfoXLLMHeadModel,
TFWav2Vec2Model,
TFXLMRobertaForMaskedLM,
TFXLMWithLMHeadModel,
TFXLNetLMHeadModel,
TransfoXLConfig,
Wav2Vec2Config,
Wav2Vec2Model,
XLMConfig,
XLMRobertaConfig,
XLNetConfig,
is_torch_available,
load_pytorch_checkpoint_in_tf2_model,
)
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
if is_torch_available():
import numpy as np
import torch
from . import (
AlbertForPreTraining,
BartForConditionalGeneration,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
CamembertForMaskedLM,
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPT2LMHeadModel,
LayoutLMForMaskedLM,
LxmertForPreTraining,
LxmertVisualFeatureEncoder,
OpenAIGPTLMHeadModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
T5ForConditionalGeneration,
TransfoXLLMHeadModel,
XLMRobertaForMaskedLM,
XLMWithLMHeadModel,
XLNetLMHeadModel,
)
from .pytorch_utils import is_torch_greater_or_equal_than_1_13
logging.set_verbosity_info()
MODEL_CLASSES = {
"bart": (
BartConfig,
TFBartForConditionalGeneration,
TFBartForSequenceClassification,
BartForConditionalGeneration,
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"bert": (
BertConfig,
TFBertForPreTraining,
BertForPreTraining,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"google-bert/bert-large-uncased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"google-bert/bert-large-cased-whole-word-masking-finetuned-squad": (
BertConfig,
TFBertForQuestionAnswering,
BertForQuestionAnswering,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"google-bert/bert-base-cased-finetuned-mrpc": (
BertConfig,
TFBertForSequenceClassification,
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"dpr": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"openai-community/gpt2": (
GPT2Config,
TFGPT2LMHeadModel,
GPT2LMHeadModel,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlnet": (
XLNetConfig,
TFXLNetLMHeadModel,
XLNetLMHeadModel,
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm": (
XLMConfig,
TFXLMWithLMHeadModel,
XLMWithLMHeadModel,
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"xlm-roberta": (
XLMRobertaConfig,
TFXLMRobertaForMaskedLM,
XLMRobertaForMaskedLM,
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"transfo-xl": (
TransfoXLConfig,
TFTransfoXLLMHeadModel,
TransfoXLLMHeadModel,
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"openai-community/openai-gpt": (
OpenAIGPTConfig,
TFOpenAIGPTLMHeadModel,
OpenAIGPTLMHeadModel,
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"roberta": (
RobertaConfig,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
RobertaForMaskedLM,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"layoutlm": (
LayoutLMConfig,
TFLayoutLMForMaskedLM,
LayoutLMForMaskedLM,
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"FacebookAI/roberta-large-mnli": (
RobertaConfig,
TFRobertaForSequenceClassification,
RobertaForSequenceClassification,
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"camembert": (
CamembertConfig,
TFCamembertForMaskedLM,
CamembertForMaskedLM,
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"flaubert": (
FlaubertConfig,
TFFlaubertWithLMHeadModel,
FlaubertWithLMHeadModel,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert": (
DistilBertConfig,
TFDistilBertForMaskedLM,
DistilBertForMaskedLM,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"distilbert-base-distilled-squad": (
DistilBertConfig,
TFDistilBertForQuestionAnswering,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert": (
LxmertConfig,
TFLxmertForPreTraining,
LxmertForPreTraining,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"lxmert-visual-feature-encoder": (
LxmertConfig,
TFLxmertVisualFeatureEncoder,
LxmertVisualFeatureEncoder,
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"Salesforce/ctrl": (
CTRLConfig,
TFCTRLLMHeadModel,
CTRLLMHeadModel,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"albert": (
AlbertConfig,
TFAlbertForPreTraining,
AlbertForPreTraining,
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"t5": (
T5Config,
TFT5ForConditionalGeneration,
T5ForConditionalGeneration,
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"electra": (
ElectraConfig,
TFElectraForPreTraining,
ElectraForPreTraining,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"wav2vec2": (
Wav2Vec2Config,
TFWav2Vec2Model,
Wav2Vec2Model,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
}
def convert_pt_checkpoint_to_tf(
model_type, pytorch_checkpoint_path, config_file, tf_dump_path, compare_with_pt_model=False, use_cached_models=True
):
if model_type not in MODEL_CLASSES:
raise ValueError(f"Unrecognized model type, should be one of {list(MODEL_CLASSES.keys())}.")
config_class, model_class, pt_model_class, aws_config_map = MODEL_CLASSES[model_type]
# Initialise TF model
if config_file in aws_config_map:
config_file = cached_file(config_file, CONFIG_NAME, force_download=not use_cached_models)
config = config_class.from_json_file(config_file)
config.output_hidden_states = True
config.output_attentions = True
print(f"Building TensorFlow model from configuration: {config}")
tf_model = model_class(config)
# Load weights from tf checkpoint
if pytorch_checkpoint_path in aws_config_map.keys():
pytorch_checkpoint_path = cached_file(
pytorch_checkpoint_path, WEIGHTS_NAME, force_download=not use_cached_models
)
# Load PyTorch checkpoint in tf2 model:
tf_model = load_pytorch_checkpoint_in_tf2_model(tf_model, pytorch_checkpoint_path)
if compare_with_pt_model:
tfo = tf_model(tf_model.dummy_inputs, training=False) # build the network
weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
state_dict = torch.load(
pytorch_checkpoint_path,
map_location="cpu",
**weights_only_kwarg,
)
pt_model = pt_model_class.from_pretrained(
pretrained_model_name_or_path=None, config=config, state_dict=state_dict
)
with torch.no_grad():
pto = pt_model(**pt_model.dummy_inputs)
np_pt = pto[0].numpy()
np_tf = tfo[0].numpy()
diff = np.amax(np.abs(np_pt - np_tf))
print(f"Max absolute difference between models outputs {diff}")
assert diff <= 2e-2, f"Error, model absolute difference is >2e-2: {diff}"
# Save pytorch-model
print(f"Save TensorFlow model to {tf_dump_path}")
tf_model.save_weights(tf_dump_path, save_format="h5")
def convert_all_pt_checkpoints_to_tf(
args_model_type,
tf_dump_path,
model_shortcut_names_or_path=None,
config_shortcut_names_or_path=None,
compare_with_pt_model=False,
use_cached_models=False,
remove_cached_files=False,
only_convert_finetuned_models=False,
):
if args_model_type is None:
model_types = list(MODEL_CLASSES.keys())
else:
model_types = [args_model_type]
for j, model_type in enumerate(model_types, start=1):
print("=" * 100)
print(f" Converting model type {j}/{len(model_types)}: {model_type}")
print("=" * 100)
if model_type not in MODEL_CLASSES:
raise ValueError(f"Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys())}.")
config_class, model_class, pt_model_class, aws_model_maps, aws_config_map = MODEL_CLASSES[model_type]
if model_shortcut_names_or_path is None:
model_shortcut_names_or_path = list(aws_model_maps.keys())
if config_shortcut_names_or_path is None:
config_shortcut_names_or_path = model_shortcut_names_or_path
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
zip(model_shortcut_names_or_path, config_shortcut_names_or_path), start=1
):
print("-" * 100)
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
if not only_convert_finetuned_models:
print(f" Skipping finetuned checkpoint {model_shortcut_name}")
continue
model_type = model_shortcut_name
elif only_convert_finetuned_models:
print(f" Skipping not finetuned checkpoint {model_shortcut_name}")
continue
print(
f" Converting checkpoint {i}/{len(aws_config_map)}: {model_shortcut_name} - model_type {model_type}"
)
print("-" * 100)
if config_shortcut_name in aws_config_map:
config_file = cached_file(config_shortcut_name, CONFIG_NAME, force_download=not use_cached_models)
else:
config_file = config_shortcut_name
if model_shortcut_name in aws_model_maps:
model_file = cached_file(model_shortcut_name, WEIGHTS_NAME, force_download=not use_cached_models)
else:
model_file = model_shortcut_name
if os.path.isfile(model_shortcut_name):
model_shortcut_name = "converted_model"
convert_pt_checkpoint_to_tf(
model_type=model_type,
pytorch_checkpoint_path=model_file,
config_file=config_file,
tf_dump_path=os.path.join(tf_dump_path, model_shortcut_name + "-tf_model.h5"),
compare_with_pt_model=compare_with_pt_model,
)
if remove_cached_files:
os.remove(config_file)
os.remove(model_file)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file."
)
parser.add_argument(
"--model_type",
default=None,
type=str,
help=(
f"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and "
"convert all the models from AWS."
),
)
parser.add_argument(
"--pytorch_checkpoint_path",
default=None,
type=str,
help=(
"Path to the PyTorch checkpoint path or shortcut name to download from AWS. "
"If not given, will download and convert all the checkpoints from AWS."
),
)
parser.add_argument(
"--config_file",
default=None,
type=str,
help=(
"The config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture. If not given and "
"--pytorch_checkpoint_path is not given or is a shortcut name "
"use the configuration associated to the shortcut name on the AWS"
),
)
parser.add_argument(
"--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions."
)
parser.add_argument(
"--use_cached_models",
action="store_true",
help="Use cached models if possible instead of updating to latest checkpoint versions.",
)
parser.add_argument(
"--remove_cached_files",
action="store_true",
help="Remove pytorch models after conversion (save memory when converting in batches).",
)
parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.")
args = parser.parse_args()
# if args.pytorch_checkpoint_path is not None:
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
# args.pytorch_checkpoint_path,
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
# args.tf_dump_path,
# compare_with_pt_model=args.compare_with_pt_model,
# use_cached_models=args.use_cached_models)
# else:
convert_all_pt_checkpoints_to_tf(
args.model_type.lower() if args.model_type is not None else None,
args.tf_dump_path,
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
if args.pytorch_checkpoint_path is not None
else None,
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
compare_with_pt_model=args.compare_with_pt_model,
use_cached_models=args.use_cached_models,
remove_cached_files=args.remove_cached_files,
only_convert_finetuned_models=args.only_convert_finetuned_models,
)
| transformers/src/transformers/convert_pytorch_checkpoint_to_tf2.py/0 | {
"file_path": "transformers/src/transformers/convert_pytorch_checkpoint_to_tf2.py",
"repo_id": "transformers",
"token_count": 8021
} | 299 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" XNLI utils (dataset loading and evaluation)"""
import os
from ...utils import logging
from .utils import DataProcessor, InputExample
logger = logging.get_logger(__name__)
class XnliProcessor(DataProcessor):
"""
Processor for the XNLI dataset. Adapted from
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/run_classifier.py#L207
"""
def __init__(self, language, train_language=None):
self.language = language
self.train_language = train_language
def get_train_examples(self, data_dir):
"""See base class."""
lg = self.language if self.train_language is None else self.train_language
lines = self._read_tsv(os.path.join(data_dir, f"XNLI-MT-1.0/multinli/multinli.train.{lg}.tsv"))
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
guid = f"train-{i}"
text_a = line[0]
text_b = line[1]
label = "contradiction" if line[2] == "contradictory" else line[2]
if not isinstance(text_a, str):
raise ValueError(f"Training input {text_a} is not a string")
if not isinstance(text_b, str):
raise ValueError(f"Training input {text_b} is not a string")
if not isinstance(label, str):
raise ValueError(f"Training label {label} is not a string")
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_test_examples(self, data_dir):
"""See base class."""
lines = self._read_tsv(os.path.join(data_dir, "XNLI-1.0/xnli.test.tsv"))
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
language = line[0]
if language != self.language:
continue
guid = f"test-{i}"
text_a = line[6]
text_b = line[7]
label = line[1]
if not isinstance(text_a, str):
raise ValueError(f"Training input {text_a} is not a string")
if not isinstance(text_b, str):
raise ValueError(f"Training input {text_b} is not a string")
if not isinstance(label, str):
raise ValueError(f"Training label {label} is not a string")
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
xnli_processors = {
"xnli": XnliProcessor,
}
xnli_output_modes = {
"xnli": "classification",
}
xnli_tasks_num_labels = {
"xnli": 3,
}
| transformers/src/transformers/data/processors/xnli.py/0 | {
"file_path": "transformers/src/transformers/data/processors/xnli.py",
"repo_id": "transformers",
"token_count": 1505
} | 300 |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import math
import warnings
from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
import torch
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
logger = get_logger(__name__)
LOGITS_PROCESSOR_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search
Return:
`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
"""
class LogitsProcessor:
"""Abstract base class for all logit processors that can be applied during generation."""
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
class LogitsWarper:
"""Abstract base class for all logit warpers that can be applied during generation with multinomial sampling."""
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
class LogitsProcessorList(list):
"""
This class can be used to create a list of [`LogitsProcessor`] or [`LogitsWarper`] to subsequently process a
`scores` input tensor. This class inherits from list and adds a specific *__call__* method to apply each
[`LogitsProcessor`] or [`LogitsWarper`] to the inputs.
"""
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> torch.FloatTensor:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
beam search or log softmax for each vocabulary token when using beam search
kwargs (`Dict[str, Any]`, *optional*):
Additional kwargs that are specific to a logits processor.
Return:
`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`:
The processed prediction scores.
"""
for processor in self:
function_args = inspect.signature(processor.__call__).parameters
if len(function_args) > 2:
if not all(arg in kwargs for arg in list(function_args.keys())[2:]):
raise ValueError(
f"Make sure that all the required parameters: {list(function_args.keys())} for "
f"{processor.__class__} are passed to the logits processor."
)
scores = processor(input_ids, scores, **kwargs)
else:
scores = processor(input_ids, scores)
return scores
class MinLengthLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] enforcing a min-length by setting EOS probability to 0. Note that, for decoder-only models
like most LLMs, the length includes the prompt.
Args:
min_length (`int`):
The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`.
eos_token_id (`Union[int, List[int]]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
Examples:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
>>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
>>> inputs = tokenizer("A number:", return_tensors="pt")
>>> gen_out = model.generate(**inputs)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
A number: one
>>> # setting `min_length` to a value smaller than the uncontrolled output length has no impact
>>> gen_out = model.generate(**inputs, min_length=3)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
A number: one
>>> # setting a larger `min_length` will force the model to generate beyond its natural ending point, which is not
>>> # necessarily incorrect
>>> gen_out = model.generate(**inputs, min_length=10)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
A number: one thousand, nine hundred and ninety-four
```
"""
def __init__(self, min_length: int, eos_token_id: Union[int, List[int]]):
if not isinstance(min_length, int) or min_length < 0:
raise ValueError(f"`min_length` has to be a non-negative integer, but is {min_length}")
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
if not all(isinstance(i, int) for i in eos_token_id) or any(i < 0 for i in eos_token_id):
logger.warning(f"`eos_token_id` has to be a list of positive integers, but is {eos_token_id}")
self.min_length = min_length
self.eos_token_id = eos_token_id
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
cur_len = input_ids.shape[-1]
if cur_len < self.min_length:
for i in self.eos_token_id:
scores[:, i] = -float("inf")
return scores
class MinNewTokensLengthLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] enforcing a min-length of new tokens by setting EOS (End-Of-Sequence) token probability to 0.
Contrarily to [`MinLengthLogitsProcessor`], this processor ignores the prompt.
Args:
prompt_length_to_skip (`int`):
The input tokens length. Not a valid argument when used with `generate` as it will automatically assign the
input length.
min_new_tokens (`int`):
The minimum *new* tokens length below which the score of `eos_token_id` is set to `-float("Inf")`.
eos_token_id (`Union[int, List[int]]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
Examples:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
>>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
>>> inputs = tokenizer(["A number:"], return_tensors="pt")
>>> gen_out = model.generate(**inputs)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
A number: one
>>> # setting `min_new_tokens` will force the model to generate beyond its natural ending point, which is not
>>> # necessarily incorrect
>>> gen_out = model.generate(**inputs, min_new_tokens=2)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
A number: one thousand
```
"""
def __init__(self, prompt_length_to_skip: int, min_new_tokens: int, eos_token_id: Union[int, List[int]]):
for arg_name, arg_value in [
("prompt_length_to_skip", prompt_length_to_skip),
("min_new_tokens", min_new_tokens),
]:
if not isinstance(arg_value, int) or arg_value < 0:
raise ValueError(f"`{arg_name}` has to be a positive integer, but is {arg_value}")
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
if not all(isinstance(i, int) for i in eos_token_id) or any(i < 0 for i in eos_token_id):
logger.warning(f"`eos_token_id` has to be a list of positive integers, but is {eos_token_id}")
self.prompt_length_to_skip = prompt_length_to_skip
self.min_new_tokens = min_new_tokens
self.eos_token_id = eos_token_id
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
new_tokens_length = input_ids.shape[-1] - self.prompt_length_to_skip
if new_tokens_length < self.min_new_tokens:
for i in self.eos_token_id:
scores[:, i] = -float("inf")
return scores
class TemperatureLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] for temperature (exponential scaling output probability distribution), which effectively means
that it can control the randomness of the predicted tokens. Often used together with [`TopPLogitsWarper`] and
[`TopKLogitsWarper`].
<Tip>
Make sure that `do_sample=True` is included in the `generate` arguments otherwise the temperature value won't have
any effect.
</Tip>
Args:
temperature (`float`):
Strictly positive float value used to modulate the logits distribution. A value smaller than `1` decreases
randomness (and vice versa), with `0` being equivalent to shifting all probability mass to the most likely
token.
Examples:
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0) # for reproducibility
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> model.config.pad_token_id = model.config.eos_token_id
>>> inputs = tokenizer(["Hugging Face Company is"], return_tensors="pt")
>>> # With temperature=1.0, the default, we consistently get random outputs due to random sampling.
>>> generate_kwargs = {"max_new_tokens": 10, "do_sample": True, "temperature": 1.0, "num_return_sequences": 2}
>>> outputs = model.generate(**inputs, **generate_kwargs)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['Hugging Face Company is a joint venture between GEO Group, one of',
'Hugging Face Company is not an exact science – but what we believe does']
>>> # However, with temperature close to 0, it approximates greedy decoding strategies (invariant)
>>> generate_kwargs["temperature"] = 0.0001
>>> outputs = model.generate(**inputs, **generate_kwargs)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['Hugging Face Company is a company that has been around for over 20 years',
'Hugging Face Company is a company that has been around for over 20 years']
```
"""
def __init__(self, temperature: float):
if not isinstance(temperature, float) or not (temperature > 0):
except_msg = (
f"`temperature` (={temperature}) has to be a strictly positive float, otherwise your next token "
"scores will be invalid."
)
if isinstance(temperature, float) and temperature == 0.0:
except_msg += " If you're looking for greedy decoding strategies, set `do_sample=False`."
raise ValueError(except_msg)
self.temperature = temperature
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
scores = scores / self.temperature
return scores
class RepetitionPenaltyLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that prevents the repetition of previous tokens through a penalty. This penalty is applied at
most once per token. Note that, for decoder-only models like most LLMs, the considered tokens include the prompt.
In the original [paper](https://arxiv.org/pdf/1909.05858.pdf), the authors suggest the use of a penalty of around
1.2 to achieve a good balance between truthful generation and lack of repetition. To penalize and reduce
repetition, use `penalty` values above 1.0, where a higher value penalizes more strongly. To reward and encourage
repetition, use `penalty` values between 0.0 and 1.0, where a lower value rewards more strongly.
Args:
penalty (`float`):
The parameter for repetition penalty. 1.0 means no penalty. Above 1.0 penalizes previously generated
tokens. Between 0.0 and 1.0 rewards previously generated tokens.
Examples:
```py
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> # Initializing the model and tokenizer for it
>>> model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
>>> inputs = tokenizer(["I'm not going to"], return_tensors="pt")
>>> # This shows a normal generate without any specific parameters
>>> summary_ids = model.generate(**inputs)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True)[0])
I'm not going to be able to do that. I'm going to be able to do that
>>> # This generates a penalty for repeated tokens
>>> penalized_ids = model.generate(**inputs, repetition_penalty=1.1)
>>> print(tokenizer.batch_decode(penalized_ids, skip_special_tokens=True)[0])
I'm not going to be able to do that. I'll just have to go out and play
```
"""
def __init__(self, penalty: float):
if not isinstance(penalty, float) or not (penalty > 0):
raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")
self.penalty = penalty
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
score = torch.gather(scores, 1, input_ids)
# if score < 0 then repetition penalty has to be multiplied to reduce the token probabilities
score = torch.where(score < 0, score * self.penalty, score / self.penalty)
scores.scatter_(1, input_ids, score)
return scores
class EncoderRepetitionPenaltyLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that works similarly to [`RepetitionPenaltyLogitsProcessor`], but with an *inverse* penalty
that is applied to the tokens present in the prompt. In other words, a penalty above 1.0 increases the odds of
selecting tokens that were present in the prompt.
It was designed to avoid hallucination in input-grounded tasks, like summarization. Although originally intended
for encoder-decoder models, it can also be used with decoder-only models like LLMs.
Args:
penalty (`float`):
The parameter for repetition penalty. 1.0 means no penalty. Above 1.0 rewards prompt tokens. Between 0.0
and 1.0 penalizes prompt tokens.
encoder_input_ids (`torch.LongTensor`):
The encoder_input_ids that should be repeated within the decoder ids.
Examples:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
>>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
>>> inputs = tokenizer(["Alice and Bob. The third member's name was"], return_tensors="pt")
>>> gen_out = model.generate(**inputs)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
Alice and Bob. The third member's name was not mentioned.
>>> # With the `encoder_repetition_penalty` argument we can trigger this logits processor in `generate`, which can
>>> # promote the use of prompt tokens ("Bob" in this example)
>>> gen_out = model.generate(**inputs, encoder_repetition_penalty=1.2)
>>> print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
Alice and Bob. The third member's name was Bob. The third member's name was Bob.
```
"""
def __init__(self, penalty: float, encoder_input_ids: torch.LongTensor):
if not isinstance(penalty, float) or not (penalty > 0):
raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")
self.penalty = 1 / penalty
self.encoder_input_ids = encoder_input_ids
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
score = torch.gather(scores, 1, self.encoder_input_ids)
# if score < 0 then hallucination penalty has to be multiplied to increase the token probabilities
score = torch.where(score < 0, score * self.penalty, score / self.penalty)
scores.scatter_(1, self.encoder_input_ids, score)
return scores
class TopPLogitsWarper(LogitsWarper):
"""
[`LogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off. Often
used together with [`TemperatureLogitsWarper`] and [`TopKLogitsWarper`].
Args:
top_p (`float`):
If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
higher are kept for generation.
filter_value (`float`, *optional*, defaults to -inf):
All filtered values will be set to this float value.
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Minimum number of tokens that cannot be filtered.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0)
>>> model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
>>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt")
>>> # With sampling, the output is unexpected -- sometimes too unexpected.
>>> outputs = model.generate(**inputs, do_sample=True)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2
>>> # With `top_p` sampling, the output gets restricted to high-probability tokens.
>>> # Pro tip: In practice, LLMs use `top_p` in the 0.9-0.95 range.
>>> outputs = model.generate(**inputs, do_sample=True, top_p=0.1)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9
```
"""
def __init__(self, top_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
top_p = float(top_p)
if top_p < 0 or top_p > 1.0:
raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}")
if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1):
raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}")
self.top_p = top_p
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
sorted_logits, sorted_indices = torch.sort(scores, descending=False)
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
# Remove tokens with cumulative top_p above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs <= (1 - self.top_p)
# Keep at least min_tokens_to_keep
sorted_indices_to_remove[..., -self.min_tokens_to_keep :] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class TopKLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] that performs top-k, i.e. restricting to the k highest probability elements. Often used together
with [`TemperatureLogitsWarper`] and [`TopPLogitsWarper`].
Args:
top_k (`int`):
The number of highest probability vocabulary tokens to keep for top-k-filtering.
filter_value (`float`, *optional*, defaults to -inf):
All filtered values will be set to this float value.
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Minimum number of tokens that cannot be filtered.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0)
>>> model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
>>> inputs = tokenizer("A sequence: A, B, C, D", return_tensors="pt")
>>> # With sampling, the output is unexpected -- sometimes too unexpected.
>>> outputs = model.generate(**inputs, do_sample=True)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: A, B, C, D, G, H, I. A, M
>>> # With `top_k` sampling, the output gets restricted the k most likely tokens.
>>> # Pro tip: In practice, LLMs use `top_k` in the 5-50 range.
>>> outputs = model.generate(**inputs, do_sample=True, top_k=2)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: A, B, C, D, E, F, G, H, I
```
"""
def __init__(self, top_k: int, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
if not isinstance(top_k, int) or top_k <= 0:
raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}")
self.top_k = max(top_k, min_tokens_to_keep)
self.filter_value = filter_value
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
top_k = min(self.top_k, scores.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = scores < torch.topk(scores, top_k)[0][..., -1, None]
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class TypicalLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] that performs typical decoding. Inspired on how humans use language, it prioritizes tokens whose
log probability is close to the entropy of the token probability distribution. This means that the most likely
tokens may be discarded in the process.
See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
Args:
mass (`float`, *optional*, defaults to 0.9):
Value of typical_p between 0 and 1 inclusive, defaults to 0.9.
filter_value (`float`, *optional*, defaults to -inf):
All filtered values will be set to this float value.
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Minimum number of tokens that cannot be filtered.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
>>> inputs = tokenizer("1, 2, 3", return_tensors="pt")
>>> # We can see that greedy decoding produces a sequence of numbers
>>> outputs = model.generate(**inputs)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
>>> # For this particular seed, we can see that sampling produces nearly the same low-information (= low entropy)
>>> # sequence
>>> set_seed(18)
>>> outputs = model.generate(**inputs, do_sample=True)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
1, 2, 3, 4, 5, 6, 7, 8, 9 and 10
>>> # With `typical_p` set, the most obvious sequence is no longer produced, which may be good for your problem
>>> set_seed(18)
>>> outputs = model.generate(
... **inputs, do_sample=True, typical_p=0.1, return_dict_in_generate=True, output_scores=True
... )
>>> print(tokenizer.batch_decode(outputs.sequences, skip_special_tokens=True)[0])
1, 2, 3 and 5
>>> # We can see that the token corresponding to "4" (token 934) in the second position, the most likely token
>>> # as seen with greedy decoding, was entirely blocked out
>>> print(outputs.scores[1][0, 934])
tensor(-inf)
```
"""
def __init__(self, mass: float = 0.9, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
mass = float(mass)
if not (mass > 0 and mass < 1):
raise ValueError(f"`typical_p` has to be a float > 0 and < 1, but is {mass}")
if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1):
raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}")
self.filter_value = filter_value
self.mass = mass
self.min_tokens_to_keep = min_tokens_to_keep
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# calculate entropy
normalized = torch.nn.functional.log_softmax(scores, dim=-1)
p = torch.exp(normalized)
ent = -(normalized * p).nansum(-1, keepdim=True)
# shift and sort
shifted_scores = torch.abs((-normalized) - ent)
sorted_scores, sorted_indices = torch.sort(shifted_scores, descending=False)
sorted_logits = scores.gather(-1, sorted_indices)
cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1)
# Remove tokens with cumulative mass above the threshold
last_ind = (cumulative_probs < self.mass).sum(dim=1)
last_ind.clamp_(max=sorted_scores.shape[-1] - 1)
sorted_indices_to_remove = sorted_scores > sorted_scores.gather(1, last_ind.view(-1, 1))
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class EpsilonLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] that performs epsilon-sampling, i.e. restricting to tokens with `prob >= epsilon`. Takes the
largest min_tokens_to_keep tokens if no tokens satisfy this constraint. See [Truncation Sampling as Language Model
Desmoothing](https://arxiv.org/abs/2210.15191) for more information.
Args:
epsilon (`float`):
If set to > 0, only the most tokens with probabilities `epsilon` or higher are kept for generation.
filter_value (`float`, *optional*, defaults to -inf):
All filtered values will be set to this float value.
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Minimum number of tokens that cannot be filtered.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0)
>>> model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
>>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt")
>>> # With sampling, the output is unexpected -- sometimes too unexpected.
>>> outputs = model.generate(**inputs, do_sample=True)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2
>>> # With epsilon sampling, the output gets restricted to high-probability tokens. Note that this is similar to
>>> # Top P sampling, which restricts tokens based on their cumulative probability.
>>> # Pro tip: The paper recomends using `epsilon_cutoff` values between 3e-4 and 9e-4
>>> outputs = model.generate(**inputs, do_sample=True, epsilon_cutoff=0.1)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9
```
"""
def __init__(self, epsilon: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
epsilon = float(epsilon)
if epsilon <= 0 or epsilon >= 1:
raise ValueError(f"`epsilon_cutoff` has to be a float > 0 and < 1, but is {epsilon}")
min_tokens_to_keep = int(min_tokens_to_keep)
if min_tokens_to_keep < 1:
raise ValueError(
f"`min_tokens_to_keep` has to be a strictly positive integer, but is {min_tokens_to_keep}"
)
self.epsilon = epsilon
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# Determine which indices to remove
probabilities = scores.softmax(dim=-1)
indices_to_remove = probabilities < self.epsilon
# Keep the words with the 'min_tokens_to_keep'-highest probabilities
top_k = min(self.min_tokens_to_keep, scores.size(-1)) # Safety check
indices_to_remove = indices_to_remove & (scores < torch.topk(scores, top_k)[0][..., -1, None])
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class EtaLogitsWarper(LogitsWarper):
r"""
[`LogitsWarper`] that performs eta-sampling, a technique to filter out tokens with probabilities below a dynamic
cutoff value, `eta`, which is calculated based on a combination of the hyperparameter `epsilon` and the entropy of
the token probabilities, i.e. `eta := min(epsilon, sqrt(epsilon * e^-entropy(probabilities)))`. Takes the largest
min_tokens_to_keep tokens if no tokens satisfy this constraint. It addresses the issue of poor quality in long
samples of text generated by neural language models leading to more coherent and fluent text. See [Truncation
Sampling as Language Model Desmoothing](https://arxiv.org/abs/2210.15191) for more information. Note: `do_sample`
must be set to `True` for this `LogitsWarper` to work.
Args:
epsilon (`float`):
A float value in the range (0, 1). Hyperparameter used to calculate the dynamic cutoff value, `eta`. The
suggested values from the paper ranges from 3e-4 to 4e-3 depending on the size of the model.
filter_value (`float`, *optional*, defaults to -inf):
All values that are found to be below the dynamic cutoff value, `eta`, are set to this float value. This
parameter is useful when logits need to be modified for very low probability tokens that should be excluded
from generation entirely.
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Specifies the minimum number of tokens that must be kept for generation, regardless of their probabilities.
For example, if `min_tokens_to_keep` is set to 1, at least one token will always be kept for generation,
even if all tokens have probabilities below the cutoff `eta`.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> set_seed(0)
>>> model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
>>> inputs = tokenizer("A sequence: 1, 2", return_tensors="pt")
>>> # With sampling, the output is unexpected -- sometimes too unexpected.
>>> outputs = model.generate(**inputs, do_sample=True)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 0, 2, 2. 2, 2, 2, 2
>>> # With eta sampling, the output gets restricted to high-probability tokens. You can see it as a dynamic form of
>>> # epsilon sampling that adapts its cutoff probability based on the entropy (high entropy = lower cutoff).
>>> # Pro tip: The paper recomends using `eta_cutoff` values between 3e-4 to 4e-3
>>> outputs = model.generate(**inputs, do_sample=True, eta_cutoff=0.1)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
A sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9
```
"""
def __init__(self, epsilon: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
epsilon = float(epsilon)
if epsilon <= 0 or epsilon >= 1:
raise ValueError(f"`eta_cutoff` has to be a float > 0 and < 1, but is {epsilon}")
min_tokens_to_keep = int(min_tokens_to_keep)
if min_tokens_to_keep < 1:
raise ValueError(
f"`min_tokens_to_keep` has to be a strictly positive integer, but is {min_tokens_to_keep}"
)
self.epsilon = torch.tensor(epsilon)
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# Calculate the adaptive cutoff
probabilities = scores.softmax(dim=-1)
entropy = torch.distributions.Categorical(logits=scores).entropy()
eta = torch.min(self.epsilon, torch.sqrt(self.epsilon) * torch.exp(-entropy))[..., None]
indices_to_remove = probabilities < eta
# Keep the words with the 'min_tokens_to_keep'-highest probabilities
top_k = min(self.min_tokens_to_keep, scores.size(-1)) # Safety check
indices_to_remove = indices_to_remove & (scores < torch.topk(scores, top_k)[0][..., -1, None])
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
def _get_ngrams(ngram_size: int, prev_input_ids: torch.Tensor, num_hypos: int):
"""
Assume ngram_size=2 and prev_input_ids=tensor([[40, 2883, 2712, 4346]]). The output of generated ngrams look like
this {(40,): [2883], (2883,): [2712], (2712,): [4346]}.
Args:
ngram_size (`int`):
The number sequential tokens taken as a group which may only occur once before being banned.
prev_input_ids (`torch.Tensor`):
Generated token ids for the current hypothesis.
num_hypos (`int`):
The number of hypotheses for which n-grams need to be generated.
Returns:
generated_ngrams (`dict`):
Dictionary of generated ngrams.
"""
# Initialize an empty list of dictionaries, one for each hypothesis (index) in the range of num_hypos
generated_ngrams = [{} for _ in range(num_hypos)]
for idx in range(num_hypos):
gen_tokens = prev_input_ids[idx].tolist()
generated_ngram = generated_ngrams[idx]
# Loop through each n-gram of size ngram_size in the list of tokens (gen_tokens)
for ngram in zip(*[gen_tokens[i:] for i in range(ngram_size)]):
prev_ngram_tuple = tuple(ngram[:-1])
generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]]
return generated_ngrams
def _get_generated_ngrams(banned_ngrams, prev_input_ids, ngram_size, cur_len):
"""
Determines the banned tokens for the current hypothesis based on previously generated n-grams.
Args:
banned_ngrams (`dict`):
A dictionary containing previously generated n-grams for each hypothesis.
prev_input_ids (`torch.Tensor`):
Generated token ids for the current hypothesis.
ngram_size (`int`):
The number sequential tokens taken as a group which may only occur once before being banned.
cur_len (`int`):
The current length of the token sequences for which the n-grams are being checked.
Returns:
List of tokens that are banned.
"""
# Before decoding the next token, prevent decoding of ngrams that have already appeared
start_idx = cur_len + 1 - ngram_size
ngram_idx = tuple(prev_input_ids[start_idx:cur_len].tolist())
return banned_ngrams.get(ngram_idx, [])
def _calc_banned_ngram_tokens(
ngram_size: int, prev_input_ids: torch.Tensor, num_hypos: int, cur_len: int
) -> List[Iterable[int]]:
"""Copied from fairseq for no_repeat_ngram in beam_search"""
if cur_len + 1 < ngram_size:
# return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
return [[] for _ in range(num_hypos)]
generated_ngrams = _get_ngrams(ngram_size, prev_input_ids, num_hypos)
banned_tokens = [
_get_generated_ngrams(generated_ngrams[hypo_idx], prev_input_ids[hypo_idx], ngram_size, cur_len)
for hypo_idx in range(num_hypos)
]
return banned_tokens
class NoRepeatNGramLogitsProcessor(LogitsProcessor):
r"""
N-grams are groups of "n" consecutive words, characters, or tokens taken from a sequence of text. Given the
sentence: "She runs fast", the bi-grams (n=2) would be ("she", "runs") and ("runs", "fast"). In text generation,
avoiding repetitions of word sequences provides a more diverse output. This [`LogitsProcessor`] enforces no
repetition of n-grams by setting the scores of banned tokens to negative infinity which eliminates those tokens
from consideration when further processing the scores. Note that, for decoder-only models like most LLMs, the
prompt is also considered to obtain the n-grams.
[Fairseq](https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345).
<Tip>
Use n-gram penalties with care. For instance, penalizing 2-grams (bigrams) in an article about the city of New York
might lead to undesirable outcomes where the city's name appears only once in the entire text.
[Reference](https://huggingface.co/blog/how-to-generate)
</Tip>
Args:
ngram_size (`int`):
All ngrams of size `ngram_size` can only occur once.
Examples:
```py
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
>>> inputs = tokenizer(["Today I"], return_tensors="pt")
>>> output = model.generate(**inputs)
>>> print(tokenizer.decode(output[0], skip_special_tokens=True))
Today I’m not sure if I’m going to be able to do it.
>>> # Now let's add ngram size using `no_repeat_ngram_size`. This stops the repetitions ("I’m") in the output.
>>> output = model.generate(**inputs, no_repeat_ngram_size=2)
>>> print(tokenizer.decode(output[0], skip_special_tokens=True))
Today I’m not sure if I can get a better understanding of the nature of this issue
```
"""
def __init__(self, ngram_size: int):
if not isinstance(ngram_size, int) or ngram_size <= 0:
raise ValueError(f"`ngram_size` has to be a strictly positive integer, but is {ngram_size}")
self.ngram_size = ngram_size
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
num_batch_hypotheses = scores.shape[0]
cur_len = input_ids.shape[-1]
banned_batch_tokens = _calc_banned_ngram_tokens(self.ngram_size, input_ids, num_batch_hypotheses, cur_len)
for i, banned_tokens in enumerate(banned_batch_tokens):
scores[i, banned_tokens] = -float("inf")
return scores
class EncoderNoRepeatNGramLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that works similarly to [`NoRepeatNGramLogitsProcessor`], but applied exclusively to prevent
the repetition of n-grams present in the prompt.
It was designed to promote chattiness in a language model, by preventing the generation of n-grams present in
previous conversation rounds.
Args:
encoder_ngram_size (`int`):
All ngrams of size `ngram_size` can only occur within the encoder input ids.
encoder_input_ids (`int`):
The encoder_input_ids that should not be repeated within the decoder ids.
Examples:
```py
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
>>> inputs = tokenizer("Alice: I love cats. What do you love?\nBob:", return_tensors="pt")
>>> # With greedy decoding, we see Bob repeating Alice's opinion. If Bob was a chatbot, it would be a poor one.
>>> outputs = model.generate(**inputs)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
Alice: I love cats. What do you love?
Bob: I love cats. What do you
>>> # With this logits processor, we can prevent Bob from repeating Alice's opinion.
>>> outputs = model.generate(**inputs, encoder_no_repeat_ngram_size=2)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
Alice: I love cats. What do you love?
Bob: My cats are very cute.
```
"""
def __init__(self, encoder_ngram_size: int, encoder_input_ids: torch.LongTensor):
if not isinstance(encoder_ngram_size, int) or encoder_ngram_size <= 0:
raise ValueError(
f"`encoder_ngram_size` has to be a strictly positive integer, but is {encoder_ngram_size}"
)
self.ngram_size = encoder_ngram_size
if len(encoder_input_ids.shape) == 1:
encoder_input_ids = encoder_input_ids.unsqueeze(0)
self.batch_size = encoder_input_ids.shape[0]
self.generated_ngrams = _get_ngrams(encoder_ngram_size, encoder_input_ids, self.batch_size)
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# B x num_beams
num_hypos = scores.shape[0]
num_beams = num_hypos // self.batch_size
cur_len = input_ids.shape[-1]
banned_batch_tokens = [
_get_generated_ngrams(
self.generated_ngrams[hypo_idx // num_beams], input_ids[hypo_idx], self.ngram_size, cur_len
)
for hypo_idx in range(num_hypos)
]
for i, banned_tokens in enumerate(banned_batch_tokens):
scores[i, banned_tokens] = -float("inf")
return scores
class SequenceBiasLogitsProcessor(LogitsProcessor):
"""
[`LogitsProcessor`] that applies an additive bias on sequences. The bias is applied to the last token of a sequence
when the next generated token can complete it. Consequently, to take the most of biasing sequences with more than
one token, consider using beam methods (to gracefully work around partially completed sequences that have a
negative bias) and applying the bias to their prefixes (to ensure the bias is applied earlier).
<Tip>
In order to get the token ids of the sequences that you want to bias, make sure to set `add_prefix_space=True` when
initializing the tokenizer, and use `tokenizer(bad_words, add_special_tokens=False).input_ids`. The
`add_prefix_space` argument is only supported for some slow tokenizers, as fast tokenizers' prefixing behaviours
come from `pre tokenizers`. Read more [here](https://huggingface.co/docs/tokenizers/api/pre-tokenizers).
</Tip>
Args:
sequence_bias (`Dict[Tuple[int], float]`):
Dictionary that maps a sequence of tokens to its bias term. Positive biases increase the odds of the
sequence being selected, while negative biases do the opposite. If a sequence has a length of 1, its bias
will always be applied. Otherwise, the bias will only be applied if the sequence in question is about to be
completed (in the token selection step after this processor is applied).
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> inputs = tokenizer(["The full name of Donald is Donald"], return_tensors="pt")
>>> summary_ids = model.generate(inputs["input_ids"], max_new_tokens=4)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True)[0])
The full name of Donald is Donald J. Trump Jr
>>> # Now let's control generation through a bias. Please note that the tokenizer is initialized differently!
>>> tokenizer_with_prefix_space = AutoTokenizer.from_pretrained("openai-community/gpt2", add_prefix_space=True)
>>> def get_tokens_as_tuple(word):
... return tuple(tokenizer_with_prefix_space([word], add_special_tokens=False).input_ids[0])
>>> # If we add a negative bias without beam search, it may become "stuck" in a prefix without good continuations
>>> sequence_bias = {get_tokens_as_tuple("Trump"): -10.0}
>>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, sequence_bias=sequence_bias)
>>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0])
The full name of Donald is Donald J. Donald,
>>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, num_beams=4, sequence_bias=sequence_bias)
>>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0])
The full name of Donald is Donald Rumsfeld,
>>> # We can also add a positive bias to nudge the model towards specific tokens or continuations
>>> sequence_bias = {get_tokens_as_tuple("Donald Duck"): 10.0}
>>> biased_ids = model.generate(inputs["input_ids"], max_new_tokens=4, num_beams=4, sequence_bias=sequence_bias)
>>> print(tokenizer.batch_decode(biased_ids, skip_special_tokens=True)[0])
The full name of Donald is Donald Duck.
```
"""
def __init__(self, sequence_bias: Dict[Tuple[int], float]):
self.sequence_bias = sequence_bias
self._validate_arguments()
# Bias variables that will be populated on the first call (for retrocompatibility purposes, the vocabulary size
# is infered in the first usage, which inhibits initializing here)
self.length_1_bias = None
self.prepared_bias_variables = False
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# 1 - Prepares the bias tensors. This is only needed the first time the logit processor is called.
if not self.prepared_bias_variables:
self._prepare_bias_variables(scores)
# 2 - prepares an empty bias to add
bias = torch.zeros_like(scores)
# 3 - include the bias from length = 1
bias += self.length_1_bias
# 4 - include the bias from length > 1, after determining which biased sequences may be completed.
for sequence_ids, sequence_bias in self.sequence_bias.items():
if len(sequence_ids) == 1: # the sequence is of length 1, already applied
continue
if len(sequence_ids) > input_ids.shape[1]: # the sequence is longer than the context, ignore
continue
prefix_length = len(sequence_ids) - 1
last_token = sequence_ids[-1]
matching_rows = torch.eq(
input_ids[:, -prefix_length:],
torch.tensor(sequence_ids[:-1], dtype=input_ids.dtype, device=input_ids.device),
).prod(dim=1)
bias[:, last_token] += torch.where(
matching_rows.bool(),
torch.tensor(sequence_bias, device=input_ids.device),
torch.tensor(0.0, device=input_ids.device),
)
# 5 - apply the bias to the scores
scores = scores + bias
return scores
def _prepare_bias_variables(self, scores: torch.FloatTensor):
vocabulary_size = scores.shape[-1]
# Check biased tokens out of bounds
invalid_biases = []
for sequence_ids in self.sequence_bias:
for token_id in sequence_ids:
if token_id >= vocabulary_size:
invalid_biases.append(token_id)
if len(invalid_biases) > 0:
raise ValueError(
f"The model vocabulary size is {vocabulary_size}, but the following tokens were being biased: "
f"{invalid_biases}"
)
# Precompute the bias tensors to be applied. Sequences of length 1 are kept separately, as they can be applied
# with simpler logic.
self.length_1_bias = torch.zeros((vocabulary_size,), dtype=torch.float).to(scores.device)
for sequence_ids, bias in self.sequence_bias.items():
if len(sequence_ids) == 1:
self.length_1_bias[sequence_ids[-1]] = bias
self.prepared_bias_variables = True
def _validate_arguments(self):
sequence_bias = self.sequence_bias
if not isinstance(sequence_bias, dict) or len(sequence_bias) == 0:
raise ValueError(f"`sequence_bias` has to be a non-empty dictionary, but is {sequence_bias}.")
if any(not isinstance(sequence_ids, tuple) for sequence_ids in sequence_bias.keys()):
raise ValueError(f"`sequence_bias` has to be a dict with tuples as keys, but is {sequence_bias}.")
if any(
any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in sequence_ids)
or len(sequence_ids) == 0
for sequence_ids in sequence_bias.keys()
):
raise ValueError(
f"Each key in `sequence_bias` has to be a non-empty tuple of positive integers, but is "
f"{sequence_bias}."
)
if any(not isinstance(bias, float) for bias in sequence_bias.values()):
raise ValueError(f"`sequence_bias` has to be a dict with floats as values, but is {sequence_bias}.")
class NoBadWordsLogitsProcessor(SequenceBiasLogitsProcessor):
"""
[`LogitsProcessor`] that enforces that specified sequences will never be selected.
<Tip>
In order to get the token ids of the words that should not appear in the generated text, make sure to set
`add_prefix_space=True` when initializing the tokenizer, and use `tokenizer(bad_words,
add_special_tokens=False).input_ids`. The `add_prefix_space` argument is only supported for some slow tokenizers,
as fast tokenizers' prefixing behaviours come from `pre tokenizers`. Read more
[here](https://huggingface.co/docs/tokenizers/api/pre-tokenizers).
</Tip>
Args:
bad_words_ids (`List[List[int]]`):
List of list of token ids that are not allowed to be generated.
eos_token_id (`Union[int, List[int]]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> inputs = tokenizer(["In a word, the cake is a"], return_tensors="pt")
>>> output_ids = model.generate(inputs["input_ids"], max_new_tokens=5, pad_token_id=tokenizer.eos_token_id)
>>> print(tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0])
In a word, the cake is a bit of a mess.
>>> # Now let's take the bad words out. Please note that the tokenizer is initialized differently
>>> tokenizer_with_prefix_space = AutoTokenizer.from_pretrained("openai-community/gpt2", add_prefix_space=True)
>>> def get_tokens_as_list(word_list):
... "Converts a sequence of words into a list of tokens"
... tokens_list = []
... for word in word_list:
... tokenized_word = tokenizer_with_prefix_space([word], add_special_tokens=False).input_ids[0]
... tokens_list.append(tokenized_word)
... return tokens_list
>>> bad_words_ids = get_tokens_as_list(word_list=["mess"])
>>> output_ids = model.generate(
... inputs["input_ids"], max_new_tokens=5, bad_words_ids=bad_words_ids, pad_token_id=tokenizer.eos_token_id
... )
>>> print(tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0])
In a word, the cake is a bit of a surprise.
```
"""
def __init__(self, bad_words_ids: List[List[int]], eos_token_id: Union[int, List[int]]):
self.bad_word_ids = bad_words_ids
self._validate_arguments()
# Filter EOS token from bad_words_ids
if eos_token_id is None:
eos_token_id = []
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
bad_words_ids = list(
filter(lambda bad_token_seq: all(bad_token_seq != [i] for i in eos_token_id), bad_words_ids)
)
# Forbidding a sequence is equivalent to setting its bias to -inf
sequence_bias = {tuple(sequence): float("-inf") for sequence in bad_words_ids}
super().__init__(sequence_bias=sequence_bias)
def _validate_arguments(self):
bad_words_ids = self.bad_word_ids
if not isinstance(bad_words_ids, list) or len(bad_words_ids) == 0:
raise ValueError(f"`bad_words_ids` has to be a non-empty list, but is {bad_words_ids}.")
if any(not isinstance(bad_word_ids, list) for bad_word_ids in bad_words_ids):
raise ValueError(f"`bad_words_ids` has to be a list of lists, but is {bad_words_ids}.")
if any(
any((not isinstance(token_id, (int, np.integer)) or token_id < 0) for token_id in bad_word_ids)
for bad_word_ids in bad_words_ids
):
raise ValueError(
f"Each list in `bad_words_ids` has to be a list of positive integers, but is {bad_words_ids}."
)
class PrefixConstrainedLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that enforces constrained generation and is useful for prefix-conditioned constrained
generation. See [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904) for more information.
Args:
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`):
This function constraints the beam search to allowed tokens only at each step. This function takes 2
arguments `inputs_ids` and the batch ID `batch_id`. It has to return a list with the allowed tokens for the
next generation step conditioned on the previously generated tokens `inputs_ids` and the batch ID
`batch_id`.
Examples:
```py
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("bigscience/bloomz-560m")
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-560m")
>>> inputs = tokenizer("Alice and Bob", return_tensors="pt")
>>> # By default, it continues generating according to the model's logits
>>> outputs = model.generate(**inputs, max_new_tokens=5)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
Alice and Bob are friends
>>> # We can contrain it with `prefix_allowed_tokens_fn` to force a certain behavior based on a prefix.
>>> # For instance, we can force an entire entity to be generated when its beginning is detected.
>>> entity = tokenizer(" Bob Marley", return_tensors="pt").input_ids[0] # 3 tokens
>>> def prefix_allowed_tokens_fn(batch_id, input_ids):
... '''
... Attempts to generate 'Bob Marley' when 'Bob' is detected.
... In this case, `batch_id` is not used, but you can set rules for each batch member.
... '''
... if input_ids[-1] == entity[0]:
... return entity[1]
... elif input_ids[-2] == entity[0] and input_ids[-1] == entity[1]:
... return entity[2]
... return list(range(tokenizer.vocab_size)) # If no match, allow all tokens
>>> outputs = model.generate(**inputs, max_new_tokens=5, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn)
>>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
Alice and Bob Marley
```
"""
def __init__(self, prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]], num_beams: int):
self._prefix_allowed_tokens_fn = prefix_allowed_tokens_fn
self._num_beams = num_beams
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
mask = torch.full_like(scores, -math.inf)
for batch_id, beam_sent in enumerate(input_ids.view(-1, self._num_beams, input_ids.shape[-1])):
for beam_id, sent in enumerate(beam_sent):
prefix_allowed_tokens = self._prefix_allowed_tokens_fn(batch_id, sent)
if len(prefix_allowed_tokens) == 0:
raise ValueError(
f"`prefix_allowed_tokens_fn` returned an empty list for batch ID {batch_id}."
f"This means that the constraint is unsatisfiable. Please check your implementation"
f"of `prefix_allowed_tokens_fn` "
)
mask[batch_id * self._num_beams + beam_id, prefix_allowed_tokens] = 0
return scores + mask
class HammingDiversityLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that enforces diverse beam search.
Note that this logits processor is only effective for [`PreTrainedModel.group_beam_search`]. See [Diverse Beam
Search: Decoding Diverse Solutions from Neural Sequence Models](https://arxiv.org/pdf/1610.02424.pdf) for more
details.
Traditional beam search often generates very similar sequences across different beams.
`HammingDiversityLogitsProcessor` addresses this by penalizing beams that generate tokens already chosen by other
beams in the same time step.
Args:
diversity_penalty (`float`):
This value is subtracted from a beam's score if it generates a token same as any beam from other group at a
particular time. A higher `diversity_penalty` will enforce greater diversity among the beams. Adjusting
this value can help strike a balance between diversity and natural likelihood.
num_beams (`int`):
Number of beams for beam search. 1 means no beam search.
num_beam_groups (`int`):
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams.
[this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> import torch
>>> # Initialize the model and tokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
>>> # A long text about the solar system
>>> text = (
... "The Solar System is a gravitationally bound system comprising the Sun and the objects that orbit it, "
... "either directly or indirectly. Of the objects that orbit the Sun directly, the largest are the eight "
... "planets, with the remainder being smaller objects, such as the five dwarf planets and small Solar System "
... "bodies. The Solar System formed 4.6 billion years ago from the gravitational collapse of a giant "
... "interstellar molecular cloud."
... )
>>> inputs = tokenizer("summarize: " + text, return_tensors="pt")
>>> # Generate diverse summary
>>> outputs_diverse = model.generate(
... **inputs,
... num_beam_groups=2,
... diversity_penalty=10.0,
... max_length=100,
... num_beams=4,
... num_return_sequences=2,
... )
>>> summaries_diverse = tokenizer.batch_decode(outputs_diverse, skip_special_tokens=True)
>>> # Generate non-diverse summary
>>> outputs_non_diverse = model.generate(
... **inputs,
... max_length=100,
... num_beams=4,
... num_return_sequences=2,
... )
>>> summary_non_diverse = tokenizer.batch_decode(outputs_non_diverse, skip_special_tokens=True)
>>> # With `diversity_penalty`, the resulting beams are much more diverse
>>> print(summary_non_diverse)
['the solar system formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets.',
'the Solar System formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets.']
>>> print(summaries_diverse)
['the solar system formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets.',
'the solar system formed 4.6 billion years ago from the collapse of a giant interstellar molecular cloud. of the objects that orbit the Sun directly, the largest are the eight planets. the rest of the objects are smaller objects, such as the five dwarf planets and small solar system bodies.']
```
"""
def __init__(self, diversity_penalty: float, num_beams: int, num_beam_groups: int):
if not isinstance(diversity_penalty, float) or (not diversity_penalty > 0.0):
raise ValueError("`diversity_penalty` should be a float strictly larger than 0.")
self._diversity_penalty = diversity_penalty
if not isinstance(num_beams, int) or num_beams < 2:
raise ValueError("`num_beams` should be an integer strictly larger than 1.")
self._num_beams = num_beams
if not isinstance(num_beam_groups, int) or num_beam_groups < 2:
raise ValueError("`num_beam_groups` should be an integer strictly larger than 1.")
if num_beam_groups > num_beams:
raise ValueError("`beam_groups` has to be smaller or equal to `num_beams`.")
self._num_sub_beams = num_beams // num_beam_groups
def __call__(
self,
input_ids: torch.LongTensor,
scores: torch.FloatTensor,
current_tokens: torch.LongTensor,
beam_group_idx: int,
) -> torch.FloatTensor:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
beam search or log softmax for each vocabulary token when using beam search
current_tokens (`torch.LongTensor` of shape `(batch_size)`):
Indices of input sequence tokens in the vocabulary, corresponding to the tokens selected by the other
beam groups in the current generation step.
beam_group_idx (`int`):
The index of the beam group currently being processed.
Return:
`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`:
The processed prediction scores.
"""
# hamming diversity: penalise using same token in current group which was used in previous groups at
# the same time step
batch_size = current_tokens.shape[0] // self._num_beams
group_start_idx = beam_group_idx * self._num_sub_beams
group_end_idx = min(group_start_idx + self._num_sub_beams, self._num_beams)
group_size = group_end_idx - group_start_idx
vocab_size = scores.shape[-1]
if group_start_idx == 0:
return scores
for batch_idx in range(batch_size):
# predicted tokens of last time step of previous groups
previous_group_tokens = current_tokens[
batch_idx * self._num_beams : batch_idx * self._num_beams + group_start_idx
]
token_frequency = torch.bincount(previous_group_tokens, minlength=vocab_size).to(scores.device)
scores[batch_idx * group_size : (batch_idx + 1) * group_size] -= self._diversity_penalty * token_frequency
return scores
class ForcedBOSTokenLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that enforces the specified token as the first generated token. Used with encoder-decoder
models.
Args:
bos_token_id (`int`):
The id of the token to force as the first generated token.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
>>> inputs = tokenizer("Translate from English to German: I love cats.", return_tensors="pt")
>>> # By default, it continues generating according to the model's logits
>>> outputs = model.generate(**inputs, max_new_tokens=10)
>>> print(tokenizer.batch_decode(outputs)[0])
<pad> Ich liebe Kitty.</s>
>>> # We can use `forced_bos_token_id` to force the start of generation with an encoder-decoder model
>>> # (including forcing it to end straight away with an EOS token)
>>> outputs = model.generate(**inputs, max_new_tokens=10, forced_bos_token_id=tokenizer.eos_token_id)
>>> print(tokenizer.batch_decode(outputs)[0])
<pad></s>
```
"""
def __init__(self, bos_token_id: int):
self.bos_token_id = bos_token_id
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
cur_len = input_ids.shape[-1]
if cur_len == 1:
num_tokens = scores.shape[1]
scores[:, [i for i in range(num_tokens) if i != self.bos_token_id]] = -float("inf")
scores[:, self.bos_token_id] = 0
return scores
class ForcedEOSTokenLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that enforces the specified token as the last generated token when `max_length` is reached.
Args:
max_length (`int`):
The maximum length of the sequence to be generated.
eos_token_id (`Union[int, List[int]]`):
The id of the token to force as the last generated token when `max_length` is reached. Optionally, use a
list to set multiple *end-of-sequence* tokens.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
>>> inputs = tokenizer("A sequence: 1, 2, 3", return_tensors="pt")
>>> # By default, it continues generating according to the model's logits
>>> outputs = model.generate(**inputs, max_new_tokens=10)
>>> print(tokenizer.batch_decode(outputs)[0])
A sequence: 1, 2, 3, 4, 5, 6, 7, 8
>>> # `forced_eos_token_id` ensures the generation ends with a EOS token
>>> outputs = model.generate(**inputs, max_new_tokens=10, forced_eos_token_id=tokenizer.eos_token_id)
>>> print(tokenizer.batch_decode(outputs)[0])
A sequence: 1, 2, 3, 4, 5, 6, 7,<|endoftext|>
```
"""
def __init__(self, max_length: int, eos_token_id: Union[int, List[int]]):
self.max_length = max_length
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
self.eos_token_id = eos_token_id
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
cur_len = input_ids.shape[-1]
if cur_len == self.max_length - 1:
num_tokens = scores.shape[1]
scores[:, [i for i in range(num_tokens) if i not in self.eos_token_id]] = -float("inf")
for i in self.eos_token_id:
scores[:, i] = 0
return scores
class InfNanRemoveLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that removes all `nan` and `inf` values to avoid the generation method to fail. Note that using
the logits processor should only be used if necessary since it can slow down the generation method.
This logits processor has no `generate` example, as there shouldn't be a correct combination of flags that warrants
its use.
"""
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# set all nan values to 0.0
scores[scores != scores] = 0.0
# set all +/-inf values to max/min possible value
scores[scores == float("inf")] = torch.finfo(scores.dtype).max
scores[scores == float("-inf")] = torch.finfo(scores.dtype).min
return scores
class ExponentialDecayLengthPenalty(LogitsProcessor):
r"""
[`LogitsProcessor`] that exponentially increases the score of the `eos_token_id` after `start_index` has been
reached. This allows generating shorter sequences without having a hard cutoff, allowing the `eos_token` to be
predicted in a meaningful position.
Args:
exponential_decay_length_penalty (`tuple(int, float)`):
This tuple shall consist of: `(start_index, decay_factor)` where `start_index` indicates where penalty
starts and `decay_factor` represents the factor of exponential decay
eos_token_id (`Union[int, List[int]]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
input_ids_seq_length (`int`):
The length of the input sequence.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> text = "Just wanted to let you know, I"
>>> inputs = tokenizer(text, return_tensors="pt")
>>> # Let's consider that we want short sentences, so we limit `max_length=30`. However, we observe that the answer
>>> # tends to end abruptly.
>>> set_seed(1)
>>> outputs = model.generate(**inputs, do_sample=True, temperature=0.9, max_length=30, pad_token_id=50256)
>>> print(tokenizer.batch_decode(outputs)[0])
Just wanted to let you know, I received a link to an ebook, the book How To Start A Social Network which was
published in 2010. Although
>>> # To promote the appearance of the EOS token at the right time, we add the `exponential_decay_length_penalty =
>>> # (start_index, decay_factor)`. Instead of cutting at max_tokens, the output comes to an end before and usually
>>> # with more meaning. What happens is that starting from `start_index` the EOS token score will be increased
>>> # by `decay_factor` exponentially. However, if you set a high decay factor, you may also end up with abruptly
>>> # ending sequences.
>>> set_seed(1)
>>> outputs = model.generate(
... **inputs,
... do_sample=True,
... temperature=0.9,
... max_length=30,
... pad_token_id=50256,
... exponential_decay_length_penalty=(15, 1.6),
... )
>>> print(tokenizer.batch_decode(outputs)[0])
Just wanted to let you know, I received a link to an ebook, the book How To Start A Social Network
which<|endoftext|>
>>> # With a small decay factor, you will have a higher chance of getting a meaningful sequence.
>>> set_seed(1)
>>> outputs = model.generate(
... **inputs,
... do_sample=True,
... temperature=0.9,
... max_length=30,
... pad_token_id=50256,
... exponential_decay_length_penalty=(15, 1.01),
... )
>>> print(tokenizer.batch_decode(outputs)[0])
Just wanted to let you know, I received a link to an ebook, the book How To Start A Social Network which was
published in 2010.<|endoftext|>
```
"""
def __init__(
self,
exponential_decay_length_penalty: Tuple[int, float],
eos_token_id: Union[int, List[int]],
input_ids_seq_length: int,
):
self.regulation_start = exponential_decay_length_penalty[0] + input_ids_seq_length
self.regulation_factor = exponential_decay_length_penalty[1]
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
self.eos_token_id = eos_token_id
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
cur_len = input_ids.shape[-1]
if cur_len > self.regulation_start:
for i in self.eos_token_id:
penalty_idx = cur_len - self.regulation_start
# To support negative logits we compute the penalty of the absolute value and add to the original logit
scores[:, i] = scores[:, i] + torch.abs(scores[:, i]) * (pow(self.regulation_factor, penalty_idx) - 1)
return scores
class LogitNormalization(LogitsProcessor, LogitsWarper):
r"""
[`LogitsWarper`] and [`LogitsProcessor`] for normalizing the scores using log-softmax. It's important to normalize
the scores during beam search, after applying the logits processors or warpers, since the search algorithm used in
this library doesn't do it (it only does it before, but they may need re-normalization) but it still supposes that
the scores are normalized when comparing the hypotheses.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> import torch
>>> model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
>>> inputs = tokenizer("A sequence: 1, 2, 3", return_tensors="pt")
>>> # By default, the scores are not normalized -- the sum of their exponentials is NOT a normalized probability
>>> # distribution, summing to 1
>>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
>>> print(torch.sum(torch.exp(outputs.scores[-1])))
tensor(816.3250)
>>> # Normalizing them may have a positive impact on beam methods, or when using the scores on your application
>>> outputs = model.generate(**inputs, renormalize_logits=True, return_dict_in_generate=True, output_scores=True)
>>> print(torch.sum(torch.exp(outputs.scores[-1])))
tensor(1.0000)
```
"""
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
scores = scores.log_softmax(dim=-1)
return scores
class SuppressTokensAtBeginLogitsProcessor(LogitsProcessor):
r"""
[`SuppressTokensAtBeginLogitsProcessor`] supresses a list of tokens as soon as the `generate` function starts
generating using `begin_index` tokens. This should ensure that the tokens defined by `begin_suppress_tokens` are
not generated at the begining. Originally created for
[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper).
Examples:
```python
>>> from transformers import AutoProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> # Whisper has `begin_suppress_tokens` set by default (= `[220, 50256]`). 50256 is the EOS token, so this means
>>> # it can't generate and EOS token in the first iteration, but it can in the others.
>>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
>>> print(outputs.scores[1][0, 50256]) # 1 (and not 0) is the first freely generated token
tensor(-inf)
>>> print(outputs.scores[-1][0, 50256]) # in other places we can see some probability mass for EOS
tensor(29.9010)
>>> # If we disable `begin_suppress_tokens`, we can generate EOS in the first iteration.
>>> outputs = model.generate(
... **inputs, return_dict_in_generate=True, output_scores=True, begin_suppress_tokens=None
... )
>>> print(outputs.scores[1][0, 50256])
tensor(11.2027)
```
"""
def __init__(self, begin_suppress_tokens, begin_index):
self.begin_suppress_tokens = list(begin_suppress_tokens)
self.begin_index = begin_index
def set_begin_index(self, begin_index):
self.begin_index = begin_index
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if input_ids.shape[1] == self.begin_index:
scores[:, self.begin_suppress_tokens] = -float("inf")
return scores
class SuppressTokensLogitsProcessor(LogitsProcessor):
r"""
This processor can be used to suppress a list of tokens. The processor will set their log probs to `-inf` so
that they are not generated. Originally created for
[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper).
Examples:
```python
>>> from transformers import AutoProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> # Whisper has a long list of suppressed tokens. For instance, in this case, the token 1 is suppressed by default.
>>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
>>> print(outputs.scores[1][0, 1]) # 1 (and not 0) is the first freely generated token
tensor(-inf)
>>> # If we disable `suppress_tokens`, we can generate it.
>>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True, suppress_tokens=None)
>>> print(outputs.scores[1][0, 1])
tensor(5.7738)
```
"""
def __init__(self, suppress_tokens):
self.suppress_tokens = list(suppress_tokens)
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
scores[:, self.suppress_tokens] = -float("inf")
return scores
class ForceTokensLogitsProcessor(LogitsProcessor):
r"""
This processor takes a list of pairs of integers which indicates a mapping from generation indices to token
indices that will be forced before generation. The processor will set their log probs to `inf` so that they are
sampled at their corresponding index. Originally created for
[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper).
Examples:
```python
>>> from transformers import AutoProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
>>> # This Whisper model forces the generation to start with `50362` at the first position by default, i.e.
>>> # `"forced_decoder_ids": [[1, 50362]]`. This means all other tokens are masked out.
>>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
>>> print(
... all(outputs.scores[0][0, i] == float("-inf") for i in range(processor.tokenizer.vocab_size) if i != 50362)
... )
True
>>> print(outputs.scores[0][0, 50362])
tensor(0.)
>>> # If we disable `forced_decoder_ids`, we stop seeing that effect
>>> outputs = model.generate(**inputs, return_dict_in_generate=True, output_scores=True, forced_decoder_ids=None)
>>> print(
... all(outputs.scores[0][0, i] == float("-inf") for i in range(processor.tokenizer.vocab_size) if i != 50362)
... )
False
>>> print(outputs.scores[0][0, 50362])
tensor(19.3140)
```
"""
def __init__(self, force_token_map: List[List[int]], _has_warned: Optional[bool] = False):
self.force_token_map = dict(force_token_map)
if not _has_warned:
# TODO(Sanchit): remove this processor entirely in v4.40
warnings.warn(
"This `ForceTokensLogitsProcessor` has been deprecated and will be removed in v4.40. Should you need to provide prompt ids for generation, specify `input_ids` to the generate method for decoder-only models, or `decoder_input_ids` for encoder-decoder models.",
FutureWarning,
)
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
generation_idx = input_ids.shape[-1]
current_token = self.force_token_map.get(generation_idx, None)
if current_token is not None:
scores[:, :] = -float("inf")
scores[:, current_token] = 0
return scores
class WhisperTimeStampLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] that modifies the logits for the generation of timestamps in the transcription. When the input
tokens are at a specific threshold, the processor sets the scores to negative infinity. The processor makes sure
that timestamp tokens appear in pairs, by masking out the logits that would break this pairing pattern. This is
done to maintain the consistency and structure of generated timestamps. It also ensures that when the predicted
probability of sampling any of the timestamp token is greater than any individual non-timestamp token, those
non-timestamp logits are set to negative infinity. This is done to ensure the generation of timestamps over other
potential tokens.
See [the paper](https://arxiv.org/abs/2212.04356) for more information.
Args:
generate_config (`GenerateConfig`):
The generate config used to generate the output. The following parameters are required:
eos_token_id (`int`, *optional*, defaults to 50257):
The id of the *end-of-sequence* token.
no_timestamps_token_id (`int`, *optional*, defaults to 50363):
The id of the `"<|notimestamps|>"` token.
max_initial_timestamp_index (`int`, *optional*, defaults to 1):
Used to set the maximum value of the initial timestamp. This is used to prevent the model from
predicting timestamps that are too far in the future.
begin_index (`Optional`, *optional*): Token index of the first token that is generated by the model.
_detect_timestamp_from_logprob (`bool`, *optional*): Whether timestamps can be predicted from logprobs over all timestamps.
Examples:
``` python
>>> import torch
>>> from transformers import AutoProcessor, WhisperForConditionalGeneration, GenerationConfig
>>> from datasets import load_dataset
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> inputs = processor(ds[3]["audio"]["array"], return_tensors="pt")
>>> input_features = inputs.input_features
>>> #Displaying timestamps
>>> generated_ids = model.generate(inputs=input_features, return_timestamps=True)
>>> transcription = processor.batch_decode(generated_ids, decode_with_timestamps=True)[0]
>>> print("Transcription:", transcription)
Transcription: <|startoftranscript|><|0.00|> He has grave doubts whether Sir Frederick Layton's work is really Greek after all, and can<|6.44|><|6.44|> discover in it but little of rocky Ithaca.<|9.44|><|endoftext|>
>>> #No timestamps & change EOS:
>>> #This allows the user to select a specific token to terminate the sequence on, in this case it's the word "can"(460)
>>> model.generation_config.eos_token_id = 460
>>> generated_ids = model.generate(inputs=input_features,return_timestamps=False)
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> print("Transcription:", transcription)
Transcription: He has grave doubts whether Sir Frederick Layton's work is really Greek after all and can
```
"""
def __init__(
self, generate_config, begin_index: Optional[int] = None, _detect_timestamp_from_logprob: Optional[bool] = None
): # support for the kwargs
self.no_timestamps_token_id = generate_config.no_timestamps_token_id
self.timestamp_begin = generate_config.no_timestamps_token_id + 1
self.eos_token_id = generate_config.eos_token_id or generate_config.bos_token_id
# this variable is mostly just used for testing
self._detect_timestamp_from_logprob = (
_detect_timestamp_from_logprob
if _detect_timestamp_from_logprob is not None
else getattr(generate_config, "_detect_timestamp_from_logprob", True)
)
num_forced_ids = (
len(generate_config.forced_decoder_ids) if generate_config.forced_decoder_ids is not None else 0
)
self.begin_index = begin_index or (num_forced_ids + 1)
self.max_initial_timestamp_index = getattr(generate_config, "max_initial_timestamp_index", None)
# TODO(Patrick): Make sure that official models have max_initial_timestamp_index set to 50
# self.max_initial_timestamp_index = 50
def set_begin_index(self, begin_index):
self.begin_index = begin_index
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# suppress <|notimestamps|> which is handled by without_timestamps
scores[:, self.no_timestamps_token_id] = -float("inf")
# timestamps have to appear in pairs, except directly before eos_token; mask logits accordingly
for k in range(input_ids.shape[0]):
sampled_tokens = input_ids[k, self.begin_index :]
seq = list(sampled_tokens.tolist())
last_was_timestamp = len(seq) >= 1 and seq[-1] >= self.timestamp_begin
penultimate_was_timestamp = len(seq) < 2 or seq[-2] >= self.timestamp_begin
if last_was_timestamp:
if penultimate_was_timestamp: # has to be non-timestamp
scores[k, self.timestamp_begin :] = -float("inf")
else: # cannot be normal text tokens
scores[k, : self.eos_token_id] = -float("inf")
timestamps = sampled_tokens[sampled_tokens.ge(self.timestamp_begin)]
if timestamps.numel() > 0:
# `timestamps` shouldn't decrease; forbid timestamp tokens smaller than the last
# The following lines of code are copied from: https://github.com/openai/whisper/pull/914/files#r1137085090
if last_was_timestamp and not penultimate_was_timestamp:
timestamp_last = timestamps[-1]
else:
# Avoid to emit <|0.00|> again
timestamp_last = timestamps[-1] + 1
scores[k, self.timestamp_begin : timestamp_last] = -float("inf")
# apply the `max_initial_timestamp` option
if input_ids.shape[1] == self.begin_index:
scores[:, : self.timestamp_begin] = -float("inf")
if self.max_initial_timestamp_index is not None:
last_allowed = self.timestamp_begin + self.max_initial_timestamp_index
scores[:, last_allowed + 1 :] = -float("inf")
# if sum of probability over timestamps is above any other token, sample timestamp
logprobs = torch.nn.functional.log_softmax(scores.float(), dim=-1)
for k in range(input_ids.shape[0]):
timestamp_logprob = logprobs[k, self.timestamp_begin :].logsumexp(dim=-1)
max_text_token_logprob = logprobs[k, : self.timestamp_begin].max()
if timestamp_logprob > max_text_token_logprob and self._detect_timestamp_from_logprob:
scores[k, : self.timestamp_begin] = -float("inf")
return scores
class WhisperNoSpeechDetection(LogitsProcessor):
r"""This processor can be used to detect silence when using Whisper. It should take as input unprocessed logits to follow the original implementation"""
def __init__(self, no_speech_token: int, begin_index: int, scores_is_logprobs: bool = False):
self.no_speech_token = no_speech_token
# offset between <start-of-transcription> token, <SOT>, in paper and first generated token
# is equal to the position of the first generated token index
self.start_of_trans_offset = begin_index
# `self.begin_index` is a running value that is changed on the fly
self.begin_index = begin_index
self._no_speech_prob = [0.0]
self.is_scores_logprobs = scores_is_logprobs
# overwritten dynamically
self.model = None
self.inputs = None
def set_model(self, model):
self.model = model
def set_inputs(self, inputs):
self.inputs = {**self.model.prepare_inputs_for_generation(**inputs), **inputs}
self.inputs["input_features"] = self.inputs.pop("inputs")
@property
def no_speech_prob(self):
return self._no_speech_prob
def set_begin_index(self, begin_index):
self.begin_index = begin_index
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if input_ids.shape[1] == self.begin_index:
if self.start_of_trans_offset > 1:
with torch.no_grad():
logits = self.model(**self.inputs).logits
no_speech_index = self.begin_index - self.start_of_trans_offset
no_speech_scores = logits[:, no_speech_index]
else:
no_speech_scores = scores
if self.is_scores_logprobs:
probs = no_speech_scores.exp()
else:
probs = no_speech_scores.float().softmax(dim=-1)
self._no_speech_prob = probs[:, self.no_speech_token]
return scores
class ClassifierFreeGuidanceLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] for classifier free guidance (CFG). The scores are split over the batch dimension,
where the first half correspond to the conditional logits (predicted from the input prompt) and the second half
correspond to the unconditional logits (predicted from an empty or 'null' prompt). The processor computes a
weighted average across the conditional and unconditional logits, parameterised by the `guidance_scale`.
See [the paper](https://arxiv.org/abs/2306.05284) for more information.
<Tip warning={true}>
This logits processor is exclusively compatible with
[MusicGen](https://huggingface.co/docs/transformers/main/en/model_doc/musicgen)
</Tip>
Args:
guidance_scale (float):
The guidance scale for classifier free guidance (CFG). CFG is enabled by setting `guidance_scale > 1`.
Higher guidance scale encourages the model to generate samples that are more closely linked to the input
prompt, usually at the expense of poorer quality.
Examples:
```python
>>> from transformers import AutoProcessor, MusicgenForConditionalGeneration
>>> processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
>>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
>>> inputs = processor(
... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"],
... padding=True,
... return_tensors="pt",
... )
>>> audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)
```
"""
def __init__(self, guidance_scale):
if guidance_scale > 1:
self.guidance_scale = guidance_scale
else:
raise ValueError(
"Require guidance scale >1 to use the classifier free guidance processor, got guidance scale "
f"{guidance_scale}."
)
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# simple check to make sure we have compatible batch sizes between our
# logits scores (cond + uncond) and input ids (cond only)
if scores.shape[0] != 2 * input_ids.shape[0]:
raise ValueError(
f"Logits should have twice the batch size of the input ids, the first half of batches corresponding to "
f"the conditional inputs, and the second half of batches corresponding to the unconditional inputs. Got "
f"batch size {scores.shape[0]} for the logits and {input_ids.shape[0]} for the input ids."
)
unguided_bsz = scores.shape[0] // 2
cond_logits, uncond_logits = scores.split(unguided_bsz, dim=0)
scores = uncond_logits + (cond_logits - uncond_logits) * self.guidance_scale
return scores
class AlternatingCodebooksLogitsProcessor(LogitsProcessor):
r"""
[`LogitsProcessor`] enforcing alternated generation between the two codebooks of Bark.
<Tip warning={true}>
This logits processor is exclusively compatible with
[Bark](https://huggingface.co/docs/transformers/en/model_doc/bark)'s fine submodel. See the model documentation
for examples.
</Tip>
Args:
input_start_len (`int`):
The length of the initial input sequence.
semantic_vocab_size (`int`):
Vocabulary size of the semantic part, i.e number of tokens associated to the semantic vocabulary.
codebook_size (`int`):
Number of tokens associated to the codebook.
"""
def __init__(self, input_start_len: int, semantic_vocab_size: int, codebook_size: int):
if not isinstance(input_start_len, int) or input_start_len < 0:
raise ValueError(f"`input_starting_length` has to be a non-negative integer, but is {input_start_len}")
self.input_start_len = input_start_len
self.semantic_vocab_size = semantic_vocab_size
self.codebook_size = codebook_size
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
curr_len = input_ids.shape[-1]
# even -> first codebook, odd -> second codebook
is_first_codebook = ((curr_len - self.input_start_len) % 2) == 0
if is_first_codebook:
scores[:, : self.semantic_vocab_size] = -float("inf")
scores[:, self.semantic_vocab_size + self.codebook_size :] = -float("inf")
else:
scores[:, : self.semantic_vocab_size + self.codebook_size] = -float("inf")
return scores
class UnbatchedClassifierFreeGuidanceLogitsProcessor(LogitsProcessor):
r"""
Logits processor for Classifier-Free Guidance (CFG). The processors computes a weighted average across scores
from prompt conditional and prompt unconditional (or negative) logits, parameterized by the `guidance_scale`.
The unconditional scores are computed internally by prompting `model` with the `unconditional_ids` branch.
See [the paper](https://arxiv.org/abs/2306.17806) for more information.
Args:
guidance_scale (`float`):
The guidance scale for classifier free guidance (CFG). CFG is enabled by setting `guidance_scale != 1`.
Higher guidance scale encourages the model to generate samples that are more closely linked to the input
prompt, usually at the expense of poorer quality. A value smaller than 1 has the opposite effect, while
making the negative prompt provided with negative_prompt_ids (if any) act as a positive prompt.
model (`PreTrainedModel`):
The model computing the unconditional scores. Supposedly the same as the one computing the conditional
scores. Both models must use the same tokenizer.
unconditional_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary for the unconditional branch. If unset, will default to
the last token of the prompt.
unconditional_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Attention mask for unconditional_ids.
use_cache (`bool`, *optional*, defaults to `True`):
Whether to cache key/values during the negative prompt forward pass.
Examples:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> inputs = tokenizer(["Today, a dragon flew over Paris, France,"], return_tensors="pt")
>>> out = model.generate(inputs["input_ids"], guidance_scale=1.5)
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
'Today, a dragon flew over Paris, France, killing at least 50 people and injuring more than 100'
>>> # with a negative prompt
>>> neg_inputs = tokenizer(["A very happy event happened,"], return_tensors="pt")
>>> out = model.generate(inputs["input_ids"], guidance_scale=2, negative_prompt_ids=neg_inputs["input_ids"])
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
'Today, a dragon flew over Paris, France, killing at least 130 people. French media reported that'
>>> # with a positive prompt
>>> neg_inputs = tokenizer(["A very happy event happened,"], return_tensors="pt")
>>> out = model.generate(inputs["input_ids"], guidance_scale=0, negative_prompt_ids=neg_inputs["input_ids"])
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
"Today, a dragon flew over Paris, France, and I'm very happy to be here. I"
```
"""
def __init__(
self,
guidance_scale: float,
model,
unconditional_ids: Optional[torch.LongTensor] = None,
unconditional_attention_mask: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = True,
):
self.guidance_scale = guidance_scale
self.model = model
self.unconditional_context = {
"input_ids": unconditional_ids,
"attention_mask": unconditional_attention_mask,
"use_cache": use_cache,
"past_key_values": None,
"first_pass": True,
}
def get_unconditional_logits(self, input_ids):
if self.unconditional_context["first_pass"]:
if self.unconditional_context["input_ids"] is None:
self.unconditional_context["input_ids"] = input_ids[:, -1:]
if self.unconditional_context["attention_mask"] is None:
self.unconditional_context["attention_mask"] = torch.ones_like(
self.unconditional_context["input_ids"], dtype=torch.long
)
input_ids = self.unconditional_context["input_ids"]
attention_mask = self.unconditional_context["attention_mask"]
self.unconditional_context["first_pass"] = False
else:
attention_mask = torch.cat(
[
self.unconditional_context["attention_mask"],
torch.ones_like(input_ids[:, -1:], dtype=torch.long),
],
dim=1,
)
if not self.unconditional_context["use_cache"]:
input_ids = torch.cat([self.unconditional_context["input_ids"], input_ids[:, -1:]], dim=1)
else:
input_ids = input_ids[:, -1:]
self.unconditional_context["input_ids"] = input_ids
self.unconditional_context["attention_mask"] = attention_mask
out = self.model(
input_ids,
attention_mask=attention_mask,
use_cache=self.unconditional_context["use_cache"],
past_key_values=self.unconditional_context["past_key_values"],
)
self.unconditional_context["past_key_values"] = out.get("past_key_values", None)
return out.logits
def __call__(self, input_ids, scores):
scores = torch.nn.functional.log_softmax(scores, dim=-1)
if self.guidance_scale == 1:
return scores
logits = self.get_unconditional_logits(input_ids)
unconditional_logits = torch.nn.functional.log_softmax(logits[:, -1], dim=-1)
out = self.guidance_scale * (scores - unconditional_logits) + unconditional_logits
return out
class BarkEosPrioritizerLogitsProcessor(LogitsProcessor):
r"""This processor ensures that the EOS token is selected if its probability is greater than the `min_eos_p`.
<Tip warning={true}>
This logits processor is exclusively compatible with
[Bark](https://huggingface.co/docs/transformers/en/model_doc/bark). See the model documentation for examples.
</Tip>
Args:
eos_token_id (`Union[int, List[int]]`):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
min_eos_p (`float`, *optional*):
Minimum end of speech threshold.
"""
def __init__(self, eos_token_id: Union[int, List[int]], min_eos_p: float):
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
self.eos_token_id = eos_token_id
if min_eos_p is not None and min_eos_p <= 0:
raise ValueError(f"`min_eos_p` has to be a positive float, but is {min_eos_p}")
self.min_eos_p = min_eos_p
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if self.min_eos_p:
probs = torch.nn.functional.softmax(scores.float(), dim=-1)
# create scores full of -inf except for the eos_token_id
early_stop_scores = torch.ones_like(scores) * -float("inf")
early_stop_scores[:, self.eos_token_id] = scores[:, self.eos_token_id]
do_early_stop = probs[:, self.eos_token_id] > self.min_eos_p
do_early_stop = torch.any(do_early_stop, dim=1, keepdim=True)
scores = torch.where(do_early_stop, early_stop_scores, scores)
return scores
| transformers/src/transformers/generation/logits_process.py/0 | {
"file_path": "transformers/src/transformers/generation/logits_process.py",
"repo_id": "transformers",
"token_count": 40674
} | 301 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"AWQ (Activation aware Weight Quantization) integration file"
from ..activations import ACT2FN
from ..modeling_utils import PreTrainedModel
from ..utils import is_auto_awq_available, is_torch_available
from ..utils.quantization_config import (
AwqBackendPackingMethod,
AwqConfig,
AWQLinearVersion,
ExllamaVersion,
)
if is_torch_available():
import torch
import torch.nn as nn
AWQ_FUSED_MAPPINGS = {
"mistral": {
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
"mlp": ["gate_proj", "up_proj", "down_proj"],
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
"use_alibi": False,
},
"mixtral": {
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
"mlp": ["w1", "w3", "w2"],
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
"use_alibi": False,
"rope_theta": 1000000.0,
},
"llama": {
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
"mlp": ["gate_proj", "up_proj", "down_proj"],
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
"use_alibi": False,
},
"llava": {
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
"mlp": ["gate_proj", "up_proj", "down_proj"],
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
"use_alibi": False,
},
}
def replace_with_awq_linear(
model,
modules_to_not_convert=None,
quantization_config=None,
current_key_name=None,
has_been_replaced=False,
) -> bool:
"""
Public method that recursively replaces the Linear layers of the given model with AWQ quantized layers.
`accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the
conversion has been successfull or not.
During the module replacement, we also infer the backend to use through the `quantization_config` object.
Args:
model (`torch.nn.Module`):
The model to convert, can be any `torch.nn.Module` instance.
quantization_config (`AwqConfig`):
The quantization config object that contains the quantization parameters.
modules_to_not_convert (`list`, *optional*):
A list of modules to not convert. If a module name is in the list (e.g. `lm_head`), it will not be
converted.
current_key_name (`list`, *optional*):
A list that contains the current key name. This is used for recursion and should not be passed by the user.
has_been_replaced (`bool`, *optional*):
A boolean that indicates if the conversion has been successful or not. This is used for recursion and
should not be passed by the user.
"""
if modules_to_not_convert is None:
modules_to_not_convert = []
backend = quantization_config.backend
if not is_auto_awq_available():
raise ValueError(
"AWQ (either `autoawq` or `llmawq`) is not available. Please install it with `pip install autoawq` or check out the installation guide in https://github.com/mit-han-lab/llm-awq"
)
if backend == AwqBackendPackingMethod.AUTOAWQ:
if quantization_config.version == AWQLinearVersion.GEMM:
from awq.modules.linear.gemm import WQLinear_GEMM
target_cls = WQLinear_GEMM
elif quantization_config.version == AWQLinearVersion.GEMV:
from awq.modules.linear.gemv import WQLinear_GEMV
target_cls = WQLinear_GEMV
elif quantization_config.version == AWQLinearVersion.EXLLAMA:
if quantization_config.exllama_config["version"] == ExllamaVersion.ONE:
from awq.modules.linear.exllama import WQLinear_Exllama
target_cls = WQLinear_Exllama
elif quantization_config.exllama_config["version"] == ExllamaVersion.TWO:
from awq.modules.linear.exllamav2 import WQLinear_ExllamaV2
target_cls = WQLinear_ExllamaV2
else:
raise ValueError(f"Unrecognized Exllama version: {quantization_config.exllama_config['version']}")
else:
raise ValueError(f"Unrecognized AWQ version: {quantization_config.version}")
else:
from awq.quantize.qmodule import WQLinear
target_cls = WQLinear
for name, module in model.named_children():
if current_key_name is None:
current_key_name = []
current_key_name.append(name)
if isinstance(module, nn.Linear) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
in_features = module.in_features
out_features = module.out_features
model._modules[name] = target_cls(
w_bit=quantization_config.bits,
group_size=quantization_config.group_size,
in_features=in_features,
out_features=out_features,
bias=module.bias is not None,
dev=module.weight.device,
)
has_been_replaced = True
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(False)
if len(list(module.children())) > 0:
_, has_been_replaced = replace_with_awq_linear(
module,
modules_to_not_convert=modules_to_not_convert,
current_key_name=current_key_name,
quantization_config=quantization_config,
has_been_replaced=has_been_replaced,
)
# Remove the last key for recursion
current_key_name.pop(-1)
return model, has_been_replaced
def get_modules_to_fuse(model, quantization_config):
"""
Returns the fusing mapping given the quantization config and the model
Args:
model (`~PreTrainedModel`):
The model to fuse - note this model should have been converted into AWQ format beforehand.
quantization_config (`~transformers.quantization_config.AWQConfig`):
The quantization configuration to use.
"""
if not isinstance(model, PreTrainedModel):
raise ValueError(f"The model should be an instance of `PreTrainedModel`, got {model.__class__.__name__}")
# Always default to `quantization_config.modules_to_fuse`
if quantization_config.modules_to_fuse is not None:
current_fused_mapping = quantization_config.modules_to_fuse
current_fused_mapping["max_seq_len"] = quantization_config.fuse_max_seq_len
elif model.config.model_type in AWQ_FUSED_MAPPINGS:
current_fused_mapping = AWQ_FUSED_MAPPINGS[model.config.model_type]
# Properly deal with the case where we have a multi-modal model as well (e.g. Llava)
if not hasattr(model.config, "text_config"):
config = model.config
else:
config = model.config.text_config
# Handle hidden_size, num_attention_heads, num_key_value_heads on our own.
hidden_size = config.hidden_size
num_attention_heads = config.num_attention_heads
num_key_value_heads = getattr(config, "num_key_value_heads", num_attention_heads)
# Fill `current_fused_mapping` with the expected values
current_fused_mapping["hidden_size"] = hidden_size
current_fused_mapping["num_attention_heads"] = num_attention_heads
current_fused_mapping["num_key_value_heads"] = num_key_value_heads
current_fused_mapping["max_seq_len"] = quantization_config.fuse_max_seq_len
else:
raise ValueError(
"Fusing mapping not found either on the quantization config or the supported `AWQ_FUSED_MAPPINGS`. Please pass a `fused_mapping` argument"
" in the `quantization_config` or raise an issue on transformers https://github.com/huggingface/transformers to add its support."
)
return current_fused_mapping
def fuse_awq_modules(model, quantization_config):
"""
Optionally fuse some modules in the model to speedup inference.
Args:
model (`~PreTrainedModel`):
The model to fuse - note this model should have been converted into AWQ format beforehand.
quantization_config (`Union[AwqConfig, dict]`):
The quantization configuration to use.
"""
# We need to convert it from dict in order to get an AwqConfig object
# otherwise the fields `backend` etc. will not be available
# https://github.com/huggingface/transformers/pull/27411#discussion_r1414044495
if isinstance(quantization_config, dict):
quantization_config = AwqConfig.from_dict(quantization_config)
backend = quantization_config.backend
modules_to_fuse = get_modules_to_fuse(model, quantization_config)
modules_to_not_convert = getattr(quantization_config, "modules_to_not_convert", None)
if backend == AwqBackendPackingMethod.AUTOAWQ:
from awq.modules.fused.attn import QuantAttentionFused
from awq.modules.fused.mlp import QuantFusedMLP
from awq.modules.fused.norm import FasterTransformerRMSNorm
else:
raise ValueError("Fusing is only supported for the AutoAWQ backend")
for name, module in model.named_modules():
if modules_to_not_convert is not None:
if any(module_name_to_not_convert in name for module_name_to_not_convert in modules_to_not_convert):
continue
# Replace layer norms
_fuse_awq_layernorm(modules_to_fuse["layernorm"], module, FasterTransformerRMSNorm)
# Replace MLP layers
_fuse_awq_mlp(model, name, modules_to_fuse["mlp"], module, QuantFusedMLP)
# Replace attention layers
_fuse_awq_attention_layers(model, module, modules_to_fuse, name, QuantAttentionFused)
return model
def _fuse_awq_layernorm(fuse_module_names, module, target_cls):
"""
Fuse the LayerNorm layers into a target class using autoawq
Args:
fuse_module_names (`List[str]`):
The list of module names to fuse
module (`nn.Module`):
The pytorch parent module that has layernorm modules to fuse
target_cls (`~autoawq.FasterTransformerRMSNorm`):
The `FasterTransformerRMSNorm` class as it only supports that class
for now.
"""
for module_name in fuse_module_names:
if hasattr(module, module_name):
old_module = getattr(module, module_name)
module._modules[module_name] = target_cls(
old_module.weight,
old_module.variance_epsilon,
).to(old_module.weight.device)
del old_module
def _fuse_awq_mlp(model, current_module_name, fuse_module_names, module, target_cls):
"""
Fuse the MLP layers into a target class using autoawq
Args:
model (`~PreTrainedModel`):
The input pretrained model
current_module_name (`str`):
The current submodule name
fuse_module_names (`List[str]`):
The list of module names to fuse. For the MLP layers it has to be an array
of length 3 that consists of the 3 MLP layers in the order (gate (dense layer post-attention) / up / down layers)
module (`nn.Module`):
The pytorch parent module that has layernorm modules to fuse
target_cls (`~autoawq.QuantFusedMLP`):
The `QuantFusedMLP` class as it only supports that class
for now.
"""
if len(fuse_module_names) == 0:
return
if hasattr(module, fuse_module_names[0]):
gate_proj = getattr(module, fuse_module_names[0])
up_proj = getattr(module, fuse_module_names[1])
down_proj = getattr(module, fuse_module_names[2])
previous_device = gate_proj.qweight.device
# Deal also with the case model has `text_config` attribute
hidden_act = (
model.config.hidden_act
if not hasattr(model.config, "text_config")
else model.config.text_config.hidden_act
)
activation_fn = ACT2FN[hidden_act]
new_module = target_cls(gate_proj, down_proj, up_proj, activation_fn)
parent_name, child_name = current_module_name.rsplit(".", 1)
parent = model.get_submodule(parent_name)
setattr(parent, child_name, new_module.to(previous_device))
del gate_proj, up_proj, down_proj
def _fuse_awq_attention_layers(model, module, modules_to_fuse, current_module_name, target_cls):
"""
Fuse the Attention layers into a target class using autoawq
Args:
model (`~PreTrainedModel`):
The input pretrained model
module (`nn.Module`):
The pytorch parent module that has layernorm modules to fuse
modules_to_fuse (`List[str]`):
The module fusing mapping. The dictionary has to contain a field `attention` with attention module names
in the correct order: q, k, v, o layer
current_module_name (`str`):
The current submodule name
target_cls (`~autoawq.QuantAttentionFused`):
The `QuantAttentionFused` class as it only supports that class
for now.
"""
from awq.modules.linear import WQLinear_GEMM, WQLinear_GEMV
if len(modules_to_fuse["attention"]) == 0:
return
if hasattr(module, modules_to_fuse["attention"][0]):
# First, we pack the QKV layers together
q_proj = getattr(module, modules_to_fuse["attention"][0])
if isinstance(q_proj, WQLinear_GEMV):
linear_target_cls = WQLinear_GEMV
cat_dim = 0
elif isinstance(q_proj, WQLinear_GEMM):
linear_target_cls = WQLinear_GEMM
cat_dim = 1
else:
raise ValueError("Unsupported q_proj type: {type(q_proj)}")
previous_device = q_proj.qweight.device
k_proj = getattr(module, modules_to_fuse["attention"][1])
v_proj = getattr(module, modules_to_fuse["attention"][2])
o_proj = getattr(module, modules_to_fuse["attention"][3])
bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None
qkv_layer = linear_target_cls(
q_proj.w_bit,
q_proj.group_size,
q_proj.in_features,
q_proj.out_features + k_proj.out_features + v_proj.out_features,
q_proj.bias is not None,
next(iter(module.state_dict().values())).device,
)
qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=cat_dim)
qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=cat_dim)
qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=cat_dim)
if isinstance(qkv_layer, WQLinear_GEMV):
qkv_layer.split_k_iters = q_proj.split_k_iters
qkv_layer.bias = bias
fused_attention_layer = target_cls(
modules_to_fuse["hidden_size"],
modules_to_fuse["num_attention_heads"],
modules_to_fuse["num_key_value_heads"],
qkv_layer,
o_proj,
previous_device,
modules_to_fuse["max_seq_len"],
use_alibi=modules_to_fuse["use_alibi"],
# The default value in autoawq is set to 10000.0
rope_theta=modules_to_fuse.get("rope_theta", 10000.0),
)
fused_attention_layer.is_hf_transformers = True
parent_name, child_name = current_module_name.rsplit(".", 1)
parent = model.get_submodule(parent_name)
setattr(parent, child_name, fused_attention_layer.to(previous_device))
del q_proj, k_proj, v_proj, o_proj
def post_init_awq_exllama_modules(model, exllama_config):
"""
Runs post init for Exllama layers which performs:
- Weights unpacking, reordering and repacking
- Devices scratch space allocation
"""
if exllama_config["version"] == ExllamaVersion.ONE:
from awq.modules.linear.exllama import exllama_post_init
model = exllama_post_init(model)
elif exllama_config["version"] == ExllamaVersion.TWO:
from awq.modules.linear.exllamav2 import exllamav2_post_init
model = exllamav2_post_init(
model,
max_input_len=exllama_config["max_input_len"],
max_batch_size=exllama_config["max_batch_size"],
)
else:
raise ValueError(f"Unrecognized Exllama version: {exllama_config['version']}")
return model
| transformers/src/transformers/integrations/awq.py/0 | {
"file_path": "transformers/src/transformers/integrations/awq.py",
"repo_id": "transformers",
"token_count": 7538
} | 302 |
#define min(a, b) ((a)<(b)?(a):(b))
#define max(a, b) ((a)>(b)?(a):(b))
#define ceil_divide(a, b) ((a)/(b)+((a)%(b)!=0))
#define select(cond, a, b) ((cond)?(a):(b))
#define PI 3.141592
#define EPSILON 1e-8
#define MAX_VAL 1e12
#define MIN_VAL -1e12
#define EMPTY_VALUE -1
| transformers/src/transformers/kernels/yoso/common.h/0 | {
"file_path": "transformers/src/transformers/kernels/yoso/common.h",
"repo_id": "transformers",
"token_count": 140
} | 303 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF general model utils."""
from __future__ import annotations
import functools
import gc
import inspect
import json
import os
import pickle
import re
import warnings
from collections.abc import Mapping
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union
import h5py
import numpy as np
import tensorflow as tf
from packaging.version import parse
from . import DataCollatorWithPadding, DefaultDataCollator
from .activations_tf import get_tf_activation
from .configuration_utils import PretrainedConfig
from .dynamic_module_utils import custom_object_save
from .generation import GenerationConfig, TFGenerationMixin
from .tf_utils import (
convert_batch_encoding,
expand_1d,
load_attributes_from_hdf5_group,
save_attributes_to_hdf5_group,
shape_list,
)
from .utils import (
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
TF2_WEIGHTS_INDEX_NAME,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
ModelOutput,
PushToHubMixin,
cached_file,
download_url,
find_labels,
has_file,
is_offline_mode,
is_remote_url,
is_safetensors_available,
is_tf_symbolic_tensor,
logging,
requires_backends,
working_or_temp_dir,
)
from .utils.hub import convert_file_size_to_int, get_checkpoint_shard_files
if is_safetensors_available():
from safetensors import safe_open
from safetensors.tensorflow import save_file as safe_save_file
if TYPE_CHECKING:
from . import PreTrainedTokenizerBase
logger = logging.get_logger(__name__)
if "TF_USE_LEGACY_KERAS" not in os.environ:
os.environ["TF_USE_LEGACY_KERAS"] = "1" # Compatibility fix to make sure tf.keras stays at Keras 2
elif os.environ["TF_USE_LEGACY_KERAS"] != "1":
logger.warning(
"Transformers is only compatible with Keras 2, but you have explicitly set `TF_USE_LEGACY_KERAS` to `0`. "
"This may result in unexpected behaviour or errors if Keras 3 objects are passed to Transformers models."
)
try:
import tf_keras as keras
from tf_keras import backend as K
except (ModuleNotFoundError, ImportError):
import keras
from keras import backend as K
if parse(keras.__version__).major > 2:
raise ValueError(
"Your currently installed version of Keras is Keras 3, but this is not yet supported in "
"Transformers. Please install the backwards-compatible tf-keras package with "
"`pip install tf-keras`."
)
tf_logger = tf.get_logger()
TFModelInputType = Union[
List[tf.Tensor],
List[np.ndarray],
Dict[str, tf.Tensor],
Dict[str, np.ndarray],
tf.Tensor,
np.ndarray,
]
def dummy_loss(y_true, y_pred):
if y_pred.shape.rank <= 1:
return y_pred
else:
reduction_axes = list(range(1, y_pred.shape.rank))
return tf.reduce_mean(y_pred, axis=reduction_axes)
class TFModelUtilsMixin:
"""
A few utilities for `keras.Model`, to be used as a mixin.
"""
def num_parameters(self, only_trainable: bool = False) -> int:
"""
Get the number of (optionally, trainable) parameters in the model.
Args:
only_trainable (`bool`, *optional*, defaults to `False`):
Whether or not to return only the number of trainable parameters
Returns:
`int`: The number of parameters.
"""
if only_trainable:
return int(sum(np.prod(w.shape.as_list()) for w in self.trainable_variables))
else:
return self.count_params()
def keras_serializable(cls):
"""
Decorate a Keras Layer class to support Keras serialization.
This is done by:
1. Adding a `transformers_config` dict to the Keras config dictionary in `get_config` (called by Keras at
serialization time.
2. Wrapping `__init__` to accept that `transformers_config` dict (passed by Keras at deserialization time) and
convert it to a config object for the actual layer initializer.
3. Registering the class as a custom object in Keras (if the Tensorflow version supports this), so that it does not
need to be supplied in `custom_objects` in the call to `keras.models.load_model`.
Args:
cls (a `keras.layers.Layers subclass`):
Typically a `TF.MainLayer` class in this project, in general must accept a `config` argument to its
initializer.
Returns:
The same class object, with modifications for Keras deserialization.
"""
initializer = cls.__init__
config_class = getattr(cls, "config_class", None)
if config_class is None:
raise AttributeError("Must set `config_class` to use @keras_serializable")
@functools.wraps(initializer)
def wrapped_init(self, *args, **kwargs):
config = args[0] if args and isinstance(args[0], PretrainedConfig) else kwargs.pop("config", None)
if isinstance(config, dict):
config = config_class.from_dict(config)
initializer(self, config, *args, **kwargs)
elif isinstance(config, PretrainedConfig):
if len(args) > 0:
initializer(self, *args, **kwargs)
else:
initializer(self, config, *args, **kwargs)
else:
raise ValueError("Must pass either `config` (PretrainedConfig) or `config` (dict)")
self._config = config
self._kwargs = kwargs
cls.__init__ = wrapped_init
if not hasattr(cls, "get_config"):
raise TypeError("Only use @keras_serializable on keras.layers.Layer subclasses")
if hasattr(cls.get_config, "_is_default"):
def get_config(self):
cfg = super(cls, self).get_config()
cfg["config"] = self._config.to_dict()
cfg.update(self._kwargs)
return cfg
cls.get_config = get_config
cls._keras_serializable = True
if hasattr(keras.utils, "register_keras_serializable"):
cls = keras.utils.register_keras_serializable()(cls)
return cls
class TFCausalLanguageModelingLoss:
"""
Loss function suitable for causal language modeling (CLM), that is, the task of guessing the next token.
<Tip>
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
</Tip>
"""
def hf_compute_loss(self, labels, logits):
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE)
if self.config.tf_legacy_loss:
# make sure only labels that are not equal to -100 affect the loss
active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100)
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss)
return loss_fn(labels, reduced_logits)
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
unmasked_loss = loss_fn(tf.nn.relu(labels), logits)
# make sure only labels that are not equal to -100 affect the loss
loss_mask = tf.cast(labels != -100, dtype=unmasked_loss.dtype)
masked_loss = unmasked_loss * loss_mask
reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(loss_mask)
return tf.reshape(reduced_masked_loss, (1,))
class TFQuestionAnsweringLoss:
"""
Loss function suitable for question answering.
"""
def hf_compute_loss(self, labels, logits):
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE)
start_loss = loss_fn(labels["start_position"], logits[0])
end_loss = loss_fn(labels["end_position"], logits[1])
return (start_loss + end_loss) / 2.0
class TFTokenClassificationLoss:
"""
Loss function suitable for token classification.
<Tip>
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
</Tip>
"""
def hf_compute_loss(self, labels, logits):
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE)
if tf.executing_eagerly(): # Data-dependent conditionals are forbidden in XLA
if tf.math.reduce_any(labels == -1):
tf.print("Using `-1` to mask the loss for the token is deprecated. Please use `-100` instead.")
if self.config.tf_legacy_loss:
# make sure only labels that are not equal to -100
# are taken into account as loss
if tf.math.reduce_any(labels == -1):
tf.print("Using `-1` to mask the loss for the token is deprecated. Please use `-100` instead.")
active_loss = tf.reshape(labels, (-1,)) != -1
else:
active_loss = tf.reshape(labels, (-1,)) != -100
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss)
return loss_fn(labels, reduced_logits)
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
unmasked_loss = loss_fn(tf.nn.relu(labels), logits)
# make sure only labels that are not equal to -100 or -1
# are taken into account as loss
loss_mask = tf.cast(labels >= 0, dtype=unmasked_loss.dtype)
# Avoid possible division by zero later
# Masked positions will have a loss of NaN because -100 and -1 are not valid labels
masked_loss = unmasked_loss * loss_mask
reduced_masked_loss = tf.reduce_sum(masked_loss) / tf.reduce_sum(loss_mask)
return tf.reshape(reduced_masked_loss, (1,))
class TFSequenceClassificationLoss:
"""
Loss function suitable for sequence classification.
"""
def hf_compute_loss(self, labels, logits):
if logits.shape.rank == 1 or logits.shape[1] == 1:
loss_fn = keras.losses.MeanSquaredError(reduction=keras.losses.Reduction.NONE)
if labels.shape.rank == 1:
# MeanSquaredError returns a scalar loss if the labels are 1D, so avoid that
labels = tf.expand_dims(labels, axis=-1)
else:
loss_fn = keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction=keras.losses.Reduction.NONE
)
return loss_fn(labels, logits)
class TFMultipleChoiceLoss:
"""Loss function suitable for multiple choice tasks."""
def hf_compute_loss(self, labels, logits):
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE)
return loss_fn(labels, logits)
class TFMaskedLanguageModelingLoss(TFCausalLanguageModelingLoss):
"""
Loss function suitable for masked language modeling (MLM), that is, the task of guessing the masked tokens.
<Tip>
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
</Tip>
"""
class TFNextSentencePredictionLoss:
"""
Loss function suitable for next sentence prediction (NSP), that is, the task of guessing the next sentence.
<Tip>
Any label of -100 will be ignored (along with the corresponding logits) in the loss computation.
</Tip>
"""
def hf_compute_loss(self, labels, logits):
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE)
if self.config.tf_legacy_loss:
# make sure only labels that are not equal to -100
# are taken into account as loss
next_sentence_active_loss = tf.not_equal(tf.reshape(labels, (-1,)), -100)
next_sentence_reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, 2)), next_sentence_active_loss)
next_sentence_label = tf.boolean_mask(tf.reshape(labels, (-1,)), next_sentence_active_loss)
return loss_fn(next_sentence_label, next_sentence_reduced_logits)
# make sure only labels that are not equal to -100
# are taken into account as loss
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels), y_pred=logits)
ns_loss_mask = tf.cast(labels != -100, dtype=unmasked_ns_loss.dtype)
# Just zero out samples where label is -100, no reduction
masked_ns_loss = unmasked_ns_loss * ns_loss_mask
return masked_ns_loss
def booleans_processing(config, **kwargs):
"""
Process the input booleans of each model.
Args:
config ([`PretrainedConfig`]):
The config of the running model.
**kwargs:
The boolean parameters
Returns:
A dictionary with the proper values for each boolean
"""
final_booleans = {}
# Pure conv models (such as ConvNext) do not have `output_attentions`. If the signature has
# `output_attentions`, it will be present here in `kwargs`, even if unset (in that case, as `None`)
if "output_attentions" in kwargs:
final_booleans["output_attentions"] = (
kwargs["output_attentions"] if kwargs["output_attentions"] is not None else config.output_attentions
)
final_booleans["output_hidden_states"] = (
kwargs["output_hidden_states"] if kwargs["output_hidden_states"] is not None else config.output_hidden_states
)
final_booleans["return_dict"] = kwargs["return_dict"] if kwargs["return_dict"] is not None else config.return_dict
if "use_cache" in kwargs:
final_booleans["use_cache"] = (
kwargs["use_cache"] if kwargs["use_cache"] is not None else getattr(config, "use_cache", None)
)
return final_booleans
def unpack_inputs(func):
"""
Decorator that processes the inputs to a Keras layer, passing them to the layer as keyword arguments. This enables
downstream use of the inputs by their variable name, even if they arrive packed as a dictionary in the first input
(common case in Keras).
Args:
func (`callable`):
The callable function of the TensorFlow model.
Returns:
A callable that wraps the original `func` with the behavior described above.
"""
original_signature = inspect.signature(func)
@functools.wraps(func)
def run_call_with_unpacked_inputs(self, *args, **kwargs):
# isolates the actual `**kwargs` for the decorated function
kwargs_call = {key: val for key, val in kwargs.items() if key not in dict(original_signature.parameters)}
fn_args_and_kwargs = {key: val for key, val in kwargs.items() if key not in kwargs_call}
fn_args_and_kwargs.update({"kwargs_call": kwargs_call})
# move any arg into kwargs, if they exist
fn_args_and_kwargs.update(dict(zip(func.__code__.co_varnames[1:], args)))
# Encoder Decoder models delegate the application of the configuration options to their inner models.
if "EncoderDecoder" in self.__class__.__name__:
config = None
else:
config = self.config
unpacked_inputs = input_processing(func, config, **fn_args_and_kwargs)
return func(self, **unpacked_inputs)
# Keras enforces the first layer argument to be passed, and checks it through `inspect.getfullargspec()`. This
# function does not follow wrapper chains (i.e. ignores `functools.wraps()`), meaning that without the line below
# Keras would attempt to check the first argument against the literal signature of the wrapper.
run_call_with_unpacked_inputs.__signature__ = original_signature
return run_call_with_unpacked_inputs
def input_processing(func, config, **kwargs):
"""
Process the input of each TensorFlow model including the booleans. In case of a list of symbolic inputs, each input
has to be named accordingly to the parameters name, i.e. `input_ids = keras.Input(shape=(128,), dtype='int32',
name="input_ids")` otherwise the order of the tensors will not be guaranteed during the training.
Args:
func (`callable`):
The callable function of the TensorFlow model.
config ([`PretrainedConfig`]):
The config of the running model.
**kwargs:
The inputs of the model.
Returns:
Two lists, one for the missing layers, and another one for the unexpected layers.
"""
signature = dict(inspect.signature(func).parameters)
has_kwargs = bool(signature.pop("kwargs", None))
signature.pop("self", None)
parameter_names = list(signature.keys())
main_input_name = parameter_names[0]
main_input = kwargs.pop(main_input_name, None)
output = {}
allowed_types = (tf.Tensor, bool, int, ModelOutput, tuple, list, dict, np.ndarray)
if "inputs" in kwargs["kwargs_call"]:
warnings.warn(
"The `inputs` argument is deprecated and will be removed in a future version, use `input_ids` instead.",
FutureWarning,
)
output["input_ids"] = kwargs["kwargs_call"].pop("inputs")
if "decoder_cached_states" in kwargs["kwargs_call"]:
warnings.warn(
"The `decoder_cached_states` argument is deprecated and will be removed in a future version, use"
" `past_key_values` instead.",
FutureWarning,
)
output["past_key_values"] = kwargs["kwargs_call"].pop("decoder_cached_states")
if "past" in kwargs["kwargs_call"] and "past_key_values" in parameter_names:
warnings.warn(
"The `past` argument is deprecated and will be removed in a future version, use `past_key_values`"
" instead.",
FutureWarning,
)
kwargs["past_key_values"] = kwargs["kwargs_call"].pop("past")
elif "past_key_values" in kwargs["kwargs_call"] and "past" in parameter_names:
kwargs["past"] = kwargs["kwargs_call"].pop("past_key_values")
if has_kwargs:
output["kwargs"] = kwargs.pop("kwargs_call", {})
else:
if len(kwargs["kwargs_call"]) > 0:
raise ValueError(
"The following keyword arguments are not supported by this model:"
f" {list(kwargs['kwargs_call'].keys())}."
)
kwargs.pop("kwargs_call")
for k, v in kwargs.items():
if isinstance(v, allowed_types) or tf.is_tensor(v) or v is None:
output[k] = v
else:
raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.")
if isinstance(main_input, (tuple, list)):
for i, input in enumerate(main_input):
# EagerTensors don't allow to use the .name property so we check for a real Tensor
if is_tf_symbolic_tensor(input):
# Tensor names have always the pattern `name:id` then we check only the
# `name` part
tensor_name = input.name.split(":")[0]
if tensor_name in parameter_names:
output[tensor_name] = input
else:
output[parameter_names[i]] = input
elif isinstance(input, allowed_types) or input is None:
output[parameter_names[i]] = input
else:
raise ValueError(
f"Data of type {type(input)} is not allowed only {allowed_types} is accepted for"
f" {parameter_names[i]}."
)
elif isinstance(main_input, Mapping):
if "inputs" in main_input:
warnings.warn(
"The `inputs` argument is deprecated and will be removed in a future version, use `input_ids`"
" instead.",
FutureWarning,
)
output["input_ids"] = main_input.pop("inputs")
if "decoder_cached_states" in main_input:
warnings.warn(
"The `decoder_cached_states` argument is deprecated and will be removed in a future version, use"
" `past_key_values` instead.",
FutureWarning,
)
output["past_key_values"] = main_input.pop("decoder_cached_states")
for k, v in dict(main_input).items():
if isinstance(v, allowed_types) or v is None:
output[k] = v
elif k not in parameter_names and "args" not in parameter_names:
logger.warning(
f"The parameter {k} does not belongs to the parameter list {parameter_names} and will be ignored."
)
continue
else:
raise ValueError(f"Data of type {type(v)} is not allowed only {allowed_types} is accepted for {k}.")
else:
if tf.is_tensor(main_input) or main_input is None:
output[main_input_name] = main_input
else:
raise ValueError(
f"Data of type {type(main_input)} is not allowed only {allowed_types} is accepted for"
f" {main_input_name}."
)
# Populates any unspecified argument with their default value, according to the signature.
for name in parameter_names:
if name not in list(output.keys()) and name != "args":
output[name] = kwargs.pop(name, signature[name].default)
# When creating a SavedModel TF calls the method with LayerCall.__call__(args, **kwargs)
# So to respect the proper output we have to add this exception
if "args" in output:
if output["args"] is not None and is_tf_symbolic_tensor(output["args"]):
tensor_name = output["args"].name.split(":")[0]
output[tensor_name] = output["args"]
else:
# `args` in this case is always the first parameter, then `input_ids`
output["input_ids"] = output["args"]
del output["args"]
if "kwargs" in output:
del output["kwargs"]
cast_output = {}
for key, val in output.items():
if isinstance(val, tf.Tensor) and val.dtype == tf.int64:
cast_output[key] = tf.cast(val, tf.int32)
elif isinstance(val, np.ndarray) and val.dtype == np.int64:
cast_output[key] = val.astype(np.int32)
else:
cast_output[key] = val
output = cast_output
del cast_output
if config is not None:
boolean_dict = {
k: v
for k, v in output.items()
if k in ["return_dict", "output_attentions", "output_hidden_states", "use_cache"]
}
output.update(
booleans_processing(
config=config,
**boolean_dict,
)
)
return output
def dtype_byte_size(dtype):
"""
Returns the size (in bytes) occupied by one parameter of type `dtype`.
Example:
```py
>>> dtype_byte_size(tf.float32)
4
```
"""
if dtype == tf.bool:
return 1 / 8
bit_search = re.search(r"[^\d](\d+)$", dtype.name)
if bit_search is None:
raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
bit_size = int(bit_search.groups()[0])
return bit_size // 8
def strip_model_name_and_prefix(name, _prefix=None):
if _prefix is not None and name.startswith(_prefix):
name = name[len(_prefix) :]
if name.startswith("/"):
name = name[1:]
if "model." not in name and len(name.split("/")) > 1:
name = "/".join(name.split("/")[1:])
return name
def tf_shard_checkpoint(weights, max_shard_size="10GB", weights_name: str = TF2_WEIGHTS_NAME):
"""
Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
given size.
The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
[6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].
<Tip warning={true}>
If one of the model's weight is bigger that `max_shard_size`, it will end up in its own sub-checkpoint which will
have a size greater than `max_shard_size`.
</Tip>
Args:
weights (`Dict[str, tf.RessourceVariable]`): The list of tf.RessourceVariable of a model to save.
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
(like `"5MB"`).
"""
max_shard_size = convert_file_size_to_int(max_shard_size)
sharded_state_dicts = []
current_block = []
current_block_size = 0
total_size = 0
for item in weights:
weight_size = item.numpy().size * dtype_byte_size(item.dtype)
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
sharded_state_dicts.append(current_block)
current_block = []
current_block_size = 0
current_block.append(item)
current_block_size += weight_size
total_size += weight_size
# Add the last block
sharded_state_dicts.append(current_block)
# If we only have one shard, we return it
if len(sharded_state_dicts) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
weight_map = {}
shards = {}
for idx, shard in enumerate(sharded_state_dicts):
shard_file = weights_name.replace(".h5", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.h5")
shard_file = shard_file.replace(
".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
)
shards[shard_file] = shard
for weight in shard:
weight_name = weight.name
weight_map[weight_name] = shard_file
# Add the metadata
metadata = {"total_size": total_size}
index = {"metadata": metadata, "weight_map": weight_map}
return shards, index
def load_tf_sharded_weights(model, shard_files, ignore_mismatched_sizes=False, strict=False, _prefix=None):
"""
This is the same as `load_tf_weights` but for a sharded checkpoint. Detect missing and unexpected layers and load
the TF weights from the shard file accordingly to their names and shapes.
This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
loaded in the model.
Args:
model (`keras.models.Model`): The model in which to load the checkpoint.
shard_files (`str` or `os.PathLike`): A list containing the sharded checkpoint names.
ignore_mismatched_sizes`bool`, *optional`, defaults to `True`):
Whether or not to ignore the mismatch between the sizes
strict (`bool`, *optional*, defaults to `True`):
Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.
Returns:
Three lists, one for the missing layers, another one for the unexpected layers, and a last one for the
mismatched layers.
"""
# Load the index
unexpected_keys = set()
saved_keys = set()
mismatched_keys = set()
# Since TF adds the name of the class to its weights, and uses the index and not the name of the layer to load
# the weight, we have to get rid of the first prefix of the name of the layer.
model_keys = set()
model_layer_map = {}
for i, k in enumerate(model.weights):
layer_name = k.name
if _prefix is not None and layer_name.startswith(_prefix):
layer_name = layer_name[len(_prefix) :]
layer_name = layer_name.lstrip("/")
if not ("model." in layer_name or len(layer_name.split("/")) == 1):
layer_name = "/".join(layer_name.split("/")[1:])
model_keys.add(layer_name)
model_layer_map[layer_name] = i
for shard_file in shard_files:
saved_weight_names_set, unexpected_keys_set, mismatched_keys_set = load_tf_shard(
model,
model_layer_map,
shard_file,
ignore_mismatched_sizes=ignore_mismatched_sizes,
_prefix=_prefix,
)
saved_keys.update(saved_weight_names_set)
unexpected_keys.update(unexpected_keys_set)
mismatched_keys.update(mismatched_keys_set)
gc.collect()
missing_keys = model_keys - saved_keys
if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}"
if len(missing_keys) > 0:
str_missing_keys = ",".join([f'"{k}"' for k in missing_keys])
error_message += f"\nMissing key(s): {str_missing_keys}."
if len(unexpected_keys) > 0:
str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys])
error_message += f"\nMissing key(s): {str_unexpected_keys}."
raise RuntimeError(error_message)
return missing_keys, unexpected_keys, mismatched_keys
def load_tf_shard(model, model_layer_map, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None):
"""
Loads a shard from a sharded checkpoint file. Can be either H5 or Safetensors.
Handles missing keys and unexpected keys.
Args:
model (`keras.models.Model`): Model in which the weights are loaded
model_layer_map (`Dict`): A dictionary mapping the layer name to the index of the layer in the model.
resolved_archive_file (`str`): Path to the checkpoint file from which the weights will be loaded
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`): Whether to ignore the mismatched keys
Returns:
`keras.models.Model`: Three lists, one for the layers that were found and succesfully restored (from the
shard file), one for the mismatched layers, and another one for the unexpected layers.
"""
saved_weight_names_set = set()
saved_weights = {}
mismatched_keys = set()
unexpected_keys = set()
# Read the H5 file
try:
with h5py.File(resolved_archive_file, "r") as sharded_checkpoint_file:
# Retrieve the name of each layer from the H5 file
saved_h5_model_layers_name = set(load_attributes_from_hdf5_group(sharded_checkpoint_file, "layer_names"))
weight_value_tuples = []
# Compute missing and unexpected sub layers
# Store the weights in list of tuples that looks like [(weight_object, value_of_weight),...]
for layer_name in saved_h5_model_layers_name:
h5_layer_object = sharded_checkpoint_file[layer_name]
saved_weights[layer_name] = np.asarray(h5_layer_object)
saved_weight_names_set.add(layer_name)
if layer_name not in model_layer_map:
unexpected_keys.add(layer_name)
else:
symbolic_weight = model.weights[model_layer_map[layer_name]]
saved_weight_value = saved_weights[layer_name]
# If the current weight is found
if saved_weight_value is not None:
# Check if the shape of the current weight and the one from the H5 file are different
if K.int_shape(symbolic_weight) != saved_weight_value.shape:
# If yes we reshape the weight from the H5 file accordingly to the current weight
# If the two shapes are not compatible we raise an issue
try:
array = np.reshape(saved_weight_value, K.int_shape(symbolic_weight))
except ValueError as e:
if ignore_mismatched_sizes:
mismatched_keys.add(
(layer_name, saved_weight_value.shape, K.int_shape(symbolic_weight))
)
continue
else:
raise e
else:
array = saved_weight_value
# We create the tuple that will be loaded and add it to the final list
weight_value_tuples.append((symbolic_weight, array))
K.batch_set_value(weight_value_tuples)
return saved_weight_names_set, unexpected_keys, mismatched_keys
except Exception as e:
try:
with open(resolved_archive_file) as f:
if f.read().startswith("version"):
raise OSError(
"You seem to have cloned a repository without having git-lfs installed. Please install "
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
"you cloned."
)
else:
raise ValueError(
f"Unable to locate the file {resolved_archive_file} which is necessary to load this pretrained"
" model. Make sure you have saved the model properly."
) from e
except (UnicodeDecodeError, ValueError):
raise OSError(
f"Unable to load weights from TF checkpoint file for '{resolved_archive_file}' "
f"at '{resolved_archive_file}'. "
"If you tried to load a TF model from a sharded checkpoint, you should try converting the model "
"by loading it in pytorch and saving it localy. A convertion script should be realeased soon."
)
def load_tf_sharded_weights_from_safetensors(
model, shard_files, ignore_mismatched_sizes=False, strict=False, _prefix=None
):
"""
This is the same as `load_tf_weights_from_safetensors` but for a sharded TF-format safetensors checkpoint.
Detect missing and unexpected layers and load the TF weights from the shard file accordingly to their names and
shapes.
This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
loaded in the model.
Args:
model (`keras.models.Model`): The model in which to load the checkpoint.
shard_files (`str` or `os.PathLike`): A list containing the sharded checkpoint names.
ignore_mismatched_sizes`bool`, *optional`, defaults to `True`):
Whether or not to ignore the mismatch between the sizes
strict (`bool`, *optional*, defaults to `True`):
Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.
Returns:
Three lists, one for the missing layers, another one for the unexpected layers, and a last one for the
mismatched layers.
"""
# Load the index
unexpected_keys = set()
all_missing_keys = []
mismatched_keys = set()
for shard_file in shard_files:
missing_layers, unexpected_layers, mismatched_layers = load_tf_weights_from_safetensors(
model,
shard_file,
ignore_mismatched_sizes=ignore_mismatched_sizes,
_prefix=_prefix,
)
all_missing_keys.append(set(missing_layers))
unexpected_keys.update(unexpected_layers)
mismatched_keys.update(mismatched_layers)
gc.collect()
missing_keys = set.intersection(*all_missing_keys)
if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}"
if len(missing_keys) > 0:
str_missing_keys = ",".join([f'"{k}"' for k in missing_keys])
error_message += f"\nMissing key(s): {str_missing_keys}."
if len(unexpected_keys) > 0:
str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys])
error_message += f"\nMissing key(s): {str_unexpected_keys}."
raise RuntimeError(error_message)
return missing_keys, unexpected_keys, mismatched_keys
def load_tf_weights(model, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None):
"""
Detect missing and unexpected layers and load the TF weights from the shard file accordingly to their names and
shapes.
Args:
model (`keras.models.Model`):
The model to load the weights into.
resolved_archive_file (`str`):
The location of the H5 file.
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
Whether or not to ignore weights with shapes that don't match between the checkpoint of the model.
Returns:
Three lists, one for the missing layers, another one for the unexpected layers, and a last one for the
mismatched layers.
"""
if resolved_archive_file.endswith(".safetensors"):
load_function = load_tf_weights_from_safetensors
else:
load_function = load_tf_weights_from_h5
return load_function(
model, resolved_archive_file, ignore_mismatched_sizes=ignore_mismatched_sizes, _prefix=_prefix
)
def load_tf_weights_from_h5(model, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None):
mismatched_layers = []
# Read the H5 file
with h5py.File(resolved_archive_file, "r") as sharded_checkpoint_file:
# Retrieve the name of each layer from the H5 file
saved_h5_model_layers_name = set(load_attributes_from_hdf5_group(sharded_checkpoint_file, "layer_names"))
# Find the missing layers from the high level list of layers
missing_layers = list({layer.name for layer in model.layers} - saved_h5_model_layers_name)
# Find the unexpected layers from the high level list of layers
unexpected_layers = list(saved_h5_model_layers_name - {layer.name for layer in model.layers})
saved_weight_names_set = set()
symbolic_weights_names = set()
weight_value_tuples = []
# Compute missing and unexpected sub layers
# Store the weights in list of tuples that looks like [(weight_object, value_of_weight),...]
for layer in model.layers:
# if layer_name from the H5 file belongs to the layers from the instantiated model
if layer.name in saved_h5_model_layers_name:
# Get the H5 layer object from its name
h5_layer_object = sharded_checkpoint_file[layer.name]
# Get all the weights as a list from the layer object
symbolic_weights = layer.trainable_weights + layer.non_trainable_weights
saved_weights = {}
# Create a dict from the H5 saved model that looks like {"weight_name": weight_value}
# And a set with only the names
for weight_name in load_attributes_from_hdf5_group(h5_layer_object, "weight_names"):
# TF names always start with the model name so we ignore it
name = "/".join(weight_name.split("/")[1:])
if _prefix is not None:
name = _prefix + "/" + name
saved_weights[name] = np.asarray(h5_layer_object[weight_name])
# Add the updated name to the final list for computing missing/unexpected values
saved_weight_names_set.add(name)
# Loop over each weights from the instantiated model and compare with the weights from the H5 file
for symbolic_weight in symbolic_weights:
# TF names always start with the model name so we ignore it
if _prefix is not None:
delimeter = len(_prefix.split("/"))
symbolic_weight_name = "/".join(
symbolic_weight.name.split("/")[:delimeter]
+ symbolic_weight.name.split("/")[delimeter + 1 :]
)
else:
symbolic_weight_name = "/".join(symbolic_weight.name.split("/")[1:])
# here we check if the current weight is among the weights from the H5 file
# If yes, get the weight_value of the corresponding weight from the H5 file
# If not, make the value to None
saved_weight_value = saved_weights.get(symbolic_weight_name, None)
# Retrocompatibility patch: some embeddings are stored with the weights name (e.g. Bart's
# `model.shared/embeddings:0` are stored as `model.shared/weights:0`)
if saved_weight_value is None and symbolic_weight_name.endswith("embeddings:0"):
symbolic_weight_name = symbolic_weight_name[:-12] + "weight:0"
saved_weight_value = saved_weights.get(symbolic_weight_name, None)
# Add the updated name to the final list for computing missing/unexpected values
symbolic_weights_names.add(symbolic_weight_name)
# If the current weight is found
if saved_weight_value is not None:
# Check if the shape of the current weight and the one from the H5 file are different
if K.int_shape(symbolic_weight) != saved_weight_value.shape:
# If yes we reshape the weight from the H5 file accordingly to the current weight
# If the two shapes are not compatible we raise an issue
try:
array = np.reshape(saved_weight_value, K.int_shape(symbolic_weight))
except ValueError as e:
if ignore_mismatched_sizes:
mismatched_layers.append(
(symbolic_weight_name, saved_weight_value.shape, K.int_shape(symbolic_weight))
)
continue
else:
raise e
else:
array = saved_weight_value
# We create the tuple that will be loaded and add it to the final list
weight_value_tuples.append((symbolic_weight, array))
# Load all the weights
K.batch_set_value(weight_value_tuples)
# Compute the missing and unexpected layers
missing_layers.extend(list(symbolic_weights_names - saved_weight_names_set))
unexpected_layers.extend(list(saved_weight_names_set - symbolic_weights_names))
return missing_layers, unexpected_layers, mismatched_layers
def load_tf_weights_from_safetensors(model, resolved_archive_file, ignore_mismatched_sizes=False, _prefix=None):
# Read the safetensors file
with safe_open(resolved_archive_file, framework="tf") as safetensors_archive:
mismatched_layers = []
weight_names = [strip_model_name_and_prefix(w.name, _prefix=_prefix) for w in model.weights]
loaded_weight_names = list(safetensors_archive.keys())
# Find the missing layers from the high level list of layers
missing_layers = list(set(weight_names) - set(loaded_weight_names))
# Find the unexpected layers from the high level list of layers
unexpected_layers = list(set(loaded_weight_names) - set(weight_names))
for weight in model.weights:
weight_name = strip_model_name_and_prefix(weight.name, _prefix=_prefix)
if weight_name in loaded_weight_names:
weight_value = safetensors_archive.get_tensor(weight_name)
# Check if the shape of the current weight and the one from the H5 file are different
if K.int_shape(weight) != weight_value.shape:
# If yes we reshape the weight from the H5 file accordingly to the current weight
# If the two shapes are not compatible we raise an issue
try:
weight_value = tf.reshape(weight_value, K.int_shape(weight))
except (ValueError, tf.errors.InvalidArgumentError) as e:
if ignore_mismatched_sizes:
mismatched_layers.append((weight_name, weight_value.shape, K.int_shape(weight)))
continue
else:
raise e
K.set_value(weight, weight_value) # weight.assign() might break if weight is a DTensor
return missing_layers, unexpected_layers, mismatched_layers
def init_copy_embeddings(old_embeddings, new_num_tokens):
r"""
This function aims to reduce the embeddings in case new_num_tokens < old_num_tokens or to pad with -1 in case
new_num_tokens > old_num_tokens. A mask is also computed in order to know which weight in the embeddings should be
kept or not. Example:
- if new_num_tokens=5 and old_num_tokens=4 and old_embeddings=[w1,w2,w3,w4]
- mask=[True,True,True,True,False] and current_weights=[w1,w2,w3,w4,-1]
- if new_num_tokens=4 and old_num_tokens=5 and old_embeddings=[w1,w2,w3,w4,w5]
- mask=[True,True,True,True] and current_weights=[w1,w2,w3,w4]
"""
old_num_tokens, old_embedding_dim = shape_list(old_embeddings)
size_diff = new_num_tokens - old_num_tokens
# initialize new embeddings
# Copy token embeddings from the previous ones
if tf.math.greater(size_diff, 0):
# if the new size is greater than the old one, we extend the current embeddings with a padding until getting new size
# and we create a mask to properly identify the padded values and be replaced by the values of the newly created
# embeddings
current_weights = tf.pad(
old_embeddings.value(), tf.convert_to_tensor([[0, size_diff], [0, 0]]), constant_values=-1
)
num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
mask = tf.fill(tf.convert_to_tensor([num_tokens_to_copy, 1]), True)
mask = tf.pad(mask, tf.convert_to_tensor([[0, size_diff], [0, 0]]), constant_values=False)
else:
# if the new size if lower than the old one, we take the current embeddings until the new size
current_weights = tf.slice(
old_embeddings.value(),
tf.convert_to_tensor([0, 0]),
tf.convert_to_tensor([new_num_tokens, old_embedding_dim]),
)
mask = tf.fill(tf.convert_to_tensor([new_num_tokens, 1]), True)
return mask, current_weights
class TFPreTrainedModel(keras.Model, TFModelUtilsMixin, TFGenerationMixin, PushToHubMixin):
r"""
Base class for all TF models.
[`TFPreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
downloading and saving models as well as a few methods common to all models to:
- resize the input embeddings,
- prune heads in the self-attention heads.
Class attributes (overridden by derived classes):
- **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
for this model architecture.
- **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
classes of the same architecture adding modules on top of the base model.
- **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
models, `pixel_values` for vision models and `input_values` for speech models).
"""
config_class = None
base_model_prefix = ""
main_input_name = "input_ids"
_auto_class = None
_using_dummy_loss = None
_label_to_output_map = None
# a list of re pattern of tensor names to ignore from the model when loading the model weights
# (and avoid unnecessary warnings).
_keys_to_ignore_on_load_missing = None
# a list of re pattern of tensor names to ignore from the weights when loading the model weights
# (and avoid unnecessary warnings).
_keys_to_ignore_on_load_unexpected = None
_requires_load_weight_prefix = False
@property
def dummy_inputs(self) -> Dict[str, tf.Tensor]:
"""
Dummy inputs to build the network.
Returns:
`Dict[str, tf.Tensor]`: The dummy inputs.
"""
dummies = {}
for key, spec in self.input_signature.items():
# 2 is the most correct arbitrary size. I will not be taking questions
dummy_shape = [dim if dim is not None else 2 for dim in spec.shape]
if spec.shape[0] is None:
# But let's make the batch size 1 to save memory anyway
dummy_shape[0] = 1
dummies[key] = tf.ones(shape=dummy_shape, dtype=spec.dtype)
if key == "token_type_ids":
# Some models have token_type_ids but with a vocab_size of 1
dummies[key] = tf.zeros_like(dummies[key])
if self.config.add_cross_attention and "encoder_hidden_states" in inspect.signature(self.call).parameters:
if "encoder_hidden_states" not in dummies:
if self.main_input_name == "input_ids":
dummies["encoder_hidden_states"] = tf.ones(
shape=(1, 2, self.config.hidden_size), dtype=tf.float32, name="encoder_hidden_states"
)
else:
raise NotImplementedError(
"Model has cross-attention but we couldn't infer the shape for the encoder hidden states. Please manually override dummy_inputs!"
)
return dummies
def build_in_name_scope(self):
with tf.name_scope(self.name):
self.build(input_shape=None)
@property
def framework(self) -> str:
"""
:str: Identifies that this is a TensorFlow model.
"""
return "tf"
def build(self, input_shape=None):
pass # This is just here to make sure we don't call the superclass build()
def __init__(self, config, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
if not isinstance(config, PretrainedConfig):
raise ValueError(
f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
"`PretrainedConfig`. To create a model from a pretrained model use "
f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
# Save config and origin of the pretrained weights if given in model
self.config = config
self.name_or_path = config.name_or_path
self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None
self._set_save_spec(self.input_signature)
def get_config(self):
return self.config.to_dict()
@functools.wraps(keras.Model.fit)
def fit(self, *args, **kwargs):
args, kwargs = convert_batch_encoding(*args, **kwargs)
return super().fit(*args, **kwargs)
@functools.wraps(keras.Model.train_on_batch)
def train_on_batch(self, *args, **kwargs):
args, kwargs = convert_batch_encoding(*args, **kwargs)
return super().train_on_batch(*args, **kwargs)
@functools.wraps(keras.Model.test_on_batch)
def test_on_batch(self, *args, **kwargs):
args, kwargs = convert_batch_encoding(*args, **kwargs)
return super().test_on_batch(*args, **kwargs)
@functools.wraps(keras.Model.predict_on_batch)
def predict_on_batch(self, *args, **kwargs):
args, kwargs = convert_batch_encoding(*args, **kwargs)
return super().predict_on_batch(*args, **kwargs)
@functools.wraps(keras.Model.predict)
def predict(self, *args, **kwargs):
args, kwargs = convert_batch_encoding(*args, **kwargs)
return super().predict(*args, **kwargs)
@functools.wraps(keras.Model.evaluate)
def evaluate(self, *args, **kwargs):
args, kwargs = convert_batch_encoding(*args, **kwargs)
return super().evaluate(*args, **kwargs)
@classmethod
def from_config(cls, config, **kwargs):
if isinstance(config, PretrainedConfig):
return cls._from_config(config, **kwargs)
return cls._from_config(cls.config_class.from_dict(config, **kwargs))
@classmethod
def _from_config(cls, config, **kwargs):
"""
All context managers that the model should be initialized under go here.
"""
return cls(config, **kwargs)
def get_head_mask(self, head_mask: tf.Tensor | None, num_hidden_layers: int) -> tf.Tensor:
"""
Prepare the head mask if needed.
Args:
head_mask (`tf.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
num_hidden_layers (`int`):
The number of hidden layers in the model.
Returns:
`tf.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
`[None]` for each layer.
"""
if head_mask is not None:
head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
else:
head_mask = [None] * num_hidden_layers
return head_mask
def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
"""-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
if head_mask.shape.rank == 1:
head_mask = head_mask[None, None, :, None, None]
head_mask = tf.repeat(head_mask, repeats=num_hidden_layers, axis=0)
elif head_mask.shape.rank == 2:
head_mask = head_mask[:, None, :, None, None]
assert head_mask.shape.rank == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
head_mask = tf.cast(head_mask, tf.float32) # switch to float if need + fp16 compatibility
return head_mask
@tf.function
def serving(self, inputs):
"""
Args:
Method used for serving the model. Does not have a specific signature, but will be specialized as concrete
functions when saving with `save_pretrained`.
inputs (`Dict[str, tf.Tensor]`):
The input of the saved model as a dictionary of tensors.
"""
output = self.call(inputs)
return self.serving_output(output)
@property
def input_signature(self) -> Dict[str, tf.TensorSpec]:
"""
This property should return a dict mapping input names to tf.TensorSpec objects, representing the expected
shape and dtype for model inputs. It is used for both serving and for generating dummy inputs.
"""
model_inputs = list(inspect.signature(self.call).parameters)
sig = {}
if "input_ids" in model_inputs:
if self.__class__.__name__.endswith("ForMultipleChoice"):
text_dims = 3
else:
text_dims = 2
for input_name in (
"input_ids",
"attention_mask",
"token_type_ids",
"decoder_input_ids",
"decoder_attention_mask",
):
if input_name in model_inputs:
sig[input_name] = tf.TensorSpec([None] * text_dims, tf.int32, name=input_name)
if "pixel_values" in model_inputs:
pixel_values_shape = [None, None, None, None]
if hasattr(self.config, "vision_config"):
vision_config = self.config.vision_config
else:
vision_config = self.config
if hasattr(vision_config, "num_channels"):
pixel_values_shape[1] = vision_config.num_channels
else:
raise NotImplementedError(
"Could not infer number of channels from config, please override input_signature to specify input shapes."
)
if hasattr(vision_config, "image_size"):
pixel_values_shape[2] = pixel_values_shape[3] = vision_config.image_size
elif hasattr(vision_config, "input_size"):
pixel_values_shape[2] = pixel_values_shape[3] = vision_config.input_size
else:
raise NotImplementedError(
"Could not infer input image shape from config, please override input_signature to specify input shapes."
)
sig["pixel_values"] = tf.TensorSpec(pixel_values_shape, tf.float32, name="pixel_values")
if "input_features" in model_inputs:
raise NotImplementedError("Audio models need a manually defined input_signature")
return sig
def serving_output(self, output):
"""
Prepare the output of the saved model. Can be overridden if specific serving modifications are required.
"""
if not isinstance(output, ModelOutput):
return output
for key in output:
if key.endswith("hidden_states") and not getattr(self.config, "output_hidden_states", False):
output[key] = None
elif key.endswith("attentions") and not getattr(self.config, "output_attentions", False):
output[key] = None
elif key == "past_key_values" and not getattr(self.config, "use_cache", False):
output[key] = None
elif key == "cross_attentions" and not (
getattr(self.config, "output_attentions", False) and getattr(self.config, "add_cross_attention", False)
):
output[key] = None
if isinstance(output[key], (tuple, list)):
try:
output[key] = tf.convert_to_tensor(output[key])
except (ValueError, tf.errors.InvalidArgumentError):
pass # Layers may not have the same dimensions
return output
@classmethod
def can_generate(cls) -> bool:
"""
Returns whether this model can generate sequences with `.generate()`.
Returns:
`bool`: Whether this model can generate sequences with `.generate()`.
"""
# Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation.
# Alternativelly, the model can also have a custom `generate` function.
if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate):
return False
return True
def get_input_embeddings(self) -> keras.layers.Layer:
"""
Returns the model's input embeddings layer.
Returns:
`tf.Variable`: The embeddings layer mapping vocabulary to hidden states.
"""
main_layer = getattr(self, self.base_model_prefix, self)
if main_layer is not self:
return main_layer.get_input_embeddings()
else:
raise NotImplementedError
def _save_checkpoint(self, checkpoint_dir, epoch):
if not os.path.isdir(checkpoint_dir):
os.mkdir(checkpoint_dir)
# We avoid tf.train.checkpoint or saving weights in TF format, even though that includes optimizer
# state for us, because it requires special handling for objects like custom losses, which we use
# internally and which users are likely to use too
weights_path = os.path.join(checkpoint_dir, "weights.h5")
self.save_weights(weights_path)
extra_data = {"epoch": epoch, "optimizer_state": self.optimizer.get_weights()}
extra_data_path = os.path.join(checkpoint_dir, "extra_data.pickle")
with open(extra_data_path, "wb") as f:
pickle.dump(extra_data, f)
def prepare_tf_dataset(
self,
dataset: "datasets.Dataset", # noqa:F821
batch_size: int = 8,
shuffle: bool = True,
tokenizer: Optional["PreTrainedTokenizerBase"] = None,
collate_fn: Optional[Callable] = None,
collate_fn_args: Optional[Dict[str, Any]] = None,
drop_remainder: Optional[bool] = None,
prefetch: bool = True,
):
"""
Wraps a HuggingFace [`~datasets.Dataset`] as a `tf.data.Dataset` with collation and batching. This method is
designed to create a "ready-to-use" dataset that can be passed directly to Keras methods like `fit()` without
further modification. The method will drop columns from the dataset if they don't match input names for the
model. If you want to specify the column names to return rather than using the names that match this model, we
recommend using `Dataset.to_tf_dataset()` instead.
Args:
dataset (`Any`):
A [~`datasets.Dataset`] to be wrapped as a `tf.data.Dataset`.
batch_size (`int`, defaults to 8):
The size of batches to return.
shuffle (`bool`, defaults to `True`):
Whether to return samples from the dataset in random order. Usually `True` for training datasets and
`False` for validation/test datasets.
tokenizer ([`PreTrainedTokenizerBase`], *optional*):
A `PreTrainedTokenizer` that will be used to pad samples to create batches. Has no effect if a specific
`collate_fn` is passed instead.
collate_fn (`Callable`, *optional*):
A function that collates samples from the dataset into a single batch. Defaults to
`DefaultDataCollator` if no `tokenizer` is supplied or `DataCollatorWithPadding` if a `tokenizer` is
passed.
collate_fn_args (`Dict[str, Any]`, *optional*):
A dict of arguments to pass to the `collate_fn` alongside the list of samples.
drop_remainder (`bool`, *optional*):
Whether to drop the final batch, if the batch_size does not evenly divide the dataset length. Defaults
to the same setting as `shuffle`.
prefetch (`bool`, defaults to `True`):
Whether to add prefetching to the end of the `tf.data` pipeline. This is almost always beneficial for
performance, but can be disabled in edge cases.
Returns:
`Dataset`: A `tf.data.Dataset` which is ready to pass to the Keras API.
"""
requires_backends(self, ["datasets"])
import datasets
if collate_fn is None:
if tokenizer is None:
collate_fn = DefaultDataCollator(return_tensors="np")
else:
collate_fn = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="np")
if collate_fn_args is None:
collate_fn_args = {}
if not isinstance(dataset, datasets.Dataset):
raise TypeError("Dataset argument should be a datasets.Dataset!")
model_inputs = list(inspect.signature(self.call).parameters)
model_labels = find_labels(self.__class__)
if "cols_to_retain" in list(inspect.signature(dataset._get_output_signature).parameters.keys()):
output_signature, _ = dataset._get_output_signature(
dataset,
batch_size=None,
collate_fn=collate_fn,
collate_fn_args=collate_fn_args,
cols_to_retain=model_inputs,
)
else:
# TODO Matt: This is a workaround for older versions of datasets that are missing the `cols_to_retain`
# argument. We should remove this once the minimum supported version of datasets is > 2.3.2
unwanted_columns = [
feature
for feature in dataset.features
if feature not in model_inputs and feature not in ("label_ids", "label")
]
dataset = dataset.remove_columns(unwanted_columns)
output_signature, _ = dataset._get_output_signature(
dataset, batch_size=None, collate_fn=collate_fn, collate_fn_args=collate_fn_args
)
output_columns = list(output_signature.keys())
feature_cols = [col for col in output_columns if col in model_inputs and col not in model_labels]
label_cols = [col for col in output_columns if col in model_labels]
# Backwards compatibility for older versions of datasets. Previously, if `columns` or `label_cols`
# were a single element list, the returned element spec would be a single element. Now, passing [feature]
# will return a dict structure {"feature": feature}, and passing a single string will return a single element.
feature_cols = feature_cols[0] if len(feature_cols) == 1 else feature_cols
label_cols = label_cols[0] if len(label_cols) == 1 else label_cols
if drop_remainder is None:
drop_remainder = shuffle
tf_dataset = dataset.to_tf_dataset(
columns=feature_cols,
label_cols=label_cols,
batch_size=batch_size,
shuffle=shuffle,
drop_remainder=drop_remainder,
collate_fn=collate_fn,
collate_fn_args=collate_fn_args,
prefetch=prefetch,
)
return tf_dataset
def compile(
self,
optimizer="rmsprop",
loss="auto_with_warning",
metrics=None,
loss_weights=None,
weighted_metrics=None,
run_eagerly=None,
steps_per_execution=None,
**kwargs,
):
"""
This is a thin wrapper that sets the model's loss output head as the loss if the user does not specify a loss
function themselves.
"""
if loss in ("auto_with_warning", "passthrough"): # "passthrough" for workflow backward compatibility
logger.info(
"No loss specified in compile() - the model's internal loss computation will be used as the "
"loss. Don't panic - this is a common way to train TensorFlow models in Transformers! "
"To disable this behaviour please pass a loss argument, or explicitly pass "
"`loss=None` if you do not want your model to compute a loss. You can also specify `loss='auto'` to "
"get the internal loss without printing this info string."
)
loss = "auto"
if loss == "auto":
loss = dummy_loss
self._using_dummy_loss = True
else:
self._using_dummy_loss = False
parent_args = list(inspect.signature(keras.Model.compile).parameters.keys())
# This argument got renamed, we need to support both versions
if "steps_per_execution" in parent_args:
super().compile(
optimizer=optimizer,
loss=loss,
metrics=metrics,
loss_weights=loss_weights,
weighted_metrics=weighted_metrics,
run_eagerly=run_eagerly,
steps_per_execution=steps_per_execution,
**kwargs,
)
else:
super().compile(
optimizer=optimizer,
loss=loss,
metrics=metrics,
loss_weights=loss_weights,
weighted_metrics=weighted_metrics,
run_eagerly=run_eagerly,
experimental_steps_per_execution=steps_per_execution,
**kwargs,
)
def compute_loss(self, *args, **kwargs):
if hasattr(keras.Model, "compute_loss"):
# This will be true in TF 2.8 or greater
return super().compute_loss(*args, **kwargs)
else:
warnings.warn(
"The old compute_loss method is deprecated as it conflicts with the Keras compute_loss "
"method added in TF 2.8. If you want the original HF compute_loss, please call "
"hf_compute_loss() instead. From TF versions >= 2.8, or Transformers versions >= 5, "
"calling compute_loss() will get the Keras method instead.",
FutureWarning,
)
return self.hf_compute_loss(*args, **kwargs)
def get_label_to_output_name_mapping(self):
arg_names = list(inspect.signature(self.call).parameters)
if self._label_to_output_map is not None:
return self._label_to_output_map
elif "start_positions" in arg_names:
return {"start_positions": "start_logits", "end_positions": "end_logits"}
elif "sentence_order_label" in arg_names:
return {"labels": "prediction_logits", "sentence_order_label": "sop_logits"}
elif "next_sentence_label" in arg_names:
return {"labels": "prediction_logits", "next_sentence_label": "seq_relationship_logits"}
elif "mc_labels" in arg_names:
return {"labels": "logits", "mc_labels": "mc_logits"}
else:
return {}
def train_step(self, data):
"""
A modification of Keras's default `train_step` that correctly handles matching outputs to labels for our models
and supports directly training on the loss output head. In addition, it ensures input keys are copied to the
labels where appropriate. It will also copy label keys into the input dict when using the dummy loss, to ensure
that they are available to the model during the forward pass.
"""
# We hardcode the most common renamings; models with weirder names can set `self._label_to_output_map`
arg_names = list(inspect.signature(self.call).parameters)
label_kwargs = find_labels(self.__class__)
label_to_output = self.get_label_to_output_name_mapping()
output_to_label = {val: key for key, val in label_to_output.items()}
if not self._using_dummy_loss and parse(tf.__version__) < parse("2.11.0"):
# Newer TF train steps leave this out
data = expand_1d(data)
x, y, sample_weight = keras.utils.unpack_x_y_sample_weight(data)
# If the inputs are mutable dictionaries, make a shallow copy of them because we will modify
# them during input/label pre-processing. This avoids surprising the user by wrecking their data.
# In addition, modifying mutable Python inputs makes XLA compilation impossible.
if isinstance(x, dict):
x = x.copy()
if isinstance(y, dict):
y = y.copy()
# When using a dummy loss, we ensure that separate labels are copied to the correct model arguments,
# if those keys are not already present in the input dict
if self._using_dummy_loss and y is not None:
# If y is a tensor and the model only has one label-like input, map y to that input
if len(label_kwargs) == 1 and isinstance(y, tf.Tensor):
if isinstance(x, tf.Tensor):
x = {arg_names[0]: x}
label_kwarg = next(iter(label_kwargs))
if label_kwarg not in x:
x[label_kwarg] = y
# Otherwise, copy keys from y to x as long as they weren't already present in x
elif isinstance(y, dict):
if isinstance(x, tf.Tensor):
x = {arg_names[0]: x}
for key, val in y.items():
if key in arg_names and key not in x:
x[key] = val
elif output_to_label.get(key, None) in arg_names and key not in x:
x[output_to_label[key]] = val
if y is None:
y = {key: val for key, val in x.items() if key in label_kwargs}
if not y and not self._using_dummy_loss:
raise ValueError("Could not find label column(s) in input dict and no separate labels were provided!")
if isinstance(y, dict):
# Rename labels at this point to match output heads
y = {label_to_output.get(key, key): val for key, val in y.items()}
# Run forward pass.
with tf.GradientTape() as tape:
if self._using_dummy_loss and "return_loss" in arg_names:
y_pred = self(x, training=True, return_loss=True)
else:
y_pred = self(x, training=True)
if self._using_dummy_loss:
loss = self.compiled_loss(y_pred.loss, y_pred.loss, sample_weight, regularization_losses=self.losses)
else:
loss = None
# This next block matches outputs to label keys. Tensorflow's standard method for doing this
# can get very confused if any of the keys contain nested values (e.g. lists/tuples of Tensors)
if isinstance(y, dict) and len(y) == 1:
if list(y.keys())[0] in y_pred.keys():
y_pred = y_pred[list(y.keys())[0]]
elif list(y_pred.keys())[0] == "loss":
y_pred = y_pred[1]
else:
y_pred = y_pred[0]
_, y = y.popitem()
elif isinstance(y, dict):
# If the labels are a dict, match keys from the output by name
y_pred = {key: val for key, val in y_pred.items() if key in y}
elif isinstance(y, tuple) or isinstance(y, list):
# If the labels are a tuple/list, match keys to the output by order, skipping the loss.
if list(y_pred.keys())[0] == "loss":
y_pred = y_pred.to_tuple()[1:]
else:
y_pred = y_pred.to_tuple()
y_pred = y_pred[: len(y)] # Remove unused fields in case those cause problems
else:
# If the labels are a single tensor, match them to the first non-loss tensor in the output
if list(y_pred.keys())[0] == "loss":
y_pred = y_pred[1]
else:
y_pred = y_pred[0]
if loss is None:
loss = self.compiled_loss(y, y_pred, sample_weight, regularization_losses=self.losses)
# Run backwards pass.
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
self.compiled_metrics.update_state(y, y_pred, sample_weight)
# Collect metrics to return
return_metrics = {}
for metric in self.metrics:
result = metric.result()
if isinstance(result, dict):
return_metrics.update(result)
else:
return_metrics[metric.name] = result
return return_metrics
def test_step(self, data):
"""
A modification of Keras's default `train_step` that correctly handles matching outputs to labels for our models
and supports directly training on the loss output head. In addition, it ensures input keys are copied to the
labels where appropriate. It will also copy label keys into the input dict when using the dummy loss, to ensure
that they are available to the model during the forward pass.
"""
# We hardcode the most common renamings; models with weirder names can set `self._label_to_output_map`
arg_names = list(inspect.signature(self.call).parameters)
label_kwargs = find_labels(self.__class__)
label_to_output = self.get_label_to_output_name_mapping()
output_to_label = {val: key for key, val in label_to_output.items()}
if not self._using_dummy_loss and parse(tf.__version__) < parse("2.11.0"):
# Newer versions leave this out
data = expand_1d(data)
x, y, sample_weight = keras.utils.unpack_x_y_sample_weight(data)
# If the inputs are mutable dictionaries, make a shallow copy of them because we will modify
# them during input/label pre-processing. This avoids surprising the user by wrecking their data.
# In addition, modifying mutable Python inputs makes XLA compilation impossible.
if isinstance(x, dict):
x = x.copy()
if isinstance(y, dict):
y = y.copy()
# When using a dummy loss, we ensure that separate labels are copied to the correct model arguments,
# if those keys are not already present in the input dict
if self._using_dummy_loss and y is not None:
arg_names = list(inspect.signature(self.call).parameters)
# If y is a tensor and the model only has one label-like input, map y to that input
if len(label_kwargs) == 1 and isinstance(y, tf.Tensor):
if isinstance(x, tf.Tensor):
x = {arg_names[0]: x}
label_kwarg = next(iter(label_kwargs))
if label_kwarg not in x:
x[label_kwarg] = y
# Otherwise, copy keys from y to x as long as they weren't already present in x
elif isinstance(y, dict):
if isinstance(x, tf.Tensor):
x = {arg_names[0]: x}
for key, val in y.items():
if key in arg_names and key not in x:
x[key] = val
elif output_to_label.get(key, None) in arg_names and key not in x:
x[output_to_label[key]] = val
if y is None:
y = {key: val for key, val in x.items() if key in label_kwargs}
if not y and not self._using_dummy_loss:
raise ValueError("Could not find label column(s) in input dict and no separate labels were provided!")
if isinstance(y, dict):
# Rename labels at this point to match output heads
y = {label_to_output.get(key, key): val for key, val in y.items()}
# Run forward pass.
if self._using_dummy_loss and "return_loss" in arg_names:
y_pred = self(x, return_loss=True, training=False)
else:
y_pred = self(x, training=False)
if self._using_dummy_loss:
loss = self.compiled_loss(y_pred.loss, y_pred.loss, sample_weight, regularization_losses=self.losses)
else:
loss = None
# This next block matches outputs to label keys. Tensorflow's standard method for doing this
# can get very confused if any of the keys contain nested values (e.g. lists/tuples of Tensors)
if isinstance(y, dict) and len(y) == 1:
if list(y.keys())[0] in y_pred.keys():
y_pred = y_pred[list(y.keys())[0]]
elif list(y_pred.keys())[0] == "loss":
y_pred = y_pred[1]
else:
y_pred = y_pred[0]
_, y = y.popitem()
elif isinstance(y, dict):
# If the labels are a dict, match keys from the output by name
y_pred = {key: val for key, val in y_pred.items() if key in y}
elif isinstance(y, tuple) or isinstance(y, list):
# If the labels are a tuple/list, match keys to the output by order, skipping the loss.
if list(y_pred.keys())[0] == "loss":
y_pred = y_pred.to_tuple()[1:]
else:
y_pred = y_pred.to_tuple()
y_pred = y_pred[: len(y)] # Remove unused fields in case those cause problems
else:
# If the labels are a single tensor, match them to the first non-loss tensor in the output
if list(y_pred.keys())[0] == "loss":
y_pred = y_pred[1]
else:
y_pred = y_pred[0]
if loss is None:
loss = self.compiled_loss(y, y_pred, sample_weight, regularization_losses=self.losses)
self.compiled_metrics.update_state(y, y_pred, sample_weight)
# Collect metrics to return
return_metrics = {}
for metric in self.metrics:
result = metric.result()
if isinstance(result, dict):
return_metrics.update(result)
else:
return_metrics[metric.name] = result
return return_metrics
def create_model_card(
self,
output_dir,
model_name: str,
language: Optional[str] = None,
license: Optional[str] = None,
tags: Optional[str] = None,
finetuned_from: Optional[str] = None,
tasks: Optional[str] = None,
dataset_tags: Optional[Union[str, List[str]]] = None,
dataset: Optional[Union[str, List[str]]] = None,
dataset_args: Optional[Union[str, List[str]]] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
output_dir (`str` or `os.PathLike`):
The folder in which to create the model card.
model_name (`str`, *optional*):
The name of the model.
language (`str`, *optional*):
The language of the model (if applicable)
license (`str`, *optional*):
The license of the model. Will default to the license of the pretrained model used, if the original
model given to the `Trainer` comes from a repo on the Hub.
tags (`str` or `List[str]`, *optional*):
Some tags to be included in the metadata of the model card.
finetuned_from (`str`, *optional*):
The name of the model used to fine-tune this one (if applicable). Will default to the name of the repo
of the original model given to the `Trainer` (if it comes from the Hub).
tasks (`str` or `List[str]`, *optional*):
One or several task identifiers, to be included in the metadata of the model card.
dataset_tags (`str` or `List[str]`, *optional*):
One or several dataset tags, to be included in the metadata of the model card.
dataset (`str` or `List[str]`, *optional*):
One or several dataset identifiers, to be included in the metadata of the model card.
dataset_args (`str` or `List[str]`, *optional*):
One or several dataset arguments, to be included in the metadata of the model card.
"""
# Avoids a circular import by doing this when necessary.
from .modelcard import TrainingSummary # tests_ignore
training_summary = TrainingSummary.from_keras(
self,
keras_history=self.history,
language=language,
license=license,
tags=tags,
model_name=model_name,
finetuned_from=finetuned_from,
tasks=tasks,
dataset_tags=dataset_tags,
dataset=dataset,
dataset_args=dataset_args,
)
model_card = training_summary.to_model_card()
with open(os.path.join(output_dir, "README.md"), "w") as f:
f.write(model_card)
def set_input_embeddings(self, value):
"""
Set model's input embeddings
Args:
value (`tf.Variable`):
The new weights mapping hidden states to vocabulary.
"""
main_layer = getattr(self, self.base_model_prefix)
if main_layer is None:
raise NotImplementedError("The model does not implements the base_model_prefix attribute.")
try:
main_layer.set_input_embeddings(value)
except AttributeError:
logger.info("Building the model")
self.build_in_name_scope()
main_layer.set_input_embeddings(value)
def get_output_embeddings(self) -> Union[None, keras.layers.Layer]:
"""
Returns the model's output embeddings
Returns:
`tf.Variable`: The new weights mapping vocabulary to hidden states.
"""
if self.get_lm_head() is not None:
lm_head = self.get_lm_head()
try:
return lm_head.get_output_embeddings()
except AttributeError:
logger.info("Building the model")
self.build_in_name_scope()
return lm_head().get_output_embeddings()
return None # Overwrite for models with output embeddings
def set_output_embeddings(self, value):
"""
Set model's output embeddings
Args:
value (`tf.Variable`):
The new weights mapping hidden states to vocabulary.
"""
if self.get_lm_head() is not None:
lm_head = self.get_lm_head()
try:
lm_head.set_output_embeddings(value)
except AttributeError:
logger.info("Building the model")
self.build_in_name_scope()
lm_head.set_output_embeddings(value)
def get_output_layer_with_bias(self) -> Union[None, keras.layers.Layer]:
"""
Get the layer that handles a bias attribute in case the model has an LM head with weights tied to the
embeddings
Return:
`keras.layers.Layer`: The layer that handles the bias, None if not an LM model.
"""
warnings.warn(
"The method get_output_layer_with_bias is deprecated. Please use `get_lm_head` instead.", FutureWarning
)
return self.get_lm_head()
def get_prefix_bias_name(self) -> Union[None, str]:
"""
Get the concatenated _prefix name of the bias from the model name to the parent layer
Return:
`str`: The _prefix name of the bias.
"""
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return None
def get_bias(self) -> Union[None, Dict[str, tf.Variable]]:
"""
Dict of bias attached to an LM head. The key represents the name of the bias attribute.
Return:
`tf.Variable`: The weights representing the bias, None if not an LM model.
"""
if self.get_lm_head() is not None:
lm_head = self.get_lm_head()
try:
return lm_head.get_bias()
except AttributeError:
self.build_in_name_scope()
return lm_head.get_bias()
return None
def set_bias(self, value):
"""
Set all the bias in the LM head.
Args:
value (`Dict[tf.Variable]`):
All the new bias attached to an LM head.
"""
if self.get_lm_head() is not None:
lm_head = self.get_lm_head()
try:
lm_head.set_bias(value)
except AttributeError:
self.build_in_name_scope()
lm_head.set_bias(value)
def get_lm_head(self) -> keras.layers.Layer:
"""
The LM Head layer. This method must be overwritten by all the models that have a lm head.
Return:
`keras.layers.Layer`: The LM head layer if the model has one, None if not.
"""
return None
def resize_token_embeddings(
self, new_num_tokens: Optional[int] = None
) -> Union[keras.layers.Embedding, tf.Variable]:
"""
Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
Arguments:
new_num_tokens (`int`, *optional*):
The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
returns a pointer to the input tokens without doing anything.
Return:
`tf.Variable` or `keras.layers.Embedding`: Pointer to the input tokens of the model.
"""
# TODO (joao): flagged for replacement (by `_v2_resized_token_embeddings`) due to embeddings refactor
# Run the new code path if the model has a keras embeddings layer
if isinstance(self.get_input_embeddings(), keras.layers.Embedding):
return self._v2_resized_token_embeddings(new_num_tokens)
if new_num_tokens is None or new_num_tokens == self.config.vocab_size:
return self._get_word_embedding_weight(self.get_input_embeddings())
model_embeds = self._resize_token_embeddings(new_num_tokens)
# Update base model and current model config
self.config.vocab_size = new_num_tokens
return model_embeds
def _v2_resized_token_embeddings(self, new_num_tokens: Optional[int] = None) -> keras.layers.Embedding:
"""
Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
Arguments:
new_num_tokens (`int`, *optional*):
The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
returns a pointer to the input tokens without doing anything.
Return:
`keras.layers.Embedding`: Pointer to the input tokens of the model.
"""
if new_num_tokens is None or new_num_tokens == self.config.vocab_size:
return self.get_input_embeddings()
model_embeds = self._v2_resize_token_embeddings(new_num_tokens)
# Update base model and current model config
self.config.vocab_size = new_num_tokens
return model_embeds
def _get_word_embedding_weight(model, embedding_layer):
# TODO (joao): flagged for delection due to embeddings refactor
# If the variable holds the weights themselves, return them
if isinstance(embedding_layer, tf.Tensor):
return embedding_layer
# Otherwise, try to get them from the layer's attributes
embeds = getattr(embedding_layer, "weight", None)
if embeds is not None:
return embeds
embeds = getattr(embedding_layer, "decoder", None)
if embeds is not None:
return embeds
# The reason why the attributes don't exist might be
# because the model is not built, so retry getting
# the argument after building the model
model.build_in_name_scope()
embeds = getattr(embedding_layer, "weight", None)
if embeds is not None:
return embeds
embeds = getattr(embedding_layer, "decoder", None)
if embeds is not None:
return embeds
return None
def _resize_token_embeddings(self, new_num_tokens):
# TODO (joao): flagged for replacement (by `_v2_resize_token_embeddings`) due to embeddings refactor
old_embeddings = self._get_word_embedding_weight(self.get_input_embeddings())
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
# if word embeddings are not tied, make sure that lm head bias is resized as well
if self.get_bias() is not None:
old_lm_head_bias = self.get_bias()
new_lm_head_bias = self._get_resized_lm_head_bias(old_lm_head_bias, new_num_tokens)
self.set_bias(new_lm_head_bias)
# if word embeddings are not tied, make sure that lm head decoder is resized as well
if self.get_output_embeddings() is not None:
old_lm_head_decoder = self._get_word_embedding_weight(self.get_output_embeddings())
new_lm_head_decoder = self._get_resized_lm_head_decoder(old_lm_head_decoder, new_num_tokens)
self.set_output_embeddings(new_lm_head_decoder)
self.set_input_embeddings(new_embeddings)
return self.get_input_embeddings()
def _v2_resize_token_embeddings(self, new_num_tokens):
old_embeddings = self.get_input_embeddings()
new_embeddings = self._v2_get_resized_embeddings(old_embeddings, new_num_tokens)
self.set_input_embeddings(new_embeddings)
# If word embeddings are not tied, make sure that lm head bias is resized as well
if self.get_bias() is not None:
old_lm_head_bias = self.get_bias()
new_lm_head_bias = self._v2_get_resized_lm_head_bias(old_lm_head_bias, new_num_tokens)
self.set_bias(new_lm_head_bias)
# If word embeddings are not tied, make sure that lm head decoder is resized as well.
tied_weights = self.get_input_embeddings() == self.get_output_embeddings()
if self.get_output_embeddings() is not None and not tied_weights:
old_lm_head_decoder = self._get_word_embedding_weight(self.get_output_embeddings())
# TODO (joao): this one probably needs a v2 version with other models
new_lm_head_decoder = self._get_resized_lm_head_decoder(old_lm_head_decoder, new_num_tokens)
self.set_output_embeddings(new_lm_head_decoder)
return self.get_input_embeddings()
def _get_resized_lm_head_bias(self, old_lm_head_bias, new_num_tokens):
"""
Build a resized bias from the old ones. Increasing the size will add newly initialized vectors at the end.
Reducing the size will remove vectors from the end
Args:
old_lm_head_bias (`tf.Variable`):
Old lm head bias to be resized.
new_num_tokens (`int`, *optional*):
New number of tokens in the linear matrix.
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
vectors from the end. If not provided or `None`, just returns None
Return:
`tf.Variable`: Pointer to the resized bias.
"""
# TODO (joao): flagged for replacement (by `_v2_get_resized_lm_head_bias`) due to embeddings refactor
new_lm_head_bias = {}
for attr, weight in old_lm_head_bias.items():
first_dim, old_num_tokens = (None, shape_list(weight)[0]) if tf.rank(weight) == 1 else shape_list(weight)
size_diff = new_num_tokens - old_num_tokens
final_shape = [new_num_tokens] if first_dim is None else [first_dim, new_num_tokens]
# initialize new bias
if tf.math.greater(size_diff, 0):
padding_shape = [[0, size_diff]] if first_dim is None else [[0, 0], [0, size_diff]]
current_bias = tf.pad(weight.value(), tf.convert_to_tensor(padding_shape), constant_values=-1)
num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
mask_shape = [num_tokens_to_copy] if first_dim is None else [1, num_tokens_to_copy]
bias_mask = tf.fill(tf.convert_to_tensor(mask_shape), True)
bias_mask = tf.pad(bias_mask, tf.convert_to_tensor(padding_shape), constant_values=False)
else:
slice_from = [0] if first_dim is None else [0, 0]
current_bias = tf.slice(
weight.value(), tf.convert_to_tensor(slice_from), tf.convert_to_tensor(final_shape)
)
bias_mask = tf.fill(tf.convert_to_tensor(final_shape), True)
new_bias = self.add_weight(
shape=final_shape,
initializer="zeros",
trainable=True,
name=weight.name.split(":")[0],
)
init_bias = tf.where(bias_mask, current_bias, new_bias.value())
new_bias.assign(init_bias)
new_lm_head_bias[attr] = new_bias
return new_lm_head_bias
def _v2_get_resized_lm_head_bias(
self, old_lm_head_bias: Dict[str, tf.Variable], new_num_tokens: int
) -> Dict[str, tf.Tensor]:
"""
Build a resized bias from the old ones. Increasing the size will add newly initialized vectors at the end.
Reducing the size will remove vectors from the end
Args:
old_lm_head_bias (`Dict[str, tf.Variable]`):
Old lm head bias to be resized.
new_num_tokens (`int`):
New number of tokens in the linear matrix. Increasing the size will add newly initialized vectors at
the end. Reducing the size will remove vectors from the end.
Return:
`tf.Tensor`: Values for the resized bias.
"""
new_lm_head_bias = {}
for attr, weight in old_lm_head_bias.items():
# Determine the size difference (depending on the shape)
first_dim, old_num_tokens = (None, shape_list(weight)[0]) if tf.rank(weight) == 1 else shape_list(weight)
size_diff = new_num_tokens - old_num_tokens
# Copy the old bias values to the new bias
if old_num_tokens > new_num_tokens:
new_bias = weight.value()[..., :new_num_tokens]
else:
padding_shape = [[0, size_diff]] if first_dim is None else [[0, 0], [0, size_diff]]
new_bias = tf.pad(weight.value(), tf.convert_to_tensor(padding_shape))
new_lm_head_bias[attr] = new_bias
return new_lm_head_bias
def _get_resized_lm_head_decoder(self, old_lm_head_decoder, new_num_tokens):
"""
Build a resized decoder from the old ones. Increasing the size will add newly initialized vectors at the end.
Reducing the size will remove vectors from the end
Args:
old_lm_head_decoder (`tf.Variable`):
Old lm head decoder to be resized.
new_num_tokens (`int`, *optional*):
New number of tokens in the linear matrix.
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
vectors from the end. If not provided or `None`, just returns None
Return:
`tf.Variable`: Pointer to the resized decoder or None if the output embeddings are different from the input
ones.
"""
new_lm_head_decoder = old_lm_head_decoder
is_input_output_equals = tf.reduce_any(
self._get_word_embedding_weight(self.get_input_embeddings()) == old_lm_head_decoder
)
if old_lm_head_decoder is not None and not is_input_output_equals:
old_embedding_dim = shape_list(old_lm_head_decoder)[1]
decoder_mask, current_decoder = init_copy_embeddings(old_lm_head_decoder, new_num_tokens)
new_lm_head_decoder = self.add_weight(
shape=(new_num_tokens, old_embedding_dim),
initializer="zeros",
trainable=True,
name=old_lm_head_decoder.name.split(":")[0],
)
init_decoder = tf.where(decoder_mask, current_decoder, new_lm_head_decoder.value())
new_lm_head_decoder.assign(init_decoder)
return new_lm_head_decoder
def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None) -> tf.Variable:
"""
Build a resized Embedding weights from a provided token Embedding weights. Increasing the size will add newly
initialized vectors at the end. Reducing the size will remove vectors from the end
Args:
old_embeddings (`tf.Variable`):
Old embeddings to be resized.
new_num_tokens (`int`, *optional*):
New number of tokens in the embedding matrix.
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
`tf.Variable` module of the model without doing anything.
Return:
`tf.Variable`: Pointer to the resized Embedding Module or the old Embedding Module if `new_num_tokens` is
`None`
"""
# TODO (joao): flagged for replacement (by `_v2_get_resized_embeddings`) due to embeddings refactor
old_embedding_dim = shape_list(old_embeddings)[1]
init_range = getattr(self.config, "initializer_range", 0.02)
embeddings_mask, current_embeddings = init_copy_embeddings(old_embeddings, new_num_tokens)
new_embeddings = self.add_weight(
name=old_embeddings.name.split(":")[0],
shape=[new_num_tokens, old_embedding_dim],
initializer=get_initializer(init_range),
dtype=tf.float32,
)
init_embeddings = tf.where(embeddings_mask, current_embeddings, new_embeddings.value())
new_embeddings.assign(init_embeddings)
return new_embeddings
def _v2_get_resized_embeddings(
self, old_embeddings: keras.layers.Embedding, new_num_tokens: int
) -> keras.layers.Embedding:
"""
Build a resized Embedding layer from a provided Embedding layer. Increasing the size will add newly initialized
vectors at the end. Reducing the size will remove vectors from the end.
Args:
old_embeddings (`keras.layers.Embedding`):
Old embeddings to be resized.
new_num_tokens (`int`, *optional*):
New number of tokens in the embedding matrix.
Return:
`keras.layers.Embedding`: Resized Embedding layer.
"""
# Get the initialization range for the embeddings
init_range = 0.02 # default value
potential_initialization_variable_names = [
"initializer_range", # most common
"initializer_factor", # e.g. T5
"init_std", # e.g BART
]
for var_name in potential_initialization_variable_names:
if hasattr(self.config, var_name):
init_range = getattr(self.config, var_name)
# Get a new (initialized) embeddings layer
new_embeddings = keras.layers.Embedding(
input_dim=new_num_tokens,
output_dim=old_embeddings.output_dim,
embeddings_initializer=keras.initializers.TruncatedNormal(stddev=init_range),
name=old_embeddings.embeddings.name[:-13], # exact same scoped name except "/embeddings:0"
)
new_embeddings(tf.constant([[0]]))
# Copy the old embeddings to the new embeddings
if old_embeddings.input_dim >= new_num_tokens:
init_embeddings = old_embeddings.embeddings[:new_num_tokens]
else:
init_embeddings = tf.concat(
[old_embeddings.embeddings, new_embeddings.embeddings[old_embeddings.input_dim :]], axis=0
)
new_embeddings.embeddings.assign(init_embeddings)
return new_embeddings
def prune_heads(self, heads_to_prune):
"""
Prunes heads of the base model.
Arguments:
heads_to_prune (`Dict[int, List[int]]`):
Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
layer 1 and heads 2 and 3 on layer 2.
"""
raise NotImplementedError
def save_pretrained(
self,
save_directory,
saved_model=False,
version=1,
push_to_hub=False,
signatures=None,
max_shard_size: Union[int, str] = "5GB",
create_pr: bool = False,
safe_serialization: bool = False,
token: Optional[Union[str, bool]] = None,
**kwargs,
):
"""
Save a model and its configuration file to a directory, so that it can be re-loaded using the
[`~TFPreTrainedModel.from_pretrained`] class method.
Arguments:
save_directory (`str`):
Directory to which to save. Will be created if it doesn't exist.
saved_model (`bool`, *optional*, defaults to `False`):
If the model has to be saved in saved model format as well or not.
version (`int`, *optional*, defaults to 1):
The version of the saved model. A saved model needs to be versioned in order to be properly loaded by
TensorFlow Serving as detailed in the official documentation
https://www.tensorflow.org/tfx/serving/serving_basic
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
signatures (`dict` or `tf.function`, *optional*):
Model's signature used for serving. This will be passed to the `signatures` argument of model.save().
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).
<Tip warning={true}>
If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
which will be bigger than `max_shard_size`.
</Tip>
create_pr (`bool`, *optional*, defaults to `False`):
Whether or not to create a PR with the uploaded files or directly commit.
safe_serialization (`bool`, *optional*, defaults to `False`):
Whether to save the model using `safetensors` or the traditional TensorFlow way (that uses `h5`).
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
kwargs (`Dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
token = use_auth_token
if token is not None:
kwargs["token"] = token
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
os.makedirs(save_directory, exist_ok=True)
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = self._create_repo(repo_id, **kwargs)
files_timestamps = self._get_files_timestamps(save_directory)
if saved_model:
# If `torch_dtype` is in the config with a torch dtype class as the value, we need to change it to string.
# (Although TF doesn't care about this attribute, we can't just remove it or set it to `None`.)
if getattr(self.config, "torch_dtype", None) is not None and not isinstance(self.config.torch_dtype, str):
self.config.torch_dtype = str(self.config.torch_dtype).split(".")[1]
if signatures is None:
serving_default = self.serving.get_concrete_function(self.input_signature)
if any(spec.dtype == tf.int32 for spec in self.input_signature.values()):
int64_spec = {
key: tf.TensorSpec(
shape=spec.shape, dtype=tf.int64 if spec.dtype == tf.int32 else spec.dtype, name=spec.name
)
for key, spec in self.input_signature.items()
}
int64_serving = self.serving.get_concrete_function(int64_spec)
signatures = {"serving_default": serving_default, "int64_serving": int64_serving}
else:
signatures = serving_default
saved_model_dir = os.path.join(save_directory, "saved_model", str(version))
self.save(saved_model_dir, include_optimizer=False, signatures=signatures)
logger.info(f"Saved model created in {saved_model_dir}")
# Save configuration file
self.config.architectures = [self.__class__.__name__[2:]]
# If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
# loaded from the Hub.
if self._auto_class is not None:
custom_object_save(self, save_directory, config=self.config)
self.config.save_pretrained(save_directory)
if self.can_generate():
self.generation_config.save_pretrained(save_directory)
# If we save using the predefined names, we can load using `from_pretrained`
weights_name = SAFE_WEIGHTS_NAME if safe_serialization else TF2_WEIGHTS_NAME
output_model_file = os.path.join(save_directory, weights_name)
shards, index = tf_shard_checkpoint(self.weights, max_shard_size, weights_name=weights_name)
# Clean the folder from a previous save
for filename in os.listdir(save_directory):
full_filename = os.path.join(save_directory, filename)
# If we have a shard file that is not going to be replaced, we delete it, but only from the main process
# in distributed settings to avoid race conditions.
weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
if (
filename.startswith(weights_no_suffix)
and os.path.isfile(full_filename)
and filename not in shards.keys()
):
os.remove(full_filename)
if index is None:
if safe_serialization:
state_dict = {strip_model_name_and_prefix(w.name): w.value() for w in self.weights}
safe_save_file(state_dict, output_model_file, metadata={"format": "tf"})
else:
self.save_weights(output_model_file)
logger.info(f"Model weights saved in {output_model_file}")
else:
save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else TF2_WEIGHTS_INDEX_NAME
save_index_file = os.path.join(save_directory, save_index_file)
# Save the index as well
with open(save_index_file, "w", encoding="utf-8") as index_file:
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
index_file.write(content)
logger.info(
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
f"index located at {save_index_file}."
)
for shard_file, shard in shards.items():
if safe_serialization:
shard_state_dict = {strip_model_name_and_prefix(w.name): w.value() for w in shard}
safe_save_file(
shard_state_dict, os.path.join(save_directory, shard_file), metadata={"format": "tf"}
)
else:
with h5py.File(os.path.join(save_directory, shard_file), mode="w") as shard_file:
layers = []
for layer in sorted(shard, key=lambda x: x.name):
if "model." in layer.name or len(layer.name.split("/")) == 1:
layer_name = layer.name
else:
layer_name = "/".join(layer.name.split("/")[1:])
param_dset = shard_file.create_dataset(
layer_name, layer.numpy().shape, dtype=layer.numpy().dtype
)
param_dset[:] = layer.numpy()
layers.append(layer_name.encode("utf8"))
save_attributes_to_hdf5_group(shard_file, "layer_names", layers)
if push_to_hub:
self._upload_modified_files(
save_directory,
repo_id,
files_timestamps,
commit_message=commit_message,
token=token,
)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
*model_args,
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
cache_dir: Optional[Union[str, os.PathLike]] = None,
ignore_mismatched_sizes: bool = False,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
use_safetensors: bool = None,
**kwargs,
):
r"""
Instantiate a pretrained TF 2.0 model from a pre-trained model configuration.
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
task.
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
weights are discarded.
Parameters:
pretrained_model_name_or_path (`str`, *optional*):
Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *PyTorch state_dict save file* (e.g, `./pt_model/pytorch_model.bin`). In this
case, `from_pt` should be set to `True` and a configuration object should be provided as `config`
argument. This loading path is slower than converting the PyTorch model in a TensorFlow model
using the provided conversion scripts and loading the TensorFlow model afterwards.
- `None` if you are both providing the configuration and state dictionary (resp. with keyword
arguments `config` and `state_dict`).
model_args (sequence of positional arguments, *optional*):
All remaining positional arguments will be passed to the underlying model's `__init__` method.
config (`Union[PretrainedConfig, str]`, *optional*):
Can be either:
- an instance of a class derived from [`PretrainedConfig`],
- a string valid as input to [`~PretrainedConfig.from_pretrained`].
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
be automatically loaded when:
- The model is a model provided by the library (loaded with the *model id* string of a pretrained
model).
- The model was saved using [`~TFPreTrainedModel.save_pretrained`] and is reloaded by supplying the
save directory.
- The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
configuration JSON file named *config.json* is found in the directory.
from_pt (`bool`, *optional*, defaults to `False`):
Load the model weights from a PyTorch state_dict save file (see docstring of
`pretrained_model_name_or_path` argument).
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
checkpoint with 3 labels).
cache_dir (`str`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
file exists.
proxies:
(`Dict[str, str], `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g.,
`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
output_loading_info(`bool`, *optional*, defaults to `False`): Whether ot not to also return a
dictionary containing missing keys, unexpected keys and error messages.
local_files_only(`bool`, *optional*, defaults to `False`):
Whether or not to only look at local files (e.g., not try downloading the model).
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
<Tip>
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
</Tip>
mirror (`str`, *optional*):
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
Please refer to the mirror site for more information.
subfolder (`str`, *optional*, defaults to `""`):
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
specify the folder name here.
tf_to_pt_weight_rename (`Callable`, *optional*):
A function that is called to transform the names of weights during the PyTorch to TensorFlow
crossloading process. This is not necessary for most models, but is useful to allow composite models to
be crossloaded correctly.
use_safetensors (`bool`, *optional*, defaults to `None`):
Whether or not to use `safetensors` checkpoints. Defaults to `None`. If not specified and `safetensors`
is not installed, it will be set to `False`.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`). Behaves differently depending on whether a `config` is provided or
automatically loaded:
- If a configuration is provided with `config`, `**kwargs` will be directly passed to the
underlying model's `__init__` method (we assume all relevant updates to the configuration have
already been done)
- If a configuration is not provided, `kwargs` will be first passed to the configuration class
initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
corresponds to a configuration attribute will be used to override said attribute with the
supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
will be passed to the underlying model's `__init__` function.
Examples:
```python
>>> from transformers import BertConfig, TFBertModel
>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFBertModel.from_pretrained("google-bert/bert-base-uncased")
>>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
>>> model = TFBertModel.from_pretrained("./test/saved_model/")
>>> # Update configuration during loading.
>>> model = TFBertModel.from_pretrained("google-bert/bert-base-uncased", output_attentions=True)
>>> assert model.config.output_attentions == True
>>> # Loading from a Pytorch model file instead of a TensorFlow checkpoint (slower, for example purposes, not runnable).
>>> config = BertConfig.from_json_file("./pt_model/my_pt_model_config.json")
>>> model = TFBertModel.from_pretrained("./pt_model/my_pytorch_model.bin", from_pt=True, config=config)
```"""
from_pt = kwargs.pop("from_pt", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
output_loading_info = kwargs.pop("output_loading_info", False)
use_auth_token = kwargs.pop("use_auth_token", None)
trust_remote_code = kwargs.pop("trust_remote_code", None)
_ = kwargs.pop("mirror", None)
load_weight_prefix = kwargs.pop("load_weight_prefix", None)
from_pipeline = kwargs.pop("_from_pipeline", None)
from_auto_class = kwargs.pop("_from_auto", False)
subfolder = kwargs.pop("subfolder", "")
commit_hash = kwargs.pop("_commit_hash", None)
tf_to_pt_weight_rename = kwargs.pop("tf_to_pt_weight_rename", None)
# Not relevant for TF models
_ = kwargs.pop("adapter_kwargs", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
token = use_auth_token
if trust_remote_code is True:
logger.warning(
"The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
" ignored."
)
user_agent = {"file_type": "model", "framework": "tensorflow", "from_auto_class": from_auto_class}
if from_pipeline is not None:
user_agent["using_pipeline"] = from_pipeline
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
if use_safetensors is None and not is_safetensors_available():
use_safetensors = False
# Load config if we don't provide a configuration
if not isinstance(config, PretrainedConfig):
config_path = config if config is not None else pretrained_model_name_or_path
config, model_kwargs = cls.config_class.from_pretrained(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
_from_auto=from_auto_class,
_from_pipeline=from_pipeline,
_commit_hash=commit_hash,
**kwargs,
)
else:
model_kwargs = kwargs
if commit_hash is None:
commit_hash = getattr(config, "_commit_hash", None)
# This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
# index of the files.
is_sharded = False
# Load model
if pretrained_model_name_or_path is not None:
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
is_local = os.path.isdir(pretrained_model_name_or_path)
if is_local:
if from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
# Load from a PyTorch checkpoint in priority if from_pt
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
elif from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME)):
# Load from a sharded PyTorch checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME)
is_sharded = True
elif use_safetensors is not False and os.path.isfile(
os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_NAME)
):
# Load from a safetensors checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_NAME)
elif use_safetensors is not False and os.path.isfile(
os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
):
# Load from a sharded safetensors checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, SAFE_WEIGHTS_INDEX_NAME)
is_sharded = True
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
# Load from a TF 2.0 checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_INDEX_NAME)):
# Load from a sharded TF 2.0 checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_INDEX_NAME)
is_sharded = True
# At this stage we don't have a weight file so we will raise an error.
elif use_safetensors:
raise EnvironmentError(
f"Error no file named {SAFE_WEIGHTS_NAME} or {SAFE_WEIGHTS_INDEX_NAME} found in directory {pretrained_model_name_or_path}. "
f"Please make sure that the model has been saved with `safe_serialization=True` or do not "
f"set `use_safetensors=True`."
)
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)) or os.path.isfile(
os.path.join(pretrained_model_name_or_path, WEIGHTS_INDEX_NAME)
):
raise EnvironmentError(
f"Error no file named {TF2_WEIGHTS_NAME} or {SAFE_WEIGHTS_NAME} found in directory {pretrained_model_name_or_path} "
"but there is a file for PyTorch weights. Use `from_pt=True` to load this model from those "
"weights."
)
else:
raise EnvironmentError(
f"Error no file named {TF2_WEIGHTS_NAME}, {SAFE_WEIGHTS_NAME} or {WEIGHTS_NAME} found in directory "
f"{pretrained_model_name_or_path}."
)
elif os.path.isfile(pretrained_model_name_or_path):
archive_file = pretrained_model_name_or_path
is_local = True
elif os.path.isfile(pretrained_model_name_or_path + ".index"):
archive_file = pretrained_model_name_or_path + ".index"
is_local = True
elif is_remote_url(pretrained_model_name_or_path):
filename = pretrained_model_name_or_path
resolved_archive_file = download_url(pretrained_model_name_or_path)
else:
# set correct filename
if from_pt:
filename = WEIGHTS_NAME
elif use_safetensors is not False:
filename = SAFE_WEIGHTS_NAME
else:
filename = TF2_WEIGHTS_NAME
try:
# Load from URL or cache if already cached
cached_file_kwargs = {
"cache_dir": cache_dir,
"force_download": force_download,
"proxies": proxies,
"resume_download": resume_download,
"local_files_only": local_files_only,
"token": token,
"user_agent": user_agent,
"revision": revision,
"subfolder": subfolder,
"_raise_exceptions_for_gated_repo": False,
"_raise_exceptions_for_missing_entries": False,
"_commit_hash": commit_hash,
}
resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
# Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
# result when internet is up, the repo and revision exist, but the file does not.
if resolved_archive_file is None and filename == SAFE_WEIGHTS_NAME:
# Did not find the safetensors file, let's fallback to TF.
# No support for sharded safetensors yet, so we'll raise an error if that's all we find.
filename = TF2_WEIGHTS_NAME
resolved_archive_file = cached_file(
pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **cached_file_kwargs
)
if resolved_archive_file is None and filename == TF2_WEIGHTS_NAME:
# Maybe the checkpoint is sharded, we try to grab the index name in this case.
resolved_archive_file = cached_file(
pretrained_model_name_or_path, TF2_WEIGHTS_INDEX_NAME, **cached_file_kwargs
)
if resolved_archive_file is not None:
is_sharded = True
if resolved_archive_file is None and filename == WEIGHTS_NAME:
# Maybe the checkpoint is sharded, we try to grab the index name in this case.
resolved_archive_file = cached_file(
pretrained_model_name_or_path, WEIGHTS_INDEX_NAME, **cached_file_kwargs
)
if resolved_archive_file is not None:
is_sharded = True
if resolved_archive_file is None:
# Otherwise, maybe there is a PyTorch or Flax model file. We try those to give a helpful error
# message.
has_file_kwargs = {
"revision": revision,
"proxies": proxies,
"token": token,
}
if has_file(pretrained_model_name_or_path, SAFE_WEIGHTS_INDEX_NAME, **has_file_kwargs):
is_sharded = True
elif has_file(pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs):
raise EnvironmentError(
f"{pretrained_model_name_or_path} does not appear to have a file named"
f" {TF2_WEIGHTS_NAME} but there is a file for PyTorch weights. Use `from_pt=True` to"
" load this model from those weights."
)
else:
raise EnvironmentError(
f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME},"
f" {TF2_WEIGHTS_NAME} or {TF_WEIGHTS_NAME}"
)
except EnvironmentError:
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
# to the original exception.
raise
except Exception:
# For any other exception, we throw a generic error.
raise EnvironmentError(
f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
" from 'https://huggingface.co/models', make sure you don't have a local directory with the"
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
f" directory containing a file named {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME} or {TF_WEIGHTS_NAME}"
)
if is_local:
logger.info(f"loading weights file {archive_file}")
resolved_archive_file = archive_file
filename = resolved_archive_file.split(os.path.sep)[-1]
else:
logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
else:
resolved_archive_file = None
# We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
if is_sharded:
# resolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
pretrained_model_name_or_path,
resolved_archive_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
token=token,
user_agent=user_agent,
revision=revision,
_commit_hash=commit_hash,
)
safetensors_from_pt = False
if filename == SAFE_WEIGHTS_NAME:
with safe_open(resolved_archive_file, framework="tf") as f:
safetensors_metadata = f.metadata()
if safetensors_metadata is None or safetensors_metadata.get("format") not in ["pt", "tf", "flax", "mlx"]:
raise OSError(
f"The safetensors archive passed at {resolved_archive_file} does not contain the valid metadata."
" Make sure you save your model with the `save_pretrained` method."
)
safetensors_from_pt = safetensors_metadata.get("format") == "pt"
elif filename == SAFE_WEIGHTS_INDEX_NAME:
with safe_open(resolved_archive_file[0], framework="tf") as f:
safetensors_metadata = f.metadata()
if safetensors_metadata is None or safetensors_metadata.get("format") not in ["pt", "tf", "flax", "mlx"]:
raise OSError(
f"The safetensors archive passed at {resolved_archive_file} does not contain the valid metadata."
" Make sure you save your model with the `save_pretrained` method."
)
safetensors_from_pt = safetensors_metadata.get("format") == "pt"
config.name_or_path = pretrained_model_name_or_path
# composed models, *e.g.* TFRag, require special treatment when it comes to loading
# pre-trained weights.
if cls._requires_load_weight_prefix and model_kwargs.get("name") is not None:
model_kwargs["load_weight_prefix"] = load_weight_prefix + "/" + model_kwargs.get("name")
# Instantiate model.
model = cls(config, *model_args, **model_kwargs)
if tf_to_pt_weight_rename is None and hasattr(model, "tf_to_pt_weight_rename"):
# TODO Matt: This is a temporary workaround to allow weight renaming, but requires a method
# to be defined for each class that requires a rename. We can probably just have a class-level
# dict and a single top-level method or something and cut down a lot of boilerplate code
tf_to_pt_weight_rename = model.tf_to_pt_weight_rename
if from_pt:
from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model
# Load from a PyTorch checkpoint
return load_pytorch_checkpoint_in_tf2_model(
model,
resolved_archive_file,
allow_missing_keys=True,
output_loading_info=output_loading_info,
_prefix=load_weight_prefix,
tf_to_pt_weight_rename=tf_to_pt_weight_rename,
)
# we might need to extend the variable scope for composite models
if load_weight_prefix is not None:
with tf.compat.v1.variable_scope(load_weight_prefix):
model.build_in_name_scope() # build the network with dummy inputs
else:
model.build_in_name_scope() # build the network with dummy inputs
if safetensors_from_pt and not is_sharded:
from .modeling_tf_pytorch_utils import load_pytorch_state_dict_in_tf2_model
with safe_open(resolved_archive_file, framework="tf") as safetensors_archive:
# Load from a PyTorch safetensors checkpoint
# We load in TF format here because PT weights often need to be transposed, and this is much
# faster on GPU. Loading as numpy and transposing on CPU adds several seconds to load times.
return load_pytorch_state_dict_in_tf2_model(
model,
safetensors_archive,
tf_inputs=False, # No need to build the model again
allow_missing_keys=True,
output_loading_info=output_loading_info,
_prefix=load_weight_prefix,
ignore_mismatched_sizes=ignore_mismatched_sizes,
tf_to_pt_weight_rename=tf_to_pt_weight_rename,
)
elif safetensors_from_pt:
from .modeling_tf_pytorch_utils import load_sharded_pytorch_safetensors_in_tf2_model
return load_sharded_pytorch_safetensors_in_tf2_model(
model,
resolved_archive_file,
tf_inputs=False,
allow_missing_keys=True,
output_loading_info=output_loading_info,
_prefix=load_weight_prefix,
ignore_mismatched_sizes=ignore_mismatched_sizes,
tf_to_pt_weight_rename=tf_to_pt_weight_rename,
)
# 'by_name' allow us to do transfer learning by skipping/adding layers
# see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1339-L1357
try:
if is_sharded:
for file in resolved_archive_file:
os.path.isfile(file), f"Error retrieving files {file}"
if filename == SAFE_WEIGHTS_INDEX_NAME:
missing_keys, unexpected_keys, mismatched_keys = load_tf_sharded_weights_from_safetensors(
model,
resolved_archive_file,
ignore_mismatched_sizes=ignore_mismatched_sizes,
_prefix=load_weight_prefix,
)
else:
missing_keys, unexpected_keys, mismatched_keys = load_tf_sharded_weights(
model,
resolved_archive_file,
ignore_mismatched_sizes=ignore_mismatched_sizes,
_prefix=load_weight_prefix,
)
else:
# Handles both H5 and safetensors
missing_keys, unexpected_keys, mismatched_keys = load_tf_weights(
model,
resolved_archive_file,
ignore_mismatched_sizes=ignore_mismatched_sizes,
_prefix=load_weight_prefix,
)
except OSError as e:
try:
with open(resolved_archive_file) as f:
if f.read().startswith("version"):
raise OSError(
"You seem to have cloned a repository without having git-lfs installed. Please install "
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
"you cloned."
)
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise OSError(
"Unable to load weights from h5 file. "
"If you tried to load a TF 2.0 model from a PyTorch checkpoint, please set from_pt=True. "
)
if cls._keys_to_ignore_on_load_missing is not None:
for pat in cls._keys_to_ignore_on_load_missing:
missing_keys = [k for k in missing_keys if re.search(pat, k) is None]
if cls._keys_to_ignore_on_load_unexpected is not None:
for pat in cls._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
logger.warning(
f"Some layers from the model checkpoint at {pretrained_model_name_or_path} were not used when"
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
" with another architecture (e.g. initializing a BertForSequenceClassification model from a"
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
" (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
)
else:
logger.warning(f"All model checkpoint layers were used when initializing {model.__class__.__name__}.\n")
if len(missing_keys) > 0:
logger.warning(
f"Some layers of {model.__class__.__name__} were not initialized from the model checkpoint at"
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
)
elif len(mismatched_keys) == 0:
logger.warning(
f"All the layers of {model.__class__.__name__} were initialized from the model checkpoint at"
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
" training."
)
if len(mismatched_keys) > 0:
mismatched_warning = "\n".join(
[
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
for key, shape1, shape2 in mismatched_keys
]
)
logger.warning(
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
" to use it for predictions and inference."
)
# If it is a model with generation capabilities, attempt to load the generation config
if model.can_generate():
try:
model.generation_config = GenerationConfig.from_pretrained(
pretrained_model_name_or_path,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
_from_auto=from_auto_class,
_from_pipeline=from_pipeline,
**kwargs,
)
except OSError:
logger.info(
"Generation config file not found, using a generation config created from the model config."
)
pass
if output_loading_info:
loading_info = {
"missing_keys": missing_keys,
"unexpected_keys": unexpected_keys,
"mismatched_keys": mismatched_keys,
}
return model, loading_info
return model
def push_to_hub(
self,
repo_id: str,
use_temp_dir: Optional[bool] = None,
commit_message: Optional[str] = None,
private: Optional[bool] = None,
max_shard_size: Optional[Union[int, str]] = "10GB",
token: Optional[Union[bool, str]] = None,
# (`use_auth_token` is deprecated: we have to keep it here as we don't have **kwargs)
use_auth_token: Optional[Union[bool, str]] = None,
create_pr: bool = False,
**base_model_card_args,
) -> str:
"""
Upload the model files to the 🤗 Model Hub while synchronizing a local clone of the repo in `repo_path_or_name`.
Parameters:
repo_id (`str`):
The name of the repository you want to push your model to. It should contain your organization name
when pushing to a given organization.
use_temp_dir (`bool`, *optional*):
Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub.
Will default to `True` if there is no directory named like `repo_id`, `False` otherwise.
commit_message (`str`, *optional*):
Message to commit while pushing. Will default to `"Upload model"`.
private (`bool`, *optional*):
Whether or not the repository created should be private.
token (`bool` or `str`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url`
is not specified.
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard
will then be each of size lower than this size. If expressed as a string, needs to be digits followed
by a unit (like `"5MB"`).
create_pr (`bool`, *optional*, defaults to `False`):
Whether or not to create a PR with the uploaded files or directly commit.
Examples:
```python
from transformers import TFAutoModel
model = TFAutoModel.from_pretrained("google-bert/bert-base-cased")
# Push the model to your namespace with the name "my-finetuned-bert".
model.push_to_hub("my-finetuned-bert")
# Push the model to an organization with the name "my-finetuned-bert".
model.push_to_hub("huggingface/my-finetuned-bert")
```
"""
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
token = use_auth_token
if "repo_path_or_name" in base_model_card_args:
warnings.warn(
"The `repo_path_or_name` argument is deprecated and will be removed in v5 of Transformers. Use "
"`repo_id` instead."
)
repo_id = base_model_card_args.pop("repo_path_or_name")
# Deprecation warning will be sent after for repo_url and organization
repo_url = base_model_card_args.pop("repo_url", None)
organization = base_model_card_args.pop("organization", None)
if os.path.isdir(repo_id):
working_dir = repo_id
repo_id = repo_id.split(os.path.sep)[-1]
else:
working_dir = repo_id.split("/")[-1]
repo_id = self._create_repo(
repo_id, private=private, token=token, repo_url=repo_url, organization=organization
)
if use_temp_dir is None:
use_temp_dir = not os.path.isdir(working_dir)
with working_or_temp_dir(working_dir=working_dir, use_temp_dir=use_temp_dir) as work_dir:
files_timestamps = self._get_files_timestamps(work_dir)
# Save all files.
self.save_pretrained(work_dir, max_shard_size=max_shard_size)
if hasattr(self, "history") and hasattr(self, "create_model_card"):
# This is a Keras model and we might be able to fish out its History and make a model card out of it
base_model_card_args = {
"output_dir": work_dir,
"model_name": Path(repo_id).name,
}
base_model_card_args.update(base_model_card_args)
self.create_model_card(**base_model_card_args)
self._upload_modified_files(
work_dir,
repo_id,
files_timestamps,
commit_message=commit_message,
token=token,
create_pr=create_pr,
)
@classmethod
def register_for_auto_class(cls, auto_class="TFAutoModel"):
"""
Register this class with a given auto class. This should only be used for custom models as the ones in the
library are already mapped with an auto class.
<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
Args:
auto_class (`str` or `type`, *optional*, defaults to `"TFAutoModel"`):
The auto class to register this new model with.
"""
if not isinstance(auto_class, str):
auto_class = auto_class.__name__
import transformers.models.auto as auto_module
if not hasattr(auto_module, auto_class):
raise ValueError(f"{auto_class} is not a valid auto class.")
cls._auto_class = auto_class
class TFConv1D(keras.layers.Layer):
"""
1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).
Basically works like a linear layer but the weights are transposed.
Args:
nf (`int`):
The number of output features.
nx (`int`):
The number of input features.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation to use to initialize the weights.
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the `__init__` of `keras.layers.Layer`.
"""
def __init__(self, nf, nx, initializer_range=0.02, **kwargs):
super().__init__(**kwargs)
self.nf = nf
self.nx = nx
self.initializer_range = initializer_range
def build(self, input_shape):
if self.built:
return
self.built = True
self.weight = self.add_weight(
"weight", shape=[self.nx, self.nf], initializer=get_initializer(self.initializer_range)
)
self.bias = self.add_weight("bias", shape=[1, self.nf], initializer=tf.zeros_initializer())
def call(self, x):
bz, sl = shape_list(x)[:2]
x = tf.reshape(x, [-1, self.nx])
x = tf.matmul(x, self.weight) + self.bias
x = tf.reshape(x, [bz, sl, self.nf])
return x
class TFSharedEmbeddings(keras.layers.Layer):
r"""
Construct shared token embeddings.
The weights of the embedding layer is usually shared with the weights of the linear decoder when doing language
modeling.
Args:
vocab_size (`int`):
The size of the vocabulary, e.g., the number of unique tokens.
hidden_size (`int`):
The size of the embedding vectors.
initializer_range (`float`, *optional*):
The standard deviation to use when initializing the weights. If no value is provided, it will default to
\\(1/\sqrt{hidden\_size}\\).
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the `__init__` of `keras.layers.Layer`.
"""
# TODO (joao): flagged for delection due to embeddings refactor
def __init__(self, vocab_size: int, hidden_size: int, initializer_range: Optional[float] = None, **kwargs):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.initializer_range = hidden_size**-0.5 if initializer_range is None else initializer_range
warnings.warn(
"`TFSharedEmbeddings` is scheduled for deletion in v4.32, use `keras.layers.Embedding` instead.",
DeprecationWarning,
)
def build(self, input_shape):
"""
Build shared token embedding layer Shared weights logic adapted from
https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
"""
self.weight = self.add_weight(
"weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range)
)
super().build(input_shape)
def get_config(self):
config = {
"vocab_size": self.vocab_size,
"hidden_size": self.hidden_size,
"initializer_range": self.initializer_range,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs: tf.Tensor, mode: str = "embedding") -> tf.Tensor:
"""
Get token embeddings of inputs or decode final hidden state.
Args:
inputs (`tf.Tensor`):
In embedding mode, should be an int64 tensor with shape `[batch_size, length]`.
In linear mode, should be a float tensor with shape `[batch_size, length, hidden_size]`.
mode (`str`, defaults to `"embedding"`):
A valid value is either `"embedding"` or `"linear"`, the first one indicates that the layer should be
used as an embedding layer, the second one that the layer should be used as a linear decoder.
Returns:
`tf.Tensor`: In embedding mode, the output is a float32 embedding tensor, with shape `[batch_size, length,
embedding_size]`.
In linear mode, the output is a float32 with shape `[batch_size, length, vocab_size]`.
Raises:
ValueError: if `mode` is not valid.
Shared weights logic is adapted from
[here](https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24).
"""
if mode == "embedding":
return self._embedding(inputs)
elif mode == "linear":
return self._linear(inputs)
else:
raise ValueError(f"mode {mode} is not valid.")
def _embedding(self, input_ids):
"""Applies embedding based on inputs tensor."""
return tf.gather(self.weight, input_ids)
def _linear(self, inputs):
"""
Computes logits by running inputs through a linear layer.
Args:
inputs: A float32 tensor with shape [..., hidden_size]
Returns:
float32 tensor with shape [..., vocab_size].
"""
first_dims = shape_list(inputs)[:-1]
x = tf.reshape(inputs, [-1, self.hidden_size])
logits = tf.matmul(x, self.weight, transpose_b=True)
return tf.reshape(logits, first_dims + [self.vocab_size])
class TFSequenceSummary(keras.layers.Layer):
"""
Compute a single vector summary of a sequence hidden states.
Args:
config ([`PretrainedConfig`]):
The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
config class of your model for the default values it uses):
- **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
- `"last"` -- Take the last token hidden state (like XLNet)
- `"first"` -- Take the first token hidden state (like Bert)
- `"mean"` -- Take the mean of all tokens hidden states
- `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
- `"attn"` -- Not implemented now, use multi-head attention
- **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
- **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
(otherwise to `config.hidden_size`).
- **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
another string or `None` will add no activation.
- **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
- **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
initializer_range (`float`, defaults to 0.02): The standard deviation to use to initialize the weights.
kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the `__init__` of `keras.layers.Layer`.
"""
def __init__(self, config: PretrainedConfig, initializer_range: float = 0.02, **kwargs):
super().__init__(**kwargs)
self.summary_type = config.summary_type if hasattr(config, "summary_use_proj") else "last"
if self.summary_type == "attn":
# We should use a standard multi-head attention module with absolute positional embedding for that.
# Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
# We can probably just use the multi-head attention module of PyTorch >=1.1.0
raise NotImplementedError
self.has_summary = hasattr(config, "summary_use_proj") and config.summary_use_proj
if self.has_summary:
if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
num_classes = config.num_labels
else:
num_classes = config.hidden_size
self.summary = keras.layers.Dense(
num_classes, kernel_initializer=get_initializer(initializer_range), name="summary"
)
self.has_activation = False
activation_string = getattr(config, "summary_activation", None)
if activation_string is not None:
self.has_activation = True
self.activation = get_tf_activation(activation_string)
self.has_first_dropout = hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0
if self.has_first_dropout:
self.first_dropout = keras.layers.Dropout(config.summary_first_dropout)
self.has_last_dropout = hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0
if self.has_last_dropout:
self.last_dropout = keras.layers.Dropout(config.summary_last_dropout)
self.hidden_size = config.hidden_size
def call(self, inputs, cls_index=None, training=False):
if not isinstance(inputs, (dict, tuple, list)):
hidden_states = inputs
elif isinstance(inputs, (tuple, list)):
hidden_states = inputs[0]
cls_index = inputs[1] if len(inputs) > 1 else None
assert len(inputs) <= 2, "Too many inputs."
else:
hidden_states = inputs.get("hidden_states")
cls_index = inputs.get("cls_index", None)
if self.summary_type == "last":
output = hidden_states[:, -1]
elif self.summary_type == "first":
output = hidden_states[:, 0]
elif self.summary_type == "mean":
output = tf.reduce_mean(hidden_states, axis=1)
elif self.summary_type == "cls_index":
hidden_shape = shape_list(hidden_states) # e.g. [batch, num choices, seq length, hidden dims]
if cls_index is None:
cls_index = tf.fill(
hidden_shape[:-2], hidden_shape[-2] - 1
) # A tensor full of shape [batch] or [batch, num choices] full of sequence length
cls_shape = shape_list(cls_index)
if len(cls_shape) <= len(hidden_shape) - 2:
cls_index = tf.expand_dims(cls_index, axis=-1)
# else:
# cls_index = cls_index[..., tf.newaxis]
# cls_index = cls_index.expand((-1,) * (cls_index.dim()-1) + (hidden_states.size(-1),))
# shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
output = tf.gather(hidden_states, cls_index, batch_dims=len(hidden_shape) - 2)
output = tf.squeeze(
output, axis=len(hidden_shape) - 2
) # shape of output: (batch, num choices, hidden_size)
elif self.summary_type == "attn":
raise NotImplementedError
if self.has_first_dropout:
output = self.first_dropout(output, training=training)
if self.has_summary:
output = self.summary(output)
if self.has_activation:
output = self.activation(output)
if self.has_last_dropout:
output = self.last_dropout(output, training=training)
return output
def build(self, input_shape):
if self.built:
return
self.built = True
if getattr(self, "summary", None) is not None:
with tf.name_scope("summary"):
self.summary.build(self.hidden_size)
def get_initializer(initializer_range: float = 0.02) -> keras.initializers.TruncatedNormal:
"""
Creates a `keras.initializers.TruncatedNormal` with the given range.
Args:
initializer_range (*float*, defaults to 0.02): Standard deviation of the initializer range.
Returns:
`keras.initializers.TruncatedNormal`: The truncated normal initializer.
"""
return keras.initializers.TruncatedNormal(stddev=initializer_range)
| transformers/src/transformers/modeling_tf_utils.py/0 | {
"file_path": "transformers/src/transformers/modeling_tf_utils.py",
"repo_id": "transformers",
"token_count": 74451
} | 304 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Model class."""
import warnings
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
logger = logging.get_logger(__name__)
TF_MODEL_MAPPING_NAMES = OrderedDict(
[
# Base model mapping
("albert", "TFAlbertModel"),
("bart", "TFBartModel"),
("bert", "TFBertModel"),
("blenderbot", "TFBlenderbotModel"),
("blenderbot-small", "TFBlenderbotSmallModel"),
("blip", "TFBlipModel"),
("camembert", "TFCamembertModel"),
("clip", "TFCLIPModel"),
("convbert", "TFConvBertModel"),
("convnext", "TFConvNextModel"),
("convnextv2", "TFConvNextV2Model"),
("ctrl", "TFCTRLModel"),
("cvt", "TFCvtModel"),
("data2vec-vision", "TFData2VecVisionModel"),
("deberta", "TFDebertaModel"),
("deberta-v2", "TFDebertaV2Model"),
("deit", "TFDeiTModel"),
("distilbert", "TFDistilBertModel"),
("dpr", "TFDPRQuestionEncoder"),
("efficientformer", "TFEfficientFormerModel"),
("electra", "TFElectraModel"),
("esm", "TFEsmModel"),
("flaubert", "TFFlaubertModel"),
("funnel", ("TFFunnelModel", "TFFunnelBaseModel")),
("gpt-sw3", "TFGPT2Model"),
("gpt2", "TFGPT2Model"),
("gptj", "TFGPTJModel"),
("groupvit", "TFGroupViTModel"),
("hubert", "TFHubertModel"),
("layoutlm", "TFLayoutLMModel"),
("layoutlmv3", "TFLayoutLMv3Model"),
("led", "TFLEDModel"),
("longformer", "TFLongformerModel"),
("lxmert", "TFLxmertModel"),
("marian", "TFMarianModel"),
("mbart", "TFMBartModel"),
("mobilebert", "TFMobileBertModel"),
("mobilevit", "TFMobileViTModel"),
("mpnet", "TFMPNetModel"),
("mt5", "TFMT5Model"),
("openai-gpt", "TFOpenAIGPTModel"),
("opt", "TFOPTModel"),
("pegasus", "TFPegasusModel"),
("regnet", "TFRegNetModel"),
("rembert", "TFRemBertModel"),
("resnet", "TFResNetModel"),
("roberta", "TFRobertaModel"),
("roberta-prelayernorm", "TFRobertaPreLayerNormModel"),
("roformer", "TFRoFormerModel"),
("sam", "TFSamModel"),
("segformer", "TFSegformerModel"),
("speech_to_text", "TFSpeech2TextModel"),
("swin", "TFSwinModel"),
("t5", "TFT5Model"),
("tapas", "TFTapasModel"),
("transfo-xl", "TFTransfoXLModel"),
("vision-text-dual-encoder", "TFVisionTextDualEncoderModel"),
("vit", "TFViTModel"),
("vit_mae", "TFViTMAEModel"),
("wav2vec2", "TFWav2Vec2Model"),
("whisper", "TFWhisperModel"),
("xglm", "TFXGLMModel"),
("xlm", "TFXLMModel"),
("xlm-roberta", "TFXLMRobertaModel"),
("xlnet", "TFXLNetModel"),
]
)
TF_MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict(
[
# Model for pre-training mapping
("albert", "TFAlbertForPreTraining"),
("bart", "TFBartForConditionalGeneration"),
("bert", "TFBertForPreTraining"),
("camembert", "TFCamembertForMaskedLM"),
("ctrl", "TFCTRLLMHeadModel"),
("distilbert", "TFDistilBertForMaskedLM"),
("electra", "TFElectraForPreTraining"),
("flaubert", "TFFlaubertWithLMHeadModel"),
("funnel", "TFFunnelForPreTraining"),
("gpt-sw3", "TFGPT2LMHeadModel"),
("gpt2", "TFGPT2LMHeadModel"),
("layoutlm", "TFLayoutLMForMaskedLM"),
("lxmert", "TFLxmertForPreTraining"),
("mobilebert", "TFMobileBertForPreTraining"),
("mpnet", "TFMPNetForMaskedLM"),
("openai-gpt", "TFOpenAIGPTLMHeadModel"),
("roberta", "TFRobertaForMaskedLM"),
("roberta-prelayernorm", "TFRobertaPreLayerNormForMaskedLM"),
("t5", "TFT5ForConditionalGeneration"),
("tapas", "TFTapasForMaskedLM"),
("transfo-xl", "TFTransfoXLLMHeadModel"),
("vit_mae", "TFViTMAEForPreTraining"),
("xlm", "TFXLMWithLMHeadModel"),
("xlm-roberta", "TFXLMRobertaForMaskedLM"),
("xlnet", "TFXLNetLMHeadModel"),
]
)
TF_MODEL_WITH_LM_HEAD_MAPPING_NAMES = OrderedDict(
[
# Model with LM heads mapping
("albert", "TFAlbertForMaskedLM"),
("bart", "TFBartForConditionalGeneration"),
("bert", "TFBertForMaskedLM"),
("camembert", "TFCamembertForMaskedLM"),
("convbert", "TFConvBertForMaskedLM"),
("ctrl", "TFCTRLLMHeadModel"),
("distilbert", "TFDistilBertForMaskedLM"),
("electra", "TFElectraForMaskedLM"),
("esm", "TFEsmForMaskedLM"),
("flaubert", "TFFlaubertWithLMHeadModel"),
("funnel", "TFFunnelForMaskedLM"),
("gpt-sw3", "TFGPT2LMHeadModel"),
("gpt2", "TFGPT2LMHeadModel"),
("gptj", "TFGPTJForCausalLM"),
("layoutlm", "TFLayoutLMForMaskedLM"),
("led", "TFLEDForConditionalGeneration"),
("longformer", "TFLongformerForMaskedLM"),
("marian", "TFMarianMTModel"),
("mobilebert", "TFMobileBertForMaskedLM"),
("mpnet", "TFMPNetForMaskedLM"),
("openai-gpt", "TFOpenAIGPTLMHeadModel"),
("rembert", "TFRemBertForMaskedLM"),
("roberta", "TFRobertaForMaskedLM"),
("roberta-prelayernorm", "TFRobertaPreLayerNormForMaskedLM"),
("roformer", "TFRoFormerForMaskedLM"),
("speech_to_text", "TFSpeech2TextForConditionalGeneration"),
("t5", "TFT5ForConditionalGeneration"),
("tapas", "TFTapasForMaskedLM"),
("transfo-xl", "TFTransfoXLLMHeadModel"),
("whisper", "TFWhisperForConditionalGeneration"),
("xlm", "TFXLMWithLMHeadModel"),
("xlm-roberta", "TFXLMRobertaForMaskedLM"),
("xlnet", "TFXLNetLMHeadModel"),
]
)
TF_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
[
# Model for Causal LM mapping
("bert", "TFBertLMHeadModel"),
("camembert", "TFCamembertForCausalLM"),
("ctrl", "TFCTRLLMHeadModel"),
("gpt-sw3", "TFGPT2LMHeadModel"),
("gpt2", "TFGPT2LMHeadModel"),
("gptj", "TFGPTJForCausalLM"),
("openai-gpt", "TFOpenAIGPTLMHeadModel"),
("opt", "TFOPTForCausalLM"),
("rembert", "TFRemBertForCausalLM"),
("roberta", "TFRobertaForCausalLM"),
("roberta-prelayernorm", "TFRobertaPreLayerNormForCausalLM"),
("roformer", "TFRoFormerForCausalLM"),
("transfo-xl", "TFTransfoXLLMHeadModel"),
("xglm", "TFXGLMForCausalLM"),
("xlm", "TFXLMWithLMHeadModel"),
("xlm-roberta", "TFXLMRobertaForCausalLM"),
("xlnet", "TFXLNetLMHeadModel"),
]
)
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES = OrderedDict(
[
("deit", "TFDeiTForMaskedImageModeling"),
("swin", "TFSwinForMaskedImageModeling"),
]
)
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Image-classsification
("convnext", "TFConvNextForImageClassification"),
("convnextv2", "TFConvNextV2ForImageClassification"),
("cvt", "TFCvtForImageClassification"),
("data2vec-vision", "TFData2VecVisionForImageClassification"),
("deit", ("TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher")),
(
"efficientformer",
("TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher"),
),
("mobilevit", "TFMobileViTForImageClassification"),
("regnet", "TFRegNetForImageClassification"),
("resnet", "TFResNetForImageClassification"),
("segformer", "TFSegformerForImageClassification"),
("swin", "TFSwinForImageClassification"),
("vit", "TFViTForImageClassification"),
]
)
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Zero Shot Image Classification mapping
("blip", "TFBlipModel"),
("clip", "TFCLIPModel"),
]
)
TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES = OrderedDict(
[
# Model for Semantic Segmentation mapping
("data2vec-vision", "TFData2VecVisionForSemanticSegmentation"),
("mobilevit", "TFMobileViTForSemanticSegmentation"),
("segformer", "TFSegformerForSemanticSegmentation"),
]
)
TF_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES = OrderedDict(
[
("blip", "TFBlipForConditionalGeneration"),
("vision-encoder-decoder", "TFVisionEncoderDecoderModel"),
]
)
TF_MODEL_FOR_MASKED_LM_MAPPING_NAMES = OrderedDict(
[
# Model for Masked LM mapping
("albert", "TFAlbertForMaskedLM"),
("bert", "TFBertForMaskedLM"),
("camembert", "TFCamembertForMaskedLM"),
("convbert", "TFConvBertForMaskedLM"),
("deberta", "TFDebertaForMaskedLM"),
("deberta-v2", "TFDebertaV2ForMaskedLM"),
("distilbert", "TFDistilBertForMaskedLM"),
("electra", "TFElectraForMaskedLM"),
("esm", "TFEsmForMaskedLM"),
("flaubert", "TFFlaubertWithLMHeadModel"),
("funnel", "TFFunnelForMaskedLM"),
("layoutlm", "TFLayoutLMForMaskedLM"),
("longformer", "TFLongformerForMaskedLM"),
("mobilebert", "TFMobileBertForMaskedLM"),
("mpnet", "TFMPNetForMaskedLM"),
("rembert", "TFRemBertForMaskedLM"),
("roberta", "TFRobertaForMaskedLM"),
("roberta-prelayernorm", "TFRobertaPreLayerNormForMaskedLM"),
("roformer", "TFRoFormerForMaskedLM"),
("tapas", "TFTapasForMaskedLM"),
("xlm", "TFXLMWithLMHeadModel"),
("xlm-roberta", "TFXLMRobertaForMaskedLM"),
]
)
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("bart", "TFBartForConditionalGeneration"),
("blenderbot", "TFBlenderbotForConditionalGeneration"),
("blenderbot-small", "TFBlenderbotSmallForConditionalGeneration"),
("encoder-decoder", "TFEncoderDecoderModel"),
("led", "TFLEDForConditionalGeneration"),
("marian", "TFMarianMTModel"),
("mbart", "TFMBartForConditionalGeneration"),
("mt5", "TFMT5ForConditionalGeneration"),
("pegasus", "TFPegasusForConditionalGeneration"),
("t5", "TFT5ForConditionalGeneration"),
]
)
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES = OrderedDict(
[
("speech_to_text", "TFSpeech2TextForConditionalGeneration"),
("whisper", "TFWhisperForConditionalGeneration"),
]
)
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Sequence Classification mapping
("albert", "TFAlbertForSequenceClassification"),
("bart", "TFBartForSequenceClassification"),
("bert", "TFBertForSequenceClassification"),
("camembert", "TFCamembertForSequenceClassification"),
("convbert", "TFConvBertForSequenceClassification"),
("ctrl", "TFCTRLForSequenceClassification"),
("deberta", "TFDebertaForSequenceClassification"),
("deberta-v2", "TFDebertaV2ForSequenceClassification"),
("distilbert", "TFDistilBertForSequenceClassification"),
("electra", "TFElectraForSequenceClassification"),
("esm", "TFEsmForSequenceClassification"),
("flaubert", "TFFlaubertForSequenceClassification"),
("funnel", "TFFunnelForSequenceClassification"),
("gpt-sw3", "TFGPT2ForSequenceClassification"),
("gpt2", "TFGPT2ForSequenceClassification"),
("gptj", "TFGPTJForSequenceClassification"),
("layoutlm", "TFLayoutLMForSequenceClassification"),
("layoutlmv3", "TFLayoutLMv3ForSequenceClassification"),
("longformer", "TFLongformerForSequenceClassification"),
("mobilebert", "TFMobileBertForSequenceClassification"),
("mpnet", "TFMPNetForSequenceClassification"),
("openai-gpt", "TFOpenAIGPTForSequenceClassification"),
("rembert", "TFRemBertForSequenceClassification"),
("roberta", "TFRobertaForSequenceClassification"),
("roberta-prelayernorm", "TFRobertaPreLayerNormForSequenceClassification"),
("roformer", "TFRoFormerForSequenceClassification"),
("tapas", "TFTapasForSequenceClassification"),
("transfo-xl", "TFTransfoXLForSequenceClassification"),
("xlm", "TFXLMForSequenceClassification"),
("xlm-roberta", "TFXLMRobertaForSequenceClassification"),
("xlnet", "TFXLNetForSequenceClassification"),
]
)
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
[
# Model for Question Answering mapping
("albert", "TFAlbertForQuestionAnswering"),
("bert", "TFBertForQuestionAnswering"),
("camembert", "TFCamembertForQuestionAnswering"),
("convbert", "TFConvBertForQuestionAnswering"),
("deberta", "TFDebertaForQuestionAnswering"),
("deberta-v2", "TFDebertaV2ForQuestionAnswering"),
("distilbert", "TFDistilBertForQuestionAnswering"),
("electra", "TFElectraForQuestionAnswering"),
("flaubert", "TFFlaubertForQuestionAnsweringSimple"),
("funnel", "TFFunnelForQuestionAnswering"),
("gptj", "TFGPTJForQuestionAnswering"),
("layoutlmv3", "TFLayoutLMv3ForQuestionAnswering"),
("longformer", "TFLongformerForQuestionAnswering"),
("mobilebert", "TFMobileBertForQuestionAnswering"),
("mpnet", "TFMPNetForQuestionAnswering"),
("rembert", "TFRemBertForQuestionAnswering"),
("roberta", "TFRobertaForQuestionAnswering"),
("roberta-prelayernorm", "TFRobertaPreLayerNormForQuestionAnswering"),
("roformer", "TFRoFormerForQuestionAnswering"),
("xlm", "TFXLMForQuestionAnsweringSimple"),
("xlm-roberta", "TFXLMRobertaForQuestionAnswering"),
("xlnet", "TFXLNetForQuestionAnsweringSimple"),
]
)
TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES = OrderedDict([("wav2vec2", "TFWav2Vec2ForSequenceClassification")])
TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
[
("layoutlm", "TFLayoutLMForQuestionAnswering"),
("layoutlmv3", "TFLayoutLMv3ForQuestionAnswering"),
]
)
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
[
# Model for Table Question Answering mapping
("tapas", "TFTapasForQuestionAnswering"),
]
)
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Token Classification mapping
("albert", "TFAlbertForTokenClassification"),
("bert", "TFBertForTokenClassification"),
("camembert", "TFCamembertForTokenClassification"),
("convbert", "TFConvBertForTokenClassification"),
("deberta", "TFDebertaForTokenClassification"),
("deberta-v2", "TFDebertaV2ForTokenClassification"),
("distilbert", "TFDistilBertForTokenClassification"),
("electra", "TFElectraForTokenClassification"),
("esm", "TFEsmForTokenClassification"),
("flaubert", "TFFlaubertForTokenClassification"),
("funnel", "TFFunnelForTokenClassification"),
("layoutlm", "TFLayoutLMForTokenClassification"),
("layoutlmv3", "TFLayoutLMv3ForTokenClassification"),
("longformer", "TFLongformerForTokenClassification"),
("mobilebert", "TFMobileBertForTokenClassification"),
("mpnet", "TFMPNetForTokenClassification"),
("rembert", "TFRemBertForTokenClassification"),
("roberta", "TFRobertaForTokenClassification"),
("roberta-prelayernorm", "TFRobertaPreLayerNormForTokenClassification"),
("roformer", "TFRoFormerForTokenClassification"),
("xlm", "TFXLMForTokenClassification"),
("xlm-roberta", "TFXLMRobertaForTokenClassification"),
("xlnet", "TFXLNetForTokenClassification"),
]
)
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES = OrderedDict(
[
# Model for Multiple Choice mapping
("albert", "TFAlbertForMultipleChoice"),
("bert", "TFBertForMultipleChoice"),
("camembert", "TFCamembertForMultipleChoice"),
("convbert", "TFConvBertForMultipleChoice"),
("deberta-v2", "TFDebertaV2ForMultipleChoice"),
("distilbert", "TFDistilBertForMultipleChoice"),
("electra", "TFElectraForMultipleChoice"),
("flaubert", "TFFlaubertForMultipleChoice"),
("funnel", "TFFunnelForMultipleChoice"),
("longformer", "TFLongformerForMultipleChoice"),
("mobilebert", "TFMobileBertForMultipleChoice"),
("mpnet", "TFMPNetForMultipleChoice"),
("rembert", "TFRemBertForMultipleChoice"),
("roberta", "TFRobertaForMultipleChoice"),
("roberta-prelayernorm", "TFRobertaPreLayerNormForMultipleChoice"),
("roformer", "TFRoFormerForMultipleChoice"),
("xlm", "TFXLMForMultipleChoice"),
("xlm-roberta", "TFXLMRobertaForMultipleChoice"),
("xlnet", "TFXLNetForMultipleChoice"),
]
)
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES = OrderedDict(
[
("bert", "TFBertForNextSentencePrediction"),
("mobilebert", "TFMobileBertForNextSentencePrediction"),
]
)
TF_MODEL_FOR_MASK_GENERATION_MAPPING_NAMES = OrderedDict(
[
("sam", "TFSamModel"),
]
)
TF_MODEL_FOR_TEXT_ENCODING_MAPPING_NAMES = OrderedDict(
[
("albert", "TFAlbertModel"),
("bert", "TFBertModel"),
("convbert", "TFConvBertModel"),
("deberta", "TFDebertaModel"),
("deberta-v2", "TFDebertaV2Model"),
("distilbert", "TFDistilBertModel"),
("electra", "TFElectraModel"),
("flaubert", "TFFlaubertModel"),
("longformer", "TFLongformerModel"),
("mobilebert", "TFMobileBertModel"),
("mt5", "TFMT5EncoderModel"),
("rembert", "TFRemBertModel"),
("roberta", "TFRobertaModel"),
("roberta-prelayernorm", "TFRobertaPreLayerNormModel"),
("roformer", "TFRoFormerModel"),
("t5", "TFT5EncoderModel"),
("xlm", "TFXLMModel"),
("xlm-roberta", "TFXLMRobertaModel"),
]
)
TF_MODEL_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_MAPPING_NAMES)
TF_MODEL_FOR_PRETRAINING_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
TF_MODEL_WITH_LM_HEAD_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_WITH_LM_HEAD_MAPPING_NAMES)
TF_MODEL_FOR_CAUSAL_LM_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES
)
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES
)
TF_MODEL_FOR_VISION_2_SEQ_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
TF_MODEL_FOR_MASKED_LM_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES
)
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES
)
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
TF_MODEL_FOR_MASK_GENERATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, TF_MODEL_FOR_MASK_GENERATION_MAPPING_NAMES
)
TF_MODEL_FOR_TEXT_ENCODING_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TF_MODEL_FOR_TEXT_ENCODING_MAPPING_NAMES)
class TFAutoModelForMaskGeneration(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_MASK_GENERATION_MAPPING
class TFAutoModelForTextEncoding(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_TEXT_ENCODING_MAPPING
class TFAutoModel(_BaseAutoModelClass):
_model_mapping = TF_MODEL_MAPPING
TFAutoModel = auto_class_update(TFAutoModel)
class TFAutoModelForAudioClassification(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
TFAutoModelForAudioClassification = auto_class_update(
TFAutoModelForAudioClassification, head_doc="audio classification"
)
class TFAutoModelForPreTraining(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_PRETRAINING_MAPPING
TFAutoModelForPreTraining = auto_class_update(TFAutoModelForPreTraining, head_doc="pretraining")
# Private on purpose, the public class will add the deprecation warnings.
class _TFAutoModelWithLMHead(_BaseAutoModelClass):
_model_mapping = TF_MODEL_WITH_LM_HEAD_MAPPING
_TFAutoModelWithLMHead = auto_class_update(_TFAutoModelWithLMHead, head_doc="language modeling")
class TFAutoModelForCausalLM(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING
TFAutoModelForCausalLM = auto_class_update(TFAutoModelForCausalLM, head_doc="causal language modeling")
class TFAutoModelForMaskedImageModeling(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING
TFAutoModelForMaskedImageModeling = auto_class_update(
TFAutoModelForMaskedImageModeling, head_doc="masked image modeling"
)
class TFAutoModelForImageClassification(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
TFAutoModelForImageClassification = auto_class_update(
TFAutoModelForImageClassification, head_doc="image classification"
)
class TFAutoModelForZeroShotImageClassification(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
TFAutoModelForZeroShotImageClassification = auto_class_update(
TFAutoModelForZeroShotImageClassification, head_doc="zero-shot image classification"
)
class TFAutoModelForSemanticSegmentation(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING
TFAutoModelForSemanticSegmentation = auto_class_update(
TFAutoModelForSemanticSegmentation, head_doc="semantic segmentation"
)
class TFAutoModelForVision2Seq(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_VISION_2_SEQ_MAPPING
TFAutoModelForVision2Seq = auto_class_update(TFAutoModelForVision2Seq, head_doc="vision-to-text modeling")
class TFAutoModelForMaskedLM(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_MASKED_LM_MAPPING
TFAutoModelForMaskedLM = auto_class_update(TFAutoModelForMaskedLM, head_doc="masked language modeling")
class TFAutoModelForSeq2SeqLM(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
TFAutoModelForSeq2SeqLM = auto_class_update(
TFAutoModelForSeq2SeqLM,
head_doc="sequence-to-sequence language modeling",
checkpoint_for_example="google-t5/t5-base",
)
class TFAutoModelForSequenceClassification(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
TFAutoModelForSequenceClassification = auto_class_update(
TFAutoModelForSequenceClassification, head_doc="sequence classification"
)
class TFAutoModelForQuestionAnswering(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING
TFAutoModelForQuestionAnswering = auto_class_update(TFAutoModelForQuestionAnswering, head_doc="question answering")
class TFAutoModelForDocumentQuestionAnswering(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
TFAutoModelForDocumentQuestionAnswering = auto_class_update(
TFAutoModelForDocumentQuestionAnswering,
head_doc="document question answering",
checkpoint_for_example='impira/layoutlm-document-qa", revision="52e01b3',
)
class TFAutoModelForTableQuestionAnswering(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING
TFAutoModelForTableQuestionAnswering = auto_class_update(
TFAutoModelForTableQuestionAnswering,
head_doc="table question answering",
checkpoint_for_example="google/tapas-base-finetuned-wtq",
)
class TFAutoModelForTokenClassification(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
TFAutoModelForTokenClassification = auto_class_update(
TFAutoModelForTokenClassification, head_doc="token classification"
)
class TFAutoModelForMultipleChoice(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
TFAutoModelForMultipleChoice = auto_class_update(TFAutoModelForMultipleChoice, head_doc="multiple choice")
class TFAutoModelForNextSentencePrediction(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
TFAutoModelForNextSentencePrediction = auto_class_update(
TFAutoModelForNextSentencePrediction, head_doc="next sentence prediction"
)
class TFAutoModelForSpeechSeq2Seq(_BaseAutoModelClass):
_model_mapping = TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
TFAutoModelForSpeechSeq2Seq = auto_class_update(
TFAutoModelForSpeechSeq2Seq, head_doc="sequence-to-sequence speech-to-text modeling"
)
class TFAutoModelWithLMHead(_TFAutoModelWithLMHead):
@classmethod
def from_config(cls, config):
warnings.warn(
"The class `TFAutoModelWithLMHead` is deprecated and will be removed in a future version. Please use"
" `TFAutoModelForCausalLM` for causal language models, `TFAutoModelForMaskedLM` for masked language models"
" and `TFAutoModelForSeq2SeqLM` for encoder-decoder models.",
FutureWarning,
)
return super().from_config(config)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
warnings.warn(
"The class `TFAutoModelWithLMHead` is deprecated and will be removed in a future version. Please use"
" `TFAutoModelForCausalLM` for causal language models, `TFAutoModelForMaskedLM` for masked language models"
" and `TFAutoModelForSeq2SeqLM` for encoder-decoder models.",
FutureWarning,
)
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
| transformers/src/transformers/models/auto/modeling_tf_auto.py/0 | {
"file_path": "transformers/src/transformers/models/auto/modeling_tf_auto.py",
"repo_id": "transformers",
"token_count": 12162
} | 305 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"],
"tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_bert_fast"] = ["BertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_bert"] = [
"BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BertForMaskedLM",
"BertForMultipleChoice",
"BertForNextSentencePrediction",
"BertForPreTraining",
"BertForQuestionAnswering",
"BertForSequenceClassification",
"BertForTokenClassification",
"BertLayer",
"BertLMHeadModel",
"BertModel",
"BertPreTrainedModel",
"load_tf_weights_in_bert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_bert"] = [
"TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFBertEmbeddings",
"TFBertForMaskedLM",
"TFBertForMultipleChoice",
"TFBertForNextSentencePrediction",
"TFBertForPreTraining",
"TFBertForQuestionAnswering",
"TFBertForSequenceClassification",
"TFBertForTokenClassification",
"TFBertLMHeadModel",
"TFBertMainLayer",
"TFBertModel",
"TFBertPreTrainedModel",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_bert_tf"] = ["TFBertTokenizer"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_bert"] = [
"FlaxBertForCausalLM",
"FlaxBertForMaskedLM",
"FlaxBertForMultipleChoice",
"FlaxBertForNextSentencePrediction",
"FlaxBertForPreTraining",
"FlaxBertForQuestionAnswering",
"FlaxBertForSequenceClassification",
"FlaxBertForTokenClassification",
"FlaxBertModel",
"FlaxBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/bert/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/bert/__init__.py",
"repo_id": "transformers",
"token_count": 2639
} | 306 |
# coding=utf-8
# Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for BridgeTower.
"""
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class BridgeTowerProcessor(ProcessorMixin):
r"""
Constructs a BridgeTower processor which wraps a Roberta tokenizer and BridgeTower image processor into a single
processor.
[`BridgeTowerProcessor`] offers all the functionalities of [`BridgeTowerImageProcessor`] and
[`RobertaTokenizerFast`]. See the docstring of [`~BridgeTowerProcessor.__call__`] and
[`~BridgeTowerProcessor.decode`] for more information.
Args:
image_processor (`BridgeTowerImageProcessor`):
An instance of [`BridgeTowerImageProcessor`]. The image processor is a required input.
tokenizer (`RobertaTokenizerFast`):
An instance of ['RobertaTokenizerFast`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "BridgeTowerImageProcessor"
tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast")
def __init__(self, image_processor, tokenizer):
super().__init__(image_processor, tokenizer)
def __call__(
self,
images,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> BatchEncoding:
"""
This method uses [`BridgeTowerImageProcessor.__call__`] method to prepare image(s) for the model, and
[`RobertaTokenizerFast.__call__`] to prepare text for the model.
Please refer to the docstring of the above two methods for more information.
"""
encoding = self.tokenizer(
text=text,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
return_tensors=return_tensors,
**kwargs,
)
# add pixel_values + pixel_mask
encoding_image_processor = self.image_processor(
images, return_tensors=return_tensors, do_normalize=True, do_center_crop=True, **kwargs
)
encoding.update(encoding_image_processor)
return encoding
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
| transformers/src/transformers/models/bridgetower/processing_bridgetower.py/0 | {
"file_path": "transformers/src/transformers/models/bridgetower/processing_bridgetower.py",
"repo_id": "transformers",
"token_count": 1929
} | 307 |
# coding=utf-8
# Copyright Google AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CANINE model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json",
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class CanineConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CanineModel`]. It is used to instantiate an
CANINE model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the CANINE
[google/canine-s](https://huggingface.co/google/canine-s) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the deep Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoders.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoders.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoders, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 16384):
The maximum sequence length that this model might ever be used with.
type_vocab_size (`int`, *optional*, defaults to 16):
The vocabulary size of the `token_type_ids` passed when calling [`CanineModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 57344):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 57345):
End of stream token id.
downsampling_rate (`int`, *optional*, defaults to 4):
The rate at which to downsample the original character sequence length before applying the deep Transformer
encoder.
upsampling_kernel_size (`int`, *optional*, defaults to 4):
The kernel size (i.e. the number of characters in each window) of the convolutional projection layer when
projecting back from `hidden_size`*2 to `hidden_size`.
num_hash_functions (`int`, *optional*, defaults to 8):
The number of hash functions to use. Each hash function has its own embedding matrix.
num_hash_buckets (`int`, *optional*, defaults to 16384):
The number of hash buckets to use.
local_transformer_stride (`int`, *optional*, defaults to 128):
The stride of the local attention of the first shallow Transformer encoder. Defaults to 128 for good
TPU/XLA memory alignment.
Example:
```python
>>> from transformers import CanineConfig, CanineModel
>>> # Initializing a CANINE google/canine-s style configuration
>>> configuration = CanineConfig()
>>> # Initializing a model (with random weights) from the google/canine-s style configuration
>>> model = CanineModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "canine"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=16384,
type_vocab_size=16,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
bos_token_id=0xE000,
eos_token_id=0xE001,
downsampling_rate=4,
upsampling_kernel_size=4,
num_hash_functions=8,
num_hash_buckets=16384,
local_transformer_stride=128, # Good TPU/XLA memory alignment.
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
# Character config:
self.downsampling_rate = downsampling_rate
self.upsampling_kernel_size = upsampling_kernel_size
self.num_hash_functions = num_hash_functions
self.num_hash_buckets = num_hash_buckets
self.local_transformer_stride = local_transformer_stride
| transformers/src/transformers/models/canine/configuration_canine.py/0 | {
"file_path": "transformers/src/transformers/models/canine/configuration_canine.py",
"repo_id": "transformers",
"token_count": 2532
} | 308 |
Subsets and Splits