blob_id
string
repo_name
string
path
string
length_bytes
int64
score
float64
int_score
int64
text
string
d8934ad267ed1e02c9cc609bcf333d30f90d72ef
JonasAraujoP/Python
/desafios/desafio003.py
238
3.9375
4
"""Crie um programa que leia dois números e mostrre a soma entre eles""" x1 = int(input('Digite um número inteiro: ')) x2 = int(input('Digite outro número inteiro: ')) soma = x1 + x2 print(f'A soma de {x1} + {x2} é igual a {soma}')
7a07017dfad85df43dace040c37d7131bb46469d
goodmami/pydmrs
/pydmrs/matching/common.py
1,091
3.546875
4
def are_equal_nodes(n1, n2): """Returns True if nodes n1 and n2 have the same predicate and sortinfo.""" return n1.pred == n2.pred and n1.sortinfo == n2.sortinfo and n1.carg == n2.carg def are_equal_links(l1, l2, dmrs1, dmrs2): """Returns True if links l1 and l2 have the same link label and their starting and ending nodes respectively satisfy are_equal_nodes.""" if l1.label == l2.label: if l1.rargname is None: if (are_equal_nodes(dmrs1[l1.start], dmrs2[l2.start]) and are_equal_nodes(dmrs1[l1.end], dmrs2[l2.end])) or (are_equal_nodes(dmrs1[l1.start], dmrs2[l2.end]) and are_equal_nodes(dmrs1[l1.end], dmrs2[l2.start])): return True else: if (are_equal_nodes(dmrs1[l1.start], dmrs2[l2.start]) and are_equal_nodes(dmrs1[l1.end], dmrs2[l2.end])): return True else: return False
d0fb9c93e3f84385763132287c685f56e4c26068
calvinfroedge/Factorials
/forLoop/for.py
272
4.125
4
import sys def factorial(number): product = 1 for i in range(number): product = product * (i + 1) #This will also work: #for i in range(number + 1) # if i > 0: product = product * (i) return product number = int(sys.argv[1]) print(factorial(number))
2ac2e14b947a8e0734340f5bd08862954645c813
SOURADEEP-DONNY/WORKING-WITH-PYTHON
/PRA practice/PRA1.py
1,220
3.765625
4
class Employee: def __init__(self,employeeId,employeeName,gelnRole): self.employeeId=employeeId self.employeeName=employeeName self.gelnRole=gelnRole self.status="In Service" class Organization: def __init__(self,employeeList): self.employeeList=employeeList def updateEmployeeStatus(self,yv): for i in self.employeeList: if i.gelnRole > yv : i.status="Retirement Due" return self.employeeList def countEmployees(self): c=0 for i in self.employeeList: if i.status=="Retirement Due": c=c+1 return c if __name__=="__main__": c=int(input()) employeeList=[] for i in range(c): employeeId=int(input()) employeeName=input() gelnRole=int(input()) o=Employee(employeeId,employeeName,gelnRole) employeeList.append(o) obj=Organization(employeeList) yv=int(input()) res1=obj.updateEmployeeStatus(yv) res=obj.countEmployees() if res>0: print(res) else: print("NO UPDATE") for i in res1: print(i.employeeId,i.employeeName,i.status)
c4167ce0440026258141ff33fb5c0ba2404938fa
Artarin/study-python-Erick-Metis
/operation_with_files/exceptions/words_counter.py
488
3.96875
4
"""this program search and counting quontity of simple word in text.file""" pre_path = "books_for_analysis//" books = ["Életbölcseség.txt", "Chambers's.txt", "Crash Beam by John Barrett.txt" ] for book in books: print (book +':') with open (pre_path+book, 'r', encoding='utf-8') as f: text = f.read() print (("count 'the...':") + str(text.lower().count('the'))) print (("count 'the':") + str(text.lower().count('the ')))
ef79d66df178986222288328d66bb6daa3a4b3f1
tanyuejiao/python_2.7_stuty
/lxf/class2.py
1,908
4.125
4
#!/usr/bin/python # coding:utf-8 import types '''获取对象信息 当我们拿到一个对象的引用时,如何知道这个对象是什么类型、有哪些方法呢? 使用type() 首先,我们来判断对象类型,使用type()函数: 基本类型都可以用type()判断:''' print type(123) # <class 'int'> print type('str') # <class 'str'> print type(None) # <type(None) 'NoneType'> # 如果一个变量指向函数或者类,也可以用type()判断: def abs(): pass class Animal(object): def __init__(self): print "animal" a = Animal() print type(abs) # <class 'builtin_function_or_method'> print type(a) # <class '__main__.Animal'> # 比较两个变量的type类型是否相同: print type(123) == type(456) # True print type(123) == int # True print type('abc') == type('123') # True print type('abc') == str # True print type('abc') == type(123) # False # 判断基本数据类型可以直接写int,str等,但如果要判断一个对象是否是函数怎么办?可以使用types模块中定义的常量: def fn(): pass print type(fn) == types.FunctionType # True print type(abs) == types.BuiltinFunctionType # True print type(lambda x: x) == types.LambdaType # True print type((x for x in range(10))) == types.GeneratorType # True # 能用type()判断的基本类型也可以用isinstance()判断: print isinstance('a', str) # True print isinstance(123, int) # True print isinstance(b'a', bytes) # True # 可以判断一个变量是否是某些类型中的一种,比如下面的代码就可以判断是否是list或者tuple: print isinstance([1, 2, 3], (list, tuple)) # True print isinstance((1, 2, 3), (list, tuple)) # True # 使用dir() # 如果要获得一个对象的所有属性和方法,可以使用dir()函数,它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法: print dir('ABC')
aa321b38167013ce2065bd7ab5904d4b03531bd3
MYMSSENDOG/leetcodes
/5342.py
759
3.59375
4
class ProductOfNumbers: def __init__(self): self.q = [0] self.zero = 0 def add(self, num: int) -> None: if num == 0: self.zero = 0 else: self.zero +=1 prev = self.q[-1] if prev == 0: self.q.append(num) else: self.q.append(prev * num) def getProduct(self, k: int) -> int: if self.zero < k: return 0 if self.q[-k - 1] == 0: return self.q[-1] return self.q[-1] // self.q[-k - 1] p = ProductOfNumbers() p.add(2) p.add(0) p.add(2) p.add(0) p.add(2) print(p.getProduct(1)) print(p.getProduct(2)) print(p.getProduct(3)) print(p.getProduct(5)) p.add(7) p.add(6) p.add(7) """ 3 0 2 5 4 3 0 0 0 0 """
45ac29731a0cc535df4b340cb5cc8ac33d7faaef
MariaTrindade/CursoPython
/exercises/04_While/exe_07.py
861
3.984375
4
""" Crie um programa tabuada que permita ao usuário solicitar quantas vezes ele quiser, encerrando quando o mesmo responder não querer mais utilizar o programa, então finalize o programa com uma mensagem de agradecimento. """ from time import sleep resposta = '' while True: num = int(input('Digite um número para iniciar: ')) print() for cont in range(1, 11): print(f'{num} x {cont:<2} = {num * cont}') sleep(0.5) while True: resposta = str(input('\nTecle N para criar uma nova ou S para sair: ')).upper().strip() if resposta not in 'NS': print('...resposta inválida!') if resposta == 'S': status = True break if resposta == 'N': break if resposta == 'S': break print() print('\033[32mSistema Finalizado\033[m'.center(50))
801ff85c4d046ed033f90f2a07f76de0f362bd7b
ColtanF/QuizGenerator
/randomQuizGenerator.py
7,358
3.765625
4
#! python3 # atbsRandomQuizGenerator.py - Creates quizzes with questions and answers in # random order, along with the answer key import random import pyinputplus as pyip import sys import time # parseCSV(filename): # This function parses the first two items in each line of a csv into a dictionary, # which is then returned, along with the CSV's header values. # # filename: the name of the csv file to be parsed def parseCSV(filename): # This code could be modified to support more than state/capitals # Ideally, this code could be used for any kind of flashcard style questions quizVals = {} csvFile = open(filename, 'r') keyVal = 'US State' # This is the default for the capsFile.txt ansVal = 'US State Capital' # This is the default for the capsFile.txt hasHeaders = pyip.inputYesNo('Does your CSV file have headers?\n') if (hasHeaders == 'yes'): headers = csvFile.readline() headList = headers.split(',') keyVal = headList[0] ansVal = headList[1].strip() for line in csvFile.readlines(): quizVals[line.split(',')[0]] = line.split(',')[1].strip() return (quizVals, keyVal, ansVal) # getAnswers(it, states): # This code will return a tuple of answerOptions and the correct answer for # each quiz question. # # it: iterated question in the current quiz # states: list of states to choose from. This could also be cleaned up, # this is probably not completely necessary with capitals being # a global and states just being list(capitals.keys()) def getAnswers(it, states): correctAnswer = capitals[states[it]] wrongAnswers = list(capitals.values()) del wrongAnswers[wrongAnswers.index(correctAnswer)] wrongAnswers = random.sample(wrongAnswers, 3) answerOptions = wrongAnswers + [correctAnswer] random.shuffle(answerOptions) return (answerOptions, correctAnswer) # takeQuiz(numQs): # This function is called when the user just wants to take a quiz. # # numQs: the number of questions for the user's quiz # keyVal: the key value from the CSV's header # ansVal: the answer value from the CSV's header def takeQuiz(numQs, keyVal, ansVal): states = list(capitals.keys()) rightAns = 0 random.shuffle(states) print('\nFor each of the following %ss, select the corresponding %s.\n' % (keyVal, ansVal)) for questionNum in range(numQs): # Get the right and wrong answers. answerOptions, correctAnswer = getAnswers(questionNum, states) print('%s. %s:\n' % (questionNum+1, states[questionNum])) for i in range(4): print(' %s. %s\n' % ('ABCD'[i], answerOptions[i])) userAns = pyip.inputMenu(['A', 'B', 'C', 'D'],prompt='') if (userAns == 'ABCD'[answerOptions.index(correctAnswer)]): print('Correct!') rightAns +=1 else: print('Incorrect.') gradeQuiz(rightAns, numQs) # gradeQuiz(right,total): # This function is called after the user finishes the quiz. # The user's grade on the quiz (P/F) is determined and # displayed to the user. # # right: The number of answers the user got correct # total: The total number of questions in the quiz def gradeQuiz(right,total): print('\n\nGrading quiz...') time.sleep(2) if (right == total): print('PERFECT!') elif (right/total > .6): print('PASS.') else: print('FAIL.') print('Total answers right: %s/%s (%0.2f%%)' % (right, total, right / total * 100)) # makeQuizzes(numQuizzes, numQuestions): # This function handles generating the quiz text files for the user. # # numQuizzes: the number of quizzes the user wants generated # numQuestions: the number of questions that will be on each quiz # keyVal: the key value from the CSV's header # ansVal: the answer value from the CSV's header def makeQuizzes(numQuizzes, numQuestions, keyVal, ansVal): # Generate 35 different quiz files. for quizNum in range(numQuizzes): # Create the quiz and answer key files quizFile = open('generatedQuiz%s.txt' % (quizNum + 1), 'w') answerKeyFile = open('generatedQuiz_answers%s.txt' % (quizNum + 1), 'w') # Write out the header for the quizNum quizFile.write('Name:\n\nDate:\n\nPeriod:\n\n') quizFile.write((' ' * 30) + 'Quiz (Form %s)' % (quizNum + 1)) quizFile.write('\n\n') # Shuffle the order of the states states = list(capitals.keys()) random.shuffle(states) quizFile.write('\nFor each of the following %ss, select the corresponding %s.\n\n' % (keyVal, ansVal)) # Generate each question. for questionNum in range(numQuestions): # Get right and wrong answers. answerOptions, correctAnswer = getAnswers(questionNum, states) # Write the question and answer options to the quiz file quizFile.write('%s. %s:\n' % (questionNum+1, states[questionNum])) for i in range(4): quizFile.write(' %s. %s\n' % ('ABCD'[i], answerOptions[i])) quizFile.write('\n') # Write the answer key to a file answerKeyFile.write('%s. %s\n' % (questionNum + 1, 'ABCD'[answerOptions.index(correctAnswer)])) quizFile.close() answerKeyFile.close() print("%s quizzes successfully generated." % resp) # getDataFromFile(): # This function tries to parse data from a file that the user specifies. If the # function is unsuccessful at parsing the user's specified file, the function # instead parses in the default csv file. def getDataFromFile(): # I had trouble getting the optional pyip function parameters to work, so I # implemented my own crude version of the mustExist and limit parameters by # using a while loop. data = () fileFound = False i = 0 while (not fileFound and i < 3): try: userInp = pyip.inputFilepath("Enter the name of the CSV file to parse for the quiz data:\n", blank=True) data = parseCSV(userInp) fileFound = True except FileNotFoundError: print("File to parse not found. Please enter a different file. ") i+=1 if (not fileFound): print("\nCould not find file. Importing US state capitals file instead...\n") data = parseCSV('capsFile.txt') return data # Main program execution begins here capitals, keyVal, ansVal = getDataFromFile() # First, check the CLI arguments. If the user specified 'practice', let them # take a practice quiz. if (len(sys.argv) >= 2 and sys.argv[1].lower() == 'practice'): print("How many questions for your quiz?") numOfQuestions = pyip.inputNum('',max=len(capitals)) takeQuiz(numOfQuestions, keyVal, ansVal) else: # The user just wants to generate the quizzes. Ask them how many quizzes, and # how many questions per quiz. print("How many different quizzes do you need? (Please enter a number)") resp = pyip.inputNum() print("How many questions in each quiz?") numOfQuestions = pyip.inputNum('',max=len(capitals)) makeQuizzes(resp, numOfQuestions, keyVal, ansVal)
98a3333b35be10432866b70d8c8f17041f15bdb8
santidev10/scripts_week4
/untitled1.py
6,927
4.03125
4
# -*- coding: utf-8 -*- """ Created on Sat Apr 7 22:46:44 2018 learnpython2org.py @author: santi """ # NUMPY ARRAYS # Numpy arrays are great alternatives to Python Lists. Some of the key advantages # of Numpy arrays are that they are fast, easy to work with, and give users the # opportunity to perform calculations across entire arrays. # In the following example, you will first create two Python lists. Then, you # will import the numpy package and create numpy arrays out of the newly # created lists. #%% # Create 2 new lists height and weight height = [1.87, 1.87, 1.82, 1.91, 1.90, 1.85] weight = [81.65, 97.52, 95.25, 92.98, 86.18, 88.45] # Import the numpy package as np import numpy as np # Create 2 numpy arrays from height and weight np_height = np.array(height) np_weight = np.array(weight) # Print out the type of np_height print(type(np_height)) # Element-wise calculations # Now we can perform element-wise calculations on height and weight. For example, # you could take all 6 of the height and weight observations above, and calculate # the BMI for each observation with a single equation. These operations are very # fast and computationally efficient. They are particularly helpful when you # have 1000s of observations in your data. # Calculate bmi bmi = np_weight / np_height ** 2 print(type(bmi)) # Print the result print(bmi) # Subsetting # Another great feature of Numpy arrays is the ability to subset. For instance, # if you wanted to know which observations in our BMI array are above 23, we # could quickly subset it to find out. # For a boolean response bmi > 23 # Print only those observations above 23 bmi[bmi > 23] #%% # Exercise # First, convert the list of weights from a list to a Numpy array. Then, # convert all of the weights from kilograms to pounds. Use the scalar conversion # of 2.2 lbs per kilogram to make your conversion. Lastly, print the # resulting array of weights in pounds. weight_kg = [81.65, 97.52, 95.25, 92.98, 86.18, 88.45] import numpy as np # Create a numpy array np_weight_kg from weight_kg np_weight_kg = np.array(weight_kg) print(np_weight_kg) # Create np_weight_lbs from np_weight_kg np_weight_lbs = np_weight_kg * 2.2 # Print out np_weight_lbs print(np_weight_lbs) #%% # PANDAS BASICS # Pandas DataFrames # Pandas is a high-level data manipulation tool developed by Wes McKinney. # It is built on the Numpy package and its key data structure is called the # DataFrame. DataFrames allow you to store and manipulate tabular data in # rows of observations and columns of variables. # There are several ways to create a DataFrame. One way way is to use a # dictionary. For example: dict = {"country": ["Brazil", "Russia", "India", "China", "South Africa"], "capital": ["Brasilia", "Moscow", "New Dehli", "Beijing", "Pretoria"], "area": [8.516, 17.10, 3.286, 9.597, 1.221], "population": [200.4, 143.5, 1252, 1357, 52.98] } import pandas as pd brics = pd.DataFrame(dict) print(brics) # As you can see with the new brics DataFrame, Pandas has assigned a key # for each country as the numerical values 0 through 4. If you would like to # have different index values, say, the two letter country code, you can do # that easily as well. # Set the index for brics brics.index = ["BR", "RU", "IN", "CH", "SA"] # Print out brics with new index values print(brics) #%% # Another way to create a DataFrame is by importing a csv file using Pandas. # Now, the csv cars.csv is stored and can be imported using pd.read_csv: # Import pandas as pd import pandas as pd # Import the cars.csv data: cars cars = pd.read_csv('cars.csv') # Print out cars print(cars) #%% # Indexing DataFrames # There are several ways to index a Pandas DataFrame. One of the easiest ways # to do this is by using square bracket notation. # In the example below, you can use square brackets to select one column of # the cars DataFrame. You can either use a single bracket or a double bracket. # The single bracket with output a Pandas Series, while a double bracket will # output a Pandas DataFrame. # Import pandas and cars.csv import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Print out country column as Pandas Series print(cars['cars_per_cap']) # Print out country column as Pandas DataFrame print(cars[['cars_per_cap']]) # Print out DataFrame with country and drives_right columns print(cars[['cars_per_cap', 'country']]) #%% ################################## print("\n# 7 - Dictionary to DataFrame (1):") # https://repl.it/@andris1990/DataCamp-Intermediate-2-Dictionaries-and-Pandas ################################## # Pre-defined lists names = ['United States', 'Australia', 'Japan', 'India', 'Russia', 'Morocco', 'Egypt'] dr = [True, False, False, False, True, True, True] cpc = [809, 731, 588, 18, 200, 70, 45] # Import pandas as pd import pandas as pd # Create dictionary my_dict with three key:value pairs: my_dict my_dict = { "country":names, "drives_right":dr, "cars_per_cap":cpc } # Build a DataFrame cars from my_dict: cars cars = pd.DataFrame(my_dict) # Print cars print(cars) # Print out first 3 observations #print(cars[0:3]) # Print out fourth, fifth and sixth observation #print(cars[3:6]) # Print out country column as Pandas Series print(cars['country']) # Print out country column as Pandas DataFrame print(cars[['country']]) # Print out DataFrame with country and drives_right columns print(cars[['country','drives_right']]) #Square brackets can also be used to access observations (rows) from a #DataFrame. For example: # Print out first 3 observations print(cars[0:3]) # Print out fourth, fifth and sixth observation print(cars[3:6]) # You can also use loc and iloc to perform just about any data selection # operation. loc is label-based, which means that you have to specify rows # and columns based on their row and column labels. iloc is integer index # based, so you have to specify rows and columns by their integer index like # you did in the previous exercise. # Definition of row_labels row_labels = ['US', 'AUS', 'JAP', 'IN', 'RU', 'MOR', 'EG'] # Specify row labels of cars cars.index = row_labels # Print cars again print(cars) # Print out observation for Japan print(cars.loc['JAP']) print(cars.iloc[2]) # Print out observations for Australia and Egypt print(cars.loc[['AUS','EG']]) print(cars.iloc([[1,-1]])) # Print out drives_right value of Morocco print(cars.loc['MOR', 'drives_right']) # Print sub-DataFrame print(cars.loc[['RU','MOR'],['country','drives_right']]) #%% # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) print(cars) # Print out drives_right column as Series print(cars.loc[:,'drives_right']) # Print out drives_right column as DataFrame print(cars.loc[:,['drives_right']]) # Print out cars_per_cap and drives_right as DataFrame print(cars.loc[:,['cars_per_cap','drives_right']]) #%%
dfbce9470c844c17a10c601eca96b1de327e37b3
erjan/coding_exercises
/minimum_number_of_days_to_eat_n_oranges.py
1,738
3.953125
4
''' There are n oranges in the kitchen and you decided to eat some of these oranges every day as follows: Eat one orange. If the number of remaining oranges n is divisible by 2 then you can eat n / 2 oranges. If the number of remaining oranges n is divisible by 3 then you can eat 2 * (n / 3) oranges. You can only choose one of the actions per day. Given the integer n, return the minimum number of days to eat n oranges. ''' class Solution: def minDays(self, n): @lru_cache(None) def dfs(n): if n<=1: return n opt1, opt2, opt3 = float("inf"), float("inf"), float("inf") if n%3 == 0: opt3 = dfs(n//3) if n%2 == 0: opt2 = dfs(n//2) if n%2 or n%3: opt1 = dfs(n-1) return min(opt1,opt2,opt3) + 1 return dfs(n) --------------------------------------------------------------------------------------------------------- class Solution: def minDays(self, n: int) -> int: ans = 0 q = [n] visit = set() visit.add(n) while q: for i in range(len(q)): num = q.pop(0) if num == 0: return ans if num and (num-1) not in visit: visit.add(num-1) q.append(num-1) if num % 2 == 0 and num-(num//2) not in visit: visit.add(num-(num//2)) q.append(num-(num//2)) if num % 3 == 0 and num-2*(num//3) not in visit: visit.add(num-2*(num//3)) q.append(num-2*(num//3)) ans += 1
f576082d45209e7973d17cca05ec0e82c35f1f86
Kokonaut/fundamentals-lab-2
/lab.py
1,329
4.28125
4
""" Our functions will be imported into the game engine and used to make decisions for our sprite. Input 'coord_name' will be in format: {letter}{number} For example: a3 b5 e9 etc. Think of it like chess positions. ie b2 will be here: 3 | 2 | x 1 | 0 | _ _ _ _ a b c d Given a position of our sprite, we want you to tell the sprite what direction to go. If you don't tell it a new direction, it will keep moving in the same direction. For example: If I tell the sprite to move 'up' at c0, then its movement will look like this. 3 | ^ 2 | | 1 | | 0 | ------- _ _ _ _ a b c d Play around with it and see what you get! """ up = 'up' down = 'down' left = 'left' right = 'right' def lab_run_small(coord_name): """ This function is given to the game in run_small.py """ pass # This variable is used to keep track in lab_run_med function got_treasure = False def lab_run_med(coord_name): """ This function is given to the game in run_med.py """ global got_treasure pass # These variables are used to keep track in lab_run_big function got_treasure_1 = False got_treasure_2 = False def lab_run_big(coord_name): """ This function is given to the game in run_large.py """ global got_treasure_1, got_treasure_2 pass
aee95209d8cde11997fd95fe57ba8c2d88f4d6f1
utsav-crypto/Coding
/array/array_3.py
202
3.84375
4
'''Kth MAX AND MIN ELEMENT OF AN ARRAY''' def kth_max_min(arr, k): pass arr = [12, 45, 23, 24, 46, 44, 35] result = kth_max_min(arr, 3) print("MAX = ", result[0], "MIN = ", result[1])
bb7b1acaf887a82998b6dfb724606bf62c385bb3
arovit/Coding-practise
/misc/smallest_difference.py
480
3.5
4
#!/usr/bin/python def find_small_diff(a,b): a = sorted(a) b = sorted(b) i = j = 0 min = 999999999999999999 min_a = 0 min_b = 0 while (i < len(a)) and (j < len(b)): if abs(a[i]-b[j]) < min: min = abs(a[i]-b[j]) min_a = a[i] min_b = b[j] if (a[i] < b[j]): i += 1 elif (a[i] > b[j]): j += 1 print min_a, min_b l1 = [1,3,15,11,2] l2 = [23,127,235,19,8] find_small_diff(l1, l2)
ed0be8c5cc5d9b05f072ca45bb25e2f8d199437d
Dhanaskv/Python
/simpleInterestNormal.py
168
3.859375
4
#!/usr/bin/python P=int(input("The principal amount is :")) T=float(input("The time of periods :")) R=float(input("The rate of interest :")) print((P*T*R)/100)
c21f03eda22f80d3ea66ca52739df541edeb9634
Seariell/basics-of-python
/hw5/task_6.py
1,646
3.96875
4
# homework lesson: 5, task: 6 """ Необходимо создать (не программно) текстовый файл, где каждая строка описывает учебный предмет и наличие лекционных, практических и лабораторных занятий по этому предмету и их количество. Важно, чтобы для каждого предмета не обязательно были все типы занятий. Сформировать словарь, содержащий название предмета и общее количество занятий по нему. Вывести словарь на экран. Примеры строк файла: Информатика: 100(л) 50(пр) 20(лаб). Физика: 30(л) — 10(лаб) Физкультура: — 30(пр) — Пример словаря: {“Информатика”: 170, “Физика”: 40, “Физкультура”: 30} """ def my_int(string: str) -> int: """ Приведение строки типа 123qwerty к числу 123. :param string: str :return: int """ result = ['0'] for letter in string: if letter.isdigit(): result.append(letter) else: break result = ''.join(result) return int(result) with open('task_6.txt') as file: subjects = {} for line in file: line = line.split() key = line[0][0:-1] value = 0 for word in line[1:-1]: value += my_int(word) subjects.update({key: value}) print(subjects)
a643f532c53ac1223953596bb1cd442f443020b2
theond/leetcode_solution
/python/baseStruct/BaseArray.py
152
3.578125
4
# 创建字符串 s1 = str() s2 = "improvegogogo" #字符串长度 s2Len = len(s2) # print(s2Len) # 切割字符串 subS2 = s2[-3:] # 等同于s2[10:13]
99cbe2195b5cb23a81d612beb4b265d6b3fb242e
Luid101/CSC108-assignments
/game_data.py
19,900
3.75
4
class Location: def __init__(self, position, visit_points, brief_description, long_description, available_moves, items, is_locked=False, key="", open_text="", closed_text=""): ''' Creates a new location. Data that could be associated with each Location object: a position in the world map, a brief description, a long description, a list of available commands/directions to move, items that are available in the location, and whether or not the location has been visited before. Store these as you see fit. This is just a suggested starter class for Location. You may change/add parameters and the data available for each Location class as you see fit. The only thing you must NOT change is the name of this class: Location. All locations in your game MUST be represented as an instance of this class. :param position: an integer value indicating the position of that location on the map :param visit_points: number of points awarded to a player on first visiting a place :param brief_description: a brief description of the location :param long_description: a long description of the location :param available_moves: a list of available moves eg: ['west','north','east'] :param items: a list of 'items' eg: [pen, cheat_sheet..] ''' # Default variables self.position = position self.visit_points = visit_points self.brief_description = brief_description self.long_description = long_description self.available_moves = available_moves self.items = items self.visited = False self.points_given = False # The locked attribute variables self.is_locked = is_locked self.key = key self.open_text = open_text self.closed_text = closed_text def get_brief_description(self): ''' Return str brief description of location. eg: get_brief_description(self) "lovely" ''' return self.brief_description def get_full_description(self): ''' Return str long description of location. eg: get_full_description(self) "lovely" ''' return self.long_description def get_description(self): """ Return a description of the location depending on if the lactation has been visited or not eg: get_description(self) "lovely" """ if self.visited: # if the location has been visited return self.brief_description + "\n" + self.show_items() # print the short description else: self.visited = True return self.long_description + "\n" + self.show_items() # else print long description def show_items(self): """ Return a description of all the items in a location eg: show_items(self) "You can see shoe" """ if len(self.items) > 1: string = "You can see " item_list = [] for item in self.items: item_list.append(item.get_name()) string += ", ".join(item_list) elif len(self.items) == 1: string = "You can see " for item in self.items: string += item.get_name() else: string = "You don't see anything useful" return string + "." def get_items_list(self): """Return a description of all the items in a location in a list""" if len(self.items) > 0: item_list = [] for item in self.items: item_list.append(item.get_name()) else: return False return item_list def get_item(self, item_name): """ takes an item name and gets back the item if it exists else return false :param item_name: the name of an item :return: return the item if it is present and False if not """ if len(self.items) > 0: # if there is at least one item in that location for element in self.items: if element.get_name() == item_name: return element return False else: return False def available_actions(self): ''' -- Suggested Method (You may remove/modify/rename this as you like) -- Return list of the available actions in this location. The list of actions should depend on the items available in the location and the x,y position of this location on the world map. ''' action_text = "" action_list = [] for action in self.available_moves: action_text += "move " + action action_list.append(action_text) action_text = "" return action_list class Item: def __init__(self, start, target, target_points, name, exchange_item=False, exchange_with="", exchange_accepted="", exchange_rejected=""): '''Create item referred to by string name, with integer "start" being the integer identifying the item's starting location, the integer "target" being the item's target location, and integer target_points being the number of points player gets if item is deposited in target location. This is just a suggested starter class for Item. You may change these parameters and the data available for each Item class as you see fit. Consider every method in this Item class as a "suggested method": -- Suggested Method (You may remove/modify/rename these as you like) -- The only thing you must NOT change is the name of this class: Item. All item objects in your game MUST be represented as an instance of this class. ''' self.name = name self.start = start self.target = target self.target_points = target_points self.placed = False # if the item has been placed in its target location already self.exchange_item = exchange_item # if the item is exchangeable self.exchange_with = exchange_with # what the item is exchangeable with self.exchange_accepted = exchange_accepted # text that will be displayed when stuff is exchanged self.exchange_rejected = exchange_rejected # text that will be displayed when stuff cannot be exchanged def get_starting_location (self): '''Return int location where item is first found.''' return self.start def get_name(self): '''Return the str name of the item.''' return self.name def get_target_location (self): '''Return item's int target location where it should be deposited.''' return self.target def get_target_points (self): '''Return int points awarded for depositing the item in its target location.''' return self.target_points def is_exchangable(self): """Return if it is exchangeable""" return self.exchange_item def get_exchange_item(self): """ :return: if this item is exchangeable and what they can be exchanged with in a list.""" return [self.exchange_item, self.exchange_with] def show_trade_text(self, PLAYER, location): """ Takes a player object and see's if the player has the object in its inventory, If it does, then drop the object from the player's inventory and add this new object to it. else don't do anything and return the rejected item text. :param PLAYER: a player object from the Player class :return: a string showing if the trade was successful or not """ if PLAYER.get_item(self.get_exchange_item()[1]): # if the player has the item we need return [True, self.exchange_accepted] # return that the exchange has been accepted else: return [False, self.exchange_rejected] # return that the exchange has been rejected def __str__(self): """ :return:the string representation of the item """ string = "name {0}, start_area {1}, target_area {2}, target_points {3}".format(self.get_name(), self.get_starting_location(), self.get_target_location(), self.get_target_points()) return string class World: def __init__(self, mapdata="map.txt", locdata="locations.txt", itemdata="items.txt"): ''' Creates a new World object, with a map, and data about every location and item in this game world. You may ADD parameters/attributes/methods to this class as you see fit. BUT DO NOT RENAME OR REMOVE ANY EXISTING METHODS/ATTRIBUTES. :param mapdata: name of text file containing map data in grid format (integers represent each location, separated by space) map text file MUST be in this format. E.g. 1 -1 3 4 5 6 Where each number represents a different location, and -1 represents an invalid, inaccessible space. :param locdata: name of text file containing location data (format left up to you) :param itemdata: name of text file containing item data (format left up to you) :return: ''' self.map = self.load_map(mapdata) # The map MUST be stored in a nested list as described in the docstring for load_map() below self.items = self.load_items(itemdata) # This data must be stored somewhere. Up to you how you choose to do it... self.locations = self.load_locations(locdata) # This data must be stored somewhere. Up to you how you choose to do it... def load_map(self, filename): ''' THIS FUNCTION MUST NOT BE RENAMED OR REMOVED. Store map from filename (map.txt) in the variable "self.map" as a nested list of integers like so: 1 2 5 3 -1 4 becomes [[1,2,5], [3,-1,4]] RETURN THIS NEW NESTED LIST. :param filename: string that gives name of text file in which map data is located :return: return nested list of integers representing map of game world as specified above >>> my_world = World() >>> my_world.map [[-1, -1, -1], [-1, 0, -1], [-1, 1, -1], [-1, 2, -1], [-1, -1, -1]] ''' game_map = [] list1 = [] file = open(filename) for line in file: list1.append(line.strip("\n").split(" ")) for row in list1: element_list = [] for element in row: element_list.append(int(element)) game_map.append(element_list) return game_map def load_items(self, filename): ''' Store all items from filename (items.txt) into ... whatever you think is best. Make sure the Item class is used to represent each item. Change this docstring accordingly. :param filename: a file with all items and their places :return: a dictionary with a list of items and the location number as an index ''' items = {} file = open(filename) for line in file: # create a dictionary of items grouping them by... # start_location number if '#' not in line: # allows us to have comments in the file with '#' item_list_original = line.strip("\n").split(".") item_list = item_list_original[0].split(" ", 3) # create a list with each line exchange_info = item_list_original[1] if exchange_info != '': # if there is data for exchange exchange_list = item_list_original[1].strip(" ").split(",") # get data from the original list else: exchange_list = ["False", "", "", ""] item = Item(int(item_list[0]), # create an item object from each element in the list int(item_list[1]), int(item_list[2]), item_list[3], exchange_list[0] == "True", # returns true if the the string there is "True" exchange_list[1].strip(" "), # send exchange_item_name exchange_list[2].strip(" "), # send exchange_accepted text exchange_list[3].strip(" ")) # send exchange_rejected text if item.get_starting_location() in items: # put that item into the dict under its target location name items[item.get_starting_location()].append(item) else: items[item.get_starting_location()] = [] items[item.get_starting_location()].append(item) file.close() return items def get_available_directions(self, location): """ look at the map and figure out available move options. :param location: a number indicating the name of a location in the map matrix :return: a dictionary with possible locations ['west','east','north'] """ game_map = self.map # makes things easier to read possible_directions = [] for row in game_map: for location2 in row: if location == location2: x_axis = row.index(location) y_axis = game_map.index(row) # The try and catch exceptions help reduce the amount of writing needed to make the map try: if game_map[y_axis - 1][x_axis] != -1: # check north possible_directions.append('north') except IndexError: pass try: if game_map[y_axis + 1][x_axis] != -1: # check south possible_directions.append('south') except IndexError: pass try: if game_map[y_axis][x_axis + 1] != -1: # check east possible_directions.append('east') except IndexError: pass try: if game_map[y_axis][x_axis - 1] != -1: # check west possible_directions.append('west') except IndexError: pass return possible_directions def load_locations(self, filename): ''' Store all locations from filename (locations.txt) as a list of location classes into the variable self.locations. Remember to keep track of the integer number representing each location. Make sure the Location class is used to represent each location. Change this docstring as needed. :param filename: file containing all locations and their details :return: a dictionary containing all location objects grouped by location name ''' locations_final = {} # a dictionary holding the location name and location object locations = [] # a list containing locations stored as lists file = open(filename) # open a file with location data stored in correct format s = [] # populate the 'locations' list for line in file: if '#' not in line: # allow us to put comments in the file if "END" in line: locations.append(s) s = [] else: if line == "\n": pass else: s.append(line.strip("\n")) for element in locations: # populate the 'locations_final' list with Location... position = int(element[0].split(" ")[1]) # objects using data from the 'locations' list available_directions = self.get_available_directions(position) if position in self.items: # check if a location has items, if it does, load those items... items = self.items[position] # else load an empty list else: items = [] # factor in the locked variables key = "" open_text = "" closed_text = "" if len(element) > 4: # check if the list is long enough is_locked = element[4] if is_locked != "True": # if !is_locked change the locked variable to False is_locked = False else: is_locked = True key = element[5] open_text = element[6] closed_text = element[7] else: is_locked = False my_location = Location( position, # create a location object with the following data element[1], element[2], element[3], available_directions, items, is_locked, key, open_text, closed_text) # locked variables if position in locations_final: # put that location into the dict under its position locations_final[position] = my_location else: locations_final[position] = [] locations_final[position] = my_location file.close() # print(locations_final) return locations_final def get_location(self, x, y): '''Check if location exists at location (x,y) in world map. Return Location object associated with this location if it does. Else, return None. Remember, locations represented by the number -1 on the map should return None. :param x: integer x representing x-coordinate of world map :param y: integer y representing y-coordinate of world map :return: Return Location object associated with this location if it does. Else, return None. ''' if y < 0 or x < 0: return False else: if y > len(self.map): return False else: if x > len(self.map[y]): return False elif self.map[y][x] == -1: return False else: return self.locations[self.map[y][x]] # testing """ my_world = World() location = my_world.get_location(2, 2) print(location.closed_text) """ """ testing items my_world = World() location = my_world.get_location(1, 3) print(location.show_items()) """ """ # testing get_item my_world = World() location = my_world.get_location(1, 2) print(location.get_item("food")) """
aca317a1acf23f9f849d00fa931bedb40e3bc805
learnerofmuses/slotMachine
/jan29.py
617
3.8125
4
#In this program you will perfrom password validation. A website is #publication the following password rules: #1. length: at least 6 characters and no more than 10 #2. the password must include at least ONE special character #(the character which is not a letter and not a digit) import random def random_string(size): my_str = "" for i in range(size): num = random.randint(33, 126) #print(num) my_str = my_str+chr(num) return my_str def validPsswd(my_str): status = False length = len(my_str) if(length >= 6 and length <= 10 and my_str.isalnum()==False): status = True return status main
658af03cda8901181f8ab898d3e2553ecd3277a8
JosephLevinthal/Research-projects
/5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/224/users/4375/codes/1753_3089.py
247
4.125
4
num=int(input("digite um numero:")) cont=0 soma=0 while(num!=0): soma=soma+num num=int(input("digite um numero:")) if(soma<0): print(soma) print("Esquerda") if(soma>0): print(soma) print("Direita") if(soma==0): print(soma) print("Inicial")
3544e13e0b4bef8b7847b2f9e03ad68026c82379
njsqr/PythonSource
/nwzy/T1087_NO.py
707
3.796875
4
#!/user/bin/env python # _*_ coding:utf-8 _*_ """ 题目描述: 统计每个元音字母在字符串中出现的次数。 输入: 输入数据首先包括一个整数n,表示测试实例的个数,然后是n行长度不超过100的字符串。 输出: 对于每个测试实例输出5行,格式如下: a:num1 e:num2 i:num3 o:num4 u:num5 样例输入 1 aeiou 样例输出 a:1 e:1 i:1 o:1 u:1 """ n=int(input()) num1=num2=num3=num4=num5=0 str=[] for i in range(0,n): str=input() num1+=str.count('a') num2+=str.count('e') num3+=str.count('i') num4+=str.count('o') num5+=str.count('u') print('a:%d'%num1) print('e:%d'%num2) print('i:%d'%num3) print('o:%d'%num4) print('u:%d'%num5)
abad91436184d80839f80855cc18361b4a5bcf20
songhuijuantianxiezuo/all
/20180819/1.py
5,455
3.515625
4
#c:\users\lenovo\appdata\local\programs\python # import math # from selenium import webdriver # browser=webdriver.Chrome() # browser.get('http://www.kugou.com/') # button1=browser.find_element_by_css_selector('.searh_btn').click() # checkbox1=browser.find_element_by_css_selector('.search_icon.checkall').click() # button2=browser.find_element_by_css_selector('.play_all').click() # if True: # print ("Answer") # print ("True") # else: # print ("Answer") # print ("False") # 缩进不一致,会导致运行错误 # a=input() # print(a) # # b=".....sssssssssssssssss.........." # print(b.strip('.')) # # print(a+b) # e="shdjjncjkxcmckdd" # f=e.find(".") # print(f) # # # g=e.index('.') # # print(f) # # print("a"not in e) # print(help(e.strip)) # from selenium import webdriver # print(help(webdriver)) # import math # print(help(math)) # import pandas as pd # print(help(pd)) # num=35687 # if num>=0 and num<=100: # if num>=80 and num<=100: # print('good') # if num>=60 and num<80: # print('just so so') # if num >=0 and num<60: # print('bad') # else: # print('error') # list=[1,2,3,'ee',5] # list.pop() # print(list) # a='dsadsadasdadas' # print(a[0]) # list.append(a) # print(list) # list1=[1,2,3,] # # list1.extend(list) # list=list+list1 # print(list) # a=('a','s') # b=('s','f') # c=a+b # print(type(b)) # a=(1,2,3,[1,2,3]) # # b=(1,2,3,[2,2,3]) # for i in a: # if type(i)==class 'list': # i[0]=2 # print(a) # b[3][0]=3 # print(b) # a='dfdsfdsfds' # for i in a: # i='1' # print(i) # list7=['a','s','d','g','f','h'] # i=input() # # for a in list7: # # if i==a: # # print('该元素属于列表中') # # # # print('该元素不属于列表中') # if i not in list7: # print('T') # else: # print('F') # a='dsadeadsa' # i=input() # if i in a: # print(i) # if # elif # for i in range(1,10): # for j in range(1,10): # if j<=i: # print(i,' ',j,' ',i*j,end='\t') #\t空格,杠t是反斜杠 # print(' ') # import math # i=int(input()) # for i in range(1,11): # if i==5: # print(i) # break # a=int(input()) # i=0 # while i<11: # if a==5: # print('此时输入的数字是5') # break # break跳出第一个循环 # i+=1 # for i in range(0,9): # print('i=',i) # for j in range(0,5): # print('j=',j) # if j==5: # break # # for i in range(0,9): # print('第一次',i) # if i==5: # continue # print('第二次', i) # continue 继续最内层循环;break跳出最内层循环;pass就是什么也不做,主要是为了防止语法错误 # import math # math.sqrt() # x=1 # while x>0: # if math.sqrt(x+168)-math.sqrt(x+100)==int() # print(x) # x+=1 # break # print(math.sqrt(10)) # append是指加列表中一个元素,extend是将两个列表连起来 # clear 清除列表中的元素;del 清除列表;copy复制列表;index取下标,传一个值,看这个值在列表中第一次出现的位置 # a=[1,2,3,4,5,6,2,3,4] # b=[] # for i in a: # if i in b: # continue # else: # b.append(i) # print() # set去除列表中的重复值 # a='safdsfsa' # print(set(a)) # b=list(reversed(a)) # print(b) # a.remove(2) # b=list(a) # b.reverse() # a=str(b) # print(b) # remove只能删除列表中的元素,不能删除字符串中的单个字符 # reverse只能颠倒列表中的元素,不能颠倒字符串中的字符 # sorted排序 # a=[1,2,3,4,5,6,2,3,4] # # print(sorted(a)) #临时性排序 # # a.sort() #永久性排序 # a.insert(20,2) # a.append(9) # a=a*3 #列表的乘法是列表重复出现了3次 # print(a,len(a)) #len是测列表中元素的个数 # xiaoming={1:'ddd',2:'sdsad',3:'sssssssssss'} # print(xiaoming['a']) # print(xiaoming.keys()) # print(xiaoming.values()) # print(xiaoming.items()) #单个组放在元组里,全部组放在列表里 # # xiaoming.clear() # # print(xiaoming) # # a=list(xiaoming.fromkeys([1,2,3],[4,5,6]) # # print(a) # # xiaoming.popitem() #随即删除,不一定是删最后一个 # print(xiaoming) # del xiaoming # xiaoming={1:'ddd',2:'sdsad',3:'sssssssssss'} # xiaoming[2]='ssss' # xiaoming[4]='dddddddddd' # print(xiaoming) # print(len(xiaoming)) # xiaoming.popitem() # a=str(xiaoming) # print(a) # 如果键重复,则后出现的值会替代前面的值,不会报错。键必须是不可变的 # i=1 # j=1 # while i<2000: # while j<2000: # i,j=j,j+i #将j赋值给i,将j+i赋值给j i,j=j,i #交换i和j的值 # print(i) # import json drumps转化成JSON格式 loads由JSON格式转出 # list1=[1,2,3,4,5,6,7,8,9] # print(list1[1:-1:2]) #-1则取不到最后一个 # list2=['w','e'] # list1.append(list2) # list1.extend(list2) # print(list1.count()) # list1.sort() # list1.remove(2) # list1.pop(1) # list1.reverse() # list.clear() # print(list1) # tuple1=('w',) # type(tuple1) # tuple1.index() # list(tuple1) # tuple(list1) # dict1={1:2,3:4,5:6} # dict1.popitem() # del dict1[1] # dict1.pop(2) # dict1.keys() # dict1.values() # dict1.items() # dict[3] # dict1.get(3) # dict1[3]=999 # dict[4]=223 # dict1.fromkeys([1,2,3],'hi') # dict1.clear() # dict1.copy() # #dict是无序的,list是有序的 其它方面,dict的用法类似list #set是去重 # a=[1,1,1,2,3,4] # b=list(set(a)) # print(b) #
d35f817aa4fa70bc002f45d5125fe5817c45e226
jellywoon/lalala
/circle.py
735
3.5625
4
import pygame import random class Circle: def __init__(self, x, y, color, radius, thickness, direction): self.x = x self.y = y self.radius = radius self.thickness = thickness self.color = color self.direction = direction def make_circle(self, screen): pygame.draw.circle(screen, self.color, (self.x, self.y), self.radius, self.thickness) def move(self): if self.direction == 'right': self.x += 1 if (self.x + self.radius) == 800: self.direction = 'left' if self.direction == 'left': self.x -= 1 if (self.x - self.radius) == 0: self.direction = 'right'
ccfe736ed86399007828c7a807a2b78ab42b96f0
amandamorris/hackerrank
/thirty_days_code/day14.py
578
3.8125
4
class Difference: def __init__(self, a): self.__elements = a def computeDifference(self): """Finds the maximum difference between any two elements in self.__elements""" length = len(self.__elements) max_diff = abs(self.__elements[0] - self.__elements[1]) for i in range(length): for j in range(i+1, length): difference = abs(self.__elements[i] - self.__elements[j]) if difference > max_diff: max_diff = difference self.maximumDifference = max_diff
655e50b2cd79d8a2aec0cc4d82c1e987266d41fa
j-hermansen/in4110
/assignment4/4-3/instapy/__init__.py
3,580
3.796875
4
import cv2 import numpy as np from numba import jit def greyscale_image(input_filename, output_filename=None): """Function to read image and make it greyscale. :param filename: image name in filepath :return: new greyscaled 3d array that represents image """ image = cv2.imread(input_filename) imageAsRGB = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) for i in range(len(imageAsRGB)): for j in range(len(imageAsRGB[i])): sum = (imageAsRGB[i, j, 0] * .29 + imageAsRGB[i, j, 1] * .72 + imageAsRGB[i, j, 2] * 0.07) imageAsRGB[i, j, 0] = sum imageAsRGB[i, j, 1] = sum imageAsRGB[i, j, 2] = sum if not (output_filename is None): cv2.imwrite("{}.jpeg".format(output_filename), imageAsRGB) return imageAsRGB def greyscale_image_numpy(input_filename, output_filename=None): """Function to read image and make it greyscale using numpy. :param filename: image name in filepath :return: new greyscaled 3d array that represents image """ image = cv2.imread(input_filename) imageAsRGB = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # imageAsRGB[:, :, 0] = (imageAsRGB[:, :, 0] * .29 + imageAsRGB[:, :, 1] * .72 + imageAsRGB[:, :, 2] * .07) # imageAsRGB[:, :, 1] = (imageAsRGB[:, :, 0] * .29 + imageAsRGB[:, :, 1] * .72 + imageAsRGB[:, :, 2] * .07) # imageAsRGB[:, :, 2] = (imageAsRGB[:, :, 0] * .29 + imageAsRGB[:, :, 1] * .72 + imageAsRGB[:, :, 2] * .07) np.add(imageAsRGB[:, :, 0], (imageAsRGB[:, :, 0] * .29 + imageAsRGB[:, :, 1] * .72 + imageAsRGB[:, :, 2] * .07)) np.add(imageAsRGB[:, :, 1], (imageAsRGB[:, :, 0] * .29 + imageAsRGB[:, :, 1] * .72 + imageAsRGB[:, :, 2] * .07)) np.add(imageAsRGB[:, :, 2], (imageAsRGB[:, :, 0] * .29 + imageAsRGB[:, :, 1] * .72 + imageAsRGB[:, :, 2] * .07)) if not (output_filename is None): cv2.imwrite("{}.jpeg".format(output_filename), imageAsRGB) return imageAsRGB # @jit # def greyscale_image_numba(input_filename, output_filename=None): # """Function to read image and make it greyscale using numba. # # :param filename: image name in filepath # :return: new greyscaled 3d array that represents image # """ # image = cv2.imread(input_filename) # imageAsRGB = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # for i in range(len(imageAsRGB)): # for j in range(len(imageAsRGB[i])): # sum = (imageAsRGB[i, j, 0] * .29 + imageAsRGB[i, j, 1] * .72 + imageAsRGB[i, j, 2] * 0.07) # imageAsRGB[i, j, 0] = sum # imageAsRGB[i, j, 1] = sum # imageAsRGB[i, j, 2] = sum # # if not (output_filename is None): # cv2.imwrite("{}.jpeg".format(output_filename), imageAsRGB) # # return imageAsRGB # def sepia_image(input_filename, output_filename=None): # sepiamatrix = [[0.393, 0.769, 0.189], [0.349, 0.686, 0.168], [0.272, 0.534, 0.131]] # image = cv2.imread(input_filename) # # imageAsRGB = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # # (b, g, r) = cv2.split(image) # # (r, g, b) = cv2.split(imageAsRGB) # # r_new = r * sepiamatrix[0][0] + g * sepiamatrix[0][1] + b * sepiamatrix[0][2] # g_new = r * sepiamatrix[1][0] + g * sepiamatrix[1][1] + b * sepiamatrix[1][2] # b_new = r * sepiamatrix[2][0] + g * sepiamatrix[2][1] + b * sepiamatrix[2][2] # # img_new = cv2.merge((b_new, g_new, r_new)) # # img_new = cv2.merge((r_new,g_new,b_new)) # # if not (output_filename is None): # cv2.imwrite("{}.jpeg".format(output_filename), img_new) # # return img_new
a965483570109c674e7fd291c7e4b599df2339e9
pbarton666/learninglab
/kirby-course/py_waldo.py
1,015
3.78125
4
# -*- coding: utf-8 -*- """ Created on Mon Apr 17 17:23:45 2017 @author: Kirby Urner Example of the "Where's Waldo" genre: https://i.ytimg.com/vi/SiYrSYd7mlc/maxresdefault.jpg Extract "Waldo" from each data structure """ data = {"id:":["Joe", "Smith"], "mother": ["Judy", "Smith"], "father": ["Waldo", "Smith"]} print(data['father'][0]) # output "Waldo" data = {"Waldo": {"scores":[34,56,23,98,89]}} print(list(data.keys())[0]) # output "Waldo" hint: dict.keys() data = {(1,2):{"Name":["Waldeen", "Smith"]}, (4,5):{"Name":["Waldorf", "Smith"]}, (9,0):{"Name":["Waldo", "Smith"]}} print(data[(9,0)]["Name"][0]) # output "Waldo" hint: tuples may be keys first, last = data[ (9,0) ] ["Name"] print(first) data = ["Joe", 3, 7, ["dog", ("cat", "Waldo")], 27, {}] print(data[3][1][1]) # output "Waldo' # Exercises ##data = {[], [], ()} data = [[], [], ()] data[1].append("Wendy") data[1].append("Waldo") data[1].append("Willow") # where's Waldo? waldo = None # <your answer>
c0a7fe91425c4319203b8bbd0e3698e75889bc90
mihaelacr/ProjectEuler
/Problem84.py
3,515
3.640625
4
import random from itertools import count boardtxt = """go a1 cc1 a2 t1 r1 b1 ch1 b2 b3 jail c1 u1 c2 c3 r2 d1 cc2 d2 d3 fp e1 ch2 e2 e3 r3 f1 f2 u2 f3 g2j g1 g2 cc3 g3 r4 ch3 h1 t2 h2""" board = boardtxt.split() JAIL = board.index("jail") GO = board.index("go") NPLACES = len(board) NSIDES = 4 position = 0 chances = list(range(1, 17)) chests = list(range(1, 17)) def next_starting_with(cur_position, start_match): """Return the next position on the board starting with a given string""" next_idx = next( filter( lambda x: board[x % NPLACES].startswith(start_match), count(cur_position + 1), ) ) return next_idx % NPLACES def community_chest(cur_position): # This will take from the top and put # to the bottom of the pile. I guess # that affects things a bit since there # will be a fixed gap until a card comes # back around, but just picking randomly # each times also gives the same results r = chests[0] chests.append(r) del chests[0] match r: case 1: return GO case 2: return JAIL case other: return cur_position def chance(cur_position): r = chances[0] chances.append(r) del chances[0] match r: case 1: return GO case 2: return JAIL case 3: return board.index("c1") case 4: return board.index("e3") case 5: return board.index("h2") case 6: return board.index("r1") case 7 | 8: return next_starting_with(cur_position, "r") case 9: return next_starting_with(cur_position, "u") case 10: print(f"Back 3 before {board[cur_position]}") return (cur_position - 3) % NPLACES case _: return cur_position def position_effect(cur_position): match board[cur_position]: case "g2j": return JAIL case "cc1" | "cc2" | "cc3": return community_chest(cur_position) case "ch1" | "ch2" | "ch3": return chance(cur_position) case _: return cur_position def roll(): d1 = random.randint(1, NSIDES) d2 = random.randint(1, NSIDES) return d1 + d2, d1 == d2 position_counts = {p: 0 for p in board} for game in range(10): # Not sure shuffling really matters random.shuffle(chances) random.shuffle(chests) last_three_doubles_condition = [False, False, False] for i in range(500000): r, dubs = roll() last_three_doubles_condition.append(dubs) del last_three_doubles_condition[0] position = (position + r) % len(board) if all(last_three_doubles_condition): print("THREE DOUBLES :(") position = JAIL last_three_doubles_condition[-1] = False position_name = board[position] while True: changed_position = position_effect(position) if changed_position == position: break else: position = changed_position print(f"{i} Position changed to {board[position]}") position_counts[board[position]] += 1 freqs = [(v / sum(position_counts.values()), k) for k, v in position_counts.items()] sorted_freqs = sorted(freqs, reverse=True) print("Frequencies:") for f in sorted_freqs[:5]: print(f[0], f[1], board.index(f[1]))
ca101ee61e787b02f03db74bfbce1829dcd34ede
JAreina/python
/4_py_libro_1_pydroid/venv/4_py_libro_1_pydroid/clases_objetos/py_6_herencia_sobrecarga_operadores.py
838
3.90625
4
class X(): def __init__(self,first,last,pay): self.f_name = first self.l_name = last self.pay_amt = pay self.full_name = first+" "+last def make_email(self): return self.f_name+ "."+self.l_name+"@xyz.com" # sobrecsrga operador + def __add__(self,other): result = self.pay_amt+ other.pay_amt return result # sobrecsrga operador > def __gt__(self,other): return self.pay_amt>=other.pay_amt def __str__(self): str1 = "instance belongs to "+self.full_name return str1 #sobrecarga # def __len__(self): return len(self.f_name+self.l_name) a = X('JAreina', 'CCC', 60000) b = X('Juan', 'DDD',70000) print( a+b) print( "a > b ? ",a > b) print(a) print(len(a))
359ac8fa648d7500615b8900f1481c0f6484f208
helgirfer/EjercicioCalificaciones
/test/calificaciones_test.py
777
3.5
4
''' Created on 5 oct. 2021 @author: Usuario ''' import unittest from main.calificaciones import calcula_nota_cuestionario from main.calificaciones import lee_datos_cuestionario class calificaciones_test(unittest.TestCase): def test_calcula_nota_cuestionario(self): aciertos, errores, respuestas = lee_datos_cuestionario() print("el numero de aciertos introducidos es " + str(aciertos)) print("el numero de errores introducidos es " + str(errores)) print("el numero de respuestas introducidos es " + str(respuestas)) print("la nota final es " + str(calcula_nota_cuestionario( aciertos, errores, respuestas))) if __name__ == "__main__": unittest.main()
916f46b401004840eaf73094ee23f1f3ab1291e3
JakobSonstebo/IN1900
/Oblig/Uke 38/quadratic_roots_error.py
1,629
4.25
4
from math import sqrt import sys def find_roots(a, b, c): """Function that takes a, b, c and returns the roots of a the polynomial ax^2 + bx + c""" x = (-b + sqrt(b*b - 4*a*c))/(2*a) y = (-b - sqrt(b*b - 4*a*c))/(2*a) return x, y coeff = ['a', 'b', 'c'] # Prepares a list coeff consisting of 3 elements try: # Tries to assign the cmd-line arguments for i in range(len(coeff) + 1): # to the corresponding a, b, c in coeff. coeff[i] = float(sys.argv[i + 1]) # If not enough arguments are provided, the except IndexError: # list index will go out of range, provoking an for i in range(len(coeff)): # IndexError. The program will now check whether if isinstance(coeff[i], str): # a given element is still a string and prompt the user for coeff[i] = float(input(f"You forgot to input a value for {coeff[i]}, try again: ")) # the missing coefficient if yes. a, b, c = coeff r1, r2 = find_roots(a, b, c) print(f"r1 = {r1}, r2 = {r2}") """ Terminal>>python quadratic_roots_error.py 1 You forgot to input a value for b, try again: -5 You forgot to input a value for c, try again: 6 r1 = 3.0, r2 = 2.0 """
46a475d3e5d82ff1f867d4a32477837691f14733
siunixdev/python_pro_bootcamp_2021
/day6/defining-and-calling-python-function.py
224
3.5625
4
# how to write function ''' def function_name(): do this then do this finally do this ''' def my_function(): print("Hello!") def my_function2(name): print(f"Hello {name}!") my_function() my_function2("Abdillah")
de94e5c2a1da1d4a5086e7457b8770d1296e5e32
yuan-88/Data-Structures-and-Algorithms-using-Python
/sort/selection_sort.py
364
3.953125
4
# Selection sort # Author: Y. def selection_sort(arr): for i in range(len(arr)): min_ind = i for j in range(i+1, len(arr)): if arr[j] < arr[min_ind]: min_ind = j arr[i], arr[min_ind] = arr[min_ind], arr[i] if __name__=="__main__": arr = [6, 1, 0, -2, -4, 3, 10] selection_sort(arr) print(arr)
e49dda7d45bcdcfa7d03848390f72eec155fe70e
serinamarie/CS-Hash-Tables-Sprint
/applications/lookup_table/lookup_table.py
2,083
3.59375
4
# Your code here import random import math def slowfun_too_slow(x, y): # let v be x ^ y v = math.pow(x, y) # let v be v*(v-1)*(v-2)...(v-n) where (v-n) = 1 v = math.factorial(v) # set v equal to the floor division result of the sum of x and y v //= (x + y) # let v be the remainder of v / 982451653 v %= 982451653 return v # create empty dict lookup_table = {} def slowfun(x, y): """ Rewrite slowfun_too_slow() in here so that the program produces the same output, but completes quickly instead of taking ages to run. """ # if key in dict: if (x,y) in lookup_table: # return value return lookup_table.get(x,y) # if key not in dict, create key/value pair else: # let v be x ^ y v = math.pow(x, y) # let v be v*(v-1)*(v-2)...(v-n) where (v-n) = 1 v = math.factorial(v) # set v equal to the floor division result of the sum of x and y v //= (x + y) # let v be the remainder of v / 982451653 v %= 982451653 # add key/value pair to dict lookup_table[(x,y)] = v # return value return v # ELI5 # store values in a lookup table as there are far less combinations # than the range, so we're bound to have the same x,y combo # again and again(1k~ times each) # pseudocode # if x,y combo in dict: # return value v for that x,y key # if not in dict: # do the slow stuff # append x,y combo and v to dict # return v # Review: runs in 5 seconds # Do not modify below this line! for i in range(50000): x = random.randrange(2, 14) y = random.randrange(3, 6) print(f'{i}: {x},{y}: {slowfun(x, y)}') # if __name__ == "__main__": # for i in range(5): # x = random.randrange(2, 14) # y = random.randrange(3, 6) # print(f'{i}: {x},{y}: {slowfun(x, y)}') # x = 5 # y = 4 # v = x + y # z = 1 # lookup_table = {(x,y): v} # if (x,z) in lookup_table: # print(lookup_table.get((x,y)))
d8e6bbdea7e4b337dd00e78227c186fc2dd8a728
arjun-krishna/Multi-Layered-Perceptron
/src/MLP.py
5,874
3.640625
4
""" @author : arjun-krishna @desc : The MLP class, with the methods to train and test """ from __future__ import print_function import numpy as np from mnist_reader import display_img def sigmoid(x, derivative=False) : if derivative : y = sigmoid(x) return y*(1 - y) else : return 1 / (1 + np.exp(-x)) def relu(x, derivative=False) : if derivative : return np.maximum(0, np.sign(x)) else : return np.maximum(0, x) def softmax(x) : ex = np.exp((x - np.max(x))) return ex / ex.sum(axis=0) class MLP : """ config = Is the Network structure | dimensions of x,h1,h2,h3..,y in a list activation = List of activation functions for h1, h2,..,y Example Launch Config : NN = MLP([4,6,2],[sigmoid, softmax]) """ def __init__(self, config, activation) : self.nl = len(config) self.z = {} self.a = {} self.nh = self.nl - 2 # No. of Hidden Layers for i in range(1,self.nl+1) : self.z[i] = np.zeros((config[i-1],1)) self.a[i] = np.zeros((config[i-1],1)) self.W = {} self.b = {} self.init_mu = 0 self.init_sigma = 0.08 for i in range(1,self.nl) : self.W[i] = self.init_sigma*np.random.randn(config[i],config[i-1]) + self.init_mu # Random initial weights self.b[i] = np.zeros((config[i],1)) self.config = config self.activation = activation def forward_pass(self, x) : self.a[1] = x for i in range(1,self.nl) : self.z[i+1] = np.dot(self.W[i],self.a[i]) + self.b[i] self.a[i+1] = self.activation[i-1](self.z[i+1]) return self.a[self.nl] """ max_iteration - Maximum training iterations freq_test_loss - The frequency with which we log the test performance. name - The folder (in log dir) in which progress logs will be stored alpha - Learning rate lamda - Regularization parameter gamma - Momentum parameter lrf - The decay factor lr_itr - The iteration after which decay occurs """ def train_mini_batch(self, data_handler,name='model_1',act='sigmoid', max_iteration=10000, freq_test_loss = 200, alpha=0.01, lamda=0.005, gamma=0.8, lrf=1.0, lr_itr=250) : SCALER = data_handler.scaler TEST_DATA, TEST_LABELS = data_handler.get_test_data() TEST_DATA = SCALER.transform(TEST_DATA) TEST_DATA = np.array(TEST_DATA).T TEST_SIZE = len(TEST_LABELS) BATCH_SIZE = data_handler.BATCH_SIZE vW = {} vb = {} delta = {} config_log = open('log/'+name+'/config','w') train_loss_log = open('log/'+name+'/train_loss.csv','w') test_loss_log = open('log/'+name+'/test_loss.csv','w') test_acc_log = open('log/'+name+'/test_acc.csv','w') train_loss_log.write('iteration, train_loss\n') test_loss_log.write('iteration, test_loss\n') test_acc_log.write('iteration, test_accuracy\n') config_log.write('Activation = '+act+'\n') config_log.write('Alpha = '+str(alpha)+'\n') config_log.write('Lambda = '+str(lamda)+'\n') print ('Training the Network') print ('-------------------------------------------------') for l in range(1,self.nl) : vW[l] = np.zeros(self.W[l].shape) vb[l] = np.zeros(self.b[l].shape) for iteration in range(1, max_iteration+1) : mssg = "Training Progress [{}%]".format(float(iteration*100)/max_iteration) clear = "\b"*(len(mssg)) print(mssg, end="") if (iteration % lr_itr == 0) : alpha = alpha*lrf if (iteration % freq_test_loss == 0) : test_acc = 0.0 test_loss = 0.0 _y = self.forward_pass(TEST_DATA) for i in range(TEST_SIZE) : if( np.argmax(_y[:,i]) == TEST_LABELS[i] ) : test_acc += 1 test_loss += -np.log(_y[TEST_LABELS[i],i]) test_loss /= TEST_SIZE test_acc_log.write(str(iteration)+','+str((test_acc*100)/TEST_SIZE)+'\n') test_loss_log.write(str(iteration)+','+str(test_loss)+'\n') X, Y = data_handler.get_train_batch() X = SCALER.transform(X) _y = self.forward_pass(np.array(X).T) train_loss = 0.0 y = np.zeros(_y.shape) for i in range(BATCH_SIZE) : y[Y[i]][i] = 1.0 train_loss += -np.log(_y[Y[i],i]) train_loss /= BATCH_SIZE train_loss_log.write(str(iteration)+','+str(train_loss)+'\n') delta[self.nl] = _y - y for l in range(self.nl-1,1,-1) : delta[l] = np.dot(self.W[l].T, delta[l+1])*self.activation[l-2](self.z[l], derivative=True) for l in range(1,self.nl) : vW[l] = (gamma*vW[l]) + (alpha * (((1.0/BATCH_SIZE)*np.dot(delta[l+1], self.a[l].T)) + lamda*self.W[l]) ) self.W[l] = self.W[l] - vW[l] vb[l] = (gamma*vb[l]) + (alpha * (np.sum(delta[l+1], axis=1))).reshape(self.b[l].shape) self.b[l] = self.b[l] - vb[l] print(clear, end="") config_log.close() train_loss_log.close() test_loss_log.close() test_acc_log.close() print ("\nTraining Completed!") print ('-------------------------------------------------') # self.fixed_test(data_handler, name=name) def fixed_test(self, data_handler, name='NN_1') : SCALER = data_handler.scaler; X, Y = data_handler.get_fixed_test() X_ = SCALER.transform(X) TEST_BATCH_SIZE = data_handler.TEST_BATCH_SIZE _y = self.forward_pass(np.array(X_).T) for i in range(TEST_BATCH_SIZE) : display_img(X[i], 28, 28, "log/"+name+"/random_test/"+str(i+1)+".png") with open("log/"+name+"/random_test/"+str(i+1)+".csv", "w") as f : f.write('class, probability\n') for c in range(len(_y[:,i])) : f.write(str(c)+', '+str(_y[c,i])+'\n') def random_test(self, data_handler, name='NN_1') : SCALER = data_handler.scaler; X, Y = data_handler.get_test_batch() X_ = SCALER.transform(X) TEST_BATCH_SIZE = data_handler.TEST_BATCH_SIZE _y = self.forward_pass(np.array(X_).T) for i in range(TEST_BATCH_SIZE) : display_img(X[i], 28, 28, "log/"+name+"/random_test/"+str(i+1)+".png") with open("log/"+name+"/random_test/"+str(i+1)+".csv", "w") as f : f.write('class, probability\n') for c in range(len(_y[:,i])) : f.write(str(c)+', '+str(_y[c,i])+'\n')
56b3d416719e531525e3809c3698dd6a56c2c447
andrewbates09/maxit
/playmaxit.py
5,849
3.734375
4
#!/usr/bin/python3 # # Author : Andrew M Bates (abates09) # ''' IMPORTS ''' #import curses # for coloured triangulation import os import random # simple cross platform clear screen def clearScreen(): if os.name == 'posix': os.system('clear') else: os.system('cls') # print the basic intro message def prIntro (): clearScreen() print('Time to play MAXIT!\n' 'Basic gameplay is as follows:\n' ' - you are player 1\n' ' - each player alternates turns\n' ' - select element in same row or colum as current position\n' ' - value of selected element gets added to player total\n' ' - selected element becomes next player position\n' ' - game ends once all sections on the grid have been selected\n' ' - highest total score wins\n') return # pretty print the game board def printBoard( mboard, msize ): print('MAXIT Board Game\n') if (mboard==[]): print('-- empty board --\n') return print(' 0 ||', end='') for col in range(msize): print('%4d |' %(col+1), end='') print('\n ------', end='') for col in range(msize): print('------', end='') for row in range(msize): if (row >= 0): print('\n%4d ||' %(row+1), end='') for col in range(msize): #form = '%' + str(max(msize)) + 's' print('%4s |' %str(mboard[row][col]), end='') print('\n') return # print the current player stats def printStats( mplayers, mcurPlayer, mcurPos): print('%s' %mplayers[0][0] + '\'s Score: %s' %mplayers[1][0]) print('%s' %mplayers[0][1] + '\'s Score: %s' %mplayers[1][1]) print('\nCurrent Player: ' + mplayers[0][mcurPlayer]) print('Current Position: [%d, ' %(mcurPos[0]) + '%d]' %(mcurPos[1])) return # get board size def getSize(): is_legit = 0 while not is_legit: try: msize = int (input('Enter board size: ' )) if msize > 30: print('Don\'t be a twat. Pick a smaller size.') elif msize > 0: is_legit = 1 except ValueError: print('Please enter board size as a number.') return msize # setup board def setBoard( size ): mboard = [[random.randint(-9,15) for col in range(size)] for row in range(size)] return mboard # check for available moves def checkMoves( mcurPos, mboard, msize ): for row in range(msize): for col in range(msize): print('- checking [%d, %d]', row, col) if row == (mcurPos[0]-1): print(' - - testing [%d, %d]', row, col) if mboard[row][col] != '-': return 1 elif col == (mcurPos[1]-1): print(' - - testing [%d, %d]', row, col) if mboard[row][col] != '-': return 1 return 0 # computer AI and play # to later be updated for different levels of difficulty # level 0: random next move # level 1: highest possible # level 2: highest possible mapped out combos def computerAI( mcurPos, mboard, msize ): maxNum = -10 newPos = [0,0] aiMoves = [[],[],[]] for row in range(msize): for col in range(msize): if row == (mcurPos[0]-1): if mboard[row][col] != '-': if int(mboard[row][col]) > maxNum: maxNum = mboard[row][col] newPos[0] = row+1 newPos[1] = col+1 elif col == (mcurPos[1]-1): if mboard[row][col] != '-': if int(mboard[row][col]) > maxNum: maxNum = mboard[row][col] newPos[0] = row+1 newPos[1] = col+1 print('\nComputer chooses: [%s, ' %newPos[0] + '%d]' %newPos[1]) beepBoop = input('\n(press enter to continue)\n') return newPos # return player's selected choice def getMove( mcurPlayer, mcurPos, mboard, msize ): is_legit = 0 newPos = [0,0] while not is_legit: try: if mcurPlayer == 1: return computerAI(mcurPos, mboard, msize) else: newPos[0] = int(input('\nSelect row: ')) newPos[1] = int(input('Select column: ')) if newPos[0] == mcurPos[0]: if mboard[newPos[0]-1][newPos[1]-1] != '-': is_legit = 1 elif newPos[1] == mcurPos[1]: if mboard[newPos[0]-1][newPos[1]-1] != '-': is_legit = 1 except ValueError: print('Hint: new [row, column] must be in same row or column from current.') return newPos # simply update players def updatePlayer( mcurPlayer ): return ( mcurPlayer + 1 ) % 2 # init players # get board size # build the board # start the game def mainMaxit(): prIntro() # init players, scores, boardsize, board, current player, & position players = [['Human', 'Computer'], [0, 0]] size = getSize() board = setBoard( size ) curPlayer = random.randint(0,1) curPos = [random.randint(1, size), random.randint(1, size)] gametime = 1 while gametime: clearScreen() printBoard(board, size) printStats(players, curPlayer, curPos) curPos = getMove(curPlayer, curPos, board, size) players[1][curPlayer] += board[curPos[0]-1][curPos[1]-1] board[curPos[0]-1][curPos[1]-1] = '-' curPlayer = updatePlayer(curPlayer) # check for possible moves to do. gametime = checkMoves(curPos, board, size) # end game stats clearScreen() printBoard(board, size) printStats(players, curPlayer, curPos) finalize = input('\nGAME OVER!\n\n(press enter to continue)') return
3317a02a650c2e988e337e2c4690e6e2e54e40ac
christopher-burke/python-scripts
/cb_scripts/demo/asyncio_demo_2.py
1,535
4.09375
4
#!/usr/bin/env python3 """Asyncio demo finding next prime numbers for a list.""" import asyncio from math import sqrt from functools import reduce def factors(n): """Find all factors of a number n. https://stackoverflow.com/questions/6800193/what-is-the-most-efficient-way-of-finding-all-the-factors-of-a-number-in-python """ n_factors = ([i, n//i] for i in range(1, int(sqrt(n) + 1)) if n % i == 0) return set(reduce(list.__add__, n_factors)) def prime(n): """Return True if x is prime, False otherwise.""" if n == 2: return True if n % 2 == 0: return False if len(factors(n)) == 2: return True else: return False async def find_next_prime(n): while True: n = n + 1 if prime(n): return n else: await asyncio.sleep(0.000000000001) async def main(): next_prime_1 = loop.create_task(find_next_prime(2123123123112)) next_prime_2 = loop.create_task(find_next_prime(222)) next_prime_3 = loop.create_task(find_next_prime(45022222222)) next_prime_4 = loop.create_task(find_next_prime(1000)) await asyncio.wait([next_prime_1, next_prime_2, next_prime_3, next_prime_4, ]) return next_prime_1, next_prime_2, next_prime_3, next_prime_4 if __name__ == "__main__": loop = asyncio.get_event_loop() loop.set_debug(1) p1, p2, p3, p4 = loop.run_until_complete(main()) print(p1.result()) print(p2.result()) print(p3.result()) print(p4.result()) loop.close()
adac82f3ced96c7b3bc2f7f6b6bd41a783e04504
josivandodosanjos/ALGO_REDES_2016_2_LISTA4
/Lista2.2_Quest1.py
567
4
4
senhas = [ input("1° - Usuario Cadastre sua primeira senha: "), input("2° - Usuario Cadastre sua segunda senha: "), input("3° - Usuario Cadastre sua terceira senha: "), input("4° - Usuario Cadastre sua quarta senha: ")] input("=============LOGIN==============") login1 = input("Nome do usuario: ") login = input("Digite sua senha: ") for senha in senhas: if login == senha: senha == login print(login1,"==> Seja Bem Vindo!") else: print("Usuario Não Cadastrado!")
495ef8d344ab329e125ad642c6140b689c7c273d
derekfulmer/netutils
/netutils/interface.py
4,428
4.15625
4
"""Functions for working with interface.""" from .variables import BASE_INTERFACES, REVERSE_MAPPING def split_interface(interface): """Split an interface name based on first digit, slash, or space match. Args: interface (str): The interface you are attempting to split. Returns: tuple: The split between the name of the interface the value. Example: >>> from netutils.interface import split_interface >>> split_interface("GigabitEthernet1/0/1") ('GigabitEthernet', '1/0/1') >>> split_interface("Eth1") ('Eth', '1') >>> """ head = interface.rstrip(r"/\0123456789. ") tail = interface[len(head) :].lstrip() # noqa: E203 return (head, tail) def canonical_interface_name(interface, addl_name_map=None, verify=False): """Function to return an interface's canonical name (fully expanded name). Use of explicit matches used to indicate a clear understanding on any potential match. Regex and other looser matching methods were not implemented to avoid false positive matches. As an example, it would make sense to do "[P|p][O|o]" which would incorrectly match PO = POS and Po = Port-channel, leading to a false positive, not easily troubleshot, found, or known. Args: interface (str): The interface you are attempting to expand. addl_name_map (dict, optional): A dict containing key/value pairs that updates the base mapping. Used if an OS has specific differences. e.g. {"Po": "PortChannel"} vs {"Po": "Port-Channel"}. Defaults to None. verify (bool, optional): Whether or not to verify the interface matches a known interface standard. Defaults to False. Returns: str: The name of the interface in the long form. Example: >>> from netutils.interface import canonical_interface_name >>> canonical_interface_name("Gi1/0/1") 'GigabitEthernet1/0/1' >>> canonical_interface_name("Eth1") 'Ethernet1' >>> """ name_map = {} name_map.update(BASE_INTERFACES) interface_type, interface_number = split_interface(interface) if isinstance(addl_name_map, dict): name_map.update(addl_name_map) # check in dict for mapping if name_map.get(interface_type): long_int = name_map.get(interface_type) return long_int + str(interface_number) if verify: raise ValueError(f"Verify interface on and no match found for {interface}") # if nothing matched, return the original name return interface def abbreviated_interface_name(interface, addl_name_map=None, addl_reverse_map=None, verify=False): """Function to return an abbreviated representation of the interface name. Args: interface (str): The interface you are attempting to shorten. addl_name_map (dict, optional): A dict containing key/value pairs that updates the base mapping. Used if an OS has specific differences. e.g. {"Po": "PortChannel"} vs {"Po": "Port-Channel"}. Defaults to None. addl_reverse_map (dict, optional): A dict containing key/value pairs that updates the abbreviated mapping. Defaults to None. verify (bool, optional): Whether or not to verify the interface matches a known interface standard. Defaults to False. Returns: str: The name of the interface in the abbreviated form. Example: >>> abbreviated_interface_name("GigabitEthernet1/0/1") 'Gi1/0/1' >>> abbreviated_interface_name("Eth1") 'Et1' >>> """ name_map = {} name_map.update(BASE_INTERFACES) interface_type, interface_number = split_interface(interface) if isinstance(addl_name_map, dict): name_map.update(addl_name_map) rev_name_map = {} rev_name_map.update(REVERSE_MAPPING) if isinstance(addl_reverse_map, dict): rev_name_map.update(addl_reverse_map) # Try to ensure canonical type. if name_map.get(interface_type): canonical_type = name_map.get(interface_type) else: canonical_type = interface_type try: abbreviated_name = rev_name_map[canonical_type] + str(interface_number) return abbreviated_name except KeyError: pass if verify: raise ValueError(f"Verify interface on and no match found for {interface}") # If abbreviated name lookup fails, return original name return interface
cba4a454fce841f7bb2099d818e95308e1ad80c6
aswath1711/code-kata-player
/set5_10.py
236
3.59375
4
# -*- coding: utf-8 -*- """ Created on Fri Jul 19 23:50:04 2019 @author: New """ num = int(input()) a =0 for i in range(2,num): if num%i ==0: a = 1 print("yes") break if a==0: print("no")
a333c94336ae9bb7131c837127266399edfb67b7
francescaberkoh/UnitSix
/03.py
545
3.90625
4
''' Created on Apr 17, 2019 @author: s271486 ''' class Information(): def __init__(self, person, address, postal_code): self.person = person self.address = address self.postal_code = postal_code user = input("Enter your name:") useraddress = input("Enter your address:") userpostal_code = input("Enter municipality, province and postal code:") user_address = Information(user, useraddress, userpostal_code) print (user_address.person + ' ' + user_address.address + " " + user_address.postal_code)
f198c9aa582996d7a0ea6d58b44f99cd3bf7702d
631068264/learn_science
/learn_sklearn/预处理.py
1,675
3.578125
4
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @author = 'wyx' @time = 2017/6/18 14:27 @annotation = '' """ """ 文字信息 转化为数字 """ """ Dealing with categorical features in Python ● scikit-learn: OneHotEncoder() ● pandas: get_dummies() """ """ In [3]: df_origin = pd.get_dummies(df) In [4]: print(df_origin.head()) mpg displ hp weight accel size origin_Asia origin_Europe \ 0 18.0 250.0 88 3139 14.5 15.0 0 0 1 9.0 304.0 193 4732 18.5 20.0 0 0 2 36.1 91.0 60 1800 16.4 10.0 1 0 3 18.5 250.0 98 3525 19.0 15.0 0 0 4 34.3 97.0 78 2188 15.8 10.0 0 1 """ """ Using the mean of the non-missing entries In [1]: from sklearn.preprocessing import Imputer In [2]: imp = Imputer(missing_values='NaN', strategy='mean', axis=0) In [3]: imp.fit(X) In [4]: X = imp.transform(X) """ """ Why scale your data? ● Many models use some form of distance to inform them ● Features on larger scales can unduly influence the model ● Example: k-NN uses distance explicitly when making predictions ● We want features to be on a similar scale ● Normalizing (or scaling and centering) Ways to normalize your data ● Standardization: Subtract the mean and divide by variance ● All features are centered around zero and have variance one ● Can also subtract the minimum and divide by the range ● Minimum zero and maximum one ● Can also normalize so the data ranges from -1 to +1 ● See scikit-learn docs for further details """ """ In [2]: from sklearn.preprocessing import scale In [3]: X_scaled = scale(X) In [4]: np.mean(X), np.std(X) Out[4]: (8.13421922452, 16.7265339794) In [5]: np.mean(X_scaled), np.std(X_scaled) Out[5]: (2.54662653149e-15, 1.0) """
a0fd344d0c45ce50367ce78b85565d04f02987ae
kwonbora1004/python
/20200523/test.py
355
3.921875
4
# print("Hello World Python") # if True: # print("True") # else: # print("False") # a = 1 # b = 2 # c = 3 # total = a + \ # b + \ # c # print(total) # total1 = a+ b +c # print(total1) # msg='안녕하세요' # msg1="안녕하세요" # print(msg) # print(msg1) ''' 여러라인 주석 print(msg) print(msg) print(msg) print(msg) '''
2677bf06bd507748a12bb10ff3884f046c0b785f
hrushigade/learnpython
/divisiblebygivennumber.py
194
3.875
4
lower=int(input("enter lower range limit")) upper=int(input("enter upper range limit")) n=int(input("enter the no to be divided")) for i in range(lower,upper+1): if(i%n==0): print(i)
592a76ad05ac4db53930f4c886c5c4a7074f1544
amard07/LeetCode
/ExtraCandies.py
321
3.53125
4
class Solution: def kidsWithCandies(self, candies: List[int], extraCandies: int) -> List[bool]: max_candy_amount = max(candies) for index in range(len(candies)): if candies[index] + extraCandies >= max_candy_amount: yield True else: yield False
9db6b0d09b10a43f753aab755f3ae003a92263c2
1158990163/PYnotebook1
/Day02_26/test.py
180
3.53125
4
t=(0,0) tps=[] tps.append(t) tps.append(t) tps.append(t) tps.append(t) tp=[(1,2),(2,3),(3,3),(1,4)] tp.sort() print(tp) print(tp[1][1]) print(tps) for i in range(3): print(i)
75d3bc79c9fb838972bb64712b36e7cd07dc411f
proRamLOGO/Competitive_Programming
/Leetcode_30DaysChallenge/1_6_Anagrams.py
695
3.546875
4
primes = [] def __init__primes() : global primes primes = [2] isprime = [True for i in range(102) ] for i in range(3,102,2) : if isprime[i] : primes.append(i) for j in range(i*i, 102, i) : isprime[j] = False def groupAnagrams( strs ) : global primes table = {} for i in strs : pro = 1 for j in i : pro *= primes[ord(j)-97] if pro not in table.keys() : table[pro] = [] table[pro].append(i) ans = [] for i in table.values() : ans.append(i) return ans def main() : l = input().split() l = groupAnagrams(l)
9c31e7146fdf668def279997ed31a05fe2d5a8a5
yanjieren16/coding-problem
/Flatten_Binary_Tree2LL.py
943
4.0625
4
""" Given a binary tree, flatten it to a linked list in-place. """ # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None # use stack to pre-order traversal class Solution(object): def flatten(self, root): """ :type root: TreeNode :rtype: void Do not return anything, modify root in-place instead. """ if root is None: return stack = [] if root.right: stack.append(root.right) if root.left: stack.append(root.left) pre = root while stack: curr = stack.pop() pre.left = None pre.right = curr if curr.right: stack.append(curr.right) if curr.left: stack.append(curr.left) pre = curr
d7ea51cc390ba0e11e1e6c671342d210303e3632
KerwinTy/PythonTutorial01162018
/ARGEPARSE.py
269
3.65625
4
import argparse parser = argparse.ArgumentParser() parser.add_argument("arianne") args = parser.parse_args() print(args.arianne) if args.arianne == "Maganda": print ("Panget ako") elif args.arianne == "Mataray": print ("Tru") else: print ("Manlilibre ako")
619d317ee55a9b7d33b6b4c01614acfd02e88e68
mauricio208/pythonScripts
/binary-tree.py
1,160
3.875
4
class Tree: def __init__(self, data=None): self.__l = None self.__r = None self.data = data def add_l(self, data): self.__l = Tree(data) return self.__l def add_r(self, data): self.__r = Tree(data) return self.__r def l(self): return self.__l def r(self): return self.__r def draw(self, nodes=None): if not nodes: nodes = [self] str_nodes = [] new_nodes = [] for n in nodes: str_nodes.append(n.data if n else ' ') if n: new_nodes.append(n.l()) new_nodes.append(n.r()) print(' '.join([str(s) for s in str_nodes])) if new_nodes: return self.draw(new_nodes) def __str__(self): l = self.__l.data if self.__l else '' r = self.__r.data if self.__r else '' return "-> {} \n {} {} ".format(self.data, l, r) def __repr__(self): return self.__str__() if __name__ == "__main__": t = Tree(0) h1l=t.add_l(1) h1r=t.add_r(2) h2l=h1r.add_l(11) h2l.add_l(111) h2l.add_r(112)
bf9d66394a2a7b3eb4f884989e59965beb627bc3
little-alexandra/nlp_study_group
/1_zn/zn_问答系统&文本纠错_0404/algorithm-complexity.py
1,944
3.5
4
#!/usr/bin/env python # coding: utf-8 # ### 时间复杂度和空间复杂度 # # 这是任何AI工程师必须要深入理解的概念。对于每一个设计出来的算法都需要从这两个方面来分析 # O(N), O(N^2) : o notation # In[ ]: int a = 0, b = 0; ''' 复杂度是相对于问题的大小的, 排序算法: 问题大小是:要被排序的数组的长度 复杂度:相对于长度(正比,N^2, logN) ''' for (i = 0; i < N; i++) { a = a + rand(); b = b + rand(); } ##2*N = 2N O(N) 线性复杂度 for (j = 0; j < N/2; j++) { b = b + rand(); 1 } ##1*N/2 = 1/2*N = O(N) ##100*N, 10000000000000*N = O(N) ##常数的意思就是它跟N没有依赖关系 ##空间:O(1) # 时间复杂度? 空间复杂度? # # # In[ ]: int a = 0; i,j for (i = 0; i < N; i++) { for (j = N; j > i; j--) { a = a + i + j; 1 } } ##1*N^2 = O(N^2) 时间 ##常数空间复杂度O(1) # In[ ]: int i, j, k = 0; for (i = n / 2; i <= n; i++) { # O(N) for (j = 2; j <= n; j = j * 2) { # o(logN) k = k + n / 2; } } ##时间: (NlogN) ##空间: 常数 ##n =40 ##j = 2 4 8 16 32 # In[ ]: # In[ ]: int a = 0, i = N; while (i > 0) { # log N a += i; # 1个操作 i /= 2; #1个操作 } # In[ ]: # 我们每当说算法X的效率要高于Y时指的是? 时间复杂度 # # X: o(log n) > Y: o(n) # o(n log n) > Y: o(n^2) # # X实际的效率(秒来) > Y实际的效率(秒) 不一定!!! # n足够大 # In[ ]: ##定理: if x的时间复杂度要优于y的时间复杂度,那么,假设存在一个足够大的数M,当 ##n>M时,我们可以保证X的实际效率要优于Y的实际效率 # In[ ]: ##X > Y 比如N=100, 实际的运行效率有可能Y是更快的。。 但是, M=10^6, N > 10^6, 我们其实可以保证X的实际效率会更高 ##x asymtoitically faster than y
db00d30521887c638fd47b68ae6371d27f962156
BenDosch/holbertonschool-higher_level_programming
/0x03-python-data_structures/10-divisible_by_2.py
599
4.21875
4
#!/usr/bin/python3 def divisible_by_2(my_list=[]): bool_list = [] for i in range(len(my_list)): if my_list[i] % 2: bool_list.append(False) else: bool_list.append(True) return bool_list def main(): my_list = [0, 1, 2, 3, 4, 5, 6] list_r = divisible_by_2(my_list) i = 0 while i < len(list_r): if list_r[i]: print("{:d} {:s} divisible by 2".format(my_list[i], "is")) else: print("{:d} {:s} divisible by 2".format(my_list[i], "is not")) i += 1 if __name__ == "__main__": main()
380f577eef62b388224573cdbd32ca3afae27f65
khaledshishani32/data-structures-and-algorithms-python
/linked-list-insertions/linked_list_insertions/linked_list_insertion.py
920
4.1875
4
class Node: def __init__(self, data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None def printList(self): temp = self.head while temp : print(temp.data, end="->") temp = temp.next def append(self, new_data): new_node = Node(new_data) if self.head is None: self.head = new_node return last = self.head while last.next: last = last.next last.next = new_node if __name__ == '__main__': list1 = LinkedList() list1.append(1) list1.append(3) list1.append(2) list2 = LinkedList() list2.append(5) list2.append(9) list2.append(4) list3 = LinkedList() list3.head = zipLists(list1.head, list2.head) list3.printList()
181b17327110aea0b12797552de8eb52f43a7038
vasavi-test/python
/repo_commands.py
309
3.5
4
import re x="hi this is vasavi. i am working in accenture 9598878675" y=re.search('i',x) print y.group() if re.findall('vasavi',x)!=-1: print "found" else: print "not found" z=re.findall("\d{10}",x) for i in z: print i print re.findall("^hi.*9598878675$",x) email = "[email protected]" ph_no = "9121244241"
129661c6836af176101f2b3c41f835073cce406f
uniroma2-algorithms/ingegneria-algoritmi-2018
/python/generator/fibonacci.py
883
3.625
4
""" File name: fibonacci.py Author: Ovidiu Daniel Barba Date created: 10/12/2018 Python Version: 3.7 Generator dei numeri di Fibonacci """ from itertools import islice def fibGen(): """ Generator dei numeri di Fibonacci. Rispetto all'iterator, è una funzione :return: """ prev, curr = 0, 1 while True: yield curr # una funzione con yield è un generator prev, curr = curr, prev + curr if __name__ == "__main__": fib = fibGen() for _ in range(10): # primi 10 numeri di fibonacci print(next(fib)) #for f in fib: # sequenza infinita # print(f) limited = list(islice(fib, 0, 10)) # numeri di Fibonacci da 11 a 20 (l'iterator 'ricorda' l'ultimo numero ritornato print(limited) def f(a, b): return a + b args = {'c': 1 ,'b': 2} print(f(**args)) print(f(1,2))
2f5191c402c894a161091309a9b8ea7bf9cdd8cb
StephenLingham/MachineLearning
/raymondTitanicForest.py
2,887
3.59375
4
from sklearn.ensemble import RandomForestClassifier import pandas from sklearn import tree import pydotplus from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt import matplotlib.image as pltimg import numpy as np import types from sklearn import metrics from sklearn.model_selection import train_test_split #import csv df = pandas.read_csv("./train.csv") # drop non useful columns df = df.drop(columns=["PassengerId", "Name", "Ticket", "Fare", "Cabin"]) # drop rows with any empty cells # https://hackersandslackers.com/pandas-dataframe-drop df.dropna( axis=0, how='any', thresh=None, subset=None, inplace=True ) # One-hot encode the data using pandas get_dummies # https://towardsdatascience.com/random-forest-in-python-24d0893d51c0 df = pandas.get_dummies(df) print(df.head()) print(df.dtypes) # split data into "features" and "targets" aka "features" and "labels" where Labels are the values we want to predict, and features the variables we use to predict them # Use numpy to convert label column to array of values labels = np.array(df['Survived']) # Remove the label column from the df df = df.drop('Survived', axis=1) # Saving list of feature names as numpy array features = np.array(df) # use train_test_split to divide the data into train and test data train_features, test_features, train_labels, test_labels = train_test_split( features, labels, test_size=0.01, random_state=42) # check eveything looks right print('Training Features Shape:', train_features.shape) print('Training Labels Shape:', train_labels.shape) print('Testing Features Shape:', test_features.shape) print('Testing Labels Shape:', test_labels.shape) # Instantiate model with 1000 decision trees rf = RandomForestClassifier(n_estimators=1000, random_state=42) # Train the model on training data rf.fit(train_features, train_labels) # generate predictions for the test data based on test features predictions = rf.predict(test_features) # just compare length of the test_labels with the length of the predictions to make sure they are they same print(len(test_labels)) print(len(predictions)) # compare each actual result on the test_label list and the predicted list and populate true or false depending on if the prediction was right results = [] for i in test_labels: if test_labels[i] == predictions[i]: results.append("TRUE") else: results.append("FALSE") print(results) # create dataframe of our results dictionaryForDataFrame = {"Predicted Outcome": predictions, "Actual Outcome": test_labels, "Prediction Successful": results} resultsDataFrame = pandas.DataFrame(dictionaryForDataFrame) print(resultsDataFrame) # looks like it is pretty accurate but is there any wrong results? check if any 'falses' print("number of falses:", results.count("FALSE"))
dca453c1551fd732e110706bec1465dafc93e813
rendoir/feup-iart
/src/network.py
8,609
3.515625
4
import random import numpy as np class CrossEntropyCost(object): @staticmethod def fn(a, y): """Return the cost associated with an output ``a`` and desired output ``y``.""" return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a))) @staticmethod def delta(z, a, y): """Return the error delta from the output layer.""" return (a-y) class Network(object): def __init__(self, sizes): """ The list ``sizes`` contains the number of neurons in the respective layers of the network. The cost is a specific implementation of a generic cost function. """ self.num_layers = len(sizes) self.sizes = sizes self.init_weights() self.cost=CrossEntropyCost def init_weights(self): """ Initialize each weight using a Gaussian distribution with mean 0 and standard deviation 1 over the square root of the number of weights connecting to the same neuron. Initialize the biases using a Gaussian distribution with mean 0 and standard deviation 1. """ self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]] self.weights = [np.random.randn(y, x)/np.sqrt(x) for x, y in zip(self.sizes[:-1], self.sizes[1:])] def feedforward(self, a): """Return the output of the network if ``a`` is input.""" for b, w in zip(self.biases, self.weights): a = sigmoid(np.dot(w, a)+b) return a def stochastic_gradient_descent(self, training_data, epochs, batch_size, learning_rate, lmbda = 0.0, evaluation_data=None, monitor_evaluation_cost=False, monitor_evaluation_accuracy=False, monitor_training_cost=False, monitor_training_accuracy=False): """ Train the neural network using batch stochastic gradient descent. The ``training_data`` is a list of tuples ``(x, y)`` representing the training inputs and the desired outputs. The network's hyper-parameters are: ``epochs`` -> Number of training passes ``batch_size`` -> Size of each batch ``learning_rate`` -> Size of the step in the gradient direction ``lmbda`` -> L2 regularization parameter The method also accepts ``evaluation_data`` and flags that allow us to monitor the cost and accuracy as the network learns. """ if evaluation_data: n_data = len(evaluation_data) n = len(training_data) evaluation_cost, evaluation_accuracy = [], [] training_cost, training_accuracy = [], [] for j in xrange(epochs): random.shuffle(training_data) batches = [ training_data[k:k+batch_size] for k in xrange(0, n, batch_size)] for batch in batches: self.update_batch(batch, learning_rate, lmbda, len(training_data)) print "Epoch %s training complete" % j if monitor_training_cost: cost = self.total_cost(training_data, lmbda) training_cost.append(cost) print "Cost on training data: {}".format(cost) if monitor_training_accuracy: accuracy, msg = self.accuracy(training_data, convert=True) training_accuracy.append(accuracy) print "Accuracy on training data: {} / {} = {:.2f} %\n{}".format(accuracy, n, 100.0*accuracy/n, msg) if monitor_evaluation_cost: cost = self.total_cost(evaluation_data, lmbda, convert=True) evaluation_cost.append(cost) print "Cost on evaluation data: {}".format(cost) if monitor_evaluation_accuracy: accuracy, msg = self.accuracy(evaluation_data) evaluation_accuracy.append(accuracy) print "Accuracy on evaluation data: {} / {} = {:.2f} %\n{}".format(accuracy, n_data, 100.0*accuracy/n_data, msg) print return evaluation_cost, evaluation_accuracy, training_cost, training_accuracy def update_batch(self, batch, learning_rate, lmbda, n): """ Update the network's weights and biases by applying gradient descent using backpropagation to a single batch. The ``n`` parameter is the total size of the training data set. """ nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] for x, y in batch: delta_nabla_b, delta_nabla_w = self.backpropagation(x, y) nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] self.weights = [(1-learning_rate*(lmbda/n))*w-(learning_rate/len(batch))*nw for w, nw in zip(self.weights, nabla_w)] self.biases = [b-(learning_rate/len(batch))*nb for b, nb in zip(self.biases, nabla_b)] def backpropagation(self, x, y): """ Return a tuple ``(nabla_b, nabla_w)`` representing the gradient for the cost function C_x. """ nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] # feedforward activation = x activations = [x] # list to store all the activations, layer by layer zs = [] # list to store all the z vectors, layer by layer for b, w in zip(self.biases, self.weights): z = np.dot(w, activation)+b zs.append(z) activation = sigmoid(z) activations.append(activation) # backward pass delta = (self.cost).delta(zs[-1], activations[-1], y) nabla_b[-1] = delta nabla_w[-1] = np.dot(delta, activations[-2].transpose()) for l in xrange(2, self.num_layers): z = zs[-l] sp = sigmoid_prime(z) delta = np.dot(self.weights[-l+1].transpose(), delta) * sp nabla_b[-l] = delta nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) return (nabla_b, nabla_w) def accuracy(self, data, convert=False): """ Return the number of inputs in ``data`` for which the neural network outputs the correct result. The output of binary neural networks is the activation of the output neuron. The output of other neural networks is assumed to be the index of whichever neuron in the final layer has the highest activation. """ if self.sizes[-1] == 1: if convert: results = [(np.amax(self.feedforward(x)), np.amax(y)) for (x, y) in data] else: results = [(np.amax(self.feedforward(x)), y) for (x, y) in data] correct = [0,0] total = [0,0] for (x, y) in results: total[y] += 1 correct[y] += int(int(round(x)) == y) msg = " Correct positives: {} / {} = {:.2f} %\n Correct negatives = {} / {} = {:.2f} %".format( correct[1],total[1],100.0*correct[1]/total[1],correct[0],total[0],100.0*correct[0]/total[0]) return correct[0] + correct[1], msg else: if convert: results = [(np.argmax(self.feedforward(x)), np.argmax(y)) for (x, y) in data] else: results = [(np.argmax(self.feedforward(x)), y) for (x, y) in data] return sum(int(x == y) for (x, y) in results), "" def total_cost(self, data, lmbda, convert=False): """Return the total cost for the data set ``data``.""" cost = 0.0 for x, y in data: a = self.feedforward(x) if convert: y = vectorize_result(y, self.sizes[-1]) cost += self.cost.fn(a, y)/len(data) cost += 0.5*(lmbda/len(data))*sum( np.linalg.norm(w)**2 for w in self.weights) return cost #### Miscellaneous functions def vectorize_result(j, n_out): """Creates a vector from the expected result in order to compare to the output.""" res = np.zeros((n_out, 1)) if n_out == 1: res[0] = j else: res[j] = 1.0 return res def sigmoid(z): """The sigmoid function.""" return 1.0/(1.0+np.exp(-z)) def sigmoid_prime(z): """Derivative of the sigmoid function.""" return sigmoid(z)*(1-sigmoid(z))
c68bdf4de0eb6e6dda0a2fdc071f23edec3d6185
falakjain98/10-Days-of-Statistics
/Day 1/Standard-Deviation.py
300
3.78125
4
# Enter your code here. Read input from STDIN. Print output to STDOUT import math n = int(input()) a = input() nums=[] for i in a.split(' '): nums.append(int(i)) mean = sum(nums)/n sqd = [] for i in range(n): sqd.append((nums[i] - mean)**2) sigma = round(math.sqrt(sum(sqd)/n),1) print(sigma)
2347d5071cf613004a8216fa9fb0be9b65196f09
Vaibhav3007/Python_List
/LongestInList.py
303
4.03125
4
a = [] n = int(input("Enter the number of elements in list: ")) for x in range(0,n): elements = input("Enter element" + str(x+1) + ":") a.append(elements) maxx = 0 for i in range(n): if len(a[i]) > maxx: maxx = len(a[i]) j = i print("Longest word in the list",a,"is",a[j])
2b16a928176dd829c28fe2ee5c95ed94658c6008
yashkumarsingh99/tathastu_week_of_code
/day1/Prog2.py
132
4.15625
4
number = float(input("Enter the number to get the square root: ")) sqrt = number ** 0.5 print("Square root of", number ,"is", sqrt)
3d562305318506e69eed83fe88f4676d09d57f90
isisisisisitch/geekPython
/homework/listpractice02.py
292
3.9375
4
# 2. 2.1给定2个list 2.2从这2个list当中取出公共部分 # # list1=[1,2,3,4] # # list2=[1,2,5] # # Com = [1,2] list1=[1,2,3,4] list2=[1,2,5] com=[] for i in range(len(list1)): for j in range(len(list2)): if list2[j]==list1[i]: com.append(list2[j]) print(com)
cfeb2b9d36ddfb3b7d545256ef6947293b5cea0f
aditidesai27/wacpythonwebinar
/DAY02/2.1declaring_attribute.py
230
3.53125
4
class Student: def __init__(self, first, last, enroll): self.fname = first self.lname = last self.roll = enroll st1 = Student("Neeraj", "Sharma", 31) print(st1.fname) print(st1.lname)
ece8b4216d88d61ec1faa60a79d6ab2b5699b7f0
ManuelsPonce/ACC_ProgrammingClasses
/COSC1336-IntroToProgramming/Test/Test 2/2-1.py
1,634
4.0625
4
def main(): try: numGrade1=float(input('Enter first grade: ')) #ASKS USER FOR 5 GRADES numGrade2=float(input('Enter second grade: ')) numGrade3=float(input('Enter third grade: ')) numGrade4=float(input('Enter fourth grade: ')) numGrade5=float(input('Enter fifth grade: ')) print('The average test score is: ', calc_average(numGrade1, numGrade2, numGrade3, numGrade4, numGrade5)) #SENDS GRADES TO calc_average() determine_grade(numGrade1) print('Student one got a: ',determine_grade(numGrade1)) # PRINTS THE LETTER SCORE BY SENDING GRADES TO determine_grade() print('Student two got a: ',determine_grade(numGrade2)) print('Student three got a: ',determine_grade(numGrade3)) print('Student four got a: ',determine_grade(numGrade4)) print('Student five got a: ',determine_grade(numGrade5)) except ValueError: #IF THERE IS A ERROR WITH USER PUTTING WRONG VALUE THIS WILL DISPLAY print("Non-numerical value error. Use digits and '.'.") except: #IF THERE IS ANY OTHER ERROR THIS WILL DISPLAY print('An error occured.') def calc_average(a,b,c,d,e): return(a+b+c+d+e)/5 #RETURNS AN AVERAGE OF THE GRADE def determine_grade(g): if g>90: #USES LOGIC TO FIT THE NUMBER INTO A RANGE AND DETERMINE LETTER SCORE return 'A' elif g>80: return 'B' elif g>70: return 'C' elif g>60: return 'D' elif g<60: return 'F' main()
0a38bae9b3bc7b08f98d8f59f692170b3e393700
JeffLutzenberger/project-euler
/20.py
180
3.515625
4
def fact(n): ans = 1 for i in range(1, n): ans *= i return ans ans = fact(100) sum_digits = 0 for i in str(ans): sum_digits += int(i) print(sum_digits)
97adf67e15070c180fe64d956d430197ae4d038e
panasabena/PythonExercises
/Ejercicio 11 Udemy de 0 a Master.py
278
4.15625
4
#(3) Escribir un programa que pregunte al usuario su edad y muestre #por pantalla todos los años que ha cumplido (desde 1 hasta su edad). edad=int(input("Ingrese su edad: ")) numero=0 while numero< edad: numero+=1 print("Usted ha cumplido", numero, "años alguna vez")
6102ef9f156e84f8fdea6bf7016802a5e415e103
KubaWasik/object-oriented-programming-python
/student.py
4,962
3.953125
4
class Pupil: """Klasa Pupil zawierająca dane o uczniu oraz jego ocenach i wagach""" grades = [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0] def __init__(self, name="Nieznane", surname="Nieznane"): self.name = name self.surname = surname self.marks = {} @property def name(self): return self._name @name.setter def name(self, new_name): if len(new_name) >= 3 and new_name.isalpha(): self._name = new_name else: print('Imię musi składać się z co najmniej 3 liter i ' + 'zawierać tylko litery\nUstawiono "Nieznane"') self._name = "Nieznane" @property def surname(self): return self._surname @surname.setter def surname(self, new_surname): if len(new_surname) >= 3 and new_surname.isalpha(): self._surname = new_surname else: print('Nazwisko musi składać się z co najmniej 3 liter i ' + 'zawierać tylko litery\nUstawiono "Nieznane"') self._surname = "Nieznane" @property def marks(self): return self._marks @marks.setter def marks(self, new_marks): tmp = {} for mark in new_marks: if new_marks[mark] in Pupil.grades: tmp[mark] = new_marks[mark] else: print("Dla przedmiotu", mark, "ocena była niepoprawna, nie dodano do dziennika!") self._marks = tmp @marks.deleter def marks(self): self._marks = {} def complete_marks(self, new_marks): tmp = {} for mark in new_marks: if new_marks[mark] in Pupil.grades: tmp[mark] = new_marks[mark] else: print("Dla przedmiotu", mark, "ocena była niepoprawna, nie dodano do dziennika!") self._marks = tmp def print_marks(self): print("Oceny:\n") for mark in self.marks: print(str(mark) + ": " + str(self.marks[mark])) def mean(self): if self.marks: return sum(self.marks.values()) / len(self.marks.values()) else: return "Dziennik jest pusty!" def __repr__(self): values = ', '.join(('{} = {!r}'.format(k.lstrip('_'), v) for k, v in self.__dict__.items())) return '{}({})'.format(self.__class__.__name__, values) def __str__(self): description = "Imię:\t\t{0.name}\nNazwisko:\t{0.surname}\n".format(self) description += "Średnia ocen:\t{}".format(self.mean()) return description class Student(Pupil): def __init__(self, name="Nieznane", surname="Nieznane", weights=None): super().__init__(name, surname) if weights is None: weights = {} self.weights = weights @property def weights(self): return self._weights @weights.setter def weights(self, new_weights): tmp = {} for mark in new_weights: if isinstance(new_weights[mark], float) and (0 < float(new_weights[mark]) <= 1): tmp[mark] = new_weights[mark] else: print("Dla przedmiotu ", mark, " waga była niepoprawna, nie dodano do dziennika!") self._weights = tmp @weights.deleter def weights(self): self._weights = {} def complete_weights(self, new_weights): for mark in new_weights: if 0 < new_weights[mark] <= 1: self._weights[mark] = new_weights[mark] else: print("Dla przedmiotu ", mark, " waga była niepoprawna, nie dodano do dziennika!") def mean(self): if self.marks: avg_sum = 0.0 avg_wei = 0.0 for mark in self.marks: if mark in self.weights and self.weights[mark]: avg_sum += self.marks[mark] * self.weights[mark] avg_wei += self.weights[mark] else: print("Brak wagi dla przedmiotu ", mark, "\nDodaję z wagą 0.5") avg_sum += self.marks[mark] * 0.5 avg_wei += 0.5 return avg_sum / avg_wei else: return "Dziennik jest pusty!" def main(): jozef = Pupil("Jozef", "Kowalski") jozef.marks = { "Chemia": 4.0, "Biologia": 3.5, "Matematyka": 5.5, "Informatyka": 6.0, "WF": 5.0 } print(jozef) print() frank = Student("Franciszek", "Nowak") frank.marks = { "Chemia": 4.0, "Biologia": 3.5, "Matematyka": 5.5, "Informatyka": 6.0, "WF": 5.0 } frank.weights = { "Chemia": 0.3, "Biologia": 0.673684, "Matematyka": 1.0, "Informatyka": 0.987654321, "WF": 0.4 } print(frank) if __name__ == "__main__": main()
88b49484b94ec00a2700245de6aab09c02e5ad13
homawccc/PythonPracticeFiles
/simple_addition.py
155
3.515625
4
def simple_addition(num1, num2): answer = num1 + num2 print(answer) simple_addition(123,456) x = [ [2,6],[6,2],[8,2],[5,12] ] print(x[2][0])
6ae8fd546159d8e5653db74c3d6469a892eb4ea3
Colaplusice/algorithm_and_data_structure
/LeetCode/week_38/107_二叉树的层次遍历2.py
1,645
3.984375
4
# 给定一个二叉树,返回其节点值自底向上的层次遍历。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历) # 例如: # Definition for a binary tree node. from collections import deque, defaultdict class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def levelOrderBottom(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ if not root: return root node_list = deque() node_list.append((root, 0)) node_dict = defaultdict(list) node_dict[0] = [root.val] while node_list: current_node, node_level = node_list.popleft() if current_node.left: node_dict[node_level + 1].append(current_node.left.val) node_list.append((current_node.left, node_level + 1)) if current_node.right: node_dict[node_level + 1].append(current_node.right.val) node_list.append((current_node.right, node_level + 1)) result = sorted(node_dict.items(), reverse=True, key=lambda x: x[0]) return list(map(lambda x: x[1], result)) # return [value for value in node_dict.values()] if __name__ == "__main__": atree = TreeNode(1) btree = TreeNode(2) ctree = TreeNode(3) dtree = TreeNode(4) etree = TreeNode(5) atree.left = btree atree.right = ctree btree.left = dtree ctree.right = etree sol = Solution() result = sol.levelOrderBottom(atree) print(result)
3130937d3e55207ee020c8c35ad40b892c1d23f7
stanislavkozlovski/python_exercises
/hackerrank/algorithms/strings/camel_case.py
186
4.15625
4
# https://www.hackerrank.com/challenges/camelcase string = input() upper_case_words = 1 for char in string: if char.isupper(): upper_case_words += 1 print(upper_case_words)
9c14a4f7a72c6f7c0d7861c469d7ff5981b335e2
nlscng/ubiquitous-octo-robot
/p000/problem-74/CountInMulitiplicatinoTable.py
1,288
3.890625
4
# Good morning! Here's your coding interview problem for today. # # This problem was asked by Apple. # # Suppose you have a multiplication table that is N by N. That is, a 2D array where the value at the i-th row and # j-th column is (i + 1) * (j + 1) (if 0-indexed) or i * j (if 1-indexed). # # Given integers N and X, write a function that returns the number of times X appears as a value in an N by N # multiplication table. # # For example, given N = 6 and X = 12, you should return 4, since the multiplication table looks like this: # # | 1 | 2 | 3 | 4 | 5 | 6 | # # | 2 | 4 | 6 | 8 | 10 | 12 | # # | 3 | 6 | 9 | 12 | 15 | 18 | # # | 4 | 8 | 12 | 16 | 20 | 24 | # # | 5 | 10 | 15 | 20 | 25 | 30 | # # | 6 | 12 | 18 | 24 | 30 | 36 | # # And there are 4 12's in the table. ''' n = 2 x = 3 1 2 2 4 ''' def count_appearance(n: int, x: int) -> int: # this is O(n) in time, O(1) in space # assume 1-indexed if x > n * n: return 0 count = 0 for i in range(1, n+1): rem = x % i if rem == 0 and x // i <= n: count += 1 return count assert count_appearance(1, 1) == 1 assert count_appearance(2, 2) == 2 assert count_appearance(2, 3) == 0, "actual: {}".format(count_appearance(2, 3)) assert count_appearance(6, 12) == 4
05f33d7507e4025c012f35241413ccf03d5b0139
scMarth/Learning
/python/rounding.py
1,261
4.03125
4
import decimal # python by default will round down on a half decimal: # php by default rounds up half decimals print(0.5555) print(round(0.5555, 3)) # https://stackoverflow.com/questions/33019698/how-to-properly-round-up-half-float-numbers-in-python num = 0.5555 dec = decimal.Decimal(num) # rounded = dec.quantize(decimal.Decimal(0.001), rounding=decimal.ROUND_HALF_UP) # error # rounded = dec.quantize(decimal.Decimal('0.001'), rounding=decimal.ROUND_HALF_UP) # no error 0.555 # rounded = dec.quantize(decimal.Decimal('0.001'), rounding=decimal.ROUND_UP) # no error 0.556 rounded = dec.quantize(decimal.Decimal('1.111'), rounding=decimal.ROUND_UP) # no error 0.556 print(rounded) # NOTE: to see why there are errors, see the comment block below test = decimal.Decimal('1.111') test2 = decimal.Decimal(1.111) test3 = decimal.Decimal(str(1.111)) print(test) print(test2) print(test3) print(test == test3) # True print(float(test3)) # 1.111 ''' https://stackoverflow.com/questions/588004/is-floating-point-math-broken This is the case because of how floating point is stored with finite precision, and there are cases where the a number cannot be exactly represented. ''' print(0.1 + 0.2 == 0.3) # False print(0.1 + 0.2) # prints 0.30000000000000004
da2e01fc589fc1c569a5fe0e4e0a7275a11d49a4
rhkd1129/Algorithm
/inflearn/sec02/8/AA.py
450
3.640625
4
# 뒤집은 소수 import sys #sys.stdin = open('input.txt', 'rt') n = int(input()) arr = list(map(int, input().split())) def reverse(x): str_x = str(x) tmp = '' for i in range(len(str_x)): tmp += str_x[len(str_x)-i-1] return int(tmp) def isPrime(x): for i in range(2, x): if x%i==0: return False return True for i in arr: tmp = reverse(i) if isPrime(tmp): print(tmp, end=' ')
319a09ad13f7ca9a46a22db583928752b8f109be
VilenShvedov/Myprojects
/hometask002.py
611
3.8125
4
'''user_number = input('Enter some number please from 1 to 100') if int(user_number) % (3 or 5) == 0: print(str(user_number) + ' FizzBuzz') elif int(user_number) % (3 or 5) == 1: print(str(user_number)) elif pint(user_number) % 3 == 0: print(str(user_number + ' Is a fizz')) if int(user_number) % 5 == 0: print(str(user_number) + ' Is a buzz')''' for num in range(0, 100): string = "" if num % 3 == 0: string = string + "Fizz" if num % 5 == 0: string = string + "Buzz" if num % 5 != 0 and num % 3 != 0: string = string + str(num) print(string)
15827661617839596229859a1a6d99c5c20d89b3
hershsingh/manim-dirichlet
/play.py
10,400
3.921875
4
#!/bin/python ### # from manim import * import manim class Example(manim.Scene): def construct(self): circle = manim.Circle() # create a circle circle.set_fill(manim.PINK, opacity=0.5) # set the color and transparency anim = manim.Create(circle) self.play( anim ) # show the circle on screen # class Complex: # def __init__(self, real, imag): # # print("Inside constructor") # self.real = real # self.imag = imag # def __repr__(self): # return "{:f} + i{:f}".format(self.real, self.imag) # def __add__(self, z): # real = self.real + z.real # imag = self.imag + z.imag # return Complex(real, imag) # class ComplexUnit(Complex): # def __init__(self, real, imag): # super().__init__(real, imag) # self.norm = (self.real**2 + self.imag**2)**(0.5) # self.real /= self.norm # self.imag /= self.norm # self.norm = 1.0 # def __add__(self, z): # real = self.real + z.real # imag = self.imag + z.imag # return ComplexUnit(real, imag) # x = ComplexUnit(2.0, 3.0) # y = ComplexUnit(2.0, 3.0) # ### # # Complex() => # # 1. Allocate memory for object "x" of type "Complex" # # 2. Call the function: Complex.__init__(x) # # x = Complex(1.0, 2.0) # # y = Complex(1.0, 2.0) # # x + y => x.__add__(y) # # x + y => add(x,y) => add_int(x, y) # # x + y => x.add(y) # # add(x,y) # # add(int, int) => add_int() # # add(float, float) => add_float() # # add(float, int) => add_float_int() # # add(int, float) .. # # add(str, str) .. # # import random # # import numpy as np # # import scipy as sp # # from matplotlib import pyplot as plt # # # vertices =[ # # # np.array([0,0, 0]), # # # np.array([0 ,0 ,0]), # # # np.array([4,1,0]), # # # np.array([2 ,0 ,0]) # # # ] # # # vertices =[ # # # np.array([-1]), # # # np.array([0]), # # # np.array([-4]), # # # np.array([2]) # # # ] # # # circle = Circle() # create a circle # # # circle.set_fill(PINK, opacity=0.5) # set the color and transparency # # # self.play(Create(circle)) # show the circle on screen # # # cubicBezier = CubicBezier(*vertices) # # # # self.play(Create(cubicBezier)) # # # p1 = np.array([-3, 1, 0]) # # # p1b = p1 + [1, 0, 0] # # # d1 = Dot(point=p1).set_color(BLUE) # # # l1 = Line(p1, p1b) # # # p2 = np.array([3, -1, 0]) # # # p2b = p2 - [1, 0, 0] # # # d2 = Dot(point=p2).set_color(RED) # # # l2 = Line(p2, p2b) # # # bezier = CubicBezier(p1b, p1b + 2*RIGHT + 2*UP, p2b - 3 * RIGHT, p2b) # # # self.add(l1, d1, l2, d2, bezier) # # # self.add(bezier) # # # self.add(bezier) # # # points = [p1] # # # points += [points[-1] + 2*RIGHT+2*UP] # # # points += [points[-1] + 1*RIGHT] # # axes = Axes( # # x_range=[-2, 10, 1], # # y_range=[-2, 10, 1], # # # x_length=10, # # axis_config={"color": GREEN}, # # # x_axis_config={ # # # "numbers_to_include": np.arange(-10, 10.01, 2), # # # "numbers_with_elongated_ticks": np.arange(-10, 10.01, 2), # # # }, # # tips=False, # # ) # # # axes_labels = axes.get_axis_labels() # # # sin_graph = axes.get_graph(lambda x: np.sin(x), color=BLUE) # # # cos_graph = axes.get_graph(lambda x: np.cos(x), color=RED) # # # sin_label = axes.get_graph_label( # # # sin_graph, "\\sin(x)", x_val=-10, direction=UP / 2 # # # ) # # # cos_label = axes.get_graph_label(cos_graph, label="\\cos(x)") # # # vert_line = axes.get_vertical_line( # # # axes.i2gp(TAU, cos_graph), color=YELLOW, line_func=Line # # # ) # # # line_label = axes.get_graph_label( # # # cos_graph, "x=2\pi", x_val=TAU, direction=UR, color=WHITE # # # ) # # plot = VGroup(axes) # # # labels = VGroup(axes_labels, sin_label, cos_label, line_label) # # grid = NumberPlane((-2, 10), (-2, 10)) # # # self.add(grid) # # # self.wait() # # # p1 = ORIGIN # # # points = [p1, p1 + 2*RIGHT+2*UP] # # # handles = [[2*UP + RIGHT, -RIGHT - UP]] # # # points += [points[-1] + 1*RIGHT] # # # handles += [[-handles[-1][1], -RIGHT - UP]] # # # points += [points[-1] + 1*RIGHT] # # # handles += [[-handles[-1][1], -RIGHT - UP]] # # # # handles += [[2*UP + RIGHT, 0*LEFT]] # # self.x = 1 # # num_points = 2 # # def get_new_point(): # # sign = random.choice([-1,1]) # # if random.randint(0,1) == 0: # # return [sign, random.random(), 0.0] # # else: # # return [random.random(), sign, 0.0] # # # k = 0 # # # N = 10 # # origin = [1.,1.,0.] # # def point_generator(N=10): # # k = 0 # # r = 3 # # first = [] # # while k <= N: # # if k==N: # # yield first # # x = origin[0] + r*(np.cos(k*2*np.pi/N)) # # y = origin[1] + r/2*np.sin(k*2*np.pi/N) # # noise = np.array([random.random(), random.random(), 0.0]) # # noise = 0.2*(2*noise - 1) # # dd = random.random()*0.5 + 0.5 # # dx = -dd*np.sin(k*2*np.pi/N) # # dy = dd/2*np.cos(k*2*np.pi/N) # # p = np.array([x,y,0.0])+ noise # # dp = np.array([dx, dy, 0.0]) # # if k==0: # # first = [p, dp] # # k += 1 # # yield np.array([x,y,0.0])+ noise, np.array([dx, dy, 0.0]) # # N = 10 # # pts = point_generator(N=N) # # def get_new_point(): # # return next(pts) # # # print("points") # # # print(next(pts)) # # # print(next(pts)) # # # print(next(pts)) # # # print(next(pts)) # # # print(next(pts)) # # # return # # def get_dx(): # # xx= np.array([1.0, 0.3*random.random(), 0.0]) # # # return 0.4 * xx/sum(xx**2) # # return 0.4 * xx/sum(xx**2) # # # dx1 = RIGHT + UP # # # last_dx = dx1 + get_dx() # # # last_dx = # # # bez = BezierCurve(ORIGIN, dx1, p1 + get_new_point(), last_dx ) # # x, dx = get_new_point() # # x2, dx2 = get_new_point() # # bez = BezierCurve(x, dx, x2, dx2) # # # print(dx1, last_dx) # # # bez.add_point_delta(RIGHT+UP, 0.5*(RIGHT+UP)) # # for i in range(N-1): # # # last_dx += get_dx() # # x,dx = get_new_point() # # # print(i, pt) # # bez.add_point(x, dx) # # # last_dx += get_dx() # # # bez.add_point_delta(get_new_point(), get_dx()) # # self.bez = bez # # # grp = VGroup([bez.get_bezier(i) for i in range(N)]) # # # self.play(Create(grp)) # # # self.play(Create(*[bez.get_bezier(i) for i in range(N)])) # # self.bl = [bez.get_bezier(i) for i in range(N)] # # # self.play(Create(self.bl[0]), Create(self.bl[1])) # # b = self.bl[0] # # b.add(*self.bl[1:]) # # grp = VGroup(*self.bl) # # # self.play(FadeIn(grid)) # # self.play(Create(plot), run_time=2) # # # self.play(Create(grid)) # # self.play(Create(grp), run_time=3, rate_func=rate_functions.linear) # # grid_config = { # # # "axis_config": { # # # "stroke_color": WHITE, # # # "stroke_width": 2, # # # "include_ticks": False, # # # "include_tip": False, # # # "line_to_number_buff": SMALL_BUFF, # # # "label_direction": DR, # # # "number_scale_val": 0.5, # # # }, # # # "y_axis_config": { # # # "label_direction": DR, # # # }, # # "background_line_style": { # # "stroke_color": BLUE_D, # # "stroke_width": 2, # # "stroke_opacity": 1, # # }, # # # Defaults to a faded version of line_config # # # "faded_line_style": None, # # # "x_line_frequency": 1, # # # "y_line_frequency": 1, # # # "faded_line_ratio": 1, # # # "make_smooth_after_applying_functions": True,} # # } # # grid = NumberPlane((-2, 10), (-2, 10), **grid_config) # # self.play(FadeIn(grid)) # # # self.add(grid) # # # Line # # self.wait(1) # # # for i in range(bez.get_length()-1): # # # # for i in range(1): # # # # self.add(bez.get_bezier(i)) # # # # self.add(*bez.get_handles(i)) # # # self.play(Create((bez.get_bezier(i)))) # # # # self.add(*bez.get_handles(i)) # # # # self.play(bez) # show the circle on screen # # # s = Example() # # # s.construct() # # # print("adsd") # # ## # # p = np.array([3.0,2.1]) # # def check_int(p): # # """Return 0,1,2,3 depending on whether either of (x,y) is an integer""" # # return sum(np.isclose(p%1, 0)*[2,1]) # # def check_entry_exit(p, theta): # # """Whether a line is entering or exiting depends on the slope""" # # c = check_int(p) # # if c==1: # (x,y) y is integer. Intersects horizontal grid # # if theta>0 and theta<np.pi: # # return 0 # entry # # else: # # return 1 # exit # # elif c==2: # Intersects vertical grid # # if theta>PI/2 and theta < (3/2)*PI: # # return 0 # entry # # else: # # return 1 # exit # # else: # # return -1 # At a strange place # # def get_next_bdy(p): # # # check whether we intersect vertical or horizontal grid # # c = check_int(p) # # # choices = [[]] # # print(check_int(p)) # # ### # # n = 10 # # [1]*n + [-1]*n
136fd7da997780307137197a91f108864e4e3b83
Yasin-Shah/dataquest-projects
/Project 9 - Working with Data Downloads/enrollment.py
812
3.578125
4
import pandas as pd data = pd.read_csv("data/CRDC2013_14.csv", encoding = "Latin-1") data["total_enrollment"] = data["TOT_ENR_M"] + data["TOT_ENR_F"] all_enrollment = data["total_enrollment"].sum() school_enrollment = [ 'SCH_ENR_HI_M', 'SCH_ENR_HI_F', 'SCH_ENR_AM_M', 'SCH_ENR_AM_F', 'SCH_ENR_AS_M', 'SCH_ENR_AS_F', 'SCH_ENR_HP_M', 'SCH_ENR_HP_F', 'SCH_ENR_BL_M', 'SCH_ENR_BL_F', 'SCH_ENR_WH_M', 'SCH_ENR_WH_F', 'SCH_ENR_TR_M', 'SCH_ENR_TR_F' ] percentages = {} for col in school_enrollment: percentages[col] =100 * data[col].sum() / all_enrollment genders = ["TOT_ENR_M", "TOT_ENR_F"] genderpercentages = {} for col in genders: genderpercentages[col] =100 * data[col].sum() / all_enrollment print(percentages) print(genderpercentages)
83feaeb5c4761021cfff63227c09d1d64ba4f907
JCOUO/0820
/THE USELESS THING.py
1,961
3.625
4
# -*- coding: utf-8 -*- """ Created on Thu Aug 20 11:11:38 2020 @author: user """ d = {} print ("THE USELESS THING EVER !!!!") while True : print('1.SET ') print('2.LIST ALL THE WORD ') print('3.ENG TO CH ') print('4.CH TO ENG ') print('5.TEST ') print('6.QUIT ') option = input(" YOUR NUM : ") if option == '6' : break elif option == '1' : while True : voc = input('YOUR ENG (PRESS 0 TO QUIT):') if voc == '0' : break if voc not in d : voc_ch = input("ENTER CH :") d[voc] = voc_ch else: print ("NOPE") elif option == '2': s = sorted(d) print(s) for i in s: print(i,':',d[i]) elif option == '3': while True: voc = input ('YOUR CH (PRESS 0 TO QUIT) :') if voc == '0': break if voc in d: print(voc,'CH IS : ',d[voc]) else: print("CAN'T FOUND THIS WORD") elif option == '4': while True: got = False ch = input("YOUR CH (PRESS 0 TO QUIT) :") if ch == '0': break for k,v in d.items(): if ch == v: print (ch,"ENG IS",k) got = True if got == False: print("CAN'T FOUND THIS WORD") elif option == '5': s = 0 for k,v in d.items() : print (v,':') ans = input() if ans == k: s += 1 print ("YEEEA") else: print('NOPE') print("YOU GOT",s)
4e8a1820a6a2471ad67290e96d0f6c29ea47f42e
Chalmiller/competitive_programming
/python/leetcode_top_interview_questions/dynamic_programming/jump_game.py
536
3.90625
4
from typing import * import unittest class Solution: def canJump(self, nums: List[int]) -> bool: max_reach, n = 0, len(nums) for i, num in enumerate(nums): if max_reach < i: return False if max_reach >= n-1: return True max_reach = max(max_reach, i+num) class TestJumpGame(unittest.TestCase): def test_can_jump(self): nums = [3,2,1,0,4] self.assertTrue(Solution().canJump(nums), "Should be True") unittest.main(verbosity=2)
031ca253207b074370573b421b1356c89274d245
wufanwillan/leet_code
/Maximum Depth of Binary Tree.py
1,117
4.03125
4
# Given a binary tree, find its maximum depth. # The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node. # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def maxDepth(self, root): """ :type root: TreeNode :rtype: int """ if not root: return 0 count=1 deque1=collections.deque([root]) deque2=collections.deque([]) while True: while True: root=deque1.pop() if root.left or root.right: if root.left: deque2.append(root.left) if root.right: deque2.append(root.right) if not deque1: break if deque2: count+=1 deque1,deque2=deque2,deque1 else: break return count
e0b348468128281de8f6be605b7bbaa5b0d9f521
sarahhabershon/birdoftheyear_preferential_voting
/preferential_voting.py
2,056
3.578125
4
import csv import copy import codecs data = open('votes_all.csv', encoding="utf8") vote_list = csv.reader(data) finalScores = [] def cleanData(x): clean_birds = [] for row in x: length = len(row) makeListsEqualLength(row, length) clean_birds.append(row) return clean_birds def makeListsEqualLength(row, length): x = 0 req = 6 - length while x < req: row.append("novote") x+=1 def createScoreboard(x): scoreDict = {} for vote in x: isitthere = scoreDict.get(vote[1], False) if isitthere == False: scoreDict[vote[1]] = 1 else: scoreDict[vote[1]] +=1 return scoreDict def youAreTheWeakestLink(x, y): global finalScores localcopy = copy.deepcopy(x) # create a local copy of the scoreboard dict for burd, score in localcopy.items(): #for each bird in the copy minvalue = min(x.values()) #find the bird with the lowest score if score == minvalue: #check the score to see if it's the lowest scoring bird loser = burd #if it is, it's the loser finalScores.append([burd, score])# add its final score to the finalscore object del x[burd] #deletes the loser from the scoreboard contender = nextPlease(y, burd) #identifies the next contender levelUp(x, contender) #adds a vote to the second preference return(finalScores) def nextPlease(votes, loser): for vote in votes: if vote[1] == loser: del vote[0] vote.append("novote") return vote[1] def levelUp(x, contender): if contender in x: x[contender] += 1 def burdIsTheWord(x, y): minvalue = min(x.values()) while len(x) > 0: youAreTheWeakestLink(x, y) cleanVoteList = cleanData(vote_list) scoreboard = createScoreboard(cleanVoteList) burdIsTheWord(scoreboard,cleanVoteList) # with open('birdoftheyear.csv', "w", "utf-8-sig", newline="") as csv_file: # writer = csv.writer(csv_file) # for bird in finalScores: # writer.writerow([bird[0], bird[1]]) with codecs.open("birdoftheyear.csv", "w", "utf-8-sig") as csv_file: writer = csv.writer(csv_file) for bird in finalScores: writer.writerow([bird[0], bird[1]])
b56ef0e786627a2a5edcb4329c52795a9713bcfd
WeDias/RespCEV
/Exercicios-Mundo2/ex049.py
172
3.953125
4
num1 = int(input('Digite Um Numero Para Ver Sua Tabuada:')) num2 = 0 for num2 in range(1, 11): mult = num1 * num2 print('{}X{} = {}'.format(num1, num2, mult))
1ed76c415eb2d7d1081a6bd1793c24257d91494f
liweiwei1419/Machine-Learning-is-Fun
/Mathematics-learning/fibonacci_demo.py
625
4
4
class Fibonacci(object): ''' 返回一个 fibonacci 数列''' def __init__(self): self.fList = [0, 1] # 设置初始的列表 self.main() def main(self): listLen = input("请输入的 fibonacci 数列的长度:") while len((self.fList)) < int(listLen): self.fList.append(self.fList[-1] + self.fList[-2]) print("得到的 Fibonacci 数列为:\n %s" % self.fList) def checkLen(self,lenth): lenList = map(str,range(3,51)) for item in lenList: print(item) if __name__ == '__main__': f = Fibonacci() f.checkLen(10)
11d30722b9e1bcefe29127ad51752c47d12b6d81
FelixZFB/Python_advanced_learning
/02_Python_advanced_grammar_supplement/001_9_高级语法(魔法属性-init-module-class-call)/002_魔法属性__call__str__方法.py
760
4.09375
4
# __call__方法:实例化对象后面加括号,触发执行。 # 注:__init__方法的执行是由创建对象自动触发的,即:对象 = 类名() ; # 而对于 __call__ 方法的执行是由对象后加括号触发的,即:对象() 或者 类()() class Foo(object): def __init__(self): pass def __call__(self, *args, **kwargs): print("__call__") def __str__(self): return "获取对象描述时候自动调用" obj = Foo() # 自动执行__init__方法 obj() # 执行__call__方法 # __str__获取对象描述时候自动调用,有以下两种方式调用对象描述 # 方式1:直接打印对象,返回__str__的返回值 print(obj) # 方式2: 使用格式化输出 print("方式2:%s" % obj)
44a84208fbff9098bfa62e57c0e815a42bfa2bf1
kthdd1234/basic-python-syntax
/class instance.py
839
3.9375
4
# 클래스(class): 함수나 변수들을 모아 놓은 집합체 # 인스턴스(instance): 클래스에 의해 생성된 객체, 인스턴스 각자 자신의 값을 가지고 있다. numbers1 = [] numbers2 = list(range(10)) characters = list('Harry') print(characters) numbers1 == list # 같지 않음 # 클래스 만들기 # 클래스와 인스턴스를 이용하면 데이터와 코드를 사람이 이해하기 쉽게 포장할 수 있다. class Human(): """person""" def speak(person): print('{}이 {}로 말을 합니다.'.format(person.name, person.language)) person1 = Human() person2 = Human() person1.language = '한국어' person2.language = 'English' print(person1.language) print(person2.language) person1.name = '손흥민' person2.name = 'Harry Kane' Human.speak = speak person1.speak() person2.speak()
0883ee1e5d6b72ca1c2c31980b1b5aefb40744dd
green-fox-academy/Atis0505
/week-05/day-03/min_max_diff.py
561
3.953125
4
# Create a function called `min_max_diff` that takes a list of numbers as parameter # and returns the difference between maximum and minimum values in the list # Create basic unit tests for it with at least 3 different test cases def min_max_diff(number_list): if len(number_list) == 1: return number_list[0] elif type(number_list) == None: return False elif len(number_list) >= 2: max_number = max(number_list) min_number = min(number_list) diff_min_max = max_number - min_number return diff_min_max
1a4d4960ad651a4cf7bb48859a4252b6d4a00e1c
Tesla99977/Homework-Tasks-
/Python ДЗ/14.py
157
3.671875
4
s = float(input()) r = float(input()) k = float(input()) if (s**0.5)/2 > r and ((s**0.5-k)/2 >= r) : print("Можно") else: print("Нельзя")
109026b92a9c40e56c91c9e2ccba768b70331047
Muhammad-CS/Missing-Operator-Calculator
/Missing Operator Calculator.py
2,339
3.765625
4
import itertools string='1?2?3' def operation_counter(string): count = 0 for i in string: if (i == '?'): count += 1 else: pass return count def q_positions(string): positions = [] for i in range(len(string)): if (string[i] == '?'): positions.append(i) return positions def string_char_replacer(string,newstring,index): string = string[:index] + newstring + string[index + 1:] return string def parenthesize(string): operators = ['?'] depth = len([s for s in string if s in operators]) if depth == 0: return [string] if depth== 1: return ['('+ string + ')'] answer = [] for index, symbol in enumerate(string): if symbol in operators: left = string[:index] right = string[(index+1):] strings = ['(' + lt + ')' + symbol +'(' + rt + ')' for lt in parenthesize(left) for rt in parenthesize(right) ] answer.extend(strings) return answer def operation_replacer(string): opr = ['+', '-', '*', '/'] operation_numbers = operation_counter(string) products = list(itertools.product(opr, repeat=operation_numbers)) #print(products) return products def single_operation_list(string): single_operators = [] for i in range(len(string)): char = string[i] if (char == "'" and string[i+1] != "," and string[i+1] != ")"): single_operator = string[i+1:i+2] single_operators.append(single_operator) return single_operators exp= parenthesize(string) opr_tuple = operation_replacer(string) opr = [] for i in opr_tuple: tuple = str(i).replace(' ', '') opr.append(tuple) for i in exp: for j in opr: h = single_operation_list(j) spare = i for l in h: i = i.replace('?',l,1) find_q = i.find('?') if (find_q == -1): try: evaluation = str(eval(i)) except ZeroDivisionError: evaluation = 'Division By Zero!' print(i + ' = ' + evaluation) else: pass i = spare
49c74b6bd6ee672a40cc576d8c97150f42e9eb99
igorverse/CC8210-programacao-avancada-I
/aulas_de_lab/aula6/ex3.py
1,216
4.15625
4
''' Faça uma função chamada contaPalavras que receba uma String e que conte a quantidade de incidências de todas as palavras em uma String, assim listando todas as palavras e suas quantidades, considere como palavras as que tenha uma quantidade igual ou maior que duas letras. A função deverá retornar duas listas, uma referente as palavras encontradas (sem duplicidade), e outra lista referente a quantidade de incidência de cada uma das palavras respectivamente a lista de palavras. Sua função deverá considerar todas as palavras como letras minusculas, remova também as virgulas e os caracteres "!" e "?". ''' def contaPalavras(words): for a in '!?,': words = words.replace(a, "") word_array = words.lower().split(" ") filtered_word_array = [] no_repeat_words = [] counter = [] for word in word_array: if len(word) >= 2: filtered_word_array.append(word) for word in filtered_word_array: if word not in no_repeat_words: counter.append(word_array.count(word)) no_repeat_words.append(word) return no_repeat_words, counter p = " e fei a Fei feijão FeI Feijão felino Feio i Fé" print(contaPalavras(p))
d603810654801fe020a313b7aee9802b175413e2
Victor-Light/illumio-coding-challenge
/firewall.py
3,451
3.609375
4
import csv class FireWall: def __init__(self,filePath): with open(filePath) as csvFile: #form a rule map self.inTcp = {"port":[], "ip_address":{}} self.inUdp = {"port":[], "ip_address":{}} self.outTcp = {"port":[], "ip_address":{}} self.outUdp = {"port":[], "ip_address":{}} self.ruleMap = {"inbound": {"tcp": self.inTcp, "udp": self.inUdp},"outbound": {"tcp": self.outTcp, "udp": self.outUdp}} readCSV = csv.reader(csvFile) for index, line in enumerate(readCSV): direction = line[0] protocol = line[1] port = line[2] ip_address = line[3] self.add_entry(direction, protocol, port, ip_address, index) sorted(self.inTcp["port"], key = lambda k:k[0][1]) sorted(self.inUdp["port"], key = lambda k:k[0][1]) sorted(self.outTcp["port"], key = lambda k:k[0][1]) sorted(self.outUdp["port"], key = lambda k:k[0][1]) return def add_entry(self, direction, protocol, port, ip_address, index): portRange = port.split("-") if len(portRange) == 1: portRange = portRange*2 #change list item type from string into integer portRange = [int(item) for item in portRange] self.ruleMap[direction][protocol]["port"].append((portRange, index)) ipRange = ip_address.split("-") if len(ipRange) == 1: ipRange = ipRange*2 ipRange = [tuple(int(n) for n in ipRange[0].split('.')), tuple(int(n) for n in ipRange[1].split('.'))] self.ruleMap[direction][protocol]["ip_address"][index] = ipRange return def accept_packet(self, direction, protocol, port, ip_address): #search all ports that includes port passed in keys = self.search(direction, protocol, port) ipAddresses = [self.ruleMap[direction][protocol]["ip_address"][key] for key in keys] ip_address = tuple(int(n) for n in ip_address.split('.')) #data structure for ipAddresses is [[(0,0,0,0),(0,0,0,0)],[(194,0,0,5),(194,0,1,6)]] for addresses in ipAddresses: if addresses[0] <= ip_address and ip_address <= addresses[1]: return True return False def search(self, direction, protocol, port): #brought some idea from exponential search #data form of port is [([5,8],1), ([10,10],0)] portsPool = self.ruleMap[direction][protocol]["port"] keyOfPorts = [] index = 1 while index < len(portsPool)+1: item = portsPool[index-1] # data structure for item is([5,8], 1) represent the port range 5-8 key is 1 if port > item[0][1]: if index*2 < len(portsPool)+1: index *= 2 else: index +=1 else: if port in range(item[0][0], item[0][1]+1): keyOfPorts.append(item[1]) index +=1 return keyOfPorts fw = FireWall("fw.csv") print(fw.accept_packet("inbound", "tcp", 80, "192.168.1.2")) # True print(fw.accept_packet("inbound", "udp", 53, "192.168.2.1")) # True print(fw.accept_packet("outbound", "tcp", 10234, "192.168.10.11")) # True print(fw.accept_packet("inbound", "tcp", 81, "192.168.1.2")) # False print(fw.accept_packet("inbound", "udp", 24, "52.12.48.92")) # False
fe559f4d82572758b44b4896ee105bef4a41e93c
micheofire/studenttestscore
/app.py
692
3.625
4
import pandas as pd import numpy as np import streamlit as st import pickle from sklearn.linear_model import LinearRegression loaded_model = pickle.load(open("finalized_model.sav", 'rb')) st.title("STUDENT TEST SCORE PREDICTION APP") st.write("Please input the student details in the sidebar") gender = st.sidebar.selectbox("Gender", ["Male", "Female"]) age = st.sidebar.slider("Age", 1,100) attendance = st.sidebar.slider("Attendance", 0.1,1.0) if gender == "Male": gender = 0 else: gender = 1 user_input = np.array([gender, age, attendance]).reshape(1,-1) pred = loaded_model.predict(user_input) st.title(" ") st.header(f"PREDICTED TEST SCORE IS ---> {round(pred[0], 2)}")
cc43718830c72934dca478386debdd4a863a69cf
C-CCM-TC1028-111-2113/homework-2-AdrielOlvera
/assignments/02Licencia/src/exercise.py
515
3.90625
4
def main(): #Escribe tu código debajo de esta línea age=int(input("Ingresa tu edad: ")) io=str(input("¿Tienes identificación oficial? (s/n)")) if age>=18: x=True elif 18>age>=0: x=False elif age<0: print("Respuesta incorrecta") x=False if io=="s": y=True elif io=="n": y=False else: print("Respuesta incorrecta") y=False if x and y: print("Trámite de licencia concedido") else: print("No cumples requisitos") pass if __name__ == '__main__': main()
fae8ad9595533a95d46058b28d49f304782d221a
francocurses/curses-chess
/source/player.py
1,625
3.6875
4
from pieces.pawn import Pawn from pieces.knight import Knight from pieces.bishop import Bishop from pieces.rook import Rook from pieces.queen import Queen from pieces.king import King class Player(): """ A player in chess. """ def __init__(self,name,pstring): self.name = name self.getpchars(pstring) # create chess pieces # pawns self.pawns = [] for _ in range(8): self.pawns.append(Pawn(self.pchar)) # knights self.knight1 = Knight(self.nchar) self.knight2 = Knight(self.nchar) self.knights = [self.knight1,self.knight2] # bishops self.bishop1 = Bishop(self.bchar) self.bishop2 = Bishop(self.bchar) self.bishops = [self.bishop1,self.bishop2] # rooks self.rook1 = Rook(self.rchar) self.rook2 = Rook(self.rchar) self.rooks = [self.rook1,self.rook2] # king queen self.queen = Queen(self.qchar) self.king = King(self.kchar) # add pieces in "read" order self.pieces = self.pawns + [self.rook1] + \ [self.knight1] + [self.bishop1] + \ [self.queen] + [self.king] + \ [self.bishop2] + [self.knight2] + \ [self.rook2] def getpchars(self,pstring): """ Separates every character of the pieces string and creates an attribute with each. """ self.pchar = pstring[0] self.nchar = pstring[1] self.bchar = pstring[2] self.rchar = pstring[3] self.qchar = pstring[4] self.kchar = pstring[5]
b89b86cc89a94e32efb10d4ca2f738bc78a61a38
francosbenitez/unsam
/06-organizacion-y-complejidad/05-busqueda/busqueda-en-listas.py
854
3.96875
4
""" Ejercicio 6.13: Búsqueda lineal sobre listas ordenadas. Modificá la función busqueda_lineal(lista, e) de la Sección 4.2 para el caso de listas ordenadas, de forma que la función pare cuando encuentre un elemento mayor a e. Llamá a tu nueva función busqueda_lineal_lordenada(lista,e) y guardala en el archivo busqueda_en_listas.py. En el peor caso, ¿cuál es nuestra nueva hipótesis sobre comportamiento del algoritmo? ¿Es realmente más eficiente? """ def busqueda_lineal(lista, e): ''' Si hay un elemento mayor a e, la funcion para. ''' pos = -1 for i, z in enumerate(lista): if z > e: pos = i break return pos print(busqueda_lineal([1, 4, 54, 3, 0, -1], 44), busqueda_lineal([1, 4, 54, 3, 0, -1], 3), busqueda_lineal([1, 4, 54, 3, 0, -1], 0), busqueda_lineal([], 42))
1fc4a78f1d56fd6990274b51c029a5ae11c1a989
Suykim21/python_references
/algos/basics.py
2,615
4.125
4
# Print 1-255 # for x in range(1,256): # print(x) # Print odd numbers from 1 to 10 # for x in range(1,11): # if(x%2==1): # print(x) # Print the sumof al the odd numbers from 1 to 10 # sum = 0 # for x in range(1, 11): # if(x%2==1): # sum = sum + x # print(sum) # def addOddNumbers(numbers): # total = 0 # for num in numbers: # if (num%2==1): # total += num # print(total) # addOddNumbers([1,2,3,4,5,6,7,8,9]) # Iterating through the list # x = [1,3,5,7,9,13] # for i in x: # print(i) # Find Max, given an list with multiple values # x = [-3,3,5,4] # print (max(x)) # Find average, given a list with multiple values # x=[2,3,5,6,17] # average = sum(x)/len(x) # print(average) # Array with odd numbers # def appendOdd(numbers): # odd = [] # for number in numbers: # if(number%2==1): # odd.append(number) # print(odd) # appendOdd([1,2,3,4,5,6,7,8,9]) # Greater than Y # x=[1,3,5,7] # y=3 #utilize list comprehensions!! # print (sum(i > y for i in x)) #Square the values # def square(list): # print([i ** 2 for i in list]) # square([1,5,10,-2]) # Eliminate Negative Numbers # def remove_odd(x): # print([i for i in x if i>0]) # remove_odd([-1,-3,-4,4,5,6]) # Max, min, and average in a list # x = [-3,3,5,4] # print (max(x)) # print (min(x)) # average = sum(x)/len(x) # print(average) # Shifting the values in the list # def rotate(l, n): # rotates to the left # print(l[n:] + l[:n]) # list = [1,2,3,4,5] # prints values at index of 2 - [3,4,5] # print(list[2:]) # prints first two indices [1,2] # print(list[:2]) # rotate(list, 4) # Number to string, replace negative numbers with string # x = [-1,4,-1,2] # for i in x: # if(x[i]<0): # x[i] = "Dojo" # print(x) # Create random list(10 values) # import random # my_randoms = random.sample(range(1,101),10) # print(my_randoms) # Swapping two values # list = [-3,5,1,3,2,10] # temp = list[2] # list[2] = list[0] # list[0] = temp # Reverse the list by swapping two values def reverse(seq): # Reverses elements of a list for i in range(len(seq)/2): x = seq[i] y = seq[-i-1] seq[i] = y seq[-i-1] = x l = ['a', 'b', 'c', 'd', 'e'] reverse(l) print(l) # Removing Negatives list = [0,-1,2,-3,4,-5,6] def removeNegatives(list): # I want 'i' for each 'i' in list if 'i' is more than 0 num_list = [i for i in list if i>=0] print(num_list) removeNegatives(list) # Long version: my_list = [] for i in list: if i>=0: my_list.append(i) print (my_list)
77096beb877dbf605f71ee1314e146f88d2dfcc8
maxymkuz/cs_3
/Alko/exam/exam_second.py
1,383
4.15625
4
def recursive_solution(x, speed, position): if x == position: return "" if x == position + speed: return "A" sequence = "" while x > position + speed: sequence += "A" position += speed speed *= 2 left_before = x - position left_after = position + speed - x if left_after < left_before: if x == position + speed: sequence += "A" return sequence sequence += "AR" position += speed x = position + position - x speed = 1 sequence += recursive_solution(x, speed, position) else: sequence += "RR" speed = 1 sequence += recursive_solution(x, speed, position) return sequence def smallest_instruction(x): # напевно краще було б зробити динамічним # програмуванням, але я зробив жадіком алгоритмом(може бути не завжди # правильним). Складність буде лінійна if x == 0: return "" if x < 0: result = "R" x *= -1 else: result = "" speed = 1 result += recursive_solution(x, speed, 0) return recursive_solution(x, speed, 0) if __name__ == '__main__': print(smallest_instruction(3)) # поки працює правильно
84c62dc434432290f05e21a2cb21827ad3574772
bashenov98/BFDjango2020
/Week 1/hackerrank/medium/minions.py
284
3.5
4
vowels = ['A', 'E', 'I', 'O', 'U'] s = raw_input() a = 0 b = 0 for i, c in enumerate(s): if c in vowels: b += len(s) - i else: a += len(s) - i if a == b: print "Draw" elif a > b: print 'Stuart {}'.format(a) else: print 'Kevin {}'.format(b)
3ec0e5c9a46da229ab167205ef3455629b91387b
stefaluc/algorithms
/mirror_tree.py
2,115
3.890625
4
#!/usr/bin/python class TreeNode(): def __init__(self, value): self.left = None; self.right = None; self.data = value; def bfs(node): if node == None: return print(node.data) queue = [] queue.append(node.left) queue.append(node.right) for i in queue: if i == None: continue print(i.data) queue.append(i.left) queue.append(i.right) def main(): root = TreeNode(1) b = TreeNode(2) c = TreeNode(3) d = TreeNode(4) e = TreeNode(5) f = TreeNode(6) g = TreeNode(7) root.left = b root.right = c b.left = d b.right = e c.left = f c.right = g g.right = TreeNode(8) g.right.right = TreeNode(9) f.right = TreeNode(10) d.left = TreeNode(11) d.left.left = TreeNode(12) d.left.left.left = TreeNode(12) bfs(root) print '======' bfs(mirror(root)) print '======' print getDepth(root) print '======' print largestValue(root) print '======' print isBalanced(root) def mirror(root): if root.left == None and root.right == None: return root if root.left != None and root.right != None: tmp = root.left root.left = mirror(root.right) root.right = mirror(tmp) return root def getDepth(root, depth = 0): if root == None: return depth depth += 1 depthLeft = getDepth(root.left, depth) depthRight = getDepth(root.right, depth) return max(depthLeft, depthRight) def largestValue(root): if root.left is None and root.right is None: return root.data elif root.left is None: return max(root.data, largestValue(root.right)) elif root.right is None: return max(root.data, largestValue(root.left)) return max(largestValue(root.left), largestValue(root.right)) def isBalanced(node): if node is None: return True depthLeft = getDepth(node.left) depthRight = getDepth(node.right) return abs(depthLeft - depthRight) < 2 and isBalanced(node.left) and isBalanced(node.right) main()
6ce5c40e98faad0128315b8d4caed965dab2a827
Unique-Red/HardwaySeries
/ex39sd.py
336
3.65625
4
states = { 'Lagos': 'LA', 'Ondo': 'ON', 'Calabar': 'CA', 'Ogun': 'OG', 'Benin': 'BE' } cities = { 'LA': 'Island', 'ON': 'Ondo town', 'OG': 'Ota' } cities['CA'] = 'Awka' cities['BE'] = 'Edo' print('-' * 5) print("OG State has: ", cities['OG']) print("LA State has: ", cities['LA'])
1b37916a1f394ea8eecc9f9499ac8f8a85f3399f
syurskyi/Python_Topics
/125_algorithms/_exercises/templates/_algorithms_challenges/leetcode/LeetCode_with_solution/056_Merge_Intervals.py
1,029
3.84375
4
# Definition for an interval. # class Interval(object): # def __init__(self, s=0, e=0): # self.start = s # self.end = e c_ Solution o.. ___ merge intervals """ :type intervals: List[Interval] :rtype: List[Interval] """ __ intervals is N..: r_ ls = l.. intervals) __ ls <= 1: r_ intervals # sort by start intervals.s.. k.._l... x: x.start) pos = 0 w.. pos < l.. intervals) - 1: # check overlap __ intervals[pos].end >= intervals[pos + 1].start: next = intervals.pop(pos + 1) # check next is overlap or totally covered by pos __ next.end > intervals[pos].end: intervals[pos].end = next.end # print [(t.start, t.end) for t in intervals], pos ____ pos += 1 r_ intervals __ ____ __ ____ # begin s ? print s.merge([[1,3],[2,6],[8,10],[15,18]])
26f85908f72a11b89f731bc00f11da2f1e7f8224
EduardoMachadoCostaOliveira/Python
/CEV/ex070.py
1,222
3.921875
4
# Crie um programa que leia o nome e o preço de vários produto. # O Programa deverá perguntar se o usário vai continuar. No final mostre: # A) Qual é o total gasto na compra. # B) Quantos produtos custam mais de R$ 1000. # C) Qual é o nome do produto mais barato. print('-' * 30) print('{:-^30}'.format(' LOJA SUPER BARATÃO ')) print('-' * 30) total = totmil = menor = cont = 0 produtomenor = '' while True: produto = str(input('Nome do Produto: ')) preco = float(input('Preço: R$ ')) total += preco # A cont += 1 if preco > 1000: # B totmil += 1 if cont == 1 or preco < menor: # C menor = preco produtomenor = produto '''else: if preco < menor: menor = preco produtomenor = produto''' continua = ' ' while continua not in 'SN': continua = str(input('Quer continuar? [S/N] ')).strip().upper()[0] if continua == 'N': break print('----Fim do Programa----') print('{:-^30}'.format(' FIM DO PROGRAMA ')) print(f'O total da compra foi de R$ {total:^10.3f}!') print(f'Temos {totmil} produtos custando mais de R$1000,00') print(f'O produto mais barato foi {produtomenor} que custa R$ {menor:<10.2f}!')
d22bbde0e626f90c742d28b3af711a2a35552888
salihdeg/wp-message-sender
/WhatsAppMessageSender/Business/fileReader.py
363
3.53125
4
# -*- coding: UTF-8 -*- import pandas as pd contacts = "" numbers = "" names = "" def save_contacts_from_file(file_path): global contacts global numbers global names contacts = pd.read_excel(file_path) numbers = pd.DataFrame(contacts, columns=['Number']).values.tolist() names = pd.DataFrame(contacts, columns=['Name']).values.tolist()
f739a159ddfde1ad4c37f71e190b0f0d491499cc
yongzhuo/leetcode-in-out
/hot/a15_three_sum_closest.py
2,166
3.515625
4
# !/usr/bin/python # -*- coding: utf-8 -*- # @time : 2020/1/3 19:20 # @author : Mo # @function: 16.最接近三数之和 # 给定一个包括 n 个整数的数组 nums 和 一个目标值 target。找出 nums 中的三个整数,使得它们的和与 target 最接近。返回这三个数的和。假定每组输入只存在唯一答案。 # 例如,给定数组 nums = [-1,2,1,-4], 和 target = 1. # 与 target 最接近的三个数的和为 2. (-1 + 2 + 1 = 2). # 来源:力扣(LeetCode) # 链接:https://leetcode-cn.com/problems/3sum-closest # 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 class Solution: # 双指针法, error 不能删除重复的数据 def threeSumClosestmy(self, nums, target): num_target = [target-num if target-num>0 else num-target for num in nums] num_target_copy = num_target.copy() # copy.deepcopy(num_target) num_target_copy.sort() num_target_top3 = num_target_copy[0:3] idxs = [] for ntt in num_target_top3: idx = num_target.index(ntt) idxs.append(idx) res = 0 for idxs_one in idxs: res += nums[idxs_one] return res # 双指针法 def threeSumClosest(self, nums, target): n = len(nums) if (not nums or n < 3): return None nums.sort() res = float("inf") for i in range(n): if (i > 0 and nums[i] == nums[i - 1]): continue L = i + 1 R = n - 1 while (L < R): cur_sum = nums[i] + nums[L] + nums[R] if (cur_sum == target): return target if (abs(cur_sum - target) < abs(res - target)): res = cur_sum if (cur_sum - target < 0): L += 1 else: R -= 1 return res if __name__ == '__main__': sol = Solution() strs = [1,1,-1] # ["dog","racecar","car"] target = -100 res = sol.threeSumClosest(strs, target) print(res) gg = 0