content
stringlengths
255
17.2k
model('en', if_exists='ignore') pretrained_model = fasttext.load_model('cc.en.300.bin') os.chdir(cwd) self.profiler.set_params(text_process__vectorizer__external_model = pretrained_model) self.profiler.set_params(text_process__vectorizer__external_model_type = 'binary') """ return code.replace('\\n', '\\n'+(indent * TAB_CHAR)) def __profiler_main_code(params, indent=2): code = f""" df = self.profiler.transform(df) columns = {params['output_features']} if isinstance(df, scipy.sparse.spmatrix): df = pd.DataFrame(df.toarray(), columns=columns) else: df = pd.DataFrame(df, columns=columns) return df """ return code.replace('\\n', '\\n'+(indent * TAB_CHAR)) def feature_selector_code( params, indent=0): modules = [ {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'} ] code = """ class selector(): # this class def __init__(self): pass def run(self, df):""" code +=f""" return df[{params['output_features']}] """ return code, modules def feature_reducer_code( params, indent=0): modules = [ {'module': 'joblib', 'mod_from': None, 'mod_as': None}, {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}, {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None} ] code = f""" class selector(): def __init__(self): reducer_file = (Path(__file__).parent/"model")/"{params['reducer_file']}" if not reducer_file.exists(): raise ValueError(f'Failed to load Feature Engineering model file: {{reducer_file}}') self.model = joblib.load(reducer_file) def run(self, df): reducer_input = {params['input_features']} reducer_output = {params['output_features']} df = self.model.transform(df[reducer_input]) return pd.DataFrame(df,columns=reducer_output) """ if indent: code = code.replace('\\n', '\\n'+(indent * TAB_CHAR)) return code, modules def create_feature_list(config=None, target_feature=None, deploy_path=None): featurelist = [] if 'profiler' in config: if 'input_features_type' in config['profiler']: input_features = config['profiler']['input_features_type'] for x in input_features: featurelt={} featurelt['feature'] = x if x == target_feature: featurelt['Type'] = 'Target' else: if input_features[x] in ['int','int64','float','float64']: featurelt['Type'] = 'Numeric' elif input_features[x] == 'object': featurelt['Type'] = 'Text' elif input_features[x] == 'category': featurelt['Type'] = 'Category' else: featurelt['Type'] = 'Unknown' featurelist.append(featurelt) featurefile = f""" import json def getfeatures(): try: features = {featurelist} outputjson = {{"status":"SUCCESS","features":features}} output = json.dumps(outputjson) print("Features:",output) return(output) except Exception as e: output = {{"status":"FAIL","message":str(e).strip(\\'"\\')}} print("Features:",json.dumps(output)) return (json.dumps(output)) if __name__ == "__main__": output = getfeatures() """ with open( deploy_path/'featureslist.py', 'wb') as f: f.write( str(featurefile).encode('utf8')) def requirement_file(deploy_path,model,textFeatures,learner_type='ML'): modules = ['pandas','numpy','alibi','matplotlib','joblib','shap','ipython','category_encoders','scikit-learn','word2number','flask_restful','evidently','Flask-Cors'] requires = '' for mod in modules: requires += f"{mod}=={version(mod)}\\n" if len(textFeatures) > 0: tmodules = ['spacy','nltk','textblob','demoji','beautifulsoup4','text-unidecode','pyspellchecker','contractions','protobuf'] for mod in tmodules: requires += f"{mod}=={version(mod)}\\n" if model == 'Extreme Gradient Boosting (XGBoost)': mmodules = ['xgboost'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model == 'Light Gradient Boosting (LightGBM)': mmodules = ['lightgbm'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model == 'Categorical Boosting (CatBoost)': mmodules = ['catboost'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model.lower() == 'arima': mmodules = ['pmdarima'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model.lower() == 'fbprophet': mmodules = ['prophet'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model.lower() == 'lstm' or model.lower() == 'mlp' or learner_type =='DL': mmodules = ['tensorflow'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model.lower() in ['cox', 'kaplanmeierfitter']: #bug 12833 mmodules = ['lifelines'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" if model.lower() == 'sentencetransformer': #bug 12833 mmodules = ['sentence_transformers'] for mod in mmodules: requires += f"{mod}=={version(mod)}\\n" with open( deploy_path/'requirements.txt', 'wb') as f: f.write(str(requires).encode('utf8')) def create_readme_file(deploy_path,modelfile,features): data = json.dumps([{x:x+'_value'} for x in features]) backslash_data = data.replace('"', '\\\\"') content = f""" ========== Files Structures ========== {modelfile} ------ Trained Model aion_prediction.py --> Python package entry point script/inputprofiler.py --> Profiling like FillNA and Category to Numeric ========== How to call the model ========== ============== From Windows Terminal ========== python aion_prediction.py "{backslash_data}" ============== From Linux Terminal ========== python aion_prediction.py "{data}" ============== Output ========== {{"status":"SUCCESS","data":[{{"Data1":"Value","prediction":"Value"}}]}} ## for single Row/Record {{"status":"SUCCESS","data":[{{"Data1":"Value","prediction":"Value"}},{{"Data1":"Value","prediction":"Value"}}]}} ## For Multiple Row/Record {{"status":"ERROR","message":"description"}} ## In Case Exception or Error """ filename = deploy_path/'readme.txt' with open(filename, 'w') as f: f.write(content) def create_util_folder(deploy_path): import tarfile ext_path = Path(__file__).parent.parent/'utilities' for x in ext_path.iterdir(): if x.suffix == '.tar': if x.name not in ['scikit_surprise-1.1.1.dist-info.tar','surprise.tar']: my_tar = tarfile.open(x) my_tar.extractall(deploy_path) my_tar.close() <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import platform import json import shutil import logging class aionPrediction: def __init__(self): self.log = logging.getLogger('eion') def create_optimus_prediction_file (self,classname,deploy_path,learner_type): self.predictionFile = 'import warnings' self.predictionFile += '\\n' self.predictionFile += 'warnings.filterwarnings("ignore")' self.predictionFile += '\\n' self.predictionFile += 'import json' self.predictionFile += '\\n' self.predictionFile += 'import os' self.predictionFile += '\\n' self.predictionFile += 'import sys' self.predictionFile += '\\n' self.predictionFile += 'import pandas as pd' self.predictionFile += '\\n' self.predictionFile += 'from pandas import json_normalize' self.predictionFile += '\\n' self.predictionFile += 'from importlib import import_module' self.predictionFile += '\\n' self.predictionFile += 'import importlib.util' self.predictionFile += '\\n' self.predictionFile += 'class prediction:' self.predictionFile += '\\n' self.predictionFile += ' def predict_from_json(self,json_data):' self.predictionFile += '\\n' self.predictionFile += ' data = json.loads(json_data)' self.predictionFile += '\\n' self.predictionFile += ' output=self.predict(data)' self.predictionFile += '\\n' self.predictionFile += ' print("predictions:",output)' self.predictionFile += '\\n' self.predictionFile += '\\n' self.predictionFile += ' def predict_from_file(self,filename):' self.predictionFile += '\\n' self.predictionFile += ' with open(filename,\\'r\\',encoding=\\'utf-8\\') as f:' self.predictionFile += '\\n' self.predictionFile += ' data = json.load(f)' self.predictionFile += '\\n' self.predictionFile += ' output=self.predict(data)' self.predictionFile += '\\n' self.predictionFile += ' print("predictions:",output)' self.predictionFile += '\\n' self.predictionFile += '\\n' self.predictionFile += ' def predict(self,json_data):' self.predictionFile += '\\n' self.predictionFile += ' try:' self.predictionFile += '\\n' #self.predictionFile += ' jsonData = json.loads(json_data)' self.predictionFile += ' jsonData=json_data' self.predictionFile += '\\n' self.predictionFile += ' model_obj = importlib.util.spec_from_file_location("module.name", os.path.dirname(os.path.abspath(__file__))+"/trained_model.py")' self.predictionFile += '\\n' self.predictionFile += ' model = importlib.util.module_from_spec(model_obj)' self.predictionFile += '\\n' self.predictionFile += ' model_obj.loader.exec_module(model)' self.predictionFile += '\\n' #if(learner_type != 'TextML'): self.predictionFile += ' profiler_obj = importlib.util.spec_from_file_location("module.name", os.path.dirname(os.path.abspath(__file__))+"/inputprofiler.py")' self.predictionFile += '\\n' self.predictionFile += ' inputprofiler = importlib.util.module_from_spec(profiler_obj)' self.predictionFile += '\\n' self.predictionFile += ' profiler_obj.loader.exec_module(inputprofiler)' self.predictionFile += '\\n' self.predictionFile += ' selector_obj = importlib.util.spec_from_file_location("module.name", os.path.dirname(os.path.abspath(__file__))+"/selector.py")' self.predictionFile += '\\n' self.predictionFile += ' selector = importlib.util.module_from_spec(selector_obj)' self.predictionFile += '\\n' self.predictionFile += ' selector_obj.loader.exec_module(selector)' self.predictionFile += '\\n' self.predictionFile += ' output_format_obj = importlib.util.spec_from_file_location("module.name", os.path.dirname(os.path.abspath(__file__))+"/output_format.py")' self.predictionFile += '\\n' self.predictionFile += ' output_format = importlib.util.module_from_spec(output_format_obj)' self.predictionFile += '\\n' self.predictionFile += ' output_format_obj.loader.exec_module(output_format)' self.predictionFile += '\\n' self.predictionFile += ' df = json_normalize(jsonData)' self.predictionFile += '\\n' self.predictionFile += ' df0 = df.copy()' self.predictionFile += '\\n' #if(learner_type != 'TextML'): self.predictionFile += ' profilerobj = inputprofiler.inputprofiler()' self.predictionFile += '\\n' self.predictionFile += ' df = profilerobj.apply_profiler(df)' self.predictionFile += '\\n' self.predictionFile += ' selectobj = selector.selector()' self.predictionFile += '\\n' self.predictionFile += ' df = selectobj.apply_selector(df)' self.predictionFile += '\\n' self.predictionFile += ' output = model.trained_model().predict(df,"")' self.predictionFile += '\\n' self.predictionFile += ' outputobj = output_format.output_format()' self.predictionFile += '\\n' self.predictionFile += ' output = outputobj.apply_output_format(df0,output)' #self.predictionFile += '\\n' #self.predictionFile += ' print(output)' self.predictionFile += '\\n' self.predictionFile += ' return output' self.predictionFile += '\\n' self.predictionFile += ' except KeyError as e:' self.predictionFile += '\\n' self.predictionFile
+= ' output = {"status":"FAIL","message":str(e).strip(\\'"\\')}' self.predictionFile += '\\n' self.predictionFile += ' return json.dumps(output)' self.predictionFile += '\\n' self.predictionFile += '
")' self.predictionFile += '\\n' self.predictionFile += 'import json' self.predictionFile += '\\n' self.predictionFile += 'import os' self.predictionFile += '\\n' self.predictionFile += 'import sys' self.predictionFile += '\\n' self.predictionFile += 'import pandas as pd' self.predictionFile += '\\n' self.predictionFile += 'from pandas import json_normalize' self.predictionFile += '\\n' if(learner_type.lower() != 'recommendersystem'): #task 11190 self.predictionFile += 'from script.selector import selector' self.predictionFile += '\\n' self.predictionFile += 'from script.inputprofiler import inputprofiler' self.predictionFile += '\\n' #self.predictionFile += 'from '+classname+' import '+classname self.predictionFile += 'from script.trained_model import trained_model' self.predictionFile += '\\n' else: self.predictionFile += 'from script.item_recommendation import collaborative_filter' self.predictionFile += '\\n' self.predictionFile += 'from script.output_format import output_format' self.predictionFile += '\\n' if (learner_type != 'RecommenderSystem'): #task 11190 self.predictionFile += 'profilerobj = inputprofiler()' self.predictionFile += '\\n' self.predictionFile += 'selectobj = selector()' self.predictionFile += '\\n' self.predictionFile += 'modelobj = trained_model()' self.predictionFile += '\\n' else: self.predictionFile += 'colabobj = collaborative_filter()' self.predictionFile += '\\n' self.predictionFile += 'outputobj = output_format()' self.predictionFile += '\\n' self.predictionFile += 'def predict(data):' self.predictionFile += '\\n' self.predictionFile += ' try:' self.predictionFile += '\\n' self.predictionFile += ' if os.path.splitext(data)[1] == ".tsv":' self.predictionFile += '\\n' self.predictionFile += ' df=pd.read_csv(data,encoding=\\'utf-8\\',sep=\\'\\\\t\\',skipinitialspace = True,na_values=[\\'-\\',\\'?\\'])' self.predictionFile += '\\n' self.predictionFile += ' elif os.path.splitext(data)[1] == ".csv":' self.predictionFile += '\\n' self.predictionFile += ' df=pd.read_csv(data,encoding=\\'utf-8\\',skipinitialspace = True,na_values=[\\'-\\',\\'?\\'])' self.predictionFile += '\\n' self.predictionFile += ' elif os.path.splitext(data)[1] == ".dat":' self.predictionFile += '\\n' self.predictionFile += ' df=pd.read_csv(data,encoding=\\'utf-8\\',skipinitialspace = True,na_values=[\\'-\\',\\'?\\'])' self.predictionFile += '\\n' self.predictionFile += ' else:' self.predictionFile += '\\n' self.predictionFile += ' if os.path.splitext(data)[1] == ".json":' self.predictionFile += '\\n' self.predictionFile += ' with open(data,\\'r\\',encoding=\\'utf-8\\') as f:' self.predictionFile += '\\n' self.predictionFile += ' jsonData = json.load(f)' self.predictionFile += '\\n' self.predictionFile += ' else:' self.predictionFile += '\\n' self.predictionFile += ' jsonData = json.loads(data)' self.predictionFile += '\\n' self.predictionFile += ' df = json_normalize(jsonData)' self.predictionFile += '\\n' self.predictionFile += ' df.rename(columns=lambda x: x.strip(), inplace=True)' self.predictionFile += '\\n' if str(rowfilterexpression) != '': self.predictionFile += ' filterexpression = "'+rowfilterexpression+'"' self.predictionFile += '\\n' self.predictionFile += ' df = df.query(filterexpression)' self.predictionFile += '\\n' #print(grouperbyjson) if str(grouperbyjson) != '': datetime = grouperbyjson['datetime'] unit = grouperbyjson['unit'] if unit == '': self.predictionFile += ' df[\\'date\\'] = pd.to_datetime(df[\\''+datetime+'\\'])' self.predictionFile += '\\n' else: self.predictionFile += ' df[\\'date\\'] = pd.to_datetime(df[\\''+datetime+'\\'],unit=\\''+unit+'\\')' self.predictionFile += '\\n' self.predictionFile += ' df = df.reset_index()' self.predictionFile += '\\n' self.predictionFile += ' df.set_index(\\'date\\',inplace=True)' self.predictionFile += '\\n' self.predictionFile += ' df = df.'+grouperbyjson['groupbystring'] self.predictionFile += '\\n' self.predictionFile += ' df.columns = df.columns.droplevel(0)' self.predictionFile += '\\n' self.predictionFile += ' df = df.reset_index()' self.predictionFile += '\\n' self.predictionFile += ' df0 = df.copy()' self.predictionFile += '\\n' if(learner_type != 'RecommenderSystem'): #task 11190 if model_type.lower() == 'anomaly_detection' and datetimeFeature != '' and datetimeFeature.lower() != 'na': self.predictionFile += ' df,datetimeFeature = profilerobj.apply_profiler(df)' self.predictionFile += '\\n' else: self.predictionFile += ' df = profilerobj.apply_profiler(df)' self.predictionFile += '\\n' self.predictionFile += ' df = selectobj.apply_selector(df)' self.predictionFile += '\\n' #self.predictionFile += ' modelobj = '+classname+'()' self.predictionFile += ' output = modelobj.predict(df,"")' self.predictionFile += '\\n' else: self.predictionFile += ' output = colabobj.predict(df)' self.predictionFile += '\\n' if model_type.lower() == 'anomaly_detection' and datetimeFeature != '' and datetimeFeature.lower() != 'na': self.predictionFile += ' output = outputobj.apply_output_format(df0,output,datetimeFeature)' self.predictionFile += '\\n' else: self.predictionFile += ' output = outputobj.apply_output_format(df0,output)' self.predictionFile += '\\n' self.predictionFile += ' print("predictions:",output)' self.predictionFile += '\\n' self.predictionFile += ' return(output)' self.predictionFile += '\\n' self.predictionFile += ' except KeyError as e:' self.predictionFile += '\\n' self.predictionFile += ' output = {"status":"FAIL","message":str(e).strip(\\'"\\')}' self.predictionFile += '\\n' self.predictionFile += ' print("predictions:",json.dumps(output))' self.predictionFile += '\\n' self.predictionFile += ' return (json.dumps(output))' self.predictionFile += '\\n' self.predictionFile += ' except Exception as e:' self.predictionFile += '\\n' self.predictionFile += ' output = {"status":"FAIL","message":str(e).strip(\\'"\\')}' self.predictionFile += '\\n' self.predictionFile += ' print("predictions:",json.dumps(output))' self.predictionFile += '\\n' self.predictionFile += ' return (json.dumps(output))' self.predictionFile += '\\n' self.predictionFile += 'if __name__ == "__main__":' self.predictionFile += '\\n' self.predictionFile += ' output = predict(sys.argv[1])' filename = os.path.join(deploy_path,'aion_predict.py') f = open(filename, "w") f.write(str(self.predictionFile)) f.close() def create_classification_text_performance_file(self,deploy_path,features,target): features = ",".join([feature for feature in features]) self.predictionFile = """\\ import pandas as pd import warnings warnings.filterwarnings("ignore") import json import os import sys from pandas import json_normalize # from evidently.dashboard import Dashboard # from evidently.tabs import ClassificationPerformanceTab from evidently.pipeline.column_mapping import ColumnMapping from aion_predict import predict from evidently.report import Report from evidently.pipeline.column_mapping import ColumnMapping from evidently.metric_preset import ClassificationPreset def odrift(data): try: """ self.predictionFile += ' features = \\''+features+'\\'' self.predictionFile += '\\n' self.predictionFile += ' target = \\''+target+'\\'' self.predictionFile += '\\n' self.predictionFile +="""\\ if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) production = predict().run(jsonData['currentDataLocation']) reference = predict().run(jsonData['trainingDataLocation']) production = json.loads(production) reference = json.loads(reference) if (production['status'] == 'SUCCESS' and reference['status'] == 'SUCCESS'): production = production['data'] production = json_normalize(production) reference = reference['data'] reference = json_normalize(reference) production['target'] = production[target] reference['target'] = reference[target] column_mapping = ColumnMapping() column_mapping.target = target column_mapping.prediction = 'prediction' column_mapping.datetime = None column_mapping.text_features = features.split(',') iris_model_performance_dashboard = Report(metrics=[ClassificationPreset()]) iris_model_performance_dashboard.run(reference_data=reference, current_data=production,column_mapping=column_mapping) report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','performance.html') iris_model_performance_dashboard.save_html(report) metrics_output = iris_model_performance_dashboard.as_dict() output = {"status":"SUCCESS","htmlPath":report, 'drift_details':metrics_output['metrics']} print("drift:",json.dumps(output)) return (json.dumps(output)) except KeyError as e: print(e) output = {"status":"FAIL","message":str(e).strip('"')} print("drift:",json.dumps(output)) return (json.dumps(output)) except Exception as e: print(e) output = {"status":"FAIL","message":str(e).strip('"')} print("drift:",json.dumps(output)) return (json.dumps(output)) if __name__ == "__main__": output = odrift(sys.argv[1])""" filename = os.path.join(deploy_path,'aion_opdrift.py') f = open(filename, "wb") f.write(str(self.predictionFile).encode('utf8')) f.close() def create_classification_performance_file(self,deploy_path,features,target): features = ",".join([feature for feature in features]) self.predictionFile = """\\ import pandas as pd import warnings warnings.filterwarnings("ignore") import json import os import sys from pandas import json_normalize from evidently.report import Report from evidently.metric_preset import ClassificationPreset from evidently.pipeline.column_mapping import ColumnMapping from aion_predict import predict def odrift(data): try: """ self.predictionFile += ' features = \\''+features+'\\'' self.predictionFile += '\\n' self.predictionFile += ' target = \\''+target+'\\'' self.predictionFile += '\\n' self.predictionFile +="""\\ if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) production = predict().run(jsonData['currentDataLocation']) reference = predict().run(jsonData['trainingDataLocation']) production = json.loads(production) reference = json.loads(reference) if (production['status'] == 'SUCCESS' and reference['status'] == 'SUCCESS'): production = production['data'] production = json_normalize(production) reference = reference['data'] reference = json_normalize(reference) production['target'] = production[target] reference['target'] = reference[target] column_mapping = ColumnMapping() column_mapping.target = target column_mapping.prediction = 'prediction' column_mapping.datetime = None column_mapping.numerical_features = features.split(',') model_performance_dashboard = Report(metrics = [ClassificationPreset()]) model_performance_dashboard.run(reference_data =reference, current_data =production, column_mapping = column_mapping) report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','performance.html') model_performance_dashboard.save_html(report) metrics_output = model_performance_dashboard.as_dict() output = {"status":"SUCCESS","htmlPath":report, 'drift_details':metrics_output['metrics']} print("drift:",json.dumps(output)) return (json.dumps(output)) else: output = {"status":"SUCCESS","htmlPath":'NA'} print("drift:",json.dumps(output)) return (json.dumps(output)) except KeyError as e: print(e) output = {"status":"FAIL","message":str(e).strip('"')} print("drift:",json.dumps(output)) return (json.dumps(output)) except Exception as e: print(e) output = {"status":"FAIL","message":str(e).strip('"')} print("drift:",json.dumps(output)) return (json.dumps(output)) if __name__ == "__main__": output = odrift(sys.argv[1])""" filename = os.
path.join(deploy_path,'aion_opdrift.py') f = open(filename, "wb") f.write(str(self.predictionFile).encode('utf8')) f.close() def create_model_service(self,deploy_path,serviceName,problemType): filedata = """ from flask import Flask, jsonify, request from flask_restful import Resource, Api from aion_predict import predict""" if problemType.lower() == 'classification' or problemType.lower() == 'regression': filedata += """ from aion_xai import local_analysis from aion_ipdrift import drift from aion_opdrift import odrift""" filedata += """ import json import os import pandas as pd import io import argparse from pathlib import Path from flask_cors import CORS, cross_origin app = Flask(__name__) #cross origin resource from system arguments parser = argparse.ArgumentParser() parser.add_argument('-ip', '--ipaddress', help='IP Address') parser.add_argument('-p', '--port', help='Port Number') parser.add_argument("-cors", type=str, required=False) d = vars(parser.parse_args()) modelPath = Path(__file__).parent try: with open( (modelPath/'etc')/'display.json', 'r') as f: disp_data = json.load(f) is_explainable = not disp_data.get('textFeatures') except: disp_data = {} is_explainable = True if "cors" in d.keys(): if d["cors"] != '' and d["cors"] != None: d["cors"] = [s.strip() for s in d["cors"].split(",")] #cors = CORS(app, resources={r"/AION/*": {"origins": ["http://localhost", "http://localhost:5000"]}}) cors = CORS(app, resources={r"/AION/*": {"origins": d["cors"]}}) api = Api(app) class predictapi(Resource): def get(self): features = disp_data.get('modelFeatures') if features: msg=\\""" RequestType: POST Content-Type=application/json Body: {displaymsg} \\""".format(displaymsg={ x:'Value' for x in features}) else: displaymsg='Data in JSON Format' return jsonify(displaymsg) def post(self): data = request.get_json() output = predict().run(json.dumps(data)) return jsonify(json.loads(output)) class predictfileapi(Resource): def post(self): if 'file' in request.files: file = request.files['file'] urlData = file.read() rawData = pd.read_csv(io.StringIO(urlData.decode('utf-8'))) data = rawData.to_json(orient='records') output = predict().run(data) return jsonify(json.loads(output)) else: displaymsg='File is mising' return jsonify(displaymsg) def get(self): msg=\\""" RequestType: POST Body:send file content in body\\""" return jsonify(msg) """ if problemType.lower() == 'classification' or problemType.lower() == 'regression': filedata += """ class explainapi(Resource): def get(self): features = disp_data.get('modelFeatures') if features: msg=\\""" RequestType: POST Content-Type=application/json Body: {displaymsg} \\""".format(displaymsg={ x:'Value' for x in features}) else: displaymsg='Data in JSON Format' return jsonify(displaymsg) def post(self): data = request.get_json() if is_explainable: output = local_analysis(json.dumps(data)) else: output = json.dumps({"status":"FAIL","data":"explain api is not supported when text features are used for training"}) return jsonify(json.loads(output)) class monitoringapi(Resource): def get(self): return jsonify({'trainingDataLocation':'Training File Location','currentDataLocation':'production Location'}) def post(self): data = request.get_json() output = drift(json.dumps(data)) return jsonify(json.loads(output)) class performanceapi(Resource): def get(self): return jsonify({'trainingDataLocation':'Training File Location','currentDataLocation':'production Location'}) def post(self): data = request.get_json() output = odrift(json.dumps(data)) return jsonify(json.loads(output)) """ filedata += """ api.add_resource(predictapi, '/AION/{serviceName}/predict')""".format(serviceName=serviceName) filedata += """ api.add_resource(predictfileapi, '/AION/{serviceName}/predict_file')""".format(serviceName=serviceName) if problemType.lower() == 'classification' or problemType.lower() == 'regression': filedata += """ api.add_resource(explainapi, '/AION/{serviceName}/explain') api.add_resource(monitoringapi, '/AION/{serviceName}/monitoring') api.add_resource(performanceapi, '/AION/{serviceName}/performance')""".format(serviceName=serviceName) filedata += """ if __name__ == '__main__': args = parser.parse_args() app.run(args.ipaddress,port = args.port,debug = True)""" filename = os.path.join(deploy_path,'aion_service.py') f = open(filename, "wb") f.write(str(filedata).encode('utf8')) f.close() def create_regression_performance_file(self,deploy_path,features,target): features = ",".join([feature for feature in features]) self.predictionFile = """\\ import pandas as pd import warnings warnings.filterwarnings("ignore") import json import os import sys from pandas import json_normalize from evidently.report import Report from evidently.metric_preset import RegressionPreset from evidently.pipeline.column_mapping import ColumnMapping from aion_predict import predict def odrift(data): try: """ self.predictionFile += ' features = \\''+features+'\\'' self.predictionFile += '\\n' self.predictionFile += ' target = \\''+target+'\\'' self.predictionFile += '\\n' self.predictionFile +="""\\ if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) production = predict().run(jsonData['currentDataLocation']) reference = predict().run(jsonData['trainingDataLocation']) production = json.loads(production) reference = json.loads(reference) if (production['status'] == 'SUCCESS' and reference['status'] == 'SUCCESS'): production = production['data'] production = json_normalize(production) reference = reference['data'] reference = json_normalize(reference) production['target'] = production[target] reference['target'] = reference[target] column_mapping = ColumnMapping() column_mapping.target = target column_mapping.prediction = 'prediction' column_mapping.datetime = None column_mapping.numerical_features = features.split(',') iris_model_performance_dashboard = Report(metrics=[RegressionPreset()]) iris_model_performance_dashboard.run(reference_data = reference, current_data = production, column_mapping = column_mapping) report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','performance.html') iris_model_performance_dashboard.save_html(report) metrics_output = iris_model_performance_dashboard.as_dict() output = {"status":"SUCCESS","htmlPath":report, 'drift_details':metrics_output['metrics']} print("drift:",json.dumps(output)) return (json.dumps(output)) else: output = {"status":"SUCCESS","htmlPath":'NA'} print("drift:",json.dumps(output)) return (json.dumps(output)) except KeyError as e: print(e) output = {"status":"FAIL","message":str(e).strip('"')} print("drift:",json.dumps(output)) return (json.dumps(output)) except Exception as e: print(e) output = {"status":"FAIL","message":str(e).strip('"')} print("drift:",json.dumps(output)) return (json.dumps(output)) if __name__ == "__main__": output = odrift(sys.argv[1])""" filename = os.path.join(deploy_path,'aion_opdrift.py') f = open(filename, "wb") f.write(str(self.predictionFile).encode('utf8')) f.close() def create_regression_text_performance_file(self,deploy_path,features,target): features = ",".join([feature for feature in features]) self.predictionFile = """\\ import pandas as pd import warnings warnings.filterwarnings("ignore") import json import os import sys from pandas import json_normalize from aion_predict import predict from evidently.report import Report from evidently.pipeline.column_mapping import ColumnMapping from evidently.metric_preset import RegressionPreset def odrift(data): try: """ self.predictionFile += ' features = \\''+features+'\\'' self.predictionFile += '\\n' self.predictionFile += ' target = \\''+target+'\\'' self.predictionFile += '\\n' self.predictionFile +="""\\ if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) production = predict().run(jsonData['currentDataLocation']) reference = predict().run(jsonData['trainingDataLocation']) production = json.loads(production) reference = json.loads(reference) if (production['status'] == 'SUCCESS' and reference['status'] == 'SUCCESS'): production = production['data'] production = json_normalize(production) reference = reference['data'] reference = json_normalize(reference) production['target'] = production[target] reference['target'] = reference[target] column_mapping = ColumnMapping() column_mapping.target = target column_mapping.prediction = 'prediction' column_mapping.datetime = None column_mapping.numerical_features = features.split(',') iris_model_performance_dashboard = Report(metrics=[RegressionPreset()]) iris_model_performance_dashboard.run(reference_data=reference, current_data=production,column_mapping=column_mapping) report = os.path.join(os.path.dirname(os.path.abspath(__file__)),'log','performance.html') iris_model_performance_dashboard.save_html(report) metrics_output = iris_model_performance_dashboard.as_dict() output = {"status":"SUCCESS","htmlPath":report, 'drift_details':metrics_output['metrics']} print("drift:",json.dumps(output)) return (json.dumps(output)) else: output = {"status":"SUCCESS","htmlPath":'NA'} print("drift:",json.dumps(output)) return (json.dumps(output)) except KeyError as e: print(e) output = {"status":"FAIL","message":str(e).strip('"')} print("drift:",json.dumps(output)) return (json.dumps(output)) except Exception as e: print(e) output = {"status":"FAIL","message":str(e).strip('"')} print("drift:",json.dumps(output)) return (json.dumps(output)) if __name__ == "__main__": output = odrift(sys.argv[1])""" filename = os.path.join(deploy_path,'aion_opdrift.py') f = open(filename, "wb") f.write(str(self.predictionFile).encode('utf8')) f.close() def create_publish_service(self,datalocation,usecaseid,version,problemType): filename = os.path.join(datalocation,'aion_publish_service.py') if not os.path.exists(filename): filedata = """ import sys import json import time import sqlite3 import argparse import pandas as pd import io from pathlib import Path from datetime import datetime filename = Path(__file__).parent/'config.json' with open (filename, "r") as f: data = json.loads(f.read()) modelVersion = str(data['version']) modelPath = Path(__file__).parent/modelVersion sys.path.append(str(modelPath)) try: with open( (modelPath/'etc')/'display.json', 'r') as f: disp_data = json.load(f) is_explainable = not disp_data.get('textFeatures') except: disp_data = {} is_explainable = True from flask import Flask, jsonify, request from flask_restful import Resource, Api from flask_cors import CORS, cross_origin from flask import Response from aion_predict import predict """ if problemType.lower() == 'classification' or problemType.lower() == 'regression': filedata += """ from aion_ipdrift import drift from aion_opdrift import odrift if is_explainable: from aion_xai import local_analysis """ filedata += """ dataPath = Path(__file__).parent/'data' dataPath.mkdir(parents=True, exist_ok=True) app = Flask(__name__) #cross origin resource from system arguments parser = argparse.ArgumentParser() parser.add_argument('-ip', '--ipaddress', help='IP Address') parser.add_argument('-p', '--port', help='Port Number') parser.add_argument("-cors", type=str, required=False) d = vars(parser.parse_args()) if "cors" in d.keys(): if d["cors"] != '' and d["cors"] != None: d["cors"] = [s.strip() for s in d["cors"].split(",")] #cors = CORS(app, resources={r"/AION/*": {"origins": ["http://localhost", "http://localhost:5000"]}}) cors = CORS(app, resources={r"/AION/*": {"origins": d["cors"]}}) api = Api(app) class sqlite_db(): def __init__(self, location, database_file=None): if not isinstance(location, Path): location = Path(location) if database_file: self.database_name = database_file else: self.database_name = location.stem +
'.db' db_file = str(location/self.database_name) self.conn = sqlite3.connect(db_file) self.cursor = self.conn.cursor() self.tables = [] def table_exists(self, name): if name in self.tables: return True elif name: query = f"SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';" listOfTables = self.cursor.execute(query).fetchall() if len(listOfTables) > 0 : self.tables.append(name) return True return False def read(self, table_name,condition=''): if condition == '': return pd.read_sql_query(f"SELECT * FROM {table_name}", self.conn) else: return pd.read_sql_query(f"SELECT * FROM {table_name} WHERE {condition}", self.conn) def create_table(self,name, columns, dtypes): query = f'CREATE TABLE IF NOT EXISTS {name} (' for column, data_type in zip(columns, dtypes): query += f"'{column}' TEXT," query = query[:-1] query += ');' self.conn.execute(query) return True def update(self,table_name,updates,condition): update_query = f'UPDATE {table_name} SET {updates} WHERE {condition}' self.cursor.execute(update_query) self.conn.commit() return True def write(self,data, table_name): if not self.table_exists(table_name): self.create_table(table_name, data.columns, data.dtypes) tuple_data = list(data.itertuples(index=False, name=None)) insert_query = f'INSERT INTO {table_name} VALUES(' for i in range(len(data.columns)): insert_query += '?,' insert_query = insert_query[:-1] + ')' self.cursor.executemany(insert_query, tuple_data) self.conn.commit() return True def delete(self, name): pass def close(self): self.conn.close()""" filedata += """ app = Flask(__name__) api = Api(app) class predictapi(Resource): def get(self): features = disp_data.get('modelFeatures') if features: msg=\\""" RequestType: POST Content-Type=application/json Body: {displaymsg} \\""".format(displaymsg={ x:'Value' for x in features}) else: displaymsg='Data in JSON Format' return jsonify(displaymsg) def post(self): sqlite_dbObj = sqlite_db(dataPath,'data.db') if not sqlite_dbObj.table_exists('metrices'): data = {'noOfPredictCalls':'0','noOfDriftCalls':'0',"noOfActualCalls":'0',"mid":'0'} data = pd.DataFrame(data, index=[0]) sqlite_dbObj.create_table('metrices',data.columns, data.dtypes) data = request.get_json() output = predict().run(json.dumps(data)) outputobj = json.loads(output) if outputobj['status'] == 'SUCCESS': try: df2 = pd.read_json(json.dumps(outputobj['data']), orient ='records') if not sqlite_dbObj.table_exists('prodData'): sqlite_dbObj.create_table('prodData',df2.columns, df2.dtypes) sqlite_dbObj.write(df2,'prodData') except: pass try: data = sqlite_dbObj.read('metrices') #print(data) if len(data) == 0: data = [{'mid':'0','noOfPredictCalls':'1','noOfDriftCalls':'0',"noOfActualCalls":'0'}] data = pd.read_json(json.dumps(data), orient ='records') sqlite_dbObj.write(data,'metrices') else: noofPredictCalls = int(data['noOfPredictCalls'].iloc[0])+1 sqlite_dbObj.update('metrices',"noOfPredictCalls = '"+str(noofPredictCalls)+"'","mid = 0") except Exception as e: print(e) pass return jsonify(json.loads(output)) class predictfileapi(Resource): def post(self): sqlite_dbObj = sqlite_db(dataPath,'data.db') if not sqlite_dbObj.table_exists('metrices'): data = {'noOfPredictCalls':'0','noOfDriftCalls':'0',"noOfActualCalls":'0',"mid":'0'} data = pd.DataFrame(data, index=[0]) sqlite_dbObj.create_table('metrices',data.columns, data.dtypes) if 'file' in request.files: file = request.files['file'] urlData = file.read() rawData = pd.read_csv(io.StringIO(urlData.decode('utf-8'))) data = rawData.to_json(orient='records') output = predict().run(data) outputobj = json.loads(output) if outputobj['status'] == 'SUCCESS': try: df2 = pd.read_json(json.dumps(outputobj['data']), orient ='records') if not sqlite_dbObj.table_exists('prodData'): sqlite_dbObj.create_table('prodData',df2.columns, df2.dtypes) sqlite_dbObj.write(df2,'prodData') except: pass try: data = sqlite_dbObj.read('metrices') #print(data) if len(data) == 0: data = [{'mid':'0','noOfPredictCalls':'1','noOfDriftCalls':'0',"noOfActualCalls":'0'}] data = pd.read_json(json.dumps(data), orient ='records') sqlite_dbObj.write(data,'metrices') else: noofPredictCalls = int(data['noOfPredictCalls'].iloc[0])+1 sqlite_dbObj.update('metrices',"noOfPredictCalls = '"+str(noofPredictCalls)+"'","mid = 0") except Exception as e: print(e) pass return jsonify(json.loads(output)) else: output = {'status':'error','msg':'File is missing'} return jsonify(output) """ if problemType.lower() == 'classification' or problemType.lower() == 'regression': filedata += """ class explainapi(Resource): def get(self): features = disp_data.get('modelFeatures') if features: msg=\\""" RequestType: POST Content-Type=application/json Body: {displaymsg} \\""".format(displaymsg={ x:'Value' for x in features}) else: displaymsg='Data in JSON Format' return jsonify(displaymsg) def post(self): data = request.get_json() if is_explainable: output = local_analysis(json.dumps(data)) else: output = json.dumps({"status":"FAIL","data":"explain api is not supported when text features are used for training"}) return jsonify(json.loads(output)) class monitoringapi(Resource): def get(self): return jsonify({'trainingDataLocation':'Training File Location','currentDataLocation':'production Location'}) def post(self): sqlite_dbObj = sqlite_db(dataPath,'data.db') if not sqlite_dbObj.table_exists('monitoring'): data = {'status':'No Drift','Msg':'No Input Drift Found','RecordTime':'Time','version':'1'} data = pd.DataFrame(data, index=[0]) sqlite_dbObj.create_table('monitoring',data.columns, data.dtypes) trainingDataPath = (modelPath/'data')/'preprocesseddata.csv.gz' if not sqlite_dbObj.table_exists('prodData'): return jsonify({'status':'Error','msg':'Prod data not available'}) data = sqlite_dbObj.read('prodData') filetimestamp = str(int(time.time())) dataFile = dataPath/('AION_' + filetimestamp+'.csv') data.to_csv(dataFile, index=False) data = request.get_json() data={'trainingDataLocation':trainingDataPath,'currentDataLocation':dataFile} output = drift(json.dumps(data)) outputData = json.loads(output) status = outputData['status'] if status == 'SUCCESS': Msg = str(outputData['data']) else: Msg = 'Error during drift analysis' now = datetime.now() # current date and time date_time = now.strftime("%m/%d/%Y, %H:%M:%S") data = {'status':status,'Msg':Msg,'RecordTime':date_time,'version':modelVersion} data = pd.DataFrame(data, index=[0]) sqlite_dbObj.write(data,'monitoring') return jsonify(json.loads(output))""" filedata += """ class matricesapi(Resource): def get(self): sqlite_dbObj = sqlite_db(dataPath,'data.db') if sqlite_dbObj.table_exists('metrices'): df1 = sqlite_dbObj.read('metrices') else: df1 = pd.DataFrame() #print(df1) if sqlite_dbObj.table_exists('monitoring'): df2 = sqlite_dbObj.read('monitoring') else: df2 = pd.DataFrame() msg = {'Deployed Version':str(modelVersion)} if df1.shape[0] > 0: msg.update({'noOfPredictCalls':str(df1['noOfPredictCalls'].iloc[0])}) else: msg.update({'noOfPredictCalls':'0'}) driftDetails = [] for idx in reversed(df2.index): driftd = {'version':str(df2.version[idx]),'status':str(df2.status[idx]),'recordTime':str(df2.RecordTime[idx]),'msg':str(df2.Msg[idx])} driftDetails.append(driftd) msg.update({'driftDetails':driftDetails}) return jsonify(msg) class performanceapi(Resource): def get(self): return jsonify({'trainingDataLocation':'Training File Location','currentDataLocation':'production Location'}) def post(self): sqlite_dbObj = sqlite_db(dataPath,'data.db') if not sqlite_dbObj.table_exists('monitoring'): data = {'status':'No Drift','Msg':'No Input Drift Found','RecordTime':'Time','version':'1'} data = pd.DataFrame(data, index=[0]) sqlite_dbObj.create_table('monitoring',data.columns, data.dtypes) trainingDataPath = (modelPath/'data')/'preprocesseddata.csv.gz' if not sqlite_dbObj.table_exists('prodData'): return jsonify({'status':'Error','msg':'Prod data not available'}) data = sqlite_dbObj.read('prodData') filetimestamp = str(int(time.time())) dataFile = dataPath/('AION_' + filetimestamp+'.csv') data.to_csv(dataFile, index=False) data = request.get_json() data={'trainingDataLocation':trainingDataPath,'currentDataLocation':dataFile} output = odrift(json.dumps(data)) return jsonify(json.loads(output)) """ filedata += """ api.add_resource(predictapi, '/AION/{serviceName}/predict') api.add_resource(predictfileapi, '/AION/{serviceName}/predict_file') api.add_resource(matricesapi, '/AION/{serviceName}/metrices')""".format(serviceName=usecaseid) if problemType.lower() == 'classification' or problemType.lower() == 'regression': filedata += """ api.add_resource(explainapi, '/AION/{serviceName}/explain') api.add_resource(monitoringapi, '/AION/{serviceName}/monitoring') api.add_resource(performanceapi, '/AION/{serviceName}/performance') """.format(serviceName=usecaseid) filedata += """ if __name__ == '__main__': args = parser.parse_args() app.run(args.ipaddress,port = args.port,debug = True)""" f = open(filename, "wb") f.write(str(filedata).encode('utf8')) f.close() data = {'version':version} filename = os.path.join(datalocation,'config.json') with open(filename, "w") as outfile: json.dump(data, outfile) outfile.close() <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os,sys import platform import json import shutil import logging from pathlib import Path def create_selector_file(self,deploy_path,features,pcaModel_pickle_file,bpca_features,apca_features,textFeatures,nonNumericFeatures,numericalFeatures,profiler,targetFeature, model_type,model,config=None): self.selectorfile += 'import pandas as pd' self.selectorfile += '\\n' self.selectorfile += 'import joblib' self.selectorfile += '\\n' self.selectorfile += 'import os' self.selectorfile += '\\n' self.selectorfile += 'import numpy as np' self.selectorfile += '\\n' self.selectorfile += 'class selector(object):' self.selectorfile += '\\n' self.selectorfile += ' def apply_selector(self,df):' self.selectorfile += '\\n' if pcaModel_pickle_file != '': self.selectorfile += " pcaModel = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','"+pcaModel_pickle_file+"'))" self.selectorfile += '\\n' self.selectorfile += ' bpca_features = '+str(bpca_features) self.selectorfile += '\\n' self.selectorfile += ' apca_features = '+str(apca_features) self.selectorfile += '\\n' self.selectorfile += ' df = pcaModel.transform(df[bpca_features])' self.selectorfile += '\\n' self.selectorfile += ' df = pd.DataFrame(df,columns=apca_features)' self.selector
file += '\\n' if(len(features) != 0) and model_type != 'BM25': if model_type.lower()!='anomaly_detection' and model.lower() != 'autoencoder': self.selectorfile += ' df = df['+str(features)+']' self.selectorfile += '\\n' self.selectorfile += ' return(df)' filename = os.path.join(deploy_path,'script','selector.py') f = open(filename, "wb") self.log.info('-------> Feature Selector File Location :'+filename) f.write(str(self.selectorfile).encode('utf8')) f.close() featurefile = 'import json' featurefile +='\\n' featurefile += 'def getfeatures():' featurefile +='\\n' featurefile +=' try:' featurefile +='\\n' featurelist = [] if 'profiler' in config: if 'input_features_type' in config['profiler']: inputfeatures = config['profiler']['input_features_type'] for x in inputfeatures: featurelt={} featurelt['feature'] = x print(x,inputfeatures[x]) if x == targetFeature: featurelt['Type'] = 'Target' else: if inputfeatures[x] in ['int','int64','float','float64']: featurelt['Type'] = 'Numeric' elif inputfeatures[x] == 'object': featurelt['Type'] = 'Text' elif inputfeatures[x] == 'category': featurelt['Type'] = 'Category' else: featurelt['Type'] = 'Unknown' featurelist.append(featurelt) featurefile +=' features = '+str(featurelist) featurefile +='\\n' featurefile +=' outputjson = {"status":"SUCCESS","features":features}' featurefile +='\\n' featurefile +=' output = json.dumps(outputjson)' featurefile +='\\n' featurefile +=' print("Features:",output)' featurefile +='\\n' featurefile +=' return(output)' featurefile +='\\n' featurefile +=' except Exception as e:' featurefile +='\\n' featurefile +=' output = {"status":"FAIL","message":str(e).strip(\\'"\\')}' featurefile +='\\n' featurefile +=' print("Features:",json.dumps(output))' featurefile +='\\n' featurefile +=' return (json.dumps(output))' featurefile +='\\n' featurefile +='if __name__ == "__main__":' featurefile +='\\n' featurefile +=' output = getfeatures()' filename = os.path.join(deploy_path,'featureslist.py') f = open(filename, "wb") f.write(str(featurefile).encode('utf8')) f.close() def create_init_function_for_classification(self,modelfile,classes,learner_type,scoreParam,loss_matrix,optimizer,preprocessing_pipe,modelName,model_type,imageconfig): self.modelfile += ' def __init__(self):' self.modelfile += '\\n' if (learner_type == 'ML' and model_type.lower()=='anomaly_detection' and modelName.lower()=="autoencoder"): modelfile=modelfile.replace('.sav','') self.modelfile+=" self.model = tf.keras.models.load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'))" self.modelfile += '\\n' elif(learner_type == 'TextDL' or learner_type == 'DL'): if modelName.lower() == 'googlemodelsearch': self.modelfile += ' import autokeras as ak' self.modelfile += '\\n' self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','modelsearch_rootdir','saved_model_onnx.onnx'))" self.modelfile += '\\n' else: if scoreParam == 'recall': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'),custom_objects={'recall': recall_m},compile=False)" self.modelfile += '\\n' self.modelfile += ' self.model.compile(loss=\\''+loss_matrix+'\\',optimizer=\\''+optimizer+'\\', metrics=[recall_m])' self.modelfile += '\\n' elif scoreParam == 'precision': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'),custom_objects={'precision': precision_m},compile=False)" self.modelfile += '\\n' self.modelfile += ' self.model.compile(loss=\\''+loss_matrix+'\\',optimizer=\\''+optimizer+'\\', metrics=[precision_m])' self.modelfile += '\\n' elif scoreParam == 'roc_auc': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'),compile=False)" self.modelfile += '\\n' self.modelfile += ' self.model.compile(loss=\\''+loss_matrix+'\\',optimizer=\\''+optimizer+'\\', metrics=[tf.keras.metrics.AUC()])' self.modelfile += '\\n' elif scoreParam == 'f1_score': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'),custom_objects={'f1_score': f1_m},compile=False)" self.modelfile += '\\n' self.modelfile += ' self.model.compile(loss=\\''+loss_matrix+'\\',optimizer=\\''+optimizer+'\\', metrics=[f1_m])' self.modelfile += '\\n' elif scoreParam == 'r2': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'),custom_objects={'r2': r_square},compile=False)" self.modelfile += '\\n' self.modelfile += ' self.model.compile(loss=\\''+loss_matrix+'\\',optimizer=\\''+optimizer+'\\', metrics=[r_square])' self.modelfile += '\\n' elif scoreParam == 'rmse': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'),custom_objects={'rmse': rmse_m},compile=False)" self.modelfile += '\\n' self.modelfile += ' self.model.compile(loss=\\''+loss_matrix+'\\',optimizer=\\''+optimizer+'\\', metrics=[rmse_m])' self.modelfile += '\\n' elif scoreParam == 'mse': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'))" self.modelfile += '\\n' elif scoreParam == 'mae': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'))" self.modelfile += '\\n' elif scoreParam == 'accuracy': self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'))" self.modelfile += '\\n' else: self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'))" self.modelfile += '\\n' elif(learner_type == 'Text Similarity'): self.modelfile += " self.preprocessing = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','"+preprocessing_pipe+"'))" self.modelfile += '\\n' self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'), custom_objects={'cosine_distance': cosine_distance, 'cos_dist_output_shape': cos_dist_output_shape})" self.modelfile += '\\n' elif(learner_type in ['similarityIdentification','contextualSearch']): if scoreParam == 'VectorDB Cosine': vectorfiledbname = 'trainingdataVecDB' self.modelfile += f"\\ \\n persist_directory = os.path.join(os.path.dirname(__file__),'..','data')\\ \\n client = chromadb.PersistentClient(path=persist_directory)\\ \\n self.collection_name = '{vectorfiledbname}'\\ \\n self.collection = client.get_collection(self.collection_name)\\n" else: self.modelfile += " self.train_input = pd.read_csv(os.path.join(os.path.dirname(__file__),'..','data','trainingdata.csv'))\\n\\n" elif(learner_type == 'ImageClassification'): self.modelfile += ' self.config='+str(imageconfig) self.modelfile += '\\n' if(modelName.lower() == 'densenet'): self.modelfile += ' baseModel = tf.keras.applications.DenseNet121(weights="imagenet", include_top=False, input_tensor=Input(shape=(self.config[\\'img_width\\'],self.config[\\'img_height\\'],self.config[\\'img_channel\\'])))' else: self.modelfile += ' baseModel = tensorflow.keras.applications.InceptionV3(weights="imagenet", include_top=False, input_tensor=Input(shape=(self.config[\\'img_width\\'],self.config[\\'img_height\\'],self.config[\\'img_channel\\'])))' self.modelfile += '\\n' self.modelfile += ' headModel = baseModel.output' self.modelfile += '\\n' self.modelfile += ' headModel = Flatten(name="flatten")(headModel)' self.modelfile += '\\n' self.modelfile += ' headModel = Dense(1024, activation=\\'relu\\')(headModel)' self.modelfile += '\\n' self.modelfile += ' headModel = Dropout(0.5)(headModel)' self.modelfile += '\\n' self.modelfile += ' headModel = Dense(2, activation=\\'sigmoid\\')(headModel)' self.modelfile += '\\n' self.modelfile += ' headModel = self.model = Model(inputs=baseModel.input, outputs=headModel)' self.modelfile += '\\n' self.modelfile += ' opt = Adam(lr=self.config[\\'lr\\'])' self.modelfile += '\\n' self.modelfile += ' self.model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"])' self.modelfile += '\\n' self.modelfile += " self.model.load_weights(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'))" self.modelfile += '\\n' elif(learner_type == 'objectDetection'): self.modelfile += " self.MODEL_LOCATION = os.path.join(os.path.dirname(__file__),'..','model')\\n" self.modelfile += ' PATH_TO_CFG = self.MODEL_LOCATION+"/export/pipeline.config"\\n' self.modelfile += ' PATH_TO_CKPT = self.MODEL_LOCATION+"/export/checkpoint/"\\n' self.modelfile += ' PATH_TO_LABELS = self.MODEL_LOCATION+"/export/label_map.pbtxt"\\n' self.modelfile += ' configs = config_util.get_configs_from_pipeline_file(PATH_TO_CFG)\\n' self.modelfile += ' self.detection_model = model_builder.build(model_config=configs["model"], is_training=False)\\n' self.modelfile += ' ckpt = tf.compat.v2.train.Checkpoint(model=self.detection_model)\\n' self.modelfile += ' ckpt.restore(os.path.join(PATH_TO_CKPT, "ckpt-0")).expect_partial()\\n' self.modelfile += ' self.category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS,\\ use_display_name=True)\\n' elif learner_type == 'TS' and (modelName.lower() == 'lstm' or modelName.lower() == 'mlp'): self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'))" self.modelfile += '\\n' elif modelName.lower() == 'neural architecture search': self.modelfile += ' import autokeras as ak' self.modelfile += '\\n' self.modelfile += " self.model = load_model(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'),custom_objects=ak.CUSTOM_OBJECTS)" self.modelfile += '\\n' else: self.modelfile += " self.model = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','"+modelfile+"'))" self.modelfile += '\\n' def create_predict(self,learner_type,method,model,model_type,threshold,firstDocFeature,secondDocFeature,padding_length,optimizationmethod,sessonal_freq,additional_regressors,feature,modelFeatures,indexFeature,lag_order,scalertransformationFile,datetimeFeature,scoreParam=None): self.modelfile += ' def predict(self,X,features_names):' self.modelfile += '\\n' if (learner_type == 'ML' and model_type.lower()=='anomaly_detection' and model.lower()=="autoencoder"): self.modelfile += f" X=X[{feature}]\\n" self.modelfile += f" X = np.asarray(X).astype('float32')\\n" self.modelfile += f" reconstructed = self.model.predict(X)\\n" self.modelfile += f" predict_
loss = tf.keras.losses.mae(reconstructed,X)\\n" self.modelfile += ' max_threshold = np.mean(predict_loss) + 2*np.std(predict_loss)\\n' self.modelfile += ' min_threshold = np.mean(predict_loss) - 2*np.std(predict_loss)\\n' self.modelfile += ' prediction_df = pd.DataFrame()\\n' self.modelfile += ' prediction_df["loss"] = predict_loss\\n' self.modelfile += ' prediction_df["max_threshold"] = max_threshold\\n' self.modelfile += ' prediction_df["min_threshold"] = min_threshold\\n' self.modelfile += ' prediction_df["anomaly"] = np.where((prediction_df["loss"] > prediction_df["max_threshold"]) | (prediction_df["loss"] <= prediction_df["min_threshold"]), True, False)\\n' self.modelfile += ' return prediction_df\\n' elif(learner_type == 'RecommenderSystem'): self.modelfile += ' predictions = []' self.modelfile += '\\n' self.modelfile += ' for index,row in X.iterrows():' self.modelfile += '\\n' self.modelfile += ' score = self.model.predict(int(row["uid"]),int(row["iid"]))' self.modelfile += '\\n' self.modelfile += ' predictions.append(score.est)' self.modelfile += '\\n' self.modelfile += ' return predictions' elif(learner_type in ['similarityIdentification','contextualSearch']): tfeatures = list(modelFeatures.split(",")) if indexFeature != '' and indexFeature != 'NA': ifeatures = indexFeature.split(",") for ifes in ifeatures: if ifes not in tfeatures: tfeatures.append(ifes) if model_type == 'BM25': self.modelfile += f"\\n\\ tokenized_corpus =[doc.split(' ') for doc in self.train_input.tokenize]\\n\\ bm25 = BM25Okapi(tokenized_corpus)\\n\\ tokenized_query = [doc.split(' ') for doc in X.tokenize]\\n\\ logcnt = 5\\n\\ output = []\\n\\ for query in tokenized_query:\\n\\ doc_scores = bm25.get_scores(query)\\n\\ related_docs_indices = np.argsort(doc_scores)[::-1][:logcnt]\\n\\ x = self.train_input[{tfeatures}].loc[self.train_input.index[related_docs_indices]]\\n\\ x['Score'] = doc_scores[related_docs_indices]\\n\\ x['Score'] = round(x['Score'],2).astype(str)+'%'\\n\\ output.append(x)\\n\\ return output\\n" elif scoreParam == 'VectorDB Cosine': featuresVecDB = modelFeatures.split(",") self.modelfile += ' logcnt = 5\\n' self.modelfile += f" columns = {featuresVecDB}\\n" self.modelfile += f"\\ \\n output = []\\ \\n for rowindex, row in X.iterrows():\\ \\n queryembedding = X.iloc[rowindex:rowindex+1].to_numpy()\\ \\n results = self.collection.query(\\ \\n query_embeddings=queryembedding.tolist(),\\ \\n n_results=logcnt\\ \\n )\\ \\n x = pd.DataFrame(columns=columns)\\ \\n for i in range(0, len(results['ids'][0])):\\ \\n documentAry = results['documents'][0][i]\\ \\n documentAry = documentAry.split(' ~&~ ')\\ \\n for j in range(0, len(documentAry)):\\ \\n x.at[i,columns[j]] = documentAry[j]\\ \\n x.at[i,'Score'] = results['distances'][0][i]\\ \\n output.append(x)\\ \\n return output" else: self.modelfile += ' columns = self.train_input.columns.tolist()\\n' self.modelfile += ' logcnt = 5\\n' self.modelfile += f" train_input = self.train_input[{tfeatures}]\\n" for tf in tfeatures: self.modelfile += f" columns.remove('{tf}')\\n" self.modelfile += f"\\ \\n results = cosine_similarity(self.train_input[columns],X)\\ \\n output = []\\ \\n for i in range(results.shape[1]):\\ \\n related_docs_indices = results[:,i].argsort(axis=0)[:-(int(logcnt) + 1):-1]\\ \\n x=self.train_input[{tfeatures}].loc[self.train_input.index[related_docs_indices]]\\ \\n scores = []\\ \\n for j in range(0,logcnt):\\ \\n scores.append(str(round((results[related_docs_indices][j][i])*100))+'%')\\ \\n x['Score'] = scores\\ \\n output.append(x)\\ \\n return output" elif(learner_type == 'Text Similarity'): self.modelfile += ' X["'+firstDocFeature+'"] = X["'+firstDocFeature+'"].astype(str)' self.modelfile += '\\n' self.modelfile += ' X["'+secondDocFeature+'"] = X["'+secondDocFeature+'"].astype(str)' self.modelfile += '\\n' self.modelfile += ' test_sentence1 = self.preprocessing.texts_to_sequences(X["'+firstDocFeature+'"].values)' self.modelfile += '\\n' self.modelfile += ' test_sentence2 = self.preprocessing.texts_to_sequences(X["'+secondDocFeature+'"].values)' self.modelfile += '\\n' self.modelfile += ' test_sentence1 = pad_sequences(test_sentence1, maxlen='+str(padding_length)+', padding=\\'post\\')' self.modelfile += '\\n' self.modelfile += ' test_sentence2 = pad_sequences(test_sentence2, maxlen='+str(padding_length)+', padding=\\'post\\')' self.modelfile += '\\n' self.modelfile += ' prediction = self.model.predict([test_sentence1, test_sentence2 ])' self.modelfile += '\\n' self.modelfile += ' return(prediction)' self.modelfile += '\\n' elif(learner_type == 'ImageClassification'): self.modelfile += ' predictions = []' self.modelfile += '\\n' self.modelfile += ' for index, row in X.iterrows(): ' self.modelfile += '\\n' self.modelfile += ' img = cv2.imread(row[\\'imagepath\\'])' self.modelfile += '\\n' self.modelfile += ' img = cv2.resize(img, (self.config[\\'img_width\\'],self.config[\\'img_height\\']))' self.modelfile += '\\n' self.modelfile += ' img = image.img_to_array(img)' self.modelfile += '\\n' self.modelfile += ' img = np.expand_dims(img, axis=0)' self.modelfile += '\\n' self.modelfile += ' img = img/255' self.modelfile += '\\n' self.modelfile += ' prediction = self.model.predict(img)' self.modelfile += '\\n' self.modelfile += ' prediction = np.argmax(prediction,axis=1)' self.modelfile += '\\n' self.modelfile += ' predictions.append(prediction[0])' self.modelfile += '\\n' self.modelfile += ' return(predictions)' self.modelfile += '\\n' elif(learner_type == 'objectDetection'): self.modelfile += ' @tf.function\\n' self.modelfile += ' def detect_fn(image):\\n' self.modelfile += ' image, shapes = self.detection_model.preprocess(image)\\n' self.modelfile += ' prediction_dict = self.detection_model.predict(image, shapes)\\n' self.modelfile += ' detections = self.detection_model.postprocess(prediction_dict, shapes)\\n' self.modelfile += ' return detections\\n' self.modelfile += ' def load_image_into_numpy_array(path):\\n' self.modelfile += ' return np.array(Image.open(path))\\n' self.modelfile += ' imageLocation = []\\n' self.modelfile += ' for i, row in X.iterrows():\\n' self.modelfile += ' if ("confidance" in row) and row["confidance"] <= 1.0:\\n' self.modelfile += ' confidance = row["confidance"]\\n' self.modelfile += ' else:\\n' self.modelfile += ' confidance = 0.8\\n' self.modelfile += ' imageName = str(Path(row["imagepath"]).stem)+"_output"+str(Path(row["imagepath"]).suffix)\\n' self.modelfile += ' image_np = load_image_into_numpy_array(row["imagepath"])\\n' self.modelfile += ' input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.float32)\\n' self.modelfile += ' detections = detect_fn(input_tensor)\\n' self.modelfile += ' num_detections = int(detections.pop("num_detections"))\\n' self.modelfile += ' detections = {key: value[0, :num_detections].numpy()\\n\\ for key, value in detections.items()}\\n' self.modelfile += ' detections["num_detections"] = num_detections\\n' self.modelfile += ' detections["detection_classes"] = detections["detection_classes"].astype(np.int64)\\n' self.modelfile += ' label_id_offset = 1\\n' self.modelfile += ' image_np_with_detections = image_np.copy()\\n' self.modelfile += ' viz_utils.visualize_boxes_and_labels_on_image_array(\\n\\ image_np_with_detections,\\n\\ detections["detection_boxes"],\\n\\ detections["detection_classes"]+label_id_offset,\\n\\ detections["detection_scores"],\\n\\ self.category_index,\\n\\ use_normalized_coordinates=True,\\n\\ max_boxes_to_draw=200,\\n\\ min_score_thresh=confidance,\\n\\ agnostic_mode=False)\\n' self.modelfile += ' plt.figure()\\n' self.modelfile += ' plt.imsave(os.path.join(self.MODEL_LOCATION,imageName), image_np_with_detections)\\n' self.modelfile += ' imageLocation.append(os.path.join(self.MODEL_LOCATION,imageName))\\n' self.modelfile += ' plt.show()\\n' self.modelfile += ' return imageLocation\\n' else: if(learner_type == 'DL' and model != 'Neural Network'): self.modelfile += ' X = np.expand_dims(X, axis=2)' self.modelfile += '\\n' if(learner_type == 'TextDL'): self.modelfile += ' return pd.DataFrame(np.argmax(self.model.predict(X),axis=1))' self.modelfile += '\\n' elif(learner_type == 'TextML'): self.modelfile += ' return pd.DataFrame(self.model.predict_proba(X),columns=self.model.classes_)' self.modelfile += '\\n' elif(learner_type == 'DL' and model_type == 'Classification'): self.modelfile += ' X = X.astype(np.float32)' self.modelfile += '\\n' self.modelfile += ' return pd.DataFrame(np.argmax(self.model.predict(X),axis=1))' self.modelfile += '\\n' else: if(model_type == 'Classification' or model_type == 'TLClassification'): if model == 'Neural Architecture Search': self.modelfile += ' X = X.astype(np.float32)' self.modelfile += '\\n' self.modelfile += ' return pd.DataFrame(self.model.predict(X))' self.modelfile += '\\n' else: if optimizationmethod == 'genetic': self.modelfile += '\\n' self.modelfile += ' try:' self.modelfile += '\\n' self.modelfile += ' return pd.DataFrame(self.model.predict_proba(X))' self.modelfile += '\\n' self.modelfile += ' except:' self.modelfile += '\\n' self.modelfile += ' return pd.DataFrame(self.model.predict(X))' else: self.modelfile += ' X = X.astype(np.float32)' self.modelfile += '\\n' if model.lower() == 'deep q network' or model.lower() == 'dueling deep q network': self.modelfile += ' q, _ = self.model(np.array(X), step_type=constant([time_step.StepType.FIRST] * np.array(X).shape[0]), training=False)' self.modelfile += '\\n' self.modelfile += ' return pd.DataFrame(q.numpy())' else: self.modelfile += ' return pd.DataFrame(self.model.predict_proba(X), columns=self.model.classes_)' self.modelfile += '\\n' elif model_type == 'Regression' and model == 'NAS': self.modelfile += \\ """ X = X.astype(np.float32) return self.model.predict(X) """ elif(learner_type == 'TS'): if model.lower()
== 'fbprophet': self.modelfile += ' sessonal_freq="'+str(sessonal_freq)+'"' self.modelfile += '\\n' self.modelfile += ' ts_prophet_future = self.model.make_future_dataframe(periods=in
case_name'],self.params['usecase_ver'], self.name) def create_idrift(self): pass def create_odrift(self): pass def create_utils_folder(self): common.create_util_folder(self.deploy_path) <s><s> """ /** * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * © Copyright HCL Technologies Ltd. 2021, 2022 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. */ """ from importlib.metadata import version import sys class importModule(): def __init__(self): self.importModule = {} self.stdlibModule = [] self.localModule = {} def addLocalModule(self,module, mod_from=None, mod_as=None): if module == '*': if module not in self.localModule.keys(): self.localModule[module]= [mod_from] else: self.localModule[module].append(mod_from) elif module not in self.localModule.keys(): self.localModule[module] = {'from':mod_from, 'as':mod_as} def addModule(self, module, mod_from=None, mod_as=None): if module not in self.importModule.keys(): self.importModule[module] = {'from':mod_from, 'as':mod_as} if module in sys.stdlib_module_names: self.stdlibModule.append(module) elif isinstance(self.importModule[module], list): if mod_as not in [x['as'] for x in self.importModule[module]]: self.importModule[module].append({'from':mod_from, 'as':mod_as}) elif mod_as not in [x['from'] for x in self.importModule[module]]: self.importModule[module].append({'from':mod_from, 'as':mod_as}) elif mod_as != self.importModule[module]['as']: as_list = [self.importModule[module]] as_list.append({'from':mod_from, 'as':mod_as}) self.importModule[module] = as_list elif mod_from != self.importModule[module]['from']: as_list = [self.importModule[module]] as_list.append({'from':mod_from, 'as':mod_as}) self.importModule[module] = as_list def getModules(self): return (self.importModule, self.stdlibModule) def getBaseModule(self, extra_importers=[]): modules_alias = { 'sklearn':'scikit-learn', 'genetic_selection':'sklearn-genetic', 'google': 'google-cloud-storage', 'azure':'azure-storage-file-datalake'} local_modules = {'AIX':'/app/AIX-0.1-py3-none-any.whl'} modules = [] require = "" if extra_importers: extra_importers = [importer.importModule for importer in extra_importers if isinstance(importer, importModule)] importers_module = [self.importModule] + extra_importers for importer_module in importers_module: for k,v in importer_module.items(): if v['from']: mod = v['from'].split('.')[0] else: mod = k if mod in modules_alias.keys(): mod = modules_alias[mod] modules.append(mod) modules = list(set(modules)) for mod in modules: try: if mod in local_modules.keys(): require += f"{local_modules[mod]}\\n" else: require += f"{mod}=={version(mod)}\\n" except : if mod not in sys.stdlib_module_names: raise return require def getCode(self): def to_string(k, v): mod = '' if v['from']: mod += 'from {} '.format(v['from']) mod += 'import {}'.format(k) if v['as']: mod += ' as {} '.format(v['as']) return mod modules = "" local_modules = "" std_lib_modules = "" third_party_modules = "" for k,v in self.importModule.items(): if k in self.stdlibModule: std_lib_modules = std_lib_modules + '\\n' + to_string(k, v) elif isinstance(v, dict): third_party_modules = third_party_modules + '\\n' + to_string(k, v) elif isinstance(v, list): for alias in v: third_party_modules = third_party_modules + '\\n' + to_string(k, alias) for k,v in self.localModule.items(): if k != '*': local_modules = local_modules + '\\n' + to_string(k, v) else: for mod_from in v: local_modules = local_modules + '\\n' + f'from {mod_from} import {k}' if std_lib_modules: modules = modules + "\\n#Standard Library modules" + std_lib_modules if third_party_modules: modules = modules + "\\n\\n#Third Party modules" + third_party_modules if local_modules: modules = modules + "\\n\\n#local modules" + local_modules + '\\n' return modules def copyCode(self, importer): self.importModule, self.stdlibModule = importer.getModules() <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os,sys import platform import json import shutil import logging from pathlib import Path from prediction_package import production from prediction_package import prediction_transformation as cs class DeploymentManager: def __init__(self): self.requirementfile='' self.modelfile='' self.s2i_environmentfile='' self.selectorfile='' self.profilerfile='' self.readmepackagename='' self.pythonpackage='' self.log = logging.getLogger('eion') def include_import_file(self,learner_type,method,scoreParam,model_type,model): if((learner_type == 'DL') or (learner_type == 'TextDL')): self.modelfile += 'from tensorflow.keras.models import load_model' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras import backend as K' self.modelfile += '\\n' self.modelfile += 'import tensorflow as tf' self.modelfile += '\\n' if (learner_type == 'ML' and model_type.lower()=='anomaly_detection' and model.lower() == 'autoencoder'): self.modelfile += 'import joblib' self.modelfile += '\\n' self.modelfile += 'import os' self.modelfile += '\\n' self.modelfile += 'import pandas as pd' self.modelfile += '\\n' self.modelfile += 'import numpy as np' self.modelfile += '\\n' self.modelfile += 'from pathlib import Path' self.modelfile += '\\n' self.modelfile += 'import tensorflow as tf' self.modelfile += '\\n' self.modelfile += 'from keras.models import load_model' self.modelfile += '\\n' self.modelfile += 'import warnings' self.modelfile += '\\n' self.modelfile += 'from sklearn.preprocessing import StandardScaler' self.modelfile += '\\n' self.modelfile += 'warnings.filterwarnings("ignore")' self.modelfile += '\\n' if(learner_type == 'ImageClassification'): self.modelfile += 'import os' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras.models import Sequential' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras.layers import Dense, Dropout, Flatten' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras.preprocessing import image' self.modelfile += '\\n' self.modelfile += 'import numpy as np' self.modelfile += '\\n' self.modelfile += 'import tensorflow as tf' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras.layers import Input' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras.models import Model' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras.optimizers import Adam' self.modelfile += '\\n' self.modelfile += 'import cv2' self.modelfile += '\\n' if(learner_type == 'objectDetection'): self.modelfile += 'import os\\n' self.modelfile += 'from object_detection.utils import label_map_util\\n' self.modelfile += 'from object_detection.utils import config_util\\n' self.modelfile += 'from object_detection.utils import visualization_utils as viz_utils\\n' self.modelfile += 'from object_detection.builders import model_builder\\n' self.modelfile += 'import tensorflow as tf\\n' self.modelfile += 'import numpy as np\\n' self.modelfile += 'from PIL import Image\\n' self.modelfile += 'import matplotlib.pyplot as plt\\n' self.modelfile += 'import pandas as pd\\n' self.modelfile += 'from pathlib import Path\\n' if(learner_type == 'Text Similarity'): self.modelfile += 'from tensorflow.keras.models import load_model' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras import backend as K' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras.preprocessing.sequence import pad_sequences' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras.preprocessing.text import Tokenizer' self.modelfile += '\\n' self.modelfile += 'import tensorflow as tf' self.modelfile += '\\n' if(model == 'Neural Architecture Search'): self.modelfile += 'from tensorflow.keras.models import load_model' self.modelfile += '\\n' self.modelfile += 'from tensorflow.keras import backend as K' self.modelfile += '\\n' self.modelfile += 'import tensorflow as tf' self.modelfile += '\\n' self.modelfile += 'import joblib' self.modelfile += '\\n' self.modelfile += 'import os' self.modelfile += '\\n' self.modelfile += 'import pandas as pd' self.modelfile += '\\n' self.modelfile += 'from sklearn.decomposition import LatentDirichletAllocation\\n' self.modelfile += 'import numpy as np\\n' self.modelfile += 'from pathlib import Path\\n' if model.lower() == 'deep q network' or model.lower() == 'dueling deep q network': self.modelfile += 'from tensorflow import constant' self.modelfile += '\\n' self.modelfile += 'from tf_agents.trajectories import time_step' self.modelfile += '\\n' self.requirementfile += 'tensorflow==2.5.0' if model.lower() == 'lstm' or model.lower() == 'mlp': self.modelfile += 'from tensorflow.keras.models import load_model' self.modelfile += '\\n' self.requirementfile += 'tensorflow==2.5.0' if(learner_type == 'Text Similarity'): self.modelfile += 'def cosine_distance(vests):' self.modelfile += '\\n'; self.modelfile += ' x, y = vests' self.modelfile += '\\n'; self.modelfile += ' x = K.l2_normalize(x, axis=-1)' self.modelfile += '\\n'; self.modelfile += ' y = K.l2_normalize(y, axis=-1)' self.modelfile += '\\n'; self.modelfile += ' return -K.mean(x * y, axis=-1, keepdims=True)' self.modelfile += '\\n'; self.modelfile += 'def cos_dist_output_shape(shapes):' self.modelfile += '\\n'; self.modelfile += ' shape1, shape2 = shapes' self.modelfile += '\\n'; self.modelfile += ' return (shape1[0],1)' self.modelfile += '\\n'; if(learner_type == 'TextDL' or learner_type == 'DL'): if(scoreParam.lower() == 'recall' or scoreParam.lower() == 'f1_score'): self.modelfile += 'def recall_m(y_true, y_pred):' self.modelfile += '\\n'; self.modelfile += ' true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))' self.modelfile += '\\n'; self.modelfile += ' possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))' self.modelfile += '\\n'; self.modelfile += ' recall = true_positives / (possible_positives + K.epsilon())' self.modelfile += '\\n'; self.modelfile += ' return recall' self.modelfile += '\\n'; if(scoreParam.lower() == 'precision' or scoreParam.lower() == 'f1_score'): self.modelfile += 'def precision_m(y_true, y_pred):' self.modelfile += '\\n'; self.modelfile += ' true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))' self.modelfile += '\\n'; self.modelfile += ' predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))' self.modelfile += '\\n'; self.modelfile += ' precision = true_positives / (predicted_
positives + K.epsilon())' self.modelfile += '\\n'; self.modelfile += ' return precision' self.modelfile += '\\n'; if(scoreParam.lower() == 'f1_score'): self.modelfile += 'def f1_m(y_true, y_pred):' self.modelfile += '\\n'; self.modelfile += ' precision = precision_m(y_true, y_pred)' self.modelfile += '\\n'; self.modelfile += ' recall = recall_m(y_true, y_pred)' self.modelfile += '\\n'; self.modelfile += ' return 2*((precision*recall)/(precision+recall+K.epsilon()))' self.modelfile += '\\n'; if(scoreParam.lower() == 'rmse'): self.modelfile += 'def rmse_m(y_true, y_pred):' self.modelfile += '\\n'; self.modelfile += ' return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1))' self.modelfile += '\\n'; if(scoreParam.lower() =='r2'): self.modelfile += 'def r_square(y_true, y_pred):' self.modelfile += '\\n'; self.modelfile += ' SS_res = K.sum(K.square(y_true-y_pred))' self.modelfile += '\\n'; self.modelfile += ' SS_tot = K.sum(K.square(y_true-K.mean(y_true)))' self.modelfile += '\\n'; self.modelfile += ' return (1 - SS_res/(SS_tot+K.epsilon()))' self.modelfile += '\\n'; if(learner_type.lower() in ['similarityidentification','contextualsearch']): self.modelfile += 'from pathlib import Path\\n' if model_type == 'BM25': self.modelfile += 'from rank_bm25 import BM25Okapi\\n' elif scoreParam == 'VectorDB Cosine': self.modelfile += 'import chromadb\\n' else: self.modelfile += 'from sklearn.metrics.pairwise import cosine_similarity\\n' self.pythonpackage += '========== Python Packags Requires =========' self.pythonpackage += '\\n' self.pythonpackage += 'scikit-learn' self.pythonpackage += '\\n' self.pythonpackage += 'scipy' self.pythonpackage += '\\n' self.pythonpackage += 'numpy' self.pythonpackage += '\\n' if((learner_type == 'DL') or (learner_type =='TextDL')): self.modelfile += 'import numpy as np' self.modelfile += '\\n' self.requirementfile += 'scikit-learn==0.21.3' self.requirementfile += '\\n' self.requirementfile += 'scipy==1.3.3' self.requirementfile += '\\n' self.requirementfile += 'numpy==1.17.4' self.requirementfile += '\\n' if(learner_type == 'TextML'): self.requirementfile += 'spacy==2.2.3' self.requirementfile += '\\n' self.requirementfile += 'https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.2.0/en_core_web_sm-2.2.0.tar.gz' self.requirementfile += '\\n' if(learner_type == 'DL' or learner_type == 'TextDL'): self.requirementfile += 'keras==2.3.1' self.requirementfile += '\\n' self.requirementfile += 'tensorflow==2.0.0b1' self.requirementfile += '\\n' if(learner_type == 'RecommenderSystem'): self.requirementfile += 'surprise' self.requirementfile += '\\n' if(method == 'package'): self.modelfile += 'import surprise' self.modelfile += '\\n' self.modelfile += 'import statsmodels' self.modelfile += '\\n' self.requirementfile += 'statsmodels==0.10.2' self.requirementfile += '\\n' def crate_readme_file(self,deploy_path,modelfile,features,method,single_file=False): self.readme='========== Files Structures ==========' self.readme+='\\n' self.readme+=modelfile+' ------ Trained Model' self.readme+='\\n' self.readme+='aion_prediction.py --> Python package entry point' self.readme+='\\n' if not single_file: self.readme+='script/inputprofiler.py --> Profiling like FillNA and Category to Numeric' self.readme+='\\n' self.readme+='script/selector.py --> Feature Selection' self.readme+='\\n' self.readme+='script/trained_model.py --> Read the model file and call the prediction' self.readme+='\\n' self.readme+='script/output_format.py --> Output formatter file' self.readme+='\\n' self.readme+= self.pythonpackage self.readme+= '========== How to call the model ==========' self.readme+='\\n' self.readme+= '============== From Windows Terminal ==========' self.readme+='\\n' if method == 'optimus_package': self.readme += 'python aion_prediction.py filename.json' self.readme +='\\n' self.readme += '========== Embedded Methods ==========' self.readme +='\\n' self.readme += 'Function Name: predict_from_json - When input is Json Data' self.readme +='\\n' self.readme += 'Function Name: predict_from_file - When input is Json File' self.readme +='\\n' else: callpython = 'python aion_prediction.py "[{' for x in features: if(callpython != 'python prediction.py "[{'): callpython += ',' callpython += '\\\\\\"'+str(x)+'\\\\\\"'+':'+'\\\\\\"'+str(x)+'_value'+'\\\\\\"' callpython += '}]"' self.readme += callpython self.readme+='\\n' self.readme+= '============== From Linux Terminal ==========' self.readme+='\\n' callpython = 'python aion_prediction.py \\'[{' temp =callpython for x in features: if(callpython != temp): callpython += ',' callpython += '"'+str(x)+'"'+':'+'"'+str(x)+'_value'+'"' callpython += '}]\\'' self.readme += callpython self.readme+='\\n' self.readme+= '============== Output ==========' self.readme+='\\n' self.readme+= '{"status":"SUCCESS","data":[{"Data1":"Value","prediction":"Value"}]}' ## For Single Row/Record' self.readme+='\\n' self.readme+= '{"status":"SUCCESS","data":[{"Data1":"Value","prediction":"Value"},{"Data1":"Value","prediction":"Value"}]} ## For Multiple Row/Record' self.readme+='\\n' self.readme+= '{"status":"ERROR","message":"description"} ## In Case Exception or Error' self.readme+='\\n' #print(self.readme) filename = os.path.join(deploy_path,'readme.txt') self.log.info('-------> Readme File Location: '+filename) f = open(filename, "wb") f.write(str(self.readme).encode('utf8')) f.close() def create_class(self,classname): #self.modelfile += 'class '+classname+'(object):' self.modelfile += 'class trained_model(object):' self.modelfile += '\\n' def profiler_code(self,model_type,model,output_columns, features, text_feature,wordToNumericFeatures=[], deploy={},datetimeFeature=''): profiler = deploy.get('profiler',{}) if isinstance(features, str): features = features.split(',') code = f""" import scipy import joblib import numpy as np import pandas as pd from pathlib import Path """ if text_feature: code += """ import importlib.util\\n""" if wordToNumericFeatures: code += """ from word2number import w2n def s2n(value): try: x=eval(value) return x except: try: return w2n.word_to_num(value) except: return np.nan """ if 'code' in deploy.get('preprocess',{}).keys(): code += deploy['preprocess']['code'] if profiler.get('conversion_method','').lower() == 'glove': code += """ class inputprofiler(object): def __init__(self): self.model = None preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl' if preprocess_path.exists(): self.model = joblib.load(preprocess_path) from text.Embedding import load_pretrained from text import TextProcessing model_path = TextProcessing.checkAndDownloadPretrainedModel('glove') embed_size, loaded_model = load_pretrained(model_path) self.model.set_params(text_process__vectorizer__external_model = loaded_model) else: raise ValueError('Preprocess model not found') def apply_profiler(self,df): df = df.replace(r'^\\s*$', np.NaN, regex=True) """ elif profiler.get('conversion_method','').lower() == 'fasttext': code += """ def get_pretrained_model_path(): try: from AION.appbe.dataPath import DATA_DIR modelsPath = Path(DATA_DIR)/'PreTrainedModels'/'TextProcessing' except: modelsPath = Path('aion')/'PreTrainedModels'/'TextProcessing' if not modelsPath.exists(): modelsPath.mkdir(parents=True, exist_ok=True) return modelsPath class inputprofiler(object): def __init__(self): self.model = None preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl' if preprocess_path.exists(): self.model = joblib.load(preprocess_path) if not importlib.util.find_spec('fasttext'): raise ValueError('fastText not installed') else: import os import fasttext import fasttext.util cwd = os.getcwd() os.chdir(get_pretrained_model_path()) fasttext.util.download_model('en', if_exists='ignore') loaded_model = fasttext.load_model('cc.en.300.bin') os.chdir(cwd) self.model.set_params(text_process__vectorizer__external_model = loaded_model) self.model.set_params(text_process__vectorizer__external_model_type = 'binary') else: raise ValueError('Preprocess model not found') def apply_profiler(self,df): df = df.replace(r'^\\s*$', np.NaN, regex=True) """ else: code += """ class inputprofiler(object): def __init__(self): self.model = None preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl' if preprocess_path.exists(): self.model = joblib.load(preprocess_path) else: raise ValueError('Preprocess model not found') def apply_profiler(self,df): df = df.replace(r'^\\s*$', np.NaN, regex=True) """ if 'code' in deploy.get('preprocess',{}).keys(): code += " df = preprocess( df)\\n" if wordToNumericFeatures: code += f""" df[{wordToNumericFeatures}] = df[{wordToNumericFeatures}].apply(lambda x: s2n(x))""" if profiler.get('unpreprocessed_columns'): code += f""" unpreprocessed_data = df['{profiler['unpreprocessed_columns'][0]}'] df.drop(['{profiler['unpreprocessed_columns'][0]}'], axis=1,inplace=True) """ if profiler.get('force_numeric_conv'): code += f""" df[{profiler['force_numeric_conv']}] = df[{profiler['force_numeric_conv']}].apply(pd.to_numeric,errors='coerce') """ code += f""" if self.model: df = self.model.transform(df)""" code += f""" columns = {output_columns} if isinstance(df, scipy.sparse.spmatrix): df = pd.DataFrame(df.toarray(), columns=columns) else: df = pd.DataFrame(df, columns=columns) """ ##The below if loop for avoiding unpreprocessed column variable storing which is not used for anomaly detection if model_type.lower() == 'anomaly_detection' and datetimeFeature != '' and datetimeFeature.lower() != 'na': pass else: if profiler.get('unpreprocessed_columns'): code += f""" df['{profiler.get('unpreprocessed_columns')[0]}'] = unpreprocessed_data """ if model_type.lower() == 'anomaly_detection' and datetimeFeature != '' and datetimeFeature.lower() != 'na': ##This below set_index is wrong, because we drop datetimefeature before profiling and doing set_index. So commented now. # code += f""" # df.set_index('{datetimeFeature}', inplace=True)""" code += f""" return(df,'{datetimeFeature}')\\n""" else: code += f""" return(df)""" return code def no_profiling_code(self, features): if isinstance(features, str): features = features.split(',') return f""" import pandas as pd import numpy as np class inputprofiler(object): def apply_profiler(self,df): df = df.replace(r'^\\s*$', np.NaN, regex=True) return df[{features}] """ def create_profiler_file(self,learner_type,deploy_path,profiler,features,numericToLabel_json,column_merge_flag,text_features,preprocessing_pipe,firstDocFeature,secondDocFeature,normalizer,normFeatures,wordToNumericFeatures,conversion_method,model_type,preprocess_pipe,preprocess_out_columns, label_encoder,model, config=None
,datetimeFeature=''): filename = str(Path(deploy_path)/'script'/'inputprofiler.py') if 'profiler' in config: if model_type == 'BM25': code = self.profiler_code(model_type,model,['tokenize'],features, text_features,config['profiler']['word2num_features']) elif model == 'KaplanMeierFitter': code = self.no_profiling_code(features) elif model.lower() in ['arima', 'fbprophet']: #task 12627 code = self.no_profiling_code('noofforecasts') else: code = self.profiler_code(model_type,model,config['profiler']['output_features'],features, text_features,config['profiler']['word2num_features'],config,datetimeFeature) if code: with open(filename,'w',encoding="utf-8") as f: f.write(code) self.log.info('-------> Profiler File Location :'+filename) return self.profilerfile += 'import pandas as pd' self.profilerfile += '\\n' self.profilerfile += 'import joblib' self.profilerfile += '\\n' self.profilerfile += 'import os' self.profilerfile += '\\n' self.profilerfile += 'from word2number import w2n' self.profilerfile += '\\n' self.profilerfile += 'import numpy as np' self.profilerfile += '\\nfrom pathlib import Path\\n' #print("1") #print(profiler) if(learner_type == 'Text Similarity' or len(text_features) > 0): self.profilerfile += 'from text import TextProcessing' self.profilerfile += '\\n' self.profilerfile += 'def textCleaning(textCorpus):' self.profilerfile += '\\n' self.profilerfile += ' textProcessor = TextProcessing.TextProcessing()' self.profilerfile += '\\n' self.profilerfile += ' textCorpus = textProcessor.transform(textCorpus)' self.profilerfile += '\\n' self.profilerfile += ' return(textCorpus)' self.profilerfile += '\\n' self.profilerfile += 'class inputprofiler(object):' self.profilerfile += '\\n' self.profilerfile += ' def s2n(self,value):' self.profilerfile += '\\n' self.profilerfile += ' try:' self.profilerfile += '\\n' self.profilerfile += ' x=eval(value)' self.profilerfile += '\\n' self.profilerfile += ' return x' self.profilerfile += '\\n' self.profilerfile += ' except:' self.profilerfile += '\\n' self.profilerfile += ' try:' self.profilerfile += '\\n' self.profilerfile += ' return w2n.word_to_num(value)' self.profilerfile += '\\n' self.profilerfile += ' except:' self.profilerfile += '\\n' self.profilerfile += ' return np.nan ' self.profilerfile += '\\n' self.profilerfile += ' def apply_profiler(self,df):' self.profilerfile += '\\n' if(len(wordToNumericFeatures) > 0): for w2nFeature in wordToNumericFeatures: if w2nFeature not in features: continue self.profilerfile += " df['"+w2nFeature+"']=df['"+w2nFeature+"'].apply(lambda x: self.s2n(x))" self.profilerfile += '\\n' self.profilerfile += " df = df.replace(r'^\\s*$', np.NaN, regex=True)" self.profilerfile += '\\n' self.profilerfile += ' try:' self.profilerfile += '\\n' self.profilerfile += ' df.dropna(how="all",axis=1,inplace=True)' self.profilerfile += '\\n' self.profilerfile += ' except:' self.profilerfile += '\\n' self.profilerfile += ' df.fillna(0)' self.profilerfile += '\\n' if model_type.lower() != 'timeseriesforecasting': #task 11997 self.profilerfile += ' preprocess_path = Path(__file__).parent.parent/"model"/"preprocess_pipe.pkl"\\n' self.profilerfile += ' if preprocess_path.exists():\\n' self.profilerfile += ' model = joblib.load(preprocess_path)\\n' if model_type.lower()=='anomaly_detection' and model.lower() == 'autoencoder': self.profilerfile += f" df[{features}] = model.transform(df[{features}])\\n" else: self.profilerfile += f" df = model.transform(df)\\n" if 'operation' in profiler: y = profiler['operation'] for action in y: feature = action['feature'] #if feature not in features: # continue operation = action['Action'] if(operation == 'Drop'): self.profilerfile += " if '"+feature+"' in df.columns:" self.profilerfile += '\\n' self.profilerfile += " df.drop(columns=['"+feature+"'],inplace = True)" self.profilerfile += '\\n' if(operation == 'FillValue'): self.profilerfile += " if '"+feature+"' in df.columns:" self.profilerfile += '\\n' fvalue = action['value'] self.profilerfile += " df['"+feature+"'] = df['"+feature+"'].fillna(value='"+fvalue+"')" self.profilerfile += '\\n' if(operation == 'Encoder'): value = action['value'] value = value.replace("\\n", "\\\\n") self.profilerfile += " if '"+feature+"' in df.columns:" self.profilerfile += '\\n' self.profilerfile += " le_dict="+str(value) self.profilerfile += '\\n' self.profilerfile += " df['"+feature+"'] = df['"+feature+"'].apply(lambda x: le_dict.get(x,-1))" self.profilerfile += '\\n' self.profilerfile += " if -1 in df['"+feature+"'].values:" self.profilerfile += '\\n' self.profilerfile += " raise Exception('Category value of "+feature+" not present in training data')" self.profilerfile += '\\n' if 'conversion' in profiler: catergoryConverton = profiler['conversion'] #print(catergoryConverton) if (catergoryConverton['categoryEncoding'].lower() in ['targetencoding','onehotencoding']) and ('features' in catergoryConverton): self.profilerfile += " encoder = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','categoryEncoder.pkl'))" self.profilerfile += '\\n' self.profilerfile += " CategoryFeatures = "+str(catergoryConverton['features']) self.profilerfile += '\\n' if catergoryConverton['categoryEncoding'].lower() == 'onehotencoding': self.profilerfile += " transformed_data = encoder.transform(df[CategoryFeatures]).toarray()" self.profilerfile += '\\n' self.profilerfile += " feature_labels = encoder.get_feature_names(CategoryFeatures)" self.profilerfile += '\\n' self.profilerfile += " transformed_data = pd.DataFrame(transformed_data,columns=feature_labels) " self.profilerfile += '\\n' else: self.profilerfile += " transformed_data = encoder.transform(df[CategoryFeatures])" self.profilerfile += '\\n' self.profilerfile += " dataColumns=list(df.columns)" self.profilerfile += '\\n' self.profilerfile += " nonNormFeatures=list(set(dataColumns) - set(CategoryFeatures))" self.profilerfile += '\\n' self.profilerfile += " dataArray=df[nonNormFeatures]" self.profilerfile += '\\n' self.profilerfile += " df = pd.concat([dataArray, transformed_data],axis=1)" self.profilerfile += '\\n' y = json.loads(numericToLabel_json) for feature_details in y: feature = feature_details['feature'] if feature not in features: continue label = feature_details['Labels'] bins = feature_details['Bins'] self.profilerfile += " if '"+feature+"' in df.columns:" self.profilerfile += '\\n' self.profilerfile += " cut_bins="+str(bins) self.profilerfile += '\\n' self.profilerfile += " cut_labels="+str(label) self.profilerfile += '\\n' self.profilerfile += " df['"+feature+"'] = pd.cut(df['"+feature+"'],bins=cut_bins,labels=cut_labels)" self.profilerfile += '\\n' self.profilerfile += " df['"+feature+"'] = df['"+feature+"'].fillna(value=0)" self.profilerfile += '\\n' if(len(text_features) > 0): if(len(text_features) > 1): self.profilerfile += ' merge_features = '+str(text_features) self.profilerfile += '\\n' self.profilerfile += ' df[\\'combined\\'] = df[merge_features].apply(lambda row: \\' \\'.join(row.values.astype(str)), axis=1)' self.profilerfile += '\\n' self.profilerfile += ' features = [\\'combined\\']' self.profilerfile += '\\n' else: self.profilerfile += " features = "+str(text_features) self.profilerfile += '\\n' if model_type == 'BM25': self.profilerfile += """\\ df_text = df[features[0]] pipe = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','{preprocessing_pipe}')) df['tokenize'] = pipe.transform(df_text)\\n""".format(preprocessing_pipe=preprocessing_pipe) elif conversion_method == 'sentenceTransformer': self.profilerfile += """\\ df_text = df[features[0]] from sentence_transformers import SentenceTransformer model = SentenceTransformer(\\'sentence-transformers/msmarco-distilroberta-base-v2\\') df_vect = model.encode(df_text) for empCol in {text_features}: df = df.drop(columns=[empCol]) if isinstance(df_vect, np.ndarray): df1 = pd.DataFrame(df_vect) else: df1 = pd.DataFrame(df_vect.toarray(),columns = pipe.named_steps[\\'vectorizer\\'].get_feature_names()) df1 = df1.add_suffix(\\'_vect\\') df = pd.concat([df, df1],axis=1)\\n""".format(preprocessing_pipe=preprocessing_pipe, text_features=text_features) else: self.profilerfile += """\\ df_text = df[features[0]] pipe = joblib.load(os.path.join(os.path.dirname(__file__),'..','model','{preprocessing_pipe}')) df_vect=pipe.transform(df_text) for empCol in {text_features}: df = df.drop(columns=[empCol]) if isinstance(df_vect, np.ndarray): df1 = pd.DataFrame(df_vect) else: df1 = pd.DataFrame(df_vect.toarray(),columns = pipe.named_steps[\\'vectorizer\\'].get_feature_names()) df1 = df1.add_suffix(\\'_vect\\') df = pd.concat([df, df1],axis=1)\\n""".format(preprocessing_pipe=preprocessing_pipe, text_features=text_features) if(learner_type == 'Text Similarity'): self.profilerfile += ' df[\\''+firstDocFeature+'\\'] = textCleaning(df[\\''+firstDocFeature+'\\'])' self.profilerfile += '\\n' self.profilerfile += ' df[\\''+secondDocFeature+'\\'] = textCleaning(df[\\''+secondDocFeature+'\\'])' self.profilerfile += '\\n' if len(normFeatures) > 0 and normalizer != '': self.profilerfile += " normFeatures = "+str(normFeatures) self.profilerfile += '\\n' self.profilerfile += ' normalizepipe = joblib.load(os.path.join(os.path.dirname(os.path.abspath(__file__)),\\'..\\',\\'model\\',\\''+normalizer+'\\'))' self.profilerfile += '\\n' self.profilerfile += ' dataColumns=list(df.columns)' self.profilerfile += '\\n' self.profilerfile += ' nonNormFeatures=list(set(dataColumns) - set(normFeatures))' self.profilerfile += '\\n' self.profilerfile += ' dataframe=df[normFeatures]' self.profilerfile += '\\n' self.profilerfile += ' transDf = normalizepipe.transform(dataframe)' self.profilerfile += '\\n' self.profilerfile += ' nontransDF=df[nonNormFeatures].values' self.profilerfile += '\\n' self.profilerfile += ' dataColumns=normFeatures+nonNormFeatures' self.profilerfile += '\\n' self.profilerfile += ' scaledDf = pd.DataFrame(np.hstack((transDf, nontransDF)),columns=dataColumns)' self.profilerfile += '\\n' self.profilerfile += ' df=scaledDf' self.profilerfile += '\\n' else: self.profilerfile += ' df=df.dropna()\\n' self.profilerfile += ' return(df)' filename = os.path.join(deploy_path,'script','inputprofiler.py') self.log.info('------
-> Profiler File Location :'+filename) f = open(filename, "w",encoding="utf-8") f.write(str(self.profilerfile)) f.close() def isEnglish(self, s): try: s.encode(encoding='utf-8').decode('ascii') exce
== 'classification' or model_type.lower() == 'regression' or model_type.lower() == 'timeseriesforecasting': #task 11997 predictionObj.create_drift_file(deploy_path,features,targetFeature,model_type) if model_type.lower() =
.params['features']['text_feat']: obj.create_text_drift_file(self.deploy_path,self.params['features']['text_feat'],self.params['features']['target_feat'],self.name) else: obj.create_drift_file(self.deploy_path,self.params['features']['input_feat'],self.params['features']['target_feat'],self.name) def create_odrift(self): obj = aionPrediction() if self.params['features']['text_feat']: obj.create_regression_text_performance_file(self.deploy_path,self.params['features']['text_feat'],self.params['features']['target_feat']) else: obj.create_regression_performance_file(self.deploy_path,self.params['features']['input_feat'],self.params['features']['target_feat']) def training_code( self): self.importer.addModule(module='pandas',mod_as='pd') code = f""" class trainer(): """ init_code = f""" def __init__( self): model_file = (Path(__file__).parent/"model")/"{self.params['training']['model_file']}" if not model_file.exists(): raise ValueError(f'Trained model file not found: {{model_file}}') """ run_code = f""" def run(self, df):\\ """ if self.params['training']['algo'] in ['Neural Architecture Search']: self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models') self.importer.addModule(module='autokeras',mod_as='ak') init_code += f""" self.model = load_model(model_file,custom_objects=ak.CUSTOM_OBJECTS) """ run_code += """ df = df.astype(np.float32) return self.model.predict(df).reshape(1, -1) """ elif self.params['training']['algo'] in ['Neural Network','Convolutional Neural Network (1D)','Recurrent Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)']: self.importer.addModule(module='numpy',mod_as='np') self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models') init_code += f""" self.model = load_model(model_file) """ run_code += """ df = np.expand_dims(df, axis=2) df = df.astype(np.float32) return self.model.predict(df).reshape(1, -1) """ else: self.importer.addModule('joblib') init_code += f""" self.model = joblib.load(model_file) """ run_code += """ df = df.astype(np.float32) return self.model.predict(df).reshape(1, -1) """ return code + init_code + run_code def formatter_code(self): self.importer.addModule('json') self.importer.addModule('pandas', mod_as='pd') return """ class output_format(): def __init__(self): pass def run(self, raw_df, output): raw_df['prediction'] = output[0] raw_df['prediction'] = raw_df['prediction'].round(2) outputjson = raw_df.to_json(orient='records',double_precision=5) outputjson = {"status":"SUCCESS","data":json.loads(outputjson)} return(json.dumps(outputjson)) """ class clustering( deployer): def __init__(self, params={}): super().__init__( params) self.feature_reducer = False if not self.name: self.name = 'clustering' def training_code( self): self.importer.addModule('joblib') self.importer.addModule(module='pandas',mod_as='pd') code = f""" class trainer(): """ init_code = f""" def __init__( self): model_file = (Path(__file__).parent/"model")/"{self.params['training']['model_file']}" if not model_file.exists(): raise ValueError(f'Trained model file not found: {{model_file}}') """ run_code = f""" def run(self, df):\\ """ if self.params['training']['algo'] == 'DBSCAN': init_code += f""" self.model = joblib.load(model_file) """ run_code += """ return self.model.fit_predict(df) """ else: init_code += f""" self.model = joblib.load(model_file) """ run_code += """ return self.model.predict(df).reshape(1, -1) """ return code + init_code + run_code def formatter_code(self): self.importer.addModule('json') self.importer.addModule('pandas', mod_as='pd') return """ class output_format(): def __init__(self): pass def run(self, raw_df, output): raw_df['prediction'] = output[0] raw_df['prediction'] = raw_df['prediction'].round(2) outputjson = raw_df.to_json(orient='records',double_precision=2) outputjson = {"status":"SUCCESS","data":json.loads(outputjson)} return(json.dumps(outputjson)) """ return code if __name__ == '__main__': config = {'usecase_name': 'AI0110', 'usecase_ver': '1', 'features': {'input_feat': ['v2'], 'target_feat': 'v1', 'text_feat': ['v2']}, 'paths': {'deploy': r'C:/Users/vashistah/AppData/Local/Programs/HCLTech/AION/data/target/AI0110/1', 'usecase': r'C:/Users/vashistah/AppData/Local/Programs/HCLTech/AION/data/target/AI0110'}, 'profiler': {'input_features': ['v2'], 'output_features': ['07xxxxxxxxx_vect', '08700621170150p_vect', '08702840625comuk_vect', '08718726270150gbpmtmsg18_vect', '1000s_vect', '10am7pm_vect', '10k_vect', '10p_vect', '10pmin_vect', '10ppm_vect', '11mths_vect', '125gift_vect', '12hrs_vect', '12mths_vect', '150p_vect', '150perwksub_vect', '150pm_vect', '150pmin_vect', '150pmsg_vect', '150pmsgrcvdhgsuite3422landsroww1j6hl_vect', '150pmtmsgrcvd18_vect', '150ppm_vect', '150ptone_vect', '150pwk_vect', '150week_vect', '16only_vect', '18only_vect', '1hr_vect', '1minmobsmorelkpobox177hp51fl_vect', '1st_vect', '1x150pwk_vect', '20p_vect', '20pmin_vect', '21st_vect', '220cm2_vect', '24hrs_vect', '25p_vect', '26th_vect', '2day_vect', '2find_vect', '2geva_vect', '2go_vect', '2marrow_vect', '2mrw_vect', '2nd_vect', '2nite_vect', '2optout_vect', '2p_vect', '2u_vect', '2waxsto_vect', '2wks_vect', '300p_vect', '31pmsg_vect', '3510i_vect', '3d_vect', '3g_vect', '3gbp_vect', '3hrs_vect', '3mins_vect', '3qxj9_vect', '3rd_vect', '3ss_vect', '3u_vect', '3uz_vect', '3wk_vect', '40gb_vect', '4a_vect', '4d_vect', '4eva_vect', '4get_vect', '4info_vect', '4mths_vect', '4th_vect', '4u_vect', '50p_vect', '5min_vect', '5pm_vect', '5wb_vect', '5we_vect', '60pmin_vect', '6hrs_vect', '6months_vect', '6pm_vect', '7250i_vect', '7ish_vect', '8am_vect', '8pm_vect', '8th_vect', '8wp_vect', '9ae_vect', '9ja_vect', '9pm_vect', '9t_vect', 'aathi_vect', 'abi_vect', 'ability_vect', 'abiola_vect', 'able_vect', 'abt_vect', 'abta_vect', 'aburo_vect', 'ac_vect', 'academic_vect', 'acc_vect', 'accept_vect', 'access_vect', 'accident_vect', 'accidentally_vect', 'accordingly_vect', 'account_vect', 'ache_vect', 'across_vect', 'acted_vect', 'action_vect', 'activate_vect', 'activities_vect', 'actor_vect', 'actual_vect', 'actually_vect', 'ad_vect', 'adam_vect', 'add_vect', 'added_vect', 'addicted_vect', 'addie_vect', 'address_vect', 'admin_vect', 'administrator_vect', 'admirer_vect', 'admit_vect', 'adore_vect', 'adoring_vect', 'ads_vect', 'adult_vect', 'advance_vect', 'adventure_vect', 'advice_vect', 'advise_vect', 'affair_vect', 'affairs_vect', 'affectionate_vect', 'afraid_vect', 'aft_vect', 'afternoon_vect', 'aftr_vect', 'agalla_vect', 'age_vect', 'age16_vect', 'ages_vect', 'ago_vect', 'agree_vect', 'ah_vect', 'aha_vect', 'ahead_vect', 'ahmad_vect', 'ai_vect', 'aight_vect', 'aint_vect', 'air_vect', 'airport_vect', 'airtel_vect', 'aiya_vect', 'aiyah_vect', 'aiyar_vect', 'aiyo_vect', 'al_vect', 'album_vect', 'alert_vect', 'alex_vect', 'alfie_vect', 'ali_vect', 'allah_vect', 'allow_vect', 'allowed_vect', 'almost_vect', 'alone_vect', 'along_vect', 'already_vect', 'alright_vect', 'alrite_vect', 'also_vect', 'always_vect', 'alwys_vect', 'amazing_vect', 'american_vect', 'among_vect', 'amount_vect', 'amp_vect', 'amt_vect', 'andros_vect', 'angry_vect', 'annie_vect', 'anniversary_vect', 'announcement_vect', 'anot_vect', 'another_vect', 'ans_vect', 'ansr_vect', 'answer_vect', 'answered_vect', 'answering_vect', 'answers_vect', 'anthony_vect', 'anti_vect', 'anybody_vect', 'anymore_vect', 'anyone_vect', 'anything_vect', 'anytime_vect', 'anyway_vect', 'anyways_vect', 'apartment_vect', 'app_vect', 'apparently_vect', 'applebees_vect', 'apply_vect', 'appointment_vect', 'appreciate_vect', 'appreciated_vect', 'approx_vect', 'apps_vect', 'appt_vect', 'april_vect', 'ar_vect', 'arcade_vect', 'ard_vect', 'area_vect', 'argh_vect', 'argument_vect', 'arm_vect', 'armand_vect', 'arms_vect', 'around_vect', 'arrange_vect', 'arrested_vect', 'arrive_vect', 'arsenal_vect', 'art_vect', 'arun_vect', 'asap_vect', 'ashley_vect', 'ask_vect', 'askd_vect', 'asked_vect', 'askin_vect', 'asking_vect', 'asks_vect', 'asleep_vect', 'ass_vect', 'assume_vect', 'ate_vect', 'atlanta_vect', 'atlast_vect', 'atm_vect', 'attached_vect', 'attempt_vect', 'attend_vect', 'auction_vect', 'august_vect', 'aunt_vect', 'aunty_vect', 'auto_vect', 'av_vect', 'available_vect', 'avatar_vect', 'ave_vect', 'avent_vect', 'avoid_vect', 'await_vect', 'awaiting_vect', 'awake_vect', 'award_vect', 'awarded_vect', 'away_vect', 'awesome_vect', 'aww_vect', 'b4_vect', 'ba_vect', 'babe_vect', 'babes_vect', 'babies_vect', 'baby_vect', 'back_vect', 'bad_vect', 'bag_vect', 'bags_vect', 'bahamas_vect', 'bak_vect', 'balance_vect', 'bank_vect', 'banks_vect', 'bar_vect', 'barely_vect', 'basic_vect', 'basically_vect', 'bat_vect', 'bath_vect', 'bathe_vect', 'bathing_vect', 'battery_vect', 'bay_vect', 'bb_vect', 'bc_vect', 'bck_vect', 'bcoz_vect', 'bday_vect', 'be_vect', 'bears_vect', 'beautiful_vect', 'beauty_vect', 'bec_vect', 'become_vect', 'becoz_vect', 'bed_vect', 'bedrm_vect', 'bedroom_vect', 'beer_vect', 'befor_vect', 'beg_vect', 'begin
_vect', 'behave_vect', 'behind_vect', 'bein_vect', 'believe_vect', 'bell_vect', 'belly_vect', 'belovd_vect', 'best_vect', 'bet_vect', 'better_vect', 'beyond_vect', 'bf_vect', 'bid_vect', 'bids_vect', 'big_vect', 'bigger_vect', 'biggest_vect', 'bill_vect', 'billed_vect', 'billion_vect', 'bills_vect', 'bin_vect', 'biola_vect', 'birds_vect', 'birla_vect', 'birth_vect', 'birthdate_vect', 'birthday_vect', 'bishan_vect', 'bit_vect', 'bitch_vect', 'bite_vect', 'black_vect', 'blackberry_vect', 'blah_vect', 'blake_vect', 'blank_vect', 'bleh_vect', 'bless_vect', 'blessing_vect', 'bloo_vect', 'blood_vect', 'bloody_vect', 'blue_vect', 'bluetooth_vect', 'bluff_vect', 'boat_vect', 'body_vect', 'bold_vect', 'bone_vect', 'bonus_vect', 'boo_vect', 'book_vect', 'booked_vect', 'booking_vect', 'books_vect', 'boost_vect', 'booty_vect', 'bored_vect', 'boring_vect', 'born_vect', 'boss_vect', 'boston_vect', 'bother_vect', 'bottom_vect', 'bought_vect', 'bout_vect', 'bowl_vect', 'box_vect', 'box326_vect', 'box334sk38ch_vect', 'box97n7qp_vect', 'boy_vect', 'boye_vect', 'boyfriend_vect', 'boys_vect', 'boytoy_vect', 'brah_vect', 'brand_vect', 'bread_vect', 'break_vect', 'breathe_vect', 'bright_vect', 'brilliant_vect', 'bring_vect', 'bringing_vect', 'brings_vect', 'british_vect', 'bro_vect', 'broad_vect', 'broke_vect', 'broken_vect', 'bros_vect', 'brothas_vect', 'brother_vect', 'brought_vect', 'bruv_vect', 'bslvyl_vect', 'bt_vect', 'btnationalrate_vect', 'btw_vect', 'bucks_vect', 'bud_vect', 'budget_vect', 'buff_vect', 'buffet_vect', 'bugis_vect', 'building_vect', 'buns_vect', 'burger_vect', 'burns_vect', 'bus_vect', 'buses_vect', 'business_vect', 'busy_vect', 'butt_vect', 'buy_vect', 'buying_vect', 'buzz_vect', 'bx420_vect', 'bx420ip45we_vect', 'bye_vect', 'ca_vect', 'cabin_vect', 'cafe_vect', 'cake_vect', 'cal_vect', 'calculation_vect', 'calicut_vect', 'california_vect', 'call_vect', 'call2optout674_vect', 'callback_vect', 'callcost_vect', 'called_vect', 'caller_vect', 'callers_vect', 'callertune_vect', 'callin_vect', 'calling_vect', 'calls_vect', 'callså_vect', 'cam_vect', 'camcorder_vect', 'came_vect', 'camera_vect', 'cameravideo_vect', 'campus_vect', 'can_vect', 'canada_vect', 'canal_vect', 'canary_vect', 'cancel_vect', 'cancelled_vect', 'cancer_vect', 'cant_vect', 'captain_vect', 'car_vect', 'card_vect', 'cardiff_vect', 'care_vect', 'cared_vect', 'career_vect', 'careful_vect', 'carefully_vect', 'caring_vect', 'carlos_vect', 'caroline_vect', 'cars_vect', 'cartoon_vect', 'case_vect', 'cash_vect', 'cashbalance_vect', 'cashin_vect', 'castor_vect', 'cat_vect', 'catch_vect', 'catching_vect', 'caught_vect', 'cause_vect', 'cbe_vect', 'cc_vect', 'cd_vect', 'cdgt_vect', 'cds_vect', 'celebrate_vect', 'celebration_vect', 'cell_vect', 'center_vect', 'centre_vect', 'certainly_vect', 'cha_vect', 'chain_vect', 'challenge_vect', 'chance_vect', 'change_vect', 'changed_vect', 'changes_vect', 'channel_vect', 'character_vect', 'charge_vect', 'charged_vect', 'charges_vect', 'charity_vect', 'charles_vect', 'chase_vect', 'chasing_vect', 'chat_vect', 'chatting_vect', 'cheap_vect', 'cheaper_vect', 'cheat_vect', 'chechi_vect', 'check_vect', 'checked_vect', 'checking_vect', 'cheers_vect', 'chennai_vect', 'cherish_vect', 'chest_vect', 'chicken_vect', 'chikku_vect', 'child_vect', 'childish_vect', 'children_vect', 'chill_vect', 'chillin_vect', 'china_vect', 'chinese_vect', 'chip_vect', 'chocolate_vect', 'choice_vect', 'choose_vect', 'chosen_vect', 'christ_vect', 'christmas_vect', 'church_vect', 'cine_vect', 'cinema_vect', 'citizen_vect', 'city_vect', 'claim_vect', 'claims_vect', 'claire_vect', 'class_vect', 'classes_vect', 'clean_vect', 'cleaning_vect', 'clear_vect', 'clearly_vect', 'click_vect', 'clock_vect', 'close_vect', 'closed_vect', 'closer_vect', 'closes_vect', 'clothes_vect', 'club_vect', 'cn_vect', 'co_vect', 'coast_vect', 'coat_vect', 'cochin_vect', 'code_vect', 'coffee_vect', 'coin_vect', 'coins_vect', 'cold_vect', 'colleagues_vect', 'collect_vect', 'collected_vect', 'collecting_vect', 'collection_vect', 'college_vect', 'colour_vect', 'come_vect', 'comedy_vect', 'comes_vect', 'comin_vect', 'coming_vect', 'commercial_vect', 'common_vect', 'community_vect', 'comp_vect', 'company_vect', 'competition_vect', 'complete_vect', 'completed_vect', 'completely_vect', 'complimentary_vect', 'computer_vect', 'concentrate_vect', 'concert_vect', 'conditions_vect', 'conducts_vect', 'confidence_vect', 'confirm_vect', 'congrats_vect', 'congratulations_vect', 'connection_vect', 'consider_vect', 'considering_vect', 'constant_vect', 'constantly_vect', 'contact_vect', 'contacted_vect', 'contacts_vect', 'content_vect', 'contents_vect', 'continue_vect', 'contract_vect', 'control_vect', 'convey_vect', 'convinced_vect', 'cool_vect', 'coping_vect', 'copy_vect', 'cornwall_vect', 'correct_vect', 'cos_vect', 'cost_vect', 'costa_vect', 'costs_vect', 'costå_vect', 'could_vect', 'count_vect', 'countin_vect', 'country_vect', 'couple_vect', 'course_vect', 'cover_vect', 'coz_vect', 'cr9_vect', 'cramps_vect', 'crave_vect', 'crazy_vect', 'created_vect', 'credit_vect', 'credited_vect', 'credits_vect', 'creepy_vect', 'crisis_vect', 'crore_vect', 'cross_vect', 'croydon_vect', 'cruise_vect', 'cry_vect', 'cs_vect', 'csbcm4235wc1n3xx_vect', 'csstop_vect', 'cud_vect', 'cuddling_vect', 'cum_vect', 'cup_vect', 'curious_vect', 'current_vect', 'currently_vect', 'cust_vect', 'custcare_vect', 'custcare08718720201_vect', 'custom_vect', 'customer_vect', 'customers_vect', 'cut_vect', 'cute_vect', 'cutting_vect', 'cuz_vect', 'cw25wx_vect', 'da_vect', 'dad_vect', 'daddy_vect', 'daily_vect', 'damn_vect', 'dance_vect', 'dancing_vect', 'dare_vect', 'dark_vect', 'darlin_vect', 'darling_vect', 'darren_vect', 'dat_vect', 'date_vect', 'dates_vect', 'dating_vect', 'dave_vect', 'day_vect', 'days_vect', 'de_vect', 'dead_vect', 'deal_vect', 'dealer_vect', 'dealing_vect', 'dear_vect', 'dearly_vect', 'death_vect', 'decide_vect', 'decided_vect', 'decimal_vect', 'decision_vect', 'deep_vect', 'def_vect', 'definite_vect', 'definitely_vect', 'del_vect', 'delete_vect', 'deleted_vect', 'delhi_vect', 'deliver_vect', 'delivered_vect', 'deliveredtomorrow_vect', 'delivery_vect', 'dem_vect', 'demand_vect', 'den_vect', 'denis_vect', 'department_vect', 'depends_vect', 'depressed_vect', 'derek_vect', 'desires_vect', 'desperate_vect', 'details_vect', 'dey_vect', 'dhoni_vect', 'dial_vect', 'dick_vect', 'dictionary_vect', 'didn_vect', 'didnt_vect', 'didt_vect', 'die_vect', 'died_vect', 'diet_vect', 'different_vect', 'difficult_vect', 'digital_vect', 'dignity_vect', 'din_vect', 'dinner_vect', 'dint_vect', 'direct_vect', 'directly_vect', 'dirty_vect', 'dis_vect', 'discount_vect', 'discuss_vect', 'dislikes_vect', 'display_vect', 'distance_vect', 'distract_vect', 'disturb_vect', 'division_vect', 'dload_vect', 'dnt_vect', 'doc_vect', 'docs_vect', 'doctor_vect', 'doesnt_vect', 'dog_vect', 'dogging_vect', 'doggy_vect', 'doin_vect', 'dollars_vect', 'don_vect', 'done_vect', 'dont_vect', 'donåõt_vect', 'door_vect', 'dorm_vect', 'double_vect', 'dough_vect', 'download_vect', 'downloads_vect', 'draw_vect', 'dream_vect', 'dreams_vect', 'dress_vect', 'dressed_vect', 'dresser_vect', 'drink_vect', 'drinking_vect', 'drinks_vect', 'drive_vect', 'driver_vect', 'drivin_vect', 'driving_vect', 'drop_vect', 'dropped_vect', 'drug_vect', 'drugs_vect', 'drunk_vect', 'dry_vect', 'ds_vect', 'dubsack_vect', 'dude_vect', 'due_vect', 'dun_vect', 'dunno_vect', 'durban_vect', 'dvd_vect', 'earlier_vect', 'early_vect', 'earth_vect', 'easier_vect', 'easily_vect', 'east_vect', 'easter_vect', 'easy_vect', 'eat_vect', 'eaten_vect', 'eatin_vect', 'eating_vect', 'ebay_vect', 'ec2a_vect', 'ee_vect', 'eek_vect', 'eerie_vect', 'effects_vect', 'eg_vect', 'egg_vect', 'eggs_vect', 'eh_vect', 'eight_vect', 'either_vect', 'ela_vect', 'electricity_vect', 'else_vect', 'elsewhere_vect', 'em_vect', 'email_vect', 'embarassed_vect', 'empty_vect', 'end_vect', 'ended_vect', 'ending_vect', 'ends_vect', 'enemy_vect', 'energy_vect', 'eng_vect', 'engin_vect', 'england_vect', 'english_vect', 'enjoy_vect', 'enjoyed_vect', 'enough_vect', 'enter_vect', 'entered_vect', 'entitled_vect', 'entry_vect', 'enuff_vect', 'envelope_vect', 'er_vect', 'erm_vect', 'escape_vect', 'especially_vect', 'esplanade_vect', 'eta_vect', 'etc_vect', 'euro_vect', 'euro2004_vect', 'europe_vect', 'eve_vect', 'eveb_vect', 'even_vect', 'evening_vect', 'event_vect', 'ever_vect', 'every_vect', 'everybody_vect', 'everyday_vect', 'everyone_vect', 'everything_vect', 'everywhere_vect', 'evn_vect', 'evng_vect', 'ex_vect', 'exact_vect', 'exactly_vect', 'exam_vect', 'exams_vect', 'excellent_vect', 'except_vect', 'exciting_vect', 'excuse_vect', 'excuses_vect', 'executive_vect', 'exeter_vect', 'exhausted_vect', 'expect_vect', 'expect
ing_vect', 'expensive_vect', 'experience_vect', 'expired_vect', 'expires_vect', 'explain_vect', 'explicit_vect', 'explosive_vect', 'express_vect', 'extra_vect', 'eye_vect', 'eyes_vect', 'fa_vect', 'fab_vect', 'face_vect', 'facebook_vect', 'fact_vect', 'faggy_vect', 'failed_vect', 'fair_vect', 'faith_vect', 'fall_vect', 'falls_vect', 'family_vect', 'fan_vect', 'fancies_vect', 'fancy_vect', 'fantasies_vect', 'fantastic_vect', 'fantasy_vect', 'far_vect', 'farm_vect', 'fast_vect', 'faster_vect', 'fat_vect', 'father_vect', 'fathima_vect', 'fault_vect', 'fave_vect', 'favorite_vect', 'favour_vect', 'favourite_vect', 'fb_vect', 'feb_vect', 'february_vect', 'feel_vect', 'feelin_vect', 'feeling_vect', 'feels_vect', 'fees_vect', 'feet_vect', 'fell_vect', 'felt_vect', 'fetch_vect', 'fever_vect', 'field_vect', 'fifteen_vect', 'fight_vect', 'fighting_vect', 'figure_vect', 'file_vect', 'files_vect', 'fill_vect', 'filling_vect', 'fills_vect', 'film_vect', 'final_vect', 'finally_vect', 'find_vect', 'fine_vect', 'fingers_vect', 'finish_vect', 'finished_vect', 'first_vect', 'fit_vect', 'fix_vect', 'fixed_vect', 'flag_vect', 'flaked_vect', 'flash_vect', 'flat_vect', 'flight_vect', 'flights_vect', 'flirt_vect', 'floor_vect', 'flower_vect', 'fml_vect', 'fo_vect', 'follow_vect', 'followed_vect', 'following_vect', 'fone_vect', 'food_vect', 'fool_vect', 'football_vect', 'force_vect', 'foreign_vect', 'forever_vect', 'forevr_vect', 'forget_vect', 'forgets_vect', 'forgiven_vect', 'forgot_vect', 'format_vect', 'forums_vect', 'forward_vect', 'forwarded_vect', 'found_vect', 'four_vect', 'fr_vect', 'fran_vect', 'freak_vect', 'free_vect', 'freefone_vect', 'freemsg_vect', 'freephone_vect', 'freezing_vect', 'fren_vect', 'frens_vect', 'fret_vect', 'fri_vect', 'friday_vect', 'friend_vect', 'friends_vect', 'friendship_vect', 'fringe_vect', 'frm_vect', 'frnd_vect', 'frnds_vect', 'frndship_vect', 'fuck_vect', 'fuckin_vect', 'fucking_vect', 'ful_vect', 'full_vect', 'fullonsmscom_vect', 'fun_vect', 'funny_vect', 'future_vect', 'fyi_vect', 'gal_vect', 'gals_vect', 'game_vect', 'games_vect', 'gang_vect', 'gap_vect', 'gaps_vect', 'garage_vect', 'garbage_vect', 'gary_vect', 'gas_vect', 'gautham_vect', 'gave_vect', 'gay_vect', 'gd_vect', 'ge_vect', 'gee_vect', 'geeee_vect', 'geeeee_vect', 'gender_vect', 'generally_vect', 'genius_vect', 'gentle_vect', 'gentleman_vect', 'gently_vect', 'germany_vect', 'get_vect', 'gets_vect', 'gettin_vect', 'getting_vect', 'gf_vect', 'gibbs_vect', 'gift_vect', 'gim_vect', 'girl_vect', 'girls_vect', 'gist_vect', 'giv_vect', 'give_vect', 'given_vect', 'gives_vect', 'giving_vect', 'glad_vect', 'gn_vect', 'go_vect', 'goal_vect', 'god_vect', 'goes_vect', 'goin_vect', 'going_vect', 'gold_vect', 'gon_vect', 'gona_vect', 'gone_vect', 'good_vect', 'goodmorning_vect', 'goodnight_vect', 'goodnite_vect', 'google_vect', 'gorgeous_vect', 'gossip_vect', 'got_vect', 'goto_vect', 'gotten_vect', 'govtinstituitions_vect', 'gr8_vect', 'grace_vect', 'gram_vect', 'grand_vect', 'granite_vect', 'gravity_vect', 'great_vect', 'green_vect', 'greet_vect', 'greetings_vect', 'grins_vect', 'grl_vect', 'ground_vect', 'group_vect', 'gt_vect', 'guaranteed_vect', 'gud_vect', 'gudnite_vect', 'guess_vect', 'guessing_vect', 'guide_vect', 'guilty_vect', 'guy_vect', 'guys_vect', 'gym_vect', 'ha_vect', 'haf_vect', 'haha_vect', 'hai_vect', 'hair_vect', 'haiz_vect', 'half_vect', 'halloween_vect', 'ham_vect', 'hand_vect', 'handed_vect', 'handle_vect', 'hands_vect', 'handset_vect', 'hanging_vect', 'happen_vect', 'happened_vect', 'happening_vect', 'happens_vect', 'happiness_vect', 'happy_vect', 'hard_vect', 'hardcore_vect', 'hardly_vect', 'harry_vect', 'hate_vect', 'hav_vect', 'havent_vect', 'havenåõt_vect', 'havin_vect', 'head_vect', 'headache_vect', 'headin_vect', 'heads_vect', 'hear_vect', 'heard_vect', 'heart_vect', 'heavy_vect', 'hee_vect', 'height_vect', 'held_vect', 'helen_vect', 'hell_vect', 'hella_vect', 'hello_vect', 'help_vect', 'help08712400602450p_vect', 'helpline_vect', 'hence_vect', 'henry_vect', 'heri_vect', 'herlove_vect', 'hes_vect', 'hex_vect', 'hey_vect', 'hgsuite3422lands_vect', 'hi_vect', 'hide_vect', 'high_vect', 'hill_vect', 'hint_vect', 'hip_vect', 'history_vect', 'hit_vect', 'hiya_vect', 'hl_vect', 'hlp_vect', 'hmm_vect', 'hmmm_vect', 'hmv_vect', 'ho_vect', 'hockey_vect', 'hol_vect', 'hold_vect', 'holder_vect', 'holding_vect', 'holiday_vect', 'holla_vect', 'hols_vect', 'holy_vect', 'home_vect', 'honey_vect', 'hook_vect', 'hop_vect', 'hope_vect', 'hoped_vect', 'hopefully_vect', 'hoping_vect', 'horny_vect', 'horo_vect', 'horrible_vect', 'hospital_vect', 'hospitals_vect', 'hostel_vect', 'hot_vect', 'hotel_vect', 'hotels_vect', 'hour_vect', 'hours_vect', 'house_vect', 'housemaid_vect', 'however_vect', 'hows_vect', 'howz_vect', 'hr_vect', 'hrishi_vect', 'hrs_vect', 'http_vect', 'hubby_vect', 'hug_vect', 'huh_vect', 'hun_vect', 'hungry_vect', 'hunny_vect', 'hurry_vect', 'hurt_vect', 'hurting_vect', 'hurts_vect', 'husband_vect', 'hv_vect', 'hw_vect', 'hyde_vect', 'iam_vect', 'ibhltd_vect', 'ibiza_vect', 'ic_vect', 'ice_vect', 'id_vect', 'idea_vect', 'ideal_vect', 'ideas_vect', 'identifier_vect', 'idiot_vect', 'idk_vect', 'ignore_vect', 'ikea_vect', 'il_vect', 'ill_vect', 'im_vect', 'imagine_vect', 'imma_vect', 'immediately_vect', 'imp_vect', 'important_vect', 'impossible_vect', 'improved_vect', 'in2_vect', 'inc_vect', 'inches_vect', 'incident_vect', 'include_vect', 'including_vect', 'inclusive_vect', 'inconsiderate_vect', 'indeed_vect', 'india_vect', 'indian_vect', 'indians_vect', 'indicate_vect', 'infections_vect', 'infernal_vect', 'info_vect', 'inform_vect', 'information_vect', 'informed_vect', 'innings_vect', 'insha_vect', 'inside_vect', 'instantly_vect', 'instead_vect', 'instructions_vect', 'insurance_vect', 'intelligent_vect', 'interest_vect', 'interested_vect', 'interesting_vect', 'interflora_vect', 'internet_vect', 'intro_vect', 'invest_vect', 'invite_vect', 'invited_vect', 'inviting_vect', 'iouri_vect', 'ip4_vect', 'ipod_vect', 'irritating_vect', 'iscoming_vect', 'ish_vect', 'island_vect', 'islands_vect', 'isnt_vect', 'issue_vect', 'issues_vect', 'it_vect', 'italian_vect', 'its_vect', 'itz_vect', 'itåõs_vect', 'ive_vect', 'iz_vect', 'izzit_vect', 'iåõm_vect', 'jacket_vect', 'jamster_vect', 'jan_vect', 'january_vect', 'jason_vect', 'java_vect', 'jay_vect', 'jazz_vect', 'jealous_vect', 'jeans_vect', 'jen_vect', 'jenny_vect', 'jess_vect', 'jesus_vect', 'jiayin_vect', 'jiu_vect', 'jo_vect', 'joanna_vect', 'job_vect', 'jogging_vect', 'john_vect', 'join_vect', 'joined_vect', 'joining_vect', 'joke_vect', 'jokes_vect', 'jokin_vect', 'joking_vect', 'jolly_vect', 'joy_vect', 'jsco_vect', 'jst_vect', 'juan_vect', 'juicy_vect', 'july_vect', 'june_vect', 'jus_vect', 'juz_vect', 'k52_vect', 'kadeem_vect', 'kaiez_vect', 'kallis_vect', 'kano_vect', 'kappa_vect', 'karaoke_vect', 'kate_vect', 'kay_vect', 'kb_vect', 'ke_vect', 'keep_vect', 'keeping_vect', 'keeps_vect', 'kent_vect', 'kept_vect', 'kerala_vect', 'key_vect', 'keys_vect', 'ki_vect', 'kick_vect', 'kid_vect', 'kidding_vect', 'kids_vect', 'kidz_vect', 'kind_vect', 'kinda_vect', 'kindly_vect', 'king_vect', 'kiss_vect', 'kisses_vect', 'kk_vect', 'knackered_vect', 'knew_vect', 'knock_vect', 'know_vect', 'knowing_vect', 'knows_vect', 'knw_vect', 'kz_vect', 'l8r_vect', 'la_vect', 'lab_vect', 'ladies_vect', 'lady_vect', 'lag_vect', 'laid_vect', 'land_vect', 'landline_vect', 'langport_vect', 'language_vect', 'laptop_vect', 'lar_vect', 'largest_vect', 'last_vect', 'late_vect', 'later_vect', 'latest_vect', 'latr_vect', 'laugh_vect', 'laughing_vect', 'law_vect', 'lazy_vect', 'ldn_vect', 'ldnw15h_vect', 'le_vect', 'lead_vect', 'learn_vect', 'least_vect', 'leave_vect', 'leaves_vect', 'leaving_vect', 'lect_vect', 'lecture_vect', 'left_vect', 'legal_vect', 'legs_vect', 'leh_vect', 'lei_vect', 'lem_vect', 'less_vect', 'lesson_vect', 'lessons_vect', 'let_vect', 'lets_vect', 'letter_vect', 'letters_vect', 'liao_vect', 'library_vect', 'lick_vect', 'licks_vect', 'lido_vect', 'lie_vect', 'lies_vect', 'life_vect', 'lifetime_vect', 'lift_vect', 'light_vect', 'lik_vect', 'like_vect', 'liked_vect', 'likely_vect', 'likes_vect', 'lil_vect', 'line_vect', 'linerental_vect', 'lines_vect', 'link_vect', 'lion_vect', 'lionm_vect', 'lionp_vect', 'lions_vect', 'lip_vect', 'list_vect', 'listen_vect', 'listening_vect', 'literally_vect', 'little_vect', 'live_vect', 'liverpool_vect', 'living_vect', 'lk_vect', 'll_vect', 'lmao_vect', '
lo_vect', 'loads_vect', 'loan_vect', 'loans_vect', 'local_vect', 'locations_vect', 'lock_vect', 'log_vect', 'login_vect', 'logo_vect', 'logopic_vect', 'lol_vect', 'london_vect', 'lonely_vect', 'long_vect', 'longer_vect', 'look_vect', 'lookatme_vect', 'looked_vect', 'lookin_vect', 'looking_vect', 'looks_vect', 'lor_vect', 'lose_vect', 'losing_vect', 'loss_vect', 'lost_vect', 'lot_vect', 'lotr_vect', 'lots_vect', 'lou_vect', 'loud_vect', 'lounge_vect', 'lousy_vect', 'lovable_vect', 'love_vect', 'loved_vect', 'lovely_vect', 'loveme_vect', 'lover_vect', 'loverboy_vect', 'lovers_vect', 'loves_vect', 'loving_vect', 'low_vect', 'lower_vect', 'loyal_vect', 'loyalty_vect', 'ls15hb_vect', 'lt_vect', 'ltd_vect', 'luck_vect', 'lucky_vect', 'lucy_vect', 'lunch_vect', 'luv_vect', 'lux_vect', 'luxury_vect', 'lyf_vect', 'lyfu_vect', 'lyk_vect', 'm227xy_vect', 'm26_vect', 'm263uz_vect', 'm8s_vect', 'mac_vect', 'machan_vect', 'macho_vect', 'mad_vect', 'madam_vect', 'made_vect', 'mag_vect', 'maga_vect', 'magical_vect', 'mah_vect', 'mail_vect', 'mailbox_vect', 'main_vect', 'maintain_vect', 'major_vect', 'make_vect', 'makes_vect', 'makin_vect', 'making_vect', 'malaria_vect', 'male_vect', 'mall_vect', 'man_vect', 'managed_vect', 'management_vect', 'many_vect', 'map_vect', 'march_vect', 'mark_vect', 'market_vect', 'marriage_vect', 'married_vect', 'marry_vect', 'masters_vect', 'match_vect', 'matches_vect', 'mate_vect', 'mates_vect', 'matrix3_vect', 'matter_vect', 'max10mins_vect', 'maximize_vect', 'maxå_vect', 'may_vect', 'mayb_vect', 'maybe_vect', 'mca_vect', 'mcat_vect', 'meal_vect', 'mean_vect', 'meaning_vect', 'means_vect', 'meant_vect', 'meanwhile_vect', 'med_vect', 'medical_vect', 'medicine_vect', 'meds_vect', 'meet_vect', 'meetin_vect', 'meeting_vect', 'meh_vect', 'mei_vect', 'member_vect', 'members_vect', 'men_vect', 'menu_vect', 'merry_vect', 'mess_vect', 'message_vect', 'messaged_vect', 'messages_vect', 'messaging_vect', 'met_vect', 'mid_vect', 'middle_vect', 'midnight_vect', 'mids_vect', 'might_vect', 'miles_vect', 'milk_vect', 'min_vect', 'mind_vect', 'mine_vect', 'mini_vect', 'minimum_vect', 'minor_vect', 'mins_vect', 'minute_vect', 'minutes_vect', 'minuts_vect', 'miracle_vect', 'mis_vect', 'miserable_vect', 'miss_vect', 'missed_vect', 'missin_vect', 'missing_vect', 'mistake_vect', 'mistakes_vect', 'mite_vect', 'mm_vect', 'mmm_vect', 'mmmm_vect', 'mmmmmm_vect', 'mnths_vect', 'mo_vect', 'moan_vect', 'mob_vect', 'mobile_vect', 'mobiles_vect', 'mobilesdirect_vect', 'mobilesvary_vect', 'mobileupd8_vect', 'mobno_vect', 'moby_vect', 'mode_vect', 'model_vect', 'module_vect', 'modules_vect', 'moji_vect', 'mojibiola_vect', 'mokka_vect', 'mom_vect', 'moment_vect', 'moments_vect', 'moms_vect', 'mon_vect', 'monday_vect', 'money_vect', 'monkeys_vect', 'mono_vect', 'month_vect', 'monthly_vect', 'months_vect', 'mood_vect', 'moon_vect', 'moral_vect', 'morn_vect', 'morning_vect', 'mostly_vect', 'mother_vect', 'motorola_vect', 'mouth_vect', 'move_vect', 'moved_vect', 'movie_vect', 'movies_vect', 'moving_vect', 'mp3_vect', 'mr_vect', 'mrng_vect', 'mrt_vect', 'msg_vect', 'msgs_vect', 'mths_vect', 'mu_vect', 'much_vect', 'mum_vect', 'mummy_vect', 'murder_vect', 'murdered_vect', 'murderer_vect', 'music_vect', 'must_vect', 'muz_vect', 'na_vect', 'nag_vect', 'nah_vect', 'naked_vect', 'name_vect', 'name1_vect', 'name2_vect', 'named_vect', 'names_vect', 'nan_vect', 'nap_vect', 'nasdaq_vect', 'nat_vect', 'national_vect', 'natural_vect', 'nature_vect', 'naughty_vect', 'nb_vect', 'nd_vect', 'ne_vect', 'near_vect', 'nearly_vect', 'necessarily_vect', 'necklace_vect', 'ned_vect', 'need_vect', 'needed_vect', 'needs_vect', 'neither_vect', 'net_vect', 'netcollex_vect', 'network_vect', 'networks_vect', 'neva_vect', 'never_vect', 'new_vect', 'newest_vect', 'news_vect', 'next_vect', 'ni8_vect', 'nice_vect', 'nigeria_vect', 'night_vect', 'nights_vect', 'nimya_vect', 'nite_vect', 'no1_vect', 'nobody_vect', 'noe_vect', 'nokia_vect', 'nokias_vect', 'noline_vect', 'none_vect', 'noon_vect', 'nope_vect', 'norm_vect', 'norm150ptone_vect', 'normal_vect', 'normally_vect', 'northampton_vect', 'note_vect', 'nothin_vect', 'nothing_vect', 'notice_vect', 'noun_vect', 'nowadays_vect', 'nt_vect', 'ntt_vect', 'ntwk_vect', 'num_vect', 'number_vect', 'numbers_vect', 'nuther_vect', 'nvm_vect', 'nw_vect', 'nxt_vect', 'nyc_vect', 'nydc_vect', 'nyt_vect', 'o2_vect', 'obviously_vect', 'odi_vect', 'offer_vect', 'offers_vect', 'office_vect', 'official_vect', 'officially_vect', 'ofice_vect', 'often_vect', 'oh_vect', 'oi_vect', 'oic_vect', 'ok_vect', 'okay_vect', 'okey_vect', 'okie_vect', 'ola_vect', 'old_vect', 'omg_vect', 'omw_vect', 'one_vect', 'ones_vect', 'oni_vect', 'online_vect', 'onto_vect', 'onwards_vect', 'oooh_vect', 'oops_vect', 'open_vect', 'opening_vect', 'operator_vect', 'opinion_vect', 'opportunity_vect', 'opt_vect', 'option_vect', 'optout_vect', 'or2stoptxt_vect', 'orange_vect', 'oranges_vect', 'orchard_vect', 'order_vect', 'ordered_vect', 'oredi_vect', 'original_vect', 'oru_vect', 'os_vect', 'oso_vect', 'others_vect', 'otherwise_vect', 'otside_vect', 'outside_vect', 'outstanding_vect', 'outta_vect', 'ovulation_vect', 'oz_vect', 'pa_vect', 'pack_vect', 'package_vect', 'page_vect', 'pages_vect', 'paid_vect', 'pain_vect', 'painful_vect', 'painting_vect', 'panic_vect', 'paper_vect', 'papers_vect', 'paperwork_vect', 'parco_vect', 'parent_vect', 'parents_vect', 'paris_vect', 'park_vect', 'parked_vect', 'parking_vect', 'part_vect', 'partner_vect', 'partnership_vect', 'party_vect', 'pass_vect', 'passed_vect', 'password_vect', 'past_vect', 'pattern_vect', 'patty_vect', 'pay_vect', 'paying_vect', 'payment_vect', 'payoh_vect', 'pc_vect', 'peace_vect', 'pence_vect', 'people_vect', 'per_vect', 'perfect_vect', 'period_vect', 'person_vect', 'personal_vect', 'pete_vect', 'petey_vect', 'pg_vect', 'philosophy_vect', 'phoenix_vect', 'phone_vect', 'phones_vect', 'photo_vect', 'photos_vect', 'pic_vect', 'pick_vect', 'picked_vect', 'picking_vect', 'pics_vect', 'picsfree1_vect', 'picture_vect', 'pictures_vect', 'pie_vect', 'pieces_vect', 'pig_vect', 'pilates_vect', 'pin_vect', 'pink_vect', 'piss_vect', 'pissed_vect', 'pix_vect', 'pizza_vect', 'place_vect', 'places_vect', 'plan_vect', 'planned_vect', 'planning_vect', 'plans_vect', 'play_vect', 'played_vect', 'player_vect', 'players_vect', 'playing_vect', 'please_vect', 'pleased_vect', 'pleasure_vect', 'plenty_vect', 'pls_vect', 'plus_vect', 'plz_vect', 'pm_vect', 'po_vect', 'pobox_vect', 'pobox334_vect', 'pobox36504w45wq_vect', 'pobox45w2tg150p_vect', 'pobox84_vect', 'pod_vect', 'point_vect', 'points_vect', 'poker_vect', 'pole_vect', 'police_vect', 'politicians_vect', 'poly_vect', 'polyphonic_vect', 'polys_vect', 'pongal_vect', 'poor_vect', 'pop_vect', 'popped_vect', 'porn_vect', 'possession_vect', 'possible_vect', 'post_vect', 'postcard_vect', 'postcode_vect', 'posted_vect', 'posts_vect', 'potential_vect', 'potter_vect', 'pound_vect', 'pounds_vect', 'pouts_vect', 'power_vect', 'ppl_vect', 'pple_vect', 'ppm_vect', 'prabha_vect', 'practice_vect', 'practicing_vect', 'pray_vect', 'prefer_vect', 'premier_vect', 'prepare_vect', 'prescription_vect', 'present_vect', 'press_vect', 'pretty_vect', 'prey_vect', 'price_vect', 'prince_vect', 'princess_vect', 'print_vect', 'privacy_vect', 'private_vect', 'prize_vect', 'prob_vect', 'probably_vect', 'problem_vect', 'problems_vect', 'process_vect', 'processed_vect', 'prof_vect', 'profit_vect', 'program_vect', 'project_vect', 'prolly_vect', 'promise_vect', 'promises_vect', 'promo_vect', 'proof_vect', 'properly_vect', 'prospects_vect', 'provided_vect', 'ps_vect', 'ptbo_vect', 'pub_vect', 'pull_vect', 'purchase_vect', 'purity_vect', 'purpose_vect', 'push_vect', 'pushes_vect', 'pussy_vect', 'put_vect', 'puttin_vect', 'putting_vect', 'qatar_vect', 'quality_vect', 'queen_vect', 'ques_vect', 'question_vect', 'questions_vect', 'quick_vect', 'quickly_vect', 'quiet_vect', 'quit_vect', 'quite_vect', 'quiz_vect', 'quote_vect', 'quoting_vect', 'racing_vect', 'radio_vect', 'railway_vect', 'rain_vect', 'raining_vect', 'raise_vect', 'rakhesh_vect', 'rally_vect', 'ran_vect', 'random_vect', 'randomly_vect', 'randy_vect', 'rang_vect', 'range_vect', 'ranjith_vect', 'rate_vect', 'rates_vect', 'rather_vect', 'rays_vect', 'rcvd_vect', 'rd_vect', 're_vect', 'reach_vect', 'reached_vect', 'reaching_vect', 'reaction_vect', 'read_vect', 'readers_vect', 'reading_vect', 'ready_vect', 'real_vect', 'realise_vect', 'reality_vect', 'realized_vect', 'really_vect', 'realy_vect', 'reason_vect', 'reasonable_vect', 'reasons_vect', 'reboot_vect', 'recd_vect', 'receipt_
vect', 'receive_vect', 'received_vect', 'receiving_vect', 'recent_vect', 'recently_vect', 'recession_vect', 'record_vect', 'records_vect', 'recovery_vect', 'red_vect', 'ref_vect', 'reference_vect', 'reg_vect', 'regards_vect', 'register_vect', 'registered_vect', 'regret_vect', 'regular_vect', 'relation_vect', 'relax_vect', 'released_vect', 'rem_vect', 'remain_vect', 'remains_vect', 'remember_vect', 'remembered_vect', 'remembr_vect', 'remind_vect', 'reminder_vect', 'remove_vect', 'rent_vect', 'rental_vect', 'rentl_vect', 'repair_vect', 'repeat_vect', 'replied_vect', 'reply_vect', 'replying_vect', 'report_vect', 'representative_vect', 'request_vect', 'requests_vect', 'research_vect', 'resend_vect', 'respect_vect', 'respond_vect', 'responding_vect', 'response_vect', 'responsibility_vect', 'rest_vect', 'restaurant_vect', 'result_vect', 'results_vect', 'retrieve_vect', 'return_vect', 'returned_vect', 'returns_vect', 'reveal_vect', 'revealed_vect', 'review_vect', 'revision_vect', 'reward_vect', 'rhythm_vect', 'rice_vect', 'rich_vect', 'ride_vect', 'right_vect', 'rights_vect', 'ring_vect', 'ringtone_vect', 'ringtones_vect', 'rite_vect', 'river_vect', 'road_vect', 'roads_vect', 'roast_vect', 'rock_vect', 'rocks_vect', 'rofl_vect', 'roger_vect', 'role_vect', 'ron_vect', 'room_vect', 'roommate_vect', 'roommates_vect', 'rooms_vect', 'rose_vect', 'round_vect', 'row_vect', 'roww1j6hl_vect', 'roww1jhl_vect', 'royal_vect', 'rply_vect', 'rs_vect', 'rstm_vect', 'ru_vect', 'rub_vect', 'rude_vect', 'rule_vect', 'run_vect', 'running_vect', 'runs_vect', 'rush_vect', 'sacrifice_vect', 'sad_vect', 'sae_vect', 'safe_vect', 'said_vect', 'salam_vect', 'salary_vect', 'sale_vect', 'salon_vect', 'sam_vect', 'santa_vect', 'sar_vect', 'sarasota_vect', 'sarcastic_vect', 'sary_vect', 'sat_vect', 'sathya_vect', 'saturday_vect', 'savamob_vect', 'save_vect', 'saved_vect', 'saw_vect', 'say_vect', 'saying_vect', 'says_vect', 'scared_vect', 'scary_vect', 'sch_vect', 'schedule_vect', 'school_vect', 'schools_vect', 'science_vect', 'scold_vect', 'score_vect', 'scores_vect', 'scotland_vect', 'scream_vect', 'screaming_vect', 'scrounge_vect', 'se_vect', 'sea_vect', 'search_vect', 'searching_vect', 'season_vect', 'seat_vect', 'sec_vect', 'second_vect', 'seconds_vect', 'secret_vect', 'secretary_vect', 'secs_vect', 'sed_vect', 'see_vect', 'seeing_vect', 'seem_vect', 'seemed_vect', 'seems_vect', 'seen_vect', 'selected_vect', 'selection_vect', 'self_vect', 'sell_vect', 'selling_vect', 'sells_vect', 'sem_vect', 'semester_vect', 'sen_vect', 'send_vect', 'sender_vect', 'sending_vect', 'sense_vect', 'sent_vect', 'sentence_vect', 'sept_vect', 'series_vect', 'serious_vect', 'seriously_vect', 'service_vect', 'services_vect', 'serving_vect', 'set_vect', 'setting_vect', 'settings_vect', 'settle_vect', 'settled_vect', 'seven_vect', 'several_vect', 'sex_vect', 'sexy_vect', 'sh_vect', 'sha_vect', 'shall_vect', 'share_vect', 'shd_vect', 'sheets_vect', 'shes_vect', 'shesil_vect', 'shining_vect', 'ship_vect', 'shipping_vect', 'shirt_vect', 'shirts_vect', 'shit_vect', 'shld_vect', 'shocking_vect', 'shoot_vect', 'shop_vect', 'shoppin_vect', 'shopping_vect', 'short_vect', 'shorter_vect', 'shortly_vect', 'shot_vect', 'shoving_vect', 'show_vect', 'shower_vect', 'showing_vect', 'shows_vect', 'shu_vect', 'shuhui_vect', 'shy_vect', 'si_vect', 'sick_vect', 'side_vect', 'sighs_vect', 'sight_vect', 'sign_vect', 'signing_vect', 'silence_vect', 'silent_vect', 'silver_vect', 'sim_vect', 'simple_vect', 'simply_vect', 'since_vect', 'sing_vect', 'singing_vect', 'single_vect', 'singles_vect', 'sipix_vect', 'sir_vect', 'sis_vect', 'sister_vect', 'sit_vect', 'site_vect', 'sitting_vect', 'situation_vect', 'siva_vect', 'six_vect', 'size_vect', 'sk3_vect', 'sk38xh_vect', 'skilgme_vect', 'skip_vect', 'sky_vect', 'skype_vect', 'skyped_vect', 'slap_vect', 'slave_vect', 'sleep_vect', 'sleepin_vect', 'sleeping_vect', 'sleepy_vect', 'slept_vect', 'slice_vect', 'slide_vect', 'slightly_vect', 'slip_vect', 'slippers_vect', 'slo_vect', 'slots_vect', 'slow_vect', 'slowly_vect', 'small_vect', 'smashed_vect', 'smile_vect', 'smiles_vect', 'smiling_vect', 'smoke_vect', 'smoking_vect', 'sms_vect', 'smth_vect', 'sn_vect', 'snake_vect', 'snow_vect', 'social_vect', 'sofa_vect', 'soft_vect', 'software_vect', 'sol_vect', 'some1_vect', 'somebody_vect', 'someone_vect', 'somethin_vect', 'something_vect', 'sometimes_vect', 'somewhere_vect', 'song_vect', 'songs_vect', 'sony_vect', 'sonyericsson_vect', 'soon_vect', 'sooner_vect', 'sore_vect', 'sorry_vect', 'sort_vect', 'sorting_vect', 'sound_vect', 'sounds_vect', 'south_vect', 'sp_vect', 'space_vect', 'spanish_vect', 'speak_vect', 'speaking_vect', 'special_vect', 'specialcall_vect', 'specially_vect', 'speed_vect', 'spend_vect', 'spending_vect', 'spent_vect', 'spk_vect', 'spoke_vect', 'spoken_vect', 'spook_vect', 'sport_vect', 'sports_vect', 'spree_vect', 'spring_vect', 'sptv_vect', 'sry_vect', 'st_vect', 'staff_vect', 'stamps_vect', 'stand_vect', 'standard_vect', 'standing_vect', 'star_vect', 'staring_vect', 'start_vect', 'started_vect', 'starting_vect', 'starts_vect', 'starwars3_vect', 'statement_vect', 'station_vect', 'stay_vect', 'stayed_vect', 'staying_vect', 'std_vect', 'steam_vect', 'step_vect', 'steve_vect', 'stick_vect', 'sticky_vect', 'still_vect', 'stock_vect', 'stockport_vect', 'stomach_vect', 'stomps_vect', 'stones_vect', 'stop_vect', 'stopped_vect', 'stops_vect', 'store_vect', 'stores_vect', 'story_vect', 'str_vect', 'straight_vect', 'stranger_vect', 'street_vect', 'stress_vect', 'strike_vect', 'strong_vect', 'strongbuy_vect', 'stuck_vect', 'student_vect', 'study_vect', 'studying_vect', 'stuff_vect', 'stupid_vect', 'style_vect', 'stylish_vect', 'sub_vect', 'subpoly_vect', 'subs_vect', 'subscribe6gbpmnth_vect', 'subscribed_vect', 'subscriber_vect', 'subscription_vect', 'success_vect', 'successful_vect', 'successfully_vect', 'sucks_vect', 'sue_vect', 'sufficient_vect', 'suggest_vect', 'suite_vect', 'suits_vect', 'sum1_vect', 'summer_vect', 'sun_vect', 'sunday_vect', 'sunlight_vect', 'sunny_vect', 'sunshine_vect', 'suntec_vect', 'sup_vect', 'super_vect', 'superb_vect', 'superior_vect', 'supervisor_vect', 'supply_vect', 'support_vect', 'suppose_vect', 'supposed_vect', 'suprman_vect', 'sura_vect', 'sure_vect', 'surely_vect', 'surfing_vect', 'surprise_vect', 'surprised_vect', 'survey_vect', 'sux_vect', 'suzy_vect', 'sw7_vect', 'sw73ss_vect', 'sweet_vect', 'swing_vect', 'system_vect', 'ta_vect', 'tablets_vect', 'tahan_vect', 'take_vect', 'taken_vect', 'takes_vect', 'takin_vect', 'taking_vect', 'talent_vect', 'talk_vect', 'talking_vect', 'tampa_vect', 'tape_vect', 'tariffs_vect', 'tat_vect', 'taunton_vect', 'taylor_vect', 'tb_vect', 'tc_vect', 'tcrw1_vect', 'tcs_vect', 'tea_vect', 'teach_vect', 'teacher_vect', 'teaches_vect', 'team_vect', 'tear_vect', 'tease_vect', 'teasing_vect', 'tech_vect', 'technical_vect', 'tee_vect', 'teeth_vect', 'tel_vect', 'telephone_vect', 'tell_vect', 'telling_vect', 'tells_vect', 'telugu_vect', 'temple_vect', 'ten_vect', 'tenants_vect', 'tenerife_vect', 'tension_vect', 'term_vect', 'terms_vect', 'terrible_vect', 'test_vect', 'testing_vect', 'text_vect', 'texted_vect', 'texting_vect', 'textoperator_vect', 'texts_vect', 'th_vect', 'thangam_vect', 'thank_vect', 'thanks_vect', 'thanksgiving_vect', 'thanx_vect', 'that_vect', 'thats_vect', 'thatåõs_vect', 'the_vect', 'theatre_vect', 'themob_vect', 'theory_vect', 'thesis_vect', 'thgt_vect', 'thing_vect', 'things_vect', 'think_vect', 'thinkin_vect', 'thinking_vect', 'thinks_vect', 'thk_vect', 'thnk_vect', 'tho_vect', 'though_vect', 'thought_vect', 'three_vect', 'throat_vect', 'throw_vect', 'thru_vect', 'tht_vect', 'thts_vect', 'thurs_vect', 'thursday_vect', 'tick_vect', 'ticket_vect', 'tickets_vect', 'tight_vect', 'tihs_vect', 'til_vect', 'till_vect', 'time_vect', 'times_vect', 'timing_vect', 'tired_vect', 'tirunelvali_vect', 'tirupur_vect', 'tissco_vect', 'tkts_vect', 'tm_vect', 'tming_vect', 'tmobile_vect', 'tmr_vect', 'tncs_vect', 'toa_vect', 'toclaim_vect', 'today_vect', 'todays_vect', 'tog_vect', 'together_vect', 'tok_vect', 'told_vect', 'tomarrow_vect', 'tomo_vect', 'tomorrow_vect', 'tone_vect', 'tones_vect', 'tones2youcouk_vect', 'tonight_vect', 'tonite_vect', 'took_vect', 'tool_vect', 'tooo_vect', 'toot_vect', 'top_vect', 'topic_vect', 'torch_vect', 'toshiba_vect', 'tot_vect', 'total_vect', 'totally_vect', 'touch_vect', 'tough_vect', 'tour_vect', 'towards_vect', 'town_vect', 'track_vect', 'trade_vect', 'traffic_vect', 'train_vect', 'training_vect', 'transaction_vect', 'transfer_vect', 'transport_vect', 'travel_vect', 'treat_vect', 'treated_vect', 'tried_vect', 'trip_vect', 'trips_vect', 'trouble_vect', 'true_vect', 'truffles_vect', 'truly_vect', 'trust_vect', 'truth_vect', 'try_ve
ct', 'trying_vect', 'ts_vect', 'tscs_vect', 'tscs087147403231winawk_vect', 'tt_vect', 'ttyl_vect', 'tues_vect', 'tuesday_vect', 'tuition_vect', 'turn_vect', 'turning_vect', 'turns_vect', 'tv_vect', 'twelve_vect', 'twice_vect', 'two_vect', 'txt_vect', 'txtauction_vect', 'txtin_vect', 'txting_vect', 'txtno_vect', 'txts_vect', 'txtstop_vect', 'tyler_vect', 'type_vect', 'tyrone_vect', 'u4_vect', 'ubi_vect', 'ufind_vect', 'ugh_vect', 'uh_vect', 'uk_vect', 'uks_vect', 'ultimatum_vect', 'umma_vect', 'unable_vect', 'uncle_vect', 'understand_vect', 'understanding_vect', 'understood_vect', 'underwear_vect', 'unemployed_vect', 'uni_vect', 'unique_vect', 'university_vect', 'unless_vect', 'unlimited_vect', 'unnecessarily_vect', 'unredeemed_vect', 'unsold_vect', 'unsub_vect', 'unsubscribe_vect', 'upd8_vect', 'update_vect', 'updatenow_vect', 'upgrade_vect', 'upload_vect', 'upset_vect', 'upstairs_vect', 'ur_vect', 'ure_vect', 'urgent_vect', 'urgnt_vect', 'url_vect', 'urn_vect', 'urself_vect', 'us_vect', 'usb_vect', 'use_vect', 'used_vect', 'user_vect', 'usf_vect', 'using_vect', 'usual_vect', 'usually_vect', 'vale_vect', 'valentine_vect', 'valentines_vect', 'valid_vect', 'valid12hrs_vect', 'valuable_vect', 'value_vect', 'valued_vect', 'vary_vect', 've_vect', 'vegas_vect', 'verify_vect', 'version_vect', 'via_vect', 'vid_vect', 'video_vect', 'videochat_vect', 'videophones_vect', 'vijay_vect', 'vikky_vect', 'village_vect', 'violated_vect', 'violence_vect', 'vip_vect', 'virgin_vect', 'visit_vect', 'vivek_vect', 'vl_vect', 'voda_vect', 'vodafone_vect', 'vodka_vect', 'voice_vect', 'voicemail_vect', 'vomit_vect', 'vote_vect', 'voucher_vect', 'vouchers_vect', 'vry_vect', 'vth_vect', 'w45wq_vect', 'wa_vect', 'wah_vect', 'wait_vect', 'waited_vect', 'waitin_vect', 'waiting_vect', 'wake_vect', 'waking_vect', 'wales_vect', 'walk_vect', 'walked_vect', 'walking_vect', 'walmart_vect', 'wan_vect', 'wana_vect', 'want_vect', 'wanted_vect', 'wanting_vect', 'wants_vect', 'wap_vect', 'warm_vect', 'warner_vect', 'waste_vect', 'wasted_vect', 'wat_vect', 'watch_vect', 'watching_vect', 'water_vect', 'wats_vect', 'way_vect', 'wc1n3xx_vect', 'we_vect', 'weak_vect', 'wear_vect', 'wearing_vect', 'weather_vect', 'web_vect', 'website_vect', 'wed_vect', 'wedding_vect', 'wednesday_vect', 'wee_vect', 'weed_vect', 'week_vect', 'weekend_vect', 'weekends_vect', 'weekly_vect', 'weeks_vect', 'weigh_vect', 'weight_vect', 'weird_vect', 'welcome_vect', 'well_vect', 'welp_vect', 'wen_vect', 'went_vect', 'west_vect', 'wet_vect', 'what_vect', 'whatever_vect', 'whats_vect', 'whenever_vect', 'whenevr_vect', 'wherever_vect', 'whether_vect', 'white_vect', 'whn_vect', 'whole_vect', 'whos_vect', 'whose_vect', 'wid_vect', 'widelivecomindex_vect', 'wif_vect', 'wife_vect', 'wil_vect', 'willing_vect', 'win_vect', 'wind_vect', 'wine_vect', 'winner_vect', 'winning_vect', 'wins_vect', 'wipro_vect', 'wisdom_vect', 'wise_vect', 'wish_vect', 'wishes_vect', 'wishing_vect', 'wit_vect', 'within_vect', 'without_vect', 'wiv_vect', 'wk_vect', 'wkend_vect', 'wkg_vect', 'wkly_vect', 'wks_vect', 'wld_vect', 'wml_vect', 'wn_vect', 'wnt_vect', 'wo_vect', 'woke_vect', 'woken_vect', 'woman_vect', 'women_vect', 'wonder_vect', 'wonderful_vect', 'wondering_vect', 'wont_vect', 'woot_vect', 'word_vect', 'words_vect', 'work_vect', 'workin_vect', 'working_vect', 'works_vect', 'world_vect', 'worried_vect', 'worries_vect', 'worry_vect', 'worse_vect', 'worst_vect', 'worth_vect', 'wot_vect', 'would_vect', 'wow_vect', 'write_vect', 'wrong_vect', 'wtf_vect', 'wud_vect', 'wuld_vect', 'wun_vect', 'www4tcbiz_vect', 'wwwcomuknet_vect', 'wwwetlpcoukexpressoffer_vect', 'wwwgetzedcouk_vect', 'wwwldewcom_vect', 'wwwldewcom1win150ppmx3age16_vect', 'wwwmovietriviatv_vect', 'wwwringtonescouk_vect', 'wwwsmsconet_vect', 'wwwtxttowincouk_vect', 'wwwurawinnercom_vect', 'wylie_vect', 'xchat_vect', 'xmas_vect', 'xuhui_vect', 'xx_vect', 'xxx_vect', 'xxxx_vect', 'xxxxx_vect', 'xy_vect', 'ya_vect', 'yahoo_vect', 'yan_vect', 'yar_vect', 'yay_vect', 'yck_vect', 'yeah_vect', 'year_vect', 'years_vect', 'yelling_vect', 'yellow_vect', 'yep_vect', 'yes_vect', 'yest_vect', 'yesterday_vect', 'yet_vect', 'yetunde_vect', 'yijue_vect', 'ym_vect', 'yo_vect', 'yoga_vect', 'yogasana_vect', 'yor_vect', 'you_vect', 'yr_vect', 'yrs_vect', 'yummy_vect', 'yun_vect', 'yuo_vect', 'yup_vect', 'zed_vect', 'zindgi_vect', 'ìï_vect', 'ûò_vect'], 'input_features_type': {'v2': 'O'}, 'word2num_features': [], 'unpreprocessed_columns': [], 'force_numeric_conv': [], 'conversion_method': 'TF_IDF'}, 'selector': {'reducer': False, 'reducer_file': '', 'input_features': ['v2'], 'output_features': ['07xxxxxxxxx_vect', '08700621170150p_vect', '08702840625comuk_vect', '08718726270150gbpmtmsg18_vect', '1000s_vect', '10am7pm_vect', '10k_vect', '10p_vect', '10pmin_vect', '10ppm_vect', '11mths_vect', '125gift_vect', '12hrs_vect', '12mths_vect', '150p_vect', '150perwksub_vect', '150pm_vect', '150pmin_vect', '150pmsg_vect', '150pmsgrcvdhgsuite3422landsroww1j6hl_vect', '150pmtmsgrcvd18_vect', '150ppm_vect', '150ptone_vect', '150pwk_vect', '150week_vect', '16only_vect', '18only_vect', '1hr_vect', '1minmobsmorelkpobox177hp51fl_vect', '1st_vect', '1x150pwk_vect', '20p_vect', '20pmin_vect', '21st_vect', '220cm2_vect', '24hrs_vect', '25p_vect', '26th_vect', '2day_vect', '2find_vect', '2geva_vect', '2go_vect', '2marrow_vect', '2mrw_vect', '2nd_vect', '2nite_vect', '2optout_vect', '2p_vect', '2u_vect', '2waxsto_vect', '2wks_vect', '300p_vect', '31pmsg_vect', '3510i_vect', '3d_vect', '3g_vect', '3gbp_vect', '3hrs_vect', '3mins_vect', '3qxj9_vect', '3rd_vect', '3ss_vect', '3u_vect', '3uz_vect', '3wk_vect', '40gb_vect', '4a_vect', '4d_vect', '4eva_vect', '4get_vect', '4info_vect', '4mths_vect', '4th_vect', '4u_vect', '50p_vect', '5min_vect', '5pm_vect', '5wb_vect', '5we_vect', '60pmin_vect', '6hrs_vect', '6months_vect', '6pm_vect', '7250i_vect', '7ish_vect', '8am_vect', '8pm_vect', '8th_vect', '8wp_vect', '9ae_vect', '9ja_vect', '9pm_vect', '9t_vect', 'aathi_vect', 'abi_vect', 'ability_vect', 'abiola_vect', 'able_vect', 'abt_vect', 'abta_vect', 'aburo_vect', 'ac_vect', 'academic_vect', 'acc_vect', 'accept_vect', 'access_vect', 'accident_vect', 'accidentally_vect', 'accordingly_vect', 'account_vect', 'ache_vect', 'across_vect', 'acted_vect', 'action_vect', 'activate_vect', 'activities_vect', 'actor_vect', 'actual_vect', 'actually_vect', 'ad_vect', 'adam_vect', 'add_vect', 'added_vect', 'addicted_vect', 'addie_vect', 'address_vect', 'admin_vect', 'administrator_vect', 'admirer_vect', 'admit_vect', 'adore_vect', 'adoring_vect', 'ads_vect', 'adult_vect', 'advance_vect', 'adventure_vect', 'advice_vect', 'advise_vect', 'affair_vect', 'affairs_vect', 'affectionate_vect', 'afraid_vect', 'aft_vect', 'afternoon_vect', 'aftr_vect', 'agalla_vect', 'age_vect', 'age16_vect', 'ages_vect', 'ago_vect', 'agree_vect', 'ah_vect', 'aha_vect', 'ahead_vect', 'ahmad_vect', 'ai_vect', 'aight_vect', 'aint_vect', 'air_vect', 'airport_vect', 'airtel_vect', 'aiya_vect', 'aiyah_vect', 'aiyar_vect', 'aiyo_vect', 'al_vect', 'album_vect', 'alert_vect', 'alex_vect', 'alfie_vect', 'ali_vect', 'allah_vect', 'allow_vect', 'allowed_vect', 'almost_vect', 'alone_vect', 'along_vect', 'already_vect', 'alright_vect', 'alrite_vect', 'also_vect', 'always_vect', 'alwys_vect', 'amazing_vect', 'american_vect', 'among_vect', 'amount_vect', 'amp_vect', 'amt_vect', 'andros_vect', 'angry_vect', 'annie_vect', 'anniversary_vect', 'announcement_vect', 'anot_vect', 'another_vect', 'ans_vect', 'ansr_vect', 'answer_vect', 'answered_vect', 'answering_vect', 'answers_vect', 'anthony_vect', 'anti_vect', 'anybody_vect', 'anymore_vect', 'anyone_vect', 'anything_vect', 'anytime_vect', 'anyway_vect', 'anyways_vect', 'apartment_vect', 'app_vect', 'apparently_vect', 'applebees_vect', 'apply_vect', 'appointment_vect', 'appreciate_vect', 'appreciated_vect', 'approx_vect', 'apps_vect', 'appt_vect', 'april_vect', 'ar_vect', 'arcade_vect', 'ard_vect', 'area_vect', 'argh_vect', 'argument_vect', 'arm_vect', 'armand_vect', 'arms_vect', 'around_vect', 'arrange_vect', 'arrested_vect', 'arrive_vect', 'arsenal_vect', 'art_vect', 'arun_vect', 'asap_vect', 'ashley_vect', 'ask_vect', 'askd_ve
ct', 'asked_vect', 'askin_vect', 'asking_vect', 'asks_vect', 'asleep_vect', 'ass_vect', 'assume_vect', 'ate_vect', 'atlanta_vect', 'atlast_vect', 'atm_vect', 'attached_vect', 'attempt_vect', 'attend_vect', 'auction_vect', 'august_vect', 'aunt_vect', 'aunty_vect', 'auto_vect', 'av_vect', 'available_vect', 'avatar_vect', 'ave_vect', 'avent_vect', 'avoid_vect', 'await_vect', 'awaiting_vect', 'awake_vect', 'award_vect', 'awarded_vect', 'away_vect', 'awesome_vect', 'aww_vect', 'b4_vect', 'ba_vect', 'babe_vect', 'babes_vect', 'babies_vect', 'baby_vect', 'back_vect', 'bad_vect', 'bag_vect', 'bags_vect', 'bahamas_vect', 'bak_vect', 'balance_vect', 'bank_vect', 'banks_vect', 'bar_vect', 'barely_vect', 'basic_vect', 'basically_vect', 'bat_vect', 'bath_vect', 'bathe_vect', 'bathing_vect', 'battery_vect', 'bay_vect', 'bb_vect', 'bc_vect', 'bck_vect', 'bcoz_vect', 'bday_vect', 'be_vect', 'bears_vect', 'beautiful_vect', 'beauty_vect', 'bec_vect', 'become_vect', 'becoz_vect', 'bed_vect', 'bedrm_vect', 'bedroom_vect', 'beer_vect', 'befor_vect', 'beg_vect', 'begin_vect', 'behave_vect', 'behind_vect', 'bein_vect', 'believe_vect', 'bell_vect', 'belly_vect', 'belovd_vect', 'best_vect', 'bet_vect', 'better_vect', 'beyond_vect', 'bf_vect', 'bid_vect', 'bids_vect', 'big_vect', 'bigger_vect', 'biggest_vect', 'bill_vect', 'billed_vect', 'billion_vect', 'bills_vect', 'bin_vect', 'biola_vect', 'birds_vect', 'birla_vect', 'birth_vect', 'birthdate_vect', 'birthday_vect', 'bishan_vect', 'bit_vect', 'bitch_vect', 'bite_vect', 'black_vect', 'blackberry_vect', 'blah_vect', 'blake_vect', 'blank_vect', 'bleh_vect', 'bless_vect', 'blessing_vect', 'bloo_vect', 'blood_vect', 'bloody_vect', 'blue_vect', 'bluetooth_vect', 'bluff_vect', 'boat_vect', 'body_vect', 'bold_vect', 'bone_vect', 'bonus_vect', 'boo_vect', 'book_vect', 'booked_vect', 'booking_vect', 'books_vect', 'boost_vect', 'booty_vect', 'bored_vect', 'boring_vect', 'born_vect', 'boss_vect', 'boston_vect', 'bother_vect', 'bottom_vect', 'bought_vect', 'bout_vect', 'bowl_vect', 'box_vect', 'box326_vect', 'box334sk38ch_vect', 'box97n7qp_vect', 'boy_vect', 'boye_vect', 'boyfriend_vect', 'boys_vect', 'boytoy_vect', 'brah_vect', 'brand_vect', 'bread_vect', 'break_vect', 'breathe_vect', 'bright_vect', 'brilliant_vect', 'bring_vect', 'bringing_vect', 'brings_vect', 'british_vect', 'bro_vect', 'broad_vect', 'broke_vect', 'broken_vect', 'bros_vect', 'brothas_vect', 'brother_vect', 'brought_vect', 'bruv_vect', 'bslvyl_vect', 'bt_vect', 'btnationalrate_vect', 'btw_vect', 'bucks_vect', 'bud_vect', 'budget_vect', 'buff_vect', 'buffet_vect', 'bugis_vect', 'building_vect', 'buns_vect', 'burger_vect', 'burns_vect', 'bus_vect', 'buses_vect', 'business_vect', 'busy_vect', 'butt_vect', 'buy_vect', 'buying_vect', 'buzz_vect', 'bx420_vect', 'bx420ip45we_vect', 'bye_vect', 'ca_vect', 'cabin_vect', 'cafe_vect', 'cake_vect', 'cal_vect', 'calculation_vect', 'calicut_vect', 'california_vect', 'call_vect', 'call2optout674_vect', 'callback_vect', 'callcost_vect', 'called_vect', 'caller_vect', 'callers_vect', 'callertune_vect', 'callin_vect', 'calling_vect', 'calls_vect', 'callså_vect', 'cam_vect', 'camcorder_vect', 'came_vect', 'camera_vect', 'cameravideo_vect', 'campus_vect', 'can_vect', 'canada_vect', 'canal_vect', 'canary_vect', 'cancel_vect', 'cancelled_vect', 'cancer_vect', 'cant_vect', 'captain_vect', 'car_vect', 'card_vect', 'cardiff_vect', 'care_vect', 'cared_vect', 'career_vect', 'careful_vect', 'carefully_vect', 'caring_vect', 'carlos_vect', 'caroline_vect', 'cars_vect', 'cartoon_vect', 'case_vect', 'cash_vect', 'cashbalance_vect', 'cashin_vect', 'castor_vect', 'cat_vect', 'catch_vect', 'catching_vect', 'caught_vect', 'cause_vect', 'cbe_vect', 'cc_vect', 'cd_vect', 'cdgt_vect', 'cds_vect', 'celebrate_vect', 'celebration_vect', 'cell_vect', 'center_vect', 'centre_vect', 'certainly_vect', 'cha_vect', 'chain_vect', 'challenge_vect', 'chance_vect', 'change_vect', 'changed_vect', 'changes_vect', 'channel_vect', 'character_vect', 'charge_vect', 'charged_vect', 'charges_vect', 'charity_vect', 'charles_vect', 'chase_vect', 'chasing_vect', 'chat_vect', 'chatting_vect', 'cheap_vect', 'cheaper_vect', 'cheat_vect', 'chechi_vect', 'check_vect', 'checked_vect', 'checking_vect', 'cheers_vect', 'chennai_vect', 'cherish_vect', 'chest_vect', 'chicken_vect', 'chikku_vect', 'child_vect', 'childish_vect', 'children_vect', 'chill_vect', 'chillin_vect', 'china_vect', 'chinese_vect', 'chip_vect', 'chocolate_vect', 'choice_vect', 'choose_vect', 'chosen_vect', 'christ_vect', 'christmas_vect', 'church_vect', 'cine_vect', 'cinema_vect', 'citizen_vect', 'city_vect', 'claim_vect', 'claims_vect', 'claire_vect', 'class_vect', 'classes_vect', 'clean_vect', 'cleaning_vect', 'clear_vect', 'clearly_vect', 'click_vect', 'clock_vect', 'close_vect', 'closed_vect', 'closer_vect', 'closes_vect', 'clothes_vect', 'club_vect', 'cn_vect', 'co_vect', 'coast_vect', 'coat_vect', 'cochin_vect', 'code_vect', 'coffee_vect', 'coin_vect', 'coins_vect', 'cold_vect', 'colleagues_vect', 'collect_vect', 'collected_vect', 'collecting_vect', 'collection_vect', 'college_vect', 'colour_vect', 'come_vect', 'comedy_vect', 'comes_vect', 'comin_vect', 'coming_vect', 'commercial_vect', 'common_vect', 'community_vect', 'comp_vect', 'company_vect', 'competition_vect', 'complete_vect', 'completed_vect', 'completely_vect', 'complimentary_vect', 'computer_vect', 'concentrate_vect', 'concert_vect', 'conditions_vect', 'conducts_vect', 'confidence_vect', 'confirm_vect', 'congrats_vect', 'congratulations_vect', 'connection_vect', 'consider_vect', 'considering_vect', 'constant_vect', 'constantly_vect', 'contact_vect', 'contacted_vect', 'contacts_vect', 'content_vect', 'contents_vect', 'continue_vect', 'contract_vect', 'control_vect', 'convey_vect', 'convinced_vect', 'cool_vect', 'coping_vect', 'copy_vect', 'cornwall_vect', 'correct_vect', 'cos_vect', 'cost_vect', 'costa_vect', 'costs_vect', 'costå_vect', 'could_vect', 'count_vect', 'countin_vect', 'country_vect', 'couple_vect', 'course_vect', 'cover_vect', 'coz_vect', 'cr9_vect', 'cramps_vect', 'crave_vect', 'crazy_vect', 'created_vect', 'credit_vect', 'credited_vect', 'credits_vect', 'creepy_vect', 'crisis_vect', 'crore_vect', 'cross_vect', 'croydon_vect', 'cruise_vect', 'cry_vect', 'cs_vect', 'csbcm4235wc1n3xx_vect', 'csstop_vect', 'cud_vect', 'cuddling_vect', 'cum_vect', 'cup_vect', 'curious_vect', 'current_vect', 'currently_vect', 'cust_vect', 'custcare_vect', 'custcare08718720201_vect', 'custom_vect', 'customer_vect', 'customers_vect', 'cut_vect', 'cute_vect', 'cutting_vect', 'cuz_vect', 'cw25wx_vect', 'da_vect', 'dad_vect', 'daddy_vect', 'daily_vect', 'damn_vect', 'dance_vect', 'dancing_vect', 'dare_vect', 'dark_vect', 'darlin_vect', 'darling_vect', 'darren_vect', 'dat_vect', 'date_vect', 'dates_vect', 'dating_vect', 'dave_vect', 'day_vect', 'days_vect', 'de_vect', 'dead_vect', 'deal_vect', 'dealer_vect', 'dealing_vect', 'dear_vect', 'dearly_vect', 'death_vect', 'decide_vect', 'decided_vect', 'decimal_vect', 'decision_vect', 'deep_vect', 'def_vect', 'definite_vect', 'definitely_vect', 'del_vect', 'delete_vect', 'deleted_vect', 'delhi_vect', 'deliver_vect', 'delivered_vect', 'deliveredtomorrow_vect', 'delivery_vect', 'dem_vect', 'demand_vect', 'den_vect', 'denis_vect', 'department_vect', 'depends_vect', 'depressed_vect', 'derek_vect', 'desires_vect', 'desperate_vect', 'details_vect', 'dey_vect', 'dhoni_vect', 'dial_vect', 'dick_vect', 'dictionary_vect', 'didn_vect', 'didnt_vect', 'didt_vect', 'die_vect', 'died_vect', 'diet_vect', 'different_vect', 'difficult_vect', 'digital_vect', 'dignity_vect', 'din_vect', 'dinner_vect', 'dint_vect', 'direct_vect', 'directly_vect', 'dirty_vect', 'dis_vect', 'discount_vect', 'discuss_vect', 'dislikes_vect', 'display_vect', 'distance_vect', 'distract_vect', 'disturb_vect', 'division_vect', 'dload_vect', 'dnt_vect', 'doc_vect', 'docs_vect', 'doctor_vect', 'doesnt_vect', 'dog_vect', 'dogging_vect', 'doggy_vect', 'doin_vect', 'dollars_vect', 'don_vect', 'done_vect', 'dont_vect', 'donåõt_vect', 'door_vect', 'dorm_vect', 'double_vect', 'dough_vect', 'download_vect', 'downloads_vect', 'draw_vect', 'dream_vect', 'dreams_vect', 'dress_vect', 'dressed_vect', 'dresser_vect', 'drink_vect', 'drinking_vect', 'drinks_vect', 'drive_vect', 'driver_vect', 'drivin_vect', 'driving_vect', 'drop_vect', 'dropped_vect', 'drug_vect', 'drugs_vect', 'drunk_vect', 'dry_vect', 'ds_vect', 'dubsack_vect', 'dude_vect', 'due_vect', 'dun_vect', 'dunno_vect', 'durban_vect', 'dvd_vect', 'earlier_vect', 'early_vect', 'earth_vect', 'easier_vect', 'easily_vect', 'east_vect', 'easter_vect', 'easy_vect', 'eat_vect', 'eaten_vect', 'eatin_vect', 'eating_vect', 'ebay_vect', '
ec2a_vect', 'ee_vect', 'eek_vect', 'eerie_vect', 'effects_vect', 'eg_vect', 'egg_vect', 'eggs_vect', 'eh_vect', 'eight_vect', 'either_vect', 'ela_vect', 'electricity_vect', 'else_vect', 'elsewhere_vect', 'em_vect', 'email_vect', 'embarassed_vect', 'empty_vect', 'end_vect', 'ended_vect', 'ending_vect', 'ends_vect', 'enemy_vect', 'energy_vect', 'eng_vect', 'engin_vect', 'england_vect', 'english_vect', 'enjoy_vect', 'enjoyed_vect', 'enough_vect', 'enter_vect', 'entered_vect', 'entitled_vect', 'entry_vect', 'enuff_vect', 'envelope_vect', 'er_vect', 'erm_vect', 'escape_vect', 'especially_vect', 'esplanade_vect', 'eta_vect', 'etc_vect', 'euro_vect', 'euro2004_vect', 'europe_vect', 'eve_vect', 'eveb_vect', 'even_vect', 'evening_vect', 'event_vect', 'ever_vect', 'every_vect', 'everybody_vect', 'everyday_vect', 'everyone_vect', 'everything_vect', 'everywhere_vect', 'evn_vect', 'evng_vect', 'ex_vect', 'exact_vect', 'exactly_vect', 'exam_vect', 'exams_vect', 'excellent_vect', 'except_vect', 'exciting_vect', 'excuse_vect', 'excuses_vect', 'executive_vect', 'exeter_vect', 'exhausted_vect', 'expect_vect', 'expecting_vect', 'expensive_vect', 'experience_vect', 'expired_vect', 'expires_vect', 'explain_vect', 'explicit_vect', 'explosive_vect', 'express_vect', 'extra_vect', 'eye_vect', 'eyes_vect', 'fa_vect', 'fab_vect', 'face_vect', 'facebook_vect', 'fact_vect', 'faggy_vect', 'failed_vect', 'fair_vect', 'faith_vect', 'fall_vect', 'falls_vect', 'family_vect', 'fan_vect', 'fancies_vect', 'fancy_vect', 'fantasies_vect', 'fantastic_vect', 'fantasy_vect', 'far_vect', 'farm_vect', 'fast_vect', 'faster_vect', 'fat_vect', 'father_vect', 'fathima_vect', 'fault_vect', 'fave_vect', 'favorite_vect', 'favour_vect', 'favourite_vect', 'fb_vect', 'feb_vect', 'february_vect', 'feel_vect', 'feelin_vect', 'feeling_vect', 'feels_vect', 'fees_vect', 'feet_vect', 'fell_vect', 'felt_vect', 'fetch_vect', 'fever_vect', 'field_vect', 'fifteen_vect', 'fight_vect', 'fighting_vect', 'figure_vect', 'file_vect', 'files_vect', 'fill_vect', 'filling_vect', 'fills_vect', 'film_vect', 'final_vect', 'finally_vect', 'find_vect', 'fine_vect', 'fingers_vect', 'finish_vect', 'finished_vect', 'first_vect', 'fit_vect', 'fix_vect', 'fixed_vect', 'flag_vect', 'flaked_vect', 'flash_vect', 'flat_vect', 'flight_vect', 'flights_vect', 'flirt_vect', 'floor_vect', 'flower_vect', 'fml_vect', 'fo_vect', 'follow_vect', 'followed_vect', 'following_vect', 'fone_vect', 'food_vect', 'fool_vect', 'football_vect', 'force_vect', 'foreign_vect', 'forever_vect', 'forevr_vect', 'forget_vect', 'forgets_vect', 'forgiven_vect', 'forgot_vect', 'format_vect', 'forums_vect', 'forward_vect', 'forwarded_vect', 'found_vect', 'four_vect', 'fr_vect', 'fran_vect', 'freak_vect', 'free_vect', 'freefone_vect', 'freemsg_vect', 'freephone_vect', 'freezing_vect', 'fren_vect', 'frens_vect', 'fret_vect', 'fri_vect', 'friday_vect', 'friend_vect', 'friends_vect', 'friendship_vect', 'fringe_vect', 'frm_vect', 'frnd_vect', 'frnds_vect', 'frndship_vect', 'fuck_vect', 'fuckin_vect', 'fucking_vect', 'ful_vect', 'full_vect', 'fullonsmscom_vect', 'fun_vect', 'funny_vect', 'future_vect', 'fyi_vect', 'gal_vect', 'gals_vect', 'game_vect', 'games_vect', 'gang_vect', 'gap_vect', 'gaps_vect', 'garage_vect', 'garbage_vect', 'gary_vect', 'gas_vect', 'gautham_vect', 'gave_vect', 'gay_vect', 'gd_vect', 'ge_vect', 'gee_vect', 'geeee_vect', 'geeeee_vect', 'gender_vect', 'generally_vect', 'genius_vect', 'gentle_vect', 'gentleman_vect', 'gently_vect', 'germany_vect', 'get_vect', 'gets_vect', 'gettin_vect', 'getting_vect', 'gf_vect', 'gibbs_vect', 'gift_vect', 'gim_vect', 'girl_vect', 'girls_vect', 'gist_vect', 'giv_vect', 'give_vect', 'given_vect', 'gives_vect', 'giving_vect', 'glad_vect', 'gn_vect', 'go_vect', 'goal_vect', 'god_vect', 'goes_vect', 'goin_vect', 'going_vect', 'gold_vect', 'gon_vect', 'gona_vect', 'gone_vect', 'good_vect', 'goodmorning_vect', 'goodnight_vect', 'goodnite_vect', 'google_vect', 'gorgeous_vect', 'gossip_vect', 'got_vect', 'goto_vect', 'gotten_vect', 'govtinstituitions_vect', 'gr8_vect', 'grace_vect', 'gram_vect', 'grand_vect', 'granite_vect', 'gravity_vect', 'great_vect', 'green_vect', 'greet_vect', 'greetings_vect', 'grins_vect', 'grl_vect', 'ground_vect', 'group_vect', 'gt_vect', 'guaranteed_vect', 'gud_vect', 'gudnite_vect', 'guess_vect', 'guessing_vect', 'guide_vect', 'guilty_vect', 'guy_vect', 'guys_vect', 'gym_vect', 'ha_vect', 'haf_vect', 'haha_vect', 'hai_vect', 'hair_vect', 'haiz_vect', 'half_vect', 'halloween_vect', 'ham_vect', 'hand_vect', 'handed_vect', 'handle_vect', 'hands_vect', 'handset_vect', 'hanging_vect', 'happen_vect', 'happened_vect', 'happening_vect', 'happens_vect', 'happiness_vect', 'happy_vect', 'hard_vect', 'hardcore_vect', 'hardly_vect', 'harry_vect', 'hate_vect', 'hav_vect', 'havent_vect', 'havenåõt_vect', 'havin_vect', 'head_vect', 'headache_vect', 'headin_vect', 'heads_vect', 'hear_vect', 'heard_vect', 'heart_vect', 'heavy_vect', 'hee_vect', 'height_vect', 'held_vect', 'helen_vect', 'hell_vect', 'hella_vect', 'hello_vect', 'help_vect', 'help08712400602450p_vect', 'helpline_vect', 'hence_vect', 'henry_vect', 'heri_vect', 'herlove_vect', 'hes_vect', 'hex_vect', 'hey_vect', 'hgsuite3422lands_vect', 'hi_vect', 'hide_vect', 'high_vect', 'hill_vect', 'hint_vect', 'hip_vect', 'history_vect', 'hit_vect', 'hiya_vect', 'hl_vect', 'hlp_vect', 'hmm_vect', 'hmmm_vect', 'hmv_vect', 'ho_vect', 'hockey_vect', 'hol_vect', 'hold_vect', 'holder_vect', 'holding_vect', 'holiday_vect', 'holla_vect', 'hols_vect', 'holy_vect', 'home_vect', 'honey_vect', 'hook_vect', 'hop_vect', 'hope_vect', 'hoped_vect', 'hopefully_vect', 'hoping_vect', 'horny_vect', 'horo_vect', 'horrible_vect', 'hospital_vect', 'hospitals_vect', 'hostel_vect', 'hot_vect', 'hotel_vect', 'hotels_vect', 'hour_vect', 'hours_vect', 'house_vect', 'housemaid_vect', 'however_vect', 'hows_vect', 'howz_vect', 'hr_vect', 'hrishi_vect', 'hrs_vect', 'http_vect', 'hubby_vect', 'hug_vect', 'huh_vect', 'hun_vect', 'hungry_vect', 'hunny_vect', 'hurry_vect', 'hurt_vect', 'hurting_vect', 'hurts_vect', 'husband_vect', 'hv_vect', 'hw_vect', 'hyde_vect', 'iam_vect', 'ibhltd_vect', 'ibiza_vect', 'ic_vect', 'ice_vect', 'id_vect', 'idea_vect', 'ideal_vect', 'ideas_vect', 'identifier_vect', 'idiot_vect', 'idk_vect', 'ignore_vect', 'ikea_vect', 'il_vect', 'ill_vect', 'im_vect', 'imagine_vect', 'imma_vect', 'immediately_vect', 'imp_vect', 'important_vect', 'impossible_vect', 'improved_vect', 'in2_vect', 'inc_vect', 'inches_vect', 'incident_vect', 'include_vect', 'including_vect', 'inclusive_vect', 'inconsiderate_vect', 'indeed_vect', 'india_vect', 'indian_vect', 'indians_vect', 'indicate_vect', 'infections_vect', 'infernal_vect', 'info_vect', 'inform_vect', 'information_vect', 'informed_vect', 'innings_vect', 'insha_vect', 'inside_vect', 'instantly_vect', 'instead_vect', 'instructions_vect', 'insurance_vect', 'intelligent_vect', 'interest_vect', 'interested_vect', 'interesting_vect', 'interflora_vect', 'internet_vect', 'intro_vect', 'invest_vect', 'invite_vect', 'invited_vect', 'inviting_vect', 'iouri_vect', 'ip4_vect', 'ipod_vect', 'irritating_vect', 'iscoming_vect', 'ish_vect', 'island_vect', 'islands_vect', 'isnt_vect', 'issue_vect', 'issues_vect', 'it_vect', 'italian_vect', 'its_vect', 'itz_vect', 'itåõs_vect', 'ive_vect', 'iz_vect', 'izzit_vect', 'iåõm_vect', 'jacket_vect', 'jamster_vect', 'jan_vect', 'january_vect', 'jason_vect', 'java_vect', 'jay_vect', 'jazz_vect', 'jealous_vect', 'jeans_vect', 'jen_vect', 'jenny_vect', 'jess_vect', 'jesus_vect', 'jiayin_vect', 'jiu_vect', 'jo_vect', 'joanna_vect', 'job_vect', 'jogging_vect', 'john_vect', 'join_vect', 'joined_vect', 'joining_vect', 'joke_vect', 'jokes_vect', 'jokin_vect', 'joking_vect', 'jolly_vect', 'joy_vect', 'jsco_vect', 'jst_vect', 'juan_vect', 'juicy_vect', 'july_vect', 'june_vect', 'jus_vect', 'juz_vect', 'k52_vect', 'kadeem_vect', 'kaiez_vect', 'kallis_vect', 'kano_vect', 'kappa_vect', 'karaoke_vect', 'kate_vect', 'kay_vect', 'kb_vect', 'ke_vect', 'keep_vect', 'keeping_vect', 'keeps_vect', 'kent_vect', 'kept_vect', 'kerala_vect', 'key_vect', 'keys_vect', 'ki_vect', 'kick_vect', 'kid_vect', 'kidding_vect', 'kids_vect', 'kidz_vect', 'kind_vect', 'kinda_vect', 'kindly_vect', 'king_vect', 'kiss_vect', 'kisses_vect', 'kk_vect', 'knackered_vect', 'knew_vect', 'knock_vect', 'know_vect', 'knowing_vect', 'knows_vect', 'knw_vect', 'kz_vect', 'l8r_vect', 'la_vect', 'lab_vect', 'ladies_vect', 'lady_vect', 'lag_ve
ct', 'laid_vect', 'land_vect', 'landline_vect', 'langport_vect', 'language_vect', 'laptop_vect', 'lar_vect', 'largest_vect', 'last_vect', 'late_vect', 'later_vect', 'latest_vect', 'latr_vect', 'laugh_vect', 'laughing_vect', 'law_vect', 'lazy_vect', 'ldn_vect', 'ldnw15h_vect', 'le_vect', 'lead_vect', 'learn_vect', 'least_vect', 'leave_vect', 'leaves_vect', 'leaving_vect', 'lect_vect', 'lecture_vect', 'left_vect', 'legal_vect', 'legs_vect', 'leh_vect', 'lei_vect', 'lem_vect', 'less_vect', 'lesson_vect', 'lessons_vect', 'let_vect', 'lets_vect', 'letter_vect', 'letters_vect', 'liao_vect', 'library_vect', 'lick_vect', 'licks_vect', 'lido_vect', 'lie_vect', 'lies_vect', 'life_vect', 'lifetime_vect', 'lift_vect', 'light_vect', 'lik_vect', 'like_vect', 'liked_vect', 'likely_vect', 'likes_vect', 'lil_vect', 'line_vect', 'linerental_vect', 'lines_vect', 'link_vect', 'lion_vect', 'lionm_vect', 'lionp_vect', 'lions_vect', 'lip_vect', 'list_vect', 'listen_vect', 'listening_vect', 'literally_vect', 'little_vect', 'live_vect', 'liverpool_vect', 'living_vect', 'lk_vect', 'll_vect', 'lmao_vect', 'lo_vect', 'loads_vect', 'loan_vect', 'loans_vect', 'local_vect', 'locations_vect', 'lock_vect', 'log_vect', 'login_vect', 'logo_vect', 'logopic_vect', 'lol_vect', 'london_vect', 'lonely_vect', 'long_vect', 'longer_vect', 'look_vect', 'lookatme_vect', 'looked_vect', 'lookin_vect', 'looking_vect', 'looks_vect', 'lor_vect', 'lose_vect', 'losing_vect', 'loss_vect', 'lost_vect', 'lot_vect', 'lotr_vect', 'lots_vect', 'lou_vect', 'loud_vect', 'lounge_vect', 'lousy_vect', 'lovable_vect', 'love_vect', 'loved_vect', 'lovely_vect', 'loveme_vect', 'lover_vect', 'loverboy_vect', 'lovers_vect', 'loves_vect', 'loving_vect', 'low_vect', 'lower_vect', 'loyal_vect', 'loyalty_vect', 'ls15hb_vect', 'lt_vect', 'ltd_vect', 'luck_vect', 'lucky_vect', 'lucy_vect', 'lunch_vect', 'luv_vect', 'lux_vect', 'luxury_vect', 'lyf_vect', 'lyfu_vect', 'lyk_vect', 'm227xy_vect', 'm26_vect', 'm263uz_vect', 'm8s_vect', 'mac_vect', 'machan_vect', 'macho_vect', 'mad_vect', 'madam_vect', 'made_vect', 'mag_vect', 'maga_vect', 'magical_vect', 'mah_vect', 'mail_vect', 'mailbox_vect', 'main_vect', 'maintain_vect', 'major_vect', 'make_vect', 'makes_vect', 'makin_vect', 'making_vect', 'malaria_vect', 'male_vect', 'mall_vect', 'man_vect', 'managed_vect', 'management_vect', 'many_vect', 'map_vect', 'march_vect', 'mark_vect', 'market_vect', 'marriage_vect', 'married_vect', 'marry_vect', 'masters_vect', 'match_vect', 'matches_vect', 'mate_vect', 'mates_vect', 'matrix3_vect', 'matter_vect', 'max10mins_vect', 'maximize_vect', 'maxå_vect', 'may_vect', 'mayb_vect', 'maybe_vect', 'mca_vect', 'mcat_vect', 'meal_vect', 'mean_vect', 'meaning_vect', 'means_vect', 'meant_vect', 'meanwhile_vect', 'med_vect', 'medical_vect', 'medicine_vect', 'meds_vect', 'meet_vect', 'meetin_vect', 'meeting_vect', 'meh_vect', 'mei_vect', 'member_vect', 'members_vect', 'men_vect', 'menu_vect', 'merry_vect', 'mess_vect', 'message_vect', 'messaged_vect', 'messages_vect', 'messaging_vect', 'met_vect', 'mid_vect', 'middle_vect', 'midnight_vect', 'mids_vect', 'might_vect', 'miles_vect', 'milk_vect', 'min_vect', 'mind_vect', 'mine_vect', 'mini_vect', 'minimum_vect', 'minor_vect', 'mins_vect', 'minute_vect', 'minutes_vect', 'minuts_vect', 'miracle_vect', 'mis_vect', 'miserable_vect', 'miss_vect', 'missed_vect', 'missin_vect', 'missing_vect', 'mistake_vect', 'mistakes_vect', 'mite_vect', 'mm_vect', 'mmm_vect', 'mmmm_vect', 'mmmmmm_vect', 'mnths_vect', 'mo_vect', 'moan_vect', 'mob_vect', 'mobile_vect', 'mobiles_vect', 'mobilesdirect_vect', 'mobilesvary_vect', 'mobileupd8_vect', 'mobno_vect', 'moby_vect', 'mode_vect', 'model_vect', 'module_vect', 'modules_vect', 'moji_vect', 'mojibiola_vect', 'mokka_vect', 'mom_vect', 'moment_vect', 'moments_vect', 'moms_vect', 'mon_vect', 'monday_vect', 'money_vect', 'monkeys_vect', 'mono_vect', 'month_vect', 'monthly_vect', 'months_vect', 'mood_vect', 'moon_vect', 'moral_vect', 'morn_vect', 'morning_vect', 'mostly_vect', 'mother_vect', 'motorola_vect', 'mouth_vect', 'move_vect', 'moved_vect', 'movie_vect', 'movies_vect', 'moving_vect', 'mp3_vect', 'mr_vect', 'mrng_vect', 'mrt_vect', 'msg_vect', 'msgs_vect', 'mths_vect', 'mu_vect', 'much_vect', 'mum_vect', 'mummy_vect', 'murder_vect', 'murdered_vect', 'murderer_vect', 'music_vect', 'must_vect', 'muz_vect', 'na_vect', 'nag_vect', 'nah_vect', 'naked_vect', 'name_vect', 'name1_vect', 'name2_vect', 'named_vect', 'names_vect', 'nan_vect', 'nap_vect', 'nasdaq_vect', 'nat_vect', 'national_vect', 'natural_vect', 'nature_vect', 'naughty_vect', 'nb_vect', 'nd_vect', 'ne_vect', 'near_vect', 'nearly_vect', 'necessarily_vect', 'necklace_vect', 'ned_vect', 'need_vect', 'needed_vect', 'needs_vect', 'neither_vect', 'net_vect', 'netcollex_vect', 'network_vect', 'networks_vect', 'neva_vect', 'never_vect', 'new_vect', 'newest_vect', 'news_vect', 'next_vect', 'ni8_vect', 'nice_vect', 'nigeria_vect', 'night_vect', 'nights_vect', 'nimya_vect', 'nite_vect', 'no1_vect', 'nobody_vect', 'noe_vect', 'nokia_vect', 'nokias_vect', 'noline_vect', 'none_vect', 'noon_vect', 'nope_vect', 'norm_vect', 'norm150ptone_vect', 'normal_vect', 'normally_vect', 'northampton_vect', 'note_vect', 'nothin_vect', 'nothing_vect', 'notice_vect', 'noun_vect', 'nowadays_vect', 'nt_vect', 'ntt_vect', 'ntwk_vect', 'num_vect', 'number_vect', 'numbers_vect', 'nuther_vect', 'nvm_vect', 'nw_vect', 'nxt_vect', 'nyc_vect', 'nydc_vect', 'nyt_vect', 'o2_vect', 'obviously_vect', 'odi_vect', 'offer_vect', 'offers_vect', 'office_vect', 'official_vect', 'officially_vect', 'ofice_vect', 'often_vect', 'oh_vect', 'oi_vect', 'oic_vect', 'ok_vect', 'okay_vect', 'okey_vect', 'okie_vect', 'ola_vect', 'old_vect', 'omg_vect', 'omw_vect', 'one_vect', 'ones_vect', 'oni_vect', 'online_vect', 'onto_vect', 'onwards_vect', 'oooh_vect', 'oops_vect', 'open_vect', 'opening_vect', 'operator_vect', 'opinion_vect', 'opportunity_vect', 'opt_vect', 'option_vect', 'optout_vect', 'or2stoptxt_vect', 'orange_vect', 'oranges_vect', 'orchard_vect', 'order_vect', 'ordered_vect', 'oredi_vect', 'original_vect', 'oru_vect', 'os_vect', 'oso_vect', 'others_vect', 'otherwise_vect', 'otside_vect', 'outside_vect', 'outstanding_vect', 'outta_vect', 'ovulation_vect', 'oz_vect', 'pa_vect', 'pack_vect', 'package_vect', 'page_vect', 'pages_vect', 'paid_vect', 'pain_vect', 'painful_vect', 'painting_vect', 'panic_vect', 'paper_vect', 'papers_vect', 'paperwork_vect', 'parco_vect', 'parent_vect', 'parents_vect', 'paris_vect', 'park_vect', 'parked_vect', 'parking_vect', 'part_vect', 'partner_vect', 'partnership_vect', 'party_vect', 'pass_vect', 'passed_vect', 'password_vect', 'past_vect', 'pattern_vect', 'patty_vect', 'pay_vect', 'paying_vect', 'payment_vect', 'payoh_vect', 'pc_vect', 'peace_vect', 'pence_vect', 'people_vect', 'per_vect', 'perfect_vect', 'period_vect', 'person_vect', 'personal_vect', 'pete_vect', 'petey_vect', 'pg_vect', 'philosophy_vect', 'phoenix_vect', 'phone_vect', 'phones_vect', 'photo_vect', 'photos_vect', 'pic_vect', 'pick_vect', 'picked_vect', 'picking_vect', 'pics_vect', 'picsfree1_vect', 'picture_vect', 'pictures_vect', 'pie_vect', 'pieces_vect', 'pig_vect', 'pilates_vect', 'pin_vect', 'pink_vect', 'piss_vect', 'pissed_vect', 'pix_vect', 'pizza_vect', 'place_vect', 'places_vect', 'plan_vect', 'planned_vect', 'planning_vect', 'plans_vect', 'play_vect', 'played_vect', 'player_vect', 'players_vect', 'playing_vect', 'please_vect', 'pleased_vect', 'pleasure_vect', 'plenty_vect', 'pls_vect', 'plus_vect', 'plz_vect', 'pm_vect', 'po_vect', 'pobox_vect', 'pobox334_vect', 'pobox36504w45wq_vect', 'pobox45w2tg150p_vect', 'pobox84_vect', 'pod_vect', 'point_vect', 'points_vect', 'poker_vect', 'pole_vect', 'police_vect', 'politicians_vect', 'poly_vect', 'polyphonic_vect', 'polys_vect', 'pongal_vect', 'poor_vect', 'pop_vect', 'popped_vect', 'porn_vect', 'possession_vect', 'possible_vect', 'post_vect', 'postcard_vect', 'postcode_vect', 'posted_vect', 'posts_vect', 'potential_vect', 'potter_vect', 'pound_vect', 'pounds_vect', 'pouts_vect', 'power_vect', 'ppl_vect', 'pple_vect', 'ppm_vect', 'prabha_vect', 'practice_vect', 'practicing_vect', 'pray_vect', 'prefer_vect', 'premier_vect', 'prepare_vect', 'prescription_vect', 'present_vect', 'press_vect', 'pretty_vect', 'prey_vect', 'price_vect', 'prince_vect', 'princess_vect', 'print_vect', 'privacy_vect', 'private_vect', 'prize_vect', 'prob_vect', 'probably_vect', 'problem_vect', 'problems_vect', 'process_vect', 'processed_vect', 'prof_vect', 'profit_vect', 'program_vect',
'project_vect', 'prolly_vect', 'promise_vect', 'promises_vect', 'promo_vect', 'proof_vect', 'properly_vect', 'prospects_vect', 'provided_vect', 'ps_vect', 'ptbo_vect', 'pub_vect', 'pull_vect', 'purchase_vect', 'purity_vect', 'purpose_vect', 'push_vect', 'pushes_vect', 'pussy_vect', 'put_vect', 'puttin_vect', 'putting_vect', 'qatar_vect', 'quality_vect', 'queen_vect', 'ques_vect', 'question_vect', 'questions_vect', 'quick_vect', 'quickly_vect', 'quiet_vect', 'quit_vect', 'quite_vect', 'quiz_vect', 'quote_vect', 'quoting_vect', 'racing_vect', 'radio_vect', 'railway_vect', 'rain_vect', 'raining_vect', 'raise_vect', 'rakhesh_vect', 'rally_vect', 'ran_vect', 'random_vect', 'randomly_vect', 'randy_vect', 'rang_vect', 'range_vect', 'ranjith_vect', 'rate_vect', 'rates_vect', 'rather_vect', 'rays_vect', 'rcvd_vect', 'rd_vect', 're_vect', 'reach_vect', 'reached_vect', 'reaching_vect', 'reaction_vect', 'read_vect', 'readers_vect', 'reading_vect', 'ready_vect', 'real_vect', 'realise_vect', 'reality_vect', 'realized_vect', 'really_vect', 'realy_vect', 'reason_vect', 'reasonable_vect', 'reasons_vect', 'reboot_vect', 'recd_vect', 'receipt_vect', 'receive_vect', 'received_vect', 'receiving_vect', 'recent_vect', 'recently_vect', 'recession_vect', 'record_vect', 'records_vect', 'recovery_vect', 'red_vect', 'ref_vect', 'reference_vect', 'reg_vect', 'regards_vect', 'register_vect', 'registered_vect', 'regret_vect', 'regular_vect', 'relation_vect', 'relax_vect', 'released_vect', 'rem_vect', 'remain_vect', 'remains_vect', 'remember_vect', 'remembered_vect', 'remembr_vect', 'remind_vect', 'reminder_vect', 'remove_vect', 'rent_vect', 'rental_vect', 'rentl_vect', 'repair_vect', 'repeat_vect', 'replied_vect', 'reply_vect', 'replying_vect', 'report_vect', 'representative_vect', 'request_vect', 'requests_vect', 'research_vect', 'resend_vect', 'respect_vect', 'respond_vect', 'responding_vect', 'response_vect', 'responsibility_vect', 'rest_vect', 'restaurant_vect', 'result_vect', 'results_vect', 'retrieve_vect', 'return_vect', 'returned_vect', 'returns_vect', 'reveal_vect', 'revealed_vect', 'review_vect', 'revision_vect', 'reward_vect', 'rhythm_vect', 'rice_vect', 'rich_vect', 'ride_vect', 'right_vect', 'rights_vect', 'ring_vect', 'ringtone_vect', 'ringtones_vect', 'rite_vect', 'river_vect', 'road_vect', 'roads_vect', 'roast_vect', 'rock_vect', 'rocks_vect', 'rofl_vect', 'roger_vect', 'role_vect', 'ron_vect', 'room_vect', 'roommate_vect', 'roommates_vect', 'rooms_vect', 'rose_vect', 'round_vect', 'row_vect', 'roww1j6hl_vect', 'roww1jhl_vect', 'royal_vect', 'rply_vect', 'rs_vect', 'rstm_vect', 'ru_vect', 'rub_vect', 'rude_vect', 'rule_vect', 'run_vect', 'running_vect', 'runs_vect', 'rush_vect', 'sacrifice_vect', 'sad_vect', 'sae_vect', 'safe_vect', 'said_vect', 'salam_vect', 'salary_vect', 'sale_vect', 'salon_vect', 'sam_vect', 'santa_vect', 'sar_vect', 'sarasota_vect', 'sarcastic_vect', 'sary_vect', 'sat_vect', 'sathya_vect', 'saturday_vect', 'savamob_vect', 'save_vect', 'saved_vect', 'saw_vect', 'say_vect', 'saying_vect', 'says_vect', 'scared_vect', 'scary_vect', 'sch_vect', 'schedule_vect', 'school_vect', 'schools_vect', 'science_vect', 'scold_vect', 'score_vect', 'scores_vect', 'scotland_vect', 'scream_vect', 'screaming_vect', 'scrounge_vect', 'se_vect', 'sea_vect', 'search_vect', 'searching_vect', 'season_vect', 'seat_vect', 'sec_vect', 'second_vect', 'seconds_vect', 'secret_vect', 'secretary_vect', 'secs_vect', 'sed_vect', 'see_vect', 'seeing_vect', 'seem_vect', 'seemed_vect', 'seems_vect', 'seen_vect', 'selected_vect', 'selection_vect', 'self_vect', 'sell_vect', 'selling_vect', 'sells_vect', 'sem_vect', 'semester_vect', 'sen_vect', 'send_vect', 'sender_vect', 'sending_vect', 'sense_vect', 'sent_vect', 'sentence_vect', 'sept_vect', 'series_vect', 'serious_vect', 'seriously_vect', 'service_vect', 'services_vect', 'serving_vect', 'set_vect', 'setting_vect', 'settings_vect', 'settle_vect', 'settled_vect', 'seven_vect', 'several_vect', 'sex_vect', 'sexy_vect', 'sh_vect', 'sha_vect', 'shall_vect', 'share_vect', 'shd_vect', 'sheets_vect', 'shes_vect', 'shesil_vect', 'shining_vect', 'ship_vect', 'shipping_vect', 'shirt_vect', 'shirts_vect', 'shit_vect', 'shld_vect', 'shocking_vect', 'shoot_vect', 'shop_vect', 'shoppin_vect', 'shopping_vect', 'short_vect', 'shorter_vect', 'shortly_vect', 'shot_vect', 'shoving_vect', 'show_vect', 'shower_vect', 'showing_vect', 'shows_vect', 'shu_vect', 'shuhui_vect', 'shy_vect', 'si_vect', 'sick_vect', 'side_vect', 'sighs_vect', 'sight_vect', 'sign_vect', 'signing_vect', 'silence_vect', 'silent_vect', 'silver_vect', 'sim_vect', 'simple_vect', 'simply_vect', 'since_vect', 'sing_vect', 'singing_vect', 'single_vect', 'singles_vect', 'sipix_vect', 'sir_vect', 'sis_vect', 'sister_vect', 'sit_vect', 'site_vect', 'sitting_vect', 'situation_vect', 'siva_vect', 'six_vect', 'size_vect', 'sk3_vect', 'sk38xh_vect', 'skilgme_vect', 'skip_vect', 'sky_vect', 'skype_vect', 'skyped_vect', 'slap_vect', 'slave_vect', 'sleep_vect', 'sleepin_vect', 'sleeping_vect', 'sleepy_vect', 'slept_vect', 'slice_vect', 'slide_vect', 'slightly_vect', 'slip_vect', 'slippers_vect', 'slo_vect', 'slots_vect', 'slow_vect', 'slowly_vect', 'small_vect', 'smashed_vect', 'smile_vect', 'smiles_vect', 'smiling_vect', 'smoke_vect', 'smoking_vect', 'sms_vect', 'smth_vect', 'sn_vect', 'snake_vect', 'snow_vect', 'social_vect', 'sofa_vect', 'soft_vect', 'software_vect', 'sol_vect', 'some1_vect', 'somebody_vect', 'someone_vect', 'somethin_vect', 'something_vect', 'sometimes_vect', 'somewhere_vect', 'song_vect', 'songs_vect', 'sony_vect', 'sonyericsson_vect', 'soon_vect', 'sooner_vect', 'sore_vect', 'sorry_vect', 'sort_vect', 'sorting_vect', 'sound_vect', 'sounds_vect', 'south_vect', 'sp_vect', 'space_vect', 'spanish_vect', 'speak_vect', 'speaking_vect', 'special_vect', 'specialcall_vect', 'specially_vect', 'speed_vect', 'spend_vect', 'spending_vect', 'spent_vect', 'spk_vect', 'spoke_vect', 'spoken_vect', 'spook_vect', 'sport_vect', 'sports_vect', 'spree_vect', 'spring_vect', 'sptv_vect', 'sry_vect', 'st_vect', 'staff_vect', 'stamps_vect', 'stand_vect', 'standard_vect', 'standing_vect', 'star_vect', 'staring_vect', 'start_vect', 'started_vect', 'starting_vect', 'starts_vect', 'starwars3_vect', 'statement_vect', 'station_vect', 'stay_vect', 'stayed_vect', 'staying_vect', 'std_vect', 'steam_vect', 'step_vect', 'steve_vect', 'stick_vect', 'sticky_vect', 'still_vect', 'stock_vect', 'stockport_vect', 'stomach_vect', 'stomps_vect', 'stones_vect', 'stop_vect', 'stopped_vect', 'stops_vect', 'store_vect', 'stores_vect', 'story_vect', 'str_vect', 'straight_vect', 'stranger_vect', 'street_vect', 'stress_vect', 'strike_vect', 'strong_vect', 'strongbuy_vect', 'stuck_vect', 'student_vect', 'study_vect', 'studying_vect', 'stuff_vect', 'stupid_vect', 'style_vect', 'stylish_vect', 'sub_vect', 'subpoly_vect', 'subs_vect', 'subscribe6gbpmnth_vect', 'subscribed_vect', 'subscriber_vect', 'subscription_vect', 'success_vect', 'successful_vect', 'successfully_vect', 'sucks_vect', 'sue_vect', 'sufficient_vect', 'suggest_vect', 'suite_vect', 'suits_vect', 'sum1_vect', 'summer_vect', 'sun_vect', 'sunday_vect', 'sunlight_vect', 'sunny_vect', 'sunshine_vect', 'suntec_vect', 'sup_vect', 'super_vect', 'superb_vect', 'superior_vect', 'supervisor_vect', 'supply_vect', 'support_vect', 'suppose_vect', 'supposed_vect', 'suprman_vect', 'sura_vect', 'sure_vect', 'surely_vect', 'surfing_vect', 'surprise_vect', 'surprised_vect', 'survey_vect', 'sux_vect', 'suzy_vect', 'sw7_vect', 'sw73ss_vect', 'sweet_vect', 'swing_vect', 'system_vect', 'ta_vect', 'tablets_vect', 'tahan_vect', 'take_vect', 'taken_vect', 'takes_vect', 'takin_vect', 'taking_vect', 'talent_vect', 'talk_vect', 'talking_vect', 'tampa_vect', 'tape_vect', 'tariffs_vect', 'tat_vect', 'taunton_vect', 'taylor_vect', 'tb_vect', 'tc_vect', 'tcrw1_vect', 'tcs_vect', 'tea_vect', 'teach_vect', 'teacher_vect', 'teaches_vect', 'team_vect', 'tear_vect', 'tease_vect', 'teasing_vect', 'tech_vect', 'technical_vect', 'tee_vect', 'teeth_vect', 'tel_vect', 'telephone_vect', 'tell_vect', 'telling_vect', 'tells_vect', 'telugu_vect', 'temple_vect', 'ten_vect', 'tenants_vect', 'tenerife_vect', 'tension_vect', 'term_vect', 'terms_vect', 'terrible_vect', 'test_vect', 'testing_vect', 'text_vect', 'texted_vect', 'texting_vect', 'textoperator_vect', 'texts_vect', 'th_vect', 'thangam_vect', 'thank_vect', 'thanks_vect', 'thanksgiving_vect', 'thanx_vect', 'that_vect', 'thats_vect', 'thatåõs_vect', 'the_vect', 'theatre_vect', 'themob_vect', 'theory_vect', 'thesis_vect', 'thgt_vect', 'thing_vect', 'things_vect', 'think_vect', 'thinkin_vect', 'thinking_vect', 'thinks_vect', 'thk_vect', 'thnk_vect', 'tho_vect', 'though_vect', 'thought_vect', 'three_vect', 'throat_vect', 'throw_vect', 'thru_vect', 'tht_vect', 'thts_
vect', 'thurs_vect', 'thursday_vect', 'tick_vect', 'ticket_vect', 'tickets_vect', 'tight_vect', 'tihs_vect', 'til_vect', 'till_vect', 'time_vect', 'times_vect', 'timing_vect', 'tired_vect', 'tirunelvali_vect', 'tirupur_vect', 'tissco_vect', 'tkts_vect', 'tm_vect', 'tming_vect', 'tmobile_vect', 'tmr_vect', 'tncs_vect', 'toa_vect', 'toclaim_vect', 'today_vect', 'todays_vect', 'tog_vect', 'together_vect', 'tok_vect', 'told_vect', 'tomarrow_vect', 'tomo_vect', 'tomorrow_vect', 'tone_vect', 'tones_vect', 'tones2youcouk_vect', 'tonight_vect', 'tonite_vect', 'took_vect', 'tool_vect', 'tooo_vect', 'toot_vect', 'top_vect', 'topic_vect', 'torch_vect', 'toshiba_vect', 'tot_vect', 'total_vect', 'totally_vect', 'touch_vect', 'tough_vect', 'tour_vect', 'towards_vect', 'town_vect', 'track_vect', 'trade_vect', 'traffic_vect', 'train_vect', 'training_vect', 'transaction_vect', 'transfer_vect', 'transport_vect', 'travel_vect', 'treat_vect', 'treated_vect', 'tried_vect', 'trip_vect', 'trips_vect', 'trouble_vect', 'true_vect', 'truffles_vect', 'truly_vect', 'trust_vect', 'truth_vect', 'try_vect', 'trying_vect', 'ts_vect', 'tscs_vect', 'tscs087147403231winawk_vect', 'tt_vect', 'ttyl_vect', 'tues_vect', 'tuesday_vect', 'tuition_vect', 'turn_vect', 'turning_vect', 'turns_vect', 'tv_vect', 'twelve_vect', 'twice_vect', 'two_vect', 'txt_vect', 'txtauction_vect', 'txtin_vect', 'txting_vect', 'txtno_vect', 'txts_vect', 'txtstop_vect', 'tyler_vect', 'type_vect', 'tyrone_vect', 'u4_vect', 'ubi_vect', 'ufind_vect', 'ugh_vect', 'uh_vect', 'uk_vect', 'uks_vect', 'ultimatum_vect', 'umma_vect', 'unable_vect', 'uncle_vect', 'understand_vect', 'understanding_vect', 'understood_vect', 'underwear_vect', 'unemployed_vect', 'uni_vect', 'unique_vect', 'university_vect', 'unless_vect', 'unlimited_vect', 'unnecessarily_vect', 'unredeemed_vect', 'unsold_vect', 'unsub_vect', 'unsubscribe_vect', 'upd8_vect', 'update_vect', 'updatenow_vect', 'upgrade_vect', 'upload_vect', 'upset_vect', 'upstairs_vect', 'ur_vect', 'ure_vect', 'urgent_vect', 'urgnt_vect', 'url_vect', 'urn_vect', 'urself_vect', 'us_vect', 'usb_vect', 'use_vect', 'used_vect', 'user_vect', 'usf_vect', 'using_vect', 'usual_vect', 'usually_vect', 'vale_vect', 'valentine_vect', 'valentines_vect', 'valid_vect', 'valid12hrs_vect', 'valuable_vect', 'value_vect', 'valued_vect', 'vary_vect', 've_vect', 'vegas_vect', 'verify_vect', 'version_vect', 'via_vect', 'vid_vect', 'video_vect', 'videochat_vect', 'videophones_vect', 'vijay_vect', 'vikky_vect', 'village_vect', 'violated_vect', 'violence_vect', 'vip_vect', 'virgin_vect', 'visit_vect', 'vivek_vect', 'vl_vect', 'voda_vect', 'vodafone_vect', 'vodka_vect', 'voice_vect', 'voicemail_vect', 'vomit_vect', 'vote_vect', 'voucher_vect', 'vouchers_vect', 'vry_vect', 'vth_vect', 'w45wq_vect', 'wa_vect', 'wah_vect', 'wait_vect', 'waited_vect', 'waitin_vect', 'waiting_vect', 'wake_vect', 'waking_vect', 'wales_vect', 'walk_vect', 'walked_vect', 'walking_vect', 'walmart_vect', 'wan_vect', 'wana_vect', 'want_vect', 'wanted_vect', 'wanting_vect', 'wants_vect', 'wap_vect', 'warm_vect', 'warner_vect', 'waste_vect', 'wasted_vect', 'wat_vect', 'watch_vect', 'watching_vect', 'water_vect', 'wats_vect', 'way_vect', 'wc1n3xx_vect', 'we_vect', 'weak_vect', 'wear_vect', 'wearing_vect', 'weather_vect', 'web_vect', 'website_vect', 'wed_vect', 'wedding_vect', 'wednesday_vect', 'wee_vect', 'weed_vect', 'week_vect', 'weekend_vect', 'weekends_vect', 'weekly_vect', 'weeks_vect', 'weigh_vect', 'weight_vect', 'weird_vect', 'welcome_vect', 'well_vect', 'welp_vect', 'wen_vect', 'went_vect', 'west_vect', 'wet_vect', 'what_vect', 'whatever_vect', 'whats_vect', 'whenever_vect', 'whenevr_vect', 'wherever_vect', 'whether_vect', 'white_vect', 'whn_vect', 'whole_vect', 'whos_vect', 'whose_vect', 'wid_vect', 'widelivecomindex_vect', 'wif_vect', 'wife_vect', 'wil_vect', 'willing_vect', 'win_vect', 'wind_vect', 'wine_vect', 'winner_vect', 'winning_vect', 'wins_vect', 'wipro_vect', 'wisdom_vect', 'wise_vect', 'wish_vect', 'wishes_vect', 'wishing_vect', 'wit_vect', 'within_vect', 'without_vect', 'wiv_vect', 'wk_vect', 'wkend_vect', 'wkg_vect', 'wkly_vect', 'wks_vect', 'wld_vect', 'wml_vect', 'wn_vect', 'wnt_vect', 'wo_vect', 'woke_vect', 'woken_vect', 'woman_vect', 'women_vect', 'wonder_vect', 'wonderful_vect', 'wondering_vect', 'wont_vect', 'woot_vect', 'word_vect', 'words_vect', 'work_vect', 'workin_vect', 'working_vect', 'works_vect', 'world_vect', 'worried_vect', 'worries_vect', 'worry_vect', 'worse_vect', 'worst_vect', 'worth_vect', 'wot_vect', 'would_vect', 'wow_vect', 'write_vect', 'wrong_vect', 'wtf_vect', 'wud_vect', 'wuld_vect', 'wun_vect', 'www4tcbiz_vect', 'wwwcomuknet_vect', 'wwwetlpcoukexpressoffer_vect', 'wwwgetzedcouk_vect', 'wwwldewcom_vect', 'wwwldewcom1win150ppmx3age16_vect', 'wwwmovietriviatv_vect', 'wwwringtonescouk_vect', 'wwwsmsconet_vect', 'wwwtxttowincouk_vect', 'wwwurawinnercom_vect', 'wylie_vect', 'xchat_vect', 'xmas_vect', 'xuhui_vect', 'xx_vect', 'xxx_vect', 'xxxx_vect', 'xxxxx_vect', 'xy_vect', 'ya_vect', 'yahoo_vect', 'yan_vect', 'yar_vect', 'yay_vect', 'yck_vect', 'yeah_vect', 'year_vect', 'years_vect', 'yelling_vect', 'yellow_vect', 'yep_vect', 'yes_vect', 'yest_vect', 'yesterday_vect', 'yet_vect', 'yetunde_vect', 'yijue_vect', 'ym_vect', 'yo_vect', 'yoga_vect', 'yogasana_vect', 'yor_vect', 'you_vect', 'yr_vect', 'yrs_vect', 'yummy_vect', 'yun_vect', 'yuo_vect', 'yup_vect', 'zed_vect', 'zindgi_vect', 'ìï_vect', 'ûò_vect']}, 'training': {'algo': 'Logistic Regression', 'model_file': 'AI0110_1.sav'}} deployer = get_deployer('classification',params=config) deployer.run( )<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import shutil import subprocess from os.path import expanduser import platform deploymentfolder = os.path.join(os.path.dirname(os.path.abspath(__file__)),'HCLT','AION','target') modelname='AION_12' version='1' def createDockerImage(deploymentfolder,modelname,version,learner_type,textdata): modelPath = os.path.join(deploymentfolder) filename = os.path.join(deploymentfolder,'docker_image') modelservice = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','run_modelService.py') shellscript = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','start_modelservice.sh') aix = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','AIX-0.1-py3-none-any.whl') drift = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','Drift-0.1-py3-none-any.whl') sitepackage = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','..','..','..','extensions','site-packages') model_dockerSetup = os.path.join(os.path.dirname(os.path.abspath(__file__)),'dockersetup','docker_'+modelname + '_' + version) docker_setup = os.path.join(model_dockerSetup,modelname + '_' + version) model_sitepackage = os.path.join(model_dockerSetup,'site-packages') model_dockerSetupservicefile = os.path.join(model_dockerSetup,'run_modelService.py') model_dockershellscript = os.path.join(model_dockerSetup,'start_modelservice.sh') model_aix = os.path.join(model_dockerSetup,'AIX-0.1-py3-none-any.whl') model_drift = os.path.join(model_dockerSetup,'Drift-0.1-py3-none-any.whl') try: os.mkdir(model_dockerSetup) except Exception as e: print("Error in creating Setup directpry "+str(e)) pass shutil.copytree(modelPath, docker_setup) if textdata: shutil.copytree(sitepackage, model_sitepackage) modelpretrainpath=os.path.join(model_dockerSetup,'HCLT','AION','PreTrainedModels','TextProcessing') ''' try: os.makedirs(modelpretrainpath, exist_ok=True) except Exception as e: print("Error in creating Setup directpry "+str(e)) pass ''' home = expanduser("~") if platform.system() == 'Windows': hostpretrainpath = os.path.join(home,'AppData','Local','HCLT','AION','PreTrainedModels','TextProcessing') else: hostpretrainpath = os.path.join(home,'HCLT','AION','PreTrainedModels','TextProcessing') shutil.copytree(hostpretrainpath, modelpretrainpath) shutil.copyfile(modelservice, model_dockerSetupservicefile) shutil.copyfile(shellscript, model_dockershellscript) shutil.copyfile(aix, model_aix) shutil.copyfile(drift,model_drift) try: os.mkdir(filename) except: pass requirementfilename = os.path.join(model_dockerSetup,'requirements.txt') installfilename = os.path.join(model_dockerSetup,'install.py') dockerfile = os.path.join(model_dockerSetup,'Dockerfile') dockerdata='FROM python:3.8-slim-buster' dockerdata+='\\n' if textdata: dockerdata+='WORKDIR /root' dockerdata+='\\n' dockerdata+='COPY HCLT HCLT' dockerdata+='\\n' dockerdata+='WORKDIR /app' dockerdata+='\\n' dockerdata+='COPY requirements.txt requirements.txt' dockerdata+='\\n' dockerdata+='COPY '+modelname+'_'+version+' '+modelname+'_'+version dockerdata+='\\n' if textdata: dockerdata+='COPY site-packages site-packages' dockerdata+='\\n'
dockerdata+='COPY install.py install.py' dockerdata+='\\n' dockerdata+='COPY run_modelService.py run_modelService.py' dockerdata+='\\n' dockerdata+='COPY AIX-0.1-py3-none-any.whl AIX-0.1-py3-none-any.whl' dockerdata+='\\n' dockerdata+='COPY Drift-0.1-py3-none-any.whl Drift-0.1-py3-none-any.whl' dockerdata+='\\n' dockerdata+='COPY start_modelservice.sh start_modelservice.sh' dockerdata+='\\n' if textdata: dockerdata+='''RUN apt-get update \\ && apt-get install -y build-essential manpages-dev \\ && python -m pip install --no-cache-dir --upgrade pip \\ && python -m pip install --no-cache-dir pandas==1.2.4 \\ && python -m pip install --no-cache-dir numpy==1.19.5 \\ && python -m pip install --no-cache-dir joblib==1.0.1 \\ && python -m pip install --no-cache-dir Cython==0.29.23 \\ && mv site-packages/* /usr/local/lib/python3.8/site-packages \\ && python -m pip install --no-cache-dir scipy==1.6.3 \\ && python -m pip install --no-cache-dir AIX-0.1-py3-none-any.whl \\ && python -m pip install --no-cache-dir Drift-0.1-py3-none-any.whl \\ && python -m pip install --no-cache-dir scikit-learn==0.24.2 \\ && python -m pip install --no-cache-dir spacy==2.2.3 \\ && python -m pip install --no-cache-dir nltk==3.6.2 \\ && python -m pip install --no-cache-dir textblob==0.15.3 \\ && python -m pip install --no-cache-dir gensim==3.8.3 \\ && python -m pip install --no-cache-dir demoji==1.1.0 \\ && python -m pip install --no-cache-dir lxml==4.6.3 \\ && python -m pip install --no-cache-dir Beautifulsoup4==4.9.3 \\ && python -m pip install --no-cache-dir Unidecode==1.2.0 \\ && python -m pip install --no-cache-dir pyspellchecker==0.6.2 \\ && python -m pip install --no-cache-dir pycontractions==2.0.1 \\ && python -m pip install --no-cache-dir tensorflow==2.4.1 \\ && python -m pip install --no-cache-dir nltk==3.6.2 \\ && python -m pip install --no-cache-dir -r requirements.txt \\ && python install.py \\ && chmod +x start_modelservice.sh ENTRYPOINT ["./start_modelservice.sh"] ''' else: dockerdata+='''RUN apt-get update \\ && apt-get install -y build-essential manpages-dev \\ && python -m pip install --no-cache-dir --upgrade pip \\ && python -m pip install --no-cache-dir pandas==1.2.4 \\ && python -m pip install --no-cache-dir numpy==1.19.5 \\ && python -m pip install --no-cache-dir joblib==1.0.1 \\ && python -m pip install --no-cache-dir Cython==0.29.23 \\ && python -m pip install --no-cache-dir scipy==1.6.3 \\ && python -m pip install --no-cache-dir AIX-0.1-py3-none-any.whl \\ && python -m pip install --no-cache-dir Drift-0.1-py3-none-any.whl \\ && python -m pip install --no-cache-dir scikit-learn==0.24.2 \\ && python -m pip install --no-cache-dir -r requirements.txt \\ && chmod +x start_modelservice.sh ENTRYPOINT ["./start_modelservice.sh"] ''' f = open(dockerfile, "w") f.write(str(dockerdata)) f.close() requirementdata='' requirementdata+='word2number==1.1' if learner_type == 'DL': requirementdata+='\\n' requirementdata+='tensorflow==2.5.0' f = open(requirementfilename, "w") f.write(str(requirementdata)) f.close() if textdata: installfile=''' import nltk import ssl try: _create_unverified_https_context = ssl._create_unverified_context except AttributeError: pass else: ssl._create_default_https_context = _create_unverified_https_context nltk.download('punkt') nltk.download('wordnet') nltk.download('stopwords') nltk.download('averaged_perceptron_tagger')''' f = open(installfilename, "w") f.write(str(installfile)) f.close() try: command = 'docker pull python:3.8-slim-buster' os.system(command); #subprocess.check_call(["chmod", "+x", "start_modelservice.sh"], cwd=model_dockerSetup) subprocess.check_call(["docker", "build", "-t",modelname.lower()+":"+version,"."], cwd=model_dockerSetup) subprocess.check_call(["docker", "save", "-o",modelname.lower()+"_"+version+".tar",modelname.lower()+":"+version], cwd=model_dockerSetup) dockerfilepath = os.path.join(model_dockerSetup,modelname.lower()+"_"+version+".tar") shutil.copyfile(dockerfilepath, os.path.join(filename,modelname.lower()+"_"+version+".tar")) shutil.rmtree(model_dockerSetup) return 'Success','SUCCESSFULLY' except Exception as e: print("Error: "+str(e)) shutil.rmtree(model_dockerSetup) return 'Error',str(e) #createDockerImage(deploymentfolder,modelname,version)<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import subprocess import os import glob import sys import python_minifier def encrypt_files(path): cwd = os.getcwd() secure_path = os.path.join(path,'SecuredScripts') try: if not os.path.exists(secure_path): os.mkdir(secure_path) files = [f for f in glob.glob(path + "/*.py")] for file in files: #encrypted_file_details[0] = file #file = files[0] #print(file) #filename_w_dir = os.path.splitext(file) filename_w_ext = os.path.basename(file) filename, file_extension = os.path.splitext(filename_w_ext) file_folder_path = os.path.join(secure_path,filename) #print(file_folder_path) if not os.path.exists(file_folder_path): os.mkdir(file_folder_path) # Minify python source code minify_file = os.path.join(file_folder_path,filename+'_minify.py') pythonfolder,_ = os.path.split(sys.executable) pyminify_script = os.path.join(pythonfolder,'Scripts','pyminify.exe') minify_command = "\\""+sys.executable+"\\" \\""+pyminify_script+ "\\" \\"" + file + "\\" > \\"" + minify_file+"\\"" subprocess.call(minify_command, shell=True) # Change directory to folder path os.chdir(file_folder_path) # Obfuscate minified file pyarmor_script = os.path.join(pythonfolder,'Scripts','pyarmor.exe') obfusc_commmand = "\\""+sys.executable+"\\" \\""+pyarmor_script+"\\" obfuscate \\"" + minify_file+"\\"" #print(obfusc_commmand) subprocess.call(obfusc_commmand, shell=True) # Change directory to dist path obfusc_file = os.path.join(file_folder_path,'dist',filename+'_minify.py') #print(obfusc_file) chdirpath = os.path.join(file_folder_path,'dist') os.chdir(chdirpath) # Compress obfuscated file compressed_file = os.path.join(file_folder_path,'dist',filename+'_compressed.py') #print(compressed_file) pyminifier_script = os.path.join(pythonfolder,'Scripts','pyminifier.exe') compress_command = "\\""+sys.executable+"\\" \\""+pyminifier_script+"\\" --gzip -o \\"" +compressed_file + "\\" \\"" + obfusc_file+"\\"" #print(compress_command) subprocess.call(compress_command, shell=True) #compile_command = sys.executable+'-m py_compile "' + compressed_file+'"' #print(compile_command) #subprocess.call(compile_command , shell=True) #encrypted_file_details['compiled_file'] = file #compiled_file = os.path.join(file_folder_path,'dist','__pycache__',filename+'_compressed.cpython-37.pyc') #encrypted_file_details[1] = compiled_file #encrypted_file_list.append(encrypted_file_details) #encrypted_file = filename + '_compressed.cpython-37_encrypted.pyc' #encrypt_command = "python " + cwd + "\\\\Encrypt_Key_Dcrypt.py " + compiled_file + ' ' + encrypted_file + " --g -e" #print(encrypt_command) #subprocess.call(encrypt_command, shell=True) #encrypted_file_list += ']' #return(encrypted_file_list) os.chdir(path) except OSError as err: print ("Creation of the directory %s failed "+str(err)) # Driver function if __name__=="__main__": path = sys.argv[1] encrypt_files(path) #(base) C:\\Himanshu\\DataPreprocessing>pyminify DataPreprocessing.py > DataPreprocessing_minify.py #Obfuscate #(base) C:\\Himanshu\\DataPreprocessing>pyarmor obfuscate C:\\Himanshu\\DataPreprocessing\\DataPreprocessing_minify.py #Compression #(base) C:\\Himanshu\\DataPreprocessing>pyminifier --gzip -o C:\\Himanshu\\DataPreprocessing\\dist\\DataPreprocessing_compressed.py C:\\Himanshu\\DataPreprocessing\\dist\\DataPreprocessing_minify.py #(base) C:\\Himanshu\\DataPreprocessing>cd dist #(base) C:\\Himanshu\\DataPreprocessing\\dist>python DataPreprocessing_compressed.py "DocumentText" "Label" 90 ".csv" "C:\\Himanshu\\DataAcquisition\\ClassificationDataNewBalanced.csv" #Compiling compressed .py to .pyc file #(base) C:\\Himanshu\\DataPreprocessing\\dist>python -m py_compile DataPreprocessing_compressed.py #Encrypt .pyc file #(base) C:\\Himanshu\\DataPreprocessing\\dist>python C:\\Himanshu\\Encrypt_Key_Dcrypt.py C:\\Himanshu\\DataPreprocessing\\dist\\__pycache__\\DataPreprocessing_compressed.cpython-36.pyc DataPreprocessing_compressed.cpython-36_encrypted.pyc --g -e #Decrypt file #(base) C:\\Himanshu\\DataPreprocessing\\dist>python C:\\Himanshu\\Encrypt_Key_Dcrypt.py DataPreprocessing_compressed.cpython-36_encrypted.pyc DataPreprocessing_compressed.cpython-36_decrypted.pyc --d #Run decrypted file #(base) C:\\Himanshu\\DataPreprocessing\\dist>python DataPreprocessing_compressed.cpython-36_decrypted.pyc "DocumentText" "Label" 90 ".csv" "C:\\Himanshu\\DataAcquisition\\ClassificationDataNewBalanced.csv"<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import platform import sys import subprocess import glob import shutil import time from aion_deployment.EncryptPythonSourceCode import encrypt_files import json def encrypt(alldirs): for dir in alldirs: try: encrypt_files(dir) except Exception as error_obj: print("Exception in encrypting", error_obj) print("-"*50) def replace_by_compressed(alldirs): for dir in alldirs: try: #print("Processing dir", dir) files = [f for f in glob.glob(dir + "/*.py")] secure_path = os.path.join(dir, 'SecuredScripts') time.sleep(6) for file in files: try: filename_w_ext = os.path.basename(file) filename, file_extension = os.path.splitext(filename_w_ext) if filename == "__init__": continue #print("Processing file", file) file_folder_path = os.path.join(secure_path, filename, 'dist') compressed_file_path = os.path.join(file_folder_path, filename+'_compressed.py') shutil.copy(compressed_file_path, dir) os.remove(file) new_compressed_file_path = os.path.join(dir, filename+'_compressed.py') target_file_path = os.path.join(dir, filename_w_ext) os.rename(new_compressed_file_path, target_file_path) if filename == 'aion_prediction': shutil.copytree(os.path.join(file_folder_path
, 'pytransform'), os.path.join(dir, 'pytransform')) except Exception as error_obj: print("Exception in file ", error_obj) shutil.rmtree(secure_path) except Exception as error_obj: print("Exception in dir ", error_obj) def start_Obfuscate(path): project_path = path subdirs = [dI for dI in os.listdir(project_path) if os.path.isdir(os.path.join(project_path,dI))] alldirs = [ project_path, ] for subdir in subdirs: if(subdir != 'pytransform'): alldirs.append(os.path.join(project_path, subdir)) encrypt(alldirs) replace_by_compressed(alldirs) if __name__=="__main__": project_path = sys.argv[1] print("project_path", project_path) subdirs = [dI for dI in os.listdir(project_path) if os.path.isdir(os.path.join(project_path,dI))] alldirs = [ project_path, ] for subdir in subdirs: alldirs.append(os.path.join(project_path, subdir)) encrypt(alldirs) print("*"*50) replace_by_compressed(alldirs) # python eion_compress.py "C:\\Users\\ashwani.s\\Desktop\\22April\\22April\\Mohita" "C:\\Users\\ashwani.s\\Desktop\\eion\\eion" > logfile.log <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import pandas as pd import numpy as np import scipy import warnings import scipy.stats as st import logging import json class inputdrift(): def __init__(self,conf): self.log = logging.getLogger('eion') def get_input_drift(self,ndf,hdf,outputfolder): selectedColumns = self.features.split(',') dataalertcount=0 distributionChangeColumns="" distributionChangeMessage=[] for i in range(0,len(selectedColumns)): data1=hdf[selectedColumns[i]] data2=ndf[selectedColumns[i]] if(data1.dtype !="str" and data2.dtype !="str" ): cumulativeData=data1.append(data2) teststaticValue=teststatic(self,data1,data2) if (teststaticValue < 0.05): distributionName1,sse1=DistributionFinder(self,data1) distributionName2,sse2=DistributionFinder(self,data2) if(distributionName1 == distributionName2): dataalertcount = dataalertcount else: dataalertcount = dataalertcount+1 distributionChangeColumns=distributionChangeColumns+selectedColumns[i]+"," changedColumn = {} changedColumn['Feature'] = selectedColumns[i] changedColumn['KS_Training'] = teststaticValue changedColumn['Training_Distribution'] = distributionName1 changedColumn['New_Distribution'] = distributionName2 distributionChangeMessage.append(changedColumn) else : dataalertcount = dataalertcount else : response ="Selected Columns should be Numerical Values" if(dataalertcount == 0): resultStatus="Model is working as expected" else : resultStatus=json.dumps(distributionChangeMessage) return(dataalertcount,resultStatus) def DistributionFinder(self,data): try: distributionName ="" sse =0.0 KStestStatic=0.0 dataType="" if(data.dtype == "float64"): dataType ="Continuous" elif(data.dtype =="int"): dataType="Discrete" elif(data.dtype =="int64"): dataType="Discrete" if(dataType == "Discrete"): distributions= [st.bernoulli,st.binom,st.geom,st.nbinom,st.poisson] index, counts = np.unique(data.astype(int),return_counts=True) if(len(index)>=2): best_sse = np.inf y1=[] total=sum(counts) mean=float(sum(index*counts))/total variance=float((sum(index**2*counts) -total*mean**2))/(total-1) dispersion=mean/float(variance) theta=1/float(dispersion) r=mean*(float(theta)/1-theta) for j in counts: y1.append(float(j)/total) pmf1=st.bernoulli.pmf(index,mean) pmf2=st.binom.pmf(index,len(index),p=mean/len(index)) pmf3=st.geom.pmf(index,1/float(1+mean)) pmf4=st.nbinom.pmf(index,mean,r) pmf5=st.poisson.pmf(index,mean) sse1 = np.sum(np.power(y1 - pmf1, 2.0)) sse2 = np.sum(np.power(y1 - pmf2, 2.0)) sse3 = np.sum(np.power(y1 - pmf3, 2.0)) sse4 = np.sum(np.power(y1 - pmf4, 2.0)) sse5 = np.sum(np.power(y1- pmf5, 2.0)) sselist=[sse1,sse2,sse3,sse4,sse5] for i in range(0,len(sselist)): if best_sse > sselist[i] > 0: best_distribution = distributions[i].name best_sse = sselist[i] elif (len(index) == 1): best_distribution = "Constant Data-No Distribution" best_sse = 0.0 distributionName =best_distribution sse=best_sse elif(dataType == "Continuous"): distributions = [st.uniform,st.expon,st.weibull_max,st.weibull_min,st.chi,st.norm,st.lognorm,st.t,st.gamma,st.beta] best_distribution = st.norm.name best_sse = np.inf datamin=data.min() datamax=data.max() nrange=datamax-datamin y, x = np.histogram(data.astype(float), bins='auto', density=True) x = (x + np.roll(x, -1))[:-1] / 2.0 for distribution in distributions: with warnings.catch_warnings(): warnings.filterwarnings('ignore') params = distribution.fit(data.astype(float)) # Separate parts of parameters arg = params[:-2] loc = params[-2] scale = params[-1] # Calculate fitted PDF and error with fit in distribution pdf = distribution.pdf(x, loc=loc, scale=scale, *arg) sse = np.sum(np.power(y - pdf, 2.0)) if(best_sse >sse > 0): best_distribution = distribution.name best_sse = sse distributionName =best_distribution sse=best_sse except: response = str(sys.exc_info()[0]) message='Job has Failed'+response print(message) return distributionName,sse ##KStestStatic -pvalue finding def teststatic(self,data1,data2): try: teststatic =st.ks_2samp(data1,data2) pValue=0.0 scipyVersion =scipy.__version__ if(scipyVersion <= "0.14.1"): pValue =teststatic[1] else: pValue =teststatic.pvalue except: response = str(sys.exc_info()[0]) print("Input Drift Job Failed "+response) return pValue <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' from pathlib import Path from AION.prediction_package.imports import importModule from AION.prediction_package.aion_prediction import aionPrediction from AION.prediction_package.utility import TAB_CHAR from AION.prediction_package import utility from AION.prediction_package.base import deployer from AION.prediction_package import common import numpy as np def get_deployer( params): if params['training']['algo'] == 'ARIMA': return arima(params) elif params['training']['algo'] == 'LSTM': return lstm(params) elif params['training']['algo'] == 'ENCODER_DECODER_LSTM_MVI_UVO': return lstmencdec_mviuvo(params) elif params['training']['algo'] == 'MLP': return mlp(params) elif params['training']['algo'] == 'VAR': return var(params) elif params['training']['algo'] == 'FBPROPHET': return fbprophet(params) else: raise ValueError(f"Algorithm {params['training']['algo']} for time series forecasting is not supported") def _profiler_code(params, importer): """ This will create the profiler file based on the config file. separated file is created as profiler is required for input drift also. """ imported_modules = [ {'module': 'json', 'mod_from': None, 'mod_as': None}, {'module': 'scipy', 'mod_from': None, 'mod_as': None}, {'module': 'joblib', 'mod_from': None, 'mod_as': None}, {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'}, {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}, {'module': 'Path', 'mod_from': 'pathlib', 'mod_as': None} ] utility.import_modules(importer, imported_modules) if 'code' in params['profiler'].get('preprocess',{}).keys(): code = params['profiler']['preprocess']['code'] else: code = "" code += """ class inputprofiler(): """ init_code = """ def __init__(self): """ init_code += """ # preprocessing preprocess_path = Path(__file__).parent.parent/'model'/'preprocess_pipe.pkl' if not preprocess_path.exists(): raise ValueError(f'Preprocess model file not found: {preprocess_path}') self.profiler = joblib.load(preprocess_path) """ run_code = """ def run(self,df): df = df.replace(r'^\\s*$', np.NaN, regex=True) """ if 'code' in params['profiler'].get('preprocess',{}).keys(): run_code += """ df = preprocess( df)""" if params['profiler'].get('unpreprocessed_columns'): run_code += f""" unpreprocessed_data = df['{params['profiler']['unpreprocessed_columns'][0]}'] df.drop(['{params['profiler']['unpreprocessed_columns'][0]}'], axis=1,inplace=True) """ if params['profiler'].get('force_numeric_conv'): run_code += f""" df[{params['profiler']['force_numeric_conv']}] = df[{params['profiler']['force_numeric_conv']}].apply(pd.to_numeric,errors='coerce')""" run_code += _profiler_main_code(params) if params['profiler'].get('unpreprocessed_columns'): run_code += f""" df['{params['profiler'].get('unpreprocessed_columns')[0]}'] = unpreprocessed_data """ run_code += """ return df """ utility.import_modules(importer, imported_modules) import_code = importer.getCode() return import_code + code + init_code + run_code def _profiler_main_code(params): code = f""" df = self.profiler.transform(df) columns = {params['profiler']['output_features']} if isinstance(df, scipy.sparse.spmatrix): df = pd.DataFrame(df.toarray(), columns=columns) else: df = pd.DataFrame(df, columns=columns) """ return code class arima( deployer): def __init__(self, params={}): super().__init__( params) self.name = 'timeseriesforecasting' def profiler_code( self
): imported_modules = [ {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'}, {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}, ] importer = importModule() utility.import_modules(importer, imported_modules) code = """ class inputprofiler(): def __init__(self): pass def run( self,df): df = df.replace(r'^\\s*$', np.NaN, regex=True) return df[['noofforecasts']] """ return importer.getCode() + code def feature_engg_code(self): self.importer.addModule(module='pandas',mod_as='pd') return f""" class selector(): def __init__(self): pass def run(self, df): return df """ def training_code( self): self.importer.addModule(module='pandas',mod_as='pd') self.importer.addModule(module='Path',mod_from='pathlib') self.importer.addModule(module='numpy',mod_as='np') self.importer.addModule(module='joblib') return f""" class trainer(): def __init__(self): model_file = (Path(__file__).parent/"model")/"{self.params['training']['model_file']}" if not model_file.exists(): raise ValueError(f'Trained model file not found: {{model_file}}') self.model = joblib.load(model_file) def run(self,df): return self.model.predict(n_periods=int(df["noofforecasts"][0])) """ def formatter_code(self): self.importer.addModule('json') self.importer.addModule('pandas', mod_as='pd') return """ class output_format(): def __init__( self): pass def run(self,raw_df,df): df = df.round(2) df = json.dumps(df.tolist()) outputjson = {"status":"SUCCESS","data":eval(df)} return(json.dumps(outputjson)) """ class lstm( deployer): def __init__(self, params={}): super().__init__( params) self.name = 'timeseriesforecasting' def profiler_code(self): importer = importModule() return _profiler_code( self.params, importer) def training_code( self): self.importer.addModule(module='pandas',mod_as='pd') self.importer.addModule(module='Path',mod_from='pathlib') code = f""" class trainer(): """ init_code, run_code = self._get_train_code() return code + init_code + run_code def _get_train_code(self): self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models') init_code = f""" def __init__( self): model_file = (Path(__file__).parent/"model")/"{self.params['training']['model_file']}" if not model_file.exists(): raise ValueError(f'Trained model file not found: {{model_file}}') self.model = load_model(model_file) """ run_code = f""" def run(self, df): lag_order={self.params['training']['lag_order']} xt = df.values scaler_file = (Path(__file__).parent/"model")/"{self.params['training']['scaler_file']}" if not scaler_file.exists(): raise ValueError(f'Scaling file not found: {{scaler_file}}') loaded_scaler_model = joblib.load(scaler_file) xt = xt.astype('float32') xt = loaded_scaler_model.transform(xt) noOfPredictions = 10 pred_data = xt y_future = [] for i in range(noOfPredictions): """ if len(self.params['selector']['output_features']) == 1: run_code += f""" pred_data = pred_data[-lag_order:] pred_data = pred_data.reshape((1,lag_order,1)) pred = self.model.predict(pred_data) predoutput = loaded_scaler_model.inverse_transform(pred) y_future.append(predoutput.flatten()[-1]) pred_data = np.append(pred_data,pred) pred = pd.DataFrame(index=range(0,len(y_future)),columns={self.params['selector']['output_features']}) for i in range(0, len(y_future)): pred.iloc[i] = y_future[i] return pred """ else: run_code += f""" pdata = pred_data[-lag_order:] pdata = pdata.reshape((1,lag_order,{len(self.params['selector']['output_features'])})) pred = self.model.predict(pdata) predoutput = loaded_scaler_model.inverse_transform(pred) y_future.append(predoutput) pred_data = np.append(pred_data,pred,axis=0) pred = pd.DataFrame(index=range(0,len(y_future)),columns={self.params['selector']['output_features']}) for i in range(0, len(y_future)): pred.iloc[i] = y_future[i] return pred """ return init_code, run_code def formatter_code(self): self.importer.addModule('json') self.importer.addModule('pandas', mod_as='pd') return """ class output_format(): def __init__( self): pass def run(self,raw_df,df): df = df.round(2) df = df.to_json(orient='records') outputjson = {"status":"SUCCESS","data":json.loads(df)} return(json.dumps(outputjson)) """ class lstmencdec_mviuvo( deployer): def __init__(self, params={}): super().__init__( params) self.name = 'timeseriesforecasting' outputFeatrues = params['profiler']['output_features'] self.targetColIndx = outputFeatrues.index(params['features']['target_feat']) selectedColDict = params['selector']['output_features'] self.selectedCols = list() for col in selectedColDict: self.selectedCols.append(col) def profiler_code(self): importer = importModule() return _profiler_code( self.params, importer) def training_code( self): self.importer.addModule(module='pandas',mod_as='pd') self.importer.addModule(module='Path',mod_from='pathlib') code = f""" class trainer(): """ init_code, run_code = self._get_train_code() return code + init_code + run_code def _get_train_code(self): self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models') init_code = f""" def __init__( self): model_file = (Path(__file__).parent/"model")/"{self.params['training']['model_file']}" if not model_file.exists(): raise ValueError(f'Trained model file not found: {{model_file}}') self.model = load_model(model_file) """ run_code = f""" def run(self, df): targetColIndx = {self.targetColIndx} lag_order={self.params['training']['lag_order']} xt = df.values scaler_file = (Path(__file__).parent/"model")/"{self.params['training']['scaler_file']}" if not scaler_file.exists(): raise ValueError(f'Scaling file not found: {{scaler_file}}') loaded_scaler_model = joblib.load(scaler_file) xt = xt.astype('float32') xt = loaded_scaler_model.transform(xt) noOfPredictions = 10 pred_data = xt y_future = [] pdata = pred_data[-lag_order:] pdata = pdata.reshape((1,lag_order,{len(self.params['selector']['output_features'])})) pred = self.model.predict(pdata) pred_1d = pred.ravel() pdata_2d = pdata.ravel().reshape(len(pdata) * lag_order, {len(self.params['selector']['output_features'])}) pdata_2d[:,targetColIndx] = pred_1d pred_2d_inv = loaded_scaler_model.inverse_transform(pdata_2d) predout = pred_2d_inv[:, targetColIndx] predout = predout.reshape(len(pred_1d),1) pred = pd.DataFrame(index=range(0,len(predout)),columns=['{self.params['features']['target_feat']}']) for i in range(0, len(predout)): pred.iloc[i] = predout[i] return pred """ return init_code, run_code def feature_engg_code(self): self.importer.addModule(module='pandas',mod_as='pd') return f""" class selector(): def __init__(self): pass def run(self, df): return df[{self.selectedCols}] """ def formatter_code(self): self.importer.addModule('json') self.importer.addModule('pandas', mod_as='pd') return """ class output_format(): def __init__( self): pass def run(self,raw_df,df): df = df.round(2) df = df.to_json(orient='records') outputjson = {"status":"SUCCESS","data":json.loads(df)} return(json.dumps(outputjson)) """ class mlp( lstm): def __init__(self, params={}): super().__init__( params) self.name = 'timeseriesforecasting' def training_code( self): self.importer.addModule(module='pandas',mod_as='pd') self.importer.addModule(module='Path',mod_from='pathlib') code = f""" class trainer(): """ init_code, run_code = self._get_train_code() return code + init_code + run_code def _get_train_code(self): self.importer.addModule(module='load_model',mod_from='tensorflow.keras.models') init_code = f""" def __init__( self): model_file = (Path(__file__).parent/"model")/"{self.params['training']['model_file']}" if not model_file.exists(): raise ValueError(f'Trained model file not found: {{model_file}}') self.model = load_model(model_file)""" run_code = f""" def run(self, df): lag_order={self.params['training']['lag_order']} xt = df.values scaler_file = (Path(__file__).parent/"model")/"{self.params['training']['scaler_file']}" if not scaler_file.exists(): raise ValueError(f'Scaling file not found: {{scaler_file}}') loaded_scaler_model = joblib.load(scaler_file) xt = xt.astype('float32') xt = loaded_scaler_model.transform(xt) noOfPredictions = 10 pred_data = xt y_future = [] for i in range(noOfPredictions): """ if len(self.params['selector']['output_features']) == 1: run_code += f""" pred_data = pred_data[-lag_order:] pred_data = pred_data.reshape((1,lag_order)) pred = self.model.predict(pred_data) predoutput = loaded_scaler_model.inverse_transform(pred) y_future.append(predoutput.flatten()[-1]) pred_data = np.append(pred_data,pred) pred = pd.DataFrame(index=range(0,len(y_future)),columns={self.params['selector']['output_features']}) for i in range(0, len(y_future)): pred.iloc[i] = y_future[i] return pred """ else: run_code += f""" pdata = pred_data[-lag_order:] pdata = pdata.reshape((1,lag_order,{len(self.params['selector']['output_features'])})) pred = self.model.predict(pdata) predoutput = loaded_scaler_model.inverse_transform(pred) y_future.append(predoutput) pred_data = np.append(pred_data,pred,axis=0) pred = pd.DataFrame(index=range(0,len(y_future)),columns={self.params['selector']['output_features']}) for i in range(0, len(y_future)): pred.iloc[i] = y_future[i] return pred """ return init_code, run_code class var( deployer): def __init__(self, params={}): super().__init__( params) self.name = 'timeseriesforecasting' def profiler_code(self): importer = importModule() code = _profiler_code( self.params, importer) return code def feature_engg_code(self): self.importer.addModule(module='pandas',mod_as='pd') return f""" class selector(): def __init__(self): pass def run(self, df): return df[{self.params['selector']['output_features']}] """ def training_code( self): self.importer.addModule(module='joblib') return f""" class trainer(): def __init__( self): model_file = (Path(__file__).parent/"model")/"{self.params['training']['model_file']}" if not model_file.exists(): raise ValueError(f'Trained model file not found: {{model_file}}') self.model = joblib.load(model_file) def run(self,df): lag_order = self.model.k_ar return self.model.forecast(df.values[-lag_order:],steps={self.params['training']['no_of_prediction']}) """ def formatter_code(self): self.importer.addModule('json') self.importer.addModule('pandas', mod_as='pd') return f""" class output_format(): def __init__( self): pass def invertTransformation(self,predictions): datasetdf = pd.read_csv((
Path(__file__).parent/"data")/"trainingdata.csv") dictDiffCount = {self.params['training']['dictDiffCount']} target_features = "{self.params['features']['target_feat']}" columns = target_features.split(',') pred = pd.DataFrame(index=range(0,len(predictions)),columns=columns) for j in range(0,len(columns)): for i in range(0, len(predictions)): pred.iloc[i][j] = round(predictions[i][j],2) prediction = pred for col in columns: if col in dictDiffCount: if dictDiffCount[col]==2: prediction[col] = (datasetdf[col].iloc[-1]-datasetdf[col].iloc[-2]) + prediction[col].cumsum() prediction[col] = datasetdf[col].iloc[-1] + prediction[col].cumsum() prediction = pred return(prediction) def run(self,raw_df,df): df = self.invertTransformation(df) df = df.to_json(orient='records',double_precision=2) outputjson = {{"status":"SUCCESS","data":json.loads(df)}} return(json.dumps(outputjson)) """ class fbprophet( deployer): def __init__(self, params={}): super().__init__( params) self.name = 'timeseriesforecasting' def profiler_code( self): imported_modules = [ {'module': 'numpy', 'mod_from': None, 'mod_as': 'np'}, {'module': 'pandas', 'mod_from': None, 'mod_as': 'pd'}, ] importer = importModule() utility.import_modules(importer, imported_modules) code = """ class inputprofiler(): def __init__(self): pass def run( self,df): df = df.replace(r'^\\s*$', np.NaN, regex=True) return df[['noofforecasts']] """ return importer.getCode() + code def feature_engg_code(self): self.importer.addModule(module='pandas',mod_as='pd') return f""" class selector(): def __init__(self): pass def run(self, df): return df """ def training_code( self): self.importer.addModule(module='pandas',mod_as='pd') self.importer.addModule(module='Path',mod_from='pathlib') self.importer.addModule(module='joblib') code = f""" class trainer(): def __init__(self): model_file = (Path(__file__).parent/"model")/"{self.params['training']['model_file']}" if not model_file.exists(): raise ValueError(f'Trained model file not found: {{model_file}}') self.model = joblib.load(model_file) """ code += f""" def run(self,df): sessonal_freq = '{self.params['training']['sessonal_freq']}' ts_prophet_future = self.model.make_future_dataframe(periods=int(df["noofforecasts"][0]),freq=sessonal_freq,include_history = False) """ if (self.params['training']['additional_regressors']): code += f""" additional_regressors={self.params['training']['additional_regressors']} ts_prophet_future[additional_regressors] = dataFrame[additional_regressors] ts_prophet_future.reset_index(drop=True) ts_prophet_future=ts_prophet_future.dropna() """ code += """ train_forecast = self.model.predict(ts_prophet_future) prophet_forecast_tail=train_forecast[[\\'ds\\', \\'yhat\\', \\'yhat_lower\\',\\'yhat_upper\\']].tail( int(df["noofforecasts"][0])) return(prophet_forecast_tail)""" return code def formatter_code(self): self.importer.addModule('json') self.importer.addModule('pandas', mod_as='pd') return """ class output_format(): def __init__( self): pass def run(self,raw_df,df): df = df.to_json(orient='records') outputjson = {"status":"SUCCESS","data":json.loads(df)} return(json.dumps(outputjson)) """ <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import warnings warnings.filterwarnings("ignore") import json import os import sys import pandas as pd from pandas import json_normalize #from selector import selector #from inputprofiler import inputprofiler #from trained_model import trained_model #from output_format import output_format from autogluon.tabular import TabularDataset, TabularPredictor from autogluon.core.utils.utils import setup_outputdir from autogluon.core.utils.loaders import load_pkl from autogluon.core.utils.savers import save_pkl import os.path class MultilabelPredictor(): """ Tabular Predictor for predicting multiple columns in table. Creates multiple TabularPredictor objects which you can also use individually. You can access the TabularPredictor for a particular label via: `multilabel_predictor.get_predictor(label_i)` Parameters ---------- labels : List[str] The ith element of this list is the column (i.e. `label`) predicted by the ith TabularPredictor stored in this object. path : str Path to directory where models and intermediate outputs should be saved. If unspecified, a time-stamped folder called "AutogluonModels/ag-[TIMESTAMP]" will be created in the working directory to store all models. Note: To call `fit()` twice and save all results of each fit, you must specify different `path` locations or don't specify `path` at all. Otherwise files from first `fit()` will be overwritten by second `fit()`. Caution: when predicting many labels, this directory may grow large as it needs to store many TabularPredictors. problem_types : List[str] The ith element is the `problem_type` for the ith TabularPredictor stored in this object. eval_metrics : List[str] The ith element is the `eval_metric` for the ith TabularPredictor stored in this object. consider_labels_correlation : bool Whether the predictions of multiple labels should account for label correlations or predict each label independently of the others. If True, the ordering of `labels` may affect resulting accuracy as each label is predicted conditional on the previous labels appearing earlier in this list (i.e. in an auto-regressive fashion). Set to False if during inference you may want to individually use just the ith TabularPredictor without predicting all the other labels. kwargs : Arguments passed into the initialization of each TabularPredictor. """ multi_predictor_file = 'multilabel_predictor.pkl' def __init__(self, labels, path, problem_types=None, eval_metrics=None, consider_labels_correlation=True, **kwargs): if len(labels) < 2: raise ValueError("MultilabelPredictor is only intended for predicting MULTIPLE labels (columns), use TabularPredictor for predicting one label (column).") self.path = setup_outputdir(path, warn_if_exist=False) self.labels = labels self.consider_labels_correlation = consider_labels_correlation self.predictors = {} # key = label, value = TabularPredictor or str path to the TabularPredictor for this label if eval_metrics is None: self.eval_metrics = {} else: self.eval_metrics = {labels[i] : eval_metrics[i] for i in range(len(labels))} problem_type = None eval_metric = None for i in range(len(labels)): label = labels[i] path_i = self.path + "Predictor_" + label if problem_types is not None: problem_type = problem_types[i] if eval_metrics is not None: eval_metric = self.eval_metrics[i] self.predictors[label] = TabularPredictor(label=label, problem_type=problem_type, eval_metric=eval_metric, path=path_i, **kwargs) def fit(self, train_data, tuning_data=None, **kwargs): """ Fits a separate TabularPredictor to predict each of the labels. Parameters ---------- train_data, tuning_data : str or autogluon.tabular.TabularDataset or pd.DataFrame See documentation for `TabularPredictor.fit()`. kwargs : Arguments passed into the `fit()` call for each TabularPredictor. """ if isinstance(train_data, str): train_data = TabularDataset(train_data) if tuning_data is not None and isinstance(tuning_data, str): tuning_data = TabularDataset(tuning_data) train_data_og = train_data.copy() if tuning_data is not None: tuning_data_og = tuning_data.copy() save_metrics = len(self.eval_metrics) == 0 for i in range(len(self.labels)): label = self.labels[i] predictor = self.get_predictor(label) if not self.consider_labels_correlation: labels_to_drop = [l for l in self.labels if l!=label] else: labels_to_drop = [labels[j] for j in range(i+1,len(self.labels))] train_data = train_data_og.drop(labels_to_drop, axis=1) if tuning_data is not None: tuning_data = tuning_data_og.drop(labels_to_drop, axis=1) print(f"Fitting TabularPredictor for label: {label} ...") predictor.fit(train_data=train_data, tuning_data=tuning_data, **kwargs) self.predictors[label] = predictor.path if save_metrics: self.eval_metrics[label] = predictor.eval_metric self.save() def predict(self, data, **kwargs): """ Returns DataFrame with label columns containing predictions for each label. Parameters ---------- data : str or autogluon.tabular.TabularDataset or pd.DataFrame Data to make predictions for. If label columns are present in this data, they will be ignored. See documentation for `TabularPredictor.predict()`. kwargs : Arguments passed into the predict() call for each TabularPredictor. """ return self._predict(data, as_proba=False, **kwargs) def predict_proba(self, data, **kwargs): """ Returns dict where each key is a label and the corresponding value is the `predict_proba()` output for just that label. Parameters ---------- data : str or autogluon.tabular.TabularDataset or pd.DataFrame Data to make predictions for. See documentation for `TabularPredictor.predict()` and `TabularPredictor.predict_proba()`. kwargs : Arguments passed into the `predict_proba()` call for each TabularPredictor (also passed into a `predict()` call). """ return self._predict(data, as_proba=True, **kwargs) def evaluate(self, data, **kwargs): """ Returns dict where each key is a label and the corresponding value is the `evaluate()` output for just that label. Parameters ---------- data : str or autogluon.tabular.TabularDataset or pd.DataFrame Data to evalate predictions of all labels for, must contain all labels as columns. See documentation for `TabularPredictor.evaluate()`. kwargs : Arguments passed into the `evaluate()` call for each TabularPredictor (also passed into the `predict()` call). """ data = self._get_data(data) eval_dict = {} for label in self.labels: print(f"Evaluating TabularPredictor for label: {label} ...") predictor = self.get_predictor(label) eval_dict[label] = predictor.evaluate(data, **kwargs) if self.consider_labels_correlation: data[label] = predictor.predict(data, **kwargs) return eval_dict def save(self): """ Save MultilabelPredictor to disk. """ for label in self.labels: if not isinstance(self.predictors[label], str): self.predictors[label] = self.predictors[label].path save_pkl.save(path=self.path+self.multi_predictor_file, object=self) print(f"MultilabelPredictor saved to disk. Load with: MultilabelPredictor.load('{self.path}')") @classmethod def load(cls, path): """ Load MultilabelPredictor from disk `path` previously specified when creating this MultilabelPredictor. """ path = os.path.expanduser(path) if path[-1] != os.path.sep: path = path + os.path.sep return load_pkl.load(path=path+cls.multi_predictor_file) def get_predictor(self, label): """ Returns TabularPredictor which is used to predict this label. """ predictor = self.predictors[label] if isinstance(predictor, str): return TabularPredictor.load(path=predictor) return predictor def _get_data(self, data): if isinstance(data, str): return TabularDataset(data) return data.copy() def _predict(self, data, as_proba=False, **kwargs): data = self._get_data(data) if as_proba: predproba_dict = {} for label in self.labels: print(f"Predicting with TabularPredictor for label: {label} ...") predictor = self.get_predictor(label) if as_proba: predproba_dict[label] = predictor.predict_proba(data, as_multiclass=True, **kwargs) data[label] = predictor.predict(data, **
kwargs) if not as_proba: return data[self.labels] else: return predproba_dict def predict(data): try: if os.path.splitext(data)[1] == ".tsv": df=pd.read_csv(data,encoding='utf-8',sep='\\t') elif os.path.splitext(data)[1] == ".csv": df=pd.read_csv(data,encoding='utf-8') else: if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) df = json_normalize(jsonData) #df0 = df.copy() #profilerobj = inputprofiler() #df = profilerobj.apply_profiler(df) #selectobj = selector() #df = selectobj.apply_selector(df) #modelobj = trained_model() #output = modelobj.predict(df,"") # Load the Test data for Prediction # ----------------------------------------------------------------------------# test_data = df#TabularDataset(data) #'testingDataset.csv' #subsample_size = 2 # ----------------------------------------------------------------------------# # Specify the corresponding target features to be used # ----------------------------------------------------------------------------# #labels = ['education-num','education','class'] configFile = os.path.join(os.path.dirname(os.path.abspath(__file__)),'etc','predictionConfig.json') with open(configFile, 'rb') as cfile: data = json.load(cfile) labels = data['targetFeature'] # ----------------------------------------------------------------------------# for x in labels: if x in list(test_data.columns): test_data.drop(x,axis='columns', inplace=True) # ----------------------------------------------------------------------------# #test_data = test_data.sample(n=subsample_size, random_state=0) #print(test_data) #test_data_nolab = test_data.drop(columns=labels) #test_data_nolab.head() test_data_nolab = test_data # ----------------------------------------------------------------------------# # Load the trained model from where it's stored # ----------------------------------------------------------------------------# model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'ModelPath') multi_predictor = MultilabelPredictor.load(model_path) # ----------------------------------------------------------------------------# # Start the prediction and perform the evaluation # ----------------------------------------------------------------------------# predictions = multi_predictor.predict(test_data_nolab) for label in labels: df[label+'_predict'] = predictions[label] #evaluations = multi_predictor.evaluate(test_data) #print(evaluations) #print("Evaluated using metrics:", multi_predictor.eval_metrics) # ----------------------------------------------------------------------------# # ----------------------------------------------------------------------------# #outputobj = output_format() #output = outputobj.apply_output_format(df0,output) outputjson = df.to_json(orient='records') outputjson = {"status":"SUCCESS","data":json.loads(outputjson)} output = json.dumps(outputjson) print("predictions:",output) return(output) # ----------------------------------------------------------------------------# except KeyError as e: output = {"status":"FAIL","message":str(e).strip('"')} print("predictions:",json.dumps(output)) return (json.dumps(output)) except Exception as e: output = {"status":"FAIL","message":str(e).strip('"')} print("predictions:",json.dumps(output)) return (json.dumps(output)) if __name__ == "__main__": output = predict(sys.argv[1]) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import warnings warnings.filterwarnings("ignore") import json import os import sys import pandas as pd import numpy as np from pandas import json_normalize from autogluon.text import TextPredictor import os.path def predict(data): try: if os.path.splitext(data)[1] == ".tsv": df=pd.read_csv(data,encoding='utf-8',sep='\\t') elif os.path.splitext(data)[1] == ".csv": df=pd.read_csv(data,encoding='utf-8') else: if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) df = json_normalize(jsonData) model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'text_prediction') predictor = TextPredictor.load(model_path) predictions = predictor.predict(df) df['predict'] = predictions outputjson = df.to_json(orient='records') outputjson = {"status":"SUCCESS","data":json.loads(outputjson)} output = json.dumps(outputjson) print("predictions:",output) return(output) except KeyError as e: output = {"status":"FAIL","message":str(e).strip('"')} print("predictions:",json.dumps(output)) return (json.dumps(output)) except Exception as e: output = {"status":"FAIL","message":str(e).strip('"')} print("predictions:",json.dumps(output)) return (json.dumps(output)) if __name__ == "__main__": output = predict(sys.argv[1]) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' # -*- coding: utf-8 -*- # -*- coding: utf-8 -*- import logging logging.getLogger('tensorflow').disabled = True import json import mlflow import mlflow.sklearn import mlflow.sagemaker as mfs # from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split # from sklearn import datasets import time import numpy as np # Load dataset # from sklearn.datasets import load_iris import pickle # Load the pickled model # from matplotlib import pyplot import sys import os import boto3 import subprocess import os.path from os.path import expanduser import platform from pathlib import Path class aionMlopsService: def __init__(self,model,mlflowtosagemakerDeploy,mlflowtosagemakerPushOnly,mlflowtosagemakerPushImageName,mlflowtosagemakerdeployModeluri,experiment_name,mlflow_modelname,awsaccesskey_id,awssecretaccess_key,aws_session_token,mlflow_container_name,aws_region,aws_id,iam_sagemakerfullaccess_arn,sm_app_name,sm_deploy_option,delete_ecr_repository,ecrRepositoryName): try: self.model=model self.mlflowtosagemakerDeploy=mlflowtosagemakerDeploy self.mlflowtosagemakerPushOnly=str(mlflowtosagemakerPushOnly) self.mlflowtosagemakerPushImageName=str(mlflowtosagemakerPushImageName) self.mlflowtosagemakerdeployModeluri=str(mlflowtosagemakerdeployModeluri) self.experiment_name=experiment_name self.mlflow_modelname=mlflow_modelname self.awsaccesskey_id=awsaccesskey_id self.awssecretaccess_key=awssecretaccess_key self.aws_session_token=aws_session_token self.mlflow_container_name=mlflow_container_name self.aws_region=aws_region self.aws_id=aws_id self.iam_sagemakerfullaccess_arn=iam_sagemakerfullaccess_arn self.sm_app_name=sm_app_name self.sm_deploy_option=sm_deploy_option self.delete_ecr_repository=delete_ecr_repository self.ecrRepositoryName=ecrRepositoryName from appbe.dataPath import LOG_LOCATION sagemakerLogLocation = LOG_LOCATION try: os.makedirs(sagemakerLogLocation) except OSError as e: if (os.path.exists(sagemakerLogLocation)): pass else: raise OSError('sagemakerLogLocation error.') self.sagemakerLogLocation=str(sagemakerLogLocation) filename_mlops = 'mlopslog_'+str(int(time.time())) filename_mlops=filename_mlops+'.log' # filename = 'mlopsLog_'+Time() filepath = os.path.join(self.sagemakerLogLocation, filename_mlops) logging.basicConfig(filename=filepath, format='%(message)s',filemode='w') # logging.basicConfig(filename="uq_logging.log", format='%(asctime)s %(message)s',filemode='w') # logging.basicConfig(filename="uq_logging.log", format=' %(message)s',filemode='w') # logging.basicConfig(filename='uq_logging.log', encoding='utf-8', level=logging.INFO) self.log = logging.getLogger('aionMLOps') self.log.setLevel(logging.DEBUG) # mlflow.set_experiment(self.experiment_name) except Exception as e: self.log.info('<!------------- mlflow model INIT Error ---------------> '+str(e)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) def mlflowSetPath(self,path): track_dir=os.path.join(path,'mlruns') uri="file:"+str(Path(track_dir)) return uri #Currently not used this delete ecr repository option def ecr_repository_delete(self,rep_name): # import subprocess client = boto3.client('ecr') repositories = client.describe_repositories() ecr_delete_rep=client.delete_repository(registryId=self.aws_id,repositoryName=self.ecrRepositoryName,force=True) mlflow_ecr_delete=subprocess.run(['aws', 'ecr', 'delete-repository','--repository-name',rep_name,'||','true']) self.log.info('Success: deleted aws ecr repository which contains mlops image.') def check_sm_deploy_status(self,app_name): sage_client = boto3.client('sagemaker', region_name=self.aws_region) endpoint_description = sage_client.describe_endpoint(EndpointName=app_name) endpoint_status = endpoint_description["EndpointStatus"] try: failure_reason=endpoint_description["FailureReason"] self.log.info("sagemaker end point creation failure reason is: "+str(failure_reason)) except: pass endpoint_status=str(endpoint_status) return endpoint_status def invoke_sm_endpoint(self,app_name, input_json): client = boto3.session.Session().client("sagemaker-runtime", self.aws_region) response = client.invoke_endpoint( EndpointName=app_name, Body=input_json, ContentType='application/json; format=pandas-split', ) # preds = response['Body'].read().decode("ascii") preds = response['Body'].read().decode("ascii") preds = json.loads(preds) # print("preds: {}".format(preds)) return preds def predict_sm_app_endpoint(self,X_test): #print(X_test) import pandas as pd prediction=None AWS_ACCESS_KEY_ID=str(self.awsaccesskey_id) AWS_SECRET_ACCESS_KEY=str(self.awssecretaccess_key) AWS_SESSION_TOKEN=str(self.aws_session_token) region = str(self.aws_region) #Existing model deploy options # mlflowtosagemakerPushImageName=str(self.mlflowtosagemakerPushImageName) # mlflowtosagemakerdeployModeluri=str(self.mlflowtosagemakerdeployModeluri) try: import subprocess cmd = 'aws configure set region_name '+region os.system(cmd) cmd = 'aws configure set aws_access_key_id '+AWS_ACCESS_KEY_ID os.system(cmd) cmd = 'aws configure set aws_secret_access_key '+AWS_SECRET_ACCESS_KEY os.system(cmd) ''' aws_region=subprocess.run(['aws', 'configure', 'set','region_name',region]) aws_accesskeyid=subprocess.run(['aws', 'configure', 'set','aws_access_key_id',AWS_ACCESS_KEY_ID]) aws_secretaccesskey=subprocess.run(['aws', 'configure', 'set','aws_secret_access_key',AWS_SECRET_ACCESS_KEY]) ''' except: pass #Create a session for aws
communication using aws boto3 lib # s3_client = boto3.client('ecr',aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region) # s3 = boto3.resource('ecr', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key= AWS_SECRET_ACCESS_KEY) session = boto3.Session(aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region) #X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=2) # query_input = pd.DataFrame(X_test).iloc[[1,5]].to_json(orient="split") try: query_input = pd.DataFrame(X_test).to_json(orient="split") #print(query_input) prediction = self.invoke_sm_endpoint(app_name=self.sm_app_name, input_json=query_input) # self.log.info("sagemaker end point Prediction: \\n"+str(prediction)) except Exception as e: print(e) return prediction def deleteSagemakerApp(self,app_name,region): # import mlflow.sagemaker as mfs # region = 'ap-south-1' # app_name = 'aion-demo-app' mfs.delete(app_name=app_name,region_name=region, archive=False,synchronous=True, timeout_seconds=300) # print("AION mlops sagemaker application endpoint is deleted....\\n") self.log.info('AION mlops sagemaker application endpoint is deleted, application name is: '+str(app_name)) def deployModel2sagemaker(self,mlflow_container_name,tag_id,model_path): region = str(self.aws_region) aws_id = str(self.aws_id) iam_sagemakerfullaccess_arn = str(self.iam_sagemakerfullaccess_arn) app_name = str(self.sm_app_name) model_uri = str(model_path) app_status=False mlflow_root_dir = None try: os.chdir(str(self.sagemakerLogLocation)) mlflow_root_dir = os.getcwd() self.log.info('mlflow root dir: '+str(mlflow_root_dir)) except: self.log.info("path issue.") try: c_status=self.check_sm_deploy_status(app_name) #if ((c_status == "Failed") or (c_status == "OutOfService")): if ((c_status == "Failed") or (c_status.lower() == "failed")): app_status=False self.log.info("Sagemaker endpoint status: Failed.\\n") mfs.delete(app_name=app_name,region_name=region, archive=False,synchronous=True, timeout_seconds=300) elif ((c_status.lower() == "inservice") or (c_status == "InService")): app_status=True self.log.info("Sagemaker endpoint status: InService. Running sagemaker endpoint name: \\n"+str(app_name)) else: app_status=False pass except: # print("deploy status error.\\n") pass #aws ecr model app_name should contain only [[a-zA-Z0-9-]] import re if app_name: pattern = re.compile("[A-Za-z0-9-]+") # if found match (entire string matches pattern) if pattern.fullmatch(app_name) is not None: #print("Found match: ") pass else: app_name = 'aion-demo-app' else: app_name = 'aion-demo-app' mlflow_image=mlflow_container_name+':'+tag_id image_url = aws_id + '.dkr.ecr.' + region + '.amazonaws.com/' + mlflow_image deploy_option="create" self.log.info('deploy_option: \\n'+str(deploy_option)) if (deploy_option.lower() == "create"): # Other deploy modes: mlflow.sagemaker.DEPLOYMENT_MODE_ADD,mlflow.sagemaker.DEPLOYMENT_MODE_REPLACE if not (app_status): try: mfs.deploy(app_name=app_name,model_uri=model_uri,region_name=region,mode="create",execution_role_arn=iam_sagemakerfullaccess_arn,image_url=image_url) self.log.info('sagemaker endpoint created and model deployed. Application name is: \\n'+str(app_name)) except: self.log.info('Creating end point application issue.Please check the connection and aws credentials \\n') else: self.log.info('Sagemaker application with user endpoint name already running.Please check. Please delete the old endpoint with same name.\\n') elif (deploy_option.lower() == "delete"): # import mlflow.sagemaker as mfs # # region = 'ap-south-1' # # app_name = 'aion-demo-app' # mfs.delete(app_name=app_name,region_name=region, archive=False,synchronous=True, timeout_seconds=300) # print("Mlflow sagemaker application endpoint is deleted....\\n") # self.log.info('Mlflow sagemaker application endpoint is deleted, application name is: '+str(app_name)) pass elif (deploy_option.lower() == "add"): pass elif (deploy_option.lower() == "replace"): pass else: pass return app_status def mlflow2sagemaker_deploy(self): self.log.info('<!------------- Inside AION mlops to sagemaker communication and deploy process. ---------------> ') deploy_status=False app_name = str(self.sm_app_name) self.log.info('Sagemaker Application Name: '+str(app_name)) uri_mlflow=self.mlflowSetPath(self.sagemakerLogLocation) mlflow.set_tracking_uri(uri_mlflow) mlops_trackuri=mlflow.get_tracking_uri() mlops_trackuri=str(mlops_trackuri) self.log.info('mlops tracking uri: '+str(mlops_trackuri)) localhost_deploy=False try: #Loading aion model to deploy in sagemaker mlflow.set_experiment(self.experiment_name) self.log.info('Endpoint Name: '+str(self.experiment_name)) # Assume, the model already loaded from joblib in aionmlflow2smInterface.py file. aionmodel2deploy=self.model # run_id = None # experiment_id=None # Use the loaded pickled model to make predictions # pred = knn_from_pickle.predict(X_test) with mlflow.start_run(run_name='AIONMLOps') as run: # aionmodel2deploy.fit(X_train, y_train) # predictions = aionmodel2deploy.predict(X_test) mlflow.sklearn.log_model(aionmodel2deploy, self.mlflow_modelname) run_id = run.info.run_uuid experiment_id = run.info.experiment_id self.log.info('AION mlops experiment run_id: '+str(run_id)) self.log.info('AION mlops experiment experiment_id: '+str(experiment_id)) self.log.info('AION mlops experiment model_name: '+str(self.mlflow_modelname)) artifact_uri = {mlflow.get_artifact_uri()} # print("1.artifact_uri: \\n",artifact_uri) mlflow.end_run() #If we need, we can check the mlflow experiments. # try: # mlflow_client = mlflow.tracking.MlflowClient('./mlruns') # exp_list = mlflow_client.list_experiments() # except: # pass #print("mlflow exp_list: \\n",exp_list) mlflow_modelname=str(self.mlflow_modelname) mlops_trackuri=mlops_trackuri.replace('file:','') mlops_trackuri=str(mlops_trackuri) # mlflow_root_dir = os.getcwd() mlflow_root_dir = None try: os.chdir(str(self.sagemakerLogLocation)) mlflow_root_dir = os.getcwd() self.log.info('mlflow root dir: '+str(mlflow_root_dir)) except: self.log.info("path issue.") model_path = 'mlruns/%s/%s/artifacts/%s' % (experiment_id, run_id,self.mlflow_modelname) # model_path=mlops_trackuri+'\\\\%s\\\\%s\\\\artifacts\\\\%s' % (experiment_id, run_id,mlflow_modelname) self.log.info("local host aion mlops model_path is: "+str(model_path)) time.sleep(2) #print("Environment variable setup in the current working dir for aws sagemaker cli connection... \\n") self.log.info('Environment variable setup in the current working dir for aws sagemaker cli connection... \\n ') AWS_ACCESS_KEY_ID=str(self.awsaccesskey_id) AWS_SECRET_ACCESS_KEY=str(self.awssecretaccess_key) AWS_SESSION_TOKEN=str(self.aws_session_token) region = str(self.aws_region) #Existing model deploy options mlflowtosagemakerPushImageName=str(self.mlflowtosagemakerPushImageName) mlflowtosagemakerdeployModeluri=str(self.mlflowtosagemakerdeployModeluri) import subprocess cmd = 'aws configure set region_name '+region os.system(cmd) cmd = 'aws configure set aws_access_key_id '+AWS_ACCESS_KEY_ID os.system(cmd) cmd = 'aws configure set aws_secret_access_key '+AWS_SECRET_ACCESS_KEY os.system(cmd) #Create a session for aws communication using aws boto3 lib # s3_client = boto3.client('ecr',aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region) # s3 = boto3.resource('ecr', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key= AWS_SECRET_ACCESS_KEY) session = boto3.Session(aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,aws_session_token=AWS_SESSION_TOKEN,region_name=region) # session = boto3.session.Session( # aws_access_key_id=AWS_ACCESS_KEY_ID, # aws_secret_access_key=AWS_SECRET_ACCESS_KEY, # aws_session_token=AWS_SESSION_TOKEN # ) # awsclient = session.resource('ecr') # s3 = session.resource('s3') self.log.info('aws environment variable setup done... \\n') try: os.chdir(mlflow_root_dir) except FileNotFoundError: self.log.info('Directory does not exist. '+str(mlflow_root_dir)) except NotADirectoryError: self.log.info('model_path is not a directory. '+str(mlflow_root_dir)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(mlflow_root_dir)) mlflow_container_name=str(self.mlflow_container_name) mlflow_version=mlflow.__version__ tag_id=mlflow_version if (self.mlflowtosagemakerPushOnly.lower() == "true"): self.log.info('Selected option is <Deploy existing model to sagemaker> \\n') aws_id=str(self.aws_id) arn=str(self.iam_sagemakerfullaccess_arn) mlflow_image=mlflow_container_name+':'+tag_id image_url = aws_id+'.dkr.ecr.'+region+'.amazonaws.com/'+mlflow_image # print("image_url:========= \\n",image_url) deploy_status=True try: model_path=mlflowtosagemakerdeployModeluri # ##We need to run mlflow docker container command in the artifacts->model directory inside mlruns. self.log.info('Deploy existing model container-Model path given by user: '+str(model_path)) try: os.chdir(model_path) except FileNotFoundError: self.log.info('Directory does not exist. '+str(model_path)) except NotADirectoryError: self.log.info('model_path is not a directory. '+str(model_path)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(model_path)) try: mfs.push_image_to_ecr(image=mlflowtosagemakerPushImageName) deploy_status=True self.log.info('AION mlops pushed the docker container to aws ecr. \\n ') except: self.log.info("error in pushing existing container to ecr.\\n") deploy_status=False time.sleep(2) #Now,change the working dir to root dir,because now deploy needs full mlruns to model name dir. try: # print(" Changing directory to mlflow root dir....\\n") os.chdir(mlflow_root_dir) except FileNotFoundError: self.log.info('model path is not a directory. '+str(mlflow_root_dir)) except NotADirectoryError: self.log.info('model path is not a directory. '+str(mlflow_root_dir)) # print("{0} is not a directory".format(mlflow_root_dir)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(ml
flow_root_dir)) # self.deployModel2sagemaker(mlflowtosagemakerPushImageName,tag_id,mlflowtosagemakerdeployModeluri) try: if (deploy_status): self.deployModel2sagemaker(mlflowtosagemakerPushImageName,tag_id,mlflowtosagemakerdeployModeluri) self.log.info('AION creates docker container and push the container into aws ecr.. ') time.sleep(2) except: self.log.info('AION deploy error.check connection and aws config parameters. ') deploy_status=False # self.log.info('model deployed in sagemaker. ') except Exception as e: self.log.info('AION mlops failed to push docker container in aws ecr, check configuration parameters. \\n'+str(e)) elif (self.mlflowtosagemakerPushOnly.lower() == "false"): if (self.mlflowtosagemakerDeploy.lower() == "true"): self.log.info('Selected option is <Create and Deploy model> \\n') deploy_status=True try: # ##We need to run mlflow docker container command in the artifacts->model directory inside mlruns. try: os.chdir(model_path) except FileNotFoundError: self.log.info('Directory does not exist. '+str(model_path)) except NotADirectoryError: self.log.info('model_path is not a directory. '+str(model_path)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(model_path)) try: mlflow_container_push=subprocess.run(['mlflow', 'sagemaker', 'build-and-push-container','--build','--push','--container',mlflow_container_name]) self.log.info('AION mlops creates docker container and push the container into aws ecr.. ') deploy_status=True time.sleep(2) except: self.log.info('error in pushing aion model container to sagemaker, please check the connection between local host to aws server.') deploy_status=False self.log.info('Now deploying the model container to sagemaker starts....\\n ') # Once docker push completes, again going back to mlflow parent dir for deployment #Now,change the working dir to root dir,because now deploy needs full mlruns to model name dir. try: os.chdir(mlflow_root_dir) except FileNotFoundError: self.log.info('model_path does not exist. '+str(mlflow_root_dir)) except NotADirectoryError: self.log.info('model_path is not a directory. '+str(mlflow_root_dir)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(mlflow_root_dir)) # app_name = str(self.sm_app_name) try: if (deploy_status): self.deployModel2sagemaker(mlflow_container_name,tag_id,model_path) except: self.log.info('mlops deploy error.check connection') deploy_status=False except Exception as e: exc = {"status":"FAIL","message":str(e).strip('"')} out_exc = json.dumps(exc) self.log.info('mlflow failed to creates docker container please check the aws iam,ecr permission setup, aws id access_key,secret key values for aion.\\n') elif(self.mlflowtosagemakerDeploy.lower() == "false"): deploy_status=False localhost_deploy=True self.log.info('Selected option is <Create AION mlops container in local host .> \\n') self.log.info("User selected create-Deploy sagemaker option as False,") self.log.info("Creates the AION mlops-sagemaker container locally starting,but doesn't push into aws ecr and deploy in sagemaker. Check the container in docker repository. ") try: # ##We need to run AION mlops docker container command in the artifacts->model directory inside mlruns. try: os.chdir(model_path) self.log.info('After change to AION mlops model dir, cwd: '+str(model_path)) except FileNotFoundError: self.log.info('Directory does not exist. '+str(model_path)) except NotADirectoryError: self.log.info('model_path is not a directory. '+str(model_path)) except PermissionError: self.log.info('Issue in permissions to change to model dir. '+str(model_path)) # mlflow_container_local=subprocess.run(['AION mlops', 'sagemaker', 'build-and-push-container','--build','--no-push','--container',mlflow_container_name]) try: if not (deploy_status): mlflow_container_local=subprocess.run(['mlflow', 'sagemaker', 'build-and-push-container','--build','--no-push','--container',mlflow_container_name]) self.log.info('AION creates local host bsed docker container and push the container local docker repository. Check with <docker images> command.\\n ') localhost_deploy=True time.sleep(2) except: self.log.info('error in pushing aion model container to sagemaker, please check the connection between local host to aws server.') deploy_status=False localhost_deploy=False # print("AION mlops creates docker container and push the container into aws ecr.\\n") self.log.info('AION mlops creates docker container and stored locally... ') time.sleep(2) except Exception as e: localhost_deploy=False # print("mlflow failed to creates docker container please check the aws iam,ecr permission setup, aws id access_key,secret key values for aion.\\n") self.log.info('AION mlops failed to creates docker container in local machine.\\n'+str(e)) else: self.log.info('Deploy option not selected, Please check. ') localhost_deploy=False deploy_status=False else: pass localhost_container_status="Notdeployed" mlflow2sm_deploy_status="Notdeployed" if localhost_deploy: localhost_container_status="success" mlflow2sm_deploy_status="Notdeployed" # print("AION creates local docker container successfully.Please check in docker repository.") self.log.info("AION creates local docker container successfully.Please check in docker repository.") # else: # localhost_container_status="failed" # # print("AION failed to create local docker container successfully.Please check in docker repository.") # self.log.info("AION failed to create local docker container successfully.Please check in docker repository.") if (deploy_status): # Finally checking whether mlops model is deployed to sagemaker or not. app_name = str(self.sm_app_name) deploy_s = self.check_sm_deploy_status(app_name) if (deploy_s == "InService"): # print("AION mlops model is deployed at aws sagemaker, use application name(app_name) and region to access.\\n") self.log.info('AION mlops model is deployed at aws sagemaker, use application name(app_name) and region to access.\\n'+str(app_name)) mlflow2sm_deploy_status="success" localhost_container_status="Notdeployed" else: # print("AION Mlflow model not able to deploy at aws sagemaker\\n") self.log.info('AION mlops model not able to deploy at aws sagemaker.\\n') mlflow2sm_deploy_status="failed" localhost_container_status="Notdeployed" # else: # mlflow2sm_deploy_status="None" return mlflow2sm_deploy_status,localhost_container_status except Exception as inst: exc = {"status":"FAIL","message":str(inst).strip('"')} out_exc = json.dumps(exc) <s> import json import ast import sys import time from pathlib import Path import pandas as pd from AION.llm import llm_utils bench_mark_file = {'code':'code_eval.sh', 'doc': 'doc_eval.sh'} DB_TABLE = 'llm_benchmarking' def bench_mark(hypervisor,instanceid,model,usecaseid,eval='code'): output = {} started = False if eval not in bench_mark_file.keys(): raise ValueError(f"Evaluation for '{eval}' is not supported.\\nSupported types are {list(bench_mark_file.keys())}") db = benchmark_db( DB_TABLE, usecaseid) db.update_state('running') try: server = llm_utils.hypervisor( hypervisor,instanceid) if not server.is_already_running(): started, msg = server.start() if not started: raise ValueError( msg) ssh = server.ssh_details() pem_file = str(Path(__file__).parent/ssh['keyFilePath']) sh_file = llm_utils.remote_code_dir(as_str=True) + '/' + bench_mark_file[eval] cmd = sh_file + ' ' + usecaseid + ' '+ str(model) print(cmd) from llm.ssh_command import run_ssh_cmd buf = run_ssh_cmd(server.ip, pem_file, ssh['userName'], '', '', cmd) if isinstance( buf, str): print( buf) else: print( buf.decode('utf-8')) if buf: if 'eval_output:' in buf: output = buf.split('eval_output:')[-1].rstrip() output = ast.literal_eval( output) record = {} record['state'] = 'Success' record['eval_type'] = eval record['result_type'] = 'value' if eval =='code' else 'dict' record['result'] = output db.put_record( record) else: record = {} record['state'] = 'Error' record['eval_type'] = eval db.put_record( record) return output except Exception as e: print(e) record = {} record['state'] = 'Error' record['eval_type'] = eval record['result_type'] = 'value' if eval =='code' else 'dict' record['result'] = [{'error': str(e)}] db.put_record( record) output = {'status':'Error','msg':str(e)} return output class benchmark_db(): def __init__(self, table_name, usecaseid): from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = str(Path(DATA_DIR)/'sqlite') self.sqlite_obj = sqlite_db(file_path,'config.db') self.table_name = table_name self.usecaseid = usecaseid self.columns = ['usecaseid','state','eval_type','result_type','result'] self.sqlite_obj.create_table(self.table_name, self.columns, ['TEXT' for x in self.columns]) def put_record(self, record={}): db_data = self.sqlite_obj.get_data(self.table_name,'usecaseid',self.usecaseid) if (len(db_data) > 0): self.sqlite_obj.update_dict_data(record,f'"usecaseid"="{self.usecaseid}"',self.table_name) else: data = {x:[str(record[x])] if x in record.keys() else [''] for x in self.columns} data['usecaseid'] = self.usecaseid self.sqlite_obj.write_data(pd.DataFrame.from_dict(data),self.table_name) def update_state(self, state, error=None): data = {x:'' for x in self.columns} data['state'] = state data['usecaseid'] = self.usecaseid if error: data['result'] = error self.put_record( data) def read_data(self): return self.sqlite_obj.read_data(self.table_name) if __name__ == '__main__': run_code_benchmarking = False if run_code_benchmarking: #for code bench_mark('aws','i-0c7bfeddd00658f45','CodeLLaMA-2-7B','AI0025_1',eval='code') else: # for document bench_mark('aws','i-0c7bfeddd00658f45','LLaMA-2-7B','AI0041_1',eval='doc') from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = str(Path(DATA_DIR)/'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') data = sqlite_obj.read_data('llm_benchmarking') print(data) <s> import json import os import sys import pandas as pd import time from stat import S_ISDIR, S_ISREG import paramiko from pathlib import Path import logging import boto3 from botocore.exceptions import ClientError import re remote_data_dir = '/home/ubuntu/AION/data/storage' remote_config_dir = '/home/ubuntu/AION/data/config' running_state_code = 16 stopped_state_code = 80 sh_file_path = '/home/ubuntu/AION/llm/sbin/run_experiment.sh ' prompt_command = '/home/ubuntu/AION/llm/sbin/run_inference.sh' def create_instance(image_id, instance_type, security_group_id,region,instance_name,aws_access_key_id,aws_secret_key): try: ec2 = boto3.client('ec2', aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_key, region_name=region) response = ec2.run_instances(ImageId=image_id, InstanceType=instance_type, SecurityGroupIds=[security_group_id], MaxCount=1, MinCount=1, TagSpecifications=[{'ResourceType': 'instance', 'Tags': [{'Key': 'Name', 'Value': instance_name}]}]) #print('Instance ID:', response['Instances'][0]['InstanceId']) return response['Instances'][0]['InstanceId'],'' except Exception as e: print(e) return '',str(e) def check_instance(aws_access_key_id, aws_secret_key, instance_id,region): ip = '' ec2 = boto3.client('ec2', region_name=region, aws_access_key_id=
aws_access_key_id, aws_secret_access_key=aws_secret_key) response = ec2.describe_instance_status(InstanceIds=[instance_id],IncludeAllInstances=True) if response['InstanceStatuses'][0]['InstanceState']['Name'] == 'running': ip = response['Reservations'][0]['Instances'][0]['PublicIpAddress'] return 'Running',ip else: return 'NotRunning',ip def get_instance_ip(aws_access_key_id, aws_secret_key, instance_id,region): try: ec2 = boto3.client('ec2', region_name=region, aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_key) response = ec2.describe_instances(InstanceIds=[instance_id]) ip = response['Reservations'][0]['Instances'][0]['PublicIpAddress'] return ip except Exception as e: print(e) return '' def start_instance(aws_access_key_id, aws_secret_key, instance_id,region): ip = '' ec2 = boto3.client('ec2', region_name=region, aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_key) response = ec2.describe_instance_status(InstanceIds=[instance_id],IncludeAllInstances=True) if response['InstanceStatuses'][0]['InstanceState']['Name'] == 'running': print("Instance is already running") try: response = ec2.start_instances(InstanceIds=[instance_id], DryRun=False) #print(response) instance_status_code = 0 while instance_status_code != running_state_code: response = ec2.describe_instances(InstanceIds=[instance_id]) instance_status_code = response['Reservations'][0]['Instances'][0]['State']['Code'] if instance_status_code == running_state_code: ip = response['Reservations'][0]['Instances'][0]['PublicIpAddress'] break except Exception as e: print(e) return 'Fail',str(e),'' return 'Success','Success',ip def is_running(instance_id,region,aws_access_key_id,aws_secret_key): try: ec2 = boto3.client('ec2', region_name=region, aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_key) response = ec2.describe_instance_status(InstanceIds=[instance_id], IncludeAllInstances=True) if 'Reservations' in response and len(response['Reservations']) > 0: state = response['Reservations'][0]['Instances'][0]['State']['Name'] return state elif 'InstanceStatuses' in response: return response['InstanceStatuses'][0]['InstanceState']['Name'] else : return 'failed' except: return "error" def terminate_instance(instance_id,region,aws_access_key_id,aws_secret_key): try: ec2 = boto3.client('ec2', aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_key, region_name=region) response = ec2.terminate_instances(InstanceIds=[instance_id]) return response['TerminatingInstances'][0]['InstanceId'],'success' except Exception as e: print(e),'failed' def copy_files_to_server(ip, pem_file,local_data_file_path,local_config_file_path,username): try: host = ip client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) while True: try: client.connect(host, username=username, key_filename=pem_file) sftp = client.open_sftp() break except: time.sleep(10) try: sftp.stat(remote_data_dir) print(f"Path: '{remote_data_dir}' already exist") except FileNotFoundError: sftp.mkdir(remote_data_dir) try: sftp.stat(remote_config_dir) print(f"Path: '{remote_config_dir}' already exist") except FileNotFoundError: sftp.mkdir(remote_config_dir) Train_Data_InRemoteArtifacts = sftp.listdir(remote_data_dir) for traindata_files in Train_Data_InRemoteArtifacts: print(traindata_files) if not traindata_files.endswith('.ipynb_checkpoints'): sftp.remove(remote_data_dir +'/'+ traindata_files) if os.path.isdir(local_data_file_path): list_pdf_json_files = os.listdir(local_data_file_path) for file_pdf_json in list_pdf_json_files: sftp.put(local_data_file_path+'/'+file_pdf_json, remote_data_dir+'/'+ file_pdf_json) print(file_pdf_json + " data copied successfully") else: filename = os.path.basename(local_data_file_path) directoryname= os.path.dirname(local_data_file_path) sftp.put(directoryname+'/'+filename, remote_data_dir+'/'+ filename) print(filename + " data copied successfully") config_InRemoteArtifacts = sftp.listdir(remote_config_dir) for config_file in config_InRemoteArtifacts: print(config_file) if not config_file.endswith('.ipynb_checkpoints'): sftp.remove(remote_config_dir +'/'+ config_file) if local_config_file_path != '': if os.path.isdir(local_config_file_path): list_pdf_json_files = os.listdir(local_config_file_path) for file_pdf_json in list_pdf_json_files: sftp.put(local_config_file_path+'/'+file_pdf_json, remote_config_dir+'/'+ file_pdf_json) print(file_pdf_json + " config copied successfully") else: # updated_config_file_path = create_config(local_config_file_path) filename = os.path.basename(local_config_file_path) directoryname= os.path.dirname(local_config_file_path) sftp.put(directoryname+'/'+filename, remote_config_dir+'/'+ 'config.json') print(filename + " config copied successfully") remote_files = sftp.listdir(remote_config_dir) print("List of uploaded files",remote_files) sftp.close() client.close() except Exception as e: print(e) def check_status(ip,username,pem_file): logoutput = read_log_file(ip,username,pem_file) if "aion_llmfinetuning_Status" in logoutput: return True else: return False def read_log_file(ip,username,pem_file): host = ip client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) client.connect(host, username=username, key_filename=pem_file) log_file_path = '/home/ubuntu/AION/data/log/fine_tuning_log.log' stdin, stdout, stderr = client.exec_command(f'tail -n 500 {log_file_path}') time.sleep(5) client.close() return stdout.read().decode() def run_ssh_cmd(ip,pem_file,username,log,command): try: buf = '' host = ip client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) while True: try: client.connect(host, username=username, key_filename=pem_file) break except: time.sleep(10) stdin, stdout, stderr =client.exec_command(command) for line in stdout: if log != '': log.info(line.strip()) else: if buf != '': buf= buf+'\\n' buf = buf+line.strip() print(buf) client.close() return buf except Exception as e: print(str(e)) raise Exception(str(e)) def start_logging(deployFolder,modelName,version): try: deployLocation = Path(deployFolder)/modelName/str(version)/'log' deployLocation.mkdir(parents=True, exist_ok=True) name = 'model_training_logs.log' filehandler = logging.FileHandler(deployLocation/name, 'w','utf-8') log = logging.getLogger('log_llm') log.propagate = False for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): log.removeHandler(hdlr) log.addHandler(filehandler) log.setLevel(logging.INFO) return log except Exception as e: print(str(e)) def update_sqllite_data(usecaseid,variable,variable_value): try: print(usecaseid) from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') if sqlite_obj.table_exists("LLMTuning"): data = sqlite_obj.get_data('LLMTuning','usecaseid',usecaseid) if (len(data) > 0): sqlite_obj.update_data('"'+variable+'"="'+variable_value+'"','"usecaseid"="'+str(usecaseid)+'"','LLMTuning') return('Success') data = dict(usecaseid=usecaseid,ip='',instance='',hypervisor='AWS',status='NA') data.update({variable:variable_value}) df = pd.DataFrame(data, index=[0]) sqlite_obj.write_data(df,'LLMTuning') return('Success') except Exception as e: print(e) return('Error') def LLM_predict(cloudconfig,instanceid,promptfile): with open(cloudconfig, 'r') as config_f: cloud_infra = json.load(config_f) config_f.close() aws_access_key_id = cloud_infra['AWS_EC2']['AWSAccessKeyID'] aws_secret_key = cloud_infra['AWS_EC2']['AWSSecretAccessKey'] region = cloud_infra['AWS_EC2']['LLaMa7B']['RegionName'] ip = start_instance(aws_access_key_id, aws_secret_key, instanceid,region) currentDirectory = os.path.dirname(os.path.abspath(__file__)) pem_file = os.path.join(currentDirectory,cloud_infra['AWS_EC2']['LLaMa7B']['ssh']['keyFilePath']) username = cloud_infra['AWS_EC2']['LLaMa7B']['ssh']['userName'] copy_files_to_server(ip,pem_file,promptfile,'',username) promptfile = os.path.basename(promptfile) command = prompt_command+' '+remote_data_dir+'/'+ promptfile buf = run_ssh_cmd(ip, pem_file, username,'',command) return buf def LLM_tuning_lemma7b(config,cloudconfig): with open(config, 'r') as config_f: config_data = json.load(config_f) config_f.close() modelid = config_data['basic']['modelName']+'_'+config_data['basic']['modelVersion'] log = start_logging(config_data['basic']['deployLocation'],config_data['basic']['modelName'],config_data['basic']['modelVersion']) with open(cloudconfig, 'r') as config_f: cloud_infra = json.load(config_f) config_f.close() currentDirectory = os.path.dirname(os.path.abspath(__file__)) aws_access_key_id = cloud_infra['AWS_EC2']['AWSAccessKeyID'] aws_secret_key = cloud_infra['AWS_EC2']['AWSSecretAccessKey'] instance_type = cloud_infra['AWS_EC2']['LLaMa7B']['InstanceSetting']['InstanceType'] security_group_id = cloud_infra['AWS_EC2']['LLaMa7B']['InstanceSetting']['SecurityGroupId'] region = cloud_infra['AWS_EC2']['LLaMa7B']['RegionName'] image_id = cloud_infra['AWS_EC2']['LLaMa7B']['amiId'] pem_file = os.path.join(currentDirectory,cloud_infra['AWS_EC2']['LLaMa7B']['ssh']['keyFilePath']) username = cloud_infra['AWS_EC2']['LLaMa7B']['ssh']['userName'] datafile = config_data['basic']['dataLocation'] instance_name = config_data['basic']['modelName']+'_'+str(config_data['basic']['modelVersion'])+'_LLMTuning' configfile = config ip = cloud_infra['AWS_EC2']['LLaMa7B']['InstanceIP'] if image_id != '': log.info("Status:-|... Create Instance") instance_id = create_instance(image_id, instance_type, security_group_id,region,instance_name) elif cloud_infra['AWS_EC2']['LLaMa7B']['InstanceId'] != '': instance_id = cloud_infra['AWS_EC2']['LLaMa7B']['InstanceId'] update_sqllite_data(modelid,'instance',instance_id) print(instance_id) else: instance_id = '' ip = cloud_infra['AWS_EC2']['LLaMa7B']['InstanceIP'] if instance_id != '': log.info("Status:-|... Start Instance") update_sqllite_data(modelid,'status','Initialize') ip = start_instance(aws_access_key_id, aws_secret_key, instance_id,region) print(ip) if ip != '': update_sqllite_data(modelid,'ip',ip) try: log.info("Status:-|... Copy Files") copy_files_to_server(ip,pem_file,datafile,configfile,username) log.info("Status:-|... Start LLM Tuning") update_sqllite_data(modelid,'status','Tuning') run_ssh_cmd(ip, pem_file, username,log,sh_file_path) log_data = read_log_file(ip,username,pem_file) outputStr = re.search(r'aion_learner_status:(.*)', str(log_data), re.IGNORECASE).group(1) outputStr = outputStr.strip() outputStr = json.loads(outputStr) from llm.llm_tuning import save
_output outputStr = save_output(config_data['basic']['deployLocation'],config_data['basic']['modelName'],config_data['basic']['modelVersion'],outputStr) print(outputStr) if "Tuning completed Successfully" in log_data: update_sqllite_data(modelid,'status','Success') output = json.dumps(outputStr) print(f"\\naion_learner_status:{output}\\n") return output else: update_sqllite_data(modelid,'status','Error') output = json.dumps(outputStr) print(f"\\naion_learner_status:{output}\\n") return output except Exception as e: print(e) log.info(str(e)) output = {'status':'FAIL','message':str(e),'LogFile':''} output = json.dumps(output) print(f"\\naion_learner_status:{output}\\n") return output else: output = {'status':'FAIL','message':'Not Configured Properly','LogFile':''} output = json.dumps(output) print(f"\\naion_learner_status:{output}\\n") return output def stop_server_instance(aws_access_key_id, aws_secret_access_key, instance_id,region): ec2 = boto3.client('ec2', region_name=region, aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key) try: ec2.stop_instances(InstanceIds=[instance_id, ], DryRun=True) except ClientError as e: if 'DryRunOperation' not in str(e): raise # Dry run succeeded, call stop_instances without dryrun try: response = ec2.stop_instances(InstanceIds=[instance_id], DryRun=False) response = ec2.describe_instances(InstanceIds=[instance_id]) instance_status_code = 0 while instance_status_code != stopped_state_code: response = ec2.describe_instances(InstanceIds=[instance_id]) instance_status_code = response['Reservations'][0]['Instances'][0]['State']['Code'] if instance_status_code == stopped_state_code: print("Instance Stopped") break return "Process Completed" except ClientError as e: print(e) return "Process failed" if __name__ == "__main__": status,msg = LLM_tuning_lemma7b(sys.argv[1],sys.argv[2]) print(status, msg) def check_file_on_server(file_path, ip, pem_file): is_wait = True try: host = ip username = "ubuntu" client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) client.connect(host, username=username, key_filename=pem_file) sftp = client.open_sftp() sftp.stat(file_path) print("Model File created On Server") is_wait = False except IOError: is_wait = True print("Model training is in progress..") return is_wait def removeremotefolder_files(sftp, path): try: files = sftp.listdir(path=path) for f in files: filepath = path + "/" + f print(filepath) if isdir(sftp, filepath): removeremotefolder_files(sftp, filepath) else: sftp.remove(filepath) sftp.rmdir(path) except IOError as e: print(e) def isdir(sftp, path): try: return S_ISDIR(sftp.stat(path).st_mode) except IOError: return False def get_remote_folder(ip, remotedir, localdir, pem_file, preserve_mtime=False): host = ip username = "ubuntu" client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) client.connect(host, username=username, key_filename=pem_file) sftp = client.open_sftp() for entry in sftp.listdir(remotedir): remotepath = remotedir + "/" + entry localpath = os.path.join(localdir, entry) mode = sftp.stat(remotepath).st_mode if S_ISDIR(mode): try: os.mkdir(localpath, mode=777) except OSError: pass get_remote_folder(ip, remotepath, localpath, pem_file, preserve_mtime) elif S_ISREG(mode): sftp.get(remotepath, localpath) print("{} downloaded successfully".format(entry)) <s><s> import json import os import sys import pandas as pd import time from stat import S_ISDIR, S_ISREG from pathlib import Path import logging import re import tarfile from llm import llm_utils #remote_data_dir = '/home/ubuntu/AION/data/storage' remote_data_rawdata_dir = '/home/aion/data/storage/raw_data' remote_data_processeddata_dir = '/home/aion/data/storage/processed_data' remote_config_dir = '/home/aion/data/config' sh_file_path = '/home/aion/llm/sbin/llm_model_finetuning.sh' unstructured_script_path = '/home/aion/llm/sbin/llm_model_finetuning.sh' def start_logging(deployFolder,modelName,version): try: deployLocation = Path(deployFolder)/modelName/str(version)/'log' deployLocation.mkdir(parents=True, exist_ok=True) name = 'model_training_logs.log' filehandler = logging.FileHandler(deployLocation/name, 'w','utf-8') log = logging.getLogger('log_llm') log.propagate = False for hdlr in log.handlers[:]: # remove the existing file handlers if isinstance(hdlr,logging.FileHandler): log.removeHandler(hdlr) log.addHandler(filehandler) log.setLevel(logging.INFO) return log except Exception as e: print(str(e)) def update_sqllite_data(usecaseid,variable,variable_value): try: from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') if sqlite_obj.table_exists("LLMTuning"): column_names = sqlite_obj.column_names('LLMTuning') #print(column_names) if 'region' not in column_names: query = 'Alter Table LLMTuning ADD region TEXT' sqlite_obj.execute_query(query) if 'image' not in column_names: query = 'Alter Table LLMTuning ADD image TEXT' sqlite_obj.execute_query(query) data = sqlite_obj.get_data('LLMTuning','usecaseid',usecaseid) if (len(data) > 0): sqlite_obj.update_data('"'+variable+'"="'+variable_value+'"','"usecaseid"="'+str(usecaseid)+'"','LLMTuning') return('Success') data = dict(usecaseid=usecaseid,ip='',instance='',hypervisor='NA',status='NA',region='',image='') data.update({variable:variable_value}) df = pd.DataFrame(data, index=[0]) sqlite_obj.write_data(df,'LLMTuning') return('Success') except Exception as e: print(e) return('Error') def save_output(deployFolder,modelName,version,outputstr,hypervisor,instance): try: deployLocation = Path(deployFolder)/modelName/str(version)/'etc' deployLocation.mkdir(parents=True, exist_ok=True) name = 'output.json' dpath = Path(deployFolder)/modelName/str(version) outputstr['data']['deployLocation'] = str(dpath) outputstr['data']['vmDetails'] = str(hypervisor)+' Instance: '+str(instance) outputstr['data']['LogFile'] = str(dpath/'log'/'model_training_logs.log') with open(deployLocation/name, 'w',encoding='utf-8') as f: json.dump(outputstr, f) f.close() return (outputstr) except Exception as e: print(str(e)) print(outputstr) def llm_logs(config,cloudconfig,instanceid,hypervisor,mlmodels): try: with open(config, 'r') as config_f: config_data = json.load(config_f) config_f.close() modelid = config_data['basic']['modelName']+'_'+config_data['basic']['modelVersion'] from appbe.compute import readComputeConfig cloud_infra = readComputeConfig() if hypervisor == 'AWS': aws_access_key_id = cloud_infra['awsCredentials']['accessKey'] aws_secret_key = cloud_infra['awsCredentials']['secretAccessKey'] amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], instanceid) region = amiDetails['regionName'] from llm.aws_instance_api import check_instance status,ip = check_instance(aws_access_key_id, aws_secret_key, instanceid,region) if status.lower() == 'running': currentDirectory = os.path.dirname(os.path.abspath(__file__)) pem_file = os.path.join(currentDirectory,amiDetails['ssh']['keyFilePath']) username = amiDetails['ssh']['userName'] from llm.ssh_command import read_log_file logs = read_log_file(ip,username,'',pem_file) deployFolder = config_data['basic']['deployLocation'] modelName = config_data['basic']['modelName'] version = config_data['basic']['modelVersion'] deployLocation = Path(deployFolder)/modelName/str(version)/'log' deployLocation.mkdir(parents=True, exist_ok=True) name = 'model_training_logs.log' with open(deployLocation/name, 'r+',encoding='utf-8') as f: lines = [line.rstrip('\\n') for line in f] for log in logs: if log not in lines: # inserts on top, elsewise use lines.append(name) to append at the end of the file. lines.insert(0, log) f.seek(0) # move to first position in the file, to overwrite ! f.write('\\n'.join(lines)) else: status = {'status':'Error','msg':'Instance not running'} output = json.dumps(status) deployFolder = config_data['basic']['deployLocation'] modelName = config_data['basic']['modelName'] version = config_data['basic']['modelVersion'] deployLocation = Path(deployFolder)/modelName/str(version)/'log' deployLocation.mkdir(parents=True, exist_ok=True) name = 'model_training_logs.log' with open(deployLocation/name, 'r+',encoding='utf-8') as f: f.write('aion_learner_status:'+str(output)) f.close() else: credentialsJson = cloud_infra['gcpCredentials']['gcpCredentials'] projectID = cloud_infra['gcpCredentials']['projectID'] amiDetails = getAMIDetails(cloud_infra['GCP']['instances'], instanceid) zone = amiDetails['regionName'] username = username = amiDetails['ssh']['userName'] currentDirectory = os.path.dirname(os.path.abspath(__file__)) pem_file = os.path.join(currentDirectory,amiDetails['ssh']['keyFilePath']) password = '' from llm.gcp_compute_api import check_instance status,ip = check_instance(credentialsJson,projectID, zone, instanceid) if status.lower() == 'running': from llm.ssh_command import read_log_file logs = read_log_file(ip,username,'',pem_file) deployFolder = config_data['basic']['deployLocation'] modelName = config_data['basic']['modelName'] version = config_data['basic']['modelVersion'] deployLocation = Path(deployFolder)/modelName/str(version)/'log' deployLocation.mkdir(parents=True, exist_ok=True) name = 'model_training_logs.log' with open(deployLocation/name, 'r+',encoding='utf-8') as f: lines = [line.rstrip('\\n') for line in f] for log in logs: if log not in lines: lines.insert(0, log) f.seek(0) # move to first position in the file, to overwrite ! f.write('\\n'.join(lines)) else: status = {'status':'Error','msg':'Instance not running'} output = json.dumps(status) deployFolder = config_data['basic']['deployLocation'] modelName = config_data['basic']['modelName'] version = config_data['basic']['modelVersion'] deployLocation = Path(deployFolder)/modelName/str(version)/'log' deployLocation.mkdir(parents=True, exist_ok=True) name = 'model_training_logs.log' with open(deployLocation/name, 'r+',encoding='utf-8') as f: f.write('aion_learner_status:'+str(output)) f.close() except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) def tardirectory(path,tarfilepath,ext): with tarfile.open(tarfilepath, 'w:tar') as tarhandle: for root, dirs, files in os.walk(path): for f in files: if ext == 'doc': if f.endswith('.' + 'doc') or f.endswith('.' + 'docx'): tarhandle.add(os.path.join(root, f), arcname=f) else: if f.endswith('.'+ext): tarhandle.add(os.path.join(root, f),arcname=f) tarhandle.close() def getAMIDetails(config,selectedAMI): y = {} for x in config: if x['id'] == selectedAMI: return x return y def run(config): with open(config, 'r') as config_f: config_data = json.load(config_f) config_f.close() modelid = config_data['basic']['modelName']+'_'+config_data['basic']['modelVersion'] log = start_logging(config_data['basic']['deployLocation'],config_data['basic']['modelName'],config_data
['basic']['modelVersion']) from appbe.compute import readComputeConfig cloud_infra = readComputeConfig() currentDirectory = os.path.dirname(os.path.abspath(__file__)) filetimestamp = str(int(time.time())) instance_name = config_data['basic']['modelName']+'-'+str(config_data['basic']['modelVersion'])+'-LLM-'+filetimestamp instance_name = instance_name.lower() if config_data['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'True': if os.path.isdir(config_data['basic']['dataLocation']): from appbe.dataPath import DATA_FILE_PATH filetimestamp = str(int(time.time())) tarfilepath = os.path.join(DATA_FILE_PATH,filetimestamp+'.tar') tardirectory(config_data['basic']['dataLocation'],tarfilepath,config_data['basic']['folderSettings']['fileExtension']) config_data['basic']['dataLocationUnstructured'] = tarfilepath with open(config, "w") as outfile: json.dump(config_data, outfile) outfile.close() if cloud_infra['computeInfrastructure'] == 'GCP': log.info("Status:-|... Compute Infrastructure GCP GCE") credentialsJson = cloud_infra['gcpCredentials']['gcpCredentials'] #credentialsJson = "C:\\AION\\GCP-Instance-Utilityv2\\GCP-Instance-Utility\\ers-research.json" selectedID = cloud_infra['gcpCredentials']['selectedID'] projectID = cloud_infra['gcpCredentials']['projectID'] zone = cloud_infra['gcpCredentials']['regionName'] selectMachineType = cloud_infra['gcpCredentials']['machineType'] if selectMachineType.lower() == 'image': amiDetails = getAMIDetails(cloud_infra['GCP']['machineImage'],selectedID) machineImageName = amiDetails['id'] else: amiDetails = getAMIDetails(cloud_infra['GCP']['instances'], selectedID) zone = amiDetails['regionName'] machineImageName = '' instance_name = selectedID pem_file = os.path.join(currentDirectory,amiDetails['ssh']['keyFilePath']) username = amiDetails['ssh']['userName'] if machineImageName != '': log.info("Status:-|... Create Instance Start") try: server = llm_utils.gcp_server("",machineImageName) ip,msg = server.create(instance_name) log.info("Status:-|... Create Instance End") if ip == '': if "resources available" in msg: msg = "The respective zone (or region) does not have enough resources available to fulfill the request. Please try after some time." output_json = {"status": "FAIL", "message": str(msg), "LogFile": ''} output = json.dumps(output_json) log.info("Status:-|... Failed to create the instance. "+str(msg)) print(f"\\naion_learner_status:{output}\\n") return output except Exception as e: print(str(e)) output_json = {"status":"FAIL","message":'Failed to create the instance.',"LogFile":''} output = json.dumps(output_json) log.info("Status:-|... Failed to create the instance.") print(f"\\naion_learner_status:{output}\\n") return output else: server = llm_utils.gcp_server(instance_name, "") server.start() ip = server.ip if ip != '': time.sleep(20) if selectMachineType.lower() == 'machineimage': update_sqllite_data(modelid, 'image', machineImageName) update_sqllite_data(modelid,'hypervisor','GCP') update_sqllite_data(modelid, 'region', zone) update_sqllite_data(modelid,'ip',ip) update_sqllite_data(modelid,'instance',instance_name) from llm.ssh_command import copy_files_to_server if config_data['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'True': datafile = config_data['basic']['dataLocationUnstructured'] else: datafile = config_data['basic']['dataLocation'] log.info("Status:-|... Upload tuning data Start") try: if config_data['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'True': copy_files_to_server(ip,pem_file,datafile,config,username,'',remote_data_rawdata_dir,remote_config_dir) else: copy_files_to_server(ip, pem_file, datafile, config, username,'', remote_data_processeddata_dir,remote_config_dir) time.sleep(20) log.info("Status:-|... Upload tuning data End") log.info("Status:-|... Start LLM Tuning") update_sqllite_data(modelid,'status','Tuning') from llm.ssh_command import run_ssh_cmd if config_data['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'True': script_path = unstructured_script_path else: script_path = sh_file_path print(script_path) run_ssh_cmd(ip,pem_file, username,'',log,script_path) from llm.ssh_command import read_log_file log_data = read_log_file(ip,username,'',pem_file) outputStr = re.search(r'aion_learner_status:(.*)', str(log_data), re.IGNORECASE).group(1) outputStr = outputStr.strip() outputStr = json.loads(outputStr) outputStr = save_output(config_data['basic']['deployLocation'],config_data['basic']['modelName'],config_data['basic']['modelVersion'],outputStr,'GCP GCE',instance_name) vmRunning = config_data['basic'].get('vmRunning','KeepRunning') if vmRunning.lower() != 'keeprunning': from llm.gcp_compute_api import stop_instance server.stop() if "Tuning Completed Successfully" in log_data: update_sqllite_data(modelid,'status','Success') output = json.dumps(outputStr) print(f"\\naion_learner_status:{output}\\n") return output else: server.showndown() update_sqllite_data(modelid,'status','Error') output = json.dumps(outputStr) print(f"\\naion_learner_status:{output}\\n") return output except Exception as e: print(e) server.showndown() output_json = {"status": "FAIL", "message": str(e), "LogFile": ''} output = json.dumps(output_json) log.info("Status:-|... " + str(e)) print(f"\\naion_learner_status:{output}\\n") return output else: output_json = {"status":"FAIL","message":'Failed to initialize the instance',"LogFile":''} output = json.dumps(output_json) log.info("Status:-|... Failed to initialize the instance") print(f"\\naion_learner_status:{output}\\n") return output elif cloud_infra['computeInfrastructure'] == 'AWS': log.info("Status:-|... Compute Infrastructure AWS EC2") aws_access_key_id = cloud_infra['awsCredentials']['accessKey'] aws_secret_key = cloud_infra['awsCredentials']['secretAccessKey'] selectMachineType = cloud_infra['awsCredentials']['machineType'] selectedID = cloud_infra['awsCredentials']['selectedID'] region = cloud_infra['awsCredentials']['regionName'] if selectMachineType.lower() == 'ami': amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['amis'],selectedID) instance_type = amiDetails['instanceSetting']['instanceType'] security_group_id = cloud_infra['awsCredentials']['securitygroupid'] else: amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], selectedID) region = amiDetails['regionName'] #region = cloud_infra['AWS_EC2']['LLaMa7B']['RegionName'] image_id = amiDetails['id'] pem_file = os.path.join(currentDirectory,amiDetails['ssh']['keyFilePath']) username = amiDetails['ssh']['userName'] if config_data['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'True': datafile = config_data['basic']['dataLocationUnstructured'] else: datafile = config_data['basic']['dataLocation'] if selectMachineType.lower() == 'ami': log.info("Status:-|... Create Instance Start") server = llm_utils.aws_server('', image_id) instance_id,msg = server.create(instance_name) if instance_id == '': output_json = {"status":"FAIL","message":'Failed to initialize the instance. '+str(msg),"LogFile":''} output = json.dumps(output_json) log.info("Status:-|... Failed to initialize the instance") print(f"\\naion_learner_status:{output}\\n") log.info(f"\\naion_learner_status:{output}\\n") return output log.info("Status:-|... Create Instance End") elif selectMachineType.lower() == 'instance': instance_id = image_id update_sqllite_data(modelid,'instance',instance_id) server = llm_utils.aws_server( instance_id, '') else: output_json = {"status":"FAIL","message":'AMI is not configured',"LogFile":''} output = json.dumps(output_json) log.info("Status:-|... AMI is not configured") print(f"\\naion_learner_status:{output}\\n") log.info(f"\\naion_learner_status:{output}\\n") return output # instance_id = '' # ip = cloud_infra['AWS_EC2']['LLaMa7B']['InstanceIP'] try: from appbe.models import get_published_models already_published,published_usecase = get_published_models(instance_id) if already_published: Msg = f'Fine Tuned Model-{published_usecase} is already published at the same instance, Please unpublish the mentioned model to proceed.' output_json = {"status":"Error","message":Msg,"LogFile":''} output = json.dumps(output_json) log.info("Status:-|... A Model is already Published at the same instance.") print(f"\\naion_learner_status:{output}\\n") log.info(f"\\naion_learner_status:{output}\\n") return output except Exception as e: log.info(str(e)) print(str(e)) if instance_id != '': log.info("Status:-|... Start Instance") if selectMachineType.lower() == 'ami': update_sqllite_data(modelid, 'image', image_id) update_sqllite_data(modelid, 'region', region) update_sqllite_data(modelid,'instance',instance_id) update_sqllite_data(modelid,'hypervisor','AWS') update_sqllite_data(modelid,'status','Initialize') status,msg = server.start() ip = server.ip time.sleep(20) if status and ip != '': update_sqllite_data(modelid,'ip',ip) try: log.info("Status:-|... Copy Files") from llm.ssh_command import copy_files_to_server if config_data['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'True': print(ip,pem_file,datafile,config,username,'',remote_data_rawdata_dir,remote_config_dir) copy_files_to_server(ip,pem_file,datafile,config,username,'',remote_data_rawdata_dir,remote_config_dir) else: print(ip, pem_file, datafile, config, username, '', remote_data_processeddata_dir, remote_config_dir) copy_files_to_server(ip, pem_file, datafile, config, username, '', remote_data_processeddata_dir,remote_config_dir) time.sleep(20) log.info("Status:-|... Start LLM Tuning") update_sqllite_data(modelid,'status','Tuning') from llm.ssh_command import run_ssh_cmd if config_data['basic']['preprocessing']['llmFineTuning']['unstructuredData'] == 'True': script_path = unstructured_script_path else: script_path = sh_file_path #print(script_path) #sys.exit() run_ssh_cmd(ip, pem_file, username,'',log,script_path) from llm.ssh_command import read_log_file log_data = read_log_file(ip,username,'',pem_file) outputStr = re.search(r'aion_learner_status:(.*)', str(log_data), re.IGNORECASE).group(1) outputStr = outputStr.strip() outputStr = json.loads(outputStr) outputStr = save_output(config_data['basic']['deployLocation'],config_data['basic']['modelName'],config_data['basic']['modelVersion'],outputStr,'AWS EC2',instance_id) vmRunning = config_data['basic'].get('vmRunning','KeepRunning') if vmRunning.lower() != 'keeprunning': server.stop() if "Tuning Completed Successfully" in log_data: update_sqllite_data(modelid,'status','Success') output = json.dumps(outputStr) print(f"\\naion_learner_status:{output}\\n") log.info(f"\\naion_learner_status:{output}\\n") return output else: server.showndown() update_sqllite_data(modelid,'status','Error') output = json.dumps(outputStr) print(f"\\naion_learner_status:{output}\\n") log.info(f"\\naion_learner_status:{output}\\n") return output except Exception as e: print(e) log.info(str(e)) server.showndown() output = {'status': 'FAIL', 'message': str(e), 'LogFile': ''} output = json.dumps(output) print(f"\\naion_learner_status:{output}\\n") log.info(f"\\naion_learner_status:{output}\\n") return output else: output = {'status':'FAIL','message':msg,'LogFile':''} output = json.dumps(output) print(f"\\naion_learner_status:{output}\\n") log.info(f"\\naion_learner_status
:{output}\\n") return output else: output_json = {"status":"FAIL","message":'Failed to initialize the instance',"LogFile":''} output = json.dumps(output_json) log.info("Status:-|... Failed to initialize the instance") print(f"\\naion_learner_status:{output}\\n") return output<s> import json import os import time remote_data_dir = '/home/aion/data/storage/prompt' remote_config_dir = '/home/aion/data/config' prompt_command = '/home/aion/llm/sbin/llm_predict.sh' command_prepare_model = '/home/aion/llm/sbin/llm_merge_weights.sh' command_start_service = '/home/aion/llm/sbin/llm_publish_model.sh' command_stop_service = 'publish.py' from AION.llm import llm_utils from pathlib import Path def getAMIDetails(config,selectedAMI): y = {} for x in config: print(x) if x['id'] == selectedAMI: return x return y def get_ip(cloudconfig,instanceid,hypervisor,region,image): try: # with open(cloudconfig, 'r') as config_f: # cloud_infra = json.load(config_f) # config_f.close() from appbe.compute import readComputeConfig cloud_infra = readComputeConfig() if hypervisor == 'AWS': aws_access_key_id = cloud_infra['awsCredentials']['accessKey'] aws_secret_key = cloud_infra['awsCredentials']['secretAccessKey'] if image != '' and image != 'NA': amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['amis'], image) else: amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], instanceid) if region == '' or region == 'NA': region = amiDetails['regionName'] from llm.aws_instance_api import get_instance_ip return get_instance_ip(aws_access_key_id, aws_secret_key, instanceid,region) elif hypervisor == 'GCP': #print(hypervisor,instanceid) server = llm_utils.hypervisor( hypervisor,instanceid) if server.is_machine_running(): return server.ip else: return '' except Exception as e: print(e) raise Exception def kill_inference_server(cloudconfig,instanceid,hypervisor,region,image): # with open(cloudconfig, 'r') as config_f: # cloud_infra = json.load(config_f) # config_f.close() from appbe.compute import readComputeConfig cloud_infra = readComputeConfig() if hypervisor == 'AWS': ip = get_ip(cloudconfig,instanceid,hypervisor,region,image) if ip == '': print("Machine is not running.") else: amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], instanceid) currentDirectory = os.path.dirname(os.path.abspath(__file__)) pem_file = os.path.join(currentDirectory,amiDetails['ssh']['keyFilePath']) username = amiDetails['ssh']['userName'] command = 'pkill -f'+ ' '+command_stop_service from llm.ssh_command import run_ssh_cmd buf = run_ssh_cmd(ip, pem_file, username, '', '', command) elif hypervisor == 'GCP': server = llm_utils.hypervisor( hypervisor,instanceid) if server.is_machine_running(): ssh = server.ssh_details() pem_file = str(Path(__file__).parent/ssh['keyFilePath']) from llm.ssh_command import run_ssh_cmd command = 'pkill -f'+ ' '+command_stop_service buf = run_ssh_cmd(server.ip, pem_file, ssh['userName'],'','',command) else: raise Exception("Error") def LLM_publish(cloudconfig,instanceid,hypervisor,model,usecaseid,region,image): from appbe.compute import readComputeConfig cloud_infra = readComputeConfig() # with open(cloudconfig, 'r') as config_f: # cloud_infra = json.load(config_f) # config_f.close() if hypervisor == 'AWS': aws_access_key_id = cloud_infra['awsCredentials']['accessKey'] aws_secret_key = cloud_infra['awsCredentials']['secretAccessKey'] if image != '' and image != 'NA': amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['amis'], image) else: amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], instanceid) if region == '' or region == 'NA': region = amiDetails['regionName'] from llm.aws_instance_api import start_instance status,msg,ip = start_instance(aws_access_key_id, aws_secret_key, instanceid, region) print(status,msg,ip) if status.lower() == 'success': currentDirectory = os.path.dirname(os.path.abspath(__file__)) pem_file = os.path.join(currentDirectory,amiDetails['ssh']['keyFilePath']) username = amiDetails['ssh']['userName'] command = command_prepare_model + ' ' + usecaseid + ' '+ str(model) print(command) from llm.ssh_command import run_ssh_cmd buf = run_ssh_cmd(ip, pem_file, username, '', '', command) if "Error" in buf: print("Error in Merging model") raise Exception("Error in Merging model") print("merging finished") command = command_start_service+' '+ usecaseid buf = run_ssh_cmd(ip, pem_file, username, '', '', command) print("inference server running") return buf else: print(msg) return msg elif hypervisor == 'GCP': amiDetails = getAMIDetails(cloud_infra['GCP']['instances'], instanceid) if region == '' or region == 'NA': region = amiDetails['regionName'] server = llm_utils.hypervisor(hypervisor,instanceid) if not server.is_machine_running(): started, msg = server.start() if not started: raise ValueError( msg) ssh = server.ssh_details() pem_file = str(Path(__file__).parent/ssh['keyFilePath']) from llm.ssh_command import run_ssh_cmd #print(model) #print(usecaseid) command = command_prepare_model + ' ' + usecaseid + ' '+ str(model) buf = run_ssh_cmd(server.ip, pem_file, ssh['userName'], '', '', command) if "Error" in buf: print("Error in Merging model") raise Exception("Error in Merging model") #print("merging finished") command = command_start_service+' '+ usecaseid buf = run_ssh_cmd(server.ip, pem_file, ssh['userName'], '', '', command) #print("inference server running") return buf else: print("Not configured for gcp") raise Exception("Eror") def LLM_predict(cloudconfig,instanceid,promptfile,hypervisor,model,usecaseid,region,image,temperature,maxtokens,modelType): from appbe.compute import readComputeConfig cloud_infra = readComputeConfig() try: temperature = float(temperature) except: temperature = 0.4 try: maxtokens = int(maxtokens) except: maxtokens = 2048 print("====") print(float(temperature)) print("====") if hypervisor == 'AWS': aws_access_key_id = cloud_infra['awsCredentials']['accessKey'] aws_secret_key = cloud_infra['awsCredentials']['secretAccessKey'] currentDirectory = os.path.dirname(os.path.abspath(__file__)) if image != '' and image != 'NA': amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['amis'], image) else: amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], instanceid) if region == '' or region == 'NA': region = amiDetails['regionName'] from llm.aws_instance_api import start_instance #print(aws_access_key_id, aws_secret_key, instanceid, region) status,msg,ip = start_instance(aws_access_key_id, aws_secret_key, instanceid, region) if status.lower() == 'success': pem_file = os.path.join(currentDirectory,amiDetails['ssh']['keyFilePath']) username = amiDetails['ssh']['userName'] from llm.ssh_command import copy_files_to_server #print(ip,pem_file,promptfile,'',username,'',remote_data_dir,remote_config_dir) copy_files_to_server(ip,pem_file,promptfile,'',username,'',remote_data_dir,remote_config_dir) promptfile = os.path.basename(promptfile) if modelType == 'BaseModel': command = prompt_command + ' ' + 'BaseModel' + ' ' + remote_data_dir + '/' + promptfile + ' ' + str( model) + ' ' + str(temperature) + ' ' + str(maxtokens) else: command = prompt_command+' '+usecaseid+' '+remote_data_dir+'/'+ promptfile+' '+str(model)+' '+str(temperature)+' '+str(maxtokens) print(command) from llm.ssh_command import run_ssh_cmd buf = run_ssh_cmd(ip, pem_file, username,'','',command) return buf else: return msg else: server = llm_utils.hypervisor( hypervisor,instanceid) if not server.is_machine_running(): started, msg = server.start() if not started: raise ValueError( msg) ssh = server.ssh_details() pem_file = str(Path(__file__).parent/ssh['keyFilePath']) from llm.ssh_command import copy_files_to_server copy_files_to_server(server.ip,pem_file,promptfile,'',ssh['userName'],'',remote_data_dir,remote_config_dir) promptfile = os.path.basename(promptfile) if modelType == 'BaseModel': command = prompt_command + ' ' + 'BaseModel' + ' ' + remote_data_dir + '/' + promptfile + ' ' + str( model) + ' ' + str(temperature) + ' ' + str(maxtokens) else: command = prompt_command+' '+usecaseid+' '+remote_data_dir+'/'+ promptfile+' '+str(model)+' '+str(temperature)+' '+str(maxtokens) #command = '/home/aion/llm/sbin/llm_model_finetuning.sh' #print(command) from llm.ssh_command import run_ssh_cmd #print(ssh['userName'],pem_file) buf = run_ssh_cmd(server.ip, pem_file, ssh['userName'],'','',command) return buf<s> import json import os import time from pathlib import Path BASE_DIR = '/home/aion' DATA_DIR = '/home/aion/data' CONFIG_DIR = '/home/aion/data/config' PROMPT_DATA_DIR = '/home/aion/data/prompt_data' CODE_DIR = '/home/aion/llm/sbin' def remote_base_dir(as_str=False): if as_str: return BASE_DIR return Path( BASE_DIR) def remote_data_dir(as_str=False): if as_str: return DATA_DIR return Path( DATA_DIR) def remote_config_dir(as_str=False): if as_str: return CONFIG_DIR return Path( CONFIG_DIR) def remote_code_dir(as_str=False): if as_str: return CODE_DIR return Path( CODE_DIR) def remote_prompt_data_dir(as_str=False): if as_str: return DATA_DIR return Path( DATA_DIR) def get_ami_details(config,selectedAMI): y = {} for x in config: if x['id'] == selectedAMI: return x return y def get_ip(cloudconfig,instanceid,hypervisor,region,image): from AION.appbe.compute import readComputeConfig cloud_infra = readComputeConfig() if hypervisor == 'AWS': aws_access_key_id = cloud_infra['awsCredentials']['accessKey'] aws_secret_key = cloud_infra['awsCredentials']['secretAccessKey'] if image != '' and image != 'NA': amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['amis'], image) else: amiDetails = getAMIDetails(cloud_infra['AWS_EC2']['instances'], instanceid) if region == '' or region == 'NA': region = amiDetails['regionName'] from llm.aws_instance_api import get_instance_ip return get_instance_ip(aws_access_key_id, aws_secret_key, instanceid,region) elif hypervisor == 'GCP': credentialsJson = cloud_infra['gcpCredentials']['gcpCredentials'] amiDetails = getAMIDetails(cloud_infra['GCP']['instances'], instanceid) zone = amiDetails['regionName'] projectID = cloud_infra['gcpCredentials']['projectID'] from llm.gcp_compute_api import check_instance status,ip = check_instance(credentialsJson,projectID, zone, instanceid) return ip else: raise ValueError(f"Given hypervisor '{hypervisor}' is not supported") def hypervisor( hypervisor,instanceid='', image=''): if not hypervisor: raise ValueError('No hypervisor provided') if hypervisor.lower() == 'aws': return aws_server(instanceid, image) elif hypervisor.lower() == 'gcp': return gcp_server(instanceid, image) else: raise ValueError(f"Hyperviser '{hypervisor}' is not supported") class gcp_server(): def __init__( self, instanceid='', image=''): self.hypervisor_name = 'gcp' from AION.appbe.compute import readComputeConfig self.cloud_infra = readComputeConfig() if image and image.lower() != 'na': self.ami_details = get_ami_details(self.cloud_infra['GCP']['machineImage'], image) self.instanceid = '' elif instanceid and instanceid.lower() != 'na': self.ami_details = get_ami_details( self.cloud_infra['GCP']['instances'], instanceid) self.
instanceid = instanceid else: raise ValueError("Either provide 'image name' or 'instance id'") self.credentialsJson = self.cloud_infra['gcpCredentials']['gcpCredentials'] self.projectID = self.cloud_infra['gcpCredentials']['projectID'] self.zone = self.ami_details['regionName'] self.stopped = False self.ip = '' self.created = False def is_machine_running(self): from llm.gcp_compute_api import check_instance status,self.ip = check_instance(self.credentialsJson,self.projectID,self.zone,self.instanceid) return 'running' == status.lower() def start(self): from AION.llm.gcp_compute_api import is_running from AION.llm.gcp_compute_api import check_instance from AION.llm.gcp_compute_api import start_instance status = is_running(self.credentialsJson, self.projectID, self.zone, self.instanceid).lower() if 'running' == status: stratus, self.ip = check_instance(self.credentialsJson, self.projectID, self.zone, self.instanceid) self.already_running = True return True else: status, self.ip = start_instance(self.credentialsJson, self.projectID, self.zone, self.instanceid) return status == 'Success' def create(self,key_name = None): from AION.llm.gcp_compute_api import create_instance machineImageName = self.ami_details['id'] machineImageProjectID = self.ami_details['machineImageProjectID'] self.ip,msg = create_instance(self.credentialsJson,self.projectID,self.zone,key_name,machineImageName,machineImageProjectID) if self.ip != '': self.created = True return self.ip,msg def stop(self): if self.already_running or self.stopped: return True from AION.llm.gcp_compute_api import stop_server_instance status = stop_server_instance(self.credentialsJson,self.projectID, self.zone, self.instanceid) if status == 'Process Completed': self.stopped = True return True return False def showndown(self): if self.created: self.terminate() else: if self.already_running or self.stopped: return True from AION.llm.gcp_compute_api import stop_server_instance status = stop_server_instance(self.credentialsJson,self.projectID, self.zone, self.instanceid) if status == 'Process Completed': self.stopped = True return True return False def terminate(self): from AION.llm.gcp_compute_api import terminate_instance msg, status = terminate_instance(self.projectID, self.zone, self.instanceid) print(msg) return status == 'success' def ssh_details(self): return self.ami_details['ssh'] class aws_server(): def __init__(self, instanceid='', image='', boot_up_time=0): self.hypervisor_name = 'aws' from AION.appbe.compute import readComputeConfig self.cloud_infra = readComputeConfig() if image and image.lower() != 'na': self.ami_details = get_ami_details(self.cloud_infra['AWS_EC2']['amis'], image) self.instanceid = '' self.machine_type = 'ami' elif instanceid and instanceid.lower() != 'na': self.ami_details = get_ami_details( self.cloud_infra['AWS_EC2']['instances'], instanceid) self.instanceid = instanceid self.machine_type = 'instance' else: raise ValueError("Either provide 'image name' or 'instance id'") self.access_key = self.cloud_infra['awsCredentials']['accessKey'] self.secret_key = self.cloud_infra['awsCredentials']['secretAccessKey'] self.securitygroupid = self.cloud_infra['awsCredentials']['securitygroupid'] self.region = self.ami_details['regionName'] self.already_running = False self.boot_up_time = boot_up_time self.stopped = False self.created = False def is_already_running(self): return self.already_running def is_machine_running(self): from AION.llm.aws_instance_api import is_running status = is_running(self.instanceid, self.region, self.access_key, self.secret_key).lower() return 'running' == status.lower() def start(self): from AION.llm.aws_instance_api import is_running from AION.llm.aws_instance_api import get_instance_ip from AION.llm.aws_instance_api import start_instance status = is_running(self.instanceid, self.region, self.access_key, self.secret_key).lower() if 'running' == status: self.ip = get_instance_ip(self.access_key, self.secret_key, self.instanceid, self.region) self.already_running = True return True, 'already running' else: status, msg, self.ip = start_instance(self.access_key, self.secret_key, self.instanceid, self.region) return status == 'Success', msg def create(self, key_name=None): from AION.llm.aws_instance_api import create_instance image_id = self.ami_details['id'] security_group_ids = self.ami_details['instanceSetting']['securityGroupIds'] if not key_name: key_name = self.ami_details['instanceSetting']['keyName'] instance_type = self.ami_details['instanceSetting']['instanceType'] self.instanceid,msg = create_instance(image_id, instance_type, self.securitygroupid, self.region, key_name, self.access_key, self.secret_key) if self.instanceid != '': self.created = True return self.instanceid,msg def showndown(self): from AION.llm.aws_instance_api import stop_server_instance if self.created: return self.terminate() else: if self.already_running or self.stopped: return True status = stop_server_instance(self.access_key, self.secret_key, self.instanceid, self.region) if status == 'Process Completed': self.stopped = True return True return False def stop(self): from AION.llm.aws_instance_api import stop_server_instance if self.already_running or self.stopped: return True status = stop_server_instance(self.access_key, self.secret_key, self.instanceid, self.region) if status == 'Process Completed': self.stopped = True return True return False def terminate(self): from AION.llm.aws_instance_api import terminate_instance msg, status = terminate_instance(self.instanceid, self.region, self.access_key, self.secret_key) print(msg) return status == 'success' def ssh_details(self): return self.ami_details['ssh'] <s> from google.cloud import compute_v1 import os PROJECT_ID = 'ers-research' ZONE = 'us-west1-b' INSTANCE_NAME = 'aion-llm-a100-vm1' MACHINE_IMAGE_NAME = 'aion-40gb-a100-image' MACHINE_IMAGE_PROJECT_ID = 'ers-research' def create_instance(credentialsJson,project_id, zone, instance_name, machine_image_name, machine_image_project_id): try: os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = credentialsJson compute = compute_v1.InstancesClient() machine_image = compute_v1.MachineImagesClient().get(project=machine_image_project_id, machine_image=machine_image_name) instance = compute_v1.Instance() instance.name = instance_name instance.machine_type = f"zones/{zone}/machineTypes/a2-ultragpu-1g" instance.source_machine_image = machine_image.self_link boot_disk = compute_v1.AttachedDisk() boot_disk.auto_delete = True boot_disk.boot = True instance.disks = [boot_disk] network_interface = compute_v1.NetworkInterface() access_config = compute_v1.AccessConfig() access_config.type = "ONE_TO_ONE_NAT" network_interface.access_configs = [access_config] instance.network_interfaces = [network_interface] operation = compute.insert(project=project_id, zone=zone, instance_resource=instance) operation.result() instance = compute.get(project=project_id, zone=zone, instance=instance_name) print("--->instace created ") print(instance.network_interfaces[0]) return instance.network_interfaces[0].access_configs[0].nat_i_p,'' except Exception as e: print(e) return '',str(e) def is_running(credentialsJson,project_id, zone, instance_name): os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = credentialsJson compute = compute_v1.InstancesClient() instance = compute.get(project=project_id, zone=zone, instance=instance_name) status = instance.status return status def check_instance(credentialsJson,project_id, zone, instance_name): os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = credentialsJson compute = compute_v1.InstancesClient() instance = compute.get(project=project_id, zone=zone, instance=instance_name) status = instance.status if status.lower() == 'running': print(instance.network_interfaces[0].access_configs[0].nat_i_p) ip = instance.network_interfaces[0].access_configs[0].nat_i_p else: ip = '' return status,ip def start_instance(credentialsJson,project_id, zone, instance_name): try: os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = credentialsJson compute = compute_v1.InstancesClient() operation = compute.start(project=project_id, zone=zone, instance=instance_name) operation.result() instance = compute.get(project=project_id, zone=zone, instance=instance_name) status = instance.status if status.lower() == 'running': print(instance.network_interfaces[0].access_configs[0]) ip = instance.network_interfaces[0].access_configs[0].nat_i_p else: ip = '' except Exception as e: print(e) status = 'Error' ip = '' return status,ip def stop_instance(credentialsJson,project_id, zone, instance_name): os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = credentialsJson compute = compute_v1.InstancesClient() operation = compute.stop(project=project_id, zone=zone, instance=instance_name) operation.result() def terminate_instance(project_id, zone, instance_name): try: compute = compute_v1.InstancesClient() operation = compute.delete(project=project_id, zone=zone, instance=instance_name) operation.result() return "","suceess" except Exception as e: return str(e),"error" # if __name__ == '__main__': # ip_address = create_instance(PROJECT_ID, ZONE, INSTANCE_NAME, MACHINE_IMAGE_NAME, MACHINE_IMAGE_PROJECT_ID) # print(f"IP address of the new VM: {ip_address}") # #start_instance(PROJECT_ID, ZONE, INSTANCE_NAME) # # stop_instance(PROJECT_ID, ZONE, INSTANCE_NAME) # # terminate_instance(PROJECT_ID, ZONE, INSTANCE_NAME) <s> class CachePrompt: tableName = 'cachePrompts' def __init__(self, conn): self.conn = conn def selectFromCache(self,prompt ,usecaseId ,modelType,temperature=None ,max_token=None): searchFromLLMFlag = False try: query = f'''SELECT * FROM {CachePrompt.tableName} WHERE usecaseId= "{usecaseId}" AND prompt = "{prompt}" AND modelType = "{modelType}"''' if temperature: query += f''' AND temperature= "{temperature}"''' if max_token: query += f''' AND max_token= "{max_token}"''' cursor = self.conn.execute(query) results = [x for x in cursor.fetchone()] column_names = list(map(lambda x:x[0],cursor.description)) response = results[column_names.index('response')] return searchFromLLMFlag,response except Exception as e: print(e) searchFromLLMFlag = True return searchFromLLMFlag,'' def deleteRecord(self ,usecaseId,max_records=5): q_exitingRecords = f'''SELECT count(*) FROM {CachePrompt.tableName} WHERE usecaseId= "{usecaseId}" ''' cursor = self.conn.execute(q_exitingRecords) numberOfRecords = cursor.fetchone()[0] if numberOfRecords >= max_records: idForDeletion = f'SELECT * FROM {CachePrompt.tableName} WHERE usecaseId= "{usecaseId}" ORDER BY created_at ASC LIMIT 1;' cursor = self.conn.execute(idForDeletion) id2del =[x[0] for x in cursor][0] sql_delete_query = f"""DELETE from {CachePrompt.tableName} WHERE id = {id2del};""" self.conn.execute(sql_delete_query) self.conn.commit() def insertRecord(self,prompt,response,usecaseId ,modelType,temperature=None ,max_token=None, max_records=5): self.conn.execute('''CREATE TABLE IF NOT EXISTS cachePrompts (ID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL, prompt TEXT NOT NULL, context TEXT , usecaseId text NOT NULL, modelType text NOT NULL, temperature float NOT NULL, max_token INT, response TEXT NOT NULL, created_at TEXT DEFAULT CURRENT_TIMESTAMP );''') cur = self.conn.execute(f"select * from {CachePrompt.tableName}").fetchall() print(cur) self.deleteRecord(usecaseId,max_records=5) self.conn.execute(f"INSERT INTO {CachePrompt.tableName} (prompt, usecaseId,modelType,temperature,max_token,response) \\ VALUES (?, ?, ?,?, ?, ?)", (prompt, usecaseId,model
Type,temperature, max_token, response)); self.conn.commit() <s> import paramiko from pathlib import Path import logging import json import os import sys import pandas as pd import time import timeit import re running_state_code = 16 stopped_state_code = 80 #prompt_command = '/home/aion/AION/llm/sbin/run_inference.sh' log_file_path = '/home/aion/data/log/fine_tuning_log.log' def read_file_from_server(ip,username,password,pem_file,remote_file_name,localfilepath): host = ip client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) if pem_file != '': client.connect(host, username=username, key_filename=pem_file) else: client.connect(host, username=username, password=password) sftp = client.open_sftp() sftp.get(remote_file_name,localfilepath) sftp.close() client.close() def read_log_file(ip,username,password,pem_file): host = ip client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) if pem_file != '': client.connect(host, username=username, key_filename=pem_file) else: client.connect(host, username=username, password=password) #log_file_path = '/home/ubuntu/AION/data/log/fine_tuning_log.log' stdin, stdout, stderr = client.exec_command(f'tail -n 500 {log_file_path}') time.sleep(5) client.close() return stdout.read().decode() def run_ssh_cmd(ip,pem_file,username,password,log,command): try: buf = '' host = ip client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) startTime = timeit.default_timer() while True: try: if pem_file != '': client.connect(host, username=username, key_filename=pem_file) else: client.connect(host, username=username, password=password) break except Exception as e: print(e) dataLoadTime = timeit.default_timer() - startTime if dataLoadTime >= 600: break time.sleep(10) stdin, stdout, stderr =client.exec_command(command) for line in stdout: if log != '': log.info(line) else: # if buf != '': # buf= buf+'\\n' buf = buf+line client.close() return buf except Exception as e: print(str(e)) raise Exception(str(e)) def copy_files_to_server(ip, pem_file,local_data_file_path,local_config_file_path,username,password,remote_data_dir,remote_config_dir): try: host = ip client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) startTime = timeit.default_timer() while True: try: if pem_file != '': client.connect(host, username=username, key_filename=pem_file) elif password != '': client.connect(host, username=username, password=password) sftp = client.open_sftp() break except Exception as e: print(e) time.sleep(10) dataLoadTime = timeit.default_timer() - startTime if dataLoadTime >= 600: break try: sftp.stat(remote_data_dir) print(f"Path: '{remote_data_dir}' already exist") except FileNotFoundError: sftp.mkdir(remote_data_dir) try: sftp.stat(remote_config_dir) print(f"Path: '{remote_config_dir}' already exist") except FileNotFoundError: sftp.mkdir(remote_config_dir) Train_Data_InRemoteArtifacts = sftp.listdir(remote_data_dir) for traindata_files in Train_Data_InRemoteArtifacts: if not traindata_files.endswith('.ipynb_checkpoints'): sftp.remove(remote_data_dir +'/'+ traindata_files) if os.path.isdir(local_data_file_path): list_pdf_json_files = os.listdir(local_data_file_path) for file_pdf_json in list_pdf_json_files: sftp.put(local_data_file_path+'/'+file_pdf_json, remote_data_dir+'/'+ file_pdf_json) print(file_pdf_json + " data copied successfully") else: filename = os.path.basename(local_data_file_path) directoryname= os.path.dirname(local_data_file_path) sftp.put(directoryname+'/'+filename, remote_data_dir+'/'+ filename) print(filename + " data copied successfully") if local_config_file_path != '': config_InRemoteArtifacts = sftp.listdir(remote_config_dir) for config_file in config_InRemoteArtifacts: print(config_file) if not config_file.endswith('.ipynb_checkpoints'): sftp.remove(remote_config_dir +'/'+ config_file) if os.path.isdir(local_config_file_path): list_pdf_json_files = os.listdir(local_config_file_path) for file_pdf_json in list_pdf_json_files: sftp.put(local_config_file_path+'/'+file_pdf_json, remote_config_dir+'/'+ file_pdf_json) print(file_pdf_json + " config copied successfully") else: # updated_config_file_path = create_config(local_config_file_path) filename = os.path.basename(local_config_file_path) directoryname= os.path.dirname(local_config_file_path) sftp.put(directoryname+'/'+filename, remote_config_dir+'/'+ 'config.json') print(filename + " config copied successfully") remote_files = sftp.listdir(remote_config_dir) print("List of uploaded files",remote_files) sftp.close() client.close() except Exception as e: print(e) <s> import json import os import sys import pandas as pd import time from stat import S_ISDIR, S_ISREG from pathlib import Path import logging import re remote_data_dir = '/home/ubuntu/AION/data/storage' remote_config_dir = '/home/ubuntu/AION/data/config' sh_file_path = '/home/ubuntu/AION/llm/sbin/run_experiment.sh' import os import tarfile def tardirectory(path,tarfilepath): with tarfile.open(tarfilepath, 'w:tar') as tarhandle: for root, dirs, files in os.walk(path): for f in files: tarhandle.add(os.path.join(root, f),arcname=f) tarhandle.close() def createCodeSummary(codedir,cloudconfig,filetype): try: from appbe.dataPath import DATA_FILE_PATH filetimestamp = str(int(time.time())) tarfilepath = os.path.join(DATA_FILE_PATH,filetimestamp+'.tar') tardirectory(codedir,tarfilepath) with open(cloudconfig, 'r') as config_f: cloud_infra = json.load(config_f) config_f.close() aws_access_key_id = cloud_infra['AWS_EC2']['AWSAccessKeyID'] aws_secret_key = cloud_infra['AWS_EC2']['AWSSecretAccessKey'] instance_type = cloud_infra['AWS_EC2']['CodeSummarization']['InstanceSetting']['InstanceType'] security_group_id = cloud_infra['AWS_EC2']['CodeSummarization']['InstanceSetting']['SecurityGroupId'] region = cloud_infra['AWS_EC2']['CodeSummarization']['RegionName'] image_id = cloud_infra['AWS_EC2']['CodeSummarization']['amiId'] currentDirectory = os.path.dirname(os.path.abspath(__file__)) pem_file = os.path.join(currentDirectory,cloud_infra['AWS_EC2']['CodeSummarization']['ssh']['keyFilePath']) username = cloud_infra['AWS_EC2']['CodeSummarization']['ssh']['userName'] instance_id = '' if image_id != '': from llm.aws_instance_api import create_instance instance_id = create_instance(image_id, instance_type, security_group_id,region,instance_name,aws_access_key_id, aws_secret_key) if instance_id == '': return 'Failed','Instance Creation Failed' if instance_id == '': if cloud_infra['AWS_EC2']['CodeSummarization']['InstanceId'] != '': instance_id = cloud_infra['AWS_EC2']['CodeSummarization']['InstanceId'] else: return 'Failed','Instance Creation Failed.' if instance_id != '': from llm.aws_instance_api import start_instance ip = start_instance(aws_access_key_id, aws_secret_key, instance_id,region) if ip != '': from llm.ssh_command import copy_files_to_server copy_files_to_server(ip,pem_file,tarfilepath,'',username,'',remote_data_dir,remote_config_dir) from llm.ssh_command import run_ssh_cmd command = 'rm -r /home/ubuntu/AION/data/code' buf = run_ssh_cmd(ip, pem_file, username,'','',command) command = 'mkdir -p /home/ubuntu/AION/data/code' buf = run_ssh_cmd(ip, pem_file, username,'','',command) command = 'tar -xvf '+remote_data_dir+'/'+filetimestamp+'.tar -C /home/ubuntu/AION/data/code' print(command) buf = run_ssh_cmd(ip, pem_file, username,'','',command) command = sh_file_path+' '+'/home/ubuntu/AION/data/code'+' '+filetype print(command) buf = run_ssh_cmd(ip, pem_file, username,'','',command) from llm.ssh_command import read_file_from_server filetimestamp = str(int(time.time())) codesummar = os.path.join(DATA_FILE_PATH,filetimestamp+'.csv') read_file_from_server(ip,username,'',pem_file,'/home/ubuntu/AION/data/storage/code_summararies.csv',codesummar) return 'Success',codesummar else: return 'Failed','Instance Initialization Failed.' else: return 'Failed','Instance Initialization Failed . AMI/Instance is not configured. Please check with ERS Research' except Exception as e: print(e) return 'Failed','Code Summarization Failed'<s> from .genetic_optimization import GeneticOptimizationCV<s> from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LinearRegression from sklearn.linear_model import Lasso from sklearn.linear_model import Ridge from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor import warnings warnings.filterwarnings('ignore') from genetic_selection import GeneticSelectionCV def GeneticOptimizationCV(model,genetic_params,n_iter,scoring,cv): n_generations = n_iter estimator = model selector = GeneticSelectionCV(estimator,cv=cv,**genetic_params,n_generations=n_generations,scoring=scoring) return selector <s> import pandas as pd tab = ' ' VALID_AGGREGATION_METHODS = ['mean','sum'] VALID_GRANULARITY_UNITS = ['second','minute','hour','day','week','month','year'] VALID_INTERPOLATE_KWARGS = {'linear':{},'spline':{'order':5},'timebased':{}} VALID_INTERPOLATE_METHODS = list( VALID_INTERPOLATE_KWARGS.keys()) def get_one_true_option(d, default_value=None): if isinstance(d, dict): for k,v in d.items(): if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True): return k return default_value def get_boolean(value): if (isinstance(value, str) and value.lower() == 'true') or (isinstance(value, bool) and value == True): return True else: return False def get_source_delta( data: pd.DataFrame): MAX_SAMPLE_TRY = 20 if len( data) <= 1: return None time_delta = data.index[-1] - data.index[-2] count = {} for i in range(len(data)): if i == MAX_SAMPLE_TRY or i == data.index[-1]: break delta = data.index[i+1] - data.index[i] if delta not in count.keys(): count[delta] = 1 else: count[delta] += 1 if count: return max(count, key=count.get) else: return None class timeSeries(): def __init__( self, config, datetime, log=None): self.datetime = datetime self.validate_config(config) self.log = log def validate_config( self, config): if not self.datetime or self.datetime.lower() == 'na': raise ValueError('date time feature is not provided') self.config = {} method = get_one_true_option(config.get('interpolation',None)) self.config['interpolate'] = {} self.config['interpolate']['enabled'] = method in VALID_INTERPOLATE_METHODS self.config['interpolate']['method'] = method self.config['rolling'] = {} self.config['rolling']['enabled'] = get_boolean( config.get('rollingWindow',False)) self.config['rolling']['size'] = int( config.get('rollingWindowSize',1)) if self.config['rolling']['size'] < 1: raise ValueError('Rolling window size should be greater than 0.') self.config['aggregation'] = {} aggregation = config.get('aggregation',{
}) agg_method = get_one_true_option(aggregation['type']) self.config['aggregation'] = {} self.config['aggregation']['enabled'] = agg_method in VALID_AGGREGATION_METHODS self.config['aggregation']['method'] = agg_method granularity = aggregation.get('granularity',{}) granularity_unit = get_one_true_option( granularity.get('unit',None)) if granularity_unit in VALID_GRANULARITY_UNITS: granularity_mapping = {'second':'S','minute':'Min','hour':'H','day':'D','week':'W','month':'M','year':'Y'} size = int(granularity.get('size',10)) granularity_unit = granularity_mapping.get(granularity_unit,granularity_unit) self.config['aggregation']['granularity'] = {} self.config['aggregation']['granularity']['unit'] = granularity_unit self.config['aggregation']['granularity']['size'] = size def log_info(self, msg, type='info'): if self.log: if type == 'error': self.log.error( msg) else: self.log.info( msg) else: print( msg) def is_down_sampling(self, data, size, granularity_unit): down_sampling = False if granularity_unit in ['M', 'Y']: return True else: target_delta = pd.Timedelta(size , granularity_unit) source_delta = get_source_delta(data) if not source_delta: raise ValueError('Could not find the data frame time frequency') return source_delta < target_delta def run( self, data): if self.datetime not in data.columns: raise ValueError(f"Date time feature '{self.datetime}' is not present in data") try: # data[self.datetime] = pd.to_datetime( data[self.datetime]) ##For bug 13513 - If the datetime needs UTC timestamp process, except part will handle. try: #for non utc timestamp data[self.datetime] = pd.to_datetime( data[self.datetime]) except: #for utc timestamp data[self.datetime] = pd.to_datetime( data[self.datetime],utc=True) data.set_index( self.datetime, inplace=True) except: raise ValueError(f"can not convert '{self.datetime}' to dateTime") if self.config.get('interpolate',{}).get('enabled',False): method = self.config['interpolate']['method'] self.log_info(f"Applying Interpolation using {method}") methods_mapping = {'timebased': 'time'} self.config['interpolate']['mapped_method'] = methods_mapping.get(method, method) data.interpolate(method=self.config['interpolate']['mapped_method'], inplace=True, **VALID_INTERPOLATE_KWARGS[method]) if self.config.get('rolling',{}).get('enabled',False): if self.config['rolling']['size'] > len( data): raise ValueError('Rolling window size is greater than dataset size') self.log_info(f"Applying rolling window( moving avg) with size {self.config['rolling']['size']}") data = data.rolling( self.config['rolling']['size']).mean() data = data.iloc[self.config['rolling']['size'] - 1:] aggregation = self.config.get('aggregation',{}) if aggregation.get('enabled',False): method = aggregation.get('method','mean') self.rule = str(aggregation['granularity']['size']) + aggregation['granularity']['unit'] if self.is_down_sampling(data, aggregation['granularity']['size'], aggregation['granularity']['unit']): self.log_info(f"Applying down sampling( {self.rule})") if method == 'mean': data = data.resample( self.rule).mean() elif method == 'sum': data = data.resample( self.rule).sum() else: self.log_info(f"Applying up sampling using forward fill method( {self.rule})") data = data.resample( self.rule).ffill() data.reset_index( inplace=True, names=self.datetime) return data def get_code(self, indent=0): tab = ' ' code = '' code += f""" def preprocess( data): try: #for non utc timestamp data['{self.datetime}'] = pd.to_datetime( data['{self.datetime}']) except: data['{self.datetime}'] = pd.to_datetime( data['{self.datetime}'],utc=True) data.set_index( '{self.datetime}', inplace=True) """ if self.config.get('interpolate',{}).get('enabled',False): code += tab + f"data.interpolate(method='{self.config['interpolate']['mapped_method']}', inplace=True, **{VALID_INTERPOLATE_KWARGS[self.config['interpolate']['method']]})\\n" if self.config.get('rolling',{}).get('enabled',False): code += tab + f"data = data.rolling( {self.config['rolling']['size']}).mean().iloc[{self.config['rolling']['size'] - 1}:]\\n" if self.config.get('aggregation',{}).get('enabled',False): code += tab + f"data = data.resample( '{self.rule}').{self.config.get('aggregation',{}).get('method','mean')}()\\n" code += tab + f"data.reset_index( inplace=True, names='{self.datetime}')\\n" code += tab + "return data\\n" return code <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import numpy as np import pandas as pd import sys import os import warnings import logging from pathlib import Path import random from sklearn.model_selection import train_test_split import operator import re import pdfplumber class dataReader(): def __init__(self): self.dataDf =None self.log = logging.getLogger('eion') def readCsv(self,dataPath,featureList,targetColumn): data=pd.read_csv(dataPath) dataDf=data[featureList] predictDf=data[targetColumn] return dataDf,predictDf def rowsfilter(self,filters,dataframe): self.log.info('\\n-------> No of rows before filtering: '+str(dataframe.shape[0])) #task-13479 filterexpression='' firstexpressiondone = False for x in filters: if firstexpressiondone: filterexpression += ' ' if x['combineOperator'].lower() == 'and': filterexpression += '&' elif x['combineOperator'].lower() == 'or': filterexpression += '|' filterexpression += ' ' firstexpressiondone = True filterexpression += x['feature'] filterexpression += ' ' if x['condition'].lower() == 'equals': filterexpression += '==' elif x['condition'].lower() == 'notequals': filterexpression += '!=' elif x['condition'].lower() == 'lessthan': filterexpression += '<' elif x['condition'].lower() == 'lessthanequalto': filterexpression += '<=' elif x['condition'].lower() == 'greaterthan': filterexpression += '>' elif x['condition'].lower() == 'greaterthanequalto': filterexpression += '>=' filterexpression += ' ' if dataframe[x['feature']].dtype in ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']: filterexpression += x['value'] else: filterexpression += '\\''+x['value']+'\\'' dataframe = dataframe.query(filterexpression) self.log.info('-------> Row filter: '+str(filterexpression)) #task-13479 self.log.info('-------> No of rows after filtering: '+str(dataframe.shape[0])) return dataframe,filterexpression def grouping(self,grouper,dataframe): grouperbyjson= {} groupbyfeatures = grouper['groupby'] dataframe = dataframe.reset_index() features = dataframe.columns.tolist() aggjson = {} for feature, featureType in zip(features,dataframe.dtypes): if feature == groupbyfeatures or feature == 'index': continue if dataframe[feature].empty == True: continue if dataframe[feature].isnull().all() == True: continue if featureType in ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']: temp = {} temp[feature+'_size'] = 'size' temp[feature+'_sum'] = 'sum' temp[feature+'_max'] = 'max' temp[feature+'_min'] = 'min' temp[feature+'_mean'] = 'mean' aggjson[feature] = temp else: temp = {} temp[feature+'_size'] = 'size' temp[feature+'_unique'] = 'nunique' aggjson[feature] = temp groupbystring = 'groupby([\\''+groupbyfeatures+'\\']).agg('+str(aggjson)+')' grouperbyjson['groupbystring'] = groupbystring dataframe = dataframe.groupby([groupbyfeatures]).agg(aggjson) dataframe.columns = dataframe.columns.droplevel(0) dataframe = dataframe.reset_index() ''' if operation.lower() == 'size': dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).size() elif operation.lower() == 'mean': dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).mean() elif operation.lower() == 'max': dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).max() elif operation.lower() == 'min': dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).min() dataframe = dataframe.rename("groupby_value") dataframe = dataframe.to_frame() dataframe = dataframe.reset_index() ''' return dataframe,grouperbyjson def timeGrouping(self,timegrouper,dataframe): grouperbyjson= {} dateTime = timegrouper['dateTime'] frequency = timegrouper['freq'] groupbyfeatures = timegrouper['groupby'] grouperbyjson['datetime'] = dateTime if dataframe[dateTime].dtypes in ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']: dtlenth = dataframe[dateTime].iloc[0] dtlenth = np.int64(dtlenth) dtlenth = len(str(dtlenth)) if dtlenth == 13: dataframe['date'] = pd.to_datetime(dataframe[dateTime],unit='ms') grouperbyjson['unit'] = 'ms' elif dtlenth == 10: dataframe['date'] = pd.to_datetime(dataframe[dateTime],unit='s') grouperbyjson['unit'] = 's' else: dataframe['date'] = pd.to_datetime(dataframe[dateTime]) grouperbyjson['unit'] = '' else: dataframe['date'] = pd.to_datetime(dataframe[dateTime]) grouperbyjson['unit'] = '' dataframe = dataframe.reset_index() dataframe.set_index('date',inplace=True) features = dataframe.columns.tolist() aggjson = {} for feature, featureType in zip(features,dataframe.dtypes): if feature == groupbyfeatures or feature == dateTime or feature == 'index': continue if dataframe[feature].empty == True: continue if dataframe[feature].isnull().all() == True: continue if featureType in ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']: temp = {'size','sum','max','min','mean'} aggjson[feature] = temp else: temp = {'size','nunique'} aggjson[feature] = temp if groupbyfeatures == '': groupbystring = 'groupby([pd.Grouper(freq=\\''+frequency+'\\')]).agg('+str(aggjson)+')' else: groupbystring = 'groupby([pd.Grouper(freq=\\''+frequency+'\\'),\\''+groupbyfeatures+'\\']).agg('+str(aggjson)+')' grouperbyjson['groupbystring'] = groupbystring print(grouperbyjson) if groupbyfeatures == '': dataframe = dataframe.groupby([pd.Grouper(freq=frequency)]).agg(aggjson) else: dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).agg(aggjson) dataframe.columns = ['_'.join(col) for col in dataframe.columns] dataframe = dataframe.reset_index() self.log.info(dataframe.head(10)) ''' if operation.lower() == 'size': dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).size() elif operation.lower() == 'mean': dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).mean() elif operation.lower() == 'max': dataframe = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).max() elif operation.lower() == 'min': data
frame = dataframe.groupby([pd.Grouper(freq=frequency),groupbyfeatures]).min() dataframe = dataframe.rename("groupby_value") dataframe = dataframe.to_frame() dataframe = dataframe.reset_index() ''' return dataframe,grouperbyjson def readDf(self,dataF,featureList,targetColumn): dataDf = dataF[featureList] predictDf =dataF[targetColumn] return dataDf,predictDf def csvTodf(self,dataPath,delimiter,textqualifier): ''' if os.path.splitext(dataPath)[1] == ".tsv": dataFrame=pd.read_csv(dataPath,encoding='latin1',sep='\\t') else: dataFrame=pd.read_csv(dataPath,encoding='latin1') ''' if os.path.splitext(dataPath)[1] == ".py": f = open(dataPath, "r") pythoncode = f.read() f.close() ldict = {} exec(pythoncode, globals(), ldict) dataFrame = ldict['dfpy'] else: dataFrame=pd.read_csv(dataPath,encoding='utf-8',sep=delimiter,quotechar=textqualifier, skipinitialspace = True,na_values=['-','?'],encoding_errors= 'replace') dataFrame.rename(columns=lambda x: x.strip(), inplace=True) return dataFrame def read_file(self, fileName): fileName = Path(fileName) if fileName.suffix == '.pdf': pdf = pdfplumber.open(fileName) text = '' for index, page in enumerate(pdf.pages): if index: text += ' ' text += page.extract_text() else: with open(fileName, "r",encoding="utf-8") as f: text = f.read() return text def documentsTodf(self,folderlocation,labelFilePath): dataDf = pd.DataFrame() error_message = "" dataset_csv_file = os.path.join(folderlocation,labelFilePath) labels = pd.read_csv(dataset_csv_file) dataDict = {} keys = ["File","Label"] for key in keys: dataDict[key] = [] for i in range(len(labels)): filename = os.path.join(folderlocation,labels.loc[i,"File"]) dataDict["File"].append(self.read_file(filename)) dataDict["Label"].append(labels.loc[i,"Label"]) dataDf = pd.DataFrame.from_dict(dataDict) error_message = "" return dataDf, error_message def removeFeatures(self,df,datetimeFeature,indexFeature,modelFeatures,targetFeature): self.log.info("\\n---------- Prepare Features ----------") if(str(datetimeFeature).lower() != 'na'): datetimeFeature = datetimeFeature.split(",") datetimeFeature = list(map(str.strip, datetimeFeature)) for dtfeature in datetimeFeature: if dtfeature in df.columns: self.log.info("-------> Remove Date Time Feature: "+dtfeature) df = df.drop(columns=dtfeature) if(str(indexFeature).lower() != 'na'): indexFeature = indexFeature.split(",") indexFeature = list(map(str.strip, indexFeature)) for ifeature in indexFeature: if ifeature in df.columns: self.log.info("-------> Remove Index Feature: "+ifeature) df = df.drop(columns=ifeature) if(str(modelFeatures).lower() != 'na'): self.log.info("-------> Model Features: "+str(modelFeatures)) modelFeatures = modelFeatures.split(",") modelFeatures = list(map(str.strip, modelFeatures)) if(targetFeature != '' and str(targetFeature).lower() != 'na'): targetFeature = targetFeature.split(",") targetFeature = list(map(str.strip, targetFeature)) for ifeature in targetFeature: if ifeature not in modelFeatures: modelFeatures.append(ifeature) if(str(indexFeature).lower() != 'na'): for ifeature in indexFeature: if ifeature in modelFeatures: modelFeatures.remove(ifeature) if(str(datetimeFeature).lower() != 'na'): for dtfeature in datetimeFeature: if dtfeature in modelFeatures: modelFeatures.remove(dtfeature) df = df[modelFeatures] self.log.info("---------- Prepare Features End ----------") return(df) def splitImageDataset(self, df, ratio, modelType): if modelType.lower() == "objectdetection": images = df['File'].unique().tolist() trainImages = random.sample(images, int(len(images) * ratio)) mask = [0] * len(df) for i in range(len(df)): mask[i] = df.iloc[i]['File'] in trainImages trainDf = df.iloc[mask] testDf = df.iloc[[not elem for elem in mask]] return trainDf, testDf else: return train_test_split(df, test_size=(1 - ratio)) def createTFRecord(self, train_image_dir, output_dir, csv_file, testPercentage, AugEnabled,keepAugImages,operations, modelType,augConf={}): from transformations import generate_tfrecord from transformations.imageAug import ImageAugmentation if isinstance(csv_file, pd.DataFrame): df = csv_file else: df = pd.read_csv(os.path.join(train_image_dir,csv_file)) labelmap_path, num_classes = generate_tfrecord.createLabelFile(df, output_dir) train_df, test_df = self.splitImageDataset(df, testPercentage/100.0, modelType) if AugEnabled: augFile = os.path.join(output_dir,"tempTrainDf.csv") train_df.to_csv(augFile) ia = ImageAugmentation(train_image_dir, augFile) augFile = ia.augment(modelType, operations,None,augConf) train_df = pd.read_csv(augFile) generate_tfrecord.generate_TF_record(train_image_dir, output_dir, train_df, test_df, labelmap_path) if AugEnabled and not keepAugImages: ia.removeAugmentedImages(train_df) return train_df, num_classes <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' #System imports import os import sys import json import datetime,time,timeit import itertools import numpy as np import pandas as pd import math from sklearn.preprocessing import MinMaxScaler,StandardScaler from sklearn.preprocessing import PowerTransformer import logging class dataTransformer(): def __init__(self): self.log = logging.getLogger('eion') def startTransformer(self,df,features,target,transType): scaler ='None' if target in features: features.remove(target) transFeatures=features transDfColumns=[] dataframe=df[transFeatures] #targetArray=np.array(df[target]) #targetArray.shape = (len(targetArray), 1) self.log.info("Data Normalization has started") if transType.lower() =='standardscaler': scaler = StandardScaler().fit(dataframe) transDf = scaler.transform(dataframe) elif transType.lower() =='minmax': scaler=MinMaxScaler().fit(dataframe) transDf = scaler.transform(dataframe) elif transType.lower() =='lognormal': print(dataframe) scaler = PowerTransformer(method='yeo-johnson', standardize=False).fit(dataframe) transDf = scaler.transform(dataframe) else: self.log.info("Need to implement") #features.append(target) #scaledDf = pd.DataFrame(np.hstack((transDf, targetArray)),columns=features) return transDf,features,scaler<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import io import json import logging import pandas as pd import sys import numpy as np from pathlib import Path from word2number import w2n from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.impute import SimpleImputer, KNNImputer from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.preprocessing import FunctionTransformer from sklearn.preprocessing import MinMaxScaler,StandardScaler from sklearn.preprocessing import PowerTransformer from sklearn.compose import ColumnTransformer from sklearn.base import TransformerMixin from sklearn.ensemble import IsolationForest from category_encoders import TargetEncoder try: import transformations.data_profiler_functions as cs except: import data_profiler_functions as cs if 'AION' in sys.modules: try: from appbe.app_config import DEBUG_ENABLED except: DEBUG_ENABLED = False else: DEBUG_ENABLED = False log_suffix = f'[{Path(__file__).stem}] ' class profiler(): def __init__(self, xtrain, ytrain=None, target=None, encode_target = False, config={}, keep_unprocessed=[],data_path=None,log=None): if not isinstance(xtrain, pd.DataFrame): raise ValueError(f'{log_suffix}supported data type is pandas.DataFrame but provide data is of {type(xtrain)} type') if xtrain.empty: raise ValueError(f'{log_suffix}Data frame is empty') if target and target in xtrain.columns: self.target = xtrain[target] xtrain.drop(target, axis=1, inplace=True) self.target_name = target elif ytrain: self.target = ytrain self.target_name = 'target' else: self.target = pd.Series() self.target_name = None self.data_path = data_path self.encode_target = encode_target self.label_encoder = None self.data = xtrain self.keep_unprocessed = keep_unprocessed self.colm_type = {} for colm, infer_type in zip(self.data.columns, self.data.dtypes): self.colm_type[colm] = infer_type self.numeric_feature = [] self.cat_feature = [] self.text_feature = [] self.wordToNumericFeatures = [] self.added_features = [] self.pipeline = [] self.dropped_features = {} self.train_features_type={} self.__update_type() self.config = config self.featureDict = config.get('featureDict', []) self.output_columns = [] self.feature_expender = [] self.text_to_num = {} self.force_numeric_conv = [] if log: self.log = log else: self.log = logging.getLogger('eion') self.type_conversion = {} self.log_input_feat_info() def log_input_feat_info(self): if self.featureDict: feature_df = pd.DataFrame(self.featureDict) log_text = '\\nPreprocessing options:' log_text += '\\n\\t'+str(feature_df.head( len(self.featureDict))).replace('\\n','\\n\\t') self.log.info(log_text) def log_dataframe(self, msg=None): buffer = io.StringIO() self.data.info(buf=buffer) if msg: log_text = f'Data frame after {msg}:' else: log_text = 'Data frame:' log_text += '\\n\\t'+str(self.data.head(2)).replace('\\n','\\n\\t') log_text += ('\\n\\t' + buffer.getvalue().replace('\\n','\\n\\t')) self.log.info(log_text) def transform(self): if self.is_target_available(): if self.target_name: self.log.info(f"Target feature name: '{self.target_name}'") self.log.info(f"Target feature size: {len(self.target)}") else: self.log.info(f"Target feature not present") self.log_dataframe() print(self.data.info()) try: self.process() except Exception as e: self.log.error(e, exc_info=True) raise pipe = FeatureUnion(self.pipeline) try: if self.text_feature:
from text.textProfiler import set_pretrained_model set_pretrained_model(pipe) conversion_method = self.get_conversion_method() process_data = pipe.fit_transform(self.data, y=self.target) # save for testing if DEBUG_ENABLED: if not isinstance(process_data, np.ndarray): process_data = process_data.toarray() df = pd.DataFrame(process_data) df.to_csv('debug_preprocessed.csv', index=False) if self.text_feature and conversion_method == 'latentsemanticanalysis': n_size = self.get_tf_idf_output_size( pipe) dimensions = self.get_tf_idf_dimensions() if n_size < dimensions or n_size > dimensions: dimensions = n_size from sklearn.decomposition import TruncatedSVD reducer = TruncatedSVD( n_components = dimensions) reduced_data = reducer.fit_transform( process_data[:,-n_size:]) text_process_idx = [t[0] for t in pipe.transformer_list].index('text_process') pipe.transformer_list[text_process_idx][1].steps.append(('feature_reducer',reducer)) if not isinstance(process_data, np.ndarray): process_data = process_data.toarray() process_data = np.concatenate((process_data[:,:-n_size], reduced_data), axis=1) last_step = self.feature_expender.pop() self.feature_expender.append({'feature_reducer':list(last_step.values())[0]}) except EOFError as e: if "Compressed file ended before the end-of-stream marker was reached" in str(e): raise EOFError('Pretrained model is not downloaded properly') self.update_output_features_names(pipe) if not isinstance(process_data, np.ndarray): process_data = process_data.toarray() df = pd.DataFrame(process_data, index=self.data.index, columns=self.output_columns) if self.is_target_available() and self.target_name: df[self.target_name] = self.target if self.keep_unprocessed: df[self.keep_unprocessed] = self.data[self.keep_unprocessed] self.log_numerical_fill() self.log_categorical_fill() self.log_normalization() return df, pipe, self.label_encoder def log_type_conversion(self): if self.log: self.log.info('----------- Inspecting Features -----------') self.log.info('----------- Type Conversion -----------') count = 0 for k, v in self.type_conversion.items(): if v[0] != v[1]: self.log.info(f'-------> {k} -> from {v[0]} to {v[1]} : {v[2]}') self.log.info('Status:- |... Feature inspection done') def check_config(self): removeDuplicate = self.config.get('removeDuplicate', False) self.config['removeDuplicate'] = cs.get_boolean(removeDuplicate) self.config['misValueRatio'] = float(self.config.get('misValueRatio', cs.default_config['misValueRatio'])) self.config['numericFeatureRatio'] = float(self.config.get('numericFeatureRatio', cs.default_config['numericFeatureRatio'])) self.config['categoryMaxLabel'] = int(self.config.get('categoryMaxLabel', cs.default_config['categoryMaxLabel'])) featureDict = self.config.get('featureDict', []) if isinstance(featureDict, dict): self.config['featureDict'] = [] if isinstance(featureDict, str): self.config['featureDict'] = [] def process(self): #remove duplicate not required at the time of prediction self.check_config() self.remove_constant_feature() self.remove_empty_feature(self.config['misValueRatio']) self.remove_index_features() self.dropna() if self.config['removeDuplicate']: self.drop_duplicate() #self.check_categorical_features() #self.string_to_numeric() self.process_target() self.train_features_type = {k:v for k,v in zip(self.data.columns, self.data.dtypes)} self.parse_process_step_config() self.process_drop_fillna() self.log_type_conversion() self.update_num_fill_dict() if DEBUG_ENABLED: print(self.num_fill_method_dict) self.update_cat_fill_dict() self.create_pipeline() self.text_pipeline(self.config) self.apply_outlier() if DEBUG_ENABLED: self.log.info(self.process_method) self.log.info(self.pipeline) def is_target_available(self): return (isinstance(self.target, pd.Series) and not self.target.empty) or len(self.target) def process_target(self, operation='encode', arg=None): if self.is_target_available(): # drop null values self.__update_index( self.target.notna(), 'target') if self.encode_target: self.label_encoder = LabelEncoder() self.target = self.label_encoder.fit_transform(self.target) return self.label_encoder return None def is_target_column(self, column): return column == self.target_name def fill_default_steps(self): num_fill_method = cs.get_one_true_option(self.config.get('numericalFillMethod',{})) normalization_method = cs.get_one_true_option(self.config.get('normalization',{}),'none') for colm in self.numeric_feature: if num_fill_method: self.fill_missing_value_method(colm, num_fill_method.lower()) if normalization_method: self.fill_normalizer_method(colm, normalization_method.lower()) cat_fill_method = cs.get_one_true_option(self.config.get('categoricalFillMethod',{})) cat_encode_method = cs.get_one_true_option(self.config.get('categoryEncoding',{})) for colm in self.cat_feature: if cat_fill_method: self.fill_missing_value_method(colm, cat_fill_method.lower()) if cat_encode_method: self.fill_encoder_value_method(colm, cat_encode_method.lower(), default=True) def parse_process_step_config(self): self.process_method = {} user_provided_data_type = {} for feat_conf in self.featureDict: colm = feat_conf.get('feature', '') if not self.is_target_column(colm): if colm in self.data.columns: user_provided_data_type[colm] = feat_conf['type'] if user_provided_data_type: self.update_user_provided_type(user_provided_data_type) self.fill_default_steps() for feat_conf in self.featureDict: colm = feat_conf.get('feature', '') if not self.is_target_column(colm): if colm in self.data.columns: if feat_conf.get('fillMethod', None): self.fill_missing_value_method(colm, feat_conf['fillMethod'].lower()) if feat_conf.get('categoryEncoding', None): self.fill_encoder_value_method(colm, feat_conf['categoryEncoding'].lower()) if feat_conf.get('normalization', None): self.fill_normalizer_method(colm, feat_conf['normalization'].lower()) if feat_conf.get('outlier', None): self.fill_outlier_method(colm, feat_conf['outlier'].lower()) if feat_conf.get('outlierOperation', None): self.fill_outlier_process(colm, feat_conf['outlierOperation'].lower()) def get_tf_idf_dimensions(self): dim = cs.get_one_true_option(self.config.get('embeddingSize',{}).get('TF_IDF',{}), 'default') return {'default': 300, '50d':50, '100d':100, '200d':200, '300d':300}[dim] def get_tf_idf_output_size(self, pipe): start_index = {} for feat_expender in self.feature_expender: if feat_expender: step_name = list(feat_expender.keys())[0] index = list(feat_expender.values())[0] for transformer_step in pipe.transformer_list: if transformer_step[1].steps[-1][0] in step_name: start_index[index] = {transformer_step[1].steps[-1][0]: transformer_step[1].steps[-1][1].get_feature_names_out()} if start_index: for key,value in start_index.items(): for k,v in value.items(): if k == 'vectorizer': return len(v) return 0 def update_output_features_names(self, pipe): columns = self.output_columns start_index = {} index_shifter = 0 for feat_expender in self.feature_expender: if feat_expender: step_name = list(feat_expender.keys())[0] for key,value in start_index.items(): for k,v in value.items(): index_shifter += len(v) index = list(feat_expender.values())[0] for transformer_step in pipe.transformer_list: if transformer_step[1].steps[-1][0] in step_name: start_index[index + index_shifter] = {transformer_step[1].steps[-1][0]: transformer_step[1].steps[-1][1].get_feature_names_out()} #print(start_index) if start_index: for key,value in start_index.items(): for k,v in value.items(): if k == 'vectorizer': v = [f'{x}_vect' for x in v] self.output_columns[key:key] = v self.added_features = [*self.added_features, *v] def text_pipeline(self, conf_json): if self.text_feature: from text.textProfiler import textProfiler from text.textProfiler import textCombine pipeList = [] text_pipe = Pipeline([ ('selector', ColumnTransformer([ ("selector", "passthrough", self.text_feature) ], remainder="drop")), ("text_fillNa",SimpleImputer(strategy='constant', fill_value='')), ("merge_text_feature", textCombine())]) obj = textProfiler() pipeList = obj.cleaner(conf_json, pipeList, self.data_path) pipeList = obj.embedding(conf_json, pipeList) last_step = "merge_text_feature" for pipe_elem in pipeList: text_pipe.steps.append((pipe_elem[0], pipe_elem[1])) last_step = pipe_elem[0] text_transformer = ('text_process', text_pipe) self.pipeline.append(text_transformer) self.feature_expender.append({last_step:len(self.output_columns)}) def create_pipeline(self): num_pipe = {} for k,v in self.num_fill_method_dict.items(): for k1,v1 in v.items(): if k1 and k1 != 'none': num_pipe[f'{k}_{k1}'] = Pipeline([ ('selector', ColumnTransformer([ ("selector", "passthrough", v1) ], remainder="drop")), (k, self.get_num_imputer(k)), (k1, self.get_num_scaler(k1)) ]) else: num_pipe[f'{k}_{k1}'] = Pipeline([ ('selector', ColumnTransformer([ ("selector", "passthrough", v1) ], remainder="drop")), (k, self.get_num_imputer(k)) ]) self.output_columns.extend(v1) cat_pipe = {} for k,v in self.cat_fill_method_dict.items(): for k1,v1 in v.items(): cat_pipe[f'{k}_{k1}'] = Pipeline([ ('selector', ColumnTransformer([ ("selector", "passthrough", v1) ], remainder="drop")), (k, self.get_cat_imputer(k)), (k1, self.get_cat_encoder(k1)) ]) if k1 not in ['onehotencoding']: self.output_columns.extend(v1) else: self.feature_expender.append({k1:len(self.output_columns)}) for key, pipe in num_pipe.items(): self.pipeline.append((key, pipe)) for key, pipe in cat_pipe.items(): self.pipeline.append((key, pipe)) "Drop: feature during training but replace with zero during prediction " def process_drop_fillna(self): drop_column = [] if 'numFill' in self.process_method.keys(): for col, method in self.process_method['numFill'].items(): if method == 'drop': self.process_method['numFill'][col] = 'zero' drop_column.append(col) if 'catFill' in self.process_method.keys(): for col, method in self.process_method['catFill'].items(): if method == 'drop': self.process_method['catFill'][col] = 'zero' drop_column.append(col) if drop_column: self.data.dropna(subset=drop_column, inplace=True) def update_num_fill_dict(self): self.num_fill_method_dict = {} if 'numFill' in self.process_method.keys(): for f in cs.supported_method['fillNa']['numeric']: self.num_fill_method_dict[f] = {} for en in cs.supported_method['normalization']: self.num_fill_method_dict[f][en] = [] for col in self.numeric_feature: numFillDict = self.process_method.get('numFill',{}) normalizationDict = self.process_method.get('normalization',{}) if f
== numFillDict.get(col, '') and en == normalizationDict.get(col,''): self.num_fill_method_dict[f][en].append(col) if not self.num_fill_method_dict[f][en] : del self.num_fill_method_di
if colm in self.cat_feature: if method.lower() in cs.supported_method['categoryEncoding']: if 'catEncoder' not in self.process_method.keys(): self.process_method['catEncoder'] = {} if method == 'na' and self.process_method['catEncoder'].get(colm, None): pass else: self.process_method['catEncoder'][colm] = self.check_encoding_method(method, colm,default) else: self.log.info(f"-------> categorical encoding method '{method}' is not supported. supported methods are {cs.supported_method['categoryEncoding']}") def fill_normalizer_method(self,colm, method): if colm in self.numeric_feature: if method in cs.supported_method['normalization']: if 'normalization' not in self.process_method.keys(): self.process_method['normalization'] = {} if (method == 'na' or method == 'none') and self.process_method['normalization'].get(colm, None): pass else: self.process_method['normalization'][colm] = method else: self.log.info(f"-------> Normalization method '{method}' is not supported. supported methods are {cs.supported_method['normalization']}") def apply_outlier(self): inlier_indice = np.array([True] * len(self.data)) if self.process_method.get('outlier', None): self.log.info('-------> Feature wise outlier detection:') for k,v in self.process_method['outlier'].items(): if k in self.numeric_feature: if v == 'iqr': index = cs.findiqrOutlier(self.data[k]) elif v == 'zscore': index = cs.findzscoreOutlier(self.data[k]) elif v == 'disable': index = None if k in self.process_method['outlierOperation'].keys(): if self.process_method['outlierOperation'][k] == 'dropdata': inlier_indice = np.logical_and(inlier_indice, index) elif self.process_method['outlierOperation'][k] == 'average': mean = self.data[k].mean() index = ~index self.data.loc[index,[k]] = mean self.log.info(f'-------> {k}: Replaced by Mean {mean}: total replacement {index.sum()}') elif self.process_method['outlierOperation'][k] == 'nochange' and v != 'disable': self.log.info(f'-------> Total outliers in "{k}": {(~index).sum()}') if self.config.get('outlierDetection',None): if self.config['outlierDetection'].get('IsolationForest','False') == 'True': if self.numeric_feature: index = cs.findiforestOutlier(self.data[self.numeric_feature]) inlier_indice = np.logical_and(inlier_indice, index) self.log.info(f'-------> Numeric feature based Outlier detection(IsolationForest):') if inlier_indice.sum() != len(self.data): self.__update_index(inlier_indice, 'outlier') def fill_outlier_method(self,colm, method): if colm in self.numeric_feature: if method in cs.supported_method['outlier_column_wise']: if 'outlier' not in self.process_method.keys(): self.process_method['outlier'] = {} if method not in ['Disable', 'na']: self.process_method['outlier'][colm] = method else: self.log.info(f"-------> outlier detection method '{method}' is not supported for column wise. supported methods are {cs.supported_method['outlier_column_wise']}") def fill_outlier_process(self,colm, method): if colm in self.numeric_feature: if method in cs.supported_method['outlierOperation']: if 'outlierOperation' not in self.process_method.keys(): self.process_method['outlierOperation'] = {} self.process_method['outlierOperation'][colm] = method else: self.log.info(f"-------> outlier process method '{method}' is not supported for column wise. supported methods are {cs.supported_method['outlierOperation']}") def get_cat_imputer(self,method): if method == 'mode': return SimpleImputer(strategy='most_frequent') elif method == 'zero': return SimpleImputer(strategy='constant', fill_value=0) def get_cat_encoder(self,method): if method == 'labelencoding': return OrdinalEncoder() elif method == 'onehotencoding': return OneHotEncoder(sparse=False,handle_unknown="ignore") elif method == 'targetencoding': if not self.is_target_available(): raise ValueError('Can not apply Target Encoding when target feature is not present') return TargetEncoder() def get_num_imputer(self,method): if method == 'mode': return SimpleImputer(strategy='most_frequent') elif method == 'mean': return SimpleImputer(strategy='mean') elif method == 'median': return SimpleImputer(strategy='median') elif method == 'knnimputer': return KNNImputer() elif method == 'zero': return SimpleImputer(strategy='constant', fill_value=0) def get_num_scaler(self,method): if method == 'minmax': return MinMaxScaler() elif method == 'standardscaler': return StandardScaler() elif method == 'lognormal': return PowerTransformer(method='yeo-johnson', standardize=False) def recommenderStartProfiler(self,modelFeatures): return cs.recommenderStartProfiler(self,modelFeatures) def folderPreprocessing(self,folderlocation,folderdetails,deployLocation): return cs.folderPreprocessing(self,folderlocation,folderdetails,deployLocation) def textSimilarityStartProfiler(self, doc_col_1, doc_col_2): return cs.textSimilarityStartProfiler(self, doc_col_1, doc_col_2) def get_conversion_method(self): return cs.get_one_true_option(self.config.get('textConversionMethod','')).lower() def set_features(features,profiler=None): return cs.set_features(features,profiler) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import random from matplotlib import pyplot as plt import cv2 import albumentations as A import os import pandas as pd from pathlib import Path class ImageAugmentation(): def __init__(self, dataLocation, csvFile): self.AugmentationOptions = {"Flip": {"operation": A.HorizontalFlip, "suffix":"_flip"}, "Rotate": {"operation": A.Rotate, "suffix":"_rotate"}, "Shift": {"operation": A.RGBShift, "suffix":"_shift"}, "Crop": {"operation": [A.CenterCrop, A.RandomSizedBBoxSafeCrop], "suffix":"_crop"}, "Contrast": {"operation": A.RandomContrast, "suffix":"_cont"}, "Brightness": {"operation": A.RandomBrightness, "suffix":"_bright"}, "Blur": {"operation": A.GaussianBlur, "suffix":"_blur"} } self.dataLocation = dataLocation self.csvFile = csvFile def __applyAugmentationClass(self, image, augmentation,limit): if augmentation in list(self.AugmentationOptions.keys()): if augmentation == "Crop": height, width, _ = image.shape crop_percentage = random.uniform(0.6, 0.9) transform = self.AugmentationOptions[augmentation]["operation"][0](height=int(height*crop_percentage), width=int(width*crop_percentage) ) elif augmentation == "Blur": transform = self.AugmentationOptions[augmentation]["operation"](blur_limit = limit) elif augmentation in ["Contrast","Brightness"]: transform = self.AugmentationOptions[augmentation]["operation"](limit = limit) else: transform = self.AugmentationOptions[augmentation]["operation"]() return transform(image=image) def __applyAugmentation(self, image, augmentation,limit,bboxes=None, category_ids=None, seed=7): transformOptions = [] if bboxes: bbox_params = A.BboxParams(format='pascal_voc', label_fields=['category_ids']) else: bbox_params = None if augmentation in list(self.AugmentationOptions.keys()): if augmentation == "Crop": height, width, _ = image.shape crop_percentage = random.uniform(0.6, 0.9) transformOptions.append(self.AugmentationOptions[augmentation]["operation"][1](height=int(height*crop_percentage), width=int(width*crop_percentage) )) elif augmentation == "Blur": transformOptions.append(self.AugmentationOptions[augmentation]["operation"](blur_limit = limit)) elif augmentation in ["Contrast","Brightness"]: transformOptions.append(self.AugmentationOptions[augmentation]["operation"](limit = limit)) else: transformOptions.append(self.AugmentationOptions[augmentation]["operation"]()) transform = A.Compose( transformOptions, bbox_params=bbox_params, ) random.seed(seed) return transform(image=image, bboxes=bboxes, category_ids=category_ids) else: return None def getBBox(self, df, imageLoc, category_name_to_id): subDf = df[df['loc']==imageLoc] boxes = [] category = [] for index, row in subDf.iterrows(): boxes.append( [row['xmin'],row['ymin'],row['xmax'],row['ymax']]) category.append(category_name_to_id[row['Label']]) return boxes, category def __objAug(self, imageLoc, df, classes_names, category_id_to_name, category_name_to_id,limit,numberofImages,op): for x in range(numberofImages): bbox, category_ids = self.getBBox(df, imageLoc, category_name_to_id) image = cv2.imread(imageLoc) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) transformed = self.__applyAugmentation(image, op,limit,bbox, category_ids) transformed['image'] = cv2.cvtColor(transformed['image'], cv2.COLOR_RGB2BGR) count = 1 row = df[df['loc']==imageLoc].iloc[0] filename = (Path(imageLoc).stem +'_'+str(x)+ self.AugmentationOptions[op]["suffix"] + Path(imageLoc).suffix) newImage = str(Path(imageLoc).parent/filename) for index,bbox in enumerate(transformed['bboxes']): data = {'File':filename, 'xmin':bbox[0],'ymin':bbox[1],'xmax':bbox[2],'ymax':bbox[3],'Label':category_id_to_name[transformed['category_ids'][index]],'id':count,'height':row['height'],'width':row['width'], 'angle':0.0, 'loc': newImage, 'AugmentedImage': True} count += 1 df=df.append(data, ignore_index=True) cv2.imwrite(newImage, transformed['image']) return df def __objectDetection(self, images, df, optionDf, classes_names, suffix='',augConf={}): category_id_to_name = {v+1:k for v,k in enumerate(classes_names)} category_name_to_id = {k:v+1 for v,k in enumerate(classes_names)} for i, imageLoc in enumerate(images): for key in optionDf.columns: if optionDf.iloc[i][key]: if key in augConf: limit = eval(augConf[key].get('limit','0.2')) numberofImages = int(augConf[key].get('noOfImages',1)) else: limit = 0.2 numberofImages = 1 df = self.__objAug(imageLoc, df, classes_names, category_id_to_name,category_name_to_id,limit,numberofImages,op=key) return df def __augClassificationImage(self, imageLoc, df,limit,imageindex,op): data = {} image = cv2.imread(imageLoc) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) transformed = self.__applyAugmentationClass(image, op,limit) transformed['image'] = cv2.cvtColor(transformed['image'], cv2.COLOR_RGB2BGR) location = Path(imageLoc).parent filename = (Path(imageLoc).stem +'_'+'str(imageindex)'+ self.AugmentationOptions[op]["suffix"] + Path(imageLoc).suffix) cv2.imwrite(str(location/'AION'/'AugumentedImages'/filename), transformed['image']) data['File'] = filename data['Label'] = df[df['File']==Path(imageLoc).name]["Label"].iloc[0] data['AugmentedImage'] = True data['loc'] = str(location/filename) return data def __classification(self, images, df, optionDf,augConf,csv_file=None, outputDir=None): for i, imageLoc in enumerate(images): for key in optionDf.columns: if optionDf.iloc[i][key]: if key in augConf: limit = eval(augConf[key].get('limit','0.2')) numberofImages = int(augConf[key].get('noOfImages',1)) else: limit = 0.2 numberofImages = 1 for x in range(numberofImages): rows = self.__augClassificationImage(imageLoc, df,limit,x,op=key) df=df.append(rows, ignore_index=True) return df def removeA
ugmentedImages(self, df): removeDf = df[df['AugmentedImage'] == True]['loc'].unique().tolist() #df[df['imageAugmentationOriginalImage'] != True][loocationField].apply(lambda x: Path(x).unlink()) for file in removeDf: if file: Path(file).unlink() def augment(self, modelType="imageclassification",params=None,csvSavePath = None,augConf={}): if isinstance(params, dict) and any(params.values()): df = pd.read_csv(self.csvFile) if not self.dataLocation.endswith('/'): images = self.dataLocation+'/' else: images = self.dataLocation if modelType == "imageclassification": images = images + df['File'] else: images = images + df['File'] df['loc'] = images images = set(images.tolist()) option = {} for key in list(self.AugmentationOptions.keys()): option[key] = params.get(key, False) optionDf = pd.DataFrame(columns=list(option.keys())) for i in range(len(images)): optionDf = optionDf.append(option, ignore_index=True) if modelType == "imageclassification": df = self.__classification(images, df, optionDf,augConf) else: classes_names = sorted(df['Label'].unique().tolist()) df = self.__objectDetection(images, df, optionDf, classes_names,'',augConf) df.to_csv(self.csvFile, index=False) return self.csvFile<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' #System imports import logging from distutils.util import strtobool import pandas as pd from text import TextProcessing def get_one_true_option(d, default_value): if isinstance(d, dict): for k,v in d.items(): if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True): return k return default_value class textProfiler(): def __init__(self): self.log = logging.getLogger('eion') def textCleaning(self, textCorpus): textProcessor = TextProcessing.TextProcessing() textCorpus = textProcessor.transform(textCorpus) return(textCorpus) def textProfiler(self, textCorpus, conf_json, pipeList, max_features): cleaning_kwargs = {} textCleaning = conf_json.get('textCleaning') self.log.info("Text Preprocessing config: ",textCleaning) cleaning_kwargs['fRemoveNoise'] = strtobool(textCleaning.get('removeNoise', 'True')) cleaning_kwargs['fNormalize'] = strtobool(textCleaning.get('normalize', 'True')) cleaning_kwargs['fReplaceAcronym'] = strtobool(textCleaning.get('replaceAcronym', 'False')) cleaning_kwargs['fCorrectSpelling'] = strtobool(textCleaning.get('correctSpelling', 'False')) cleaning_kwargs['fRemoveStopwords'] = strtobool(textCleaning.get('removeStopwords', 'True')) cleaning_kwargs['fRemovePunctuation'] = strtobool(textCleaning.get('removePunctuation', 'True')) cleaning_kwargs['fRemoveNumericTokens'] = strtobool(textCleaning.get('removeNumericTokens', 'True')) cleaning_kwargs['normalizationMethod'] = get_one_true_option(textCleaning.get('normalizeMethod'), 'lemmatization').capitalize() removeNoiseConfig = textCleaning.get('removeNoiseConfig') if type(removeNoiseConfig) is dict: cleaning_kwargs['removeNoise_fHtmlDecode'] = strtobool(removeNoiseConfig.get('decodeHTML', 'True')) cleaning_kwargs['removeNoise_fRemoveHyperLinks'] = strtobool(removeNoiseConfig.get('removeHyperLinks', 'True')) cleaning_kwargs['removeNoise_fRemoveMentions'] = strtobool(removeNoiseConfig.get('removeMentions', 'True')) cleaning_kwargs['removeNoise_fRemoveHashtags'] = strtobool(removeNoiseConfig.get('removeHashtags', 'True')) cleaning_kwargs['removeNoise_RemoveOrReplaceEmoji'] = 'remove' if strtobool(removeNoiseConfig.get('removeEmoji', 'True')) else 'replace' cleaning_kwargs['removeNoise_fUnicodeToAscii'] = strtobool(removeNoiseConfig.get('unicodeToAscii', 'True')) cleaning_kwargs['removeNoise_fRemoveNonAscii'] = strtobool(removeNoiseConfig.get('removeNonAscii', 'True')) acronymConfig = textCleaning.get('acronymConfig') if type(acronymConfig) is dict: cleaning_kwargs['acronymDict'] = acronymConfig.get('acronymDict', None) stopWordsConfig = textCleaning.get('stopWordsConfig') if type(stopWordsConfig) is dict: cleaning_kwargs['stopwordsList'] = stopWordsConfig.get('stopwordsList', []) cleaning_kwargs['extend_or_replace_stopwordslist'] = 'extend' if strtobool(stopWordsConfig.get('extend', 'True')) else 'replace' removeNumericConfig = textCleaning.get('removeNumericConfig') if type(removeNumericConfig) is dict: cleaning_kwargs['removeNumeric_fIncludeSpecialCharacters'] = strtobool(removeNumericConfig.get('removeNumeric_IncludeSpecialCharacters', 'True')) removePunctuationConfig = textCleaning.get('removePunctuationConfig') if type(removePunctuationConfig) is dict: cleaning_kwargs['fRemovePuncWithinTokens'] = strtobool(removePunctuationConfig.get('removePuncWithinTokens', 'False')) cleaning_kwargs['fExpandContractions'] = strtobool(textCleaning.get('expandContractions', 'False')) if cleaning_kwargs['fExpandContractions']: cleaning_kwargs['expandContractions_googleNewsWordVectorPath'] = GOOGLE_NEWS_WORD_VECTORS_PATH libConfig = textCleaning.get('libConfig') if type(libConfig) is dict: cleaning_kwargs['tokenizationLib'] = get_one_true_option(libConfig.get('tokenizationLib'), 'nltk') cleaning_kwargs['lemmatizationLib'] = get_one_true_option(libConfig.get('lemmatizationLib'), 'nltk') cleaning_kwargs['stopwordsRemovalLib'] = get_one_true_option(libConfig.get('stopwordsRemovalLib'), 'nltk') textProcessor = TextProcessing.TextProcessing(**cleaning_kwargs) textCorpus = textProcessor.transform(textCorpus) pipeList.append(("TextProcessing",textProcessor)) textFeatureExtraction = conf_json.get('textFeatureExtraction') if strtobool(textFeatureExtraction.get('pos_tags', 'False')): pos_tags_lib = get_one_true_option(textFeatureExtraction.get('pos_tags_lib'), 'nltk') posTagger = TextProcessing.PosTagging( pos_tags_lib) textCorpus = posTagger.transform(textCorpus) pipeList.append(("posTagger",posTagger)) ngram_min = 1 ngram_max = 1 if strtobool(textFeatureExtraction.get('n_grams', 'False')): n_grams_config = textFeatureExtraction.get("n_grams_config") ngram_min = int(n_grams_config.get('min_n', 1)) ngram_max = int(n_grams_config.get('max_n', 1)) if (ngram_min < 1) or ngram_min > ngram_max: ngram_min = 1 ngram_max = 1 invalidNgramWarning = 'WARNING : invalid ngram config.\\nUsing the default values min_n={}, max_n={}'.format(ngram_min, ngram_max) self.log.info(invalidNgramWarning) ngram_range_tuple = (ngram_min, ngram_max) textConversionMethod = conf_json.get('textConversionMethod') conversion_method = get_one_true_option(textConversionMethod, None) if conversion_method.lower() == "countvectors": X, vectorizer = TextProcessing.ExtractFeatureCountVectors(textCorpus, ngram_range=ngram_range_tuple, max_features=max_features) pipeList.append(("vectorizer",vectorizer)) df1 = pd.DataFrame(X.toarray(), columns=vectorizer.get_feature_names()) df1 = df1.add_suffix('_vect') self.log.info('----------> Conversion Method: CountVectors') elif conversion_method.lower() in ["word2vec","fasttext","glove"]: embedding_method = conversion_method wordEmbeddingVecotrizer = TextProcessing.wordEmbedding(embedding_method) wordEmbeddingVecotrizer.checkAndDownloadPretrainedModel() X = wordEmbeddingVecotrizer.transform(textCorpus) df1 = pd.DataFrame(X) df1 = df1.add_suffix('_vect') pipeList.append(("vectorizer",wordEmbeddingVecotrizer)) self.log.info('----------> Conversion Method: '+str(conversion_method)) elif conversion_method.lower() == "sentencetransformer": from sentence_transformers import SentenceTransformer model = SentenceTransformer('sentence-transformers/msmarco-distilroberta-base-v2') X = model.encode(textCorpus) df1 = pd.DataFrame(X) df1 = df1.add_suffix('_vect') pipeList.append(("vectorizer",model)) self.log.info('----------> Conversion Method: SentenceTransformer') elif conversion_method.lower() == 'tf_idf': X, vectorizer = TextProcessing.ExtractFeatureTfIdfVectors(textCorpus,ngram_range=ngram_range_tuple, max_features=max_features) pipeList.append(("vectorizer",vectorizer)) df1 = pd.DataFrame(X.toarray(), columns=vectorizer.get_feature_names()) df1 = df1.add_suffix('_vect') self.log.info('----------> Conversion Method: TF_IDF') else: df1 = pd.DataFrame() df1['tokenize'] = textCorpus self.log.info('----------> Conversion Method: NA') return df1, pipeList,conversion_method <s> import os import sys import numpy as np import scipy import pandas as pd from pathlib import Path default_config = { 'misValueRatio': '1.0', 'numericFeatureRatio': '1.0', 'categoryMaxLabel': '20', 'str_to_cat_len_max': 10 } target_encoding_method_change = {'targetencoding': 'labelencoding'} supported_method = { 'fillNa': { 'categorical' : ['mode','zero','na'], 'numeric' : ['median','mean','knnimputer','zero','drop','na'], }, 'categoryEncoding': ['labelencoding','targetencoding','onehotencoding','na','none'], 'normalization': ['standardscaler','minmax','lognormal', 'na','none'], 'outlier_column_wise': ['iqr','zscore', 'disable', 'na'], 'outlierOperation': ['dropdata', 'average', 'nochange'] } def findiqrOutlier(df): Q1 = df.quantile(0.25) Q3 = df.quantile(0.75) IQR = Q3 - Q1 index = ~((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR))) return index def findzscoreOutlier(df): z = np.abs(scipy.stats.zscore(df)) index = (z < 3) return index def findiforestOutlier(df): from sklearn.ensemble import IsolationForest isolation_forest = IsolationForest(n_estimators=100) isolation_forest.fit(df) y_pred_train = isolation_forest.predict(df) return y_pred_train == 1 def get_one_true_option(d, default_value=None): if isinstance(d, dict): for k,v in d.items(): if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True): return k return default_value def get_boolean(value): if (isinstance(value, str) and value.lower() == 'true') or (isinstance(value, bool) and value == True): return True else: return False def recommenderStartProfiler(self,modelFeatures): try: self.log.info('----------> FillNA:0') self.data = self.data.fillna(value=0) self.log.info('Status:- !... Missing value treatment done') self.log.info('----------> Remove Empty Row') self.data = self.data.dropna(axis=0,how='all') self.log.info('Status:- !... Empty feature treatment done') userId,itemId,rating = modelFeatures.split(',') self.data[itemId] = self.data[itemId].astype(np.int32) self.data[userId] = self.data[userId].astype(np.int32) self.data[rating] = self.data[rating].astype(np.float32) return self.data except Exception as inst: self.log.info("Error: dataProfiler failed "+str(inst)) return(self.data) def folderPreprocessing
(self,folderlocation,folderdetails,deployLocation): try: dataset_directory = Path(folderlocation) dataset_csv_file = dataset_directory/folderdetails['label_csv_file_name'] tfrecord_directory = Path(deployLocation)/'Video_TFRecord' from savp import PreprocessSAVP import csv csvfile = open(dataset_csv_file, newline='') csv_reader = csv.DictReader(csvfile) PreprocessSAVP(dataset_directory,csv_reader,tfrecord_directory) dataColumns = list(self.data.columns) VideoProcessing = True return dataColumns,VideoProcessing,tfrecord_directory except Exception as inst: self.log.info("Error: dataProfiler failed "+str(inst)) def textSimilarityStartProfiler(self, doc_col_1, doc_col_2): import os try: features = [doc_col_1, doc_col_2] pipe = None dataColumns = list(self.data.columns) self.numofCols = self.data.shape[1] self.numOfRows = self.data.shape[0] from transformations.textProfiler import textProfiler self.log.info('-------> Execute Fill NA With Empty String') self.data = self.data.fillna(value=" ") self.log.info('Status:- |... Missing value treatment done') self.data[doc_col_1] = textProfiler().textCleaning(self.data[doc_col_1]) self.data[doc_col_2] = textProfiler().textCleaning(self.data[doc_col_2]) self.log.info('-------> Concatenate: ' + doc_col_1 + ' ' + doc_col_2) self.data['text'] = self.data[[doc_col_1, doc_col_2]].apply(lambda row: ' '.join(row.values.astype(str)), axis=1) from tensorflow.keras.preprocessing.text import Tokenizer pipe = Tokenizer() pipe.fit_on_texts(self.data['text'].values) self.log.info('-------> Tokenizer: Fit on Concatenate Field') self.log.info('Status:- |... Tokenizer the text') self.data[doc_col_1] = self.data[doc_col_1].astype(str) self.data[doc_col_1] = self.data[doc_col_1].astype(str) return (self.data, pipe, self.target_name, features) except Exception as inst: self.log.info("StartProfiler failed " + str(inst)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno)) def set_features(features,profiler=None): if profiler: features = [x for x in features if x not in profiler.added_features] return features + profiler.text_feature return features<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import sys from pathlib import Path import urllib.request import tarfile import json import subprocess import os from os.path import expanduser import platform class ODpretrainedModels(): def __init__(self, location=None): if location: if isinstance(location, Path): self.pretrained_models_location = location.as_posix() else: self.pretrained_models_location = location else: p = subprocess.run([sys.executable, "-m", "pip","show","AION"],capture_output=True, text=True) if p.returncode == 0: Output = p.stdout.split('\\n') for x in Output: y = x.split(':',1) if(y[0]=='Location'): self.pretrained_models_location = y[1].strip()+"/AION/pretrained_models/object_detection" break if Path(self.pretrained_models_location).is_dir(): self.config_file_location = self.pretrained_models_location+'/supported_models.json' with open(self.config_file_location) as json_data: self.supportedModels = json.load(json_data) home = expanduser("~") if platform.system() == 'Windows': self.modelsPath = os.path.join(home,'AppData','Local','HCLT','AION','PreTrainedModels','ObjectDetection') else: self.modelsPath = os.path.join(home,'HCLT','AION','PreTrainedModels','ObjectDetection') if os.path.isdir(self.modelsPath) == False: os.makedirs(self.modelsPath) def __save_config(self): with open(self.config_file_location, 'w') as json_file: json.dump(self.supportedModels, json_file) def __download(self, modelName): try: url = self.supportedModels[modelName]["url"] file = self.supportedModels[modelName]["file"] local_file_path = Path(self.modelsPath)/(file+".tar.gz") urllib.request.urlretrieve(url, local_file_path) except: raise ValueError("{} model download error, check your internet connection".format(modelName)) return local_file_path def __extract(self, modelName, file_location, extract_dir): try: tarFile = tarfile.open(file_location) tarFile.extractall(extract_dir) tarFile.close() Path.unlink(file_location) return True except: return False def download(self, modelName): if modelName in list(self.supportedModels.keys()): p = Path(self.modelsPath).glob('**/*') modelsDownloaded = [x.name for x in p if x.is_dir()] if self.supportedModels[modelName]['file'] not in modelsDownloaded: file = self.__download(modelName) self.supportedModels[modelName]["downloaded"] = True if self.__extract(modelName, file, self.modelsPath): self.supportedModels[modelName]["extracted"] = True self.__save_config() else: self.__save_config() raise ValueError("{} model downloaded but extraction failed,please try again".format(modelName)) else: raise ValueError("{} is not supported for object detection".format(modelName)) return self.supportedModels[modelName] def get_info(self,modeltype): models_info = {} p = Path(self.pretrained_models_location) downloaded_models = [x.name for x in p.iterdir() if x.is_dir()] for model in list(self.supportedModels.keys()): if (self.supportedModels[model]['type'] == modeltype) or (modeltype == ''): models_info[model] = self.supportedModels[model]['extracted'] return models_info def is_model_exist(self, model_name): models = self.get_info('') status = "NOT_SUPPORTED" if model_name in models: if self.supportedModels[model_name]['extracted']: status = "READY" else: status = "NOT_READY" return status def clear_config(self, model_name): self.supportedModels[model_name]['extracted'] = False self.supportedModels[model_name]['downloaded'] = False self.__save_config() <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import numpy as np import os import sys import string import spacy #import en_core_web_sm from spacy.lang.en.stop_words import STOP_WORDS from spacy.lang.en import English try: from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS except: from sklearn.feature_extraction.stop_words import ENGLISH_STOP_WORDS from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer from sklearn.base import TransformerMixin from nltk.stem import WordNetLemmatizer import re from collections import defaultdict from nltk.corpus import wordnet as wn from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelBinarizer from nltk.tokenize import word_tokenize from nltk import pos_tag from nltk.corpus import stopwords class textDataProfiler(): def __init__(self): self.data=None #self.nlp=en_core_web_sm.load() self.punctuations = string.punctuation self.stopwords = list(STOP_WORDS) def startTextProfiler(self,df,target): try: dataColumns = list(df.columns) print(' \\n No of rows and columns in dataFrame',df.shape) print('\\n features in dataFrame',dataColumns) dataFDtypes=self.dataFramecolType(df) print('\\n feature types in dataFrame',dataFDtypes) trainX=df['text'] trainY=df[target] return trainX,trainY except Exception as inst: print('startTextProfiler code execution failed !....',inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(exc_type, fname, exc_tb.tb_lineno) def dataFramecolType(self,dataFrame): dataFDtypes=[] try: dataColumns=list(dataFrame.columns) for i in dataColumns: dataType=dataFrame[i].dtypes dataFDtypes.append(tuple([i,str(dataType)])) return dataFDtypes except Exception as e: print("error in dataFramecolyType",e) return dataFDtypes def textTokenizer(self,text): try: parser = English() tokens = parser(text) tokens = [ word.lemma_.lower().strip() if word.lemma_ != "-PRON-" else word.lower_ for word in tokens ] tokens = [ word for word in tokens if word not in self.stopwords and word not in self.punctuations ] return tokens except Exception as inst: print('textDataProfiler code execution failed !....',inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(exc_type, fname, exc_tb.tb_lineno) return {} def cleanText(self,text): try: text=str(text).strip().lower() for punctuation in string.punctuation: text = text.replace(punctuation, '') return text except Exception as inst: print('cleanText code execution failed !....',inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(exc_type, fname, exc_tb.tb_lineno) def textTokenization(self,text): try: tokenizedText=word_tokenize(text) return tokenizedText except Exception as inst: print('textDataProfiler code execution failed !....',inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(exc_type, fname, exc_tb.tb_lineno) return {} def textLemmitizer(self,text): try: tag_map = defaultdict(lambda : wn.NOUN) tag_map['J'] = wn.ADJ tag_map['V'] = wn.VERB tag_map['R'] = wn.ADV Final_words = [] word_Lemmatized = WordNetLemmatizer() for word, tag in pos_tag(text): if word not in stopwords.words('english') and word.isalpha(): word_Final = word_Lemmatized.lemmatize(word,tag_map[tag[0]]) Final_words.append(word_Final) return str(Final_words) except Exception as inst: print('textLemmitizer code execution failed !....',inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(exc_type, fname, exc_tb.tb_lineno) return {} class TextCleaner(TransformerMixin): def clean_text(self,text): try: text=str(text).strip().lower() text = text.replace("isn't", "is not") text = text.replace("aren't", "are not") text = text.replace("ain't", "am not") text = text.replace("won't", "will not") text = text.replace("didn't", "did not") text = text.replace("shan't", "shall not") text = text.replace("haven't", "have not") text = text.replace("hadn't", "had not") text = text.replace("hasn't", "has not") text = text.replace("don't
", "do not") text = text.replace("wasn't", "was not") text = text.replace("weren't", "were not") text = text.replace("doesn't", "does not") text = text.replace("'s", " is") text = text.replace("'re", " are") text = text.replace("'m", " am") text = text.replace("'d", " would") text = text.replace("'ll", " will") text = re.sub(r'^https?:\\/\\/.*[\\r\\n]*', ' ', text, flags=re.MULTILINE) text = re.sub(r'[\\w\\.-]+@[\\w\\.-]+', ' ', text, flags=re.MULTILINE) for punctuation in string.punctuation: text = text.replace(punctuation,' ') text = re.sub(r'[^A-Za-z0-9\\s]',r' ',text) text = re.sub(r'\\n',r' ',text) text = re.sub(r'[0-9]',r' ',text) wordnet_lemmatizer = WordNetLemmatizer() text = " ".join([wordnet_lemmatizer.lemmatize(w, pos='v') for w in text.split()]) return text except Exception as inst: print('TextCleaner clean_text code execution failed !....',inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(exc_type, fname, exc_tb.tb_lineno) def text_cleaner(self,text): text = self.clean_text(text) stop_words = set(stopwords.words('english')) text_tokens = word_tokenize(text) out=' '.join(str(j) for j in text_tokens if j not in stop_words and (len(j)!=1)) return(out) def transform(self, X, **transform_params): # Cleaning Text return [self.clean_text(text) for text in X] def fit(self, X, y=None, **fit_params): return self def get_params(self, deep=True): return {}<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import os import glob import pandas as pd import io import xml.etree.ElementTree as ET import argparse os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Suppress TensorFlow logging (1) import tensorflow as tf from PIL import Image from object_detection.utils import dataset_util, label_map_util from collections import namedtuple from pathlib import Path def class_text_to_int(row_label, label_map_dict): return label_map_dict[row_label] def split(df, group): data = namedtuple('data', ['File', 'object']) gb = df.groupby(group) return [data(File, gb.get_group(x)) for File, x in zip(gb.groups.keys(), gb.groups)] def create_tf_example(group, path, label_map_dict): with tf.io.gfile.GFile(os.path.join(path, '{}'.format(group.File)), 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) width, height = image.size File = group.File.encode('utf8') image_format = b'jpg' xmins = [] xmaxs = [] ymins = [] ymaxs = [] classes_text = [] classes = [] for index, row in group.object.iterrows(): xmin_n = min(row['xmin'], row['xmax']) xmax_n = max(row['xmin'], row['xmax']) ymin_n = min(row['ymin'], row['ymax']) ymax_n = max(row['ymin'], row['ymax']) xmin_new = min(xmin_n, width) xmax_new = min(xmax_n, width) ymin_new = min(ymin_n, height) ymax_new = min(ymax_n, height) xmn = xmin_new / width xmins.append(xmn) xmx = xmax_new / width xmaxs.append(xmx) ymn = ymin_new / height ymins.append(ymn) ymx = ymax_new / height ymaxs.append(ymx) classes_text.append(row['Label'].encode('utf8')) classes.append(class_text_to_int(row['Label'], label_map_dict)) tf_example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(File), 'image/source_id': dataset_util.bytes_feature(File), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature(image_format), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), })) return tf_example def labelFile(classes_names, label_map_path): pbtxt_content = "" for i, class_name in enumerate(classes_names): pbtxt_content = ( pbtxt_content + "item {{\\n id: {0}\\n name: '{1}'\\n}}\\n\\n".format(i + 1, class_name) ) pbtxt_content = pbtxt_content.strip() with open(label_map_path, "w") as f: f.write(pbtxt_content) def createLabelFile(train_df, save_path): labelmap_path = str(Path(save_path)/ 'label_map.pbtxt') classes_names = sorted(train_df['Label'].unique().tolist()) labelFile(classes_names, labelmap_path) return labelmap_path, len(classes_names) def generate_TF_record(image_dir, output_dir, train_df, test_df, labelmap_path): outputPath = str(Path(output_dir)/ 'train.tfrecord') writer = tf.io.TFRecordWriter( outputPath) grouped = split(train_df, 'File') label_map = label_map_util.load_labelmap(labelmap_path ) label_map_dict = label_map_util.get_label_map_dict(label_map) for group in grouped: tf_example = create_tf_example(group, image_dir, label_map_dict) writer.write(tf_example.SerializeToString()) writer.close() if len(test_df): outputPath = str(Path(output_dir)/ 'test.tfrecord') writer = tf.io.TFRecordWriter( outputPath) grouped = split(test_df, 'File') for group in grouped: tf_example = create_tf_example(group, image_dir, label_map_dict) writer.write(tf_example.SerializeToString()) writer.close() <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> from kafka import KafkaConsumer from json import loads import pandas as pd import json import os,sys import time import multiprocessing from os.path import expanduser import platform import datetime modelDetails = {} class Process(multiprocessing.Process): def __init__(self, modelSignature,jsonData,predictedData,modelpath): super(Process, self).__init__() self.config = jsonData self.modelSignature = modelSignature self.data = predictedData self.modelpath = modelpath def run(self): #data = pd.json_normalize(self.data) minotoringService = self.config['minotoringService']['url'] trainingdatalocation = self.config['trainingDataLocation'][self.modelSignature] #filetimestamp = 'AION_'+str(int(time.time()))+'.csv' #data.to_csv(dataFile, index=False) inputFieldsJson = {"trainingDataLocation":trainingdatalocation,"currentDataLocation":self.data} inputFieldsJson = json.dumps(inputFieldsJson) ser_url = minotoringService+self.modelSignature+'/monitoring' driftTime = datetime.datetime.now() import requests try: response = requests.post(ser_url, data=inputFieldsJson,headers={"Content-Type":"application/json",}) outputStr=response.content outputStr = outputStr.decode('utf-8') outputStr = outputStr.strip() decoded_data = json.loads(outputStr) print(decoded_data) status = decoded_data['status'] msg = decoded_data['data'] except Exception as inst: if 'Failed to establish a new connection' in str(inst): status = 'Fail' msg = 'AION Service needs to be started' else: status = 'Fail' msg = 'Error during Drift Analysis' statusFile = os.path.join(self.modelpath,self.modelSignature+'_status.csv') df = pd.DataFrame(columns = ['dateTime', 'status', 'msg']) df = df.append({'dateTime' : driftTime, 'status' : status, 'msg' : msg},ignore_index = True) print(df) if (os.path.exists(statusFile)): df.to_csv(statusFile, mode='a', header=False,index=False) else: df.to_csv(statusFile, header=True,index=False) def launch_kafka_consumer(): from appbe.dataPath import DATA_DIR configfile = os.path.join(os.path.dirname(__file__),'..','config','kafkaConfig.conf') with open(configfile,'r',encoding='utf-8') as f: jsonData = json.load(f) f.close() kafkaIP=jsonData['kafkaCluster']['ip'] kafkaport = jsonData['kafkaCluster']['port'] topic = jsonData['kafkaCluster']['topic'] kafkaurl = kafkaIP+':'+kafkaport if jsonData['database']['csv'] == 'True': database = 'csv' elif jsonData['database']['mySql'] == 'True': database = 'mySql' else: database = 'csv' kafkaPath = os.path.join(DATA_DIR,'kafka') if not (os.path.exists(kafkaPath)): try: os.makedirs(kafkaPath) except OSError as e: pass consumer = KafkaConsumer(topic,bootstrap_servers=[kafkaurl],auto_offset_reset='earliest',enable_auto_commit=True,group_id='my-group',value_deserializer=lambda x: loads(x.decode('utf-8'))) for message in consumer: message = message.value data = message['data'] data = pd.json_normalize(data) modelname = message['usecasename'] version = message['version'] modelSignature = modelname+'_'+str(version) modelpath = os.path.join(kafkaPath,modelSignature) try: os.makedirs(modelpath) except OSError as e: pass secondsSinceEpoch = time.time() if modelSignature not in modelDetails: modelDetails[modelSignature] = {} modelDetails[modelSignature]['startTime'] = secondsSinceEpoch if database == 'csv': csvfile = os.path.join(modelpath,modelSignature+'.csv') if (os.path.exists(csvfile)): data.to_csv(csvfile, mode='a', header=False,index=False) else: data.to_csv(csvfile, header=True,index=False) modelTimeFrame = jsonData['timeFrame'][modelSignature] currentseconds = time.time() print(currentseconds - modelDetails[modelSignature]['startTime']) if (currentseconds - modelDetails[modelSignature]['startTime']) >= float(modelTimeFrame): csv_path = os.path.join(modelpath,modelSignature+'.csv') #predictedData = pd.read_csv(csv_path) ##predictedData = predictedData.to_json(orient="records") index = Process(modelSignature,jsonData,csv_path,modelpath) index.start() modelDetails[modelSignature]['startTime'] = secondsSinceEpoch <s> import os import shutil import sys import subprocess from os.path import expanduser import platform import json def createDockerImage(model_name,model_version,module,folderpath): command = 'docker pull python:3.8-slim-buster' os.system(command); subprocess.check_call(["docker", "build", "-t",module+'_'+model_name.lower()+":"+model_version,"."], cwd=folderpath) def local_docker_build(config): print(config) config = json.loads(config) model_name = config['usecase'] model_version = config['version'] mlaac__code_path = config['mlacPath'] docker_images = {} docker_images['ModelMonitoring'] = 'modelmonitoring'+'_'+model_name.lower()+':'+model_version dataset_addr = os.path.join(mlaac__code_path,'ModelMonitoring') createDockerImage(model_name,model
_version,'modelmonitoring',dataset_addr) docker_images['DataIngestion'] = 'dataingestion'+'_'+model_name.lower()+':'+model_version dataset_addr = os.path.join(mlaac__code_path,'DataIngestion') createDockerImage(model_name,model_version,'dataingestion',dataset_addr) transformer_addr = os.path.join(mlaac__code_path,'DataTransformation') docker_images['DataTransformation'] = 'datatransformation'+'_'+model_name.lower()+':'+model_version createDockerImage(model_name,model_version,'datatransformation',transformer_addr) featureengineering_addr = os.path.join(mlaac__code_path,'FeatureEngineering') docker_images['FeatureEngineering'] = 'featureengineering'+'_'+model_name.lower()+':'+model_version createDockerImage(model_name,model_version,'featureengineering',featureengineering_addr) from os import listdir arr = [filename for filename in os.listdir(mlaac__code_path) if filename.startswith("ModelTraining")] docker_training_images = [] for x in arr: dockertraing={} dockertraing['Training'] = str(x).lower()+'_'+model_name.lower()+':'+model_version docker_training_images.append(dockertraing) training_addri = os.path.join(mlaac__code_path,x) createDockerImage(model_name,model_version,str(x).lower(),training_addri) docker_images['ModelTraining'] = docker_training_images docker_images['ModelRegistry'] = 'modelregistry'+'_'+model_name.lower()+':'+model_version deploy_addr = os.path.join(mlaac__code_path,'ModelRegistry') createDockerImage(model_name,model_version,'modelregistry',deploy_addr) docker_images['ModelServing'] = 'modelserving'+'_'+model_name.lower()+':'+model_version deploy_addr = os.path.join(mlaac__code_path,'ModelServing') createDockerImage(model_name,model_version,'modelserving',deploy_addr) outputjsonFile = os.path.join(mlaac__code_path,'dockerlist.json') with open(outputjsonFile, 'w') as f: json.dump(docker_images, f) f.close() output = {'Status':'Success','Msg':outputjsonFile} output = json.dumps(output) print("aion_build_container:",output)<s> import docker import json import logging def read_json(file_path): data = None with open(file_path,'r') as f: data = json.load(f) return data def run_pipeline(inputconfig): inputconfig = json.loads(inputconfig) logfilepath = inputconfig['logfilepath'] logging.basicConfig(level=logging.INFO,filename =logfilepath) usecasename = inputconfig['usecase'] logging.info("UseCaseName :"+str(usecasename)) version = inputconfig['version'] logging.info("version :"+str(version)) config = inputconfig['dockerlist'] persistancevolume = inputconfig['persistancevolume'] logging.info("PersistanceVolume :"+str(persistancevolume)) datasetpath = inputconfig['datasetpath'] logging.info("DataSet Path :"+str(datasetpath)) config = read_json(config) client = docker.from_env() inputconfig = {'modelName':usecasename,'modelVersion':str(version),'dataLocation':datasetpath} inputconfig = json.dumps(inputconfig) inputconfig = inputconfig.replace('"', '\\\\"') logging.info("===== Model Monitoring Container Start =====") outputStr = client.containers.run(config['ModelMonitoring'],'python code.py -i'+datasetpath,volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('ModelMonitoring: '+str(outputStr)) print('ModelMonitoring: '+str(outputStr)) logging.info("===== ModelMonitoring Stop =====") logging.info("===== Data Ingestion Container Start =====") outputStr = client.containers.run(config['DataIngestion'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('DataIngestion: '+str(outputStr)) print('DataIngestion: '+str(outputStr)) logging.info("===== Data Ingestion Container Stop =====") outputStr = outputStr.strip() decoded_data = json.loads(outputStr) status = decoded_data['Status'] if status != 'Success': output = {'Status':'Error','Msg':'Data Ingestion Fails'} logging.info("===== Transformation Container Start =====") outputStr = client.containers.run(config['DataTransformation'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('Data Transformations: '+str(outputStr)) print('Data Transformations: '+str(outputStr)) logging.info("===== Transformation Container Done =====") outputStr = outputStr.strip() decoded_data = json.loads(outputStr) status = decoded_data['Status'] if status != 'Success': output = {'Status':'Error','Msg':'Data Transformations Fails'} logging.info("===== Feature Engineering Container Start =====") outputStr = client.containers.run(config['FeatureEngineering'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('FeatureEngineering: '+str(outputStr)) print('FeatureEngineering: '+str(outputStr)) logging.info("===== Feature Engineering Container Done =====") outputStr = outputStr.strip() decoded_data = json.loads(outputStr) status = decoded_data['Status'] modeltraining = config['ModelTraining'] for mt in modeltraining: logging.info("===== Training Container Start =====") outputStr = client.containers.run(mt['Training'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('ModelTraining: '+str(outputStr)) print('ModelTraining: '+str(outputStr)) logging.info("===== Training Container Done =====") outputStr = outputStr.strip() try: decoded_data = json.loads(outputStr) status = decoded_data['Status'] except Exception as inst: logging.info(inst) logging.info("===== Model Registry Start =====") outputStr = client.containers.run(config['ModelRegistry'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('ModelRegistry: '+str(outputStr)) print('ModelRegistry: '+str(outputStr)) logging.info("===== ModelRegistry Done =====") logging.info("===== ModelServing Start =====") outputStr = client.containers.run(config['ModelServing'],'python code.py',volumes=[persistancevolume+':/aion']) outputStr = outputStr.decode('utf-8') logging.info('Prediction: '+str(outputStr)) print('Prediction: '+str(outputStr)) logging.info("===== ModelServing Done =====") <s> import os import sys import json from pathlib import Path import subprocess import shutil import argparse def create_and_save_yaml(git_storage_path, container_label,usecasepath): file_name_prefix = 'gh-acr-' yaml_file = f"""\\ name: gh-acr-{container_label} on: push: branches: main paths: {container_label}/** workflow_dispatch: jobs: gh-acr-build-push: runs-on: ubuntu-latest steps: - name: 'checkout action' uses: actions/checkout@main - name: 'azure login' uses: azure/login@v1 with: creds: ${{{{ secrets.AZURE_CREDENTIALS }}}} - name: 'build and push image' uses: azure/docker-login@v1 with: login-server: ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}} username: ${{{{ secrets.REGISTRY_USERNAME }}}} password: ${{{{ secrets.REGISTRY_PASSWORD }}}} - run: | docker build ./{container_label}/ModelMonitoring -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelmonitoring:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelmonitoring:{container_label} docker build ./{container_label}/DataIngestion -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/dataingestion:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/dataingestion:{container_label} docker build ./{container_label}/DataTransformation -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/datatransformation:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/datatransformation:{container_label} docker build ./{container_label}/FeatureEngineering -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/featureengineering:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/featureengineering:{container_label} docker build ./{container_label}/ModelRegistry -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelregistry:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelregistry:{container_label} docker build ./{container_label}/ModelServing -t ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelserving:{container_label} docker push ${{{{ secrets.REGISTRY_LOGIN_SERVER }}}}/modelserving:{container_label} """ arr = [filename for filename in os.listdir(usecasepath) if filename.startswith("ModelTraining")] for x in arr: yaml_file+=' docker build ./'+container_label+'/'+x+' -t ${{ secrets.REGISTRY_LOGIN_SERVER }}/'+x.lower()+':'+container_label yaml_file+='\\n' yaml_file+=' docker push ${{ secrets.REGISTRY_LOGIN_SERVER }}/'+x.lower()+':'+container_label yaml_file+='\\n' with open(Path(git_storage_path)/(file_name_prefix + container_label + '.yaml'), 'w') as f: f.write(yaml_file) def run_cmd(cmd): try: subprocess.check_output(cmd, stderr=subprocess.PIPE) except subprocess.CalledProcessError as e: if e.stderr: if isinstance(e.stderr, bytes): err_msg = e.stderr.decode(sys.getfilesystemencoding()) else: err_msg = e.stderr elif e.output: if isinstance(e.output, bytes): err_msg = e.output.decode(sys.getfilesystemencoding()) else: err_msg = e.output else: err_msg = str(e) return False, err_msg return True, "" def validate_config(config): non_null_keys = ['url','username', 'token', 'location', 'gitFolderLocation', 'email', 'modelName'] missing_keys = [k for k in non_null_keys if k not in config.keys()] if missing_keys: raise ValueError(f"following fields are missing in config file: {missing_keys}") for k,v in config.items(): if k in non_null_keys and not v: raise ValueError(f"Please provide value for '{k}' in config file.") def upload(config): validate_config(config) url_type = config.get('url_type','https') if url_type == 'https': https_str = "https://" url = https_str + config['username'] + ":" + config['token'] + "@" + config['url'][len(https_str):] else: url = config['url'] model_location = Path(config['location']) git_folder_location = Path(config['gitFolderLocation']) git_folder_location.mkdir(parents=True, exist_ok=True) (git_folder_location/'.github'/'workflows').mkdir(parents=True, exist_ok=True) if not model_location.exists(): raise ValueError('Trained model data not found') os.chdir(str(git_folder_location)) (git_folder_location/config['modelName']).mkdir(parents=True, exist_ok=True) shutil.copytree(model_location, git_folder_location/config['modelName'], dirs_exist_ok=True) create_and_save_yaml((git_folder_location/'.github'/'workflows'), config['modelName'],config['location']) if (Path(git_folder_location)/'.git').exists(): first_upload = False else: first_upload = True if first_upload: cmd = ['git','init'] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','config','user.name',config['username']] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','config','user.email',config['email']] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','add', '-A'] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','commit','-m',f"commit {config['modelName']}"] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','branch','-M','main'] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) if first_upload: cmd = ['git','remote','add','origin', url] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) cmd = ['git','push','-f','-u','origin', 'main'] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) else: cmd = ['git','push'] status, msg = run_cmd(cmd) if not status: raise ValueError(msg) return json.dumps
({'Status':'SUCCESS'}) if __name__ == '__main__': try: if shutil.which('git') is None: raise ValueError("git is not installed on this system") parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', help='Config file location or as a string') args = parser.parse_args() if Path(args.config).is_file() and Path(args.config).suffix == '.json': with open(args.config,'r') as f: config = json.load(f) else: config = json.loads(args.config) print(upload(config)) except Exception as e: status = {'Status':'Failure','msg':str(e)} print(json.dumps(status))<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import json import logging import os import shutil import time from sys import platform from distutils.util import strtobool # Base class for EION configuration Manager which read the needed f params from eion.json, initialize the parameterlist, read the respective params, store in variables and return back to caller function or external modules. class OTAionConfigManager: # eion configuration Constractor def __init__(self): self.log = logging.getLogger('eion') self.data = '' self.problemType = '' self.basic = [] self.advance=[] # To get parameter list of configuration module from json, this will be passed as dict{} def getEionProfilerConfigurarion(self): try: if(self.advance['profiler']): return self.advance['profiler'] else: return('NA') except KeyError: return('NA') def getAIONTestTrainPercentage(self): try: if(self.advance['testPercentage']): return int(self.advance['testPercentage']) else: return(80) except KeyError: return(80) def getAIONDataBalancingMethod(self): try: if(self.advance['categoryBalancingMethod']): return self.advance['categoryBalancingMethod'] else: return("oversample") except KeyError: return("oversample") # To get parameter list of selector module params def getEionSelectorConfiguration(self): try: if(self.advance['selector']): return self.advance['selector'] else: return('NA') except KeyError: return('NA') def createDeploymentFolders(self,deployFolder,iterName,iterVersion): usecaseFolderLocation = os.path.join(deployFolder,iterName) os.makedirs(usecaseFolderLocation,exist_ok = True) deployLocation = os.path.join(usecaseFolderLocation,str(iterVersion)) try: os.makedirs(deployLocation) except OSError as e: shutil.rmtree(deployLocation) time.sleep(2) os.makedirs(deployLocation) dataFolderLocation = os.path.join(deployLocation,'data') try: os.makedirs(dataFolderLocation) except OSError as e: print("\\nDeployment Data Folder Already Exists") logFolderLocation = os.path.join(deployLocation,'log') try: os.makedirs(logFolderLocation) except OSError as e: print("\\nLog Folder Already Exists") etcFolderLocation = os.path.join(deployLocation,'etc') try: os.makedirs(etcFolderLocation) except OSError as e: print("\\ETC Folder Already Exists") prodFolderLocation = os.path.join(deployLocation,'production') os.makedirs(prodFolderLocation) profilerFolderLocation = os.path.join(prodFolderLocation, 'profiler') os.makedirs(profilerFolderLocation) modelFolderLocation = os.path.join(prodFolderLocation, 'model') os.makedirs(modelFolderLocation) original_data_file = os.path.join(dataFolderLocation,'preprocesseddata.csv') profiled_data_file = os.path.join(dataFolderLocation,'postprocesseddata.csv') trained_data_file = os.path.join(dataFolderLocation,'trainingdata.csv') predicted_data_file = os.path.join(dataFolderLocation,'predicteddata.csv') logFileName=os.path.join(logFolderLocation,'model_training_logs.log') outputjsonFile=os.path.join(deployLocation,'etc','output.json') return(deployLocation,dataFolderLocation,original_data_file,profiled_data_file,trained_data_file,predicted_data_file,logFileName,outputjsonFile) # To get parameter list of learner module params def getEionLearnerConfiguration(self): try: if(self.advance['onlinelearner_config']): mllearner_config = self.advance['mllearner_config'] if 'categoryBalancingMethod' not in mllearner_config: mllearner_config['categoryBalancingMethod'] = 'oversample' if 'testPercentage' not in mllearner_config: mllearner_config['testPercentage'] = 20 if 'missingTargetCategory' not in mllearner_config: mllearner_config['missingTargetCategory'] = '' return mllearner_config else: return('NA') except KeyError: return('NA') except Exception as inst: self.log.info( '\\n-----> getEionLearnerConfiguration failed!!!.'+str(inst)) return('NA') def gettimegrouper(self): try: if(self.basic['timegrouper']): return self.basic['timegrouper'] else: return 'NA' except: return 'NA' def getgrouper(self): try: if(self.basic['group']): return self.basic['group'] else: return 'NA' except: return 'NA' def getfilter(self): try: if(self.basic['filter']): return self.basic['filter'] else: return 'NA' except: return 'NA' def getModulesDetails(self): problem_type = self.problemType visualizationstatus = self.getEionVisualizationStatus() profiler_status = self.getEionProfilerStatus() selector_status = self.getEionSelectorStatus() learner_status = self.mllearner targetFeature = self.getTargetFeatures() deploy_status = self.getEionDeploymentStatus() if learner_status: if(problem_type == 'NA'): learner_status = True elif(problem_type.lower() in ['classification','regression']): learner_status = True else: learner_status = False return problem_type,targetFeature,profiler_status,selector_status,learner_status,visualizationstatus,deploy_status def __get_true_option(self, d, default_value=None): if isinstance(d, dict): for k,v in d.items(): if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True): return k return default_value def getAlgoName(self, problem_type=None): if problem_type == None: problem_type = self.__get_true_option(self.basic['algorithms']) return self.__get_true_option(self.basic['algorithms'][problem_type]) def getScoringCreteria(self): return (self.scoringCreteria) def getEionDeployerConfiguration(self): try: if(self.advance['deployer']): return self.advance['deployer'] else: return('NA') except KeyError: return('NA') def getAIONRemoteTraining(self): try: if(self.advance['remoteTraining']): self.advance['remoteTraining']['Enable'] = strtobool(self.advance['remoteTraining'].get('Enable', 'False')) return self.advance['remoteTraining'] else: remoteTraining = {} remoteTraining['Enable'] = False remoteTraining['server'] = None remoteTraining['ssh'] = None return(remoteTraining) except KeyError: remoteTraining = {} remoteTraining['Enable'] = False remoteTraining['server'] = None remoteTraining['ssh'] = None return(remoteTraining) def getEionVisualizationStatus(self): return(True) def getEionVisualizationConfiguration(self): try: if(self.advance['visualization_settings']): return(self.advance['visualization_settings']) else: return('NA') except KeyError: return('NA') def getEionBatchLearningStatus(self): try: if(self.basic['output']['batchLearning']): return(self.basic['output']['batchLearning']) else: return('disable') except KeyError: return('disable') def getEionProblemType(self): try: analysis_type = self.basic['analysisType'] self.problemType = '' for key in analysis_type.keys(): if analysis_type[key] == 'True': self.problemType = key break if self.problemType: return self.problemType else: return('NA') except KeyError: return('NA') def getEionProfilerStatus(self): try: if(self.basic['output']['profilerStage']): return(self.basic['output']['profilerStage']) else: return('false') except KeyError: return('false') #To get eion selector module status (enable/disable/none) def getEionSelectorStatus(self): try: if(self.basic['output']['selectorStage']): return(self.basic['output']['selectorStage']) else: return('disable') except KeyError: return('disable') def getEionDeploymentStatus(self): try: if(self.basic['output']['deploymentStage']): return(self.basic['output']['deploymentStage']) else: return(False) except KeyError: return(False) def getEionLearnerModelParams(self,modelType): try: numberofModels = 0 ml_algorithm_filename = '' if(modelType == 'classification'): requiredalgo = 'classifierModelParams' elif(modelType == 'regression'): requiredalgo = 'regressorModelParams' learnerconfig = self.advance['onlinelearner_config'] selectedMLModel = self.mlmodels modelParams = [] modelList=[] if 'modelParams' in learnerconfig: modelParams = learnerconfig['modelParams'] if(str(type(modelParams)) != "<class 'dict'>"): modelParams = [] elif(len(modelParams) == 0): modelParams = [] if(len(modelParams) == 0): if 'modelparamsfile' in learnerconfig: if(learnerconfig['modelparamsfile'] != ""): ml_algorithm_filename = learnerconfig['modelparamsfile'] if(ml_algorithm_filename == ''): ml_algorithm_filename = os.path.dirname(os.path.abspath(__file__))+'/ML_Defaults.json' modelParams = json.loads(open(ml_algorithm_filename).read()) if requiredalgo in modelParams: modelParams = modelParams[requiredalgo] if selectedMLModel != '': modelList = selectedMLModel.split(",") modelList = list(map(str.strip, modelList)) for mod in modelList: if mod not in modelParams: self.log.info("'"+mod+"' Not Available for Particular Problem Type") modelList.remove(mod) else: modelList = list(modelParams.keys()) #modelList = selectedMLModel.split(",") if(len(modelList) ==0): modelList = list(modelParams.keys()) return(modelParams,modelList) except KeyError: modelParams = [] modelList=[] return(modelParams,modelList) def getTargetFeatures(self): try: if(self.basic['targetFeature']): return(self.basic['targetFeature']) else: return('') except KeyError: return('') def getModel
Features(self): try: if(self.basic['trainingFeatures']): modFeatures = self.basic['trainingFeatures'] modFeatures = modFeatures.split(",") modFeatures = list(map(str.strip, modFeatures)) modFeatures = ",".join([modf for modf in modFeatures]) return(modFeatures) else: return('NA') except KeyError: return('NA') def getFolderSettings(self): try: if(self.basic['folderSettings']): return(self.basic['folderSettings']) else: return('NA') except KeyError: return('NA') def getAIONLocationSettings(self): self.iter_name = self.basic['modelName'] self.iteration_version = self.basic['modelVersion'] if(self.basic['dataLocation']): dataLocation = self.basic['dataLocation'] else: dataLocation = 'NA' if(self.basic['deployLocation']): deployLocation = self.basic['deployLocation'] else: deployLocation = 'NA' try: if 'csv_settings' in self.basic: csv_setting = self.basic['csv_settings'] if 'delimiters' in csv_setting: delimiter = csv_setting['delimiters'] if delimiter.lower() == 'tab': delimiter = '\\t' elif delimiter.lower() == 'semicolon': delimiter = ';' elif delimiter.lower() == 'comma': delimiter = ',' elif delimiter.lower() == 'space': delimiter = ' ' elif delimiter.lower() == 'other': if 'other' in csv_setting: delimiter = csv_setting['other'] else: delimiter = ',' else: delimiter = ',' else: delimiter = ',' if 'textqualifier' in csv_setting: textqualifier = csv_setting['textqualifier'] else: textqualifier = '"' else: delimiter = ',' textqualifier = '"' except KeyError: delimiter = ',' textqualifier = '"' return(self.iter_name,self.iteration_version,dataLocation,deployLocation,delimiter,textqualifier) def getFeatures(self): try: if(self.basic['dateTimeFeature']): dtFeatures = self.basic['dateTimeFeature'] dtFeatures = dtFeatures.split(",") dtFeatures = list(map(str.strip, dtFeatures)) dtFeatures = ",".join([dtf for dtf in dtFeatures]) else: dtFeatures = 'NA' except KeyError: dtFeatures = 'NA' try: if(self.basic['indexFeature']): iFeatures = self.basic['indexFeature'] iFeatures = iFeatures.split(",") iFeatures = list(map(str.strip, iFeatures)) iFeatures = ",".join([dif for dif in iFeatures]) else: iFeatures = 'NA' except KeyError: iFeatures = 'NA' try: if(self.basic['trainingFeatures']): modFeatures = self.basic['trainingFeatures'] modFeatures = modFeatures.split(",") modFeatures = list(map(str.strip, modFeatures)) modFeatures = ",".join([modf for modf in modFeatures]) else: modFeatures = 'NA' except KeyError: modFeatures = 'NA' return(dtFeatures,iFeatures,modFeatures) def setModels(self): try: analysis_type = self.basic['analysisType'] #print(analysis_type) self.problemType = '' for key in analysis_type.keys(): if analysis_type[key] == 'True': self.problemType = key break if self.problemType not in ['inputDrift','outputDrift']: conf_algorithm = self.basic['algorithms'][self.problemType] else: conf_algorithm = {} self.mlmodels='' self.dlmodels='' self.scoringCreteria = 'NA' if self.problemType in ['classification','regression']: scorCre = self.basic['scoringCriteria'][self.problemType] for key in scorCre.keys(): if scorCre[key] == 'True': self.scoringCreteria = key break #print(self.problemType) #print(self.scoringCreteria) if self.scoringCreteria == 'Mean Squared Error': self.scoringCreteria = 'MSE' if self.scoringCreteria == 'Root Mean Squared Error': self.scoringCreteria = 'RMSE' if self.scoringCreteria == 'Mean Absolute Error': self.scoringCreteria = 'MAE' if self.scoringCreteria == 'R-Squared': self.scoringCreteria = 'R2' if self.problemType in ['classification','regression']: for key in conf_algorithm.keys(): if conf_algorithm[key] == 'True': if self.mlmodels != '': self.mlmodels += ',' self.mlmodels += key else: for key in conf_algorithm.keys(): if conf_algorithm[key] == 'True': if self.mlmodels != '': self.mlmodels += ',' self.mlmodels += key self.mllearner = False if self.mlmodels != '': self.mllearner = True return('done') except KeyError: return('NA') def readConfigurationFile(self,path): with open(path, 'rb') as data_file: try: self.data = json.load(data_file) #loading json object as python dictionary #print(self.data) self.basic = self.data['basic'] self.advance = self.data['advance'] problemType = self.setModels() if(self.basic['output']['profilerStage']): if(str(type(self.basic['output']['profilerStage'])) != "<class 'str'>"): msg = "JSON Validation Fail: Profiling Should be String and value should be either enable or disable" self.log.info(msg) return False,msg if((self.basic['output']['profilerStage'].lower() == 'true') & ('profiler' not in self.advance)): msg = "JSON Validation Fail: Profiler Configuration Not Found in Advance JSON" self.log.info(msg) return False,msg if(str(type(self.advance['profiler'])) != "<class 'dict'>"): msg = "JSON Validation Fail: Error: Profiler Configuration Syntax" self.log.info(msg) return False,msg if((self.basic['output']['profilerStage'].lower() != 'true') & (self.basic['output']['profilerStage'].lower() != 'false')): msg = "JSON Validation Fail: Profiling is Not defined Correctly, it should be either enable or disable" self.log.info(msg) return False,msg if(self.basic['output']['selectorStage']): if(str(type(self.basic['output']['selectorStage'])) != "<class 'str'>"): msg = "JSON Validation Fail: Selection Should be String and value should be either enable or disable" self.log.info(msg) return False,msg if((self.basic['output']['selectorStage'].lower() == 'true') & ('selector' not in self.advance)): msg = "JSON Validation Fail: Selector Configuration Not Found" self.log.info(msg) return False,msg if((self.basic['output']['selectorStage'].lower() != 'true') & (self.basic['output']['selectorStage'].lower() != 'false')): msg = "JSON Validation Fail:: Selection is Not defined Correctly, it should be either enable or disable" self.log.info(msg) return False,msg if(str(type(self.advance['selector'])) != "<class 'dict'>"): msg = "JSON Validation Fail: Error: Syntax of Selector" self.log.info(msg) return False,msg if 'dataLocation' not in self.basic: msg = "JSON Validation Fail: Data Location Not Defined" self.log.info(msg) return False,msg if 'deployLocation' not in self.basic: msg = "JSON Validation Fail: Deploy Location Not Defined" self.log.info(msg) return False,msg if 'deployment' in self.basic: if(str(type(self.basic['deployment'])) != "<class 'str'>"): msg = "JSON Validation Fail: deployment Should be String and value should be either enable or disable" self.log.info(msg) return False,msg if(self.basic['deployment'] == 'enable'): if 'deployer' in self.advance: if(str(type(self.advance['deployer'])) != "<class 'dict'>"): msg = "JSON Validation Fail: deployer configuration should be nexted json object" self.log.info(msg) return False,msg else: msg = "JSON Validation Fail: deployer configuration is missing" self.log.info(msg) return False,msg except ValueError as e: print("Error"+str(e)) return False,e return True,'Good' <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import json def get_true_option(d, default_value=None): if isinstance(d, dict): for k, v in d.items(): if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True): return k return default_value def get_true_options(d): options = [] if isinstance(d, dict): for k, v in d.items(): if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True): options.append(k) return options def check_datetime(config): dateTime = config['basic']['dateTimeFeature'] if dateTime == '' or dateTime.lower()=='na': return False return True def check_dtype(d): flag= 1 for item in d: if item["type"].lower() != "text" and item["type"].lower() != "index": flag = 0 break return flag def check_text(d): #task 12627 flag= 0 for item in d: if item["type"].lower() == "text": flag = 1 break return flag def check_labelencoding(ftr_dict_list, target_ftr): for ftr_dict in ftr_dict_list: if ftr_dict['feature']!=target_ftr and ftr_dict['type'].lower()=='categorical' and ftr_dict['categoryEncoding
'].lower()!='labelencoding': return False return True class timeseries(): def __init__(self,config): self.config=config #task 11997 if self.config['basic']['analysisType']['timeSeriesForecasting'].lower()=='true': self.problemType = 'timeSeriesForecasting' elif self.config['basic']['analysisType']['timeSeriesAnomalyDetection'].lower()=='true': self.problemType = 'timeSeriesAnomalyDetection' def validate_basic_config(self,status='pass',msg=None): #task 12627 date_time_status = check_datetime(self.config) text_status = check_text(self.config['advance']['profiler']['featureDict']) if not date_time_status and text_status: msg = 'For time series problem,\\\\n* One feature should be in datetime format\\\\n* Text feature not supported ' return 'error', msg elif not date_time_status: msg = 'For time series problem, one feature should be in datetime format' return 'error', msg elif text_status: msg = 'For time series problem, text feature not supported ' return 'error', msg selected_algos = get_true_options(self.config['basic']['algorithms'][self.problemType]) #task 11997 if isinstance(self.config['basic']['targetFeature'],str): targetFeature = list(self.config['basic']['targetFeature'].split(',')) if self.problemType=='timeSeriesForecasting': #task 11997 if len(targetFeature) > 1: if 'ARIMA' in selected_algos: status = 'error' msg = "ARIMA is not supported for multilabel (target) feature" return status, msg if "FBPROPHET" in selected_algos: status = 'error' msg = "FBPROPHET is not supported for multiLabel (target) feature" return status, msg if 'MLP' in selected_algos: status = 'error' msg = "MLP is not supported for multiLabel (target) feature" return status, msg if len(targetFeature) == 1 and 'VAR' in selected_algos: status = 'error' msg = "VAR is not supported for singleLabel (target) feature" return status, msg elif self.problemType=='timeSeriesAnomalyDetection': anomChecker = anomaly(self.config) status, msg = anomChecker.validate_basic_config() return status, msg class anomaly(): def __init__(self,config): self.config = config if self.config['basic']['analysisType']['anomalyDetection']=='': self.problemType = 'anomalyDetection' elif self.config['basic']['analysisType']['timeSeriesAnomalyDetection']: #task 11997 self.problemType = 'timeSeriesAnomalyDetection' def validate_basic_config(self,status='pass',msg=None): #task 12627 date_time_status = check_datetime(self.config) targetFeature = self.config['basic']['targetFeature'] if self.problemType=='anomalyDetection' and date_time_status: status = 'error' msg = 'Date feature detected. For anomaly detection on time series change problem type to Time Series Anomaly Detection or drop Date feature' return status, msg if targetFeature.lower()!= 'na' and targetFeature!= "" and self.config['basic']['inlierLabels'] == '': status = 'error' msg = 'Please provide inlier label in case of supervised anomaly detection' return status, msg class survival(): def __init__(self,config): self.config = config self.problemType= 'survivalAnalysis' def validate_basic_config(self): dateTimeStatus = check_datetime(self.config) labelencoding_status = check_labelencoding(self.config['advance']['profiler']['featureDict'], self.config['basic']['targetFeature']) if not dateTimeStatus and not labelencoding_status: msg = 'For survival analysis problem,\\\\n* One feature should be in datetime format\\\\n* Encoding of categorical features should be of label encoding ' return 'error', msg elif not dateTimeStatus: msg = 'One feature should be in datetime format for survival analysis problem. Please select it from model feature' return 'error', msg elif not labelencoding_status: msg = 'Categorical features are expected to be label encoded for survival analysis problem. Please select it from feature encoding' return 'error', msg else: return 'pass', " " class associationrule(): def __init__(self,config): self.config=config def validate_basic_config(self,status='pass', msg=None): if self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['invoiceNoFeature'].lower() == '' or self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['invoiceNoFeature'].lower() == 'na' or self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['itemFeature'].lower() == '' or self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['itemFeature'].lower() == 'na': return "error","Make sure to configure invoice feature and item feature" elif self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['invoiceNoFeature'] == self.config['basic']['algorithms']['recommenderSystem']['associationRulesConfig']['itemFeature']: return "error","Make sure to invoice feature and item feature is configure correctly" else: return "pass", " " class documentsimilarity(): def __init__(self,config): self.config=config def validate_basic_config(self,status='pass', msg=None): flag = check_dtype(self.config['advance']['profiler']['featureDict']) if flag == 1: return "pass", " " else: msg="Make sure to change the feature type from Catgeory to Text and drop numerical features for document Similarity" return "error", msg def config_validate(path): with open(path, 'rb') as data_file: config = json.load(data_file) data_file.close() try: problem_type = get_true_option(config['basic']['analysisType']) status = 'pass' msg = '' if 'timeseries' in problem_type.lower(): #task 11997 obj = timeseries(config) elif problem_type.lower() == 'survivalanalysis': obj = survival(config) elif problem_type.lower() == 'anomalydetection': obj = anomaly(config) elif problem_type.lower() in ['similarityidentification','contextualsearch']: obj = documentsimilarity(config) elif problem_type.lower() == 'recommendersystem': if config['basic']['algorithms']['recommenderSystem']['AssociationRules-Apriori'].lower() == 'true': obj = associationrule(config) else: return 'pass',"" else: return 'pass',"" status,msg= obj.validate_basic_config() return(status,msg) except Exception as e: print(e) def start_check(config): return config_validate(config) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import json from pathlib import Path from distutils.util import strtobool class code_configure(): def __init__(self): self.code_config = {} self.unsupported_algo = [] self.supported_model = {"classification":{"Logistic Regression": "LogisticRegression", "Naive Bayes": "GaussianNB", "Decision Tree": "DecisionTreeClassifier", "Random Forest": "RandomForestClassifier", "Support Vector Machine": "SVC", "K Nearest Neighbors": "KNeighborsClassifier", "Gradient Boosting": "GradientBoostingClassifier", "Extreme Gradient Boosting (XGBoost)":"XGBClassifier", "Light Gradient Boosting (LightGBM)": "LGBMClassifier","Categorical Boosting (CatBoost)": "CatBoostClassifier"}, "regression":{"Linear Regression": "LinearRegression", "Lasso": "Lasso", "Ridge": "Ridge", "Decision Tree": "DecisionTreeRegressor", "Random Forest": "RandomForestRegressor", "Extreme Gradient Boosting (XGBoost)": "XGBRegressor", "Light Gradient Boosting (LightGBM)": "LGBMRegressor","Categorical Boosting (CatBoost)": "CatBoostRegressor"},"timeSeriesForecasting":{"MLP": "MLP","LSTM":"LSTM"}} #task 11997 def __get_true_option(self, d, default_value=None): if isinstance(d, dict): for k,v in d.items(): if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True): return k return default_value def __get_true_options(self, d): options = [] if isinstance(d, dict): for k,v in d.items(): if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True): options.append(k) return options def __get_scoring_criteria(self, criteria): mapping = {'Mean Squared Error':'MSE', 'Root Mean Squared Error':'RMSE','Mean Absolute Error':'MAE','R-Squared':'R2'} if criteria in mapping.keys(): return mapping[criteria] return criteria def __get_feature_selector(self, selector_config): feature_selector = [] if self.__get_true_option(selector_config['selectionMethod']) == 'featureSelection': feature_selector = self.__get_true_options(selector_config['featureSelection']) return feature_selector def __get_feature_reducer(self, selector_config): feature_reducer = "" if self.__get_true_option(selector_config['selectionMethod']) == 'featureEngineering': feature_reducer = self.__get_true_option(selector_config['featureEngineering'],'pca').lower() return feature_reducer def __getOptimizationParam(self, param_config): param_dict = {} param_dict['iterations'] = int(param_config['iterations']) param_dict['trainTestCVSplit'] = int(param_config['trainTestCVSplit']) param_dict['geneticparams'] = param_config['geneticparams'] return param_dict def add_model(self, model_name, config): if not self.unsupported_algo: self.code_config["algorithms"][model_name] = config.copy() def update_config(self, key, value): self.code_config[key] = value def save_config(self, file_path): if Path(file_path).is_dir(): file_path = Path(file_path)/'etc/code_config.json' with open(file_path, "w") as f: if not self.unsupported_algo: json.dump(self.code_config, f, indent=4) else: if 'ensemble' in self.unsupported_algo: json.dump({"Status":"Failure","msg":"Ensemble is not supported","error":"Ensemble is not supported"}, f) # keep error key elif 'text_features' in self.unsupported_algo: json.dump({"Status":"Failure","msg":"Text feature processing is not supported","error":"Text feature processing is not supported"}, f) # keep error key else: json.dump({"Status":"Failure","msg":f"Unsupported model {self.unsupported_algo}","error":f"Unsupported model {self.unsupported_algo}"}, f) # keep error key def __is_algo_supported(self, config): problem_type = self.__get_true_option(config['basic']['analysisType']) if problem_type not in self.supported_model.keys(): self.unsupported_algo = [problem_type] return False algos = config['basic']['algorithms'][problem_type] algos = self.__get_true_options(algos) self.unsupported_algo = [x for x in algos if x not in self.supported_model[problem_type].keys()] if self.unsupported_algo: return False return True def create_config(self, config): if isinstance(config, str): with open(config,'r') as f: config = json.load(f) problem_type = self.__get_true_option(config['basic']['analysisType']) self.code_config["problem_type"] = problem_type.lower() if not self.__is_algo_supported(config): return if 'ensemble' in config['advance']['mllearner_config']: if config['advance']['mllearner_config']['ensemble'] == 'enable': self.unsupported_algo = ['ensemble'] return self.code_config["modelName"] = config['basic']['modelName'] self.code_config["modelVersion"] = config['basic']['modelVersion'] if config['basic']['folderSettings']['fileType'].lower() == 'url': self.code_config["dataLocation"] = config['basic']['folderSettings']['labelDataFile'] else: self.code_config["dataLocation"] = config['basic']['dataLocation'] self.code_config["target_feature"] = config['basic']['targetFeature'] trainingfeatures = config['basic']['trainingFeatures'].split(',') datetimeFeature = list(map(str.strip, config['basic']['dateTimeFeature'].split(','))) for dtfeature in datetimeFeature: if dtfeature in trainingfeatures: trainingfeatures.remove(dtfeature) indexFeature = list(map(str.strip, config['basic']['indexFeature'].split(','))) for dtfeature in indexFeature: if dtfeature in trainingfeatures: trainingfeatures.remove(dtfeature) self.code_config["selected_features"] = trainingfeatures self.code_config["dateTimeFeature"] = datetimeFeature self.code_config["pro
filer"] = config['advance']['profiler'] self.code_config["feature_selector"]= self.__get_feature_selector(config['advance']['selector']) self.code_config["feature_reducer"]= self.__get_feature_reducer(config['advance']['selector']) self.code_config["corr_threshold"]= float(config['advance']['selector']['statisticalConfig'].get('correlationThresholdTarget',0.85)) self.code_config["var_threshold"]= float(config['advance']['selector']['statisticalConfig'].get('varianceThreshold',0.01)) self.code_config["pValueThreshold"]= float(config['advance']['selector']['statisticalConfig'].get('pValueThresholdTarget',0.04)) self.code_config["n_components"]= int(config['advance']['selector']['featureEngineering']['numberofComponents']) self.code_config["balancingMethod"] = config['advance']['categoryBalancingMethod'] self.code_config["test_ratio"] = int(config['advance']['testPercentage'])/100 #self.code_config["scoring_criteria"] = "accuracy" if self.code_config["problem_type"] in ['classification','regression']: self.code_config["algorithms"] = {} else: algo = self.__get_true_option(config['basic']['algorithms'][problem_type]) self.code_config["algorithms"] = {algo: config['advance'][problem_type]['modelParams'][algo]} #task 11997 self.code_config["scoring_criteria"] = self.__get_scoring_criteria(self.__get_true_option(config['basic']["scoringCriteria"][problem_type])) if problem_type.lower() == 'timeseriesforecasting': #task 11997 self.code_config["lag_order"] = self.code_config["algorithms"][algo]["lag_order"] self.code_config["noofforecasts"] = config["basic"]["noofforecasts"] self.code_config["target_feature"] = config['basic']['targetFeature'].split(',') self.code_config["optimization"] = config['advance']['mllearner_config']['optimizationMethod'] self.code_config["optimization_param"] = self.__getOptimizationParam(config['advance']['mllearner_config']['optimizationHyperParameter']) if __name__ == '__main__': codeConfigure = code_configure() codeConfigure.create_config("C:\\\\Users\\\\vashistah\\\\AppData\\\\Local\\\\HCLT\\\\AION\\\\config\\\\AION_1668151242.json") codeConfigure.save_config(r"C:\\Users\\vashistah\\AppData\\Local\\HCLT\\AION\\target\\AION_57_ts_1")<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import json def getDebiasingDetail(self): try: if(self.advance['profiler']['deBiasing']): dlconfig = self.advance['profiler']['deBiasing'] return dlconfig else: return('NA') except KeyError: return('NA') def getFirstDocumentFeature(self): if 'firstDocFeature' in self.basic: firstDocFeature = self.basic['algorithms']['recommenderSystem']['textSimilarityConfig']['baseFeature'] else: firstDocFeature = '' return(firstDocFeature) def getSecondDocumentFeature(self): if 'secondDocFeature' in self.basic: secondDocFeature = self.basic['algorithms']['recommenderSystem']['textSimilarityConfig']['comparisonFeature'] else: secondDocFeature = '' return(secondDocFeature) def getEionInliers(self): if 'inlierLabels' in self.basic: self.inlierLabels = self.basic['inlierLabels'] else: self.inlierLabels = 'NA' return (self.inlierLabels) def getEionProfilerConfigurarion(self): try: if(self.advance['profiler']): return self.advance['profiler'] else: return('NA') except KeyError: return('NA') def getAIONTestTrainPercentage(self): try: return (int(self.advance.get('testPercentage',20))) except KeyError: return(20) def getAIONDataBalancingMethod(self): try: if(self.advance['categoryBalancingMethod']): return self.advance['categoryBalancingMethod'] else: return("oversample") except KeyError: return("oversample") def getEionSelectorConfiguration(self): try: if(self.advance['selector']): return self.advance['selector'] else: return('NA') except KeyError: return('NA') def getEionDeepLearnerConfiguration(self): try: if(self.advance['dllearner_config']): dlconfig = self.advance['dllearner_config'] if 'categoryBalancingMethod' not in dlconfig: dlconfig['categoryBalancingMethod'] = '' if 'testPercentage' not in dlconfig: #Unnati dlconfig['testPercentage'] = 20 #Unnati return dlconfig else: return('NA') except KeyError: return('NA') def gettimegrouper(self): try: if(self.basic['timegrouper']): return self.basic['timegrouper'] else: return 'NA' except: return 'NA' def getgrouper(self): try: if(self.basic['group']): return self.basic['group'] else: return 'NA' except: return 'NA' def getfilter(self): try: if(self.basic['filter']): return self.basic['filter'] else: return 'NA' except: return 'NA' def getNumberofForecasts(self): try: if(self.basic['noofforecasts']): return int(self.basic['noofforecasts']) else: return (-1) except: return (-1) ##To get multivariate feature based anomaly detection status def getMVFeaturebasedAD(self): try: dict_ae=self.basic['analysisApproach']['timeSeriesAnomalyDetection']['AutoEncoder'] #task 11997 if(dict_ae): return (dict_ae) else: return (-1) except: return (-1) def getEionDeployerConfiguration(self): try: if(self.advance['deployer']): return self.advance['deployer'] else: return('NA') except KeyError: return('NA') def getEionAssociationRuleConfiguration(self): try: if(self.advance['associationrule']): return self.advance['associationrule'] else: return('NA') except KeyError: return('NA') def getEionObjectDetectionConfiguration(self): try: if(self.advance['objectDetection']): return self.advance['objectDetection'] else: return('NA') except KeyError: return('NA') def getEionTimeSeriesConfiguration(self): try: if(self.advance['timeSeriesForecasting']): #task 11997 return self.advance['timeSeriesForecasting'] else: return('NA') except KeyError: return('NA') def getAIONAnomalyDetectionConfiguration(self): try: if(self.advance['anomalyDetection']): return self.advance['anomalyDetection'] else: return('NA') except KeyError: return('NA') def getAIONTSAnomalyDetectionConfiguration(self): #task 11997 try: if(self.advance['timeSeriesAnomalyDetection']): return self.advance['timeSeriesAnomalyDetection'] else: return('NA') except KeyError: return('NA') def getEionVisualizationConfiguration(self): try: if(self.advance['visualization_settings']): return(self.advance['visualization_settings']) else: return('NA') except KeyError: return('NA') def getEionRecommenderConfiguration(self): try: if(self.advance['recommenderparam']): return self.advance['recommenderparam'] else: return('NA') except KeyError: return('NA') def getAionNASConfiguration(self): try: if(self.advance['neuralarchsearch']): return self.advance['neuralarchsearch'] else: return('NA') except KeyError: return('NA') def getEionProfilerStatus(self): try: if(self.basic['output']['profilerStage']): return(self.basic['output']['profilerStage']) else: return('false') except KeyError: return('false') def getEionSelectorStatus(self): try: if(self.basic['output']['selectorStage']): return(self.basic['output']['selectorStage']) else: return('disable') except KeyError: return('disable') def getEionDeploymentStatus(self): try: if(self.basic['output']['deploymentStage']): return(self.basic['output']['deploymentStage']) else: return(False) except KeyError: return(False) def __get_true_option(d, default_value=None): if isinstance(d, dict): for k,v in d.items(): if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True): return k return default_value def getNASStatus(self): try: if(self.dlmodels): return(self.dlmodels) else: return('NA') except KeyError: return('NA') def getTargetFeatures(self): try: if(self.basic['targetFeature']): return(self.basic['targetFeature']) else: return('') except KeyError: return('') def getFolderSettings(self): try: if(self.basic['folderSettings']): return(self.basic['folderSettings']) else: return('NA') except KeyError: return('NA') def getFilterExpression(self): try: if(self.basic['filterExpression']): return (self.basic['filterExpression']) else: return None except KeyError: return None def setModels(self): try: analysis_type = self.basic['analysisType'] #print(analysis_type) self.problemType = '' for key in analysis_type.keys(): if analysis_type[key] == 'True': self.problemType = key break if self.problemType == 'summarization': self.problemType = 'classification' self.summarize = True if self.problemType not in ['inputDrift','outputDrift']: conf_algorithm = self.basic['algorithms'][self.problemType] else: conf_algorithm = {} self.mlmodels='' self.dlmodels='' self.scoringCreteria = 'NA' if self.problemType in ['classification','regression','survivalAnalysis','timeSeriesForecasting']: #task 11997 scorCre = self.basic['scoringCriteria'][self.problemType] for key in scorCre.keys(): if scorCre[key] == 'True': self.scoringCreteria = key break if self.problemType.lower() == 'timeseriesforecasting': #task 11997 self.mllearner=False #task 11997 removed initialising self.ml models as timeSeriesForecasting if self.scoringCreteria == 'Mean Squared Error': self.scoringCreteria = 'MSE' if self.scoringCreteria == 'Root Mean Squared Error': self.scoringCreteria = 'RMSE' if self.scoringCreteria == 'Mean Absolute Error': self.scoringCreteria = 'MAE' if self.scoringCreteria == 'R-Squared': self.scoringCreteria = 'R2' if self.problemType in ['similarityIdentification','contextualSearch']: self.scoringCreteria = __get_true_option(self.basic['scoringCriteria'][self.problemType], "Cosine Similarity") if self.problemType in ['classification','regression']: for key in conf_algorithm.keys(): if conf_algorithm[key] == 'True': if key not in ['Recurrent Neural Network','Convolutional Neural Network (1D)','Neural Network','Recurrent Neural Network (GRU)','Recurrent Neural Network (LSTM)','GoogleModelSearch_DNN']: if self.mlmodels != '': self.mlmodels += ',' self.mlmodels += key else: if self.dlmodels != '': self.dlmodels += ',' self.dlmodels += key elif self.problemType in ['videoForecasting','imageClassification','objectDetection']: for key in conf_algorithm.keys(): if conf_algorithm[key] == 'True': if self.dlmodels != '': self.dlmodels += ',' self.dlmodels += key elif self.problemType == 'recommenderSystem': problem_model = '' for key in conf_algorithm.keys(): if key not in ['itemRatingConfig','textSimilarityConfig']: if conf_algorithm[key] == 'True': problem_model = key break if problem_model == 'ItemRating': self.mlmodels = 'SVD' elif problem_model == 'AssociationRules-Apriori': self.mlmodels = 'Apriori' self.problemType = 'AssociationRules' elif problem_model == 'TextSimilarity-Siamese': self.mlmodels = 'Siamese' self.problemType = 'TextSimilarity' else: for key in conf
_algorithm.keys(): if conf_algorithm[key] == 'True': if self.mlmodels != '': self.mlmodels += ',' self.mlmodels += key self.mllearner = False self.dllearner = False if self.mlmodels != '': self.mllearner = True if self.advance['mllearner_config']['Stacking (Ensemble)'] == 'True': self.mlmodels += ',' self.mlmodels += 'Stacking (Ensemble)' if self.advance['mllearner_config']['Voting (Ensemble)'] == 'True': self.mlmodels += ',' self.mlmodels += 'Voting (Ensemble)' if self.dlmodels != '': self.dllearner = True return('done') except KeyError: return('NA') def readConfigurationFile(self, path): if isinstance( path, dict): self.data = path else: with open(path, 'r') as data_file: self.data = json.load(data_file) #loading json object as python dictionary self.basic = self.data['basic'] self.advance = self.data['advance'] problemType = self.setModels() if 'output' in self.basic: if(self.basic['output']['profilerStage']): if(str(type(self.basic['output']['profilerStage'])) != "<class 'str'>"): msg = "JSON Validation Fail: Profiling Should be String and value should be either enable or disable" self.log.info(msg) return False,msg if((self.basic['output']['profilerStage'].lower() == 'true') & ('profiler' not in self.advance)): msg = "JSON Validation Fail: Profiler Configuration Not Found in Advance JSON" self.log.info(msg) return False,msg if(str(type(self.advance['profiler'])) != "<class 'dict'>"): msg = "JSON Validation Fail: Error: Profiler Configuration Syntax" self.log.info(msg) return False,msg if((self.basic['output']['profilerStage'].lower() != 'true') & (self.basic['output']['profilerStage'].lower() != 'false')): msg = "JSON Validation Fail: Profiling is Not defined Correctly, it should be either enable or disable" self.log.info(msg) return False,msg if(self.basic['output']['selectorStage']): if(str(type(self.basic['output']['selectorStage'])) != "<class 'str'>"): msg = "JSON Validation Fail: Selection Should be String and value should be either enable or disable" self.log.info(msg) return False,msg if((self.basic['output']['selectorStage'].lower() == 'true') & ('selector' not in self.advance)): msg = "JSON Validation Fail: Selector Configuration Not Found" self.log.info(msg) return False,msg if((self.basic['output']['selectorStage'].lower() != 'true') & (self.basic['output']['selectorStage'].lower() != 'false')): msg = "JSON Validation Fail:: Selection is Not defined Correctly, it should be either enable or disable" self.log.info(msg) return False,msg if(str(type(self.advance['selector'])) != "<class 'dict'>"): msg = "JSON Validation Fail: Error: Syntax of Selector" self.log.info(msg) return False,msg if 'dataLocation' not in self.basic: msg = "JSON Validation Fail: Data Location Not Defined" self.log.info(msg) return False,msg if 'deployLocation' not in self.basic: msg = "JSON Validation Fail: Deploy Location Not Defined" self.log.info(msg) return False,msg if 'deployment' in self.basic: if(str(type(self.basic['deployment'])) != "<class 'str'>"): msg = "JSON Validation Fail: deployment Should be String and value should be either enable or disable" self.log.info(msg) return False,msg if(self.basic['deployment'] == 'enable'): if 'deployer' in self.advance: if(str(type(self.advance['deployer'])) != "<class 'dict'>"): msg = "JSON Validation Fail: deployer configuration should be nexted json object" self.log.info(msg) return False,msg else: msg = "JSON Validation Fail: deployer configuration is missing" self.log.info(msg) return False,msg return True,'Good' def getSurvivalEventColumn(self): try: if(self.advance['survival_config']): survival_config = self.advance['survival_config'] if 'input' in survival_config: inp = survival_config['input'] if not isinstance(inp, dict): return None elif 'event_col' in inp: e = inp['event_col'] if not isinstance(e, str): return None return (e) else: return None else: return None else: return None except KeyError: return None def getSurvivalDurationColumn(self): try: if(self.advance['survival_config']): survival_config = self.advance['survival_config'] if 'input' in survival_config: inp = survival_config['input'] if not isinstance(inp, dict): return None elif 'duration_col' in inp: t = inp['duration_col'] if not isinstance(t, str): return None return (t) else: return None else: return None else: return None except KeyError: return None <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import json import logging import os import shutil import time import importlib from sys import platform from pathlib import Path from distutils.util import strtobool import config_manager.pipeline_config_reader as cs # Base class for EION configuration Manager which read the needed f params from eion.json, initialize the parameterlist, read the respective params, store in variables and return back to caller function or external modules. class AionConfigManager: def getDebiasingDetail(self): return cs.getDebiasingDetail(self) # eion configuration Constractor def __init__(self): self.log = logging.getLogger('eion') self.data = '' self.problemType = '' self.basic = [] self.advance=[] self.summarize = False #To get the inliner labels for eion anomaly detection def get_text_feature(self): self.text_features = [] feat_dict = self.advance['profiler']['featureDict'] for feat in feat_dict: if feat.get('type') == 'text': if feat.get('feature'): self.text_features.append(feat['feature']) return self.text_features def validate_config(self): status = True error_id = '' msg = '' conversion_method = self.__get_true_option(self.advance.get('profiler',{}).get('textConversionMethod',{})) is_text_feature = self.get_text_feature() if is_text_feature and conversion_method.lower() == 'fasttext': status = importlib.util.find_spec('fasttext') if not status: error_id = 'fasttext' msg = 'fastText is not installed. Please install fastText' return status,error_id, msg def getTextlocation(self): text_data = self.basic["dataLocation"] return text_data def getTextSummarize(self): algo = self.basic['algorithms']['textSummarization'] for key in algo: if algo[key] == 'True': algoname = key method = self.advance['textSummarization']['summaryLength'] for key in method: if method[key] == 'True': methodname = key return algoname,methodname def getAssociationRuleFeatures(self): if 'invoiceNoFeature' in self.basic['algorithms']['recommenderSystem']['associationRulesConfig']: invoiceNoFeature = self.basic['algorithms']['recommenderSystem']['associationRulesConfig']['invoiceNoFeature'] else: invoiceNoFeature ='' if 'itemFeature' in self.basic['algorithms']['recommenderSystem']['associationRulesConfig']: itemFeature = self.basic['algorithms']['recommenderSystem']['associationRulesConfig']['itemFeature'] else: itemFeature ='' return invoiceNoFeature,itemFeature def getFirstDocumentFeature(self): return cs.getFirstDocumentFeature(self) def getSecondDocumentFeature(self): return cs.getSecondDocumentFeature(self) def getEionTextSimilarityConfig(self): return self.advance['textSimilarityConfig'] def getEionTextSummarizationConfig(self): return self.basic['dataLocation'],self.basic['deployLocation'] ,self.basic['textSummarization']['KeyWords'],self.basic['textSummarization']['pathForKeywordFile'] def getEionInliers(self): return cs.getEionInliers(self) #To get the selected models for eion anomaly detection def getEionanomalyModels(self): self.anomalyModels = self.mlmodels return (self.anomalyModels) # To get parameter list of configuration module from json, this will be passed as dict{} def getEionProfilerConfigurarion(self): return cs.getEionProfilerConfigurarion(self) def getAIONTestTrainPercentage(self): return cs.getAIONTestTrainPercentage(self) def getModelEvaluationConfig(self): try: return request.POST.get('mydata',{}) except Exception as e: return({}) def getAIONDataBalancingMethod(self): return cs.getAIONDataBalancingMethod(self) def updateFeatureSelection(self, selectorConfig,codeConfigure,vectorizer=False): if vectorizer: selectorConfig['selectionMethod']['featureSelection'] = 'True' selectorConfig['featureSelection']['allFeatures'] = 'True' selectorConfig['featureSelection']['statisticalBased'] = 'False' selectorConfig['featureSelection']['modelBased'] = 'False' codeConfigure.update_config("feature_selector", ['allFeatures']) # To get parameter list of selector module params def getEionSelectorConfiguration(self): return cs.getEionSelectorConfiguration(self) def createDeploymentFolders(self,deployFolder,iterName,iterVersion): usecase = '{}{}{}'.format(iterName, '_' if iterVersion != '' else '', iterVersion) folders = ['data','log','model','script','etc'] skip_delete = ['log'] deployLocation = Path(deployFolder)/iterName/iterVersion deployLocation.mkdir(parents=True, exist_ok=True) # delete previous failed/trained use case outputs except log folder # as logging is already enabled for current usecase for x in deployLocation.iterdir(): if x.is_file(): # bug 13315 delete existing files x.unlink() elif x.is_dir(): if x.stem not in skip_delete: shutil.rmtree( x) for folder in folders: (deployLocation/folder).mkdir( parents=True, exist_ok=True) (deployLocation/'log'/'img').mkdir( parents=True, exist_ok=True) data_location = deployLocation/'data' paths = { 'usecase': str(deployLocation.parent), 'deploy': str(deployLocation), 'data': str(deployLocation/'data'), 'image': str(deployLocation/'log'/'img'), } files = { 'original': str(data_location/'preprocesseddata.csv.gz'), 'profiled': str(data_location/'postprocesseddata.csv.gz'), 'reduction': str(data_location/'reductiondata.csv'), 'trained': str(data_location/'trainingdata.csv'), 'predicted': str(data_location/'predicteddata.csv.gz'), 'logs': str(deployLocation/'log'/'model_training_logs.log'), 'output': str(deployLocation/'etc'/'output.json'), } return( paths['usecase'],paths['deploy'],paths['data'],paths['image'],files['original'],files['profiled'],files['trained'],files['predicted'],files['logs'],files['output'],files['reduction']) # To get parameter list of learner module params def getEionLearnerConfiguration(self): try: if(self.advance['mllearner_config']): mllearner_config = self.advance['mllearner_config'] if 'categoryBalancingMethod' not in mllearner_config: mllearner_config['categoryBalancingMethod'] = 'oversample' if 'testPercentage' not in mllearner_config: mllearner_config['testPercentage'] = 20 if 'missingTargetCategory' not in mllearner_config: mllearner_config['missingTargetCategory'] = '' mllearner_config['modelParams']['classifierModelParams']['Deep Q Network'] = self.advance['rllearner_config']['modelParams']['classifierModelParams']['Deep Q Network'] mllearner_config['modelParams']['classifierModelParams']['Neural Architecture Search'] = self.advance['dllearner_config']['modelParams']['classifierModelParams']['Neural Architecture Search']
mllearner_config['modelParams']['classifierModelParams']['Dueling Deep Q Network'] = self.advance['rllearner_config']['modelParams']['classifierModelParams']['Dueling Deep Q Network'] mllearner_config['modelParams']['regressorModelParams']['Deep Q Network'] = self.advance['rllearner_config']['modelParams']['regressorModelParams']['Deep Q Network'] mllearner_config['modelParams']['regressorModelParams']['Dueling Deep Q Network'] = self.advance['rllearner_config']['modelParams']['regressorModelParams']['Dueling Deep Q Network'] mllearner_config['modelParams']['regressorModelParams']['Neural Architecture Search'] = self.advance['dllearner_config']['modelParams']['regressorModelParams']['Neural Architecture Search'] return mllearner_config else: return('NA') except KeyError: return('NA') except Exception as inst: self.log.info( '\\n-----> getEionLearnerConfiguration failed!!!.'+str(inst)) return('NA') def getEionDeepLearnerConfiguration(self): return cs.getEionDeepLearnerConfiguration(self) def gettimegrouper(self): return cs.gettimegrouper(self) def getgrouper(self): return cs.getgrouper(self) def getfilter(self): return cs.getfilter(self) def getNumberofForecasts(self): return cs.getNumberofForecasts(self) ##To get multivariate feature based anomaly detection status def getMVFeaturebasedAD(self): return cs.getMVFeaturebasedAD(self) def getModulesDetails(self): problem_type = self.problemType visualizationstatus = self.getEionVisualizationStatus() profiler_status = self.getEionProfilerStatus() selector_status = self.getEionSelectorStatus() learner_status = self.mllearner deeplearner_status = self.dllearner targetFeature = self.getTargetFeatures() deploy_status = self.getEionDeploymentStatus() VideoProcessing = False similarityIdentificationStatus = False contextualSearchStatus = False anomalyDetectionStatus = False if problem_type.lower() == 'survivalanalysis': survival_analysis_status = True selector_status = False associationRuleStatus = 'disable' timeseriesStatus = 'disable' learner_status = False deeplearner_status = False else: survival_analysis_status = False if problem_type.lower() == 'textsimilarity': selector_status = False learner_status = False deeplearner_status = False timeseriesStatus = 'disable' associationRuleStatus = 'disable' inputDriftStatus = 'disable' textSimilarityStatus = True else: textSimilarityStatus = False if problem_type.lower() == 'inputdrift': inputDriftStatus = True profiler_status = False selector_status = False learner_status = False deeplearner_status = False timeseriesStatus = 'disable' associationRuleStatus = 'disable' deploy_status = False visualizationstatus = False else: inputDriftStatus = False if problem_type.lower() == 'outputdrift': outputDriftStatus = True profiler_status = False selector_status = False learner_status = False deeplearner_status = False timeseriesStatus = 'disable' associationRuleStatus = 'disable' deploy_status = False visualizationstatus = False else: outputDriftStatus = False if problem_type.lower() == 'recommendersystem': recommenderStatus = True #profiler_status = 'disable' selector_status = False learner_status = False deeplearner_status = False timeseriesStatus = 'disable' associationRuleStatus = 'disable' #Task 11190 visualizationstatus = False else: recommenderStatus = False ''' if profiler_status.lower() == 'enable': profiler_status = True else: profiler_status = False if selector_status.lower() == 'enable': selector_status = True else: selector_status = False if visualizationstatus.lower() == 'enable': visualizationstatus = True else: visualizationstatus = False ''' if learner_status: if(problem_type == 'NA'): learner_status = True elif(problem_type.lower() in ['classification','regression','clustering','anomalydetection', 'topicmodelling', 'objectdetection', 'timeseriesanomalydetection']): #task 11997 learner_status = True else: learner_status = False if problem_type.lower() == 'anomalydetection' or problem_type.lower() == 'timeseriesanomalydetection': #task 11997 anomalyDetectionStatus = True if deeplearner_status: if(problem_type.lower() == 'na'): deeplearner_status = True elif(problem_type.lower() in ['classification','regression']): deeplearner_status = True else: deeplearner_status = False if(targetFeature == ''): deeplearner_status = False if problem_type.lower() == 'timeseriesforecasting': #task 11997 timeseriesStatus = True profiler_status = True #task 12627 selector_status = False learner_status = False deeplearner_status = False associationRuleStatus = 'disable' else: timeseriesStatus = False if problem_type.lower() == 'videoforecasting': forecastingStatus = True timeseriesStatus = False profiler_status = True selector_status = False learner_status = False deeplearner_status = False associationRuleStatus = 'disable' else: forecastingStatus = False if problem_type.lower() == 'imageclassification': imageClassificationStatus = True timeseriesStatus = False profiler_status = False selector_status = False learner_status = False deeplearner_status = False associationRuleStatus = 'disable' else: imageClassificationStatus = False if problem_type.lower() == 'associationrules': associationRuleStatus = True timeseriesStatus = False profiler_status = False selector_status = False learner_status = False deeplearner_status = False visualizationstatus = False else: associationRuleStatus = False if problem_type.lower() == 'statetransition': stateTransitionStatus = True objectDetectionStatus = False imageClassificationStatus = False timeseriesStatus = False profiler_status = False selector_status = False learner_status = False deeplearner_status = False associationRuleStatus = False visualizationstatus = False else: stateTransitionStatus = False if problem_type.lower() == 'objectdetection': objectDetectionStatus = True imageClassificationStatus = False timeseriesStatus = False profiler_status = False selector_status = False learner_status = False deeplearner_status = False associationRuleStatus = False visualizationstatus = False else: objectDetectionStatus = False if problem_type.lower() == 'similarityidentification': similarityIdentificationStatus = True objectDetectionStatus = False imageClassificationStatus = False timeseriesStatus = False selector_status = False learner_status = False deeplearner_status = False associationRuleStatus = False visualizationstatus = False self.updateEmbeddingForDocSimilarity() else: similarityIdentificationStatus = False if problem_type.lower() == 'contextualsearch': contextualSearchStatus = True objectDetectionStatus = False imageClassificationStatus = False timeseriesStatus = False selector_status = False learner_status = False deeplearner_status = False associationRuleStatus = False visualizationstatus = False self.updateEmbeddingForContextualsearch() else: contextualSearchStatus = False if problem_type.lower() == 'textsummarization': textSummarization = True profiler_status = False selector_status = False else: textSummarization = False ''' if deploy_status.lower() == 'enable': deploy_status = True else: deploy_status = False ''' #print(inputDriftStatus) return problem_type,targetFeature,profiler_status,selector_status,learner_status,deeplearner_status,timeseriesStatus,textSummarization,survival_analysis_status,textSimilarityStatus,inputDriftStatus,outputDriftStatus,recommenderStatus,visualizationstatus,deploy_status,associationRuleStatus,imageClassificationStatus,forecastingStatus,objectDetectionStatus,stateTransitionStatus,similarityIdentificationStatus,contextualSearchStatus,anomalyDetectionStatus def __get_true_option(self, d, default_value=None): if isinstance(d, dict): for k,v in d.items(): if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True): return k return default_value def updateEmbeddingForDocSimilarity(self): method = self.__get_true_option(self.basic['algorithms']['similarityIdentification']) textConversionMethods = self.advance['profiler']['textConversionMethod'] print("------------"+method+'---------------') for key in textConversionMethods: if key == method: self.advance['profiler']['textConversionMethod'][key] = "True" else: self.advance['profiler']['textConversionMethod'][key] = "False" if method.lower() == 'bm25': self.advance['profiler']['textConversionMethod']['bm25'] = "True" def updateEmbeddingForContextualsearch(self): method = self.__get_true_option(self.basic['algorithms']['contextualSearch']) textConversionMethods = self.advance['profiler']['textConversionMethod'] print("------------"+method+'---------------') for key in textConversionMethods: if key == method: self.advance['profiler']['textConversionMethod'][key] = "True" else: self.advance['profiler']['textConversionMethod'][key] = "False" if method.lower() == 'bm25': self.advance['profiler']['textConversionMethod']['bm25'] = "True" def get_conversion_method(self): return self.__get_true_option( self.advance['profiler']['textConversionMethod']) def getAlgoName(self, problem_type=None): if problem_type == None: problem_type = self.__get_true_option(self.basic['algorithms']) return self.__get_true_option(self.basic['algorithms'][problem_type]) def getScoringCreteria(self): return self.scoringCreteria def getVectorDBCosSearchStatus(self,problemType): if self.basic['preprocessing'][problemType]['VectorDB'] == 'True': return True else: return False def getVectorDBFeatureDelimitInDoc(self): return ' ~&~ ' def getEionDeployerConfiguration(self): return cs.getEionDeployerConfiguration(self) def getEionAssociationRuleConfiguration(self): return cs.getEionAssociationRuleConfiguration(self) def getEionAssociationRuleModelParams(self): try: associationConfg = self.advance['associationrule'] if 'modelParams' in associationConfg: modelParams = associationConfg['modelParams'] if(str(type(modelParams)) != "<class 'dict'>"): modelParams = [] elif(len(modelParams) == 0): modelParams = [] if(len(modelParams) == 0): if 'modelparamsfile' in associationConfg: ml_algorithm_filename = associationConfg['modelparamsfile'] if(ml_algorithm_filename == ''): ml_algorithm_filename = os.path.dirname(os.path.abspath(__file__))+'/AssciationRules_Defaults.json' modelParams = json.loads(open(ml_algorithm_filename).read()) modelList = [] modelList = list(modelParams.keys()) return(modelParams,modelList) except KeyError: modelParams = [] modelList=[] return(modelParams,modelList) def getEionImageAugmentationConfiguration(self): try: enable = self.advance['ImageAug
mentation'].get('Enable', "False") keepAugImages = self.advance['ImageAugmentation'].get('KeepAugmentedImages', "False") if enable == "True": operations = {} operations.update(self.advance['ImageAugmentation'].get('Noise', {})) operations.update(self.advance['ImageAugmentation'].get('Transformation', {})) if keepAugImages == 'True': keepAugImages = True if keepAugImages == 'False': keepAugImages = False return True,keepAugImages,{key: True if value.lower() == "true" else False for key, value in operations.items()},self.advance['ImageAugmentation'].get('configuration',{}) else: return False,False, {},{} except KeyError: return False,False, {},{} def getAIONRemoteTraining(self): try: if(self.advance['remoteTraining']): self.advance['remoteTraining']['Enable'] = strtobool(self.advance['remoteTraining'].get('Enable', 'False')) return self.advance['remoteTraining'] else: remoteTraining = {} remoteTraining['Enable'] = False remoteTraining['server'] = None remoteTraining['ssh'] = None return(remoteTraining) except KeyError: remoteTraining = {} remoteTraining['Enable'] = False remoteTraining['server'] = None remoteTraining['ssh'] = None return(remoteTraining) def getEionObjectDetectionConfiguration(self): return cs.getEionObjectDetectionConfiguration(self) def getEionTimeSeriesConfiguration(self): return cs.getEionTimeSeriesConfiguration(self) def getAIONAnomalyDetectionConfiguration(self): return cs.getAIONAnomalyDetectionConfiguration(self) def getAIONTSAnomalyDetectionConfiguration(self): return cs.getAIONTSAnomalyDetectionConfiguration(self) def getEionVisualizationStatus(self): return(True) def getEionVisualizationConfiguration(self): return cs.getEionVisualizationConfiguration(self) def getEionRecommenderConfiguration(self): return cs.getEionRecommenderConfiguration(self) def getAionNASConfiguration(self): return cs.getAionNASConfiguration(self) def getEionProblemType(self): try: analysis_type = self.basic['analysisType'] self.problemType = '' for key in analysis_type.keys(): if analysis_type[key] == 'True': self.problemType = key break if self.problemType: return self.problemType else: return('NA') except KeyError: return('NA') def getEionProfilerStatus(self): return cs.getEionProfilerStatus(self) def getEionSelectorStatus(self): return cs.getEionSelectorStatus(self) def getEionDeploymentStatus(self): return cs.getEionDeploymentStatus(self) def getEionTimeSeriesModelParams(self): try: selectedMLModel = self.mlmodels tsconfig = self.advance['timeSeriesForecasting'] #task 11997 if 'modelParams' in tsconfig: modelParams = tsconfig['modelParams'] if(str(type(modelParams)) != "<class 'dict'>"): modelParams = [] elif(len(modelParams) == 0): modelParams = [] if(len(modelParams) == 0): if 'modelparamsfile' in tsconfig: ml_algorithm_filename = tsconfig['modelparamsfile'] if(ml_algorithm_filename == ''): ml_algorithm_filename = os.path.dirname(os.path.abspath(__file__))+'/TS_Defaults.json' modelParams = json.loads(open(ml_algorithm_filename).read()) #Modified getting modelParams as small letters modelParams = {k.lower(): v for k, v in modelParams.items()} #print("\\n modelParams: type \\n",modelParams,type(modelParams)) if selectedMLModel != '': #if selectedMLModel.lower() != 'var': if ('var' not in selectedMLModel.lower()): modelList = selectedMLModel.split(",") modelList = list(map(str.strip, modelList)) #Modified getting modelList as small letters modelList = [strMP.lower() for strMP in modelList] for mod in modelList: if mod not in modelParams: self.log.info("'"+mod+"' Not Available for Particular Problem Type") modelList.remove(mod) else: modelList = selectedMLModel.split(",") #Modified modelList = [strMP.lower() for strMP in modelList] modelList = list(map(str.strip, modelList)) else: #Modified modelParams = [strMP.lower() for strMP in modelParams] modelList = list(modelParams.keys()) return(modelParams,modelList) except KeyError: modelParams = [] modelList=[] return(modelParams,modelList) #NAS status def getNASStatus(self): return cs.getNASStatus(self) def getEionImageLearnerModelParams(self): try: selectedDLModel = self.dlmodels learnerconfig = self.advance['image_config'] modelList = selectedDLModel.split(",") return(learnerconfig,modelList) except KeyError: learnerconfig = [] modelList=[] return(learnerconfig,modelList) def getAionObjectDetectionModelParams(self): try: selectedDLModel = self.dlmodels modelList = selectedDLModel.split(",") return(modelList) except KeyError: modelList=[] return(modelList) def getEionVideoLearnerModelParams(self): try: selectedDLModel = self.basic['selected_DL_Models'] learnerconfig = self.advance['video_config'] modelList = selectedDLModel.split(",") return(learnerconfig,modelList) except KeyError: learnerconfig = [] modelList=[] return(learnerconfig,modelList) def getEionDeepLearnerModelParams(self,modelType): try: numberofModels = 0 dl_algorithm_filename = '' if(modelType == 'classification'): requiredalgo = 'classifierModelParams' elif(modelType == 'regression'): requiredalgo = 'regressorModelParams' selectedmodels = 'regression' elif(modelType == 'TextClassification'): requiredalgo = 'classifierModelParams' elif(modelType == 'clustering'): requiredalgo = 'clusteringModelParams' learnerconfig = self.advance['dllearner_config'] selectedDLModel = self.dlmodels modelParams = [] modelList=[] if 'modelParams' in learnerconfig: modelParams = learnerconfig['modelParams'] if(str(type(modelParams)) != "<class 'dict'>"): modelParams = [] elif(len(modelParams) == 0): modelParams = [] if(len(modelParams) == 0): if 'modelparamsfile' in learnerconfig: if(learnerconfig['modelparamsfile'] != ""): dl_algorithm_filename = learnerconfig['modelparamsfile'] if(dl_algorithm_filename == ''): dl_algorithm_filename = os.path.dirname(os.path.abspath(__file__))+'/DL_Defaults.json' modelParams = json.loads(open(dl_algorithm_filename).read()) if requiredalgo in modelParams: modelParams = modelParams[requiredalgo] if selectedDLModel != '': modelList = selectedDLModel.split(",") modelList = list(map(str.strip, modelList)) for mod in modelList: if mod not in modelParams: self.log.info("'"+mod+"' Not Available for Particular Problem Type") modelList.remove(mod) else: modelList = list(modelParams.keys()) #modelParams = dict((k.lower(), v) for k, v in modelParams .items()) #modelList = selectedMLModel.split(",") if(len(modelList) == 0): modelList = list(modelParams.keys()) return(modelParams,modelList) except KeyError: modelParams = [] modelList=[] return(modelParams,modelList) def getEionLearnerModelParams(self,modelType): try: numberofModels = 0 ml_algorithm_filename = '' if(modelType == 'classification'): requiredalgo = 'classifierModelParams' elif(modelType == 'regression'): requiredalgo = 'regressorModelParams' elif(modelType == 'TextClassification'): requiredalgo = 'classifierModelParams' elif(modelType == 'clustering'): requiredalgo = 'clusteringModelParams' elif(modelType == 'topicmodelling'): requiredalgo = 'topicModellingParams' learnerconfig = self.advance['mllearner_config'] selectedMLModel = self.mlmodels modelParams = [] modelList=[] if 'modelParams' in learnerconfig: modelParams = learnerconfig['modelParams'] if(str(type(modelParams)) != "<class 'dict'>"): modelParams = [] elif(len(modelParams) == 0): modelParams = [] if(len(modelParams) == 0): if 'modelparamsfile' in learnerconfig: if(learnerconfig['modelparamsfile'] != ""): ml_algorithm_filename = learnerconfig['modelparamsfile'] if(ml_algorithm_filename == ''): ml_algorithm_filename = os.path.dirname(os.path.abspath(__file__))+'/ML_Defaults.json' modelParams = json.loads(open(ml_algorithm_filename).read()) if requiredalgo in modelParams: modelParams = modelParams[requiredalgo] #modelParams = dict((k.lower(), v) for k, v in modelParams .items()) #print(modelParams) #modelList = list(modelParams.keys()) #print("SelectedModels") #self.log.info(selectedmodels) #if selectedmodels in selectedMLModel: if selectedMLModel != '': modelList = selectedMLModel.split(",") modelList = list(map(str.strip, modelList)) for mod in modelList: if mod not in modelParams: self.log.info("'"+mod+"' Not Available for Particular Problem Type") modelList.remove(mod) else: modelList = list(modelParams.keys()) #modelList = selectedMLModel.split(",") if(len(modelList) ==0): modelList = list(modelParams.keys()) return(modelParams,modelList) except KeyError: modelParams = [] modelList=[] return(modelParams,modelList) def getTargetFeatures(self): return cs.getTargetFeatures(self) def getModelFeatures(self): try: if(self.basic['trainingFeatures']): modFeatures = self.basic['trainingFeatures'] modFeatures = modFeatures.split(",") modFeatures = list(map(str.strip, modFeatures)) modFeatures = ",".join([modf for modf in modFeatures]) return(modFeatures) else: return('NA') except KeyError: return('NA') def getFolderSettings(self): return cs.getFolderSettings(self) def getAIONLocationSettings(self): self.iter_name = self.basic['modelName'] self.iteration_version = self.basic['modelVersion'] if(self.basic['dataLocation']): dataLocation = self.basic['dataLocation'] else: dataLocation = 'NA' if(self.basic['deployLocation']): deployLocation = self.basic['deployLocation'] else: deployLocation = 'NA' try: if 'fileSettings' in self.basic: csv_setting = self.basic['fileSettings'] if 'delimiters' in csv_setting: delimiter = csv_setting['delimiters'] if delimiter.lower() == 'tab' or delimiter.lower() == '\\t': delimiter = '\\t' elif delimiter.lower() == 'semicolon' or delimiter.lower() == ';': delimiter = ';' elif delimiter.lower() == 'comma' or delimiter.lower() == ',': delimiter = ','
elif delimiter.lower() == 'space' or delimiter.lower() == ' ': delimiter = ' ' elif delimiter.lower() == 'other': if 'other' in csv_setting: delimiter = csv_setting['other'] else: delimiter = ',' elif delimiter == '': delimiter = ',' else: delimiter = ',' if 'textqualifier' in csv_setting: textqualifier = csv_setting['textqualifier'] else: textqualifier = '"' else: delimiter = ',' textqualifier = '"' except KeyError: delimiter = ',' textqualifier = '"' return(self.iter_name,self.iteration_version,dataLocation,deployLocation,delimiter,textqualifier) def getFeatures(self): try: if(self.basic['dateTimeFeature']): dtFeatures = self.basic['dateTimeFeature'] dtFeatures = dtFeatures.split(",") dtFeatures = list(map(str.strip, dtFeatures)) dtFeatures = ",".join([dtf for dtf in dtFeatures]) else: dtFeatures = 'NA' except KeyError: dtFeatures = 'NA' try: if(self.basic['indexFeature']): iFeatures = self.basic['indexFeature'] iFeatures = iFeatures.split(",") iFeatures = list(map(str.strip, iFeatures)) iFeatures = ",".join([dif for dif in iFeatures]) else: iFeatures = 'NA' except KeyError: iFeatures = 'NA' try: if(self.basic['trainingFeatures']): modFeatures = self.basic['trainingFeatures'] modFeatures = modFeatures.split(",") modFeatures = list(map(str.strip, modFeatures)) modFeatures = ",".join([modf for modf in modFeatures]) else: modFeatures = 'NA' except KeyError: modFeatures = 'NA' return(dtFeatures,iFeatures,modFeatures) def setModels(self): return cs.setModels(self) def readConfigurationFile(self,path): return cs.readConfigurationFile(self, path) def getFilterExpression(self): return cs.getFilterExpression(self) def getSurvivalEventColumn(self): return cs.getSurvivalEventColumn(self) def getSurvivalDurationColumn(self): return cs.getSurvivalDurationColumn(self)<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''# -*- coding: utf-8 -*- """ @author: satish_k """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import statistics from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from lifelines import KaplanMeierFitter, CoxPHFitter from lifelines.statistics import logrank_test from scipy import stats import logging class SurvivalAnalysis(object): def __init__(self, df, method, event_column, duration_column, fitter_param=None, df_negate=None ): pd.options.display.width = 30 self.df = df self.fitter_param = fitter_param self.method = method self.event_column = event_column self.duration_column = duration_column self.models = [] self.train = df.drop_duplicates().reset_index() self.test = None if isinstance(df_negate, pd.DataFrame): self.df_n = df_negate.drop_duplicates().reset_index() else: self.df_n = None self.log = logging.getLogger('eion') self.plots = [] def learn(self): self.log.info('\\n---------- SurvivalAnalysis learner has started ----------') self.log.info('\\n---------- SurvivalAnalysis learner method is "%s" ----------'%self.method) lifelines_univariate_models = ["AalenJohansenFitter", "BreslowFlemingHarringtonFitter", "ExponentialFitter", "GeneralizedGammaFitter", "KaplanMeierFitter", "LogLogisticFitter", "LogNormalFitter", "MixtureCureFitter", "NelsonAalenFitter", "PiecewiseExponentialFitter", "SplineFitter", "WeibullFitter"] lifelines_regression_models = ["AalenAdditiveFitter", "CRCSplineFitter", "CoxPHFitter", "CoxTimeVaryingFitter", "GeneralizedGammaRegressionFitter", "LogLogisticAFTFitter", "LogNormalAFTFitter", "PiecewiseExponentialRegressionFitter", "WeibullAFTFitter"] if self.method.lower() in ['kaplanmeierfitter','kaplanmeier','kaplan-meier','kaplan meier','kaplan','km','kmf']: self.log.info('\\n---------- SurvivalAnalysis learner method "%s" has started ----------'%self.method) #from lifelines.utils import find_best_parametric_model #m,s = find_best_parametric_model(event_times=self.df[self.duration_column]) if not isinstance(self.df_n, pd.DataFrame): kmf = KaplanMeierFitter() self.log.info('\\n Shape of training data - %s'%str(self.train.shape)) T = self.train[self.duration_column] E = self.train[self.event_column] self.log.info('\\n T : \\n%s'%str(T)) self.log.info('\\n E : \\n%s'%str(E)) K = kmf.fit(T, E) ax = plt.subplot(111) kmf_sf = K.survival_function_ ax = kmf_sf.plot(ax=ax) kmf_sf_json = self.survival_probability_to_json(kmf_sf) self.models.append(K) plt.title("KM Survival Functions") self.plots.append(plt) self.log.info('\\n---------- SurvivalAnalysis learner method "%s" has ended ----------'%self.method) self.log.info('\\n---------- SurvivalAnalysis learner has ended ----------') return kmf_sf_json else: kmf1 = KaplanMeierFitter() kmf2 = KaplanMeierFitter() T1 = self.train[self.duration_column] E1 = self.train[self.event_column] #self.df_n = self.df_n.drop('fin', axis=1) T2 = self.df_n[self.duration_column] E2 = self.df_n[self.event_column] ax = plt.subplot(111) plt.title("KM Survival Functions - Filter vs Negation") self.log.info('\\n---------- SurvivalAnalysis learner "%s" fitting for filter expression has started----------'%self.method) kmf1.fit(T1, E1) ax = kmf1.plot(ax=ax, label='%s'%self.fitter_param) self.log.info('\\n---------- SurvivalAnalysis learner "%s" fitting for filter expression has ended----------'%self.method) self.log.info('\\n---------- SurvivalAnalysis learner "%s" fitting for negation has started----------'%self.method) kmf2.fit(T2, E2) ax = kmf2.plot(ax=ax, label='~%s'%self.fitter_param) self.log.info('\\n---------- SurvivalAnalysis learner "%s" fitting for negation has ended----------'%self.method) self.models.extend([kmf1,kmf2]) kmf1_sf = kmf1.survival_function_ kmf2_sf = kmf2.survival_function_ kmf1_sf_json = self.survival_probability_to_json(kmf1_sf) self.plots.append(plt) self.log.info('\\n---------- SurvivalAnalysis learner method "%s" has ended ----------'%self.method) self.log.info('\\n---------- SurvivalAnalysis learner has ended ----------') return kmf1_sf_json elif self.method.lower() in ['coxphfitter','coxregression','cox-regression','cox regression','coxproportionalhazard','coxph','cox','cph']: self.log.info('\\n---------- SurvivalAnalysis learner method "%s" has started ----------'%self.method) #from lifelines.utils import k_fold_cross_validation if not isinstance(self.df_n, pd.DataFrame): cph = CoxPHFitter() C = cph.fit(self.train, self.duration_column, self.event_column, show_progress=True) self.models.append(C) cph_sf = C.baseline_survival_ ax = plt.subplot(111) ax = C.plot(ax=ax) cph_sf_json = self.survival_probability_to_json(cph_sf) self.log.info('\\n Summary : \\n%s'%str(C.summary)) plt.title("COX hazard ratio") self.plots.append(plt) self.log.info('\\n---------- SurvivalAnalysis learner method "%s" has ended ----------'%self.method) self.log.info('\\n---------- SurvivalAnalysis learner has ended ----------') #plt.show() return cph_sf_json else: cph1 = CoxPHFitter(penalizer=0.0001) cph2 = CoxPHFitter(penalizer=0.0001) ax = plt.subplot(211) plt.title("COX hazard ratio - [%s](Top) vs [~(%s)](Bottom)"%(self.fitter_param,self.fitter_param)) #self.train = self.train.drop('fin',axis=1) self.df_n = self.drop_constant_features(self.df_n) self.log.info('\\n---------- SurvivalAnalysis learner "%s" fitting for filter expression has started----------'%self.method) cph1.fit(self.train, self.duration_column, self.event_column, show_progress=True, step_size=0.4) ax = cph1.plot(ax=ax, label='%s'%self.fitter_param) self.log.info('\\n---------- SurvivalAnalysis learner "%s" fitting for filter expression has ended----------'%self.method) self.log.info('\\n---------- SurvivalAnalysis learner "%s" fitting for negation has started----------'%self.method) cph2.fit(self.df_n, self.duration_column, self.event_column, show_progress=True, step_size=0.4) ax = plt.subplot(212) ax = cph2.plot(ax=ax, label='~%s'%self.fitter_param) self.log.info('\\n---------- SurvivalAnalysis learner "%s" fitting for negation has ended----------'%self.method) self.models.extend([cph1,cph2]) cph1_sf = cph1.baseline_survival_ cph2_sf = cph2.baseline_survival_ cph1_sf_json = self.survival_probability_to_json(cph1_sf) #plt.show() plt.tight_layout() self.plots.append(plt) self.log.info('\\n---------- SurvivalAnalysis learner method "%s" has ended ----------'%self.method) self.log.info('\\n---------- SurvivalAnalysis learner has ended ----------') return cph1_sf_json def survival_probability_to_json(self, sf): ''' sf = Survival function i.e. KaplanMeierFitter.survival_function_ or CoxPHFitter.baseline_survival_ returns json of survival probabilities ''' sf = sf[sf.columns[0]].apply(lambda x: "%4.2f"%(x*100)) self.log.info('\\n Survival probabilities : \\n%s'%str(sf)) sf = sf.reset_index() sf = sf.sort_values(sf.columns[0]) sf_json = sf.to_json(orient='records') self.log.info('\\n Survival prbability json : \\n%s'%str(sf_json)) return sf_json def drop_constant_features(self, df): for col in df.columns: if len(df[col].unique()) == 1: df.drop(col,inplace=True,axis=1) return df def predict(self): if self.method == 'KaplanMeierFitter': return self.model.predict(self.test[self.duration_column]) #kmf.predict() #kmf.median_survival_time_ #from lifelines.utils import median_survival_times #median_ci = median_survival_times(kmf.confidence_interval_) elif self.method == 'CoxPHFitter': #print('train score',self.model.score(self.train)) #print('test score',self.model.score(self.test)) return self.model.predict_survival_function(self.test) #cph.predict_cumulative
_hazard() #cph.predict_expectation() #cph.predict_log_partial_hazard() #cph.predict_median() #cph.predict_partial_hazard() #cph.predict_percentile() #cph.predict_survival_function() #cph.predict_hazard() #cph.score() #cph.summary() #if __name__ == "__main__": # data_file = r"C:\\Users\\satish_k\\Desktop\\Work\\input\\echocardiogram.csv" # #data_file = r"C:\\Users\\satish_k\\Desktop\\Work\\input\\lymphoma.csv" # method = "CoxPHFitter" # event_column = "alive" # duration_column = "survival" # sa = SurvivalAnalysis(data_file, method, event_column, duration_column) # sa.profiler() # model = sa.learn() # print(sa.predict()) #print(model.survival_function_) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import logging logging.getLogger('tensorflow').disabled = True import json #from nltk.corpus import stopwords from collections import Counter from numpy import mean from numpy import std from pandas import read_csv from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer from learner.machinelearning import machinelearning # from sklearn.dummy import DummyClassifier # create histograms of numeric input variables import sys import os import re import pandas as pd import numpy as np from learner.aion_matrix import aion_matrix import tensorflow as tf tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) import autokeras as ak # load the sonar dataset from sklearn.model_selection import train_test_split # from sklearn.metrics import cohen_kappa_score # from sklearn.metrics import roc_auc_score # from sklearn.metrics import confusion_matrix from sklearn.metrics import roc_curve from math import sqrt from sklearn.metrics import mean_squared_error, explained_variance_score,mean_absolute_error from sklearn import metrics class aionNAS: def __init__(self,nas_class,nas_params,xtrain1,xtest1,ytrain1,ytest1,deployLocation): try: self.dfFeatures=None self.nas_class=nas_class self.nas_params=nas_params self.targetFeature=None self.log = logging.getLogger('eion') self.n_models=int(self.nas_params['n_models']) self.n_epochs=int(self.nas_params['n_epochs']) self.optimizer=self.nas_params['optimizer'] self.metrics=self.nas_params['metrics'] self.tuner=self.nas_params['tuner'] self.seed=int(self.nas_params['seed']) self.xtrain = xtrain1 self.xtest = xtest1 self.ytrain = ytrain1 self.ytest = ytest1 #self.labelMaps = labelMaps self.deployLocation=deployLocation except Exception as e: self.log.info('<!------------- NAS INIT Error ---------------> ') exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) def paramCheck(self): try: if not (self.nas_class): self.log.info('<!------------- NAS class input Error ---------------> ') if not (self.nas_params): self.log.info('<!------------- NAS model hyperparameter input Error ---------------> ') if not (self.targetFeature): self.log.info('<!------------- NAS model targetFeature input Error ---------------> ') if (self.n_models < 1): self.n_models=1 if not (self.dfFeatures): self.log.info('<!------------- NAS model features Error ---------------> ') if (self.n_epochs < 1): self.n_models=1 if not (self.optimizer): self.optimizer="adam" if not (self.tuner): self.tuner="greedy" if (self.seed < 1): self.seed=0 if not (self.metrics): self.metrics=None except ValueError: self.log.info('<------------------ NAS config file error. --------------->') def recall_m(self,y_true, y_pred): true_positives = tf.keras.metrics.Sum(tf.keras.backend.round(tf.keras.backend.clip(y_true * y_pred, 0, 1))) possible_positives = tf.keras.metrics.Sum(tf.keras.backend.round(tf.keras.backend.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + tf.keras.backend.epsilon()) return recall def precision_m(self,y_true, y_pred): true_positives = tf.keras.metrics.Sum(tf.keras.backend.round(tf.keras.backend.clip(y_true * y_pred, 0, 1))) predicted_positives = tf.keras.metrics.Sum(tf.keras.backend.round(tf.keras.backend.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + tf.keras.backend.epsilon()) return precision def f1_score(self,y_true, y_pred): precision = self.precision_m(y_true, y_pred) recall = self.recall_m(y_true, y_pred) return 2*((precision*recall)/(precision+recall+tf.keras.backend.epsilon())) def nasStructdataPreprocess(self): df=self.data self.paramCheck() target=df[self.targetFeature].values counter = Counter(target) for k,v in counter.items(): per = v / len(target) * 100 self.log.info('autokeras struct Class=%d, Count=%d, Percentage=%.3f%%' % (k, v, per)) # select columns with numerical data types num_ix = df.select_dtypes(include=['int64', 'float64']).columns subset = df[num_ix] last_ix = len(df.columns) - 1 y=df[self.targetFeature] X = df.drop(self.targetFeature, axis=1) #Using Pearson Correlation # plt.figure(figsize=(12,10)) # cor = df.corr() # sns.heatmap(cor, annot=True, cmap=plt.cm.Reds) # plt.show() # select categorical features cat_ix = X.select_dtypes(include=['object', 'bool']).columns # one hot encode cat features only ct = ColumnTransformer([('o',OneHotEncoder(),cat_ix)], remainder='passthrough') X = X.reset_index() X=X.replace(to_replace="NULL",value=0) X = X.dropna(how='any',axis=0) X = ct.fit_transform(X) from sklearn.preprocessing import scale X = scale(X) # label encode the target variable to have the classes 0 and 1 y = LabelEncoder().fit_transform(y) # separate into train and test sets X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=self.test_size,random_state=1) return X_train, X_test, y_train, y_test def nasStructClassification(self,scoreParam): try: objClf = aion_matrix() X_train, X_test, y_train, y_test= self.xtrain, self.xtest, self.ytrain, self.ytest modelName="nas_structdata_classifier" self.log.info("Processing structured data block...\\n") s_in = ak.StructuredDataInput() #s_in = Flatten()(s_in) s_out = ak.StructuredDataBlock(categorical_encoding=True)(s_in) self.log.info("Data pipe via autokeras Classification Dense layers ...\\n") s_out = ak.ClassificationHead()(s_out) self.log.info("applying autokeras automodel to run different neural models...\\n") try: tuner = str(self.tuner).lower() except UnicodeEncodeError: tuner = (self.tuner.encode('utf8')).lower() nasclf = ak.AutoModel( inputs=s_in, outputs=s_out, overwrite=True, tuner=tuner, max_trials=self.n_models, seed=self.seed) # compile the model #nasclf.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc',self.f1_score,self.precision_m, self.recall_m]) nasclf.fit(X_train, y_train, epochs=self.n_epochs) best_model = nasclf.export_model() mpredict=best_model.predict(X_test) mtpredict=best_model.predict(X_train) #loss, accuracy, f1_score, precision, recall = nasclf.evaluate(X_test, y_test, verbose=0) #from sklearn.metrics import classification_report #Classification report y_pred_bool = np.argmax(mpredict, axis=1) y_train_pred_bool = np.argmax(mtpredict, axis=1) score = objClf.get_score(scoreParam,y_test, y_pred_bool) #best_model = nasclf.export_model() best_model_summary=best_model.summary() filename = os.path.join(self.deployLocation,'log','summary.txt') with open(filename,'w') as f: best_model.summary(print_fn=lambda x: f.write(x + '\\n')) f.close() #self.log.info("==========") #self.log.info(best_model_summary) self.log.info("NAS struct data classification, best model summary: \\n"+str(best_model.summary(print_fn=self.log.info))) #self.log.info("==========") #Save and load model # # #try: # try: # best_model.save("model_class_autokeras", save_format="tf") # except Exception: # best_model.save("model_class_autokeras.h5") # loaded_model = load_model("model_class_autokeras", custom_objects=ak.CUSTOM_OBJECTS) # loadedmodel_predict=loaded_model.predict(X_test) loss,accuracy_m=nasclf.evaluate(X_test, y_test) #mpredict_classes = mpredict.argmax(axis=-1) #accuracy = accuracy_score(y_test.astype(int), mpredict.astype(int)) # precision tp / (tp + fp) #precision = precision_score(y_test.astype(int), mpredict.astype(int),average='macro') # recall: tp / (tp + fn) #recall = recall_score(y_test.astype(int), mpredict.astype(int),average='macro') #f1score=f1_score(y_test.astype(int), mpredict.astype(int) , average="macro") self.log.info("Autokeras struct data classification metrics: \\n") except Exception as inst: self.log.info("Error: NAS failed "+str(inst)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) print(inst) return modelName,nasclf,score def nasStructRegressor(self,scoreParam): objClf = aion_matrix() modelName="nas_struct_regressor" #self.paramCheck() X_train, X_test, y_train, y_test= self.xtrain, self.xtest, self.ytrain, self.ytest # Autokeras alg s_in = ak.StructuredDataInput() #tf.keras.layers.GlobalMaxPooling2D()(s_in) s_out = ak.StructuredDataBlock(categorical_encoding=True)(s_in) self.log.info("Data pipe via autokeras Regression Dense layers ...\\n") s_out = ak.RegressionHead(loss='mse', metrics=['mae'])(s_out) self.log.info("applying autokeras automodel to evaluate different neural models...\\n") try: tuner = str(self.tuner).lower() except UnicodeEncodeError: tuner = (self.tuner.encode('utf8')).lower() nas_reg = ak.AutoModel( inputs=s_in, outputs=s_out, overwrite=True, tuner=tuner, max_trials=self.n_models) nas_reg.fit(X_train, y_train, epochs=self.n_epochs) best_model = nas_reg.export_model() self.log.info("NAS struct data regression best model summary: \\n") best_model_summary=best_model.summary(print_fn=self.log.info) self.log.info(best_model_summary) predictm=best_model.predict(X_test) mtpredict=best_
model.predict(X_train) score = objClf.get_score(scoreParam,y_test, predictm) self.log.info("Autokeras struct data regression metrics: \\n") return modelName,nas_reg,score def nasMain(self,scoreParam): modelName = "" nasclf=None nas_reg=None #text_reg_model=None mse_value=0 reg_rmse=0 mape_reg=0 huber_loss_reg=0 accuracy=0 precision=0 recall=0 #Dummy values to return main for classification problems dummy_score_1=int(0) #dummy_score_2=int(0) try: if ((self.nas_class.lower() == "classification")): modelName,nasclf,score=self.nasStructClassification(scoreParam) self.log.info('NAS Struct Classification score: '+str(score)) best_model_nas = nasclf.export_model() scoredetails = '{"Model":"NAS","Score":'+str(round(score,2))+'}' return best_model_nas,self.nas_params,round(score,2),'NAS',-1,-1,-1 elif (self.nas_class.lower() == "regression"): modelName,nas_reg,score =self.nasStructRegressor(scoreParam) self.log.info('NAS Struct Regression score: '+str(score)) best_model_nas = nas_reg.export_model() ''' filename = os.path.join(self.deployLocation,'model','autoKerasModel') best_model_nas = nas_reg.export_model() try: best_model_nas.save(filename, save_format="tf") modelName = 'autoKerasModel' except Exception: filename = os.path.join(self.deployLocation,'model','autoKerasModel.h5') best_model_nas.save(filename) modelName = 'autoKerasModel.h5' ''' scoredetails = '{"Model":"NAS","Score":'+str(round(score,2))+'}' ''' error_matrix = '"MSE":"'+str(round(mse_value,2))+'","RMSE":"'+str(round(reg_rmse,2))+'","MAPE":"'+str(round(mape_reg,2))+'","MSLE":"'+str(round(msle_reg,2))+'"' ''' return best_model_nas,self.nas_params,score,'NAS' else: pass except Exception as inst: print(inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) output = {"status":"FAIL","message":str(inst).strip('"')} output = json.dumps(output) <s> import itertools import logging from typing import Optional, Dict, Union from nltk import sent_tokenize import torch from transformers import( AutoModelForSeq2SeqLM, AutoTokenizer, PreTrainedModel, PreTrainedTokenizer, ) logger = logging.getLogger(__name__) class QGPipeline: """Poor man's QG pipeline""" def __init__( self, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, ans_model: PreTrainedModel, ans_tokenizer: PreTrainedTokenizer, qg_format: str, use_cuda: bool ): self.model = model self.tokenizer = tokenizer self.ans_model = ans_model self.ans_tokenizer = ans_tokenizer self.qg_format = qg_format self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu" self.model.to(self.device) if self.ans_model is not self.model: self.ans_model.to(self.device) assert self.model.__class__.__name__ in ["T5ForConditionalGeneration", "BartForConditionalGeneration"] if "T5ForConditionalGeneration" in self.model.__class__.__name__: self.model_type = "t5" else: self.model_type = "bart" def __call__(self, inputs: str): inputs = " ".join(inputs.split()) sents, answers = self._extract_answers(inputs) flat_answers = list(itertools.chain(*answers)) if len(flat_answers) == 0: return [] if self.qg_format == "prepend": qg_examples = self._prepare_inputs_for_qg_from_answers_prepend(inputs, answers) else: qg_examples = self._prepare_inputs_for_qg_from_answers_hl(sents, answers) qg_inputs = [example['source_text'] for example in qg_examples] questions = self._generate_questions(qg_inputs) output = [{'answer': example['answer'], 'question': que} for example, que in zip(qg_examples, questions)] return output def _generate_questions(self, inputs): inputs = self._tokenize(inputs, padding=True, truncation=True) outs = self.model.generate( input_ids=inputs['input_ids'].to(self.device), attention_mask=inputs['attention_mask'].to(self.device), max_length=32, num_beams=4, ) questions = [self.tokenizer.decode(ids, skip_special_tokens=True) for ids in outs] return questions def _extract_answers(self, context): sents, inputs = self._prepare_inputs_for_ans_extraction(context) inputs = self._tokenize(inputs, padding=True, truncation=True) outs = self.ans_model.generate( input_ids=inputs['input_ids'].to(self.device), attention_mask=inputs['attention_mask'].to(self.device), max_length=32, ) dec = [self.ans_tokenizer.decode(ids, skip_special_tokens=False) for ids in outs] answers = [item.split('<sep>') for item in dec] answers = [i[:-1] for i in answers] return sents, answers def _tokenize(self, inputs, padding=True, truncation=True, add_special_tokens=True, max_length=512 ): inputs = self.tokenizer.batch_encode_plus( inputs, max_length=max_length, add_special_tokens=add_special_tokens, truncation=truncation, padding="max_length" if padding else False, pad_to_max_length=padding, return_tensors="pt" ) return inputs def _prepare_inputs_for_ans_extraction(self, text): sents = sent_tokenize(text) inputs = [] for i in range(len(sents)): source_text = "extract answers:" for j, sent in enumerate(sents): if i == j: sent = "<hl> %s <hl>" % sent source_text = "%s %s" % (source_text, sent) source_text = source_text.strip() if self.model_type == "t5": source_text = source_text + " </s> " inputs.append(source_text) return sents, inputs def _prepare_inputs_for_qg_from_answers_hl(self, sents, answers): inputs = [] for i, answer in enumerate(answers): if len(answer) == 0: continue for answer_text in answer: sent = sents[i] sents_copy = sents[:] answer_text = answer_text.strip() ans_start_idx = 0 # ans_start_idx = sent.index(answer_text) # if answer_text in sent: # ans_start_idx = sent.index(answer_text) # else: # continue sent = f"{sent[:ans_start_idx]} <hl> {answer_text} <hl> {sent[ans_start_idx + len(answer_text): ]}" sents_copy[i] = sent source_text = " ".join(sents_copy) source_text = f"generate question: {source_text}" if self.model_type == "t5": source_text = source_text + " </s> " inputs.append({"answer": answer_text, "source_text": source_text}) return inputs def _prepare_inputs_for_qg_from_answers_prepend(self, context, answers): flat_answers = list(itertools.chain(*answers)) examples = [] for answer in flat_answers: source_text = f"answer: {answer} context: {context}" if self.model_type == "t5": source_text = source_text + " </s> " examples.append({"answer": answer, "source_text": source_text}) return examples class MultiTaskQAQGPipeline(QGPipeline): def __init__(self, **kwargs): super().__init__(**kwargs) def __call__(self, inputs: Union[Dict, str]): if type(inputs) is str: # do qg return super().__call__(inputs) else: # do qa return self._extract_answer(inputs["question"], inputs["context"]) def _prepare_inputs_for_qa(self, question, context): source_text = f"question: {question} context: {context}" if self.model_type == "t5": source_text = source_text + " </s> " return source_text def _extract_answer(self, question, context): source_text = self._prepare_inputs_for_qa(question, context) inputs = self._tokenize([source_text], padding=False) outs = self.model.generate( input_ids=inputs['input_ids'].to(self.device), attention_mask=inputs['attention_mask'].to(self.device), max_length=16, ) answer = self.tokenizer.decode(outs[0], skip_special_tokens=True) return answer class E2EQGPipeline: def __init__( self, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, use_cuda: bool ) : self.model = model self.tokenizer = tokenizer self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu" self.model.to(self.device) assert self.model.__class__.__name__ in ["T5ForConditionalGeneration", "BartForConditionalGeneration"] if "T5ForConditionalGeneration" in self.model.__class__.__name__: self.model_type = "t5" else: self.model_type = "bart" self.default_generate_kwargs = { "max_length": 256, "num_beams": 4, "length_penalty": 1.5, "no_repeat_ngram_size": 3, "early_stopping": True, } def __call__(self, context: str, **generate_kwargs): inputs = self._prepare_inputs_for_e2e_qg(context) # TODO: when overrding default_generate_kwargs all other arguments need to be passsed # find a better way to do this if not generate_kwargs: generate_kwargs = self.default_generate_kwargs input_length = inputs["input_ids"].shape[-1] # max_length = generate_kwargs.get("max_length", 256) # if input_length < max_length: # logger.warning( # "Your max_length is set to {}, but you input_length is only {}. You might consider decreasing max_length manually, e.g. summarizer('...', max_length=50)".format( # max_length, input_length # ) # ) outs = self.model.generate( input_ids=inputs['input_ids'].to(self.device), attention_mask=inputs['attention_mask'].to(self.device), **generate_kwargs ) prediction = self.tokenizer.decode(outs[0], skip_special_tokens=True) questions = prediction.split("<sep>") questions = [question.strip() for question in questions[:-1]] return questions def _prepare_inputs_for_e2e_qg(self, context): source_text = f"generate questions: {context}" if self.model_type == "t5": source_text = source_text + " </s> " inputs = self._tokenize([source_text], padding=False) return inputs def _tokenize( self, inputs, padding=True, truncation=True, add_special_tokens=True, max_length=512 ): inputs = self.tokenizer.batch_encode_plus( inputs, max_length=max_length, add_special_tokens=add_special_tokens, truncation=truncation, padding="max_length" if padding else False, pad_to_max_length=padding, return_tensors="pt" ) return inputs SUPPORTED_TASKS = { "question-generation": { "impl": QGPipeline, "default": { "model": "valhalla/t5-small-qg-hl", "ans_model": "valhalla/t5-small-qa-qg-hl", } }, "multitask-qa-qg": { "impl": MultiTaskQAQGPipeline, "default": { "model": "valhalla/t5-small-qa-qg-hl", } }, "e2e-qg": { "impl": E2EQGPipeline, "default": { "model": "valhalla/t5-small-e2e-qg", } } } def pipeline( task: str, model: Optional = None, tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None, qg_format: Optional[str] = "highlight", ans_model: Optional = None, ans_tokenizer: Optional[Union[str, PreTrainedTokenizer]] = None, use_cuda: Optional[bool] = True, **kwargs, ): # Retrieve the task if task not in SUPPORT
ED_TASKS: raise KeyError("Unknown task {}, available tasks are {}".format(task, list(SUPPORTED_TASKS.keys()))) targeted_task = SUPPORTED_TASKS[task] task_class = targeted_task["impl"] # Use default model/config/tokenizer for the task if no model is provided if model is None: model = targeted_task["default"]["model"] # Try to infer tokenizer from model or config name (if provided as str) if tokenizer is None: if isinstance(model, str): tokenizer = model else: # Impossible to guest what is the right tokenizer here raise Exception( "Impossible to guess which tokenizer to use. " "Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer." ) # Instantiate tokenizer if needed if isinstance(tokenizer, (str, tuple)): if isinstance(tokenizer, tuple): # For tuple we have (tokenizer name, {kwargs}) tokenizer = AutoTokenizer.from_pretrained(tokenizer[0], **tokenizer[1]) else: tokenizer = AutoTokenizer.from_pretrained(tokenizer) # Instantiate model if needed if isinstance(model, str): model = AutoModelForSeq2SeqLM.from_pretrained(model) if task == "question-generation": if ans_model is None: # load default ans model ans_model = targeted_task["default"]["ans_model"] ans_tokenizer = AutoTokenizer.from_pretrained(ans_model) ans_model = AutoModelForSeq2SeqLM.from_pretrained(ans_model) else: # Try to infer tokenizer from model or config name (if provided as str) if ans_tokenizer is None: if isinstance(ans_model, str): ans_tokenizer = ans_model else: # Impossible to guest what is the right tokenizer here raise Exception( "Impossible to guess which tokenizer to use. " "Please provided a PretrainedTokenizer class or a path/identifier to a pretrained tokenizer." ) # Instantiate tokenizer if needed if isinstance(ans_tokenizer, (str, tuple)): if isinstance(ans_tokenizer, tuple): # For tuple we have (tokenizer name, {kwargs}) ans_tokenizer = AutoTokenizer.from_pretrained(ans_tokenizer[0], **ans_tokenizer[1]) else: ans_tokenizer = AutoTokenizer.from_pretrained(ans_tokenizer) if isinstance(ans_model, str): ans_model = AutoModelForSeq2SeqLM.from_pretrained(ans_model) if task == "e2e-qg": return task_class(model=model, tokenizer=tokenizer, use_cuda=use_cuda) elif task == "question-generation": return task_class(model=model, tokenizer=tokenizer, ans_model=ans_model, ans_tokenizer=ans_tokenizer, qg_format=qg_format, use_cuda=use_cuda) else: return task_class(model=model, tokenizer=tokenizer, ans_model=model, ans_tokenizer=tokenizer, qg_format=qg_format, use_cuda=use_cuda) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import socket import os import rsa from os.path import expanduser from pathlib import Path import requests import platform from appbe.dataPath import DATA_DIR import socket import getmac import subprocess import sys import json from datetime import datetime import binascii computername = socket.getfqdn() global_key = ''' -----BEGIN RSA PUBLIC KEY----- MIIBCgKCAQEAzJcxqRiUpp7CzViyqNlYaeyceDh5y6Ib4SoxoyNkN3+k0q+cr1lb k0KdWTtHIVqH1wsLYofYjpB7X2RN0KYTv8VfwmfQNrpFEbiRz4gcAeuxGCPgGaue N1ttujQMWHWCcY+UH5Voh8YUfkW8P+T3zxvr1d30D+kVBJC59y/31JvTzr3Bw/T+ NYv6xiienYiEYtm9d5ATioEwZOXaQBrtVvRmqcod5A1h4kn1ZauLX2Ph8H4TAuit NLtw6xUCJNumphP7xdU+ca6P6a6eaLprgKhvky+nz16u9/AC2AazRQHKWf8orS6b fw16JDCRs0zU4mTQLCjkUUt0edOaRhUtcQIDAQAB -----END RSA PUBLIC KEY----- ''' quarter_key = ''' -----BEGIN RSA PUBLIC KEY----- MIIBCgKCAQEAmKzOJxVEV9ulA+cjfxguAduLMD47OWjLcEAEmEuK8vR4O5f6e2h1 08NniGC+nkwqmM00U7JTVBkqnt9S/JgE3pAH2xwfWda2OvXNWisWmOQdqB0+XRHh NXsIG3yRk/sMlDpe7MJIyM5ADSu01PLn9FZTfmMq7lEp32tAf71cuUE/dwuWSvEQ WK2hn1L4D97O43XCd7FHtMSHfgtjdcCFgX9IRgWLKC8Bm3q5qcqF4v3cHuYTj3V9 njxPtRqPg6HJFiJrm9AX5bUEHAvbTcw4wAmsNTRQHPvVB+Lc+yGh5x8crhKjNB01 gdB5I3a4mPO7dKvadR6Mr28trr0Ff5t2HQIDAQAB -----END RSA PUBLIC KEY----- ''' halfYear_key=''' -----BEGIN RSA PUBLIC KEY----- MIIBCgKCAQEAgrGNwl8CNYQmVxi8/GEgPjfL5aEmyPkDyaJb9h4hZDSZCeeKd7Rv wwhuRTdBBfOp0bQ7QS7NYMg38Xlc3x85I9RnxdQdDKn2nRuvG0hG3wMBFy/DCSXF tXbDjJkLijAhqcBNu8m+a2Gtn14ShC7TbcfY4iVXho3WFUrn0xq6S5ducqWCsLJh R+TNImCaMICqfoAzEDGC3ojO5Hi3vJmmyK5CVp6bt4wLRATQjcp1ujGW4Uv4kEgp 7TR077c226v1KOdKdyZPHJzT1MKwZrG2Gdluk3/Y1apbwyGzYqFdTCOAB+mE73Dn wFXURgDJQmaU2oxxaA13WRcELpnirm+aIwIDAQAB -----END RSA PUBLIC KEY----- ''' oneYear_key=''' -----BEGIN RSA PUBLIC KEY----- MIIBCgKCAQEA3GLqn+vkKn3fTNH3Bbb3Lq60pCoe+mn0KPz74Bp7p5OkZAUe14pP Tcf/UqdPwiENhSCseWtfZmfKDK8qYRHJ5xW02+AhHPPdiacS45X504/lGG3q/4SG ZgaFhMDvX+IH/ZH+qqbU3dRQhXJCCrAVAa7MonzM6yPiVeS2SdpMkNg1VDR1oTLB Pn+qSV6CnkK1cYtWCRQ23GH2Ru7fc09r7m8hVcifKJze84orpHC5FX0WScQuR8h/ fs1IbGkxTOxP8vplUj/cd4JjUxgd+w+8R4kcoPhdGZF5UGeZA8xMERzQLvh+4Ui0 KIvz5/iyKB/ozaeSG0OMwDAk3WDEnb1WqQIDAQAB -----END RSA PUBLIC KEY----- ''' full_key=''' -----BEGIN RSA PUBLIC KEY----- MIIBCgKCAQEAhqfNMuYYLdVrePhkO9rU/qT6FgolzI0YyzIJ2OeJE+++JioYm6nn ohQU32iiE0DZlCCLrHJXOOIAz2Op80goX0lxtngyxVUPsiB5CI77sAC7x6K3anJ0 elpnQCC0+xV2ZL5eIMNQHLe+X6wJl/HGWqkUlxKpWr4/kBEB4EisW60OePfhntIN 4OUJ7iEq+sDdOM5WazJIXeNV1cig4i6057GE3k5ITcQUmw17DZu2+dqkIscckaG+ t5SF7Qnvt4IY8IeQp2htx3yD+CJCV0u2uKwoSFMGJn3OWdaixC3+eojyMXmfAWtQ Ee9NLNNaTCMIvQ8BeItJLQs2Htw3bZNMvwIDAQAB -----END RSA PUBLIC KEY----- ''' def validate_key_Pair(privatepath,publickey): with open(privatepath, 'rb') as privatefile: keydata = privatefile.read() privatefile.close() try: privkey = rsa.PrivateKey.load_pkcs1(keydata,'PEM') data = 'Validate Global License' signature = rsa.sign(data.encode('utf-8'), privkey, 'SHA-1') pubkey = rsa.PublicKey.load_pkcs1(publickey) except: return False try: rsa.verify(data.encode('utf-8'), signature, pubkey) return True except Exception as e: return False def updateDRecord(licensepath): domain_license_path = os.path.join(DATA_DIR,'License','license_domain.lic') if(os.path.isfile(licensepath)): with open(licensepath, 'rb') as f: licensekey = f.read() f.close() with open(domain_license_path, 'wb') as f: f.write(licensekey) f.close() if(validate_key_Pair(domain_license_path,global_key)): return True,'Valid Domain License' else: return False,'Invalid Domain License' else: return False,'File Not Exists' def generateLicenseKey(userKey): record = {'UserKey':userKey} record = json.dumps(record) status = 'Error' url = 'https://qw7e33htlk.execute-api.ap-south-1.amazonaws.com/default/aion_license' try: response = requests.post(url, data=record,headers={"x-api-key":"3cQKRkKA4S57pYrkFp1Dd9jRXt4xnFoB9iqhAQRM","Content-Type":"application/json",}) if response.status_code == 200: outputStr=response.content outputStr = outputStr.decode('utf-8','ignore') outputStr = outputStr.strip() license_dict = json.loads(str(outputStr)) if license_dict['status'] == 'success': status = 'Success' licenseKey = license_dict['msg'] else: status = 'Error' licenseKey = '' else: status = 'Error' licenseKey = '' except Exception as inst: print(inst) status = 'Error' licenseKey = '' msg = {'status':status,'key':userKey,'licenseKey':licenseKey,'link':''} return msg def updateRecord(licensepath): currentDirectory = os.path.dirname(os.path.abspath(__file__)) license_path = os.path.join(currentDirectory,'..','lic','license.lic') if(os.path.isfile(licensepath)): with open(licensepath, 'rb') as f: licensekey = f.read() f.close() with open(license_path, 'wb') as f: f.write(licensekey) f.close() status,msg = check_domain_license() if status: status,msg = getdaysfromstartdate() if status: status,msg = check_days_license(int(msg)) return status,msg else: return False,'File Not Exists' def check_domain_license(): if 'CORP.HCL.IN' in computername: return True,'HCL Domain' else: return True,'HCL Domain' def diff_month(d1, d2): return (d1.year - d2.year) * 12 + d1.month - d2.month def getdaysfromstartdate(): currentDirectory = os.path.dirname(os.path.abspath(__file__)) startdatePath = os.path.join(currentDirectory,'..','lic','startdate.txt') if(os.path.isfile(startdatePath)): with open(startdatePath, "rb") as fl: encrypted_message = fl.read() fl.close() privkey = '''-----BEGIN RSA PRIVATE KEY----- MIIEqwIBAAKCAQEAm75ZwaepuxGJjU1
Slk1+IUO2E49Hy8i9dym5FUaBRyTRH6R+ GTF1kcpd+1QinIZDMIdsmAc95Y8pTufxY30QxCkOhVASitSQWHS/IiWQHmsTJwdr 38lqZnQQloOt/iPlhcavbxu/yKFzwBmp+nM+ErDTnCBh6EGCGrw1xWF30T2IBpmp WwMEoqZsFV69RzwQAw39KG1KCxi5uscrB62YPgUdlT2b4Yaa90egQhGLLVdnKvhP ORiGT9omCH90Dkm1oMMQ0Y2JBLezgXa/bunSqtTBxEwzlwUAX2JJcanFYrzKy2OL xzwNRlWUXilZ4R/1RHAgUdNyKbYxZqc24MApoQIDAQABAoIBAQCHZ/i7gNz10qqH 2qkqGlfF7gvYd6MRTwdDGlhbYgA17ZGP9EDaAIFabtpFEAJDmgvCnotQpkMvWcet XcUmHW89TQDd8R8d6u9QqLggpQ3nFGsDbNViLMjAKLrfUb8tjOIZ7ANNE5ArjAuK AgYhxJ48O9bPD+xvtLwip95PHxMMz1CF0vxrpCinvPdeC3HzcnLNZWN3ustbph/4 Tx8mrKDpAVIHVYVbY4CMtm7NbIBYdyR9Lokc4zBg/OTuLo+0QRVJ3GHAN6cGxTwY vLwN9iBBHyn9WBp5NIOSoCdob7+ce8y+X8yHmVhwRCfcrYphzfFNfP7SPNzV1dLs dFybn/h9AoGJALCOC7ss+PBXy5WrWVNRPzFO7KrJDl5q7s/gMk0PkB4i4XOKHDTl MhHZXhxp84HwpphwNxPHvpFe3pVZwwoe8LH1neoodlLOF0Kuk3jENh6cMhKFvcZ+ gxaBxGSCOXF/U307mh0i4AafClhVjxtLgBW5iJSVA9Brc7ZqVwxlUP7aYGzReIE1 uEMCeQDh0vq8NteUlkM/wpNzrHHqgtEzePbTYa+QcTm4xhARHR/cO+E0/mZIfltw 3NVWCIalMia+aKnvRHqHy/cQfEo2Uv/h8oARWnbrvicMRTwYL0w2GrP0f+aG0RqQ msLMzS3kp6szhM7C99reFxdlxJoWBKkp94psOksCgYkApB01zGRudkK17EcdvjPc sMHzfoFryNpPaI23VChuR4UW2mZ797NAypSqRXE7OALxaOuOVuWqP8jW0C9i/Cps hI+SnZHFAw2tU3+hd3Wz9NouNUd6c2MwCSDQ5LikGttHSTa49/JuGdmGLTxCzRVu V0NiMPMfW4I2Sk8o4U3gbzWgwiYohLrhrwJ5ANun/7IB2lIykvk7B3g1nZzRYDIk EFpuI3ppWA8NwOUUoj/zksycQ9tx5Pn0JCMKKgYXsS322ozc3B6o3AoSC5GpzDH4 UnAOwavvC0ZZNeoEX6ok8TP7EL3EOYW8s4zIa0KFgPac0Q0+T4tFhMG9qW+PWwhy Oxeo3wKBiCQ8LEgmHnXZv3UZvwcikj6oCrPy8fnhp5RZl2DPPlaqf3vokE6W5oEo LIKcWKvth3EU7HRKwYgaznj/Mw55aETx31R0FiXMG266B4V7QWPF/KuaR0GBsYfu +edGXQCnLgooKlMtQLdL5mcLXHc9x/0Z0iYEejJtbjcGR87WylSNaCH3hH703iQ= -----END RSA PRIVATE KEY----- ''' privkey = rsa.PrivateKey.load_pkcs1(privkey,'PEM') decrypted_message = rsa.decrypt(encrypted_message, privkey) decrypted_message = decrypted_message.decode() import datetime start_time = datetime.datetime.strptime(decrypted_message, '%Y-%m-%d') current_date = datetime.datetime.today().strftime('%Y-%m-%d') current_date = datetime.datetime.strptime(current_date, '%Y-%m-%d') Months = diff_month(current_date,start_time) return True,Months else: return False,'Start Date Not Exists' def check_days_license(months): currentDirectory = os.path.dirname(os.path.abspath(__file__)) license_path = os.path.join(currentDirectory,'..','lic','license.lic') if(os.path.isfile(license_path)): if(validate_key_Pair(license_path,full_key)): return True,'Valid License' elif(validate_key_Pair(license_path,oneYear_key)): if months <= 12: return True,'Valid License' else: return False,'License for AI.ON has expired. Please contact ERS Research for renewal.' elif(validate_key_Pair(license_path,halfYear_key)): if months <= 6: return True,'Valid License' else: return False,'License for AI.ON has expired. Please contact ERS Research for renewal.' elif(validate_key_Pair(license_path,quarter_key)): if months <= 3: return True,'Valid License' else: return False,'License for AI.ON has expired. Please contact ERS Research for renewal.' else: return False,'Invalid License' else: return False,'License Not exists.Please contact ERS Research for renewal.' def checklicense(): import binascii license_path = os.path.join(DATA_DIR,'License','license.lic') if(os.path.isfile(license_path)): try: with open(license_path, 'r') as privatefile: license_key = privatefile.read() privatefile.close() encrypted_message = binascii.unhexlify(license_key.encode()) privkey = '''-----BEGIN RSA PRIVATE KEY----- MIIEqQIBAAKCAQEAhqfNMuYYLdVrePhkO9rU/qT6FgolzI0YyzIJ2OeJE+++JioY m6nnohQU32iiE0DZlCCLrHJXOOIAz2Op80goX0lxtngyxVUPsiB5CI77sAC7x6K3 anJ0elpnQCC0+xV2ZL5eIMNQHLe+X6wJl/HGWqkUlxKpWr4/kBEB4EisW60OePfh ntIN4OUJ7iEq+sDdOM5WazJIXeNV1cig4i6057GE3k5ITcQUmw17DZu2+dqkIscc kaG+t5SF7Qnvt4IY8IeQp2htx3yD+CJCV0u2uKwoSFMGJn3OWdaixC3+eojyMXmf AWtQEe9NLNNaTCMIvQ8BeItJLQs2Htw3bZNMvwIDAQABAoIBAGGmuRnrYaeDeWAO CmqZxRMyQybOjyDrRgq9rAR/zJoHp8b3ikcBDTkuBQELWVZLFj7k50XU2cono9zC cxI5xwVrNqrUOkV+7VYJVJzPTFkT/xnEt+zbOfstKmmIDpdzthtTLuHlomhhHA83 rPFi5a0Dpynz35suEnm6ONxx4ICONa3xkQ51ALm8EEsdJ+qRQhi2HLTF/OVZMxSa A2DlFd4ChOEbYaN63xVCDxPXe9BfeHd/Rnim9x4xL9i2RL+mhARUy/ZP6LMHIPk7 NxTrGr4TuE/ETg8FZ3cywSnwsMlcplXo8Ar+5ths2XKxbmH1TI/vuQV1r7r0IeqV F4W/xOkCgYkAiDQy7/WyJWuT+rQ+gOjSUumXgWE3HO+vJAsy05cTZFSs+nUE4ctn FnvbBIRuClSr3zhcTtjaEaVnZ2OmGfOoAq0cvaXSlxqEs2456WQBf9oPHnvJEV07 AIqzo2EuDvGUh/bkFN3+djRRL9usNNplYA8jU3OQHGdeaS15ZikT+ZkQLXoHE0Oh vQJ5AP0W9Qouvc9jXRhjNNOWmgt+JiHw/oQts/LUWJ2T4UJ7wKAqGwsmgf0NbF2p aZ6AbMc7dHzCb52iLJRxlmlkJYzg449t0MgQVxTKQ5viIAdjkRBCIY2++GcYXb6k 6tUnF0Vm2kpffYUb5Lx5JoUE6IhMP0mEv3jKKwKBiCmvoC9lCUL+q+m9JKwbldOe fqowcMfAa+AiNUohIORCLjbxfa8Fq+VrvtqhFXS/+WJ2Q3o2UHe6Ie24x+uFcVRw Wy2IBO4ORbMM91iBLRxORvZTeHSCDj7aNKS6Z3hXY9hBLglc8DaJSJfXKdt7RC+k MnGmGuM2l+Sk8FTeGaj4ucTRZjz1JBkCeQDhNSV1GyShv4xeoCCoy1FmOqmZ+EWy vqxqv1PfXHDM5SwCGZWY9XokAGbWbWLjvOmO27QLNEV34pCCwxSR0aCsXI2B2rk2 3Xtvr5A7zRqtGIdEDWSoKjAGJSN9+mhQpglKI3zJQ3GBGdIPeEqzgSud5SNHu01a IaMCgYgyoxtqdWi90iE75/x+uIVGJRdHtWoL2dr8Ixu1bOMjKCR8gjneSRTqI1tA lbRH5K/jg6iccB/pQmBcIPIubF10Nv/ZQV760WK/h6ue2hOCaBLWT8EQEEfBfnp+ 9rfBfNQIQIkBFTfGIHXUUPb9sJgDP1boUxcqxr9bpKUrs1EMkUd+PrvpHIj2 -----END RSA PRIVATE KEY----- ''' privkey = rsa.PrivateKey.load_pkcs1(privkey,'PEM') decrypted_message = rsa.decrypt(encrypted_message, privkey) msg = decrypted_message.decode().split('####') product = msg[0] computernameLicense = msg[1] computername = socket.getfqdn() licenseValid = False if product.lower() == 'aion': if computernameLicense == computername: uuidlicense = msg[3] uuid = guid() if uuidlicense == uuid: current_date = datetime.now() license_expiry_date = msg[5] license_expiry_date = datetime.strptime(license_expiry_date,'%Y-%m-%d %H:%M:%S') if current_date > license_expiry_date: return False,'License Expire' else: return True,'' return False,'License Error' except Exception as e: print(e) return False,'License Error' else: return False,'Generate License' def generate_record_key(product,version): computername = socket.getfqdn() macaddress = getmac.get_mac_address() license_date = datetime.today().strftime('%Y-%m-%d %H:%M:%S') try: user = os.getlogin() except: user = 'NA' uuid = guid() msg = product+'###'+version+'###'+computername+'###'+macaddress+'###'+user+'###'+sys.platform+'###'+uuid+'###'+license_date pkeydata='''-----BEGIN RSA PUBLIC KEY----- MIIBCgKCAQEAm75ZwaepuxGJjU1Slk1+IUO2E49Hy8i9dym5FUaBRyTRH6R+GTF1 kcpd+1QinIZDMIdsmAc95Y8pTufxY30QxCkOhVASitSQWHS/IiWQHmsTJwdr38lq ZnQQloOt/iPlhcavbxu/yKFzwBmp+nM+ErDTnCBh6EGCGrw1xWF30T2IBpmpWwME oqZsFV69RzwQAw39KG1KCxi5uscrB62YPgUdlT2b4Yaa90egQhGLLVdnKvhPORiG T9omCH90Dkm1oMMQ0Y2JBLe
zgXa/bunSqtTBxEwzlwUAX2JJcanFYrzKy2OLxzwN RlWUXilZ4R/1RHAgUdNyKbYxZqc24MApoQIDAQAB -----END RSA PUBLIC KEY----- ''' pubkey = rsa.PublicKey.load_pkcs1(pkeydata) encrypted_message = rsa.encrypt(msg.encode(), pubkey) encrypted_message = binascii.hexlify(encrypted_message).decode() return(encrypted_message) def run(cmd): try: return subprocess.run(cmd, shell=True, capture_output=True, check=True, encoding="utf-8").stdout.strip() except Exception as e: print(e) return None def guid(): if sys.platform == 'darwin': return run( "ioreg -d2 -c IOPlatformExpertDevice | awk -F\\\\\\" '/IOPlatformUUID/{print $(NF-1)}'", ) if sys.platform == 'win32' or sys.platform == 'cygwin' or sys.platform == 'msys': return run('wmic csproduct get uuid').split('\\n')[2].strip() if sys.platform.startswith('linux'): return run('cat /var/lib/dbus/machine-id') or \\ run('cat /etc/machine-id') if sys.platform.startswith('openbsd') or sys.platform.startswith('freebsd'): return run('cat /etc/hostid') or \\ run('kenv -q smbios.system.uuid') def updateLicense(licensekey): license_folder = os.path.join(DATA_DIR,'License') license_folder = Path(license_folder) license_folder.mkdir(parents=True, exist_ok=True) license_file = license_folder/'license.lic' with open(license_file, "w") as fl: fl.write(licensekey) fl.close() def enterRecord(version): validLicense,msg = checklicense() if not validLicense: key = generate_record_key('AION',version) msg = {'status':msg,'key':key,'licenseKey':'','link':''} return validLicense,msg <s> #from BaseHTTPServer import BaseHTTPRequestHandler,HTTPServer from http.server import BaseHTTPRequestHandler,HTTPServer #from SocketServer import ThreadingMixIn from socketserver import ThreadingMixIn ''' from augustus.core.ModelLoader import ModelLoader from augustus.strict import modelLoader ''' import pandas as pd import os,sys from os.path import expanduser import platform import numpy as np import configparser import threading import subprocess import argparse import re import cgi from datetime import datetime import json import sys from datetime import datetime user_records = {} class LocalModelData(object): models = {} class HTTPRequestHandler(BaseHTTPRequestHandler): def do_POST(self): print("PYTHON ######## REQUEST ####### STARTED") if None != re.search('/AION/', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': length = int(self.headers.get('content-length')) data = self.rfile.read(length) model = self.path.split('/')[-2] operation = self.path.split('/')[-1] data = json.loads(data) dataStr = json.dumps(data) if operation.lower() == 'predict': predict_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'AION','aion_predict.py') outputStr = subprocess.check_output([sys.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() resp = outputStr elif operation.lower() == 'explain': predict_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'AION','aion_xai.py') outputStr = subprocess.check_output([sys.executable,predict_path,'local',dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() resp = outputStr resp=resp+"\\n" resp=resp.encode() self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() self.wfile.write(resp) else: print("python ==> else2") data = {} elif None != re.search('/AION/pattern_anomaly_predict', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': length = int(self.headers.get('content-length')) model = self.path.split('/')[-1] data = self.rfile.read(length) data = json.loads(data) anomaly = False remarks = '' clusterid = -1 home = expanduser("~") if platform.system() == 'Windows': configfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'datadetails.json') filename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'clickstream.json') clusterfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'stateClustering.csv') probfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'stateTransitionProbability.csv') else: configfilename = os.path.join(home,'HCLT','AION','target',model,'datadetails.json') filename = os.path.join(home,'HCLT','AION','target',model,'clickstream.json') clusterfilename = os.path.join(home,'HCLT','AION','target',model,'stateClustering.csv') probfilename = os.path.join(home,'HCLT','AION','target',model,'stateTransitionProbability.csv') dfclus = pd.read_csv(clusterfilename) dfprod = pd.read_csv(probfilename) f = open(configfilename, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) activity = configSettingsJson['activity'] sessionid = configSettingsJson['sessionid'] f = open(filename, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) groupswitching = configSettingsJson['groupswitching'] page_threshold = configSettingsJson['transitionprobability'] chain_count = configSettingsJson['transitionsequence'] chain_probability = configSettingsJson['sequencethreshold'] currentactivity = data[activity] if bool(user_records): sessionid = data[sessionid] print(sessionid,user_records['SessionID']) if sessionid != user_records['SessionID']: user_records['SessionID'] = sessionid prevactivity = '' user_records['probarry'] = [] user_records['prevclusterid'] = -1 user_records['NoOfClusterHopping'] = 0 user_records['pageclicks'] = 1 else: prevactivity = user_records['Activity'] user_records['Activity'] = currentactivity pageswitch = True if prevactivity == currentactivity or prevactivity == '': probability = 0 pageswitch = False remarks = '' else: user_records['pageclicks'] += 1 df1 = dfprod[(dfprod['State'] == prevactivity) & (dfprod['NextState'] == currentactivity)] if df1.empty: remarks = 'Anomaly Detected - User in unusual state' anomaly = True clusterid = -1 probability = 0 user_records['probarry'].append(probability) n=int(chain_count) num_list = user_records['probarry'][-n:] avg = sum(num_list)/len(num_list) for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] else: probability = df1['Probability'].iloc[0] user_records['probarry'].append(probability) n=int(chain_count) num_list = user_records['probarry'][-n:] davg = sum(num_list)/len(num_list) for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] remarks = '' if user_records['prevclusterid'] != -1: if probability == 0 and user_records['prevclusterid'] != clusterid: user_records['NoOfClusterHopping'] = user_records['NoOfClusterHopping']+1 if user_records['pageclicks'] == 1: remarks = 'Anomaly Detected - Frequent Cluster Hopping' anomaly = True else: remarks = 'Cluster Hopping Detected' user_records['pageclicks'] = 0 if user_records['NoOfClusterHopping'] > int(groupswitching) and anomaly == False: remarks = 'Anomaly Detected - Multiple Cluster Hopping' anomaly = True elif probability == 0: remarks = 'Anomaly Detected - Unusual State Transition Detected' anomaly = True elif probability <= float(page_threshold): remarks = 'Anomaly Detected - In-frequent State Transition Detected' anomaly = True else: #print(pageswitch) #print(probability) if pageswitch == True: if probability == 0: remarks = 'Anomaly Detected - Unusual State Transition Detected' anomaly = True elif probability <= float(page_threshold): remarks = 'Anomaly Detected - In-frequent State Transition Detected' anomaly = True else: remarks = '' if davg < float(chain_probability): if anomaly == False: remarks = 'Anomaly Detected - In-frequent Pattern Detected' anomaly = True else: user_records['SessionID'] = data[sessionid] user_records['Activity'] = data[activity] user_records['probability'] = 0 user_records['probarry'] = [] user_records['chainprobability'] = 0 user_records['prevclusterid'] = -1 user_records['NoOfClusterHopping'] = 0 user_records['pageclicks'] = 1 for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] user_records['prevclusterid'] = clusterid self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() resp = '{"status":"SUCCESS","data":{"Anomaly":"'+str(anomaly)+'","Remarks":"'+str(remarks)+'"}}' resp=resp+"\\n" resp=resp.encode() self.wfile.write(resp) else: self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() resp =
'{"Anomaly":"Error","Remarks":"'+str(Int)+'"}' resp=resp+"\\n" resp=resp.encode() self.wfile.write(resp) elif None != re.search('/AION/pattern_anomaly_settings', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': length = int(self.headers.get('content-length')) data = self.rfile.read(length) #print(data) #keyList = list(data.keys()) #print(keyList[0]) model = self.path.split('/')[-1] #print(model) data = json.loads(data) #dataStr = json.dumps(data) groupswitching = data['groupswitching'] transitionprobability = data['transitionprobability'] transitionsequence = data['transitionsequence'] sequencethreshold = data['sequencethreshold'] home = expanduser("~") if platform.system() == 'Windows': filename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'clickstream.json') else: filename = os.path.join(home,'HCLT','AION','target',model,'clickstream.json') #print(filename) data = {} data['groupswitching'] = groupswitching data['transitionprobability'] = transitionprobability data['transitionsequence'] = transitionsequence data['sequencethreshold'] = sequencethreshold updatedConfig = json.dumps(data) with open(filename, "w") as fpWrite: fpWrite.write(updatedConfig) fpWrite.close() self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() resp = '{"Status":"SUCCESS"}' resp=resp+"\\n" resp=resp.encode() self.wfile.write(resp) else: print("python ==> else2") data = {} else: print("python ==> else1") self.send_response(403) self.send_header('Content-Type', 'application/json') self.end_headers() print("PYTHON ######## REQUEST ####### ENDED") return def do_GET(self): print("PYTHON ######## REQUEST ####### STARTED") if None != re.search('/AION/predict', self.path): self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() model = self.path.split('/')[-1] display_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),'target',model,'display.json') displaymsg = 'Data in JSON Format' if(os.path.isfile(display_path)): with open(display_path) as file: config = json.load(file) file.close() features = config['modelFeatures'] datajson={} for feature in features: datajson[feature] = 'Value' displaymsg = json.dumps(datajson) msg=""" URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg} """.format(url=self.path,displaymsg=displaymsg) self.wfile.write(msg.encode()) else: self.send_response(403) self.send_header('Content-Type', 'application/json') self.end_headers() return class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): allow_reuse_address = True def shutdown(self): self.socket.close() HTTPServer.shutdown(self) class SimpleHttpServer(): def __init__(self, ip, port): self.server = ThreadedHTTPServer((ip,port), HTTPRequestHandler) def start(self): self.server_thread = threading.Thread(target=self.server.serve_forever) self.server_thread.daemon = True self.server_thread.start() def waitForThread(self): self.server_thread.join() def stop(self): self.server.shutdown() self.waitForThread() if __name__=='__main__': parser = argparse.ArgumentParser(description='HTTP Server') parser.add_argument('port', type=int, help='Listening port for HTTP Server') parser.add_argument('ip', help='HTTP Server IP') args = parser.parse_args() server = SimpleHttpServer(args.ip, args.port) #delete file #create file #write just msg as "started" print('HTTP Server Running...........') #file close server.start() server.waitForThread() <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> #from BaseHTTPServer import BaseHTTPRequestHandler,HTTPServer from http.server import BaseHTTPRequestHandler,HTTPServer #from SocketServer import ThreadingMixIn from socketserver import ThreadingMixIn ''' from augustus.core.ModelLoader import ModelLoader from augustus.strict import modelLoader ''' import pandas as pd from datetime import datetime import os,sys from os.path import expanduser import platform import numpy as np import configparser import threading import subprocess import argparse import re import cgi import time from datetime import datetime import json import sys from datetime import datetime import sqlite3 from os.path import expanduser from pathlib import Path from io import BytesIO DEPLOY_DATABASE_PATH = os.path.join(os.path.join(os.path.dirname(__file__)),'database') targetPath = Path(DEPLOY_DATABASE_PATH) targetPath.mkdir(parents=True, exist_ok=True) modelVersion = 'run_1' version = 1 class sqlite_db(): def __init__(self, location, database_file=None): if not isinstance(location, Path): location = Path(location) if database_file: self.database_name = database_file else: self.database_name = location.stem + '.db' db_file = str(location/self.database_name) self.conn = sqlite3.connect(db_file) self.cursor = self.conn.cursor() self.tables = [] def table_exists(self, name): if name in self.tables: return True elif name: query = f"SELECT name FROM sqlite_master WHERE type='table' AND name='{name}';" listOfTables = self.cursor.execute(query).fetchall() if len(listOfTables) > 0 : self.tables.append(name) return True return False def read(self, table_name,condition=''): if condition == '': return pd.read_sql_query(f"SELECT * FROM {table_name}", self.conn) else: return pd.read_sql_query(f"SELECT * FROM {table_name} WHERE {condition}", self.conn) def create_table(self,name, columns, dtypes): query = f'CREATE TABLE IF NOT EXISTS {name} (' for column, data_type in zip(columns, dtypes): query += f"'{column}' TEXT," query = query[:-1] query += ');' self.conn.execute(query) return True def update(self,table_name,updates,condition): update_query = f'UPDATE {table_name} SET {updates} WHERE {condition}' self.cursor.execute(update_query) self.conn.commit() return True def write(self,data, table_name): if not self.table_exists(table_name): self.create_table(table_name, data.columns, data.dtypes) tuple_data = list(data.itertuples(index=False, name=None)) insert_query = f'INSERT INTO {table_name} VALUES(' for i in range(len(data.columns)): insert_query += '?,' insert_query = insert_query[:-1] + ')' self.cursor.executemany(insert_query, tuple_data) self.conn.commit() return True def delete(self, name): pass def close(self): self.conn.close() user_records = {} class LocalModelData(object): models = {} class HTTPRequestHandler(BaseHTTPRequestHandler): def do_POST(self): print("PYTHON ######## REQUEST ####### STARTED") if None != re.search('/AION/', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': length = int(self.headers.get('content-length')) #data = cgi.parse_qs(self.rfile.read(length), keep_blank_values=1) data = self.rfile.read(length) model = self.path.split('/')[-2] operation = self.path.split('/')[-1] #data = json.loads(data) #dataStr = json.dumps(data) home = expanduser("~") dataStr = data sqlite_dbObj = sqlite_db(DEPLOY_DATABASE_PATH,'deploy.db') model_path = os.path.join(os.path.dirname(__file__),modelVersion) DATA_FILE_PATH = os.path.join(os.path.dirname(__file__),'temp') Path(DATA_FILE_PATH).mkdir(parents=True, exist_ok=True) isdir = os.path.isdir(model_path) if isdir: if operation.lower() == 'predict': if not sqlite_dbObj.table_exists('servingDetails'): data = {'usecase':model,'noOfPredictCalls':0,'noOfDriftCalls':0} data = pd.DataFrame(data, index=[0]) sqlite_dbObj.create_table('servingDetails',data.columns, data.dtypes) df2 = pd.read_json(BytesIO(dataStr), orient ='records') if not sqlite_dbObj.table_exists('prodData'): sqlite_dbObj.create_table('prodData',df2.columns, df2.dtypes) sqlite_dbObj.write(df2,'prodData') data = sqlite_dbObj.read('servingDetails',"usecase = '"+model+"'") if len(data) == 0: data = {'usecase':model,'noOfPredictCalls':1,'noOfDriftCalls':0} data = pd.DataFrame(data, index=[0]) sqlite_dbObj.write(data,'servingDetails') else: noofPredictCalls = int(data['noOfPredictCalls'].iloc[0])+1 sqlite_dbObj.update('servingDetails',"noOfPredictCalls = '"+str(noofPredictCalls)+"'","usecase = '"+model+"'") predict_path = os.path.join(model_path,'aion_predict.py') outputStr = subprocess.check_output([sys.executable,predict_path,dataStr]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() resp = outputStr elif operation.lower() == 'monitoring': if not sqlite_dbObj.table_exists('monitoring'): data = {'usecase':model,'status':'No Drift','Msg':'No Input Drift Found','RecordTime':'Time','version':'1'} data = pd.DataFrame(data, index=[0]) sqlite_dbObj.create_table('monitoring',data.columns, data.dtypes) trainingDataPath = os.path.join(os.path.dirname(__file__),modelVersion,'data','preprocesseddata.csv') data = sqlite_dbObj.read('prodData') filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') data.to_csv(dataFile, index=False) predict_path = os.path.join(model_path,'aion_ipdrift.py') inputJSON={'trainingDataLocation':trainingDataPath,'currentDataLocation':dataFile} outputStr = subprocess.check_output([sys.executable,predict_path,json.dumps(inputJSON)]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'drift:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() outputData = json.loads(outputStr) status = outputData['status'] if status == 'SUCCESS': Msg = str(outputData['data']) else: Msg = 'Error during drift analysis'
now = datetime.now() # current date and time date_time = now.strftime("%m/%d/%Y, %H:%M:%S") data = {'usecase':model,'status':status,'Msg':Msg,'RecordTime':date_time,'version':version} data = pd.DataFrame(data, index=[0]) sqlite_dbObj.write(data,'monitoring') resp = outputStr resp=resp+"\\n" resp=resp.encode() self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() self.wfile.write(resp) else: print("python ==> else2") data = {} elif None != re.search('/AION/pattern_anomaly_predict', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': length = int(self.headers.get('content-length')) model = self.path.split('/')[-1] data = self.rfile.read(length) data = json.loads(data) anomaly = False remarks = '' clusterid = -1 home = expanduser("~") if platform.system() == 'Windows': configfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'datadetails.json') filename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'clickstream.json') clusterfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'stateClustering.csv') probfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'stateTransitionProbability.csv') else: configfilename = os.path.join(home,'HCLT','AION','target',model,'datadetails.json') filename = os.path.join(home,'HCLT','AION','target',model,'clickstream.json') clusterfilename = os.path.join(home,'HCLT','AION','target',model,'stateClustering.csv') probfilename = os.path.join(home,'HCLT','AION','target',model,'stateTransitionProbability.csv') dfclus = pd.read_csv(clusterfilename) dfprod = pd.read_csv(probfilename) f = open(configfilename, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) activity = configSettingsJson['activity'] sessionid = configSettingsJson['sessionid'] f = open(filename, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) groupswitching = configSettingsJson['groupswitching'] page_threshold = configSettingsJson['transitionprobability'] chain_count = configSettingsJson['transitionsequence'] chain_probability = configSettingsJson['sequencethreshold'] currentactivity = data[activity] if bool(user_records): sessionid = data[sessionid] print(sessionid,user_records['SessionID']) if sessionid != user_records['SessionID']: user_records['SessionID'] = sessionid prevactivity = '' user_records['probarry'] = [] user_records['prevclusterid'] = -1 user_records['NoOfClusterHopping'] = 0 user_records['pageclicks'] = 1 else: prevactivity = user_records['Activity'] user_records['Activity'] = currentactivity pageswitch = True if prevactivity == currentactivity or prevactivity == '': probability = 0 pageswitch = False remarks = '' else: user_records['pageclicks'] += 1 df1 = dfprod[(dfprod['State'] == prevactivity) & (dfprod['NextState'] == currentactivity)] if df1.empty: remarks = 'Anomaly Detected - User in unusual state' anomaly = True clusterid = -1 probability = 0 user_records['probarry'].append(probability) n=int(chain_count) num_list = user_records['probarry'][-n:] avg = sum(num_list)/len(num_list) for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] else: probability = df1['Probability'].iloc[0] user_records['probarry'].append(probability) n=int(chain_count) num_list = user_records['probarry'][-n:] davg = sum(num_list)/len(num_list) for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] remarks = '' if user_records['prevclusterid'] != -1: if probability == 0 and user_records['prevclusterid'] != clusterid: user_records['NoOfClusterHopping'] = user_records['NoOfClusterHopping']+1 if user_records['pageclicks'] == 1: remarks = 'Anomaly Detected - Frequent Cluster Hopping' anomaly = True else: remarks = 'Cluster Hopping Detected' user_records['pageclicks'] = 0 if user_records['NoOfClusterHopping'] > int(groupswitching) and anomaly == False: remarks = 'Anomaly Detected - Multiple Cluster Hopping' anomaly = True elif probability == 0: remarks = 'Anomaly Detected - Unusual State Transition Detected' anomaly = True elif probability <= float(page_threshold): remarks = 'Anomaly Detected - In-frequent State Transition Detected' anomaly = True else: #print(pageswitch) #print(probability) if pageswitch == True: if probability == 0: remarks = 'Anomaly Detected - Unusual State Transition Detected' anomaly = True elif probability <= float(page_threshold): remarks = 'Anomaly Detected - In-frequent State Transition Detected' anomaly = True else: remarks = '' if davg < float(chain_probability): if anomaly == False: remarks = 'Anomaly Detected - In-frequent Pattern Detected' anomaly = True else: user_records['SessionID'] = data[sessionid] user_records['Activity'] = data[activity] user_records['probability'] = 0 user_records['probarry'] = [] user_records['chainprobability'] = 0 user_records['prevclusterid'] = -1 user_records['NoOfClusterHopping'] = 0 user_records['pageclicks'] = 1 for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] user_records['prevclusterid'] = clusterid self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() resp = '{"status":"SUCCESS","data":{"Anomaly":"'+str(anomaly)+'","Remarks":"'+str(remarks)+'"}}' resp=resp+"\\n" resp=resp.encode() self.wfile.write(resp) else: self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() resp = '{"Anomaly":"Error","Remarks":"'+str(Int)+'"}' resp=resp+"\\n" resp=resp.encode() self.wfile.write(resp) elif None != re.search('/AION/pattern_anomaly_settings', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': length = int(self.headers.get('content-length')) data = self.rfile.read(length) #print(data) #keyList = list(data.keys()) #print(keyList[0]) model = self.path.split('/')[-1] #print(model) data = json.loads(data) #dataStr = json.dumps(data) groupswitching = data['groupswitching'] transitionprobability = data['transitionprobability'] transitionsequence = data['transitionsequence'] sequencethreshold = data['sequencethreshold'] home = expanduser("~") if platform.system() == 'Windows': filename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'clickstream.json') else: filename = os.path.join(home,'HCLT','AION','target',model,'clickstream.json') #print(filename) data = {} data['groupswitching'] = groupswitching data['transitionprobability'] = transitionprobability data['transitionsequence'] = transitionsequence data['sequencethreshold'] = sequencethreshold updatedConfig = json.dumps(data) with open(filename, "w") as fpWrite: fpWrite.write(updatedConfig) fpWrite.close() self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() resp = '{"Status":"SUCCESS"}' resp=resp+"\\n" resp=resp.encode() self.wfile.write(resp) else: print("python ==> else2") data = {} else: print("python ==> else1") self.send_response(403) self.send_header('Content-Type', 'application/json') self.end_headers() print("PYTHON ######## REQUEST ####### ENDED") return def do_GET(self): print("PYTHON ######## REQUEST ####### STARTED") if None != re.search('/AION/', self.path) or None != re.search('/aion/', self.path): usecase = self.path.split('/')[-2] operation = self.path.split('/')[-1] if operation.lower() == 'metrices': sqlite_dbObj = sqlite_db(DEPLOY_DATABASE_PATH,'deploy.db') if sqlite_dbObj.table_exists('servingDetails'): df1 = sqlite_dbObj.read('servingDetails',"usecase = '"+usecase+"'") else: df1 = pd.DataFrame() if sqlite_dbObj.table_exists('monitoring'): df2 = sqlite_dbObj.read('monitoring') else: df2 = pd.DataFrame() if sqlite_dbObj.table_exists('modeldetails'): df3 = sqlite_dbObj.read('modeldetails') else: df3 = pd.DataFrame() msg='<html>\\n' msg+='<head>\\n' msg+='<title>Model Metrices</title>\\n' msg+='</head>\\n' msg+="""<style>table, th, td { border: 1px solid
black; border-collapse: collapse;}</style>""" msg+='<body>\\n' msg+='<h2>Model Metrices - Deployed Version '+str(version)+'</h2>' msg+='<br/>\\n' msg+='<table style="width:80%">\\n' msg+="""<tr> <th>Model</th> <th>Version</th> <th>ScoreType</th> <th>Score</th> </tr """ for idx in reversed(df3.index): msg += "<tr>\\n" msg += "<td>"+str(df3.usecase[idx])+"</td>\\n" msg += "<td>"+str(df3.version[idx])+"</td>\\n" msg += "<td>"+str(df3.scoreType[idx])+"</td>\\n" msg += "<td>"+str(df3.score[idx])+"</td>\\n" msg += "</tr>\\n" msg += '</table>\\n' msg += '<br/>\\n' msg += '<br/>\\n' msg+='<table style="width:50%">\\n' msg+='<tr>\\n' msg+='<td>No of Predictions</td>\\n' if df1.shape[0] > 0: msg+='<td>'+str(df1['noOfPredictCalls'].iloc[0])+'</td>\\n' else: msg+='<td>0</td>\\n' msg+='</tr>\\n' msg+='<tr>\\n' msg+='<td>No of Ground Truth</td>\\n' msg+='<td>0</td>\\n' msg+='</tr>\\n' msg += '</table>\\n' msg += '<br/>\\n' msg+='<table style="width:100%">\\n' msg+="""<tr> <th>UseCase</th> <th>Version</th> <th>Status</th> <th>Message</th> <th>Time</th> </tr> """ for idx in reversed(df2.index): msg += "<tr>\\n" msg += "<td>"+str(df2.usecase[idx])+"</td>\\n" msg += "<td>"+str(df3.version[idx])+"</td>\\n" msg += "<td>"+str(df2.status[idx])+"</td>\\n" msg += "<td>"+str(df2.Msg[idx])+"</td>\\n" msg += "<td>"+str(df2.RecordTime[idx])+"</td>\\n" msg += "</tr>\\n" msg += '</table>\\n' msg += '</body>\\n' msg += '</html>\\n' self.send_response(200) self.send_response(200) self.send_header('Content-Type', 'text/html') self.end_headers() self.wfile.write(msg.encode()) else: self.send_response(403) self.send_header('Content-Type', 'application/json') self.end_headers() return class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): allow_reuse_address = True def shutdown(self): self.socket.close() HTTPServer.shutdown(self) class file_status(): def __init__(self,file): self.files_status = {} self.initializeFileStatus(file) def initializeFileStatus(self, file): self.files_status = {'path': file, 'time':file.stat().st_mtime} def is_file_changed(self): if self.files_status['path'].stat().st_mtime > self.files_status['time']: self.files_status['time'] = self.files_status['path'].stat().st_mtime return True return False def run(self): while( True): time.sleep(30) if self.is_file_changed(): readRun() class SimpleHttpServer(): def __init__(self, ip, port,model_file_path): self.server = ThreadedHTTPServer((ip,port), HTTPRequestHandler) self.status_checker = file_status(model_file_path) def start(self): self.server_thread = threading.Thread(target=self.server.serve_forever) self.server_thread.daemon = True self.server_thread.start() self.status_thread = threading.Thread(target=self.status_checker.run) self.status_thread.start() def waitForThread(self): self.server_thread.join() def stop(self): self.server.shutdown() self.waitForThread() def readRun(boot=False): filename = os.path.join(os.path.join(os.path.dirname(__file__)),'run') f = open (filename, "r") data = json.loads(f.read()) global modelVersion global version modelVersion = 'run_'+str(data['version']) version = str(data['version']) sqlite_dbObj = sqlite_db(DEPLOY_DATABASE_PATH,'deploy.db') dataa = {'usecase':data['usecase'],'version':data['version'],'scoreType':data['scoreType'],'score':data['score']} data = pd.DataFrame(dataa, index=[0]) if not sqlite_dbObj.table_exists('modeldetails'): sqlite_dbObj.create_table('modeldetails',data.columns, data.dtypes) rdata = sqlite_dbObj.read('modeldetails',"version = '"+dataa['version']+"'") if (rdata.shape[0]) == 0 or (not boot): sqlite_dbObj.write(data,'modeldetails') readRun(boot=True) if __name__=='__main__': filename = os.path.join(os.path.join(os.path.dirname(__file__)),'run') parser = argparse.ArgumentParser(description='HTTP Server') parser.add_argument('port', type=int, help='Listening port for HTTP Server') parser.add_argument('ip', help='HTTP Server IP') args = parser.parse_args() server = SimpleHttpServer(args.ip, args.port,Path(filename)) #delete file #create file #write just msg as "started" print('HTTP Server Running...........') #file close server.start() server.waitForThread() <s> import sys import os import pickle import json import traceback import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd import dask.dataframe as dd import scipy from pandas import json_normalize import dask.distributed from dask_ml.wrappers import ParallelPostFit class incBatchPredictor(): def __init__(self): self.home = os.path.dirname(os.path.abspath(__file__)) self.configPath = os.path.join(self.home, 'etc', 'config.json') self.configDict = {} self.incProfilerPath = '' self.incSelectorPath = '' self.modelPath = '' self.incProfiler = None self.incSelector = None self.model = None self.targetFeature = None self.trainingFeatures = None self.modelName = '' self.problemType = '' self.algorithm = '' self.dataLocation = "" self.nworkers = None self.npartitions = None self.threadsPerWorker = None def get_nworkers(self): return self.nworkers def get_npartitions(self): return self.npartitions def get_threadsPerWorker(self): return self.threadsPerWorker def readData(self,data): try: if os.path.splitext(data)[1] in [".tsv",".csv",".data"]: df = dd.read_csv(data, # sep=r'\\s*,\\s*', assume_missing=True, parse_dates=True, infer_datetime_format=True, sample=1000000, # dtype={'caliper': 'object', # 'timestamp': 'object'}, # dtype='object', na_values=['-','?'] ) df = df.repartition(self.npartitions) else: if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) for key in jsonData: if type(jsonData[key]) == str: try: x = eval(jsonData[key]) if type(x) == int: jsonData[key] = int(jsonData[key]) print("check inside ==int") if type(x) == float: jsonData[key] = float(jsonData[key]) except: pass df = json_normalize(jsonData) df = df.replace(r'^\\s*$', np.NaN, regex=True) df = dd.from_pandas(df, npartitions=self.npartitions) except KeyError as e: output = {"status":"FAIL","message":str(e).strip('"')} print(json.dumps(output)) except Exception as e: output = {"status":"FAIL","message":str(e).strip('"')} print(json.dumps(output)) return df def readConfig(self): with open(self.configPath, 'r', encoding= 'utf8') as f: self.configDict = json.load(f) self.targetFeature = self.configDict['targetFeature'] self.trainingFeatures = self.configDict['trainingFeatures'] self.modelName = self.configDict["modelName"] self.modelVersion = self.configDict["modelVersion"] self.dataLocation = self.configDict["dataLocation"] self.deployLocation = self.configDict["deployLocation"] self.incProfilerPath = self.configDict["profilerLocation"] self.incSelectorPath = self.configDict["selectorLocation"] self.problemType = self.configDict['analysisType'] self.algorithm = self.configDict["algorithm"] self.modelPath = self.configDict["modelLocation"] self.scoringCriteria = self.configDict['scoringCriteria'] self.nworkers = int(self.configDict["n_workers"]) self.npartitions = int(self.configDict["npartitions"]) self.threadsPerWorker = int(self.configDict["threads_per_worker"]) def pickleLoad(self, file): if os.path.exists(file): with open(file, 'rb') as f: model = pickle.load(f) return model else: return None def loadSavedModels(self): self.incProfiler = self.pickleLoad(os.path.join(self.home, 'model',self.incProfilerPath)) if self.incSelectorPath != '': self.incSelector = self.pickleLoad(os.path.join(self.home, 'model',self.incSelectorPath)) self.model = self.pickleLoad(os.path.join(self.home, 'model',self.modelPath)) def dataFramePreProcess(self, df): df = df.replace(r'^\\s*$', np.NaN, regex=True) df = df.replace('-', np.nan) df = df.replace('?', np.nan) return df def profiler(self, df): X = self.dataFramePreProcess(df) if 'self.targetFeature' in X: X = X.drop(self.targetFeature, axis=1) X = self.incProfiler.transform(X) if self.incSelectorPath != '': X = self.incSelector.transform(X.to_dask_array(lengths=True)) # X = dd.from_dask_array(X) return X def trainedModel(self,X): ParallelPostFit(estimator=self.model) # preds = self.model.predict(X) if self.algorithm=="Distributed Light Gradient Boosting (LightGBM)": X = X.to_dask_array(lengths=True) preds = self.model.predict(X).compute() return preds def apply_output_format(self,df,modeloutput): label_maping = None if self.problemType.lower() == 'regression': if not isinstance(modeloutput, np.ndarray): modeloutput = modeloutput.to_numpy() dask_arr = dd.from_array(modeloutput) dask_arr.name = 'prediction' df = df.merge(dask_arr.to_frame()) df['rounded_prediction'] = df['prediction'].round(2) elif self.problemType.lower() == 'classification': print("type: ", type(modeloutput)) if not isinstance(modeloutput, np.ndarray): modeloutput = modeloutput.to_numpy() dask_arr = dd.from_array(modeloutput) dask_arr.name = "prediction" df = df.merge(dask_arr.to_frame()) with open(self.deployLocation + "/etc/" + "label_mapping.json") as jsonfile: label_maping = json.load(jsonfile) df["prediction"] = df["
prediction"].astype(int) df["prediction"] = df["prediction"].astype(str) df["prediction_label"] = df["prediction"].map(label_maping) if df["prediction_label"].dtype == None: df["prediction_label"] = df["prediction"] outputjson = df.compute().to_json(orient='records') outputjson = {"status":"SUCCESS","data":json.loads(outputjson)} return(json.dumps(outputjson)) def predict(self,data): try: self.readConfig() df = self.readData(data) dfOrg = df.copy() if len(self.configDict)!=0: self.loadSavedModels() df = self.profiler(df) modeloutput = self.trainedModel(df) # dfOrg = dfOrg[self.allFtrs] output = self.apply_output_format(dfOrg, modeloutput) else: pass except Exception as e: print(traceback.format_exc()) output = {"status":"FAIL","message":str(e).strip('"')} return output if __name__ == "__main__": incBPobj = incBatchPredictor() incBPobj.readConfig() nWorkers = incBPobj.get_nworkers() threads_per_worker = incBPobj.get_threadsPerWorker() cluster = dask.distributed.LocalCluster(n_workers=nWorkers, threads_per_worker=threads_per_worker) client = dask.distributed.Client(cluster) output = incBPobj.predict(sys.argv[1]) print("predictions:",output) client.close() cluster.close()<s> ''' from AION_185 import aion_prediction from AION_185 import featureslist from AION_185 import aion_drift from AION_185 import aion_performance ''' #from BaseHTTPServer import BaseHTTPRequestHandler,HTTPServer from http.server import BaseHTTPRequestHandler,HTTPServer #from SocketServer import ThreadingMixIn from socketserver import ThreadingMixIn ''' from augustus.core.ModelLoader import ModelLoader from augustus.strict import modelLoader ''' import pandas as pd import os,sys from os.path import expanduser import platform import numpy as np import configparser import threading import subprocess import argparse import re import cgi from datetime import datetime import json import sys from datetime import datetime user_records = {} class LocalModelData(object): models = {} class HTTPRequestHandler(BaseHTTPRequestHandler): def do_POST(self): print("PYTHON ######## REQUEST ####### STARTED") if None != re.search('/AION/predict', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': length = int(self.headers.get('content-length')) #data = cgi.parse_qs(self.rfile.read(length), keep_blank_values=1) data = self.rfile.read(length) data = json.loads(data) dataStr = json.dumps(data) outputStr = aion_prediction.predict(dataStr) outputStr = outputStr.strip() resp = outputStr resp=resp+"\\n" resp=resp.encode() self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() self.wfile.write(resp) else: print("python ==> else2") data = {} elif None != re.search('/AION/features', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': length = int(self.headers.get('content-length')) outputStr = featureslist.getfeatures() outputStr = outputStr.strip() resp = outputStr resp=resp+"\\n" resp=resp.encode() self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() self.wfile.write(resp) else: print("python ==> else2") data = {} elif None != re.search('/AION/monitoring', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': length = int(self.headers.get('content-length')) data = self.rfile.read(length) model = self.path.split('/')[-1] data = json.loads(data) dataStr = json.dumps(data) outputStr = aion_drift.drift(dataStr) outputStr = outputStr.strip() resp = outputStr resp=resp+"\\n" resp=resp.encode() self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() self.wfile.write(resp) else: print("python ==> else2") data = {} elif None != re.search('/AION/performance', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': length = int(self.headers.get('content-length')) data = self.rfile.read(length) data = json.loads(data) dataStr = json.dumps(data) outputStr = aion_performance.drift(dataStr) outputStr = outputStr.strip() resp = outputStr resp=resp+"\\n" resp=resp.encode() self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() self.wfile.write(resp) else: print("python ==> else2") data = {} elif None != re.search('/AION/pattern_anomaly_predict', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': length = int(self.headers.get('content-length')) model = self.path.split('/')[-1] data = self.rfile.read(length) data = json.loads(data) anomaly = False remarks = '' clusterid = -1 home = expanduser("~") if platform.system() == 'Windows': configfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'datadetails.json') filename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'clickstream.json') clusterfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'stateClustering.csv') probfilename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'stateTransitionProbability.csv') else: configfilename = os.path.join(home,'HCLT','AION','target',model,'datadetails.json') filename = os.path.join(home,'HCLT','AION','target',model,'clickstream.json') clusterfilename = os.path.join(home,'HCLT','AION','target',model,'stateClustering.csv') probfilename = os.path.join(home,'HCLT','AION','target',model,'stateTransitionProbability.csv') dfclus = pd.read_csv(clusterfilename) dfprod = pd.read_csv(probfilename) f = open(configfilename, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) activity = configSettingsJson['activity'] sessionid = configSettingsJson['sessionid'] f = open(filename, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) groupswitching = configSettingsJson['groupswitching'] page_threshold = configSettingsJson['transitionprobability'] chain_count = configSettingsJson['transitionsequence'] chain_probability = configSettingsJson['sequencethreshold'] currentactivity = data[activity] if bool(user_records): sessionid = data[sessionid] print(sessionid,user_records['SessionID']) if sessionid != user_records['SessionID']: user_records['SessionID'] = sessionid prevactivity = '' user_records['probarry'] = [] user_records['prevclusterid'] = -1 user_records['NoOfClusterHopping'] = 0 user_records['pageclicks'] = 1 else: prevactivity = user_records['Activity'] user_records['Activity'] = currentactivity pageswitch = True if prevactivity == currentactivity or prevactivity == '': probability = 0 pageswitch = False remarks = '' else: user_records['pageclicks'] += 1 df1 = dfprod[(dfprod['State'] == prevactivity) & (dfprod['NextState'] == currentactivity)] if df1.empty: remarks = 'Anomaly Detected - User in unusual state' anomaly = True clusterid = -1 probability = 0 user_records['probarry'].append(probability) n=int(chain_count) num_list = user_records['probarry'][-n:] avg = sum(num_list)/len(num_list) for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] else: probability = df1['Probability'].iloc[0] user_records['probarry'].append(probability) n=int(chain_count) num_list = user_records['probarry'][-n:] davg = sum(num_list)/len(num_list) for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] remarks = '' if user_records['prevclusterid'] != -1: if probability == 0 and user_records['prevclusterid'] != clusterid: user_records['NoOfClusterHopping'] = user_records['NoOfClusterHopping']+1 if user_records['pageclicks'] == 1: remarks = 'Anomaly Detected - Frequent Cluster Hopping' anomaly = True else: remarks = 'Cluster Hopping Detected' user_records['pageclicks'] = 0 if user_records['NoOfClusterHopping'] > int(groupswitching) and anomaly == False: remarks = 'Anomaly Detected - Multiple Cluster Hopping' anomaly = True elif probability == 0: remarks = 'Anomaly Detected - Unusual State Transition Detected' anomaly = True elif probability <= float(page_threshold): remarks = 'Anomaly Detected - In-frequent State Transition Detected' anomaly = True else: #print(pageswitch) #print(probability) if pageswitch == True: if probability == 0: remarks = 'Anomaly Detected - Unusual State Transition Detected' anomaly = True elif probability <= float(page_threshold): remarks = 'Anomaly Detected - In-frequent State Transition Detected' anomaly = True else: remarks = '' if davg < float(chain_probability): if anomaly == False: remarks = 'An
omaly Detected - In-frequent Pattern Detected' anomaly = True else: user_records['SessionID'] = data[sessionid] user_records['Activity'] = data[activity] user_records['probability'] = 0 user_records['probarry'] = [] user_records['chainprobability'] = 0 user_records['prevclusterid'] = -1 user_records['NoOfClusterHopping'] = 0 user_records['pageclicks'] = 1 for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] user_records['prevclusterid'] = clusterid self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() resp = '{"status":"SUCCESS","data":{"Anomaly":"'+str(anomaly)+'","Remarks":"'+str(remarks)+'"}}' resp=resp+"\\n" resp=resp.encode() self.wfile.write(resp) else: self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() resp = '{"Anomaly":"Error","Remarks":"'+str(Int)+'"}' resp=resp+"\\n" resp=resp.encode() self.wfile.write(resp) elif None != re.search('/AION/pattern_anomaly_settings', self.path): ctype, pdict = cgi.parse_header(self.headers.get('content-type')) if ctype == 'application/json': length = int(self.headers.get('content-length')) data = self.rfile.read(length) #print(data) #keyList = list(data.keys()) #print(keyList[0]) model = self.path.split('/')[-1] #print(model) data = json.loads(data) #dataStr = json.dumps(data) groupswitching = data['groupswitching'] transitionprobability = data['transitionprobability'] transitionsequence = data['transitionsequence'] sequencethreshold = data['sequencethreshold'] home = expanduser("~") if platform.system() == 'Windows': filename = os.path.join(home,'AppData','Local','HCLT','AION','target',model,'clickstream.json') else: filename = os.path.join(home,'HCLT','AION','target',model,'clickstream.json') #print(filename) data = {} data['groupswitching'] = groupswitching data['transitionprobability'] = transitionprobability data['transitionsequence'] = transitionsequence data['sequencethreshold'] = sequencethreshold updatedConfig = json.dumps(data) with open(filename, "w") as fpWrite: fpWrite.write(updatedConfig) fpWrite.close() self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() resp = '{"Status":"SUCCESS"}' resp=resp+"\\n" resp=resp.encode() self.wfile.write(resp) else: print("python ==> else2") data = {} else: print("python ==> else1") self.send_response(403) self.send_header('Content-Type', 'application/json') self.end_headers() print("PYTHON ######## REQUEST ####### ENDED") return def do_GET(self): print("PYTHON ######## REQUEST ####### STARTED") if None != re.search('/AION/predict', self.path): self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() features = featureslist.getfeatures() displaymsg = 'Data in JSON Format' config = json.loads(features) features = config['features'] datajson={} for feature in features: if feature['Type'].lower() != 'target': datajson[feature['feature']] = 'Value' displaymsg = json.dumps(datajson) msg=""" URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg} """.format(url=self.path,displaymsg=displaymsg) self.wfile.write(msg.encode()) elif None != re.search('/AION/monitoring', self.path): self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() displaymsg='{"trainingDataLocation":"Reference Data File Path","currentDataLocation":"Latest Data File Path"}' msg=""" URL:{url} RequestType: POST Content-Type=application/json Body: {displaymsg}""".format(url=self.path,displaymsg=displaymsg) self.wfile.write(msg.encode()) elif None != re.search('/AION/features', self.path): outputStr = featureslist.getfeatures() outputStr = outputStr.strip() resp = outputStr resp=resp+"\\n" resp=resp.encode() self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() self.wfile.write(resp) else: msg=""" URL for prediction: /AION/predict URL for features List: /AION/features URL for monitoring: /AION/monitoring URL for performance: /AION/performance""" self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() self.wfile.write(msg.encode()) return class ThreadedHTTPServer(ThreadingMixIn, HTTPServer): allow_reuse_address = True def shutdown(self): self.socket.close() HTTPServer.shutdown(self) class SimpleHttpServer(): def __init__(self, ip, port): self.server = ThreadedHTTPServer((ip,port), HTTPRequestHandler) def start(self): self.server_thread = threading.Thread(target=self.server.serve_forever) self.server_thread.daemon = True self.server_thread.start() def waitForThread(self): self.server_thread.join() def stop(self): self.server.shutdown() self.waitForThread() if __name__=='__main__': parser = argparse.ArgumentParser(description='HTTP Server') parser.add_argument('port', type=int, help='Listening port for HTTP Server') parser.add_argument('ip', help='HTTP Server IP') args = parser.parse_args() server = SimpleHttpServer(args.ip, args.port) #delete file #create file #write just msg as "started" print('HTTP Server Running...........') #file close server.start() server.waitForThread() <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> from script.inputprofiler import inputprofiler def preprocessing(data): profilerobj = inputprofiler() data = profilerobj.run(data) data = data.astype(np.float64) return(data) import matplotlib.pyplot as plt try: from sklearn.externals import joblib except: import joblib import os,sys import pandas as pd from alibi.explainers import ALE,plot_ale import io import json import urllib, base64 import numpy as np from scipy.stats import linregress from statistics import mean def get_ranked_values(explanation): ranked_shap_vals = [] for cls_idx in range(len(explanation.shap_values)): this_ranking = ( explanation.raw['importances'][str(cls_idx)]['ranked_effect'], explanation.raw['importances'][str(cls_idx)]['names'] ) ranked_shap_vals.append(this_ranking) return ranked_shap_vals def feature_importance_using_shap(model,X,featuresNames,classes,x_test,x_test_waterfall): from alibi.explainers import KernelShap import shap shap.initjs() if hasattr(model, "decision_function"): pred_fcn = model.decision_function elif hasattr(model, "predict_proba"): pred_fcn = model.predict_proba else: pred_fcn = model.predict try: svm_explainer = KernelShap(pred_fcn,feature_names=featuresNames) xtest = x_test[0].reshape(1, -1) svm_explainer.fit(X,n_background_samples=100) svm_explanation = svm_explainer.explain(xtest) try: idx = 0 instance = x_test[0][None, :] pred = model.predict(instance) class_idx = pred.item() if isinstance(svm_explainer.expected_value,np.ndarray): forceplot = shap.force_plot(svm_explainer.expected_value[class_idx],svm_explanation.shap_values[class_idx][idx,:],instance,feature_names=featuresNames,matplotlib=True,show=False) else: forceplot = shap.force_plot(svm_explainer.expected_value,svm_explanation.shap_values[0][idx,:],instance,feature_names=featuresNames,matplotlib=True,show=False) plt.tight_layout(pad = 0) image = io.BytesIO() plt.savefig(image, format='png') image.seek(0) string = base64.b64encode(image.read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) except Exception as inst: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) image_64 = '' try: plt.clf() if isinstance(svm_explainer.expected_value,np.ndarray): r = shap.multioutput_decision_plot(svm_explainer.expected_value.tolist(), svm_explanation.shap_values, idx, feature_names=featuresNames, feature_order='importance', highlight=[class_idx], legend_labels=classes, return_objects=True, legend_location='lower right',show=False) else: expectedvalues = [svm_explainer.expected_value] r = shap.multioutput_decision_plot(expectedvalues, svm_explanation.shap_values, idx, feature_names=featuresNames, highlight = [0], return_objects=True, legend_labels=['Value'], feature_order='importance', show=False) plt.tight_layout(pad = 0) image = io.BytesIO() plt.savefig(image, format='png') image.seek(0) string = base64.b64encode(image.read()) image2_64 = 'data:image/png;base64,' + urllib.parse.quote(string) except Exception as inst: print(inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) image2_64 = '' except Exception as inst: print(inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) image2_64 = '' image_64 = '' try: plt.clf() x_test_waterfall = x_test_waterfall[featuresNames] explainer = shap.Explainer(model.predict, x_test_waterfall, feature_names=featuresNames) shap_values = explainer(x_test) r = shap.plots.waterfall(shap_values[0],
show=False) image = io.BytesIO() plt.savefig(image, format='png', bbox_inches='tight') image.seek(0) string = base64.b64encode(image.read()) image3_64 = 'data:image/png;base64,' + urllib.parse.quote(string) except Exception as inst: print(inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno)) image3_64 = '' return (image_64, image2_64, image3_64) def feature_importance(xtrain,ytrain,xfeatures,yfeature,problemType): if problemType == 'classification': from sklearn.feature_selection import SelectFromModel from sklearn.ensemble import ExtraTreesClassifier selector = SelectFromModel(ExtraTreesClassifier()) selector.fit(xtrain,ytrain) values = selector.estimator_.feature_importances_ elif problemType == 'regression': from sklearn.feature_selection import SelectFromModel from sklearn.linear_model import Lasso selector = SelectFromModel(Lasso()) selector.fit(xtrain,ytrain) values = np.abs(selector.estimator_.coef_) labels = xtrain.columns.tolist() dft = pd.DataFrame() dft['labels'] = labels dft['values'] = values maxrecord = dft.iloc[dft['values'].argmax()] mostimportantfeature = maxrecord['labels'] f_imp = dft.to_json(orient='records') return(f_imp,mostimportantfeature) def get_trust_score(prdictfn,proba_fun,X_train,y_train): from alibi.confidence import TrustScore ts = TrustScore(k_filter=10,alpha=.05,filter_type='distance_knn',leaf_size=40,metric='euclidean',dist_filter_type='point') ts.fit(X_train, y_train, classes=3) y_pred = prdictfn(X_train) #y_prod = proba_fun(X_train) #probas = y_prod[range(len(y_pred)), y_pred] score, closest_class = ts.score(X_train, y_pred,k=2,dist_type='point') return(mean(score)) def getCounterFactuals(model,prdictfn,features,x_train,categories): from alibi.explainers import CounterFactualProto cat_vars_ord = {} categoryList=categories.keys().tolist() categoryCountList=categories.tolist() for i in range(0,len(categoryCountList)): cat_vars_ord[categoryList[i]] = categoryCountList[i] print(cat_vars_ord) X = x_train[0].reshape((1,) + x_train[0].shape) shape = X.shape print(shape) beta = .01 c_init = 1. c_steps = 5 max_iterations = 500 rng = (-1., 1.) # scale features between -1 and 1 feature_range = (x_train.min(axis=0), x_train.max(axis=0)) cf = CounterFactualProto(prdictfn,shape,cat_vars=cat_vars_ord) explanation = cf.explain(X) print(explanation) def getAnchorTabularofFirstRecord(predict_fn,features,X_train,X_test,labelMap, class_percent=None): threshold = 0.95 from alibi.explainers import AnchorTabular explainer = AnchorTabular(predict_fn, features) explainer.fit(X_train.values) X_test = X_test.values anchors = [] for idx in range(len(X_test)): prediction = explainer.predictor(X_test[idx].reshape(1, -1))[0] if len(labelMap) > 0: predictionstr = list(labelMap.keys())[list(labelMap.values()).index(prediction)] else: predictionstr = prediction explanation = explainer.explain(X_test[idx],threshold=threshold) if str(explanation.anchor) == '[]': if class_percent and class_percent.get(prediction, 0.0) > threshold: anchor = f"Cannot explain the prediction of this class ({predictionstr}) since there is no salient subset of features that is necessary for the prediction to hold. This behaviour is typical when the data is very imbalanced and is seen for the majority class in a classification problem." else: anchor = f'Can not get the explanation for {predictionstr}.' precision = explanation.precision[0] else: anchor = '%s' % (' AND '.join(explanation.anchor)) precision = explanation.precision coverage = explanation.coverage anchorjson = {} anchorjson['features'] = eval(str(features)) anchorjson['values'] = eval(str(list(X_test[idx]))) anchorjson['prediction'] = str(predictionstr) anchorjson['precision'] = str(round(precision,2)) anchorjson['anchor'] = anchor anchors.append(anchorjson) print(anchors) try: return(json.dumps(anchors)) except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return(json.dumps({})) def ale_analysis(): displaypath = os.path.join(os.path.dirname(os.path.abspath(__file__)),"etc","display.json") with open(displaypath) as file: config = json.load(file) file.close() model = joblib.load(os.path.join(os.path.dirname(os.path.abspath(__file__)),"model",config['saved_model'])) predict_fn = lambda x: model.predict(x) predictproba_fn = lambda x: model.predict_proba(x) dathPath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'data','postprocesseddata.csv.gz') dataFrame=pd.read_csv(dathPath,compression='gzip') #dataFrame = pd.read_csv(dathPath) testdathPath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'data','predicteddata.csv.gz') testdataFrame=pd.read_csv(testdathPath,compression='gzip') #testdataFrame = pd.read_csv(testdathPath) features = config['modelFeatures']#['SepalWidthCm','PetalLengthCm'] targetfeature = config['targetFeature']#'Species' labelMap = config['labelMaps'] targetData = dataFrame[targetfeature] if config['problemType'].lower() == 'regression': X_train = dataFrame[features] X_test = testdataFrame.head(5) X_test = X_test[features] else: valueCount=targetData.value_counts() class_percent = (valueCount/ len(targetData)).to_dict() categoryList=valueCount.keys().tolist() class_names = categoryList X_train = dataFrame[features] X_test = testdataFrame.groupby('predict').first().reset_index() X_test = X_test[features] f_imp,m_imp_f = feature_importance(X_train,targetData,features,targetfeature,config['problemType'].lower()) if hasattr(model, "decision_function"): logit_fun_lr = model.decision_function try: logit_ale_lr = ALE(logit_fun_lr, feature_names=features, target_names=categoryList) logit_exp_lr = logit_ale_lr.explain(X_train.values) values = logit_exp_lr.ale_values feature = logit_exp_lr.feature_names feature_values = logit_exp_lr.feature_values lines= [] sentences = [] for x in range(0,len(feature)): f_value = feature_values[x] value = values[x] lines= [] for y in range(0,len(class_names)): line = [] for z in value: cordinate = z[y] line.append(cordinate) lines.append(line) line = lines[0] slope1, intercept1, r_value, p_value, std_err = linregress(f_value,line) line = lines[1] slope2, intercept2, r_value, p_value, std_err = linregress(f_value,line) xi = (intercept1-intercept2) / (slope2-slope1) xi = round(xi,2) lastvalues = {} i = 0 for line in lines: value = line[len(line)-1] lastvalues[class_names[i]] = value i = i+1 Keymax = max(lastvalues, key=lastvalues.get) Keymin = min(lastvalues, key=lastvalues.get) Keymaxclass = list(labelMap.keys())[list(labelMap.values()).index(Keymax)] Keyminclass = list(labelMap.keys())[list(labelMap.values()).index(Keymin)] sentense = '<b>Effect of '+str(feature[x])+'</b><br>For data samples having <b>'+str(feature[x])+'</b> >= <b>~'+str(xi)+'</b> ,there is a very high chance that they are of class <b>'+str(Keymaxclass)+'</b> '+targetfeature+'. For data samples having <b>'+str(feature[x])+'</b> < <b>~'+str(xi)+'</b> there is a very high change that they are of class <b>'+str(Keyminclass)+'</b> '+targetfeature+'.' sentences.append(sentense) except: sentense = '' sentences.append(sentense) xi = 0 elif hasattr(model, "predict_proba"): logit_fun_lr = model.predict_proba logit_ale_lr = ALE(logit_fun_lr, feature_names=features, target_names=categoryList) logit_exp_lr = logit_ale_lr.explain(X_train.values) values = logit_exp_lr.ale_values feature = logit_exp_lr.feature_names feature_values = logit_exp_lr.feature_values lines= [] sentences = [] sentense = 'Graphs gives a feature value how much more(less) probability does the model assign to each class relative to mean prediction. This also means that any increase in relative probability of one class must result into a decrease in probability of another class.' sentences.append(sentense) xi = 0 elif hasattr(model, "predict"): logit_fun_lr = model.predict logit_ale_lr = ALE(logit_fun_lr, feature_names=features, target_names=['Value']) logit_exp_lr = logit_ale_lr.explain(X_train.values) values = logit_exp_lr.ale_values feature = logit_exp_lr.feature_names feature_values = logit_exp_lr.feature_values lines= [] sentences = [] sentense = 'The ALE value corresponding to that feature value is difference to the mean effect of that feature. Put differently, the ALE value is the relative feature effect on the prediction at that feature value.' sentences.append(sentense) xi = 0 if (len(features)%2 ==0): n_cols = int(len(features)/2) else: n_cols = int(len(features)/2)+1 figheight = n_cols*3 try: plot_ale(logit_exp_lr,n_cols=2, fig_kw={'figwidth': 8, 'figheight': figheight}) plt.tight_layout(pad = 0) image = io.BytesIO() plt.savefig(image, format='png') image.seek(0) string = base64.b64encode(image.read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) except: image_64 = '' #score = get_trust_score(model.predict,proba_fun_lr,X_train.values,targetData.values) if config['problemType'].lower() == 'classification': anchorjson = getAnchorTabularofFirstRecord(predict_fn,features,X_train,X_test,labelMap,class_percent) else: anchorjson = getAnchorTabularofFirstRecord(predict_fn,features,X_train,X_test,labelMap) #anchors=[] #anchorjson = json.dumps(anchors) #feature_importance_using_shap(model,X_train.values,features,class_names) #getCounterFactuals(model,predictproba_fn,features,X_train.values,valueCount) output_json = {"status":"SUCCESS","data":{"data":image_64,"most_influencedfeature":m_imp_f,"interceptionpoint":xi,"sentences":sentences,"feature_importance":json.loads(f_imp),"anchorjson":json.loads(anchorjson)}} output_json = json.dumps(output_json) print("aion_ai_explanation:",output_json) return(output_json) def local_analysis(jsonData): jsonData = json.loads(jsonData) displaypath = os.path.join(os.path.dirname(os.path.abspath(__file__)),"etc","display.json") with open(displaypath) as file: config = json.load(file) file.close() model = joblib.load(os
.path.join(os.path.dirname(os.path.abspath(__file__)),"model",config['saved_model'])) predict_fn = lambda x: model.predict(x) dathPath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'data','postprocesseddata.csv.gz') dataFrame=pd.read_csv(dathPath,compression='gzip') testdathPath = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'predicteddata.csv.gz') testdataFrame = pd.read_csv(testdathPath, compression='gzip') features = config['modelFeatures']#['SepalWidthCm','PetalLengthCm'] targetfeature = config['targetFeature']#'Species' targetData = dataFrame[targetfeature] valueCount=targetData.value_counts() categoryList=valueCount.keys().tolist() class_names = categoryList #class_names = class_names.sort() X_train = dataFrame[features] from pandas import json_normalize df_test = json_normalize(jsonData) df_test = preprocessing(df_test) df_test = df_test[features] from alibi.explainers import AnchorTabular explainer = AnchorTabular(predict_fn, features) explainer.fit(X_train.values) df_test = df_test.values prediction = explainer.predictor(df_test.reshape(1, -1))[0] labelMap = config['labelMaps'] if len(labelMap) > 0: prediction = list(labelMap.keys())[list(labelMap.values()).index(prediction)] else: prediction = str(prediction) try: explanation = explainer.explain(df_test,threshold=0.85) if str(explanation.anchor) == '[]': anchor = 'NA' precision = str(round(explanation.precision[0],2)) else: anchor = '%s' % (' AND '.join(explanation.anchor)) precision = str(round(explanation.precision,2)) coverage = explanation.coverage except Exception as e: print(e) anchor = 'NA' precision = 0 coverage = 0 df_test_waterfall = testdataFrame forceplot,multidecisionplot,waterfallplot = feature_importance_using_shap(model,X_train.head(300).values,features,class_names,df_test,df_test_waterfall) output_json = {"status":"SUCCESS","data":{"anchor":anchor,"precision":precision,"coverage":coverage,"prediction":prediction,"forceplot":forceplot,"multidecisionplot":multidecisionplot,"waterfallplot":waterfallplot}} #print(output_json) output_json = json.dumps(output_json) print("aion_ai_explanation:",output_json) return(output_json) if __name__ == '__main__': analysis_type = sys.argv[1] if analysis_type.lower() == 'global': ale_analysis() if analysis_type.lower() == 'local': data = sys.argv[2] local_analysis(data)<s> from script.inputprofiler import inputprofiler def preprocessing(data): profilerobj = inputprofiler() data = profilerobj.run(data) data = data.astype(np.float64) return(data) import matplotlib.pyplot as plt try: from sklearn.externals import joblib except: import joblib import os,sys import pandas as pd from alibi.explainers import ALE,plot_ale import io import json import urllib, base64 import numpy as np from scipy.stats import linregress from statistics import mean from tensorflow.keras.models import load_model from tensorflow.keras import backend as K import tensorflow as tf tf.compat.v1.disable_eager_execution() def recall_m(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall def precision_m(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision def f1_m(y_true, y_pred): precision = precision_m(y_true, y_pred) recall = recall_m(y_true, y_pred) return 2*((precision*recall)/(precision+recall+K.epsilon())) def rmse_m(y_true, y_pred): return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1)) def r_square(y_true, y_pred): SS_res = K.sum(K.square(y_true-y_pred)) SS_tot = K.sum(K.square(y_true-K.mean(y_true))) return (1 - SS_res/(SS_tot+K.epsilon())) def get_ranked_values(explanation): ranked_shap_vals = [] for cls_idx in range(len(explanation.shap_values)): this_ranking = ( explanation.raw['importances'][str(cls_idx)]['ranked_effect'], explanation.raw['importances'][str(cls_idx)]['names'] ) ranked_shap_vals.append(this_ranking) return ranked_shap_vals def feature_importance_using_shap(model,X,featuresNames,classes,x_test,problemType,modelname,x_test_waterfall): from alibi.explainers import KernelShap import shap shap.initjs() if hasattr(model, "decision_function") and problemType.lower() == 'classification': pred_fcn = model.decision_function elif hasattr(model, "predict_proba") and problemType.lower() == 'classification': pred_fcn = lambda x: model.predict_proba(np.expand_dims(x, axis=2)) else: if modelname == 'Neural Network': pred_fcn = lambda x: model.predict(x) else: pred_fcn = lambda x: model.predict(np.expand_dims(x, axis=2)) svm_explainer = KernelShap(pred_fcn,feature_names=featuresNames) xtest = x_test[0].reshape(1, -1) svm_explainer.fit(X,n_background_samples=100) svm_explanation = svm_explainer.explain(xtest) try: idx = 0 instance = x_test[0][None, :] if problemType.lower() == 'classification': if modelname == 'Neural Network': instance = x_test else: instance = np.expand_dims(x_test, axis=2) pred = np.argmax(model.predict(instance),axis=1) class_idx = pred.item() else: instance = np.expand_dims(x_test, axis=2) pred = model.predict(instance) class_idx = 0 if isinstance(svm_explainer.expected_value,np.ndarray): forceplot = shap.force_plot(svm_explainer.expected_value[class_idx],svm_explanation.shap_values[class_idx][idx,:],instance,feature_names=featuresNames,matplotlib=True,show=False) else: forceplot = shap.force_plot(svm_explainer.expected_value,svm_explanation.shap_values[0][idx,:],instance,feature_names=featuresNames,matplotlib=True,show=False) plt.tight_layout(pad = 0) image = io.BytesIO() plt.savefig(image, format='png') image.seek(0) string = base64.b64encode(image.read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) except Exception as inst: print(inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) image_64 = '' try: plt.clf() if isinstance(svm_explainer.expected_value,np.ndarray): r = shap.multioutput_decision_plot(svm_explainer.expected_value.tolist(), svm_explanation.shap_values, idx, feature_names=featuresNames, feature_order='importance', highlight=[class_idx], legend_labels=classes, return_objects=True, legend_location='lower right',show=False) else: expectedvalues = [svm_explainer.expected_value] r = shap.multioutput_decision_plot(expectedvalues, svm_explanation.shap_values, idx, feature_names=featuresNames, highlight = [0], return_objects=True, legend_labels=['Value'], feature_order='importance', show=False) plt.tight_layout(pad = 0) image = io.BytesIO() plt.savefig(image, format='png') image.seek(0) string = base64.b64encode(image.read()) image2_64 = 'data:image/png;base64,' + urllib.parse.quote(string) except Exception as inst: print(inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) image2_64 = '' try: plt.clf() explainer = shap.DeepExplainer(model, X) shap_values = explainer.shap_values(x_test_waterfall.values) exp = shap.plots._waterfall.waterfall_legacy(explainer.expected_value[0].numpy(), shap_values[0][0],feature_names=featuresNames,show=False) image = io.BytesIO() plt.savefig(image, format='png', bbox_inches='tight') image.seek(0) string = base64.b64encode(image.read()) image3_64 = 'data:image/png;base64,' + urllib.parse.quote(string) except Exception as inst: print(inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno)) image3_64 = '' return(image_64,image2_64,image3_64) def feature_importance(xtrain,ytrain,xfeatures,yfeature,problemType): if problemType == 'classification': from sklearn.feature_selection import SelectFromModel from sklearn.ensemble import ExtraTreesClassifier selector = SelectFromModel(ExtraTreesClassifier()) selector.fit(xtrain,ytrain) values = selector.estimator_.feature_importances_ elif problemType == 'regression': from sklearn.feature_selection import SelectFromModel from sklearn.linear_model import Lasso selector = SelectFromModel(Lasso()) selector.fit(xtrain,ytrain) values = np.abs(selector.estimator_.coef_) labels = xtrain.columns.tolist() dft = pd.DataFrame() dft['labels'] = labels dft['values'] = values maxrecord = dft.iloc[dft['values'].argmax()] mostimportantfeature = maxrecord['labels'] f_imp = dft.to_json(orient='records') return(f_imp,mostimportantfeature) def get_trust_score(prdictfn,proba_fun,X_train,y_train): from alibi.confidence import TrustScore ts = TrustScore(k_filter=10,alpha=.05,filter_type='distance_knn',leaf_size=40,metric='euclidean',dist_filter_type='point') ts.fit(X_train, y_train, classes=3) y_pred = prdictfn(X_train) #y_prod = proba_fun(X_train) #probas = y_prod[range(len(y_pred)), y_pred] score, closest_class = ts.score(X_train, y_pred,k=2,dist_type='point') return(mean(score)) def getCounterFactuals(model,prdictfn,features,x_train,categories): from alibi.explainers import CounterFactualProto cat_vars_ord = {} categoryList=categories.keys().tolist() categoryCountList=categories.tolist() for i in range(0,len(categoryCountList)): cat_vars_ord[categoryList[i]] = categoryCountList[i] print(cat_vars_ord) X = x_train[0].reshape((1,) + x_train[0].shape) shape = X.shape print(shape) beta = .01 c_init = 1. c_steps = 5 max_iterations = 500 rng = (-1., 1.) # scale features between -1 and 1 feature_range = (x_
train.min(axis=0), x_train.max(axis=0)) cf = CounterFactualProto(prdictfn,shape,cat_vars=cat_vars_ord) explanation = cf.explain(X) print(explanation) def getAnchorTabularofFirstRecord(predict_fn,features,X_train,X_test,labelMap, class_percent=None): threshold = 0.95 from alibi.explainers import AnchorTabular explainer = AnchorTabular(predict_fn, features) explainer.fit(X_train.values) X_test = X_test.values anchors = [] for idx in range(len(X_test)): prediction = explainer.predictor(X_test[idx].reshape(1, -1))[0] if isinstance(prediction,np.ndarray): prediction = prediction[0] if len(labelMap) > 0: predictionstr = list(labelMap.keys())[list(labelMap.values()).index(prediction)] else: predictionstr = str(prediction) try: explanation = explainer.explain(X_test[idx],threshold=threshold) if str(explanation.anchor) == '[]': if class_percent and class_percent.get(prediction, 0.0) > threshold: anchor = f"Cannot explain the prediction of this class ({predictionstr}) since there is no salient subset of features that is necessary for the prediction to hold. This behaviour is typical when the data is very imbalanced and is seen for the majority class in a classification problem." else: anchor = f'Can not get the explaination for {predictionstr}.' precision = explanation.precision[0] else: anchor = '%s' % (' AND '.join(explanation.anchor)) precision = explanation.precision coverage = explanation.coverage except Exception as inst: print(inst) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) anchor = 'Reason Not found' precision = 0 anchorjson = {} anchorjson['features'] = eval(str(features)) anchorjson['values'] = eval(str(list(X_test[idx]))) anchorjson['prediction'] = predictionstr anchorjson['precision'] = precision anchorjson['anchor'] = anchor anchors.append(anchorjson) return(json.dumps(anchors)) def ale_analysis(): displaypath = os.path.join(os.path.dirname(os.path.abspath(__file__)),"etc","display.json") with open(displaypath) as file: config = json.load(file) file.close() scoreParam = config['scoreParam'] filename_dl = os.path.join(os.path.dirname(os.path.abspath(__file__)),"model",config['saved_model']) if(scoreParam.lower() == 'rmse'): model = load_model(filename_dl,custom_objects={"rmse": rmse_m},compile=False) model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[rmse_m]) elif(scoreParam.lower() == 'r2'): model = load_model(filename_dl,custom_objects={"r2": r_square},compile=False) model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[r_square]) elif(scoreParam.lower() == 'recall'): model = load_model(filename_dl,custom_objects={"recall": recall_m},compile=False) model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[recall_m]) elif(scoreParam.lower() == 'precision'): model = load_model(filename_dl,custom_objects={"precision": precision_m},compile=False) model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[precision_m]) elif(scoreParam.lower() == 'roc_auc'): model = load_model(filename_dl,compile=False) model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[tf.keras.metrics.AUC()]) elif(scoreParam.lower() == 'f1_score'): model = load_model(filename_dl,custom_objects={"f1_score": f1_m},compile=False) model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[f1_m]) else: model = load_model(filename_dl) if config['modelname'] == 'Neural Network': predict_fn = lambda x: model.predict(x) else: predict_fn = lambda x: model.predict(np.expand_dims(x, axis=2)) predictproba_fn = lambda x: model.predict_proba(np.expand_dims(x, axis=2)) dathPath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'data','postprocesseddata.csv.gz') dataFrame=pd.read_csv(dathPath,compression='gzip') testdathPath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'data','predicteddata.csv.gz') testdataFrame=pd.read_csv(testdathPath,compression='gzip') features = config['modelFeatures']#['SepalWidthCm','PetalLengthCm'] targetfeature = config['targetFeature']#'Species' labelMap = config['labelMaps'] targetData = dataFrame[targetfeature] if config['problemType'].lower() == 'regression': X_train = dataFrame[features] X_test = testdataFrame.head(5) X_test = X_test[features] else: valueCount=targetData.value_counts() class_percent = (valueCount/ len(targetData)).to_dict() categoryList=valueCount.keys().tolist() class_names = categoryList X_train = dataFrame[features] X_test = testdataFrame.groupby('predict').first().reset_index() X_test = X_test[features] f_imp,m_imp_f = feature_importance(X_train,targetData,features,targetfeature,config['problemType'].lower()) if hasattr(model, "decision_function") and config['problemType'].lower() == 'classification': logit_fun_lr = model.decision_function try: logit_ale_lr = ALE(logit_fun_lr, feature_names=features, target_names=categoryList) logit_exp_lr = logit_ale_lr.explain(X_train.values) values = logit_exp_lr.ale_values feature = logit_exp_lr.feature_names feature_values = logit_exp_lr.feature_values lines= [] sentences = [] for x in range(0,len(feature)): f_value = feature_values[x] value = values[x] lines= [] for y in range(0,len(class_names)): line = [] for z in value: cordinate = z[y] line.append(cordinate) lines.append(line) line = lines[0] slope1, intercept1, r_value, p_value, std_err = linregress(f_value,line) line = lines[1] slope2, intercept2, r_value, p_value, std_err = linregress(f_value,line) xi = (intercept1-intercept2) / (slope2-slope1) xi = round(xi,2) lastvalues = {} i = 0 for line in lines: value = line[len(line)-1] lastvalues[class_names[i]] = value i = i+1 Keymax = max(lastvalues, key=lastvalues.get) Keymin = min(lastvalues, key=lastvalues.get) Keymaxclass = list(labelMap.keys())[list(labelMap.values()).index(Keymax)] Keyminclass = list(labelMap.keys())[list(labelMap.values()).index(Keymin)] sentense = '<b>Effect of '+str(feature[x])+'</b><br>For data samples having <b>'+str(feature[x])+'</b> >= <b>~'+str(xi)+'</b> ,there is a very high chance that they are of class <b>'+str(Keymaxclass)+'</b> '+targetfeature+'. For data samples having <b>'+str(feature[x])+'</b> < <b>~'+str(xi)+'</b> there is a very high change that they are of class <b>'+str(Keyminclass)+'</b> '+targetfeature+'.' sentences.append(sentense) except: sentense = '' sentences.append(sentense) xi = 0 elif hasattr(model, "predict_proba") and config['problemType'].lower() == 'classification': logit_fun_lr = lambda x: model.predict_proba(np.expand_dims(x, axis=2)) logit_ale_lr = ALE(logit_fun_lr, feature_names=features, target_names=categoryList) print(model.__class__) try: logit_exp_lr = logit_ale_lr.explain(X_train.values) except: X = np.expand_dims(X_train, axis=2) logit_exp_lr = logit_ale_lr.explain(X) values = logit_exp_lr.ale_values feature = logit_exp_lr.feature_names feature_values = logit_exp_lr.feature_values lines= [] sentences = [] sentense = 'Graphs gives a feature value how much more(less) probability does the model assign to each class relative to mean prediction. This also means that any increase in relative probability of one class must result into a decrease in probability of another class.' sentences.append(sentense) xi = 0 elif hasattr(model, "predict"): try: if config['modelname'] == 'Neural Network': logit_fun_lr = lambda x: model.predict(x) else: logit_fun_lr = lambda x: model.predict(np.expand_dims(x, axis=2)) logit_ale_lr = ALE(logit_fun_lr, feature_names=features, target_names=['Value']) logit_exp_lr = logit_ale_lr.explain(X_train.values) values = logit_exp_lr.ale_values feature = logit_exp_lr.feature_names feature_values = logit_exp_lr.feature_values lines= [] sentences = [] sentense = 'The ALE value corresponding to that feature value is difference to the mean effect of that feature. Put differently, the ALE value is the relative feature effect on the prediction at that feature value.' sentences.append(sentense) xi = 0 except: xi = 0 sentences = [] if (len(features)%2 ==0): n_cols = int(len(features)/2) else: n_cols = int(len(features)/2)+1 figheight = n_cols*3 try: plot_ale(logit_exp_lr,n_cols=2, fig_kw={'figwidth': 8, 'figheight': figheight}) plt.tight_layout(pad = 0) image = io.BytesIO() plt.savefig(image, format='png') image.seek(0) string = base64.b64encode(image.read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) except: image_64 = '' #score = get_trust_score(model.predict,proba_fun_lr,X_train.values,targetData.values) if config['problemType'].lower() == 'classification': anchorjson = getAnchorTabularofFirstRecord(predict_fn,features,X_train,X_test,labelMap,class_percent) else: anchorjson = getAnchorTabularofFirstRecord(predict_fn,features,X_train,X_test,labelMap) #anchors=[] #anchorjson = json.dumps(anchors) #feature_importance_using_shap(model,X_train.values,features,class_names) #getCounterFactuals(model,predictproba_fn,features,X_train.values,valueCount) output_json = {"status":"SUCCESS","data":{"data":image_64,"most_influencedfeature":m_imp_f,"interceptionpoint":xi,"sentences":sentences,"feature_importance":json.loads(f_imp),"anchorjson":json.loads(anchorjson)}} output_json = json.dumps(output_json) print("aion_ai_explanation:",output_json) return(output_json) def local_analysis(jsonData): jsonData = json.loads(jsonData) displaypath = os.path.join(os.path.dirname(os.path.abspath(__file__)),"etc","display.json") with open(displaypath) as file: config = json.load(file) file.close() scoreParam = config['scoreParam'] filename_dl = os.path.join(os.path.dirname(os.path.abspath(__file__)),"model",config['saved_model']) if(scoreParam.lower() == 'rmse'): model = load_model(filename_dl,custom_objects={"rmse": rmse_m},compile=False) model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[rmse_m]) elif(scoreParam.lower() == 'r2'): model = load_model(filename_dl,custom_objects={"r2": r_square},compile=False) model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[r_square]) elif(scoreParam.lower()
== 'recall'): model = load_model(filename_dl,custom_objects={"recall": recall_m},compile=False) model.compile(loss='binary_crossentropy',optimizer='Nadam', metrics=[recall_m]) elif(scoreParam.lower() == 'precision'): model = load_model(filename_dl,
processed "+str(self.num_records)+".-- Loss: "+str(loss)+". -- accuracy: "+str(accuracy)) logger.info("FL Client model intercept: "+str(model.intercept_)) logger.info("FL Client model coefficients: "+str(model.coef_)) self.model_save(self.model) return loss, len(self.X_test), {"accuracy": accuracy} elif (self.problem_type.lower() == 'regression'): if (self.model_name.lower() == 'linearregression' ): # loss = log_loss(self.y_test, self.model.predict(self.X_test)) mse=mean_squared_error(self.y_test, self.model.predict(self.X_test)) rmse = np.sqrt(mean_squared_error(self.y_test, self.model.predict(self.X_test))) mae = mean_absolute_error(self.y_test, self.model.predict(self.X_test)) r2=r2_score(self.y_test, self.model.predict(self.X_test)) loss = rmse results = { "mean_absolute_error": mae, "mean_squared_error": mse, "root_mean_squared_error": rmse, "r2":r2, } print(f"{self.client_id} Sending weights -- data processed {self.num_records}, -- Loss: {(rmse)}. -- metrics: {results}. ") logger.info(str(self.client_id)+" Sending weights -- data processed "+str(self.num_records)+".-- Loss: "+str(rmse)+". -- metrics: "+str(results)) logger.info("FL Client model intercept: "+str(self.model.intercept_)) logger.info("FL Client model coefficients: "+str(self.model.coef_)) self.model_save(self.model) return loss, len(self.X_test), results """ The below aion fl client is for deep learning process. Why different client for sklearn and deeplearn ?: Because, flower calling the client object and process all functions (get_parameters,fit and evaluate) internally. So, user space we cannot combine both (sklearn n dl) using if..else. """ class aionflc_dl(flower.client.NumPyClient): def __init__(self,model,num_rounds,model_name,version,wait_time,client_id,num_records,model_overwrite,problem_type,X_train, X_test, y_train, y_test,model_params): self.count=0 self.num_rounds=round(num_rounds) self.model_name=model_name self.version=version self.wait_time=int(wait_time) self.client_id=client_id self.num_records=num_records self.model_overwrite=model_overwrite self.model=model self.problem_type=problem_type self.X_train, self.X_test, self.y_train, self.y_test=X_train, X_test, y_train, y_test self.model_params=model_params # """ The below part not used now. In future, for our own grpc communication, this module will be used.Call this function where we want. Need to modify aiongrpcproto.proto according our requirement.""" # def callaiongrpcclient(self): # clientins = aiongrpcclient() # status=clientins.startgrpcclient() # return status #Save the final model def model_save(self,model): ##Locate standard model dir to save model cwd = os.path.abspath(os.path.dirname(__file__)) model_location=os.path.join(cwd, 'models') try: os.makedirs(model_location) except FileExistsError as fe: # here,model_location already exists pass model_name=self.model_name # version=self.version ## Saving model if (self.model_overwrite.lower() == 'false'): version=str(self.count) if (model_name.lower() == "deeplearning"): file_name=model_name+'_'+self.problem_type+'_'+version+".h5" saved_model=os.path.normpath(os.path.join(model_location,file_name)) log(INFO, "flclient saved_model path: %s ",str(saved_model)) try: model.save(saved_model) return True except Exception as e: logger.info("model save error. Err.Msg: "+str(e)) return False else: file_name=model_name+'_'+self.problem_type+'_'+version+".sav" saved_model=os.path.normpath(os.path.join(model_location,file_name)) log(INFO, "flclient saved_model path: %s ",str(saved_model)) try: with open (saved_model,'wb') as f: pkl.dump(model,f) return True except Exception as e: logger.info("model save error. Err.Msg: "+str(e)) return False elif (self.model_overwrite.lower() == 'true'): version=str(self.version) if (model_name.lower() == "deeplearning"): file_name=model_name+'_'+self.problem_type+'_'+version+".h5" saved_model=os.path.normpath(os.path.join(model_location,file_name)) log(INFO, "flclient saved_model path: %s ",str(saved_model)) try: model.save(saved_model) return True except Exception as e: logger.info("model save error. Err.Msg: "+str(e)) return False else: file_name=model_name+'_'+self.problem_type+'_'+version+".sav" saved_model=os.path.normpath(os.path.join(model_location,file_name)) log(INFO, "flclient saved_model path: %s ",str(saved_model)) try: with open (saved_model,'wb') as f: pkl.dump(model,f) return True except Exception as e: logger.info("model save error. Err.Msg: "+str(e)) return False else: ##Write own user instruction pass def get_parameters(self, config): """Get parameters of the local model.""" return self.model.get_weights() def get_properties(self,model,time_out): """Return the current client properties.""" client_info={'client_id':self.client_id} time_out=100 return client_info,model,time_out def fit(self, parameters, config): """Train parameters on the locally held training set.""" # Update local model parameters self.model.set_weights(parameters) num_partitions=(self.num_rounds) # num_partitions=round(5) xtrain=np.array_split(self.X_train, num_partitions)[self.count] ytrain=np.array_split(self.y_train, num_partitions)[self.count] # y_train = np_utils.to_categorical(y_train, num_classes) # y_test = np_utils.to_categorical(y_test, num_classes) # Get hyperparameters for this round batch_size: int = int(self.model_params["batch_size"]) epochs: int = int(self.model_params["epochs"]) # round: int = config["rnd"] # self.round_id = round log(INFO, "===========================") log(INFO, "Start training model on local client %s round %i", self.client_id, config['rnd']) time.sleep(self.wait_time) self.count+=1 # Train the model using hyperparameters from config history = self.model.fit( xtrain, ytrain, batch_size, epochs, shuffle=False, # validation_split=0.1, validation_data=(self.X_test, self.y_test), verbose=1 ) # Return updated model parameters and results parameters_prime = self.model.get_weights() num_examples_train = len(self.X_train) model_name = self.model_name problem_type = self.problem_type if model_name == "deeplearning": if problem_type == "classification": acc = self.model.history.history['val_accuracy'] log(INFO, "Validated accuracy at the end of current round of client %s : %.2f %%", self.client_id, acc[-1]*100) log(INFO, "Finished training model on local client %s", self.client_id) results = { "loss": history.history["loss"][0], "accuracy": history.history["accuracy"][0], "val_loss": history.history["val_loss"][0], "val_accuracy": history.history["val_accuracy"][0], } if problem_type == "regression": mean_absolute_error = history.history['mean_absolute_error'][0] mean_squared_error = history.history['mean_squared_error'][0] y_pred = self.model.predict(self.X_test) from sklearn import metrics root_mean_squared_error = np.sqrt(metrics.mean_squared_error(self.y_test, y_pred)) log(INFO, "Mean Absolute Error at the end of current round of client %s : %f", self.client_id, mean_absolute_error) log(INFO, "Mean Squared Error at the end of current round of client %s : %f", self.client_id, mean_squared_error) log(INFO, "Root Mean Squared Error at the end of current round of client %s : %f", self.client_id, root_mean_squared_error) log(INFO, "Finished training model on local client %s", self.client_id) results = { "mean_absolute_error": mean_absolute_error, "mean_squared_error": mean_squared_error, "root_mean_squared_error": root_mean_squared_error, } return parameters_prime, num_examples_train, results def evaluate(self, parameters, config): """Evaluate parameters on the locally held test set.""" # Update local model with global parameters self.model.set_weights(parameters) num_partitions=(self.num_rounds) # Get config values # batch_size: int = config["val_batch_size"] batch_size: int = int(self.model_params["batch_size"]) steps: int = np.ceil(len(self.X_test)/batch_size) num_examples_test = len(self.X_test) log(INFO, "Run for only %i steps", steps) # Evaluate global model parameters on the local test data and return results model_name = self.model_name problem_type = self.problem_type self.model_save(self.model) if model_name == "deeplearning": if problem_type == "classification": loss, accuracy = self.model.evaluate(self.X_test, self.y_test,verbose=0) log(INFO, "Client %s : Accuracy %.2f %%", self.client_id, accuracy*100) log(INFO, "Client %s : Loss %.4f ", self.client_id, loss) return loss, num_examples_test, {"accuracy": accuracy} if problem_type == "regression": loss, mean_absolute_error, mean_squared_error = self.model.evaluate(self.X_test, self.y_test, steps=steps,verbose=1) y_pred = self.model.predict(self.X_test) root_mean_squared_error = np.sqrt(metrics.mean_squared_error(self.y_test, y_pred)) log(INFO, "Client %s : mean_absolute_error %f ", self.client_id, mean_absolute_error) log(INFO, "Client %s : mean_squared_error %f ", self.client_id, mean_squared_error) log(INFO, "Client %s : root_mean_squared_error %f ", self.client_id, root_mean_squared_error) return loss, num_examples_test, {"mean_absolute_error": mean_absolute_error, "mean_squared_error": mean_squared_error, "root_mean_squared_error": root_mean_squared_error} def randclientid(s,c): c=string.ascii_uppercase + string.digits return ''.join(random.choice(c) for x in range(s)) ## Loading input data def dataLoad(jsonfile): with open(jsonfile, 'r') as file: data = json.load(file) server_ip=str(data["server_IP"]) server_port=str(data["server_port"]) model_name=str(data["model_name"]) problem_type=str(data["problem_type"]) data_location=str(data["data_location"]) # deploy_location=str(data["deploy_location"]) model_params=data["model_hyperparams"] train_size=int(data["train_size"]) model_version=str(data["version"]) selected_feature=data["selected_feature"] if (type(selected_feature) is str): selected_feature=selected_feature.split(',') model_overwrite=data['model_overwrite'] target_feature=data["target_feature"] num_records=int(data['num_records_per_round']) wait_time=data['wait_time'] server_address=server_ip+':'+server_port # server_address=f"{server_ip}:{server_port}" return server_address,model_name,problem_type,data_location,model_params,model_version,selected_feature,target_feature,train_size,num_records,wait_time,model_overwrite # def getfilepath() """ Main aion federated learning client function call. """ if __name__ == "__main__": ##Client random id gen. rand_id=randclientid(9, "ABC1234567890") client_id='flclient-'+str(rand_id) try: json_file=sys.argv[1] except Exception as e: # sys.stdout.write("Please provide input configuration file. example: < python.exe 'fedclient\\aionflc.py' 'fedclient\\config.json' > ") log(INFO, "Please provide input configuration file. example: <python.exe 'fedclient\\aionflc.py' 'fedclient\\config.json'> \\
n") server_address,model_name,problem_type,data_location,model_params,model_version,selected_feature,target_feature,train_size,num_records,wait_time,model_overwrite = dataLoad(json_file) file_name=model_name+'_'+model_version+".log" cwd = os.path.abspath(os.path.dirname(__file__)) log_location = os.path.join(cwd, 'logs') try: os.makedirs(log_location) except FileExistsError as fe: # here,log_location already exists pass try: logobj = logging.getLogger('AION') fl_log=os.path.normpath(os.path.join(log_location,file_name)) log(INFO, "flclient log file path: %s ",str(fl_log)) logging.basicConfig(filename=fl_log,format='%(asctime)s %(message)s', filemode='w',level=logging.DEBUG) except Exception as e: log(INFO, "logging error. Error Msg: %s ",str(e)) pass ## default data location ~data\\inputfile.csv data_location = os.path.normpath(os.path.join(cwd, data_location)) df = pd.read_csv(data_location) df =df[~df.isin([np.nan, np.inf, -np.inf]).any(axis=1)] df=df.reset_index(drop=True) y=df[target_feature] # X = df.drop(target_feature, axis=1) # # print("selected_feature: \\n",selected_feature) X=df[selected_feature] input_shape = X.shape[1] # len(selected_feature) output_shape = len(y.value_counts()) test_size=(100-train_size)/100 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size) no_classes = len(df.groupby(target_feature).count()) no_features=len(selected_feature) ## Pass the train data. (X_train, y_train) = utils.partition(X_train, y_train, 1)[0] scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # y_train = pd.get_dummies(y_train) # y_test = pd.get_dummies(y_test) y_train_dl = pd.get_dummies(y_train, sparse=True) y_test_dl = pd.get_dummies(y_test, sparse=True) if (problem_type.lower() == "classification"): if (model_name.lower() == "logisticregression"): #n_classes = df[target_feature].nunique() no_classes = len(df.groupby(target_feature).count()) no_features=len(selected_feature) logger.info("no_classes: "+str(no_classes)) logger.info("no_features: "+str(no_features)) modelName="logisticregression" model = None model = LogisticRegression(**model_params, warm_start=True) try: status=utils.setmodelName(model_name) utils.set_initial_params(model,no_classes,no_features) except Exception as e: print("util error: \\n",e) num_rounds=round(len(df)/num_records) log(INFO, "Federated learning Client connecting to Server @: %s ",str(server_address)) try: flower.client.start_numpy_client(server_address=server_address, client=aionflc(model,num_rounds,model_name,model_version,wait_time,client_id,num_records,model_overwrite,problem_type,X_train_scaled, X_test_scaled, y_train, y_test)) except Exception as e: logger.info("AION FL Client instance error: \\n"+str(e)) log(INFO, "AION federated learning Client %s execution completed.",str(client_id)) elif (model_name.lower() == "deeplearning"): optimizer = model_params["optimizer"] loss_func = model_params["losses"] act_func = model_params["activation"] last_act_func = model_params["last_activation"] input_shape = X.shape[1] # len(selected_feature) output_shape = len(y.value_counts()) print(f"input_shape:{input_shape}, output_shape:{output_shape}.") model = None if output_shape == 2: if last_act_func == "sigmoid" and loss_func == "binary_crossentropy": model = dl_model.dl_binary_classification(input_shape, output_shape, optimizer, loss_func, act_func, last_act_func) elif last_act_func == "softmax" and loss_func == "categorical_crossentropy": model = dl_model.dl_binary_classification(input_shape, output_shape, optimizer, loss_func, act_func, last_act_func) else: model = dl_model.dl_multiClass_classification(input_shape, output_shape, optimizer, loss_func, act_func, last_act_func) print(model.summary()) # status=utils.setmodelName(modelName) # utils.set_initial_params(model,no_classes,no_features) num_rounds=round(len(df)/num_records) log(INFO, "Federated learning Client connecting to Server @: %s ",str(server_address)) try: flower.client.start_numpy_client(server_address=server_address, client=aionflc_dl(model,num_rounds,model_name,model_version,wait_time,client_id,num_records,model_overwrite,problem_type,X_train_scaled, X_test_scaled, y_train_dl, y_test_dl,model_params)) except Exception as e: logger.info("AION FL Client instance error: \\n"+str(e)) log(INFO, "AION federated learning Client %s execution completed.",str(client_id)) logger.info("AION federated learning Client execution completed."+str(client_id)) elif(problem_type.lower() == "regression"): if (model_name.lower() == "linearregression"): # model=LinearRegression(**model_params,warm_start=True) if model_params['fit_intercept'] == 'True': model_params['fit_intercept'] = True else: model_params['fit_intercept'] = False if model_params['copy_X'] == 'True': model_params['copy_X'] = True else: model_params['copy_X'] = False if model_params['positive'] == 'True': model_params['positive'] = True else: model_params['positive'] = False model=LinearRegression(**model_params) status=utils.setmodelName(model_name) utils.set_initial_params_reg(model,X_train.shape[0],X_train.shape[1]) num_rounds=round(len(df)/num_records) log(INFO, "Federated learning Client connecting to Server @: %s ",str(server_address)) try: flower.client.start_numpy_client(server_address=server_address, client=aionflc(model,num_rounds,model_name,model_version,wait_time,client_id,num_records,model_overwrite,problem_type,X_train_scaled, X_test_scaled, y_train, y_test)) except Exception as e: logger.info("AION FL Client instance error: \\n"+str(e)) log(INFO, "AION federated learning Client %s execution completed.",str(client_id)) elif(model_name.lower() == "deeplearning"): input_shape = X.shape[1] # len(selected_feature) output_shape = len(y.value_counts()) optimizer = model_params["optimizer"] loss_func = model_params["losses"] act_func = model_params["activation"] model = None model = dl_model.dl_regression_model(input_shape, 1, optimizer, loss_func, act_func) num_rounds=round(len(df)/num_records) log(INFO, "Federated learning Client connecting to Server @: %s ",str(server_address)) try: flower.client.start_numpy_client(server_address=server_address, client=aionflc_dl(model,num_rounds,model_name,model_version,wait_time,client_id,num_records,model_overwrite,problem_type,X_train_scaled, X_test_scaled, y_train, y_test,model_params)) except Exception as e: logger.info("AION FL Client instance error: \\n"+str(e)) log(INFO, "AION federated learning Client %s execution completed.",str(client_id)) <s> import tensorflow as tf def dl_regression_model(input_shape, output_shape, optimizer, loss_func, act_func): inputs = tf.keras.Input(shape=(input_shape,)) x = tf.keras.layers.Dense(64, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(inputs) x = tf.keras.layers.Dense(32, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) x = tf.keras.layers.Dense(16, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) x = tf.keras.layers.Dense(8, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) outputs = tf.keras.layers.Dense(output_shape, kernel_initializer='he_normal', bias_initializer='zeros')(x) model = tf.keras.Model(inputs=inputs, outputs=outputs) model.compile(loss=loss_func , optimizer=optimizer, metrics=["mean_absolute_error", "mean_squared_error", ]) return model def dl_multiClass_classification(input_shape, output_shape, optimizer, loss_func, act_func, last_act_func): inputs = tf.keras.Input(shape=(input_shape,)) x = tf.keras.layers.Dense(64, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(inputs) x = tf.keras.layers.Dense(32, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) x = tf.keras.layers.Dense(16, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) x = tf.keras.layers.Dense(8, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) outputs = tf.keras.layers.Dense(output_shape, kernel_initializer='he_normal', bias_initializer='zeros', activation=last_act_func)(x) model = tf.keras.Model(inputs=inputs, outputs=outputs) model.compile(optimizer, loss_func, metrics=["accuracy"]) return model def dl_binary_classification(input_shape, output_shape, optimizer, loss_func, act_func, last_act_func): inputs = tf.keras.Input(shape=(input_shape,)) x = tf.keras.layers.Dense(64, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(inputs) x = tf.keras.layers.Dense(32, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) x = tf.keras.layers.Dense(16, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) x = tf.keras.layers.Dense(8, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) outputs = tf.keras.layers.Dense(output_shape, kernel_initializer='he_normal', bias_initializer='zeros', activation=last_act_func)(x) model = tf.keras.Model(inputs=inputs, outputs=outputs) model.compile(optimizer, loss_func, metrics=["accuracy"]) return model <s><s> from typing import Tuple, Union, List import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import SGDClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from flwr.common.logger import log from logging import INFO XY = Tuple[np.ndarray, np.ndarray] Dataset = Tuple[XY, XY] LogRegParams = Union[XY, Tuple[np.ndarray]] XYList = List[XY] modelUsed=None modelname=None def setmodelName(modelselected): try: modelname=str(modelselected) print("setmodelName ,given modelname: \\n",modelname) if (modelname.lower() == 'logisticregression'): modelUsed=LogisticRegression() return True elif (modelname.lower() == "linearregression"): modelUsed = LinearRegression() return True elif (modelname.lower() == "sgdclassifier"): #from sklearn.linear_model import SGDClassifier modelUsed=SGDClassifier() return True elif (modelname.lower() == "knn"): modelUsed = KNeighborsClassifier() return True elif
(modelname.lower() == "decisiontreeclassifier"): modelUsed = DecisionTreeClassifier() return True else: return False except Exception as e: log(INFO, "set fl model name fn issue: ",e) def get_model_parameters(model:modelUsed) -> LogRegParams: """Returns the paramters of a sklearn LogisticRegression model.""" model_name=model.__class__.__name__ if model.fit_intercept: params = (model.coef_, model.intercept_) else: params = (model.coef_,) return params def set_model_params( model:modelUsed, params: LogRegParams ) -> modelUsed: """Sets the parameters of a sklean LogisticRegression model.""" model.coef_ = params[0] model_name=model.__class__.__name__ try: if model.fit_intercept: model.intercept_ = params[1] except Exception as e: log(INFO, "set_model_params fn issue: ",e) pass return model def set_initial_params_reg(model,no_vals,no_features): """Sets initial parameters as zeros Required since model params are uninitialized until model.fit is called. But server asks for initial parameters from clients at launch. Refer to sklearn.linear_model.LogisticRegression documentation for more information. """ no_vals = no_vals n_features = no_features # model.classes_ = np.array([i for i in range(n_classes)]) model.coef_ = np.zeros( n_features,) model_name=model.__class__.__name__ try: if model.fit_intercept: # model.intercept_ = np.ones((no_vals,1)) model.intercept_ = np.zeros((no_vals,)) except Exception as e: log(INFO, "set_initial_params fn issue: ",e) pass def set_initial_params(model,no_classes,no_features): """Sets initial parameters as zeros Required since model params are uninitialized until model.fit is called. But server asks for initial parameters from clients at launch. Refer to sklearn.linear_model.LogisticRegression documentation for more information. """ n_classes = no_classes n_features = no_features model.classes_ = np.array([i for i in range(n_classes)]) model.coef_ = np.zeros((n_classes, n_features)) model_name=model.__class__.__name__ try: if model.fit_intercept: model.intercept_ = np.zeros((n_classes,)) except Exception as e: log(INFO, "set_initial_params fn issue: ",e) pass def shuffle(X: np.ndarray, y: np.ndarray) -> XY: """Shuffle X and y.""" rng = np.random.default_rng() idx = rng.permutation(len(X)) return X[idx], y[idx] def partition(X: np.ndarray, y: np.ndarray, num_partitions: int) -> XYList: """Split X and y into a number of partitions.""" return list( zip(np.array_split(X, num_partitions), np.array_split(y, num_partitions)) ) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> import sys import os import pickle import json import traceback import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd import scipy from pandas import json_normalize from word2number import w2n from river import stream class incBatchPredictor(): def __init__(self): self.home = os.path.dirname(os.path.abspath(__file__)) self.configPath = os.path.join(self.home, 'production', 'Config.json') self.configDict = {} self.incFillPath = os.path.join(self.home,'production','profiler','incFill.pkl') self.incLabelMappingPath = os.path.join(self.home,'production', 'profiler' , 'incLabelMapping.pkl') self.incCatEncoderPath = os.path.join(self.home, 'production' , 'profiler', 'incCatEncoder.pkl') self.incScalerPath = os.path.join(self.home, 'production', 'profiler','incScaler.pkl') self.incFill = None self.incLabelMapping = None self.incCatEncoder = None self.incScaler = None self.model = None self.targetCol = None self.modelName = '' self.problemType = '' self.numFtrs = [] self.catFtrs = [] def readData(self, data): try: if os.path.splitext(data)[1] == ".tsv": df=pd.read_csv(data,encoding='utf-8',sep='\\t') elif os.path.splitext(data)[1] == ".csv": df=pd.read_csv(data,encoding='utf-8') elif os.path.splitext(data)[1] == ".dat": df=pd.read_csv(data,encoding='utf-8') else: if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) df = json_normalize(jsonData) df.rename(columns=lambda x:x.strip(), inplace=True) return df except KeyError as e: output = {"status":"FAIL","message":str(e).strip('"')} print(json.dumps(output)) except Exception as e: output = {"status":"FAIL","message":str(e).strip('"')} print(json.dumps(output)) def readConfig(self): with open(self.configPath, 'r', encoding= 'utf8') as f: self.configDict = json.load(f) self.targetCol = self.configDict['targetCol'] if 'numFtrs' in self.configDict: self.numFtrs = self.configDict['numFtrs'] if 'catFtrs' in self.configDict: self.catFtrs = self.configDict['catFtrs'] if 'allNumCols' in self.configDict: self.allNumCols = self.configDict['allNumCols'] if 'allCatCols' in self.configDict: self.allCatCols = self.configDict['allCatCols'] if 'wordToNumCols' in self.configDict: self.wordToNumericCols = self.configDict['wordToNumCols'] self.emptyFtrs = self.configDict['emptyFtrs'] self.allFtrs = self.configDict['allFtrs'] self.modelName = self.configDict['modelName'] self.problemType = self.configDict['problemType'] self.modelPath = os.path.join(self.home, 'production', 'model', self.modelName+'.pkl') self.scoreParam = self.configDict['scoreParam'] self.score = self.configDict['score'] def pickleLoad(self, file): if os.path.exists(file): with open(file, 'rb') as f: model = pickle.load(f) return model else: return None def s2n(self,value): try: x=eval(value) return x except: try: return w2n.word_to_num(value) except: return np.nan def convertWordToNumeric(self,dataframe,feature): try: dataframe[feature]=dataframe[feature].apply(lambda x: self.s2n(x)) return dataframe except Exception as inst: self.log.info("convertWordToNumeric Failed ===>"+str(inst)) return dataframe def loadSavedModels(self): self.incFill = self.pickleLoad(self.incFillPath) self.incLabelMapping = self.pickleLoad(self.incLabelMappingPath) self.incCatEncoder = self.pickleLoad(self.incCatEncoderPath) self.incScaler = self.pickleLoad(self.incScalerPath) self.model = self.pickleLoad(self.modelPath) def apply_river_model(self, x, profModel): print(profModel.imputers) return pd.Series(profModel.transform_one(x)) def apply_enc(self, x): return pd.Series(self.incCatEncoder.transform_one(x)) def dataFramePreProcess(self, df): df = df.replace(r'^\\s*$', np.NaN, regex=True) df = df.replace('-', np.nan) df = df.replace('?', np.nan) columns = list(df.columns) if self.wordToNumericCols: for ftr in self.wordToNumericCols: if ftr in columns: tempDataFrame=df.copy(deep=True) testDf = self.convertWordToNumeric(tempDataFrame,ftr) try: df[ftr]=testDf[ftr].astype(float) except: pass columns = list(df.columns) for empCol in self.emptyFtrs: if empCol in columns: df = df.drop(columns=[empCol]) return df def profiler(self, df): df = df[self.allFtrs] df = self.dataFramePreProcess(df) if 'num_fill' in self.configDict: if self.configDict['num_fill'] == 'drop': df = df.dropna(axis = 0, subset=self.allNumCols) elif self.configDict['num_fill'] == 'zero': df[self.numFtrs] = df[self.numFtrs].fillna(value = 0.0) else: for x in self.numFtrs: if x == self.targetCol: continue df[x] = df[x].fillna(value = self.configDict['num_fill'][x]) if 'cat_fill' in self.configDict: if self.configDict['cat_fill'] == 'drop': df = df.dropna(axis = 0, subset=self.allCatCols) elif self.configDict['cat_fill'] == 'zero': df[self.catFtrs] = df[self.catFtrs].fillna(value = 0.0) else: for x in self.catFtrs: if x == self.targetCol: continue df[x] = df[x].fillna(value = self.configDict['cat_fill'][x]) if self.incCatEncoder: transformed_data = df[self.catFtrs].apply(lambda row: self.apply_enc(row.to_dict()), axis='columns') df[self.catFtrs] = transformed_data if self.incScaler: df[self.numFtrs] = self.incScaler.transform(df[self.numFtrs]) return df def trainedModel(self,X): testStream = stream.iter_pandas(X) preds = [] if self.problemType.lower() == 'regression': for xi,yi in testStream: try: pred = self.model.predict_proba_one(xi) preds.append(pred) except: pred = self.model.predict_one(xi) preds.append(pred) preds = pd.DataFrame(preds) return preds elif self.problemType.lower() == 'classification': for xi,yi in testStream: try: pred = self.model.predict_proba_one(xi) preds.append(pred) except: continue out = pd.DataFrame(preds) return out def apply_output_format(self,df,modeloutput): if self.problemType.lower() == 'regression': df['prediction'] = modeloutput[0] df['prediction'] = df['prediction'].round(2) elif self.problemType.lower() == 'classification': modeloutput = round(modeloutput,2) if modeloutput.shape[1] == 1: df['prediction'] = modeloutput df['prediction'] = df['prediction'].astype(int) else: try: predCol = modeloutput.idxmax(axis=1) df['prediction'] = predCol.astype(int) df['prediction'] = self.incLabelMapping.inverse_transform(df['prediction']) except: df['prediction'] = modeloutput.idxmax(axis=1) df['probability'] = modeloutput.max(axis=1).round(2) modeloutput.columns = modeloutput.columns.astype(int) modeloutput.columns = self.incLabelMapping.inverse_transform(list(modeloutput.columns)) df['remarks'] = modeloutput.apply(lambda x: x.to_json(), axis=1) outputjson = df.to_json(orient='records')
outputjson = {"status":"SUCCESS","data":json.loads(outputjson)} return(json.dumps(outputjson)) def predict(self,data): try: df = self.readData(data) dfOrg = df.copy() self.readConfig() if len(self.configDict)!=0: self.loadSavedModels() df = self.profiler(df) modeloutput = self.trainedModel(df) dfOrg = dfOrg[self.allFtrs] output = self.apply_output_format(dfOrg, modeloutput) else: pass except Exception as e: print(traceback.format_exc()) output = {"status":"FAIL","message":str(e).strip('"')} return output if __name__ == "__main__": incBPobj = incBatchPredictor() output = incBPobj.predict(sys.argv[1]) print("predictions:",output) <s> import sys import os import pickle import json import timeit import warnings import traceback import logging from pathlib import Path warnings.filterwarnings("ignore") import numpy as np import pandas as pd import matplotlib.pyplot as plt from pandas import json_normalize import shutil from word2number import w2n from pytz import timezone import datetime from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score, accuracy_score, r2_score,mean_absolute_error, mean_squared_error, recall_score, precision_score, f1_score from river import stream class incBatchLearner(): def __init__(self): self.home = os.path.dirname(os.path.abspath(__file__)) self.configPath = os.path.join(self.home, 'production', 'Config.json') self.configDict = {} self.updConfigDict = None self.incFillPath = os.path.join(self.home,'production','profiler','incFill.pkl') self.incOutlierRemPath = os.path.join(self.home, 'production', 'profiler', 'incOutlierRem.pkl') self.incLabelMappingPath = os.path.join(self.home,'production', 'profiler' , 'incLabelMapping.pkl') self.incCatEncoderPath = os.path.join(self.home, 'production' , 'profiler', 'incCatEncoder.pkl') self.incScalerPath = os.path.join(self.home, 'production', 'profiler','incScaler.pkl') self.testPath = os.path.join(self.home, 'data', 'test.csv') self.modelName = '' self.incFill = None self.incLabelMapping = None self.incCatEncoder = None self.incScaler = None self.incOutlierRem = None self.model = None self.targetCol = None self.numFtrs = [] self.catFtrs = [] self.allFtrs = [] self.logFileName=os.path.join(self.home,'log','model_training_logs.log') filehandler = logging.FileHandler(self.logFileName, 'a','utf-8') formatter = logging.Formatter('%(message)s') filehandler.setFormatter(formatter) self.log = logging.getLogger('eion') self.log.propagate = False self.log.addHandler(filehandler) self.log.setLevel(logging.INFO) def readData(self, data, isTest = False): if not isTest: self.log.info('New Data Path: '+str(data)) else: self.log.info('Test Data Path: '+str(data)) startTime = timeit.default_timer() if os.path.splitext(data)[1] == ".tsv": df=pd.read_csv(data,encoding='utf-8',sep='\\t') elif os.path.splitext(data)[1] == ".csv": df=pd.read_csv(data,encoding='utf-8') elif os.path.splitext(data)[1] == ".dat": df=pd.read_csv(data,encoding='utf-8') else: if os.path.splitext(data)[1] == ".json": with open(data,'r',encoding='utf-8') as f: jsonData = json.load(f) else: jsonData = json.loads(data) df = json_normalize(jsonData) dataLoadTime = timeit.default_timer() - startTime self.log.info('\\nData Load time(sec) :'+str(dataLoadTime)) self.log.info('\\n First ten rows of new data') self.log.info(df.head(10)) self.log.info('Data Frame shape: '+str(df.shape)) df.rename(columns=lambda x:x.strip(), inplace=True) return df def readConfig(self): with open(self.configPath, 'r', encoding= 'utf8') as f: self.configDict = json.load(f) self.configDict['partialFit']+=1 self.log.info('************* Partial Fit '+str(self.configDict['partialFit'])+' *************** \\n') msg = '-------> Execution Start Time: '+ datetime.datetime.now(timezone("Asia/Kolkata")).strftime('%Y-%m-%d %H:%M:%S' + ' IST') self.log.info(msg) self.targetCol = self.configDict['targetCol'] if 'numFtrs' in self.configDict: self.numFtrs = self.configDict['numFtrs'] if 'catFtrs' in self.configDict: self.catFtrs = self.configDict['catFtrs'] if 'allNumCols' in self.configDict: self.allNumCols = self.configDict['allNumCols'] if 'allCatCols' in self.configDict: self.allCatCols = self.configDict['allCatCols'] if 'encCols' in self.configDict: self.encCols = self.configDict['encCols'] if 'wordToNumCols' in self.configDict: self.wordToNumericCols = self.configDict['wordToNumCols'] self.emptyFtrs = self.configDict['emptyFtrs'] if 'encTarget' in self.configDict: self.encTarget = self.configDict['encTarget'] if 'noOfClasses' in self.configDict: self.allClasses = list(range(int(self.configDict['noOfClasses']))) self.misval_ratio = self.configDict['misval_ratio'] self.allFtrs = self.configDict['allFtrs'] self.modelName = self.configDict['modelName'] self.problemType = self.configDict['problemType'] self.modelPath = os.path.join(self.home, 'production', 'model', self.modelName+'.pkl') self.scoreParam = self.configDict['scoreParam'] self.score = self.configDict['score'] def pickleLoad(self, file, filename): if os.path.exists(file): with open(file, 'rb') as f: model = pickle.load(f) file_size = os.path.getsize(file) self.log.info(str(filename)+" size is :"+str(file_size)+"bytes") return model else: return None def s2n(self,value): try: x=eval(value) return x except: try: return w2n.word_to_num(value) except: return np.nan def convertWordToNumeric(self,dataframe,feature): try: dataframe[feature]=dataframe[feature].apply(lambda x: self.s2n(x)) return dataframe except Exception as inst: self.log.info("convertWordToNumeric Failed ===>"+str(inst)) return dataframe def pickleDump(self, model, path): if model is not None: with open(path, 'wb') as f: pickle.dump(model, f) def splitTrainTest(self,X,y): if self.problemType.lower() == 'regression': xtrain,xtest,ytrain,ytest=train_test_split(X,y,test_size=0.2,shuffle=True) else: try: xtrain,xtest,ytrain,ytest=train_test_split(X,y,stratify=y,test_size=0.2,shuffle=True) except: xtrain,xtest,ytrain,ytest=train_test_split(X,y,test_size=0.2,shuffle=True) return xtrain,xtest,ytrain,ytest def loadSavedModels(self): self.incFill = self.pickleLoad(self.incFillPath, 'Online Missing Value Filler') self.incLabelMapping = self.pickleLoad(self.incLabelMappingPath, 'Online Label Encoder') self.incCatEncoder = self.pickleLoad(self.incCatEncoderPath, 'Online Categorical Encoder') self.incScaler = self.pickleLoad(self.incScalerPath, 'Online Scaler') self.incOutlierRem = self.pickleLoad(self.incOutlierRemPath, 'Online Outlier Detector') self.model = self.pickleLoad(self.modelPath, str(os.path.basename(self.modelPath))[:-4]) self.log.info('\\nData Profiler and ML models loaded in Memory') def saveModels(self): os.makedirs(os.path.join(self.home, 'production', 'profiler')) os.makedirs(os.path.join(self.home, 'production', 'model')) if type(self.configDict['num_fill']) == type({}) or type(self.configDict['cat_fill']) == type({}): self.pickleDump(self.incFill, self.incFillPath) self.pickleDump(self.incLabelMapping, self.incLabelMappingPath) self.pickleDump(self.incCatEncoder, self.incCatEncoderPath) self.pickleDump(self.incScaler, self.incScalerPath) self.pickleDump(self.incOutlierRem, self.incOutlierRemPath) self.pickleDump(self.model, self.modelPath) self.log.info('Models saved into production') def saveConfig(self): with open(self.configPath, 'w', encoding= 'utf8') as f: json.dump(self.updConfigDict, f, ensure_ascii=False) def apply_river_model(self, x, profModel, isTest): if not isTest: profModel.learn_one(x) return pd.Series(profModel.transform_one(x)) def apply_enc(self, x, isTest): if not isTest: y = x[self.encTarget] self.incCatEncoder.learn_one(x, y) return pd.Series(self.incCatEncoder.transform_one(x)) def apply_od_pipe(self, x): score = self.incOutlierRem.score_one(x) is_anomaly = self.incOutlierRem.classify(score) self.incOutlierRem.learn_one(x) return is_anomaly def dataFramePreProcess(self, df): df = df.replace('-', np.NaN) df = df.replace('?', np.NaN) df = df.replace(r'^\\s*$', np.NaN, regex=True) columns = list(df.columns) if self.wordToNumericCols: for ftr in self.wordToNumericCols: if ftr in columns: self.log.info('Converting '+ftr+' to numeric type...') tempDataFrame=df.copy(deep=True) testDf = self.convertWordToNumeric(tempDataFrame,ftr) try: df[ftr]=testDf[ftr].astype(float) except: pass columns = list(df.columns) for empCol in self.emptyFtrs: if empCol in columns: df = df.drop(columns=[empCol]) columns = list(df.columns) self.log.info( 'Detecting Missing Values') nonNAArray=[] numOfRows = df.shape[0] for i in columns: numNa=df.loc[(pd.isna(df[i])),i ].shape[0] nonNAArray.append(tuple([i,numNa])) self.missingCols = [] self.emptyCols = [] for item in nonNAArray: numofMissingVals = item[1] if(numofMissingVals !=0): self.log.info('-------> Feature '+str(item[0])) self.log.info('----------> Number of Empty Rows '+str(numofMissingVals)) self.missingCols.append(item[0]) if(numofMissingVals >= numOfRows * self.misval_ratio): self.log.info('----------> Empty: Yes') self.log.info('----------> Permitted Rows: '+str(int(numOfRows * self.misval_ratio))) self.emptyCols.append(item[0]) if(len(self.missingCols) !=0): self.log.info( '----------- Detecting for Missing Values End -----------\\n') else: self.log.info( '-------> Missing Value Features :Not Any') self.log.info( '----------- Detecting for Missing Values End -----------\\n') return df def profiler(self, df, isTest=False): if not isTest: self.log.info('Starting
profiling of New Training Data') else: self.log.info('Starting profiling of Testing Data') startTime = timeit.default_timer() df = self.dataFramePreProcess(df) if 'num_fill' in self.configDict: if self.configDict['num_fill'] == 'drop': df = df.dropna(axis = 0, subset=self.allNumCols) elif self.configDict['num_fill'] == 'zero': df[self.allNumCols] = df[self.allNumCols].fillna(value = 0.0) else: df[self.allNumCols]= df[self.allNumCols].apply(pd.to_numeric) df = df.astype(object).where(df.notna(), None) #river expects nan values to be None df[self.allNumCols]= df[self.allNumCols].apply(lambda row: self.apply_river_model(row.to_dict(), self.incFill['num_fill'], isTest), axis='columns') if not isTest: self.updConfigDict['num_fill'] = {col:self.incFill['num_fill'].stats[col].get() for col in self.allNumCols} if 'cat_fill' in self.configDict: if self.configDict['cat_fill'] == 'drop': df = df.dropna(axis = 0, subset=self.allCatCols) elif self.configDict['cat_fill'] == 'zero': df[self.allCatCols] = df[self.allCatCols].fillna(value = 0.0) else: df = df.astype(object).where(df.notna(), None) df[self.allCatCols]= df[self.allCatCols].apply(lambda row: self.apply_river_model(row.to_dict(),self.incFill['cat_fill'], isTest), axis='columns') if not isTest: self.updConfigDict['cat_fill'] = {col:self.incFill['cat_fill'].stats[col].get() for col in self.allCatCols} if not isTest: self.log.info('Missing value profiler model updated') if self.incLabelMapping: uq_classes = df[self.targetCol].unique() le_classes = list(self.incLabelMapping.classes_) uq_classes = [type(le_classes[0])(x) for x in uq_classes] unseen_classes = set(uq_classes) - set(le_classes) self.log.info('Existing classes: '+str(le_classes)) if len(unseen_classes)>0: self.log.info('New unseen classes: '+str(unseen_classes)) le_classes.extend(unseen_classes) from sklearn.preprocessing import LabelEncoder self.incLabelMapping = LabelEncoder() self.incLabelMapping.fit(le_classes) self.log.info(self.incLabelMapping.classes_) self.log.info('Label encoder refitted with new unseen classes') df[self.targetCol] = df[self.targetCol].apply(str) df[self.targetCol] = self.incLabelMapping.transform(df[self.targetCol]) if not isTest: self.log.info('Target column label encoding is done') if self.incCatEncoder: if self.problemType.lower() == 'regression': from sklearn.preprocessing import StandardScaler sc = StandardScaler() self.encTarget = 'scaledTarget' df['scaledTarget'] = sc.fit_transform(df[self.targetCol].to_numpy().reshape(-1,1)) transformed_data = df[self.encCols].apply(lambda row: self.apply_enc(row.to_dict(), isTest), axis='columns') if self.targetCol in transformed_data.columns: transformed_data.drop(self.targetCol, inplace=True, axis = 1) df[self.catFtrs] = transformed_data if not isTest: self.updConfigDict['catEnc'] = [] if len(self.catFtrs) == 1: col = self.catFtrs[0] self.configDict['catEnc'].append({col:self.incCatEncoder['TargetAgg'].state.to_dict()}) else: for i, col in enumerate(self.catFtrs): if i==0: no = '' else: no = str(i) self.configDict['catEnc'].append({col:self.incCatEncoder['TransformerUnion']['TargetAgg'+no].state.to_dict()}) self.log.info('Categorical encoding is done and profiler model updated') if self.incScaler: if not isTest: self.incScaler = self.incScaler.partial_fit(df[self.numFtrs]) self.log.info('Numerical features scaled and profiler model updated') df[self.numFtrs] = self.incScaler.transform(df[self.numFtrs]) if self.incOutlierRem and not isTest: df = df[df[self.numFtrs].apply(lambda x: False if self.apply_od_pipe(x.to_dict()) else True, axis=1)] df.reset_index(drop=True, inplace=True) self.log.info('Outliers removed and profiler model updated') if not isTest: self.log.info('Check config file in production folder for updated profiler values') profilerTime = timeit.default_timer() - startTime self.log.info('\\nProfiling time(sec) :'+str(profilerTime)) return df def riverTrain(self, X, Y): trainStream = stream.iter_pandas(X, Y) for i, (xi, yi) in enumerate(trainStream): if yi!=None: self.model.learn_one(xi, yi) def riverEvaluate(self, xtest): testStream = stream.iter_pandas(xtest) preds = [] for xi,yi in testStream: pred = self.model.predict_one(xi) preds.append(pred) return preds def trainModel(self,df): startTime = timeit.default_timer() X = df[self.allFtrs] Y = df[self.targetCol] try: self.riverTrain(X,Y) trainTime = timeit.default_timer() - startTime self.log.info('\\nModel Training time(sec) :'+str(trainTime)) self.log.info(self.modelName+' model updated') self.log.info('First fit model params are '+str(self.configDict['modelParams'])) except Exception as e: raise e def archiveModels(self): source = os.path.join(self.home, 'production') archivePath = os.path.join(self.home,'archives') if os.path.isdir(archivePath): NoOfArchives = sum(os.path.isdir(os.path.join(self.home,'archives',str(i))) for i in os.listdir(archivePath)) destination = os.path.join(self.home,'archives',str(NoOfArchives+1)) else: destination = os.path.join(archivePath,'1') if not os.path.exists(destination): os.makedirs(destination) allfiles = os.listdir(source) for f in allfiles: src_path = os.path.join(source, f) dst_path = os.path.join(destination, f) shutil.move(src_path, dst_path) self.log.info('Previous production models archived') def get_score(self,metric,actual,predict): if 'accuracy' in str(metric).lower(): score = accuracy_score(actual,predict) score = score*100 elif 'recall' in str(metric).lower(): score = recall_score(actual,predict,average='macro') score = score*100 elif 'precision' in str(metric).lower(): score = precision_score(actual,predict,average='macro') score = score*100 elif 'f1_score' in str(metric).lower(): score = f1_score(actual,predict, average='macro') score = score*100 elif 'roc_auc' in str(metric).lower(): try: score = roc_auc_score(actual,predict,average="macro") except: try: actual = pd.get_dummies(actual) predict = pd.get_dummies(predict) score = roc_auc_score(actual,predict, average='weighted', multi_class='ovr') except: score = 0 score = score*100 elif ('mse' in str(metric).lower()) or ('neg_mean_squared_error' in str(metric).lower()): score = mean_squared_error(actual,predict) elif ('rmse' in str(metric).lower()) or ('neg_root_mean_squared_error' in str(metric).lower()): score=mean_squared_error(actual,predict,squared=False) elif ('mae' in str(metric).lower()) or ('neg_mean_absolute_error' in str(metric).lower()): score=mean_absolute_error(actual,predict) elif 'r2' in str(metric).lower(): score=r2_score(actual,predict)*100 return round(score,2) def checkColumns(self, df): self.log.info('Checking DataColumns in new data') dfCols = list(df.columns) allCols = self.allFtrs.copy() allCols.append(self.targetCol) missingCols = [] for col in allCols: if col not in dfCols: missingCols.append(col) if len(missingCols)>0: raise Exception('DataFrame is missing columns: '+str(missingCols)) else: self.log.info('All required columns are present: '+str(list(dfCols)[:500])) def plotMetric(self): y = self.configDict['metricList'] fedrows = self.configDict['trainRowsList'] fig = plt.figure() ax = fig.gca() if self.configDict['problemType'] == 'classification': ax.set_yticks(np.arange(0, 110, 10)) plt.ylim(ymin=0) if self.configDict['problemType'] == 'regression': minMet = min(y) maxMet = max(y) plt.ylim(minMet - 10, maxMet+10) plt.plot(y) plt.ylabel(self.scoreParam) plt.xlabel('Partial Fits') plt.title(str(self.scoreParam)+' over training rows') if type(fedrows[0])!=type(''): fedrows = [str(x) for x in fedrows] x = list(range(len(fedrows))) for i in range(len(fedrows)): plt.annotate(fedrows[i], (x[i], y[i] + 5)) if self.configDict['problemType'] == 'classification': plt.annotate(round(y[i],1), (x[i], y[i] - 3)) plt.grid() plt.savefig(os.path.join(self.home, 'production','metric')) return def updateLearning(self,data): try: self.readConfig() self.updConfigDict = self.configDict.copy() df = self.readData(data) self.checkColumns(df) self.loadSavedModels() X = df[self.allFtrs] y = df[self.targetCol] xtrain,xtest,ytrain,ytest = self.splitTrainTest(X,y) dftrain = pd.concat((xtrain, ytrain), axis = 1) dftest = pd.concat((xtest, ytest), axis = 1) dftrain = self.profiler(dftrain) dftest = self.profiler(dftest, isTest = True) xtest = dftest[self.allFtrs] ytest = dftest[self.targetCol] self.trainModel(dftrain) preds = self.riverEvaluate(xtest) score = self.get_score(self.scoreParam, ytest, preds) self.updConfigDict['score'] = score self.log.info('Previous '+self.scoreParam+': '+str(self.configDict['score'])) self.log.info('Current '+self.scoreParam+': '+str(self.updConfigDict['score'])) self.configDict['trainRowsList'].append(self.configDict['trainRowsList'][-1]+xtrain.shape[0]) self.log.info('Number of data points trained on so far: '+str(self.configDict['trainRowsList'][-1])) self.configDict['metricList'].append(self.updConfigDict['score']) self.archiveModels() self.plotMetric() self.saveModels() self.saveConfig() msg = self.scoreParam+': Previous:'+str(self.configDict['score'])+' Current:'+ str(self.updConfigDict['score']) output = {"status":"SUCCESS","Msg":msg} self.log.info(str(output)) except Exception as e: print(traceback.format_exc()) self.log.info('Partial Fit Failed '+str(traceback.format_
exc())) if self.updConfigDict != None: self.saveConfig() output = {"status":"FAIL","Msg":str(e).strip('"')} return json.dumps(output) if __name__ == "__main__": incBLObj = incBatchLearner() output = incBLObj.updateLearning(sys.argv[1]) print("aion_learner_status:",output) <s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * '''<s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' import io import json import logging import pandas as pd import sys import numpy as np from pathlib import Path from word2number import w2n from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.impute import SimpleImputer, KNNImputer from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.preprocessing import FunctionTransformer from sklearn.preprocessing import MinMaxScaler,StandardScaler from sklearn.preprocessing import PowerTransformer from sklearn.compose import ColumnTransformer from sklearn.base import TransformerMixin from sklearn.ensemble import IsolationForest from category_encoders import TargetEncoder import scipy try: import transformations.data_profiler_functions as cs except: import data_profiler_functions as cs if 'AION' in sys.modules: try: from appbe.app_config import DEBUG_ENABLED except: DEBUG_ENABLED = False else: DEBUG_ENABLED = False log_suffix = f'[{Path(__file__).stem}] ' class profiler(): def __init__(self, xtrain, ytrain=None, target=None, encode_target = False, config={}, keep_unprocessed=[],data_path=None,log=None): if not isinstance(xtrain, pd.DataFrame): raise ValueError(f'{log_suffix}supported data type is pandas.DataFrame but provide data is of {type(xtrain)} type') if xtrain.empty: raise ValueError(f'{log_suffix}Data frame is empty') if target and target in xtrain.columns: self.target = xtrain[target] xtrain.drop(target, axis=1, inplace=True) self.target_name = target elif ytrain: self.target = ytrain self.target_name = 'target' else: self.target = pd.Series() self.target_name = None self.data_path = data_path self.encode_target = encode_target self.label_encoder = None self.data = xtrain self.keep_unprocessed = keep_unprocessed self.colm_type = {} for colm, infer_type in zip(self.data.columns, self.data.dtypes): self.colm_type[colm] = infer_type self.numeric_feature = [] self.cat_feature = [] self.text_feature = [] self.wordToNumericFeatures = [] self.added_features = [] self.pipeline = [] self.dropped_features = {} self.train_features_type={} self.__update_type() self.config = config self.featureDict = config.get('featureDict', []) self.output_columns = [] self.feature_expender = [] self.text_to_num = {} self.force_numeric_conv = [] if log: self.log = log else: self.log = logging.getLogger('eion') self.type_conversion = {} def log_dataframe(self, msg=None): buffer = io.StringIO() self.data.info(buf=buffer) if msg: log_text = f'Data frame after {msg}:' else: log_text = 'Data frame:' log_text += '\\n\\t'+str(self.data.head(2)).replace('\\n','\\n\\t') log_text += ('\\n\\t' + buffer.getvalue().replace('\\n','\\n\\t')) self.log.info(log_text) def transform(self): if self.is_target_available(): if self.target_name: self.log.info(f"Target feature name: '{self.target_name}'") self.log.info(f"Target feature size: {len(self.target)}") else: self.log.info(f"Target feature not present") self.log_dataframe() print(self.data.info()) try: self.process() except Exception as e: self.log.error(e, exc_info=True) raise pipe = FeatureUnion(self.pipeline) try: if self.text_feature: from text.textProfiler import set_pretrained_model set_pretrained_model(pipe) conversion_method = self.get_conversion_method() process_data = pipe.fit_transform(self.data, y=self.target) # save for testing if DEBUG_ENABLED: if isinstance(process_data, scipy.sparse.spmatrix): process_data = process_data.toarray() df = pd.DataFrame(process_data) df.to_csv('debug_preprocessed.csv', index=False) if self.text_feature and conversion_method == 'latentsemanticanalysis': n_size = self.get_tf_idf_output_size( pipe) dimensions = self.get_tf_idf_dimensions() if n_size < dimensions or n_size > dimensions: dimensions = n_size from sklearn.decomposition import TruncatedSVD reducer = TruncatedSVD( n_components = dimensions) reduced_data = reducer.fit_transform( process_data[:,-n_size:]) text_process_idx = [t[0] for t in pipe.transformer_list].index('text_process') pipe.transformer_list[text_process_idx][1].steps.append(('feature_reducer',reducer)) if isinstance(process_data, scipy.sparse.spmatrix): process_data = process_data.toarray() process_data = np.concatenate((process_data[:,:-n_size], reduced_data), axis=1) last_step = self.feature_expender.pop() self.feature_expender.append({'feature_reducer':list(last_step.values())[0]}) except EOFError as e: if "Compressed file ended before the end-of-stream marker was reached" in str(e): raise EOFError('Pretrained model is not downloaded properly') self.update_output_features_names(pipe) if isinstance(process_data, scipy.sparse.spmatrix): process_data = process_data.toarray() df = pd.DataFrame(process_data, index=self.data.index, columns=self.output_columns) if self.is_target_available() and self.target_name: df[self.target_name] = self.target if self.keep_unprocessed: df[self.keep_unprocessed] = self.data[self.keep_unprocessed] self.log_numerical_fill() self.log_categorical_fill() self.log_normalization() return df, pipe, self.label_encoder def log_type_conversion(self): if self.log: self.log.info('----------- Inspecting Features -----------') self.log.info('----------- Type Conversion -----------') count = 0 for k, v in self.type_conversion.items(): if v[0] != v[1]: self.log.info(f'-------> {k} -> from {v[0]} to {v[1]} : {v[2]}') self.log.info('Status:- |... Feature inspection done') def check_config(self): removeDuplicate = self.config.get('removeDuplicate', False) self.config['removeDuplicate'] = cs.get_boolean(removeDuplicate) self.config['misValueRatio'] = float(self.config.get('misValueRatio', cs.default_config['misValueRatio'])) self.config['numericFeatureRatio'] = float(self.config.get('numericFeatureRatio', cs.default_config['numericFeatureRatio'])) self.config['categoryMaxLabel'] = int(self.config.get('categoryMaxLabel', cs.default_config['categoryMaxLabel'])) featureDict = self.config.get('featureDict', []) if isinstance(featureDict, dict): self.config['featureDict'] = [] if isinstance(featureDict, str): self.config['featureDict'] = [] def process(self): #remove duplicate not required at the time of prediction self.check_config() self.remove_constant_feature() self.remove_empty_feature(self.config['misValueRatio']) self.remove_index_features() self.dropna() if self.config['removeDuplicate']: self.drop_duplicate() #self.check_categorical_features() #self.string_to_numeric() self.process_target() self.train_features_type = {k:v for k,v in zip(self.data.columns, self.data.dtypes)} self.parse_process_step_config() self.process_drop_fillna() self.log_type_conversion() self.update_num_fill_dict() if DEBUG_ENABLED: print(self.num_fill_method_dict) self.update_cat_fill_dict() self.create_pipeline() self.text_pipeline(self.config) self.apply_outlier() if DEBUG_ENABLED: self.log.info(self.process_method) self.log.info(self.pipeline) def is_target_available(self): return (isinstance(self.target, pd.Series) and not self.target.empty) or len(self.target) def process_target(self, operation='encode', arg=None): if self.is_target_available(): # drop null values self.__update_index( self.target.notna(), 'target') if self.encode_target: self.label_encoder = LabelEncoder() self.target = self.label_encoder.fit_transform(self.target) return self.label_encoder return None def is_target_column(self, column): return column == self.target_name def fill_default_steps(self): num_fill_method = cs.get_one_true_option(self.config.get('numericalFillMethod',{})) normalization_method = cs.get_one_true_option(self.config.get('normalization',{}),'none') for colm in self.numeric_feature: if num_fill_method: self.fill_missing_value_method(colm, num_fill_method.lower()) if normalization_method: self.fill_normalizer_method(colm, normalization_method.lower()) cat_fill_method = cs.get_one_true_option(self.config.get('categoricalFillMethod',{})) cat_encode_method = cs.get_one_true_option(self.config.get('categoryEncoding',{})) for colm in self.cat_feature: if cat_fill_method: self.fill_missing_value_method(colm, cat_fill_method.lower()) if cat_encode_method: self.fill_encoder_value_method(colm, cat_encode_method.lower(), default=True) def parse_process_step_config(self): self.process_method = {} user_provided_data_type = {} for feat_conf in self.featureDict: colm = feat_conf.get('feature', '') if not self.is_target_column(colm): if colm in self.data.columns: user_provided_data_type[colm] = feat_conf['type'] if user_provided_data_type: self.update_user_provided_type(user_provided_data_type) self.fill_default_steps() for feat_conf in self.featureDict: colm = feat_conf.get('feature', '') if not self.is_target_column(colm): if colm in self.data.columns: if feat_conf.get('fillMethod', None): self.fill_missing_value_method(colm, feat_conf['fillMethod'].lower()) if feat_conf.get('categoryEncoding', None): self.fill_encoder_value_method(colm, feat_conf['categoryEncoding'].lower()) if feat_conf.get('normalization', None): self.fill_normalizer_method(colm, feat_conf['normalization'].lower()) if feat_conf.get('outlier', None): self.fill_outlier_method(colm, feat_conf['outlier'].lower()) if feat_conf.get('outlierOperation', None): self.fill_outlier_process(colm, feat_conf['outlierOperation'].lower()) def get_tf_idf_dimensions(self): dim = cs.get_one_true_option(self.config.get('embeddingSize',{}).get('TF_IDF',{}), 'default') return {'default': 300, '50d':50, '100d':100, '200d':200, '300d':300}[dim] def get_tf_idf_output_size(self, pipe): start_index = {} for feat_expender in self.feature_expender: if feat_expender: step_name = list(feat_expender.keys())[0] index = list(feat_expender.values())[0] for transformer_step in pipe.transformer_list: if transformer_step[1].steps[-1][0] in step_name: start_index[index] = {transformer_step[1].steps[-1][0]: transformer_step[1].steps[-1][1].get_feature_names_out()} if start_index: for
key,value in start_index.items(): for k,v in value.items(): if k == 'vectorizer': return len(v) return 0 def update_output_features_names(self, pipe): columns = self.output_columns start_index = {} index_shifter = 0 for feat_expender in self.feature_expender: if feat_expender: step_name = list(feat_expender.keys())[0] for key,value in start_index.items(): for k,v in value.items(): index_shifter += len(v) index = list(feat_expender.values())[0] for transformer_step in pipe.transformer_list: if transformer_step[1].steps[-1][0] in step_name: start_index[index + index_shifter] = {transformer_step[1].steps[-1][0]: transformer_step[1].steps[-1][1].get_feature_names_out()} #print(start_index) if start_index: for key,value in start_index.items(): for k,v in value.items(): if k == 'vectorizer': v = [f'{x}_vect' for x in v] self.output_columns[key:key] = v self.added_features = [*self.added_features, *v] def text_pipeline(self, conf_json): if self.text_feature: from text.textProfiler import textProfiler from text.textProfiler import textCombine pipeList = [] text_pipe = Pipeline([ ('selector', ColumnTransformer([ ("selector", "passthrough", self.text_feature) ], remainder="drop")), ("text_fillNa",SimpleImputer(strategy='constant', fill_value='')), ("merge_text_feature", textCombine())]) obj = textProfiler() pipeList = obj.textProfiler(conf_json, pipeList, self.data_path) last_step = "merge_text_feature" for pipe_elem in pipeList: text_pipe.steps.append((pipe_elem[0], pipe_elem[1])) last_step = pipe_elem[0] text_transformer = ('text_process', text_pipe) self.pipeline.append(text_transformer) self.feature_expender.append({last_step:len(self.output_columns)}) def create_pipeline(self): num_pipe = {} for k,v in self.num_fill_method_dict.items(): for k1,v1 in v.items(): if k1 and k1 != 'none': num_pipe[f'{k}_{k1}'] = Pipeline([ ('selector', ColumnTransformer([ ("selector", "passthrough", v1) ], remainder="drop")), (k, self.get_num_imputer(k)), (k1, self.get_num_scaler(k1)) ]) else: num_pipe[f'{k}_{k1}'] = Pipeline([ ('selector', ColumnTransformer([ ("selector", "passthrough", v1) ], remainder="drop")), (k, self.get_num_imputer(k)) ]) self.output_columns.extend(v1) cat_pipe = {} for k,v in self.cat_fill_method_dict.items(): for k1,v1 in v.items(): cat_pipe[f'{k}_{k1}'] = Pipeline([ ('selector', ColumnTransformer([ ("selector", "passthrough", v1) ], remainder="drop")), (k, self.get_cat_imputer(k)), (k1, self.get_cat_encoder(k1)) ]) if k1 not in ['onehotencoding']: self.output_columns.extend(v1) else: self.feature_expender.append({k1:len(self.output_columns)}) for key, pipe in num_pipe.items(): self.pipeline.append((key, pipe)) for key, pipe in cat_pipe.items(): self.pipeline.append((key, pipe)) "Drop: feature during training but replace with zero during prediction " def process_drop_fillna(self): drop_column = [] if 'numFill' in self.process_method.keys(): for col, method in self.process_method['numFill'].items(): if method == 'drop': self.process_method['numFill'][col] = 'zero' drop_column.append(col) if 'catFill' in self.process_method.keys(): for col, method in self.process_method['catFill'].items(): if method == 'drop': self.process_method['catFill'][col] = 'zero' drop_column.append(col) if drop_column: self.data.dropna(subset=drop_column, inplace=True) def update_num_fill_dict(self): self.num_fill_method_dict = {} if 'numFill' in self.process_method.keys(): for f in cs.supported_method['fillNa']['numeric']: self.num_fill_method_dict[f] = {} for en in cs.supported_method['normalization']: self.num_fill_method_dict[f][en] = [] for col in self.numeric_feature: numFillDict = self.process_method.get('numFill',{}) normalizationDict = self.process_method.get('normalization',{}) if f == numFillDict.get(col, '') and en == normalizationDict.get(col,''): self.num_fill_method_dict[f][en].append(col) if not self.num_fill_method_dict[f][en] : del self.num_fill_method_dict[f][en] if not self.num_fill_method_dict[f]: del self.num_fill_method_dict[f] def update_cat_fill_dict(self): self.cat_fill_method_dict = {} if 'catFill' in self.process_method.keys(): for f in cs.supported_method['fillNa']['categorical']: self.cat_fill_method_dict[f] = {} for en in cs.supported_method['categoryEncoding']: self.cat_fill_method_dict[f][en] = [] for col in self.cat_feature: catFillDict = self.process_method.get('catFill',{}) catEncoderDict = self.process_method.get('catEncoder',{}) if f == catFillDict.get(col, '') and en == catEncoderDict.get(col,''): self.cat_fill_method_dict[f][en].append(col) if not self.cat_fill_method_dict[f][en] : del self.cat_fill_method_dict[f][en] if not self.cat_fill_method_dict[f]: del self.cat_fill_method_dict[f] def __update_type(self): self.numeric_feature = list( set(self.data.select_dtypes(include='number').columns.tolist()) - set(self.keep_unprocessed)) self.cat_feature = list( set(self.data.select_dtypes(include='category').columns.tolist()) - set(self.keep_unprocessed)) self.text_feature = list( set(self.data.select_dtypes(include='object').columns.tolist()) - set(self.keep_unprocessed)) self.datetime_feature = list( set(self.data.select_dtypes(include='datetime').columns.tolist()) - set(self.keep_unprocessed)) def update_user_provided_type(self, data_types): allowed_types = ['numerical','categorical', 'text'] skipped_types = ['date','index'] type_mapping = {'numerical': np.dtype('float'), 'float': np.dtype('float'),'categorical': 'category', 'text':np.dtype('object'),'date':'datetime64[ns]','index': np.dtype('int64'),} mapped_type = {k:type_mapping[v] for k,v in data_types.items() if v in allowed_types} skipped_features = [k for k,v in data_types.items() if v in skipped_types] if skipped_features: self.keep_unprocessed.extend( skipped_features) self.keep_unprocessed = list(set(self.keep_unprocessed)) self.update_type(mapped_type, 'user provided data type') def get_type(self, as_list=False): if as_list: return [self.colm_type.values()] else: return self.colm_type def update_type(self, data_types={}, reason=''): invalid_features = [x for x in data_types.keys() if x not in self.data.columns] if invalid_features: valid_feat = list(set(data_types.keys()) - set(invalid_features)) valid_feat_type = {k:v for k,v in data_types if k in valid_feat} else: valid_feat_type = data_types for k,v in valid_feat_type.items(): if v != self.colm_type[k].name: try: self.data.astype({k:v}) self.colm_type.update({k:self.data[k].dtype}) self.type_conversion[k] = (self.colm_type[k] , v, 'Done', reason) except: self.type_conversion[k] = (self.colm_type[k] , v, 'Fail', reason) if v == np.dtype('float64') and self.colm_type[k].name == 'object': if self.check_numeric( k): self.data[ k] = pd.to_numeric(self.data[ k], errors='coerce') self.type_conversion[k] = (self.colm_type[k] , v, 'Done', reason) self.force_numeric_conv.append( k) else: raise ValueError(f"Can not convert '{k}' feature to 'numeric' as numeric values are less than {self.config['numericFeatureRatio'] * 100}%") self.data = self.data.astype(valid_feat_type) self.__update_type() def check_numeric(self, feature): col_values = self.data[feature].copy() col_values = pd.to_numeric(col_values, errors='coerce') if col_values.count() >= (self.config['numericFeatureRatio'] * len(col_values)): return True return False def string_to_numeric(self): def to_number(x): try: return w2n.word_to_num(x) except: return np.nan for col in self.text_feature: col_values = self.data[col].copy() col_values = pd.to_numeric(col_values, errors='coerce') if col_values.count() >= (self.config['numericFeatureRatio'] * len(col_values)): self.text_to_num[col] = 'float64' self.wordToNumericFeatures.append(col) if self.text_to_num: columns = list(self.text_to_num.keys()) self.data[columns] = self.data[columns].apply(lambda x: to_number(x), axis=1, result_type='broadcast') self.update_type(self.text_to_num) self.log.info('----------- Inspecting Features -----------') for col in self.text_feature: self.log.info(f'-------> Feature : {col}') if col in self.text_to_num: self.log.info('----------> Numeric Status :Yes') self.log.info('----------> Data Type Converting to numeric :Yes') else: self.log.info('----------> Numeric Status :No') self.log.info(f'\\nStatus:- |... Feature inspection done for numeric data: {len(self.text_to_num)} feature(s) converted to numeric') self.log.info(f'\\nStatus:- |... Feature word to numeric treatment done: {self.text_to_num}') self.log.info('----------- Inspecting Features End -----------') def check_categorical_features(self): num_data = self.data.select_dtypes(include='number') num_data_unique = num_data.nunique() num_to_cat_col = {} for i, value in enumerate(num_data_unique): if value < self.config['categoryMaxLabel']: num_to_cat_col[num_data_unique.index[i]] = 'category' if num_to_cat_col: self.update_type(num_to_cat_col, 'numerical to categorical') str_to_cat_col = {} str_data = self.data.select_dtypes(include='object') str_data_unique = str_data.nunique() for i, value in enumerate(str_data_unique): if value < self.config['categoryMaxLabel']: str_to_cat_col[str_data_unique.index[i]] = 'category' for colm in str_data.columns: if self.data[colm].str.len().max() < cs.default_config['str_to_cat_len_max']: str_to_cat_col[colm] = 'category' if str_to_cat_col: self.update_type(str_to_cat_col, 'text to categorical') def drop_features(self, features=[], reason='unspecified'): if isinstance(features, str): features = [features] feat_to_remove = [x for x in features if x in self.data.columns] if feat_to_remove: self.data.drop(feat_to_remove, axis=1, inplace=True) for feat in feat_to_remove: self.dropped_features[feat] = reason self.log_drop_feature(feat_to_remove, reason) self.__update_type() def __update_index(self, indices, reason=''): if isinstance(indices, (bool, pd.core.series.Series)) and len(indices) == len(self.data): if not indices.all(): self.data = self.data[indices] if self.is_target_available(): self.target = self.target[indices] self.log_update_index((indices == False).sum(), reason) def dropna(self): self.data.dropna(how='all',inplace=True) if self.is_target_available(): self.target = self.target[self.data.index] def drop_duplicate(self): index = self.data.duplicated(keep='first') self.__update_index( ~index, reason='dup
licate') def log_drop_feature(self, columns, reason): self.log.info(f'---------- Dropping {reason} features ----------') self.log.info(f'\\nStatus:- |... {reason} feature treatment done: {len(columns)} {reason} feature(s) found') self.log.info(f'-------> Drop Features: {columns}') self.log.info(f'Data Frame Shape After Dropping (Rows,Columns): {self.data.shape}') def log_update_index(self,count, reason): if count: if reason == 'target': self.log.info('-------> Null Target Rows Drop:') self.log.info(f'-------> Dropped rows count: {count}') elif reason == 'duplicate': self.log.info('-------> Duplicate Rows Drop:') self.log.info(f'-------> Dropped rows count: {count}') elif reason == 'outlier': self.log.info(f'-------> Dropped rows count: {count}') self.log.info('Status:- |... Outlier treatment done') self.log.info(f'-------> Data Frame Shape After Dropping samples(Rows,Columns): {self.data.shape}') def log_normalization(self): if self.process_method.get('normalization', None): self.log.info(f'\\nStatus:- !... Normalization treatment done') for method in cs.supported_method['normalization']: cols = [] for col, m in self.process_method['normalization'].items(): if m == method: cols.append(col) if cols and method != 'none': self.log.info(f'Running {method} on features: {cols}') def log_numerical_fill(self): if self.process_method.get('numFill', None): self.log.info(f'\\nStatus:- !... Fillna for numeric feature done') for method in cs.supported_method['fillNa']['numeric']: cols = [] for col, m in self.process_method['numFill'].items(): if m == method: cols.append(col) if cols: self.log.info(f'-------> Running {method} on features: {cols}') def log_categorical_fill(self): if self.process_method.get('catFill', None): self.log.info(f'\\nStatus:- !... FillNa for categorical feature done') for method in cs.supported_method['fillNa']['categorical']: cols = [] for col, m in self.process_method['catFill'].items(): if m == method: cols.append(col) if cols: self.log.info(f'-------> Running {method} on features: {cols}') def remove_constant_feature(self): unique_values = self.data.nunique() constant_features = [] for i, value in enumerate(unique_values): if value == 1: constant_features.append(unique_values.index[i]) if constant_features: self.drop_features(constant_features, "constant") def remove_empty_feature(self, misval_ratio=1.0): missing_ratio = self.data.isnull().sum() / len(self.data) missing_ratio = {k:v for k,v in zip(self.data.columns, missing_ratio)} empty_features = [k for k,v in missing_ratio.items() if v > misval_ratio] if empty_features: self.drop_features(empty_features, "empty") def remove_index_features(self): index_feature = [] for feat in self.numeric_feature: if self.data[feat].nunique() == len(self.data): #if (self.data[feat].sum()- sum(self.data.index) == (self.data.iloc[0][feat]-self.data.index[0])*len(self.data)): # index feature can be time based count = (self.data[feat] - self.data[feat].shift() == 1).sum() if len(self.data) - count == 1: index_feature.append(feat) self.drop_features(index_feature, "index") def fill_missing_value_method(self, colm, method): if colm in self.numeric_feature: if method in cs.supported_method['fillNa']['numeric']: if 'numFill' not in self.process_method.keys(): self.process_method['numFill'] = {} if method == 'na' and self.process_method['numFill'].get(colm, None): pass # don't overwrite else: self.process_method['numFill'][colm] = method if colm in self.cat_feature: if method in cs.supported_method['fillNa']['categorical']: if 'catFill' not in self.process_method.keys(): self.process_method['catFill'] = {} if method == 'na' and self.process_method['catFill'].get(colm, None): pass else: self.process_method['catFill'][colm] = method def check_encoding_method(self, method, colm,default=False): if not self.is_target_available() and (method.lower() == list(cs.target_encoding_method_change.keys())[0]): method = cs.target_encoding_method_change[method.lower()] if default: self.log.info(f"Applying Label encoding instead of Target encoding on feature '{colm}' as target feature is not present") return method def fill_encoder_value_method(self,colm, method, default=False): if colm in self.cat_feature: if method.lower() in cs.supported_method['categoryEncoding']: if 'catEncoder' not in self.process_method.keys(): self.process_method['catEncoder'] = {} if method == 'na' and self.process_method['catEncoder'].get(colm, None): pass else: self.process_method['catEncoder'][colm] = self.check_encoding_method(method, colm,default) else: self.log.info(f"-------> categorical encoding method '{method}' is not supported. supported methods are {cs.supported_method['categoryEncoding']}") def fill_normalizer_method(self,colm, method): if colm in self.numeric_feature: if method in cs.supported_method['normalization']: if 'normalization' not in self.process_method.keys(): self.process_method['normalization'] = {} if (method == 'na' or method == 'none') and self.process_method['normalization'].get(colm, None): pass else: self.process_method['normalization'][colm] = method else: self.log.info(f"-------> Normalization method '{method}' is not supported. supported methods are {cs.supported_method['normalization']}") def apply_outlier(self): inlier_indice = np.array([True] * len(self.data)) if self.process_method.get('outlier', None): self.log.info('-------> Feature wise outlier detection:') for k,v in self.process_method['outlier'].items(): if k in self.numeric_feature: if v == 'iqr': index = cs.findiqrOutlier(self.data[k]) elif v == 'zscore': index = cs.findzscoreOutlier(self.data[k]) elif v == 'disable': index = None if k in self.process_method['outlierOperation'].keys(): if self.process_method['outlierOperation'][k] == 'dropdata': inlier_indice = np.logical_and(inlier_indice, index) elif self.process_method['outlierOperation'][k] == 'average': mean = self.data[k].mean() index = ~index self.data.loc[index,[k]] = mean self.log.info(f'-------> {k}: Replaced by Mean {mean}: total replacement {index.sum()}') elif self.process_method['outlierOperation'][k] == 'nochange' and v != 'disable': self.log.info(f'-------> Total outliers in "{k}": {(~index).sum()}') if self.config.get('outlierDetection',None): if self.config['outlierDetection'].get('IsolationForest','False') == 'True': if self.numeric_feature: index = cs.findiforestOutlier(self.data[self.numeric_feature]) inlier_indice = np.logical_and(inlier_indice, index) self.log.info(f'-------> Numeric feature based Outlier detection(IsolationForest):') if inlier_indice.sum() != len(self.data): self.__update_index(inlier_indice, 'outlier') def fill_outlier_method(self,colm, method): if colm in self.numeric_feature: if method in cs.supported_method['outlier_column_wise']: if 'outlier' not in self.process_method.keys(): self.process_method['outlier'] = {} if method not in ['Disable', 'na']: self.process_method['outlier'][colm] = method else: self.log.info(f"-------> outlier detection method '{method}' is not supported for column wise. supported methods are {cs.supported_method['outlier_column_wise']}") def fill_outlier_process(self,colm, method): if colm in self.numeric_feature: if method in cs.supported_method['outlierOperation']: if 'outlierOperation' not in self.process_method.keys(): self.process_method['outlierOperation'] = {} self.process_method['outlierOperation'][colm] = method else: self.log.info(f"-------> outlier process method '{method}' is not supported for column wise. supported methods are {cs.supported_method['outlierOperation']}") def get_cat_imputer(self,method): if method == 'mode': return SimpleImputer(strategy='most_frequent') elif method == 'zero': return SimpleImputer(strategy='constant', fill_value=0) def get_cat_encoder(self,method): if method == 'labelencoding': return OrdinalEncoder() elif method == 'onehotencoding': return OneHotEncoder(sparse=False,handle_unknown="ignore") elif method == 'targetencoding': if not self.is_target_available(): raise ValueError('Can not apply Target Encoding when target feature is not present') return TargetEncoder() def get_num_imputer(self,method): if method == 'mode': return SimpleImputer(strategy='most_frequent') elif method == 'mean': return SimpleImputer(strategy='mean') elif method == 'median': return SimpleImputer(strategy='median') elif method == 'knnimputer': return KNNImputer() elif method == 'zero': return SimpleImputer(strategy='constant', fill_value=0) def get_num_scaler(self,method): if method == 'minmax': return MinMaxScaler() elif method == 'standardscaler': return StandardScaler() elif method == 'lognormal': return PowerTransformer(method='yeo-johnson', standardize=False) def recommenderStartProfiler(self,modelFeatures): return cs.recommenderStartProfiler(self,modelFeatures) def folderPreprocessing(self,folderlocation,folderdetails,deployLocation): return cs.folderPreprocessing(self,folderlocation,folderdetails,deployLocation) def textSimilarityStartProfiler(self, doc_col_1, doc_col_2): return cs.textSimilarityStartProfiler(self, doc_col_1, doc_col_2) def get_conversion_method(self): return cs.get_one_true_option(self.config.get('textConversionMethod','')).lower() def set_features(features,profiler=None): return cs.set_features(features,profiler) <s> import os import sys import numpy as np import scipy import pandas as pd from pathlib import Path default_config = { 'misValueRatio': '1.0', 'numericFeatureRatio': '1.0', 'categoryMaxLabel': '20', 'str_to_cat_len_max': 10 } target_encoding_method_change = {'targetencoding': 'labelencoding'} supported_method = { 'fillNa': { 'categorical' : ['mode','zero','na'], 'numeric' : ['median','mean','knnimputer','zero','drop','na'], }, 'categoryEncoding': ['labelencoding','targetencoding','onehotencoding','na','none'], 'normalization': ['standardscaler','minmax','lognormal', 'na','none'], 'outlier_column_wise': ['iqr','zscore', 'disable', 'na'], 'outlierOperation': ['dropdata', 'average', 'nochange'] } def findiqrOutlier(df): Q1 = df.quantile(0.25) Q3 = df.quantile(0.75) IQR = Q3 - Q1 index = ~((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR))) return index def findzscoreOutlier(df): z = np.abs(scipy.stats.zscore(df)) index = (z < 3) return index def findiforestOutlier(df): from sklearn.ensemble import IsolationForest isolation_forest = IsolationForest(n_estimators=100) isolation_forest.fit(df) y_pred_train = isolation_forest.predict(df) return y_pred_train == 1 def get_one_true_option(d, default_value=None): if isinstance(d, dict): for k,v in d.items(): if (isinstance(v, str) and v.lower() == 'true') or (isinstance(v, bool) and v == True): return k return default_value def get_boolean(value): if (isinstance(value, str) and value.lower() == 'true') or (isinstance(value, bool) and value == True): return True else: return False def recommenderStartProfiler(self,modelFeatures): try: self.log.info('----------> FillNA:0') self.data = self.data.fillna(value=0) self.log.info('Status:- !... Missing value treatment done') self.log.info('----------> Remove Empty Row') self.data = self.data.dropna(axis=0,how='all') self.log.info('Status:- !... Empty feature treatment done') userId,itemId,rating = modelFeatures
.split(',') self.data[itemId] = self.data[itemId].astype(np.int32) self.data[userId] = self.data[userId].astype(np.int32) self.data[rating] = self.data[rating].astype(np.float32) return self.data except Exception as inst: self.log.info("Error: dataProfiler failed "+str(inst)) return(self.data) def folderPreprocessing(self,folderlocation,folderdetails,deployLocation): try: dataset_directory = Path(folderlocation) dataset_csv_file = dataset_directory/folderdetails['label_csv_file_name'] tfrecord_directory = Path(deployLocation)/'Video_TFRecord' from savp import PreprocessSAVP import csv csvfile = open(dataset_csv_file, newline='') csv_reader = csv.DictReader(csvfile) PreprocessSAVP(dataset_directory,csv_reader,tfrecord_directory) dataColumns = list(self.data.columns) VideoProcessing = True return dataColumns,VideoProcessing,tfrecord_directory except Exception as inst: self.log.info("Error: dataProfiler failed "+str(inst)) def textSimilarityStartProfiler(self, doc_col_1, doc_col_2): import os try: features = [doc_col_1, doc_col_2] pipe = None dataColumns = list(self.data.columns) self.numofCols = self.data.shape[1] self.numOfRows = self.data.shape[0] from transformations.textProfiler import textProfiler self.log.info('-------> Execute Fill NA With Empty String') self.data = self.data.fillna(value=" ") self.log.info('Status:- |... Missing value treatment done') self.data[doc_col_1] = textProfiler().textCleaning(self.data[doc_col_1]) self.data[doc_col_2] = textProfiler().textCleaning(self.data[doc_col_2]) self.log.info('-------> Concatenate: ' + doc_col_1 + ' ' + doc_col_2) self.data['text'] = self.data[[doc_col_1, doc_col_2]].apply(lambda row: ' '.join(row.values.astype(str)), axis=1) from tensorflow.keras.preprocessing.text import Tokenizer pipe = Tokenizer() pipe.fit_on_texts(self.data['text'].values) self.log.info('-------> Tokenizer: Fit on Concatenate Field') self.log.info('Status:- |... Tokenizer the text') self.data[doc_col_1] = self.data[doc_col_1].astype(str) self.data[doc_col_1] = self.data[doc_col_1].astype(str) return (self.data, pipe, self.target_name, features) except Exception as inst: self.log.info("StartProfiler failed " + str(inst)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] self.log.info(str(exc_type) + ' ' + str(fname) + ' ' + str(exc_tb.tb_lineno)) def set_features(features,profiler=None): if profiler: features = [x for x in features if x not in profiler.added_features] return features + profiler.text_feature return features<s> # -*- coding: utf-8 -*- """ Created on Wed Jun 15 14:36:11 2022 @author: @aionteam """ import flwr import flwr as fl import tensorflow as tf from typing import Any, Callable, Dict, List, Optional, Tuple import utils from sklearn.metrics import log_loss from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, mean_absolute_error,r2_score from typing import Dict import numpy as np import logging import os # import sys from flwr.common.logger import log from logging import INFO import pickle as pkl from flwr.server.client_proxy import ClientProxy import dl_model from sklearn.preprocessing import StandardScaler import pandas as pd ## Below import can be used when aion specific grpc communication used. # from aionflgrpcserver import aionflgrpcserver # Make TensorFlow logs less verbose os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" os.environ["GRPC_VERBOSITY"] = "debug" # """ AION Federated Learning Server. Geting weights from clients, aggregate the weights by FedAvg algorithm and update the client model.""" class flserver(): def __init__(self,df,confdata): self.log = logging.getLogger('AION') ## Below params will be used later self.confparams=confdata self.df=df self.fl_round=0 print("Inside flserver init func") ## Flower server number of rounds for fl model update (clients-server) def fit_round(self,rnd: int) -> Dict: """Send round number to client.""" self.fl_round=rnd log(INFO, "===========================") self.log.info("federated learning round: "+str(rnd)) log(INFO, "federated learning round: %s ",str(rnd)) log(INFO, "===========================") # print(f"federated learning round: {rnd}") return {"rnd": rnd} def fit_config(self,rnd: int) -> Dict: """Send round number to client.""" self.round_count = rnd log(INFO, "===========================") log(INFO, "Starting round %s ...",str(rnd)) log(INFO, "===========================") model_hyperparams = self.confparams["model_hyperparams"] batch_size = model_hyperparams["batch_size"] local_epochs = model_hyperparams["epochs"] config = { "batch_size": int(batch_size), # "local_epochs": 1 if rnd < 2 else 2, "local_epochs": int(local_epochs), "rnd": rnd, } return config def evaluate_config(self, rnd: int): model_hyperparams = self.confparams["model_hyperparams"] val_batch_size = model_hyperparams["batch_size"] # val_steps = 5 if rnd < 4 else 10 return {"val_batch_size": int(val_batch_size)} ## Loading configuration parameters def configload(self,confparams): try: data=confparams server_ip=str(data["server_IP"]) server_port=str(data["server_port"]) model_name=str(data["model_name"]) num_clients=int(data["min_available_clients"]) min_fit_clients=int(data["min_fit_clients"]) num_train_round=int(data["fl_round"]) data_location=str(data["data_location"]) model_params=data["model_hyperparams"] problem_type=data["problem_type"] server_address=f"{server_ip}:{server_port}" # model_location=str(data["model_store"]) model_version=str(data["version"]) selected_feature=data["selected_feature"] if (type(selected_feature) is str): selected_feature=selected_feature.split(',') target_feature=data["target_feature"] evaluation_required=data["evaluation_required"] self.log.info("Federated Learning <Server IP:Port> "+str(server_address)) except Exception as e: log(INFO, "Reading server config file issue. Err.Msg: %s ",str(e)) return server_address,model_name,num_clients,min_fit_clients,num_train_round,data_location,model_params,problem_type,model_version,selected_feature,target_feature,evaluation_required ## Save the final model def model_save(self,model,model_name,problem_type,version): cwd = os.path.abspath(os.path.dirname(__file__)) model_location=os.path.join(cwd, 'models') model_name=model_name version=str(version) model_name=self.confparams["model_name"] if (model_name.lower() == "deeplearning"): file_name = model_name + '_' +problem_type+'_'+version+ ".h5" else: file_name=file_name = model_name + '_' +problem_type+'_'+version+".sav" saved_model=os.path.normpath(os.path.join(model_location,file_name)) self.log.info("saved_model path: "+str(saved_model)) try: with open (saved_model,'wb') as f: pkl.dump(model,f) return True except Exception as e: self.log.info("fl server model save error. Error Msg: "+str(e)) return False ## Load the model, not used now. If user want to use aion trained model for evaluation at serverside, use this fn. def model_load(self, path): model_name=self.confparams["model_name"] if (model_name.lower() == "deeplearning"): loaded_model = tf.keras.models.load_model(path) else: loaded_model = pkl.load(open(path, 'rb')) return loaded_model # Fo normal ml models, def get_eval_fn, evaluate each round results with own dataset. It is optional, without this, fed server will aggregate (fedAvg) client weights and update results to clients without evaluate. def get_eval_fn(self,model,X,y,model_name,model_version): """Return an evaluation function for server-side evaluation.""" self.log.info("X_eval: \\n"+str(X.shape)) self.log.info("y_eval: \\n"+str(y.shape)) # scaler = StandardScaler() # X_scaled = scaler.fit_transform(X) # y = pd.get_dummies(y) # y_class = None def evaluate(server_round: int, parameters: fl.common.NDArrays, config: Dict[str, fl.common.Scalar],): # self.log.info("server side fedavg weights \\n "+str(parameters)) try: problem_type=self.confparams["problem_type"] # if (self.model_name.lower() == 'logisticregression' ): # loss = log_loss(y, model.predict_proba(X)) # else: # loss = log_loss(y, model.predict(X)) if (problem_type.lower() == 'classification'): if (model_name.lower() == 'logisticregression' ): utils.set_model_params(model, parameters) loss = log_loss(y, model.predict_proba(X)) # loss = log_loss(y, model.predict_proba(X)) accuracy = model.score(X, y) log(INFO, "Server evaluation FL Round: %s processed Weights. -- Loss: %s, -- Accuracy: %s ",str(self.fl_round),str(loss), str(accuracy)) self.log.info("Accuracy: "+str(accuracy)) self.log.info("model coefficients: "+str(model.coef_)) self.log.info("model intercept: "+str(model.intercept_)) problem_type=self.confparams["problem_type"] self.model_save(model,model_name,problem_type,model_version) return loss, {"accuracy": accuracy} else: if (model_name.lower() == 'linearregression' ): print(model, type(model)) print(model.get_params) # rmse = mean_squared_error(y, model.predict(X), square=True) rmse = np.sqrt(mean_squared_error(y, model.predict(X))) mae = mean_absolute_error(y, model.predict(X)) r2=r2_score(y, model.predict(X)) loss = rmse mse=mean_squared_error(y, model.predict(X)) rmse = np.sqrt(mean_squared_error(y, model.predict(X))) mae = mean_absolute_error(y, model.predict(X)) r2=r2_score(y, model.predict(X)) loss = rmse results = { "mean_absolute_error": mae, "mean_squared_error": mse, "root_mean_squared_error": rmse, "r2":r2, } # accuracy=r2 log(INFO, "Server evaluation FL Round: %s processed Weights. -- Loss: %s, -- metrics: %s ",str(self.fl_round),str(rmse), str(results)) self.log.info("model coefficients: "+str(model.coef_)) self.log.info("model intercept: "+str(model.intercept_)) self.model_save(model,model_name,problem_type,model_version) # return loss, len(X), results return loss, results except Exception as e: log(INFO, "evaluate error msg: %s ",str(e)) return evaluate # for deep learn models, def get_eval_fn, evaluate each round results with own dataset. It is optional, without this, fed server will aggregate (fedAvg) client weights and update results to clients without evaluate. def get_eval_fn_dl(self, model,X,y,model_name,model_version): try: scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # y = pd.get_dummies(y) y_class = None def evaluate( server_round: int, weights: fl.common.NDArrays, config: Dict[str, fl.common.Scalar], ) -> Optional[Tuple[float, Dict[str, fl.common.Scalar]]]: # Update model with the latest parameters model.set_weights(weights) problem_type = self.confparams["problem_type"] self.model_save(model, model_name,problem_type, model_version) if model_name == 'deeplearning': if problem_type == 'regression': loss, mean_absolute_error, mean_squared_error = model.evaluate(X_scaled, y, verbose=1) y_pred = model.predict(X_scaled) from sklearn import metrics root_mean_squared_error =
np.sqrt(metrics.mean_squared_error(y, y_pred)) log(INFO, "global model mean_absolute_error: %f ",mean_absolute_error) log(INFO, "global model mean_squared_error: %f ",mean_squared_error) log(INFO, "global model root_mean_squared_error: %f ",root_mean_squared_error) return loss, {"mean_absolute_error": mean_absolute_error, "mean_squared_error": mean_squared_error, "root_mean_squared_error": root_mean_squared_error} if problem_type == 'classification': y_class = pd.get_dummies(y) loss, accuracy = model.evaluate(X_scaled, y_class, verbose=1) log(INFO, "global model accuracy: %f ",round(accuracy * 100, 2)) log(INFO, "global model loss: %f ", round(loss, 2)) return loss, {"accuracy": accuracy} except Exception as e: log(INFO, "get_eval_fn_dl error: %s ",str(e)) return evaluate """ Below part is the aion specific grpc functions. To start the grpc server and client. Currently below modules are not used. """ # def callaiongrpcserver(self): # agrpcobj = aionflgrpcserver() # status=agrpcobj.startgrpcerver() # print("server grpc start status: \\t",status) # return status # def stopaiongrpcserver(self): # agrpcobj = aionflgrpcserver() # status=agrpcobj.shutserver() # print("server grpc stop status: \\t",status) # return status ## This function called from aionflmain.py, and run server. ## Getting flower fl strategy def get_strategy(self,min_fit_clients,num_clients,eval_fn,on_fit_config_fn,on_evaluate_config_fn): strategy = fl.server.strategy.FedAvg( min_fit_clients=min_fit_clients, min_available_clients=num_clients, evaluate_fn=eval_fn, on_fit_config_fn=on_fit_config_fn, on_evaluate_config_fn=on_evaluate_config_fn, # initial_parameters=fl.common.weights_to_parameters(model.get_weights()), ) return strategy def runFLServer(self): try: server_address,model_name,num_clients,min_fit_clients,num_train_round,data_location,model_params,problem_type,model_version,selected_feature,target_feature,evaluation_required = self.configload(self.confparams) df = self.df if (evaluation_required.lower() == 'true'): ## One more check for NaN,Inf occurance in dataframe df =df[~df.isin([np.nan, np.inf, -np.inf]).any(axis=1)] ## Remove index if passed. df=df.reset_index(drop=True) y=df[target_feature] X=df[selected_feature] if (problem_type.lower() == "classification"): if (model_name.lower() == "logisticregression"): #n_classes = df[target_feature].nunique() no_classes = len(df.groupby(target_feature).count()) no_features=len(selected_feature) self.log.info("no_classes: "+str(no_classes)) self.log.info("no_features: "+str(no_features)) modelName="logisticregression" try: model = LogisticRegression(**model_params, warm_start=True) except Exception as e: self.log.info("LR model error: \\n"+str(e)) status=utils.setmodelName(modelName) utils.set_initial_params(model,no_classes,no_features) eval_fn=self.get_eval_fn(model,X,y,model_name,model_version) on_fit_config_fn=self.fit_round on_evaluate_config_fn=None min_fit_clients=2 strategy = self.get_strategy(min_fit_clients,num_clients,eval_fn,on_fit_config_fn,on_evaluate_config_fn) elif (model_name.lower() == "deeplearning"): # model_hyperparams = self.confparams["model_hyperparams"] optimizer = model_params["optimizer"] loss_func = model_params["losses"] act_func = model_params["activation"] last_act_func = model_params["last_activation"] input_shape = X.shape[1] # len(selected_feature) output_shape = len(y.value_counts()) model = None if output_shape == 2: if last_act_func == "sigmoid" and loss_func == "binary_crossentropy": model = dl_model.dl_binary_classification(input_shape, output_shape, optimizer, loss_func, act_func, last_act_func) elif last_act_func == "softmax" and loss_func == "categorical_crossentropy": model = dl_model.dl_binary_classification(input_shape, output_shape, optimizer, loss_func, act_func, last_act_func) else: model = dl_model.dl_multiClass_classification(input_shape, output_shape, optimizer, loss_func, act_func, last_act_func) print(model.summary()) eval_fn=self.get_eval_fn_dl(model,X,y,model_name,model_version) on_fit_config_fn=self.fit_config on_evaluate_config_fn=self.evaluate_config strategy = self.get_strategy(min_fit_clients,num_clients,eval_fn,on_fit_config_fn,on_evaluate_config_fn) elif(problem_type.lower() == "regression"): if (model_name.lower() == "linearregression"): model=LinearRegression(**model_params) status=utils.setmodelName(model_name) utils.set_initial_params_reg(model,X.shape[0],len(selected_feature)) # utils.set_initial_params_reg(model,X.shape[0],X.shape[1]) eval_fn=self.get_eval_fn(model,X,y,model_name,model_version) on_fit_config_fn=self.fit_round on_evaluate_config_fn=None min_fit_clients=2 strategy = self.get_strategy(min_fit_clients,num_clients,eval_fn,on_fit_config_fn,on_evaluate_config_fn) elif(model_name.lower() == "deeplearning"): input_shape = X.shape[1] # len(selected_feature) output_shape = len(y.value_counts()) optimizer = model_params["optimizer"] loss_func = model_params["losses"] act_func = model_params["activation"] model = None model = dl_model.dl_regression_model(input_shape, 1, optimizer, loss_func, act_func) eval_fn=self.get_eval_fn_dl(model,X,y,model_name,model_version) on_fit_config_fn=self.fit_config on_evaluate_config_fn=self.evaluate_config strategy = self.get_strategy(min_fit_clients,num_clients,eval_fn,on_fit_config_fn,on_evaluate_config_fn) elif (evaluation_required.lower() == 'false'): eval_fn=None if (model_name.lower() == "deeplearning"): # min_fit_clients =int( model_params["min_fit_clients"]) on_fit_config_fn=self.fit_config on_evaluate_config_fn=self.evaluate_config strategy = self.get_strategy(min_fit_clients,num_clients,eval_fn,on_fit_config_fn,on_evaluate_config_fn) else: min_fit_clients=0 on_fit_config_fn=self.fit_round on_evaluate_config_fn=None # strategy = self.get_strategy(min_fit_clients,num_clients,eval_fn,on_fit_config_fn,on_evaluate_config_fn) strategy = fl.server.strategy.FedAvg( min_available_clients=num_clients, eval_fn=None, on_fit_config_fn=self.fit_round,) else: log(INFO, "Please opt server evaluation as True or False in server configuration file.") log(INFO, "Federated learning Server started at @: %s ",str(server_address)) server_rnd=1 while (1): try: fl.server.start_server(server_address=server_address, strategy=strategy, config=fl.server.ServerConfig(num_rounds=num_train_round))# config={"num_rounds": num_train_round})#config=fl.server.ServerConfig(num_rounds=3) #,force_final_distributed_eval=True) except Exception as e: log(INFO, "Server exception: %s ",str(e)) log(INFO, "AION federated learning server completed for execution cycle: %s ",str(server_rnd)) # Evaluate the final trained model server_rnd+=1 log(INFO, "AION federated learning server execution successfully completed. Please check the log file for more information.") return True except Exception as e: self.log.info("AION Federated Learning Server run error. Error Msg: "+str(e)) log(INFO, "Server not executing, err.msg: %s ",str(e)) return False # Start Flower server for n rounds of federated learning # if __name__ == "__main__": # ''' Testing purpose code ''' # super_obj=flserver1() # json_file=sys.argv[1] # super_obj.log.info("User json_file: \\n"+str(json_file)) # # configfile=None # server_address,model_name,num_clients,num_train_round,data_location,model_version,model_version,selected_feature,target_feature = super_obj.configload(super_obj.confparams) # df = pd.read_csv(data_location) # # df=super_obj.df # df =df[~df.isin([np.nan, np.inf, -np.inf]).any(1)] # df=df.reset_index(drop=True) # y=df[target_feature] # X = df.drop(target_feature, axis=1) # no_classes = len(df.groupby(target_feature).count()) # no_features=len(selected_feature.split(',')) # print("no_classes: \\n",no_classes) # print("no_features: \\n",no_features) # # num_classes = y_train.apply(pd.Series.nunique) # if (model_name.lower() == "logisticregression"): # modelName="logisticregression" # model = LogisticRegression(penalty="l2",max_iter=10, warm_start=True) # ## May be used in future (model load for server side eval) # # model=super_obj.model_load(model_location) # status=utils.setmodelName(modelName) # utils.set_initial_params(model,no_classes,no_features) # strategy = fl.server.strategy.FedAvg( # min_available_clients=num_clients, # eval_fn=super_obj.get_eval_fn(model,X,y), # on_fit_config_fn=super_obj.fit_round,) # # super_obj.log.info("Stating federated learning server.....\\n") # log(INFO, "Stating AION federated learning server.....") # fl.server.start_server(server_address, strategy=strategy, config={"num_rounds": num_train_round}) # # super_obj.log.info("federated learning server execution completed.\\n") # log(INFO, "AION federated learning server execution completed.....") <s> import tensorflow as tf def dl_regression_model(input_shape, output_shape, optimizer, loss_func, act_func): inputs = tf.keras.Input(shape=(input_shape,)) x = tf.keras.layers.Dense(64, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(inputs) x = tf.keras.layers.Dense(32, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) x = tf.keras.layers.Dense(16, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) x = tf.keras.layers.Dense(8, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) outputs = tf.keras.layers.Dense(output_shape, kernel_initializer='he_normal', bias_initializer='zeros')(x) model = tf.keras.Model(inputs=inputs, outputs=outputs) model.compile(loss=loss_func , optimizer=optimizer, metrics=["mean_absolute_error", "mean_squared_error", ]) return model def dl_multiClass_classification(input_shape, output_shape, optimizer, loss_func, act_func, last_act_func): inputs = tf.keras.Input(shape=(input_shape,)) x = tf.keras.layers.Dense(64, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(inputs) x = tf.keras.layers.Dense(32, kernel_initializer='he_normal',
bias_initializer='zeros', activation=act_func)(x) x = tf.keras.layers.Dense(16, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) x = tf.keras.layers.Dense(8, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) outputs = tf.keras.layers.Dense(output_shape, kernel_initializer='he_normal', bias_initializer='zeros', activation=last_act_func)(x) model = tf.keras.Model(inputs=inputs, outputs=outputs) model.compile(optimizer, loss_func, metrics=["accuracy"]) return model def dl_binary_classification(input_shape, output_shape, optimizer, loss_func, act_func, last_act_func): inputs = tf.keras.Input(shape=(input_shape,)) x = tf.keras.layers.Dense(64, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(inputs) x = tf.keras.layers.Dense(32, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) x = tf.keras.layers.Dense(16, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) x = tf.keras.layers.Dense(8, kernel_initializer='he_normal', bias_initializer='zeros', activation=act_func)(x) outputs = tf.keras.layers.Dense(output_shape, kernel_initializer='he_normal', bias_initializer='zeros', activation=last_act_func)(x) model = tf.keras.Model(inputs=inputs, outputs=outputs) model.compile(optimizer, loss_func, metrics=["accuracy"]) return model <s><s> from typing import Tuple, Union, List import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import SGDClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from flwr.common.logger import log from logging import INFO XY = Tuple[np.ndarray, np.ndarray] Dataset = Tuple[XY, XY] LogRegParams = Union[XY, Tuple[np.ndarray]] XYList = List[XY] modelUsed=None modelname=None def setmodelName(modelselected): try: modelname=str(modelselected) print("setmodelName ,given modelname: \\n",modelname) if (modelname.lower() == 'logisticregression'): modelUsed=LogisticRegression() return True elif (modelname.lower() == "linearregression"): modelUsed = LinearRegression() return True elif (modelname.lower() == "sgdclassifier"): #from sklearn.linear_model import SGDClassifier modelUsed=SGDClassifier() return True elif (modelname.lower() == "knn"): modelUsed = KNeighborsClassifier() return True elif (modelname.lower() == "decisiontreeclassifier"): modelUsed = DecisionTreeClassifier() return True else: return False except Exception as e: log(INFO, "set fl model name fn issue: ",e) def get_model_parameters(model:modelUsed) -> LogRegParams: """Returns the paramters of a sklearn LogisticRegression model.""" model_name=model.__class__.__name__ if model.fit_intercept: params = (model.coef_, model.intercept_) else: params = (model.coef_,) return params def set_model_params( model:modelUsed, params: LogRegParams ) -> modelUsed: """Sets the parameters of a sklean LogisticRegression model.""" model.coef_ = params[0] model_name=model.__class__.__name__ try: if model.fit_intercept: model.intercept_ = params[1] except Exception as e: log(INFO, "set_model_params fn issue: ",e) pass return model def set_initial_params_reg(model,no_vals,no_features): """Sets initial parameters as zeros Required since model params are uninitialized until model.fit is called. But server asks for initial parameters from clients at launch. Refer to sklearn.linear_model.LogisticRegression documentation for more information. """ no_vals = no_vals n_features = no_features # model.classes_ = np.array([i for i in range(n_classes)]) model.coef_ = np.zeros( n_features,) model_name=model.__class__.__name__ try: if model.fit_intercept: # model.intercept_ = np.ones((no_vals,1)) model.intercept_ = np.zeros((no_vals,)) except Exception as e: log(INFO, "set_initial_params fn issue: ",e) pass def set_initial_params(model,no_classes,no_features): """Sets initial parameters as zeros Required since model params are uninitialized until model.fit is called. But server asks for initial parameters from clients at launch. Refer to sklearn.linear_model.LogisticRegression documentation for more information. """ n_classes = no_classes n_features = no_features model.classes_ = np.array([i for i in range(n_classes)]) model.coef_ = np.zeros((n_classes, n_features)) model_name=model.__class__.__name__ try: if model.fit_intercept: model.intercept_ = np.zeros((n_classes,)) except Exception as e: log(INFO, "set_initial_params fn issue: ",e) pass def shuffle(X: np.ndarray, y: np.ndarray) -> XY: """Shuffle X and y.""" rng = np.random.default_rng() idx = rng.permutation(len(X)) return X[idx], y[idx] def partition(X: np.ndarray, y: np.ndarray, num_partitions: int) -> XYList: """Split X and y into a number of partitions.""" return list( zip(np.array_split(X, num_partitions), np.array_split(y, num_partitions)) ) <s> # -*- coding: utf-8 -*- import pandas as pd import numpy as np import logging import os import sys from flwr.common.logger import log from logging import INFO from flserver import flserver class aionfls: def __init__(self): self.confdata=None def configLoad(self,jsonfile): import json jsonfile=str(jsonfile) with open(jsonfile, 'r') as file: self.confdata = json.load(file) return self.confdata def dataload(self,datapath): df = pd.read_csv(datapath) #chunk_size=50000 ## Data preprocess in test dataset, In aion, aion profiler will handle it. df =df[~df.isin([np.nan, np.inf, -np.inf]).any(axis=1)] df=df.reset_index(drop=True) return df # Start Flower server for n rounds of federated learning if __name__ == "__main__": classobj=aionfls() json_file=sys.argv[1] confdata = classobj.configLoad(json_file) data_location = confdata["data_location"] # deploy_location=confdata['deploy_location'] cwd = os.path.abspath(os.path.dirname(__file__)) model_name=confdata['model_name'] version=str(confdata['version']) file_name=model_name+'_'+version+".log" try: fl_log=os.path.normpath(os.path.join(cwd,'logs',file_name)) except Exception as e: classobj.log.info("Log path error. Error Msg: \\n",e) logging.basicConfig(filename=fl_log,format='%(asctime)s %(message)s', filemode='w',level=logging.DEBUG) classobj.log = logging.getLogger('AION') print("===============") print("flserver main function") print("===============") if (confdata['evaluation_required'].lower() == 'false'): df=None aionflobj=flserver(df,confdata) print("flserver condition is false") else: ## User selected option is True print("flserver condition is true") data_location = os.path.normpath(os.path.join(cwd, data_location)) # print("current data_location",data_location) df=classobj.dataload(data_location) aionflobj=flserver(df,confdata) status=aionflobj.runFLServer() classobj.log.info("Aion FL Server run Status: \\n"+str(status)) <s><s><s><s><s><s> # -*- coding: utf-8 -*- """ Created on Sat Sep 10 23:57:56 2022 """ import numpy as np import pandas as pd from secrets import token_bytes from ppxgboost import PaillierAPI as paillier from ppxgboost import BoosterParser as boostparser from ppxgboost import PPBooster as ppbooster from ppxgboost.PPBooster import MetaData from ppxgboost.PPKey import PPBoostKey # from ope.pyope.ope import OPE from pyope.ope import OPE import joblib import logging import os from flask import Flask,request,jsonify,render_template # import pickle from flask import Flask, request, jsonify import json import jsonpickle import os.path import time import subprocess import sys from os.path import expanduser import ntpath import shutil import platform from pathlib import Path home = expanduser("~") if platform.system() == 'Windows': LOG_FILE_PATH = os.path.join(home,'AppData','Local','HCLT','AION','logs') else: LOG_FILE_PATH = os.path.join(home,'HCLT','AION','logs') app = Flask(__name__) class server_ppxgboost: def __init__(self): # self.problemtype=problemtype self.confdata=None ## Loading config file def configload(self): cwd = os.path.abspath(os.path.dirname(__file__)) file_name='config.json' try: config_file=os.path.normpath(os.path.join(cwd,'config',file_name)) except Exception as e: print("config path error. Error Msg: \\n",e) with open(config_file, 'r') as file: data = json.load(file) model_name=str(data["model_name"]) # version=str(data["version"]) return model_name ## Load server xgboost model from ../model dir. def model_load( self,path): cwd = os.path.abspath(os.path.dirname(__file__)) file_name=path try: model_location=os.path.normpath(os.path.join(cwd,'model',file_name)) except Exception as e: print("Model path error. Error Msg: \\n",e) # print(path) loaded_model = joblib.load(model_location) return loaded_model ## Generate Encrypted prediction fn def ppxgboostpredict_server(self,model,ppBoostKey,clientdata,min_max): xgboost_model = model meta_min_max = MetaData(min_max) p_trees, feature_set, min_max = boostparser.model_to_trees(xgboost_model, min_max) enc_trees = ppbooster.enc_xgboost_model(ppBoostKey, p_trees, MetaData(min_max)) enc_client_data=clientdata # enc_predictions = ppbooster.predict_binary(enc_trees, X_test) # should rename the function enc_predictions = ppbooster.predict_binary(p_trees, enc_client_data) return enc_predictions ## XGBoost wrapper for native model (native model to scikit learn xgboost model) def xgboostwrappertonative(self,wrappermodel): nativemodel = wrappermodel.get_booster() return nativemodel def training_dataset_parser(self,train_data: pd.DataFrame): """ :param train_data: dataframe training data :return: minimum of the training dataset, and maximum of the training dataset. """ return {'min': np.min(pd.DataFrame.min(train_data)), 'max': np.max(pd.DataFrame.max(train_data))} ## Homomorphic secure main server cls_obj=server_ppxgboost() @app.route('/homomorphicprediction_server_api',methods=['GET','POST']) def main_server(): data = request.get_json(force=True) response_data = json.dumps(data) json_in= json.loads(response_data) values = json_in['values'] features=json_in['features'] ppBoostKey=jsonpickle.decode(json_in['key']) encrypted_clientdata=pd.DataFrame(values,columns =features) ## Create encrypted predition from model model=None min_max = {'min': 0, 'max': 1000} model_name = cls_obj.configload() # model_name=usecase_name model_location=model_name model_xgboost = cls_obj.model_load(model_location) try: ## For sklearn based xgboost model to native model model = cls_obj.xgboostwrappertonative(model_xgboost) except: ## For native xgboost,we dont need to get booster. model= model_xgboost ## FFor logging cwd = os.path.abspath(os.path.dirname(__file__)) # model_name=model_name file_name =
model_name.rsplit('.', 1) file_name=file_name[0] file_name=file_name+".log" try: hm_log=os.path.normpath(os.path.join(cwd,'logs',file_name)) os.makedirs(os.path.dirname(hm_log), exist_ok=True) except Exception as e: print("Log path error. Error Msg: \\n",e) logging.basicConfig(filename=hm_log,format='%(asctime)s %(message)s', filemode='w',level=logging.DEBUG) log = logging.getLogger('AION') log.info('Server regression encryption service started...') print("Encrypted client data is ....\\n") log.info("Encrypted client data is (received by server): \\n"+str(encrypted_clientdata)) print("Client side encrypted data: \\n",encrypted_clientdata) enc_predictions = cls_obj.ppxgboostpredict_server(model,ppBoostKey,encrypted_clientdata,min_max) log.info("server side encrypted prediction: \\n"+str(enc_predictions)) ## Serialize the ppboost encrypted prediction by jsonpickle, normal pikle lib not working. enc_predictions_json = jsonpickle.encode(enc_predictions) # enc_predictions_json = enc_predictions.to_json() return enc_predictions_json if __name__ == '__main__': #app.run(debug=True) app.run(host="localhost", port=9000, debug=True)<s><s> # -*- coding: utf-8 -*- """ Created on Sat Sep 10 23:57:56 2022 @author: jayaramakrishnans """ import numpy as np import pandas as pd from secrets import token_bytes from ppxgboost import PaillierAPI as paillier from ppxgboost import BoosterParser as boostparser from ppxgboost import PPBooster as ppbooster from ppxgboost.PPBooster import MetaData from ppxgboost.PPKey import PPBoostKey # from ope.pyope.ope import OPE from pyope.ope import OPE import joblib import logging import os from flask import Flask,request,jsonify,render_template # import pickle from flask import Flask, request, jsonify import json import jsonpickle app = Flask(__name__) class server_ppxgboost: def __init__(self): # self.problemtype=problemtype self.confdata=None print("Inside server_ppxgboost_1\\n") ## Loading config file def configload(self): print("Inside server_ppxgboost_1,configload\\n") cwd = os.path.abspath(os.path.dirname(__file__)) file_name='config.json' try: config_file=os.path.normpath(os.path.join(cwd,'config',file_name)) except Exception as e: print("config path error. Error Msg: \\n",e) with open(config_file, 'r') as file: data = json.load(file) model_name=str(data["model_name"]) # version=str(data["version"]) return model_name ## Load server xgboost model from ../model dir. def model_load( self,path): print("Inside server_ppxgboost_1,model_load\\n") cwd = os.path.abspath(os.path.dirname(__file__)) file_name=path try: model_location=os.path.normpath(os.path.join(cwd,'model',file_name)) except Exception as e: print("Model path error. Error Msg: \\n",e) # print(path) loaded_model = joblib.load(model_location) return loaded_model ## Generate Encrypted prediction fn def ppxgboostpredict_server(self,model,ppBoostKey,clientdata,min_max): xgboost_model = model meta_min_max = MetaData(min_max) p_trees, feature_set, min_max = boostparser.model_to_trees(xgboost_model, min_max) enc_trees = ppbooster.enc_xgboost_model(ppBoostKey, p_trees, MetaData(min_max)) enc_client_data=clientdata # enc_predictions = ppbooster.predict_binary(enc_trees, X_test) # should rename the function enc_predictions = ppbooster.predict_binary(p_trees, enc_client_data) return enc_predictions ## XGBoost wrapper for native model (native model to scikit learn xgboost model) def xgboostwrappertonative(self,wrappermodel): print("Inside server_ppxgboost_7,xgboostwrappertonative= \\n",wrappermodel) nativemodel = wrappermodel.get_booster() return nativemodel def training_dataset_parser(self,train_data: pd.DataFrame): """ :param train_data: dataframe training data :return: minimum of the training dataset, and maximum of the training dataset. """ return {'min': np.min(pd.DataFrame.min(train_data)), 'max': np.max(pd.DataFrame.max(train_data))} ## Homomorphic secure main server cls_obj=server_ppxgboost() @app.route('/homomorphicprediction_server_api',methods=['GET','POST']) def main_server(): data = request.get_json(force=True) response_data = json.dumps(data) json_in= json.loads(response_data) values = json_in['values'] features=json_in['features'] ppBoostKey=jsonpickle.decode(json_in['key']) encrypted_clientdata=pd.DataFrame(values,columns =features) ## Create encrypted predition from model model=None min_max = {'min': 0, 'max': 1000} model_name = cls_obj.configload() # model_name=usecase_name model_location=model_name model_xgboost = cls_obj.model_load(model_location) try: ## For sklearn based xgboost model to native model model = cls_obj.xgboostwrappertonative(model_xgboost) except: ## For native xgboost,we dont need to get booster. model= model_xgboost ## FFor logging cwd = os.path.abspath(os.path.dirname(__file__)) # model_name=model_name file_name = model_name.rsplit('.', 1) file_name=file_name[0] file_name=file_name+".log" try: hm_log=os.path.normpath(os.path.join(cwd,'logs',file_name)) os.makedirs(os.path.dirname(hm_log), exist_ok=True) except Exception as e: print("Log path error. Error Msg: \\n",e) logging.basicConfig(filename=hm_log,format='%(asctime)s %(message)s', filemode='w',level=logging.DEBUG) log = logging.getLogger('AION') log.info('Server binary class encryption service started...') print("Encrypted client data is ....\\n") log.info("Encrypted client data is (received by server): \\n"+str(encrypted_clientdata)) enc_predictions = cls_obj.ppxgboostpredict_server(model,ppBoostKey,encrypted_clientdata,min_max) log.info("server side encrypted prediction: \\n"+str(enc_predictions)) ## Serialize the ppboost encrypted prediction by jsonpickle, normal pikle lib not working. enc_predictions_json = jsonpickle.encode(enc_predictions) # enc_predictions_json = enc_predictions.to_json() return enc_predictions_json if __name__ == '__main__': #app.run(debug=True) app.run(host="localhost", port=9000, debug=True)<s> # -*- coding: utf-8 -*- """ Created on Sat Sep 10 23:57:56 2022 """ import numpy as np import sqlite3 import sys import pandas as pd from secrets import token_bytes from ppxgboost import PaillierAPI as paillier from ppxgboost import BoosterParser as boostparser from ppxgboost import PPBooster as ppbooster from ppxgboost.PPBooster import MetaData from ppxgboost.PPKey import PPBoostKey # from ope.pyope.ope import OPE from pyope.ope import OPE import joblib import logging import os from flask import Flask,request,jsonify,render_template # import pickle from flask import Flask, request, jsonify import json import jsonpickle import time from pathlib import Path app = Flask(__name__) class server_ppxgboost: def __init__(self): # self.problemtype=problemtype print("Inside server_ppxgboost_1,init\\n") self.confdata=None ## Loading config file def configload(self): cwd = os.path.abspath(os.path.dirname(__file__)) file_name='secure_config.json' try: config_file=os.path.normpath(os.path.join(cwd,'etc',file_name)) except Exception as e: print("config path error. Error Msg: \\n",e) with open(config_file, 'r') as file: data = json.load(file) model_name=str(data["model_name"]) # version=str(data["version"]) return model_name ## Load server xgboost model from ../model dir. def model_load( self,path): cwd = os.path.abspath(os.path.dirname(__file__)) file_name=path try: model_location=os.path.normpath(os.path.join(cwd,'model',file_name)) except Exception as e: print("Model path error. Error Msg: \\n",e) # print(path) loaded_model = joblib.load(model_location) return loaded_model def create_connection(self,db_file): conn = None try: conn = sqlite3.connect(db_file) conn.execute('''CREATE TABLE IF NOT EXISTS modelinfo (key BLOB NOT NULL,encrypttree BLOB NOT NULL)''') except Exception as e: print(e) return conn def count_encrypt_model(self,conn): try: sql = "select count(*) from modelinfo" cur = conn.cursor() cur.execute(sql) cur_result = cur.fetchone() return cur_result[0] except Exception as e: print(e) def create_encryptmodel(self,conn,modeldetails): sql = ''' INSERT INTO modelinfo(key,encrypttree) VALUES(?,?) ''' cur = conn.cursor() cur.execute(sql, modeldetails) conn.commit() return cur.lastrowid def search_encryptmodel(self,conn,key): try: sql = "SELECT encrypttree FROM modelinfo where key='"+key+"'" cursor = conn.execute(sql) for row in cursor: return row[0] return '' except Exception as e: print(e) def ppxgboostpredict_server(self,model,ppBoostKey,clientdata,min_max,noofclasses): try: db_file = Path(__file__).parent/'logs'/'encryptedModels' conn = self.create_connection(db_file) enc_trees = self.search_encryptmodel(conn,jsonpickle.encode(ppBoostKey)) if enc_trees != '': enc_trees = jsonpickle.decode(enc_trees) else: if self.count_encrypt_model(conn) >= 5: outputjson = {"status":"ERROR","msg":"Maximum Number of Encrypted"} return json.dumps(outputjson) xgboost_model = model meta_min_max = MetaData(min_max) p_trees, feature_set, min_max = boostparser.model_to_trees(xgboost_model, min_max) enc_trees = ppbooster.enc_xgboost_model(ppBoostKey, p_trees, MetaData(min_max)) modelinfo = (jsonpickle.encode(ppBoostKey),jsonpickle.encode(enc_trees)) self.create_encryptmodel(conn,modelinfo) enc_client_data=clientdata # try: # num_classes = model.n_classes_ # except: # num_classes = noofclasses num_classes = noofclasses if num_classes == 0: nc_predictions = ppbooster.predict_binary(p_trees, enc_client_data) else: enc_predictions = ppbooster.predict_multiclass(enc_trees, num_classes, enc_client_data) enc_predictions_json = jsonpickle.encode(enc_predictions) outputjson = {"status":"SUCCESS","data":enc_predictions_json} return json.dumps(outputjson) except Exception as e: outputjson = {"status":"ERROR","msg":str(e)} return json.dumps(outputjson) ## XGBoost wrapper for native model (native model to scikit learn xgboost model) def xgboostwrappertonative(self,wrappermodel): nativemodel = wrappermodel.get_booster() try: noOfClasses = wrappermodel.n_classes_ except Exception as e: print(e) noOfClasses = 0 return nativemodel,noOfClasses def training_dataset_parser(self,train_data: pd.DataFrame): """ :param train_data: dataframe training data :return: minimum of the training dataset, and maximum of the training dataset. """ return {'min': np.min(pd.DataFrame.min(train_data)), 'max': np.max(pd.DataFrame.max(train_data))} ## Homomorphic secure main server cls_obj=server_ppxgboost() def spredict(data): try: json_in= json.loads(data) values = json_in['values'] features=json_in['features'] ppBoostKey=jsonpickle.decode(json_in['key']) encrypted_clientdata=pd.DataFrame(values,columns =features) model=None min_max = {'min': 0, 'max': 1000} model_name = cls_obj.configload() model_location=model_name model_xgboost = cls_obj.model_load(model_location) try: model,noofclasses = cls_obj.xgboostwrappertonative(model_xgboost) except Exception as e: print(e) model= model_xgboost noofclasses =
0 cwd = os.path.abspath(os.path.dirname(__file__)) # model_name=model_name file_name = model_name.rsplit('.', 1) file_name=file_name[0] file_name=file_name+".log" try: hm_log=os.path.normpath(os.path.join(cwd,'logs',file_name)) os.makedirs(os.path.dirname(hm_log), exist_ok=True) except Exception as e: print("Log path error. Error Msg: \\n",e) logging.basicConfig(filename=hm_log,format='%(asctime)s %(message)s', filemode='w',level=logging.DEBUG) log = logging.getLogger('AION') log.info('Server multiclass classification encryption service started...') log.info("Encrypted client data is (received by server): \\n"+str(encrypted_clientdata)) output = cls_obj.ppxgboostpredict_server(model,ppBoostKey,encrypted_clientdata,min_max,noofclasses) print("predictions:",output) print("Inside server_ppxgboost_8,output= \\n",output) return output except Exception as e: outputjson = {"status":"ERROR","msg":str(e)} output = json.dumps(outputjson) print("predictions:",output) return output if __name__ == "__main__": output = spredict(sys.argv[1])<s> # -*- coding: utf-8 -*- # -*- coding: utf-8 -*- import pandas as pd import numpy as np import logging import os import sys from logging import INFO from script.heRegression import client_ppxgboost from script.aion_predict import selector from script.inputprofiler import inputprofiler import argparse class aion_hemulticlient: def __init__(self): self.confdata=None def dataload(self,datapath): df = pd.read_csv(datapath) ## Data preprocess in test dataset, In aion, aion profiler will handle it. # df =df[~df.isin([np.nan, np.inf, -np.inf]).any(1)] # df=df.reset_index(drop=True) profilerobj = inputprofiler() df = profilerobj.run(df) selectobj = selector() df = selectobj.run(df) return df if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-i', '--inputDataLocation', help='Input Data Path') parser.add_argument('-k', '--keyGenerate', help='True') parser.add_argument('-e', '--endPoint', help='Service End Point') args = parser.parse_args() if args.inputDataLocation: dataLocation=args.inputDataLocation if args.keyGenerate: keyGenerate = args.keyGenerate else: keyGenerate='False' print(keyGenerate) if args.endPoint: endPoint=args.endPoint else: raise('End Point Not Defined') classobj=aion_hemulticlient() df=classobj.dataload(dataLocation) aionhmcobj=client_ppxgboost(df,keyGenerate,endPoint) ppxgboost_pred=aionhmcobj.main_client() print("final decrypted prediction at client side: \\n",ppxgboost_pred) <s> # -*- coding: utf-8 -*- import pandas as pd from sklearn.model_selection import train_test_split import numpy as np from secrets import token_bytes from ppxgboost import PaillierAPI as paillier from ppxgboost import BoosterParser as boostparser from ppxgboost import PPBooster as ppbooster from ppxgboost.PPBooster import MetaData from ppxgboost.PPKey import PPBoostKey # from ope.pyope.ope import OPE from pyope.ope import OPE import sys sys.path.insert(0, '..') import logging from logging import INFO import pickle import requests import json # from json import JSONEncoder import jsonpickle import os from pathlib import Path ##Aion main client class for ppxgboost based encryption,decryption class client_ppxgboost: def __init__(self,data,keyGenerate,endPoint): self.data=data self.keyGenerate = keyGenerate self.endPoint = endPoint self.prediction=None ## For logging clientDirectory = os.path.abspath(os.path.dirname(__file__)) # model_name=model_name file_name = "he_regression" file_name=file_name+".log" self.keydir=os.path.join(clientDirectory,'..','keys') os.makedirs(self.keydir, exist_ok=True) try: hm_log=os.path.normpath(os.path.join(clientDirectory,'logs',file_name)) os.makedirs(os.path.dirname(hm_log), exist_ok=True) except Exception as e: print("Log path error. Error Msg: \\n",e) logging.basicConfig(filename=hm_log,format='%(asctime)s %(message)s', filemode='w',level=logging.DEBUG) self.log = logging.getLogger('AION') self.log.info('Client Regression homomorphic encryption service started...') ## Loading configuration parameters, Not used now. def configload(self): try: data=self.confdata usecase_name=str(data["usecase_name"]) version=str(data["version"]) problem_type=data["problem_type"] model_location=str(data["model_location"]) data_location=str(data["data_location"]) selected_feature=data["selected_feature"] if (type(selected_feature) is str): selected_feature=selected_feature.split(',') target_feature=data["target_feature"] client_encryption_accuracy=str(data["client_encryption_accuracy"]) test_size=int(data["test_size"]) test_size=test_size/100 except Exception as e: self.log.info("Reading server config file issue. Err.Msg: %s "+str(e)) return usecase_name,data_location,model_location,problem_type,version,selected_feature,target_feature,client_encryption_accuracy,test_size ## Load the model, Not used at client now. def model_load(self, path): loaded_model = pickle.load(open(path, 'rb')) return loaded_model #Generating secure key def generate_ppboostkey(self): try: public_key_file = Path(__file__).parent.parent/'keys'/'public.k' private_key_file = Path(__file__).parent.parent/'keys'/'private.k' prf_key_file = Path(__file__).parent.parent/'keys'/'prf.k' ope_key_file = Path(__file__).parent.parent/'keys'/'ope.k' encryptor_key_file = Path(__file__).parent.parent/'keys'/'encryptor.k' boostkey_key_file = Path(__file__).parent.parent/'keys'/'boostkey.k' if not boostkey_key_file.exists() or self.keyGenerate == 'True': public_key, private_key = paillier.he_key_gen() pub_file = open(public_key_file, 'w') pub_file.write(jsonpickle.encode(public_key)) pri_file = open(private_key_file, 'w') pri_file.write(jsonpickle.encode(private_key)) prf_key = token_bytes(16) OPE_key = token_bytes(16) prf_file = open(prf_key_file, 'w') prf_file.write(jsonpickle.encode(prf_key)) ope_file = open(ope_key_file, 'w') ope_file.write(jsonpickle.encode(OPE_key)) encrypter = OPE(OPE_key) enc_file = open(encryptor_key_file, 'w') enc_file.write(jsonpickle.encode(encrypter)) ppBoostKey = PPBoostKey(public_key, prf_key, encrypter) boost_file = open(boostkey_key_file, 'w') boost_file.write(jsonpickle.encode(ppBoostKey)) else: pub_file = open(public_key_file, 'r') public_key = jsonpickle.decode(pub_file.read()) pub_file.close() pri_file = open(private_key_file, 'r') private_key = jsonpickle.decode(pri_file.read()) pri_file.close() prf_file = open(prf_key_file, 'r') prf_key = jsonpickle.decode(prf_file.read()) prf_file.close() ope_file = open(ope_key_file, 'r') OPE_key = jsonpickle.decode(ope_file.read()) ope_file.close() enc_file = open(encryptor_key_file, 'r') encrypter = jsonpickle.decode(enc_file.read()) enc_file.close() boost_file = open(boostkey_key_file, 'r') ppBoostKey = jsonpickle.decode(boost_file.read()) boost_file.close() return public_key,private_key,prf_key,OPE_key,encrypter,ppBoostKey except Exception as e: print(e) def ppxgboostreg_predict(self,enc_predictions,private_key): dec = [] for p in enc_predictions: dec.append(paillier.decrypt(private_key, p)) dec_df=pd.DataFrame(dec) return dec # class ppkeyEncoder(JSONEncoder): # def default(self,o): # return o.__dict__ ## Function to connect secure server via flask restapi (send enc data and receive enc prediction.) def connect_xgboostserver(self,ppBoostKey,encrypted_xtest): url = self.endPoint enc_dict={} # df_list=[encrypted_xtest.columns.values.tolist()]+df.values.tolist() enc_dict['values']=encrypted_xtest.values.tolist() enc_dict['features']=encrypted_xtest.columns.values.tolist() enc_dict['key']= jsonpickle.encode(ppBoostKey) json_out=json.dumps(enc_dict,indent=4) headers = { 'content-type': "application/json", 'cache-control': "no-cache" } response = requests.post(url,auth=('admin','aion'),data=json_out,headers=headers) #print(response.content) outputStr=response.content outputStr = outputStr.decode('utf-8') outputStr = outputStr.strip() predict_dict = json.loads(str(outputStr)) if (predict_dict['status'] == 'SUCCESS'): data = predict_dict['data'] enc_predictions_ob=jsonpickle.decode(data) return enc_predictions_ob else: print('Error') ## Create PaillierAPI based encrypted user given data , here, testdata=userdata def generate_encrypted_testdata(self,prf_key,encrypter,testdata,min_max): feature_set_testdata=set(testdata.columns) ppbooster.enc_input_vector(prf_key, encrypter, feature_set_testdata, testdata, MetaData(min_max)) return testdata ## Create min and max of testdata df for pailler encryption,decryption def training_dataset_parser(self, client_data: pd.DataFrame): """ :param client_data: dataframe training data :return: minimum of the training dataset, and maximum of the training dataset. """ return {'min': np.min(pd.DataFrame.min(client_data)), 'max': np.max(pd.DataFrame.max(client_data))} ## Main client function call for enc data, send data to server, receive enc pred, finally decrypt prediction def main_client(self): self.log.info('Client actual data sample (displaying last 10 values) : \\n'+str(self.data.tail(10))) print(" Client actual data sample (displaying last 10 values) : \\n",self.data.tail(10)) public_key,private_key,prf_key,OPE_key,encrypter,ppBoostKey = self.generate_ppboostkey() min_max = self.training_dataset_parser(self.data) meta_min_max = MetaData(min_max) encrypted_testdata = self.generate_encrypted_testdata(prf_key,encrypter,self.data,min_max) # print("Sending encrypted client data to server....\\n") print("\\n Client side encrypted input data to server (displaying last 10 rows): \\n",encrypted_testdata.tail(10)) self.log.info('Client side encrypted input data to server (displaying last 10 rows): \\n'+str(encrypted_testdata.tail(10))) enc_predictions = self.connect_xgboostserver(ppBoostKey,encrypted_testdata) print("\\n Encrypted prediction from server (displaying last 10 values.): \\n",enc_predictions[-10:]) self.log.info('\\n Encrypted prediction from server (displaying last 10 values.): \\n'+str(enc_predictions[-10:])) ## Decrypted predition dec = self.ppxgboostreg_predict(enc_predictions,private_key) # ppxgboost_pred=pd.DataFrame(list(zip(dec, predictions)),columns =['homomorphic_prediction', 'actual_prediction']) ppxgboost_pred=pd.DataFrame(dec,columns =['homomorphic_prediction']) # print("final decrypted prediction at client side: \\n",ppxgboost_pred) self.log.info("Final decrypted prediction at client side:: \\n"+str(ppxgboost_pred)) return ppxgboost_pred ## For standalone testing if __name__ == '__main__': problemtype='regression' data=None targetfeature=None ppxgboost_client_obj=client_ppxgboost(problemtype,data,targetfeature) ppxgboost_dec_predictions = ppxgboost_client_obj.main_client() print("In main: ppxgboost_dec_predictions: \\n",ppxgboost_dec_predictions)<s><s> # -*- coding: utf-8 -*- # -*- coding: utf-8 -*- import pandas as pd import numpy as np import logging import os import sys from logging import INFO from script.heMulticlass import client_ppxgboost from
script.aion_predict import selector from script.inputprofiler import inputprofiler import argparse class aion_hemulticlient: def __init__(self): self.confdata=None def dataload(self,datapath): df = pd.read_csv(datapath) ## Data preprocess in test dataset, In aion, aion profiler will handle it. # df =df[~df.isin([np.nan, np.inf, -np.inf]).any(1)] # df=df.reset_index(drop=True) profilerobj = inputprofiler() df = profilerobj.run(df) selectobj = selector() df = selectobj.run(df) return df if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-i', '--inputDataLocation', help='Input Data Path') parser.add_argument('-k', '--keyGenerate', help='True') parser.add_argument('-e', '--endPoint', help='Service End Point') args = parser.parse_args() if args.inputDataLocation: dataLocation=args.inputDataLocation if args.keyGenerate: keyGenerate = args.keyGenerate else: keyGenerate='False' print(keyGenerate) if args.endPoint: endPoint=args.endPoint else: raise('End Point Not Defined') classobj=aion_hemulticlient() df=classobj.dataload(dataLocation) aionhmcobj=client_ppxgboost(df,keyGenerate,endPoint) ppxgboost_pred=aionhmcobj.main_client() print("final decrypted prediction at client side: \\n",ppxgboost_pred) <s> # -*- coding: utf-8 -*- # -*- coding: utf-8 -*- import pandas as pd import numpy as np import logging import os import sys from logging import INFO from script.heBinary import client_ppxgboost from script.aion_predict import selector from script.inputprofiler import inputprofiler ## Client main class for binary classification class aion_hebinaryclient: def __init__(self): self.confdata=None def configLoad(self,jsonfile): import json jsonfile=str(jsonfile) with open(jsonfile, 'r') as file: self.confdata = json.load(file) return self.confdata def dataload(self,datapath): df = pd.read_csv(datapath) ## Data preprocess in test dataset, In aion, aion profiler will handle it. # df =df[~df.isin([np.nan, np.inf, -np.inf]).any(1)] # df=df.reset_index(drop=True) profilerobj = inputprofiler() df = profilerobj.run(df) selectobj = selector() df = selectobj.run(df) return df # Start Flower server for n rounds of federated learning if __name__ == "__main__": classobj=aion_hebinaryclient() data_location=str(sys.argv[1]) df=classobj.dataload(data_location) # print("df: \\n",df) aionhmcobj=client_ppxgboost(df) ppxgboost_pred=aionhmcobj.main_client() print("final decrypted prediction at client side: \\n",ppxgboost_pred) # classobj.log.info("At client end, homomorphic prediction df: \\n"+str(ppxgboost_pred)) # classobj.log.info("Aion homomorphic client encrypted prediction df: \\n"+str(ppxgboost_pred)) <s> # -*- coding: utf-8 -*- import pandas as pd from sklearn.model_selection import train_test_split import numpy as np from secrets import token_bytes from ppxgboost import PaillierAPI as paillier from ppxgboost import BoosterParser as boostparser from ppxgboost import PPBooster as ppbooster from ppxgboost.PPBooster import MetaData from ppxgboost.PPKey import PPBoostKey # from ope.pyope.ope import OPE from pyope.ope import OPE import sys sys.path.insert(0, '..') import logging from logging import INFO import pickle import requests import json # from json import JSONEncoder import jsonpickle import os ##Aion main client class for ppxgboost based encryption,decryption class client_ppxgboost: def __init__(self,data): self.data=data self.prediction=None ## For logging cwd = os.path.abspath(os.path.dirname(__file__)) # model_name=model_name file_name = "he_binaryclass" file_name=file_name+".log" try: hm_log=os.path.normpath(os.path.join(cwd,'logs',file_name)) os.makedirs(os.path.dirname(hm_log), exist_ok=True) except Exception as e: print("Log path error. Error Msg: \\n",e) logging.basicConfig(filename=hm_log,format='%(asctime)s %(message)s', filemode='w',level=logging.DEBUG) self.log = logging.getLogger('AION') self.log.info('Client binary class classification homomorphic encryption service started...') ## Loading configuration parameters, Not used now. def configload(self): try: data=self.confdata usecase_name=str(data["usecase_name"]) version=str(data["version"]) problem_type=data["problem_type"] model_location=str(data["model_location"]) data_location=str(data["data_location"]) selected_feature=data["selected_feature"] if (type(selected_feature) is str): selected_feature=selected_feature.split(',') target_feature=data["target_feature"] client_encryption_accuracy=str(data["client_encryption_accuracy"]) test_size=int(data["test_size"]) test_size=test_size/100 except Exception as e: self.log.info("Reading server config file issue. Err.Msg: %s "+str(e)) return usecase_name,data_location,model_location,problem_type,version,selected_feature,target_feature,client_encryption_accuracy,test_size ## Load the model, Not used at client now. def model_load(self, path): loaded_model = pickle.load(open(path, 'rb')) return loaded_model #Generating secure key def generate_ppboostkey(self): public_key, private_key = paillier.he_key_gen() prf_key = token_bytes(16) OPE_key = token_bytes(16) encrypter = OPE(OPE_key) ppBoostKey = PPBoostKey(public_key, prf_key, encrypter) return public_key,private_key,prf_key,OPE_key,encrypter,ppBoostKey ## Binary client prediction (decrypted prediction) def ppxgboostbinary_predict(self,enc_predictions,private_key): dec = ppbooster.client_decrypt(private_key, enc_predictions) ##For binary classification res = ppbooster.client_decrypt_prediction_binary(private_key, enc_predictions) res_df=pd.DataFrame(res) return res # class ppkeyEncoder(JSONEncoder): # def default(self,o): # return o.__dict__ ## Function to connect secure server via flask restapi (send enc data and receive enc prediction.) def connect_xgboostserver(self,ppBoostKey,encrypted_xtest): url = 'http://localhost:9000//homomorphicprediction_server_api' enc_dict={} # df_list=[encrypted_xtest.columns.values.tolist()]+df.values.tolist() enc_dict['values']=encrypted_xtest.values.tolist() enc_dict['features']=encrypted_xtest.columns.values.tolist() enc_dict['key']= jsonpickle.encode(ppBoostKey) json_out=json.dumps(enc_dict,indent=4) headers = { 'content-type': "application/json", 'cache-control': "no-cache" } r = requests.post(url,data=json_out,headers=headers) enc_predictions_obj=jsonpickle.decode(r.content) return enc_predictions_obj ## Create PaillierAPI based encrypted user given data , here, testdata=userdata def generate_encrypted_testdata(self,prf_key,encrypter,testdata,min_max): feature_set_testdata=set(testdata.columns) ppbooster.enc_input_vector(prf_key, encrypter, feature_set_testdata, testdata, MetaData(min_max)) return testdata ## Create min and max of testdata df for pailler encryption,decryption def training_dataset_parser(self, client_data: pd.DataFrame): """ :param client_data: dataframe training data :return: minimum of the training dataset, and maximum of the training dataset. """ return {'min': np.min(pd.DataFrame.min(client_data)), 'max': np.max(pd.DataFrame.max(client_data))} ## Main client function call for enc data, send data to server, receive enc pred, finally decrypt prediction def main_client(self): self.log.info('Client actual data sample (displaying last 10 values) : \\n'+str(self.data.tail(10))) print(" Client actual data sample (displaying last 10 values) : \\n",self.data.tail(10)) public_key,private_key,prf_key,OPE_key,encrypter,ppBoostKey = self.generate_ppboostkey() min_max = self.training_dataset_parser(self.data) meta_min_max = MetaData(min_max) encrypted_testdata = self.generate_encrypted_testdata(prf_key,encrypter,self.data,min_max) # print("Sending encrypted client data to server....\\n") print("\\n Client side encrypted input data to server (displaying last 10 rows): \\n",encrypted_testdata.tail(10)) self.log.info('Client side encrypted input data to server (displaying last 10 rows): \\n'+str(encrypted_testdata.tail(10))) enc_predictions = self.connect_xgboostserver(ppBoostKey,encrypted_testdata) print("\\n Encrypted prediction from server (displaying last 10 values.): \\n",enc_predictions[-10:]) self.log.info('\\n Encrypted prediction from server (displaying last 10 values.): \\n'+str(enc_predictions[-10:])) ## Decrypted predition dec = self.ppxgboostbinary_predict(enc_predictions,private_key) # ppxgboost_pred=pd.DataFrame(list(zip(dec, predictions)),columns =['homomorphic_prediction', 'actual_prediction']) ppxgboost_pred=pd.DataFrame(dec,columns =['homomorphic_prediction']) self.log.info("final decrypted prediction at client side:: \\n"+str(ppxgboost_pred)) return ppxgboost_pred ## For standalone testing if __name__ == '__main__': problemtype='Binary classification' data=None targetfeature=None ppxgboost_client_obj=client_ppxgboost(problemtype,data,targetfeature) ppxgboost_dec_predictions = ppxgboost_client_obj.main_client() # print("In main: ppxgboost_dec_predictions: \\n",ppxgboost_dec_predictions)<s> # -*- coding: utf-8 -*- import pandas as pd from sklearn.model_selection import train_test_split import numpy as np from secrets import token_bytes from ppxgboost import PaillierAPI as paillier from ppxgboost import BoosterParser as boostparser from ppxgboost import PPBooster as ppbooster from ppxgboost.PPBooster import MetaData from ppxgboost.PPKey import PPBoostKey # from ope.pyope.ope import OPE from pyope.ope import OPE import sys sys.path.insert(0, '..') import logging from logging import INFO import pickle import requests import json # from json import JSONEncoder import jsonpickle import os from pathlib import Path ##Aion main client class for ppxgboost based encryption,decryption class client_ppxgboost: def __init__(self,data,keyGenerate,endPoint): self.data=data self.keyGenerate = keyGenerate self.endPoint = endPoint self.prediction=None ## For logging clientDirectory = os.path.abspath(os.path.dirname(__file__)) # model_name=model_name file_name = "he_multiclass" file_name=file_name+".log" self.keydir=os.path.join(clientDirectory,'..','keys') os.makedirs(self.keydir, exist_ok=True) try: hm_log=os.path.normpath(os.path.join(clientDirectory,'logs',file_name)) os.makedirs(os.path.dirname(hm_log), exist_ok=True) except Exception as e: print("Log path error. Error Msg: \\n",e) logging.basicConfig(filename=hm_log,format='%(asctime)s %(message)s', filemode='w',level=logging.DEBUG) self.log = logging.getLogger('AION') self.log.info('Client Multi class classification homomorphic encryption service started...') ## Loading configuration parameters, Not used now. def configload(self): try: data=self.confdata usecase_name=str(data["usecase_name"]) version=str(data["version"]) problem_type=data["problem_type"] model_location=str(data["model_location"]) data_location=str(data["data_location"]) selected_feature=data["selected_feature"] if (type(selected_feature) is str): selected_feature=selected_feature.split(',') target_feature=data["target_feature"] client_encryption_accuracy=str(data["client_encryption_accuracy"]) test_size=int(data["test_size"]) test_size=test_size/100 except Exception as e: self.log.info("Reading server config file issue. Err.Msg: %s "+str(e)) return usecase_name,data_location,model_location,problem_type,version,selected_feature,target_feature,client_encryption_accuracy,test_size ## Load the model, Not used at client now. def model_load(self
, path): loaded_model = pickle.load(open(path, 'rb')) return loaded_model #Generating secure key def generate_ppboostkey(self): try: public_key_file = Path(__file__).parent.parent/'keys'/'public.k' private_key_file = Path(__file__).parent.parent/'keys'/'private.k' prf_key_file = Path(__file__).parent.parent/'keys'/'prf.k' ope_key_file = Path(__file__).parent.parent/'keys'/'ope.k' encryptor_key_file = Path(__file__).parent.parent/'keys'/'encryptor.k' boostkey_key_file = Path(__file__).parent.parent/'keys'/'boostkey.k' if not boostkey_key_file.exists() or self.keyGenerate == 'True': public_key, private_key = paillier.he_key_gen() pub_file = open(public_key_file, 'w') pub_file.write(jsonpickle.encode(public_key)) pri_file = open(private_key_file, 'w') pri_file.write(jsonpickle.encode(private_key)) prf_key = token_bytes(16) OPE_key = token_bytes(16) prf_file = open(prf_key_file, 'w') prf_file.write(jsonpickle.encode(prf_key)) ope_file = open(ope_key_file, 'w') ope_file.write(jsonpickle.encode(OPE_key)) encrypter = OPE(OPE_key) enc_file = open(encryptor_key_file, 'w') enc_file.write(jsonpickle.encode(encrypter)) ppBoostKey = PPBoostKey(public_key, prf_key, encrypter) boost_file = open(boostkey_key_file, 'w') boost_file.write(jsonpickle.encode(ppBoostKey)) else: pub_file = open(public_key_file, 'r') public_key = jsonpickle.decode(pub_file.read()) pub_file.close() pri_file = open(private_key_file, 'r') private_key = jsonpickle.decode(pri_file.read()) pri_file.close() prf_file = open(prf_key_file, 'r') prf_key = jsonpickle.decode(prf_file.read()) prf_file.close() ope_file = open(ope_key_file, 'r') OPE_key = jsonpickle.decode(ope_file.read()) ope_file.close() enc_file = open(encryptor_key_file, 'r') encrypter = jsonpickle.decode(enc_file.read()) enc_file.close() boost_file = open(boostkey_key_file, 'r') ppBoostKey = jsonpickle.decode(boost_file.read()) boost_file.close() return public_key,private_key,prf_key,OPE_key,encrypter,ppBoostKey except Exception as e: print(e) ## PPboost multiclass prediction fn def ppxgboostmulticlass_predict(self,enc_predictions,private_key): ##For binary classification # res = ppbooster.client_decrypt_prediction_binary(private_key, enc_predictions) ## For multiclass classification res = ppbooster.client_decrypt_prediction_multiclass(private_key, enc_predictions) return res # class ppkeyEncoder(JSONEncoder): # def default(self,o): # return o.__dict__ ## Function to connect secure server via flask restapi (send enc data and receive enc prediction.) def connect_xgboostserver(self,ppBoostKey,encrypted_xtest): url = self.endPoint enc_dict={} # df_list=[encrypted_xtest.columns.values.tolist()]+df.values.tolist() enc_dict['values']=encrypted_xtest.values.tolist() enc_dict['features']=encrypted_xtest.columns.values.tolist() enc_dict['key']= jsonpickle.encode(ppBoostKey) json_out=json.dumps(enc_dict,indent=4) headers = { 'content-type': "application/json", 'cache-control': "no-cache" } response = requests.post(url,auth=('admin','aion'),data=json_out,headers=headers) #print(response.content) outputStr=response.content outputStr = outputStr.decode('utf-8') outputStr = outputStr.strip() predict_dict = json.loads(str(outputStr)) if (predict_dict['status'] == 'SUCCESS'): data = predict_dict['data'] enc_predictions_ob=jsonpickle.decode(data) return enc_predictions_ob else: print('Error') ## Create PaillierAPI based encrypted user given data , here, testdata=userdata def generate_encrypted_testdata(self,prf_key,encrypter,testdata,min_max): feature_set_testdata=set(testdata.columns) ppbooster.enc_input_vector(prf_key, encrypter, feature_set_testdata, testdata, MetaData(min_max)) return testdata ## Create min and max of testdata df for pailler encryption,decryption def training_dataset_parser(self, client_data: pd.DataFrame): """ :param client_data: dataframe training data :return: minimum of the training dataset, and maximum of the training dataset. """ return {'min': np.min(pd.DataFrame.min(client_data)), 'max': np.max(pd.DataFrame.max(client_data))} ## Main client function call for enc data, send data to server, receive enc pred, finally decrypt prediction def main_client(self): self.log.info('Client actual data sample (displaying last 10 values) : \\n'+str(self.data.tail(10))) #print(" Client actual data sample (displaying last 10 values) : \\n",self.data.tail(10)) public_key,private_key,prf_key,OPE_key,encrypter,ppBoostKey = self.generate_ppboostkey() min_max = self.training_dataset_parser(self.data) meta_min_max = MetaData(min_max) #print('++++++++++++++++++++++++++++') encrypted_testdata = self.generate_encrypted_testdata(prf_key,encrypter,self.data,min_max) # print("Sending encrypted client data to server....\\n") #print("\\n Client side encrypted input data to server (displaying last 10 rows): \\n",encrypted_testdata.tail(10)) self.log.info('Client side encrypted input data to server (displaying last 10 rows): \\n'+str(encrypted_testdata.tail(10))) enc_predictions = self.connect_xgboostserver(ppBoostKey,encrypted_testdata) #print("\\n Encrypted prediction from server (displaying last 10 values.): \\n",enc_predictions[-10:]) #self.log.info('\\n Encrypted prediction from server (displaying last 10 values.): \\n'+str(enc_predictions[-10:])) ## Decrypted predition dec = self.ppxgboostmulticlass_predict(enc_predictions,private_key) # ppxgboost_pred=pd.DataFrame(list(zip(dec, predictions)),columns =['homomorphic_prediction', 'actual_prediction']) ppxgboost_pred=pd.DataFrame(dec,columns =['homomorphic_prediction']) self.log.info("final decrypted prediction at client side:: \\n"+str(ppxgboost_pred)) return ppxgboost_pred ## For standalone testing if __name__ == '__main__': problemtype='Multi class classification' data=None targetfeature=None ppxgboost_client_obj=client_ppxgboost(problemtype,data,targetfeature) ppxgboost_dec_predictions = ppxgboost_client_obj.main_client() # print("In main: ppxgboost_dec_predictions: \\n",ppxgboost_dec_predictions)<s> import os from typing import List, Tuple import numpy as np from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.utils import shuffle from tensorflow.keras.datasets import cifar10, fashion_mnist, imdb, mnist from tensorflow.keras.preprocessing.sequence import pad_sequences TrainTestData = Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray] TrainTestValData = Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray] def load_image(data_source: str) -> TrainTestData: """ Loads one of the following image datasets: {mnist, famnist, cifar10}. Normalizes the data. Returns X and y for both train and test datasets. Dtypes of X's and y's will be `float32` and `int32` to be compatible with `tf_agents`. :param data_source: Either mnist, famnist or cifar10 :type data_source: str :return: Tuple of (X_train, y_train, X_test, y_test) containing original split of train/test :rtype: tuple """ reshape_shape = -1, 28, 28, 1 if data_source == "mnist": (X_train, y_train), (X_test, y_test) = mnist.load_data() elif data_source == "famnist": (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data() elif data_source == "cifar10": (X_train, y_train), (X_test, y_test) = cifar10.load_data() reshape_shape = -1, 32, 32, 3 else: raise ValueError("No valid `data_source`.") X_train = X_train.reshape(reshape_shape).astype(np.float32) # Float32 is the expected dtype for the observation spec in the env X_test = X_test.reshape(reshape_shape).astype(np.float32) X_train /= 255 # /= is not available when casting int to float: https://stackoverflow.com/a/48948461/10603874 X_test /= 255 y_train = y_train.reshape(y_train.shape[0], ).astype(np.int32) y_test = y_test.reshape(y_test.shape[0], ).astype(np.int32) return X_train, y_train, X_test, y_test def load_csv(fp_train: str, fp_test: str, label_col: str, drop_cols: List[str], normalization: bool = False) -> TrainTestData: """ Loads any csv-file from local filepaths. Returns X and y for both train and test datasets. Option to normalize the data with min-max normalization. Only csv-files with float32 values for the features and int32 values for the labels supported. Source for dataset: https://mimic-iv.mit.edu/ :param fp_train: Location of the train csv-file :type fp_train: str :param fp_test: Location of the test csv-file :type fp_test: str :param label_col: The name of the column containing the labels of the data :rtype label_col: str :param drop_cols: List of the names of the columns to be dropped. `label_col` gets dropped automatically :rtype drop_cols: List of strings :param normalization: Normalize the data with min-max normalization? :type normalization: bool :return: Tuple of (X_train, y_train, X_test, y_test) containing original split of train/test :rtype: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray] """ if not os.path.isfile(fp_train): raise FileNotFoundError(f"`fp_train` {fp_train} does not exist.") if not os.path.isfile(fp_test): raise FileNotFoundError(f"`fp_test` {fp_test} does not exist.") if not isinstance(normalization, bool): raise TypeError(f"`normalization` must be of type `bool`, not {type(normalization)}") X_train = read_csv(fp_train).astype(np.float32) # DataFrames directly converted to float32 X_test = read_csv(fp_test).astype(np.float32) y_train = X_train[label_col].astype(np.int32) y_test = X_test[label_col].astype(np.int32) X_train.drop(columns=drop_cols + [label_col], inplace=True) # Dropping cols and label column X_test.drop(columns=drop_cols + [label_col], inplace=True) # Other data sources are already normalized. RGB values are always in range 0 to 255. if normalization: mini, maxi = X_train.min(axis=0), X_train.max(axis=0) X_train -= mini X_train /= maxi - mini X_test -= mini X_test /= maxi - mini return X_train.values, y_train.values, X_test.values, y_test.values # Numpy arrays def load_imdb(config: Tuple[int, int] = (5_000, 500)) -> TrainTestData: """Loads the IMDB dataset. Returns X and y for both train and test datasets. :param config: Tuple of number of most frequent words and max length of each sequence. :type config: str :return: Tuple of (X_train, y_train, X_test, y_test) containing original split of train/test :rtype: tuple """ if not isinstance(config, (tuple, list)): raise TypeError(f"{type(config)} is no valid datatype for `config`.") if len(config) != 2: raise ValueError("Tuple length of `config` must be 2.") if not all(i > 0 for i in config): raise ValueError("All integers of `config` must be > 0.") (X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=config[0]) X_train = pad_sequences(X_train, maxlen=config[1]) X_test = pad_sequences(X_test, maxlen=config[1]) y_train = y_train.astype(np.int32) y_test = y_test.ast
ype(np.int32) return X_train, y_train, X_test, y_test def get_train_test_val(X_train: np.ndarray, y_train: np.ndarray, X_test: np.ndarray, y_test: np.ndarray, min_classes: List[int], maj_classes: List[int], imb_ratio: float = None, imb_test: bool = True, val_frac: float = 0.25, print_stats: bool = True) -> TrainTestValData: """ Imbalances data and divides the data into train, test and validation sets. The imbalance rate of each individual dataset is approx. the same as the given `imb_ratio`. :param X_train: The X_train data :type X_train: np.ndarray :param y_train: The y_train data :type y_train: np.ndarray :param X_test: The X_test data :type X_test: np.ndarray :param y_test: The y_test data :type y_test: np.ndarray :param min_classes: List of labels of all minority classes :type min_classes: list :param maj_classes: List of labels of all majority classes. :type maj_classes: list :param imb_ratio: Imbalance ratio for minority to majority class: len(minority datapoints) / len(majority datapoints) If the `imb_ratio` is None, data will not be imbalanced and will only be relabeled to 1's and 0's. :type imb_ratio: float :param imb_test: Imbalance the test dataset? :type imb_test: bool :param val_frac: Fraction to take from X_train and y_train for X_val and y_val :type val_frac: float :param print_stats: Print the imbalance ratio of the imbalanced data? :type print_stats: bool :return: Tuple of (X_train, y_train, X_test, y_test, X_val, y_val) :rtype: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray] """ if not 0 < val_frac < 1: raise ValueError(f"{val_frac} is not in interval 0 < x < 1.") if not isinstance(print_stats, bool): raise TypeError(f"`print_stats` must be of type `bool`, not {type(print_stats)}.") X_train, y_train = imbalance_data(X_train, y_train, min_classes, maj_classes, imb_ratio=imb_ratio) # Only imbalance test-data if imb_test is True X_test, y_test = imbalance_data(X_test, y_test, min_classes, maj_classes, imb_ratio=imb_ratio if imb_test else None) # stratify=y_train to ensure class balance is kept between train and validation datasets X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=val_frac, stratify=y_train) if print_stats: p_train, p_test, p_val = [((y == 1).sum(), imbalance_ratio(y)) for y in (y_train, y_test, y_val)] print(f"Imbalance ratio `p`:\\n" f"\\ttrain: n={p_train[0]}, p={p_train[1]:.6f}\\n" f"\\ttest: n={p_test[0]}, p={p_test[1]:.6f}\\n" f"\\tvalidation: n={p_val[0]}, p={p_val[1]:.6f}") return X_train, y_train, X_test, y_test, X_val, y_val def imbalance_data(X: np.ndarray, y: np.ndarray, min_class: List[int], maj_class: List[int], imb_ratio: float = None) -> Tuple[np.ndarray, np.ndarray]: """ Split data in minority and majority, only values in {min_class, maj_class} will be kept. (Possibly) decrease minority rows to match the imbalance rate. If initial imb_ratio of dataset is lower than given `imb_ratio`, the imb_ratio of the returned data will not be changed. If the `imb_ratio` is None, data will not be imbalanced and will only be relabeled to 1's and 0's. """ if not isinstance(X, np.ndarray): raise TypeError(f"`X` must be of type `np.ndarray` not {type(X)}") if not isinstance(y, np.ndarray): raise TypeError(f"`y` must be of type `np.ndarray` not {type(y)}") if X.shape[0] != y.shape[0]: raise ValueError("`X` and `y` must contain the same amount of rows.") if not isinstance(min_class, (list, tuple)): raise TypeError("`min_class` must be of type list or tuple.") if not isinstance(maj_class, (list, tuple)): raise TypeError("`maj_class` must be of type list or tuple.") if (imb_ratio is not None) and not (0 < imb_ratio < 1): raise ValueError(f"{imb_ratio} is not in interval 0 < imb_ratio < 1.") if imb_ratio is None: # Do not imbalance data if no `imb_ratio` is given imb_ratio = 1 X_min = X[np.isin(y, min_class)] # Mask the correct indexes X_maj = X[np.isin(y, maj_class)] # Only keep data/labels for x in {min_class, maj_class} and forget all other min_len = int(X_maj.shape[0] * imb_ratio) # Amount of rows to select from minority classes to get to correct imbalance ratio # Keep all majority rows, decrease minority rows to match `imb_ratio` X_min = X_min[np.random.choice(X_min.shape[0], min(min_len, X_min.shape[0]), replace=False), :] X_imb = np.concatenate([X_maj, X_min]).astype(np.float32) y_imb = np.concatenate((np.zeros(X_maj.shape[0]), np.ones(X_min.shape[0]))).astype(np.int32) X_imb, y_imb = shuffle(X_imb, y_imb) return X_imb, y_imb <s><s> import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.metrics import (auc, average_precision_score, confusion_matrix, f1_score, precision_recall_curve, roc_curve,precision_score,recall_score) from tensorflow import constant from tf_agents.trajectories import time_step def network_predictions(network, X: np.ndarray) -> dict: """Computes y_pred using a given network. Input is array of data entries. :param network: The network to use to calculate metrics :type network: (Q)Network :param X: X data, input to network :type X: np.ndarray :return: Numpy array of predicted targets for given X :rtype: np.ndarray """ if not isinstance(X, np.ndarray): raise ValueError(f"`X` must be of type `np.ndarray` not {type(X)}") q, _ = network(X, step_type=constant([time_step.StepType.FIRST] * X.shape[0]), training=False) return np.argmax(q.numpy(), axis=1) # Max action for each x in X def decision_function(network, X: np.ndarray) -> dict: """Computes the score for the predicted class of each x in X using a given network. Input is array of data entries. :param network: The network to use to calculate the score per x in X :type network: (Q)Network :param X: X data, input to network :type X: np.ndarray :return: Numpy array of scores for given X :rtype: np.ndarray """ if not isinstance(X, np.ndarray): raise ValueError(f"`X` must be of type `np.ndarray` not {type(X)}") q, _ = network(X, step_type=constant([time_step.StepType.FIRST] * X.shape[0]), training=False) return np.max(q.numpy(), axis=1) # Value of max action for each x in X def classification_metrics(y_true: list, y_pred: list) -> dict: """Computes metrics using y_true and y_pred. :param y_true: True labels :type y_true: np.ndarray :param y_pred: Predicted labels, corresponding to y_true :type y_pred: np.ndarray :return: Dictionairy containing Geometric Mean, F1, Precision, Recall, TP, TN, FP, FN :rtype: dict """ if not isinstance(y_true, (list, tuple, np.ndarray)): raise ValueError(f"`y_true` must be of type `list` not {type(y_true)}") if not isinstance(y_pred, (list, tuple, np.ndarray)): raise ValueError(f"`y_pred` must be of type `list` not {type(y_pred)}") if len(y_true) != len(y_pred): raise ValueError("`X` and `y` must be of same length.") #G_mean = np.sqrt(recall * specificity) # Geometric mean of recall and specificity F1 = f1_score(y_true, y_pred, average='macro') # Default F-measure recall = recall_score(y_true,y_pred,average='macro') precision = precision_score(y_true,y_pred,average='macro') return {"F1": F1, "Precision": precision, "Recall": recall} def plot_pr_curve(network, X_test: np.ndarray, y_test: np.ndarray, X_train: np.ndarray = None, y_train: np.ndarray = None) -> None: # pragma: no cover """Plots PR curve of X_test and y_test of given network. Optionally plots PR curve of X_train and y_train. Average precision is shown in the legend. :param network: The network to use to calculate the PR curve :type network: (Q)Network :param X_test: X data, input to network :type X_test: np.ndarray :param y_test: True labels for `X_test` :type y_test: np.ndarray :param X_train: Optional X data to plot validation PR curve :type X_train: np.ndarray :param y_train: True labels for `X_val` :type y_train: np.ndarray :return: None :rtype: NoneType """ plt.plot((0, 1), (1, 0), color="black", linestyle="--", label="Baseline") # TODO: Consider changing baseline if X_train is not None and y_train is not None: y_val_score = decision_function(network, X_train) val_precision, val_recall, _ = precision_recall_curve(y_train, y_val_score) val_AP = average_precision_score(y_train, y_val_score) plt.plot(val_recall, val_precision, label=f"Train AP: {val_AP:.3f}") y_test_score = decision_function(network, X_test) test_precision, test_recall, _ = precision_recall_curve(y_test, y_test_score) test_AP = average_precision_score(y_test, y_test_score) plt.plot(test_recall, test_precision, label=f"Test AP: {test_AP:.3f}") plt.xlim((-0.05, 1.05)) plt.ylim((-0.05, 1.05)) plt.xlabel("Recall") plt.ylabel("Precision") plt.title("PR Curve") plt.gca().set_aspect("equal", adjustable="box") plt.legend(loc="lower left") plt.grid(True) plt.show() def plot_roc_curve(network, X_test: np.ndarray, y_test: np.ndarray, X_train: np.ndarray = None, y_train: np.ndarray = None) -> None: # pragma: no cover """Plots ROC curve of X_test and y_test of given network. Optionally plots ROC curve of X_train and y_train. Average precision is shown in the legend. :param network: The network to use to calculate the PR curve :type network: (Q)Network :param X_test: X data, input to network :type X_test: np.ndarray :param y_test: True labels for `X_test` :type y_test: np.ndarray :param X_train: Optional X data to plot validation PR curve :type X_train: np.ndarray :param y_train: True labels for `X_val` :type y_train: np.ndarray :return: None :rtype: NoneType """ plt.plot((0, 1), (0, 1), color="black", linestyle="--", label="Baseline") # TODO: Consider changing baseline if X_train is not None and y_train is not None: y_train_score = decision_function(network, X_train) fpr_train, tpr_train, _ = roc_curve(y_train, y_train_score) plt.plot(fpr_train, tpr_train, label=f"Train AUROC: {auc(fpr_train, tpr_train):.2f}") y_test_score = decision_function(network, X_test) fpr_test, tpr_test, _ = roc_curve(y_test, y_test_score) plt.plot(fpr_test, tpr_test, label=f"Test AUROC: {auc(fpr_test, tpr_test):.2f}") plt.xlim((-0.05, 1.05)) plt.ylim((-0.05, 1.05)) plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("ROC Curve") plt.gca().set_aspect("equal", adjustable="box") plt.legend(loc="lower right") plt.grid(True) plt.show() def plot_confusion_matrix(TP: int, FN: int, FP: int, TN: int)
-> None: # pragma: no cover """Plots confusion matric of given TP, FN, FP, TN. :param TP: True Positive :type TP: int :param FN: False Negative :type FN: int :param FP: False Positive :type FP: int :param TN: True Nega
per_episode,memory_length=memory_length, collect_every=collect_every, n_step_update=n_step_update, model_path=model_save_path,log_dir=logFilePath) model.compile_model(X_train,y_train,layers) model.q_net.summary() model.train(xval,yval) network = model.get_network() predictedytrain=network_predictions(network,np.array(xtrain)) predictedytest = network_predictions(network,np.array(xtest)) if "DDQN" == algorithm: start = time.time() modelName = "DDQN" model = TrainDDQN(episodes, warmup_steps, learning_rate, gamma, min_epsilon, decay_episodes, target_update_period=target_update_period,target_update_tau=target_update_tau, batch_size=batch_size, collect_steps_per_episode=collect_steps_per_episode,memory_length=memory_length, collect_every=collect_every, n_step_update=n_step_update,log_dir=logFilePath) model.compile_model(X_train,y_train,layers) model.q_net.summary() model.train(xval,yval) network = model.get_network() predictedytrain=network_predictions(network,np.array(xtrain)) predictedytest = network_predictions(network,np.array(xtest)) score = objClf.get_score(self.scoreParam,ytest,predictedytest) score = round(score,2) return (network,self.rl_config,score,algorithm,-1,-1,-1) except Exception as inst: self.log.info( '\\n-----> RL Failed!!!.'+str(inst)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) self.log.info(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) <s> import os import pickle from datetime import datetime import numpy as np import tensorflow as tf from reinforcement.environments.classifierenv import ClassifierEnv from reinforcement.metrics import (classification_metrics, decision_function, network_predictions, plot_pr_curve, plot_roc_curve) from reinforcement.utils import imbalance_ratio from tensorflow import data from tensorflow.keras.optimizers import Adam from tf_agents.agents.dqn.dqn_agent import DdqnAgent from tf_agents.drivers.dynamic_step_driver import DynamicStepDriver from tf_agents.environments.tf_py_environment import TFPyEnvironment from tf_agents.networks.sequential import Sequential from tf_agents.policies.random_tf_policy import RandomTFPolicy from tf_agents.replay_buffers.tf_uniform_replay_buffer import \\ TFUniformReplayBuffer from tf_agents.utils import common class TrainDDQN(): """Wrapper for DDQN training, validation, saving etc.""" def __init__(self, episodes: int, warmup_steps: int, learning_rate: float, gamma: float, min_epsilon: float, decay_episodes: int, model_path: str = None, log_dir: str = None, batch_size: int = 64, memory_length: int = None, collect_steps_per_episode: int = 1, val_every: int = None, target_update_period: int = 1, target_update_tau: float = 1.0, progressbar: bool = True, n_step_update: int = 1, gradient_clipping: float = 1.0, collect_every: int = 1) -> None: """ Wrapper to make training easier. Code is partly based of https://www.tensorflow.org/agents/tutorials/1_dqn_tutorial :param episodes: Number of training episodes :type episodes: int :param warmup_steps: Number of episodes to fill Replay Buffer with random state-action pairs before training starts :type warmup_steps: int :param learning_rate: Learning Rate for the Adam Optimizer :type learning_rate: float :param gamma: Discount factor for the Q-values :type gamma: float :param min_epsilon: Lowest and final value for epsilon :type min_epsilon: float :param decay_episodes: Amount of episodes to decay from 1 to `min_epsilon` :type decay_episodes: int :param model_path: Location to save the trained model :type model_path: str :param log_dir: Location to save the logs, usefull for TensorBoard :type log_dir: str :param batch_size: Number of samples in minibatch to train on each step :type batch_size: int :param memory_length: Maximum size of the Replay Buffer :type memory_length: int :param collect_steps_per_episode: Amount of data to collect for Replay Buffer each episiode :type collect_steps_per_episode: int :param collect_every: Step interval to collect data during training :type collect_every: int :param val_every: Validate the model every X episodes using the `collect_metrics()` function :type val_every: int :param target_update_period: Update the target Q-network every X episodes :type target_update_period: int :param target_update_tau: Parameter for softening the `target_update_period` :type target_update_tau: float :param progressbar: Enable or disable the progressbar for collecting data and training :type progressbar: bool :return: None :rtype: NoneType """ self.episodes = episodes # Total episodes self.warmup_steps = warmup_steps # Amount of warmup steps before training self.batch_size = batch_size # Batch size of Replay Memory self.collect_steps_per_episode = collect_steps_per_episode # Amount of steps to collect data each episode self.collect_every = collect_every # Step interval to collect data during training self.learning_rate = learning_rate # Learning Rate self.gamma = gamma # Discount factor self.min_epsilon = min_epsilon # Minimal chance of choosing random action self.decay_episodes = decay_episodes # Number of episodes to decay from 1.0 to `EPSILON` self.target_update_period = target_update_period # Period for soft updates self.target_update_tau = target_update_tau self.progressbar = progressbar # Enable or disable the progressbar for collecting data and training self.n_step_update = n_step_update self.gradient_clipping = gradient_clipping # Clip the loss self.compiled = False NOW = "DDQN" #datetime.now().strftime("%Y%m%d_%H%M%S") if memory_length is not None: self.memory_length = memory_length # Max Replay Memory length else: self.memory_length = warmup_steps if val_every is not None: self.val_every = val_every # Validate the policy every `val_every` episodes else: self.val_every = self.episodes // min(50, self.episodes) # Can't validate the model 50 times if self.episodes < 50 if model_path is not None: #if os.path.exists(model_path + "/" + NOW + ".pkl"): # os.remove(model_path + "/" + NOW + ".pkl") self.model_path = model_path + "/" + NOW + ".pkl" else: self.model_path = "./models/" + NOW + ".pkl" if log_dir is None: log_dir = "./logs/" + NOW self.writer = tf.summary.create_file_writer(log_dir) def compile_model(self, X_train, y_train, layers: list = [], imb_ratio: float = None, loss_fn=common.element_wise_squared_loss) -> None: """Initializes the neural networks, DDQN-agent, collect policies and replay buffer. :param X_train: Training data for the model. :type X_train: np.ndarray :param y_train: Labels corresponding to `X_train`. 1 for the positive class, 0 for the negative class. :param y_train: np.ndarray :param layers: List of layers to feed into the TF-agents custom Sequential(!) layer. :type layers: list :param imb_ratio: The imbalance ratio of the data. :type imb_ratio: float :param loss_fn: Callable loss function :type loss_fn: tf.compat.v1.losses :return: None :rtype: NoneType """ if imb_ratio is None: imb_ratio = imbalance_ratio(y_train) self.train_env = TFPyEnvironment(ClassifierEnv(X_train, y_train, imb_ratio)) self.global_episode = tf.Variable(0, name="global_episode", dtype=np.int64, trainable=False) # Global train episode counter # Custom epsilon decay: https://github.com/tensorflow/agents/issues/339 epsilon_decay = tf.compat.v1.train.polynomial_decay( 1.0, self.global_episode, self.decay_episodes, end_learning_rate=self.min_epsilon) self.q_net = Sequential(layers, self.train_env.observation_spec()) self.agent = DdqnAgent(self.train_env.time_step_spec(), self.train_env.action_spec(), q_network=self.q_net, optimizer=Adam(learning_rate=self.learning_rate), td_errors_loss_fn=loss_fn, train_step_counter=self.global_episode, target_update_period=self.target_update_period, target_update_tau=self.target_update_tau, gamma=self.gamma, epsilon_greedy=epsilon_decay, n_step_update=self.n_step_update, gradient_clipping=self.gradient_clipping) self.agent.initialize() self.random_policy = RandomTFPolicy(self.train_env.time_step_spec(), self.train_env.action_spec()) self.replay_buffer = TFUniformReplayBuffer(data_spec=self.agent.collect_data_spec, batch_size=self.train_env.batch_size, max_length=self.memory_length) self.warmup_driver = DynamicStepDriver(self.train_env, self.random_policy, observers=[self.replay_buffer.add_batch], num_steps=self.warmup_steps) # Uses a random policy self.collect_driver = DynamicStepDriver(self.train_env, self.agent.collect_policy, observers=[self.replay_buffer.add_batch], num_steps=self.collect_steps_per_episode) # Uses the epsilon-greedy policy of the agent self.agent.train = common.function(self.agent.train) # Optimalization self.warmup_driver.run = common.function(self.warmup_driver.run) self.collect_driver.run = common.function(self.collect_driver.run) self.compiled = True def train(self, *args) -> None: """Starts the training of the model. Includes warmup period, metrics collection and model saving. :param *args: All arguments will be passed to `collect_metrics()`. This can be usefull to pass callables, testing environments or validation data. Overwrite the TrainDDQN.collect_metrics() function to use your own *args. :type *args: Any :return: None :rtype: NoneType, last step is saving the model as a side-effect """ assert self.compiled, "Model must be compiled with model.compile_model(X_train, y_train, layers) before training." # Warmup period, fill memory with random actions if self.progressbar: print(f"\\033[92mCollecting data for {self.warmup_steps:_} steps... This might take a few minutes...\\033[0m") self.warmup_driver.run(time_step=None, policy_state=self.random_policy.get_initial_state(self.train_env.batch_size)) if self.progressbar: print(f"\\033[92m{self.replay_buffer.num_frames():_} frames collected!\\033[0m") dataset = self.replay_buffer.as_dataset(sample_batch_size=self.batch_size, num_steps=self.n_step_update + 1, num_parallel_calls=data.experimental.AUTOTUNE).prefetch(data.experimental.AUTOTUNE) iterator = iter(dataset) def _train(): experiences, _ = next(iterator) return self.agent.train(experiences).loss _train = common.function(_train) # Optimalization ts = None policy_state = self.agent.collect_policy.get_initial_state(self.train_env.batch_size) self.collect_metrics(*args) # Initial collection for step 0 for _ in range(self.episodes): if not self.global_episode % self.collect_every: # Collect a few steps using collect_policy and save to `replay_buffer` if self.collect_steps_per_episode != 0: ts, policy_state = self.collect_driver.run(time_step=ts, policy_state=policy_state) # Sample a batch of data from `replay_buffer` and update the agent's network train_loss = _train() if not self.global_episode % self.val_every: with self.writer.as_default(): tf.summary.scalar("train_loss", train_loss, step=self.global_episode) self.collect_metrics(*args) def collect_metrics(self, X_val: np.ndarray, y_val: np.ndarray, save_best: str = None): """Collects metrics using the trained Q-network. :param X_val: Features of validation data, same shape as X_train :type X_val: np.ndarray :param y_val: Labels of validation data, same shape as y_train :type y
_val: np.ndarray :param save_best: Saving the best model of all validation runs based on given metric: Choose one of: {Gmean, F1, Precision, Recall, TP, TN, FP, FN} This improves stability since the model at the last episode is not guaranteed to be the best model. :type save_best: str """ y_pred = network_predictions(self.agent._target_q_network, X_val) stats = classification_metrics(y_val, y_pred) avgQ = np.mean(decision_function(self.agent._target_q_network, X_val)) # Max action for each x in X if save_best is not None: if not hasattr(self, "best_score"): # If no best model yet self.best_score = 0.0 if stats.get(save_best) >= self.best_score: # Overwrite best model self.save_network() # Saving directly to avoid shallow copy without trained weights self.best_score = stats.get(save_best) with self.writer.as_default(): tf.summary.scalar("AverageQ", avgQ, step=self.global_episode) # Average Q-value for this epoch for k, v in stats.items(): tf.summary.scalar(k, v, step=self.global_episode) def evaluate(self,X_train,y_train, X_test, y_test): """ Final evaluation of trained Q-network with X_test and y_test. Optional PR and ROC curve comparison to X_train, y_train to ensure no overfitting is taking place. :param X_test: Features of test data, same shape as X_train :type X_test: np.ndarray :param y_test: Labels of test data, same shape as y_train :type y_test: np.ndarray :param X_train: Features of train data :type X_train: np.ndarray :param y_train: Labels of train data :type y_train: np.ndarray """ #if hasattr(self, "best_score"): # print(f"\\033[92mBest score: {self.best_score:6f}!\\033[0m") # network = self.load_network(self.model_path) # Load best saved model #else: # network = self.agent._target_q_network # Load latest target model #network = self.load_network(self.model_path) #if (X_train is not None) and (y_train is not None): # plot_pr_curve(network, X_test, y_test, X_train, y_train) # plot_roc_curve(network, X_test, y_test, X_train, y_train) y_pred = network_predictions(self.agent._target_q_network, X_test) return classification_metrics(y_test, y_pred) def get_network(self): #network = self.load_network(self.model_path) return self.agent._target_q_network def save_network(self, filename_rl): #usnish """Saves Q-network as pickle to `model_path`.""" with open(self.filename_rl, "wb") as f: # Save Q-network as pickle pickle.dump(self.agent._target_q_network, f) @staticmethod def load_network(fp: str): """Static method to load Q-network pickle from given filepath. :param fp: Filepath to the saved pickle of the network :type fp: str :returns: The network-object loaded from a pickle file. :rtype: tensorflow.keras.models.Model """ with open(fp, "rb") as f: # Load the Q-network network = pickle.load(f) return network <s><s> import os import pickle from datetime import datetime import numpy as np import tensorflow as tf from reinforcement.environments.classifierenv import ClassifierEnv from reinforcement.metrics import (classification_metrics, decision_function, network_predictions, plot_pr_curve, plot_roc_curve) from reinforcement.utils import imbalance_ratio from tensorflow import data from tensorflow.keras.optimizers import Adam #from tf_agents.agents.dqn.dqn_agent import DdqnAgent from tf_agents.agents import DqnAgent from tf_agents.drivers.dynamic_step_driver import DynamicStepDriver from tf_agents.environments.tf_py_environment import TFPyEnvironment from tf_agents.networks.sequential import Sequential from tf_agents.policies.random_tf_policy import RandomTFPolicy from tf_agents.replay_buffers.tf_uniform_replay_buffer import \\ TFUniformReplayBuffer from tf_agents.utils import common class TrainDQN(): """Wrapper for DDQN training, validation, saving etc.""" def __init__(self, episodes: int, warmup_steps: int, learning_rate: float, gamma: float, min_epsilon: float, decay_episodes: int, model_path: str = None, log_dir: str = None, batch_size: int = 64, memory_length: int = None, collect_steps_per_episode: int = 1, val_every: int = None, target_update_period: int = 1, target_update_tau: float = 1.0, progressbar: bool = True, n_step_update: int = 1, gradient_clipping: float = 1.0, collect_every: int = 1) -> None: """ Wrapper to make training easier. Code is partly based of https://www.tensorflow.org/agents/tutorials/1_dqn_tutorial :param episodes: Number of training episodes :type episodes: int :param warmup_steps: Number of episodes to fill Replay Buffer with random state-action pairs before training starts :type warmup_steps: int :param learning_rate: Learning Rate for the Adam Optimizer :type learning_rate: float :param gamma: Discount factor for the Q-values :type gamma: float :param min_epsilon: Lowest and final value for epsilon :type min_epsilon: float :param decay_episodes: Amount of episodes to decay from 1 to `min_epsilon` :type decay_episodes: int :param model_path: Location to save the trained model :type model_path: str :param log_dir: Location to save the logs, usefull for TensorBoard :type log_dir: str :param batch_size: Number of samples in minibatch to train on each step :type batch_size: int :param memory_length: Maximum size of the Replay Buffer :type memory_length: int :param collect_steps_per_episode: Amount of data to collect for Replay Buffer each episiode :type collect_steps_per_episode: int :param collect_every: Step interval to collect data during training :type collect_every: int :param val_every: Validate the model every X episodes using the `collect_metrics()` function :type val_every: int :param target_update_period: Update the target Q-network every X episodes :type target_update_period: int :param target_update_tau: Parameter for softening the `target_update_period` :type target_update_tau: float :param progressbar: Enable or disable the progressbar for collecting data and training :type progressbar: bool :return: None :rtype: NoneType """ self.episodes = episodes # Total episodes self.warmup_steps = warmup_steps # Amount of warmup steps before training self.batch_size = batch_size # Batch size of Replay Memory self.collect_steps_per_episode = collect_steps_per_episode # Amount of steps to collect data each episode self.collect_every = collect_every # Step interval to collect data during training self.learning_rate = learning_rate # Learning Rate self.gamma = gamma # Discount factor self.min_epsilon = min_epsilon # Minimal chance of choosing random action self.decay_episodes = decay_episodes # Number of episodes to decay from 1.0 to `EPSILON` self.target_update_period = target_update_period # Period for soft updates self.target_update_tau = target_update_tau self.progressbar = progressbar # Enable or disable the progressbar for collecting data and training self.n_step_update = n_step_update self.gradient_clipping = gradient_clipping # Clip the loss self.compiled = False NOW = "DQN" #datetime.now().strftime("%Y%m%d_%H%M%S") if memory_length is not None: self.memory_length = memory_length # Max Replay Memory length else: self.memory_length = warmup_steps if val_every is not None: self.val_every = val_every # Validate the policy every `val_every` episodes else: self.val_every = self.episodes // min(50, self.episodes) # Can't validate the model 50 times if self.episodes < 50 if model_path is not None: #if os.path.exists(model_path + "/" + NOW + ".pkl"): # os.remove(model_path + "/" + NOW + ".pkl") self.model_path = model_path + "/" + NOW + ".pkl" else: self.model_path = "./models/" + NOW + ".pkl" if log_dir is None: log_dir = "./logs/" + NOW self.writer = tf.summary.create_file_writer(log_dir) def compile_model(self, X_train, y_train, layers: list = [], imb_ratio: float = None, loss_fn=common.element_wise_squared_loss) -> None: """Initializes the neural networks, DDQN-agent, collect policies and replay buffer. :param X_train: Training data for the model. :type X_train: np.ndarray :param y_train: Labels corresponding to `X_train`. 1 for the positive class, 0 for the negative class. :param y_train: np.ndarray :param layers: List of layers to feed into the TF-agents custom Sequential(!) layer. :type layers: list :param imb_ratio: The imbalance ratio of the data. :type imb_ratio: float :param loss_fn: Callable loss function :type loss_fn: tf.compat.v1.losses :return: None :rtype: NoneType """ if imb_ratio is None: imb_ratio = imbalance_ratio(y_train) self.train_env = TFPyEnvironment(ClassifierEnv(X_train, y_train, imb_ratio)) self.global_episode = tf.Variable(0, name="global_episode", dtype=np.int64, trainable=False) # Global train episode counter # Custom epsilon decay: https://github.com/tensorflow/agents/issues/339 epsilon_decay = tf.compat.v1.train.polynomial_decay( 1.0, self.global_episode, self.decay_episodes, end_learning_rate=self.min_epsilon) self.q_net = Sequential(layers, self.train_env.observation_spec()) self.agent = DqnAgent(self.train_env.time_step_spec(), self.train_env.action_spec(), q_network=self.q_net, optimizer=Adam(learning_rate=self.learning_rate), td_errors_loss_fn=loss_fn, train_step_counter=self.global_episode, target_update_period=self.target_update_period, target_update_tau=self.target_update_tau, gamma=self.gamma, epsilon_greedy=epsilon_decay, n_step_update=self.n_step_update, gradient_clipping=self.gradient_clipping) self.agent.initialize() self.random_policy = RandomTFPolicy(self.train_env.time_step_spec(), self.train_env.action_spec()) self.replay_buffer = TFUniformReplayBuffer(data_spec=self.agent.collect_data_spec, batch_size=self.train_env.batch_size, max_length=self.memory_length) self.warmup_driver = DynamicStepDriver(self.train_env, self.random_policy, observers=[self.replay_buffer.add_batch], num_steps=self.warmup_steps) # Uses a random policy self.collect_driver = DynamicStepDriver(self.train_env, self.agent.collect_policy, observers=[self.replay_buffer.add_batch], num_steps=self.collect_steps_per_episode) # Uses the epsilon-greedy policy of the agent self.agent.train = common.function(self.agent.train) # Optimalization self.warmup_driver.run = common.function(self.warmup_driver.run) self.collect_driver.run = common.function(self.collect_driver.run) self.compiled = True def train(self, *args) -> None: """Starts the training of the model. Includes warmup period, metrics collection and model saving. :param *args: All arguments will be passed to `collect_metrics()`. This can be usefull to pass callables, testing environments or validation data. Overwrite the TrainDQN.collect_metrics() function to use your own *args. :type *args: Any :return: None :rtype: NoneType, last step is saving the model as a side-effect """ assert self.compiled, "Model must be compiled with model.compile_model(X_train, y_train, layers) before training." # Warmup period, fill memory with random actions if self.progressbar: print(f"\\033[92mCollecting data for {self.warmup_steps:_} steps... This might take a few minutes...\\033[0m") self.warmup_driver.run(time_step=None, policy_state=self.random_policy.get_initial_state(self.train_env.batch_size)) if self.progressbar: print(f"\\033[92m{self.replay_buffer.num_frames():_} frames collected!\\033[0m") dataset = self.replay_buffer.as_dataset(sample_batch_size=self.batch_size, num_steps=self.n_step_update + 1, num_parallel_calls=data.experimental.AUTOTUNE).prefetch(data.experimental.AUTOTUNE) iterator = iter(dataset) def _train
(): experiences, _ = next(iterator) return self.agent.train(experiences).loss _train = common.function(_train) # Optimalization ts = None policy_state = self.agent.collect_policy.get_initial_state(self.train_env.batch_size) print('Before Collect Metrics') self.collect_metrics(*args) # Initial collection for step 0 print('After Collect Metrics') for _ in range(self.episodes): if not self.global_episode % self.collect_every: # Collect a few steps using collect_policy and save to `replay_buffer` if self.collect_steps_per_episode != 0: ts, policy_state = self.collect_driver.run(time_step=ts, policy_state=policy_state) # Sample a batch of data from `replay_buffer` and update the agent's network train_loss = _train() if not self.global_episode % self.val_every: with self.writer.as_default(): tf.summary.scalar("train_loss", train_loss, step=self.global_episode) self.collect_metrics(*args) def collect_metrics(self, X_val: np.ndarray, y_val: np.ndarray, save_best: str = None): """Collects metrics using the trained Q-network. :param X_val: Features of validation data, same shape as X_train :type X_val: np.ndarray :param y_val: Labels of validation data, same shape as y_train :type y_val: np.ndarra :param save_best: Saving the best model of all validation runs based on given metric: Choose one of: {Gmean, F1, Precision, Recall, TP, TN, FP, FN} This improves stability since the model at the last episode is not guaranteed to be the best model. :type save_best: str """ y_pred = network_predictions(self.agent._target_q_network, X_val) print('classification_metrics') stats = classification_metrics(y_val, y_pred) print('Before AVGQ') avgQ = np.mean(decision_function(self.agent._target_q_network, X_val)) # Max action for each x in X print('After AVGQ') if save_best is not None: if not hasattr(self, "best_score"): # If no best model yet self.best_score = 0.0 if stats.get(save_best) >= self.best_score: # Overwrite best model self.save_network() # Saving directly to avoid shallow copy without trained weights self.best_score = stats.get(save_best) with self.writer.as_default(): tf.summary.scalar("AverageQ", avgQ, step=self.global_episode) # Average Q-value for this epoch for k, v in stats.items(): tf.summary.scalar(k, v, step=self.global_episode) def evaluate(self, X_test, y_test): """ Final evaluation of trained Q-network with X_test and y_test. Optional PR and ROC curve comparison to X_train, y_train to ensure no overfitting is taking place. :param X_test: Features of test data, same shape as X_train :type X_test: np.ndarray :param y_test: Labels of test data, same shape as y_train :type y_test: np.ndarray :param X_train: Features of train data :type X_train: np.ndarray :param y_train: Labels of train data :type y_train: np.ndarray """ #if hasattr(self, "best_score"): # print(f"\\033[92mBest score: {self.best_score:6f}!\\033[0m") # network = self.load_network(self.model_path) # Load best saved model #else: # network = self.agent._target_q_network # Load latest target model #network = self.load_network(self.model_path) #if (X_train is not None) and (y_train is not None): # plot_pr_curve(network, X_test, y_test, X_train, y_train) # plot_roc_curve(network, X_test, y_test, X_train, y_train) y_pred = network_predictions(self.agent._target_q_network, X_test) return classification_metrics(y_test, y_pred) def save_network(self): print('save_network') """Saves Q-network as pickle to `model_path`.""" with open(self.model_path, "wb") as f: # Save Q-network as pickle pickle.dump(self.agent._target_q_network, f) def get_network(self): """Static method to load Q-network pickle from given filepath. :param fp: Filepath to the saved pickle of the network :type fp: str :returns: The network-object loaded from a pickle file. :rtype: tensorflow.keras.models.Model """ return self.agent._target_q_network <s> import numpy as np from tf_agents.environments.py_environment import PyEnvironment from tf_agents.specs.array_spec import ArraySpec, BoundedArraySpec from tf_agents.trajectories import time_step as ts class ClassifierEnv(PyEnvironment): """ Custom `PyEnvironment` environment for imbalanced classification. Based on https://www.tensorflow.org/agents/tutorials/2_environments_tutorial """ def __init__(self, X_train: np.ndarray, y_train: np.ndarray, imb_ratio: float): """Initialization of environment with X_train and y_train. :param X_train: Features shaped: [samples, ..., ] :type X_train: np.ndarray :param y_train: Labels shaped: [samples] :type y_train: np.ndarray :param imb_ratio: Imbalance ratio of the data :type imb_ratio: float :returns: None :rtype: NoneType """ #print('1') self._action_spec = BoundedArraySpec(shape=(), dtype=np.int32, minimum=0, maximum=(len(np.unique(y_train)) - 1), name="action") #print(y_train) self._observation_spec = ArraySpec(shape=X_train.shape[1:], dtype=X_train.dtype, name="observation") #print('3') self._episode_ended = False self.X_train = X_train self.y_train = y_train self.imb_ratio = imb_ratio # Imbalance ratio: 0 < imb_ratio < 1 self.id = np.arange(self.X_train.shape[0]) # List of IDs to connect X and y data self.episode_step = 0 # Episode step, resets every episode self._state = self.X_train[self.id[self.episode_step]] def action_spec(self): """ Definition of the discrete actionspace. 1 for the positive/minority class, 0 for the negative/majority class. """ return self._action_spec def observation_spec(self): """Definition of the continous statespace e.g. the observations in typical RL environments.""" return self._observation_spec def _reset(self): """Shuffles data and returns the first state of the shuffled data to begin training on new episode.""" np.random.shuffle(self.id) # Shuffle the X and y data self.episode_step = 0 # Reset episode step counter at the end of every episode self._state = self.X_train[self.id[self.episode_step]] self._episode_ended = False # Reset terminal condition return ts.restart(self._state) def _step(self, action: int): """ Take one step in the environment. If the action is correct, the environment will either return 1 or `imb_ratio` depending on the current class. If the action is incorrect, the environment will either return -1 or -`imb_ratio` depending on the current class. """ if self._episode_ended: # The last action ended the episode. Ignore the current action and start a new episode return self.reset() env_action = self.y_train[self.id[self.episode_step]] # The label of the current state self.episode_step += 1 if action == env_action: # Correct action if env_action: # Minority reward = 1 # True Positive else: # Majority reward = self.imb_ratio # True Negative else: # Incorrect action if env_action: # Minority reward = -1 # False Negative self._episode_ended = True # Stop episode when minority class is misclassified else: # Majority reward = -self.imb_ratio # False Positive if self.episode_step == self.X_train.shape[0] - 1: # If last step in data self._episode_ended = True self._state = self.X_train[self.id[self.episode_step]] # Update state with new datapoint if self._episode_ended: return ts.termination(self._state, reward) else: return ts.transition(self._state, reward) <s><s> ''' * * ============================================================================= * COPYRIGHT NOTICE * ============================================================================= * @ Copyright HCL Technologies Ltd. 2021, 2022,2023 * Proprietary and confidential. All information contained herein is, and * remains the property of HCL Technologies Limited. Copying or reproducing the * contents of this file, via any medium is strictly prohibited unless prior * written permission is obtained from HCL Technologies Limited. * ''' from sklearn.preprocessing import MinMaxScaler, LabelEncoder import numpy as np import logging logging.getLogger('tensorflow').disabled = True import aif360 from aif360.datasets import StandardDataset from aif360.algorithms.preprocessing.reweighing import Reweighing from aif360.algorithms.preprocessing import DisparateImpactRemover class DebiasingManager: def __init__(self): self.data = '' # ------------------------------- Debiasing Changes ------------------------------- def get_attributes(self, data, selected_attr=None): unprivileged_groups = [] privileged_groups = [] if selected_attr == None: selected_attr = data.protected_attribute_names for attr in selected_attr: idx = data.protected_attribute_names.index(attr) privileged_groups.append({attr:data.privileged_protected_attributes[idx]}) unprivileged_groups.append({attr:data.unprivileged_protected_attributes[idx]}) return privileged_groups, unprivileged_groups # ------------------------------- ------------------------------- def Bias_Mitigate(self, dataFrame, protected_feature, privileged_className, target_feature, algorithm): # log = logging.getLogger('eion') # log.propagate = False data_encoded = dataFrame.copy() categorical_names = {} encoders = {} dataFrame = dataFrame.replace('Unknown', 'NA') dataFrame = dataFrame.replace(np.nan, 'NA') try: # Label-Encoding for feature in dataFrame.columns: le = LabelEncoder() le.fit(data_encoded[feature]) data_encoded[feature] = le.transform(data_encoded[feature]) categorical_names[feature] = le.classes_ encoders[feature] = le privileged_class = np.where(categorical_names[protected_feature] == privileged_className)[0] target_feature_count = len(data_encoded[target_feature].value_counts()) # Check if it's BinaryLabel if target_feature_count == 2: binaryLabelDataset = aif360.datasets.BinaryLabelDataset( favorable_label='1', unfavorable_label='0', df=data_encoded, label_names=[target_feature], protected_attribute_names=[protected_feature]) data_orig = binaryLabelDataset # Check if it's Non-BinaryLabel if target_feature_count > 2: data_orig = StandardDataset(data_encoded, label_name=target_feature, favorable_classes=[1], protected_attribute_names=[protected_feature], privileged_classes=[privileged_class]) if algorithm == 'DIR': DIR = DisparateImpactRemover(repair_level=0.9) data_transf_train = DIR.fit_transform(data_orig) # log.info('Status:-|... DIR applied on input dataset') else: privileged_groups, unprivileged_groups = self.get_attributes(data_orig, selected_attr=[protected_feature]) RW = Reweighing(unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) data_transf_train = RW.fit_transform(data_orig) # log.info('Status:-|... Reweighing applied on input dataset') transf_dataFrame = data_transf_train.convert_to_dataframe()[0] data_decoded = transf_dataFrame.copy().astype('int') for column in data_decoded.columns: data_decoded[column] = encoders[column].inverse_transform(data_decoded[column]) debiased_dataFrame = data_decoded except Exception as e: print(e) debiased_dataFrame = dataFrame return debiased_dataFrame <s><s><s> #!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'appfe.ux.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main() <s><s><s> """mpgWebApp URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en
/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.urls import include, re_path from appfe.api import inferenceApis from django.urls import path, re_path urlpatterns = [ #path('predict', inferenceApis.apipredict,name='PredictAPI'), path('predict', inferenceApis.apipredict,name='PredictAPI'), path('spredict',inferenceApis.apispredict,name='SecurePredictAPI'), path('monitoring', inferenceApis.apiinputdrift,name='MonitoringAPI'), path('performance', inferenceApis.apioutputdrift,name='Performance'), path('xplain', inferenceApis.apixplain,name='Xplain'), path('features',inferenceApis.apifeatures,name='Features'), path('uploadfile',inferenceApis.uploadfile,name='uploadfile'), path('retrain',inferenceApis.retrain,name='retrain'), path('trainstatus',inferenceApis.trainstatus,name='trainstatus'), path('publish',inferenceApis.publish,name='publish'), path('geteda',inferenceApis.geteda,name='geteda'), path('pattern_anomaly_settings',inferenceApis.apiPatternAnomalySettings,name='PatternAnomalySettings'), path('pattern_anomaly_predict',inferenceApis.apiPatternAnomalyPredict,name='PatternAnomalyPredict') ] #df=pd.read_csv("C:\\Project\\Analytics\\Deployment\\germancredit_9\\germancreditdata.csv") # #bool_cols = [col for col in df if np.isin(df[col].dropna().unique(), [0, 1]).all()] # #bool_cols <s> from django.shortcuts import render from django.http import HttpResponse from appbe.dataPath import DEPLOY_LOCATION from rest_framework import status from django.db.models import Max, F import os,sys import time import json import re import pandas as pd from rest_framework.permissions import IsAuthenticated from django.views.decorators.csrf import csrf_exempt from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appfe.modelTraining.models import usecasedetails from appfe.modelTraining.models import Existusecases import subprocess from pathlib import Path user_records = {} @csrf_exempt def geteda(request): if request.method == 'POST': if request.content_type == 'application/json': output = {} try: data=request.body.decode('utf-8') data = json.loads(data) file_id = data['fileid'] edaOptions = 'All' if 'options' in data: edaOptions = data['options'] dataFile = os.path.join(DATA_FILE_PATH,file_id) from appbe.eda import ux_eda eda_obj = ux_eda(dataFile) if 'dataoverview' in edaOptions.lower() or 'all' in edaOptions.lower(): dataDistributionDF = eda_obj.dataDistribution() dataDistributionJson = dataDistributionDF.to_json(orient = 'records') output['DataOverview'] = json.loads(dataDistributionJson) if 'top10records' in edaOptions.lower() or 'all' in edaOptions.lower(): top10df = eda_obj.getTopRows(10) top10dfJson = top10df.to_json(orient = 'records') output['Top10Records'] = json.loads(top10dfJson) if 'datadistribution' in edaOptions.lower() or 'all' in edaOptions.lower(): distributionJson = eda_obj.getDistribution() output['DataDistribution'] = distributionJson if "featureimportance" in edaOptions.lower() or 'all' in edaOptions.lower(): pca_map = eda_obj.getPCATop10Features() pca_details = pca_map pca_df=pd.DataFrame() if len(pca_details) > 0: pca_df = pd.DataFrame({'Feature':pca_details.index, 'Explained Variance Ratio':pca_details.values}).round(2) pca_json = pca_df.to_json(orient="records") output['FeatureImportance'] = json.loads(pca_json) else: pca_json = 'Error During feature importance processing' output['FeatureImportance'] = pca_json if "correlationanalysis" in edaOptions.lower() or 'all' in edaOptions.lower(): corr_mat = eda_obj.getCorrelationMatrix() if not corr_mat.empty: corr_mat = corr_mat.to_json(orient="columns") output['CorrelationAnalysis'] = json.loads(corr_mat) else: output['CorrelationAnalysis'] = 'Error during correlation analysis' if "unsupervisedclustering" in edaOptions.lower() or 'all' in edaOptions.lower(): clusteringDetails,hopkins_val = eda_obj.getClusterDetails() output['UnsupervisedClustering'] = clusteringDetails output['HopkinsValue'] = hopkins_val except Exception as e: print(e) return HttpResponse(json.dumps({"status":"Success","output":output}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") @csrf_exempt def publish(request): usecaseid = request.GET["usecaseid"] currentVersion = request.GET["version"] if request.method == 'POST': if request.content_type == 'application/json': try: from appbe.models import publishmodel status,msg,url = publishmodel(request,usecaseid,currentVersion,Existusecases,usecasedetails) return HttpResponse(json.dumps({"status":status,"msg":msg,"url":url}),content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"model training exception"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") @csrf_exempt def trainstatus(request): usecaseid = request.GET["usecaseid"] currentVersion = request.GET["version"] if request.method == 'POST': if request.content_type == 'application/json': try: data=request.body.decode('utf-8') data = json.loads(data) trainingid = int(data['trainingid']) model = Existusecases.objects.get(id=trainingid) if model.Status.lower() == 'success': return HttpResponse(json.dumps({"status":"success","trainingStatus":"Trained","usecaseid":str(usecaseid),"version":str(model.Version)}),content_type="application/json") else: from appbe.training import checkversionrunningstatus status = checkversionrunningstatus(trainingid,usecasedetails,Existusecases) if status.lower() == 'success': return HttpResponse(json.dumps({"status":"success","trainingStatus":"Trained","usecaseid":str(usecaseid),"version":str(model.Version)}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"success","trainingStatus":status,"usecaseid":str(usecaseid),"version":str(model.Version)}),content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"model training exception"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") @csrf_exempt def retrain(request): usecaseid = request.GET["usecaseid"] currentVersion = request.GET["version"] if request.method == 'POST': if request.content_type == 'application/json': try: data=request.body.decode('utf-8') data = json.loads(data) file_id = data['fileid'] p = usecasedetails.objects.get(usecaseid=usecaseid) s1 = Existusecases.objects.filter(ModelName=p).annotate(maxver=Max('ModelName__existusecases__Version')) config_list = s1.filter(Version=F('maxver')) if config_list.count() > 0: Version = config_list[0].Version Version = Version + 1 model = Existusecases.objects.filter(ModelName=p,Version=currentVersion) indexVal = 0 configfile = str(model[indexVal].ConfigPath) f = open(configfile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) configSettingsJson['basic']['modelVersion'] = str(Version) dataFile = configSettingsJson['basic']['dataLocation'] if os.path.isfile(dataFile): data = pd.read_csv(dataFile,encoding='utf-8',skipinitialspace = True,na_values=['-','?'],encoding_errors= 'replace') dataFile = os.path.join(DATA_FILE_PATH,file_id) data2 = pd.read_csv(dataFile,encoding='utf-8',skipinitialspace = True,na_values=['-','?'],encoding_errors= 'replace') data = data.append(data2,ignore_index=True) data.to_csv(dataFile,index=False) dataFile = os.path.join(DATA_FILE_PATH,file_id) configSettingsJson['basic']['dataLocation'] = str(dataFile) updatedConfigSettings = json.dumps(configSettingsJson) filetimestamp = str(int(time.time())) outputfile = os.path.join(CONFIG_FILE_PATH, 'AION_OUTPUT_' + filetimestamp + '.json') config_json_filename = os.path.join(CONFIG_FILE_PATH, 'AION_' + filetimestamp + '.json') with open(config_json_filename, "w") as fpWrite: fpWrite.write(updatedConfigSettings) fpWrite.close() ps = Existusecases(DataFilePath=str(dataFile), DeployPath='', Status='Not Trained',ConfigPath=str(config_json_filename), Version=Version, ModelName=p,TrainOuputLocation=str(outputfile)) ps.save() scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) outputStr = subprocess.Popen([sys.executable, scriptPath,'-m','training','-c',config_json_filename]) ps.Status = 'Running' ps.trainingPID = outputStr.pid ps.save() return HttpResponse(json.dumps({"status":"success","trainingid":str(ps.id),"version":str(ps.Version),"usecaseid":usecaseid}),content_type="application/json") ''' outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_learner_status:(.*)', str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() resultJsonObj = json.loads(outputStr) ps.Status = resultJsonObj['status'] if resultJsonObj['status'] == 'SUCCESS': ps.modelType = resultJsonObj['data']['ModelType'] ps.DeployPath = str(resultJsonObj['data']['deployLocation']) if resultJsonObj['data']['ModelType'] in ['clustering','anomalydetection', 'timeSeriesAnomalyDetection']: #task 11997 ps.ProblemType = 'unsupervised' else: ps.ProblemType = 'supervised' ps.save() ''' else: return HttpResponse(json.dumps({"status":"error","msg":'Existing trained model not found'}),content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"model training exception"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") @csrf_exempt def uploadfile(request): try: if 'file' not in request.FILES: msg = 'No file part in the request' return HttpResponse(json.dumps({"status":"error","msg":msg}),content_type="application/json") else: file = request.FILES['file'] if file.size > 31457280: msg = 'Upload limit is 30 MB only' ext = str(file).split('.')[-1] if ext.lower() in ['csv','tsv','tar','zip','avro','parquet']: filetimestamp = str(int(time.time())) file_id = 'AION_' + filetimestamp+'.'+ext dataFile = os.path.join(DATA_FILE_PATH,file_id) with open(dataFile, 'wb+') as destination: for chunk in file.chunks(): destination.write(chunk) destination.close() return HttpResponse(json.dumps({"status":"success","fileid":file_id}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error
","msg":"File extension not supported"}),content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"File upload exception"}),content_type="application/json") def help_text(request,usecaseid,version): hosturl =request.get_host() url='http://'+hosturl+'/api/' msg = """ Request_Type: Post Content_Type: applicattion/json For Prediction URL: {url}'predict?usecaseid={usecaseid}&version={version} For Explanations URL: {url}xplain?usecaseid={usecaseid}&version={version} For Input Drift URL: {url}monitoring?usecaseid={usecaseid}&version={version} For Output Drift URL: {url}performance?usecaseid={usecaseid}&version={version} BODY: Data in json format """.format(url=url,usecaseid=usecaseid,version=version) return msg @csrf_exempt def apispredict(request): usecaseid = request.GET["usecaseid"] version = request.GET["version"] if request.method == 'POST': if request.content_type == 'application/json': model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version)) isdir = os.path.isdir(model_path) if isdir: try: data=request.body.decode('utf-8') predict_path = os.path.join(model_path,'aion_spredict.py') outputStr = subprocess.check_output([sys.executable,predict_path,data]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) resp = outputStr.strip() return HttpResponse(resp,content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong UseCaseID or Version"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") @csrf_exempt def apipredict(request): usecaseid = request.GET["usecaseid"] version = request.GET["version"] #print(request.content_type) if request.method == 'POST': if request.content_type in ['application/json','multipart/form-data']: model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version)) isdir = os.path.isdir(model_path) if isdir: try: data = '' msg = 'Bad request' if 'file' not in request.FILES: data=request.body.decode('utf-8') else: file = request.FILES['file'] if file.size > 31457280: msg = 'Upload limit is 30 MB only' else: ext = str(file).split('.')[-1] if ext.lower() in ['csv','tsv','tar','zip','avro','parquet']: urlData = file.read() import io rawData = pd.read_csv(io.StringIO(urlData.decode('utf-8'))) data = rawData.to_json(orient='records') else: msg = 'Extension not supported' if data != '': predict_path = os.path.join(model_path,'aion_predict.py') outputStr = subprocess.check_output([sys.executable,predict_path,data]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) resp = outputStr.strip() return HttpResponse(resp,content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":msg}),content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong UseCaseID or Version"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") @csrf_exempt def apiinputdrift(request): usecaseid = request.GET["usecaseid"] version = request.GET["version"] if request.method == 'POST': if request.content_type == 'application/json': model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version)) isdir = os.path.isdir(model_path) if isdir: try: data=request.body.decode('utf-8') predict_path = os.path.join(model_path,'aion_ipdrift.py') outputStr = subprocess.check_output([sys.executable,predict_path,data]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'drift:(.*)',str(outputStr), re.IGNORECASE).group(1) resp = outputStr.strip() return HttpResponse(resp,content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong UseCaseID or Version"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") @csrf_exempt def apioutputdrift(request): usecaseid = request.GET["usecaseid"] version = request.GET["version"] if request.method == 'POST': if request.content_type == 'application/json': model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version)) isdir = os.path.isdir(model_path) if isdir: try: data=request.body.decode('utf-8') predict_path = os.path.join(model_path,'aion_opdrift.py') outputStr = subprocess.check_output([sys.executable,predict_path,data]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'drift:(.*)',str(outputStr), re.IGNORECASE).group(1) resp = outputStr.strip() return HttpResponse(resp,content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong UseCaseID or Version"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") @csrf_exempt def apixplain(request): usecaseid = request.GET["usecaseid"] version = request.GET["version"] if request.method == 'POST': if request.content_type == 'application/json': model_path = (Path(DEPLOY_LOCATION)/usecaseid)/str(version) if model_path.is_dir(): try: with open( (model_path/'etc')/'display.json', 'r') as f: disp_data = json.load(f) is_explainable = not disp_data.get('textFeatures') except: is_explainable = True try: if not is_explainable: return HttpResponse(json.dumps({"status":"error","msg":"explain api is not supported when text features are used for training"}),content_type="application/json") data=request.body.decode('utf-8') predict_path = model_path/'aion_xai.py' outputStr = subprocess.check_output([sys.executable,predict_path,'local',data]) #BugId:13304 outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1) resp = outputStr.strip() return HttpResponse(resp,content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong UseCaseID or Version"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") #@api_view(['POST','GET']) def apifeatures(request): usecaseid = request.GET["usecaseid"] version = request.GET["version"] if request.content_type == 'application/json': model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version)) isdir = os.path.isdir(model_path) if isdir: try: data=request.body.decode('utf-8') predict_path = os.path.join(model_path,'featureslist.py') outputStr = subprocess.check_output([sys.executable,predict_path,data]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'predictions:(.*)',str(outputStr), re.IGNORECASE).group(1) resp = outputStr.strip() return HttpResponse(resp,content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong UseCaseID or Version"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Wrong Content Type"}),content_type="application/json") @csrf_exempt def apiPatternAnomalySettings(request): usecaseid = request.GET["usecaseid"] version = request.GET["version"] if request.content_type == 'application/json': model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version)) isdir = os.path.isdir(model_path) if isdir: try: data=request.body.decode('utf-8') data = json.loads(data) groupswitching = data['groupswitching'] transitionprobability = data['transitionprobability'] transitionsequence = data['transitionsequence'] sequencethreshold = data['sequencethreshold'] filename = os.path.join(model_path,'clickstream.json') print(filename) data = {} data['groupswitching'] = groupswitching data['transitionprobability'] = transitionprobability data['transitionsequence'] = transitionsequence data['sequencethreshold'] = sequencethreshold updatedConfig = json.dumps(data) with open(filename, "w") as fpWrite: fpWrite.write(updatedConfig) fpWrite.close() return HttpResponse(json.dumps({"status":'Success'}),content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain") #@api_view(['POST']) @csrf_exempt def apiPatternAnomalyPredict(request): import pandas as pd usecaseid = request.GET["usecaseid"] version = request.GET["version"] if request.content_type == 'application/json': model_path = os.path.join(DEPLOY_LOCATION,usecaseid,str(version)) isdir = os.path.isdir(model_path) if isdir: try: data=request.body.decode('utf-8') data = json.loads(data) anomaly = False remarks = '' clusterid = -1 configfilename = os.path.join(model_path,'datadetails.json') filename = os.path.join(model_path,'clickstream.json') clusterfilename = os.path.join(model_path,'stateClustering.csv') probfilename = os.path.join(model_path,'stateTransitionProbability.csv') dfclus = pd.read_csv(clusterfilename) dfprod = pd.read_csv(probfilename) f = open(configfilename, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) activity = configSettingsJson['activity'] sessionid = configSettingsJson['sessionid'] f = open(filename, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) groupswitching = configSettingsJson['groupswitching'] page_threshold = configSettingsJson['transitionprobability'] chain_count = configSettingsJson['transitionsequence'] chain_probability = configSettingsJson['sequencethreshold'] currentactivity = data[activity] if bool(user_records): sessionid = data[sessionid] if sessionid != user_records['SessionID']: user_records['SessionID'] = sessionid prevactivity = '' user_records['probarry'] = []
user_records['prevclusterid'] = -1 user_records['NoOfClusterHopping'] = 0 user_records['pageclicks'] = 1 else: prevactivity = user_records['Activity'] user_records['Activity'] = currentactivity pageswitch = True if prevactivity == currentactivity or prevactivity == '': probability = 0 pageswitch = False remarks = '' else: user_records['pageclicks'] += 1 df1 = dfprod[(dfprod['State'] == prevactivity) & (dfprod['NextState'] == currentactivity)] if df1.empty: remarks = 'Anomaly Detected - User in unusual state' anomaly = True clusterid = -1 probability = 0 user_records['probarry'].append(probability) n=int(chain_count) num_list = user_records['probarry'][-n:] avg = sum(num_list)/len(num_list) for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] else: probability = df1['Probability'].iloc[0] user_records['probarry'].append(probability) n=int(chain_count) num_list = user_records['probarry'][-n:] davg = sum(num_list)/len(num_list) for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] remarks = '' if user_records['prevclusterid'] != -1: if probability == 0 and user_records['prevclusterid'] != clusterid: user_records['NoOfClusterHopping'] = user_records['NoOfClusterHopping']+1 if user_records['pageclicks'] == 1: remarks = 'Anomaly Detected - Frequent Cluster Hopping' anomaly = True else: remarks = 'Cluster Hopping Detected' user_records['pageclicks'] = 0 if user_records['NoOfClusterHopping'] > int(groupswitching) and anomaly == False: remarks = 'Anomaly Detected - Multiple Cluster Hopping' anomaly = True elif probability == 0: remarks = 'Anomaly Detected - Unusual State Transition Detected' anomaly = True elif probability <= float(page_threshold): remarks = 'Anomaly Detected - In-frequent State Transition Detected' anomaly = True else: if pageswitch == True: if probability == 0: remarks = 'Anomaly Detected - Unusual State Transition Detected' anomaly = True elif probability <= float(page_threshold): remarks = 'Anomaly Detected - In-frequent State Transition Detected' anomaly = True else: remarks = '' if davg < float(chain_probability): if anomaly == False: remarks = 'Anomaly Detected - In-frequent Pattern Detected' anomaly = True else: user_records['SessionID'] = data[sessionid] user_records['Activity'] = data[activity] user_records['probability'] = 0 user_records['probarry'] = [] user_records['chainprobability'] = 0 user_records['prevclusterid'] = -1 user_records['NoOfClusterHopping'] = 0 user_records['pageclicks'] = 1 for index, row in dfclus.iterrows(): clusterlist = row["clusterlist"] if currentactivity in clusterlist: clusterid = row["clusterid"] user_records['prevclusterid'] = clusterid outputStr = {'status':'SUCCESS','data':{'Anomaly':str(anomaly),'Remarks':str(remarks)}} return HttpResponse(json.dumps(outputStr),content_type="application/json") except Exception as e: print(e) return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: return HttpResponse(json.dumps({"status":"error","msg":"Bad Request"}),content_type="application/json") else: msg = help_text(request,usecaseid,version) return HttpResponse(msg,content_type="text/plain")<s> from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect import json from appbe.dataPath import DEFAULT_FILE_PATH from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION from appbe.pages import getversion AION_VERSION = getversion() import os import time import subprocess import sys import re import pandas as pd def mltesting(request): from appbe.pages import mltesting_page context = mltesting_page(request) context['selected']='mltesting' context['version'] = AION_VERSION return render(request, 'mltesting.html',context) def ABtest(request): try: if request.method == "POST": models = request.POST["model"] data = request.POST["data"] #context['version'] = AION_VERSION if(os.path.isfile(models) and os.path.isfile(data)): AlgorithmNames={'LogisticRegression':'Logistic Regression','SGDClassifier':'Stochastic Gradient Descent','GaussianNB':'Naive Bayes','SVC':'Support Vector Machine','KNeighborsClassifier':'K Nearest Neighbors','DecisionTreeClassifier':'Decision Tree','RandomForestClassifier':'Random Forest','GradientBoostingClassifier':'Gradient Boosting','XGBClassifier':'Extreme Gradient Boosting (XGBoost)','DecisionTreeRegressor':'Decision Tree','LinearRegression':'Linear Regression','Lasso':'Lasso','Ridge':'Ridge','RandomForestRegressor':'Random Forest','XGBRegressor':'Extreme Gradient Boosting (XGBoost)'} filetimestamp = str(int(time.time())) mltestjson = os.path.join(DEFAULT_FILE_PATH, 'aion_config.json') with open(mltestjson, 'r+') as f: mltest = json.load(f) f.close() with open(request.session['MLTestResult'], 'r+') as f: mltestresult = json.load(f) f.close() models = mltestresult['models'] datapath = mltestresult['datap'] featurs = mltestresult['feature'] featurs = featurs.split(",") tar = mltestresult['target'] tar = tar.split(",") # models,datap,Problemtype,targ,feature,Problem,Parameters,Accuracy # models,datap,Problemtype,targ,feature,Problem,Parameters,Accuracy mltest['basic']['modelName'] = 'MLtest_'+ str(filetimestamp) mltest['basic']['modelVersion'] = "1" mltest['basic']['dataLocation'] = mltestresult['datap'] mltest['basic']['deployLocation'] = DEPLOY_LOCATION mltest['basic']['trainingFeatures'] = mltestresult['feature'] mltest['basic']['targetFeature'] = mltestresult['target'] mltest['advance']['profiler']['featureDict']=[] temp = {} Problemtype = mltestresult['Problemtype'] if Problemtype == 'Classification': Accuracyscore1 = mltestresult['Score'] Accuracyscore = float(Accuracyscore1)*100 temp['ScoringCriteria'] = 'Accuracy' else: R2_Score = round(float(mltestresult['Score']),2) temp['ScoringCriteria'] = 'R2' baselineparam = mltestresult['Params'] temp['algorithm'] = [] if request.session["AionProblem"] == 'Samebaseline': baselineprob = AlgorithmNames[mltestresult['ProblemName']] temp['algorithm'].append(baselineprob) else: baselineprob = request.session["AionProblem"] temp['algorithm'] = baselineprob.split(",") #print(baselineprob) temp['ProblemType'] = Problemtype #temp['algorithm'] = ['K Nearest Neighbors'] problemtyp = mltest['basic']['analysisType'] scoring = mltest['basic']['scoringCriteria'] for i in list(scoring.keys()): for x in list(mltest['basic']['scoringCriteria'][i].keys()): mltest['basic']['scoringCriteria'][i][x] = 'False' if temp['ProblemType'].lower() in ["classification","regression",]: mltest['basic']['scoringCriteria'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]][temp['ScoringCriteria']] = 'True' for i in list(problemtyp.keys()): mltest['basic']['analysisType'][i]='False' algorithm = mltest['basic']['algorithms'] for i in list(algorithm.keys()): for x in list(mltest['basic']['algorithms'][i].keys()): mltest['basic']['algorithms'][i][x] = 'False' mltest['basic']['analysisType'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]] = 'True' for X in temp['algorithm']: mltest['basic']['algorithms'][temp['ProblemType'][0].lower() + temp['ProblemType'][1:]][X] = 'True' mltest = json.dumps(mltest) config_json_filename = os.path.join(CONFIG_FILE_PATH, 'MLtest' + filetimestamp + '.json') with open(config_json_filename, "w") as fpWrite: fpWrite.write(mltest) fpWrite.close() scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','training','-c',config_json_filename]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_learner_status:(.*)', str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() decoded_data = json.loads(outputStr) #print(decoded_data) if decoded_data['data']['ScoreType'] == 'R2': decoded_data['data']['BestScore'] = str(round(float(decoded_data['data']['BestScore']),2)) if decoded_data['data']['ScoreType'].lower() == 'accuracy': decoded_data['data']['BestScore'] = str(round(float(decoded_data['data']['BestScore']),2)) #print(decoded_data) #print('123',Accuracyscore) if Problemtype == 'Classification': if Accuracyscore >= float(decoded_data['data']['BestScore']) : context = {'modelname': models,'datapath':datapath,'features':featurs,'target':tar,'abtest':'abtest','message':'message','msg':'Existing model is good to be used.','classification':'classification','classuccess':'classuccess','selected':'mltesting','version':AION_VERSION} else: context = {'modelname': models,'datapath':datapath,'features':featurs,'target':tar,'tableab':'tableab','abtest':'abtest','decoded_data':decoded_data,'score':Accuracyscore,'basealgo':baselineprob,'Problem':AlgorithmNames[mltestresult['ProblemName']],'baseparm':baselineparam,'classification':'classification','classuccess':'classuccess','selected':'mltesting','version':AION_VERSION} else: if R2_Score >= float(decoded_data['data']['BestScore']) : context = {'modelname': models,'datapath':datapath,'features':featurs,'target':tar,'abtest':'abtest','message':'message','msg':'Existing model is good to be used.','regression':'regression','regsuccess':'regsuccess','selected':'mltesting'} else: context = {'modelname': models,'datapath':datapath,'features':featurs,'target':tar,'tableab':'tableab','abtest':'abtest','decoded_data':decoded_data,'score':R2_Score,'basealgo':baselineprob,'Problem':AlgorithmNames[mltestresult['ProblemName']],'baseparm':baselineparam,'regression':'regression','regsuccess':'regsuccess','selected':'mltesting','version':AION_VERSION} else: context= {'error':'Error - Model file or Data file does not exist','abtesting':'abtesting','selected':'mltesting'} context['version'] = AION_VERSION return render(request, 'mltesting.html', context) except Exception as e: print(e) context= {'error':'Error - Fail to perform A/B Testing','abtesting':'abtesting','selected':'mltesting'} context['version'] = AION_VERSION return render(request, 'mltesting.html', context) def UQTesting(request): try: if request.method == "POST": models = request.POST['modeluq'] datap = request.POST['datauq'] if(os.path.isfile(models) and os.path.isfile(datap)): df = pd.read_csv(datap) trainfea = df.columns.tolist() featurs = request.POST.getlist('Traininguq') feature = ",".join(featurs) # features = ['PetalLengthCm','PetalWidthCm'] targ = request.POST['Targetuq'] tar =[targ] from bin.aion_uncertainties import aion_uq outputStr = aion_uq(models,datap,feature,tar) print(outputStr) uq_test = json.loads(outputStr) #print("==============") #print(uq_test) #print("==============") Problemtype= uq_test['Problem'] msg = uq_test['msg'] if Problemtype == 'Regression': # Confidence_Interval_Plot = uq_test['Confidence Interval Plot'] # #print(Confidence_Interval_Plot) # if Confidence_Interval_Plot != '': # string = base64.b64encode(open(Confidence_Interval_Plot, "rb").read())
# Confidence_Interval_Plot = 'data:image/png;base64,' + urllib.parse.quote(string) # PICP_Plot = uq_test['PICP Plot'] # if PICP_Plot != '': # string = base64.b64encode(open(PICP_Plot, "rb").read()) # PICP_Plot = 'data:image/png;base64,' + urllib.parse.quote(string) # Confidence_Plot = uq_test['Confidence Plot'] # if Confidence_Plot != '': # string = base64.b64encode(open(Confidence_Plot, "rb").read()) # Confidence_Plot = 'data:image/png;base64,' + urllib.parse.quote(string) if msg == "Good": context={'Uqtest':'Uqtest','regression':'regression','modelname':models,'datapath':datap,'features':featurs,'target':tar,'trainfea':trainfea,'uq_reg':uq_test,'uqregression':'uqregression','dfuqr':df,'Green':'Green','selected':'mllite','version':AION_VERSION} elif msg == "Bad": context={'Uqtest':'Uqtest','regression':'regression','modelname':models,'datapath':datap,'features':featurs,'target':tar,'trainfea':trainfea,'uq_reg':uq_test,'uqregression':'uqregression','dfuqr':df,'Red':'Red','selected':'mllite','version':AION_VERSION} else: context={'Uqtest':'Uqtest','regression':'regression','modelname':models,'datapath':datap,'features':featurs,'target':tar,'trainfea':trainfea,'uq_reg':uq_test,'uqregression':'uqregression','dfuqr':df,'orange':'orange','selected':'mllite','version':AION_VERSION} elif Problemtype == 'Classification': # df3 = pd.DataFrame.from_dict(uq_test,orient='index') df3 = pd.DataFrame.from_dict(uq_test, orient='index', columns=['value']) df3 = df3.rename_axis('Attributes').reset_index() # risk_plot = uq_test['Risk Plot'] # if risk_plot != '': # string = base64.b64encode(open(risk_plot, "rb").read()) # risk_plot = 'data:image/png;base64,' + urllib.parse.quote(string) # reliability_plot = uq_test['Reliability Plot'] # if reliability_plot != '': # string = base64.b64encode(open(reliability_plot, "rb").read()) # reliability_plot = 'data:image/png;base64,' + urllib.parse.quote(string) df3['Attributes'] = df3['Attributes'].str.replace(r'_', ' ') # df3.loc[(df3.Attributes == 'Model_total_confidence_score'),'Attributes']='Model Total Confidence' # df3.loc[(df3.Attributes == 'Expected_Calibration_Error'),'Attributes']='Expected Calibration Error' df3 = df3.iloc[4:, :] report = df3.to_html(index=False) if msg == "Good": context={'Uqtest':'Uqtest','classification':'classification','modelname':models,'datapath':datap,'features':featurs,'target':tar,'uqclassification':'uqclassification','uq_class':uq_test,'report':report,'selected':'mltesting','selected':'mllite','version':AION_VERSION} elif msg == "Bad": context={'Uqtest':'Uqtest','classification':'classification','modelname':models,'datapath':datap,'features':featurs,'target':tar,'uqclassification':'uqclassification','uq_class':uq_test,'report':report,'selected':'mltesting','selected':'mllite','version':AION_VERSION} else: context={'Uqtest':'Uqtest','classification':'classification','modelname':models,'datapath':datap,'features':featurs,'target':tar,'uqclassification':'uqclassification','uq_class':uq_test,'report':report,'selected':'mltesting','selected':'mllite','version':AION_VERSION} elif Problemtype == 'None': #print('hi') context={'Uqerror':'Uqerror','errormsg':"Error:"+str(msg),'version':AION_VERSION} else: context= {'error':'Please enter valid inputs','UQtesting':'UQtesting','selected':'mllite','version':AION_VERSION} return render(request, 'mltesting.html', context) except Exception as e: print("uqregression error: ",e) context= {'error':'Error - Fail to perform Uncertainty Quantification ','UQtesting':'UQtesting','selected':'mllite','version':AION_VERSION} return render(request, 'mltesting.html', context) <s> from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect from appbe.pages import getusercasestatus from appbe.pages import getversion AION_VERSION = getversion() from appfe.modelTraining.models import usecasedetails from appfe.modelTraining.models import Existusecases import os from django.db.models import Max, F import pandas as pd from appbe.publish import check_input_data from appbe.dataPath import DEFAULT_FILE_PATH from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION from appbe import installPackage import json from appbe import compute from appbe.training import checkModelUnderTraining import logging def opentraininglogs(request, id,currentVersion): from appbe.pages import usecases_page try: from appbe import installPackage modelID = installPackage.getMIDFromUseCaseVersion(id,currentVersion,usecasedetails,Existusecases) p = Existusecases.objects.get(id=modelID) configpath = str(p.ConfigPath) file_exists = os.path.exists(configpath) if not file_exists: request.session['IsRetraining'] = 'No' status,context,action = usecases_page(request,usecasedetails,Existusecases) context['errorMsg'] = 'Error in model launching: Some of the files are missing' return render(request,action,context) usecasename = p.ModelName.UsecaseName Version = p.Version request.session['ModelName'] = p.ModelName.id request.session['UseCaseName'] = usecasename request.session['usecaseid'] = p.ModelName.usecaseid request.session['ModelVersion'] = p.Version request.session['deploypath'] = str(p.DeployPath) request.session['config_json'] = configpath usename = request.session['usecaseid'].replace(" ", "_") request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'log','model_training_logs.log') request.session['finalstate'] = 3 request.session['ModelStatus'] = p.Status updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettings = json.loads(configSettings) problemtypes = configSettings['basic']['analysisType'] #print(problemtypes.keys()) problem_type = "" for k in problemtypes.keys(): if configSettings['basic']['analysisType'][k] == 'True': problem_type = k break if problem_type.lower() in ['videoforecasting','imageclassification','objectdetection','document','llmfinetuning']: request.session['datatype'] = configSettings['basic']['folderSettings']['fileType'] request.session['csvfullpath'] = configSettings['basic']['folderSettings']['labelDataFile'] request.session['datalocation'] = configSettings['basic']['dataLocation'] if problem_type.lower() == 'llmfinetuning': request.session['fileExtension'] = configSettings['basic']['folderSettings']['fileExtension'] else: request.session['datalocation'] = str(p.DataFilePath) request.session['datatype'] = 'Normal' if 'fileSettings' in configSettings['basic'].keys(): fileSettings = configSettings['basic']['fileSettings'] if 'delimiters' in fileSettings.keys(): delimiters = configSettings['basic']['fileSettings']['delimiters'] textqualifier = configSettings['basic']['fileSettings']['textqualifier'] request.session['delimiter'] = delimiters request.session['textqualifier'] = textqualifier else: request.session['delimiter'] = ',' request.session['textqualifier'] = '"' from appfe.modelTraining.views import uploaddata return uploaddata(request) except Exception as e: print(e) return render(request, 'usecases.html',{'error': 'Failed to launch model. Please train the model first before launching.','selected': 'prediction','version':AION_VERSION}) def retrain(request, id,currentVersion): from appbe.aion_config import eda_setting from appbe.pages import usecases_page from appbe.aion_config import settings usecasetab = settings() try: p = usecasedetails.objects.get(id=id) s1 = Existusecases.objects.filter(ModelName=id).annotate(maxver=Max('ModelName__existusecases__Version')) config_list = s1.filter(Version=F('maxver')) if config_list.count() > 0: Version = config_list[0].Version Version = Version + 1 else: Version = 1 usecasename = p.UsecaseName request.session['ModelName'] = p.id request.session['UseCaseName'] = usecasename request.session['usecaseid'] = p.usecaseid request.session['ModelVersion'] = Version request.session['ModelStatus'] = 'Not Trained' request.session['finalstate'] = 0 usecase = usecasedetails.objects.all().order_by('-id') # Retraing settings changes # -------- S T A R T -------- model = Existusecases.objects.filter(ModelName=p,Version=currentVersion) samplePercentage = 100 samplePercentval = 0 showRecommended = False if(model.count() > 0): indexVal = 0 configfile = str(model[indexVal].ConfigPath) f = open(configfile, "r") configSettings = f.read() f.close() configSettings = json.loads(configSettings) dataFile = configSettings['basic']['dataLocation'] if configSettings['basic']['folderSettings']['fileType'] == 'Object': request.session['datatype'] = configSettings['basic']['folderSettings']['fileType'] request.session['objectLabelFileName'] = configSettings['basic']['folderSettings']['labelDataFile'] request.session['datalocation'] = configSettings['basic']['dataLocation'] return objectlabeldone(request) else: request.session['datalocation'] = str(configSettings['basic']['dataLocation']) request.session['datatype'] = 'Normal' if 'fileSettings' in configSettings['basic'].keys(): fileSettings = configSettings['basic']['fileSettings'] if 'delimiters' in fileSettings.keys(): delimiters = configSettings['basic']['fileSettings']['delimiters'] textqualifier = configSettings['basic']['fileSettings']['textqualifier'] request.session['delimiter'] = delimiters request.session['textqualifier'] = textqualifier else: request.session['delimiter'] = ',' request.session['textqualifier'] = '"' df = pd.read_csv(dataFile, encoding='utf8',nrows=10,encoding_errors= 'replace') records = df.shape[0] df1 = check_input_data(usecasename) if df1.shape[0] > 0: df = pd.read_csv(dataFile, encoding='utf8',encoding_errors= 'replace') df = df.append(df1, ignore_index=True) df = df.reset_index(drop=True) filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') df.to_csv(dataFile, index=False) print(df.shape[0]) request.session['datalocation'] = str(dataFile) request.session['NoOfRecords'] = records request.session['IsRetraining'] = 'Yes' df_top = df.head(10) df_json = df_top.to_json(orient="records") df_json = json.loads(df_json) # from AION import ux_eda # eda_obj = ux_eda(dataFile) # featuresList,datetimeFeatures,sequenceFeatures,constantFeature,textFeature,targetFeature,numericCatFeatures,numericFeature = eda_obj.getFeatures() featuresList = df.columns.tolist() numberoffeatures = len(featuresList) from appfe.modelTraining.views import getimpfeatures imp_features = getimpfeatures(dataFile,numberoffeatures) check_df = pd.read_csv(dataFile,encoding='utf8',encoding_errors= 'replace') # EDA Performance change # ---------------------------- sample_size = int(eda_setting()) # dflength = len(eda_obj.getdata()) dflength = len(check_df) if dflength > sample_size: samplePercentage = int((sample_size/dflength) * 100) samplePercentval = samplePercentage / 100 showRecommended = True # ---------------------------- statusmsg = 'Data loaded Successfully for Retraining.' computeinfrastructure = compute.readComputeConfig() # ---------------------------- selected_use_case = request.session['UseCaseName'] ModelVersion = Version ModelStatus = 'Not Trained' if len(usecase) > 0: nouc = usecasedetails.objects.latest('id') nouc = (nouc.id)+1 else: nouc = 1 # Retraing settings changes # -------- S T A R T -------- # return render(request, 'usecases.html', {'usecasedetail': usecase,'nouc':nouc,'models': models, 'selectedusecase': usecasename, # 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, # 'ModelVersion': ModelVersion, 'selected': 'usecase'}) ps = Existusecases(DataFilePath=request.session['datalocation'], DeployPath='', Status='Not Trained',ConfigPath=configfile, Version=Version, ModelName=p,
TrainOuputLocation='') ps.save() if(model.count() > 0): context = {'range':range(1,101),'samplePercentage':samplePercentage, 'samplePercentval':samplePercentval, 'showRecommended':showRecommended,'featuresList': featuresList, 'tab': 'tabconfigure','data': df_json,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning','exploratory':False, 'status_msg': statusmsg,'computeinfrastructure':computeinfrastructure,'IsRetrainingModel':True,'imp_features':imp_features,'numberoffeatures':numberoffeatures, 'dataSetPath': dataFile,'usecasetab':usecasetab,'finalstate':request.session['finalstate'],'version':AION_VERSION} else: context = {'tab': 'tabconfigure','selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'Modelretrain':request.session['ModelVersion'],'finalstate':request.session['finalstate'],'version':AION_VERSION} context['version'] = AION_VERSION return render(request, 'upload.html', context) except Exception as e: print(e) checkModelUnderTraining(request,usecasedetails,Existusecases) request.session['IsRetraining'] = 'No' status,context,action = usecases_page(request,usecasedetails,Existusecases) #print(context) context['version'] = AION_VERSION context['Status'] = 'Error' context['Msg'] = 'Error in retraining usecase. Check log file for more details' return render(request,action,context) def launchmodel(request, id,version): from appbe.pages import usecases_page try: modelID = installPackage.getMIDFromUseCaseVersion(id,version,usecasedetails,Existusecases) p = Existusecases.objects.get(id=modelID) configpath = str(p.ConfigPath) file_exists = os.path.exists(configpath) if not file_exists: request.session['IsRetraining'] = 'No' status,context,action = usecases_page(request,usecasedetails,Existusecases) context['errorMsg'] = 'Error in model launching: Some of the files are missing' return render(request,action,context) usecasename = p.ModelName.UsecaseName Version = p.Version request.session['ModelName'] = p.ModelName.id request.session['UseCaseName'] = usecasename request.session['usecaseid'] = p.ModelName.usecaseid request.session['ModelVersion'] = p.Version request.session['deploypath'] = str(p.DeployPath) request.session['config_json'] = configpath usename = request.session['usecaseid'].replace(" ", "_") request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'log','model_training_logs.log') request.session['finalstate'] = 3 request.session['ModelStatus'] = p.Status updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettings = json.loads(configSettings) problemtypes = configSettings['basic']['analysisType'] #print(problemtypes.keys()) problem_type = "" for k in problemtypes.keys(): if configSettings['basic']['analysisType'][k] == 'True': problem_type = k break if problem_type == 'videoForecasting' or problem_type == 'imageClassification' or problem_type == 'objectDetection': request.session['datatype'] = configSettings['basic']['folderSettings']['fileType'] request.session['csvfullpath'] = configSettings['basic']['folderSettings']['labelDataFile'] request.session['datalocation'] = configSettings['basic']['dataLocation'] elif configSettings['basic']['folderSettings']['fileType'] == 'Document': request.session['datatype'] = configSettings['basic']['folderSettings']['fileType'] request.session['csvfullpath'] = configSettings['basic']['folderSettings']['labelDataFile'] request.session['datalocation'] = configSettings['basic']['dataLocation'] else: request.session['datalocation'] = str(p.DataFilePath) request.session['datatype'] = 'Normal' if 'fileSettings' in configSettings['basic'].keys(): fileSettings = configSettings['basic']['fileSettings'] if 'delimiters' in fileSettings.keys(): delimiters = configSettings['basic']['fileSettings']['delimiters'] textqualifier = configSettings['basic']['fileSettings']['textqualifier'] request.session['delimiter'] = delimiters request.session['textqualifier'] = textqualifier else: request.session['delimiter'] = ',' request.session['textqualifier'] = '"' from appfe.modelTraining.prediction_views import Prediction return Prediction(request) except Exception as e: print(e) return render(request, 'prediction.html',{'error': 'Failed to launch model. Please train the model first before launching.','selected': 'prediction','version':AION_VERSION}) def modxplain(request, id,version): from appbe.pages import usecases_page log = logging.getLogger('log_ux') modelID = installPackage.getMIDFromUseCaseVersion(id,version,usecasedetails,Existusecases) p = Existusecases.objects.get(id=modelID) configpath = str(p.ConfigPath) usecasename = p.ModelName.UsecaseName Version = p.Version request.session['ModelName'] = p.ModelName.id request.session['UseCaseName'] = usecasename request.session['usecaseid'] = p.ModelName.usecaseid request.session['ModelVersion'] = p.Version request.session['deploypath'] = str(p.DeployPath) request.session['config_json'] = configpath usename = request.session['usecaseid'].replace(" ", "_") request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'log','model_training_logs.log') request.session['finalstate'] = 3 request.session['ModelStatus'] = p.Status file_exists = os.path.exists(configpath) if not file_exists: request.session['IsRetraining'] = 'No' status,context,action = usecases_page(request,usecasedetails,Existusecases) context['errorMsg'] = 'Error in model launching: Some of the files are missing' log.info('modxplain:' + str(selected_use_case) + ':' + str(ModelVersion) + ':' + '0 ' + 'sec' + ':' + 'Error:Error in model launching: Some of the files are missing') return render(request,action,context) usecasename = p.ModelName.UsecaseName Version = p.Version request.session['ModelName'] = p.ModelName.id request.session['UseCaseName'] = usecasename request.session['usecaseid'] = p.ModelName.usecaseid request.session['ModelVersion'] = p.Version request.session['deploypath'] = str(p.DeployPath) request.session['config_json'] = configpath usename = request.session['usecaseid'].replace(" ", "_") request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'log','model_training_logs.log') request.session['finalstate'] = 3 request.session['ModelStatus'] = p.Status from appfe.modelTraining import visualizer_views as v return v.xplain(request) def moddrift(request, id,version): from appbe.pages import usecases_page modelID = installPackage.getMIDFromUseCaseVersion(id,version,usecasedetails,Existusecases) p = Existusecases.objects.get(id=modelID) configpath = str(p.ConfigPath) file_exists = os.path.exists(configpath) if not file_exists: request.session['IsRetraining'] = 'No' status,context,action = usecases_page(request,usecasedetails,Existusecases) context['errorMsg'] = 'Error in model launching: Some of the files are missing' return render(request,action,context) usecasename = p.ModelName.UsecaseName Version = p.Version request.session['ModelName'] = p.ModelName.id request.session['UseCaseName'] = usecasename request.session['usecaseid'] = p.ModelName.usecaseid request.session['ModelVersion'] = p.Version request.session['deploypath'] = str(p.DeployPath) request.session['config_json'] = configpath usename = request.session['usecaseid'].replace(" ", "_") request.session['logfilepath'] = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'log','model_training_logs.log') request.session['finalstate'] = 3 request.session['ModelStatus'] = p.Status f = open( configpath, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) trainingdataloc = configSettingsJson['basic']['dataLocation'] request.session['datalocation']= trainingdataloc return inputdrift(request) def inputdrift(request): log = logging.getLogger('log_ux') from appbe.aion_config import settings usecasetab = settings() from appbe import service_url try: selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) computeinfrastructure = compute.readComputeConfig() if ModelStatus != 'SUCCESS': context = {'error': 'Please train the model first or launch an existing trained model', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab} log.info('Error Please train the model first or launch an existing trained model') else: updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) problemtypes = configSettingsJson['basic']['analysisType'] problem_type = "" for k in problemtypes.keys(): if configSettingsJson['basic']['analysisType'][k] == 'True': problem_type = k break problem = problem_type ser_url = service_url.read_monitoring_service_url_params(request) iterName = request.session['usecaseid'].replace(" ", "_") ModelVersion = request.session['ModelVersion'] ser_url = ser_url+'monitoring?usecaseid='+iterName+'&version='+str(ModelVersion) pser_url = service_url.read_performance_service_url_params(request) pser_url = pser_url+'performance?usecaseid='+iterName+'&version='+str(ModelVersion) if problem.lower() not in ['classification','regression']: context = {'error': 'Input drift only available for classification and regression problems', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'version':AION_VERSION, 'ModelVersion': ModelVersion, 'selected': 'monitoring','ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab} else: context = {'SUCCESS': 'Model is trained', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'version':AION_VERSION, 'ModelVersion': ModelVersion, 'selected': 'monitoring','ser_url':ser_url,'pser_url':pser_url,'trainingDataLocation':request.session['datalocation'],'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab} return render(request, 'inputdrif.html', context) except Exception as e: print(e) log.info('inputdrift; Error: Failed to perform drift analysis'+str(e)) return render(request, 'inputdrif.html', {'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'version':AION_VERSION,'error':'Fail to do inputdrift analysis','usecasetab':usecasetab}) <s> import os,sys import re import logging from django.http import HttpRequest, HttpResponse from django.conf import settings from django.shortcuts import render from appbe.pages import getversion import plotly.graph_objects as go import plotly.figure_factory as ff from django.shortcuts import render from plotly.subplots import make_subplots from django.contrib.sessions.models import Session from sklearn.metrics import confusion_matrix from IPython.core.display import HTML from IPython.core import display from django.template import Context, loader import pandas as pd import numpy as np import io import urllib, base64 from natsort import natsorted import matplotlib.pyplot as plt import plotly.express as px import json from IPython.core.display import display, HTML from appbe import compute import base64 import warnings warnings.filterwarnings('ignore') import subprocess from appbe import installPackage from appfe.modelTraining.models import usecasedetails from appfe.modelTraining.models import Existusecases from utils.file_ops import read_df_compressed from appbe.dataPath import LOG_LOCATION from appbe.log_ut import logg import time AION_VERSION = getversion() def getusercasestatus(request): if 'UseCaseName' in request.session: selected_use_case = request.session['UseCaseName'] else: selected_use_case = 'Not Defined' if 'ModelVersion' in request.session: ModelVersion = request.session['ModelVersion'] else: ModelVersion = 0 if 'ModelStatus' in request.session: ModelStatus = request.session['ModelStatus'] else: ModelStatus = 'Not Trained' return selected_use_case,ModelVersion,ModelStatus def xplain(request): log = logging.getLogger('log_ux') computeinfrastructure = compute.readComputeConfig() from appbe.aion_config import settings usecasetab = settings() selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) if request.method == 'GET': try: if ModelStatus != 'SUCCESS': log.info('xplain :' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error
:Please train the model first or launch an existing trained model') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please train the model first or launch an existing trained model','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) else: if 'ModelVersion' not in request.session: log.info('xplain : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error:Please train the model first') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) elif request.session['ModelVersion'] == 0: log.info('xplain : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please train the model first') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) elif 'ModelStatus' not in request.session: log.info('xplain : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please train the model first') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) elif request.session['ModelStatus'] != 'SUCCESS': log.info('xplain : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please train the model first') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) problemType = 'classification' for key in configSettingsJson['basic']['analysisType']: if configSettingsJson['basic']['analysisType'][key] == 'True': problemType = key break if problemType.lower() != 'classification' and problemType.lower() != 'regression': log.info('xplain:' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0' + 'sec' + ' : ' + 'Error:Explainable AI only available for classification and regression problem') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Explainable AI only available for classification and regression problem','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) displaypath = os.path.join( request.session['deploypath'],'etc','display.json') with open(displaypath) as file: config = json.load(file) file.close() inputFeatures = configSettingsJson['basic']['trainingFeatures'] targetFeature = configSettingsJson['basic']['targetFeature'] inputFeaturesList = inputFeatures.split(',') if targetFeature in inputFeaturesList: inputFeaturesList.remove(targetFeature) dataFilePath = str(configSettingsJson['basic']['dataLocation']) df = pd.read_csv(dataFilePath,nrows=10) df.rename(columns=lambda x: x.strip(), inplace=True) df = df[inputFeaturesList] inputFieldsDict = df.to_dict(orient='index')[5] inputFields = [] inputFields.append(inputFieldsDict) targetfeatures = targetFeature.split(",") ##### Bug 20649 starts featureDict = configSettingsJson['advance']['profiler']['featureDict'] catFeatureList = [] for feature in featureDict: if feature['type'] == 'categorical': catFeatureList.append(feature['feature']) for feature in targetfeatures: if feature in catFeatureList: catFeatureList.remove(feature) fairness_error = "" if len(catFeatureList)>0 else "Fairness metrics is not applicable as categorical feature(s) is not present." ##### Bug 20649 ends context = {"fairness_error":fairness_error,"catFeatureList":catFeatureList,'selected_use_case':selected_use_case,'configSettings':configSettingsJson,'targetfeatures':targetfeatures,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'selected':'visualizer','subselected':'businessview','inputFields':inputFields,'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION,'problemType':problemType} return render(request, 'businessview.html', context) except Exception as e: log.info('xplain : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Unexpected error occur, '+str(e)) print(e) return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Unexpected error occur','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) if request.method == 'POST': if request.POST.get("submit") == 'modelxplain': return modelxplain(request) if request.POST.get("submit") == 'xplainprediction': return predictionxplain(request) def modelxplain(request): log = logging.getLogger('log_ux') computeinfrastructure = compute.readComputeConfig() selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) from appbe.aion_config import settings usecasetab = settings() t1 = time.time() if 'UseCaseName' not in request.session: return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please create the use case first, trained the model and then visualize the data','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) else: if 'ModelVersion' not in request.session: log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please trained the model first') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) elif request.session['ModelVersion'] == 0: log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please trained the model first') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) elif 'ModelStatus' not in request.session: log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please trained the model first') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) elif request.session['ModelStatus'] != 'SUCCESS': log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Please trained the model first') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Please trained the model first','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) try: from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes') updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) problemType = 'classification' for key in configSettingsJson['basic']['analysisType']: if configSettingsJson['basic']['analysisType'][key] == 'True': problemType = key break if problemType.lower() != 'classification' and problemType.lower() != 'regression': log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Explainable AI only available for classification and regression problem') return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error':'Explainable AI only available for classification and regression problem','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) displaypath = os.path.join( request.session['deploypath'],'etc','display.json') with open(displaypath) as file: config = json.load(file) file.close() targetFeature = configSettingsJson['basic']['targetFeature'] dataFilePath = str(configSettingsJson['basic']['dataLocation']) status, df = read_df_compressed(config['postprocessedData'], nrows=10) df.rename(columns=lambda x: x.strip(), inplace=True) if targetFeature in df.columns: df.drop( targetFeature, axis=1, inplace=True) inputFieldsDict = df.to_dict(orient='index')[5] inputFields = [] inputFields.append(inputFieldsDict) if 'nrows' in config: nrows = config['nrows'] else: nrows = 'Not Available' if 'ncols' in config: ncols = config['ncols'] else: ncols = 'Not Available' if 'targetFeature' in config: targetFeature = config['targetFeature'] else: targetFeature = '' labelMaps = config['labelMaps'] modelfeatures = configSettingsJson['basic']['trainingFeatures'].split(',') mfcount = len(modelfeatures) dataFilePath = str(configSettingsJson['basic']['dataLocation']) df_proprocessed = pd.read_csv(dataFilePath,nrows=1000) df_proprocessed.rename(columns=lambda x: x.strip(), inplace=True) if 'targetFeature' != '': target_classes = df_proprocessed[targetFeature].unique() numberofclasses = len(target_classes) else: target_classes = [] numberofclasses = 'Not Available' dataPoints = df_proprocessed.shape[0] df_proprocessed = df_proprocessed.head(5) df_proprocessed = df_proprocessed.to_json(orient="records") df_proprocessed = json.loads(df_proprocessed) expainableAIPath = os.path.join(request.session['deploypath'],'aion_xai.py') outputStr = subprocess.check_output([sys.executable,expainableAIPath,'global']) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() ale_json = json.loads(str(outputStr)) ale_json = ale_json['data'] ale_view = ale_json['data'] sentences = ale_json['sentences'] scoreMessage = '' feature_importance = ale_json['feature_importance'] dfimp = pd.DataFrame.from_dict(feature_importance) dfimp = dfimp.sort_values(by=['values'],ascending=False).reset_index() yaxis_data = dfimp['values'].tolist() xaxis_data = dfimp['labels'].tolist() cfig = go.Figure() cfig.add_trace(go.Bar(x=xaxis_data,y=yaxis_data,name='Feature Importance')) cfig
.update_layout(barmode='stack',xaxis_title='Features') bargraph = cfig.to_html(full_html=False, default_height=450,default_width=1000) dftoprecords = dfimp.head(2) topTwoFeatures = dfimp['labels'].tolist() topFeaturesMsg = [] for i in range(0,len(dfimp)): value = round(dfimp.loc[i, "values"],2)*100 value = round(value,2) tvalue = str(dfimp.loc[i, "labels"])+' contributing to '+ str(value)+'%' topFeaturesMsg.append(tvalue) most_influencedfeature = ale_json['most_influencedfeature'] interceppoint = ale_json['interceptionpoint'] anchorjson = ale_json['anchorjson'] t2 = time.time() context = {'ale_view':ale_view,'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'selected':'visualizer','subselected':'businessview','sentences':sentences,"bargraph":bargraph,'inputFields':inputFields,'nrows':nrows,'ncols':ncols,'targetFeature':targetFeature,'dataPoints':dataPoints,'target_classes':target_classes,'datarows':df_proprocessed,'numberofclasses':numberofclasses,'modelfeatures':modelfeatures,'problemType':problemType,'mfcount':mfcount,'topTwoFeatures':topTwoFeatures,'topFeaturesMsg':topFeaturesMsg,'most_influencedfeature':most_influencedfeature,'interceppoint':interceppoint,'achors':anchorjson,'labelMaps':labelMaps,'computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION} log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + str(round(t2 - t1)) + ' sec' + ' : ' + 'Success') return render(request, 'businessview.html', context) except Exception as Inst: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) print(Inst) log.info('Xplain Model : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Failed to Xplain Model, '+str(Inst)) log.info('Details : '+str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return render(request,'businessview.html',{'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'error1':'Failed to Xplain Model','selected':'visualizer','subselected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION}) def predictionxplain(request): log = logging.getLogger('log_ux') from appbe.aion_config import settings usecasetab = settings() computeinfrastructure = compute.readComputeConfig() selected_use_case, ModelVersion, ModelStatus = getusercasestatus(request) try: from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'TrustedAI','Yes') t1 = time.time() displaypath = os.path.join( request.session['deploypath'],'etc','display.json') with open(displaypath) as file: config = json.load(file) file.close() updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) inputFeatures = configSettingsJson['basic']['trainingFeatures'] targetFeature = configSettingsJson['basic']['targetFeature'] inputFeaturesList = inputFeatures.split(',') if targetFeature in inputFeaturesList: inputFeaturesList.remove(targetFeature) inputFieldsDict = {} problemType = 'classification' for key in configSettingsJson['basic']['analysisType']: if configSettingsJson['basic']['analysisType'][key] == 'True': problemType = key break if problemType.lower() == 'timeseriesforecasting': #task 11997 inputFieldsDict['noofforecasts'] = request.POST.get('noofforecasts') elif problemType == 'RecommenderSystem': inputFieldsDict['uid'] = request.POST.get('uid') inputFieldsDict['iid'] = request.POST.get('iid') inputFieldsDict['rating'] = request.POST.get('rating') else: for feature in inputFeaturesList: try: dataFilePath = str(configSettingsJson['basic']['dataLocation']) df = pd.read_csv(dataFilePath,nrows=10) df.rename(columns=lambda x: x.strip(), inplace=True) df = df[inputFeaturesList] inputFieldsDict = df.to_dict(orient='index')[5] except: inputFieldsDict[feature] = request.POST.get(feature) for key, value in inputFieldsDict.items(): if value == 'nan': inputFieldsDict[key] = '' inputFieldsJson = json.dumps(inputFieldsDict) expainableAIPath = os.path.join(request.session['deploypath'],'aion_xai.py') #print(inputFieldsJson) outputStr = subprocess.check_output([sys.executable,expainableAIPath,'local',inputFieldsJson]) outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_ai_explanation:(.*)',str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() #print(outputStr) predict_dict = json.loads(str(outputStr)) if (predict_dict['status'] == 'SUCCESS'): predict_dict = predict_dict['data'] prediction = predict_dict['prediction'] anchor = predict_dict['anchor'] precision = predict_dict['precision'] coverage = round(predict_dict['coverage'],2) confidence = '95%' forceplot_view = predict_dict['forceplot'] multidecisionplot_view = predict_dict['multidecisionplot'] waterfallplot_view = predict_dict['waterfallplot'] #Task12581 else: context={'tab':'tabconfigure','error':'Failed to xplain','selected':'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION,'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion} log.info('Xplain Prediction : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' + '0 ' + 'sec' + ' : ' + 'Error : Failed to xplain') return render(request,'businessview.html',context) inputFields = [] inputFields.append(inputFieldsDict) selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] context={'tab' : 'predict','inputFields':inputFields,'prediction':prediction,'reason':anchor, 'precision': precision,'coverage':coverage,'confidence':confidence,'forceplot_view':forceplot_view,'multidecisionplot_view':multidecisionplot_view,'waterfallplot_view':waterfallplot_view,'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion,'selected' : 'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION} t2= time.time() log.info('Xplain Prediction : ' + str(selected_use_case) + ' : ' + str( ModelVersion) + ' : ' + str(round(t2 - t1)) + ' sec' + ' : ' + 'Success') return render(request, 'businessview.html', context = context) except Exception as inst: print(inst) log.info('Xplain Prediction : ' + str(selected_use_case) + ' : ' + str(ModelVersion) + ' : ' +'0'+ 'sec' + ' : ' + 'Error : Failed to Xplain Prediction, ' + str(inst)) context={'tab' : 'tabconfigure','error' : 'Failed to Xplain Prediction','selected' : 'businessview','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION,'selected_use_case':selected_use_case,'ModelStatus':ModelStatus,'ModelVersion':ModelVersion} return render(request,'businessview.html',context) <s> from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect import json from appbe.dataPath import DEFAULT_FILE_PATH from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION from appbe.pages import getversion from appbe.aion_config import running_setting from appbe.training import checkModelUnderTraining from appbe.training import calculate_total_activities from appbe.training import check_unsupported_col from appbe.training import check_granularity from appbe.training import checkversionrunningstatus from appbe.training import getModelStatus from appbe.training import changeModelStatus from appbe.training import calculate_total_interations from appbe.pages import getusercasestatus from utils.file_ops import read_df_compressed import plotly.graph_objects as go from appbe.pages import getMLModels from appfe.modelTraining.models import usecasedetails from appbe.training import getStatusCount from appfe.modelTraining.models import Existusecases import os,sys import urllib, base64 import subprocess import time import re import numpy as np import pandas as pd from pathlib import Path import importlib from appbe.log_ut import logg from appbe import compute import logging AION_VERSION = getversion() LOG_FILE_NAME = 'model_training_logs.log' LOG_FOLDER = 'log' def getPerformanceMatrix(deploypath,output_json): displaypath = os.path.join(deploypath,'etc','display.json') model_perf = [] try: with open(displaypath) as file: config = json.load(file) file.close() except Exception as e: print(e) import glob resultJsonObj = json.loads(output_json) if (resultJsonObj['data']['ModelType'] == 'anomalydetection' and resultJsonObj['data']['BestScore'] != 0) or resultJsonObj['data']['ModelType'].lower() == 'timeseriesanomalydetection': #task 11997 if resultJsonObj['data']['BestModel'].lower() == 'autoencoder' or resultJsonObj['data']['BestModel'].lower() == 'dbscan' : try: anomaly_plot_files = glob.glob(os.path.normpath(os.path.join(deploypath,'output','anomaly_plot','*.png'))) for plot in anomaly_plot_files: if(os.path.isfile(plot)): string = base64.b64encode(open(plot, "rb").read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) model_perf.append(image_64) else: model_perf.append('nograph') except Exception as e: print("Anomaly plot exe error: \\n",e) else: predictfile = os.path.join(deploypath,'data','predicteddata.csv') if(os.path.isfile(predictfile)): df = pd.read_csv(predictfile) outliers=df.loc[df['predict']==-1] outlier_index=list(outliers.index) normals=df.loc[df['predict']!=-1] normals_index=list(normals.index) featuresList = df.columns.values.tolist() #print(featuresList) if 'predict' in featuresList: featuresList.remove('predict') if 'score' in featuresList: featuresList.remove('score') if len(featuresList) == 1: xdata = df[featuresList[0]] ydata = df['score'] fig = go.Figure() fig.add_trace(go.Scatter(x=df[featuresList[0]].iloc[normals_index], y=df['score'].iloc[normals_index],mode='markers',name='Normal')) fig.add_trace(go.Scatter(x=df[featuresList[0]].iloc[outlier_index], y=df['score'].iloc[outlier_index],mode='markers',name='Predicted Outliers')) fig.update_layout(xaxis_title=featuresList[0],yaxis_title="Score") frgraph = fig.to_html(full_html=False, default_height=400, default_width=1100) model_perf.append(frgraph) if len(featuresList) == 2: fig = go.Figure() df = df.reset_index() fig.add_trace(go.Scatter(x=df[featuresList[0]], y=df[featuresList[1]],mode='markers',name='Normal Points')) fig.add_trace(go.Scatter(x=df[featuresList[0]].iloc[outlier_index], y=df[featuresList[1]].iloc[outlier_index],mode='markers',name='Predicted Outliers')) fig.update_xaxes(title_text=featuresList[0]) fig.update_yaxes(title_text=featuresList[1]) fig.update_layout(xaxis_title=featuresList[0],yaxis_title=featuresList[1]) frgraph = fig.to_html(full_html=False, default_height=400, default_width=1100) model_perf.append(frgraph) if len(featuresList) > 2: from sklearn.decomposition import PCA pca = PCA(2) pca.fit(df) res=pd.DataFrame(pca.transform(df)) Z = np.array(res) fig = go.Figure() fig.add_trace(go.Scatter(x=res[0], y=res[1],mode='markers',name='Normal Points')) fig.add_trace(go.Scatter(x=res.iloc[outlier_index,0], y=res.iloc[outlier_index,1
],mode='markers',name='Predicted Outliers')) fig.update_xaxes(title_text="Principal Component 1") fig.update_yaxes(title_text="Principal Component 2") frgraph = fig.to_html(full_html=False, default_height=400, default_width=1100) model_perf.append(frgraph) return (model_perf) if config['problemType'].lower() == 'classification' or config['problemType'].lower() == 'anomaly_detection' or config['problemType'].lower() == 'timeseriesanomalydetection': displaypath = os.path.join(deploypath,'log','img') import glob for img in glob.glob(displaypath+"/*.png"): string = base64.b64encode(open(img, "rb").read()) image_64 = 'data:image/png;base64,' + urllib.parse.quote(string) model_perf.append(image_64) #print(model_perf) elif config['problemType'].lower() == 'regression' or config['problemType'].lower() == 'recommendersystem' or \\ config['problemType'].lower() == 'text similarity': dataPath = config['predictedData'] readstatus,predict_df=read_df_compressed(dataPath) regfig = go.Figure() regfig.add_trace(go.Scatter(x=np.arange(1, len(predict_df) + 1), y=predict_df['actual'], mode='lines', name='Actual')) regfig.add_trace(go.Scatter(x=np.arange(1, len(predict_df) + 1), y=predict_df['predict'], mode='lines', name='Predict')) frgraph = regfig.to_html(full_html=False, default_height=400, default_width=1100) rfgraph = '' model_perf.append(frgraph) elif config['problemType'].lower() == 'clustering': dataPath = config['predictedData'] readstatus,predict_df=read_df_compressed(dataPath) distinctCount = len(predict_df['predict'].unique()) clusterlist = predict_df['predict'].unique() color = ['green','blue','red','orange','green','blue','red','orange'] fig = go.Figure() for cluster in clusterlist: df_cluster = predict_df[predict_df['predict'] == cluster] modelFeatures = config['modelFeatures'] X1= df_cluster[modelFeatures[0]].tolist() X2= df_cluster[modelFeatures[1]].tolist() fig.add_trace(go.Scatter(x=X1, y=X2,mode='markers',name='cluster '+str(cluster))) fig.update_layout(title="Cluster Graph",xaxis_title=modelFeatures[0],yaxis_title=modelFeatures[1],) frgraph = fig.to_html(full_html=False, default_height=400, default_width=1100) model_perf.append(frgraph) elif config['problemType'].lower() == 'timeseriesforecasting': #task 11997 dataPath = config['predictedData'] predict_df = pd.read_csv(dataPath) modelFeatures = config['modelFeatures'] for feature in modelFeatures: feature_name = feature + '_actual' prediction = feature + '_pred' if feature_name in predict_df.columns: regfig = go.Figure() regfig.add_trace(go.Scatter(x=np.arange(1, len(predict_df) + 1), y=predict_df[feature_name], mode='lines', name=feature)) regfig.add_trace(go.Scatter(x=np.arange(1, len(predict_df) + 1), y=predict_df[prediction], mode='lines', name='Predict')) frgraph = regfig.to_html(full_html=False, default_height=400, default_width=1100) model_perf.append(frgraph) return (model_perf) def stoptraining(request): request.session['ModelStatus'] = 'Terminated' request.session.save() changeModelStatus(Existusecases,request.session['modelid'],'Terminated','NA','NA') return HttpResponse('Terminated') def kill_child_proc_rec(ppid): import psutil for process in psutil.process_iter(): _ppid = process.ppid() if _ppid == ppid: _pid = process.pid kill_child_proc_rec(_pid) print(f'Terminating: {_pid}') if sys.platform == 'win32': process.terminate() else: os.system('kill -9 {0}'.format(_pid)) def getDataFileCountAndSize(basicConfig): import glob path = basicConfig['dataLocation'] radiovalue = basicConfig['folderSettings']['fileExtension'] filesCount = 0 filesSize = 0 files = [] for filename in glob.iglob(os.path.join(path, "**/*." + radiovalue), recursive=True): files.append(filename) if radiovalue == 'doc': for filename in glob.iglob(os.path.join(path, "**/*." + 'docx'), recursive=True): files.append(filename) for filename in files: #for filename in glob.iglob(os.path.join(path, "**/*." + radiovalue), recursive=True): filesCount = filesCount + 1 get_size = os.path.getsize(filename) filesSize = round(filesSize + get_size, 1) if filesSize > 1048576: size = round((filesSize / (1024 * 1024)), 1) filesSize = str(size) + ' M' elif filesSize > 1024: size = round((filesSize /1024), 1) filesSize = str(size) + ' K' else: filesSize = str(filesSize) + ' B' return filesCount,filesSize # task 4343 Abort training def read_log_file( config_file): outputStr = 'aion_learner_status:{"status":"Fail","message":"Log file not found"}' if Path(config_file).exists(): with open(config_file, 'r', encoding='utf-8') as f: config = json.load(f) deployPath = Path(config['basic']['deployLocation']) log_file = deployPath/config['basic']['modelName'].replace(' ', '_')/config['basic']['modelVersion']/LOG_FOLDER/LOG_FILE_NAME if log_file.exists(): with open(log_file, 'r', encoding='utf-8') as f: outputStr = f.read() return outputStr def checkVectorDBPackage(embeddedDB): errorStatus = 'False' if embeddedDB.lower() == 'vectordb': status = importlib.util.find_spec('chromadb') if not status: errorStatus = 'True' return errorStatus def getModelSize(configSettings,model): modelSize = 'NA' if 'modelSize' in configSettings['basic']: selectedModelSize = configSettings['basic']['modelSize']['llmFineTuning'][model] for k in selectedModelSize.keys(): if configSettings['basic']['modelSize']['llmFineTuning'][model][k] == 'True': modelSize = k break return modelSize def llmmodelevaluate(request): selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) usecasename = request.session['usecaseid'].replace(" ", "_") from appbe.prediction import get_instance hypervisor,instanceid,region,image = get_instance(usecasename+'_'+str(ModelVersion)) scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) usecaseconfigfile = request.session['config_json'] f = open(usecaseconfigfile, "r+", encoding="utf-8") configSettingsData = f.read() f.close() configSettings = json.loads(configSettingsData) problem_type = '' modelSize = '' problemtypes = configSettings['basic']['analysisType'] for k in problemtypes.keys(): if configSettings['basic']['analysisType'][k] == 'True': problem_type = k break mlmodels ='' algorihtms = configSettings['basic']['algorithms'][problem_type] for k in algorihtms.keys(): if configSettings['basic']['algorithms'][problem_type][k] == 'True': if mlmodels != '': mlmodels += ', ' mlmodels += k if 'modelSize' in configSettings['basic']: selectedModelSize = configSettings['basic']['modelSize']['llmFineTuning'][mlmodels] for k in selectedModelSize.keys(): if configSettings['basic']['modelSize']['llmFineTuning'][mlmodels][k] == 'True': modelSize = k break eval = '' if configSettings['basic']['folderSettings']['fileType'] == 'LLM_Document': eval = 'doc' elif configSettings['basic']['folderSettings']['fileType'] == 'LLM_Code': eval = 'code' #print(sys.executable, scriptPath,hypervisor,instanceid,f'{mlmodels}-{modelSize}',selected_use_case+'_'+str(ModelVersion),eval) outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','llmbenchmarking','-hv',hypervisor,'-i',instanceid,'-md',f'{mlmodels}-{modelSize}','-uc',usecasename+'_'+str(ModelVersion),'-e',eval]) return trainmodel(request) def trainresult(request): from appbe.aion_config import settings usecasetab = settings() selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) usecasename = request.session['usecaseid'].replace(" ", "_") log = logging.getLogger('log_ux') computeinfrastructure = compute.readComputeConfig() trainmodel =request.POST.get('trainmodel') updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r+", encoding="utf-8") configSettingsData = f.read() configSettings = json.loads(configSettingsData) total_steps = calculate_total_activities(configSettings) request.session['total_steps'] = total_steps p = usecasedetails.objects.get(usecaseid=request.session['usecaseid']) usecaseindex = p.id #bugid:14163 if trainmodel == 'Train Model': try: if configSettings['basic']['analysisType']['survivalAnalysis'] != 'True' and configSettings['basic']['analysisType']['llmFineTuning'] != 'True': configSettings['advance']['testPercentage'] = int(request.POST.get('TrainTestPercentage',0)) #Unnati configSettings['advance']['categoryBalancingMethod'] = request.POST.get('BalancingMethod','NA') if configSettings['basic']['analysisType']['llmFineTuning'] == 'True': configSettings['basic']['vmRunning'] = request.POST.get('vmRunning','KeepRunning') if configSettings['basic']['analysisType']['similarityIdentification'] == 'True': dbs = configSettings['basic']['preprocessing']['similarityIdentification'] for dbt in dbs.keys(): configSettings['basic']['preprocessing']['similarityIdentification'][dbt]='False' configSettings['basic']['preprocessing']['similarityIdentification'][request.POST.get('contentdb')] = 'True' errorStatus = checkVectorDBPackage(request.POST.get('contentdb')) if errorStatus.lower() == 'true': return render(request, 'training.html', {'error': 'Error: Chromadb package not found.','selected_use_case': selected_use_case,'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION,'contentdb':''}) if configSettings['basic']['analysisType']['contextualSearch'] == 'True': dbs = configSettings['basic']['preprocessing']['contextualSearch'] for dbt in dbs.keys(): configSettings['basic']['preprocessing']['contextualSearch'][dbt]='False' configSettings['basic']['preprocessing']['contextualSearch'][request.POST.get('contentdb')] = 'True' errorStatus = checkVectorDBPackage(request.POST.get('contentdb')) if errorStatus.lower() == 'true': return render(request, 'training.html', {'error': 'Error: Chromadb package not found.','selected_use_case': selected_use_case,'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'version':AION_VERSION,'contentdb':''}) updatedConfigSettingsJson = json.dumps(configSettings) f.seek(0) f.write(updatedConfigSettingsJson) f.truncate() f.close() # output_json = aion_train_model(updatedConfigFile) request.session['noflines'] = 0 request.session['ModelStatus'] = 'Running' request.session.save() changeModelStatus(Existusecases,request.session['modelid'],'Running','NA','NA') #print(configSettings['basic']['distributedLearning']) #sys.exit() import timeit startTime = timeit.default_timer() process_killed = False if computeinfrastructure['computeInfrastructure'].lower() == 'aws' and configSettings['basic']['analysisType']['llmFineTuning'] != 'True': scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) #print(scriptPath,updatedConfigFile) outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','awstraining','-c',updatedConfigFile]) elif computeinfrastructure['computeInfrastructure'].lower() in ['aws','gcp']: scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','llmtuning','-c',updatedConfigFile]) else: if configSettings['basic']['analysisType']['multiLabelPrediction'] == 'True' or configSettings['basic']['analysisType']['multiModalLearning'] == 'True': scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','bin','run_gluon.py')) outputStr = subprocess.check_output([sys.executable, scriptPath, updatedConfigFile]) elif configSettings['basic']['onlineLearning'] == 'True': scriptPath = os.path.norm
path(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','onlinetraining','-c',updatedConfigFile]) elif configSettings['basic']['distributedLearning'] == 'True': scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) outputStr = subprocess.check_output([sys.executable, scriptPath,'-m','distributedtraining','-c',updatedConfigFile]) else: scriptPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', '..','aion.py')) cmd = [sys.executable, scriptPath,'-m','training','-c',updatedConfigFile] # task 4343 abort training training_proc = subprocess.Popen( cmd) outputStr = '' while training_proc.poll() == None: if getModelStatus(Existusecases,request.session['modelid']) == 'Terminated': kill_child_proc_rec(training_proc.pid) training_proc.kill() process_killed = True time.sleep(1) if process_killed: outputStr = 'aion_learner_status:{"status":"Fail","message":"Terminated by user"}' else: outputStr = read_log_file( updatedConfigFile) usename = request.session['UseCaseName'].replace(" ", "_") outputfile = os.path.join(DEPLOY_LOCATION,usename,str(request.session['ModelVersion']),'etc','output.json') if os.path.isfile(outputfile): f1 = open(outputfile, "r+", encoding="utf-8") outputStr = f1.read() f1.close() else: if not isinstance( outputStr, str): outputStr = outputStr.decode('utf-8') outputStr = re.search(r'aion_learner_status:(.*)', str(outputStr), re.IGNORECASE).group(1) outputStr = outputStr.strip() resultJsonObj = json.loads(outputStr) #print(resultJsonObj) odataFile = request.session['outputfilepath'] with open(odataFile, 'w') as json_file: json.dump(resultJsonObj, json_file) json_file.close() model = Existusecases.objects.get(id=request.session['modelid']) request.session['ModelStatus'] = resultJsonObj['status'] ModelStatus = request.session['ModelStatus'] model.Status = resultJsonObj['status'] training_error = '' if resultJsonObj['status'] == 'SUCCESS': model.modelType = resultJsonObj['data']['ModelType'] model.DeployPath = str(resultJsonObj['data']['deployLocation']) if resultJsonObj['data']['ModelType'] in ['clustering','anomalydetection', 'timeSeriesAnomalyDetection']: #task 11997 model.ProblemType = 'unsupervised' else: model.ProblemType = 'supervised' else: training_error = resultJsonObj['message'] model.save() problemtypes = configSettings['basic']['analysisType'] #print(problemtypes.keys()) problem_typ = "" for k in problemtypes.keys(): if configSettings['basic']['analysisType'][k] == 'True': problem_typ = k break modeltyp = problem_typ listofmodels = '' problem_type,dproblem_type,sc,mlmodels,dlmodels,smodelsize = getMLModels(configSettings) if mlmodels != '': listofmodels += str(mlmodels) if dlmodels != '': listofmodels += listofmodels+' '+str(dlmodels) from appbe.telemetry import UpdateTelemetry UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Algorithms',listofmodels) # ----------------------------------------------------------------------------- # if (problem_type == 'classification' or problem_type == 'regression'): if len(mlmodels.split(',')) == 1: trainingTime = timeit.default_timer() - startTime trainingTime = round(trainingTime/60) # calculate the size of uploaded dataset filePath = configSettings['basic']['dataLocation'] sz = os.path.getsize(filePath) fileSizeMB = sz / (1024 * 1024) filesize = str(fileSizeMB) + " MB" featuresCount = str(len(configSettings['basic']['trainingFeatures'].split(','))) modelname = mlmodels.split(',')[0] fileSizeMBLimit = 0 configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','config','training.config') if(os.path.isfile(configfilepath)): file = open(configfilepath, "r", encoding="utf-8") read = file.read() file.close() for line in read.splitlines(): if 'fileSizeMBLimit=' in line: fileSizeMBLimit = int(line.split('=',1)[1]) # append the new entry into config only if size of uploaded dataset meets the threshold if fileSizeMB > fileSizeMBLimit: _val = updateRunConfig(trainingTime, filesize, featuresCount, modelname, problem_type) # ----------------------------------------------------------------------------- # if resultJsonObj['status'] == 'SUCCESS': #from appbe import telemetry request.session['deploypath'] = str(resultJsonObj['data']['deployLocation']) from appbe.trainresult import ParseResults result, survical_images = ParseResults(outputStr) model_perf = getPerformanceMatrix(request.session['deploypath'],outputStr) #telemetry.telemetry_data('Training Successfully Done',selected_use_case+'_'+str(ModelVersion),str(listofmodels)) UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Operation','Success') request.session['currentstate'] = 3 request.session['finalstate'] = 4 request.session.save() file_path = request.session['logfilepath'] my_file = open(file_path, 'r',encoding="utf8") file_content = my_file.read() my_file.close() matched_lines = [line.replace('Status:-', '') for line in file_content.split('\\n') if "Status:-" in line] matched_status_lines = matched_lines[::-1] matched_status_lines = matched_status_lines[0] matched_status_lines = matched_status_lines.split('...') matched_status_lines = matched_status_lines[1] no_lines = len(matched_lines) if 'noflines' not in request.session: request.session['noflines'] = 0 request.session['noflines'] = request.session['noflines'] + 1 if request.session['ModelStatus'] != 'SUCCESS': numberoflines = request.session['noflines'] if numberoflines > no_lines: numberoflines = no_lines request.session['noflines'] = no_lines matched_lines = matched_lines[0:numberoflines] shortlogs = getStatusCount(matched_lines,request.session['total_steps']) temp = {} temp['modelName'] = request.session['UseCaseName'] temp['modelVersion'] = request.session['ModelVersion'] config = {} config['modelName'] = request.session['UseCaseName'] config['modelVersion'] = request.session['ModelVersion'] config['datetimeFeatures'] = configSettings['basic']['dateTimeFeature'] config['sequenceFeatures'] = configSettings['basic']['indexFeature'] config['FeaturesList'] = configSettings['basic']['trainingFeatures'] config['unimportantFeatures'] = '' config['targetFeature'] = configSettings['basic']['targetFeature'] modelCondition = '' problemtypes = configSettings['basic']['analysisType'] problem_type = "" for k in problemtypes.keys(): if configSettings['basic']['analysisType'][k] == 'True': problem_type = k break problem_type,dproblemType,sc,mlmodels,dlmodels,smodelsize = getMLModels(configSettings) configSettings['basic']['problem_type'] = problem_type configSettings['basic']['dproblem_type'] = dproblemType if mlmodels != '': configSettings['basic']['mllearner'] = 'enable' if dlmodels != '': configSettings['basic']['dllearner'] = 'enable' if configSettings['basic']['analysisType']['multiLabelPrediction'] == 'True': configSettings['basic']['selected_ML_Models'] = 'AutoGluon' configSettings['basic']['mllearner'] = 'enable' else: configSettings['basic']['selected_ML_Models'] = mlmodels configSettings['basic']['selected_DL_Models'] = dlmodels configSettings['basic']['smodel_size'] = smodelsize if 'noOfRecords' in configSettings['basic']: records = configSettings['basic']['noOfRecords'] else: from appbe.train_output import getDataSetRecordsCount records = getDataSetRecordsCount(configSettings['basic']['dataLocation']) filesCount = 0 filesSize = 0 #print(configSettings['basic']['analysisType']['llmFineTuning'].lower()) #print(configSettings['basic']['folderSettings']['fileType'].lower()) if configSettings['basic']['analysisType']['llmFineTuning'].lower() == 'true' and configSettings['basic']['folderSettings']['fileType'].lower() in ['llm_document','llm_code']: filesCount,filesSize = getDataFileCountAndSize(configSettings['basic']) noofIteration = calculate_total_interations(configSettings) features = configSettings['basic']['trainingFeatures'].split(',') noOfTrainingFeatures = len(features) configSettings['basic']['problem_type']=problem_type featuretype = configSettings['advance']['profiler']['featureDict'] if ('Logistic Regression' not in mlmodels) or ('Linear Regression' not in mlmodels): selectedmodel = 'modelcomparision' else: selectedmodel = " " user_provided_data_type = {} text_type='' for feat_conf in featuretype: colm = feat_conf.get('feature', '') if feat_conf['type'] == "text": text_type="text" break contentdb = '' if problem_type.lower() in ['similarityidentification','contextualsearch']: if configSettings['basic']['preprocessing'][problem_type]['CSV'].lower() == 'true': contentdb = 'CSV' elif configSettings['basic']['preprocessing'][problem_type]['VectorDB'].lower() == 'true': contentdb = 'VectorDB' context = {'tab': 'trainresult','filesCount':filesCount,'filesSize':filesSize, 'result': result, 'selectedmodel': selectedmodel, 'advconfig': configSettings, 'shortlogs':shortlogs, 'selected_use_case': selected_use_case, 'noOfRecords': records,'noOfTrainingFeatures':noOfTrainingFeatures, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'usecaseid':usecaseindex,#bugid:14163 #BugID13336 'noofIteration':noofIteration,'log_file':file_content,'contentdb':contentdb, 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'], 'model_perf': model_perf,'logs':matched_status_lines, 'perf_images': survical_images, 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'usecasename':usecasename} context['version'] = AION_VERSION return render(request, 'training.html', context) else: UpdateTelemetry(request.session['usecaseid']+'-'+str(request.session['ModelVersion']),'Operation','Error') request.session['currentstate'] = 3 request.session['finalstate'] = 4 #from appbe import telemetry if process_killed: errorMsg = 'Terminated by user' else: errorMsg = 'Model Training Error (check log file for more details)' contentdb = '' if problem_type.lower() in ['similarityidentification','contextualsearch']: if configSettings['basic']['preprocessing'][problem_type]['CSV'].lower() == 'true': contentdb = 'CSV' elif configSettings['basic']['preprocessing'][problem_type]['VectorDB'].lower() == 'true': contentdb = 'VectorDB' #telemetry.telemetry_data('Training Error',selected_use_case+'_'+str(ModelVersion),str(listofmodels)) context = {'tab': 'trainresult', 'error': errorMsg,'selected_use_case': selected_use_case,'contentdb':contentdb, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'usecaseid':usecaseindex,#bugid:14163 #BugID13336 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'], 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'usecasename':usecasename} context['version'] = AION_VERSION return render(request, 'training.html', context) except Exception as e: log.info('Training Fail:' + str(selected_use_case) + ':' + str(ModelVersion) + ':' + '0' + 'sec' + ':' + 'Training fail '+str(e)) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) print(e) return render(request, 'training.html', {'error': 'Model Training Error','selected_use_case': selected_use_case,'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasename':usecasename,'usecasetab':usecasetab,'version':AION_VERSION,'contentdb':''}) else: modelCondition = '' problemtypes = configSettings['basic']['analysisType'] problem_type = "" for k in problemtypes.keys(): if configSettings['basic']['analysisType'][k] == 'True': problem_type = k break problem_type,dproblem_type,sc,mlmodels,dlmodels,smodelsize = getMLModels(configSettings) configSettings['basic']['problem_type'] = problem_type configSettings['basic']['dproblem
_type'] = dproblem_type if mlmodels != '': configSettings['basic']['mllearner'] = 'enable' if dlmodels != '': configSettings['basic']['dllearner'] = 'enable' if configSettings['basic']['analysisType']['multiLabelPrediction'] == 'True': configSettings['basic']['selected_ML_Models'] = 'AutoGluon' configSettings['basic']['mllearner'] = 'enable' else: configSettings['basic']['selected_ML_Models'] = mlmodels configSettings['basic']['selected_DL_Models'] = dlmodels if 'noofRecords' in configSettings['basic']: records = configSettings['basic']['noofRecords'] else: from appbe.train_output import getDataSetRecordsCount records = getDataSetRecordsCount(configSettings['basic']['dataLocation']) filesCount = 0 filesSize = 0 print(configSettings['basic']['analysisType']['llmFineTuning'].lower()) print(configSettings['basic']['folderSettings']['fileType'].lower()) if configSettings['basic']['analysisType']['llmFineTuning'].lower() == 'true' and \\ configSettings['basic']['folderSettings']['fileType'].lower() in ['llm_document', 'llm_code']: filesCount, filesSize = getDataFileCountAndSize(configSettings['basic']) noofIteration = calculate_total_interations(configSettings) features = configSettings['basic']['trainingFeatures'].split(',') noOfTrainingFeatures = len(features) configSettings['basic']['problem_type']=problem_type context = { 'advconfig': configSettings,'filesCount':filesCount,'filesSize':filesSize, 'selected_use_case': selected_use_case, 'noOfRecords': records, 'ModelStatus': ModelStatus,'ModelVersion': ModelVersion,'noofIteration':noofIteration,'usecasename':usecasename, 'modelCondition':modelCondition, 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'noOfTrainingFeatures':noOfTrainingFeatures} context['version'] = AION_VERSION return render(request, 'training.html',context) def getTrainingTime(filePath, no_of_features): #filePath = 'C:\\\\MyFolder\\AION\\\\AION Datasets\\\\Heavy Datasets\\\\class_1MRows_26Cols.csv' returnVal = '0_0' if(os.path.isfile(filePath)): trainingTime = 0 neartrainingTime = 0 # It's used to store the closest Training-Time nearsampleSize = 0 # It's used to store the closest Sample-Size leastSizeDifference = 0 # It's used to find the possible minimum difference between the dataset's actual size and Sample-Size in JSON file inRange = 0 # It's used to identify if Extrapolation is needed or not fileSizeMBLimit = 0 # It's used to check/limit the size of uploaded dataset acceptSizeVariance = 10 # It's used to cover the variance in sample-size featuresThreshold = 50 # It's used to set the boundary/binary-classification of records-typte # ------------------------------------------------------------------------------------------------------------ # configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','config','training.config') if(os.path.isfile(configfilepath)): file = open(configfilepath, "r") read = file.read() file.close() for line in read.splitlines(): if 'fileSizeMBLimit=' in line: fileSizeMBLimit = int(line.split('=',1)[1]) if 'acceptSizeVariance=' in line: acceptSizeVariance = int(line.split('=',1)[1]) if 'featuresThreshold=' in line: featuresThreshold = int(line.split('=',1)[1]) # get the size of uploaded dataset/file (in MB) sz = os.path.getsize(filePath) fileSizeMB = sz / (1024 * 1024) # check if uploaded dataset/file is bigger than defined threshold or not. If yes, only than go to calculate the tentative training-time if(fileSizeMB > fileSizeMBLimit): configfilepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),'..','..','config','training_runs.json') try: if(os.path.isfile(configfilepath)): # Opening JSON file f = open(configfilepath) # returns JSON object as a dictionary data = json.load(f) # Iterating through the json list for run in data['runs']: sampleSize = run['sampleSize'].replace(" MB","") sampleSize = int(float(sampleSize)) features = int(run['features']) # match records under 10% (+ or -) of variance sizeDifference = fileSizeMB - sampleSize if (sizeDifference < 0): sizeDifference = sizeDifference * -1 if (leastSizeDifference == 0): leastSizeDifference = sizeDifference # ------------------------------------------------------------------------------------------------ # if (no_of_features <= featuresThreshold): if ((sizeDifference * 100)/fileSizeMB < acceptSizeVariance and features <= featuresThreshold): acceptSizeVariance = (sizeDifference * 100)/fileSizeMB trainingTime = run['trainingTime'].replace(" Mins","") trainingTime = int(trainingTime) returnVal = str(trainingTime) + '_match' inRange = 1 # get the nearest value of sampleSize (which can be used for extrapolation) from the JSON file if (sizeDifference <= leastSizeDifference and features <= featuresThreshold): nearsampleSize = sampleSize leastSizeDifference = sizeDifference neartrainingTime = run['trainingTime'].replace(" Mins","") neartrainingTime = int(neartrainingTime) # ------------------------------------------------------------------------------------------------ # # ------------------------------------------------------------------------------------------------ # if (no_of_features > featuresThreshold): if ((sizeDifference * 100)/fileSizeMB < acceptSizeVariance and features > featuresThreshold): acceptSizeVariance = (sizeDifference * 100)/fileSizeMB trainingTime = run['trainingTime'].replace(" Mins","") trainingTime = int(trainingTime) returnVal = str(trainingTime) + '_match' inRange = 1 # get the nearest value of sampleSize (which can be used for extrapolation) from the JSON file if (sizeDifference <= leastSizeDifference and features > featuresThreshold): nearsampleSize = sampleSize leastSizeDifference = sizeDifference neartrainingTime = run['trainingTime'].replace(" Mins","") neartrainingTime = int(neartrainingTime) # ------------------------------------------------------------------------------------------------ # # When there is no record (sample-size) matched with 10% of variance then go for the extrapolation if (inRange == 0): sizeDifference = fileSizeMB - nearsampleSize ratio = (sizeDifference * 100)/nearsampleSize trainingTime = neartrainingTime + ((ratio * neartrainingTime)/100) trainingTime = int(trainingTime) returnVal = str(trainingTime) + '_extrapolation' # Closing file f.close() except Exception as inst: pass return returnVal def getllmmodelscore(usecaseid,model): DB_TABLE = 'llm_benchmarking' from appbe.sqliteUtility import sqlite_db from appbe.dataPath import DATA_DIR file_path = str(Path(DATA_DIR)/'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') usecaseidcond = f'usecaseid="{usecaseid}"' helptxt ='' msg = '' #print(usecaseidcond) if sqlite_obj.table_exists(DB_TABLE): usecasemodelscore = sqlite_obj.read_data(DB_TABLE,usecaseidcond) status = '' finetunedscore = 'NA' foundationscore = 'NA' benchmarkdataset = 'NA' modelfunctionscore = {'CodeLLaMA-2-7B':'33%','CodeLLaMA-2-13B':'36%','LLaMA-2-7B':'16.8%','LLaMA-2-13B':'20.1%','LLaMA-2-70B':'31.0%','LLaMA-2-Chat-7B':'76%','LLaMA-2-Chat-13B':'79.2%','LLaMA-2-Chat-70B':'84.2%','Falcon-7B':'NA','Falcon-40B':'NA'} foundationscore = modelfunctionscore.get(model,'NA') scoretype='NA' for x in usecasemodelscore: #print(x) keys = sqlite_obj.column_names(DB_TABLE) #print(keys) status = x[keys.index('state')] if status.lower() in ['success','finished']: result_type = x[keys.index('result_type')] result = eval(x[keys.index('result')]) scoretype = list(result.keys())[0] if scoretype.lower() == 'hellaswag': benchmarkdataset = 'HellaSwag' helptxt = 'HellaSwag is a challenge dataset for evaluating commonsense Natural Language Inferencing. It consists of ~70k multiple choice questions with four answer choices about what might happen next. The correct answer is the (real) sentence for the next event; the three incorrect answers are adversarial generated and human verified.' else: benchmarkdataset = 'HumanEval' if result_type == 'dict': sub_result = list(result.values())[0] scoretype = list(sub_result.keys())[0] if scoretype == 'acc': scoretype = 'Accuracy' finetunedscore = str(round((float(list(sub_result.values())[0])*100),2)) finetunedscore = f'{finetunedscore}%' else: finetunedscore = str(round((float(list(result.values())[0])*100),2)) elif status.lower() == 'error': msg = x[keys.index('result')] evaluation = {'status':status,'msg':msg,'benchmarkdataset':benchmarkdataset,'scoreType':scoretype,'finetunedscore':str(finetunedscore),'foundationscore':foundationscore,'helptxt':helptxt} else: evaluation = {'status':'','scoreType':'','benchmarkdataset':'','finetunedscore':'','foundationscore':'','helptxt':''} #print(evaluation) return evaluation def trainmodel(request): from appbe.aion_config import settings usecasetab = settings() selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] usecasename = request.session['usecaseid'].replace(" ", "_") try: checkModelUnderTraining(request,usecasedetails,Existusecases) computeinfrastructure = compute.readComputeConfig() updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r+", encoding="utf-8") configSettingsData = f.read() configSettingsJson = json.loads(configSettingsData) total_steps = calculate_total_activities(configSettingsJson) warning = check_unsupported_col(configSettingsJson) time_series_warning = check_granularity(configSettingsJson) noofIteration = calculate_total_interations(configSettingsJson) request.session['total_steps'] = total_steps p = usecasedetails.objects.get(usecaseid=request.session['usecaseid']) usecaseid = p.id modelCondition = '' problem_type,dproblem_type,sc,mlmodels,dlmodels,smodelsize = getMLModels(configSettingsJson) configSettingsJson['basic']['problem_type'] = problem_type configSettingsJson['basic']['dproblem_type'] = dproblem_type if mlmodels != '': configSettingsJson['basic']['mllearner'] = 'enable' if dlmodels != '': configSettingsJson['basic']['dllearner'] = 'enable' if configSettingsJson['basic']['analysisType']['multiLabelPrediction'] == 'True' or configSettingsJson['basic']['analysisType']['multiModalLearning'] == 'True': configSettingsJson['basic']['selected_ML_Models'] = 'AutoGluon' configSettingsJson['basic']['mllearner'] = 'enable' else: configSettingsJson['basic']['selected_ML_Models'] = mlmodels configSettingsJson['basic']['selected_DL_Models'] = dlmodels configSettingsJson['basic']['smodel_size'] = smodelsize # ---------------------------------------------------------------------- # cal_trainingTime = 0. is_extrapolation = 'No' is_DataImbalance = 'No' if (request.session['ModelStatus'] == 'Not Trained' and (problem_type == 'classification' or problem_type == 'regression')): # <!-- ------------------------------ Data Imbalance Changes ------------------------------ --> if ( problem_type == 'classification' ): is_DataImbalance = 'Yes' # <!-- ------------------------------------------------------------------------------------- --> if len(mlmodels.split(',')) == 1: filePath = configSettingsJson['basic']['dataLocation'] no_of_features = len(configSettingsJson['basic']['trainingFeatures'].split(',')) returnVal = getTrainingTime(filePath, no_of_features) cal_trainingTime = int(returnVal.split('_')[0]) if (returnVal.split('_')[1] == 'extrapolation'): is_extrapolation = 'Yes' # ---------------------------------------------------------------------- # features = configSettingsJson['basic']['trainingFeatures'].split(',') if configSettingsJson['basic']['targetFeature'] in features: features.remove(configSettingsJson['basic']['targetFeature']) noOfTrainingFeatures = len(features) selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] if 'noOfRecords' in configSettingsJson['basic']: records = configSettingsJson['basic']['noOfRecords'] else: from appbe.train_output import getDataSetRecordsCount records = getDataSetRecordsCount(configSettingsJson['basic']['dataLocation']) filesCount = 0 filesSize = 0 try: if configSettingsJson['basic']['analysisType']['llmFineTuning'].lower() == 'true' and \\ configSettingsJson['basic']['folderSettings']['fileType'].lower()
in ['llm_document', 'llm_code']: filesCount, filesSize = getDataFileCountAndSize(configSettingsJson['basic']) except: pass if request.session['finalstate'] <= 3: request.session['finalstate'] = 3 request.session['currentstate'] = 3 if request.session['ModelStatus'].lower() == 'running': model = Existusecases.objects.get(ModelName=request.session['ModelName'], Version=request.session['ModelVersion']) status = checkversionrunningstatus(model.id,usecasedetails,Existusecases) request.session['ModelStatus'] = status request.session.save() if request.session['ModelStatus'] == 'SUCCESS': model = Existusecases.objects.get(ModelName=request.session['ModelName'], Version=request.session['ModelVersion']) output_train_json_filename = str(model.TrainOuputLocation) f = open(output_train_json_filename, "r+") training_output = f.read() f.close() model_perf = getPerformanceMatrix(request.session['deploypath'],training_output) from appbe.trainresult import ParseResults result, survical_images = ParseResults(training_output) file_path = request.session['logfilepath'] my_file = open(file_path, 'r',encoding="utf-8") file_content = my_file.read() my_file.close() matched_lines = [line.replace('Status:-', '') for line in file_content.split('\\n') if "Status:-" in line] matched_status_lines = matched_lines[::-1] matched_status_lines = matched_status_lines[0] matched_status_lines = matched_status_lines.split('...') matched_status_lines = matched_status_lines[1] no_lines = len(matched_lines) if 'noflines' not in request.session: request.session['noflines'] = 0 request.session['noflines'] = request.session['noflines'] + 1 if request.session['ModelStatus'] != 'SUCCESS': numberoflines = request.session['noflines'] if numberoflines > no_lines: numberoflines = no_lines request.session['noflines'] = no_lines matched_lines = matched_lines[0:numberoflines] shortlogs = getStatusCount(matched_lines,request.session['total_steps']) featuretype = configSettingsJson['advance']['profiler']['featureDict'] user_provided_data_type = {} text_type='' for feat_conf in featuretype: colm = feat_conf.get('feature', '') if feat_conf['type'] == "text": text_type="text" break configSettingsJson['basic']['problem_type']= problem_type configSettingsJson['basic']['selected_ML_Models']= mlmodels if ('Logistic Regression' not in mlmodels) or ('Linear Regression' not in mlmodels): selectedmodel = 'modelcomparision' else: selectedmodel = " " contentdb = '' finetunedeval = {} if problem_type.lower() in ['similarityidentification','contextualsearch']: if configSettingsJson['basic']['preprocessing'][problem_type]['CSV'].lower() == 'true': contentdb = 'CSV' elif configSettingsJson['basic']['preprocessing'][problem_type]['VectorDB'].lower() == 'true': contentdb = 'VectorDB' if problem_type.lower() == 'llmfinetuning': modelSize = getModelSize(configSettingsJson,mlmodels) usecasename = request.session['usecaseid'].replace(" ", "_") finetunedeval = getllmmodelscore(f'{usecasename}_{ModelVersion}',f'{mlmodels}-{modelSize}') context = {'result': result,'filesCount':filesCount,'filesSize':filesSize, 'text_type':text_type,'selectedmodel':selectedmodel, 'advconfig': configSettingsJson,'usecaseid':usecaseid,'usecasename':usecasename, 'selected_use_case': selected_use_case, 'noOfRecords': records, 'ModelStatus': ModelStatus,'warning':warning,'time_series_warning':time_series_warning, 'modelCondition':modelCondition,'ModelVersion': ModelVersion,'shortlogs':shortlogs,'logs':matched_status_lines,'currentstate': request.session['currentstate'],'finalstate': request.session['finalstate'], 'model_perf': model_perf,'perf_images': survical_images, 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'noOfTrainingFeatures':noOfTrainingFeatures,'version':AION_VERSION,'noofIteration':noofIteration,'log_file':file_content,'contentdb':contentdb,'finetunedeval':finetunedeval} else: contentdb = '' if problem_type.lower() in ['similarityidentification','contextualsearch']: if configSettingsJson['basic']['preprocessing'][problem_type]['CSV'].lower() == 'true': contentdb = 'CSV' elif configSettingsJson['basic']['preprocessing'][problem_type]['VectorDB'].lower() == 'true': status = importlib.util.find_spec('chromadb') if not status: contentdb = 'CSV' else: contentdb = 'VectorDB' else: status = importlib.util.find_spec('chromadb') if not status: contentdb = 'CSV' else: contentdb = 'VectorDB' configSettingsJson['basic']['problem_type']=problem_type context = {'cal_trainingTime':cal_trainingTime,'filesCount':filesCount,'filesSize':filesSize, 'is_extrapolation': is_extrapolation,'advconfig': configSettingsJson,'usecaseid':usecaseid,'usecasename':usecasename, 'selected_use_case': selected_use_case, 'noOfRecords': records, 'ModelStatus': ModelStatus, 'warning':warning,'time_series_warning':time_series_warning,'is_DataImbalance' : is_DataImbalance, 'ModelVersion': ModelVersion, 'currentstate': request.session['currentstate'], 'modelCondition':modelCondition,'finalstate': request.session['finalstate'], 'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab,'noOfTrainingFeatures':noOfTrainingFeatures,'version':AION_VERSION,'noofIteration':noofIteration,'contentdb':contentdb} return render(request, 'training.html', context) except Exception as e: print(e) exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) context = { 'error': 'Model Training Error','selected_use_case': selected_use_case,'contentdb':'','usecasename':usecasename, 'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,'version':AION_VERSION} return render(request, 'training.html', context)<s> from django.test import TestCase # Create your tests here. <s> from django import forms from appfe.modelTraining.models import usecasedetails from appfe.modelTraining.models import Existusecases class usecasedetailsForm(forms.ModelForm): class Meta: model = usecasedetails fields = "__all__" class ExistusecasesForm(forms.ModelForm): class Meta: model = Existusecases fields = "__all__" <s> from django.contrib import admin # Register your models here. <s><s> from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect from appbe.dataPath import DEFAULT_FILE_PATH from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION from appbe.pages import getversion from appbe.aion_config import running_setting from appfe.modelTraining.models import usecasedetails from appfe.modelTraining.models import Existusecases from appbe import compute AION_VERSION = getversion() def basicconfig(request): try: from appbe.aion_config import settings usecasetab = settings() from appbe import basic_Config as bc request.session['defaultfilepath'] = DEFAULT_FILE_PATH request.session['configfilepath'] = CONFIG_FILE_PATH request.session['deploylocation'] = DEPLOY_LOCATION computeinfrastructure = compute.readComputeConfig() submit_button = request.POST.get('upload_submit') ModelVersion = request.session['ModelVersion'] ruuningSetting = running_setting() selected_use_case = request.session['UseCaseName'] ModelStatus = request.session['ModelStatus'] #print(request.method) # Retraing settings changes if request.method == 'POST' and request.session['finalstate'] == 0: context = bc.gotoconf(request) else: context = bc.openbasicconf(request) context['computeinfrastructure'] = computeinfrastructure context['version'] = AION_VERSION context['usecasetab'] = usecasetab return render(request, 'basicconfig.html', context) except Exception as e: print(e) import sys,os exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename) print(str(exc_type)+' '+str(fname)+' '+str(exc_tb.tb_lineno)) return render(request, 'basicconfig.html', {'error':'Fail to retreive basic config file inputs','version':AION_VERSION,'usecasetab':usecasetab}) def savebasicconfig(request): from appbe import basic_Config as bc from appbe import advance_Config as ac from appfe.modelTraining.train_views import trainmodel try: if request.method != 'GET': status,msg,context =bc.save(request) else: status = 'pass' msg = '' except Exception as e: print(e) if status.lower()!='error': if request.method == 'GET': context = ac.basicconfignex(request) computeinfrastructure = compute.readComputeConfig() context['computeinfrastructure'] = computeinfrastructure context['version'] = AION_VERSION context['currentstate'] = 1 return render(request, 'advancedconfig.html', context) elif request.POST.get('BasicSubmit') == 'GotoAdvance': context = ac.basicconfignex(request) computeinfrastructure = compute.readComputeConfig() context['computeinfrastructure'] = computeinfrastructure context['version'] = AION_VERSION context['currentstate'] = 1 return render(request, 'advancedconfig.html', context) else: return trainmodel(request) else: context = bc.openbasicconf(request) computeinfrastructure = compute.readComputeConfig() context['computeinfrastructure'] = computeinfrastructure context['config_error']= msg context['version'] = AION_VERSION return render(request, 'basicconfig.html', context) <s> from django.shortcuts import render from django.urls import reverse from django.http import HttpResponse from django.shortcuts import redirect import time from django.template import loader from django import template from django.views.decorators.csrf import csrf_exempt from os import walk from plotly.subplots import make_subplots import plotly.graph_objects as go from appbe import help_Text as ht import random from appbe import service_url from appbe import compute from appbe import installPackage from appbe.pages import getusercasestatus from appbe import images_analysis as ia from django.db.models import Max, F from appbe.aion_config import settings from appbe.aion_config import get_graviton_data from appbe.aion_config import get_llm_data from appbe.aion_config import get_edafeatures from appbe.training import calculate_total_activities from appbe.training import calculate_total_interations from appbe.training import checkModelUnderTraining from appbe.training import checkversionrunningstatus from appbe.training import changeModelStatus from appbe.training import getStatusCount from appbe.training import getModelStatus from appbe.training import check_unsupported_col from appbe.publish import chech_publish_info from appbe.publish import check_input_data import uuid import numpy as np from appbe.aion_config import kafka_setting from appbe.aion_config import running_setting from appbe.validatecsv import csv_validator from appbe.aion_config import addKafkaModel from appbe.aion_config import getrunningstatus from appbe.aion_config import aion_service from appbe.pages import getversion from appbe.s3bucketsDB import get_s3_bucket from appbe.s3bucketsDB import read_s3_bucket from appbe.gcsbucketsDB import get_gcs_bucket from appbe.gcsbucketsDB import read_gcs_bucket from appbe.azureStorageDB import get_azureStorage from appbe.azureStorageDB import read_azureStorage from appbe.dataIngestion import getcommonfields from appbe.dataIngestion import ingestDataFromFile from appbe.dataIngestion import delimitedsetting import pdfplumber from docx import Document from appbe.trainresult import ParseResults import pandas as pd import numpy as np import re import xml.etree.ElementTree as ET import json import glob from appbe import dataPath from pathlib import Path import urllib, base64 import os from os.path import expanduser import platform import time import sys import csv import subprocess import base64 from appfe.modelTraining.models import usecasedetails from appfe.modelTraining.forms import usecasedetailsForm from appfe.modelTraining.models import Existusecases from django.shortcuts import get_list_or_404, get_object_or_404 from pandas import json_normalize from django.contrib.sessions.models import Session import logging from appbe.dataPath import DEFAULT_FILE_PATH from appbe.dataPath import DATA_FILE_PATH from appbe.dataPath import CONFIG_FILE_PATH from appbe.dataPath import DEPLOY_LOCATION from utils.file_ops import read_df_compressed from appbe.dataPath import LOG_LOCATION from appbe.log_ut import logg LOG_FILE_NAME = 'model_training_logs.log' LOG_FOLDER = 'log' if os.path.isdir(DATA_FILE_PATH) == False: os.makedirs(DATA_FILE_PATH) if os.path.isdir(CONFIG_FILE_PATH) == False: os.makedirs(CONFIG_FILE_PATH) if os.path.isdir(DEPLOY_LOCATION) == False: os.makedirs(DEPLOY_LOCATION
) # EION_SCRIPT_PATH = 'C:\\\\Project\\\\Analytics\\\\eion\\\\eion\\\\eion.py' PYTHON_PATH = 'python.exe' AION_VERSION = getversion() usecasetab = settings() #AION_VERSION # MainPage logg_obj = logg(LOG_LOCATION) log = logg_obj.create_log(AION_VERSION) def index(request): from appbe.pages import index_page status,context,action = index_page(request,usecasedetails,Existusecases) context['version'] = AION_VERSION return render(request,action,context) def localsetings(request): from appbe.pages import get_usecase_page try: compute.updatelocalsetings(request) time.sleep(2) request.session['IsRetraining'] = 'No' #print(1) status,context,action = get_usecase_page(request,usecasedetails,Existusecases) context['version'] = AION_VERSION #print(2) return render(request,action,context) except Exception as e: print(e) return render(request, 'usecases.html',{'error': 'Fail to update localsetings','version':AION_VERSION}) def computetoAWS(request): from appbe.pages import get_usecase_page try: compute.updateToComputeSettings(request) time.sleep(2) #print(1) request.session['IsRetraining'] = 'No' status,context,action = get_usecase_page(request,usecasedetails,Existusecases) context['version'] = AION_VERSION return render(request,action,context) except Exception as e: print(e) return render(request, 'usecases.html',{'error': 'Fail to update ComputeSettings','version':AION_VERSION}) def licensekey(request): try: command = request.POST['licensesubmit'] if command.lower() == 'generatelicense': userkey = request.POST['userkey'] from records import pushrecords msg = pushrecords.generateLicenseKey(userkey) context = {'msg':msg} context['selected'] = 'License' print(context) return render(request,'licenseexpired.html',context) else: licensekey = request.POST['licensekey'] from records import pushrecords pushrecords.updateLicense(licensekey) from appbe.pages import get_usecase_page status,context,action = get_usecase_page(request,usecasedetails,Existusecases) context['version'] = AION_VERSION return render(request,action,context) except Exception as e: print(e) return render(request, 'usecases.html',{'error': 'Fails in loading the page','version':AION_VERSION}) def help(request): context = {'selected': 'userguide', 'usecasetab': usecasetab} context['version'] = AION_VERSION return render(request, 'help.html', context) def mlac_userguide(request): context = {'selected': 'mlac_userguide', 'usecasetab': usecasetab} context['version'] = AION_VERSION return render(request, 'help.html', context) def AionProblem(request): if request.method == "POST": AionProblem = request.POST["Algorithm"] request.session["AionProblem"] = AionProblem return HttpResponse(AionProblem) def features(request): if request.method == "POST": typedata = request.POST['datatype'] if typedata == "datapath": datapath = request.POST['datap'] if(os.path.isfile(datapath) and os.path.isfile(datapath)): df = pd.read_csv(datapath) modelfeature = df.columns.tolist() modelfeatures = json.dumps(modelfeature) return HttpResponse(modelfeatures) else: return HttpResponse(json.dumps("Data path does not exist "), content_type="application/error") elif typedata == "scriptpath": scriptPath = request.POST['scriptp'] #print(scriptPath) f = open(scriptPath, "r") pythoncode = f.read() f.close() ldict = {} exec(pythoncode, globals(), ldict) df = ldict['dfpy'] filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') df.to_csv(dataFile, index=False) modelfeature = df.columns.tolist() output = {'features':modelfeature,'datafile':dataFile} output = json.dumps(output) # return render(request,'prediction.html',{'modelfeatures':modelfeatures,'test':'test'}) return HttpResponse(output) def mllite(request): from appbe.pages import mllite_page context = mllite_page(request) context['version'] = AION_VERSION return render(request, 'ConvertOnnx.html',context) def usecasefilter(request): from appbe import mlstyles as mls selectedoption = request.GET["selectedoption"] context = mls.Aiusecases(request,selectedoption) context['listtype'] = selectedoption context['version'] = AION_VERSION return render(request, 'aiUseCases.html',context) def AIusecases(request): from appbe import mlstyles as mls context = mls.Aiusecases(request,'Implemented') context['listtype'] = 'Implemented' context['version'] = AION_VERSION return render(request, 'aiUseCases.html',context) def mlstyles(request): from appbe import mlstyles as mls context = mls.mlstyles(request) context['selected'] = 'DataOperations' context['version'] = AION_VERSION return render(request, 'mlstyles.html',context) def mlpredict(request): from appbe import mlstyles as mls context, button_flag = mls.mlpredict(request) context['selected'] = 'DataOperations' context['version'] = AION_VERSION if button_flag in ['prediction','predictsingle']: return render(request, 'mlstyles.html', context) else: return context def mltrain(request): from appbe import mlstyles as mls context, button_flag = mls.mltrain(request) context['selected'] = 'DataOperations' context['version'] = AION_VERSION if button_flag == 'training': return render(request, 'mlstyles.html', context) else: return context def getdatasetname(request): try: from appbe.dataPath import DATA_DIR from appbe.sqliteUtility import sqlite_db file_path = os.path.join(DATA_DIR,'sqlite') sqlite_obj = sqlite_db(file_path,'config.db') temp_data = sqlite_obj.read_data('dataingest') data = [] for x in temp_data: data_dict = {} data_dict['datasetname'] = x[1] data.append(data_dict) except Exception as e: print(e) data = [] return HttpResponse(json.dumps(data)) def outputdrift(request): try: selected_use_case,ModelVersion,ModelStatus = getusercasestatus(request) computeinfrastructure = compute.readComputeConfig() if ModelStatus != 'SUCCESS': context = {'error': 'Please train the model first or launch an existing trained model', 'selected_use_case': selected_use_case,'usecasetab':usecasetab, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure} else: updatedConfigFile = request.session['config_json'] f = open(updatedConfigFile, "r") configSettings = f.read() f.close() configSettingsJson = json.loads(configSettings) problemtypes = configSettingsJson['basic']['analysisType'] problem_type = "" for k in problemtypes.keys(): if configSettingsJson['basic']['analysisType'][k] == 'True': problem_type = k break problem = problem_type ser_url = service_url.read_performance_service_url_params() iterName = request.session['UseCaseName'].replace(" ", "_") ModelVersion = request.session['ModelVersion'] ser_url = ser_url+'performance?usecaseid='+iterName+'&version='+str(ModelVersion) if problem.lower() not in ['classification','regression']: context = {'error': 'Output drift only available for classification and regression problems type', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'usecasetab':usecasetab} else: context = {'SUCCESS': 'Model is trained', 'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus,'usecasetab':usecasetab, 'ModelVersion': ModelVersion, 'selected': 'monitoring','computeinfrastructure':computeinfrastructure,'ser_url':ser_url,'trainingDataLocation':request.session['datalocation']} return render(request, 'outputdrif.html', context) except: return render(request, 'outputdrif.html', {'error':'Fail to do outputdrift analysis','usecasetab':usecasetab}) # -------------------------------- Graviton-Integration Changes S T A R T -------------------------------- def getuserdata(request): import requests data = [] try: graviton_url,graviton_userid = get_graviton_data() gravitonURL = graviton_url gravitonUserId = graviton_userid # url = 'https://xenius.azurewebsites.net/api/dataservices?userid='+ url = gravitonURL + 'dataservices?userid=' + gravitonUserId print(url) response = requests.get(url) statuscode = response.status_code print(statuscode) if statuscode == 200: json_dictionary = json.loads(response.content) data = json_dictionary['result'] print(data) except Exception as e: print(e) data = [] data_json = json.dumps(data) return HttpResponse(data_json) def getdataservice(request): import requests data = [] dataServiceId = request.GET.get('DataServiceId') try: graviton_url,graviton_userid = get_graviton_data() gravitonURL = graviton_url gravitonUserId = graviton_userid # url = 'https://xenius.azurewebsites.net/api/getmetadata?userid=1&dataserviceid='+str(dataServiceId) url = gravitonURL + 'getmetadata?userid=' + gravitonUserId +'&dataserviceid='+str(dataServiceId) response = requests.get(url) statuscode = response.status_code if statuscode == 200: json_dictionary = json.loads(response.content) data = json_dictionary['result'] except Exception as e: print(e) data = [] data_json = json.dumps(data) return HttpResponse(data_json) # ------------------------------------------------ E N D ------------------------------------------------- def getvalidateddata(request): import requests computeinfrastructure = compute.readComputeConfig() taskid = request.POST.get('elixirdatataskid') try: url = 'http://'+elixir_ip+':'+elixir_port+'/api/get_validation_result?task_id='+str(taskid) #print(url) response = requests.get(url) statuscode = response.status_code if statuscode == 200: json_dictionary = json.loads(response.content) data = json_dictionary['Result'] else: data = [] except Exception as e: print(e) data = [] try: df = pd.DataFrame.from_dict(data) filetimestamp = str(int(time.time())) dataFile = os.path.join(DATA_FILE_PATH, 'AION_' + filetimestamp+'.csv') request.session['datalocation'] = str(dataFile) df.to_csv(dataFile, index=False) df_top = df.head(10) df_json = df_top.to_json(orient="records") df_json = json.loads(df_json) statusmsg = 'Data File Uploaded Successfully ' selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] request.session['currentstate'] = 0 request.session['finalstate'] = 0 request.session['datatype'] = 'Normal' context = {'tab': 'tabconfigure','data': df_json,'status_msg': statusmsg,'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning', 'currentstate': request.session['currentstate'], 'finalstate': request.session['finalstate'],'exploratory':False,'computeinfrastructure':computeinfrastructure} return render(request, 'upload.html', context) except: context = {'tab': 'tabconfigure','selected_use_case': selected_use_case,'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion,'selected': 'modeltraning','computeinfrastructure':computeinfrastructure,"usecaseerror":"Error in validating data!"} return render(request, 'upload.html', context) def trigger_DAG(request): from appfe.modelTraining import AirflowLib response = AirflowLib.TriggerDag("example_complex", "") return HttpResponse(response, content_type="application/json") def Airflow(request): try: selected_use_case = request.session['UseCaseName'] ModelVersion = request.session['ModelVersion'] ModelStatus = request.session['ModelStatus'] context = {'selected_use_case': selected_use_case, 'ModelStatus': ModelStatus, 'ModelVersion': ModelVersion, 'selected': 'monitoring', 'airflow': True} return render(request, 'upload.html', context) except: return render(request, 'upload.html', {'error':'interrupted error'}) def Results(request): return render(request, 'modeltraning.html', context) def uploadnext(request): return render(request, 'basicconfig.html', {'selected': 'modeltraning','version':AION_VERSION}) def basicconfignext(request): from appbe import advance_Config as ac context = ac.basicconfignex(request)