text
stringlengths
7
328k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
459
from dataclasses import dataclass, field from typing import List, Optional from ..core import flatten_dict @dataclass class ModelConfig: """ Arguments which define the model and tokenizer to load. """ model_name_or_path: Optional[str] = field( default=None, metadata={"help": ("The model checkpoint for weights initialization.")}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) torch_dtype: Optional[str] = field( default=None, metadata={ "help": ( "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the " "dtype will be automatically derived from the model's weights." ), "choices": ["auto", "bfloat16", "float16", "float32"], }, ) trust_remote_code: bool = field(default=False, metadata={"help": "Trust remote code when loading a model."}) attn_implementation: Optional[str] = field( default=None, metadata={ "help": ( "Which attention implementation to use; you can run --attn_implementation=flash_attention_2, in which case you must install this manually by running `pip install flash-attn --no-build-isolation`" ) }, ) use_peft: bool = field( default=False, metadata={"help": ("Whether to use PEFT or not for training.")}, ) lora_r: Optional[int] = field( default=16, metadata={"help": ("LoRA R value.")}, ) lora_alpha: Optional[int] = field( default=32, metadata={"help": ("LoRA alpha.")}, ) lora_dropout: Optional[float] = field( default=0.05, metadata={"help": ("LoRA dropout.")}, ) lora_target_modules: Optional[List[str]] = field( default=None, metadata={"help": ("LoRA target modules.")}, ) lora_modules_to_save: Optional[List[str]] = field( default=None, metadata={"help": ("Model layers to unfreeze & train")}, ) lora_task_type: str = field( default="CAUSAL_LM", metadata={"help": "The task_type to pass for LoRA (use SEQ_CLS for reward modeling)"} ) load_in_8bit: bool = field( default=False, metadata={"help": "use 8 bit precision for the base model - works only with LoRA"} ) load_in_4bit: bool = field( default=False, metadata={"help": "use 4 bit precision for the base model - works only with LoRA"} ) bnb_4bit_quant_type: Optional[str] = field( default="nf4", metadata={"help": "precise the quantization type (fp4 or nf4)"} ) use_bnb_nested_quant: bool = field(default=False, metadata={"help": "use nested quantization"}) def to_dict(self): output_dict = {} for key, value in self.__dict__.items(): output_dict[key] = value return flatten_dict(output_dict) def __post_init__(self): if self.load_in_8bit and self.load_in_4bit: raise ValueError("You can't use 8 bit and 4 bit precision at the same time")
trl/trl/trainer/model_config.py/0
{ "file_path": "trl/trl/trainer/model_config.py", "repo_id": "trl", "token_count": 1309 }
409
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Launching your ๐Ÿค— Accelerate scripts In the previous tutorial, you were introduced to how to modify your current training script to use ๐Ÿค— Accelerate. The final version of that code is shown below: ```python from accelerate import Accelerator accelerator = Accelerator() model, optimizer, training_dataloader, scheduler = accelerator.prepare( model, optimizer, training_dataloader, scheduler ) for batch in training_dataloader: optimizer.zero_grad() inputs, targets = batch outputs = model(inputs) loss = loss_function(outputs, targets) accelerator.backward(loss) optimizer.step() scheduler.step() ``` But how do you run this code and have it utilize the special hardware available to it? First, you should rewrite the above code into a function, and make it callable as a script. For example: ```diff from accelerate import Accelerator + def main(): accelerator = Accelerator() model, optimizer, training_dataloader, scheduler = accelerator.prepare( model, optimizer, training_dataloader, scheduler ) for batch in training_dataloader: optimizer.zero_grad() inputs, targets = batch outputs = model(inputs) loss = loss_function(outputs, targets) accelerator.backward(loss) optimizer.step() scheduler.step() + if __name__ == "__main__": + main() ``` Next, you need to launch it with `accelerate launch`. <Tip warning={true}> It's recommended you run `accelerate config` before using `accelerate launch` to configure your environment to your liking. Otherwise ๐Ÿค— Accelerate will use very basic defaults depending on your system setup. </Tip> ## Using accelerate launch ๐Ÿค— Accelerate has a special CLI command to help you launch your code in your system through `accelerate launch`. This command wraps around all of the different commands needed to launch your script on various platforms, without you having to remember what each of them is. <Tip> If you are familiar with launching scripts in PyTorch yourself such as with `torchrun`, you can still do this. It is not required to use `accelerate launch`. </Tip> You can launch your script quickly by using: ```bash accelerate launch {script_name.py} --arg1 --arg2 ... ``` Just put `accelerate launch` at the start of your command, and pass in additional arguments and parameters to your script afterward like normal! Since this runs the various torch spawn methods, all of the expected environment variables can be modified here as well. For example, here is how to use `accelerate launch` with a single GPU: ```bash CUDA_VISIBLE_DEVICES="0" accelerate launch {script_name.py} --arg1 --arg2 ... ``` You can also use `accelerate launch` without performing `accelerate config` first, but you may need to manually pass in the right configuration parameters. In this case, ๐Ÿค— Accelerate will make some hyperparameter decisions for you, e.g., if GPUs are available, it will use all of them by default without the mixed precision. Here is how you would use all GPUs and train with mixed precision disabled: ```bash accelerate launch --multi_gpu {script_name.py} {--arg1} {--arg2} ... ``` Or by specifying a number of GPUs to use: ```bash accelerate launch --num_processes=2 {script_name.py} {--arg1} {--arg2} ... ``` To get more specific you should pass in the needed parameters yourself. For instance, here is how you would also launch that same script on two GPUs using mixed precision while avoiding all of the warnings: ```bash accelerate launch --multi_gpu --mixed_precision=fp16 --num_processes=2 {script_name.py} {--arg1} {--arg2} ... ``` For a complete list of parameters you can pass in, run: ```bash accelerate launch -h ``` <Tip> Even if you are not using ๐Ÿค— Accelerate in your code, you can still use the launcher for starting your scripts! </Tip> For a visualization of this difference, that earlier `accelerate launch` on multi-gpu would look something like so with `torchrun`: ```bash MIXED_PRECISION="fp16" torchrun --nproc_per_node=2 --num_machines=1 {script_name.py} {--arg1} {--arg2} ... ``` You can also launch your script utilizing the launch CLI as a python module itself, enabling the ability to pass in other python-specific launching behaviors. To do so, use `accelerate.commands.launch` instead of `accelerate launch`: ```bash python -m accelerate.commands.launch --num_processes=2 {script_name.py} {--arg1} {--arg2} ``` If you want to execute the script with any other python flags, you can pass them in as well similar to `-m`, such as the below example enabling unbuffered stdout and stderr: ```bash python -u -m accelerate.commands.launch --num_processes=2 {script_name.py} {--arg1} {--arg2} ``` <Tip> You can run your code on CPU as well! This is helpful for debugging and testing purposes on toy models and datasets. ```bash accelerate launch --cpu {script_name.py} {--arg1} {--arg2} ``` </Tip> ## Why you should always use `accelerate config` Why is it useful to the point you should **always** run `accelerate config`? Remember that earlier call to `accelerate launch` as well as `torchrun`? Post configuration, to run that script with the needed parts you just need to use `accelerate launch` outright, without passing anything else in: ```bash accelerate launch {script_name.py} {--arg1} {--arg2} ... ``` ## Custom Configurations As briefly mentioned earlier, `accelerate launch` should be mostly used through combining set configurations made with the `accelerate config` command. These configs are saved to a `default_config.yaml` file in your cache folder for ๐Ÿค— Accelerate. This cache folder is located at (with decreasing order of priority): - The content of your environment variable `HF_HOME` suffixed with `accelerate`. - If it does not exist, the content of your environment variable `XDG_CACHE_HOME` suffixed with `huggingface/accelerate`. - If this does not exist either, the folder `~/.cache/huggingface/accelerate`. To have multiple configurations, the flag `--config_file` can be passed to the `accelerate launch` command paired with the location of the custom yaml. An example yaml may look something like the following for two GPUs on a single machine using `fp16` for mixed precision: ```yaml compute_environment: LOCAL_MACHINE deepspeed_config: {} distributed_type: MULTI_GPU fsdp_config: {} machine_rank: 0 main_process_ip: null main_process_port: null main_training_function: main mixed_precision: fp16 num_machines: 1 num_processes: 2 use_cpu: false ``` Launching a script from the location of that custom yaml file looks like the following: ```bash accelerate launch --config_file {path/to/config/my_config_file.yaml} {script_name.py} {--arg1} {--arg2} ... ``` ## Multi-node training Multi-node training with ๐Ÿค—Accelerate is similar to [multi-node training with torchrun](https://pytorch.org/tutorials/intermediate/ddp_series_multinode.html). The simplest way to launch a multi-node training run is to do the following: - Copy your codebase and data to all nodes. (or place them on a shared filesystem) - Setup your python packages on all nodes. - Run `accelerate config` on the main single node first. After specifying the number of nodes, you will be asked to specify the rank of each node (this will be 0 for the main/master node), along with the IP address and port for the main process. This is required for the worker nodes to communicate with the main process. Afterwards, you can copy or send this config file across all of your nodes, changing the `machine_rank` to 1, 2,3, etc. to avoid having to run the command (or just follow their directions directly for launching with `torchrun` as well) Once you have done this, you can start your multi-node training run by running `accelerate launch` (or `torchrun`) on all nodes. <Tip> It is required that the command be ran on all nodes for everything to start, not just running it from the main node. You can use something like SLURM or a different process executor to wrap around this requirement and call everything from a single command. </Tip> <Tip> It is recommended to use the intranet IP of your main node over the public IP for better latency. This is the `192.168.x.x` or the `172.x.x.x` address you see when you run `hostname -I` on the main node. </Tip> To get a better idea about multi-node training, check out our example for [multi-node training with FSDP](https://huggingface.co/blog/ram-efficient-pytorch-fsdp).
accelerate/docs/source/basic_tutorials/launch.md/0
{ "file_path": "accelerate/docs/source/basic_tutorials/launch.md", "repo_id": "accelerate", "token_count": 2702 }
0
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โš ๏ธ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Checkpointing When training a PyTorch model with ๐Ÿค— Accelerate, you may often want to save and continue a state of training. Doing so requires saving and loading the model, optimizer, RNG generators, and the GradScaler. Inside ๐Ÿค— Accelerate are two convenience functions to achieve this quickly: - Use [`~Accelerator.save_state`] for saving everything mentioned above to a folder location - Use [`~Accelerator.load_state`] for loading everything stored from an earlier `save_state` To further customize where and how states are saved through [`~Accelerator.save_state`] the [`~utils.ProjectConfiguration`] class can be used. For example if `automatic_checkpoint_naming` is enabled each saved checkpoint will be located then at `Accelerator.project_dir/checkpoints/checkpoint_{checkpoint_number}`. It should be noted that the expectation is that those states come from the same training script, they should not be from two separate scripts. - By using [`~Accelerator.register_for_checkpointing`], you can register custom objects to be automatically stored or loaded from the two prior functions, so long as the object has a `state_dict` **and** a `load_state_dict` functionality. This could include objects such as a learning rate scheduler. Below is a brief example using checkpointing to save and reload a state during training: ```python from accelerate import Accelerator import torch accelerator = Accelerator(project_dir="my/save/path") my_scheduler = torch.optim.lr_scheduler.StepLR(my_optimizer, step_size=1, gamma=0.99) my_model, my_optimizer, my_training_dataloader = accelerator.prepare(my_model, my_optimizer, my_training_dataloader) # Register the LR scheduler accelerator.register_for_checkpointing(my_scheduler) # Save the starting state accelerator.save_state() device = accelerator.device my_model.to(device) # Perform training for epoch in range(num_epochs): for batch in my_training_dataloader: my_optimizer.zero_grad() inputs, targets = batch inputs = inputs.to(device) targets = targets.to(device) outputs = my_model(inputs) loss = my_loss_function(outputs, targets) accelerator.backward(loss) my_optimizer.step() my_scheduler.step() # Restore the previous state accelerator.load_state("my/save/path/checkpointing/checkpoint_0") ``` ## Restoring the state of the DataLoader After resuming from a checkpoint, it may also be desirable to resume from a particular point in the active `DataLoader` if the state was saved during the middle of an epoch. You can use [`~Accelerator.skip_first_batches`] to do so. ```python from accelerate import Accelerator accelerator = Accelerator(project_dir="my/save/path") train_dataloader = accelerator.prepare(train_dataloader) accelerator.load_state("my_state") # Assume the checkpoint was saved 100 steps into the epoch skipped_dataloader = accelerator.skip_first_batches(train_dataloader, 100) # After the first iteration, go back to `train_dataloader` # First epoch for batch in skipped_dataloader: # Do something pass # Second epoch for batch in train_dataloader: # Do something pass ```
accelerate/docs/source/usage_guides/checkpoint.md/0
{ "file_path": "accelerate/docs/source/usage_guides/checkpoint.md", "repo_id": "accelerate", "token_count": 1156 }
1
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # In this folder we showcase various full examples using ๐Ÿค— Accelerate ## Simple NLP example The [nlp_example.py](./nlp_example.py) script is a simple example to train a Bert model on a classification task ([GLUE's MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398)). Prior to running it you should install ๐Ÿค— Dataset and ๐Ÿค— Transformers: ```bash pip install datasets evaluate transformers ``` The same script can be run in any of the following configurations: - single CPU or single GPU - multi CPUs - multi GPUs (using PyTorch distributed mode) - (multi) TPUs - fp16 (mixed-precision) or fp32 (normal precision) To run it in each of these various modes, use the following commands: - single CPU: * from a server without GPU ```bash python ./nlp_example.py ``` * from any server by passing `cpu=True` to the `Accelerator`. ```bash python ./nlp_example.py --cpu ``` * from any server with Accelerate launcher ```bash accelerate launch --cpu ./nlp_example.py ``` - single GPU: ```bash python ./nlp_example.py # from a server with a GPU ``` - with fp16 (mixed-precision) * from any server by passing `mixed_precison=fp16` to the `Accelerator`. ```bash python ./nlp_example.py --mixed_precision fp16 ``` * from any server with Accelerate launcher ```bash accelerate launch --mixed_precision fp16 ./nlp_example.py - multi CPUs (requires Open MPI, Intel MPI, or MVAPICH) * With Accelerate config and launcher, execute the following from node 0: ```bash accelerate config # Select to have accelerate launch mpirun accelerate launch ./nlp_example.py # This will run the script on each server ``` * With Intel MPI: ```bash export CCL_WORKER_COUNT=1 export MASTER_ADDR=xxx.xxx.xxx.xxx #node0 ip mpirun -f hostfile -n 16 -ppn 4 python ./nlp_example.py ``` - multi GPUs (using PyTorch distributed mode) * With Accelerate config and launcher ```bash accelerate config # This will create a config file on your server accelerate launch ./nlp_example.py # This will run the script on your server ``` * With traditional PyTorch launcher (`python -m torch.distributed.run` can be used instead of `torchrun`) ```bash torchrun --nproc_per_node 2 ./nlp_example.py ``` - multi GPUs, multi node (several machines, using PyTorch distributed mode) * With Accelerate config and launcher, on each machine: ```bash accelerate config # This will create a config file on each server accelerate launch ./nlp_example.py # This will run the script on each server ``` * With PyTorch launcher only (`python -m torch.distributed.run` can be used instead of `torchrun`). Run this command on each node: ```bash torchrun \ # python -m torch.distributed.run --nproc_per_node 2 \ --nnodes 2 \ --rdzv_id 2299 \ # A unique job id --rdzv_backend c10d \ --rdzv_endpoint master_node_ip_address:29500 \ ./nlp_example.py ``` - (multi) TPUs * With Accelerate config and launcher ```bash accelerate config # This will create a config file on your TPU server accelerate launch ./nlp_example.py # This will run the script on each server ``` * In PyTorch: Add an `xmp.spawn` line in your script as you usually do. ## Simple vision example The [cv_example.py](./cv_example.py) script is a simple example to fine-tune a ResNet-50 on a classification task ([Ofxord-IIT Pet Dataset](https://www.robots.ox.ac.uk/~vgg/data/pets/)). The same script can be run in any of the following configurations: - single CPU or single GPU - multi CPUs - multi GPUs (using PyTorch distributed mode) - (multi) TPUs - fp16 (mixed-precision) or fp32 (normal precision) Prior to running it you should install timm and torchvision: ```bash pip install timm torchvision ``` and you should download the data with the following commands: ```bash wget https://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz tar -xzf images.tar.gz ``` To run it in each of these various modes, use the following commands: - single CPU: * from a server without GPU ```bash python ./cv_example.py --data_dir path_to_data ``` * from any server by passing `cpu=True` to the `Accelerator`. ```bash python ./cv_example.py --data_dir path_to_data --cpu ``` * from any server with Accelerate launcher ```bash accelerate launch --cpu ./cv_example.py --data_dir path_to_data ``` - single GPU: ```bash python ./cv_example.py # from a server with a GPU ``` - with fp16 (mixed-precision) * from any server by passing `mixed_precison=fp16` to the `Accelerator`. ```bash python ./cv_example.py --data_dir path_to_data --mixed_precison fp16 ``` * from any server with Accelerate launcher ```bash accelerate launch --mixed_precison fp16 ./cv_example.py --data_dir path_to_data - multi CPUs (requires Open MPI, Intel MPI, or MVAPICH) * With Accelerate config and launcher, run the following from node 0: ```bash accelerate config --config_file config.yaml # Select to have accelerate launch mpirun accelerate launch ./cv_example.py --data_dir path_to_data # This will run the script on each server ``` * With Intel MPI, execute mpirun from node 0: ```bash export CCL_WORKER_COUNT=1 export MASTER_ADDR=xxx.xxx.xxx.xxx #node0 ip mpirun -f hostfile -n 16 -ppn 4 python ./cv_example.py --data_dir path_to_data ``` - multi GPUs (using PyTorch distributed mode) * With Accelerate config and launcher ```bash accelerate config --config_file config.yaml # This will create a config file on your server to `config.yaml` accelerate launch --config_file config.yaml ./cv_example.py --data_dir path_to_data # This will run the script on your server ``` * With traditional PyTorch launcher (`python -m torch.distributed.run` can be used instead of `torchrun`) ```bash torchrun --nproc_per_node 2 ./cv_example.py --data_dir path_to_data ``` - multi GPUs, multi node (several machines, using PyTorch distributed mode) * With Accelerate config and launcher, on each machine: ```bash accelerate config --config_file config.yaml # This will create a config file on your server to `config.yaml` accelerate launch --config_file config.yaml ./cv_example.py --data_dir path_to_data # This will run the script on each server ``` * With PyTorch launcher only (`python -m torch.distributed.run` can be used instead of `torchrun`). Run this command on each node: ```bash torchrun \ # python -m torch.distributed.run --nproc_per_node 2 \ --nnodes 2 \ --rdzv_id 2299 \ # A unique job id --rdzv_backend c10d \ --rdzv_endpoint master_node_ip_address:29500 \ ./cv_example.py --data_dir path_to_data ``` - (multi) TPUs * With Accelerate config and launcher ```bash accelerate config --config_file config.yaml # This will create a config file on your server to `config.yaml` accelerate launch --config_file config.yaml ./cv_example.py --data_dir path_to_data # This will run the script on each server ``` * In PyTorch: Add an `xmp.spawn` line in your script as you usually do. ### Simple vision example (GANs) - [huggan project](https://github.com/huggingface/community-events/tree/main/huggan) ### Using AWS SageMaker integration - [Examples showcasing AWS SageMaker integration of ๐Ÿค— Accelerate.](https://github.com/pacman100/accelerate-aws-sagemaker) ## Simple Multi-GPU Hardware Launcher [multigpu_remote_launcher.py](./multigpu_remote_launcher.py) is a minimal script that demonstrates launching accelerate on multiple remote GPUs, and with automatic hardware environment and dependency setup for reproducibility. You can easily customize the training function used, training arguments, hyperparameters, and type of compute hardware, and then run the script to automatically launch multi GPU training on remote hardware. This script uses [Runhouse](https://github.com/run-house/runhouse) to launch on self-hosted hardware (e.g. in your own cloud account or on-premise cluster) but there are other options for running remotely as well. Runhouse can be installed with `pip install runhouse`, and you can refer to [hardware setup](https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup) for hardware setup instructions, or this [Colab tutorial](https://colab.research.google.com/drive/1qVwYyLTCPYPSdz9ZX7BZl9Qm0A3j7RJe) for a more in-depth walkthrough. ## SLURM Scripts In [/slurm/submit_multigpu.sh](./slurm/submit_multigpu.sh) and [/slurm/submit_multinode.sh](./slurm/submit_multinode.sh) we present two scripts for running the examples on a machine with [SLURM](https://slurm.schedmd.com/documentation.html) workload manager. In [/slurm/submit_multigpu.sh](./slurm/submit_multigpu.sh) the only parameter in the launcher that needs to be modified is `--num_processes`, which determines the number of GPUs we will use. In this case, using the environment variable `$SLURM_GPUS`, we indicate that we want to utilize all the GPUs available on the node we have requested. In [/slurm/submit_multinode.sh](./slurm/submit_multinode.sh) we must specify the number of nodes that will be part of the training (`--num_machines`), how many GPUs we will use in total (`--num_processes`), the [`backend`](https://pytorch.org/docs/stable/elastic/run.html#note-on-rendezvous-backend), `--main_process_ip` which will be the address the master node and the `--main_process_port`. In both scripts, we run `activateEnviroment.sh` at the beginning. This script should contain the necessary instructions to initialize the environment for execution. Below, we show an example that loads the necessary libraries ([Environment modules](https://github.com/cea-hpc/modules)), activates the Python environment, and sets up various environment variables, most of them to run the scripts in offline mode in case we don't have internet connection from the cluster. ```bash # activateEnvironment.sh module purge module load anaconda3/2020.02 cuda/10.2 cudnn/8.0.5 nccl/2.9.9 arrow/7.0.0 openmpi source activate /home/nct01/nct01328/pytorch_antoni_local export HF_HOME=/gpfs/projects/nct01/nct01328/ export HF_LOCAL_HOME=/gpfs/projects/nct01/nct01328/HF_LOCAL export HF_DATASETS_OFFLINE=1 export TRANSFORMERS_OFFLINE=1 export PYTHONPATH=/home/nct01/nct01328/transformers-in-supercomputers:$PYTHONPATH export GPUS_PER_NODE=4 ``` ## Finer Examples While the first two scripts are extremely barebones when it comes to what you can do with accelerate, more advanced features are documented in two other locations. ### `by_feature` examples These scripts are *individual* examples highlighting one particular feature or use-case within Accelerate. They all stem from the [nlp_example.py](./nlp_example.py) script, and any changes or modifications is denoted with a `# New Code #` comment. Read the README.md file located in the `by_feature` folder for more information. ### `complete_*` examples These two scripts contain *every* single feature currently available in Accelerate in one place, as one giant script. New arguments that can be passed include: - `checkpointing_steps`, whether the various states should be saved at the end of every `n` steps, or `"epoch"` for each epoch. States are then saved to folders named `step_{n}` or `epoch_{n}` - `resume_from_checkpoint`, should be used if you want to resume training off of a previous call to the script and passed a `checkpointing_steps` to it. - `with_tracking`, should be used if you want to log the training run using all available experiment trackers in your environment. Currently supported trackers include TensorBoard, Weights and Biases, and CometML.
accelerate/examples/README.md/0
{ "file_path": "accelerate/examples/README.md", "repo_id": "accelerate", "token_count": 4466 }
2
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a ResNet50 on the Oxford-IIT Pet Dataset # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## # Function to get the label from the filename def extract_label(fname): stem = fname.split(os.path.sep)[-1] return re.search(r"^(.*)_\d+\.jpg$", stem).groups()[0] class PetsDataset(Dataset): def __init__(self, file_names, image_transform=None, label_to_id=None): self.file_names = file_names self.image_transform = image_transform self.label_to_id = label_to_id def __len__(self): return len(self.file_names) def __getitem__(self, idx): fname = self.file_names[idx] raw_image = PIL.Image.open(fname) image = raw_image.convert("RGB") if self.image_transform is not None: image = self.image_transform(image) label = extract_label(fname) if self.label_to_id is not None: label = self.label_to_id[label] return {"image": image, "label": label} def training_function(config, args): # Initialize accelerator accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) image_size = config["image_size"] if not isinstance(image_size, (list, tuple)): image_size = (image_size, image_size) # Grab all the image filenames file_names = [os.path.join(args.data_dir, fname) for fname in os.listdir(args.data_dir) if fname.endswith(".jpg")] # Build the label correspondences all_labels = [extract_label(fname) for fname in file_names] id_to_label = list(set(all_labels)) id_to_label.sort() label_to_id = {lbl: i for i, lbl in enumerate(id_to_label)} # Set the seed before splitting the data. np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # Split our filenames between train and validation random_perm = np.random.permutation(len(file_names)) cut = int(0.8 * len(file_names)) train_split = random_perm[:cut] eval_split = random_perm[cut:] # For training we use a simple RandomResizedCrop train_tfm = Compose([RandomResizedCrop(image_size, scale=(0.5, 1.0)), ToTensor()]) train_dataset = PetsDataset( [file_names[i] for i in train_split], image_transform=train_tfm, label_to_id=label_to_id ) # For evaluation, we use a deterministic Resize eval_tfm = Compose([Resize(image_size), ToTensor()]) eval_dataset = PetsDataset([file_names[i] for i in eval_split], image_transform=eval_tfm, label_to_id=label_to_id) # Instantiate dataloaders. train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=4) eval_dataloader = DataLoader(eval_dataset, shuffle=False, batch_size=batch_size, num_workers=4) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = create_model("resnet50d", pretrained=True, num_classes=len(label_to_id)) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Freezing the base model for param in model.parameters(): param.requires_grad = False for param in model.get_classifier().parameters(): param.requires_grad = True # We normalize the batches of images to be a bit faster. mean = torch.tensor(model.default_cfg["mean"])[None, :, None, None].to(accelerator.device) std = torch.tensor(model.default_cfg["std"])[None, :, None, None].to(accelerator.device) # Instantiate optimizer optimizer = torch.optim.Adam(params=model.parameters(), lr=lr / 25) # Instantiate learning rate scheduler lr_scheduler = OneCycleLR(optimizer=optimizer, max_lr=lr, epochs=num_epochs, steps_per_epoch=len(train_dataloader)) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # Now we train the model for epoch in range(num_epochs): model.train() for step, batch in enumerate(train_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch = {k: v.to(accelerator.device) for k, v in batch.items()} inputs = (batch["image"] - mean) / std outputs = model(inputs) loss = torch.nn.functional.cross_entropy(outputs, batch["label"]) accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() accurate = 0 num_elems = 0 for _, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch = {k: v.to(accelerator.device) for k, v in batch.items()} inputs = (batch["image"] - mean) / std with torch.no_grad(): outputs = model(inputs) predictions = outputs.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["label"])) accurate_preds = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() eval_metric = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}: {100 * eval_metric:.2f}") def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument("--data_dir", required=True, help="The data folder on disk.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") args = parser.parse_args() config = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(config, args) if __name__ == "__main__": main()
accelerate/examples/cv_example.py/0
{ "file_path": "accelerate/examples/cv_example.py", "repo_id": "accelerate", "token_count": 3205 }
3
#!/bin/bash #SBATCH --job-name=multinode #SBATCH -D . #SBATCH --output=O-%x.%j #SBATCH --error=E-%x.%j #SBATCH --nodes=4 # number of nodes #SBATCH --ntasks-per-node=1 # number of MP tasks #SBATCH --gres=gpu:4 # number of GPUs per node #SBATCH --cpus-per-task=160 # number of cores per tasks #SBATCH --time=01:59:00 # maximum execution time (HH:MM:SS) ###################### ### Set enviroment ### ###################### source activateEnviroment.sh export GPUS_PER_NODE=4 ###################### ###################### #### Set network ##### ###################### head_node_ip=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) ###################### export LAUNCHER="accelerate launch \ --num_processes $((SLURM_NNODES * GPUS_PER_NODE)) \ --num_machines $SLURM_NNODES \ --rdzv_backend c10d \ --main_process_ip $head_node_ip \ --main_process_port 29500 \ " export SCRIPT="/accelerate/examples/complete_nlp_example.py" export SCRIPT_ARGS=" \ --mixed_precision fp16 \ --output_dir /accelerate/examples/output \ " # This step is necessary because accelerate launch does not handle multiline arguments properly export CMD="$LAUNCHER $PYTHON_FILE $ARGS" srun $CMD
accelerate/examples/slurm/submit_multinode.sh/0
{ "file_path": "accelerate/examples/slurm/submit_multinode.sh", "repo_id": "accelerate", "token_count": 519 }
4
#!/usr/bin/env python # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input description = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def get_user_input(): compute_environment = _ask_options( "In which compute environment are you running?", ["This machine", "AWS (Amazon SageMaker)"], _convert_compute_environment, ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: config = get_sagemaker_input() else: config = get_cluster_input() return config def config_command_parser(subparsers=None): if subparsers is not None: parser = subparsers.add_parser("config", description=description) else: parser = argparse.ArgumentParser("Accelerate config command", description=description) parser.add_argument( "--config_file", default=None, help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ), ) if subparsers is not None: parser.set_defaults(func=config_command) return parser def config_command(args): config = get_user_input() if args.config_file is not None: config_file = args.config_file else: if not os.path.isdir(cache_dir): os.makedirs(cache_dir) config_file = default_yaml_config_file if config_file.endswith(".json"): config.to_json_file(config_file) else: config.to_yaml_file(config_file) print(f"accelerate configuration saved at {config_file}") def main(): parser = config_command_parser() args = parser.parse_args() config_command(args) if __name__ == "__main__": main()
accelerate/src/accelerate/commands/config/config.py/0
{ "file_path": "accelerate/src/accelerate/commands/config/config.py", "repo_id": "accelerate", "token_count": 1067 }
5
#!/usr/bin/env python # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _description = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def tpu_command_parser(subparsers=None): if subparsers is not None: parser = subparsers.add_parser("tpu-config", description=_description) else: parser = argparse.ArgumentParser("Accelerate tpu-config command", description=_description) # Core arguments config_args = parser.add_argument_group( "Config Arguments", "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file", type=str, default=None, help="Path to the config file to use for accelerate.", ) config_args.add_argument( "--tpu_name", default=None, help="The name of the TPU to use. If not specified, will use the TPU specified in the config file.", ) config_args.add_argument( "--tpu_zone", default=None, help="The zone of the TPU to use. If not specified, will use the zone specified in the config file.", ) pod_args = parser.add_argument_group("TPU Arguments", "Arguments for options ran inside the TPU.") pod_args.add_argument( "--use_alpha", action="store_true", help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.", ) pod_args.add_argument( "--command_file", default=None, help="The path to the file containing the commands to run on the pod on startup.", ) pod_args.add_argument( "--command", action="append", nargs="+", help="A command to run on the pod. Can be passed multiple times.", ) pod_args.add_argument( "--install_accelerate", action="store_true", help="Whether to install accelerate on the pod. Defaults to False.", ) pod_args.add_argument( "--accelerate_version", default="latest", help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.", ) pod_args.add_argument( "--debug", action="store_true", help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=tpu_command_launcher) return parser def tpu_command_launcher(args): defaults = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(default_config_file): defaults = load_config_from_file(args.config_file) if not args.command_file and defaults.command_file is not None and not args.command: args.command_file = defaults.command_file if not args.command and defaults.commands is not None: args.command = defaults.commands if not args.tpu_name: args.tpu_name = defaults.tpu_name if not args.tpu_zone: args.tpu_zone = defaults.tpu_zone if args.accelerate_version == "dev": args.accelerate_version = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": args.accelerate_version = "accelerate -U" elif isinstance(parse(args.accelerate_version), Version): args.accelerate_version = f"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod.") if args.command_file: with open(args.command_file) as f: args.command = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0], list): args.command = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate new_cmd = ["cd /usr/share"] if args.install_accelerate: new_cmd += [f"pip install {args.accelerate_version}"] new_cmd += args.command args.command = "; ".join(new_cmd) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess cmd = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"Running {' '.join(cmd)}") return subprocess.run(cmd) print("Successfully setup pod.") def main(): parser = tpu_command_parser() args = parser.parse_args() tpu_command_launcher(args)
accelerate/src/accelerate/commands/tpu.py/0
{ "file_path": "accelerate/src/accelerate/commands/tpu.py", "repo_id": "accelerate", "token_count": 2114 }
6
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler MAX_GPU_BATCH_SIZE = 16 EVAL_BATCH_SIZE = 32 def get_dataloaders(accelerator: Accelerator, batch_size: int = 16, model_name: str = "bert-base-cased"): """ Creates a set of `DataLoader`s for the `glue` dataset. Args: accelerator (`Accelerator`): An `Accelerator` object batch_size (`int`, *optional*): The batch size for the train and validation DataLoaders. model_name (`str`, *optional*): """ tokenizer = AutoTokenizer.from_pretrained(model_name) datasets = load_dataset("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=False ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.XLA: return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt") return tokenizer.pad(examples, padding="longest", return_tensors="pt") # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) return train_dataloader, eval_dataloader def evaluation_loop(accelerator, model, eval_dataloader, metric): model.eval() samples_seen = 0 for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) # It is slightly faster to call this once, than multiple times predictions, references = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(eval_dataloader) - 1: predictions = predictions[: len(eval_dataloader.dataset) - samples_seen] references = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() return eval_metric["accuracy"] def training_function(config, args): # Initialize accelerator accelerator = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) model_name = args.model_name_or_path set_seed(seed) train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size, model_name) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained(model_name, return_dict=True) # Instantiate optimizer optimizer_cls = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) optimizer = optimizer_cls(params=model.parameters(), lr=lr) if accelerator.state.deepspeed_plugin is not None: gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: gradient_accumulation_steps = 1 max_training_steps = (len(train_dataloader) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=max_training_steps, ) else: lr_scheduler = DummyScheduler(optimizer, total_num_steps=max_training_steps, warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to keep track of how many total steps we have iterated over overall_step = 0 # We also need to keep track of the stating epoch so files are named properly starting_epoch = 0 metric = evaluate.load("glue", "mrpc") ending_epoch = num_epochs if args.partial_train_epoch is not None: ending_epoch = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint) epoch_string = args.resume_from_checkpoint.split("epoch_")[1] state_epoch_num = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break starting_epoch = int(state_epoch_num) + 1 accuracy = evaluation_loop(accelerator, model, eval_dataloader, metric) accelerator.print("resumed checkpoint performance:", accuracy) accelerator.print("resumed checkpoint's scheduler's lr:", lr_scheduler.get_lr()[0]) accelerator.print("resumed optimizers's lr:", optimizer.param_groups[0]["lr"]) with open(os.path.join(args.output_dir, f"state_{starting_epoch - 1}.json")) as f: resumed_state = json.load(f) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model state = {} for epoch in range(starting_epoch, ending_epoch): model.train() for step, batch in enumerate(train_dataloader): outputs = model(**batch) loss = outputs.loss loss = loss / gradient_accumulation_steps accelerator.backward(loss) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 output_dir = f"epoch_{epoch}" output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) accuracy = evaluation_loop(accelerator, model, eval_dataloader, metric) state["accuracy"] = accuracy state["lr"] = lr_scheduler.get_lr()[0] state["optimizer_lr"] = optimizer.param_groups[0]["lr"] state["epoch"] = epoch state["step"] = overall_step accelerator.print(f"epoch {epoch}:", state) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, f"state_{epoch}.json"), "w") as f: json.dump(state, f) def main(): parser = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.") parser.add_argument( "--model_name_or_path", type=str, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=False, ) parser.add_argument( "--output_dir", type=str, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--partial_train_epoch", type=int, default=None, help="If passed, the training will stop after this number of epochs.", ) parser.add_argument( "--num_epochs", type=int, default=2, help="Number of train epochs.", ) args = parser.parse_args() config = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(config, args) if __name__ == "__main__": main()
accelerate/src/accelerate/test_utils/scripts/external_deps/test_checkpointing.py/0
{ "file_path": "accelerate/src/accelerate/test_utils/scripts/external_deps/test_checkpointing.py", "repo_id": "accelerate", "token_count": 4189 }
7
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import operator as op SCALER_NAME = "scaler.pt" MODEL_NAME = "pytorch_model" SAFE_MODEL_NAME = "model" RNG_STATE_NAME = "random_states" OPTIMIZER_NAME = "optimizer" SCHEDULER_NAME = "scheduler" SAMPLER_NAME = "sampler" WEIGHTS_NAME = f"{MODEL_NAME}.bin" WEIGHTS_INDEX_NAME = f"{WEIGHTS_NAME}.index.json" SAFE_WEIGHTS_NAME = f"{SAFE_MODEL_NAME}.safetensors" SAFE_WEIGHTS_INDEX_NAME = f"{SAFE_WEIGHTS_NAME}.index.json" SAGEMAKER_PYTORCH_VERSION = "1.10.2" SAGEMAKER_PYTHON_VERSION = "py38" SAGEMAKER_TRANSFORMERS_VERSION = "4.17.0" SAGEMAKER_PARALLEL_EC2_INSTANCES = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] FSDP_SHARDING_STRATEGY = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] FSDP_AUTO_WRAP_POLICY = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] FSDP_BACKWARD_PREFETCH = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] FSDP_STATE_DICT_TYPE = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] FSDP_PYTORCH_VERSION = "2.1.0" FSDP_MODEL_NAME = "pytorch_model_fsdp" DEEPSPEED_MULTINODE_LAUNCHERS = ["pdsh", "standard", "openmpi", "mvapich", "mpich"] TORCH_DYNAMO_MODES = ["default", "reduce-overhead", "max-autotune"] STR_OPERATION_TO_FUNC = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 TORCH_LAUNCH_PARAMS = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] CUDA_DISTRIBUTED_TYPES = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] TORCH_DISTRIBUTED_OPERATION_TYPES = CUDA_DISTRIBUTED_TYPES + ["MULTI_NPU", "MULTI_MLU", "MULTI_XPU", "MULTI_CPU"]
accelerate/src/accelerate/utils/constants.py/0
{ "file_path": "accelerate/src/accelerate/utils/constants.py", "repo_id": "accelerate", "token_count": 1126 }
8
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def tqdm(main_process_only: bool = True, *args, **kwargs): """ Wrapper around `tqdm.tqdm` that optionally displays only on the main process. Args: main_process_only (`bool`, *optional*): Whether to display the progress bar only on the main process """ if not is_tqdm_available(): raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.") disable = False if main_process_only: disable = PartialState().local_process_index != 0 return _tqdm(*args, **kwargs, disable=disable)
accelerate/src/accelerate/utils/tqdm.py/0
{ "file_path": "accelerate/src/accelerate/utils/tqdm.py", "repo_id": "accelerate", "token_count": 433 }
9
echo "hello world" echo "this is a second command"
accelerate/tests/test_samples/test_command_file.sh/0
{ "file_path": "accelerate/tests/test_samples/test_command_file.sh", "repo_id": "accelerate", "token_count": 14 }
10
# Model arguments model_name_or_path: bigcode/starcoder2-15b model_revision: main torch_dtype: bfloat16 use_flash_attention_2: true # Data training arguments chat_template: "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" dataset_mixer: HuggingFaceH4/airoboros-3.2: 1.0 HuggingFaceH4/Code-Feedback: 1.0 HuggingFaceH4/orca-math-word-problems-200k: 1.0 HuggingFaceH4/SystemChat: 1.0 HuggingFaceH4/capybara: 1.0 dataset_splits: - train_sft - test_sft preprocessing_num_workers: 24 # SFT trainer config bf16: true do_eval: true evaluation_strategy: epoch gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false hub_model_id: starchat2-15b-v0.1 hub_strategy: every_save learning_rate: 2.0e-05 log_level: info logging_steps: 5 logging_strategy: steps lr_scheduler_type: cosine max_seq_length: 2048 max_steps: -1 num_train_epochs: 3 output_dir: data/starchat2-15b-v0.1 overwrite_output_dir: true per_device_eval_batch_size: 8 per_device_train_batch_size: 8 push_to_hub: true remove_unused_columns: true report_to: - tensorboard - wandb save_strategy: "no" seed: 42 warmup_ratio: 0.1
alignment-handbook/recipes/starchat2-15b/sft/config_v0.1.yaml/0
{ "file_path": "alignment-handbook/recipes/starchat2-15b/sft/config_v0.1.yaml", "repo_id": "alignment-handbook", "token_count": 565 }
11
# coding=utf-8 # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import os import sys from dataclasses import dataclass, field from typing import Any, Dict, List, NewType, Optional, Tuple import transformers from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, HfArgumentParser MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) DataClassType = NewType("DataClassType", Any) class H4ArgumentParser(HfArgumentParser): def parse_yaml_and_args(self, yaml_arg: str, other_args: Optional[List[str]] = None) -> List[dataclass]: """ Parse a YAML file and overwrite the default/loaded values with the values provided to the command line. Args: yaml_arg (`str`): The path to the config file used other_args (`List[str]`, *optional`): A list of strings to parse as command line arguments, e.g. ['--arg=val', '--arg2=val2']. Returns: [`List[dataclass]`]: a list of dataclasses with the values from the YAML file and the command line """ arg_list = self.parse_yaml_file(os.path.abspath(yaml_arg)) outputs = [] # strip other args list into dict of key-value pairs other_args = {arg.split("=")[0].strip("-"): arg.split("=")[1] for arg in other_args} used_args = {} # overwrite the default/loaded value with the value provided to the command line # adapted from https://github.com/huggingface/transformers/blob/d0b5002378daabf62769159add3e7d66d3f83c3b/src/transformers/hf_argparser.py#L327 for data_yaml, data_class in zip(arg_list, self.dataclass_types): keys = {f.name for f in dataclasses.fields(data_yaml) if f.init} inputs = {k: v for k, v in vars(data_yaml).items() if k in keys} for arg, val in other_args.items(): # add only if in keys if arg in keys: base_type = data_yaml.__dataclass_fields__[arg].type inputs[arg] = val # cast type for ints, floats (default to strings) if base_type in [int, float]: inputs[arg] = base_type(val) if base_type == List[str]: inputs[arg] = [str(v) for v in val.split(",")] # bool of a non-empty string is True, so we manually check for bools if base_type == bool: if val in ["true", "True"]: inputs[arg] = True else: inputs[arg] = False # add to used-args so we can check if double add if arg not in used_args: used_args[arg] = val else: raise ValueError(f"Duplicate argument provided: {arg}, may cause unexpected behavior") obj = data_class(**inputs) outputs.append(obj) return outputs def parse(self) -> DataClassType | Tuple[DataClassType]: if len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"): # If we pass only one argument to the script and it's the path to a YAML file, # let's parse it to get our arguments. output = self.parse_yaml_file(os.path.abspath(sys.argv[1])) # parse command line args and yaml file elif len(sys.argv) > 2 and sys.argv[1].endswith(".yaml"): output = self.parse_yaml_and_args(os.path.abspath(sys.argv[1]), sys.argv[2:]) # parse command line args only else: output = self.parse_args_into_dataclasses() if len(output) == 1: output = output[0] return output @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune. """ base_model_revision: Optional[str] = field( default=None, metadata={"help": ("The base model checkpoint for weights initialization with PEFT adatpers.")}, ) model_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch." ) }, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) model_code_revision: str = field(default=None, metadata={"help": "The branch of the IFT model"}) torch_dtype: Optional[str] = field( default=None, metadata={ "help": ( "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the " "dtype will be automatically derived from the model's weights." ), "choices": ["auto", "bfloat16", "float16", "float32"], }, ) tokenizer_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The path to the tokenizer. Useful if you want to use a different tokenizer to the one stored in `model_name_or_path`." ) }, ) trust_remote_code: bool = field(default=False, metadata={"help": "Trust remote code when loading a model."}) use_flash_attention_2: bool = field( default=False, metadata={ "help": ( "Whether to use flash attention 2. You must install this manually by running `pip install flash-attn --no-build-isolation`" ) }, ) use_peft: bool = field( default=False, metadata={"help": ("Whether to use PEFT or not for training.")}, ) lora_r: Optional[int] = field( default=16, metadata={"help": ("LoRA R value.")}, ) lora_alpha: Optional[int] = field( default=32, metadata={"help": ("LoRA alpha.")}, ) lora_dropout: Optional[float] = field( default=0.05, metadata={"help": ("LoRA dropout.")}, ) lora_target_modules: Optional[List[str]] = field( default=None, metadata={"help": ("LoRA target modules.")}, ) lora_modules_to_save: Optional[List[str]] = field( default=None, metadata={"help": ("Model layers to unfreeze & train")}, ) load_in_8bit: bool = field(default=False, metadata={"help": "use 8 bit precision"}) load_in_4bit: bool = field(default=False, metadata={"help": "use 4 bit precision"}) bnb_4bit_quant_type: Optional[str] = field( default="nf4", metadata={"help": "precise the quantization type (fp4 or nf4)"} ) use_bnb_nested_quant: bool = field(default=False, metadata={"help": "use nested quantization"}) def __post_init__(self): if self.load_in_8bit and self.load_in_4bit: raise ValueError("You can't use 8 bit and 4 bit precision at the same time") @dataclass class DataArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ chat_template: Optional[str] = field(default=None, metadata={"help": "The chat template to use."}) dataset_mixer: Optional[Dict[str, float]] = field( default=None, metadata={"help": ("Datasets and their proportions to be used for training ift/rl.")}, ) text_column: Optional[str] = field( default="text", metadata={"help": "The column name to use for the text in the dataset (only used for continued pretraining)."}, ) dataset_splits: Optional[List[str]] = field( default_factory=lambda: ["train", "test"], metadata={"help": ("List of train test splits to use in the dataset")}, ) dataset_configs: Optional[List[str]] = field( default=None, metadata={"help": "List of dataset config names. If given must be the same length as 'dataset_mixer' keys."}, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) truncation_side: Optional[str] = field( default=None, metadata={"help": "Truncation side to use for the tokenizer."} ) auto_insert_empty_system_msg: bool = field( default=True, metadata={ "help": ( "Whether to automatically insert an empty system message as the first message if `system` is mentioned in the chat template." ) }, ) @dataclass class SFTConfig(transformers.TrainingArguments): """ Arguments related to the training process itself. For all parameters, see: https://huggingface.co/docs/transformers/v4.26.1/en/main_classes/trainer#transformers.TrainingArguments Also used for the continued pretraining task. """ dataset_kwargs: Optional[Dict[str, Any]] = field( default=None, metadata={"help": "Dataset kwargs for the SFTTrainer"} ) max_seq_length: Optional[int] = field( default=None, metadata={"help": ("Used by TRL for reward model training, which tries to read this parameter in init.")}, ) logging_first_step: bool = field( default=True, metadata={"help": ("Whether to log and evaluate the first global_step or not.")}, ) optim: Optional[str] = field(default="adamw_torch") @dataclass class DPOConfig(transformers.TrainingArguments): """ Arguments related to the DPO training process itself. For all parameters, see: https://huggingface.co/docs/transformers/v4.26.1/en/main_classes/trainer#transformers.TrainingArguments """ beta: Optional[float] = field( default=0.1, metadata={"help": "The beta factor in DPO loss. Higher beta means less divergence from the initial policy."}, ) hub_model_revision: Optional[str] = field( default="main", metadata={"help": ("The Hub model branch to push the model to.")}, ) logging_first_step: bool = field( default=True, metadata={"help": ("Whether to log and evaluate the first global_step or not.")}, ) max_prompt_length: Optional[int] = field( default=None, metadata={"help": ("For DPO, the maximum length of the prompt to use for conditioning the model.")}, ) max_length: Optional[int] = field( default=None, metadata={"help": ("Used by TRL for reward model training, which tries to read this parameter in init.")}, ) optim: Optional[str] = field(default="rmsprop") remove_unused_columns: bool = field(default=False) loss_type: Optional[str] = field(default="sigmoid", metadata={"help": ("The loss type for DPO.")})
alignment-handbook/src/alignment/configs.py/0
{ "file_path": "alignment-handbook/src/alignment/configs.py", "repo_id": "alignment-handbook", "token_count": 4702 }
12
repos: - repo: https://github.com/Narsil/pre-commit-rust rev: 2eed6366172ef2a5186e8785ec0e67243d7d73d0 hooks: - id: fmt name: "Rust (fmt)" - id: clippy name: "Rust (clippy)" args: [ "--tests", "--examples", "--", "-Dwarnings", ]
candle/.pre-commit-config.yaml/0
{ "file_path": "candle/.pre-commit-config.yaml", "repo_id": "candle", "token_count": 210 }
13
# Creating a REST api webserver
candle/candle-book/src/apps/rest.md/0
{ "file_path": "candle/candle-book/src/apps/rest.md", "repo_id": "candle", "token_count": 8 }
14
//! #A simplified example in Rust of training a neural network and then using it based on the Candle Framework by Hugging Face. //! Author: Evgeny Igumnov 2023 [email protected] //! This program implements a neural network to predict the winner of the second round of elections based on the results of the first round. //! //! ##Basic moments: //! //! A multilayer perceptron with two hidden layers is used. The first hidden layer has 4 neurons, the second has 2 neurons. //! The input is a vector of 2 numbers - the percentage of votes for the first and second candidates in the first stage. //! The output is the number 0 or 1, where 1 means that the first candidate will win in the second stage, 0 means that he will lose. //! For training, samples with real data on the results of the first and second stages of different elections are used. //! The model is trained by backpropagation using gradient descent and the cross-entropy loss function. //! Model parameters (weights of neurons) are initialized randomly, then optimized during training. //! After training, the model is tested on a deferred sample to evaluate the accuracy. //! If the accuracy on the test set is below 100%, the model is considered underfit and the learning process is repeated. //! Thus, this neural network learns to find hidden relationships between the results of the first and second rounds of voting in order to make predictions for new data. #[rustfmt::skip] mod tests { use candle::{DType, Result, Tensor, D, Device}; use candle_nn::{loss, ops, Linear, Module, VarBuilder, VarMap, Optimizer}; // ANCHOR: book_training_simplified1 const VOTE_DIM: usize = 2; const RESULTS: usize = 1; const EPOCHS: usize = 10; const LAYER1_OUT_SIZE: usize = 4; const LAYER2_OUT_SIZE: usize = 2; const LEARNING_RATE: f64 = 0.05; #[derive(Clone)] pub struct Dataset { pub train_votes: Tensor, pub train_results: Tensor, pub test_votes: Tensor, pub test_results: Tensor, } struct MultiLevelPerceptron { ln1: Linear, ln2: Linear, ln3: Linear, } impl MultiLevelPerceptron { fn new(vs: VarBuilder) -> Result<Self> { let ln1 = candle_nn::linear(VOTE_DIM, LAYER1_OUT_SIZE, vs.pp("ln1"))?; let ln2 = candle_nn::linear(LAYER1_OUT_SIZE, LAYER2_OUT_SIZE, vs.pp("ln2"))?; let ln3 = candle_nn::linear(LAYER2_OUT_SIZE, RESULTS + 1, vs.pp("ln3"))?; Ok(Self { ln1, ln2, ln3 }) } fn forward(&self, xs: &Tensor) -> Result<Tensor> { let xs = self.ln1.forward(xs)?; let xs = xs.relu()?; let xs = self.ln2.forward(&xs)?; let xs = xs.relu()?; self.ln3.forward(&xs) } } // ANCHOR_END: book_training_simplified1 // ANCHOR: book_training_simplified3 #[tokio::test] async fn simplified() -> anyhow::Result<()> { let dev = Device::cuda_if_available(0)?; let train_votes_vec: Vec<u32> = vec![ 15, 10, 10, 15, 5, 12, 30, 20, 16, 12, 13, 25, 6, 14, 31, 21, ]; let train_votes_tensor = Tensor::from_vec(train_votes_vec.clone(), (train_votes_vec.len() / VOTE_DIM, VOTE_DIM), &dev)?.to_dtype(DType::F32)?; let train_results_vec: Vec<u32> = vec![ 1, 0, 0, 1, 1, 0, 0, 1, ]; let train_results_tensor = Tensor::from_vec(train_results_vec, train_votes_vec.len() / VOTE_DIM, &dev)?; let test_votes_vec: Vec<u32> = vec![ 13, 9, 8, 14, 3, 10, ]; let test_votes_tensor = Tensor::from_vec(test_votes_vec.clone(), (test_votes_vec.len() / VOTE_DIM, VOTE_DIM), &dev)?.to_dtype(DType::F32)?; let test_results_vec: Vec<u32> = vec![ 1, 0, 0, ]; let test_results_tensor = Tensor::from_vec(test_results_vec.clone(), test_results_vec.len(), &dev)?; let m = Dataset { train_votes: train_votes_tensor, train_results: train_results_tensor, test_votes: test_votes_tensor, test_results: test_results_tensor, }; let trained_model: MultiLevelPerceptron; loop { println!("Trying to train neural network."); match train(m.clone(), &dev) { Ok(model) => { trained_model = model; break; }, Err(e) => { println!("Error: {}", e); continue; } } } let real_world_votes: Vec<u32> = vec![ 13, 22, ]; let tensor_test_votes = Tensor::from_vec(real_world_votes.clone(), (1, VOTE_DIM), &dev)?.to_dtype(DType::F32)?; let final_result = trained_model.forward(&tensor_test_votes)?; let result = final_result .argmax(D::Minus1)? .to_dtype(DType::F32)? .get(0).map(|x| x.to_scalar::<f32>())??; println!("real_life_votes: {:?}", real_world_votes); println!("neural_network_prediction_result: {:?}", result); Ok(()) } // ANCHOR_END: book_training_simplified3 // ANCHOR: book_training_simplified2 fn train(m: Dataset, dev: &Device) -> anyhow::Result<MultiLevelPerceptron> { let train_results = m.train_results.to_device(dev)?; let train_votes = m.train_votes.to_device(dev)?; let varmap = VarMap::new(); let vs = VarBuilder::from_varmap(&varmap, DType::F32, dev); let model = MultiLevelPerceptron::new(vs.clone())?; let mut sgd = candle_nn::SGD::new(varmap.all_vars(), LEARNING_RATE)?; let test_votes = m.test_votes.to_device(dev)?; let test_results = m.test_results.to_device(dev)?; let mut final_accuracy: f32 = 0.0; for epoch in 1..EPOCHS + 1 { let logits = model.forward(&train_votes)?; let log_sm = ops::log_softmax(&logits, D::Minus1)?; let loss = loss::nll(&log_sm, &train_results)?; sgd.backward_step(&loss)?; let test_logits = model.forward(&test_votes)?; let sum_ok = test_logits .argmax(D::Minus1)? .eq(&test_results)? .to_dtype(DType::F32)? .sum_all()? .to_scalar::<f32>()?; let test_accuracy = sum_ok / test_results.dims1()? as f32; final_accuracy = 100. * test_accuracy; println!("Epoch: {epoch:3} Train loss: {:8.5} Test accuracy: {:5.2}%", loss.to_scalar::<f32>()?, final_accuracy ); if final_accuracy == 100.0 { break; } } if final_accuracy < 100.0 { Err(anyhow::Error::msg("The model is not trained well enough.")) } else { Ok(model) } } // ANCHOR_END: book_training_simplified2 }
candle/candle-book/src/simplified.rs/0
{ "file_path": "candle/candle-book/src/simplified.rs", "repo_id": "candle", "token_count": 2903 }
15
#[cfg(feature = "accelerate")] extern crate accelerate_src; #[cfg(feature = "mkl")] extern crate intel_mkl_src; use anyhow::Result; use candle_core::{Device, Module, Tensor}; use candle_core::quantized::{QMatMul, QTensor}; fn main() -> Result<()> { let device = Device::new_cuda(0)?; let q = Tensor::randn(0f32, 1.0, (72, 256), &device)?; let q_cpu = q.to_device(&Device::Cpu)?; let q = QTensor::quantize(&q, candle_core::quantized::GgmlDType::Q8K)?; let q = QMatMul::from_qtensor(q)?; let x = Tensor::randn(0f32, 1.0, (5, 256), &device)?; let res_q_cuda = q.forward(&x)?; println!("{res_q_cuda}"); let q_cpu = QTensor::quantize(&q_cpu, candle_core::quantized::GgmlDType::Q8K)?; let q_cpu_tensor = q_cpu.dequantize(&Device::Cpu)?; let q_cpu = QMatMul::from_qtensor(q_cpu)?; let x_cpu = x.to_device(&Device::Cpu)?; let res_q_cpu = q_cpu.forward(&x_cpu)?; println!("{res_q_cpu}"); let res_mm = x_cpu.matmul(&q_cpu_tensor.t()?)?; let diff = (res_mm - res_q_cuda.to_device(&Device::Cpu))? .abs()? .flatten_all()? .max(0)?; println!("{diff}"); Ok(()) }
candle/candle-core/examples/cuda_basics.rs/0
{ "file_path": "candle/candle-core/examples/cuda_basics.rs", "repo_id": "candle", "token_count": 550 }
16
use crate::WithDType; use cudarc; use cudarc::cudnn::safe::{Conv2dForward, Cudnn}; use cudarc::driver::{CudaSlice, CudaView, DeviceRepr, ValidAsZeroBits}; use std::cell::RefCell; use std::collections::HashMap; use std::sync::Arc; // The cudnn handles are stored per thread here rather than on the CudaDevice as they are neither // send nor sync. thread_local! { static CUDNN: RefCell<HashMap<crate::cuda_backend::DeviceId, Arc<Cudnn>>> = HashMap::new().into(); } impl From<cudarc::cudnn::CudnnError> for crate::Error { fn from(err: cudarc::cudnn::CudnnError) -> Self { crate::Error::wrap(err) } } impl From<cudarc::driver::DriverError> for crate::Error { fn from(err: cudarc::driver::DriverError) -> Self { crate::Error::wrap(err) } } pub(crate) fn launch_conv2d< T: DeviceRepr + WithDType + ValidAsZeroBits + cudarc::cudnn::CudnnDataType, >( src: &CudaView<T>, src_l: &crate::Layout, filter: &CudaView<T>, dst: &mut CudaSlice<T>, params: &crate::conv::ParamsConv2D, dev: &crate::cuda_backend::CudaDevice, ) -> crate::Result<()> { use crate::conv::CudnnFwdAlgo as CandleAlgo; use cudarc::cudnn::sys::cudnnConvolutionFwdAlgo_t as A; let device_id = dev.id(); let cudnn = CUDNN.with(|cudnn| { if let Some(cudnn) = cudnn.borrow().get(&device_id) { return Ok(cudnn.clone()); } let c = Cudnn::new(dev.cuda_device()); if let Ok(c) = &c { cudnn.borrow_mut().insert(device_id, c.clone()); } c })?; let conv = cudnn.create_conv2d::<T>( /* pad */ [params.padding as i32, params.padding as i32], /* stride */ [params.stride as i32, params.stride as i32], /* dilation */ [params.dilation as i32, params.dilation as i32], cudarc::cudnn::sys::cudnnConvolutionMode_t::CUDNN_CROSS_CORRELATION, )?; let x_shape = [ params.b_size as i32, params.c_in as i32, params.i_h as i32, params.i_w as i32, ]; // Note that `src` already starts at the proper offset. let x = if src_l.is_contiguous() { cudnn.create_4d_tensor( cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW, x_shape, )? } else { let s = src_l.stride(); cudnn.create_4d_tensor_ex( x_shape, [s[0] as i32, s[1] as i32, s[2] as i32, s[3] as i32], )? }; let w = cudnn.create_4d_filter( cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW, [ params.c_out as i32, params.c_in as i32, params.k_h as i32, params.k_w as i32, ], )?; let (w_out, h_out) = (params.out_w() as i32, params.out_h() as i32); let y = cudnn.create_4d_tensor( cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW, [params.b_size as i32, params.c_out as i32, h_out, w_out], )?; let conv2d = Conv2dForward { conv: &conv, x: &x, w: &w, y: &y, }; let alg = match params.cudnn_fwd_algo { None => conv2d.pick_algorithm()?, Some(CandleAlgo::ImplicitGemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM, Some(CandleAlgo::ImplicitPrecompGemm) => { A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM } Some(CandleAlgo::Gemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_GEMM, Some(CandleAlgo::Direct) => A::CUDNN_CONVOLUTION_FWD_ALGO_DIRECT, Some(CandleAlgo::Fft) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT, Some(CandleAlgo::FftTiling) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING, Some(CandleAlgo::Winograd) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD, Some(CandleAlgo::WinogradNonFused) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED, Some(CandleAlgo::Count) => A::CUDNN_CONVOLUTION_FWD_ALGO_COUNT, }; let workspace_size = conv2d.get_workspace_size(alg)?; let mut workspace = dev.cuda_device().alloc_zeros::<u8>(workspace_size)?; unsafe { conv2d.launch::<CudaSlice<u8>, _, _, _>( alg, Some(&mut workspace), (T::one(), T::zero()), src, filter, dst, )?; } Ok(()) }
candle/candle-core/src/cudnn.rs/0
{ "file_path": "candle/candle-core/src/cudnn.rs", "repo_id": "candle", "token_count": 2214 }
17
use super::{GgmlDType, QStorage}; use crate::{backend::BackendDevice, cuda_backend::WrapErr}; use crate::{CudaDevice, CudaStorage, Result}; use cudarc::driver::{CudaSlice, DeviceSlice}; pub struct QCudaStorage { data: CudaSlice<u8>, dtype: GgmlDType, device: CudaDevice, } pub const WARP_SIZE: usize = 32; pub const MMQ_X_Q4_0_AMPERE: usize = 4; pub const MMQ_Y_Q4_0_AMPERE: usize = 32; pub const NWARPS_Q4_0_AMPERE: usize = 4; pub const GGML_CUDA_MMV_X: usize = 32; pub const GGML_CUDA_MMV_Y: usize = 1; pub const CUDA_DEQUANTIZE_BLOCK_SIZE: usize = 256; fn dequantize( data: &CudaSlice<u8>, dtype: GgmlDType, elem_count: usize, dev: &CudaDevice, ) -> Result<CudaStorage> { use cudarc::driver::LaunchAsync; let nb = (elem_count + 255) / 256; let (kernel_name, is_k, block_dim, num_blocks) = match dtype { GgmlDType::Q4_0 => ("dequantize_block_q4_0", false, 32, nb), GgmlDType::Q4_1 => ("dequantize_block_q4_1", false, 32, nb), GgmlDType::Q5_0 => { let nb = (elem_count + 2 * CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2 * CUDA_DEQUANTIZE_BLOCK_SIZE); ( "dequantize_block_q5_0", false, CUDA_DEQUANTIZE_BLOCK_SIZE, nb, ) } GgmlDType::Q5_1 => { let nb = (elem_count + 2 * CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2 * CUDA_DEQUANTIZE_BLOCK_SIZE); ( "dequantize_block_q5_1", false, CUDA_DEQUANTIZE_BLOCK_SIZE, nb, ) } GgmlDType::Q8_0 => ("dequantize_block_q8_0", false, 32, nb), GgmlDType::Q2K => ("dequantize_block_q2_K", true, 64, nb), GgmlDType::Q3K => ("dequantize_block_q3_K", true, 64, nb), GgmlDType::Q4K => ("dequantize_block_q4_K", true, 32, nb), GgmlDType::Q5K => ("dequantize_block_q5_K", true, 64, nb), GgmlDType::Q6K => ("dequantize_block_q6_K", true, 64, nb), GgmlDType::Q8K => ("dequantize_block_q8_K", true, 32, nb), _ => crate::bail!("unsupported dtype for dequantize {dtype:?}"), }; let func = dev.get_or_load_func(kernel_name, candle_kernels::QUANTIZED)?; let dst = dev.alloc_zeros::<f32>(elem_count).w()?; // See e.g. // https://github.com/ggerganov/llama.cpp/blob/cbbd1efa06f8c09f9dff58ff9d9af509cc4c152b/ggml-cuda.cu#L7270 let cfg = cudarc::driver::LaunchConfig { grid_dim: (num_blocks as u32, 1, 1), block_dim: (block_dim as u32, 1, 1), shared_mem_bytes: 0, }; if is_k { let params = (data, &dst); unsafe { func.launch(cfg, params) }.w()?; } else { let nb32 = match dtype { GgmlDType::Q5_0 | GgmlDType::Q5_1 => elem_count, _ => elem_count / 32, }; let params = (data, &dst, nb32 as i32); unsafe { func.launch(cfg, params) }.w()?; } Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone())) } fn dequantize_mut_mal_vec( data: &CudaSlice<u8>, y: &cudarc::driver::CudaView<f32>, dtype: GgmlDType, ncols: usize, nrows: usize, dev: &CudaDevice, ) -> Result<CudaStorage> { use cudarc::driver::LaunchAsync; let kernel_name = match dtype { GgmlDType::Q4_0 => "dequantize_mul_mat_vec_q4_0_cuda", GgmlDType::Q4_1 => "dequantize_mul_mat_vec_q4_1_cuda", GgmlDType::Q5_0 => "dequantize_mul_mat_vec_q5_0_cuda", GgmlDType::Q5_1 => "dequantize_mul_mat_vec_q5_1_cuda", GgmlDType::Q8_0 => "dequantize_mul_mat_vec_q8_0_cuda", GgmlDType::Q2K => "dequantize_mul_mat_vec_q2_k", GgmlDType::Q3K => "dequantize_mul_mat_vec_q3_k", GgmlDType::Q4K => "dequantize_mul_mat_vec_q4_k", GgmlDType::Q5K => "dequantize_mul_mat_vec_q5_k", GgmlDType::Q6K => "dequantize_mul_mat_vec_q6_k", _ => crate::bail!("unsupported dtype for quantized matmul {dtype:?}"), }; let func = dev.get_or_load_func(kernel_name, candle_kernels::QUANTIZED)?; let dst = dev.alloc_zeros::<f32>(nrows).w()?; let block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; let cfg = cudarc::driver::LaunchConfig { grid_dim: (block_num_y as u32, 1, 1), block_dim: (WARP_SIZE as u32, GGML_CUDA_MMV_Y as u32, 1), shared_mem_bytes: 0, }; let params = (data, y, &dst, ncols as i32, nrows as i32); unsafe { func.launch(cfg, params) }.w()?; Ok(CudaStorage::wrap_cuda_slice(dst, dev.clone())) } impl QCudaStorage { pub fn zeros(device: &CudaDevice, el_count: usize, dtype: GgmlDType) -> Result<Self> { let size_in_bytes = el_count * dtype.type_size() / dtype.block_size(); let data = device.alloc_zeros::<u8>(size_in_bytes).w()?; Ok(QCudaStorage { data, device: device.clone(), dtype, }) } pub fn dtype(&self) -> GgmlDType { self.dtype } pub fn device(&self) -> &CudaDevice { &self.device } pub fn dequantize(&self, elem_count: usize) -> Result<CudaStorage> { let fast_kernel = matches!( self.dtype, GgmlDType::Q4_0 | GgmlDType::Q4_1 | GgmlDType::Q5_0 | GgmlDType::Q5_1 | GgmlDType::Q8_0 | GgmlDType::Q2K | GgmlDType::Q3K | GgmlDType::Q4K | GgmlDType::Q5K | GgmlDType::Q6K | GgmlDType::Q8K ); if fast_kernel { return dequantize(&self.data, self.dtype, elem_count, self.device()); } // Run the dequantization on cpu. use crate::quantized::k_quants::GgmlType; let buffer = self.device.dtoh_sync_copy(&self.data).w()?; let mut out = vec![0.0; elem_count]; let block_len = elem_count / self.dtype.block_size(); match self.dtype { GgmlDType::F32 => { let slice = unsafe { std::slice::from_raw_parts(buffer.as_ptr() as *const f32, block_len) }; out.copy_from_slice(slice) } GgmlDType::F16 => { let vec: Vec<half::f16> = read_to_vec(&buffer, block_len); half::f16::to_float(&vec, &mut out)?; } GgmlDType::Q4_0 => { let vec: Vec<crate::quantized::BlockQ4_0> = read_to_vec(&buffer, block_len); crate::quantized::BlockQ4_0::to_float(&vec, &mut out)?; } GgmlDType::Q4_1 => { let vec: Vec<crate::quantized::BlockQ4_1> = read_to_vec(&buffer, block_len); crate::quantized::BlockQ4_1::to_float(&vec, &mut out)?; } GgmlDType::Q5_0 => { let vec: Vec<crate::quantized::BlockQ5_0> = read_to_vec(&buffer, block_len); crate::quantized::BlockQ5_0::to_float(&vec, &mut out)?; } GgmlDType::Q5_1 => { let vec: Vec<crate::quantized::BlockQ5_1> = read_to_vec(&buffer, block_len); crate::quantized::BlockQ5_1::to_float(&vec, &mut out)?; } GgmlDType::Q8_0 => { let vec: Vec<crate::quantized::BlockQ8_0> = read_to_vec(&buffer, block_len); crate::quantized::BlockQ8_0::to_float(&vec, &mut out)?; } GgmlDType::Q8_1 => { let vec: Vec<crate::quantized::BlockQ8_1> = read_to_vec(&buffer, block_len); crate::quantized::BlockQ8_1::to_float(&vec, &mut out)?; } GgmlDType::Q2K => { let vec: Vec<crate::quantized::BlockQ2K> = read_to_vec(&buffer, block_len); crate::quantized::BlockQ2K::to_float(&vec, &mut out)?; } GgmlDType::Q3K => { let vec: Vec<crate::quantized::BlockQ3K> = read_to_vec(&buffer, block_len); crate::quantized::BlockQ3K::to_float(&vec, &mut out)?; } GgmlDType::Q4K => { let vec: Vec<crate::quantized::BlockQ4K> = read_to_vec(&buffer, block_len); crate::quantized::BlockQ4K::to_float(&vec, &mut out)?; } GgmlDType::Q5K => { let vec: Vec<crate::quantized::BlockQ5K> = read_to_vec(&buffer, block_len); crate::quantized::BlockQ5K::to_float(&vec, &mut out)?; } GgmlDType::Q6K => { let vec: Vec<crate::quantized::BlockQ6K> = read_to_vec(&buffer, block_len); crate::quantized::BlockQ6K::to_float(&vec, &mut out)?; } GgmlDType::Q8K => { let vec: Vec<crate::quantized::BlockQ8K> = read_to_vec(&buffer, block_len); crate::quantized::BlockQ8K::to_float(&vec, &mut out)?; } } self.device .storage_from_cpu_storage(&crate::CpuStorage::F32(out)) } pub fn quantize(&mut self, src: &CudaStorage) -> Result<()> { // Run the quantization on cpu. let src = match &src.slice { crate::cuda_backend::CudaStorageSlice::F32(data) => { self.device.dtoh_sync_copy(data).w()? } _ => crate::bail!("only f32 can be quantized"), }; let src_len = src.len(); let src = crate::Storage::Cpu(crate::CpuStorage::F32(src)); let mut qcpu_storage = crate::Device::Cpu.qzeros(src_len, self.dtype)?; qcpu_storage.quantize(&src)?; let data = qcpu_storage.data()?; let data = self.device.htod_sync_copy(data.as_ref()).w()?; self.data = data; Ok(()) } pub fn storage_size_in_bytes(&self) -> usize { self.data.len() } pub fn fwd( &self, self_shape: &crate::Shape, storage: &CudaStorage, layout: &crate::Layout, ) -> Result<(CudaStorage, crate::Shape)> { if matches!(layout.shape().dims(), [1, 1, _] | [1, _]) { self.dequantize_matmul_vec(self_shape, storage, layout) } else { self.dequantize_matmul(self_shape, storage, layout) } } } impl QCudaStorage { fn dequantize_matmul_vec( &self, self_shape: &crate::Shape, rhs: &CudaStorage, rhs_l: &crate::Layout, ) -> Result<(CudaStorage, crate::Shape)> { let (nrows, ncols) = self_shape.dims2()?; let rhs = rhs.as_cuda_slice::<f32>()?; let rhs = match rhs_l.contiguous_offsets() { Some((o1, o2)) => rhs.slice(o1..o2), None => Err(crate::Error::RequiresContiguous { op: "dmmv" }.bt())?, }; let (with_batch, k) = match rhs_l.shape().dims() { [1, 1, k] => (true, k), [1, k] => (false, k), _ => crate::bail!("unexpected rhs shape in dmmv {:?}", rhs_l.shape()), }; if ncols != *k { crate::bail!("mismatch on matmul dim {self_shape:?} {:?}", rhs_l.shape()) } let out = dequantize_mut_mal_vec(&self.data, &rhs, self.dtype, ncols, nrows, self.device())?; let out_shape = if with_batch { vec![1, 1, nrows] } else { vec![1, nrows] }; Ok((out, out_shape.into())) } fn dequantize_matmul( &self, self_shape: &crate::Shape, storage: &CudaStorage, layout: &crate::Layout, ) -> Result<(CudaStorage, crate::Shape)> { use crate::backend::BackendStorage; let (n, k) = self_shape.dims2()?; let (b, m, k2) = match layout.shape().dims() { &[b, m, k2] => (b, m, k2), &[m, k2] => (1, m, k2), s => crate::bail!("unexpected shape for input {s:?}"), }; if k2 != k { crate::bail!("mismatch on matmul dim {self_shape:?} {:?}", layout.shape()) } let data_f32 = self.dequantize(n * k)?; let rhs_l = crate::Layout::new((k, n).into(), vec![1, k], 0).broadcast_as((b, k, n))?; let out = storage.matmul(&data_f32, (b, m, n, k), layout, &rhs_l)?; let mut out_shape = layout.shape().dims().to_vec(); out_shape.pop(); out_shape.push(n); Ok((out, out_shape.into())) } } fn read_to_vec<T: Clone>(buffer: &[u8], n: usize) -> Vec<T> { let slice = unsafe { std::slice::from_raw_parts(buffer.as_ptr() as *const T, n) }; slice.to_vec() } pub fn load_quantized<T: super::GgmlType + Send + Sync + 'static>( device: &CudaDevice, data: &[T], ) -> Result<super::QStorage> { let data = unsafe { std::slice::from_raw_parts(data.as_ptr() as *const u8, core::mem::size_of_val(data)) }; let data = device.htod_sync_copy(data).w()?; Ok(QStorage::Cuda(QCudaStorage { data, device: device.clone(), dtype: T::DTYPE, })) }
candle/candle-core/src/quantized/cuda.rs/0
{ "file_path": "candle/candle-core/src/quantized/cuda.rs", "repo_id": "candle", "token_count": 7006 }
18
//! Tensors are N-dimensional matrixes of elements using a single data type. #![allow(clippy::redundant_closure_call)] use crate::backend::{BackendDevice, BackendStorage}; use crate::op::{ BackpropOp, BinaryOp, CmpOp, CustomOp1, CustomOp2, CustomOp3, Op, ReduceOp, UnaryOp, }; use crate::scalar::TensorOrScalar; use crate::shape::{Dim, Dims}; use crate::{bail, storage::Storage, DType, Device, Error, Layout, Result, Shape}; use std::sync::{Arc, RwLock}; /// Unique identifier for tensors. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct TensorId(usize); impl TensorId { fn new() -> Self { // https://users.rust-lang.org/t/idiomatic-rust-way-to-generate-unique-id/33805 use std::sync::atomic; static COUNTER: atomic::AtomicUsize = atomic::AtomicUsize::new(1); Self(COUNTER.fetch_add(1, atomic::Ordering::Relaxed)) } } pub struct Tensor_ { id: TensorId, // As we provide inner mutability on the tensor content, the alternatives are: // - Using a mutex, this would have the highest cost when retrieving the storage but would // prevent errors when concurrent access takes place. Mutex would also be subject to // deadlocks for example using the current code if the same tensor is used twice by a single // binary op. // - Using a refcell unsafe cell would have some intermediary cost, borrow checking would be // verified dynamically, but the resulting tensors would not be send or sync. // - Using an unsafe cell would have the lowest cost but undefined behavior on concurrent // accesses. // Ideally, we would use Arc<Storage> for tensors on which we don't plan on modifying the data // and Arc<Mutex<Storage>> for tensors where the data could be modified, e.g. variables but // that's tricky to encode in the current setup. storage: Arc<RwLock<Storage>>, layout: Layout, op: BackpropOp, is_variable: bool, dtype: DType, device: Device, } impl AsRef<Tensor> for Tensor { fn as_ref(&self) -> &Tensor { self } } // Tensors are refcounted so that cloning is cheap when building the op graph. // Storages are also refcounted independently so that its possible to avoid // copying the storage for operations that only modify the shape or stride. #[derive(Clone)] /// The core struct for manipulating tensors. /// /// ```rust /// use candle_core::{Tensor, DType, Device}; /// /// let a = Tensor::arange(0f32, 6f32, &Device::Cpu)?.reshape((2, 3))?; /// let b = Tensor::arange(0f32, 12f32, &Device::Cpu)?.reshape((3, 4))?; /// /// let c = a.matmul(&b)?; /// # Ok::<(), candle_core::Error>(()) /// ``` /// /// Tensors are reference counted with [`Arc`] so cloning them is cheap. pub struct Tensor(Arc<Tensor_>); impl std::ops::Deref for Tensor { type Target = Tensor_; fn deref(&self) -> &Self::Target { self.0.as_ref() } } macro_rules! unary_op { ($fn_name:ident, $op_name:ident) => { pub fn $fn_name(&self) -> Result<Self> { let shape = self.shape(); let storage = self .storage() .unary_impl::<crate::op::$op_name>(self.layout())?; let op = BackpropOp::new1(self, |s| Op::Unary(s, UnaryOp::$op_name)); Ok(from_storage(storage, shape.clone(), op, false)) } }; } macro_rules! binary_op { ($fn_name:ident, $op_name:ident) => { pub fn $fn_name(&self, rhs: &Self) -> Result<Self> { let shape = self.same_shape_binary_op(rhs, stringify!($fn_name))?; let storage = self.storage().binary_impl::<crate::op::$op_name>( &*rhs.storage(), self.layout(), rhs.layout(), )?; let op = BackpropOp::new2(self, rhs, |t1, t2| Op::Binary(t1, t2, BinaryOp::$op_name)); Ok(from_storage(storage, shape.clone(), op, false)) } }; } macro_rules! binary_op_scalar { ($fn_name:ident, $op_name:ident) => { pub fn $fn_name<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> { let rhs = match rhs.to_tensor_scalar()? { crate::scalar::TensorScalar::Tensor(rhs) => rhs, crate::scalar::TensorScalar::Scalar(rhs) => rhs .to_dtype(self.dtype())? .to_device(self.device())? .broadcast_as(self.shape())?, }; let shape = self.same_shape_binary_op(&rhs, stringify!($fn_name))?; let storage = self.storage().binary_impl::<crate::op::$op_name>( &*rhs.storage(), self.layout(), rhs.layout(), )?; let op = BackpropOp::new2(self, &rhs, |t1, t2| Op::Binary(t1, t2, BinaryOp::$op_name)); Ok(from_storage(storage, shape.clone(), op, false)) } }; } macro_rules! broadcast_binary_op { ($fn_name:ident, $inner_fn_name:ident) => { pub fn $fn_name(&self, rhs: &Self) -> Result<Self> { let lhs = self; let shape = lhs .shape() .broadcast_shape_binary_op(rhs.shape(), stringify!($fn_name))?; let l_broadcast = shape != *lhs.shape(); let r_broadcast = shape != *rhs.shape(); match (l_broadcast, r_broadcast) { (true, true) => lhs .broadcast_as(&shape)? .$inner_fn_name(&rhs.broadcast_as(&shape)?), (false, true) => lhs.$inner_fn_name(&rhs.broadcast_as(&shape)?), (true, false) => lhs.broadcast_as(&shape)?.$inner_fn_name(rhs), (false, false) => lhs.$inner_fn_name(rhs), } } }; } /// Creates a fresh tensor structure based on a storage and a shape, this uses contiguous strides. pub(crate) fn from_storage<S: Into<Shape>>( storage: Storage, shape: S, op: BackpropOp, is_variable: bool, ) -> Tensor { let dtype = storage.dtype(); let device = storage.device(); let tensor_ = Tensor_ { id: TensorId::new(), storage: Arc::new(RwLock::new(storage)), layout: Layout::contiguous(shape), op, is_variable, dtype, device, }; Tensor(Arc::new(tensor_)) } impl Tensor { pub(crate) fn ones_impl<S: Into<Shape>>( shape: S, dtype: DType, device: &Device, is_variable: bool, ) -> Result<Self> { let none = BackpropOp::none(); let shape = shape.into(); let storage = device.ones(&shape, dtype)?; Ok(from_storage(storage, shape, none, is_variable)) } /// Creates a new tensor filled with ones. /// /// ```rust /// use candle_core::{Tensor, DType, Device}; /// let a = Tensor::ones((2, 3), DType::F32, &Device::Cpu)?; /// let b = Tensor::from_slice(&[1.0f32, 1.0, 1.0, 1.0, 1.0, 1.0], (2, 3), &Device::Cpu)?; /// // a == b /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn ones<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> { Self::ones_impl(shape, dtype, device, false) } /// Creates a new tensor filled with ones with same shape, dtype, and device as the other tensor. /// /// ```rust /// use candle_core::{Tensor, DType, Device}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// let b = a.ones_like()?; /// // b == a + 1 /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn ones_like(&self) -> Result<Self> { Tensor::ones(self.shape(), self.dtype(), self.device()) } // Do not expose outside of the crate, the `is_variable=true` case should only be accessed from // the variable module. pub(crate) fn zeros_impl<S: Into<Shape>>( shape: S, dtype: DType, device: &Device, is_variable: bool, ) -> Result<Self> { let none = BackpropOp::none(); let shape = shape.into(); let storage = device.zeros(&shape, dtype)?; Ok(from_storage(storage, shape, none, is_variable)) } /// Creates a new tensor filled with zeros. /// /// ```rust /// use candle_core::{Tensor, DType, Device}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// let b = Tensor::from_slice(&[0.0f32, 0.0, 0.0, 0.0, 0.0, 0.0], (2, 3), &Device::Cpu)?; /// // a == b /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn zeros<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> { Self::zeros_impl(shape, dtype, device, false) } /// Creates a new tensor filled with ones with same shape, dtype, and device as the other /// tensor. /// /// ```rust /// use candle_core::{Tensor, DType, Device}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// let b = a.zeros_like()?; /// // b is on CPU f32. /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn zeros_like(&self) -> Result<Self> { Tensor::zeros(self.shape(), self.dtype(), self.device()) } pub(crate) fn rand_impl<S: Into<Shape>, T: crate::FloatDType>( lo: T, up: T, s: S, device: &Device, is_variable: bool, ) -> Result<Self> { let s = s.into(); let storage = device.rand_uniform(lo, up, &s)?; let none = BackpropOp::none(); Ok(from_storage(storage, s, none, is_variable)) } pub(crate) fn rand_f64_impl<S: Into<Shape>>( lo: f64, up: f64, s: S, dtype: DType, device: &Device, is_variable: bool, ) -> Result<Self> { let s = s.into(); let storage = device.rand_uniform_f64(lo, up, &s, dtype)?; let none = BackpropOp::none(); Ok(from_storage(storage, s, none, is_variable)) } /// Creates a new tensor initialized with values sampled uniformly between `lo` and `up`. pub fn rand<S: Into<Shape>, T: crate::FloatDType>( lo: T, up: T, s: S, device: &Device, ) -> Result<Self> { Self::rand_impl(lo, up, s, device, false) } pub fn rand_like(&self, lo: f64, up: f64) -> Result<Self> { Tensor::rand_f64_impl(lo, up, self.shape(), self.dtype(), self.device(), false) } pub(crate) fn randn_impl<S: Into<Shape>, T: crate::FloatDType>( mean: T, std: T, s: S, device: &Device, is_variable: bool, ) -> Result<Self> { let s = s.into(); let storage = device.rand_normal(mean, std, &s)?; let none = BackpropOp::none(); Ok(from_storage(storage, s, none, is_variable)) } pub(crate) fn randn_f64_impl<S: Into<Shape>>( mean: f64, std: f64, s: S, dtype: DType, device: &Device, is_variable: bool, ) -> Result<Self> { let s = s.into(); let storage = device.rand_normal_f64(mean, std, &s, dtype)?; let none = BackpropOp::none(); Ok(from_storage(storage, s, none, is_variable)) } pub fn randn_like(&self, mean: f64, stdev: f64) -> Result<Self> { Tensor::randn_f64_impl( mean, stdev, self.shape(), self.dtype(), self.device(), false, ) } /// Creates a new tensor initialized with values sampled from a normal distribution with the /// specified `mean` and standard deviation `std`. pub fn randn<S: Into<Shape>, T: crate::FloatDType>( mean: T, std: T, s: S, device: &Device, ) -> Result<Self> { Self::randn_impl(mean, std, s, device, false) } pub(crate) fn new_impl<A: crate::device::NdArray>( array: A, shape: Shape, device: &Device, is_variable: bool, ) -> Result<Self> { let n: usize = shape.elem_count(); let buffer_size: usize = array.shape()?.elem_count(); if buffer_size != n { return Err(Error::ShapeMismatch { buffer_size, shape }.bt()); } let storage = device.storage(array)?; let none = BackpropOp::none(); Ok(from_storage(storage, shape, none, is_variable)) } /// Creates a new tensor on the specified device using the content and shape of the input. pub fn new<A: crate::device::NdArray>(array: A, device: &Device) -> Result<Self> { let shape = array.shape()?; Self::new_impl(array, shape, device, false) } /// Returns a new tensor with all the elements having the same specified value. Note that /// the tensor is not contiguous so you would have to call `.contiguous()` on it if needed. pub fn full<D: crate::WithDType, S: Into<Shape>>( value: D, shape: S, device: &Device, ) -> Result<Self> { Self::from_vec_impl(vec![value], (), device, false)?.broadcast_as(shape) } /// Creates a new 1D tensor from an iterator. pub fn from_iter<D: crate::WithDType>( iter: impl IntoIterator<Item = D>, device: &Device, ) -> Result<Self> { let data = iter.into_iter().collect::<Vec<_>>(); let len = data.len(); Self::from_vec_impl(data, len, device, false) } /// Creates a new 1D tensor with values from the interval `[start, end)` taken with a common /// difference `1` from `start`. pub fn arange<D: crate::WithDType>(start: D, end: D, device: &Device) -> Result<Self> { Self::arange_step(start, end, D::one(), device) } /// Creates a new 1D tensor with values from the interval `[start, end)` taken with a common /// difference `step` from `start`. pub fn arange_step<D: crate::WithDType>( start: D, end: D, step: D, device: &Device, ) -> Result<Self> { if D::is_zero(&step) { bail!("step cannot be zero") } let mut data = vec![]; let mut current = start; if step >= D::zero() { while current < end { data.push(current); current += step; } } else { while current > end { data.push(current); current += step; } } let len = data.len(); Self::from_vec_impl(data, len, device, false) } pub(crate) fn from_vec_impl<S: Into<Shape>, D: crate::WithDType>( data: Vec<D>, shape: S, device: &Device, is_variable: bool, ) -> Result<Self> { let shape = shape.into(); let buffer_size = data.len(); if buffer_size != shape.elem_count() { return Err(Error::ShapeMismatch { buffer_size, shape }.bt()); } let storage = device.storage_owned(data)?; let none = BackpropOp::none(); Ok(from_storage(storage, shape, none, is_variable)) } /// Creates a new tensor initialized with values from the input vector. The number of elements /// in this vector must be the same as the number of elements defined by the shape. /// If the device is cpu, no data copy is made. pub fn from_vec<S: Into<Shape>, D: crate::WithDType>( data: Vec<D>, shape: S, device: &Device, ) -> Result<Self> { Self::from_vec_impl(data, shape, device, false) } /// Creates a new tensor initialized with values from the input slice. The number of elements /// in this vector must be the same as the number of elements defined by the shape. pub fn from_slice<S: Into<Shape>, D: crate::WithDType>( array: &[D], shape: S, device: &Device, ) -> Result<Self> { Self::new_impl(array, shape.into(), device, false) } pub(crate) fn same_shape_binary_op(&self, rhs: &Self, op: &'static str) -> Result<&Shape> { let lhs = self.shape(); let rhs = rhs.shape(); if lhs != rhs { Err(Error::ShapeMismatchBinaryOp { lhs: lhs.clone(), rhs: rhs.clone(), op, } .bt()) } else { Ok(lhs) } } /// Returns true if the computation graph should track this op, that is if it is /// a variable or if it has some variable as dependencies. pub fn track_op(&self) -> bool { self.is_variable || self.op.is_some() } // TODO: Also make an inplace version or a pre-allocated? This could be tricky // if this can create cycles in the compute graph. binary_op!(add, Add); binary_op!(mul, Mul); binary_op!(sub, Sub); binary_op!(div, Div); binary_op_scalar!(maximum, Maximum); binary_op_scalar!(minimum, Minimum); broadcast_binary_op!(broadcast_add, add); broadcast_binary_op!(broadcast_mul, mul); broadcast_binary_op!(broadcast_sub, sub); broadcast_binary_op!(broadcast_div, div); broadcast_binary_op!(broadcast_maximum, maximum); broadcast_binary_op!(broadcast_minimum, minimum); broadcast_binary_op!(broadcast_eq, eq); broadcast_binary_op!(broadcast_ne, ne); broadcast_binary_op!(broadcast_lt, lt); broadcast_binary_op!(broadcast_le, le); broadcast_binary_op!(broadcast_gt, gt); broadcast_binary_op!(broadcast_ge, ge); unary_op!(recip, Recip); unary_op!(neg, Neg); unary_op!(exp, Exp); unary_op!(log, Log); unary_op!(sin, Sin); unary_op!(cos, Cos); unary_op!(tanh, Tanh); unary_op!(abs, Abs); unary_op!(sqr, Sqr); unary_op!(sqrt, Sqrt); unary_op!(gelu, Gelu); unary_op!(gelu_erf, GeluErf); unary_op!(erf, Erf); unary_op!(relu, Relu); unary_op!(silu, Silu); unary_op!(ceil, Ceil); unary_op!(floor, Floor); unary_op!(round, Round); /// Round element of the input tensor to the nearest integer. /// /// If the number of decimals is negative, it specifies the number of positions to the left of /// the decimal point. pub fn round_to(&self, decimals: i32) -> Result<Self> { let mult = 10f64.powi(decimals); (self * mult)?.round()? * (1f64 / mult) } /// Retrieves the single scalar value hold in the tensor. If the tensor contains multiple /// dimensions, an error is returned instead. pub fn to_scalar<S: crate::WithDType>(&self) -> Result<S> { if self.rank() != 0 { Err(Error::UnexpectedNumberOfDims { expected: 0, got: self.rank(), shape: self.shape().clone(), } .bt())? } let from_cpu_storage = |cpu_storage: &crate::CpuStorage| { let data = S::cpu_storage_as_slice(cpu_storage)?; Ok::<_, Error>(data[self.layout().start_offset()]) }; match &*self.storage() { Storage::Cpu(cpu_storage) => from_cpu_storage(cpu_storage), Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?), Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?), } } /// An alias for `to_scalar`. pub fn to_vec0<S: crate::WithDType>(&self) -> Result<S> { self.to_scalar::<S>() } /// Repeat this tensor along the specified dimensions. pub fn repeat<S: Into<Shape>>(&self, shape: S) -> Result<Tensor> { // Similar to PyTorch, we extend the number of dimensions of self if needed. let repeats = shape.into(); let repeats = repeats.dims(); let mut inp = if self.rank() < repeats.len() { let shape = [vec![1; repeats.len() - self.rank()], self.dims().to_vec()].concat(); self.reshape(shape)? } else { self.clone() }; for (idx, &repeat) in repeats.iter().enumerate() { if repeat > 1 { inp = Tensor::cat(&vec![&inp; repeat], idx)? } } Ok(inp) } /// Creates grids of coordinates specified by the 1D inputs. /// /// # Arguments /// /// * `args` - A slice of 1D tensors. /// * `xy_indexing` - Whether to use xy indexing or ij indexing. If xy is selected, the /// first dimension corresponds to the cardinality of the second input and the second /// dimension corresponds to the cardinality of the first input. If ij is selected, the /// dimensions are in the same order as the cardinality of the inputs. /// /// # Examples /// /// ```rust /// use candle_core::{Tensor, Device, Shape}; /// let x = Tensor::new(&[1f32, 2., 3.], &Device::Cpu)?; /// let y = Tensor::new(&[4f32, 5., 6.], &Device::Cpu)?; /// /// let grids_xy = Tensor::meshgrid(&[&x, &y], true)?; /// /// assert_eq!(grids_xy.len(), 2); /// assert_eq!(grids_xy[0].dims(), &[3, 3]); /// /// assert_eq!(grids_xy[0].to_vec2::<f32>()?, &[[1., 2., 3.], [1., 2., 3.], [1., 2., 3.]]); /// assert_eq!(grids_xy[1].to_vec2::<f32>()?, &[[4., 4., 4.], [5., 5., 5.], [6., 6., 6.]]); /// /// let grids_ij = Tensor::meshgrid(&[&x, &y], false)?; /// /// assert_eq!(grids_ij[0].to_vec2::<f32>()?, &[[1., 1., 1.], [2., 2., 2.], [3., 3., 3.]]); /// assert_eq!(grids_ij[1].to_vec2::<f32>()?, &[[4., 5., 6.], [4., 5., 6.], [4., 5., 6.]]); /// # Ok::<(), candle_core::Error>(()) /// ``` /// /// # Errors /// /// * Will return `Err` if `args` contains less than 2 tensors. /// pub fn meshgrid<A: AsRef<Tensor>>(args: &[A], xy_indexing: bool) -> Result<Vec<Self>> { if args.len() <= 1 { Err(Error::OpRequiresAtLeastTwoTensors { op: "meshgrid" }.bt())? } let args: Vec<_> = if xy_indexing { args.iter().rev().collect() } else { args.iter().collect() }; let mut shape = Vec::with_capacity(args.len()); for arg in args.iter() { shape.push(arg.as_ref().dims1()?) } let mut grids = Vec::with_capacity(args.len()); for idx in 0..args.len() { let mut ones = vec![1usize; args.len()]; ones[idx] = shape[idx]; let arg = args[idx].as_ref().reshape(ones)?; let mut repeats = shape.clone(); repeats[idx] = 1; let repeated_tensor = arg.repeat(repeats)?; grids.push(repeated_tensor); } if xy_indexing { grids.reverse(); } Ok(grids) } /// This operation multiplies the input tensor by `mul` then adds `add` and return the result. /// The input values `mul` and `add` are casted to the appropriate type so some rounding might /// be performed. /// /// ```rust /// use candle_core::{Tensor, Device}; /// let a = Tensor::new(&[[0f32, 1.], [2., 3.]], &Device::Cpu)?; /// let a = a.affine(4., -2.)?; /// assert_eq!(a.to_vec2::<f32>()?, &[[-2.0, 2.0], [6.0, 10.0]]); /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn affine(&self, mul: f64, add: f64) -> Result<Self> { let storage = self.storage().affine(self.layout(), mul, add)?; let op = BackpropOp::new1(self, |arg| Op::Affine { arg, mul, add }); Ok(from_storage(storage, self.shape(), op, false)) } /// Applies the Exponential Linear Unit (ELU) function on each element of the input tensor. pub fn elu(&self, alpha: f64) -> Result<Self> { let storage = self.storage().elu(self.layout(), alpha)?; let op = BackpropOp::new1(self, |t| Op::Elu(t, alpha)); Ok(from_storage(storage, self.shape(), op, false)) } /// Raise the tensor to some float exponent `e`. pub fn powf(&self, e: f64) -> Result<Self> { let storage = self.storage().powf(self.layout(), e)?; let op = BackpropOp::new1(self, |t| Op::Powf(t, e)); Ok(from_storage(storage, self.shape(), op, false)) } pub(crate) fn check_dim(&self, dim: usize, op: &'static str) -> Result<()> { if dim >= self.dims().len() { Err(Error::DimOutOfRange { shape: self.shape().clone(), dim: dim as i32, op, } .bt())? } else { Ok(()) } } /// Split a tensor into the specified number of chunks, this may return less chunks than /// specified. pub fn chunk<D: Dim>(&self, chunks: usize, dim: D) -> Result<Vec<Self>> { let dim = dim.to_index(self.shape(), "chunk")?; let size = self.dim(dim)?; if size < chunks { (0..size).map(|i| self.narrow(dim, i, 1)).collect() } else { let chunk_size = size / chunks; let cnt_additional = size % chunks; let mut tensors = vec![]; let mut sum_chunk_size = 0; for i in 0..chunks { let chunk_size = if i < cnt_additional { chunk_size + 1 } else { chunk_size }; let tensor = self.narrow(dim, sum_chunk_size, chunk_size)?; tensors.push(tensor); sum_chunk_size += chunk_size } Ok(tensors) } } /// Returns a new tensor that is a narrowed version of the input, the dimension `dim` /// ranges from `start` to `start + len`. pub fn narrow<D: Dim>(&self, dim: D, start: usize, len: usize) -> Result<Self> { let dims = self.dims(); let dim = dim.to_index(self.shape(), "narrow")?; let err = |msg| { Err::<(), _>( Error::NarrowInvalidArgs { shape: self.shape().clone(), dim, start, len, msg, } .bt(), ) }; if start > dims[dim] { err("start > dim_len")? } if start.saturating_add(len) > dims[dim] { err("start + len > dim_len")? } if start == 0 && dims[dim] == len { Ok(self.clone()) } else { let op = BackpropOp::new1(self, |t| Op::Narrow(t, dim, start, len)); let layout = self.layout().narrow(dim, start, len)?; let tensor_ = Tensor_ { id: TensorId::new(), storage: self.storage.clone(), layout, op, is_variable: false, dtype: self.dtype, device: self.device.clone(), }; Ok(Tensor(Arc::new(tensor_))) } } fn squeeze_dims(self, dims: &[usize]) -> Result<Self> { match dims { [] => Ok(self), [i] => self.squeeze(*i), dims => { let dims = self .dims() .iter() .enumerate() .filter_map(|(dim_idx, &v)| { if dims.contains(&dim_idx) { None } else { Some(v) } }) .collect::<Vec<_>>(); self.reshape(dims) } } } fn reduce_impl<D: Dim>(&self, dim: D, keepdim: bool, op: ReduceOp) -> Result<Self> { let dim = dim.to_index(self.shape(), op.name())?; let storage = self.storage().reduce_op(op, self.layout(), &[dim])?; let mut dims = self.dims().to_vec(); dims[dim] = 1; let op = match op { ReduceOp::Sum | ReduceOp::Min | ReduceOp::Max => { BackpropOp::new1(self, |arg| Op::Reduce(arg, op, dims.to_vec())) } ReduceOp::ArgMin | ReduceOp::ArgMax => BackpropOp::none(), }; let res = from_storage(storage, dims, op, false); if keepdim { Ok(res) } else { res.squeeze_dims(&[dim]) } } fn sum_impl<D: Dims>(&self, sum_dims: D, keepdim: bool) -> Result<Self> { let sum_dims = sum_dims.to_indexes(self.shape(), "sum")?; let storage = self .storage() .reduce_op(ReduceOp::Sum, self.layout(), &sum_dims)?; let mut dims = self.dims().to_vec(); for &sum_dim in sum_dims.iter() { dims[sum_dim] = 1 } let op = BackpropOp::new1(self, |a| Op::Reduce(a, ReduceOp::Sum, dims.to_vec())); let sum = from_storage(storage, dims, op, false); if keepdim { Ok(sum) } else { sum.squeeze_dims(&sum_dims) } } /// Roll the tensor input along the given dimension. /// Elements that are shifted beyond the last position are re-introduced at the first position. /// /// ```rust /// # use candle_core::{Tensor, Device}; /// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?; /// let tensor = tensor.roll(1, 0)?; /// assert_eq!(tensor.to_vec2::<f32>()?, &[[4., 5.], [0., 1.], [2., 3.]]); /// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?; /// let tensor = tensor.roll(-1, 0)?; /// assert_eq!(tensor.to_vec2::<f32>()?, &[[2., 3.], [4., 5.], [0., 1.]]); /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn roll<D>(&self, shift: i32, dim: D) -> Result<Self> where D: Dim + Clone, { let dim = dim.to_index(self.shape(), "roll")?; let dim_size = self.dim(dim)?; let shift = shift.rem_euclid(dim_size as i32) as usize; if shift == 0 { Ok(self.clone()) } else { let a = self.narrow(dim, 0, dim_size - shift)?; let b = self.narrow(dim, dim_size - shift, shift)?; Tensor::cat(&[&b, &a], dim) } } /// Returns the sum of all elements in the input tensor. The sum is performed over all the /// input dimensions. /// /// The resulting tensor has a shape that is similar to the shape of the input tensor, except /// that the number of elements for each dimension index in `sum_dims` is 1. /// /// ```rust /// use candle_core::{Tensor, Device}; /// let a = Tensor::new(&[[0f32, 1.], [2., 3.]], &Device::Cpu)?; /// let s = a.sum_keepdim(0)?; /// assert_eq!(s.to_vec2::<f32>()?, &[[2., 4.]]); /// let s = a.sum_keepdim(1)?; /// assert_eq!(s.to_vec2::<f32>()?, &[[1.], [5.]]); /// let s = a.sum_keepdim((0, 1))?; /// assert_eq!(s.to_vec2::<f32>()?, &[[6.]]); /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn sum_keepdim<D: Dims>(&self, sum_dims: D) -> Result<Self> { self.sum_impl(sum_dims, true) } /// Returns the sum of all elements in the input tensor. The sum is performed over all the /// input dimensions and compared to `sum_keepdim` these dimensions are squeezed rather than /// kept. pub fn sum<D: Dims>(&self, sum_dims: D) -> Result<Self> { self.sum_impl(sum_dims, false) } /// Returns the mean of all elements in the input tensor. The mean is performed over all the /// input dimensions. /// /// The resulting tensor has a shape that is similar to the shape of the input tensor, except /// that the number of elements for each dimension index in `mean_dims` is 1. /// /// ```rust /// use candle_core::{Tensor, Device}; /// let a = Tensor::new(&[[0f32, 1.], [2., 3.]], &Device::Cpu)?; /// let s = a.mean_keepdim(0)?; /// assert_eq!(s.to_vec2::<f32>()?, &[[1., 2.]]); /// let s = a.mean_keepdim(1)?; /// assert_eq!(s.to_vec2::<f32>()?, &[[0.5], [2.5]]); /// let s = a.mean_keepdim((0, 1))?; /// assert_eq!(s.to_vec2::<f32>()?, &[[1.5]]); /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn mean_keepdim<D: Dims>(&self, mean_dims: D) -> Result<Self> { let mean_dims = mean_dims.to_indexes(self.shape(), "mean-keepdim")?; let reduced_dim: usize = mean_dims.iter().map(|i| self.dims()[*i]).product(); let scale = 1f64 / (reduced_dim as f64); self.sum_impl(mean_dims, true)? * scale } /// Returns the mean of all elements in the input tensor. The mean is performed over all the /// input dimensions and compared to `mean_keepdim` these dimensions are squeezed rather than /// kept. pub fn mean<D: Dims>(&self, mean_dims: D) -> Result<Self> { let mean_dims = mean_dims.to_indexes(self.shape(), "mean")?; let reduced_dim: usize = mean_dims.iter().map(|i| self.dims()[*i]).product(); let scale = 1f64 / (reduced_dim as f64); self.sum_impl(mean_dims, false)? * scale } /// Returns the unbiased variance over the selected dimension. pub fn var_keepdim<D: Dim>(&self, dim: D) -> Result<Self> { let dim = dim.to_index(self.shape(), "var")?; let mean = self.mean_keepdim(dim)?; let squares = self.broadcast_sub(&mean)?.sqr()?; squares.sum_impl(dim, true)? / (self.dim(dim)? - 1) as f64 } /// Returns the unbiased variance over the selected dimension. pub fn var<D: Dim>(&self, dim: D) -> Result<Self> { let dim = dim.to_index(self.shape(), "var")?; self.var_keepdim(dim)?.squeeze(dim) } /// Gathers the maximum value across the selected dimension. The resulting shape has the same /// number of dimensions as the original tensor and the select dimension has a single element. pub fn max_keepdim<D: Dim>(&self, dim: D) -> Result<Self> { self.reduce_impl(dim, true, ReduceOp::Max) } /// Similar to `max_keepdim` but the target dimension is squeezed. pub fn max<D: Dim>(&self, dim: D) -> Result<Self> { self.reduce_impl(dim, false, ReduceOp::Max) } /// Gathers the minimum value across the selected dimension. The resulting shape has the same /// number of dimensions as the original tensor and the select dimension has a single element. pub fn min_keepdim<D: Dim>(&self, dim: D) -> Result<Self> { self.reduce_impl(dim, true, ReduceOp::Min) } /// Similar to `min_keepdim` but the target dimension is squeezed. pub fn min<D: Dim>(&self, dim: D) -> Result<Self> { self.reduce_impl(dim, false, ReduceOp::Min) } pub fn argmax_keepdim<D: Dim>(&self, dim: D) -> Result<Self> { self.reduce_impl(dim, true, ReduceOp::ArgMax) } /// Similar to `argmax_keepdim` but the target dimension is squeezed. pub fn argmax<D: Dim>(&self, dim: D) -> Result<Self> { self.reduce_impl(dim, false, ReduceOp::ArgMax) } pub fn argmin_keepdim<D: Dim>(&self, dim: D) -> Result<Self> { self.reduce_impl(dim, true, ReduceOp::ArgMin) } /// Similar to `argmin_keepdim` but the target dimension is squeezed. pub fn argmin<D: Dim>(&self, dim: D) -> Result<Self> { self.reduce_impl(dim, false, ReduceOp::ArgMin) } /// Element-wise comparison between two tensors, e.g. equality, greater than, ... The actual /// comparison operation is specified by the `op` argument. /// /// The returned tensor has the same shape as the original tensors and uses `u8` elements. pub fn cmp<T: TensorOrScalar>(&self, rhs: T, op: CmpOp) -> Result<Self> { let rhs = match rhs.to_tensor_scalar()? { crate::scalar::TensorScalar::Tensor(rhs) => rhs, crate::scalar::TensorScalar::Scalar(rhs) => rhs .to_dtype(self.dtype())? .to_device(self.device())? .broadcast_as(self.shape())?, }; let shape = self.same_shape_binary_op(&rhs, "cmp")?; let storage = self .storage() .cmp(op, &rhs.storage(), self.layout(), rhs.layout())?; let op = BackpropOp::new1(self, |a| Op::Cmp(a, op)); Ok(from_storage(storage, shape.dims(), op, false)) } /// Element-wise equality. pub fn eq<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> { self.cmp(rhs, CmpOp::Eq) } /// Element-wise non-equality. pub fn ne<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> { self.cmp(rhs, CmpOp::Ne) } /// Element-wise comparison with lower-than, the returned tensor uses value 1 where `self < /// rhs` and 0 otherwise. pub fn lt<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> { self.cmp(rhs, CmpOp::Lt) } /// Element-wise comparison with greater-than, the returned tensor uses value 1 where `self > /// rhs` and 0 otherwise. pub fn gt<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> { self.cmp(rhs, CmpOp::Gt) } /// Element-wise comparison with greater-equal, the returned tensor uses value 1 where `self >= /// rhs` and 0 otherwise. pub fn ge<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> { self.cmp(rhs, CmpOp::Ge) } /// Element-wise comparison with lower-equal, the returned tensor uses value 1 where `self <= /// rhs` and 0 otherwise. pub fn le<T: TensorOrScalar>(&self, rhs: T) -> Result<Self> { self.cmp(rhs, CmpOp::Le) } /// Clamp the tensor values to be between `min` and `max`. pub fn clamp<T1: TensorOrScalar, T2: TensorOrScalar>(&self, min: T1, max: T2) -> Result<Self> { self.maximum(min)?.minimum(max) } /// Interpolate the input tensor to the `target_size` size, taking the value of the nearest element. /// /// The input tensor should have three dimensions, `(batch, channels, l)`, the returned /// tensor also has three dimensions, `(batch, channels, target_size)`. pub fn interpolate1d(&self, target_size: usize) -> Result<Self> { let (n, c, _l) = self.dims3()?; let op = BackpropOp::new1(self, |arg| Op::UpsampleNearest1D { arg, target_size }); let storage = self .storage() .upsample_nearest1d(self.layout(), target_size)?; Ok(from_storage(storage, (n, c, target_size), op, false)) } /// Alias for `interpolate1d`. pub fn upsample_nearest1d(&self, target_size: usize) -> Result<Self> { self.interpolate1d(target_size) } /// Interpolate the input tensor to the `(target_h, target_w)` size, taking the value of the /// nearest element. /// /// The input tensor should have four dimensions, `(batch, channels, h, w)`, the returned /// tensor also has four dimensions, `(batch, channels, target_h, target_w)`. pub fn interpolate2d(&self, target_h: usize, target_w: usize) -> Result<Self> { let (n, c, _h, _w) = self.dims4()?; let op = BackpropOp::new1(self, |arg| Op::UpsampleNearest2D { arg, target_h, target_w, }); let storage = self .storage() .upsample_nearest2d(self.layout(), target_h, target_w)?; Ok(from_storage(storage, (n, c, target_h, target_w), op, false)) } /// Alias for `interpolate2d`. pub fn upsample_nearest2d(&self, target_h: usize, target_w: usize) -> Result<Self> { self.interpolate2d(target_h, target_w) } /// 2D average pooling over an input tensor with multiple channels. /// /// The input tensor should have four dimensions, `(batch, channels, h, w)`, the returned /// tensor also has four dimensions, `(batch, channels, h', w')`. The pooling is performed on /// the two last dimensions using a kernel of size `sz`. The returned element is the average /// value over the kernel window. pub fn avg_pool2d<T: crate::ToUsize2>(&self, sz: T) -> Result<Self> { let sz = sz.to_usize2(); self.avg_pool2d_with_stride(sz, sz) } /// Same as `avg_pool2d` but with a `stride` that can be set to a value different from the /// kernel size. pub fn avg_pool2d_with_stride<T: crate::ToUsize2>( &self, kernel_size: T, stride: T, ) -> Result<Self> { let kernel_size = kernel_size.to_usize2(); let stride = stride.to_usize2(); let (n, c, h, w) = self.dims4()?; if h < kernel_size.0 || w < kernel_size.1 { bail!("kernel-size {kernel_size:?} is larger than the input size {h},{w}") } // https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html#torch.nn.AvgPool2d let h_out = (h - kernel_size.0) / stride.0 + 1; let w_out = (w - kernel_size.1) / stride.1 + 1; let op = BackpropOp::new1(self, |arg| Op::AvgPool2D { arg, kernel_size, stride, }); let storage = self .storage() .avg_pool2d(self.layout(), kernel_size, stride)?; Ok(from_storage(storage, (n, c, h_out, w_out), op, false)) } /// 2D max pooling over an input tensor with multiple channels. /// /// The input tensor should have four dimensions, `(batch, channels, h, w)`, the returned /// tensor also has four dimensions, `(batch, channels, h', w')`. The pooling is performed on /// the two last dimensions using a kernel of size `sz`, the returned element is the maximum /// value over the kernel window. pub fn max_pool2d<T: crate::ToUsize2>(&self, sz: T) -> Result<Self> { let sz = sz.to_usize2(); self.max_pool2d_with_stride(sz, sz) } /// Same as `max_pool2d` but with a `stride` that can be set to a value different from the /// kernel size. pub fn max_pool2d_with_stride<T: crate::ToUsize2>( &self, kernel_size: T, stride: T, ) -> Result<Self> { let kernel_size = kernel_size.to_usize2(); let stride = stride.to_usize2(); let (n, c, h, w) = self.dims4()?; if h < kernel_size.0 || w < kernel_size.1 { bail!("kernel-size {kernel_size:?} is larger than the input size {h},{w}") } // https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d let h_out = (h - kernel_size.0) / stride.0 + 1; let w_out = (w - kernel_size.1) / stride.1 + 1; let op = BackpropOp::new1(self, |arg| Op::MaxPool2D { arg, kernel_size, stride, }); let storage = self .storage() .max_pool2d(self.layout(), kernel_size, stride)?; Ok(from_storage(storage, (n, c, h_out, w_out), op, false)) } /// Returns the matrix-multiplication of the input tensor with the other provided tensor. /// /// # Arguments /// /// * `self` - A tensor with dimensions `b1, b2, ..., bi, m, k`. /// * `rhs` - A tensor with dimensions `b1, b2, ..., bi, k, n`. /// /// The resulting tensor has dimensions `b1, b2, ..., bi, m, n`. pub fn matmul(&self, rhs: &Self) -> Result<Self> { let a_dims = self.shape().dims(); let b_dims = rhs.shape().dims(); let dim = a_dims.len(); if dim < 2 || b_dims.len() != dim { Err(Error::ShapeMismatchBinaryOp { lhs: self.shape().clone(), rhs: rhs.shape().clone(), op: "matmul", } .bt())? } let m = a_dims[dim - 2]; let k = a_dims[dim - 1]; let k2 = b_dims[dim - 2]; let n = b_dims[dim - 1]; let c_shape = Shape::from(&a_dims[..dim - 2]).extend(&[m, n]); let batching: usize = a_dims[..dim - 2].iter().product(); let batching_b: usize = b_dims[..dim - 2].iter().product(); if k != k2 || batching != batching_b { Err(Error::ShapeMismatchBinaryOp { lhs: self.shape().clone(), rhs: rhs.shape().clone(), op: "matmul", } .bt())? } let storage = self.storage().matmul( &rhs.storage(), (batching, m, n, k), self.layout(), rhs.layout(), )?; let op = BackpropOp::new2(self, rhs, Op::Matmul); Ok(from_storage(storage, c_shape, op, false)) } /// Matrix-multiplication with broadcasting support. /// /// Compared to `matmul` the two matrixes are allowed to have different dimensions as long as /// they are compatible for broadcast. E.g. if `self` has shape `(j, 1, n, k)` and `rhs` has /// shape `(l, k, m)`, the output will have shape `(j, l, n, m)`. pub fn broadcast_matmul(&self, rhs: &Self) -> Result<Self> { let lhs = self; let (l_shape, r_shape) = lhs.shape().broadcast_shape_matmul(rhs.shape())?; let l_broadcast = l_shape != *lhs.shape(); let r_broadcast = r_shape != *rhs.shape(); // TODO: Avoid concretising the broadcasted matrixes via contiguous. match (l_broadcast, r_broadcast) { (true, true) => lhs .broadcast_as(&l_shape)? .contiguous()? .matmul(&rhs.broadcast_as(&r_shape)?.contiguous()?), (false, true) => lhs.matmul(&rhs.broadcast_as(&r_shape)?.contiguous()?), (true, false) => lhs.broadcast_as(&l_shape)?.contiguous()?.matmul(rhs), (false, false) => lhs.matmul(rhs), } } /// Returns a tensor with the same shape as the input tensor, the values are taken from /// `on_true` if the input tensor value is not zero, and `on_false` at the positions where the /// input tensor is equal to zero. pub fn where_cond(&self, on_true: &Self, on_false: &Self) -> Result<Self> { let _shap = self.same_shape_binary_op(on_true, "where_cond")?; let shape = self.same_shape_binary_op(on_false, "where_cond")?; let storage = self.storage().where_cond( self.layout(), &on_true.storage(), on_true.layout(), &on_false.storage(), on_false.layout(), )?; let op = BackpropOp::new3(self, on_true, on_false, Op::WhereCond); Ok(from_storage(storage, shape, op, false)) } /// Returns a tensor with the values from the `self` tensor at the index corresponding to the /// values hold in the `ids` tensor. /// /// # Arguments /// /// * `self` - A tensor with dimensions `v, h`. /// * `ids` - A tensor with dimensions `s` and with integer values between 0 and v (exclusive). /// /// The resulting tensor has dimensions `s, h`. `s` is called the sequence length, `v` the /// vocabulary size, and `h` the hidden size. /// /// ```rust /// use candle_core::{Tensor, Device}; /// let values = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?; /// let ids = Tensor::new(&[2u32, 1u32, 2u32], &Device::Cpu)?; /// let emb = values.embedding(&ids)?; /// assert_eq!(emb.to_vec2::<f32>()?, &[[4., 5.], [2., 3.], [4., 5.]]); /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn embedding(&self, ids: &Self) -> Result<Self> { if self.rank() != 2 || ids.rank() != 1 { Err(Error::ShapeMismatchBinaryOp { lhs: self.shape().clone(), rhs: ids.shape().clone(), op: "embedding", } .bt())? } self.index_select(ids, 0) } pub fn scatter_add<D: Dim>(&self, indexes: &Self, source: &Self, dim: D) -> Result<Self> { let dim = dim.to_index(self.shape(), "scatter-add")?; let source_dims = source.dims(); let self_dims = self.dims(); let mismatch = if source_dims.len() != self_dims.len() { true } else { let mut mismatch = false; for (i, (&d1, &d2)) in self_dims.iter().zip(source_dims.iter()).enumerate() { if i != dim && d1 != d2 { mismatch = true; break; } } mismatch }; if mismatch { Err(Error::ShapeMismatchBinaryOp { op: "scatter-add (self, src)", lhs: self.shape().clone(), rhs: source.shape().clone(), } .bt())? } if indexes.dims() != source.dims() { Err(Error::ShapeMismatchBinaryOp { op: "scatter-add (indexes, src)", lhs: indexes.shape().clone(), rhs: source.shape().clone(), } .bt())? } let storage = self.storage().scatter_add( self.layout(), &indexes.storage(), indexes.layout(), &source.storage(), source.layout(), dim, )?; let op = BackpropOp::new3(self, indexes, source, |t1, t2, t3| { Op::ScatterAdd(t1, t2, t3, dim) }); Ok(from_storage(storage, self.shape(), op, false)) } /// Embeds the values of the `src` tensor into the `self` tensor on the specified dimension. pub fn slice_scatter<D: Dim>(&self, src: &Self, dim: D, start: usize) -> Result<Self> { let dim = dim.to_index(self.shape(), "slice-scatter")?; if dim == 0 { self.slice_scatter0(src, start) } else { // TODO: Maybe we want to add a more efficient implementation at some point. self.transpose(0, dim)? .slice_scatter0(&src.transpose(0, dim)?, start)? .transpose(0, dim) } } /// Embeds the values of the `src` tensor into the `self` tensor on the first dimension. pub fn slice_scatter0(&self, src: &Self, start: usize) -> Result<Self> { if self.dtype() != src.dtype() { Err(Error::DTypeMismatchBinaryOp { lhs: self.dtype(), rhs: src.dtype(), op: "slice-scatter", } .bt())? } if self.device().location() != src.device.location() { Err(Error::DeviceMismatchBinaryOp { lhs: self.device().location(), rhs: src.device().location(), op: "slice-scatter", } .bt())? } if self.rank() != src.rank() { Err(Error::UnexpectedNumberOfDims { expected: self.rank(), got: src.rank(), shape: src.shape().clone(), } .bt())? } let shape_ok = self.dims() .iter() .zip(src.dims().iter()) .enumerate() .all(|(dim_idx, (&d1, &d2))| { if 0 == dim_idx { d2 + start <= d1 } else { d1 == d2 } }); if !shape_ok { Err(Error::ShapeMismatchBinaryOp { op: "slice-scatter (self, src)", lhs: self.shape().clone(), rhs: src.shape().clone(), } .bt())? } let mut storage = self.device().zeros(self.shape(), self.dtype())?; self.storage() .copy_strided_src(&mut storage, 0, self.layout())?; let offset = start * src.dims()[1..].iter().product::<usize>(); src.storage() .copy_strided_src(&mut storage, offset, src.layout())?; let op = BackpropOp::new2(self, src, |t1, t2| Op::SliceScatter0(t1, t2, start)); Ok(from_storage(storage, self.shape(), op, false)) } /// Accumulate element from `source` at indexes `indexes` and add them to `self`. pub fn index_add<D: Dim>(&self, indexes: &Self, source: &Self, dim: D) -> Result<Self> { let dim = dim.to_index(self.shape(), "index-add")?; let source_dims = source.dims(); let self_dims = self.dims(); let mismatch = if source_dims.len() != self_dims.len() { true } else { let mut mismatch = false; for (i, (&d1, &d2)) in self_dims.iter().zip(source_dims.iter()).enumerate() { if i != dim && d1 != d2 { mismatch = true; break; } } mismatch }; if mismatch { Err(Error::ShapeMismatchBinaryOp { op: "index-add (self, source)", lhs: self.shape().clone(), rhs: source.shape().clone(), } .bt())? } // The number of element in indexes must match the dimension on which the add is // performed on the source tensor (and the index values from `indexes` are taken from // the target tensor self) let indexes_len = indexes.dims1()?; if source_dims[dim] != indexes_len { Err(Error::ShapeMismatchBinaryOp { op: "index-add (ids, source))", lhs: indexes.shape().clone(), rhs: source.shape().clone(), } .bt())? } let storage = self.storage().index_add( self.layout(), &indexes.storage(), indexes.layout(), &source.storage(), source.layout(), dim, )?; let op = BackpropOp::new3(self, indexes, source, |t1, t2, t3| { Op::IndexAdd(t1, t2, t3, dim) }); Ok(from_storage(storage, self.shape(), op, false)) } /// Gather values across the target dimension. /// /// # Arguments /// /// * `self` - The input tensor. /// * `indexes` - The indices of elements to gather, this should have the same shape as `self` /// but can have a different number of elements on the target dimension. /// * `dim` - the target dimension. /// /// The resulting tensor has the same shape as `indexes` and use values from `self` indexed on /// dimension `dim` by the values in `indexes`. pub fn gather<D: Dim>(&self, indexes: &Self, dim: D) -> Result<Self> { let dim = dim.to_index(self.shape(), "gather")?; let self_dims = self.dims(); let indexes_dims = indexes.dims(); let mismatch = if indexes_dims.len() != self_dims.len() { true } else { let mut mismatch = false; for (i, (&d1, &d2)) in self_dims.iter().zip(indexes_dims.iter()).enumerate() { if i != dim && d1 != d2 { mismatch = true; break; } } mismatch }; if mismatch { Err(Error::ShapeMismatchBinaryOp { op: "gather", lhs: self.shape().clone(), rhs: indexes.shape().clone(), } .bt())? } let storage = self.storage() .gather(self.layout(), &indexes.storage(), indexes.layout(), dim)?; let op = BackpropOp::new2(self, indexes, |t1, t2| Op::Gather(t1, t2, dim)); Ok(from_storage(storage, indexes.shape(), op, false)) } /// Select values for the input tensor at the target indexes across the specified dimension. /// /// The `indexes` is argument is an int tensor with a single dimension. /// The output has the same number of dimension as the `self` input. The target dimension of /// the output has length the length of `indexes` and the values are taken from `self` using /// the index from `indexes`. Other dimensions have the same number of elements as the input /// tensor. pub fn index_select<D: Dim>(&self, indexes: &Self, dim: D) -> Result<Self> { let dim = dim.to_index(self.shape(), "index-select")?; let indexes_len = match indexes.dims() { [l] => *l, _ => Err(Error::ShapeMismatchBinaryOp { lhs: self.shape().clone(), rhs: indexes.shape().clone(), op: "index-select", } .bt())?, }; let storage = self.storage().index_select( &indexes.storage(), self.layout(), indexes.layout(), dim, )?; let mut dims = self.dims().to_vec(); dims[dim] = indexes_len; let op = BackpropOp::new2(self, indexes, |t1, t2| Op::IndexSelect(t1, t2, dim)); Ok(from_storage(storage, dims, op, false)) } /// Returns an iterator over position of the elements in the storage when ranging over the /// index tuples in lexicographic order. pub fn strided_index(&self) -> crate::StridedIndex { self.layout.strided_index() } /// Similar to `strided_index` but returns the position of the start of each contiguous block /// as well as the length of the contiguous blocks. For a contiguous tensor, the index iterator /// will only return the start offset and the size would be the number of elements in the /// tensor. pub fn strided_blocks(&self) -> crate::StridedBlocks { self.layout.strided_blocks() } /// Returns the data contained in a 1D tensor as a vector of scalar values. pub fn to_vec1<S: crate::WithDType>(&self) -> Result<Vec<S>> { if self.rank() != 1 { Err(Error::UnexpectedNumberOfDims { expected: 1, got: self.rank(), shape: self.shape().clone(), } .bt())? } let from_cpu_storage = |cpu_storage: &crate::CpuStorage| { let data = S::cpu_storage_as_slice(cpu_storage)?; let data = match self.layout.contiguous_offsets() { Some((o1, o2)) => data[o1..o2].to_vec(), None => self.strided_index().map(|i| data[i]).collect(), }; Ok::<Vec<_>, Error>(data) }; match &*self.storage() { Storage::Cpu(storage) => from_cpu_storage(storage), Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?), Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?), } } /// Returns the data contained in a 2D tensor as a vector of vector of scalar values. pub fn to_vec2<S: crate::WithDType>(&self) -> Result<Vec<Vec<S>>> { let (dim1, dim2) = self.dims2()?; let from_cpu_storage = |cpu_storage: &crate::CpuStorage| { let data = S::cpu_storage_as_slice(cpu_storage)?; let mut rows = vec![]; match self.layout.contiguous_offsets() { Some((o1, o2)) => { let data = &data[o1..o2]; for idx_row in 0..dim1 { rows.push(data[idx_row * dim2..(idx_row + 1) * dim2].to_vec()) } } None => { let mut src_index = self.strided_index(); for _idx_row in 0..dim1 { let row = (0..dim2).map(|_| data[src_index.next().unwrap()]).collect(); rows.push(row) } assert!(src_index.next().is_none()); } } Ok(rows) }; match &*self.storage() { Storage::Cpu(storage) => from_cpu_storage(storage), Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?), Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?), } } /// Returns the data contained in a 3D tensor. pub fn to_vec3<S: crate::WithDType>(&self) -> Result<Vec<Vec<Vec<S>>>> { let (dim1, dim2, dim3) = self.dims3()?; let from_cpu_storage = |cpu_storage: &crate::CpuStorage| { let data = S::cpu_storage_as_slice(cpu_storage)?; let mut top_rows = vec![]; match self.layout.contiguous_offsets() { Some((o1, o2)) => { let data = &data[o1..o2]; let dim23 = dim2 * dim3; for idx1 in 0..dim1 { let data = &data[idx1 * dim23..(idx1 + 1) * dim23]; let mut rows = vec![]; for idx2 in 0..dim2 { rows.push(data[idx2 * dim3..(idx2 + 1) * dim3].to_vec()) } top_rows.push(rows); } } None => { let mut src_index = self.strided_index(); for _idx in 0..dim1 { let mut rows = vec![]; for _jdx in 0..dim2 { let row = (0..dim3).map(|_| data[src_index.next().unwrap()]).collect(); rows.push(row) } top_rows.push(rows); } assert!(src_index.next().is_none()); } } Ok(top_rows) }; match &*self.storage() { Storage::Cpu(storage) => from_cpu_storage(storage), Storage::Cuda(storage) => from_cpu_storage(&storage.to_cpu_storage()?), Storage::Metal(storage) => from_cpu_storage(&storage.to_cpu_storage()?), } } /// The dtype for the elements stored in the input tensor. pub fn dtype(&self) -> DType { self.dtype } /// The device on which the input tensor is located. pub fn device(&self) -> &Device { &self.device } /// The tensor shape, i.e. dimension sizes on each axis. pub fn shape(&self) -> &Shape { self.layout().shape() } /// The dimension size for this tensor on each axis. pub fn dims(&self) -> &[usize] { self.shape().dims() } /// The dimension size for a specified dimension index. pub fn dim<D: Dim>(&self, dim: D) -> Result<usize> { let dim = dim.to_index(self.shape(), "dim")?; Ok(self.dims()[dim]) } /// The layout of the input tensor, this stores both the shape of the tensor as well as the /// strides and the start offset to apply to the underlying storage. pub fn layout(&self) -> &Layout { &self.layout } pub fn stride(&self) -> &[usize] { self.layout.stride() } /// The number of dimensions for this tensor, 0 for a scalar tensor, 1 for a 1D tensor, etc. pub fn rank(&self) -> usize { self.shape().rank() } /// The number of elements stored in this tensor. pub fn elem_count(&self) -> usize { self.shape().elem_count() } /// The unique identifier for this tensor. pub fn id(&self) -> TensorId { self.id } /// Whether this tensor is a variable or not. A variable is a tensor for which gradient is /// tracked and on which backpropagation can be performed. pub fn is_variable(&self) -> bool { self.is_variable } pub(crate) fn op(&self) -> &Option<Op> { &self.op } /// Computes the sum of all the elements in this tensor and returns a tensor holding this /// scalar with zero dimensions. /// /// ```rust /// use candle_core::{Tensor, Device}; /// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?; /// let tensor = tensor.sum_all()?; /// assert_eq!(tensor.to_scalar::<f32>()?, 15.); /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn sum_all(&self) -> Result<Tensor> { let dims: Vec<_> = (0..self.rank()).collect(); self.sum(dims) } pub fn mean_all(&self) -> Result<Tensor> { self.sum_all()? / self.elem_count() as f64 } fn flatten_<D1: Dim, D2: Dim>( &self, start_dim: Option<D1>, end_dim: Option<D2>, ) -> Result<Tensor> { if self.rank() == 0 { self.reshape(1) } else { let start_dim = match start_dim { None => 0, Some(dim) => dim.to_index(self.shape(), "flatten")?, }; let end_dim = match end_dim { None => self.rank() - 1, Some(dim) => dim.to_index(self.shape(), "flatten")?, }; if start_dim < end_dim { let dims = self.dims(); let mut dst_dims = dims[..start_dim].to_vec(); dst_dims.push(dims[start_dim..end_dim + 1].iter().product::<usize>()); if end_dim + 1 < dims.len() { dst_dims.extend(&dims[end_dim + 1..]); } self.reshape(dst_dims) } else { Ok(self.clone()) } } } /// Flattens the input tensor on the dimension indexes from `start_dim` to `end_dim` (both /// inclusive). pub fn flatten<D1: Dim, D2: Dim>(&self, start_dim: D1, end_dim: D2) -> Result<Tensor> { self.flatten_(Some(start_dim), Some(end_dim)) } /// Flattens the input tensor on the dimension indexes from `0` to `end_dim` (inclusive). pub fn flatten_to<D: Dim>(&self, end_dim: D) -> Result<Tensor> { self.flatten_(None::<usize>, Some(end_dim)) } /// Flattens the input tensor on the dimension indexes from `start_dim` (inclusive) to the last /// dimension. pub fn flatten_from<D: Dim>(&self, start_dim: D) -> Result<Tensor> { self.flatten_(Some(start_dim), None::<usize>) } /// Flattens the input tensor by reshaping it into a one dimension tensor. /// /// ```rust /// use candle_core::{Tensor, Device}; /// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?; /// let tensor = tensor.flatten_all()?; /// assert_eq!(tensor.to_vec1::<f32>()?, &[0., 1., 2., 3., 4., 5.]); /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn flatten_all(&self) -> Result<Tensor> { self.flatten_(None::<usize>, None::<usize>) } /// Returns the sub-tensor fixing the index at `i` on the first dimension. /// /// ```rust /// use candle_core::{Tensor, Device}; /// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?; /// let t = tensor.get(0)?; /// assert_eq!(t.to_vec1::<f32>()?, &[0., 1.]); /// let t = tensor.get(1)?; /// assert_eq!(t.to_vec1::<f32>()?, &[2., 3.]); /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn get(&self, i: usize) -> Result<Tensor> { let dims = self.dims(); if dims.is_empty() { Ok(self.clone()) } else { self.narrow(0, i, 1)?.reshape(&dims[1..]) } } /// Returns the sub-tensor fixing the index at `index` on the dimension `dim`. /// /// ```rust /// use candle_core::{Tensor, Device}; /// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?; /// let t = tensor.get_on_dim(1, 0)?; /// assert_eq!(t.to_vec1::<f32>()?, &[0., 2., 4.]); /// let t = tensor.get_on_dim(1, 1)?; /// assert_eq!(t.to_vec1::<f32>()?, &[1., 3., 5.]); /// let t = tensor.get_on_dim(0, 1)?; /// assert_eq!(t.to_vec1::<f32>()?, &[2., 3.]); /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn get_on_dim<D: Dim>(&self, dim: D, index: usize) -> Result<Tensor> { let dim = dim.to_index(self.shape(), "get_on_dim")?; self.narrow(dim, index, 1)?.squeeze(dim) } /// Returns a tensor that is a transposed version of the input, the two last dimensions of the /// input are swapped. /// /// ```rust /// use candle_core::{Tensor, Device}; /// let tensor = Tensor::new(&[[0f32, 1.], [2., 3.], [4., 5.]], &Device::Cpu)?; /// let tensor = tensor.t()?; /// assert_eq!(tensor.to_vec2::<f32>()?, &[[0.0, 2.0, 4.0], [1.0, 3.0, 5.0]]); /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn t(&self) -> Result<Tensor> { let rank = self.rank(); if rank < 2 { Err(Error::UnexpectedNumberOfDims { expected: 2, got: rank, shape: self.shape().clone(), } .bt())? } self.transpose(rank - 2, rank - 1) } /// Returns a tensor that is a transposed version of the input, the given dimensions are /// swapped. pub fn transpose<D1: Dim, D2: Dim>(&self, dim1: D1, dim2: D2) -> Result<Tensor> { let dim1 = dim1.to_index(self.shape(), "transpose")?; let dim2 = dim2.to_index(self.shape(), "transpose")?; if dim1 == dim2 { return Ok(self.clone()); } let op = BackpropOp::new1(self, |t| Op::Transpose(t, dim1, dim2)); let tensor_ = Tensor_ { id: TensorId::new(), storage: self.storage.clone(), layout: self.layout.transpose(dim1, dim2)?, op, is_variable: false, dtype: self.dtype, device: self.device.clone(), }; Ok(Tensor(Arc::new(tensor_))) } /// Returns a tensor with the same data as the input where the dimensions have been permuted. /// dims must be a permutation, i.e. include each dimension index exactly once. /// /// ```rust /// use candle_core::{Tensor, Device}; /// let tensor = Tensor::arange(0u32, 120u32, &Device::Cpu)?.reshape((2, 3, 4, 5))?; /// assert_eq!(tensor.dims(), &[2, 3, 4, 5]); /// let tensor = tensor.permute((2, 3, 1, 0))?; /// assert_eq!(tensor.dims(), &[4, 5, 3, 2]); /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn permute<D: Dims>(&self, dims: D) -> Result<Tensor> { let dims = dims.to_indexes(self.shape(), "permute")?; // O(n^2) permutation check but these arrays are small. let is_permutation = dims.len() == self.rank() && (0..dims.len()).all(|i| dims.contains(&i)); if !is_permutation { bail!( "dimension mismatch in permute, tensor {:?}, dims: {:?}", self.dims(), dims ) } let op = BackpropOp::new1(self, |t| Op::Permute(t, dims.clone())); let tensor_ = Tensor_ { id: TensorId::new(), storage: self.storage.clone(), layout: self.layout.permute(&dims)?, op, is_variable: false, dtype: self.dtype, device: self.device.clone(), }; Ok(Tensor(Arc::new(tensor_))) } /// Returns true if the data is stored in a C contiguous (aka row major) way. pub fn is_contiguous(&self) -> bool { self.layout.is_contiguous() } /// Returns true if the data is stored in a Fortran contiguous (aka column major) way. pub fn is_fortran_contiguous(&self) -> bool { self.layout.is_fortran_contiguous() } /// Compared to clone, this copies the actual storage but may fail because of running out of /// memory. pub fn copy(&self) -> Result<Tensor> { let op = BackpropOp::new1(self, Op::Copy); let tensor_ = Tensor_ { id: TensorId::new(), storage: Arc::new(RwLock::new(self.storage().try_clone(self.layout())?)), layout: self.layout.clone(), op, is_variable: false, dtype: self.dtype, device: self.device.clone(), }; Ok(Tensor(Arc::new(tensor_))) } /// Returns a new tensor detached from the current graph, gradient are not propagated through /// this new node. The storage of this tensor is shared with the initial tensor. /// /// If the tensor is already detached from the computation graph, the same tensor is returned. pub fn detach(&self) -> Tensor { if self.op.is_none() && !self.is_variable { self.clone() } else { let tensor_ = Tensor_ { id: TensorId::new(), storage: self.storage.clone(), layout: self.layout.clone(), op: BackpropOp::none(), is_variable: false, dtype: self.dtype, device: self.device.clone(), }; Tensor(Arc::new(tensor_)) } } /// If the target device is the same as the tensor device, only a shallow copy is performed. pub fn to_device(&self, device: &Device) -> Result<Tensor> { if self.device().same_device(device) { Ok(self.clone()) } else { let storage = match (&*self.storage(), device) { (Storage::Cpu(storage), Device::Cuda(cuda)) => { Storage::Cuda(cuda.storage_from_cpu_storage(storage)?) } (Storage::Cpu(storage), Device::Metal(metal)) => { Storage::Metal(metal.storage_from_cpu_storage(storage)?) } (Storage::Cuda(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?), (Storage::Metal(storage), Device::Cpu) => Storage::Cpu(storage.to_cpu_storage()?), (Storage::Cuda(storage), Device::Cuda(cuda)) => { // TODO: Avoid passing through the cpu storage here, especially if the gpu ids // are the same. let cpu_storage = storage.to_cpu_storage()?; Storage::Cuda(cuda.storage_from_cpu_storage(&cpu_storage)?) } (Storage::Cpu(storage), Device::Cpu) => Storage::Cpu(storage.clone()), _ => { bail!("not implemented yet") } }; let op = BackpropOp::new1(self, Op::ToDevice); let tensor_ = Tensor_ { id: TensorId::new(), storage: Arc::new(RwLock::new(storage)), layout: self.layout.clone(), op, is_variable: false, dtype: self.dtype, device: device.clone(), }; Ok(Tensor(Arc::new(tensor_))) } } /// Returns a new tensor duplicating data from the original tensor. New dimensions are inserted /// on the left. pub fn broadcast_left<S: Into<Shape>>(&self, left_shape: S) -> Result<Self> { let left_shape = left_shape.into(); let mut dims = left_shape.into_dims(); dims.extend(self.dims()); self.broadcast_as(dims) } /// Broadcast the input tensor to the target shape. This returns an error if the input shape is /// not compatible with the target shape. /// /// If the input shape is `i_1, i_2, ... i_k`, the target shape has to have `k` dimensions or /// more and shape `j_1, ..., j_l, t_1, t_2, ..., t_k`. The dimensions `j_1` to `j_l` can have /// any value, the dimension `t_a` must be equal to `i_a` if `i_a` is different from 1. If /// `i_a` is equal to 1, any value can be used. pub fn broadcast_as<S: Into<Shape>>(&self, shape: S) -> Result<Self> { let tensor_ = Tensor_ { id: TensorId::new(), storage: self.storage.clone(), layout: self.layout.broadcast_as(shape)?, op: BackpropOp::new1(self, Op::Broadcast), is_variable: false, dtype: self.dtype, device: self.device.clone(), }; Ok(Tensor(Arc::new(tensor_))) } /// An alias for broadcast_as. pub fn expand<S: Into<Shape>>(&self, shape: S) -> Result<Self> { self.broadcast_as(shape) } /// Casts the input tensor to the target `dtype`. /// /// ```rust /// use candle_core::{Tensor, Device}; /// let tensor = Tensor::new(3.14159265358979f64, &Device::Cpu)?; /// assert_eq!(tensor.to_scalar::<f64>()?, 3.14159265358979); /// let tensor = tensor.to_dtype(candle_core::DType::F32)?; /// assert_eq!(tensor.to_scalar::<f32>()?, 3.1415927); /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn to_dtype(&self, dtype: DType) -> Result<Self> { if self.dtype() == dtype { Ok(self.clone()) } else { let shape = self.shape(); let storage = self.storage().to_dtype(self.layout(), dtype)?; let op = BackpropOp::new1(self, Op::ToDType); Ok(from_storage(storage, shape.clone(), op, false)) } } /// Returns a tensor that is in row major order. This is the same as the original tensor if it /// was already contiguous, otherwise a copy is triggered. pub fn contiguous(&self) -> Result<Tensor> { if self.is_contiguous() { Ok(self.clone()) } else { let shape = self.shape(); let mut storage = self.device().zeros(shape, self.dtype())?; self.storage() .copy_strided_src(&mut storage, 0, self.layout())?; let op = BackpropOp::new1(self, Op::Copy); Ok(from_storage(storage, shape.clone(), op, false)) } } /// Create a variable based on the values currently stored in a tensor. The storage is always /// copied. pub(crate) fn make_var(&self) -> Result<Tensor> { let shape = self.shape().clone(); let mut storage = self.device().zeros(&shape, self.dtype())?; self.storage() .copy_strided_src(&mut storage, 0, self.layout())?; Ok(from_storage(storage, shape, BackpropOp::none(), true)) } /// Reshape returns a tensor with the target shape provided that the number of elements of the /// original tensor is the same. /// If the input tensor is contiguous, this is a view on the original data. Otherwise this uses /// a new storage and copies the data over, the returned tensor is always contiguous. /// /// The shape can be specified using a tuple of `usize` and at most one `()` in which case /// the behavior is the same as when using `-1` in PyTorch: this dimension size is adjusted so /// as to match the number of elements in the tensor. /// /// ```rust /// # use candle_core::{Tensor, DType, Device, D}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// /// let c = a.reshape((1, 6))?; /// assert_eq!(c.shape().dims(), &[1, 6]); /// /// let c = a.reshape((3, 2))?; /// assert_eq!(c.shape().dims(), &[3, 2]); /// /// let c = a.reshape((2, (), 1))?; /// assert_eq!(c.shape().dims(), &[2, 3, 1]); /// /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn reshape<S: crate::shape::ShapeWithOneHole>(&self, s: S) -> Result<Tensor> { let shape = s.into_shape(self.elem_count())?; if shape.elem_count() != self.elem_count() { return Err(Error::ShapeMismatchBinaryOp { lhs: self.shape().clone(), rhs: shape, op: "reshape", } .bt()); } let op = BackpropOp::new1(self, Op::Reshape); if self.is_contiguous() { let tensor_ = Tensor_ { id: TensorId::new(), storage: self.storage.clone(), layout: Layout::contiguous_with_offset(shape, self.layout.start_offset()), op, is_variable: false, dtype: self.dtype, device: self.device.clone(), }; Ok(Tensor(Arc::new(tensor_))) } else { let mut storage = self.device().zeros(&shape, self.dtype())?; self.storage() .copy_strided_src(&mut storage, 0, self.layout())?; Ok(from_storage(storage, shape, op, false)) } } /// Creates a new tensor with the specified dimension removed if its size was one. /// /// ```rust /// # use candle_core::{Tensor, DType, Device, D}; /// let a = Tensor::zeros((2, 3, 1), DType::F32, &Device::Cpu)?; /// /// let c = a.squeeze(2)?; /// assert_eq!(c.shape().dims(), &[2, 3]); /// /// let c = a.squeeze(D::Minus1)?; /// assert_eq!(c.shape().dims(), &[2, 3]); /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn squeeze<D: Dim>(&self, dim: D) -> Result<Self> { // The PyTorch semantics are to return the same tensor if the target dimension // does not have a size of 1. let dims = self.dims(); let dim = dim.to_index(self.shape(), "squeeze")?; if dims[dim] == 1 { let mut dims = dims.to_vec(); let mut strides = self.stride().to_vec(); dims.remove(dim); strides.remove(dim); let tensor_ = Tensor_ { id: TensorId::new(), storage: self.storage.clone(), layout: Layout::new(dims.into(), strides, self.layout.start_offset()), op: BackpropOp::new1(self, Op::Reshape), is_variable: false, dtype: self.dtype, device: self.device.clone(), }; Ok(Tensor(Arc::new(tensor_))) } else { Ok(self.clone()) } } /// Creates a new tensor with a dimension of size one inserted at the specified position. /// /// ```rust /// # use candle_core::{Tensor, DType, Device, D}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// /// let c = a.unsqueeze(0)?; /// assert_eq!(c.shape().dims(), &[1, 2, 3]); /// /// let c = a.unsqueeze(D::Minus1)?; /// assert_eq!(c.shape().dims(), &[2, 3, 1]); /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn unsqueeze<D: Dim>(&self, dim: D) -> Result<Self> { let mut dims = self.dims().to_vec(); let mut strides = self.stride().to_vec(); let dim = dim.to_index_plus_one(self.shape(), "unsqueeze")?; // Cannot panic because to_index_plus_one already checks dimensions dims.insert(dim, 1); // Any stride would work here, but we pick one so as to maximize the probability to remain // C contiguous. let stride = if dim < strides.len() { strides[dim] } else { 1 }; strides.insert(dim, stride); let tensor_ = Tensor_ { id: TensorId::new(), storage: self.storage.clone(), layout: Layout::new(dims.into(), strides, self.layout.start_offset()), op: BackpropOp::new1(self, Op::Reshape), is_variable: false, dtype: self.dtype, device: self.device.clone(), }; Ok(Tensor(Arc::new(tensor_))) } /// Stacks two or more tensors along a particular dimension. /// /// All tensors must have the same rank, and the output has one additional rank /// /// ```rust /// # use candle_core::{Tensor, DType, Device}; /// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// let b = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?; /// /// let c = Tensor::stack(&[&a, &b], 0)?; /// assert_eq!(c.shape().dims(), &[2, 2, 3]); /// /// let c = Tensor::stack(&[&a, &b], 2)?; /// assert_eq!(c.shape().dims(), &[2, 3, 2]); /// # Ok::<(), candle_core::Error>(()) /// ``` pub fn stack<A: AsRef<Tensor>, D: Dim>(args: &[A], dim: D) -> Result<Self> { if args.is_empty() { Err(Error::OpRequiresAtLeastOneTensor { op: "stack" }.bt())? } let dim = dim.to_index_plus_one(args[0].as_ref().shape(), "stack")?; let args = args .iter() .map(|t| t.as_ref().unsqueeze(dim)) .collect::<Result<Vec<_>>>()?; Self::cat(&args, dim) } /// Pad the input tensor using 0s along dimension `dim`. This adds `left` elements before the /// input tensor values and `right` elements after. pub fn pad_with_zeros<D: Dim>(&self, dim: D, left: usize, right: usize) -> Result<Self> { if left == 0 && right == 0 { Ok(self.clone()) } else if left == 0 { let dim = dim.to_index(self.shape(), "pad_with_zeros")?; let mut dims = self.dims().to_vec(); dims[dim] = right; let right = Tensor::zeros(dims.as_slice(), self.dtype, self.device())?; Tensor::cat(&[self, &right], dim) } else if right == 0 { let dim = dim.to_index(self.shape(), "pad_with_zeros")?; let mut dims = self.dims().to_vec(); dims[dim] = left; let left = Tensor::zeros(dims.as_slice(), self.dtype, self.device())?; Tensor::cat(&[&left, self], dim) } else { let dim = dim.to_index(self.shape(), "pad_with_zeros")?; let mut dims = self.dims().to_vec(); dims[dim] = left; let left = Tensor::zeros(dims.as_slice(), self.dtype, self.device())?; dims[dim] = right; let right = Tensor::zeros(dims.as_slice(), self.dtype, self.device())?; Tensor::cat(&[&left, self, &right], dim) } } /// Pad the input tensor using same values along dimension `dim`. This adds `left` elements before the /// input tensor values and `right` elements after. pub fn pad_with_same<D: Dim>(&self, dim: D, left: usize, right: usize) -> Result<Self> { if left == 0 && right == 0 { Ok(self.clone()) } else if self.elem_count() == 0 { bail!("cannot use pad_with_same on an empty tensor") } else if left == 0 { let dim = dim.to_index(self.shape(), "pad_with_same")?; let r = self.narrow(dim, self.dim(dim)? - 1, 1)?; let mut v = vec![self]; for _ in 0..right { v.push(&r) } Tensor::cat(&v, dim) } else if right == 0 { let dim = dim.to_index(self.shape(), "pad_with_same")?; let l = self.narrow(dim, 0, 1)?; let mut v = vec![]; for _ in 0..left { v.push(&l) } v.push(self); Tensor::cat(&v, dim) } else { let dim = dim.to_index(self.shape(), "pad_with_same")?; let l = self.narrow(dim, 0, 1)?; let r = self.narrow(dim, self.dim(dim)? - 1, 1)?; let mut v = vec![]; for _ in 0..left { v.push(&l) } v.push(self); for _ in 0..right { v.push(&r) } Tensor::cat(&v, dim) } } /// Run the `forward` method of `m` on `self`. pub fn apply<M: crate::Module>(&self, m: &M) -> Result<Self> { m.forward(self) } /// Run the `forward` method of `m` on `self`. pub fn apply_t<M: crate::ModuleT>(&self, m: &M, train: bool) -> Result<Self> { m.forward_t(self, train) } pub(crate) fn storage(&self) -> std::sync::RwLockReadGuard<'_, Storage> { self.storage.read().unwrap() } // If we extend the visibility of this function to be usable outside of this crate, we should // make it unsafe. pub(crate) fn storage_mut_and_layout( &self, ) -> (std::sync::RwLockWriteGuard<'_, Storage>, &Layout) { let storage = self.storage.write().unwrap(); (storage, &self.layout) } /// The storage used by this tensor, together with the layout to use to access it safely. pub fn storage_and_layout(&self) -> (std::sync::RwLockReadGuard<'_, Storage>, &Layout) { let storage = self.storage.read().unwrap(); (storage, &self.layout) } pub(crate) fn same_storage(&self, rhs: &Self) -> bool { let lhs: &RwLock<Storage> = self.storage.as_ref(); let rhs: &RwLock<Storage> = rhs.storage.as_ref(); std::ptr::eq(lhs, rhs) } /// Applies a unary custom op without backward support pub fn apply_op1_no_bwd<C: CustomOp1>(&self, c: &C) -> Result<Self> { let (storage, shape) = self.storage().apply_op1(self.layout(), c)?; Ok(from_storage(storage, shape, BackpropOp::none(), false)) } /// Applies a binary custom op without backward support pub fn apply_op2_no_bwd<C: CustomOp2>(&self, rhs: &Self, c: &C) -> Result<Self> { let (storage, shape) = self.storage() .apply_op2(self.layout(), &rhs.storage(), rhs.layout(), c)?; Ok(from_storage(storage, shape, BackpropOp::none(), false)) } /// Applies a ternary custom op without backward support pub fn apply_op3_no_bwd<C: CustomOp3>(&self, t2: &Self, t3: &Self, c: &C) -> Result<Self> { let (storage, shape) = self.storage().apply_op3( self.layout(), &t2.storage(), t2.layout(), &t3.storage(), t3.layout(), c, )?; Ok(from_storage(storage, shape, BackpropOp::none(), false)) } /// Applies a unary custom op. pub fn apply_op1_arc(&self, c: Arc<Box<dyn CustomOp1 + Send + Sync>>) -> Result<Self> { let (storage, shape) = self .storage() .apply_op1(self.layout(), c.as_ref().as_ref())?; let op = BackpropOp::new1(self, |s| Op::CustomOp1(s, c.clone())); Ok(from_storage(storage, shape, op, false)) } pub fn apply_op1<C: 'static + CustomOp1 + Send + Sync>(&self, c: C) -> Result<Self> { self.apply_op1_arc(Arc::new(Box::new(c))) } /// Applies a binary custom op. pub fn apply_op2_arc( &self, rhs: &Self, c: Arc<Box<dyn CustomOp2 + Send + Sync>>, ) -> Result<Self> { let (storage, shape) = self.storage().apply_op2( self.layout(), &rhs.storage(), rhs.layout(), c.as_ref().as_ref(), )?; let op = BackpropOp::new2(self, rhs, |t1, t2| Op::CustomOp2(t1, t2, c.clone())); Ok(from_storage(storage, shape, op, false)) } pub fn apply_op2<C: 'static + CustomOp2 + Send + Sync>(&self, r: &Self, c: C) -> Result<Self> { self.apply_op2_arc(r, Arc::new(Box::new(c))) } /// Applies a ternary custom op. pub fn apply_op3_arc( &self, t2: &Self, t3: &Self, c: Arc<Box<dyn CustomOp3 + Send + Sync>>, ) -> Result<Self> { let (storage, shape) = self.storage().apply_op3( self.layout(), &t2.storage(), t2.layout(), &t3.storage(), t3.layout(), c.as_ref().as_ref(), )?; let op = BackpropOp::new3(self, t2, t3, |t1, t2, t3| { Op::CustomOp3(t1, t2, t3, c.clone()) }); Ok(from_storage(storage, shape, op, false)) } pub fn apply_op3<C: 'static + CustomOp3 + Send + Sync>( &self, t2: &Self, t3: &Self, c: C, ) -> Result<Self> { self.apply_op3_arc(t2, t3, Arc::new(Box::new(c))) } /// Normalize a 'relative' axis value: positive values are kept, negative /// values means counting the dimensions from the back. pub fn normalize_axis(&self, axis: i64) -> Result<usize> { let rank = self.rank() as i64; if rank <= axis { bail!("axis {axis} is too large, tensor rank {rank}") } else if 0 <= axis { Ok(axis as usize) } else { let naxis = rank + axis; if naxis < 0 { bail!("axis {axis} is too small, tensor rank {rank}") } Ok(naxis as usize) } } /// Returns a lower triangular matrix of ones of size n by n. pub fn tril2(n: usize, dtype: DType, device: &Device) -> Result<Self> { let t = Tensor::arange(0u32, n as u32, device)?; let t1 = t.reshape((1, n))?.broadcast_as((n, n))?; let t2 = t.reshape((n, 1))?.broadcast_as((n, n))?; t1.le(&t2)?.to_dtype(dtype) } /// Returns an upper triangular matrix of ones of size n by n. pub fn triu2(n: usize, dtype: DType, device: &Device) -> Result<Self> { let t = Tensor::arange(0u32, n as u32, device)?; let t1 = t.reshape((1, n))?.broadcast_as((n, n))?; let t2 = t.reshape((n, 1))?.broadcast_as((n, n))?; t1.ge(&t2)?.to_dtype(dtype) } /// Returns a matrix with a diagonal of ones of size n by n. pub fn eye(n: usize, dtype: DType, device: &Device) -> Result<Self> { let t = Tensor::arange(0u32, n as u32, device)?; let t1 = t.reshape((1, n))?.broadcast_as((n, n))?; let t2 = t.reshape((n, 1))?.broadcast_as((n, n))?; t1.eq(&t2)?.to_dtype(dtype) } /// Returns the cumulative sum of elements of the input tensor summed over the specified /// dimension. /// /// This operation is most efficient when dim is the last dimension of the tensor. pub fn cumsum<D: Dim>(&self, dim: D) -> Result<Self> { let dim = dim.to_index(self.shape(), "cumsum")?; let rank = self.rank(); if rank == 0 { return Ok(self.clone()); } let n_axis = self.dim(dim)?; let triu = Tensor::triu2(n_axis, self.dtype(), self.device())?; if rank == 1 { self.unsqueeze(0)?.matmul(&triu)?.squeeze(0) } else { let last = rank - 1; let t = self.transpose(dim, last)?; let t = t.broadcast_matmul(&triu)?; t.transpose(dim, last) } } /// Returns a copy of `self` where the values within `ranges` have been replaced with the /// content of `src`. pub fn slice_assign<D: std::ops::RangeBounds<usize>>( &self, ranges: &[D], src: &Tensor, ) -> Result<Self> { let src_dims = src.dims(); let self_dims = self.dims(); if self_dims.len() != src_dims.len() { bail!( "slice-assign requires input with the same rank {} <> {}", self_dims.len(), src_dims.len() ) } if self_dims.len() != ranges.len() { bail!( "slice-assign requires input with the same rank as there are ranges {} <> {}", self_dims.len(), ranges.len() ) } let mut src = src.clone(); let mut mask = Self::ones(src.shape(), DType::U8, src.device())?; for (i, range) in ranges.iter().enumerate() { let start_included = match range.start_bound() { std::ops::Bound::Unbounded => 0, std::ops::Bound::Included(v) => *v, std::ops::Bound::Excluded(v) => *v + 1, }; let end_excluded = match range.end_bound() { std::ops::Bound::Unbounded => self_dims[i], std::ops::Bound::Included(v) => *v + 1, std::ops::Bound::Excluded(v) => *v, }; if end_excluded <= start_included { bail!("slice-assign: empty range for dim {i}, {start_included} {end_excluded}") } if self_dims[i] < end_excluded { bail!( "slice-assign: upper bound is out of range for dim {i}, {end_excluded} {}", self_dims[i] ) } if end_excluded - start_included != src_dims[i] { bail!( "slice-assign: the range for dim {i} ({start_included}..{end_excluded}) does not match the size of src {}", src_dims[i] ) } src = src.pad_with_zeros(i, start_included, self_dims[i] - end_excluded)?; mask = mask.pad_with_zeros(i, start_included, self_dims[i] - end_excluded)? } mask.where_cond(/* on_true= */ &src, /* on_false= */ self) } /// Returns log(sum(exp(tensor), dim)). pub fn log_sum_exp<D: Dims>(&self, sum_dims: D) -> Result<Self> { let exp = self.exp()?; let sum = exp.sum(sum_dims)?; sum.log() } /// Pointwise pow operation. pub fn pow(&self, rhs: &Tensor) -> Result<Self> { rhs.mul(&self.log()?)?.exp() } /// Broadcasting version of `pow`. pub fn broadcast_pow(&self, rhs: &Tensor) -> Result<Self> { rhs.broadcast_mul(&self.log()?)?.exp() } } macro_rules! bin_trait { ($trait:ident, $fn1:ident, $mul:expr, $add:expr) => { impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<B> for Tensor { type Output = Result<Tensor>; fn $fn1(self, rhs: B) -> Self::Output { Tensor::$fn1(&self, rhs.borrow()) } } impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<B> for &Tensor { type Output = Result<Tensor>; fn $fn1(self, rhs: B) -> Self::Output { Tensor::$fn1(&self, rhs.borrow()) } } impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<Tensor> for Result<B> { type Output = Result<Tensor>; fn $fn1(self, rhs: Tensor) -> Self::Output { Tensor::$fn1(self?.borrow(), &rhs) } } impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<&Tensor> for Result<B> { type Output = Result<Tensor>; fn $fn1(self, rhs: &Tensor) -> Self::Output { Tensor::$fn1(self?.borrow(), rhs) } } impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<Result<B>> for Tensor { type Output = Result<Tensor>; fn $fn1(self, rhs: Result<B>) -> Self::Output { Tensor::$fn1(&self, rhs?.borrow()) } } impl<B: std::borrow::Borrow<Tensor>> std::ops::$trait<Result<B>> for &Tensor { type Output = Result<Tensor>; fn $fn1(self, rhs: Result<B>) -> Self::Output { Tensor::$fn1(&self, rhs?.borrow()) } } impl std::ops::$trait<f64> for Tensor { type Output = Result<Tensor>; fn $fn1(self, rhs: f64) -> Self::Output { self.affine($mul(rhs), $add(rhs)) } } impl std::ops::$trait<f64> for &Tensor { type Output = Result<Tensor>; fn $fn1(self, rhs: f64) -> Self::Output { self.affine($mul(rhs), $add(rhs)) } } }; } bin_trait!(Add, add, |_| 1., |v| v); bin_trait!(Sub, sub, |_| 1., |v: f64| -v); bin_trait!(Mul, mul, |v| v, |_| 0.); bin_trait!(Div, div, |v| 1. / v, |_| 0.); impl std::ops::Add<Tensor> for f64 { type Output = Result<Tensor>; fn add(self, rhs: Tensor) -> Self::Output { rhs + self } } impl std::ops::Add<&Tensor> for f64 { type Output = Result<Tensor>; fn add(self, rhs: &Tensor) -> Self::Output { rhs + self } } impl std::ops::Mul<Tensor> for f64 { type Output = Result<Tensor>; fn mul(self, rhs: Tensor) -> Self::Output { rhs * self } } impl std::ops::Mul<&Tensor> for f64 { type Output = Result<Tensor>; fn mul(self, rhs: &Tensor) -> Self::Output { rhs * self } } impl std::ops::Sub<Tensor> for f64 { type Output = Result<Tensor>; fn sub(self, rhs: Tensor) -> Self::Output { rhs.affine(-1., self) } } impl std::ops::Sub<&Tensor> for f64 { type Output = Result<Tensor>; fn sub(self, rhs: &Tensor) -> Self::Output { rhs.affine(-1., self) } } impl std::ops::Div<Tensor> for f64 { type Output = Result<Tensor>; #[allow(clippy::suspicious_arithmetic_impl)] fn div(self, rhs: Tensor) -> Self::Output { rhs.recip()? * self } } impl std::ops::Div<&Tensor> for f64 { type Output = Result<Tensor>; #[allow(clippy::suspicious_arithmetic_impl)] fn div(self, rhs: &Tensor) -> Self::Output { rhs.recip()? * self } }
candle/candle-core/src/tensor.rs/0
{ "file_path": "candle/candle-core/src/tensor.rs", "repo_id": "candle", "token_count": 47594 }
19
use candle_core::{ bail, quantized::{self, GgmlDType}, test_device, test_utils::to_vec2_round, Device, Module, Result, Tensor, }; use quantized::{k_quants, GgmlType}; use rand::prelude::*; const GGML_TEST_SIZE: usize = 32 * 128; const GGML_MAX_QUANTIZATION_TOTAL_ERROR: f32 = 0.002; const GGML_MAX_QUANTIZATION_TOTAL_ERROR_2BITS: f32 = 0.0075; const GGML_MAX_QUANTIZATION_TOTAL_ERROR_3BITS: f32 = 0.0040; const GGML_MAX_DOT_PRODUCT_ERROR: f32 = 0.02; fn test_matmul( device: &Device, (b, m, n, k): (usize, usize, usize, usize), dtype: GgmlDType, ) -> Result<()> { let lhs = (0..(m * k)) .map(|v| v as f32 / (m * k) as f32) .collect::<Vec<_>>(); let rhs = (0..(k * n)) .map(|v| v as f32 / (n * k) as f32) .collect::<Vec<_>>(); let lhs = Tensor::from_slice(&lhs, (m, k), device)?; let rhs = Tensor::from_slice(&rhs, (k, n), device)?; let mm = lhs.matmul(&rhs)?; let qtensor = quantized::QTensor::quantize(&rhs.t()?, dtype)?; let matmul = quantized::QMatMul::from_qtensor(qtensor)?; let res = matmul.forward(&lhs)?; let error: f32 = ((&mm - &res)?.abs()? / &mm.abs()?)? .sum_all()? .to_scalar()?; let error = error / (b * m * n) as f32; assert!( error <= 0.02, "Error {error} is too big. \nExpected:\n {mm} \nFound:\n {res}\n for {dtype:?}" ); Ok(()) } fn quantized_matmul(device: &Device) -> Result<()> { // TODO Enable this later when we enable cuda. if device.is_cuda() { return Ok(()); } let (m, k, n) = (3, 64, 4); let lhs = (0..(m * k)).map(|v| v as f32).collect::<Vec<_>>(); let tensor_lhs = Tensor::from_slice(&lhs, (m, k), device)?; let mut dst = vec![42.; 3 * 4]; let mut rhs_t = vec![k_quants::BlockQ4_0::zeros(); 8]; let rhs = (0..(k * n)).map(|v| v as f32).collect::<Vec<_>>(); k_quants::BlockQ4_0::from_float(&rhs, &mut rhs_t)?; k_quants::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?; assert_eq!( dst.iter().map(|x| x.round()).collect::<Vec<_>>(), &[ 85120.0, 214562.0, 345455.0, 474748.0, 213475.0, 604465.0, 1000686.0, 1388317.0, 341876.0, 994283.0, 1655709.0, 2301518.0 ] ); let tensor_rhs = Tensor::from_slice(&rhs, (n, k), device)?.t()?; let mm = tensor_lhs.matmul(&tensor_rhs)?; assert_eq!( mm.to_vec2::<f32>()?, &[ [85344.0, 214368.0, 343392.0, 472416.0], [214368.0, 605536.0, 996704.0, 1387872.0], [343392.0, 996704.0, 1650016.0, 2303328.0] ] ); let qtensor = quantized::QTensor::quantize(&tensor_rhs.t()?, GgmlDType::Q4_0)?; let matmul = quantized::QMatMul::from_qtensor(qtensor)?; let res = matmul.forward(&tensor_lhs)?; match device { Device::Metal(_) => assert_eq!( to_vec2_round(&res, 0)?, &[ [84946.0, 214126.0, 344757.0, 473798.0], [213458.0, 604350.0, 1000469.0, 1387990.0], [341970.0, 994574.0, 1656181.0, 2302182.0] ] ), _ => assert_eq!( to_vec2_round(&res, 0)?, &[ [85120.0, 214562.0, 345455.0, 474748.0], [213475.0, 604465.0, 1000686.0, 1388317.0], [341876.0, 994283.0, 1655709.0, 2301518.0] ] ), } test_matmul(device, (1, 3, 4, 256), GgmlDType::Q4_0)?; Ok(()) } fn quantized_matmul_neg(device: &Device) -> Result<()> { // TODO Enable this later when we enable cuda. if device.is_cuda() { return Ok(()); } let (m, k, n) = (3, 64, 4); let lhs = (0..(m * k)) .map(|v| v as f32 - (m * k) as f32 / 2.0) .collect::<Vec<_>>(); let tensor_lhs = Tensor::from_slice(&lhs, (m, k), device)?; let mut dst = vec![42.; 3 * 4]; let mut rhs_t = vec![k_quants::BlockQ4_0::zeros(); 8]; let rhs = (0..k * n) .map(|v| v as f32 - (k * n) as f32 / 3.0) .collect::<Vec<_>>(); let tensor_rhs = Tensor::from_slice(&rhs, (n, k), device)?.t()?; k_quants::BlockQ4_0::from_float(&rhs, &mut rhs_t)?; k_quants::matmul((m, k, n), &lhs, &rhs_t, &mut dst)?; assert_eq!( dst.iter().map(|x| x.round()).collect::<Vec<_>>(), &[ 243524.0, -19596.0, -285051.0, -549815.0, 23777.0, 21651.0, 19398.0, 18367.0, -196472.0, 63012.0, 324585.0, 587902.0 ] ); let mm = tensor_lhs.matmul(&tensor_rhs)?; assert_eq!( to_vec2_round(&mm, 0)?, &[ [244064.0, -20128.0, -284320.0, -548512.0], [23563.0, 21515.0, 19467.0, 17419.0], [-196939.0, 63157.0, 323253.0, 583349.0] ] ); let qtensor = quantized::QTensor::quantize(&tensor_rhs.t()?, GgmlDType::Q4_0)?; let matmul = quantized::QMatMul::from_qtensor(qtensor)?; let res = matmul.forward(&tensor_lhs)?; match device { Device::Metal(_) => assert_eq!( to_vec2_round(&res, 0)?, &[ [243666.0, -19714.0, -285433.0, -550453.0], [23782.0, 21654.0, 19400.0, 18369.0], [-196102.0, 63022.0, 324233.0, 587191.0] ] ), _ => assert_eq!( to_vec2_round(&res, 0)?, &[ [243524.0, -19596.0, -285051.0, -549815.0], [23777.0, 21651.0, 19398.0, 18367.0], [-196472.0, 63012.0, 324585.0, 587902.0] ] ), } Ok(()) } test_device!( quantized_matmul, quantized_matmul_cpu, quantized_matmul_cuda, quantized_matmul_metal ); test_device!( quantized_matmul_neg, quantized_matmul_neg_cpu, quantized_matmul_neg_cuda, quantized_matmul_neg_metal ); fn quantize_q4_0(device: &Device) -> Result<()> { let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>(); let src = Tensor::from_slice(&src, (32 * 4,), device)?; let quant = quantized::QTensor::quantize(&src, GgmlDType::Q4_0)?; let dst = quant.dequantize(device)?; assert_eq!( dst.to_vec1::<f32>()?, &[ -0.0, -0.0, 3.875, 3.875, 3.875, 3.875, 7.75, 7.75, 7.75, 7.75, 11.625, 11.625, 11.625, 11.625, 15.5, 15.5, 15.5, 15.5, 19.375, 19.375, 19.375, 19.375, 23.25, 23.25, 23.25, 23.25, 27.125, 27.125, 27.125, 27.125, 31.0, 31.0, 31.5, 31.5, 31.5, 31.5, 39.375, 39.375, 39.375, 39.375, 39.375, 39.375, 39.375, 39.375, 47.25, 47.25, 47.25, 47.25, 47.25, 47.25, 47.25, 47.25, 55.125, 55.125, 55.125, 55.125, 55.125, 55.125, 55.125, 55.125, 63.0, 63.0, 63.0, 63.0, 59.375, 59.375, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 95.0, 95.0, 95.0, 95.0, 95.0, 95.0, 95.25, 95.25, 95.25, 95.25, 95.25, 95.25, 95.25, 95.25, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 127.0, 127.0, 127.0, 127.0, 127.0, 127.0, 127.0, 127.0 ] ); ggml_quantization_error_test(GgmlDType::Q4_0, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?; Ok(()) } fn quantize_q4_1(device: &Device) -> Result<()> { let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>(); let src = Tensor::from_slice(&src, (32 * 4,), device)?; let quant = quantized::QTensor::quantize(&src, GgmlDType::Q4_1)?; let dst = quant.dequantize(device)?; assert_eq!( round_vector(&dst.to_vec1::<f32>()?), &[ 0.0, 0.0, 2.066, 2.066, 4.133, 4.133, 6.199, 6.199, 8.266, 8.266, 10.332, 10.332, 12.398, 12.398, 14.465, 14.465, 16.531, 16.531, 18.598, 18.598, 20.664, 20.664, 22.73, 22.73, 24.797, 24.797, 26.863, 26.863, 28.93, 28.93, 30.996, 30.996, 32.0, 32.0, 34.066, 34.066, 36.133, 36.133, 38.199, 38.199, 40.266, 40.266, 42.332, 42.332, 44.398, 44.398, 46.465, 46.465, 48.531, 48.531, 50.598, 50.598, 52.664, 52.664, 54.73, 54.73, 56.797, 56.797, 58.863, 58.863, 60.93, 60.93, 62.996, 62.996, 64.0, 64.0, 66.066, 66.066, 68.133, 68.133, 70.199, 70.199, 72.266, 72.266, 74.332, 74.332, 76.398, 76.398, 78.465, 78.465, 80.531, 80.531, 82.598, 82.598, 84.664, 84.664, 86.73, 86.73, 88.797, 88.797, 90.863, 90.863, 92.93, 92.93, 94.996, 94.996, 96.0, 96.0, 98.066, 98.066, 100.133, 100.133, 102.199, 102.199, 104.266, 104.266, 106.332, 106.332, 108.398, 108.398, 110.465, 110.465, 112.531, 112.531, 114.598, 114.598, 116.664, 116.664, 118.73, 118.73, 120.797, 120.797, 122.863, 122.863, 124.93, 124.93, 126.996, 126.996 ] ); ggml_quantization_error_test(GgmlDType::Q4_1, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?; Ok(()) } fn quantize_q5_0(device: &Device) -> Result<()> { let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>(); let src = Tensor::from_slice(&src, (32 * 4,), device)?; let quant = quantized::QTensor::quantize(&src, GgmlDType::Q5_0)?; let dst = quant.dequantize(device)?; assert_eq!( round_vector(&dst.to_vec1::<f32>()?), &[ -0.0, 1.938, 1.938, 3.875, 3.875, 5.813, 5.813, 7.75, 7.75, 9.688, 9.688, 11.625, 11.625, 13.563, 13.563, 15.5, 15.5, 17.438, 17.438, 19.375, 19.375, 21.313, 21.313, 23.25, 23.25, 25.188, 25.188, 27.125, 27.125, 29.063, 29.063, 31.0, 31.5, 31.5, 35.438, 35.438, 35.438, 35.438, 39.375, 39.375, 39.375, 39.375, 43.313, 43.313, 43.313, 43.313, 47.25, 47.25, 47.25, 47.25, 51.188, 51.188, 51.188, 51.188, 55.125, 55.125, 55.125, 55.125, 59.063, 59.063, 59.063, 59.063, 63.0, 63.0, 65.313, 65.313, 65.313, 65.313, 65.313, 71.25, 71.25, 71.25, 71.25, 71.25, 71.25, 77.188, 77.188, 77.188, 77.188, 77.188, 77.188, 83.125, 83.125, 83.125, 83.125, 83.125, 83.125, 89.063, 89.063, 89.063, 89.063, 89.063, 89.063, 95.0, 95.0, 95.0, 95.25, 95.25, 95.25, 95.25, 103.188, 103.188, 103.188, 103.188, 103.188, 103.188, 103.188, 103.188, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 111.125, 119.063, 119.063, 119.063, 119.063, 119.063, 119.063, 119.063, 119.063, 127.0, 127.0, 127.0, 127.0 ] ); ggml_quantization_error_test(GgmlDType::Q5_0, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?; Ok(()) } fn quantize_q5_1(device: &Device) -> Result<()> { let src = (0..32 * 4).map(|v| v as f32).collect::<Vec<_>>(); let src = Tensor::from_slice(&src, (32 * 4,), device)?; let quant = quantized::QTensor::quantize(&src, GgmlDType::Q5_1)?; let dst = quant.dequantize(device)?; assert_eq!( round_vector(&dst.to_vec1::<f32>()?), &[ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0, 78.0, 79.0, 80.0, 81.0, 82.0, 83.0, 84.0, 85.0, 86.0, 87.0, 88.0, 89.0, 90.0, 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0, 100.0, 101.0, 102.0, 103.0, 104.0, 105.0, 106.0, 107.0, 108.0, 109.0, 110.0, 111.0, 112.0, 113.0, 114.0, 115.0, 116.0, 117.0, 118.0, 119.0, 120.0, 121.0, 122.0, 123.0, 124.0, 125.0, 126.0, 127.0 ] ); ggml_quantization_error_test(GgmlDType::Q5_1, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?; Ok(()) } fn get_test_vector2(bound: f32, size: usize, device: &Device) -> Result<Tensor> { assert!( size % crate::quantized::k_quants::QK_K == 0, "size must be a multiple of {}", crate::quantized::k_quants::QK_K ); let src = (0..size) .map(|v| (v as f32 - size as f32 / 2.) * bound / (size as f32 / 2.)) .collect::<Vec<_>>(); assert_eq!([src[0], src[size / 2]], [-bound, 0.0]); Tensor::from_vec(src, (size,), device) } /// Round a vector fn round_vector(values: &[f32]) -> Vec<f32> { values .iter() .map(|x| (1000. * x).round() / 1000.) .collect::<Vec<_>>() } fn compare_with_error(values: &[f32], expected: &[f32], tolerance: f32) { for (i, (value, expected_value)) in values.iter().zip(expected.iter()).enumerate() { let difference = (value - expected_value).abs(); assert!( difference < tolerance, "Error at index {}: value = {}, expected = {}. Difference = {} exceeds tolerance = {}.", i, value, expected_value, difference, tolerance ); } } /// Creates a vector similar to the ones used in GGML unit tests: /// https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L26-L30 fn create_ggml_like_vector(offset: f32) -> Vec<f32> { (0..GGML_TEST_SIZE) .map(|i| 0.1 + 2.0 * (i as f32 + offset).cos()) .collect() } /// Calculates the root mean square error between two vectors fn calculate_rmse(a: &[f32], b: &[f32]) -> f32 { assert_eq!(a.len(), b.len()); let sum = a .iter() .zip(b) .map(|(a, b)| (a - b).powi(2)) .sum::<f32>() .sqrt(); sum / a.len() as f32 } /// Similar to the GGML quantization unit test: /// https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L43-L50 fn ggml_quantization_error_test(dtype: GgmlDType, device: &Device, max_error: f32) -> Result<()> { let src = create_ggml_like_vector(0.0); let src = Tensor::from_slice(&src, (GGML_TEST_SIZE,), device)?; let quant = quantized::QTensor::quantize(&src, dtype)?; let dst = quant.dequantize(device)?; let error = calculate_rmse(&src.to_vec1::<f32>()?, &dst.to_vec1::<f32>()?); if error > max_error { bail!( "Quantization error {} exceeds max error {}", error, max_error ); } Ok(()) } fn quantize_q2k(device: &Device) -> Result<()> { let dtype = GgmlDType::Q2K; let src = get_test_vector2(0.5, 1024, device)?; let quant = quantized::QTensor::quantize(&src, dtype)?; let dst = quant.dequantize(device)?; let src = src.to_vec1::<f32>()?; let dst = dst.to_vec1::<f32>()?; compare_with_error(dst.as_slice(), src.as_slice(), 0.1); // Test some specific values assert_eq!( [src[0], src[128], src[256], src[512], src[800], src[1023]], [-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344] ); let dst = round_vector(&dst); assert_eq!( [dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]], [-0.499, -0.366, -0.249, 0.0, 0.295, 0.492] ); let src_big = get_test_vector2(128.0, 1024, device)?; let quant_big = quantized::QTensor::quantize(&src_big, dtype)?; let dst_big = quant_big.dequantize(device)?; let src_big = src_big.to_vec1::<f32>()?; let dst_big = dst_big.to_vec1::<f32>()?; compare_with_error(dst_big.as_slice(), src_big.as_slice(), 6.0); ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR_2BITS)?; Ok(()) } fn quantize_q3k(device: &Device) -> Result<()> { let dtype = GgmlDType::Q3K; let src = get_test_vector2(0.5, 1024, device)?; let quant = quantized::QTensor::quantize(&src, dtype)?; let dst = quant.dequantize(device)?; let src = src.to_vec1::<f32>()?; let dst = dst.to_vec1::<f32>()?; compare_with_error(dst.as_slice(), src.as_slice(), 0.03); // Test some specific values assert_eq!( [src[0], src[128], src[256], src[512], src[800], src[1023]], [-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344] ); let dst = round_vector(&dst); assert_eq!( [dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]], [-0.493, -0.37, -0.243, -0.0, 0.292, 0.492] ); let src_big = get_test_vector2(128.0, 1024, device)?; let quant_big = quantized::QTensor::quantize(&src_big, dtype)?; let dst_big = quant_big.dequantize(device)?; let src_big = src_big.to_vec1::<f32>()?; let dst_big = dst_big.to_vec1::<f32>()?; compare_with_error(dst_big.as_slice(), src_big.as_slice(), 3.5); ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR_3BITS)?; Ok(()) } fn quantize_q4k(device: &Device) -> Result<()> { let dtype = GgmlDType::Q4K; let src = get_test_vector2(0.5, 1024, device)?; let quant = quantized::QTensor::quantize(&src, dtype)?; let dst = quant.dequantize(device)?; let src = src.to_vec1::<f32>()?; let dst = dst.to_vec1::<f32>()?; compare_with_error(dst.as_slice(), src.as_slice(), 0.017); // Test some specific values assert_eq!( [src[0], src[128], src[256], src[512], src[800], src[1023]], [-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344] ); let dst = round_vector(&dst); assert_eq!( [dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]], [-0.5, -0.373, -0.25, 0.0, 0.288, 0.498] ); let src_big = get_test_vector2(128.0, 1024, device)?; let quant_big = quantized::QTensor::quantize(&src_big, dtype)?; let dst_big = quant_big.dequantize(device)?; let src_big = src_big.to_vec1::<f32>()?; let dst_big = dst_big.to_vec1::<f32>()?; compare_with_error(dst_big.as_slice(), src_big.as_slice(), 4.5); ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?; Ok(()) } fn quantize_q5k(device: &Device) -> Result<()> { let dtype = GgmlDType::Q5K; let src = get_test_vector2(0.5, 1024, device)?; let quant = quantized::QTensor::quantize(&src, dtype)?; let dst = quant.dequantize(device)?; let src = src.to_vec1::<f32>()?; let dst = dst.to_vec1::<f32>()?; compare_with_error(dst.as_slice(), src.as_slice(), 0.009); // Test some specific values assert_eq!( [src[0], src[128], src[256], src[512], src[800], src[1023]], [-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344] ); let dst = round_vector(&dst); assert_eq!( [dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]], [-0.5, -0.373, -0.25, 0.0, 0.279, 0.499] ); let src_big = get_test_vector2(128.0, 1024, device)?; let quant_big = quantized::QTensor::quantize(&src_big, dtype)?; let dst_big = quant_big.dequantize(device)?; let src_big = src_big.to_vec1::<f32>()?; let dst_big = dst_big.to_vec1::<f32>()?; compare_with_error(dst_big.as_slice(), src_big.as_slice(), 2.5); ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?; Ok(()) } fn quantize_q6k(device: &Device) -> Result<()> { let dtype = GgmlDType::Q6K; let src = get_test_vector2(0.5, 1024, device)?; let quant = quantized::QTensor::quantize(&src, dtype)?; let dst = quant.dequantize(device)?; let src = src.to_vec1::<f32>()?; let dst = dst.to_vec1::<f32>()?; compare_with_error(dst.as_slice(), src.as_slice(), 0.008); // Test some specific values assert_eq!( [src[0], src[128], src[256], src[512], src[800], src[1023]], [-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344] ); let dst = round_vector(&dst); assert_eq!( [dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]], [-0.497, -0.372, -0.25, -0.0, 0.284, 0.5] ); let src_big = get_test_vector2(128.0, 1024, device)?; let quant_big = quantized::QTensor::quantize(&src_big, dtype)?; let dst_big = quant_big.dequantize(device)?; let src_big = src_big.to_vec1::<f32>()?; let dst_big = dst_big.to_vec1::<f32>()?; compare_with_error(dst_big.as_slice(), src_big.as_slice(), 2.0); ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?; Ok(()) } fn quantize_q8k(device: &Device) -> Result<()> { let dtype = GgmlDType::Q8K; let src = get_test_vector2(0.5, 1024, device)?; let quant = quantized::QTensor::quantize(&src, dtype)?; let dst = quant.dequantize(device)?; let src = src.to_vec1::<f32>()?; let dst = dst.to_vec1::<f32>()?; compare_with_error(dst.as_slice(), src.as_slice(), 0.008); // Test some specific values assert_eq!( [src[0], src[128], src[256], src[512], src[800], src[1023]], [-0.5, -0.375, -0.25, 0.0, 0.28125, 0.49902344] ); let dst = round_vector(&dst); assert_eq!( [dst[0], dst[128], dst[256], dst[512], dst[800], dst[1023]], [-0.5, -0.375, -0.25, -0.0, 0.281, 0.499] ); let src_big = get_test_vector2(128.0, 1024, device)?; let quant_big = quantized::QTensor::quantize(&src_big, dtype)?; let dst_big = quant_big.dequantize(device)?; let src_big = src_big.to_vec1::<f32>()?; let dst_big = dst_big.to_vec1::<f32>()?; compare_with_error(dst_big.as_slice(), src_big.as_slice(), 0.6); ggml_quantization_error_test(dtype, device, GGML_MAX_QUANTIZATION_TOTAL_ERROR)?; Ok(()) } test_device!( quantize_q4_0, quantize_q4_0_cpu, quantize_q4_0_cuda, quantize_q4_0_metal ); test_device!( quantize_q4_1, quantize_q4_1_cpu, quantize_q4_1_cuda, quantize_q4_1_metal ); test_device!( quantize_q5_0, quantize_q5_0_cpu, quantize_q5_0_cuda, quantize_q5_0_metal ); test_device!( quantize_q5_1, quantize_q5_1_cpu, quantize_q5_1_cuda, quantize_q5_1_metal ); test_device!( quantize_q2k, quantize_q2k_cpu, quantize_q2k_cuda, quantize_q2k_metal ); test_device!( quantize_q3k, quantize_q3k_cpu, quantize_q3k_cuda, quantize_q3k_metal ); test_device!( quantize_q4k, quantize_q4k_cpu, quantize_q4k_cuda, quantize_q4k_metal ); test_device!( quantize_q5k, quantize_q5k_cpu, quantize_q5k_cuda, quantize_q5k_metal ); test_device!( quantize_q6k, quantize_q6k_cpu, quantize_q6k_cuda, quantize_q6k_metal ); test_device!( quantize_q8k, quantize_q8k_cpu, quantize_q8k_cuda, quantize_q8k_metal ); /// Very simple dot product implementation fn vec_dot_reference(a: &[f32], b: &[f32]) -> f32 { a.iter().zip(b).map(|(a, b)| a * b).sum() } /// Returns the error achieved by the GGML matmul unit test. fn ggml_reference_matmul_error(dtype: GgmlDType) -> Result<f32> { let err = match dtype { GgmlDType::F16 => 0.000010, GgmlDType::Q2K => 0.004086, GgmlDType::Q3K => 0.016148, GgmlDType::Q4K => 0.002425, GgmlDType::Q5K => 0.000740, GgmlDType::Q6K => 0.000952, GgmlDType::Q4_0 => 0.001143, GgmlDType::Q4_1 => 0.008, GgmlDType::Q5_0 => 0.001353, GgmlDType::Q5_1 => 0.00149, GgmlDType::Q8_0 => 0.000092, // Not from the ggml repo. GgmlDType::Q8K => 0.00065, _ => bail!("No GGML results for quantization type {dtype:?}",), }; Ok(err) } /// Similar to the GGML matmul unit test: /// https://github.com/ggerganov/llama.cpp/blob/master/tests/test-quantize-fns.cpp#L76-L91 fn ggml_matmul_error_test<T: GgmlType>() -> Result<()> { let a = create_ggml_like_vector(0.0); let b = create_ggml_like_vector(1.0); ggml_matmul_error_test_::<T>(a.as_slice(), b.as_slice(), 1.0)?; // Another example that is more likely to trigger the overflow reported in #1526 let a = (0..GGML_TEST_SIZE) .map(|i| i as f32 / GGML_TEST_SIZE as f32) .collect::<Vec<_>>(); let b = (0..GGML_TEST_SIZE) .map(|i| i as f32 / GGML_TEST_SIZE as f32) .collect::<Vec<_>>(); ggml_matmul_error_test_::<T>(a.as_slice(), b.as_slice(), 2.0)?; Ok(()) } fn ggml_matmul_error_test_<T: GgmlType>(a: &[f32], b: &[f32], err_m: f32) -> Result<()> { let length = a.len(); let mut a_quant = vec![T::zeros(); length / T::BLCK_SIZE]; let mut b_quant = vec![T::VecDotType::zeros(); length / T::VecDotType::BLCK_SIZE]; T::from_float(a, &mut a_quant)?; T::VecDotType::from_float(b, &mut b_quant)?; let result = T::vec_dot(length, &a_quant, &b_quant)?; let result_unopt = T::vec_dot_unopt(length, &a_quant, &b_quant)?; let reference_result = vec_dot_reference(a, b); if (result - result_unopt).abs() / length as f32 > 1e-6 { bail!( "the opt and unopt vec-dot returned different values, opt {result}, unopt {result_unopt}" ) } let error = (result - reference_result).abs() / length as f32; let ggml_error = ggml_reference_matmul_error(T::DTYPE)? * err_m; if !error.is_finite() || error > GGML_MAX_DOT_PRODUCT_ERROR { bail!("Dot product error {error} exceeds max error {GGML_MAX_DOT_PRODUCT_ERROR}",); } // We diverge slightly due to different rounding behavior / f16 to f32 conversions in GGML // => we use a slightly higher error threshold const ERROR_LENIENCY: f32 = 0.00001; if error - ERROR_LENIENCY > ggml_error { bail!( "Dot product error {} exceeds ggml reference error {}", error, ggml_error ); } Ok(()) } #[test] fn quantized_mm() -> Result<()> { ggml_matmul_error_test::<k_quants::BlockQ4_0>()?; ggml_matmul_error_test::<k_quants::BlockQ4_1>()?; ggml_matmul_error_test::<k_quants::BlockQ5_0>()?; ggml_matmul_error_test::<k_quants::BlockQ5_1>()?; ggml_matmul_error_test::<k_quants::BlockQ8_0>()?; Ok(()) } /// generates random tensors of size `m x k` and `n x k` and calculates their expected matrix multiplication result. fn get_random_tensors( m: usize, k: usize, n: usize, device: &Device, ) -> Result<(Tensor, Tensor, Tensor)> { let mut rng = StdRng::seed_from_u64(314159265358979); let lhs = (0..m * k) .map(|_| rng.gen::<f32>() - 0.5) .collect::<Vec<_>>(); let rhs = (0..n * k) .map(|_| rng.gen::<f32>() - 0.5) .collect::<Vec<_>>(); let lhs = Tensor::from_vec(lhs, (m, k), device)?; let rhs = Tensor::from_vec(rhs, (n, k), device)?; let mm = lhs.matmul(&rhs.t()?)?; Ok((lhs, rhs, mm)) } #[macro_export] macro_rules! quantized_matmul { // TODO: Switch to generating the two last arguments automatically once concat_idents is // stable. https://github.com/rust-lang/rust/issues/29599 ($fn_name: ident, $fn_name_cpu: ident, $fn_name_cuda: ident, $fn_name_metal: ident, $dtype: expr) => { fn $fn_name(device: &Device) -> Result<()> { test_matmul(device, (1, 3, 4, 256), $dtype)?; Ok(()) } test_device!($fn_name, $fn_name_cpu, $fn_name_cuda, $fn_name_metal); }; } quantized_matmul!( quantized_matmul_q4_0_bis, quantized_matmul_q4_0_cpu, quantized_matmul_q4_0_cuda, quantized_matmul_q4_0_metal, GgmlDType::Q4_0 ); quantized_matmul!( quantized_matmul_q4_1_bis, quantized_matmul_q4_1_cpu, quantized_matmul_q4_1_cuda, quantized_matmul_q4_1_metal, GgmlDType::Q4_1 ); quantized_matmul!( quantized_matmul_q5_0_bis, quantized_matmul_q5_0_cpu, quantized_matmul_q5_0_cuda, quantized_matmul_q5_0_metal, GgmlDType::Q5_0 ); quantized_matmul!( quantized_matmul_q5_1_bis, quantized_matmul_q5_1_cpu, quantized_matmul_q5_1_cuda, quantized_matmul_q5_1_metal, GgmlDType::Q5_1 ); quantized_matmul!( quantized_matmul_q8_0_bis, quantized_matmul_q8_0_cpu, quantized_matmul_q8_0_cuda, quantized_matmul_q8_0_metal, GgmlDType::Q8_0 ); // Not implemented in Ggml // quantized_matmul!( // quantized_matmul_q8_1_bis, // quantized_matmul_q8_1_cpu, // quantized_matmul_q8_1_cuda, // quantized_matmul_q8_1_metal, // GgmlDType::Q8_1 // ); // TODO This is bugged (also bugged in GGML quantized_matmul!( quantized_matmul_q2k_bis, quantized_matmul_q2k_cpu, quantized_matmul_q2k_cuda, quantized_matmul_q2k_metal, GgmlDType::Q2K ); quantized_matmul!( quantized_matmul_q3k_bis, quantized_matmul_q3k_cpu, quantized_matmul_q3k_cuda, quantized_matmul_q3k_metal, GgmlDType::Q3K ); quantized_matmul!( quantized_matmul_q4k_bis, quantized_matmul_q4k_cpu, quantized_matmul_q4k_cuda, quantized_matmul_q4k_metal, GgmlDType::Q4K ); quantized_matmul!( quantized_matmul_q5k_bis, quantized_matmul_q5k_cpu, quantized_matmul_q5k_cuda, quantized_matmul_q5k_metal, GgmlDType::Q5K ); quantized_matmul!( quantized_matmul_q6k_bis, quantized_matmul_q6k_cpu, quantized_matmul_q6k_cuda, quantized_matmul_q6k_metal, GgmlDType::Q6K ); // Not implemented on metal // quantized_matmul!( // quantized_matmul_q8k_bis, // quantized_matmul_q8k_cpu, // quantized_matmul_q8k_cuda, // quantized_matmul_q8k_metal, // GgmlDType::Q8K // ); #[test] fn quantized_matmul_q2k() -> Result<()> { use k_quants::BlockQ2K; let cpu = &Device::Cpu; let (m, k, n) = (11, 512, 21); let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]); let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q2K)?; let rhs = quantized::QMatMul::from_qtensor(rhs)?; let mm = rhs.forward(&lhs)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [0.916, 0.422, 0.215, 1.668]); ggml_matmul_error_test::<BlockQ2K>()?; Ok(()) } #[test] fn quantized_matmul_q3k() -> Result<()> { use k_quants::BlockQ3K; let cpu = &Device::Cpu; let (m, k, n) = (11, 512, 21); let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]); let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q3K)?; let rhs = quantized::QMatMul::from_qtensor(rhs)?; let mm = rhs.forward(&lhs)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.029, 1.418, -0.314, 1.495]); ggml_matmul_error_test::<BlockQ3K>()?; Ok(()) } #[test] fn quantized_matmul_q4k() -> Result<()> { use k_quants::BlockQ4K; let cpu = &Device::Cpu; let (m, k, n) = (11, 512, 21); let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]); let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q4K)?; let rhs = quantized::QMatMul::from_qtensor(rhs)?; let mm = rhs.forward(&lhs)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.125, 1.435, -0.201, 1.589]); ggml_matmul_error_test::<BlockQ4K>()?; Ok(()) } #[test] fn quantized_matmul_q5k() -> Result<()> { use k_quants::BlockQ5K; let cpu = &Device::Cpu; let (m, k, n) = (11, 512, 21); let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]); let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q5K)?; let rhs = quantized::QMatMul::from_qtensor(rhs)?; let mm = rhs.forward(&lhs)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.192, 1.491, -0.18, 1.743]); //Expected: 0.000740408897 ggml_matmul_error_test::<BlockQ5K>()?; Ok(()) } #[test] fn quantized_matmul_q6k() -> Result<()> { use k_quants::BlockQ6K; let cpu = &Device::Cpu; let (m, k, n) = (11, 512, 21); let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]); let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q6K)?; let rhs = quantized::QMatMul::from_qtensor(rhs)?; let mm = rhs.forward(&lhs)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.324, 1.49, -0.164, 1.741]); ggml_matmul_error_test::<BlockQ6K>()?; Ok(()) } #[test] fn quantized_matmul_q8k() -> Result<()> { use k_quants::BlockQ8K; let cpu = &Device::Cpu; let (m, k, n) = (11, 512, 21); let (lhs, rhs, mm) = get_random_tensors(m, k, n, cpu)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.262, 1.513, -0.208, 1.702]); let rhs = quantized::QTensor::quantize(&rhs, GgmlDType::Q8K)?; let rhs = quantized::QMatMul::from_qtensor(rhs)?; let mm = rhs.forward(&lhs)?; assert_eq!(mm.dims(), [m, n]); let dst = mm.flatten_all()?.to_vec1::<f32>()?; let dst = round_vector(&[dst[0], dst[m * n / 3], dst[m * n * 2 / 3], dst[m * n - 1]]); assert_eq!(dst, [1.266, 1.504, -0.204, 1.7]); ggml_matmul_error_test::<BlockQ8K>()?; Ok(()) }
candle/candle-core/tests/quantized_tests.rs/0
{ "file_path": "candle/candle-core/tests/quantized_tests.rs", "repo_id": "candle", "token_count": 18159 }
20
use candle::Tensor; pub struct Dataset { pub train_images: Tensor, pub train_labels: Tensor, pub test_images: Tensor, pub test_labels: Tensor, pub labels: usize, } pub mod cifar; pub mod mnist;
candle/candle-datasets/src/vision/mod.rs/0
{ "file_path": "candle/candle-datasets/src/vision/mod.rs", "repo_id": "candle", "token_count": 92 }
21
/* * Adapted from * https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/reduce_kernel_utils.cuh * Copyright (c) 2023, The vLLM team. * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once template <typename T> __inline__ __device__ T warpReduceSum(T val) { #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) val += __shfl_xor_sync(0xffffffff, val, mask, 32); return val; } /* Calculate the sum of all elements in a block */ template <typename T> __inline__ __device__ T blockReduceSum(T val) { static __shared__ T shared[32]; int lane = threadIdx.x & 0x1f; int wid = threadIdx.x >> 5; val = warpReduceSum<T>(val); if (lane == 0) shared[wid] = val; __syncthreads(); // Modify from blockDim.x << 5 to blockDim.x / 32. to prevent // blockDim.x is not divided by 32 val = (threadIdx.x < (blockDim.x / 32.f)) ? shared[lane] : (T)(0.0f); val = warpReduceSum<T>(val); return val; }
candle/candle-examples/examples/custom-ops/kernels/reduction_utils.cuh/0
{ "file_path": "candle/candle-examples/examples/custom-ops/kernels/reduction_utils.cuh", "repo_id": "candle", "token_count": 529 }
22
# candle-metavoice MetaVoice-1B is a text-to-speech model trained on 100K hours of speech, more details on the [model card](https://huggingface.co/metavoiceio/metavoice-1B-v0.1). Note that the current candle implementation suffers from some limitations as of 2024-03-02: - The speaker embeddings are hardcoded. - The generated audio file quality is weaker than the Python implementation, probably because of some implementation discrepancies. ## Run an example ```bash cargo run --example metavoice --release -- \\ --prompt "This is a demo of text to speech by MetaVoice-1B, an open-source foundational audio model." ```
candle/candle-examples/examples/metavoice/README.md/0
{ "file_path": "candle/candle-examples/examples/metavoice/README.md", "repo_id": "candle", "token_count": 178 }
23
# candle-quantized-t5 ## Seq2Seq example This example uses a quantized version of the t5 model. ```bash $ cargo run --example quantized-t5 --release -- --prompt "translate to German: A beautiful candle." ... Eine schรถne Kerze. ``` ## Generating Quantized weight files The weight file is automatically retrieved from the hub. It is also possible to generate quantized weight files from the original safetensors file by using the `tensor-tools` command line utility via: ```bash $ cargo run --example tensor-tools --release -- quantize --quantization q6k PATH/TO/T5/model.safetensors /tmp/model.gguf ``` ## Using custom models To use a different model, specify the `model-id`. For example, for text editing, you can use quantized [CoEdit models](https://huggingface.co/jbochi/candle-coedit-quantized). ```bash $ cargo run --example quantized-t5 --release -- \ --model-id "jbochi/candle-coedit-quantized" \ --prompt "Make this text coherent: Their flight is weak. They run quickly through the tree canopy." \ --temperature 0 ... Although their flight is weak, they run quickly through the tree canopy. ``` By default, it will look for `model.gguf` and `config.json`, but you can specify custom local or remote `weight-file` and `config-file`s: ```bash cargo run --example quantized-t5 --release -- \ --model-id "jbochi/candle-coedit-quantized" \ --weight-file "model-xl.gguf" \ --config-file "config-xl.json" \ --prompt "Rewrite to make this easier to understand: Note that a storm surge is what forecasters consider a hurricane's most treacherous aspect." \ --temperature 0 ... Note that a storm surge is what forecasters consider a hurricane's most dangerous part. ``` ### [MADLAD-400](https://arxiv.org/abs/2309.04662) MADLAD-400 is a series of multilingual machine translation T5 models trained on 250 billion tokens covering over 450 languages using publicly available data. These models are competitive with significantly larger models. ```bash cargo run --example quantized-t5 --release -- \ --model-id "jbochi/madlad400-3b-mt" --weight-file "model-q4k.gguf" \ --prompt "<2de> How are you, my friend?" \ --temperature 0 ... Wie geht es dir, mein Freund? ```
candle/candle-examples/examples/quantized-t5/README.md/0
{ "file_path": "candle/candle-examples/examples/quantized-t5/README.md", "repo_id": "candle", "token_count": 683 }
24
# candle-repvgg [RepVGG: Making VGG-style ConvNets Great Again](https://arxiv.org/abs/2101.03697). This candle implementation uses a pre-trained RepVGG network for inference. The classification head has been trained on the ImageNet dataset and returns the probabilities for the top-5 classes. ## Running an example ``` $ cargo run --example repvgg --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg loaded image Tensor[dims 3, 224, 224; f32] model built mountain bike, all-terrain bike, off-roader: 61.70% bicycle-built-for-two, tandem bicycle, tandem: 33.14% unicycle, monocycle : 4.88% crash helmet : 0.15% moped : 0.04% ```
candle/candle-examples/examples/repvgg/README.md/0
{ "file_path": "candle/candle-examples/examples/repvgg/README.md", "repo_id": "candle", "token_count": 254 }
25
[net] # Testing batch=1 subdivisions=1 # Training # batch=64 # subdivisions=16 width= 416 height = 416 channels=3 momentum=0.9 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1 learning_rate=0.001 burn_in=1000 max_batches = 500200 policy=steps steps=400000,450000 scales=.1,.1 [convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky # Downsample [convolutional] batch_normalize=1 filters=64 size=3 stride=2 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=32 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear # Downsample [convolutional] batch_normalize=1 filters=128 size=3 stride=2 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear # Downsample [convolutional] batch_normalize=1 filters=256 size=3 stride=2 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear # Downsample [convolutional] batch_normalize=1 filters=512 size=3 stride=2 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear # Downsample [convolutional] batch_normalize=1 filters=1024 size=3 stride=2 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear ###################### [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=1024 activation=leaky [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=1024 activation=leaky [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=1024 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=255 activation=linear [yolo] mask = 6,7,8 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=80 num=9 jitter=.3 ignore_thresh = .5 truth_thresh = 1 random=1 [route] layers = -4 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [route] layers = -1, 61 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=512 activation=leaky [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=512 activation=leaky [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=512 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=255 activation=linear [yolo] mask = 3,4,5 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=80 num=9 jitter=.3 ignore_thresh = .5 truth_thresh = 1 random=1 [route] layers = -4 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [route] layers = -1, 36 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=leaky [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=leaky [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=255 activation=linear [yolo] mask = 0,1,2 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=80 num=9 jitter=.3 ignore_thresh = .5 truth_thresh = 1 random=1
candle/candle-examples/examples/yolo-v3/yolo-v3.cfg/0
{ "file_path": "candle/candle-examples/examples/yolo-v3/yolo-v3.cfg", "repo_id": "candle", "token_count": 3586 }
26
# candle-flash-attn
candle/candle-flash-attn/README.md/0
{ "file_path": "candle/candle-flash-attn/README.md", "repo_id": "candle", "token_count": 8 }
27
use anyhow::Result; use candle::{DType, Device, IndexOp, Tensor, D}; fn to_vec3_round(t: Tensor, digits: i32) -> Result<Vec<Vec<Vec<f32>>>> { let b = 10f32.powi(digits); let t = t.to_vec3::<f32>()?; let t = t .iter() .map(|t| { t.iter() .map(|t| t.iter().map(|t| f32::round(t * b) / b).collect()) .collect() }) .collect(); Ok(t) } fn fa_acausal(q: &Tensor, k: &Tensor, v: &Tensor, softmax_scale: f32) -> Result<Tensor> { let in_dtype = q.dtype(); let q = q.to_dtype(DType::F32)?; let k = k.to_dtype(DType::F32)?; let v = v.to_dtype(DType::F32)?; let att = (q.matmul(&k.t()?)? * softmax_scale as f64)?; let att = candle_nn::ops::softmax(&att, D::Minus1)?; // Convert to contiguous as matmul doesn't support strided vs for now. let output = att.matmul(&v.contiguous()?)?.to_dtype(in_dtype)?; Ok(output) } #[test] fn flash_attn_acausal() -> Result<()> { let device = Device::new_cuda(0)?; let q = Tensor::arange(0u32, 48, &device)? .to_dtype(DType::F16)? .reshape((1, 3, 2, 8))?; let k = (&q / 40.)?; let v = (&q / 50.)?; let q = (&q / 30.)?; let ys1 = fa_acausal(&q, &k, &v, 0.5)?; let ys1 = ys1.i(0)?.to_dtype(DType::F32)?; let ys2 = { let q = q.transpose(1, 2)?; let k = k.transpose(1, 2)?; let v = v.transpose(1, 2)?; candle_flash_attn::flash_attn(&q, &k, &v, 0.5, false)?.transpose(1, 2)? }; let ys2 = ys2.i(0)?.to_dtype(DType::F32)?; let diff = ys1.sub(&ys2)?.abs()?.flatten_all()?.max(0)?; assert_eq!(ys1.dims(), &[3, 2, 8]); assert_eq!( to_vec3_round(ys1, 4)?, &[ [ [0.0837, 0.1038, 0.1238, 0.1438, 0.1637, 0.1837, 0.2037, 0.2238], [0.0922, 0.1122, 0.1322, 0.1522, 0.1721, 0.1921, 0.2122, 0.2322] ], [ [0.4204, 0.4404, 0.4604, 0.4805, 0.5005, 0.5205, 0.5405, 0.5605], [0.428, 0.448, 0.468, 0.488, 0.5083, 0.5283, 0.5483, 0.5684] ], [ [0.7554, 0.7754, 0.7954, 0.8154, 0.8354, 0.8555, 0.8755, 0.8955], [0.7622, 0.7822, 0.8022, 0.8223, 0.8423, 0.8623, 0.8823, 0.9023] ] ] ); assert_eq!(ys2.dims(), &[3, 2, 8]); assert_eq!( to_vec3_round(ys2, 4)?, &[ [ [0.0837, 0.1038, 0.1238, 0.1438, 0.1637, 0.1837, 0.2037, 0.2238], [0.0922, 0.1122, 0.1322, 0.1522, 0.1721, 0.1921, 0.2122, 0.2322] ], [ [0.4204, 0.4404, 0.4604, 0.4805, 0.5005, 0.5205, 0.5405, 0.5605], [0.428, 0.448, 0.468, 0.488, 0.5083, 0.5283, 0.5483, 0.5684] ], [ [0.7554, 0.7754, 0.7954, 0.8154, 0.8354, 0.8555, 0.8755, 0.8955], [0.7622, 0.7822, 0.8022, 0.8223, 0.8423, 0.8623, 0.8823, 0.9023] ] ] ); assert!(diff.to_vec0::<f32>()?.abs() < 1e-5); Ok(()) } #[test] fn flash_attn_varlen() -> Result<()> { let device = Device::new_cuda(0)?; let q = Tensor::arange(0u32, 48, &device)? .to_dtype(DType::F16)? .reshape((3, 2, 8))?; let k = (&q / 40.)?; let v = (&q / 50.)?; let q = (&q / 30.)?; let seqlens_q = Tensor::new(&[0u32, 2u32], &device)?; let seqlens_k = Tensor::new(&[0u32, 2u32], &device)?; let ys = { let q = q.transpose(0, 1)?; let k = k.transpose(0, 1)?; let v = v.transpose(0, 1)?; candle_flash_attn::flash_attn_varlen( &q, &k, &v, &seqlens_q, &seqlens_k, 32, 32, 0.5, false, )? .transpose(0, 1)? }; let ys = ys.to_dtype(DType::F32)?; assert_eq!(ys.dims(), &[3, 2, 8]); assert_eq!( to_vec3_round(ys, 4)?, &[ [ [0.0837, 0.1038, 0.1238, 0.1438, 0.1637, 0.1837, 0.2037, 0.2238], [0.0922, 0.1122, 0.1322, 0.1522, 0.1721, 0.1921, 0.2122, 0.2322] ], [ [0.4204, 0.4404, 0.4604, 0.4805, 0.5005, 0.5205, 0.5405, 0.5605], [0.428, 0.448, 0.468, 0.488, 0.5083, 0.5283, 0.5483, 0.5684] ], [ [0.7554, 0.7754, 0.7954, 0.8154, 0.8354, 0.8555, 0.8755, 0.8955], [0.7622, 0.7822, 0.8022, 0.8223, 0.8423, 0.8623, 0.8823, 0.9023] ] ] ); Ok(()) }
candle/candle-flash-attn/tests/flash_attn_tests.rs/0
{ "file_path": "candle/candle-flash-attn/tests/flash_attn_tests.rs", "repo_id": "candle", "token_count": 2787 }
28
#include "cuda_utils.cuh" #include<stdint.h> #define WHERE_OP(TYPENAME, ID_TYPENAME, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const size_t numel, \ const size_t num_dims, \ const size_t *info, \ const ID_TYPENAME *ids, \ const TYPENAME *t, \ const TYPENAME *f, \ TYPENAME *out \ ) { \ const size_t *dims = info; \ const size_t *strides = info + num_dims; \ const size_t *strides_t = info + 2*num_dims; \ const size_t *strides_f = info + 3*num_dims; \ if (is_contiguous(num_dims, dims, strides) \ && is_contiguous(num_dims, dims, strides_f) \ && is_contiguous(num_dims, dims, strides_t)) { \ for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \ out[i] = ids[i] ? t[i] : f[i]; \ } \ } \ else { \ for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \ unsigned strided_i = get_strided_index(i, num_dims, dims, strides); \ unsigned strided_i_t = get_strided_index(i, num_dims, dims, strides_t); \ unsigned strided_i_f = get_strided_index(i, num_dims, dims, strides_f); \ out[i] = ids[strided_i] ? t[strided_i_t] : f[strided_i_f]; \ } \ } \ } \ #if __CUDA_ARCH__ >= 800 WHERE_OP(__nv_bfloat16, int64_t, where_i64_bf16) WHERE_OP(__nv_bfloat16, uint32_t, where_u32_bf16) WHERE_OP(__nv_bfloat16, uint8_t, where_u8_bf16) #endif #if __CUDA_ARCH__ >= 530 WHERE_OP(__half, int64_t, where_i64_f16) WHERE_OP(__half, uint32_t, where_u32_f16) WHERE_OP(__half, uint8_t, where_u8_f16) #endif WHERE_OP(float, int64_t, where_i64_f32) WHERE_OP(double, int64_t, where_i64_f64) WHERE_OP(uint8_t, int64_t, where_i64_u8) WHERE_OP(uint32_t, int64_t, where_i64_u32) WHERE_OP(int64_t, int64_t, where_i64_i64) WHERE_OP(float, uint32_t, where_u32_f32) WHERE_OP(double, uint32_t, where_u32_f64) WHERE_OP(uint8_t, uint32_t, where_u32_u8) WHERE_OP(uint32_t, uint32_t, where_u32_u32) WHERE_OP(int64_t, uint32_t, where_u32_i64) WHERE_OP(float, uint8_t, where_u8_f32) WHERE_OP(double, uint8_t, where_u8_f64) WHERE_OP(uint8_t, uint8_t, where_u8_u8) WHERE_OP(uint32_t, uint8_t, where_u8_u32) WHERE_OP(int64_t, uint8_t, where_u8_i64)
candle/candle-kernels/src/ternary.cu/0
{ "file_path": "candle/candle-kernels/src/ternary.cu", "repo_id": "candle", "token_count": 1159 }
29
#include <metal_stdlib> #include <metal_math> # using namespace metal; METAL_FUNC uint get_strided_index( uint idx, constant size_t &num_dims, constant size_t *dims, constant size_t *strides ) { uint strided_i = 0; for (uint d = 0; d < num_dims; d++) { uint dim_idx = num_dims - 1 - d; strided_i += (idx % dims[dim_idx]) * strides[dim_idx]; idx /= dims[dim_idx]; } return strided_i; } template <typename T> METAL_FUNC T sqr(T in){ return in * in; } template <typename T> METAL_FUNC T recip(T in){ return T(1.0 / in); } template <typename T> METAL_FUNC T neg(T in){ return -in; } template <typename T> METAL_FUNC T erf(T in){ float x = (float) in; // constants float a1 = 0.254829592; float a2 = -0.284496736; float a3 = 1.421413741; float a4 = -1.453152027; float a5 = 1.061405429; float p = 0.3275911; // Save the sign of x int sign = 1; if (x < 0) sign = -1; x = fabs(x); // A&S formula 7.1.26 float t = 1.0/(1.0 + p*x); float y = 1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x); return T(sign*y); } template <typename T> METAL_FUNC T id(T in) { return in; } template <typename T> METAL_FUNC T gelu_erf(T x) { return T(x * (1 + erf(x * M_SQRT1_2_F)) / 2); } template <typename T> METAL_FUNC T gelu(T x) { if (x > 5) { return x; } T x_sq = x * x; T x_cube = x_sq * x; T alpha = x + static_cast<T>(0.044715) * x_cube; T beta = (static_cast<T>(M_2_SQRTPI_F * M_SQRT1_2_F) * alpha); return static_cast<T>(0.5) * x * (static_cast<T>(1.0) + T(tanh(beta))); } template <typename T> METAL_FUNC T relu(T in){ if (in < 0) { return 0; } return in; } template <typename T> METAL_FUNC T silu(T in){ return in / (static_cast<T>(1) + exp(-in)); } #define UNARY(FN, TYPENAME, FN_NAME, FN_NAME_STRIDED) \ kernel void FN_NAME( \ constant size_t &dim, \ device const TYPENAME *input, \ device TYPENAME *output, \ uint tid [[ thread_position_in_grid ]] \ ) { \ if (tid >= dim) { \ return; \ } \ output[tid] = TYPENAME(FN(float(input[tid]))); \ }\ kernel void FN_NAME_STRIDED( \ constant size_t &dim, \ constant size_t &num_dims, \ constant size_t *dims, \ constant size_t *strides, \ device const TYPENAME *input, \ device TYPENAME *output, \ uint tid [[ thread_position_in_grid ]] \ ) { \ if (tid >= dim) { \ return; \ } \ output[tid] = TYPENAME(FN(float(input[get_strided_index(tid, num_dims, dims, strides)]))); \ } #define UNARY_OP(NAME) \ UNARY(NAME, float, NAME##_f32, NAME##_f32_strided); \ UNARY(NAME, half, NAME##_f16, NAME##_f16_strided); #define BFLOAT_UNARY_OP(NAME) \ UNARY(NAME, bfloat, NAME##_bf16, NAME##_bf16_strided); #define COPY2D(FN_NAME, TYPENAME) \ kernel void FN_NAME( \ constant size_t &d1, \ constant size_t &d2, \ constant size_t &src_s, \ constant size_t &dst_s, \ device const TYPENAME *input, \ device TYPENAME *output, \ uint tid [[ thread_position_in_grid ]] \ ) { \ if (tid >= d1 * d2) { \ return; \ } \ size_t idx1 = tid / d2; \ size_t idx2 = tid - idx1 * d2; \ size_t src_idx = idx1 * src_s + idx2; \ size_t dst_idx = idx1 * dst_s + idx2; \ output[dst_idx] = input[src_idx]; \ } COPY2D(copy2d_f32, float) COPY2D(copy2d_f16, half) COPY2D(copy2d_u8, uint8_t) COPY2D(copy2d_u32, uint32_t) UNARY_OP(cos) UNARY_OP(sin) UNARY_OP(sqr) UNARY_OP(sqrt) UNARY_OP(neg) UNARY_OP(exp) UNARY_OP(log) UNARY_OP(gelu) UNARY_OP(silu) UNARY_OP(abs) UNARY_OP(ceil) UNARY_OP(floor) UNARY_OP(round) UNARY_OP(gelu_erf) UNARY_OP(erf) UNARY_OP(tanh) UNARY_OP(recip) UNARY_OP(relu) UNARY(id, float, copy_f32, copy_f32_strided) UNARY(id, half, copy_f16, copy_f16_strided) UNARY(id, uint8_t, copy_u8, copy_u8_strided) UNARY(id, uint32_t, copy_u32, copy_u32_strided) #if __METAL_VERSION__ >= 220 UNARY(id, int64_t, copy_i64, copy_i64_strided) COPY2D(copy2d_i64, int64_t) #endif #if defined(__HAVE_BFLOAT__) BFLOAT_UNARY_OP(cos) BFLOAT_UNARY_OP(sin) BFLOAT_UNARY_OP(sqr) BFLOAT_UNARY_OP(sqrt) BFLOAT_UNARY_OP(neg) BFLOAT_UNARY_OP(exp) BFLOAT_UNARY_OP(log) BFLOAT_UNARY_OP(gelu) BFLOAT_UNARY_OP(silu) BFLOAT_UNARY_OP(abs) BFLOAT_UNARY_OP(ceil) BFLOAT_UNARY_OP(floor) BFLOAT_UNARY_OP(round) BFLOAT_UNARY_OP(gelu_erf) BFLOAT_UNARY_OP(erf) BFLOAT_UNARY_OP(tanh) BFLOAT_UNARY_OP(recip) BFLOAT_UNARY_OP(relu) UNARY(id, bfloat, copy_bf16, copy_bf16_strided) COPY2D(copy2d_bf64, bfloat) #endif
candle/candle-metal-kernels/src/unary.metal/0
{ "file_path": "candle/candle-metal-kernels/src/unary.metal", "repo_id": "candle", "token_count": 2340 }
30
//! Variable initialization. // This is based on: // https://github.com/pytorch/pytorch/blob/07107919297db3f8ab37f11c12666b6d6d5f692e/torch/nn/init.py# use candle::{DType, Device, Result, Shape, Tensor, Var}; /// Number of features as input or output of a layer. /// In Kaiming initialization, choosing `FanIn` preserves /// the magnitude of the variance of the weights in the /// forward pass, choosing `FanOut` preserves this /// magnitude in the backward pass. #[derive(Debug, Copy, Clone)] pub enum FanInOut { FanIn, FanOut, } impl FanInOut { /// Compute the fan-in or fan-out value for a weight tensor of /// the specified dimensions. /// <https://github.com/pytorch/pytorch/blob/dbeacf11820e336e803bb719b7aaaf2125ae4d9c/torch/nn/init.py#L284> pub fn for_shape(&self, shape: &Shape) -> usize { let dims = shape.dims(); let receptive_field_size: usize = dims.iter().skip(2).product(); match &self { FanInOut::FanIn => { if dims.len() < 2 { 1 } else { dims[1] * receptive_field_size } } FanInOut::FanOut => { if dims.is_empty() { 1 } else { dims[0] * receptive_field_size } } } } } #[derive(Debug, Copy, Clone)] pub enum NormalOrUniform { Normal, Uniform, } /// The non-linear function that follows this layer. ReLU is the /// recommended value. #[derive(Debug, Copy, Clone)] pub enum NonLinearity { ReLU, Linear, Sigmoid, Tanh, SELU, ExplicitGain(f64), } impl NonLinearity { // https://github.com/pytorch/pytorch/blob/07107919297db3f8ab37f11c12666b6d6d5f692e/torch/nn/init.py#L67 pub fn gain(&self) -> f64 { match *self { NonLinearity::ReLU => 2f64.sqrt(), NonLinearity::Tanh => 5. / 3., NonLinearity::Linear | NonLinearity::Sigmoid => 1., NonLinearity::SELU => 0.75, NonLinearity::ExplicitGain(g) => g, } } } /// Variable initializations. #[derive(Debug, Copy, Clone)] pub enum Init { /// Constant value. Const(f64), /// Random normal with some mean and standard deviation. Randn { mean: f64, stdev: f64 }, /// Uniform initialization between some lower and upper bounds. Uniform { lo: f64, up: f64 }, /// Kaiming uniform initialization. /// See "Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification" /// He, K. et al. (2015). This uses a uniform distribution. Kaiming { dist: NormalOrUniform, fan: FanInOut, non_linearity: NonLinearity, }, } pub const ZERO: Init = Init::Const(0.); pub const ONE: Init = Init::Const(1.); pub const DEFAULT_KAIMING_UNIFORM: Init = Init::Kaiming { dist: NormalOrUniform::Uniform, fan: FanInOut::FanIn, non_linearity: NonLinearity::ReLU, }; pub const DEFAULT_KAIMING_NORMAL: Init = Init::Kaiming { dist: NormalOrUniform::Normal, fan: FanInOut::FanIn, non_linearity: NonLinearity::ReLU, }; impl Init { /// Creates a new tensor with the specified shape, device, and initialization. pub fn var<S: Into<Shape>>(&self, s: S, dtype: DType, device: &Device) -> Result<Var> { match self { Self::Const(v) if *v == 0. => Var::zeros(s, dtype, device), Self::Const(v) if *v == 1. => Var::ones(s, dtype, device), Self::Const(cst) => { Var::from_tensor(&Tensor::ones(s, dtype, device)?.affine(*cst, 0.)?) } Self::Uniform { lo, up } => Var::rand_f64(*lo, *up, s, dtype, device), Self::Randn { mean, stdev } => Var::randn_f64(*mean, *stdev, s, dtype, device), Self::Kaiming { dist, fan, non_linearity, } => { let s = s.into(); let fan = fan.for_shape(&s); let gain = non_linearity.gain(); let std = gain / (fan as f64).sqrt(); match dist { NormalOrUniform::Uniform => { let bound = 3f64.sqrt() * std; Var::rand_f64(-bound, bound, s, dtype, device) } NormalOrUniform::Normal => Var::randn_f64(0., std, s, dtype, device), } } } } } impl Default for Init { fn default() -> Self { Self::Const(0.) } }
candle/candle-nn/src/init.rs/0
{ "file_path": "candle/candle-nn/src/init.rs", "repo_id": "candle", "token_count": 2212 }
31
#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use candle::{test_utils::to_vec3_round, Device, Result, Tensor}; #[test] fn softmax() -> Result<()> { let device = &Device::Cpu; let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]]; let tensor = Tensor::new(data, device)?; let t0 = candle_nn::ops::softmax(&tensor.log()?, 0)?; let t1 = candle_nn::ops::softmax(&tensor.log()?, 1)?; let t2 = candle_nn::ops::softmax(&tensor.log()?, 2)?; assert_eq!( to_vec3_round(&t0, 4)?, &[ // 3/5, 1/2, 4/11 [[0.6, 0.5, 0.3636], [0.1111, 0.7143, 0.5294]], // 2/5, 1/2, 7/11 [[0.4, 0.5, 0.6364], [0.8889, 0.2857, 0.4706]] ] ); assert_eq!( to_vec3_round(&t1, 4)?, &[ // 3/4, 1/6, 4/13 [[0.75, 0.1667, 0.3077], [0.25, 0.8333, 0.6923]], // 2/10, 1/3, 7/15 [[0.2, 0.3333, 0.4667], [0.8, 0.6667, 0.5333]] ] ); assert_eq!( to_vec3_round(&t2, 4)?, &[ // (3, 1, 4) / 8, (1, 5, 9) / 15 [[0.375, 0.125, 0.5], [0.0667, 0.3333, 0.6]], // (2, 1, 7) / 10, (8, 2, 8) / 18 [[0.2, 0.1, 0.7], [0.4444, 0.1111, 0.4444]] ] ); let t2 = candle_nn::ops::softmax_last_dim(&tensor.log()?)?; assert_eq!( to_vec3_round(&t2, 4)?, &[ // (3, 1, 4) / 8, (1, 5, 9) / 15 [[0.375, 0.125, 0.5], [0.0667, 0.3333, 0.6]], // (2, 1, 7) / 10, (8, 2, 8) / 18 [[0.2, 0.1, 0.7], [0.4444, 0.1111, 0.4444]] ] ); Ok(()) } #[test] fn softmax_numerical_stability() -> Result<()> { let dev = &Device::Cpu; let xs = Tensor::new(&[1234f32, 0.], dev)?; let softmax = candle_nn::ops::softmax(&xs, 0)?; assert_eq!(softmax.to_vec1::<f32>()?, &[1f32, 0.]); Ok(()) }
candle/candle-nn/tests/ops.rs/0
{ "file_path": "candle/candle-nn/tests/ops.rs", "repo_id": "candle", "token_count": 1170 }
32
from candle.utils import load_safetensors, save_gguf, load_gguf from candle.models.bert import BertModel, Config import json from candle import Tensor from tqdm import tqdm from dataclasses import fields import os import time from huggingface_hub import hf_hub_download from transformers import BertTokenizer, AutoModel import torch if __name__ == "__main__": model_name = "intfloat/e5-small-v2" model_file = hf_hub_download(repo_id=model_name, filename="model.safetensors") config_file = hf_hub_download(repo_id=model_name, filename="config.json") tensors = load_safetensors(model_file) config = Config() with open(config_file, "r") as f: raw_config = json.load(f) for field in fields(config): if field.name in raw_config: setattr(config, field.name, raw_config[field.name]) # Load the model model = BertModel(config) model.load_state_dict(tensors) hf_model = AutoModel.from_pretrained(model_name) tokenizer = BertTokenizer.from_pretrained(model_name) sentences = [ "The cat sits outside", "A man is playing guitar", "I love pasta", "The new movie is awesome", "The cat plays in the garden", "A woman watches TV", "The new movie is so great", "Do you like pizza?", ] def average_pool(last_hidden_states: torch.Tensor, attention_mask: torch.Tensor): """Average the hidden states according to the attention mask""" last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] tokenized = tokenizer(sentences, padding=True) tokens = Tensor(tokenized["input_ids"]) token_type_ids = Tensor(tokenized["token_type_ids"]) attention_mask = Tensor(tokenized["attention_mask"]) encoder_out, _ = model.forward(tokens, token_type_ids, attention_mask=attention_mask) hf_tokenized = tokenizer(sentences, padding=True, return_tensors="pt") hf_result = hf_model(**hf_tokenized)["last_hidden_state"] hf_pooled = average_pool(hf_result, hf_tokenized["attention_mask"]) candle_pooled = average_pool(torch.tensor(encoder_out.values()), hf_tokenized["attention_mask"]) loss = torch.nn.L1Loss() error = loss(hf_pooled, candle_pooled).mean().item() print(f"Mean error between torch-reference and candle: {error}") # Quantize all attention 'weights' quantized_tensors = {} for name, tensor in tqdm(tensors.items(), desc="Quantizing tensors to 5-Bit"): if name.endswith("weight") and ("attention" in name or "intermediate" in name or "output" in name): # check if the tensor is k-quantizable if tensor.shape[-1] % 256 == 0: new_tensor = tensor.quantize("q4k") else: new_tensor = tensor.quantize("q5_0") quantized_tensors[name] = new_tensor else: quantized_tensors[name] = tensor.quantize("q8_0") print(f"Saving quantized tensors") # Remove all None values from the config config_to_save = {k: v for k, v in config.__dict__.items() if v is not None} # Save the model quantized_model_file = "e5_small.gguf" save_gguf(quantized_model_file, quantized_tensors, config_to_save) file_size_mb = os.path.getsize(model_file) / 1024 / 1024 file_size_mb_compressed = os.path.getsize(quantized_model_file) / 1024 / 1024 print(f"Compressed model from {file_size_mb:.2f} MB to {file_size_mb_compressed:.2f} MB") # Load the model from the gguf tensors, raw_config = load_gguf(quantized_model_file) config = Config() for field in fields(config): if field.name in raw_config: setattr(config, field.name, raw_config[field.name]) model = BertModel(config) # "embeddings.position_ids" is missing in the gguf as it is i64 model.load_state_dict(tensors, strict=False) # Run the model again encoder_out_2, pooled_output_2 = model.forward(tokens, token_type_ids) encoder_out_2, pooled_output_2 = encoder_out_2.to_device("cpu"), pooled_output_2.to_device("cpu") candle_pooled_2 = average_pool(torch.tensor(encoder_out_2.values()), hf_tokenized["attention_mask"]) error = loss(hf_pooled, candle_pooled_2).mean().item() print(f"Mean error between torch-reference and quantized-candle: {error}")
candle/candle-pyo3/e5.py/0
{ "file_path": "candle/candle-pyo3/e5.py", "repo_id": "candle", "token_count": 1778 }
33
from typing import TypeVar, Union, Sequence _T = TypeVar("_T") _ArrayLike = Union[ _T, Sequence[_T], Sequence[Sequence[_T]], Sequence[Sequence[Sequence[_T]]], Sequence[Sequence[Sequence[Sequence[_T]]]], ] CPU: str = "cpu" CUDA: str = "cuda" Device = TypeVar("Device", CPU, CUDA) Scalar = Union[int, float] Index = Union[int, slice, None, "Ellipsis"] Shape = Union[int, Sequence[int]]
candle/candle-pyo3/py_src/candle/typing/__init__.py/0
{ "file_path": "candle/candle-pyo3/py_src/candle/typing/__init__.py", "repo_id": "candle", "token_count": 166 }
34
from candle import Tensor from candle import rand import pytest def test_absolute_shapes_are_valid(): a = rand((10, 20)) assert a.shape == (10, 20) b = rand(10, 20) assert b.shape == (10, 20) pytest.raises(OverflowError, lambda: rand((10, 20, -1))) pytest.raises(OverflowError, lambda: rand(-1, 20)) pytest.raises(TypeError, lambda: rand("foo", True)) def test_relative_shapes_are_valid(): a = rand(10, 20) a = a.reshape((1, -1)) assert a.shape == (1, 200) b = rand(10, 20) b = b.reshape(-1, 1) assert b.shape == (200, 1) c = rand(10, 20) pytest.raises(TypeError, lambda: c.reshape(1, "foo")) pytest.raises(ValueError, lambda: c.reshape(1, -2)) pytest.raises(ValueError, lambda: c.reshape((-2, 1))) pytest.raises(ValueError, lambda: c.reshape((0, 1))) pytest.raises(ValueError, lambda: c.reshape((1, -1, -1)))
candle/candle-pyo3/tests/native/test_shape.py/0
{ "file_path": "candle/candle-pyo3/tests/native/test_shape.py", "repo_id": "candle", "token_count": 385 }
35
use candle::{Result, Tensor, D}; use candle_nn as nn; use nn::{Module, VarBuilder}; // Based on the Python version from torchvision. // https://github.com/pytorch/vision/blob/0d75d9e5516f446c9c0ef93bd4ed9fea13992d06/torchvision/models/efficientnet.py#L47 #[derive(Debug, Clone, Copy)] pub struct MBConvConfig { expand_ratio: f64, kernel: usize, stride: usize, input_channels: usize, out_channels: usize, num_layers: usize, } fn make_divisible(v: f64, divisor: usize) -> usize { let min_value = divisor; let new_v = usize::max( min_value, (v + divisor as f64 * 0.5) as usize / divisor * divisor, ); if (new_v as f64) < 0.9 * v { new_v + divisor } else { new_v } } fn bneck_confs(width_mult: f64, depth_mult: f64) -> Vec<MBConvConfig> { let bneck_conf = |e, k, s, i, o, n| { let input_channels = make_divisible(i as f64 * width_mult, 8); let out_channels = make_divisible(o as f64 * width_mult, 8); let num_layers = (n as f64 * depth_mult).ceil() as usize; MBConvConfig { expand_ratio: e, kernel: k, stride: s, input_channels, out_channels, num_layers, } }; vec![ bneck_conf(1., 3, 1, 32, 16, 1), bneck_conf(6., 3, 2, 16, 24, 2), bneck_conf(6., 5, 2, 24, 40, 2), bneck_conf(6., 3, 2, 40, 80, 3), bneck_conf(6., 5, 1, 80, 112, 3), bneck_conf(6., 5, 2, 112, 192, 4), bneck_conf(6., 3, 1, 192, 320, 1), ] } impl MBConvConfig { pub fn b0() -> Vec<Self> { bneck_confs(1.0, 1.0) } pub fn b1() -> Vec<Self> { bneck_confs(1.0, 1.1) } pub fn b2() -> Vec<Self> { bneck_confs(1.1, 1.2) } pub fn b3() -> Vec<Self> { bneck_confs(1.2, 1.4) } pub fn b4() -> Vec<Self> { bneck_confs(1.4, 1.8) } pub fn b5() -> Vec<Self> { bneck_confs(1.6, 2.2) } pub fn b6() -> Vec<Self> { bneck_confs(1.8, 2.6) } pub fn b7() -> Vec<Self> { bneck_confs(2.0, 3.1) } } /// Conv2D with same padding. #[derive(Debug)] struct Conv2DSame { conv2d: nn::Conv2d, s: usize, k: usize, } impl Conv2DSame { fn new( vb: VarBuilder, i: usize, o: usize, k: usize, stride: usize, groups: usize, bias: bool, ) -> Result<Self> { let conv_config = nn::Conv2dConfig { stride, groups, ..Default::default() }; let conv2d = if bias { nn::conv2d(i, o, k, conv_config, vb)? } else { nn::conv2d_no_bias(i, o, k, conv_config, vb)? }; Ok(Self { conv2d, s: stride, k, }) } } impl Module for Conv2DSame { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let s = self.s; let k = self.k; let (_, _, ih, iw) = xs.dims4()?; let oh = (ih + s - 1) / s; let ow = (iw + s - 1) / s; let pad_h = usize::max((oh - 1) * s + k - ih, 0); let pad_w = usize::max((ow - 1) * s + k - iw, 0); if pad_h > 0 || pad_w > 0 { let xs = xs.pad_with_zeros(2, pad_h / 2, pad_h - pad_h / 2)?; let xs = xs.pad_with_zeros(3, pad_w / 2, pad_w - pad_w / 2)?; self.conv2d.forward(&xs) } else { self.conv2d.forward(xs) } } } #[derive(Debug)] struct ConvNormActivation { conv2d: Conv2DSame, bn2d: nn::BatchNorm, activation: bool, } impl ConvNormActivation { fn new( vb: VarBuilder, i: usize, o: usize, k: usize, stride: usize, groups: usize, ) -> Result<Self> { let conv2d = Conv2DSame::new(vb.pp("0"), i, o, k, stride, groups, false)?; let bn2d = nn::batch_norm(o, 1e-3, vb.pp("1"))?; Ok(Self { conv2d, bn2d, activation: true, }) } fn no_activation(self) -> Self { Self { activation: false, ..self } } } impl Module for ConvNormActivation { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let xs = self.conv2d.forward(xs)?.apply_t(&self.bn2d, false)?; if self.activation { swish(&xs) } else { Ok(xs) } } } #[derive(Debug)] struct SqueezeExcitation { fc1: Conv2DSame, fc2: Conv2DSame, } impl SqueezeExcitation { fn new(vb: VarBuilder, in_channels: usize, squeeze_channels: usize) -> Result<Self> { let fc1 = Conv2DSame::new(vb.pp("fc1"), in_channels, squeeze_channels, 1, 1, 1, true)?; let fc2 = Conv2DSame::new(vb.pp("fc2"), squeeze_channels, in_channels, 1, 1, 1, true)?; Ok(Self { fc1, fc2 }) } } impl Module for SqueezeExcitation { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let residual = xs; // equivalent to adaptive_avg_pool2d([1, 1]) let xs = xs.mean_keepdim(D::Minus2)?.mean_keepdim(D::Minus1)?; let xs = self.fc1.forward(&xs)?; let xs = swish(&xs)?; let xs = self.fc2.forward(&xs)?; let xs = nn::ops::sigmoid(&xs)?; residual.broadcast_mul(&xs) } } #[derive(Debug)] struct MBConv { expand_cna: Option<ConvNormActivation>, depthwise_cna: ConvNormActivation, squeeze_excitation: SqueezeExcitation, project_cna: ConvNormActivation, config: MBConvConfig, } impl MBConv { fn new(vb: VarBuilder, c: MBConvConfig) -> Result<Self> { let vb = vb.pp("block"); let exp = make_divisible(c.input_channels as f64 * c.expand_ratio, 8); let expand_cna = if exp != c.input_channels { Some(ConvNormActivation::new( vb.pp("0"), c.input_channels, exp, 1, 1, 1, )?) } else { None }; let start_index = if expand_cna.is_some() { 1 } else { 0 }; let depthwise_cna = ConvNormActivation::new(vb.pp(start_index), exp, exp, c.kernel, c.stride, exp)?; let squeeze_channels = usize::max(1, c.input_channels / 4); let squeeze_excitation = SqueezeExcitation::new(vb.pp(start_index + 1), exp, squeeze_channels)?; let project_cna = ConvNormActivation::new(vb.pp(start_index + 2), exp, c.out_channels, 1, 1, 1)? .no_activation(); Ok(Self { expand_cna, depthwise_cna, squeeze_excitation, project_cna, config: c, }) } } impl Module for MBConv { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let use_res_connect = self.config.stride == 1 && self.config.input_channels == self.config.out_channels; let ys = match &self.expand_cna { Some(expand_cna) => expand_cna.forward(xs)?, None => xs.clone(), }; let ys = self.depthwise_cna.forward(&ys)?; let ys = self.squeeze_excitation.forward(&ys)?; let ys = self.project_cna.forward(&ys)?; if use_res_connect { ys + xs } else { Ok(ys) } } } fn swish(s: &Tensor) -> Result<Tensor> { s * nn::ops::sigmoid(s)? } #[derive(Debug)] pub struct EfficientNet { init_cna: ConvNormActivation, blocks: Vec<MBConv>, final_cna: ConvNormActivation, classifier: nn::Linear, } impl EfficientNet { pub fn new(p: VarBuilder, configs: Vec<MBConvConfig>, nclasses: usize) -> Result<Self> { let f_p = p.pp("features"); let first_in_c = configs[0].input_channels; let last_out_c = configs.last().unwrap().out_channels; let final_out_c = 4 * last_out_c; let init_cna = ConvNormActivation::new(f_p.pp(0), 3, first_in_c, 3, 2, 1)?; let nconfigs = configs.len(); let mut blocks = vec![]; for (index, cnf) in configs.into_iter().enumerate() { let f_p = f_p.pp(index + 1); for r_index in 0..cnf.num_layers { let cnf = if r_index == 0 { cnf } else { MBConvConfig { input_channels: cnf.out_channels, stride: 1, ..cnf } }; blocks.push(MBConv::new(f_p.pp(r_index), cnf)?) } } let final_cna = ConvNormActivation::new(f_p.pp(nconfigs + 1), last_out_c, final_out_c, 1, 1, 1)?; let classifier = nn::linear(final_out_c, nclasses, p.pp("classifier.1"))?; Ok(Self { init_cna, blocks, final_cna, classifier, }) } } impl Module for EfficientNet { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let mut xs = self.init_cna.forward(xs)?; for block in self.blocks.iter() { xs = block.forward(&xs)? } let xs = self.final_cna.forward(&xs)?; // Equivalent to adaptive_avg_pool2d([1, 1]) -> squeeze(-1) -> squeeze(-1) let xs = xs.mean(D::Minus1)?.mean(D::Minus1)?; self.classifier.forward(&xs) } }
candle/candle-transformers/src/models/efficientnet.rs/0
{ "file_path": "candle/candle-transformers/src/models/efficientnet.rs", "repo_id": "candle", "token_count": 5123 }
36
pub mod bert; pub mod bigcode; pub mod blip; pub mod blip_text; pub mod chatglm; pub mod convmixer; pub mod convnext; pub mod dinov2; pub mod distilbert; pub mod efficientnet; pub mod efficientvit; pub mod encodec; pub mod falcon; pub mod gemma; pub mod jina_bert; pub mod llama; pub mod llama2_c; pub mod llama2_c_weights; pub mod mamba; pub mod marian; pub mod metavoice; pub mod mistral; pub mod mixformer; pub mod mixtral; pub mod mobileone; pub mod mpt; pub mod persimmon; pub mod phi; pub mod quantized_blip; pub mod quantized_blip_text; pub mod quantized_llama; pub mod quantized_llama2_c; pub mod quantized_metavoice; pub mod quantized_mistral; pub mod quantized_mixformer; pub mod quantized_mpt; pub mod quantized_rwkv_v5; pub mod quantized_rwkv_v6; pub mod quantized_stable_lm; pub mod quantized_t5; pub mod qwen2; pub mod repvgg; pub mod resnet; pub mod rwkv_v5; pub mod rwkv_v6; pub mod segformer; pub mod segment_anything; pub mod stable_diffusion; pub mod stable_lm; pub mod starcoder2; pub mod t5; pub mod trocr; pub mod vgg; pub mod vit; pub mod whisper; pub mod with_tracing; pub mod wuerstchen; pub mod yi;
candle/candle-transformers/src/models/mod.rs/0
{ "file_path": "candle/candle-transformers/src/models/mod.rs", "repo_id": "candle", "token_count": 441 }
37
use super::schedulers::{betas_for_alpha_bar, BetaSchedule, PredictionType}; use candle::{Result, Tensor}; #[derive(Debug, Clone, PartialEq, Eq)] pub enum DDPMVarianceType { FixedSmall, FixedSmallLog, FixedLarge, FixedLargeLog, Learned, } impl Default for DDPMVarianceType { fn default() -> Self { Self::FixedSmall } } #[derive(Debug, Clone)] pub struct DDPMSchedulerConfig { /// The value of beta at the beginning of training. pub beta_start: f64, /// The value of beta at the end of training. pub beta_end: f64, /// How beta evolved during training. pub beta_schedule: BetaSchedule, /// Option to predicted sample between -1 and 1 for numerical stability. pub clip_sample: bool, /// Option to clip the variance used when adding noise to the denoised sample. pub variance_type: DDPMVarianceType, /// prediction type of the scheduler function pub prediction_type: PredictionType, /// number of diffusion steps used to train the model. pub train_timesteps: usize, } impl Default for DDPMSchedulerConfig { fn default() -> Self { Self { beta_start: 0.00085, beta_end: 0.012, beta_schedule: BetaSchedule::ScaledLinear, clip_sample: false, variance_type: DDPMVarianceType::FixedSmall, prediction_type: PredictionType::Epsilon, train_timesteps: 1000, } } } pub struct DDPMScheduler { alphas_cumprod: Vec<f64>, init_noise_sigma: f64, timesteps: Vec<usize>, step_ratio: usize, pub config: DDPMSchedulerConfig, } impl DDPMScheduler { pub fn new(inference_steps: usize, config: DDPMSchedulerConfig) -> Result<Self> { let betas = match config.beta_schedule { BetaSchedule::ScaledLinear => super::utils::linspace( config.beta_start.sqrt(), config.beta_end.sqrt(), config.train_timesteps, )? .sqr()?, BetaSchedule::Linear => { super::utils::linspace(config.beta_start, config.beta_end, config.train_timesteps)? } BetaSchedule::SquaredcosCapV2 => betas_for_alpha_bar(config.train_timesteps, 0.999)?, }; let betas = betas.to_vec1::<f64>()?; let mut alphas_cumprod = Vec::with_capacity(betas.len()); for &beta in betas.iter() { let alpha = 1.0 - beta; alphas_cumprod.push(alpha * *alphas_cumprod.last().unwrap_or(&1f64)) } // min(train_timesteps, inference_steps) // https://github.com/huggingface/diffusers/blob/8331da46837be40f96fbd24de6a6fb2da28acd11/src/diffusers/schedulers/scheduling_ddpm.py#L187 let inference_steps = inference_steps.min(config.train_timesteps); // arange the number of the scheduler's timesteps let step_ratio = config.train_timesteps / inference_steps; let timesteps: Vec<usize> = (0..inference_steps).map(|s| s * step_ratio).rev().collect(); Ok(Self { alphas_cumprod, init_noise_sigma: 1.0, timesteps, step_ratio, config, }) } fn get_variance(&self, timestep: usize) -> f64 { let prev_t = timestep as isize - self.step_ratio as isize; let alpha_prod_t = self.alphas_cumprod[timestep]; let alpha_prod_t_prev = if prev_t >= 0 { self.alphas_cumprod[prev_t as usize] } else { 1.0 }; let current_beta_t = 1. - alpha_prod_t / alpha_prod_t_prev; // For t > 0, compute predicted variance ฮฒt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) // and sample from it to get previous sample // x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample let variance = (1. - alpha_prod_t_prev) / (1. - alpha_prod_t) * current_beta_t; // retrieve variance match self.config.variance_type { DDPMVarianceType::FixedSmall => variance.max(1e-20), // for rl-diffuser https://arxiv.org/abs/2205.09991 DDPMVarianceType::FixedSmallLog => { let variance = variance.max(1e-20).ln(); (variance * 0.5).exp() } DDPMVarianceType::FixedLarge => current_beta_t, DDPMVarianceType::FixedLargeLog => current_beta_t.ln(), DDPMVarianceType::Learned => variance, } } pub fn timesteps(&self) -> &[usize] { self.timesteps.as_slice() } /// Ensures interchangeability with schedulers that need to scale the denoising model input /// depending on the current timestep. pub fn scale_model_input(&self, sample: Tensor, _timestep: usize) -> Tensor { sample } pub fn step(&self, model_output: &Tensor, timestep: usize, sample: &Tensor) -> Result<Tensor> { let prev_t = timestep as isize - self.step_ratio as isize; // https://github.com/huggingface/diffusers/blob/df2b548e893ccb8a888467c2508756680df22821/src/diffusers/schedulers/scheduling_ddpm.py#L272 // 1. compute alphas, betas let alpha_prod_t = self.alphas_cumprod[timestep]; let alpha_prod_t_prev = if prev_t >= 0 { self.alphas_cumprod[prev_t as usize] } else { 1.0 }; let beta_prod_t = 1. - alpha_prod_t; let beta_prod_t_prev = 1. - alpha_prod_t_prev; let current_alpha_t = alpha_prod_t / alpha_prod_t_prev; let current_beta_t = 1. - current_alpha_t; // 2. compute predicted original sample from predicted noise also called "predicted x_0" of formula (15) let mut pred_original_sample = match self.config.prediction_type { PredictionType::Epsilon => { ((sample - model_output * beta_prod_t.sqrt())? / alpha_prod_t.sqrt())? } PredictionType::Sample => model_output.clone(), PredictionType::VPrediction => { ((sample * alpha_prod_t.sqrt())? - model_output * beta_prod_t.sqrt())? } }; // 3. clip predicted x_0 if self.config.clip_sample { pred_original_sample = pred_original_sample.clamp(-1f32, 1f32)?; } // 4. Compute coefficients for pred_original_sample x_0 and current sample x_t // See formula (7) from https://arxiv.org/pdf/2006.11239.pdf let pred_original_sample_coeff = (alpha_prod_t_prev.sqrt() * current_beta_t) / beta_prod_t; let current_sample_coeff = current_alpha_t.sqrt() * beta_prod_t_prev / beta_prod_t; // 5. Compute predicted previous sample ยต_t // See formula (7) from https://arxiv.org/pdf/2006.11239.pdf let pred_prev_sample = ((&pred_original_sample * pred_original_sample_coeff)? + sample * current_sample_coeff)?; // https://github.com/huggingface/diffusers/blob/df2b548e893ccb8a888467c2508756680df22821/src/diffusers/schedulers/scheduling_ddpm.py#L305 // 6. Add noise let mut variance = model_output.zeros_like()?; if timestep > 0 { let variance_noise = model_output.randn_like(0., 1.)?; if self.config.variance_type == DDPMVarianceType::FixedSmallLog { variance = (variance_noise * self.get_variance(timestep))?; } else { variance = (variance_noise * self.get_variance(timestep).sqrt())?; } } &pred_prev_sample + variance } pub fn add_noise( &self, original_samples: &Tensor, noise: Tensor, timestep: usize, ) -> Result<Tensor> { (original_samples * self.alphas_cumprod[timestep].sqrt())? + noise * (1. - self.alphas_cumprod[timestep]).sqrt() } pub fn init_noise_sigma(&self) -> f64 { self.init_noise_sigma } }
candle/candle-transformers/src/models/stable_diffusion/ddpm.rs/0
{ "file_path": "candle/candle-transformers/src/models/stable_diffusion/ddpm.rs", "repo_id": "candle", "token_count": 3662 }
38
// Audio processing code, adapted from whisper.cpp // https://github.com/ggerganov/whisper.cpp use candle::utils::get_num_threads; use std::sync::Arc; use std::thread; pub trait Float: num_traits::Float + num_traits::FloatConst + num_traits::NumAssign + Send + Sync { } impl Float for f32 {} impl Float for f64 {} // https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2357 fn fft<T: Float>(inp: &[T]) -> Vec<T> { let n = inp.len(); let zero = T::zero(); if n == 1 { return vec![inp[0], zero]; } if n % 2 == 1 { return dft(inp); } let mut out = vec![zero; n * 2]; let mut even = Vec::with_capacity(n / 2); let mut odd = Vec::with_capacity(n / 2); for (i, &inp) in inp.iter().enumerate() { if i % 2 == 0 { even.push(inp) } else { odd.push(inp); } } let even_fft = fft(&even); let odd_fft = fft(&odd); let two_pi = T::PI() + T::PI(); let n_t = T::from(n).unwrap(); for k in 0..n / 2 { let k_t = T::from(k).unwrap(); let theta = two_pi * k_t / n_t; let re = theta.cos(); let im = -theta.sin(); let re_odd = odd_fft[2 * k]; let im_odd = odd_fft[2 * k + 1]; out[2 * k] = even_fft[2 * k] + re * re_odd - im * im_odd; out[2 * k + 1] = even_fft[2 * k + 1] + re * im_odd + im * re_odd; out[2 * (k + n / 2)] = even_fft[2 * k] - re * re_odd + im * im_odd; out[2 * (k + n / 2) + 1] = even_fft[2 * k + 1] - re * im_odd - im * re_odd; } out } // https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2337 fn dft<T: Float>(inp: &[T]) -> Vec<T> { let zero = T::zero(); let n = inp.len(); let two_pi = T::PI() + T::PI(); let mut out = Vec::with_capacity(2 * n); let n_t = T::from(n).unwrap(); for k in 0..n { let k_t = T::from(k).unwrap(); let mut re = zero; let mut im = zero; for (j, &inp) in inp.iter().enumerate() { let j_t = T::from(j).unwrap(); let angle = two_pi * k_t * j_t / n_t; re += inp * angle.cos(); im -= inp * angle.sin(); } out.push(re); out.push(im); } out } #[allow(clippy::too_many_arguments)] // https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2414 fn log_mel_spectrogram_w<T: Float>( ith: usize, hann: &[T], samples: &[T], filters: &[T], fft_size: usize, fft_step: usize, speed_up: bool, n_len: usize, n_mel: usize, n_threads: usize, ) -> Vec<T> { let n_fft = if speed_up { 1 + fft_size / 4 } else { 1 + fft_size / 2 }; let zero = T::zero(); let half = T::from(0.5).unwrap(); let mut fft_in = vec![zero; fft_size]; let mut mel = vec![zero; n_len * n_mel]; let n_samples = samples.len(); let end = std::cmp::min(n_samples / fft_step + 1, n_len); for i in (ith..end).step_by(n_threads) { let offset = i * fft_step; // apply Hanning window for j in 0..std::cmp::min(fft_size, n_samples - offset) { fft_in[j] = hann[j] * samples[offset + j]; } // fill the rest with zeros if n_samples - offset < fft_size { fft_in[n_samples - offset..].fill(zero); } // FFT let mut fft_out: Vec<T> = fft(&fft_in); // Calculate modulus^2 of complex numbers for j in 0..fft_size { fft_out[j] = fft_out[2 * j] * fft_out[2 * j] + fft_out[2 * j + 1] * fft_out[2 * j + 1]; } for j in 1..fft_size / 2 { let v = fft_out[fft_size - j]; fft_out[j] += v; } if speed_up { // scale down in the frequency domain results in a speed up in the time domain for j in 0..n_fft { fft_out[j] = half * (fft_out[2 * j] + fft_out[2 * j + 1]); } } // mel spectrogram for j in 0..n_mel { let mut sum = zero; let mut k = 0; // Unroll loop while k < n_fft.saturating_sub(3) { sum += fft_out[k] * filters[j * n_fft + k] + fft_out[k + 1] * filters[j * n_fft + k + 1] + fft_out[k + 2] * filters[j * n_fft + k + 2] + fft_out[k + 3] * filters[j * n_fft + k + 3]; k += 4; } // Handle remainder while k < n_fft { sum += fft_out[k] * filters[j * n_fft + k]; k += 1; } mel[j * n_len + i] = T::max(sum, T::from(1e-10).unwrap()).log10(); } } mel } pub fn log_mel_spectrogram_<T: Float>( samples: &[T], filters: &[T], fft_size: usize, fft_step: usize, n_mel: usize, speed_up: bool, ) -> Vec<T> { let zero = T::zero(); let two_pi = T::PI() + T::PI(); let half = T::from(0.5).unwrap(); let one = T::from(1.0).unwrap(); let four = T::from(4.0).unwrap(); let fft_size_t = T::from(fft_size).unwrap(); let hann: Vec<T> = (0..fft_size) .map(|i| half * (one - ((two_pi * T::from(i).unwrap()) / fft_size_t).cos())) .collect(); let n_len = samples.len() / fft_step; // pad audio with at least one extra chunk of zeros let pad = 100 * super::CHUNK_LENGTH / 2; let n_len = if n_len % pad != 0 { (n_len / pad + 1) * pad } else { n_len }; let n_len = n_len + pad; let samples = { let mut samples_padded = samples.to_vec(); let to_add = n_len * fft_step - samples.len(); samples_padded.extend(std::iter::repeat(zero).take(to_add)); samples_padded }; // ensure that the number of threads is even and less than 12 let n_threads = std::cmp::min(get_num_threads() - get_num_threads() % 2, 12); let hann = Arc::new(hann); let samples = Arc::new(samples); let filters = Arc::new(filters); // use scope to allow for non static references to be passed to the threads // and directly collect the results into a single vector let all_outputs = thread::scope(|s| { (0..n_threads) // create threads and return their handles .map(|thread_id| { let hann = Arc::clone(&hann); let samples = Arc::clone(&samples); let filters = Arc::clone(&filters); // spawn new thread and start work s.spawn(move || { log_mel_spectrogram_w( thread_id, &hann, &samples, &filters, fft_size, fft_step, speed_up, n_len, n_mel, n_threads, ) }) }) .collect::<Vec<_>>() .into_iter() // wait for each thread to finish and collect their results .map(|handle| handle.join().expect("Thread failed")) .collect::<Vec<_>>() }); let l = all_outputs[0].len(); let mut mel = vec![zero; l]; // iterate over mel spectrogram segments, dividing work by threads. for segment_start in (0..l).step_by(n_threads) { // go through each thread's output. for thread_output in all_outputs.iter() { // add each thread's piece to our mel spectrogram. for offset in 0..n_threads { let mel_index = segment_start + offset; // find location in mel. if mel_index < mel.len() { // Make sure we don't go out of bounds. mel[mel_index] += thread_output[mel_index]; } } } } let mmax = mel .iter() .max_by(|&u, &v| u.partial_cmp(v).unwrap_or(std::cmp::Ordering::Greater)) .copied() .unwrap_or(zero) - T::from(8).unwrap(); for m in mel.iter_mut() { let v = T::max(*m, mmax); *m = v / four + one } mel } pub fn pcm_to_mel<T: Float>(cfg: &super::Config, samples: &[T], filters: &[T]) -> Vec<T> { log_mel_spectrogram_( samples, filters, super::N_FFT, super::HOP_LENGTH, cfg.num_mel_bins, false, ) } #[cfg(test)] mod tests { use super::*; #[test] fn test_fft() { let input = vec![0.0, 1.0, 0.0, 0.0]; let output = fft(&input); assert_eq!( output, vec![ 1.0, 0.0, 6.123233995736766e-17, -1.0, -1.0, 0.0, -6.123233995736766e-17, 1.0 ] ); } #[test] fn test_dft() { let input = vec![0.0, 1.0, 0.0, 0.0]; let output = dft(&input); assert_eq!( output, vec![ 1.0, 0.0, 6.123233995736766e-17, -1.0, -1.0, -1.2246467991473532e-16, -1.8369701987210297e-16, 1.0 ] ); } #[test] fn test_log_mel_spectrogram() { let samples = vec![0.0; 1000]; let filters = vec![0.0; 1000]; let output = log_mel_spectrogram_(&samples, &filters, 100, 10, 10, false); assert_eq!(output.len(), 30_000); } #[test] fn test_tiny_log_mel_spectrogram() { let samples = vec![0.0; 100]; let filters = vec![0.0; 100]; let output = log_mel_spectrogram_(&samples, &filters, 20, 2, 2, false); assert_eq!(output.len(), 6_000); } }
candle/candle-transformers/src/models/whisper/audio.rs/0
{ "file_path": "candle/candle-transformers/src/models/whisper/audio.rs", "repo_id": "candle", "token_count": 5282 }
39
use crate::models::with_tracing::QMatMul; use crate::quantized_var_builder::VarBuilder; use candle::{Module, Result, Tensor}; #[derive(Debug, Clone)] pub struct Embedding { inner: candle_nn::Embedding, span: tracing::Span, } impl Embedding { pub fn new(d1: usize, d2: usize, vb: VarBuilder) -> Result<Self> { let embeddings = vb.get((d1, d2), "weight")?.dequantize(vb.device())?; let inner = candle_nn::Embedding::new(embeddings, d2); let span = tracing::span!(tracing::Level::TRACE, "embedding"); Ok(Self { inner, span }) } pub fn embeddings(&self) -> &Tensor { self.inner.embeddings() } } impl Module for Embedding { fn forward(&self, xs: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); self.inner.forward(xs) } } #[derive(Debug, Clone)] pub struct Linear { weight: QMatMul, bias: Option<Tensor>, } impl Linear { pub fn from_arc( weight: std::sync::Arc<candle::quantized::QTensor>, bias: Option<Tensor>, ) -> Result<Self> { let weight = QMatMul::from_weights(weight)?; Ok(Self { weight, bias }) } pub fn from_weights(weight: QMatMul, bias: Option<Tensor>) -> Self { Self { weight, bias } } } impl Module for Linear { fn forward(&self, x: &Tensor) -> candle::Result<Tensor> { let x = x.apply(&self.weight)?; match &self.bias { None => Ok(x), Some(bias) => x.broadcast_add(bias), } } } pub fn linear_b(in_dim: usize, out_dim: usize, bias: bool, vb: VarBuilder) -> Result<Linear> { let bias = if bias { Some(vb.get(out_dim, "bias")?.dequantize(vb.device())?) } else { None }; let weight = QMatMul::new(in_dim, out_dim, vb)?; Ok(Linear { weight, bias }) } pub fn linear(in_dim: usize, out_dim: usize, vb: VarBuilder) -> Result<Linear> { let bias = vb.get(out_dim, "bias")?.dequantize(vb.device())?; let weight = QMatMul::new(in_dim, out_dim, vb)?; Ok(Linear { weight, bias: Some(bias), }) } pub fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<candle_nn::LayerNorm> { let weight = vb.get(size, "weight")?.dequantize(vb.device())?; let bias = vb.get(size, "bias")?.dequantize(vb.device())?; Ok(candle_nn::LayerNorm::new(weight, bias, eps)) } pub fn layer_norm_no_bias(size: usize, eps: f64, vb: VarBuilder) -> Result<candle_nn::LayerNorm> { let weight = vb.get(size, "weight")?.dequantize(vb.device())?; Ok(candle_nn::LayerNorm::new_no_bias(weight, eps)) } pub fn linear_no_bias(in_dim: usize, out_dim: usize, vb: VarBuilder) -> Result<Linear> { let weight = QMatMul::new(in_dim, out_dim, vb)?; Ok(Linear { weight, bias: None }) } #[derive(Debug, Clone)] pub struct RmsNorm { inner: candle_nn::RmsNorm, span: tracing::Span, } impl RmsNorm { pub fn new(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> { let span = tracing::span!(tracing::Level::TRACE, "rms-norm"); let weight = vb.get(size, "weight")?.dequantize(vb.device())?; let inner = candle_nn::RmsNorm::new(weight, eps); Ok(Self { inner, span }) } } impl Module for RmsNorm { fn forward(&self, x: &Tensor) -> Result<Tensor> { let _enter = self.span.enter(); self.inner.forward(x) } }
candle/candle-transformers/src/quantized_nn.rs/0
{ "file_path": "candle/candle-transformers/src/quantized_nn.rs", "repo_id": "candle", "token_count": 1534 }
40
<!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <style> @import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap"); html, body { font-family: "Source Sans 3", sans-serif; } </style> <title>Candle Blip Image Captioning Demo</title> <script src="https://cdn.tailwindcss.com"></script> <script type="module" src="./code.js"></script> <script type="module"> const MODELS = { blip_image_quantized_q4k: { base_url: "https://huggingface.co/lmz/candle-blip/resolve/main/", model: "blip-image-captioning-large-q4k.gguf", config: "config.json", tokenizer: "tokenizer.json", quantized: true, size: "271 MB", }, blip_image_quantized_q80: { base_url: "https://huggingface.co/lmz/candle-blip/resolve/main/", model: "blip-image-captioning-large-q80.gguf", config: "config.json", tokenizer: "tokenizer.json", quantized: true, size: "505 MB", }, blip_image_large: { base_url: "https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/refs%2Fpr%2F18/", model: "model.safetensors", config: "config.json", tokenizer: "tokenizer.json", quantized: false, size: "1.88 GB", }, }; const blipWorker = new Worker("./blipWorker.js", { type: "module", }); const outputStatusEl = document.querySelector("#output-status"); const outputCaptionEl = document.querySelector("#output-caption"); const modelSelectEl = document.querySelector("#model"); const clearBtn = document.querySelector("#clear-btn"); const fileUpload = document.querySelector("#file-upload"); const dropArea = document.querySelector("#drop-area"); const imagesExamples = document.querySelector("#image-select"); const canvas = document.querySelector("#canvas"); const ctxCanvas = canvas.getContext("2d"); let isCaptioning = false; let currentImageURL = null; clearBtn.addEventListener("click", () => { clearImageCanvas(); }); modelSelectEl.addEventListener("change", () => { if (currentImageURL) { runInference(currentImageURL); } }); //add event listener to file input fileUpload.addEventListener("input", async (e) => { const target = e.target; if (target.files.length > 0) { const href = URL.createObjectURL(target.files[0]); clearImageCanvas(); await drawImageCanvas(href); runInference(href); } }); // add event listener to drop-area dropArea.addEventListener("dragenter", (e) => { e.preventDefault(); dropArea.classList.add("border-blue-700"); }); dropArea.addEventListener("dragleave", (e) => { e.preventDefault(); dropArea.classList.remove("border-blue-700"); }); dropArea.addEventListener("dragover", (e) => { e.preventDefault(); }); dropArea.addEventListener("drop", async (e) => { e.preventDefault(); dropArea.classList.remove("border-blue-700"); const url = e.dataTransfer.getData("text/uri-list"); const files = e.dataTransfer.files; if (files.length > 0) { const href = URL.createObjectURL(files[0]); clearImageCanvas(); await drawImageCanvas(href); runInference(href); } else if (url) { clearImageCanvas(); await drawImageCanvas(url); runInference(url); } }); imagesExamples.addEventListener("click", async (e) => { if (isCaptioning) { return; } const target = e.target; if (target.nodeName === "IMG") { const href = target.src; clearImageCanvas(); await drawImageCanvas(href); runInference(href); } }); function clearImageCanvas() { ctxCanvas.clearRect(0, 0, canvas.width, canvas.height); isCaptioning = false; clearBtn.disabled = true; canvas.parentElement.style.height = "auto"; outputStatusEl.hidden = false; outputCaptionEl.hidden = true; outputStatusEl.innerText = "Please select an image"; currentImageURL = null; } async function drawImageCanvas(imgURL) { if (!imgURL) { throw new Error("No image URL provided"); } return new Promise((resolve, reject) => { ctxCanvas.clearRect(0, 0, canvas.width, canvas.height); ctxCanvas.clearRect(0, 0, canvas.width, canvas.height); const img = new Image(); img.crossOrigin = "anonymous"; img.onload = () => { canvas.width = img.width; canvas.height = img.height; ctxCanvas.drawImage(img, 0, 0); canvas.parentElement.style.height = canvas.offsetHeight + "px"; clearBtn.disabled = false; resolve(img); }; img.src = imgURL; currentImageURL = imgURL; }); } document.addEventListener("DOMContentLoaded", () => { for (const [id, model] of Object.entries(MODELS)) { const option = document.createElement("option"); option.value = id; option.innerText = `${id} (${model.size})`; modelSelectEl.appendChild(option); } }); async function getImageCaption( worker, weightsURL, tokenizerURL, configURL, modelID, imageURL, quantized, updateStatus = null ) { return new Promise((resolve, reject) => { worker.postMessage({ weightsURL, tokenizerURL, configURL, modelID, imageURL, quantized, }); function messageHandler(event) { if ("error" in event.data) { worker.removeEventListener("message", messageHandler); reject(new Error(event.data.error)); } if (event.data.status === "complete") { worker.removeEventListener("message", messageHandler); resolve(event.data); } if (updateStatus) updateStatus(event.data); } worker.addEventListener("message", messageHandler); }); } function updateStatus(data) { if (data.status === "status") { outputStatusEl.innerText = data.message; } } async function runInference(imageURL) { if (isCaptioning || !imageURL) { alert("Please select an image first"); return; } outputStatusEl.hidden = false; outputCaptionEl.hidden = true; clearBtn.disabled = true; modelSelectEl.disabled = true; isCaptioning = true; const selectedModel = modelSelectEl.value; const model = MODELS[selectedModel]; const weightsURL = `${model.base_url}${model.model}`; const tokenizerURL = `${model.base_url}${model.tokenizer}`; const configURL = `${model.base_url}${model.config}`; const quantized = model.quantized; try { const time = performance.now(); const caption = await getImageCaption( blipWorker, weightsURL, tokenizerURL, configURL, selectedModel, imageURL, quantized, updateStatus ); outputStatusEl.hidden = true; outputCaptionEl.hidden = false; const totalTime = ((performance.now() - time)/1000).toFixed(2); outputCaptionEl.innerHTML = `${ caption.output }<br/><span class="text-xs">Inference time: ${totalTime} s</span>`; } catch (err) { console.error(err); outputStatusEl.hidden = false; outputCaptionEl.hidden = true; outputStatusEl.innerText = err.message; } clearBtn.disabled = false; modelSelectEl.disabled = false; isCaptioning = false; } </script> </head> <body class="container max-w-4xl mx-auto p-4"> <main class="grid grid-cols-1 gap-5 relative"> <span class="absolute text-5xl -ml-[1em]"> ๐Ÿ•ฏ๏ธ </span> <div> <h1 class="text-5xl font-bold">Candle BLIP Image Captioning</h1> <h2 class="text-2xl font-bold">Rust/WASM Demo</h2> <p class="max-w-lg"> <a href="https://huggingface.co/Salesforce/blip-image-captioning-large" target="_blank" class="underline hover:text-blue-500 hover:no-underline" >BLIP Image Captioning </a> running in the browser using <a href="https://github.com/huggingface/candle/" target="_blank" class="underline hover:text-blue-500 hover:no-underline" >Candle</a >, a minimalist ML framework for Rust. </p> <p class="text-xs max-w-lg py-2"> <b>Note:</b> The image captioning on the smallest model takes about ~50 seconds, it will vary depending on your machine and model size. </p> </div> <div> <label for="model" class="font-medium block">Models Options: </label> <select id="model" class="border-2 border-gray-500 rounded-md font-light interactive disabled:cursor-not-allowed w-full max-w-max" ></select> </div> <!-- drag and drop area --> <div class="grid gap-4 sm:grid-cols-2 py-4"> <div class="relative max-w-lg"> <div class="absolute w-full bottom-full flex justify-between items-center" > <div class="flex gap-2 w-full"> <button id="clear-btn" disabled title="Clear Image" class="ml-auto text-xs bg-white rounded-md disabled:opacity-50 flex gap-1 items-center" > <svg class="" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 13 12" height="1em" > <path d="M1.6.7 12 11.1M12 .7 1.6 11.1" stroke="#2E3036" stroke-width="2" /> </svg> </button> </div> </div> <div id="drop-area" class="flex flex-col items-center justify-center border-2 border-gray-300 border-dashed rounded-xl relative aspect-video w-full overflow-hidden" > <div class="flex flex-col items-center justify-center space-y-1 text-center" > <svg width="25" height="25" viewBox="0 0 25 25" fill="none" xmlns="http://www.w3.org/2000/svg" > <path d="M3.5 24.3a3 3 0 0 1-1.9-.8c-.5-.5-.8-1.2-.8-1.9V2.9c0-.7.3-1.3.8-1.9.6-.5 1.2-.7 2-.7h18.6c.7 0 1.3.2 1.9.7.5.6.7 1.2.7 2v18.6c0 .7-.2 1.4-.7 1.9a3 3 0 0 1-2 .8H3.6Zm0-2.7h18.7V2.9H3.5v18.7Zm2.7-2.7h13.3c.3 0 .5 0 .6-.3v-.7l-3.7-5a.6.6 0 0 0-.6-.2c-.2 0-.4 0-.5.3l-3.5 4.6-2.4-3.3a.6.6 0 0 0-.6-.3c-.2 0-.4.1-.5.3l-2.7 3.6c-.1.2-.2.4 0 .7.1.2.3.3.6.3Z" fill="#000" /> </svg> <div class="flex text-sm text-gray-600"> <label for="file-upload" class="relative cursor-pointer bg-white rounded-md font-medium text-blue-950 hover:text-blue-700" > <span>Drag and drop y our image here</span> <span class="block text-xs">or</span> <span class="block text-xs">Click to upload</span> </label> </div> <input id="file-upload" name="file-upload" type="file" class="sr-only" /> </div> <canvas id="canvas" class="absolute pointer-events-none w-full" ></canvas> </div> </div> <div class=""> <div class="h-full bg-slate-100 text-gray-500 p-4 rounded-md flex flex-col gap-2" > <p id="output-caption" class="m-auto text-xl text-center p-2" hidden ></p> <span id="output-status" class="m-auto font-light"> Please select an image </span> </div> </div> </div> <div> <div class="flex gap-3 items-center overflow-x-scroll" id="image-select" > <h3 class="font-medium">Examples:</h3> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/sf.jpg" class="cursor-pointer w-24 h-24 object-cover" /> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/bike.jpeg" class="cursor-pointer w-24 h-24 object-cover" /> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/candle/examples/000000000077.jpg" class="cursor-pointer w-24 h-24 object-cover" /> </div> </div> </main> </body> </html>
candle/candle-wasm-examples/blip/index.html/0
{ "file_path": "candle/candle-wasm-examples/blip/index.html", "repo_id": "candle", "token_count": 7164 }
41
use crate::model::{Cache, Config, Llama}; use byteorder::{LittleEndian, ReadBytesExt}; use candle::{DType, Device, IndexOp, Result, Shape, Tensor}; use candle_nn::VarBuilder; use candle_transformers::generation::LogitsProcessor; use serde::{Deserialize, Serialize}; use tokenizers::Tokenizer; use wasm_bindgen::prelude::*; use yew_agent::{HandlerId, Public, WorkerLink}; #[wasm_bindgen] extern "C" { // Use `js_namespace` here to bind `console.log(..)` instead of just // `log(..)` #[wasm_bindgen(js_namespace = console)] pub fn log(s: &str); } #[macro_export] macro_rules! console_log { // Note that this is using the `log` function imported above during // `bare_bones` ($($t:tt)*) => ($crate::worker::log(&format_args!($($t)*).to_string())) } // Communication to the worker happens through bincode, the model weights and configs are fetched // on the main thread and transferred via the following structure. #[derive(Serialize, Deserialize)] pub struct ModelData { pub tokenizer: Vec<u8>, pub model: Vec<u8>, } fn read_i32<R: std::io::Read>(r: &mut R) -> Result<i32> { let mut buf = [0u8; 4]; r.read_exact(&mut buf)?; Ok(i32::from_le_bytes(buf)) } fn read_tensor<R: std::io::Read, S: Into<Shape>>( r: &mut R, shape: S, dev: &Device, ) -> Result<Tensor> { let shape = shape.into(); let mut data_t = vec![0f32; shape.elem_count()]; r.read_f32_into::<LittleEndian>(&mut data_t)?; let tensor = Tensor::from_vec(data_t, shape, dev)?; Ok(tensor) } pub struct Model { pub cache: Cache, pub config: Config, pub llama: Llama, pub tokenizer: Tokenizer, } impl Model { fn run( &self, link: &WorkerLink<Worker>, id: HandlerId, temp: f64, top_p: f64, prompt: String, ) -> Result<()> { let dev = Device::Cpu; let temp = if temp <= 0. { None } else { Some(temp) }; let top_p = if top_p <= 0. || top_p >= 1.0 { None } else { Some(top_p) }; console_log!("temp: {temp:?} top_p: {top_p:?} prompt: {prompt}"); let mut logits_processor = LogitsProcessor::new(299792458, temp, top_p); let mut index_pos = 0; let mut tokens = self .tokenizer .encode(prompt.to_string(), true) .map_err(|m| candle::Error::Msg(m.to_string()))? .get_ids() .to_vec(); link.respond(id, Ok(WorkerOutput::Generated(prompt))); for index in 0.. { if tokens.len() >= self.config.seq_len { break; } let context_size = if self.cache.use_kv_cache && index > 0 { 1 } else { tokens.len() }; let ctxt = &tokens[tokens.len().saturating_sub(context_size)..]; let input = Tensor::new(ctxt, &dev)?.unsqueeze(0)?; let logits = self.llama.forward(&input, index_pos)?; let logits = logits.squeeze(0)?; index_pos += ctxt.len(); let next_token = logits_processor.sample(&logits)?; tokens.push(next_token); if let Some(text) = self.tokenizer.id_to_token(next_token) { let text = text.replace('โ–', " ").replace("<0x0A>", "\n"); link.respond(id, Ok(WorkerOutput::Generated(text))); } } Ok(()) } } impl Config { fn from_reader<R: std::io::Read>(r: &mut R) -> Result<Self> { let dim = read_i32(r)? as usize; let hidden_dim = read_i32(r)? as usize; let n_layers = read_i32(r)? as usize; let n_heads = read_i32(r)? as usize; let n_kv_heads = read_i32(r)? as usize; let vocab_size = read_i32(r)? as usize; let seq_len = read_i32(r)? as usize; Ok(Self { dim, hidden_dim, n_layers, n_heads, n_kv_heads, vocab_size, seq_len, norm_eps: 1e-5, }) } pub fn head_size(&self) -> usize { self.dim / self.n_heads } } struct TransformerWeights { // token embedding table token_embedding_table: Tensor, // (vocab_size, dim) // weights for rmsnorms rms_att_weight: Tensor, // (layer, dim) rmsnorm weights rms_ffn_weight: Tensor, // (layer, dim) // weights for matmuls wq: Tensor, // (layer, dim, dim) wk: Tensor, // (layer, dim, dim) wv: Tensor, // (layer, dim, dim) wo: Tensor, // (layer, dim, dim) // weights for ffn w1: Tensor, // (layer, hidden_dim, dim) w2: Tensor, // (layer, dim, hidden_dim) w3: Tensor, // (layer, hidden_dim, dim) // final rmsnorm rms_final_weight: Tensor, // (dim,) // freq_cis for RoPE relatively positional embeddings freq_cis_real: Tensor, // (seq_len, head_size/2) freq_cis_imag: Tensor, // (seq_len, head_size/2) } impl TransformerWeights { fn from_reader<R: std::io::Read>(r: &mut R, c: &Config, dev: &Device) -> Result<Self> { let token_embedding_table = read_tensor(r, (c.vocab_size, c.dim), dev)?; let rms_att_weight = read_tensor(r, (c.n_layers, c.dim), dev)?; let wq = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?; let wk = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?; let wv = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?; let wo = read_tensor(r, (c.n_layers, c.dim, c.dim), dev)?; let rms_ffn_weight = read_tensor(r, (c.n_layers, c.dim), dev)?; let w1 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?; let w2 = read_tensor(r, (c.n_layers, c.dim, c.hidden_dim), dev)?; let w3 = read_tensor(r, (c.n_layers, c.hidden_dim, c.dim), dev)?; let rms_final_weight = read_tensor(r, c.dim, dev)?; let head_size = c.head_size(); let freq_cis_real = read_tensor(r, (c.seq_len, head_size / 2), dev)?; let freq_cis_imag = read_tensor(r, (c.seq_len, head_size / 2), dev)?; Ok(Self { token_embedding_table, rms_att_weight, wq, wk, wv, wo, rms_ffn_weight, w1, w2, w3, rms_final_weight, freq_cis_real, freq_cis_imag, }) } fn var_builder(&self, cfg: &Config, device: &Device) -> Result<VarBuilder> { let mut ws = std::collections::HashMap::new(); let mut insert = |name: &str, t: Tensor| { ws.insert(name.to_string(), t); }; insert("rot.freq_cis_real", self.freq_cis_real.clone()); insert("rot.freq_cis_imag", self.freq_cis_imag.clone()); insert( "model.embed_tokens.weight", self.token_embedding_table.clone(), ); insert("lm_head.weight", self.token_embedding_table.clone()); insert("model.norm.weight", self.rms_final_weight.clone()); for layer in 0..cfg.n_layers { ws.insert( format!("model.layers.{layer}.self_attn.q_proj.weight"), self.wq.i(layer)?, ); ws.insert( format!("model.layers.{layer}.self_attn.k_proj.weight"), self.wk.i(layer)?, ); ws.insert( format!("model.layers.{layer}.self_attn.v_proj.weight"), self.wv.i(layer)?, ); ws.insert( format!("model.layers.{layer}.self_attn.o_proj.weight"), self.wo.i(layer)?, ); ws.insert( format!("model.layers.{layer}.mlp.gate_proj.weight"), self.w1.i(layer)?, ); ws.insert( format!("model.layers.{layer}.mlp.down_proj.weight"), self.w2.i(layer)?, ); ws.insert( format!("model.layers.{layer}.mlp.up_proj.weight"), self.w3.i(layer)?, ); ws.insert( format!("model.layers.{layer}.input_layernorm.weight"), self.rms_att_weight.i(layer)?, ); ws.insert( format!("model.layers.{layer}.post_attention_layernorm.weight"), self.rms_ffn_weight.i(layer)?, ); } let vb = VarBuilder::from_tensors(ws, DType::F32, device); Ok(vb) } } impl Model { pub fn load(md: ModelData) -> Result<Self> { let dev = Device::Cpu; let mut model = std::io::Cursor::new(md.model); let config = Config::from_reader(&mut model)?; let weights = TransformerWeights::from_reader(&mut model, &config, &dev)?; let vb = weights.var_builder(&config, &dev)?; let cache = Cache::new(true, &config, vb.pp("rot"))?; let llama = Llama::load(vb, &cache, &config)?; let tokenizer = Tokenizer::from_bytes(&md.tokenizer).map_err(|m| candle::Error::Msg(m.to_string()))?; Ok(Self { cache, config, llama, tokenizer, }) } } pub struct Worker { link: WorkerLink<Self>, model: Option<Model>, } #[derive(Serialize, Deserialize)] pub enum WorkerInput { ModelData(ModelData), Run(f64, f64, String), } #[derive(Serialize, Deserialize)] pub enum WorkerOutput { Generated(String), GenerationDone(std::result::Result<(), String>), WeightsLoaded, } impl yew_agent::Worker for Worker { type Input = WorkerInput; type Message = (); type Output = std::result::Result<WorkerOutput, String>; type Reach = Public<Self>; fn create(link: WorkerLink<Self>) -> Self { Self { link, model: None } } fn update(&mut self, _msg: Self::Message) { // no messaging } fn handle_input(&mut self, msg: Self::Input, id: HandlerId) { let output = match msg { WorkerInput::ModelData(md) => match Model::load(md) { Ok(model) => { self.model = Some(model); Ok(WorkerOutput::WeightsLoaded) } Err(err) => Err(format!("model creation error {err:?}")), }, WorkerInput::Run(temp, top_p, prompt) => match &mut self.model { None => Err("model has not been set yet".to_string()), Some(model) => { { let mut cache = model.cache.kvs.lock().unwrap(); for elem in cache.iter_mut() { *elem = None } } let result = model .run(&self.link, id, temp, top_p, prompt) .map_err(|e| e.to_string()); Ok(WorkerOutput::GenerationDone(result)) } }, }; self.link.respond(id, output); } fn name_of_resource() -> &'static str { "worker.js" } fn resource_path_is_relative() -> bool { true } }
candle/candle-wasm-examples/llama2-c/src/worker.rs/0
{ "file_path": "candle/candle-wasm-examples/llama2-c/src/worker.rs", "repo_id": "candle", "token_count": 5770 }
42
// Audio processing code, adapted from whisper.cpp // https://github.com/ggerganov/whisper.cpp use super::worker; pub trait Float: num_traits::Float + num_traits::FloatConst + num_traits::NumAssign {} impl Float for f32 {} impl Float for f64 {} // https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2357 fn fft<T: Float>(inp: &[T]) -> Vec<T> { let n = inp.len(); let zero = T::zero(); if n == 1 { return vec![inp[0], zero]; } if n % 2 == 1 { return dft(inp); } let mut out = vec![zero; n * 2]; let mut even = Vec::with_capacity(n / 2); let mut odd = Vec::with_capacity(n / 2); for (i, &inp) in inp.iter().enumerate() { if i % 2 == 0 { even.push(inp) } else { odd.push(inp); } } let even_fft = fft(&even); let odd_fft = fft(&odd); let two_pi = T::PI() + T::PI(); let n_t = T::from(n).unwrap(); for k in 0..n / 2 { let k_t = T::from(k).unwrap(); let theta = two_pi * k_t / n_t; let re = theta.cos(); let im = -theta.sin(); let re_odd = odd_fft[2 * k]; let im_odd = odd_fft[2 * k + 1]; out[2 * k] = even_fft[2 * k] + re * re_odd - im * im_odd; out[2 * k + 1] = even_fft[2 * k + 1] + re * im_odd + im * re_odd; out[2 * (k + n / 2)] = even_fft[2 * k] - re * re_odd + im * im_odd; out[2 * (k + n / 2) + 1] = even_fft[2 * k + 1] - re * im_odd - im * re_odd; } out } // https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2337 fn dft<T: Float>(inp: &[T]) -> Vec<T> { let zero = T::zero(); let n = inp.len(); let two_pi = T::PI() + T::PI(); let mut out = Vec::with_capacity(2 * n); let n_t = T::from(n).unwrap(); for k in 0..n { let k_t = T::from(k).unwrap(); let mut re = zero; let mut im = zero; for (j, &inp) in inp.iter().enumerate() { let j_t = T::from(j).unwrap(); let angle = two_pi * k_t * j_t / n_t; re += inp * angle.cos(); im -= inp * angle.sin(); } out.push(re); out.push(im); } out } #[allow(clippy::too_many_arguments)] // https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2414 fn log_mel_spectrogram_w<T: Float>( ith: usize, hann: &[T], samples: &[T], filters: &[T], fft_size: usize, fft_step: usize, speed_up: bool, n_len: usize, n_mel: usize, n_threads: usize, ) -> Vec<T> { let n_fft = if speed_up { 1 + fft_size / 4 } else { 1 + fft_size / 2 }; let zero = T::zero(); let half = T::from(0.5).unwrap(); let mut fft_in = vec![zero; fft_size]; let mut mel = vec![zero; n_len * n_mel]; for i in (ith..n_len).step_by(n_threads) { let offset = i * fft_step; // apply Hanning window for j in 0..fft_size { fft_in[j] = if offset + j < samples.len() { hann[j] * samples[offset + j] } else { zero } } // FFT -> mag^2 let mut fft_out: Vec<T> = fft(&fft_in); for j in 0..fft_size { fft_out[j] = fft_out[2 * j] * fft_out[2 * j] + fft_out[2 * j + 1] * fft_out[2 * j + 1]; } for j in 1..fft_size / 2 { let v = fft_out[fft_size - j]; fft_out[j] += v; } if speed_up { // scale down in the frequency domain results in a speed up in the time domain for j in 0..n_fft { fft_out[j] = half * (fft_out[2 * j] + fft_out[2 * j + 1]); } } // mel spectrogram for j in 0..n_mel { let mut sum = zero; for k in 0..n_fft { sum += fft_out[k] * filters[j * n_fft + k]; } mel[j * n_len + i] = T::max(sum, T::from(1e-10).unwrap()).log10(); } } mel } fn log_mel_spectrogram_<T: Float + std::fmt::Display>( samples: &[T], filters: &[T], fft_size: usize, fft_step: usize, n_mel: usize, speed_up: bool, ) -> Vec<T> { let zero = T::zero(); let two_pi = T::PI() + T::PI(); let half = T::from(0.5).unwrap(); let one = T::from(1.0).unwrap(); let four = T::from(4.0).unwrap(); let fft_size_t = T::from(fft_size).unwrap(); let hann: Vec<T> = (0..fft_size) .map(|i| half * (one - ((two_pi * T::from(i).unwrap()) / fft_size_t).cos())) .collect(); let n_len = samples.len() / fft_step; // pad audio with at least one extra chunk of zeros let pad = 100 * worker::m::CHUNK_LENGTH / 2; let n_len = if n_len % pad != 0 { (n_len / pad + 1) * pad } else { n_len }; let n_len = n_len + pad; let samples = { let mut samples_padded = samples.to_vec(); let to_add = n_len * fft_step - samples.len(); samples_padded.extend(std::iter::repeat(zero).take(to_add)); samples_padded }; // Use a single thread for now. let mut mel = log_mel_spectrogram_w( 0, &hann, &samples, filters, fft_size, fft_step, speed_up, n_len, n_mel, 1, ); let mmax = mel .iter() .max_by(|&u, &v| u.partial_cmp(v).unwrap_or(std::cmp::Ordering::Greater)) .copied() .unwrap_or(zero) - T::from(8).unwrap(); for m in mel.iter_mut() { let v = T::max(*m, mmax); *m = v / four + one } mel } pub fn pcm_to_mel<T: Float + std::fmt::Display>( cfg: &worker::m::Config, samples: &[T], filters: &[T], ) -> anyhow::Result<Vec<T>> { let mel = log_mel_spectrogram_( samples, filters, worker::m::N_FFT, worker::m::HOP_LENGTH, cfg.num_mel_bins, false, ); Ok(mel) }
candle/candle-wasm-examples/whisper/src/audio.rs/0
{ "file_path": "candle/candle-wasm-examples/whisper/src/audio.rs", "repo_id": "candle", "token_count": 3162 }
43
use yew_agent::PublicWorker; fn main() { console_error_panic_hook::set_once(); candle_wasm_example_yolo::Worker::register(); }
candle/candle-wasm-examples/yolo/src/bin/worker.rs/0
{ "file_path": "candle/candle-wasm-examples/yolo/src/bin/worker.rs", "repo_id": "candle", "token_count": 53 }
44
.DS_Store node_modules /build /.svelte-kit /package .env .env.* !.env.example # Ignore files for PNPM, NPM and YARN pnpm-lock.yaml package-lock.json yarn.lock
chat-ui/.eslintignore/0
{ "file_path": "chat-ui/.eslintignore", "repo_id": "chat-ui", "token_count": 69 }
45
import fs from "fs"; const SECRET_CONFIG = fs.existsSync(".env.SECRET_CONFIG") ? fs.readFileSync(".env.SECRET_CONFIG", "utf8") : process.env.SECRET_CONFIG; if (!SECRET_CONFIG) { throw new Error( "SECRET_CONFIG is not defined. Please provide it either in a file or as an environment variable." ); } // Read the content of the file .env.template const PUBLIC_CONFIG = fs.readFileSync(".env.template", "utf8"); // Prepend the content of the env variable SECRET_CONFIG const full_config = `${PUBLIC_CONFIG}\n${SECRET_CONFIG}`; // Write full_config to .env.local fs.writeFileSync(".env.local", full_config);
chat-ui/scripts/updateLocalEnv.ts/0
{ "file_path": "chat-ui/scripts/updateLocalEnv.ts", "repo_id": "chat-ui", "token_count": 217 }
46
<script lang="ts"> import { base } from "$app/paths"; import { page } from "$app/stores"; import { PUBLIC_APP_DESCRIPTION, PUBLIC_APP_NAME } from "$env/static/public"; import LogoHuggingFaceBorderless from "$lib/components/icons/LogoHuggingFaceBorderless.svelte"; import Modal from "$lib/components/Modal.svelte"; import { useSettingsStore } from "$lib/stores/settings"; import { cookiesAreEnabled } from "$lib/utils/cookiesAreEnabled"; import Logo from "./icons/Logo.svelte"; const settings = useSettingsStore(); </script> <Modal on:close> <div class="flex w-full flex-col items-center gap-6 bg-gradient-to-b from-primary-500/40 via-primary-500/10 to-primary-500/0 px-5 pb-8 pt-9 text-center" > <h2 class="flex items-center text-2xl font-semibold text-gray-800"> <Logo classNames="mr-1" /> {PUBLIC_APP_NAME} </h2> <p class="text-lg font-semibold leading-snug text-gray-800" style="text-wrap: balance;"> {PUBLIC_APP_DESCRIPTION} </p> <p class="rounded-xl border bg-white/80 p-2 text-base text-gray-800"> You have reached the guest message limit, please Sign In with your Hugging Face account to continue. </p> <form action="{base}/{$page.data.loginRequired ? 'login' : 'settings'}" target="_parent" method="POST" class="flex w-full flex-col items-center gap-2" > {#if $page.data.loginRequired} <button type="submit" class="flex w-full items-center justify-center whitespace-nowrap rounded-full bg-black px-5 py-2 text-center text-lg font-semibold text-gray-100 transition-colors hover:bg-gray-900" > Sign in {#if PUBLIC_APP_NAME === "HuggingChat"} with <LogoHuggingFaceBorderless classNames="text-xl mr-1 ml-1.5" /> Hugging Face {/if} </button> {:else} <button class="flex w-full items-center justify-center whitespace-nowrap rounded-full border-2 border-black bg-black px-5 py-2 text-lg font-semibold text-gray-100 transition-colors hover:bg-gray-900" on:click={(e) => { if (!cookiesAreEnabled()) { e.preventDefault(); window.open(window.location.href, "_blank"); } $settings.ethicsModalAccepted = true; }} > Start chatting </button> {/if} </form> </div> </Modal>
chat-ui/src/lib/components/LoginModal.svelte/0
{ "file_path": "chat-ui/src/lib/components/LoginModal.svelte", "repo_id": "chat-ui", "token_count": 917 }
47
<script lang="ts"> export let classNames = ""; export let label = "Copied"; export let position = "left-1/2 top-full transform -translate-x-1/2 translate-y-2"; </script> <div class=" pointer-events-none absolute rounded bg-black px-2 py-1 font-normal leading-tight text-white shadow transition-opacity {position} {classNames} " > <div class="absolute bottom-full left-1/2 h-0 w-0 -translate-x-1/2 transform border-4 border-t-0 border-black" style=" border-left-color: transparent; border-right-color: transparent; " /> {label} </div>
chat-ui/src/lib/components/Tooltip.svelte/0
{ "file_path": "chat-ui/src/lib/components/Tooltip.svelte", "repo_id": "chat-ui", "token_count": 216 }
48
import { buildPrompt } from "$lib/buildPrompt"; import { textGenerationStream } from "@huggingface/inference"; import { z } from "zod"; import type { Endpoint } from "../endpoints"; export const endpointAwsParametersSchema = z.object({ weight: z.number().int().positive().default(1), model: z.any(), type: z.literal("aws"), url: z.string().url(), accessKey: z.string().min(1), secretKey: z.string().min(1), sessionToken: z.string().optional(), service: z.union([z.literal("sagemaker"), z.literal("lambda")]).default("sagemaker"), region: z.string().optional(), }); export async function endpointAws( input: z.input<typeof endpointAwsParametersSchema> ): Promise<Endpoint> { let AwsClient; try { AwsClient = (await import("aws4fetch")).AwsClient; } catch (e) { throw new Error("Failed to import aws4fetch"); } const { url, accessKey, secretKey, sessionToken, model, region, service } = endpointAwsParametersSchema.parse(input); const aws = new AwsClient({ accessKeyId: accessKey, secretAccessKey: secretKey, sessionToken, service, region, }); return async ({ messages, preprompt, continueMessage }) => { const prompt = await buildPrompt({ messages, continueMessage, preprompt, model, }); return textGenerationStream( { parameters: { ...model.parameters, return_full_text: false }, model: url, inputs: prompt, }, { use_cache: false, fetch: aws.fetch.bind(aws) as typeof fetch, } ); }; } export default endpointAws;
chat-ui/src/lib/server/endpoints/aws/endpointAws.ts/0
{ "file_path": "chat-ui/src/lib/server/endpoints/aws/endpointAws.ts", "repo_id": "chat-ui", "token_count": 558 }
49
import { LLM_SUMMERIZATION } from "$env/static/private"; import { generateFromDefaultEndpoint } from "$lib/server/generateFromDefaultEndpoint"; import type { Message } from "$lib/types/Message"; export async function summarize(prompt: string) { if (!LLM_SUMMERIZATION) { return prompt.split(/\s+/g).slice(0, 5).join(" "); } const messages: Array<Omit<Message, "id">> = [ { from: "user", content: "Who is the president of Gabon?" }, { from: "assistant", content: "๐Ÿ‡ฌ๐Ÿ‡ฆ President of Gabon" }, { from: "user", content: "Who is Julien Chaumond?" }, { from: "assistant", content: "๐Ÿง‘ Julien Chaumond" }, { from: "user", content: "what is 1 + 1?" }, { from: "assistant", content: "๐Ÿ”ข Simple math operation" }, { from: "user", content: "What are the latest news?" }, { from: "assistant", content: "๐Ÿ“ฐ Latest news" }, { from: "user", content: "How to make a great cheesecake?" }, { from: "assistant", content: "๐Ÿฐ Cheesecake recipe" }, { from: "user", content: "what is your favorite movie? do a short answer." }, { from: "assistant", content: "๐ŸŽฅ Favorite movie" }, { from: "user", content: "Explain the concept of artificial intelligence in one sentence" }, { from: "assistant", content: "๐Ÿค– AI definition" }, { from: "user", content: prompt }, ]; return await generateFromDefaultEndpoint({ messages, preprompt: `You are a summarization AI. You'll never answer a user's question directly, but instead summarize the user's request into a single short sentence of four words or less. Always start your answer with an emoji relevant to the summary.`, }) .then((summary) => { // add an emoji if none is found in the first three characters if (!/\p{Emoji}/u.test(summary.slice(0, 3))) { return "๐Ÿ’ฌ " + summary; } return summary; }) .catch((e) => { console.error(e); return null; }); }
chat-ui/src/lib/server/summarize.ts/0
{ "file_path": "chat-ui/src/lib/server/summarize.ts", "repo_id": "chat-ui", "token_count": 638 }
50
export function switchTheme() { const { classList } = document.querySelector("html") as HTMLElement; const metaTheme = document.querySelector('meta[name="theme-color"]') as HTMLMetaElement; if (classList.contains("dark")) { classList.remove("dark"); metaTheme.setAttribute("content", "rgb(249, 250, 251)"); localStorage.theme = "light"; } else { classList.add("dark"); metaTheme.setAttribute("content", "rgb(26, 36, 50)"); localStorage.theme = "dark"; } }
chat-ui/src/lib/switchTheme.ts/0
{ "file_path": "chat-ui/src/lib/switchTheme.ts", "repo_id": "chat-ui", "token_count": 164 }
51
import type { Message } from "./Message"; export type LegacyParamatersTemplateInput = { preprompt?: string; userMessageToken: string; userMessageEndToken: string; assistantMessageToken: string; assistantMessageEndToken: string; }; export type ChatTemplateInput = { messages: Pick<Message, "from" | "content">[]; preprompt?: string; };
chat-ui/src/lib/types/Template.ts/0
{ "file_path": "chat-ui/src/lib/types/Template.ts", "repo_id": "chat-ui", "token_count": 105 }
52
// Approximate width from which we disable autofocus const TABLET_VIEWPORT_WIDTH = 768; export function isDesktop(window: Window) { const { innerWidth } = window; return innerWidth > TABLET_VIEWPORT_WIDTH; }
chat-ui/src/lib/utils/isDesktop.ts/0
{ "file_path": "chat-ui/src/lib/utils/isDesktop.ts", "repo_id": "chat-ui", "token_count": 67 }
53
import type { Conversation } from "$lib/types/Conversation"; import type { Message } from "$lib/types/Message"; import { v4 } from "uuid"; export function addSibling( conv: Pick<Conversation, "messages" | "rootMessageId">, message: Omit<Message, "id">, siblingId: Message["id"] ): Message["id"] { if (conv.messages.length === 0) { throw new Error("Cannot add a sibling to an empty conversation"); } if (!conv.rootMessageId) { throw new Error("Cannot add a sibling to a legacy conversation"); } const sibling = conv.messages.find((m) => m.id === siblingId); if (!sibling) { throw new Error("The sibling message doesn't exist"); } if (!sibling.ancestors || sibling.ancestors?.length === 0) { throw new Error("The sibling message is the root message, therefore we can't add a sibling"); } const messageId = v4(); conv.messages.push({ ...message, id: messageId, ancestors: sibling.ancestors, children: [], }); const nearestAncestorId = sibling.ancestors[sibling.ancestors.length - 1]; const nearestAncestor = conv.messages.find((m) => m.id === nearestAncestorId); if (nearestAncestor) { if (nearestAncestor.children) { nearestAncestor.children.push(messageId); } else nearestAncestor.children = [messageId]; } return messageId; }
chat-ui/src/lib/utils/tree/addSibling.ts/0
{ "file_path": "chat-ui/src/lib/utils/tree/addSibling.ts", "repo_id": "chat-ui", "token_count": 439 }
54
import { models } from "$lib/server/models"; export async function GET() { const res = models.map((model) => ({ id: model.id, name: model.name, websiteUrl: model.websiteUrl, modelUrl: model.modelUrl, datasetName: model.datasetName, datasetUrl: model.datasetUrl, displayName: model.displayName, description: model.description, logoUrl: model.logoUrl, promptExamples: model.promptExamples, preprompt: model.preprompt, multimodal: model.multimodal, unlisted: model.unlisted, })); return Response.json(res); }
chat-ui/src/routes/api/models/+server.ts/0
{ "file_path": "chat-ui/src/routes/api/models/+server.ts", "repo_id": "chat-ui", "token_count": 206 }
55
import { authCondition } from "$lib/server/auth"; import { collections } from "$lib/server/database"; import { error } from "@sveltejs/kit"; import { ObjectId } from "mongodb"; /** * Ideally, we'd be able to detect the client-side abort, see https://github.com/huggingface/chat-ui/pull/88#issuecomment-1523173850 */ export async function POST({ params, locals }) { const conversationId = new ObjectId(params.id); const conversation = await collections.conversations.findOne({ _id: conversationId, ...authCondition(locals), }); if (!conversation) { throw error(404, "Conversation not found"); } await collections.abortedGenerations.updateOne( { conversationId }, { $set: { updatedAt: new Date() }, $setOnInsert: { createdAt: new Date() } }, { upsert: true } ); return new Response(); }
chat-ui/src/routes/conversation/[id]/stop-generating/+server.ts/0
{ "file_path": "chat-ui/src/routes/conversation/[id]/stop-generating/+server.ts", "repo_id": "chat-ui", "token_count": 261 }
56
import { collections } from "$lib/server/database"; import { z } from "zod"; import { authCondition } from "$lib/server/auth"; import { DEFAULT_SETTINGS } from "$lib/types/Settings"; export async function POST({ request, locals }) { const body = await request.json(); const { ethicsModalAccepted, ...settings } = z .object({ shareConversationsWithModelAuthors: z .boolean() .default(DEFAULT_SETTINGS.shareConversationsWithModelAuthors), hideEmojiOnSidebar: z.boolean().default(DEFAULT_SETTINGS.hideEmojiOnSidebar), ethicsModalAccepted: z.boolean().optional(), activeModel: z.string().default(DEFAULT_SETTINGS.activeModel), customPrompts: z.record(z.string()).default({}), }) .parse(body); await collections.settings.updateOne( authCondition(locals), { $set: { ...settings, ...(ethicsModalAccepted && { ethicsModalAcceptedAt: new Date() }), updatedAt: new Date(), }, $setOnInsert: { createdAt: new Date(), }, }, { upsert: true, } ); // return ok response return new Response(); }
chat-ui/src/routes/settings/(nav)/+server.ts/0
{ "file_path": "chat-ui/src/routes/settings/(nav)/+server.ts", "repo_id": "chat-ui", "token_count": 401 }
57
import { sveltekit } from "@sveltejs/kit/vite"; import { defineConfig, type PluginOption } from "vite"; import Icons from "unplugin-icons/vite"; import { promises } from "fs"; // used to load fonts server side for thumbnail generation function loadTTFAsArrayBuffer(): PluginOption { return { name: "load-ttf-as-array-buffer", async transform(_src, id) { if (id.endsWith(".ttf")) { return `export default new Uint8Array([ ${new Uint8Array(await promises.readFile(id))} ]).buffer`; } }, }; } export default defineConfig({ plugins: [ sveltekit(), Icons({ compiler: "svelte", }), loadTTFAsArrayBuffer(), ], optimizeDeps: { include: ["browser-image-resizer", "uuid"], }, });
chat-ui/vite.config.ts/0
{ "file_path": "chat-ui/vite.config.ts", "repo_id": "chat-ui", "token_count": 276 }
58
{ "license": "Apache-2.0", "creators": [ { "affiliation": "Hugging Face", "name": "Quentin Lhoest" }, { "orcid": "0000-0003-1727-1045", "affiliation": "Hugging Face", "name": "Albert Villanova del Moral" }, { "affiliation": "Hugging Face", "name": "Patrick von Platen" }, { "affiliation": "Hugging Face", "name": "Thomas Wolf" }, { "affiliation": "Hugging Face", "name": "Mario ล aลกko" }, { "affiliation": "Hugging Face", "name": "Yacine Jernite" }, { "affiliation": "Hugging Face", "name": "Abhishek Thakur" }, { "affiliation": "Hugging Face", "name": "Lewis Tunstall" }, { "affiliation": "Hugging Face", "name": "Suraj Patil" }, { "affiliation": "Hugging Face", "name": "Mariama Drame" }, { "affiliation": "Hugging Face", "name": "Julien Chaumond" }, { "affiliation": "Hugging Face", "name": "Julien Plu" }, { "affiliation": "Hugging Face", "name": "Joe Davison" }, { "affiliation": "Hugging Face", "name": "Simon Brandeis" }, { "affiliation": "Hugging Face", "name": "Victor Sanh" }, { "affiliation": "Hugging Face", "name": "Teven Le Scao" }, { "affiliation": "Hugging Face", "name": "Kevin Canwen Xu" }, { "affiliation": "Hugging Face", "name": "Nicolas Patry" }, { "affiliation": "Hugging Face", "name": "Steven Liu" }, { "affiliation": "Hugging Face", "name": "Angelina McMillan-Major" }, { "affiliation": "Hugging Face", "name": "Philipp Schmid" }, { "affiliation": "Hugging Face", "name": "Sylvain Gugger" }, { "affiliation": "Hugging Face", "name": "Nathan Raw" }, { "affiliation": "Hugging Face", "name": "Sylvain Lesage" }, { "affiliation": "Hugging Face", "name": "Anton Lozhkov" }, { "affiliation": "Hugging Face", "name": "Matthew Carrigan" }, { "affiliation": "Hugging Face", "name": "Th\u00e9o Matussi\u00e8re" }, { "affiliation": "Hugging Face", "name": "Leandro von Werra" }, { "affiliation": "Hugging Face", "name": "Lysandre Debut" }, { "affiliation": "Hugging Face", "name": "Stas Bekman" }, { "affiliation": "Hugging Face", "name": "Cl\u00e9ment Delangue" } ] }
datasets/.zenodo.json/0
{ "file_path": "datasets/.zenodo.json", "repo_id": "datasets", "token_count": 1953 }
59
import json import sys def format_json_to_md(input_json_file, output_md_file): with open(input_json_file, encoding="utf-8") as f: results = json.load(f) output_md = ["<details>", "<summary>Show updated benchmarks!</summary>", " "] for benchmark_name in sorted(results): benchmark_res = results[benchmark_name] benchmark_file_name = benchmark_name.split("/")[-1] output_md.append(f"### Benchmark: {benchmark_file_name}") title = "| metric |" lines = "|--------|" value = "| new / old (diff) |" for metric_name in sorted(benchmark_res): metric_vals = benchmark_res[metric_name] new_val = metric_vals["new"] old_val = metric_vals.get("old", None) dif_val = metric_vals.get("diff", None) val_str = f" {new_val:f}" if isinstance(new_val, (int, float)) else "None" if old_val is not None: val_str += f" / {old_val:f}" if isinstance(old_val, (int, float)) else "None" if dif_val is not None: val_str += f" ({dif_val:f})" if isinstance(dif_val, (int, float)) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("</details>") with open(output_md_file, "w", encoding="utf-8") as f: f.writelines("\n".join(output_md)) if __name__ == "__main__": input_json_file = sys.argv[1] output_md_file = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
datasets/benchmarks/format.py/0
{ "file_path": "datasets/benchmarks/format.py", "repo_id": "datasets", "token_count": 746 }
60
# Batch mapping Combining the utility of [`Dataset.map`] with batch mode is very powerful. It allows you to speed up processing, and freely control the size of the generated dataset. ## Need for speed The primary objective of batch mapping is to speed up processing. Often times, it is faster to work with batches of data instead of single examples. Naturally, batch mapping lends itself to tokenization. For example, the ๐Ÿค— [Tokenizers](https://huggingface.co/docs/tokenizers/python/latest/) library works faster with batches because it parallelizes the tokenization of all the examples in a batch. ## Input size != output size The ability to control the size of the generated dataset can be leveraged for many interesting use-cases. In the How-to [map](#map) section, there are examples of using batch mapping to: - Split long sentences into shorter chunks. - Augment a dataset with additional tokens. It is helpful to understand how this works, so you can come up with your own ways to use batch mapping. At this point, you may be wondering how you can control the size of the generated dataset. The answer is: **the mapped function does not have to return an output batch of the same size**. In other words, your mapped function input can be a batch of size `N` and return a batch of size `M`. The output `M` can be greater than or less than `N`. This means you can concatenate your examples, divide it up, and even add more examples! However, remember that all values in the output dictionary must contain the **same number of elements** as the other fields in the output dictionary. Otherwise, it is not possible to define the number of examples in the output returned by the mapped function. The number can vary between successive batches processed by the mapped function. For a single batch though, all values of the output dictionary should have the same length (i.e., the number of elements). For example, from a dataset of 1 column and 3 rows, if you use `map` to return a new column with twice as many rows, then you will have an error. In this case, you end up with one column with 3 rows, and one column with 6 rows. As you can see, the table will not be valid: ```py >>> from datasets import Dataset >>> dataset = Dataset.from_dict({"a": [0, 1, 2]}) >>> dataset.map(lambda batch: {"b": batch["a"] * 2}, batched=True) # new column with 6 elements: [0, 1, 2, 0, 1, 2] 'ArrowInvalid: Column 1 named b expected length 3 but got length 6' ``` To make it valid, you have to drop one of the columns: ```py >>> from datasets import Dataset >>> dataset = Dataset.from_dict({"a": [0, 1, 2]}) >>> dataset_with_duplicates = dataset.map(lambda batch: {"b": batch["a"] * 2}, remove_columns=["a"], batched=True) >>> len(dataset_with_duplicates) 6 ```
datasets/docs/source/about_map_batch.mdx/0
{ "file_path": "datasets/docs/source/about_map_batch.mdx", "repo_id": "datasets", "token_count": 722 }
61
# Metrics <Tip warning={true}> Metrics is deprecated in ๐Ÿค— Datasets. To learn more about how to use metrics, take a look at the library ๐Ÿค— [Evaluate](https://huggingface.co/docs/evaluate/index)! In addition to metrics, you can find more tools for evaluating models and datasets. </Tip> Metrics are important for evaluating a model's predictions. In the tutorial, you learned how to compute a metric over an entire evaluation set. You have also seen how to load a metric. This guide will show you how to: - Add predictions and references. - Compute metrics using different methods. - Write your own metric loading script. ## Add predictions and references When you want to add model predictions and references to a [`Metric`] instance, you have two options: - [`Metric.add`] adds a single `prediction` and `reference`. - [`Metric.add_batch`] adds a batch of `predictions` and `references`. Use [`Metric.add_batch`] by passing it your model predictions, and the references the model predictions should be evaluated against: ```py >>> import datasets >>> metric = datasets.load_metric('my_metric') >>> for model_input, gold_references in evaluation_dataset: ... model_predictions = model(model_inputs) ... metric.add_batch(predictions=model_predictions, references=gold_references) >>> final_score = metric.compute() ``` <Tip> Metrics accepts various input formats (Python lists, NumPy arrays, PyTorch tensors, etc.) and converts them to an appropriate format for storage and computation. </Tip> ## Compute scores The most straightforward way to calculate a metric is to call [`Metric.compute`]. But some metrics have additional arguments that allow you to modify the metrics behavior. Let's load the [SacreBLEU](https://huggingface.co/metrics/sacrebleu) metric, and compute it with a different smoothing method. 1. Load the SacreBLEU metric: ```py >>> import datasets >>> metric = datasets.load_metric('sacrebleu') ``` 2. Inspect the different argument methods for computing the metric: ```py >>> print(metric.inputs_description) Produces BLEU scores along with its sufficient statistics from a source against one or more references. Args: predictions: The system stream (a sequence of segments). references: A list of one or more reference streams (each a sequence of segments). smooth_method: The smoothing method to use. (Default: 'exp'). smooth_value: The smoothing value. Only valid for 'floor' and 'add-k'. (Defaults: floor: 0.1, add-k: 1). tokenize: Tokenization method to use for BLEU. If not provided, defaults to 'zh' for Chinese, 'ja-mecab' for Japanese and '13a' (mteval) otherwise. lowercase: Lowercase the data. If True, enables case-insensitivity. (Default: False). force: Insist that your tokenized input is actually detokenized. ... ``` 3. Compute the metric with the `floor` method, and a different `smooth_value`: ```py >>> score = metric.compute(smooth_method="floor", smooth_value=0.2) ``` <a id='metric_script'></a> ## Custom metric loading script Write a metric loading script to use your own custom metric (or one that is not on the Hub). Then you can load it as usual with [`load_metric`]. To help you get started, open the [SQuAD metric loading script](https://github.com/huggingface/datasets/blob/main/metrics/squad/squad.py) and follow along. <Tip> Get jump started with our metric loading script [template](https://github.com/huggingface/datasets/blob/f9713d2e23813142a02f1b0e965095f528785cff/templates/new_metric_script.py)! </Tip> ### Add metric attributes Start by adding some information about your metric in [`Metric._info`]. The most important attributes you should specify are: 1. [`MetricInfo.description`] provides a brief description about your metric. 2. [`MetricInfo.citation`] contains a BibTex citation for the metric. 3. [`MetricInfo.inputs_description`] describes the expected inputs and outputs. It may also provide an example usage of the metric. 4. [`MetricInfo.features`] defines the name and type of the predictions and references. After you've filled out all these fields in the template, it should look like the following example from the SQuAD metric script: ```py class Squad(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": {"id": datasets.Value("string"), "prediction_text": datasets.Value("string")}, "references": { "id": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), }, } ), codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], ) ``` ### Download metric files If your metric needs to download, or retrieve local files, you will need to use the [`Metric._download_and_prepare`] method. For this example, let's examine the [BLEURT metric loading script](https://github.com/huggingface/datasets/blob/main/metrics/bleurt/bleurt.py). 1. Provide a dictionary of URLs that point to the metric files: ```py CHECKPOINT_URLS = { "bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip", "bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip", "bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip", "bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip", "bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip", "bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip", } ``` <Tip> If the files are stored locally, provide a dictionary of path(s) instead of URLs. </Tip> 2. [`Metric._download_and_prepare`] will take the URLs and download the metric files specified: ```py def _download_and_prepare(self, dl_manager): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512')." ) self.config_name = "bleurt-base-128" if self.config_name not in CHECKPOINT_URLS.keys(): raise KeyError( f"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}" ) # download the model checkpoint specified by self.config_name and set up the scorer model_path = dl_manager.download_and_extract(CHECKPOINT_URLS[self.config_name]) self.scorer = score.BleurtScorer(os.path.join(model_path, self.config_name)) ``` ### Compute score [`DatasetBuilder._compute`] provides the actual instructions for how to compute a metric given the predictions and references. Now let's take a look at the [GLUE metric loading script](https://github.com/huggingface/datasets/blob/main/metrics/glue/glue.py). 1. Provide the functions for [`DatasetBuilder._compute`] to calculate your metric: ```py def simple_accuracy(preds, labels): return (preds == labels).mean().item() def acc_and_f1(preds, labels): acc = simple_accuracy(preds, labels) f1 = f1_score(y_true=labels, y_pred=preds).item() return { "accuracy": acc, "f1": f1, } def pearson_and_spearman(preds, labels): pearson_corr = pearsonr(preds, labels)[0].item() spearman_corr = spearmanr(preds, labels)[0].item() return { "pearson": pearson_corr, "spearmanr": spearman_corr, } ``` 2. Create [`DatasetBuilder._compute`] with instructions for what metric to calculate for each configuration: ```py def _compute(self, predictions, references): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(references, predictions)} elif self.config_name == "stsb": return pearson_and_spearman(predictions, references) elif self.config_name in ["mrpc", "qqp"]: return acc_and_f1(predictions, references) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(predictions, references)} else: raise KeyError( "You should supply a configuration name selected in " '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) ``` ### Test Once you're finished writing your metric loading script, try to load it locally: ```py >>> from datasets import load_metric >>> metric = load_metric('PATH/TO/MY/SCRIPT.py') ```
datasets/docs/source/how_to_metrics.mdx/0
{ "file_path": "datasets/docs/source/how_to_metrics.mdx", "repo_id": "datasets", "token_count": 3350 }
62
# Loading methods Methods for listing and loading datasets and metrics: ## Datasets [[autodoc]] datasets.list_datasets [[autodoc]] datasets.load_dataset [[autodoc]] datasets.load_from_disk [[autodoc]] datasets.load_dataset_builder [[autodoc]] datasets.get_dataset_config_names [[autodoc]] datasets.get_dataset_infos [[autodoc]] datasets.get_dataset_split_names [[autodoc]] datasets.inspect_dataset ## Metrics <Tip warning={true}> Metrics is deprecated in ๐Ÿค— Datasets. To learn more about how to use metrics, take a look at the library ๐Ÿค— [Evaluate](https://huggingface.co/docs/evaluate/index)! In addition to metrics, you can find more tools for evaluating models and datasets. </Tip> [[autodoc]] datasets.list_metrics [[autodoc]] datasets.load_metric [[autodoc]] datasets.inspect_metric ## From files Configurations used to load data files. They are used when loading local files or a dataset repository: - local files: `load_dataset("parquet", data_dir="path/to/data/dir")` - dataset repository: `load_dataset("allenai/c4")` You can pass arguments to `load_dataset` to configure data loading. For example you can specify the `sep` parameter to define the [`~datasets.packaged_modules.csv.CsvConfig`] that is used to load the data: ```python load_dataset("csv", data_dir="path/to/data/dir", sep="\t") ``` ### Text [[autodoc]] datasets.packaged_modules.text.TextConfig [[autodoc]] datasets.packaged_modules.text.Text ### CSV [[autodoc]] datasets.packaged_modules.csv.CsvConfig [[autodoc]] datasets.packaged_modules.csv.Csv ### JSON [[autodoc]] datasets.packaged_modules.json.JsonConfig [[autodoc]] datasets.packaged_modules.json.Json ### Parquet [[autodoc]] datasets.packaged_modules.parquet.ParquetConfig [[autodoc]] datasets.packaged_modules.parquet.Parquet ### Arrow [[autodoc]] datasets.packaged_modules.arrow.ArrowConfig [[autodoc]] datasets.packaged_modules.arrow.Arrow ### SQL [[autodoc]] datasets.packaged_modules.sql.SqlConfig [[autodoc]] datasets.packaged_modules.sql.Sql ### Images [[autodoc]] datasets.packaged_modules.imagefolder.ImageFolderConfig [[autodoc]] datasets.packaged_modules.imagefolder.ImageFolder ### Audio [[autodoc]] datasets.packaged_modules.audiofolder.AudioFolderConfig [[autodoc]] datasets.packaged_modules.audiofolder.AudioFolder ### WebDataset [[autodoc]] datasets.packaged_modules.webdataset.WebDataset
datasets/docs/source/package_reference/loading_methods.mdx/0
{ "file_path": "datasets/docs/source/package_reference/loading_methods.mdx", "repo_id": "datasets", "token_count": 809 }
63
# Use with JAX This document is a quick introduction to using `datasets` with JAX, with a particular focus on how to get `jax.Array` objects out of our datasets, and how to use them to train JAX models. <Tip> `jax` and `jaxlib` are required to reproduce to code above, so please make sure you install them as `pip install datasets[jax]`. </Tip> ## Dataset format By default, datasets return regular Python objects: integers, floats, strings, lists, etc., and string and binary objects are unchanged, since JAX only supports numbers. To get JAX arrays (numpy-like) instead, you can set the format of the dataset to `jax`: ```py >>> from datasets import Dataset >>> data = [[1, 2], [3, 4]] >>> ds = Dataset.from_dict({"data": data}) >>> ds = ds.with_format("jax") >>> ds[0] {'data': DeviceArray([1, 2], dtype=int32)} >>> ds[:2] {'data': DeviceArray([ [1, 2], [3, 4]], dtype=int32)} ``` <Tip> A [`Dataset`] object is a wrapper of an Arrow table, which allows fast reads from arrays in the dataset to JAX arrays. </Tip> Note that the exact same procedure applies to `DatasetDict` objects, so that when setting the format of a `DatasetDict` to `jax`, all the `Dataset`s there will be formatted as `jax`: ```py >>> from datasets import DatasetDict >>> data = {"train": {"data": [[1, 2], [3, 4]]}, "test": {"data": [[5, 6], [7, 8]]}} >>> dds = DatasetDict.from_dict(data) >>> dds = dds.with_format("jax") >>> dds["train"][:2] {'data': DeviceArray([ [1, 2], [3, 4]], dtype=int32)} ``` Another thing you'll need to take into consideration is that the formatting is not applied until you actually access the data. So if you want to get a JAX array out of a dataset, you'll need to access the data first, otherwise the format will remain the same. Finally, to load the data in the device of your choice, you can specify the `device` argument, but note that `jaxlib.xla_extension.Device` is not supported as it's not serializable with neither `pickle` not `dill`, so you'll need to use its string identifier instead: ```py >>> import jax >>> from datasets import Dataset >>> data = [[1, 2], [3, 4]] >>> ds = Dataset.from_dict({"data": data}) >>> device = str(jax.devices()[0]) # Not casting to `str` before passing it to `with_format` will raise a `ValueError` >>> ds = ds.with_format("jax", device=device) >>> ds[0] {'data': DeviceArray([1, 2], dtype=int32)} >>> ds[0]["data"].device() TFRT_CPU_0 >>> assert ds[0]["data"].device() == jax.devices()[0] True ``` Note that if the `device` argument is not provided to `with_format` then it will use the default device which is `jax.devices()[0]`. ## N-dimensional arrays If your dataset consists of N-dimensional arrays, you will see that by default they are considered as nested lists. In particular, a JAX formatted dataset outputs a `DeviceArray` object, which is a numpy-like array, so it does not need the [`Array`] feature type to be specified as opposed to PyTorch or TensorFlow formatters. ```py >>> from datasets import Dataset >>> data = [[[1, 2],[3, 4]], [[5, 6],[7, 8]]] >>> ds = Dataset.from_dict({"data": data}) >>> ds = ds.with_format("jax") >>> ds[0] {'data': DeviceArray([[1, 2], [3, 4]], dtype=int32)} ``` ## Other feature types [`ClassLabel`] data is properly converted to arrays: ```py >>> from datasets import Dataset, Features, ClassLabel >>> labels = [0, 0, 1] >>> features = Features({"label": ClassLabel(names=["negative", "positive"])}) >>> ds = Dataset.from_dict({"label": labels}, features=features) >>> ds = ds.with_format("jax") >>> ds[:3] {'label': DeviceArray([0, 0, 1], dtype=int32)} ``` String and binary objects are unchanged, since JAX only supports numbers. The [`Image`] and [`Audio`] feature types are also supported. <Tip> To use the [`Image`] feature type, you'll need to install the `vision` extra as `pip install datasets[vision]`. </Tip> ```py >>> from datasets import Dataset, Features, Image >>> images = ["path/to/image.png"] * 10 >>> features = Features({"image": Image()}) >>> ds = Dataset.from_dict({"image": images}, features=features) >>> ds = ds.with_format("jax") >>> ds[0]["image"].shape (512, 512, 3) >>> ds[0] {'image': DeviceArray([[[ 255, 255, 255], [ 255, 255, 255], ..., [ 255, 255, 255], [ 255, 255, 255]]], dtype=uint8)} >>> ds[:2]["image"].shape (2, 512, 512, 3) >>> ds[:2] {'image': DeviceArray([[[[ 255, 255, 255], [ 255, 255, 255], ..., [ 255, 255, 255], [ 255, 255, 255]]]], dtype=uint8)} ``` <Tip> To use the [`Audio`] feature type, you'll need to install the `audio` extra as `pip install datasets[audio]`. </Tip> ```py >>> from datasets import Dataset, Features, Audio >>> audio = ["path/to/audio.wav"] * 10 >>> features = Features({"audio": Audio()}) >>> ds = Dataset.from_dict({"audio": audio}, features=features) >>> ds = ds.with_format("jax") >>> ds[0]["audio"]["array"] DeviceArray([-0.059021 , -0.03894043, -0.00735474, ..., 0.0133667 , 0.01809692, 0.00268555], dtype=float32) >>> ds[0]["audio"]["sampling_rate"] DeviceArray(44100, dtype=int32, weak_type=True) ``` ## Data loading JAX doesn't have any built-in data loading capabilities, so you'll need to use a library such as [PyTorch](https://pytorch.org/) to load your data using a `DataLoader` or [TensorFlow](https://www.tensorflow.org/) using a `tf.data.Dataset`. Citing the [JAX documentation](https://jax.readthedocs.io/en/latest/notebooks/Neural_Network_and_Data_Loading.html#data-loading-with-pytorch) on this topic: "JAX is laser-focused on program transformations and accelerator-backed NumPy, so we donโ€™t include data loading or munging in the JAX library. There are already a lot of great data loaders out there, so letโ€™s just use them instead of reinventing anything. Weโ€™ll grab PyTorchโ€™s data loader, and make a tiny shim to make it work with NumPy arrays.". So that's the reason why JAX-formatting in `datasets` is so useful, because it lets you use any model from the HuggingFace Hub with JAX, without having to worry about the data loading part. ### Using `with_format('jax')` The easiest way to get JAX arrays out of a dataset is to use the `with_format('jax')` method. Lets assume that we want to train a neural network on the [MNIST dataset](http://yann.lecun.com/exdb/mnist/) available at the HuggingFace Hub at https://huggingface.co/datasets/mnist. ```py >>> from datasets import load_dataset >>> ds = load_dataset("mnist") >>> ds = ds.with_format("jax") >>> ds["train"][0] {'image': DeviceArray([[ 0, 0, 0, ...], [ 0, 0, 0, ...], ..., [ 0, 0, 0, ...], [ 0, 0, 0, ...]], dtype=uint8), 'label': DeviceArray(5, dtype=int32)} ``` Once the format is set we can feed the dataset to the JAX model in batches using the `Dataset.iter()` method: ```py >>> for epoch in range(epochs): ... for batch in ds["train"].iter(batch_size=32): ... x, y = batch["image"], batch["label"] ... ... ```
datasets/docs/source/use_with_jax.mdx/0
{ "file_path": "datasets/docs/source/use_with_jax.mdx", "repo_id": "datasets", "token_count": 2646 }
64
# Copyright 2021 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Chrf(++) metric as available in sacrebleu.""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _CITATION = """\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } """ _DESCRIPTION = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ _KWARGS_DESCRIPTION = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class ChrF(datasets.Metric): def _info(self): if version.parse(scb.__version__) < version.parse("1.4.12"): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), } ), codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"], reference_urls=[ "https://github.com/m-popovic/chrF", ], ) def _compute( self, predictions, references, char_order: int = CHRF.CHAR_ORDER, word_order: int = CHRF.WORD_ORDER, beta: int = CHRF.BETA, lowercase: bool = False, whitespace: bool = False, eps_smoothing: bool = False, ): references_per_prediction = len(references[0]) if any(len(refs) != references_per_prediction for refs in references): raise ValueError("Sacrebleu requires the same number of references for each prediction") transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)] sb_chrf = CHRF(char_order, word_order, beta, lowercase, whitespace, eps_smoothing) output = sb_chrf.corpus_score(predictions, transformed_references) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
datasets/metrics/chrf/chrf.py/0
{ "file_path": "datasets/metrics/chrf/chrf.py", "repo_id": "datasets", "token_count": 3170 }
65
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """F1 metric.""" from sklearn.metrics import f1_score import datasets _DESCRIPTION = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ _KWARGS_DESCRIPTION = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ _CITATION = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class F1(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32")), "references": datasets.Sequence(datasets.Value("int32")), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32"), "references": datasets.Value("int32"), } ), reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"], ) def _compute(self, predictions, references, labels=None, pos_label=1, average="binary", sample_weight=None): score = f1_score( references, predictions, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight ) return {"f1": float(score) if score.size == 1 else score}
datasets/metrics/f1/f1.py/0
{ "file_path": "datasets/metrics/f1/f1.py", "repo_id": "datasets", "token_count": 2364 }
66
# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MAUVE metric from https://github.com/krishnap25/mauve.""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _CITATION = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ _DESCRIPTION = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullbackโ€“Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ _KWARGS_DESCRIPTION = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Mauve(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage="https://github.com/krishnap25/mauve", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), } ), codebase_urls=["https://github.com/krishnap25/mauve"], reference_urls=[ "https://arxiv.org/abs/2102.01454", "https://github.com/krishnap25/mauve", ], ) def _compute( self, predictions, references, p_features=None, q_features=None, p_tokens=None, q_tokens=None, num_buckets="auto", pca_max_data=-1, kmeans_explained_var=0.9, kmeans_num_redo=5, kmeans_max_iter=500, featurize_model_name="gpt2-large", device_id=-1, max_text_length=1024, divergence_curve_discretization_size=25, mauve_scaling_factor=5, verbose=True, seed=25, ): out = compute_mauve( p_text=predictions, q_text=references, p_features=p_features, q_features=q_features, p_tokens=p_tokens, q_tokens=q_tokens, num_buckets=num_buckets, pca_max_data=pca_max_data, kmeans_explained_var=kmeans_explained_var, kmeans_num_redo=kmeans_num_redo, kmeans_max_iter=kmeans_max_iter, featurize_model_name=featurize_model_name, device_id=device_id, max_text_length=max_text_length, divergence_curve_discretization_size=divergence_curve_discretization_size, mauve_scaling_factor=mauve_scaling_factor, verbose=verbose, seed=seed, ) return out
datasets/metrics/mauve/mauve.py/0
{ "file_path": "datasets/metrics/mauve/mauve.py", "repo_id": "datasets", "token_count": 2588 }
67
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Accuracy metric.""" from sklearn.metrics import roc_auc_score import datasets _DESCRIPTION = """ This metric computes the area under the curve (AUC) for the Receiver Operating Characteristic Curve (ROC). The return values represent how well the model used is predicting the correct classes, based on the input data. A score of `0.5` means that the model is predicting exactly at chance, i.e. the model's predictions are correct at the same rate as if the predictions were being decided by the flip of a fair coin or the roll of a fair die. A score above `0.5` indicates that the model is doing better than chance, while a score below `0.5` indicates that the model is doing worse than chance. This metric has three separate use cases: - binary: The case in which there are only two different label classes, and each example gets only one label. This is the default implementation. - multiclass: The case in which there can be more than two different label classes, but each example still gets only one label. - multilabel: The case in which there can be more than two different label classes, and each example can have more than one label. """ _KWARGS_DESCRIPTION = """ Args: - references (array-like of shape (n_samples,) or (n_samples, n_classes)): Ground truth labels. Expects different input based on use case: - binary: expects an array-like of shape (n_samples,) - multiclass: expects an array-like of shape (n_samples,) - multilabel: expects an array-like of shape (n_samples, n_classes) - prediction_scores (array-like of shape (n_samples,) or (n_samples, n_classes)): Model predictions. Expects different inputs based on use case: - binary: expects an array-like of shape (n_samples,) - multiclass: expects an array-like of shape (n_samples, n_classes) - multilabel: expects an array-like of shape (n_samples, n_classes) - average (`str`): Type of average, and is ignored in the binary use case. Defaults to 'macro'. Options are: - `'micro'`: Calculates metrics globally by considering each element of the label indicator matrix as a label. Only works with the multilabel use case. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average, weighted by support (i.e. the number of true instances for each label). - `'samples'`: Calculate metrics for each instance, and find their average. Only works with the multilabel use case. - `None`: No average is calculated, and scores for each class are returned. Only works with the multilabels use case. - sample_weight (array-like of shape (n_samples,)): Sample weights. Defaults to None. - max_fpr (`float`): If not None, the standardized partial AUC over the range [0, `max_fpr`] is returned. Must be greater than `0` and less than or equal to `1`. Defaults to `None`. Note: For the multiclass use case, `max_fpr` should be either `None` or `1.0` as ROC AUC partial computation is not currently supported for `multiclass`. - multi_class (`str`): Only used for multiclass targets, where it is required. Determines the type of configuration to use. Options are: - `'ovr'`: Stands for One-vs-rest. Computes the AUC of each class against the rest. This treats the multiclass case in the same way as the multilabel case. Sensitive to class imbalance even when `average == 'macro'`, because class imbalance affects the composition of each of the 'rest' groupings. - `'ovo'`: Stands for One-vs-one. Computes the average AUC of all possible pairwise combinations of classes. Insensitive to class imbalance when `average == 'macro'`. - labels (array-like of shape (n_classes,)): Only used for multiclass targets. List of labels that index the classes in `prediction_scores`. If `None`, the numerical or lexicographical order of the labels in `prediction_scores` is used. Defaults to `None`. Returns: roc_auc (`float` or array-like of shape (n_classes,)): Returns array if in multilabel use case and `average='None'`. Otherwise, returns `float`. Examples: Example 1: >>> roc_auc_score = datasets.load_metric("roc_auc") >>> refs = [1, 0, 1, 1, 0, 0] >>> pred_scores = [0.5, 0.2, 0.99, 0.3, 0.1, 0.7] >>> results = roc_auc_score.compute(references=refs, prediction_scores=pred_scores) >>> print(round(results['roc_auc'], 2)) 0.78 Example 2: >>> roc_auc_score = datasets.load_metric("roc_auc", "multiclass") >>> refs = [1, 0, 1, 2, 2, 0] >>> pred_scores = [[0.3, 0.5, 0.2], ... [0.7, 0.2, 0.1], ... [0.005, 0.99, 0.005], ... [0.2, 0.3, 0.5], ... [0.1, 0.1, 0.8], ... [0.1, 0.7, 0.2]] >>> results = roc_auc_score.compute(references=refs, prediction_scores=pred_scores, multi_class='ovr') >>> print(round(results['roc_auc'], 2)) 0.85 Example 3: >>> roc_auc_score = datasets.load_metric("roc_auc", "multilabel") >>> refs = [[1, 1, 0], ... [1, 1, 0], ... [0, 1, 0], ... [0, 0, 1], ... [0, 1, 1], ... [1, 0, 1]] >>> pred_scores = [[0.3, 0.5, 0.2], ... [0.7, 0.2, 0.1], ... [0.005, 0.99, 0.005], ... [0.2, 0.3, 0.5], ... [0.1, 0.1, 0.8], ... [0.1, 0.7, 0.2]] >>> results = roc_auc_score.compute(references=refs, prediction_scores=pred_scores, average=None) >>> print([round(res, 2) for res in results['roc_auc']]) [0.83, 0.38, 0.94] """ _CITATION = """\ @article{doi:10.1177/0272989X8900900307, author = {Donna Katzman McClish}, title ={Analyzing a Portion of the ROC Curve}, journal = {Medical Decision Making}, volume = {9}, number = {3}, pages = {190-195}, year = {1989}, doi = {10.1177/0272989X8900900307}, note ={PMID: 2668680}, URL = {https://doi.org/10.1177/0272989X8900900307}, eprint = {https://doi.org/10.1177/0272989X8900900307} } @article{10.1023/A:1010920819831, author = {Hand, David J. and Till, Robert J.}, title = {A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems}, year = {2001}, issue_date = {November 2001}, publisher = {Kluwer Academic Publishers}, address = {USA}, volume = {45}, number = {2}, issn = {0885-6125}, url = {https://doi.org/10.1023/A:1010920819831}, doi = {10.1023/A:1010920819831}, journal = {Mach. Learn.}, month = {oct}, pages = {171โ€“186}, numpages = {16}, keywords = {Gini index, AUC, error rate, ROC curve, receiver operating characteristic} } @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class ROCAUC(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "prediction_scores": datasets.Sequence(datasets.Value("float")), "references": datasets.Value("int32"), } if self.config_name == "multiclass" else { "references": datasets.Sequence(datasets.Value("int32")), "prediction_scores": datasets.Sequence(datasets.Value("float")), } if self.config_name == "multilabel" else { "references": datasets.Value("int32"), "prediction_scores": datasets.Value("float"), } ), reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html"], ) def _compute( self, references, prediction_scores, average="macro", sample_weight=None, max_fpr=None, multi_class="raise", labels=None, ): return { "roc_auc": roc_auc_score( references, prediction_scores, average=average, sample_weight=sample_weight, max_fpr=max_fpr, multi_class=multi_class, labels=labels, ) }
datasets/metrics/roc_auc/roc_auc.py/0
{ "file_path": "datasets/metrics/roc_auc/roc_auc.py", "repo_id": "datasets", "token_count": 3792 }
68
# Copyright 2020 The HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SQuAD v2 metric.""" import datasets from .evaluate import ( apply_no_ans_threshold, find_all_best_thresh, get_raw_scores, make_eval_dict, make_qid_to_has_ans, merge_eval, ) _CITATION = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ _DESCRIPTION = """ This metric wrap the official scoring script for version 2 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering. """ _KWARGS_DESCRIPTION = """ Computes SQuAD v2 scores (F1 and EM). Args: predictions: List of triple for question-answers to score with the following elements: - the question-answer 'id' field as given in the references (see below) - the text of the answer - the probability that the question has no answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a list of Dict {'text': text of the answer as a string} no_answer_threshold: float Probability threshold to decide that a question has no answer. Returns: 'exact': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer 'total': Number of score considered 'HasAns_exact': Exact match (the normalized answer exactly match the gold answer) 'HasAns_f1': The F-score of predicted tokens versus the gold answer 'HasAns_total': Number of score considered 'NoAns_exact': Exact match (the normalized answer exactly match the gold answer) 'NoAns_f1': The F-score of predicted tokens versus the gold answer 'NoAns_total': Number of score considered 'best_exact': Best exact match (with varying threshold) 'best_exact_thresh': No-answer probability threshold associated to the best exact match 'best_f1': Best F1 (with varying threshold) 'best_f1_thresh': No-answer probability threshold associated to the best F1 Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22', 'no_answer_probability': 0.}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_v2_metric = datasets.load_metric("squad_v2") >>> results = squad_v2_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact': 100.0, 'f1': 100.0, 'total': 1, 'HasAns_exact': 100.0, 'HasAns_f1': 100.0, 'HasAns_total': 1, 'best_exact': 100.0, 'best_exact_thresh': 0.0, 'best_f1': 100.0, 'best_f1_thresh': 0.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class SquadV2(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": { "id": datasets.Value("string"), "prediction_text": datasets.Value("string"), "no_answer_probability": datasets.Value("float32"), }, "references": { "id": datasets.Value("string"), "answers": datasets.features.Sequence( {"text": datasets.Value("string"), "answer_start": datasets.Value("int32")} ), }, } ), codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"], ) def _compute(self, predictions, references, no_answer_threshold=1.0): no_answer_probabilities = {p["id"]: p["no_answer_probability"] for p in predictions} dataset = [{"paragraphs": [{"qas": references}]}] predictions = {p["id"]: p["prediction_text"] for p in predictions} qid_to_has_ans = make_qid_to_has_ans(dataset) # maps qid to True/False has_ans_qids = [k for k, v in qid_to_has_ans.items() if v] no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v] exact_raw, f1_raw = get_raw_scores(dataset, predictions) exact_thresh = apply_no_ans_threshold(exact_raw, no_answer_probabilities, qid_to_has_ans, no_answer_threshold) f1_thresh = apply_no_ans_threshold(f1_raw, no_answer_probabilities, qid_to_has_ans, no_answer_threshold) out_eval = make_eval_dict(exact_thresh, f1_thresh) if has_ans_qids: has_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids) merge_eval(out_eval, has_ans_eval, "HasAns") if no_ans_qids: no_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids) merge_eval(out_eval, no_ans_eval, "NoAns") find_all_best_thresh(out_eval, predictions, exact_raw, f1_raw, no_answer_probabilities, qid_to_has_ans) return dict(out_eval)
datasets/metrics/squad_v2/squad_v2.py/0
{ "file_path": "datasets/metrics/squad_v2/squad_v2.py", "repo_id": "datasets", "token_count": 2564 }
69
[tool.ruff] line-length = 119 [tool.ruff.lint] # Ignored rules: # "E501" -> line length violation # "F821" -> undefined named in type annotation (e.g. Literal["something"]) # "C901" -> `function_name` is too complex ignore = ["E501", "F821", "C901"] select = ["C", "E", "F", "I", "W"] [tool.ruff.lint.isort] lines-after-imports = 2 known-first-party = ["datasets"] [tool.pytest.ini_options] # Test fails if a FutureWarning is thrown by `huggingface_hub` filterwarnings = [ "error::FutureWarning:huggingface_hub*", ] markers = [ "unit: unit test", "integration: integration test", ]
datasets/pyproject.toml/0
{ "file_path": "datasets/pyproject.toml", "repo_id": "datasets", "token_count": 236 }
70
import os import re from functools import partial from glob import has_magic from pathlib import Path, PurePath from typing import Callable, Dict, List, Optional, Set, Tuple, Union import huggingface_hub from fsspec.core import url_to_fs from fsspec.implementations.http import HTTPFileSystem from huggingface_hub import HfFileSystem from packaging import version from tqdm.contrib.concurrent import thread_map from . import config from .download import DownloadConfig from .download.streaming_download_manager import _prepare_path_and_storage_options, xbasename, xjoin from .naming import _split_re from .splits import Split from .utils import logging from .utils import tqdm as hf_tqdm from .utils.file_utils import is_local_path, is_relative_path from .utils.py_utils import glob_pattern_to_regex, string_to_dict SANITIZED_DEFAULT_SPLIT = str(Split.TRAIN) logger = logging.get_logger(__name__) class Url(str): pass class EmptyDatasetError(FileNotFoundError): pass SPLIT_PATTERN_SHARDED = "data/{split}-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*" SPLIT_KEYWORDS = { Split.TRAIN: ["train", "training"], Split.VALIDATION: ["validation", "valid", "dev", "val"], Split.TEST: ["test", "testing", "eval", "evaluation"], } NON_WORDS_CHARS = "-._ 0-9" if config.FSSPEC_VERSION < version.parse("2023.9.0"): KEYWORDS_IN_FILENAME_BASE_PATTERNS = ["**[{sep}/]{keyword}[{sep}]*", "{keyword}[{sep}]*"] KEYWORDS_IN_DIR_NAME_BASE_PATTERNS = [ "{keyword}/**", "{keyword}[{sep}]*/**", "**[{sep}/]{keyword}/**", "**[{sep}/]{keyword}[{sep}]*/**", ] elif config.FSSPEC_VERSION < version.parse("2023.12.0"): KEYWORDS_IN_FILENAME_BASE_PATTERNS = ["**/*[{sep}/]{keyword}[{sep}]*", "{keyword}[{sep}]*"] KEYWORDS_IN_DIR_NAME_BASE_PATTERNS = [ "{keyword}/**/*", "{keyword}[{sep}]*/**/*", "**/*[{sep}/]{keyword}/**/*", "**/*[{sep}/]{keyword}[{sep}]*/**/*", ] else: KEYWORDS_IN_FILENAME_BASE_PATTERNS = ["**/{keyword}[{sep}]*", "**/*[{sep}]{keyword}[{sep}]*"] KEYWORDS_IN_DIR_NAME_BASE_PATTERNS = [ "**/{keyword}/**", "**/{keyword}[{sep}]*/**", "**/*[{sep}]{keyword}/**", "**/*[{sep}]{keyword}[{sep}]*/**", ] DEFAULT_SPLITS = [Split.TRAIN, Split.VALIDATION, Split.TEST] DEFAULT_PATTERNS_SPLIT_IN_FILENAME = { split: [ pattern.format(keyword=keyword, sep=NON_WORDS_CHARS) for keyword in SPLIT_KEYWORDS[split] for pattern in KEYWORDS_IN_FILENAME_BASE_PATTERNS ] for split in DEFAULT_SPLITS } DEFAULT_PATTERNS_SPLIT_IN_DIR_NAME = { split: [ pattern.format(keyword=keyword, sep=NON_WORDS_CHARS) for keyword in SPLIT_KEYWORDS[split] for pattern in KEYWORDS_IN_DIR_NAME_BASE_PATTERNS ] for split in DEFAULT_SPLITS } DEFAULT_PATTERNS_ALL = { Split.TRAIN: ["**"], } ALL_SPLIT_PATTERNS = [SPLIT_PATTERN_SHARDED] ALL_DEFAULT_PATTERNS = [ DEFAULT_PATTERNS_SPLIT_IN_DIR_NAME, DEFAULT_PATTERNS_SPLIT_IN_FILENAME, DEFAULT_PATTERNS_ALL, ] if config.FSSPEC_VERSION < version.parse("2023.9.0"): METADATA_PATTERNS = [ "metadata.csv", "**/metadata.csv", "metadata.jsonl", "**/metadata.jsonl", ] # metadata file for ImageFolder and AudioFolder else: METADATA_PATTERNS = [ "**/metadata.csv", "**/metadata.jsonl", ] # metadata file for ImageFolder and AudioFolder WILDCARD_CHARACTERS = "*[]" FILES_TO_IGNORE = [ "README.md", "config.json", "dataset_info.json", "dataset_infos.json", "dummy_data.zip", "dataset_dict.json", ] def contains_wildcards(pattern: str) -> bool: return any(wilcard_character in pattern for wilcard_character in WILDCARD_CHARACTERS) def sanitize_patterns(patterns: Union[Dict, List, str]) -> Dict[str, Union[List[str], "DataFilesList"]]: """ Take the data_files patterns from the user, and format them into a dictionary. Each key is the name of the split, and each value is a list of data files patterns (paths or urls). The default split is "train". Returns: patterns: dictionary of split_name -> list of patterns """ if isinstance(patterns, dict): return {str(key): value if isinstance(value, list) else [value] for key, value in patterns.items()} elif isinstance(patterns, str): return {SANITIZED_DEFAULT_SPLIT: [patterns]} elif isinstance(patterns, list): if any(isinstance(pattern, dict) for pattern in patterns): for pattern in patterns: if not ( isinstance(pattern, dict) and len(pattern) == 2 and "split" in pattern and isinstance(pattern.get("path"), (str, list)) ): raise ValueError( f"Expected each split to have a 'path' key which can be a string or a list of strings, but got {pattern}" ) splits = [pattern["split"] for pattern in patterns] if len(set(splits)) != len(splits): raise ValueError(f"Some splits are duplicated in data_files: {splits}") return { str(pattern["split"]): pattern["path"] if isinstance(pattern["path"], list) else [pattern["path"]] for pattern in patterns } else: return {SANITIZED_DEFAULT_SPLIT: patterns} else: return sanitize_patterns(list(patterns)) def _is_inside_unrequested_special_dir(matched_rel_path: str, pattern: str) -> bool: """ When a path matches a pattern, we additionnally check if it's inside a special directory we ignore by default (if it starts with a double underscore). Users can still explicitly request a filepath inside such a directory if "__pycache__" is mentioned explicitly in the requested pattern. Some examples: base directory: ./ โ””โ”€โ”€ __pycache__ โ””โ”€โ”€ b.txt >>> _is_inside_unrequested_special_dir("__pycache__/b.txt", "**") True >>> _is_inside_unrequested_special_dir("__pycache__/b.txt", "*/b.txt") True >>> _is_inside_unrequested_special_dir("__pycache__/b.txt", "__pycache__/*") False >>> _is_inside_unrequested_special_dir("__pycache__/b.txt", "__*/*") False """ # We just need to check if every special directories from the path is present explicly in the pattern. # Since we assume that the path matches the pattern, it's equivalent to counting that both # the parent path and the parent pattern have the same number of special directories. data_dirs_to_ignore_in_path = [part for part in PurePath(matched_rel_path).parent.parts if part.startswith("__")] data_dirs_to_ignore_in_pattern = [part for part in PurePath(pattern).parent.parts if part.startswith("__")] return len(data_dirs_to_ignore_in_path) != len(data_dirs_to_ignore_in_pattern) def _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(matched_rel_path: str, pattern: str) -> bool: """ When a path matches a pattern, we additionnally check if it's a hidden file or if it's inside a hidden directory we ignore by default, i.e. if the file name or a parent directory name starts with a dot. Users can still explicitly request a filepath that is hidden or is inside a hidden directory if the hidden part is mentioned explicitly in the requested pattern. Some examples: base directory: ./ โ””โ”€โ”€ .hidden_file.txt >>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_file.txt", "**") True >>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_file.txt", ".*") False base directory: ./ โ””โ”€โ”€ .hidden_dir โ””โ”€โ”€ a.txt >>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/a.txt", "**") True >>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/a.txt", ".*/*") False >>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/a.txt", ".hidden_dir/*") False base directory: ./ โ””โ”€โ”€ .hidden_dir โ””โ”€โ”€ .hidden_file.txt >>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", "**") True >>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", ".*/*") True >>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", ".*/.*") False >>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", ".hidden_dir/*") True >>> _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir(".hidden_dir/.hidden_file.txt", ".hidden_dir/.*") False """ # We just need to check if every hidden part from the path is present explicly in the pattern. # Since we assume that the path matches the pattern, it's equivalent to counting that both # the path and the pattern have the same number of hidden parts. hidden_directories_in_path = [ part for part in PurePath(matched_rel_path).parts if part.startswith(".") and not set(part) == {"."} ] hidden_directories_in_pattern = [ part for part in PurePath(pattern).parts if part.startswith(".") and not set(part) == {"."} ] return len(hidden_directories_in_path) != len(hidden_directories_in_pattern) def _get_data_files_patterns(pattern_resolver: Callable[[str], List[str]]) -> Dict[str, List[str]]: """ Get the default pattern from a directory or repository by testing all the supported patterns. The first patterns to return a non-empty list of data files is returned. In order, it first tests if SPLIT_PATTERN_SHARDED works, otherwise it tests the patterns in ALL_DEFAULT_PATTERNS. """ # first check the split patterns like data/{split}-00000-of-00001.parquet for split_pattern in ALL_SPLIT_PATTERNS: pattern = split_pattern.replace("{split}", "*") try: data_files = pattern_resolver(pattern) except FileNotFoundError: continue if len(data_files) > 0: splits: Set[str] = { string_to_dict(xbasename(p), glob_pattern_to_regex(xbasename(split_pattern)))["split"] for p in data_files } if any(not re.match(_split_re, split) for split in splits): raise ValueError(f"Split name should match '{_split_re}'' but got '{splits}'.") sorted_splits = [str(split) for split in DEFAULT_SPLITS if split in splits] + sorted( splits - set(DEFAULT_SPLITS) ) return {split: [split_pattern.format(split=split)] for split in sorted_splits} # then check the default patterns based on train/valid/test splits for patterns_dict in ALL_DEFAULT_PATTERNS: non_empty_splits = [] for split, patterns in patterns_dict.items(): for pattern in patterns: try: data_files = pattern_resolver(pattern) except FileNotFoundError: continue if len(data_files) > 0: non_empty_splits.append(split) break if non_empty_splits: return {split: patterns_dict[split] for split in non_empty_splits} raise FileNotFoundError(f"Couldn't resolve pattern {pattern} with resolver {pattern_resolver}") def _get_metadata_files_patterns(pattern_resolver: Callable[[str], List[str]]) -> List[str]: """ Get the supported metadata patterns from a directory or repository. """ non_empty_patterns = [] for pattern in METADATA_PATTERNS: try: metadata_files = pattern_resolver(pattern) if len(metadata_files) > 0: non_empty_patterns.append(pattern) except FileNotFoundError: pass if non_empty_patterns: return non_empty_patterns raise FileNotFoundError(f"Couldn't resolve pattern {pattern} with resolver {pattern_resolver}") def resolve_pattern( pattern: str, base_path: str, allowed_extensions: Optional[List[str]] = None, download_config: Optional[DownloadConfig] = None, ) -> List[str]: """ Resolve the paths and URLs of the data files from the pattern passed by the user. You can use patterns to resolve multiple local files. Here are a few examples: - *.csv to match all the CSV files at the first level - **.csv to match all the CSV files at any level - data/* to match all the files inside "data" - data/** to match all the files inside "data" and its subdirectories The patterns are resolved using the fsspec glob. In fsspec>=2023.12.0 this is equivalent to Python's glob.glob, Path.glob, Path.match and fnmatch where ** is unsupported with a prefix/suffix other than a forward slash /. More generally: - '*' matches any character except a forward-slash (to match just the file or directory name) - '**' matches any character including a forward-slash / Hidden files and directories (i.e. whose names start with a dot) are ignored, unless they are explicitly requested. The same applies to special directories that start with a double underscore like "__pycache__". You can still include one if the pattern explicilty mentions it: - to include a hidden file: "*/.hidden.txt" or "*/.*" - to include a hidden directory: ".hidden/*" or ".*/*" - to include a special directory: "__special__/*" or "__*/*" Example:: >>> from datasets.data_files import resolve_pattern >>> base_path = "." >>> resolve_pattern("docs/**/*.py", base_path) [/Users/mariosasko/Desktop/projects/datasets/docs/source/_config.py'] Args: pattern (str): Unix pattern or paths or URLs of the data files to resolve. The paths can be absolute or relative to base_path. Remote filesystems using fsspec are supported, e.g. with the hf:// protocol. base_path (str): Base path to use when resolving relative paths. allowed_extensions (Optional[list], optional): White-list of file extensions to use. Defaults to None (all extensions). For example: allowed_extensions=[".csv", ".json", ".txt", ".parquet"] Returns: List[str]: List of paths or URLs to the local or remote files that match the patterns. """ if is_relative_path(pattern): pattern = xjoin(base_path, pattern) elif is_local_path(pattern): base_path = os.path.splitdrive(pattern)[0] + os.sep else: base_path = "" pattern, storage_options = _prepare_path_and_storage_options(pattern, download_config=download_config) fs, *_ = url_to_fs(pattern, **storage_options) fs_base_path = base_path.split("::")[0].split("://")[-1] or fs.root_marker fs_pattern = pattern.split("::")[0].split("://")[-1] files_to_ignore = set(FILES_TO_IGNORE) - {xbasename(pattern)} protocol = fs.protocol if isinstance(fs.protocol, str) else fs.protocol[0] protocol_prefix = protocol + "://" if protocol != "file" else "" glob_kwargs = {} if protocol == "hf" and config.HF_HUB_VERSION >= version.parse("0.20.0"): # 10 times faster glob with detail=True (ignores costly info like lastCommit) glob_kwargs["expand_info"] = False matched_paths = [ filepath if filepath.startswith(protocol_prefix) else protocol_prefix + filepath for filepath, info in fs.glob(pattern, detail=True, **glob_kwargs).items() if info["type"] == "file" and (xbasename(filepath) not in files_to_ignore) and not _is_inside_unrequested_special_dir( os.path.relpath(filepath, fs_base_path), os.path.relpath(fs_pattern, fs_base_path) ) and not _is_unrequested_hidden_file_or_is_inside_unrequested_hidden_dir( os.path.relpath(filepath, fs_base_path), os.path.relpath(fs_pattern, fs_base_path) ) ] # ignore .ipynb and __pycache__, but keep /../ if allowed_extensions is not None: out = [ filepath for filepath in matched_paths if any("." + suffix in allowed_extensions for suffix in xbasename(filepath).split(".")[1:]) ] if len(out) < len(matched_paths): invalid_matched_files = list(set(matched_paths) - set(out)) logger.info( f"Some files matched the pattern '{pattern}' but don't have valid data file extensions: {invalid_matched_files}" ) else: out = matched_paths if not out: error_msg = f"Unable to find '{pattern}'" if allowed_extensions is not None: error_msg += f" with any supported extension {list(allowed_extensions)}" raise FileNotFoundError(error_msg) return out def get_data_patterns(base_path: str, download_config: Optional[DownloadConfig] = None) -> Dict[str, List[str]]: """ Get the default pattern from a directory testing all the supported patterns. The first patterns to return a non-empty list of data files is returned. Some examples of supported patterns: Input: my_dataset_repository/ โ”œโ”€โ”€ README.md โ””โ”€โ”€ dataset.csv Output: {'train': ['**']} Input: my_dataset_repository/ โ”œโ”€โ”€ README.md โ”œโ”€โ”€ train.csv โ””โ”€โ”€ test.csv my_dataset_repository/ โ”œโ”€โ”€ README.md โ””โ”€โ”€ data/ โ”œโ”€โ”€ train.csv โ””โ”€โ”€ test.csv my_dataset_repository/ โ”œโ”€โ”€ README.md โ”œโ”€โ”€ train_0.csv โ”œโ”€โ”€ train_1.csv โ”œโ”€โ”€ train_2.csv โ”œโ”€โ”€ train_3.csv โ”œโ”€โ”€ test_0.csv โ””โ”€โ”€ test_1.csv Output: {'train': ['**/train[-._ 0-9]*', '**/*[-._ 0-9]train[-._ 0-9]*', '**/training[-._ 0-9]*', '**/*[-._ 0-9]training[-._ 0-9]*'], 'test': ['**/test[-._ 0-9]*', '**/*[-._ 0-9]test[-._ 0-9]*', '**/testing[-._ 0-9]*', '**/*[-._ 0-9]testing[-._ 0-9]*', ...]} Input: my_dataset_repository/ โ”œโ”€โ”€ README.md โ””โ”€โ”€ data/ โ”œโ”€โ”€ train/ โ”‚ โ”œโ”€โ”€ shard_0.csv โ”‚ โ”œโ”€โ”€ shard_1.csv โ”‚ โ”œโ”€โ”€ shard_2.csv โ”‚ โ””โ”€โ”€ shard_3.csv โ””โ”€โ”€ test/ โ”œโ”€โ”€ shard_0.csv โ””โ”€โ”€ shard_1.csv Output: {'train': ['**/train/**', '**/train[-._ 0-9]*/**', '**/*[-._ 0-9]train/**', '**/*[-._ 0-9]train[-._ 0-9]*/**', ...], 'test': ['**/test/**', '**/test[-._ 0-9]*/**', '**/*[-._ 0-9]test/**', '**/*[-._ 0-9]test[-._ 0-9]*/**', ...]} Input: my_dataset_repository/ โ”œโ”€โ”€ README.md โ””โ”€โ”€ data/ โ”œโ”€โ”€ train-00000-of-00003.csv โ”œโ”€โ”€ train-00001-of-00003.csv โ”œโ”€โ”€ train-00002-of-00003.csv โ”œโ”€โ”€ test-00000-of-00001.csv โ”œโ”€โ”€ random-00000-of-00003.csv โ”œโ”€โ”€ random-00001-of-00003.csv โ””โ”€โ”€ random-00002-of-00003.csv Output: {'train': ['data/train-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*'], 'test': ['data/test-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*'], 'random': ['data/random-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*']} In order, it first tests if SPLIT_PATTERN_SHARDED works, otherwise it tests the patterns in ALL_DEFAULT_PATTERNS. """ resolver = partial(resolve_pattern, base_path=base_path, download_config=download_config) try: return _get_data_files_patterns(resolver) except FileNotFoundError: raise EmptyDatasetError(f"The directory at {base_path} doesn't contain any data files") from None def get_metadata_patterns( base_path: str, download_config: Optional[DownloadConfig] = None, ) -> List[str]: """ Get the supported metadata patterns from a local directory. """ resolver = partial(resolve_pattern, base_path=base_path, download_config=download_config) try: return _get_metadata_files_patterns(resolver) except FileNotFoundError: raise FileNotFoundError(f"The directory at {base_path} doesn't contain any metadata file") from None def _get_single_origin_metadata( data_file: str, download_config: Optional[DownloadConfig] = None, ) -> Tuple[str]: data_file, storage_options = _prepare_path_and_storage_options(data_file, download_config=download_config) fs, *_ = url_to_fs(data_file, **storage_options) if isinstance(fs, HfFileSystem): resolved_path = fs.resolve_path(data_file) return (resolved_path.repo_id, resolved_path.revision) elif isinstance(fs, HTTPFileSystem) and data_file.startswith(config.HF_ENDPOINT): hffs = HfFileSystem(endpoint=config.HF_ENDPOINT, token=download_config.token) data_file = "hf://" + data_file[len(config.HF_ENDPOINT) + 1 :].replace("/resolve/", "@", 1) resolved_path = hffs.resolve_path(data_file) return (resolved_path.repo_id, resolved_path.revision) info = fs.info(data_file) # s3fs uses "ETag", gcsfs uses "etag", and for local we simply check mtime for key in ["ETag", "etag", "mtime"]: if key in info: return (str(info[key]),) return () def _get_origin_metadata( data_files: List[str], max_workers=64, download_config: Optional[DownloadConfig] = None, ) -> Tuple[str]: return thread_map( partial(_get_single_origin_metadata, download_config=download_config), data_files, max_workers=max_workers, tqdm_class=hf_tqdm, desc="Resolving data files", # set `disable=None` rather than `disable=False` by default to disable progress bar when no TTY attached disable=len(data_files) <= 16 or None, ) class DataFilesList(List[str]): """ List of data files (absolute local paths or URLs). It has two construction methods given the user's data files patterns : - ``from_hf_repo``: resolve patterns inside a dataset repository - ``from_local_or_remote``: resolve patterns from a local path Moreover DataFilesList has an additional attribute ``origin_metadata``. It can store: - the last modified time of local files - ETag of remote files - commit sha of a dataset repository Thanks to this additional attribute, it is possible to hash the list and get a different hash if and only if at least one file changed. This is useful for caching Dataset objects that are obtained from a list of data files. """ def __init__(self, data_files: List[str], origin_metadata: List[Tuple[str]]): super().__init__(data_files) self.origin_metadata = origin_metadata def __add__(self, other): return DataFilesList([*self, *other], self.origin_metadata + other.origin_metadata) @classmethod def from_hf_repo( cls, patterns: List[str], dataset_info: huggingface_hub.hf_api.DatasetInfo, base_path: Optional[str] = None, allowed_extensions: Optional[List[str]] = None, download_config: Optional[DownloadConfig] = None, ) -> "DataFilesList": base_path = f"hf://datasets/{dataset_info.id}@{dataset_info.sha}/{base_path or ''}".rstrip("/") return cls.from_patterns( patterns, base_path=base_path, allowed_extensions=allowed_extensions, download_config=download_config ) @classmethod def from_local_or_remote( cls, patterns: List[str], base_path: Optional[str] = None, allowed_extensions: Optional[List[str]] = None, download_config: Optional[DownloadConfig] = None, ) -> "DataFilesList": base_path = base_path if base_path is not None else Path().resolve().as_posix() return cls.from_patterns( patterns, base_path=base_path, allowed_extensions=allowed_extensions, download_config=download_config ) @classmethod def from_patterns( cls, patterns: List[str], base_path: Optional[str] = None, allowed_extensions: Optional[List[str]] = None, download_config: Optional[DownloadConfig] = None, ) -> "DataFilesList": base_path = base_path if base_path is not None else Path().resolve().as_posix() data_files = [] for pattern in patterns: try: data_files.extend( resolve_pattern( pattern, base_path=base_path, allowed_extensions=allowed_extensions, download_config=download_config, ) ) except FileNotFoundError: if not has_magic(pattern): raise origin_metadata = _get_origin_metadata(data_files, download_config=download_config) return cls(data_files, origin_metadata) def filter_extensions(self, extensions: List[str]) -> "DataFilesList": pattern = "|".join("\\" + ext for ext in extensions) pattern = re.compile(f".*({pattern})(\\..+)?$") return DataFilesList( [data_file for data_file in self if pattern.match(data_file)], origin_metadata=self.origin_metadata, ) class DataFilesDict(Dict[str, DataFilesList]): """ Dict of split_name -> list of data files (absolute local paths or URLs). It has two construction methods given the user's data files patterns : - ``from_hf_repo``: resolve patterns inside a dataset repository - ``from_local_or_remote``: resolve patterns from a local path Moreover each list is a DataFilesList. It is possible to hash the dictionary and get a different hash if and only if at least one file changed. For more info, see ``DataFilesList``. This is useful for caching Dataset objects that are obtained from a list of data files. Changing the order of the keys of this dictionary also doesn't change its hash. """ @classmethod def from_local_or_remote( cls, patterns: Dict[str, Union[List[str], DataFilesList]], base_path: Optional[str] = None, allowed_extensions: Optional[List[str]] = None, download_config: Optional[DownloadConfig] = None, ) -> "DataFilesDict": out = cls() for key, patterns_for_key in patterns.items(): out[key] = ( DataFilesList.from_local_or_remote( patterns_for_key, base_path=base_path, allowed_extensions=allowed_extensions, download_config=download_config, ) if not isinstance(patterns_for_key, DataFilesList) else patterns_for_key ) return out @classmethod def from_hf_repo( cls, patterns: Dict[str, Union[List[str], DataFilesList]], dataset_info: huggingface_hub.hf_api.DatasetInfo, base_path: Optional[str] = None, allowed_extensions: Optional[List[str]] = None, download_config: Optional[DownloadConfig] = None, ) -> "DataFilesDict": out = cls() for key, patterns_for_key in patterns.items(): out[key] = ( DataFilesList.from_hf_repo( patterns_for_key, dataset_info=dataset_info, base_path=base_path, allowed_extensions=allowed_extensions, download_config=download_config, ) if not isinstance(patterns_for_key, DataFilesList) else patterns_for_key ) return out @classmethod def from_patterns( cls, patterns: Dict[str, Union[List[str], DataFilesList]], base_path: Optional[str] = None, allowed_extensions: Optional[List[str]] = None, download_config: Optional[DownloadConfig] = None, ) -> "DataFilesDict": out = cls() for key, patterns_for_key in patterns.items(): out[key] = ( DataFilesList.from_patterns( patterns_for_key, base_path=base_path, allowed_extensions=allowed_extensions, download_config=download_config, ) if not isinstance(patterns_for_key, DataFilesList) else patterns_for_key ) return out def filter_extensions(self, extensions: List[str]) -> "DataFilesDict": out = type(self)() for key, data_files_list in self.items(): out[key] = data_files_list.filter_extensions(extensions) return out class DataFilesPatternsList(List[str]): """ List of data files patterns (absolute local paths or URLs). For each pattern there should also be a list of allowed extensions to keep, or a None ot keep all the files for the pattern. """ def __init__( self, patterns: List[str], allowed_extensions: List[Optional[List[str]]], ): super().__init__(patterns) self.allowed_extensions = allowed_extensions def __add__(self, other): return DataFilesList([*self, *other], self.allowed_extensions + other.allowed_extensions) @classmethod def from_patterns( cls, patterns: List[str], allowed_extensions: Optional[List[str]] = None ) -> "DataFilesPatternsDict": return cls(patterns, [allowed_extensions] * len(patterns)) def resolve( self, base_path: str, download_config: Optional[DownloadConfig] = None, ) -> "DataFilesList": base_path = base_path if base_path is not None else Path().resolve().as_posix() data_files = [] for pattern, allowed_extensions in zip(self, self.allowed_extensions): try: data_files.extend( resolve_pattern( pattern, base_path=base_path, allowed_extensions=allowed_extensions, download_config=download_config, ) ) except FileNotFoundError: if not has_magic(pattern): raise origin_metadata = _get_origin_metadata(data_files, download_config=download_config) return DataFilesList(data_files, origin_metadata) def filter_extensions(self, extensions: List[str]) -> "DataFilesList": return DataFilesPatternsList( self, [allowed_extensions + extensions for allowed_extensions in self.allowed_extensions] ) class DataFilesPatternsDict(Dict[str, DataFilesPatternsList]): """ Dict of split_name -> list of data files patterns (absolute local paths or URLs). """ @classmethod def from_patterns( cls, patterns: Dict[str, List[str]], allowed_extensions: Optional[List[str]] = None ) -> "DataFilesPatternsDict": out = cls() for key, patterns_for_key in patterns.items(): out[key] = ( DataFilesPatternsList.from_patterns( patterns_for_key, allowed_extensions=allowed_extensions, ) if not isinstance(patterns_for_key, DataFilesPatternsList) else patterns_for_key ) return out def resolve( self, base_path: str, download_config: Optional[DownloadConfig] = None, ) -> "DataFilesDict": out = DataFilesDict() for key, data_files_patterns_list in self.items(): out[key] = data_files_patterns_list.resolve(base_path, download_config) return out def filter_extensions(self, extensions: List[str]) -> "DataFilesPatternsDict": out = type(self)() for key, data_files_patterns_list in self.items(): out[key] = data_files_patterns_list.filter_extensions(extensions) return out
datasets/src/datasets/data_files.py/0
{ "file_path": "datasets/src/datasets/data_files.py", "repo_id": "datasets", "token_count": 13855 }
71
import s3fs from ..utils.deprecation_utils import deprecated @deprecated("Use s3fs.S3FileSystem instead.") class S3FileSystem(s3fs.S3FileSystem): """ `datasets.filesystems.S3FileSystem` is a subclass of [`s3fs.S3FileSystem`](https://s3fs.readthedocs.io/en/latest/api.html). Users can use this class to access S3 as if it were a file system. It exposes a filesystem-like API (ls, cp, open, etc.) on top of S3 storage. Provide credentials either explicitly (`key=`, `secret=`) or with boto's credential methods. See botocore documentation for more information. If no credentials are available, use `anon=True`. Args: anon (`bool`, default to `False`): Whether to use anonymous connection (public buckets only). If `False`, uses the key/secret given, or boto's credential resolver (client_kwargs, environment, variables, config files, EC2 IAM server, in that order). key (`str`): If not anonymous, use this access key ID, if specified. secret (`str`): If not anonymous, use this secret access key, if specified. token (`str`): If not anonymous, use this security token, if specified. use_ssl (`bool`, defaults to `True`): Whether to use SSL in connections to S3; may be faster without, but insecure. If `use_ssl` is also set in `client_kwargs`, the value set in `client_kwargs` will take priority. s3_additional_kwargs (`dict`): Parameters that are used when calling S3 API methods. Typically used for things like ServerSideEncryption. client_kwargs (`dict`): Parameters for the botocore client. requester_pays (`bool`, defaults to `False`): Whether `RequesterPays` buckets are supported. default_block_size (`int`): If given, the default block size value used for `open()`, if no specific value is given at all time. The built-in default is 5MB. default_fill_cache (`bool`, defaults to `True`): Whether to use cache filling with open by default. Refer to `S3File.open`. default_cache_type (`str`, defaults to `bytes`): If given, the default `cache_type` value used for `open()`. Set to `none` if no caching is desired. See fsspec's documentation for other available `cache_type` values. version_aware (`bool`, defaults to `False`): Whether to support bucket versioning. If enable this will require the user to have the necessary IAM permissions for dealing with versioned objects. cache_regions (`bool`, defaults to `False`): Whether to cache bucket regions. Whenever a new bucket is used, it will first find out which region it belongs to and then use the client for that region. asynchronous (`bool`, defaults to `False`): Whether this instance is to be used from inside coroutines. config_kwargs (`dict`): Parameters passed to `botocore.client.Config`. **kwargs: Other parameters for core session. session (`aiobotocore.session.AioSession`): Session to be used for all connections. This session will be used inplace of creating a new session inside S3FileSystem. For example: `aiobotocore.session.AioSession(profile='test_user')`. skip_instance_cache (`bool`): Control reuse of instances. Passed on to `fsspec`. use_listings_cache (`bool`): Control reuse of directory listings. Passed on to `fsspec`. listings_expiry_time (`int` or `float`): Control reuse of directory listings. Passed on to `fsspec`. max_paths (`int`): Control reuse of directory listings. Passed on to `fsspec`. Examples: Listing files from public S3 bucket. ```py >>> import datasets >>> s3 = datasets.filesystems.S3FileSystem(anon=True) # doctest: +SKIP >>> s3.ls('public-datasets/imdb/train') # doctest: +SKIP ['dataset_info.json.json','dataset.arrow','state.json'] ``` Listing files from private S3 bucket using `aws_access_key_id` and `aws_secret_access_key`. ```py >>> import datasets >>> s3 = datasets.filesystems.S3FileSystem(key=aws_access_key_id, secret=aws_secret_access_key) # doctest: +SKIP >>> s3.ls('my-private-datasets/imdb/train') # doctest: +SKIP ['dataset_info.json.json','dataset.arrow','state.json'] ``` Using `S3Filesystem` with `botocore.session.Session` and custom `aws_profile`. ```py >>> import botocore >>> from datasets.filesystems import S3Filesystem >>> s3_session = botocore.session.Session(profile_name='my_profile_name') >>> s3 = S3FileSystem(session=s3_session) # doctest: +SKIP ``` Loading dataset from S3 using `S3Filesystem` and [`load_from_disk`]. ```py >>> from datasets import load_from_disk >>> from datasets.filesystems import S3Filesystem >>> s3 = S3FileSystem(key=aws_access_key_id, secret=aws_secret_access_key) # doctest: +SKIP >>> dataset = load_from_disk('s3://my-private-datasets/imdb/train', storage_options=s3.storage_options) # doctest: +SKIP >>> print(len(dataset)) 25000 ``` Saving dataset to S3 using `S3Filesystem` and [`Dataset.save_to_disk`]. ```py >>> from datasets import load_dataset >>> from datasets.filesystems import S3Filesystem >>> dataset = load_dataset("imdb") >>> s3 = S3FileSystem(key=aws_access_key_id, secret=aws_secret_access_key) # doctest: +SKIP >>> dataset.save_to_disk('s3://my-private-datasets/imdb/train', storage_options=s3.storage_options) # doctest: +SKIP ``` """
datasets/src/datasets/filesystems/s3filesystem.py/0
{ "file_path": "datasets/src/datasets/filesystems/s3filesystem.py", "repo_id": "datasets", "token_count": 2170 }
72
import os from typing import BinaryIO, Optional, Union import fsspec import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import tqdm as hf_tqdm from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def get_writer_batch_size(features: Features) -> Optional[int]: """ Get the writer_batch_size that defines the maximum row group size in the parquet files. The default in `datasets` is 1,000 but we lower it to 100 for image datasets. This allows to optimize random access to parquet file, since accessing 1 row requires to read its entire row group. This can be improved to get optimized size for querying/iterating but at least it matches the dataset viewer expectations on HF. Args: ds_config_info (`datasets.info.DatasetInfo`): Dataset info from `datasets`. Returns: writer_batch_size (`Optional[int]`): Writer batch size to pass to a dataset builder. If `None`, then it will use the `datasets` default. """ batch_size = np.inf def set_batch_size(feature: FeatureType) -> None: nonlocal batch_size if isinstance(feature, Image): batch_size = min(batch_size, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS) elif isinstance(feature, Audio): batch_size = min(batch_size, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS) elif isinstance(feature, Value) and feature.dtype == "binary": batch_size = min(batch_size, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS) _visit(features, set_batch_size) return None if batch_size is np.inf else batch_size class ParquetDatasetReader(AbstractDatasetReader): def __init__( self, path_or_paths: NestedDataStructureLike[PathLike], split: Optional[NamedSplit] = None, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, num_proc: Optional[int] = None, **kwargs, ): super().__init__( path_or_paths, split=split, features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) path_or_paths = path_or_paths if isinstance(path_or_paths, dict) else {self.split: path_or_paths} hash = _PACKAGED_DATASETS_MODULES["parquet"][1] self.builder = Parquet( cache_dir=cache_dir, data_files=path_or_paths, features=features, hash=hash, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: download_config = None download_mode = None verification_mode = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, verification_mode=verification_mode, base_path=base_path, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split=self.split, verification_mode=verification_mode, in_memory=self.keep_in_memory ) return dataset class ParquetDatasetWriter: def __init__( self, dataset: Dataset, path_or_buf: Union[PathLike, BinaryIO], batch_size: Optional[int] = None, storage_options: Optional[dict] = None, **parquet_writer_kwargs, ): self.dataset = dataset self.path_or_buf = path_or_buf self.batch_size = batch_size or get_writer_batch_size(dataset.features) self.storage_options = storage_options or {} self.parquet_writer_kwargs = parquet_writer_kwargs def write(self) -> int: batch_size = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf, (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf, "wb", **(self.storage_options or {})) as buffer: written = self._write(file_obj=buffer, batch_size=batch_size, **self.parquet_writer_kwargs) else: written = self._write(file_obj=self.path_or_buf, batch_size=batch_size, **self.parquet_writer_kwargs) return written def _write(self, file_obj: BinaryIO, batch_size: int, **parquet_writer_kwargs) -> int: """Writes the pyarrow table as Parquet to a binary file handle. Caller is responsible for opening and closing the handle. """ written = 0 _ = parquet_writer_kwargs.pop("path_or_buf", None) schema = self.dataset.features.arrow_schema writer = pq.ParquetWriter(file_obj, schema=schema, **parquet_writer_kwargs) for offset in hf_tqdm( range(0, len(self.dataset), batch_size), unit="ba", desc="Creating parquet from Arrow format", ): batch = query_table( table=self.dataset._data, key=slice(offset, offset + batch_size), indices=self.dataset._indices, ) writer.write_table(batch) written += batch.nbytes writer.close() return written
datasets/src/datasets/io/parquet.py/0
{ "file_path": "datasets/src/datasets/io/parquet.py", "repo_id": "datasets", "token_count": 2585 }
73
import abc import copy import dataclasses from dataclasses import dataclass from typing import ClassVar, Dict, Type, TypeVar from ..features import Features T = TypeVar("T", bound="TaskTemplate") @dataclass(frozen=True) class TaskTemplate(abc.ABC): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization task: str input_schema: ClassVar[Features] label_schema: ClassVar[Features] def align_with_features(self: T, features: Features) -> T: """ Align features with the task template. """ # No-op return copy.deepcopy(self) @property def features(self) -> Features: return Features(**self.input_schema, **self.label_schema) @property @abc.abstractmethod def column_mapping(self) -> Dict[str, str]: raise NotImplementedError @classmethod def from_dict(cls: Type[T], template_dict: dict) -> T: field_names = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in template_dict.items() if k in field_names})
datasets/src/datasets/tasks/base.py/0
{ "file_path": "datasets/src/datasets/tasks/base.py", "repo_id": "datasets", "token_count": 417 }
74
""" Utilities for working with the local dataset cache. This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp Copyright by the AllenNLP authors. """ import copy import io import json import multiprocessing import os import posixpath import re import shutil import sys import time import urllib import warnings from contextlib import closing, contextmanager from functools import partial from pathlib import Path from typing import Optional, TypeVar, Union from unittest.mock import patch from urllib.parse import urljoin, urlparse import fsspec import huggingface_hub import requests from fsspec.core import strip_protocol, url_to_fs from fsspec.utils import can_be_local from huggingface_hub.utils import insecure_hashlib from packaging import version from .. import __version__, config from ..download.download_config import DownloadConfig from . import _tqdm, logging from . import tqdm as hf_tqdm from ._filelock import FileLock from .extract import ExtractManager logger = logging.get_logger(__name__) # pylint: disable=invalid-name INCOMPLETE_SUFFIX = ".incomplete" T = TypeVar("T", str, Path) def init_hf_modules(hf_modules_cache: Optional[Union[Path, str]] = None) -> str: """ Add hf_modules_cache to the python path. By default hf_modules_cache='~/.cache/huggingface/modules'. It can also be set with the environment variable HF_MODULES_CACHE. This is used to add modules such as `datasets_modules` """ hf_modules_cache = hf_modules_cache if hf_modules_cache is not None else config.HF_MODULES_CACHE hf_modules_cache = str(hf_modules_cache) if hf_modules_cache not in sys.path: sys.path.append(hf_modules_cache) os.makedirs(hf_modules_cache, exist_ok=True) if not os.path.exists(os.path.join(hf_modules_cache, "__init__.py")): with open(os.path.join(hf_modules_cache, "__init__.py"), "w"): pass return hf_modules_cache def is_remote_url(url_or_filename: str) -> bool: return urlparse(url_or_filename).scheme != "" and not os.path.ismount(urlparse(url_or_filename).scheme + ":/") def is_local_path(url_or_filename: str) -> bool: # On unix the scheme of a local path is empty (for both absolute and relative), # while on windows the scheme is the drive name (ex: "c") for absolute paths. # for details on the windows behavior, see https://bugs.python.org/issue42215 return urlparse(url_or_filename).scheme == "" or os.path.ismount(urlparse(url_or_filename).scheme + ":/") def is_relative_path(url_or_filename: str) -> bool: return urlparse(url_or_filename).scheme == "" and not os.path.isabs(url_or_filename) def relative_to_absolute_path(path: T) -> T: """Convert relative path to absolute path.""" abs_path_str = os.path.abspath(os.path.expanduser(os.path.expandvars(str(path)))) return Path(abs_path_str) if isinstance(path, Path) else abs_path_str def hf_bucket_url(identifier: str, filename: str, use_cdn=False, dataset=True) -> str: if dataset: endpoint = config.CLOUDFRONT_DATASETS_DISTRIB_PREFIX if use_cdn else config.S3_DATASETS_BUCKET_PREFIX else: endpoint = config.CLOUDFRONT_METRICS_DISTRIB_PREFIX if use_cdn else config.S3_METRICS_BUCKET_PREFIX return "/".join((endpoint, identifier, filename)) def head_hf_s3( identifier: str, filename: str, use_cdn=False, dataset=True, max_retries=0 ) -> Union[requests.Response, Exception]: return http_head( hf_bucket_url(identifier=identifier, filename=filename, use_cdn=use_cdn, dataset=dataset), max_retries=max_retries, ) def hf_github_url(path: str, name: str, dataset=True, revision: Optional[str] = None) -> str: default_revision = "main" if version.parse(__version__).is_devrelease else __version__ revision = revision or default_revision if dataset: return config.REPO_DATASETS_URL.format(revision=revision, path=path, name=name) else: return config.REPO_METRICS_URL.format(revision=revision, path=path, name=name) def url_or_path_join(base_name: str, *pathnames: str) -> str: if is_remote_url(base_name): return posixpath.join(base_name, *(str(pathname).replace(os.sep, "/").lstrip("/") for pathname in pathnames)) else: return Path(base_name, *pathnames).as_posix() def url_or_path_parent(url_or_path: str) -> str: if is_remote_url(url_or_path): return url_or_path[: url_or_path.rindex("/")] else: return os.path.dirname(url_or_path) def hash_url_to_filename(url, etag=None): """ Convert `url` into a hashed filename in a repeatable way. If `etag` is specified, append its hash to the url's, delimited by a period. If the url ends with .h5 (Keras HDF5 weights) adds '.h5' to the name so that TF 2.0 can identify it as a HDF5 file (see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380) """ url_bytes = url.encode("utf-8") url_hash = insecure_hashlib.sha256(url_bytes) filename = url_hash.hexdigest() if etag: etag_bytes = etag.encode("utf-8") etag_hash = insecure_hashlib.sha256(etag_bytes) filename += "." + etag_hash.hexdigest() if url.endswith(".py"): filename += ".py" return filename def cached_path( url_or_filename, download_config=None, **download_kwargs, ) -> str: """ Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and then return the path. Return: Local path (string) Raises: FileNotFoundError: in case of non-recoverable file (non-existent or no cache on disk) ConnectionError: in case of unreachable url and no cache on disk ValueError: if it couldn't parse the url or filename correctly requests.exceptions.ConnectionError: in case of internet connection issue """ if download_config is None: download_config = DownloadConfig(**download_kwargs) cache_dir = download_config.cache_dir or config.DOWNLOADED_DATASETS_PATH if isinstance(cache_dir, Path): cache_dir = str(cache_dir) if isinstance(url_or_filename, Path): url_or_filename = str(url_or_filename) # Convert fsspec URL in the format "file://local/path" to "local/path" if can_be_local(url_or_filename): url_or_filename = strip_protocol(url_or_filename) if is_remote_url(url_or_filename): # URL, so get it from the cache (downloading if necessary) output_path = get_from_cache( url_or_filename, cache_dir=cache_dir, force_download=download_config.force_download, proxies=download_config.proxies, resume_download=download_config.resume_download, user_agent=download_config.user_agent, local_files_only=download_config.local_files_only, use_etag=download_config.use_etag, max_retries=download_config.max_retries, token=download_config.token, ignore_url_params=download_config.ignore_url_params, storage_options=download_config.storage_options, download_desc=download_config.download_desc, ) elif os.path.exists(url_or_filename): # File, and it exists. output_path = url_or_filename elif is_local_path(url_or_filename): # File, but it doesn't exist. raise FileNotFoundError(f"Local file {url_or_filename} doesn't exist") else: # Something unknown raise ValueError(f"unable to parse {url_or_filename} as a URL or as a local path") if output_path is None: return output_path if download_config.extract_compressed_file: output_path = ExtractManager(cache_dir=download_config.cache_dir).extract( output_path, force_extract=download_config.force_extract ) return relative_to_absolute_path(output_path) def get_datasets_user_agent(user_agent: Optional[Union[str, dict]] = None) -> str: ua = f"datasets/{__version__}" ua += f"; python/{config.PY_VERSION}" ua += f"; huggingface_hub/{huggingface_hub.__version__}" ua += f"; pyarrow/{config.PYARROW_VERSION}" if config.TORCH_AVAILABLE: ua += f"; torch/{config.TORCH_VERSION}" if config.TF_AVAILABLE: ua += f"; tensorflow/{config.TF_VERSION}" if config.JAX_AVAILABLE: ua += f"; jax/{config.JAX_VERSION}" if config.BEAM_AVAILABLE: ua += f"; apache_beam/{config.BEAM_VERSION}" if isinstance(user_agent, dict): ua += f"; {'; '.join(f'{k}/{v}' for k, v in user_agent.items())}" elif isinstance(user_agent, str): ua += "; " + user_agent return ua def get_authentication_headers_for_url( url: str, token: Optional[Union[str, bool]] = None, use_auth_token: Optional[Union[str, bool]] = "deprecated" ) -> dict: """Handle the HF authentication""" if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) token = use_auth_token if url.startswith(config.HF_ENDPOINT): return huggingface_hub.utils.build_hf_headers( token=token, library_name="datasets", library_version=__version__ ) else: return {} class OfflineModeIsEnabled(ConnectionError): pass def _raise_if_offline_mode_is_enabled(msg: Optional[str] = None): """Raise an OfflineModeIsEnabled error (subclass of ConnectionError) if HF_DATASETS_OFFLINE is True.""" if config.HF_DATASETS_OFFLINE: raise OfflineModeIsEnabled( "Offline mode is enabled." if msg is None else "Offline mode is enabled. " + str(msg) ) def _request_with_retry( method: str, url: str, max_retries: int = 0, base_wait_time: float = 0.5, max_wait_time: float = 2, timeout: float = 10.0, **params, ) -> requests.Response: """Wrapper around requests to retry in case it fails with a ConnectTimeout, with exponential backoff. Note that if the environment variable HF_DATASETS_OFFLINE is set to 1, then a OfflineModeIsEnabled error is raised. Args: method (str): HTTP method, such as 'GET' or 'HEAD'. url (str): The URL of the resource to fetch. max_retries (int): Maximum number of retries, defaults to 0 (no retries). base_wait_time (float): Duration (in seconds) to wait before retrying the first time. Wait time between retries then grows exponentially, capped by max_wait_time. max_wait_time (float): Maximum amount of time between two retries, in seconds. **params (additional keyword arguments): Params to pass to :obj:`requests.request`. """ _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") tries, success = 0, False while not success: tries += 1 try: response = requests.request(method=method.upper(), url=url, timeout=timeout, **params) success = True except (requests.exceptions.ConnectTimeout, requests.exceptions.ConnectionError) as err: if tries > max_retries: raise err else: logger.info(f"{method} request to {url} timed out, retrying... [{tries/max_retries}]") sleep_time = min(max_wait_time, base_wait_time * 2 ** (tries - 1)) # Exponential backoff time.sleep(sleep_time) return response def fsspec_head(url, storage_options=None): _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") fs, path = url_to_fs(url, **(storage_options or {})) return fs.info(path) def stack_multiprocessing_download_progress_bars(): # Stack downloads progress bars automatically using HF_DATASETS_STACK_MULTIPROCESSING_DOWNLOAD_PROGRESS_BARS=1 # We use environment variables since the download may happen in a subprocess return patch.dict(os.environ, {"HF_DATASETS_STACK_MULTIPROCESSING_DOWNLOAD_PROGRESS_BARS": "1"}) class TqdmCallback(fsspec.callbacks.TqdmCallback): def __init__(self, tqdm_kwargs=None, *args, **kwargs): super().__init__(tqdm_kwargs, *args, **kwargs) self._tqdm = _tqdm # replace tqdm.tqdm by datasets.tqdm.tqdm def fsspec_get(url, temp_file, storage_options=None, desc=None): _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") fs, path = url_to_fs(url, **(storage_options or {})) callback = TqdmCallback( tqdm_kwargs={ "desc": desc or "Downloading", "unit": "B", "unit_scale": True, "position": multiprocessing.current_process()._identity[-1] # contains the ranks of subprocesses if os.environ.get("HF_DATASETS_STACK_MULTIPROCESSING_DOWNLOAD_PROGRESS_BARS") == "1" and multiprocessing.current_process()._identity else None, } ) fs.get_file(path, temp_file.name, callback=callback) def ftp_head(url, timeout=10.0): _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") try: with closing(urllib.request.urlopen(url, timeout=timeout)) as r: r.read(1) except Exception: return False return True def ftp_get(url, temp_file, timeout=10.0): _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") try: logger.info(f"Getting through FTP {url} into {temp_file.name}") with closing(urllib.request.urlopen(url, timeout=timeout)) as r: shutil.copyfileobj(r, temp_file) except urllib.error.URLError as e: raise ConnectionError(e) from None def http_get( url, temp_file, proxies=None, resume_size=0, headers=None, cookies=None, timeout=100.0, max_retries=0, desc=None ) -> Optional[requests.Response]: headers = dict(headers) if headers is not None else {} headers["user-agent"] = get_datasets_user_agent(user_agent=headers.get("user-agent")) if resume_size > 0: headers["Range"] = f"bytes={resume_size:d}-" response = _request_with_retry( method="GET", url=url, stream=True, proxies=proxies, headers=headers, cookies=cookies, max_retries=max_retries, timeout=timeout, ) if temp_file is None: return response if response.status_code == 416: # Range not satisfiable return content_length = response.headers.get("Content-Length") total = resume_size + int(content_length) if content_length is not None else None with hf_tqdm( unit="B", unit_scale=True, total=total, initial=resume_size, desc=desc or "Downloading", position=multiprocessing.current_process()._identity[-1] # contains the ranks of subprocesses if os.environ.get("HF_DATASETS_STACK_MULTIPROCESSING_DOWNLOAD_PROGRESS_BARS") == "1" and multiprocessing.current_process()._identity else None, ) as progress: for chunk in response.iter_content(chunk_size=1024): progress.update(len(chunk)) temp_file.write(chunk) def http_head( url, proxies=None, headers=None, cookies=None, allow_redirects=True, timeout=10.0, max_retries=0 ) -> requests.Response: headers = copy.deepcopy(headers) or {} headers["user-agent"] = get_datasets_user_agent(user_agent=headers.get("user-agent")) response = _request_with_retry( method="HEAD", url=url, proxies=proxies, headers=headers, cookies=cookies, allow_redirects=allow_redirects, timeout=timeout, max_retries=max_retries, ) return response def request_etag( url: str, token: Optional[Union[str, bool]] = None, use_auth_token: Optional[Union[str, bool]] = "deprecated" ) -> Optional[str]: if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) token = use_auth_token if urlparse(url).scheme not in ("http", "https"): return None headers = get_authentication_headers_for_url(url, token=token) response = http_head(url, headers=headers, max_retries=3) response.raise_for_status() etag = response.headers.get("ETag") if response.ok else None return etag def get_from_cache( url, cache_dir=None, force_download=False, proxies=None, etag_timeout=100, resume_download=False, user_agent=None, local_files_only=False, use_etag=True, max_retries=0, token=None, use_auth_token="deprecated", ignore_url_params=False, storage_options=None, download_desc=None, ) -> str: """ Given a URL, look for the corresponding file in the local cache. If it's not there, download it. Then return the path to the cached file. Return: Local path (string) Raises: FileNotFoundError: in case of non-recoverable file (non-existent or no cache on disk) ConnectionError: in case of unreachable url and no cache on disk """ if use_auth_token != "deprecated": warnings.warn( "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" f"You can remove this warning by passing 'token={use_auth_token}' instead.", FutureWarning, ) token = use_auth_token if cache_dir is None: cache_dir = config.HF_DATASETS_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) os.makedirs(cache_dir, exist_ok=True) if ignore_url_params: # strip all query parameters and #fragments from the URL cached_url = urljoin(url, urlparse(url).path) else: cached_url = url # additional parameters may be added to the given URL connected = False response = None cookies = None etag = None head_error = None scheme = None # Try a first time to file the file on the local file system without eTag (None) # if we don't ask for 'force_download' then we spare a request filename = hash_url_to_filename(cached_url, etag=None) cache_path = os.path.join(cache_dir, filename) if os.path.exists(cache_path) and not force_download and not use_etag: return cache_path # Prepare headers for authentication headers = get_authentication_headers_for_url(url, token=token) if user_agent is not None: headers["user-agent"] = user_agent # We don't have the file locally or we need an eTag if not local_files_only: scheme = urlparse(url).scheme if scheme == "ftp": connected = ftp_head(url) elif scheme not in ("http", "https"): response = fsspec_head(url, storage_options=storage_options) # s3fs uses "ETag", gcsfs uses "etag" etag = (response.get("ETag", None) or response.get("etag", None)) if use_etag else None connected = True try: response = http_head( url, allow_redirects=True, proxies=proxies, timeout=etag_timeout, max_retries=max_retries, headers=headers, ) if response.status_code == 200: # ok etag = response.headers.get("ETag") if use_etag else None for k, v in response.cookies.items(): # In some edge cases, we need to get a confirmation token if k.startswith("download_warning") and "drive.google.com" in url: url += "&confirm=" + v cookies = response.cookies connected = True # Fix Google Drive URL to avoid Virus scan warning if "drive.google.com" in url and "confirm=" not in url: url += "&confirm=t" # In some edge cases, head request returns 400 but the connection is actually ok elif ( (response.status_code == 400 and "firebasestorage.googleapis.com" in url) or (response.status_code == 405 and "drive.google.com" in url) or ( response.status_code == 403 and ( re.match(r"^https?://github.com/.*?/.*?/releases/download/.*?/.*?$", url) or re.match(r"^https://.*?s3.*?amazonaws.com/.*?$", response.url) ) ) or (response.status_code == 403 and "ndownloader.figstatic.com" in url) ): connected = True logger.info(f"Couldn't get ETag version for url {url}") elif response.status_code == 401 and config.HF_ENDPOINT in url and token is None: raise ConnectionError( f"Unauthorized for URL {url}. Please use the parameter `token=True` after logging in with `huggingface-cli login`" ) except (OSError, requests.exceptions.Timeout) as e: # not connected head_error = e pass # connected == False = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if not connected: if os.path.exists(cache_path) and not force_download: return cache_path if local_files_only: raise FileNotFoundError( f"Cannot find the requested files in the cached path at {cache_path} and outgoing traffic has been" " disabled. To enable file online look-ups, set 'local_files_only' to False." ) elif response is not None and response.status_code == 404: raise FileNotFoundError(f"Couldn't find file at {url}") _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") if head_error is not None: raise ConnectionError(f"Couldn't reach {url} ({repr(head_error)})") elif response is not None: raise ConnectionError(f"Couldn't reach {url} (error {response.status_code})") else: raise ConnectionError(f"Couldn't reach {url}") # Try a second time filename = hash_url_to_filename(cached_url, etag) cache_path = os.path.join(cache_dir, filename) if os.path.exists(cache_path) and not force_download: return cache_path # From now on, connected is True. # Prevent parallel downloads of the same file with a lock. lock_path = cache_path + ".lock" with FileLock(lock_path): # Retry in case previously locked processes just enter after the precedent process releases the lock if os.path.exists(cache_path) and not force_download: return cache_path incomplete_path = cache_path + ".incomplete" @contextmanager def temp_file_manager(mode="w+b"): with open(incomplete_path, mode) as f: yield f resume_size = 0 if resume_download: temp_file_manager = partial(temp_file_manager, mode="a+b") if os.path.exists(incomplete_path): resume_size = os.stat(incomplete_path).st_size # Download to temporary file, then copy to cache path once finished. # Otherwise, you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: logger.info(f"{url} not found in cache or force_download set to True, downloading to {temp_file.name}") # GET file object if scheme == "ftp": ftp_get(url, temp_file) elif scheme not in ("http", "https"): fsspec_get(url, temp_file, storage_options=storage_options, desc=download_desc) else: http_get( url, temp_file=temp_file, proxies=proxies, resume_size=resume_size, headers=headers, cookies=cookies, max_retries=max_retries, desc=download_desc, ) logger.info(f"storing {url} in cache at {cache_path}") shutil.move(temp_file.name, cache_path) umask = os.umask(0o666) os.umask(umask) os.chmod(cache_path, 0o666 & ~umask) logger.info(f"creating metadata file for {cache_path}") meta = {"url": url, "etag": etag} meta_path = cache_path + ".json" with open(meta_path, "w", encoding="utf-8") as meta_file: json.dump(meta, meta_file) return cache_path def add_start_docstrings(*docstr): def docstring_decorator(fn): fn.__doc__ = "".join(docstr) + "\n\n" + (fn.__doc__ if fn.__doc__ is not None else "") return fn return docstring_decorator def add_end_docstrings(*docstr): def docstring_decorator(fn): fn.__doc__ = (fn.__doc__ if fn.__doc__ is not None else "") + "\n\n" + "".join(docstr) return fn return docstring_decorator def estimate_dataset_size(paths): return sum(path.stat().st_size for path in paths) def readline(f: io.RawIOBase): # From: https://github.com/python/cpython/blob/d27e2f4d118e7a9909b6a3e5da06c5ff95806a85/Lib/_pyio.py#L525 res = bytearray() while True: b = f.read(1) if not b: break res += b if res.endswith(b"\n"): break return bytes(res)
datasets/src/datasets/utils/file_utils.py/0
{ "file_path": "datasets/src/datasets/utils/file_utils.py", "repo_id": "datasets", "token_count": 11061 }
75
import numpy as np def approximate_mode(class_counts, n_draws, rng): """Computes approximate mode of multivariate hypergeometric. This is an approximation to the mode of the multivariate hypergeometric given by class_counts and n_draws. It shouldn't be off by more than one. It is the mostly likely outcome of drawing n_draws many samples from the population given by class_counts. Args ---------- class_counts : ndarray of int Population per class. n_draws : int Number of draws (samples to draw) from the overall population. rng : random state Used to break ties. Returns ------- sampled_classes : ndarray of int Number of samples drawn from each class. np.sum(sampled_classes) == n_draws """ # this computes a bad approximation to the mode of the # multivariate hypergeometric given by class_counts and n_draws continuous = n_draws * class_counts / class_counts.sum() # floored means we don't overshoot n_samples, but probably undershoot floored = np.floor(continuous) # we add samples according to how much "left over" probability # they had, until we arrive at n_samples need_to_add = int(n_draws - floored.sum()) if need_to_add > 0: remainder = continuous - floored values = np.sort(np.unique(remainder))[::-1] # add according to remainder, but break ties # randomly to avoid biases for value in values: (inds,) = np.where(remainder == value) # if we need_to_add less than what's in inds # we draw randomly from them. # if we need to add more, we add them all and # go to the next value add_now = min(len(inds), need_to_add) inds = rng.choice(inds, size=add_now, replace=False) floored[inds] += 1 need_to_add -= add_now if need_to_add == 0: break return floored.astype(np.int64) def stratified_shuffle_split_generate_indices(y, n_train, n_test, rng, n_splits=10): """ Provides train/test indices to split data in train/test sets. It's reference is taken from StratifiedShuffleSplit implementation of scikit-learn library. Args ---------- n_train : int, represents the absolute number of train samples. n_test : int, represents the absolute number of test samples. random_state : int or RandomState instance, default=None Controls the randomness of the training and testing indices produced. Pass an int for reproducible output across multiple function calls. n_splits : int, default=10 Number of re-shuffling & splitting iterations. """ classes, y_indices = np.unique(y, return_inverse=True) n_classes = classes.shape[0] class_counts = np.bincount(y_indices) if np.min(class_counts) < 2: raise ValueError("Minimum class count error") if n_train < n_classes: raise ValueError( "The train_size = %d should be greater or " "equal to the number of classes = %d" % (n_train, n_classes) ) if n_test < n_classes: raise ValueError( "The test_size = %d should be greater or " "equal to the number of classes = %d" % (n_test, n_classes) ) class_indices = np.split(np.argsort(y_indices, kind="mergesort"), np.cumsum(class_counts)[:-1]) for _ in range(n_splits): n_i = approximate_mode(class_counts, n_train, rng) class_counts_remaining = class_counts - n_i t_i = approximate_mode(class_counts_remaining, n_test, rng) train = [] test = [] for i in range(n_classes): permutation = rng.permutation(class_counts[i]) perm_indices_class_i = class_indices[i].take(permutation, mode="clip") train.extend(perm_indices_class_i[: n_i[i]]) test.extend(perm_indices_class_i[n_i[i] : n_i[i] + t_i[i]]) train = rng.permutation(train) test = rng.permutation(test) yield train, test
datasets/src/datasets/utils/stratify.py/0
{ "file_path": "datasets/src/datasets/utils/stratify.py", "repo_id": "datasets", "token_count": 1674 }
76
import pytest import datasets import datasets.config # Import fixture modules as plugins pytest_plugins = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def pytest_collection_modifyitems(config, items): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["integration", "unit"]): continue item.add_marker(pytest.mark.unit) def pytest_configure(config): config.addinivalue_line("markers", "torchaudio_latest: mark test to run with torchaudio>=0.12") @pytest.fixture(autouse=True) def set_test_cache_config(tmp_path_factory, monkeypatch): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? test_hf_cache_home = tmp_path_factory.getbasetemp() / "cache" test_hf_datasets_cache = test_hf_cache_home / "datasets" test_hf_metrics_cache = test_hf_cache_home / "metrics" test_hf_modules_cache = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE", str(test_hf_datasets_cache)) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE", str(test_hf_metrics_cache)) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE", str(test_hf_modules_cache)) test_downloaded_datasets_path = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH", str(test_downloaded_datasets_path)) test_extracted_datasets_path = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(test_extracted_datasets_path)) @pytest.fixture(autouse=True, scope="session") def disable_tqdm_output(): datasets.disable_progress_bar() @pytest.fixture(autouse=True) def set_update_download_counts_to_false(monkeypatch): # don't take tests into account when counting downloads monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS", False) @pytest.fixture def set_sqlalchemy_silence_uber_warning(monkeypatch): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported try: monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING", True) except AttributeError: pass @pytest.fixture(autouse=True, scope="session") def zero_time_out_for_remote_code(): datasets.config.TIME_OUT_REMOTE_CODE = 0
datasets/tests/conftest.py/0
{ "file_path": "datasets/tests/conftest.py", "repo_id": "datasets", "token_count": 957 }
77
import posixpath from pathlib import Path from unittest.mock import patch import pytest from fsspec.implementations.local import AbstractFileSystem, LocalFileSystem, stringify_path from fsspec.registry import _registry as _fsspec_registry class MockFileSystem(AbstractFileSystem): protocol = "mock" def __init__(self, *args, local_root_dir, **kwargs): super().__init__() self._fs = LocalFileSystem(*args, **kwargs) self.local_root_dir = Path(local_root_dir).resolve().as_posix() + "/" def mkdir(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.mkdir(path, *args, **kwargs) def makedirs(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.makedirs(path, *args, **kwargs) def rmdir(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rmdir(path) def ls(self, path, detail=True, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) out = self._fs.ls(path, detail=detail, *args, **kwargs) if detail: return [{**info, "name": info["name"][len(self.local_root_dir) :]} for info in out] else: return [name[len(self.local_root_dir) :] for name in out] def info(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) out = dict(self._fs.info(path, *args, **kwargs)) out["name"] = out["name"][len(self.local_root_dir) :] return out def cp_file(self, path1, path2, *args, **kwargs): path1 = posixpath.join(self.local_root_dir, self._strip_protocol(path1)) path2 = posixpath.join(self.local_root_dir, self._strip_protocol(path2)) return self._fs.cp_file(path1, path2, *args, **kwargs) def rm_file(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rm_file(path, *args, **kwargs) def rm(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rm(path, *args, **kwargs) def _open(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs._open(path, *args, **kwargs) def created(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.created(path) def modified(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.modified(path) @classmethod def _strip_protocol(cls, path): path = stringify_path(path) if path.startswith("mock://"): path = path[7:] return path class TmpDirFileSystem(MockFileSystem): protocol = "tmp" tmp_dir = None def __init__(self, *args, **kwargs): assert self.tmp_dir is not None, "TmpDirFileSystem.tmp_dir is not set" super().__init__(*args, **kwargs, local_root_dir=self.tmp_dir, auto_mkdir=True) @classmethod def _strip_protocol(cls, path): path = stringify_path(path) if path.startswith("tmp://"): path = path[6:] return path @pytest.fixture def mock_fsspec(): _fsspec_registry["mock"] = MockFileSystem _fsspec_registry["tmp"] = TmpDirFileSystem yield del _fsspec_registry["mock"] del _fsspec_registry["tmp"] @pytest.fixture def mockfs(tmp_path_factory, mock_fsspec): local_fs_dir = tmp_path_factory.mktemp("mockfs") return MockFileSystem(local_root_dir=local_fs_dir, auto_mkdir=True) @pytest.fixture def tmpfs(tmp_path_factory, mock_fsspec): tmp_fs_dir = tmp_path_factory.mktemp("tmpfs") with patch.object(TmpDirFileSystem, "tmp_dir", tmp_fs_dir): yield TmpDirFileSystem() TmpDirFileSystem.clear_instance_cache()
datasets/tests/fixtures/fsspec.py/0
{ "file_path": "datasets/tests/fixtures/fsspec.py", "repo_id": "datasets", "token_count": 1757 }
78
import shutil import textwrap import numpy as np import pytest from datasets import ClassLabel, Features, Image, Value from datasets.data_files import DataFilesDict, get_data_patterns from datasets.download.streaming_download_manager import StreamingDownloadManager from datasets.packaged_modules.imagefolder.imagefolder import ImageFolder from ..utils import require_pil @pytest.fixture def cache_dir(tmp_path): return str(tmp_path / "imagefolder_cache_dir") @pytest.fixture def data_files_with_labels_no_metadata(tmp_path, image_file): data_dir = tmp_path / "data_files_with_labels_no_metadata" data_dir.mkdir(parents=True, exist_ok=True) subdir_class_0 = data_dir / "cat" subdir_class_0.mkdir(parents=True, exist_ok=True) subdir_class_1 = data_dir / "dog" subdir_class_1.mkdir(parents=True, exist_ok=True) image_filename = subdir_class_0 / "image_cat.jpg" shutil.copyfile(image_file, image_filename) image_filename2 = subdir_class_1 / "image_dog.jpg" shutil.copyfile(image_file, image_filename2) data_files_with_labels_no_metadata = DataFilesDict.from_patterns( get_data_patterns(str(data_dir)), data_dir.as_posix() ) return data_files_with_labels_no_metadata @pytest.fixture def image_files_with_labels_and_duplicated_label_key_in_metadata(tmp_path, image_file): data_dir = tmp_path / "image_files_with_labels_and_label_key_in_metadata" data_dir.mkdir(parents=True, exist_ok=True) subdir_class_0 = data_dir / "cat" subdir_class_0.mkdir(parents=True, exist_ok=True) subdir_class_1 = data_dir / "dog" subdir_class_1.mkdir(parents=True, exist_ok=True) image_filename = subdir_class_0 / "image_cat.jpg" shutil.copyfile(image_file, image_filename) image_filename2 = subdir_class_1 / "image_dog.jpg" shutil.copyfile(image_file, image_filename2) image_metadata_filename = tmp_path / data_dir / "metadata.jsonl" image_metadata = textwrap.dedent( """\ {"file_name": "cat/image_cat.jpg", "caption": "Nice image of a cat", "label": "Cat"} {"file_name": "dog/image_dog.jpg", "caption": "Nice image of a dog", "label": "Dog"} """ ) with open(image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) return str(image_filename), str(image_filename2), str(image_metadata_filename) @pytest.fixture def image_file_with_metadata(tmp_path, image_file): image_filename = tmp_path / "image_rgb.jpg" shutil.copyfile(image_file, image_filename) image_metadata_filename = tmp_path / "metadata.jsonl" image_metadata = textwrap.dedent( """\ {"file_name": "image_rgb.jpg", "caption": "Nice image"} """ ) with open(image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) return str(image_filename), str(image_metadata_filename) @pytest.fixture def image_files_with_metadata_that_misses_one_image(tmp_path, image_file): image_filename = tmp_path / "image_rgb.jpg" shutil.copyfile(image_file, image_filename) image_filename2 = tmp_path / "image_rgb2.jpg" shutil.copyfile(image_file, image_filename2) image_metadata_filename = tmp_path / "metadata.jsonl" image_metadata = textwrap.dedent( """\ {"file_name": "image_rgb.jpg", "caption": "Nice image"} """ ) with open(image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) return str(image_filename), str(image_filename2), str(image_metadata_filename) @pytest.fixture(params=["jsonl", "csv"]) def data_files_with_one_split_and_metadata(request, tmp_path, image_file): data_dir = tmp_path / "imagefolder_data_dir_with_metadata_one_split" data_dir.mkdir(parents=True, exist_ok=True) subdir = data_dir / "subdir" subdir.mkdir(parents=True, exist_ok=True) image_filename = data_dir / "image_rgb.jpg" shutil.copyfile(image_file, image_filename) image_filename2 = data_dir / "image_rgb2.jpg" shutil.copyfile(image_file, image_filename2) image_filename3 = subdir / "image_rgb3.jpg" # in subdir shutil.copyfile(image_file, image_filename3) image_metadata_filename = data_dir / f"metadata.{request.param}" image_metadata = ( textwrap.dedent( """\ {"file_name": "image_rgb.jpg", "caption": "Nice image"} {"file_name": "image_rgb2.jpg", "caption": "Nice second image"} {"file_name": "subdir/image_rgb3.jpg", "caption": "Nice third image"} """ ) if request.param == "jsonl" else textwrap.dedent( """\ file_name,caption image_rgb.jpg,Nice image image_rgb2.jpg,Nice second image subdir/image_rgb3.jpg,Nice third image """ ) ) with open(image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) data_files_with_one_split_and_metadata = DataFilesDict.from_patterns( get_data_patterns(str(data_dir)), data_dir.as_posix() ) assert len(data_files_with_one_split_and_metadata) == 1 assert len(data_files_with_one_split_and_metadata["train"]) == 4 return data_files_with_one_split_and_metadata @pytest.fixture(params=["jsonl", "csv"]) def data_files_with_two_splits_and_metadata(request, tmp_path, image_file): data_dir = tmp_path / "imagefolder_data_dir_with_metadata_two_splits" data_dir.mkdir(parents=True, exist_ok=True) train_dir = data_dir / "train" train_dir.mkdir(parents=True, exist_ok=True) test_dir = data_dir / "test" test_dir.mkdir(parents=True, exist_ok=True) image_filename = train_dir / "image_rgb.jpg" # train image shutil.copyfile(image_file, image_filename) image_filename2 = train_dir / "image_rgb2.jpg" # train image shutil.copyfile(image_file, image_filename2) image_filename3 = test_dir / "image_rgb3.jpg" # test image shutil.copyfile(image_file, image_filename3) train_image_metadata_filename = train_dir / f"metadata.{request.param}" image_metadata = ( textwrap.dedent( """\ {"file_name": "image_rgb.jpg", "caption": "Nice train image"} {"file_name": "image_rgb2.jpg", "caption": "Nice second train image"} """ ) if request.param == "jsonl" else textwrap.dedent( """\ file_name,caption image_rgb.jpg,Nice train image image_rgb2.jpg,Nice second train image """ ) ) with open(train_image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) test_image_metadata_filename = test_dir / f"metadata.{request.param}" image_metadata = ( textwrap.dedent( """\ {"file_name": "image_rgb3.jpg", "caption": "Nice test image"} """ ) if request.param == "jsonl" else textwrap.dedent( """\ file_name,caption image_rgb3.jpg,Nice test image """ ) ) with open(test_image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) data_files_with_two_splits_and_metadata = DataFilesDict.from_patterns( get_data_patterns(str(data_dir)), data_dir.as_posix() ) assert len(data_files_with_two_splits_and_metadata) == 2 assert len(data_files_with_two_splits_and_metadata["train"]) == 3 assert len(data_files_with_two_splits_and_metadata["test"]) == 2 return data_files_with_two_splits_and_metadata @pytest.fixture def data_files_with_zip_archives(tmp_path, image_file): from PIL import Image, ImageOps data_dir = tmp_path / "imagefolder_data_dir_with_zip_archives" data_dir.mkdir(parents=True, exist_ok=True) archive_dir = data_dir / "archive" archive_dir.mkdir(parents=True, exist_ok=True) subdir = archive_dir / "subdir" subdir.mkdir(parents=True, exist_ok=True) image_filename = archive_dir / "image_rgb.jpg" shutil.copyfile(image_file, image_filename) image_filename2 = subdir / "image_rgb2.jpg" # in subdir # make sure they're two different images # Indeed we won't be able to compare the image.filename, since the archive is not extracted in streaming mode ImageOps.flip(Image.open(image_file)).save(image_filename2) image_metadata_filename = archive_dir / "metadata.jsonl" image_metadata = textwrap.dedent( """\ {"file_name": "image_rgb.jpg", "caption": "Nice image"} {"file_name": "subdir/image_rgb2.jpg", "caption": "Nice second image"} """ ) with open(image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) shutil.make_archive(archive_dir, "zip", archive_dir) shutil.rmtree(str(archive_dir)) data_files_with_zip_archives = DataFilesDict.from_patterns(get_data_patterns(str(data_dir)), data_dir.as_posix()) assert len(data_files_with_zip_archives) == 1 assert len(data_files_with_zip_archives["train"]) == 1 return data_files_with_zip_archives @require_pil # check that labels are inferred correctly from dir names def test_generate_examples_with_labels(data_files_with_labels_no_metadata, cache_dir): # there are no metadata.jsonl files in this test case imagefolder = ImageFolder(data_files=data_files_with_labels_no_metadata, cache_dir=cache_dir, drop_labels=False) imagefolder.download_and_prepare() assert imagefolder.info.features == Features({"image": Image(), "label": ClassLabel(names=["cat", "dog"])}) dataset = list(imagefolder.as_dataset()["train"]) label_feature = imagefolder.info.features["label"] assert dataset[0]["label"] == label_feature._str2int["cat"] assert dataset[1]["label"] == label_feature._str2int["dog"] @require_pil @pytest.mark.parametrize("drop_metadata", [None, True, False]) @pytest.mark.parametrize("drop_labels", [None, True, False]) def test_generate_examples_duplicated_label_key( image_files_with_labels_and_duplicated_label_key_in_metadata, drop_metadata, drop_labels, cache_dir, caplog ): cat_image_file, dog_image_file, image_metadata_file = image_files_with_labels_and_duplicated_label_key_in_metadata imagefolder = ImageFolder( drop_metadata=drop_metadata, drop_labels=drop_labels, data_files=[cat_image_file, dog_image_file, image_metadata_file], cache_dir=cache_dir, ) if drop_labels is False: # infer labels from directories even if metadata files are found imagefolder.download_and_prepare() warning_in_logs = any("ignoring metadata columns" in record.msg.lower() for record in caplog.records) assert warning_in_logs if drop_metadata is not True else not warning_in_logs dataset = imagefolder.as_dataset()["train"] assert imagefolder.info.features["label"] == ClassLabel(names=["cat", "dog"]) assert all(example["label"] in imagefolder.info.features["label"]._str2int.values() for example in dataset) else: imagefolder.download_and_prepare() dataset = imagefolder.as_dataset()["train"] if drop_metadata is not True: # labels are from metadata assert imagefolder.info.features["label"] == Value("string") assert all(example["label"] in ["Cat", "Dog"] for example in dataset) else: # drop both labels and metadata assert imagefolder.info.features == Features({"image": Image()}) assert all(example.keys() == {"image"} for example in dataset) @require_pil @pytest.mark.parametrize("drop_metadata", [None, True, False]) @pytest.mark.parametrize("drop_labels", [None, True, False]) def test_generate_examples_drop_labels(data_files_with_labels_no_metadata, drop_metadata, drop_labels): imagefolder = ImageFolder( drop_metadata=drop_metadata, drop_labels=drop_labels, data_files=data_files_with_labels_no_metadata ) gen_kwargs = imagefolder._split_generators(StreamingDownloadManager())[0].gen_kwargs # removing the labels explicitly requires drop_labels=True assert gen_kwargs["add_labels"] is not bool(drop_labels) assert gen_kwargs["add_metadata"] is False generator = imagefolder._generate_examples(**gen_kwargs) if not drop_labels: assert all( example.keys() == {"image", "label"} and all(val is not None for val in example.values()) for _, example in generator ) else: assert all( example.keys() == {"image"} and all(val is not None for val in example.values()) for _, example in generator ) @require_pil @pytest.mark.parametrize("drop_metadata", [None, True, False]) @pytest.mark.parametrize("drop_labels", [None, True, False]) def test_generate_examples_drop_metadata(image_file_with_metadata, drop_metadata, drop_labels): image_file, image_metadata_file = image_file_with_metadata imagefolder = ImageFolder( drop_metadata=drop_metadata, drop_labels=drop_labels, data_files={"train": [image_file, image_metadata_file]} ) gen_kwargs = imagefolder._split_generators(StreamingDownloadManager())[0].gen_kwargs # since the dataset has metadata, removing the metadata explicitly requires drop_metadata=True assert gen_kwargs["add_metadata"] is not bool(drop_metadata) # since the dataset has metadata, adding the labels explicitly requires drop_labels=False assert gen_kwargs["add_labels"] is (drop_labels is False) generator = imagefolder._generate_examples(**gen_kwargs) expected_columns = {"image"} if gen_kwargs["add_metadata"]: expected_columns.add("caption") if gen_kwargs["add_labels"]: expected_columns.add("label") result = [example for _, example in generator] assert len(result) == 1 example = result[0] assert example.keys() == expected_columns for column in expected_columns: assert example[column] is not None @require_pil @pytest.mark.parametrize("drop_metadata", [None, True, False]) def test_generate_examples_with_metadata_in_wrong_location(image_file, image_file_with_metadata, drop_metadata): _, image_metadata_file = image_file_with_metadata imagefolder = ImageFolder(drop_metadata=drop_metadata, data_files={"train": [image_file, image_metadata_file]}) gen_kwargs = imagefolder._split_generators(StreamingDownloadManager())[0].gen_kwargs generator = imagefolder._generate_examples(**gen_kwargs) if not drop_metadata: with pytest.raises(ValueError): list(generator) else: assert all( example.keys() == {"image"} and all(val is not None for val in example.values()) for _, example in generator ) @require_pil @pytest.mark.parametrize("drop_metadata", [None, True, False]) def test_generate_examples_with_metadata_that_misses_one_image( image_files_with_metadata_that_misses_one_image, drop_metadata ): image_file, image_file2, image_metadata_file = image_files_with_metadata_that_misses_one_image if not drop_metadata: features = Features({"image": Image(), "caption": Value("string")}) else: features = Features({"image": Image()}) imagefolder = ImageFolder( drop_metadata=drop_metadata, features=features, data_files={"train": [image_file, image_file2, image_metadata_file]}, ) gen_kwargs = imagefolder._split_generators(StreamingDownloadManager())[0].gen_kwargs generator = imagefolder._generate_examples(**gen_kwargs) if not drop_metadata: with pytest.raises(ValueError): list(generator) else: assert all( example.keys() == {"image"} and all(val is not None for val in example.values()) for _, example in generator ) @require_pil @pytest.mark.parametrize("streaming", [False, True]) def test_data_files_with_metadata_and_single_split(streaming, cache_dir, data_files_with_one_split_and_metadata): data_files = data_files_with_one_split_and_metadata imagefolder = ImageFolder(data_files=data_files, cache_dir=cache_dir) imagefolder.download_and_prepare() datasets = imagefolder.as_streaming_dataset() if streaming else imagefolder.as_dataset() for split, data_files in data_files.items(): expected_num_of_images = len(data_files) - 1 # don't count the metadata file assert split in datasets dataset = list(datasets[split]) assert len(dataset) == expected_num_of_images # make sure each sample has its own image and metadata assert len({example["image"].filename for example in dataset}) == expected_num_of_images assert len({example["caption"] for example in dataset}) == expected_num_of_images assert all(example["caption"] is not None for example in dataset) @require_pil @pytest.mark.parametrize("streaming", [False, True]) def test_data_files_with_metadata_and_multiple_splits(streaming, cache_dir, data_files_with_two_splits_and_metadata): data_files = data_files_with_two_splits_and_metadata imagefolder = ImageFolder(data_files=data_files, cache_dir=cache_dir) imagefolder.download_and_prepare() datasets = imagefolder.as_streaming_dataset() if streaming else imagefolder.as_dataset() for split, data_files in data_files.items(): expected_num_of_images = len(data_files) - 1 # don't count the metadata file assert split in datasets dataset = list(datasets[split]) assert len(dataset) == expected_num_of_images # make sure each sample has its own image and metadata assert len({example["image"].filename for example in dataset}) == expected_num_of_images assert len({example["caption"] for example in dataset}) == expected_num_of_images assert all(example["caption"] is not None for example in dataset) @require_pil @pytest.mark.parametrize("streaming", [False, True]) def test_data_files_with_metadata_and_archives(streaming, cache_dir, data_files_with_zip_archives): imagefolder = ImageFolder(data_files=data_files_with_zip_archives, cache_dir=cache_dir) imagefolder.download_and_prepare() datasets = imagefolder.as_streaming_dataset() if streaming else imagefolder.as_dataset() for split, data_files in data_files_with_zip_archives.items(): num_of_archives = len(data_files) # the metadata file is inside the archive expected_num_of_images = 2 * num_of_archives assert split in datasets dataset = list(datasets[split]) assert len(dataset) == expected_num_of_images # make sure each sample has its own image and metadata assert len({np.array(example["image"])[0, 0, 0] for example in dataset}) == expected_num_of_images assert len({example["caption"] for example in dataset}) == expected_num_of_images assert all(example["caption"] is not None for example in dataset) @require_pil def test_data_files_with_wrong_metadata_file_name(cache_dir, tmp_path, image_file): data_dir = tmp_path / "data_dir_with_bad_metadata" data_dir.mkdir(parents=True, exist_ok=True) shutil.copyfile(image_file, data_dir / "image_rgb.jpg") image_metadata_filename = data_dir / "bad_metadata.jsonl" # bad file image_metadata = textwrap.dedent( """\ {"file_name": "image_rgb.jpg", "caption": "Nice image"} """ ) with open(image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) data_files_with_bad_metadata = DataFilesDict.from_patterns(get_data_patterns(str(data_dir)), data_dir.as_posix()) imagefolder = ImageFolder(data_files=data_files_with_bad_metadata, cache_dir=cache_dir) imagefolder.download_and_prepare() dataset = imagefolder.as_dataset(split="train") # check that there are no metadata, since the metadata file name doesn't have the right name assert "caption" not in dataset.column_names @require_pil def test_data_files_with_wrong_image_file_name_column_in_metadata_file(cache_dir, tmp_path, image_file): data_dir = tmp_path / "data_dir_with_bad_metadata" data_dir.mkdir(parents=True, exist_ok=True) shutil.copyfile(image_file, data_dir / "image_rgb.jpg") image_metadata_filename = data_dir / "metadata.jsonl" image_metadata = textwrap.dedent( # with bad column "bad_file_name" instead of "file_name" """\ {"bad_file_name": "image_rgb.jpg", "caption": "Nice image"} """ ) with open(image_metadata_filename, "w", encoding="utf-8") as f: f.write(image_metadata) data_files_with_bad_metadata = DataFilesDict.from_patterns(get_data_patterns(str(data_dir)), data_dir.as_posix()) imagefolder = ImageFolder(data_files=data_files_with_bad_metadata, cache_dir=cache_dir) with pytest.raises(ValueError) as exc_info: imagefolder.download_and_prepare() assert "`file_name` must be present" in str(exc_info.value) @require_pil def test_data_files_with_with_metadata_in_different_formats(cache_dir, tmp_path, image_file): data_dir = tmp_path / "data_dir_with_metadata_in_different_format" data_dir.mkdir(parents=True, exist_ok=True) shutil.copyfile(image_file, data_dir / "image_rgb.jpg") image_metadata_filename_jsonl = data_dir / "metadata.jsonl" image_metadata_jsonl = textwrap.dedent( """\ {"file_name": "image_rgb.jpg", "caption": "Nice image"} """ ) with open(image_metadata_filename_jsonl, "w", encoding="utf-8") as f: f.write(image_metadata_jsonl) image_metadata_filename_csv = data_dir / "metadata.csv" image_metadata_csv = textwrap.dedent( """\ file_name,caption image_rgb.jpg,Nice image """ ) with open(image_metadata_filename_csv, "w", encoding="utf-8") as f: f.write(image_metadata_csv) data_files_with_bad_metadata = DataFilesDict.from_patterns(get_data_patterns(str(data_dir)), data_dir.as_posix()) imagefolder = ImageFolder(data_files=data_files_with_bad_metadata, cache_dir=cache_dir) with pytest.raises(ValueError) as exc_info: imagefolder.download_and_prepare() assert "metadata files with different extensions" in str(exc_info.value)
datasets/tests/packaged_modules/test_imagefolder.py/0
{ "file_path": "datasets/tests/packaged_modules/test_imagefolder.py", "repo_id": "datasets", "token_count": 8692 }
79
import os import zipfile import pytest from datasets.utils.extract import ( Bzip2Extractor, Extractor, GzipExtractor, Lz4Extractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lz4, require_py7zr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive", [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ], ) def test_base_extractors( compression_format, is_archive, bz2_file, gz_file, lz4_file, seven_zip_file, tar_file, xz_file, zip_file, zstd_file, tmp_path, text_file, ): input_paths_and_base_extractors = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bz2_file, Bzip2Extractor), "gzip": (gz_file, GzipExtractor), "lz4": (lz4_file, Lz4Extractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } input_path, base_extractor = input_paths_and_base_extractors[compression_format] if input_path is None: reason = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_py7zr.kwargs["reason"] elif compression_format == "lz4": reason += require_lz4.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(reason) assert base_extractor.is_extractable(input_path) output_path = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(input_path, output_path) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name extracted_file_content = file_path.read_text(encoding="utf-8") else: extracted_file_content = output_path.read_text(encoding="utf-8") expected_file_content = text_file.read_text(encoding="utf-8") assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive", [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ], ) def test_extractor( compression_format, is_archive, bz2_file, gz_file, lz4_file, seven_zip_file, tar_file, xz_file, zip_file, zstd_file, tmp_path, text_file, ): input_paths = { "7z": seven_zip_file, "bz2": bz2_file, "gzip": gz_file, "lz4": lz4_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } input_path = input_paths[compression_format] if input_path is None: reason = f"for '{compression_format}' compression_format, " if compression_format == "7z": reason += require_py7zr.kwargs["reason"] elif compression_format == "lz4": reason += require_lz4.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(reason) extractor_format = Extractor.infer_extractor_format(input_path) assert extractor_format is not None output_path = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(input_path, output_path, extractor_format) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name extracted_file_content = file_path.read_text(encoding="utf-8") else: extracted_file_content = output_path.read_text(encoding="utf-8") expected_file_content = text_file.read_text(encoding="utf-8") assert extracted_file_content == expected_file_content @pytest.fixture def tar_file_with_dot_dot(tmp_path, text_file): import tarfile directory = tmp_path / "data_dot_dot" directory.mkdir() path = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(path, "w") as f: f.add(text_file, arcname=os.path.join("..", text_file.name)) return path @pytest.fixture def tar_file_with_sym_link(tmp_path): import tarfile directory = tmp_path / "data_sym_link" directory.mkdir() path = directory / "tar_file_with_sym_link.tar" os.symlink("..", directory / "subdir", target_is_directory=True) with tarfile.TarFile(path, "w") as f: f.add(str(directory / "subdir"), arcname="subdir") # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log", [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")], ) def test_tar_extract_insecure_files( insecure_tar_file, error_log, tar_file_with_dot_dot, tar_file_with_sym_link, tmp_path, caplog ): insecure_tar_files = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } input_path = insecure_tar_files[insecure_tar_file] output_path = tmp_path / "extracted" TarExtractor.extract(input_path, output_path) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def test_is_zipfile_false_positive(tmpdir): # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number not_a_zip_file = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 data = ( b"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" b"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" b"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" b"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb") as f: f.write(data) assert zipfile.is_zipfile(str(not_a_zip_file)) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(not_a_zip_file) # but we're right
datasets/tests/test_extract.py/0
{ "file_path": "datasets/tests/test_extract.py", "repo_id": "datasets", "token_count": 2984 }
80
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def test_offline_with_timeout(): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT): with pytest.raises(RequestWouldHangIndefinitelyError): requests.request("GET", "https://huggingface.co") with pytest.raises(requests.exceptions.ConnectTimeout): requests.request("GET", "https://huggingface.co", timeout=1.0) @pytest.mark.integration def test_offline_with_connection_error(): with offline(OfflineSimulationMode.CONNECTION_FAILS): with pytest.raises(requests.exceptions.ConnectionError): requests.request("GET", "https://huggingface.co") def test_offline_with_datasets_offline_mode_enabled(): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1): with pytest.raises(ConnectionError): http_head("https://huggingface.co")
datasets/tests/test_offline_util.py/0
{ "file_path": "datasets/tests/test_offline_util.py", "repo_id": "datasets", "token_count": 382 }
81
<jupyter_start><jupyter_text>Unit 8 Part 2: Advanced Deep Reinforcement Learning. Using Sample Factory to play Doom from pixelsIn this notebook, we will learn how to train a Deep Neural Network to collect objects in a 3D environment based on the game of Doom, a video of the resulting policy is shown below. We train this policy using [Sample Factory](https://www.samplefactory.dev/), an asynchronous implementation of the PPO algorithm.Please note the following points:* [Sample Factory](https://www.samplefactory.dev/) is an advanced RL framework and **only functions on Linux and Mac** (not Windows).* The framework performs best on a **GPU machine with many CPU cores**, where it can achieve speeds of 100k interactions per second. The resources available on a standard Colab notebook **limit the performance of this library**. So the speed in this setting **does not reflect the real-world performance**.* Benchmarks for Sample Factory are available in a number of settings, check out the [examples](https://github.com/alex-petrenko/sample-factory/tree/master/sf_examples) if you want to find out more.<jupyter_code>from IPython.display import HTML HTML('''<video width="640" height="480" controls> <source src="https://huggingface.co/edbeeching/doom_health_gathering_supreme_3333/resolve/main/replay.mp4" type="video/mp4">Your browser does not support the video tag.</video>''' )<jupyter_output><empty_output><jupyter_text>To validate this hands-on for the [certification process](https://huggingface.co/deep-rl-course/en/unit0/introductioncertification-process), you need to push one model:- `doom_health_gathering_supreme` get a result of >= 5.To find your result, go to the [leaderboard](https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard) and find your model, **the result = mean_reward - std of reward**If you don't find your model, **go to the bottom of the page and click on the refresh button**For more information about the certification process, check this section ๐Ÿ‘‰ https://huggingface.co/deep-rl-course/en/unit0/introductioncertification-process Set the GPU ๐Ÿ’ช- To **accelerate the agent's training, we'll use a GPU**. To do that, go to `Runtime > Change Runtime type` - `Hardware Accelerator > GPU` Before starting to train our agent, let's **study the library and environments we're going to use**. Sample Factory[Sample Factory](https://www.samplefactory.dev/) is one of the **fastest RL libraries focused on very efficient synchronous and asynchronous implementations of policy gradients (PPO)**.Sample Factory is thoroughly **tested, used by many researchers and practitioners**, and is actively maintained. Our implementation is known to **reach SOTA performance in a variety of domains while minimizing RL experiment training time and hardware requirements**. Key features- Highly optimized algorithmย [architecture](https://www.samplefactory.dev/06-architecture/overview/)ย for maximum learning throughput- [Synchronous and asynchronous](https://www.samplefactory.dev/07-advanced-topics/sync-async/)ย training regimes- [Serial (single-process) mode](https://www.samplefactory.dev/07-advanced-topics/serial-mode/)ย for easy debugging- Optimal performance in both CPU-based andย [GPU-accelerated environments](https://www.samplefactory.dev/09-environment-integrations/isaacgym/)- Single- & multi-agent training, self-play, supportsย [training multiple policies](https://www.samplefactory.dev/07-advanced-topics/multi-policy-training/)ย at once on one or many GPUs- Population-Based Training ([PBT](https://www.samplefactory.dev/07-advanced-topics/pbt/))- Discrete, continuous, hybrid action spaces- Vector-based, image-based, dictionary observation spaces- Automatically creates a model architecture by parsing action/observation space specification. Supportsย [custom model architectures](https://www.samplefactory.dev/03-customization/custom-models/)- Designed to be imported into other projects,ย [custom environments](https://www.samplefactory.dev/03-customization/custom-environments/)ย are first-class citizens- Detailedย [WandB and Tensorboard summaries](https://www.samplefactory.dev/05-monitoring/metrics-reference/),ย [custom metrics](https://www.samplefactory.dev/05-monitoring/custom-metrics/)- [HuggingFace ๐Ÿค— integration](https://www.samplefactory.dev/10-huggingface/huggingface/)ย (upload trained models and metrics to the Hub)- [Multiple](https://www.samplefactory.dev/09-environment-integrations/mujoco/)ย [example](https://www.samplefactory.dev/09-environment-integrations/atari/)ย [environment](https://www.samplefactory.dev/09-environment-integrations/vizdoom/)ย [integrations](https://www.samplefactory.dev/09-environment-integrations/dmlab/)ย with tuned parameters and trained modelsAll of the above policies are available on the ๐Ÿค— hub. Search for the tag [sample-factory](https://huggingface.co/models?library=sample-factory&sort=downloads) How sample-factory worksSample-factory is one of the **most highly optimized RL implementations available to the community**.It works by **spawning multiple processes that run rollout workers, inference workers and a learner worker**.The *workers* **communicate through shared memory, which lowers the communication cost between processes**.The *rollout workers* interact with the environment and send observations to the *inference workers*.The *inferences workers* query a fixed version of the policy and **send actions back to the rollout worker**.After *k* steps the rollout works send a trajectory of experience to the learner worker, **which it uses to update the agentโ€™s policy network**. Actor Critic models in Sample-factoryActor Critic models in Sample Factory are composed of three components:- **Encoder** - Process input observations (images, vectors) and map them to a vector. This is the part of the model you will most likely want to customize.- **Core** - Intergrate vectors from one or more encoders, can optionally include a single- or multi-layer LSTM/GRU in a memory-based agent.- **Decoder** - Apply additional layers to the output of the model core before computing the policy and value outputs.The library has been designed to automatically support any observation and action spaces. Users can easily add their custom models. You can find out more in the [documentation](https://www.samplefactory.dev/03-customization/custom-models/actor-critic-models-in-sample-factory). ViZDoom[ViZDoom](https://vizdoom.cs.put.edu.pl/) is an **open-source python interface for the Doom Engine**.The library was created in 2016 by Marek Wydmuch, Michal Kempka at theย Institute of Computing Science, Poznan University of Technology, Poland.The library enables the **training of agents directly from the screen pixels in a number of scenarios**, including team deathmatch, shown in the video below. Because the ViZDoom environment is based on a game the was created in the 90s, it can be run on modern hardware at accelerated speeds, **allowing us to learn complex AI behaviors fairly quickly**.The library includes feature such as:- Multi-platform (Linux, macOS, Windows),- API for Python and C++,- [OpenAI Gym](https://www.gymlibrary.dev/)ย environment wrappers- Easy-to-create custom scenarios (visual editors, scripting language, and examples available),- Async and sync single-player and multiplayer modes,- Lightweight (few MBs) and fast (up to 7000 fps in sync mode, single-threaded),- Customizable resolution and rendering parameters,- Access to the depth buffer (3D vision),- Automatic labeling of game objects visible in the frame,- Access to the audio buffer- Access to the list of actors/objects and map geometry,- Off-screen rendering and episode recording,- Time scaling in async mode. We first need to install some dependencies that are required for the ViZDoom environmentNow that our Colab runtime is set up, we can start by installing the dependencies required to run ViZDoom on linux.If you are following on your machine on Mac, you will want to follow the installation instructions on the [github page](https://github.com/Farama-Foundation/ViZDoom/blob/master/doc/Quickstart.md-quickstart-for-macos-and-anaconda3-python-36).<jupyter_code>%%capture %%bash # Install ViZDoom deps from # https://github.com/mwydmuch/ViZDoom/blob/master/doc/Building.md#-linux apt-get install build-essential zlib1g-dev libsdl2-dev libjpeg-dev \ nasm tar libbz2-dev libgtk2.0-dev cmake git libfluidsynth-dev libgme-dev \ libopenal-dev timidity libwildmidi-dev unzip ffmpeg # Boost libraries apt-get install libboost-all-dev # Lua binding dependencies apt-get install liblua5.1-dev<jupyter_output><empty_output><jupyter_text>Then we can install Sample Factory and ViZDoom- This can take 7min<jupyter_code># install python libraries # thanks toinsson !pip install faster-fifo==1.4.2 !pip install vizdoom !pip install sample-factory==2.0.2<jupyter_output><empty_output><jupyter_text>Setting up the Doom Environment in sample-factory<jupyter_code>import functools from sample_factory.algo.utils.context import global_model_factory from sample_factory.cfg.arguments import parse_full_cfg, parse_sf_args from sample_factory.envs.env_utils import register_env from sample_factory.train import run_rl from sf_examples.vizdoom.doom.doom_model import make_vizdoom_encoder from sf_examples.vizdoom.doom.doom_params import add_doom_env_args, doom_override_defaults from sf_examples.vizdoom.doom.doom_utils import DOOM_ENVS, make_doom_env_from_spec # Registers all the ViZDoom environments def register_vizdoom_envs(): for env_spec in DOOM_ENVS: make_env_func = functools.partial(make_doom_env_from_spec, env_spec) register_env(env_spec.name, make_env_func) # Sample Factory allows the registration of a custom Neural Network architecture # See https://github.com/alex-petrenko/sample-factory/blob/master/sf_examples/vizdoom/doom/doom_model.py for more details def register_vizdoom_models(): global_model_factory().register_encoder_factory(make_vizdoom_encoder) def register_vizdoom_components(): register_vizdoom_envs() register_vizdoom_models() # parse the command line args and create a config def parse_vizdoom_cfg(argv=None, evaluation=False): parser, _ = parse_sf_args(argv=argv, evaluation=evaluation) # parameters specific to Doom envs add_doom_env_args(parser) # override Doom default values for algo parameters doom_override_defaults(parser) # second parsing pass yields the final configuration final_cfg = parse_full_cfg(parser, argv) return final_cfg<jupyter_output><empty_output><jupyter_text>Now that the setup if complete, we can train the agent. We have chosen here to learn a ViZDoom task called `Health Gathering Supreme`. The scenario: Health Gathering SupremeThe objective of this scenario is to **teach the agent how to survive without knowing what makes him survive**. Agent know only that **life is precious** and death is bad so **it must learn what prolongs his existence and that his health is connected with it**.Map is a rectangle containing walls and with a green, acidic floor which **hurts the player periodically**. Initially there are some medkits spread uniformly over the map. A new medkit falls from the skies every now and then. **Medkits heal some portions of player's health** - to survive agent needs to pick them up. Episode finishes after player's death or on timeout.Further configuration:- Living_reward = 1- 3 available buttons: turn left, turn right, move forward- 1 available game variable: HEALTH- death penalty = 100You can find out more about the scenarios available in ViZDoom [here](https://github.com/Farama-Foundation/ViZDoom/tree/master/scenarios).There are also a number of more complex scenarios that have been create for ViZDoom, such as the ones detailed on [this github page](https://github.com/edbeeching/3d_control_deep_rl). Training the agent- We're going to train the agent for 4000000 steps it will take approximately 20min<jupyter_code>## Start the training, this should take around 15 minutes register_vizdoom_components() # The scenario we train on today is health gathering # other scenarios include "doom_basic", "doom_two_colors_easy", "doom_dm", "doom_dwango5", "doom_my_way_home", "doom_deadly_corridor", "doom_defend_the_center", "doom_defend_the_line" env = "doom_health_gathering_supreme" cfg = parse_vizdoom_cfg(argv=[f"--env={env}", "--num_workers=8", "--num_envs_per_worker=4", "--train_for_env_steps=4000000"]) status = run_rl(cfg)<jupyter_output><empty_output><jupyter_text>Let's take a look at the performance of the trained policy and output a video of the agent.<jupyter_code>from sample_factory.enjoy import enjoy cfg = parse_vizdoom_cfg(argv=[f"--env={env}", "--num_workers=1", "--save_video", "--no_render", "--max_num_episodes=10"], evaluation=True) status = enjoy(cfg)<jupyter_output><empty_output><jupyter_text>Now lets visualize the performance of the agent<jupyter_code>from base64 import b64encode from IPython.display import HTML mp4 = open('/content/train_dir/default_experiment/replay.mp4','rb').read() data_url = "data:video/mp4;base64," + b64encode(mp4).decode() HTML(""" <video width=640 controls> <source src="%s" type="video/mp4"> </video> """ % data_url)<jupyter_output><empty_output><jupyter_text>The agent has learned something, but its performance could be better. We would clearly need to train for longer. But let's upload this model to the Hub. Now lets upload your checkpoint and video to the Hugging Face Hub To be able to share your model with the community there are three more steps to follow:1๏ธโƒฃ (If it's not already done) create an account to HF โžก https://huggingface.co/join2๏ธโƒฃ Sign in and then, you need to store your authentication token from the Hugging Face website.- Create a new token (https://huggingface.co/settings/tokens) **with write role**- Copy the token- Run the cell below and paste the token If you don't want to use a Google Colab or a Jupyter Notebook, you need to use this command instead: `huggingface-cli login`<jupyter_code>from huggingface_hub import notebook_login notebook_login() !git config --global credential.helper store from sample_factory.enjoy import enjoy hf_username = "ThomasSimonini" # insert your HuggingFace username here cfg = parse_vizdoom_cfg(argv=[f"--env={env}", "--num_workers=1", "--save_video", "--no_render", "--max_num_episodes=10", "--max_num_frames=100000", "--push_to_hub", f"--hf_repository={hf_username}/rl_course_vizdoom_health_gathering_supreme"], evaluation=True) status = enjoy(cfg)<jupyter_output><empty_output><jupyter_text>Let's load another model This agent's performance was good, but can do better! Let's download and visualize an agent trained for 10B timesteps from the hub.<jupyter_code>#download the agent from the hub !python -m sample_factory.huggingface.load_from_hub -r edbeeching/doom_health_gathering_supreme_2222 -d ./train_dir !ls train_dir/doom_health_gathering_supreme_2222 env = "doom_health_gathering_supreme" cfg = parse_vizdoom_cfg(argv=[f"--env={env}", "--num_workers=1", "--save_video", "--no_render", "--max_num_episodes=10", "--experiment=doom_health_gathering_supreme_2222", "--train_dir=train_dir"], evaluation=True) status = enjoy(cfg) mp4 = open('/content/train_dir/doom_health_gathering_supreme_2222/replay.mp4','rb').read() data_url = "data:video/mp4;base64," + b64encode(mp4).decode() HTML(""" <video width=640 controls> <source src="%s" type="video/mp4"> </video> """ % data_url)<jupyter_output><empty_output><jupyter_text>Some additional challenges ๐Ÿ†: Doom DeathmatchTraining an agent to play a Doom deathmatch **takes many hours on a more beefy machine than is available in Colab**.Fortunately, we have have **already trained an agent in this scenario and it is available in the ๐Ÿค— Hub!** Letโ€™s download the model and visualize the agentโ€™s performance.<jupyter_code># Download the agent from the hub !python -m sample_factory.huggingface.load_from_hub -r edbeeching/doom_deathmatch_bots_2222 -d ./train_dir<jupyter_output><empty_output><jupyter_text>Given the agent plays for a long time the video generation can take **10 minutes**.<jupyter_code>from sample_factory.enjoy import enjoy register_vizdoom_components() env = "doom_deathmatch_bots" cfg = parse_vizdoom_cfg(argv=[f"--env={env}", "--num_workers=1", "--save_video", "--no_render", "--max_num_episodes=1", "--experiment=doom_deathmatch_bots_2222", "--train_dir=train_dir"], evaluation=True) status = enjoy(cfg) mp4 = open('/content/train_dir/doom_deathmatch_bots_2222/replay.mp4','rb').read() data_url = "data:video/mp4;base64," + b64encode(mp4).decode() HTML(""" <video width=640 controls> <source src="%s" type="video/mp4"> </video> """ % data_url)<jupyter_output><empty_output>
deep-rl-class/notebooks/unit8/unit8_part2.ipynb/0
{ "file_path": "deep-rl-class/notebooks/unit8/unit8_part2.ipynb", "repo_id": "deep-rl-class", "token_count": 4950 }
82
# The Reinforcement Learning Framework [[the-reinforcement-learning-framework]] ## The RL Process [[the-rl-process]] <figure> <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/RL_process.jpg" alt="The RL process" width="100%"> <figcaption>The RL Process: a loop of state, action, reward and next state</figcaption> <figcaption>Source: <a href="http://incompleteideas.net/book/RLbook2020.pdf">Reinforcement Learning: An Introduction, Richard Sutton and Andrew G. Barto</a></figcaption> </figure> To understand the RL process, letโ€™s imagine an agent learning to play a platform game: <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/RL_process_game.jpg" alt="The RL process" width="100%"> - Our Agent receives **state \\(S_0\\)**ย from theย **Environment**ย โ€” we receive the first frame of our game (Environment). - Based on thatย **state \\(S_0\\),**ย the Agent takesย **action \\(A_0\\)**ย โ€” our Agent will move to the right. - The environment goes to aย **new**ย **state \\(S_1\\)**ย โ€” new frame. - The environment gives someย **reward \\(R_1\\)**ย to the Agent โ€” weโ€™re not deadย *(Positive Reward +1)*. This RL loop outputs a sequence ofย **state, action, reward and next state.** <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/sars.jpg" alt="State, Action, Reward, Next State" width="100%"> The agent's goal is to _maximize_ its cumulative reward, **called the expected return.** ## The reward hypothesis: the central idea of Reinforcement Learning [[reward-hypothesis]] โ‡’ Why is the goal of the agent to maximize the expected return? Because RL is based on theย **reward hypothesis**, which is that all goals can be described as theย **maximization of the expected return**ย (expected cumulative reward). Thatโ€™s why in Reinforcement Learning,ย **to have the best behavior,**ย we aim to learn to take actions thatย **maximize the expected cumulative reward.** ## Markov Property [[markov-property]] In papers, youโ€™ll see that the RL process is called aย **Markov Decision Process**ย (MDP). Weโ€™ll talk again about the Markov Property in the following units. But if you need to remember something today about it, it's this: the Markov Property implies that our agent needsย **only the current state to decide**ย what action to take andย **not the history of all the states and actions**ย they took before. ## Observations/States Space [[obs-space]] Observations/States are theย **information our agent gets from the environment.**ย In the case of a video game, it can be a frame (a screenshot). In the case of the trading agent, it can be the value of a certain stock, etc. There is a differentiation to make between *observation* and *state*, however: - *State s*: is **a complete description of the state of the world** (there is no hidden information). In a fully observed environment. <figure> <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/chess.jpg" alt="Chess"> <figcaption>In chess game, we receive a state from the environment since we have access to the whole check board information.</figcaption> </figure> In a chess game, we have access to the whole board information, so we receive a state from the environment. In other words, the environment is fully observed. - *Observation o*: is a **partial description of the state.** In a partially observed environment. <figure> <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/mario.jpg" alt="Mario"> <figcaption>In Super Mario Bros, we only see the part of the level close to the player, so we receive an observation.</figcaption> </figure> In Super Mario Bros, we only see the part of the level close to the player, so we receive an observation. Inย Super Mario Bros, we are in a partially observed environment. We receive an observationย **since we only see a part of the level.** <Tip> In this course, we use the term "state" to denote both state and observation, but we will make the distinction in implementations. </Tip> To recap: <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/obs_space_recap.jpg" alt="Obs space recap" width="100%"> ## Action Space [[action-space]] The Action space is the set ofย **all possible actions in an environment.** The actions can come from aย *discrete*ย orย *continuous space*: - *Discrete space*: the number of possible actions is **finite**. <figure> <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/mario.jpg" alt="Mario"> <figcaption>In Super Mario Bros, we have only 4 possible actions: left, right, up (jumping) and down (crouching).</figcaption> </figure> Again, in Super Mario Bros, we have a finite set of actions since we have only 4 directions. - *Continuous space*: the number of possible actions is **infinite**. <figure> <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/self_driving_car.jpg" alt="Self Driving Car"> <figcaption>A Self Driving Car agent has an infinite number of possible actions since it can turn left 20ยฐ, 21,1ยฐ, 21,2ยฐ, honk, turn right 20ยฐโ€ฆ </figcaption> </figure> To recap: <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/action_space.jpg" alt="Action space recap" width="100%"> Taking this information into consideration is crucial because it willย **have importance when choosing the RL algorithm in the future.** ## Rewards and the discounting [[rewards]] The reward is fundamental in RL because itโ€™sย **the only feedback**ย for the agent. Thanks to it, our agent knowsย **if the action taken was good or not.** The cumulative reward at each time step **t** can be written as: <figure> <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/rewards_1.jpg" alt="Rewards"> <figcaption>The cumulative reward equals the sum of all rewards in the sequence. </figcaption> </figure> Which is equivalent to: <figure> <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/rewards_2.jpg" alt="Rewards"> <figcaption>The cumulative reward = rt+1 (rt+k+1 = rt+0+1 = rt+1)+ rt+2 (rt+k+1 = rt+1+1 = rt+2) + ... </figcaption> </figure> However, in reality,ย **we canโ€™t just add them like that.**ย The rewards that come sooner (at the beginning of the game)ย **are more likely to happen** since they are more predictable than the long-term future reward. Letโ€™s say your agent is this tiny mouse that can move one tile each time step, and your opponent is the cat (that can move too). The mouse's goal is **to eat the maximum amount of cheese before being eaten by the cat.** <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/rewards_3.jpg" alt="Rewards" width="100%"> As we can see in theย diagram,ย **itโ€™s more probable to eat the cheese near us than the cheese close to the cat**ย (the closer we are to the cat, the more dangerous it is). Consequently,ย **the reward near the cat, even if it is bigger (more cheese), will be more discounted**ย since weโ€™re not really sure weโ€™ll be able to eat it. Toย discount the rewards, we proceed like this: 1. We define a discount rate called gamma. **It must be between 0 and 1.** Most of the time between **0.95 and 0.99**. - The larger the gamma, the smaller the discount. This means our agent **cares more about the long-term reward.** - On the other hand, the smaller the gamma, the bigger the discount. This means our **agent cares more about the short term reward (the nearest cheese).** 2.ย Then, each reward will be discounted by gamma to the exponent of the time step. As the time step increases, the cat gets closer to us,ย **so the future reward is less and less likely to happen.** Our discounted expected cumulative reward is: <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit1/rewards_4.jpg" alt="Rewards" width="100%">
deep-rl-class/units/en/unit1/rl-framework.mdx/0
{ "file_path": "deep-rl-class/units/en/unit1/rl-framework.mdx", "repo_id": "deep-rl-class", "token_count": 2504 }
83
# Introducing Q-Learning [[q-learning]] ## What is Q-Learning? [[what-is-q-learning]] Q-Learning is anย **off-policy value-based method that uses a TD approach to train its action-value function:** - *Off-policy*: we'll talk about that at the endย of this unit. - *Value-based method*: finds the optimal policy indirectly by training a value or action-value function that will tell usย **the value of each state or each state-action pair.** - *TD approach:*ย **updates its action-value function at each step instead of at the end of the episode.** **Q-Learning is the algorithm we use to train our Q-function**, anย **action-value function**ย that determines the value of being at a particular state and taking a specific action at that state. <figure> <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Q-function.jpg" alt="Q-function"/> <figcaption>Given a state and action, our Q Function outputs a state-action value (also called Q-value)</figcaption> </figure> Theย **Q comes from "the Quality" (the value) of that action at that state.** Let's recap the difference between value and reward: - The *value of a state*, or a *state-action pair* is the expected cumulative reward our agent gets if it starts at this state (or state-action pair) and then acts accordingly to its policy. - The *reward* is the **feedback I get from the environment** after performing an action at a state. Internally, our Q-function is encoded byย **a Q-table, a table where each cell corresponds to a state-action pair value.**ย Think of this Q-table asย **the memory or cheat sheet of our Q-function.** Let's go through an example of a maze. <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Maze-1.jpg" alt="Maze example"/> The Q-table is initialized. That's why all values are = 0. This tableย **contains, for each state and action, the corresponding state-action values.** For this simple example, the state is only defined by the position of the mouse. Therefore, we have 2*3 rows in our Q-table, one row for each possible position of the mouse. In more complex scenarios, the state could contain more information than the position of the actor. <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Maze-2.jpg" alt="Maze example"/> Here we see that theย **state-action value of the initial state and going up is 0:** <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Maze-3.jpg" alt="Maze example"/> So: the Q-function uses a Q-tableย **that has the value of each state-action pair.**ย Given a state and action,ย **our Q-function will search inside its Q-table to output the value.** <figure> <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Q-function-2.jpg" alt="Q-function"/> </figure> If we recap,ย *Q-Learning*ย **is the RL algorithm that:** - Trainsย a *Q-function* (an **action-value function**),ย which internally is aย **Q-table that contains all the state-action pair values.** - Given a state and action, our Q-functionย **will search its Q-table for the corresponding value.** - When the training is done,ย **we have an optimal Q-function, which means we have optimal Q-table.** - And if weย **have an optimal Q-function**, weย **have an optimal policy**ย since weย **know the best action to take at each state.** <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/link-value-policy.jpg" alt="Link value policy"/> In the beginning,ย **our Q-table is useless since it gives arbitrary values for each state-action pair**ย (most of the time, we initialize the Q-table to 0). As the agent **explores the environment and we update the Q-table, it will give us a better and better approximation** to the optimal policy. <figure class="image table text-center m-0 w-full"> <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Q-learning-1.jpg" alt="Q-learning"/> <figcaption>We see here that with the training, our Q-table is better since, thanks to it, we can know the value of each state-action pair.</figcaption> </figure> Now that we understand what Q-Learning, Q-functions, and Q-tables are,ย **let's dive deeper into the Q-Learning algorithm**. ## The Q-Learning algorithm [[q-learning-algo]] This is the Q-Learning pseudocode; let's study each part andย **see how it works with a simple example before implementing it.** Don't be intimidated by it, it's simpler than it looks! We'll go over each step. <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Q-learning-2.jpg" alt="Q-learning"/> ### Step 1: We initialize the Q-table [[step1]] <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Q-learning-3.jpg" alt="Q-learning"/> We need to initialize the Q-table for each state-action pair.ย **Most of the time, we initialize with values of 0.** ### Step 2: Choose an action using the epsilon-greedy strategy [[step2]] <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Q-learning-4.jpg" alt="Q-learning"/> The epsilon-greedy strategy is a policy that handles the exploration/exploitation trade-off. The idea is that, with an initial value of ษ› = 1.0: - *With probability 1 โ€” ษ›*ย : we doย **exploitation**ย (aka our agent selects the action with the highest state-action pair value). - With probability ษ›:ย **we do exploration**ย (trying random action). At the beginning of the training,ย **the probability of doing exploration will be huge since ษ› is very high, so most of the time, we'll explore.**ย But as the training goes on, and consequently ourย **Q-table gets better and better in its estimations, we progressively reduce the epsilon value**ย since we will need less and less exploration and more exploitation. <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Q-learning-5.jpg" alt="Q-learning"/> ### Step 3: Perform action At, get reward Rt+1 and next state St+1 [[step3]] <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Q-learning-6.jpg" alt="Q-learning"/> ### Step 4: Update Q(St, At) [[step4]] Remember that in TD Learning, we update our policy or value function (depending on the RL method we choose)ย **after one step of the interaction.** To produce our TD target,ย **we used the immediate reward \\(R_{t+1}\\) plus the discounted value of the next state**, computed by finding the action that maximizes the current Q-function at the next state.ย (We call that bootstrap). <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Q-learning-7.jpg" alt="Q-learning"/> Therefore, our \\(Q(S_t, A_t)\\)ย **update formula goes like this:** <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Q-learning-8.jpg" alt="Q-learning"/> This means that to update our \\(Q(S_t, A_t)\\): - We need \\(S_t, A_t, R_{t+1}, S_{t+1}\\). - To update our Q-value at a given state-action pair, we use the TD target. How do we form the TD target? 1. We obtain the reward \\(R_{t+1}\\) after taking the action \\(A_t\\). 2. To get the **best state-action pair value** for the next state, we use a greedy policy to select the next best action. Note that this is not an epsilon-greedy policy, this will always take the action with the highest state-action value. Then when the update of this Q-value is done, we start in a new state and select our actionย **using a epsilon-greedy policy again.** **This is why we say that Q Learning is an off-policy algorithm.** ## Off-policy vs On-policy [[off-vs-on]] The difference is subtle: - *Off-policy*: usingย **a different policy for acting (inference) and updating (training).** For instance, with Q-Learning, the epsilon-greedy policy (acting policy), is different from the greedy policy that isย **used to select the best next-state action value to update our Q-value (updating policy).** <figure> <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/off-on-1.jpg" alt="Off-on policy"/> <figcaption>Acting Policy</figcaption> </figure> Is different from the policy we use during the training part: <figure> <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/off-on-2.jpg" alt="Off-on policy"/> <figcaption>Updating policy</figcaption> </figure> - *On-policy:*ย using theย **same policy for acting and updating.** For instance, with Sarsa, another value-based algorithm,ย **the epsilon-greedy policy selects the next state-action pair, not a greedy policy.** <figure> <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/off-on-3.jpg" alt="Off-on policy"/> <figcaption>Sarsa</figcaption> </figure> <figure> <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/off-on-4.jpg" alt="Off-on policy"/> </figure>
deep-rl-class/units/en/unit2/q-learning.mdx/0
{ "file_path": "deep-rl-class/units/en/unit2/q-learning.mdx", "repo_id": "deep-rl-class", "token_count": 2955 }
84
# Glossary This is a community-created glossary. Contributions are welcome! - **Deep Q-Learning:** A value-based deep reinforcement learning algorithm that uses a deep neural network to approximate Q-values for actions in a given state. The goal of Deep Q-learning is to find the optimal policy that maximizes the expected cumulative reward by learning the action-values. - **Value-based methods:** Reinforcement Learning methods that estimate a value function as an intermediate step towards finding an optimal policy. - **Policy-based methods:** Reinforcement Learning methods that directly learn to approximate the optimal policy without learning a value function. In practice they output a probability distribution over actions. The benefits of using policy-gradient methods over value-based methods include: - simplicity of integration: no need to store action values; - ability to learn a stochastic policy: the agent explores the state space without always taking the same trajectory, and avoids the problem of perceptual aliasing; - effectiveness in high-dimensional and continuous action spaces; and - improved convergence properties. - **Policy Gradient:** A subset of policy-based methods where the objective is to maximize the performance of a parameterized policy using gradient ascent. The goal of a policy-gradient is to control the probability distribution of actions by tuning the policy such that good actions (that maximize the return) are sampled more frequently in the future. - **Monte Carlo Reinforce:** A policy-gradient algorithm that uses an estimated return from an entire episode to update the policy parameter. If you want to improve the course, you can [open a Pull Request.](https://github.com/huggingface/deep-rl-class/pulls) This glossary was made possible thanks to: - [Diego Carpintero](https://github.com/dcarpintero)
deep-rl-class/units/en/unit4/glossary.mdx/0
{ "file_path": "deep-rl-class/units/en/unit4/glossary.mdx", "repo_id": "deep-rl-class", "token_count": 421 }
85
# Additional Readings [[additional-readings]] ## Bias-variance tradeoff in Reinforcement Learning If you want to dive deeper into the question of variance and bias tradeoff in Deep Reinforcement Learning, you can check out these two articles: - [Making Sense of the Bias / Variance Trade-off in (Deep) Reinforcement Learning](https://blog.mlreview.com/making-sense-of-the-bias-variance-trade-off-in-deep-reinforcement-learning-79cf1e83d565) - [Bias-variance Tradeoff in Reinforcement Learning](https://www.endtoend.ai/blog/bias-variance-tradeoff-in-reinforcement-learning/) ## Advantage Functions - [Advantage Functions, SpinningUp RL](https://spinningup.openai.com/en/latest/spinningup/rl_intro.html?highlight=advantage%20functio#advantage-functions) ## Actor Critic - [Foundations of Deep RL Series, L3 Policy Gradients and Advantage Estimation by Pieter Abbeel](https://www.youtube.com/watch?v=AKbX1Zvo7r8) - [A2C Paper: Asynchronous Methods for Deep Reinforcement Learning](https://arxiv.org/abs/1602.01783v2)
deep-rl-class/units/en/unit6/additional-readings.mdx/0
{ "file_path": "deep-rl-class/units/en/unit6/additional-readings.mdx", "repo_id": "deep-rl-class", "token_count": 321 }
86
# Introducing the Clipped Surrogate Objective Function ## Recap: The Policy Objective Function Letโ€™s remember what the objective is to optimize in Reinforce: <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit9/lpg.jpg" alt="Reinforce"/> The idea was that by taking a gradient ascent step on this function (equivalent to taking gradient descent of the negative of this function), we would **push our agent to take actions that lead to higher rewards and avoid harmful actions.** However, the problem comes from the step size: - Too small, **the training process was too slow** - Too high, **there was too much variability in the training** With PPO, the idea is to constrain our policy update with a new objective function called the *Clipped surrogate objective function* that **will constrain the policy change in a small range using a clip.** This new function **is designed to avoid destructively large weights updates** : <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit9/ppo-surrogate.jpg" alt="PPO surrogate function"/> Letโ€™s study each part to understand how it works. ## The Ratio Function <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit9/ratio1.jpg" alt="Ratio"/> This ratio is calculated as follows: <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit9/ratio2.jpg" alt="Ratio"/> Itโ€™s the probability of taking action \\( a_t \\) at state \\( s_t \\) in the current policy, divided by the same for the previous policy. As we can see, \\( r_t(\theta) \\) denotes the probability ratio between the current and old policy: - If \\( r_t(\theta) > 1 \\), the **action \\( a_t \\) at state \\( s_t \\) is more likely in the current policy than the old policy.** - If \\( r_t(\theta) \\) is between 0 and 1, the **action is less likely for the current policy than for the old one**. So this probability ratio is an **easy way to estimate the divergence between old and current policy.** ## The unclipped part of the Clipped Surrogate Objective function <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit9/unclipped1.jpg" alt="PPO"/> This ratio **can replace the log probability we use in the policy objective function**. This gives us the left part of the new objective function: multiplying the ratio by the advantage. <figure class="image table text-center m-0 w-full"> <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit9/unclipped2.jpg" alt="PPO"/> <figcaption><a href="https://arxiv.org/pdf/1707.06347.pdf">Proximal Policy Optimization Algorithms</a></figcaption> </figure> However, without a constraint, if the action taken is much more probable in our current policy than in our former, **this would lead to a significant policy gradient step** and, therefore, an **excessive policy update.** ## The clipped Part of the Clipped Surrogate Objective function <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit9/clipped.jpg" alt="PPO"/> Consequently, we need to constrain this objective function by penalizing changes that lead to a ratio far away from 1 (in the paper, the ratio can only vary from 0.8 to 1.2). **By clipping the ratio, we ensure that we do not have a too large policy update because the current policy can't be too different from the older one.** To do that, we have two solutions: - *TRPO (Trust Region Policy Optimization)* uses KL divergence constraints outside the objective function to constrain the policy update. But this method **is complicated to implement and takes more computation time.** - *PPO* clip probability ratio directly in the objective function with its **Clipped surrogate objective function.** <img src="https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit9/clipped.jpg" alt="PPO"/> This clipped part is a version where \\( r_t(\theta) \\) is clipped between \\( [1 - \epsilon, 1 + \epsilon] \\). With the Clipped Surrogate Objective function, we have two probability ratios, one non-clipped and one clipped in a range between \\( [1 - \epsilon, 1 + \epsilon] \\), epsilon is a hyperparameter that helps us to define this clip range (in the paper \\( \epsilon = 0.2 \\).). Then, we take the minimum of the clipped and non-clipped objective, **so the final objective is a lower bound (pessimistic bound) of the unclipped objective.** Taking the minimum of the clipped and non-clipped objective means **we'll select either the clipped or the non-clipped objective based on the ratio and advantage situation**.
deep-rl-class/units/en/unit8/clipped-surrogate-objective.mdx/0
{ "file_path": "deep-rl-class/units/en/unit8/clipped-surrogate-objective.mdx", "repo_id": "deep-rl-class", "token_count": 1386 }
87
# Optuna Tutorial [[optuna]] The content below comes from [Antonin's Raffin ICRA 2022 presentations](https://araffin.github.io/tools-for-robotic-rl-icra2022/), he's one of the founders of Stable-Baselines and RL-Baselines3-Zoo. ## The theory behind Hyperparameter tuning <Youtube id="AidFTOdGNFQ" /> ## Optuna Tutorial <Youtube id="ihP7E76KGOI" /> The notebook ๐Ÿ‘‰ [here](https://colab.research.google.com/github/araffin/tools-for-robotic-rl-icra2022/blob/main/notebooks/optuna_lab.ipynb)
deep-rl-class/units/en/unitbonus2/optuna.mdx/0
{ "file_path": "deep-rl-class/units/en/unitbonus2/optuna.mdx", "repo_id": "deep-rl-class", "token_count": 182 }
88
import argparse import sys sys.path.append(".") from base_classes import ImageToImageBenchmark, TurboImageToImageBenchmark # noqa: E402 if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--ckpt", type=str, default="runwayml/stable-diffusion-v1-5", choices=[ "runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-2-1", "stabilityai/stable-diffusion-xl-refiner-1.0", "stabilityai/sdxl-turbo", ], ) parser.add_argument("--batch_size", type=int, default=1) parser.add_argument("--num_inference_steps", type=int, default=50) parser.add_argument("--model_cpu_offload", action="store_true") parser.add_argument("--run_compile", action="store_true") args = parser.parse_args() benchmark_pipe = ImageToImageBenchmark(args) if "turbo" not in args.ckpt else TurboImageToImageBenchmark(args) benchmark_pipe.benchmark(args)
diffusers/benchmarks/benchmark_sd_img.py/0
{ "file_path": "diffusers/benchmarks/benchmark_sd_img.py", "repo_id": "diffusers", "token_count": 415 }
89
<!--- Copyright 2024- The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Generating the documentation To generate the documentation, you first have to build it. Several packages are necessary to build the doc, you can install them with the following command, at the root of the code repository: ```bash pip install -e ".[docs]" ``` Then you need to install our open source documentation builder tool: ```bash pip install git+https://github.com/huggingface/doc-builder ``` --- **NOTE** You only need to generate the documentation to inspect it locally (if you're planning changes and want to check how they look before committing for instance). You don't have to commit the built documentation. --- ## Previewing the documentation To preview the docs, first install the `watchdog` module with: ```bash pip install watchdog ``` Then run the following command: ```bash doc-builder preview {package_name} {path_to_docs} ``` For example: ```bash doc-builder preview diffusers docs/source/en ``` The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives. --- **NOTE** The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again). --- ## Adding a new element to the navigation bar Accepted files are Markdown (.md). Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/diffusers/blob/main/docs/source/en/_toctree.yml) file. ## Renaming section headers and moving sections It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information. Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor. So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file: ```md Sections that were moved: [ <a href="#section-b">Section A</a><a id="section-a"></a> ] ``` and of course, if you moved it to another file, then: ```md Sections that were moved: [ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ] ``` Use the relative style to link to the new file so that the versioned docs continue to work. For an example of a rich moved section set please see the very end of [the transformers Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.md). ## Writing Documentation - Specification The `huggingface/diffusers` documentation follows the [Google documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) style for docstrings, although we can write them directly in Markdown. ### Adding a new tutorial Adding a new tutorial or section is done in two steps: - Add a new Markdown (.md) file under `docs/source/<languageCode>`. - Link that file in `docs/source/<languageCode>/_toctree.yml` on the correct toc-tree. Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or four. ### Adding a new pipeline/scheduler When adding a new pipeline: - Create a file `xxx.md` under `docs/source/<languageCode>/api/pipelines` (don't hesitate to copy an existing file as template). - Link that file in (*Diffusers Summary*) section in `docs/source/api/pipelines/overview.md`, along with the link to the paper, and a colab notebook (if available). - Write a short overview of the diffusion model: - Overview with paper & authors - Paper abstract - Tips and tricks and how to use it best - Possible an end-to-end example of how to use it - Add all the pipeline classes that should be linked in the diffusion model. These classes should be added using our Markdown syntax. By default as follows: ``` [[autodoc]] XXXPipeline - all - __call__ ``` This will include every public method of the pipeline that is documented, as well as the `__call__` method that is not documented by default. If you just want to add additional methods that are not documented, you can put the list of all methods to add in a list that contains `all`. ``` [[autodoc]] XXXPipeline - all - __call__ - enable_attention_slicing - disable_attention_slicing - enable_xformers_memory_efficient_attention - disable_xformers_memory_efficient_attention ``` You can follow the same process to create a new scheduler under the `docs/source/<languageCode>/api/schedulers` folder. ### Writing source documentation Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names and objects like True, None, or any strings should usually be put in `code`. When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or function to be in the main package. If you want to create a link to some internal class or function, you need to provide its path. For instance: \[\`pipelines.ImagePipelineOutput\`\]. This will be converted into a link with `pipelines.ImagePipelineOutput` in the description. To get rid of the path and only keep the name of the object you are linking to in the description, add a ~: \[\`~pipelines.ImagePipelineOutput\`\] will generate a link with `ImagePipelineOutput` in the description. The same works for methods so you can either use \[\`XXXClass.method\`\] or \[\`~XXXClass.method\`\]. #### Defining arguments in a method Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`) prefix, followed by a line return and an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its description: ``` Args: n_layers (`int`): The number of layers of the model. ``` If the description is too long to fit in one line, another indentation is necessary before writing the description after the argument. Here's an example showcasing everything so far: ``` Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AlbertTokenizer`]. See [`~PreTrainedTokenizer.encode`] and [`~PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) ``` For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the following signature: ```py def my_function(x: str=None, a: float=3.14): ``` then its documentation should look like this: ``` Args: x (`str`, *optional*): This argument controls ... a (`float`, *optional*, defaults to `3.14`): This argument is used to ... ``` Note that we always omit the "defaults to \`None\`" when None is the default for any argument. Also note that even if the first line describing your argument type and its default gets long, you can't break it on several lines. You can however write as many lines as you want in the indented description (see the example above with `input_ids`). #### Writing a multi-line code block Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown: ```` ``` # first line of code # second line # etc ``` ```` #### Writing a return block The return block should be introduced with the `Returns:` prefix, followed by a line return and an indentation. The first line should be the type of the return, followed by a line return. No need to indent further for the elements building the return. Here's an example of a single value return: ``` Returns: `List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token. ``` Here's an example of a tuple return, comprising several objects: ``` Returns: `tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs: - ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` -- Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss. - **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) -- Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). ``` #### Adding an image Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images). If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images to this dataset. ## Styling the docstring We have an automatic script running with the `make style` command that will make sure that: - the docstrings fully take advantage of the line width - all code examples are formatted using black, like the code of the Transformers library This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's recommended to commit your changes before running `make style`, so you can revert the changes done by that script easily.
diffusers/docs/README.md/0
{ "file_path": "diffusers/docs/README.md", "repo_id": "diffusers", "token_count": 3145 }
90
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # PNDMScheduler `PNDMScheduler`, or pseudo numerical methods for diffusion models, uses more advanced ODE integration techniques like the Runge-Kutta and linear multi-step method. The original implementation can be found at [crowsonkb/k-diffusion](https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181). ## PNDMScheduler [[autodoc]] PNDMScheduler ## SchedulerOutput [[autodoc]] schedulers.scheduling_utils.SchedulerOutput
diffusers/docs/source/en/api/schedulers/pndm.md/0
{ "file_path": "diffusers/docs/source/en/api/schedulers/pndm.md", "repo_id": "diffusers", "token_count": 304 }
91
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <p align="center"> <br> <img src="https://raw.githubusercontent.com/huggingface/diffusers/77aadfee6a891ab9fcfb780f87c693f7a5beeb8e/docs/source/imgs/diffusers_library.jpg" width="400"/> <br> </p> # Diffusers ๐Ÿค— Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or want to train your own diffusion model, ๐Ÿค— Diffusers is a modular toolbox that supports both. Our library is designed with a focus on [usability over performance](conceptual/philosophy#usability-over-performance), [simple over easy](conceptual/philosophy#simple-over-easy), and [customizability over abstractions](conceptual/philosophy#tweakable-contributorfriendly-over-abstraction). The library has three main components: - State-of-the-art diffusion pipelines for inference with just a few lines of code. There are many pipelines in ๐Ÿค— Diffusers, check out the table in the pipeline [overview](api/pipelines/overview) for a complete list of available pipelines and the task they solve. - Interchangeable [noise schedulers](api/schedulers/overview) for balancing trade-offs between generation speed and quality. - Pretrained [models](api/models) that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems. <div class="mt-10"> <div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5"> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./tutorials/tutorial_overview" ><div class="w-full text-center bg-gradient-to-br from-blue-400 to-blue-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Tutorials</div> <p class="text-gray-700">Learn the fundamental skills you need to start generating outputs, build your own diffusion system, and train a diffusion model. We recommend starting here if you're using ๐Ÿค— Diffusers for the first time!</p> </a> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./using-diffusers/loading_overview" ><div class="w-full text-center bg-gradient-to-br from-indigo-400 to-indigo-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">How-to guides</div> <p class="text-gray-700">Practical guides for helping you load pipelines, models, and schedulers. You'll also learn how to use pipelines for specific tasks, control how outputs are generated, optimize for inference speed, and different training techniques.</p> </a> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./conceptual/philosophy" ><div class="w-full text-center bg-gradient-to-br from-pink-400 to-pink-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Conceptual guides</div> <p class="text-gray-700">Understand why the library was designed the way it was, and learn more about the ethical guidelines and safety implementations for using the library.</p> </a> <a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./api/models/overview" ><div class="w-full text-center bg-gradient-to-br from-purple-400 to-purple-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Reference</div> <p class="text-gray-700">Technical descriptions of how ๐Ÿค— Diffusers classes and methods work.</p> </a> </div> </div>
diffusers/docs/source/en/index.md/0
{ "file_path": "diffusers/docs/source/en/index.md", "repo_id": "diffusers", "token_count": 1316 }
92
# Adapt a model to a new task Many diffusion systems share the same components, allowing you to adapt a pretrained model for one task to an entirely different task. This guide will show you how to adapt a pretrained text-to-image model for inpainting by initializing and modifying the architecture of a pretrained [`UNet2DConditionModel`]. ## Configure UNet2DConditionModel parameters A [`UNet2DConditionModel`] by default accepts 4 channels in the [input sample](https://huggingface.co/docs/diffusers/v0.16.0/en/api/models#diffusers.UNet2DConditionModel.in_channels). For example, load a pretrained text-to-image model like [`runwayml/stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) and take a look at the number of `in_channels`: ```py from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True) pipeline.unet.config["in_channels"] 4 ``` Inpainting requires 9 channels in the input sample. You can check this value in a pretrained inpainting model like [`runwayml/stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting): ```py from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", use_safetensors=True) pipeline.unet.config["in_channels"] 9 ``` To adapt your text-to-image model for inpainting, you'll need to change the number of `in_channels` from 4 to 9. Initialize a [`UNet2DConditionModel`] with the pretrained text-to-image model weights, and change `in_channels` to 9. Changing the number of `in_channels` means you need to set `ignore_mismatched_sizes=True` and `low_cpu_mem_usage=False` to avoid a size mismatch error because the shape is different now. ```py from diffusers import UNet2DConditionModel model_id = "runwayml/stable-diffusion-v1-5" unet = UNet2DConditionModel.from_pretrained( model_id, subfolder="unet", in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True, use_safetensors=True, ) ``` The pretrained weights of the other components from the text-to-image model are initialized from their checkpoints, but the input channel weights (`conv_in.weight`) of the `unet` are randomly initialized. It is important to finetune the model for inpainting because otherwise the model returns noise.
diffusers/docs/source/en/training/adapt_a_model.md/0
{ "file_path": "diffusers/docs/source/en/training/adapt_a_model.md", "repo_id": "diffusers", "token_count": 779 }
93
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Unconditional image generation Unconditional image generation models are not conditioned on text or images during training. It only generates images that resemble its training data distribution. This guide will explore the [train_unconditional.py](https://github.com/huggingface/diffusers/blob/main/examples/unconditional_image_generation/train_unconditional.py) training script to help you become familiar with it, and how you can adapt it for your own use-case. Before running the script, make sure you install the library from source: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Then navigate to the example folder containing the training script and install the required dependencies: ```bash cd examples/unconditional_image_generation pip install -r requirements.txt ``` <Tip> ๐Ÿค— Accelerate is a library for helping you train on multiple GPUs/TPUs or with mixed-precision. It'll automatically configure your training setup based on your hardware and environment. Take a look at the ๐Ÿค— Accelerate [Quick tour](https://huggingface.co/docs/accelerate/quicktour) to learn more. </Tip> Initialize an ๐Ÿค— Accelerate environment: ```bash accelerate config ``` To setup a default ๐Ÿค— Accelerate environment without choosing any configurations: ```bash accelerate config default ``` Or if your environment doesn't support an interactive shell like a notebook, you can use: ```bash from accelerate.utils import write_basic_config write_basic_config() ``` Lastly, if you want to train a model on your own dataset, take a look at the [Create a dataset for training](create_dataset) guide to learn how to create a dataset that works with the training script. ## Script parameters <Tip> The following sections highlight parts of the training script that are important for understanding how to modify it, but it doesn't cover every aspect of the script in detail. If you're interested in learning more, feel free to read through the [script](https://github.com/huggingface/diffusers/blob/main/examples/unconditional_image_generation/train_unconditional.py) and let us know if you have any questions or concerns. </Tip> The training script provides many parameters to help you customize your training run. All of the parameters and their descriptions are found in the [`parse_args()`](https://github.com/huggingface/diffusers/blob/096f84b05f9514fae9f185cbec0a4d38fbad9919/examples/unconditional_image_generation/train_unconditional.py#L55) function. It provides default values for each parameter, such as the training batch size and learning rate, but you can also set your own values in the training command if you'd like. For example, to speedup training with mixed precision using the bf16 format, add the `--mixed_precision` parameter to the training command: ```bash accelerate launch train_unconditional.py \ --mixed_precision="bf16" ``` Some basic and important parameters to specify include: - `--dataset_name`: the name of the dataset on the Hub or a local path to the dataset to train on - `--output_dir`: where to save the trained model - `--push_to_hub`: whether to push the trained model to the Hub - `--checkpointing_steps`: frequency of saving a checkpoint as the model trains; this is useful if training is interrupted, you can continue training from that checkpoint by adding `--resume_from_checkpoint` to your training command Bring your dataset, and let the training script handle everything else! ## Training script The code for preprocessing the dataset and the training loop is found in the [`main()`](https://github.com/huggingface/diffusers/blob/096f84b05f9514fae9f185cbec0a4d38fbad9919/examples/unconditional_image_generation/train_unconditional.py#L275) function. If you need to adapt the training script, this is where you'll need to make your changes. The `train_unconditional` script [initializes a `UNet2DModel`](https://github.com/huggingface/diffusers/blob/096f84b05f9514fae9f185cbec0a4d38fbad9919/examples/unconditional_image_generation/train_unconditional.py#L356) if you don't provide a model configuration. You can configure the UNet here if you'd like: ```py model = UNet2DModel( sample_size=args.resolution, in_channels=3, out_channels=3, layers_per_block=2, block_out_channels=(128, 128, 256, 256, 512, 512), down_block_types=( "DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "DownBlock2D", ), up_block_types=( "UpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", ), ) ``` Next, the script initializes a [scheduler](https://github.com/huggingface/diffusers/blob/096f84b05f9514fae9f185cbec0a4d38fbad9919/examples/unconditional_image_generation/train_unconditional.py#L418) and [optimizer](https://github.com/huggingface/diffusers/blob/096f84b05f9514fae9f185cbec0a4d38fbad9919/examples/unconditional_image_generation/train_unconditional.py#L429): ```py # Initialize the scheduler accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys()) if accepts_prediction_type: noise_scheduler = DDPMScheduler( num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule, prediction_type=args.prediction_type, ) else: noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule) # Initialize the optimizer optimizer = torch.optim.AdamW( model.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) ``` Then it [loads a dataset](https://github.com/huggingface/diffusers/blob/096f84b05f9514fae9f185cbec0a4d38fbad9919/examples/unconditional_image_generation/train_unconditional.py#L451) and you can specify how to [preprocess](https://github.com/huggingface/diffusers/blob/096f84b05f9514fae9f185cbec0a4d38fbad9919/examples/unconditional_image_generation/train_unconditional.py#L455) it: ```py dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train") augmentations = transforms.Compose( [ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) ``` Finally, the [training loop](https://github.com/huggingface/diffusers/blob/096f84b05f9514fae9f185cbec0a4d38fbad9919/examples/unconditional_image_generation/train_unconditional.py#L540) handles everything else such as adding noise to the images, predicting the noise residual, calculating the loss, saving checkpoints at specified steps, and saving and pushing the model to the Hub. If you want to learn more about how the training loop works, check out the [Understanding pipelines, models and schedulers](../using-diffusers/write_own_pipeline) tutorial which breaks down the basic pattern of the denoising process. ## Launch the script Once you've made all your changes or you're okay with the default configuration, you're ready to launch the training script! ๐Ÿš€ <Tip warning={true}> A full training run takes 2 hours on 4xV100 GPUs. </Tip> <hfoptions id="launchtraining"> <hfoption id="single GPU"> ```bash accelerate launch train_unconditional.py \ --dataset_name="huggan/flowers-102-categories" \ --output_dir="ddpm-ema-flowers-64" \ --mixed_precision="fp16" \ --push_to_hub ``` </hfoption> <hfoption id="multi-GPU"> If you're training with more than one GPU, add the `--multi_gpu` parameter to the training command: ```bash accelerate launch --multi_gpu train_unconditional.py \ --dataset_name="huggan/flowers-102-categories" \ --output_dir="ddpm-ema-flowers-64" \ --mixed_precision="fp16" \ --push_to_hub ``` </hfoption> </hfoptions> The training script creates and saves a checkpoint file in your repository. Now you can load and use your trained model for inference: ```py from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("anton-l/ddpm-butterflies-128").to("cuda") image = pipeline().images[0] ```
diffusers/docs/source/en/training/unconditional_training.md/0
{ "file_path": "diffusers/docs/source/en/training/unconditional_training.md", "repo_id": "diffusers", "token_count": 2949 }
94
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # DiffEdit [[open-in-colab]] Image editing typically requires providing a mask of the area to be edited. DiffEdit automatically generates the mask for you based on a text query, making it easier overall to create a mask without image editing software. The DiffEdit algorithm works in three steps: 1. the diffusion model denoises an image conditioned on some query text and reference text which produces different noise estimates for different areas of the image; the difference is used to infer a mask to identify which area of the image needs to be changed to match the query text 2. the input image is encoded into latent space with DDIM 3. the latents are decoded with the diffusion model conditioned on the text query, using the mask as a guide such that pixels outside the mask remain the same as in the input image This guide will show you how to use DiffEdit to edit images without manually creating a mask. Before you begin, make sure you have the following libraries installed: ```py # uncomment to install the necessary libraries in Colab #!pip install -q diffusers transformers accelerate ``` The [`StableDiffusionDiffEditPipeline`] requires an image mask and a set of partially inverted latents. The image mask is generated from the [`~StableDiffusionDiffEditPipeline.generate_mask`] function, and includes two parameters, `source_prompt` and `target_prompt`. These parameters determine what to edit in the image. For example, if you want to change a bowl of *fruits* to a bowl of *pears*, then: ```py source_prompt = "a bowl of fruits" target_prompt = "a bowl of pears" ``` The partially inverted latents are generated from the [`~StableDiffusionDiffEditPipeline.invert`] function, and it is generally a good idea to include a `prompt` or *caption* describing the image to help guide the inverse latent sampling process. The caption can often be your `source_prompt`, but feel free to experiment with other text descriptions! Let's load the pipeline, scheduler, inverse scheduler, and enable some optimizations to reduce memory usage: ```py import torch from diffusers import DDIMScheduler, DDIMInverseScheduler, StableDiffusionDiffEditPipeline pipeline = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16, safety_checker=None, use_safetensors=True, ) pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config) pipeline.enable_model_cpu_offload() pipeline.enable_vae_slicing() ``` Load the image to edit: ```py from diffusers.utils import load_image, make_image_grid img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png" raw_image = load_image(img_url).resize((768, 768)) raw_image ``` Use the [`~StableDiffusionDiffEditPipeline.generate_mask`] function to generate the image mask. You'll need to pass it the `source_prompt` and `target_prompt` to specify what to edit in the image: ```py from PIL import Image source_prompt = "a bowl of fruits" target_prompt = "a basket of pears" mask_image = pipeline.generate_mask( image=raw_image, source_prompt=source_prompt, target_prompt=target_prompt, ) Image.fromarray((mask_image.squeeze()*255).astype("uint8"), "L").resize((768, 768)) ``` Next, create the inverted latents and pass it a caption describing the image: ```py inv_latents = pipeline.invert(prompt=source_prompt, image=raw_image).latents ``` Finally, pass the image mask and inverted latents to the pipeline. The `target_prompt` becomes the `prompt` now, and the `source_prompt` is used as the `negative_prompt`: ```py output_image = pipeline( prompt=target_prompt, mask_image=mask_image, image_latents=inv_latents, negative_prompt=source_prompt, ).images[0] mask_image = Image.fromarray((mask_image.squeeze()*255).astype("uint8"), "L").resize((768, 768)) make_image_grid([raw_image, mask_image, output_image], rows=1, cols=3) ``` <div class="flex gap-4"> <div> <img class="rounded-xl" src="https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png"/> <figcaption class="mt-2 text-center text-sm text-gray-500">original image</figcaption> </div> <div> <img class="rounded-xl" src="https://github.com/Xiang-cd/DiffEdit-stable-diffusion/blob/main/assets/target.png?raw=true"/> <figcaption class="mt-2 text-center text-sm text-gray-500">edited image</figcaption> </div> </div> ## Generate source and target embeddings The source and target embeddings can be automatically generated with the [Flan-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5) model instead of creating them manually. Load the Flan-T5 model and tokenizer from the ๐Ÿค— Transformers library: ```py import torch from transformers import AutoTokenizer, T5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large") model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large", device_map="auto", torch_dtype=torch.float16) ``` Provide some initial text to prompt the model to generate the source and target prompts. ```py source_concept = "bowl" target_concept = "basket" source_text = f"Provide a caption for images containing a {source_concept}. " "The captions should be in English and should be no longer than 150 characters." target_text = f"Provide a caption for images containing a {target_concept}. " "The captions should be in English and should be no longer than 150 characters." ``` Next, create a utility function to generate the prompts: ```py @torch.no_grad() def generate_prompts(input_prompt): input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids.to("cuda") outputs = model.generate( input_ids, temperature=0.8, num_return_sequences=16, do_sample=True, max_new_tokens=128, top_k=10 ) return tokenizer.batch_decode(outputs, skip_special_tokens=True) source_prompts = generate_prompts(source_text) target_prompts = generate_prompts(target_text) print(source_prompts) print(target_prompts) ``` <Tip> Check out the [generation strategy](https://huggingface.co/docs/transformers/main/en/generation_strategies) guide if you're interested in learning more about strategies for generating different quality text. </Tip> Load the text encoder model used by the [`StableDiffusionDiffEditPipeline`] to encode the text. You'll use the text encoder to compute the text embeddings: ```py import torch from diffusers import StableDiffusionDiffEditPipeline pipeline = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16, use_safetensors=True ) pipeline.enable_model_cpu_offload() pipeline.enable_vae_slicing() @torch.no_grad() def embed_prompts(sentences, tokenizer, text_encoder, device="cuda"): embeddings = [] for sent in sentences: text_inputs = tokenizer( sent, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=None)[0] embeddings.append(prompt_embeds) return torch.concatenate(embeddings, dim=0).mean(dim=0).unsqueeze(0) source_embeds = embed_prompts(source_prompts, pipeline.tokenizer, pipeline.text_encoder) target_embeds = embed_prompts(target_prompts, pipeline.tokenizer, pipeline.text_encoder) ``` Finally, pass the embeddings to the [`~StableDiffusionDiffEditPipeline.generate_mask`] and [`~StableDiffusionDiffEditPipeline.invert`] functions, and pipeline to generate the image: ```diff from diffusers import DDIMInverseScheduler, DDIMScheduler from diffusers.utils import load_image, make_image_grid from PIL import Image pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config) img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png" raw_image = load_image(img_url).resize((768, 768)) mask_image = pipeline.generate_mask( image=raw_image, - source_prompt=source_prompt, - target_prompt=target_prompt, + source_prompt_embeds=source_embeds, + target_prompt_embeds=target_embeds, ) inv_latents = pipeline.invert( - prompt=source_prompt, + prompt_embeds=source_embeds, image=raw_image, ).latents output_image = pipeline( mask_image=mask_image, image_latents=inv_latents, - prompt=target_prompt, - negative_prompt=source_prompt, + prompt_embeds=target_embeds, + negative_prompt_embeds=source_embeds, ).images[0] mask_image = Image.fromarray((mask_image.squeeze()*255).astype("uint8"), "L") make_image_grid([raw_image, mask_image, output_image], rows=1, cols=3) ``` ## Generate a caption for inversion While you can use the `source_prompt` as a caption to help generate the partially inverted latents, you can also use the [BLIP](https://huggingface.co/docs/transformers/model_doc/blip) model to automatically generate a caption. Load the BLIP model and processor from the ๐Ÿค— Transformers library: ```py import torch from transformers import BlipForConditionalGeneration, BlipProcessor processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16, low_cpu_mem_usage=True) ``` Create a utility function to generate a caption from the input image: ```py @torch.no_grad() def generate_caption(images, caption_generator, caption_processor): text = "a photograph of" inputs = caption_processor(images, text, return_tensors="pt").to(device="cuda", dtype=caption_generator.dtype) caption_generator.to("cuda") outputs = caption_generator.generate(**inputs, max_new_tokens=128) # offload caption generator caption_generator.to("cpu") caption = caption_processor.batch_decode(outputs, skip_special_tokens=True)[0] return caption ``` Load an input image and generate a caption for it using the `generate_caption` function: ```py from diffusers.utils import load_image img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png" raw_image = load_image(img_url).resize((768, 768)) caption = generate_caption(raw_image, model, processor) ``` <div class="flex justify-center"> <figure> <img class="rounded-xl" src="https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png"/> <figcaption class="text-center">generated caption: "a photograph of a bowl of fruit on a table"</figcaption> </figure> </div> Now you can drop the caption into the [`~StableDiffusionDiffEditPipeline.invert`] function to generate the partially inverted latents!
diffusers/docs/source/en/using-diffusers/diffedit.md/0
{ "file_path": "diffusers/docs/source/en/using-diffusers/diffedit.md", "repo_id": "diffusers", "token_count": 3847 }
95
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Overview A pipeline is an end-to-end class that provides a quick and easy way to use a diffusion system for inference by bundling independently trained models and schedulers together. Certain combinations of models and schedulers define specific pipeline types, like [`StableDiffusionXLPipeline`] or [`StableDiffusionControlNetPipeline`], with specific capabilities. All pipeline types inherit from the base [`DiffusionPipeline`] class; pass it any checkpoint, and it'll automatically detect the pipeline type and load the necessary components. This section demonstrates how to use specific pipelines such as Stable Diffusion XL, ControlNet, and DiffEdit. You'll also learn how to use a distilled version of the Stable Diffusion model to speed up inference, how to create reproducible pipelines, and how to use and contribute community pipelines.
diffusers/docs/source/en/using-diffusers/pipeline_overview.md/0
{ "file_path": "diffusers/docs/source/en/using-diffusers/pipeline_overview.md", "repo_id": "diffusers", "token_count": 327 }
96
- sections: - local: index title: ๐Ÿงจ Diffusers - local: quicktour title: ใ‚ฏใ‚คใƒƒใ‚ฏใƒ„ใ‚ขใƒผ - local: stable_diffusion title: ๆœ‰ๅŠนใงๅŠน็Ž‡ใฎ่‰ฏใ„ๆ‹กๆ•ฃใƒขใƒ‡ใƒซ - local: installation title: ใ‚คใƒณใ‚นใƒˆใƒผใƒซ title: ใฏใ˜ใ‚ใซ - sections: - local: tutorials/tutorial_overview title: ๆฆ‚่ฆ - local: tutorials/autopipeline title: AutoPipeline title: ใƒใƒฅใƒผใƒˆใƒชใ‚ขใƒซ
diffusers/docs/source/ja/_toctree.yml/0
{ "file_path": "diffusers/docs/source/ja/_toctree.yml", "repo_id": "diffusers", "token_count": 166 }
97
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # ์ถ”๋ก ์„ ์œ„ํ•ด ONNX ๋Ÿฐํƒ€์ž„์„ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ• ๐Ÿค— Diffusers๋Š” ONNX Runtime๊ณผ ํ˜ธํ™˜๋˜๋Š” Stable Diffusion ํŒŒ์ดํ”„๋ผ์ธ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ONNX(CPU ํฌํ•จ)๋ฅผ ์ง€์›ํ•˜๊ณ  PyTorch์˜ ๊ฐ€์† ๋ฒ„์ „์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์—†๋Š” ๋ชจ๋“  ํ•˜๋“œ์›จ์–ด์—์„œ Stable Diffusion์„ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ## ์„ค์น˜ ๋‹ค์Œ ๋ช…๋ น์–ด๋กœ ONNX Runtime๋ฅผ ์ง€์›ํ•˜๋Š” ๐Ÿค— Optimum๋ฅผ ์„ค์น˜ํ•ฉ๋‹ˆ๋‹ค: ``` pip install optimum["onnxruntime"] ``` ## Stable Diffusion ์ถ”๋ก  ์•„๋ž˜ ์ฝ”๋“œ๋Š” ONNX ๋Ÿฐํƒ€์ž„์„ ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. `StableDiffusionPipeline` ๋Œ€์‹  `OnnxStableDiffusionPipeline`์„ ์‚ฌ์šฉํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. PyTorch ๋ชจ๋ธ์„ ๋ถˆ๋Ÿฌ์˜ค๊ณ  ์ฆ‰์‹œ ONNX ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋ ค๋Š” ๊ฒฝ์šฐ `export=True`๋กœ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. ```python from optimum.onnxruntime import ORTStableDiffusionPipeline model_id = "runwayml/stable-diffusion-v1-5" pipe = ORTStableDiffusionPipeline.from_pretrained(model_id, export=True) prompt = "a photo of an astronaut riding a horse on mars" images = pipe(prompt).images[0] pipe.save_pretrained("./onnx-stable-diffusion-v1-5") ``` ํŒŒ์ดํ”„๋ผ์ธ์„ ONNX ํ˜•์‹์œผ๋กœ ์˜คํ”„๋ผ์ธ์œผ๋กœ ๋‚ด๋ณด๋‚ด๊ณ  ๋‚˜์ค‘์— ์ถ”๋ก ์— ์‚ฌ์šฉํ•˜๋ ค๋Š” ๊ฒฝ์šฐ, [`optimum-cli export`](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli) ๋ช…๋ น์–ด๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค: ```bash optimum-cli export onnx --model runwayml/stable-diffusion-v1-5 sd_v15_onnx/ ``` ๊ทธ ๋‹ค์Œ ์ถ”๋ก ์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค: ```python from optimum.onnxruntime import ORTStableDiffusionPipeline model_id = "sd_v15_onnx" pipe = ORTStableDiffusionPipeline.from_pretrained(model_id) prompt = "a photo of an astronaut riding a horse on mars" images = pipe(prompt).images[0] ``` Notice that we didn't have to specify `export=True` above. [Optimum ๋ฌธ์„œ](https://huggingface.co/docs/optimum/)์—์„œ ๋” ๋งŽ์€ ์˜ˆ์‹œ๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ## ์•Œ๋ ค์ง„ ์ด์Šˆ๋“ค - ์—ฌ๋Ÿฌ ํ”„๋กฌํ”„ํŠธ๋ฅผ ๋ฐฐ์น˜๋กœ ์ƒ์„ฑํ•˜๋ฉด ๋„ˆ๋ฌด ๋งŽ์€ ๋ฉ”๋ชจ๋ฆฌ๊ฐ€ ์‚ฌ์šฉ๋˜๋Š” ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ์กฐ์‚ฌํ•˜๋Š” ๋™์•ˆ, ๋ฐฐ์น˜ ๋Œ€์‹  ๋ฐ˜๋ณต ๋ฐฉ๋ฒ•์ด ํ•„์š”ํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
diffusers/docs/source/ko/optimization/onnx.md/0
{ "file_path": "diffusers/docs/source/ko/optimization/onnx.md", "repo_id": "diffusers", "token_count": 1437 }
98