blob_id
string
repo_name
string
path
string
length_bytes
int64
score
float64
int_score
int64
text
string
a679a5448777fd29b5615ae51eec64711df6d8a4
flyingsilverfin/SpotMix
/tools/training_data_db.py
1,127
3.671875
4
import sqlite3 class SimilarityBoundsException(Exception): pass class TrackSimilarityDb(): def __init__(self, db_file_path): self._conn = sqlite3.connect(db_file_path) self._create_tables() def _create_tables(self): """ Create a three column table - track id 1 (text), track id 2 (text), similarity (int between 0 and 9) """ self._conn.execute("CREATE TABLE IF NOT EXISTS track_similarity (track_id_1 TEXT NOT NULL, track_id_2 TEXT NOT NULL, similarity INTEGER, PRIMARY KEY (track_id_1, track_id_2));") def add(self, track_id_1, track_id_2, similarity): if similarity < 0 or similarity > 9: raise SimilarityBoundsException("Similarity must be between 0 and 9 inclusive") self._conn.execute("INSERT INTO track_similarity VALUES (?, ?, ?)", [track_id_1, track_id_2, similarity]) self._conn.commit() def get_all_similarities(self): c = self._conn.cursor() triples = [] for id1, id2, sim in c.execute("SELECT * FROM track_similarity"): triples.append((id1, id2, sim)) return triples
fc2d4a0139ec3a882240d34fa9266ed5fc05f7d6
mattvenn/python-workshop
/tutorial/quiz.py
814
4.09375
4
total_questions = 2 current_question = 1 score = 0 #introduction print "welcome to Matt's quiz!" print "there are", total_questions, "questions in the quiz" #function to ask the questions and get the answers def ask_question(question,answer): print "-" * 20 print "question", current_question, "of", total_questions guess = raw_input(question + "? ") #make the answers lower case before comparing them if guess.lower() == answer.lower(): print "well done!" return True else: print "better luck next time!" return False if ask_question("what is 5+2","7"): score += 1 current_question += 1 if ask_question("what the capital of France","Paris"): score += 1 current_question += 1 print "that's it!" print "you got", score, "out of", total_questions
02731bbd7b58eb575d7c2801654dbff8e6544f78
Oshini99/python-turtle-graphics
/makingCircleUsingSquaresRapidWay.py
275
3.65625
4
import turtle my_turtle = turtle.Turtle() my_turtle.speed(0) def makingSquare(lenght,angle): for i in range(4): my_turtle.forward(lenght) my_turtle.right(angle) for i in range(150): makingSquare(100,90) my_turtle.right(11)
2ef5180201911778dc816fd0ad05288459ace580
wuhao2/Python_learning
/数据结构及其应用/Python_datastruct_implement/queue.py
1,281
4.0625
4
# _*_ coding: utf-8 _*_ __author__ = 'bobby' __data__ = '2017/6/4 15:41 ' # 队列的实现 class Queue(object): def __init__(qu, size): qu.queue = [] qu.size = size qu.head = -1 qu.tail = -1 def Empty(qu): if qu.head == qu.tail: return True else: return False def Full(qu): if qu.tail - qu.head == qu.size: return True else: return False # 入队列 def enQueue(qu, content): if qu.Full(): print("Queue is Full!") else: qu.queue.append(content) qu.tail += 1 # 出队列 def outQueue(qu): if qu.Empty(): print("Queue is Empty!") else: qu.queue.remove(qu.queue[0]) # 始终从队列的头部出来 qu.head += 1 # 输出队列中的内容 def getQueueData(self): return self.queue q = Queue(7) print("queue is empty or not:", q.Empty()) print("********************入队列之后**********************") q.enQueue("wuhao") q.enQueue("wushibing") q.enQueue(5) q.enQueue(8) print(q.getQueueData()) print("********************出队列之后**********************") q.outQueue() q.outQueue() print(q.getQueueData())
fcf734b6ae7b329acecb8237ffd3a796d0133162
kayvera/python_practice
/array/hashtable.py
398
3.8125
4
# hash table should always be top of mind for a possible solution dict = {} dict['a'] = 1 dict['b'] = 2 dict['c'] = 3 print(dict) print(dict['a']) for k in dict.keys(): print(dict[k]) for k, v in dict.items(): print(k, ' :', v) keys = ['a', 'b', 'c'] values = [1, 2, 3] hash = {k: v for k, v in zip(keys, values)} print(hash) arr = [0, 1, 2, 3, 4] newHash = list(map(hash, arr))
88f86cc3ad6edab68be2677052309c495932aab0
nicaibuzhao/day05
/06-字典的使用.py
231
4.40625
4
# 练习1:定义一个字典类型的变量,输出及查看类型 dic = {"name":"张三","age":123,"sex":"男"} # 练习2:根据key(age) 使用中括号和get方式字典中的value值 print(dic["name"]) print(dic.get("age"))
d4b3ec7c4609d35042b8452f11b58329e262643a
petervel/Euler
/problems_026-050/problem30.py
394
3.71875
4
#!/usr/bin/python __author__ = 'peter.vel' def digits(number): number = str(number) list = [] for i in number: list.append(int(i)) return list def is_sum_of_fifths(number): sum = 0 for i in digits(number): sum += pow(i, 5) return number == sum def main(): sum = 0 for i in range(10, 1000000): if is_sum_of_fifths(i): print("* {0}".format(i)) sum += i print(sum) main()
171d30a31f5008e5d7cb727b19d0a0f5d43c7a30
billkd24/python
/conditions.py
185
4.03125
4
age = int (input("Please enter your age:")) if age >= 18: print ("Elgible to Drive") else: print ("Not elgible to Drive") print (f"Please come back after {18-age} years.")
dec5d647b9225b0a2863702d69e45118cd17e4cf
w1033834071/qz2
/oldboy/day04/homework.py
709
4.03125
4
#!/usr/bin/env python # -*- coding -*- #列出商品 选商品 # li = ['手机','电脑','鼠标垫','游艇'] # for i,j in enumerate(li): # print(i+1,j) # num = int(input("num:")) # if num > 0 and num <= len(li): # good = li[num-1] # print(good) # else: # print('商品不存在') dic = { "河北":{ "石家庄":["鹿泉","真诚","元氏"], "邯郸":["永年","涉县","磁县"] }, "河南":{ "郑州":["1","2","3"], "开封":["4","5","6"] } } #循环输出所有的省 for p in dic: print(p) str1 = input("请输入省份:") for c in dic[str1]: print(c) str2 = input("请输入城市:") for d in dic[str1][str2]: print(d)
bf9c33fed299a2db57b9729f82624aa3ca5cb6d9
vidyasagarr7/DataStructures-Algos
/Karumanchi/Trees/DeepestNode.py
1,022
3.859375
4
import queue from BinaryTree import BinaryTree def deepest_node(root): if root is None: return else: que = queue.Queue() que.put(root) node = None while not que.empty(): node = que.get() if node.get_left(): que.put(node.get_left()) if node.get_right(): que.put(node.get_right()) return node.data ### REVISIT THIS ####### def delete_node(root): if root is None: return else: que=queue.Queue() que.put(root) if not que.empty(): node = que.get() if node.get_left(): que.put(node.get_left()) if node.get_right(): que.put(node.get_right()) root.data,node.data=node.data,root.data del node if __name__=="__main__": tree = BinaryTree() for i in range(1,10): tree.add_node(i) print(deepest_node(tree.root)) delete_node(tree.root) tree.level_order()
aba41e2227f1e73dff66cf5266477c443932f607
yaelBrown/pythonSandbox
/usefulPythonFiles/mathHomework.py
122
3.6875
4
import math def func(a): return math.pow(a,2) - (6 * a) + 5 for x in range(-2,6): aa = func(x) print(f"{x} {aa}")
c0c7f66a0d9ee3566934c0801f4a0d33f9c735cb
korwil/lessons
/python/p_lesson_6/task2.py
1,288
3.734375
4
# Реализовать класс Road (дорога), в котором определить атрибуты: length (длина), width (ширина). # Значения данных атрибутов должны передаваться при создании экземпляра класса. Атрибуты сделать защищенными. # Определить метод расчета массы асфальта, необходимого для покрытия всего дорожного полотна. # Использовать формулу: длина * ширина * масса асфальта для покрытия одного кв метра дороги асфальтом, # толщиной в 1 см * чи сло см толщины полотна. Проверить работу метода. # Например: 20м * 5000м * 25кг * 5см = 12500 т class Road: def __init__(self, length, width): self._length = length self._width = width def get_mass(self, a, b): result = self._length * self._width * a * b t = 'кг' if result >= 1000: result = result/1000 t = 'т' return result, t r = Road(20, 5000) res, t = r.get_mass(25, 5) print(res, t)
c5b9670f2f8ea047289d554c524f97dfd9bb2031
twsq/car-velocity-estimation
/recurrent_cnn_polished_yury.py
11,485
3.78125
4
from scipy import misc import json import numpy as np import sys ''' Implementation of recurrent CNN for predicting velocity. The network first computes features by applying a CNN to every frame that is put in as input (currently last 5 frames of each sequence) and then uses these features as input into a recurrent neural network with 1 LSTM hidden layer. Inspired by this paper: Donahue et al. (2015), Long-term Recurrent Convolutional Networks for Visual Recognition and Description A warning: The training and test data take a lot of memory, which could lead to running out of RAM (unless your computer has a lot of RAM (like 16 GB or something like that). Also, at least for my computer, the network takes quite a long time to train (something like 10 minutes an epoch). ''' # Code should be put in a folder containing the benchmark_velocity folder file_prefix = "./benchmark_velocity/clips/" ''' Below code is used to process a random half of the data as training data. Can modify it to add various amounts of padding to the bounding boxes since the bounding box of a car might change for different frames. ''' size = 200 startOver = True train_sequences_resized = [] train_velocities = [] if startOver: # Shuffle indices of data samples randomly (in case samples are ordered in some way) random_indices = np.random.permutation(range(1, 247)) # Save random shuffling (useful later for extracting test set) np.save("rcnn_shuffled_indices", random_indices) # Use half of data for training for i in range(123): sys.stdout.write('\rProcessing training data: {0}'.format(i)) # Open annotation file annotation_file = file_prefix + "{0:0=3d}".format(random_indices[i]) + "/annotation.json" with open(annotation_file) as json_data: annotations = json.load(json_data) # Extract bounding boxes and velocities of cars bboxes = [] for j in range(len(annotations)): bbox = annotations[j]['bbox'] # Add margin to bounding boxes # horiz_margin = 0.05 * (bbox['bottom'] - bbox['top']) # vert_margin = 0.05 * (bbox['right'] - bbox['left']) horiz_margin = 0 vert_margin = 0 bboxes.append((int(bbox['top'] - horiz_margin), int(bbox['bottom'] + horiz_margin), int(bbox['left'] - vert_margin), int(bbox['right'] + vert_margin))) # Extract velocity train_velocities.append(annotations[j]['velocity']) image_folder = file_prefix + "{0:0=3d}".format(random_indices[i]) + "/img/" # Loop over bounding box for each car in sequence for current example for bbox in bboxes: # List of cropped frames in a sequence sequence_cropped = [] # Loop over each frame of example for j in range(55, 60): # Read in frame, crop it to bounding box, resize image to size by size (input image size to InceptionV3 CNN) image = image_folder + "{0:0=3d}".format(j + 1) +".jpg" image_data = misc.imread(image, mode = 'RGB') frame = np.zeros_like(image_data) frame[bbox[0]: bbox[1], bbox[2]:bbox[3]] = image_data[bbox[0]: bbox[1], bbox[2]:bbox[3]] image_cropped = misc.imresize(frame, (size, size)) sequence_cropped.append(image_cropped) # Add sequence of cropped frames corresponding to a given car as an example sequence train_sequences_resized.append(sequence_cropped) print() print() train_sequences_resized = np.array(train_sequences_resized) train_velocities = np.array(train_velocities) np.save("rcnn_train_images_merged_resized_shuffle.npy", train_sequences_resized) np.save("rcnn_train_velocities_shuffle.npy", train_velocities) else: # Load saved preprocessed training data (array of sequences of cropped frames corresponding to a car) and saved velocities # Currently use last 5 frames of each sequence as input random_indices = np.load("rcnn_shuffled_indices.npy") train_sequences_resized = np.load("rcnn_train_images_merged_resized_shuffle.npy")[:, :, :, :] train_velocities = np.load("rcnn_train_velocities_shuffle.npy") import tensorflow as tf from keras.applications.inception_v3 import InceptionV3 from keras.preprocessing import image from keras.models import Model from keras.layers import Dense, GlobalAveragePooling2D, Lambda, Input from keras import backend as K from keras.models import load_model from keras.layers.wrappers import TimeDistributed from keras.layers.recurrent import LSTM # set learning phase to 0 (this is necessary for the code to work due to batch normalization # layers in the InceptionV3 network) # See https://github.com/fchollet/keras/issues/5934 for more details. K.set_learning_phase(0) # create the base pre-trained model (InceptionV3 pretrained on ImageNet) # The base model was obtained from here: # https://keras.io/applications/. input = Input(shape=(None, size, size, 3), name='input') base_model = InceptionV3(weights='imagenet', include_top=False) # Apply TimeDistributed wrapper to InceptionV3 model. This way, the same InceptionV3 # network is applied to every frame in a given input sequence. # Documentation for TimeDistributed wrapper: https://keras.io/layers/wrappers/ # I think in order to wrap the whole base_model with the TimeDistributed wrapper, a Lambda layer # is needed (see https://gist.github.com/alfiya400/9d3bf303966f87a3c2aa92a0a0a54662) cnn_time_model = TimeDistributed(Lambda(lambda x: base_model(x))) cnn_time_output = cnn_time_model(input) # Add a global spatial average pooling layer wrapped with TimeDistributed wrapper cnn_time = TimeDistributed(GlobalAveragePooling2D())(cnn_time_output) # Add a fully-connected layer again wrapped with TimeDistributed wrapper rcnn_model = TimeDistributed(Dense(512, activation='relu'))(cnn_time) # Add LSTM hidden layer that takes as input features from the previous fully-connected # layer wrapped with TimeDistributed wrapper rcnn_model = LSTM(128)(rcnn_model) # Add fully connected layer rcnn_model = Dense(64, activation='relu')(rcnn_model) # Output layer that predicts both components of velocity rcnn_model = Dense(2)(rcnn_model) # this is the model we will train model = Model(inputs=[input], outputs=rcnn_model) # first: train only the top layers (which were randomly initialized) # i.e. freeze all convolutional InceptionV3 layers for layer in base_model.layers: layer.trainable = False model.summary() # compile the model (should be done *after* setting layers to non-trainable) model.compile(optimizer='rmsprop', loss='mean_squared_error') # train the model on the new data for a few epochs model.fit(train_sequences_resized, train_velocities, epochs=10) # at this point, the top layers are well trained and we can start fine-tuning # convolutional layers from inception V3. We will freeze the bottom N layers # and train the remaining top layers. # let's visualize layer names and layer indices to see how many layers # we should freeze: #for i, layer in enumerate(base_model.layers): # print(i, layer.name) # we chose to train the top 2 inception blocks, i.e. we will freeze # the first 172 layers and unfreeze the rest: for layer in model.layers[:172]: layer.trainable = False for layer in model.layers[172:]: layer.trainable = True # we need to recompile the model for these modifications to take effect # we use SGD with a low learning rate from keras.optimizers import SGD model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='mean_squared_error') # we train our model again (this time fine-tuning the top 2 inception blocks # alongside the top Dense layers model.fit(train_sequences_resized, train_velocities, epochs=5) # Save weights of model (due to the Lambda layer, saving # the whole model with model.save and loading model with load_model doesn't work) model.save_weights("rcnn_velocity_estimator_shuffled.h5") # Predict velocities for training data and evaluate model on training data train_predicted_velocities = model.predict(train_sequences_resized) np.save("rcnn_train_predicted_velocities_shuffle.npy", train_predicted_velocities) print(model.evaluate(train_sequences_resized, train_velocities)) print(np.sum(np.square(train_velocities - train_predicted_velocities)) / np.sum(np.square(train_velocities))) ''' Below code (currently commented out) can be used to process other half of the data as test data. Can modify it to add various amounts of padding to the bounding boxes since the bounding box of a car might change for different frames. ''' test_sequences_resized = [] test_velocities = [] if startOver: # Use other half of data for testing for i in range(123, 246): sys.stdout.write('\rProcessing test data: {0}'.format(i)) # Open annotation file annotation_file = file_prefix + "{0:0=3d}".format(random_indices[i]) + "/annotation.json" with open(annotation_file) as json_data: annotations = json.load(json_data) # Extract bounding boxes and velocities of cars bboxes = [] for j in range(len(annotations)): bbox = annotations[j]['bbox'] # horiz_margin = 0.05 * (bbox['bottom'] - bbox['top']) # vert_margin = 0.05 * (bbox['right'] - bbox['left']) horiz_margin = 0 vert_margin = 0 bboxes.append((int(bbox['top'] - horiz_margin), int(bbox['bottom'] + horiz_margin), int(bbox['left'] - vert_margin), int(bbox['right'] + vert_margin))) test_velocities.append(annotations[j]['velocity']) image_folder = file_prefix + "{0:0=3d}".format(random_indices[i]) + "/img/" images = [] # Loop over bounding boxes for current example for bbox in bboxes: sequence_cropped = [] # Loop over each frame of example for j in range(55, 60): # Read in frame, crop it to bounding box image = image_folder + "{0:0=3d}".format(j + 1) +".jpg" image_data = misc.imread(image, mode = 'RGB') frame = np.zeros_like(image_data) frame[bbox[0]: bbox[1], bbox[2]:bbox[3]] = image_data[bbox[0]: bbox[1], bbox[2]:bbox[3]] image_cropped = misc.imresize(frame, (size, size)) sequence_cropped.append(image_cropped) test_sequences_resized.append(sequence_cropped) print() print() test_sequences_resized = np.array(test_sequences_resized) test_velocities = np.array(test_velocities) np.save("rcnn_test_images_merged_resized_shuffle.npy", test_sequences_resized) np.save("rcnn_test_velocities_shuffle.npy", test_velocities) else: # Load saved preprocessed test data (array of sequences of cropped frames corresponding to a car) and saved velocities # Currently use last 5 frames of sequence as input test_sequences_resized = np.load("rcnn_test_images_merged_resized_shuffle.npy")[:, -5:, :, :] test_velocities = np.load("rcnn_test_velocities_shuffle.npy") # Predict velocities for test data and evaluate model on test data print(model.evaluate(test_sequences_resized, test_velocities)) predicted_velocities = model.predict(test_sequences_resized) np.save("rcnn_predicted_velocities_shuffle.npy", predicted_velocities) print(np.sum(np.square(test_velocities - predicted_velocities)) / np.sum(np.square(test_velocities)))
57e1d8dd720a11286d178e660c3d61cf9e0e5933
mgbrouli/Controle.Estoque
/main.py
2,891
3.8125
4
#não esta totalmente funcional, falta realmente criar alguns comandos e no futuro aprender a criar bancos de dados externos para salvar os arquivos bebidas = [] pereciveis = [] naoPereciveis = [] def cadastro(): while True: lista = {} lista.clear() lista['produto'] = str(input('Digite o nome do produto: ')) lista['quantidade'] = int(input('Quantidade: ')) pb = float(input('Preço bruto R$: ')) lista['pBruto'] = pb pcent = int(input('Porcentagem do lucro: ')) lista['porcentagem'] = pcent lista['lucro'] = ((pb*pcent)/100)+pb print('''Qual o tipo de produto [1] Bebidas Alcoolicas. [2] Produtos perecivel. [3] Produtos Não pereciveis. ''') tipo = int(input('Digite aqui a opção desejada: ')) if tipo == 1: bebidas.append(lista.copy()) elif tipo == 2: pereciveis.append(lista.copy()) elif tipo == 3: lista['validade'] = int(input('Data de validade (digite apenas o mes): ')) naoPereciveis.append(lista.copy()) resp = str(input('Quer continuar o cadastro [S/N]: ')).upper().strip()[0] while resp not in 'SN': resp = str(input('Quer continuar o cadastro [S/N]: ')).upper().strip()[0] if resp == 'N': break def alterar(): print('''Qual o tipo de produto [1] Bebidas Alcoolicas. [2] Produtos perecivel. [3] Produtos Não pereciveis. ''') resp = int(input('Digite sua opção em numeros: ')) while resp >= 4: resp = int(input('Digite sua opção em numeros: ')) if resp == 1: for i in bebidas: for k, v in i.items(): print(f'{k}: {v}') elif resp == 2: for i in pereciveis: for k, v in i.items(): print(f'{k}: {v}') elif resp == 3: for i in naoPereciveis: for k, v in i.items(): print(f'{k}: {v}') print('--'*30) print(f'{">>>PROGRAMA DE CONTROLE DE ESTOQUE v1.0<<<":^60}') print(f'{"crado por Welligton":^60}') print('--'*30) while True: print('''\033[1;33mEscolha sua opção digitando as opções em valor numerico:\033[m \033[1;32m[1]\033[m Para cadastrar produtos: \033[1;32m[2]\033[m Para Alterar o produtos cadastrados: \033[1;32m[0]\033[m Para sair do programa:\033[m ''') print('--' * 30) opcao = int(input('\033[1;33mDigite aqui a opção: \033[m')) while opcao >= 3: opcao = int(input('\033[1;33mDigite aqui a opção: \033[m')) if opcao == 0: break elif opcao == 1: cadastro() elif opcao == 2: alterar() print(bebidas) print(pereciveis) print(naoPereciveis)
558c9fd9aed5fc8ce6d7bed02344e7dcea6e43ce
thezaza101/Python-Code-Snippets
/other/p/SIT742A1/A1P1.py
5,516
3.828125
4
import pandas as pd '''The first task is to read the json file as a Pandas DataFrame and delete the rows which contain invalid values in the attributes of “points” and “price”.''' df = pd.read_json('datasets//wine.json') df = df.dropna(subset=['points', 'price']) '''what are the 10 varieties of wine which receives the highest number of reviews?''' dfTop10MostReviews = df['variety'].value_counts()[:10] print("Q1:") print(dfTop10MostReviews) print('\n') '''which varieties of wine having the average price less than 20, with the average points at least 90?''' averagePoints = df.groupby('variety', as_index=False)['points'].mean() averagePoints = averagePoints.loc[averagePoints['points']>=90] averagePrice = df.groupby('variety', as_index=False)['price'].mean() averagePrice = averagePrice.loc[averagePrice['price']<20] q2 = pd.merge(averagePrice, averagePoints, on='variety') print("Q2:") print(q2) print('\n') ''' In addition, you need to group all reviews by different countries and generate a statistic table, and save as a csv file named “statisticByState.csv”. The table must have four columns: Country – listing the unique country name. Variety – listing the varieties receiving the most reviews in that country. AvgPoint – listing the average point (rounded to 2 decimal places) of wine in that country AvgPrice – listing the average price (rounded to 2 decimal places) of wine in that country ''' countryList = df['country'].drop_duplicates().to_frame() dfTopReviews = df.groupby('country')['variety'].value_counts() dfTopReviews = dfTopReviews.to_frame() dfTopReviews.columns = ['Var_count'] dfTopReviews = dfTopReviews.reset_index(inplace=False) dfTopReviews = dfTopReviews.set_index(['country', 'variety'],drop=False, inplace=False) dfTopReviews = dfTopReviews.drop_duplicates(subset='country', keep='first', inplace=False) averagePointsCt = df.groupby('country', as_index=False)['points'].mean().round(2) averagePriceCt = df.groupby('country', as_index=False)['price'].mean().round(2) ss = pd.merge(countryList,dfTopReviews,on='country') ss = pd.merge(ss,averagePointsCt,on='country') ss = pd.merge(ss,averagePriceCt,on='country') ss = ss[['country','variety','points','price']] ss.to_csv('datasets//StatisticByStateSP.csv') print("Q3:") print("See 'datasets//StatisticByStateSP.csv' for more...") print(ss) '''In this task, you are required to write Python code to extract keywords from the “description” column of the json data, used to redesign the wine menu for Hotel TULIP. You need to generate two txt files:''' import re import nltk from nltk.tokenize import RegexpTokenizer from nltk.probability import * from itertools import chain #from tqdm import tqdm import codecs with open('datasets//stopwords.txt') as f: stop_words = f.read().splitlines() stop_words = set(stop_words) '''HighFreq.txt This file contains the frequent unigrams that appear in more than 5000 reviews (one row in the dataframe is one review).''' # write your code here # define your tokenize descData = df["description"] def removeStopWords(stopWords, txt): newtxt = ' '.join([word for word in txt.split() if word not in stopWords]) return newtxt tokenizer = RegexpTokenizer(r"\w+(?:[-']\w+)?") # remove stop words and tokenize each review tokenized_Reviews = list((tokenizer.tokenize(removeStopWords(stop_words,review)) for review in descData)) # flatten the list of lists into a single list and also make everything lowercase tokenized_words = [item.lower() for sublist in tokenized_Reviews for item in sublist] # get the frequency distribution fd = FreqDist(tokenized_words) # select words with > 5000 frequency fiveKOrMore = list(filter(lambda x: x[1]>5000,fd.items())) # sort the list by the word fiveKOrMore.sort(key=lambda tup: tup[0]) topCommonWords = list((word[0] for word in fiveKOrMore)) with open('datasets//HighFreq.txt', 'w') as f: for item in topCommonWords: f.write("%s\n" % item) '''Shirazkey.txt This file contains the key unigrams with tf-idf score higher than 0:4. To reduce the runtime, first you need to extract the description from the variety of “Shiraz”, and then calculate tf-idf score for the unigrams in these descriptions only.''' # select 'description' from 'variety' eqaul to 'Shiraz' descDataShiraz = df[df["variety"]=="Shiraz"]["description"] # remove stop words and tokenize each review tokenized_Reviews_Shiraz = list((tokenizer.tokenize(removeStopWords(stop_words,review.lower())) for review in descData)) idgen = (str(x) for x in range(0,len(tokenized_Reviews_Shiraz))) doclist_Shiraz = {next(idgen):review for review in tokenized_Reviews_Shiraz} # use TfidfVectorizer to calculate TF-IDF score from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(analyzer='word', stop_words = 'english') tfs = tfidf.fit_transform([' '.join(value) for value in doclist_Shiraz.values()]) print(tfs.shape) # find words with TF-IDF score >0.4 and sort them vocab = tfidf.get_feature_names() tfidfScores = list(zip(vocab, tfs.toarray()[0])) ''' temparry = tfs[:,0] temparry = temparry.toarray() for word, weight in zip(vocab, temparry): if weight > 0.4: print (word, ":", weight) ''' # Print the list for item in tfidfScores: if item[1] > 0.0: print (item[0], ":", item[1]) # save your table to 'key_Shiraz.txt' with open('datasets//key_Shiraz.txt', 'w') as f: for item in tfidfScores: if item[1] > 0.4: f.write("%s\n" % item[0])
925512bdd8868822aa354e61f13a70e76a252e43
tramxme/CodeEval
/Medium/PredictTheNumber.py
542
3.53125
4
import sys, re def doStuff(num): seq = [0,1] while(num > len(seq)): addSeq = seq[len(seq)//2:] for n in seq[:len(seq)//2]: if n == 0: addSeq.append(1) elif n == 1: addSeq.append(2) elif n == 2: addSeq.append(0) seq.extend(addSeq) print(seq[num]) return def main(file_name): fileName = open(file_name, 'r') for line in fileName.readlines(): line = re.sub(r'\n','', line) doStuff(int(line)) if __name__ == '__main__': main(sys.argv[1])
438aad130f2b87a3faa16391282f9ece3fdc4c35
wtripp/udacity-cs215-intro-algorithms
/final/final-3_weighted_graph.py
1,984
4.15625
4
# # In lecture, we took the bipartite Marvel graph, # where edges went between characters and the comics # books they appeared in, and created a weighted graph # with edges between characters where the weight was the # number of comic books in which they both appeared. # # In this assignment, determine the weights between # comic book characters by giving the probability # that a randomly chosen comic book containing one of # the characters will also contain the other # marvel = cPickle.load(open("final-3_smallG.pkl")) characters = cPickle.load(open("final-3_smallChr.pkl")) def create_weighted_graph(bipartiteG, characters): G = {} for char in characters: for other_char in characters: if char == other_char: continue char_set = set(bipartiteG[char]) other_char_set = set(bipartiteG[other_char]) A_and_B = len(char_set.intersection(other_char_set)) A_or_B = (len(char_set) + len(other_char_set)) - A_and_B if G.get(char) is None: G[char] = {other_char: None} if A_and_B > 0.0: G[char][other_char] = (0.0 + A_and_B) / A_or_B else: G[char][other_char] = None return G ###### # # Test def test(): bipartiteG = {'charA':{'comicB':1, 'comicC':1}, 'charB':{'comicB':1, 'comicD':1}, 'charC':{'comicD':1}, 'comicB':{'charA':1, 'charB':1}, 'comicC':{'charA':1}, 'comicD': {'charC':1, 'charB':1}} G = create_weighted_graph(bipartiteG, ['charA', 'charB', 'charC']) # three comics contain charA or charB # charA and charB are together in one of them assert G['charA']['charB'] == 1.0 / 3 assert G['charA'].get('charA') == None assert G['charA'].get('charC') == None def test2(): G = create_weighted_graph(marvel, characters)
e80853e568d3b11e2fe6ab68fa0a0fff3728e396
goncalossantos/Algorithms
/Challenges/CCI/Chapter 01/rotate_matrix_inplace.py
1,970
3.96875
4
class Rotation(): def rotate(self, i, j): return (j, self.N - i -1) def __init__(self, i, j, N): self.N = N self.get_coordinates_to_rotate(i, j) def get_coordinates_to_rotate(self, i, j): self.top = (i,j) self.right = self.rotate(i,j) self.bottom = self.rotate(*self.right) self.left = self.rotate(*self.bottom) def apply_rotation(matrix, rotation): tmp = matrix[rotation.top[0]][rotation.top[1]] matrix[rotation.top[0]][rotation.top[1]] = matrix[rotation.left[0]][rotation.left[1]] matrix[rotation.left[0]][rotation.left[1]] = matrix[rotation.bottom[0]][rotation.bottom[1]] matrix[rotation.bottom[0]][rotation.bottom[1]] = matrix[rotation.right[0]][rotation.right[1]] matrix[rotation.right[0]][rotation.right[1]] = tmp return matrix def rotate_matrix(matrix): """Rotates a matrix 90 degrees Iterates through a matrix to rotate it in place. Arguments: matrix {list of lists} -- contains the matrix of ints Returns: [list of lists] -- rotated matrix """ N = len(matrix) # We only need to go to the middle row for i in range(N/2): # We only need to to the inside columns for j in range(i,N-i-1): rotation = Rotation(i, j, N) matrix = apply_rotation(matrix, rotation) return matrix def print_matrix(matrix): print('\n'.join([''.join(['{:4}'.format(item) for item in row]) for row in matrix])) def test_matrix(): test_2 = ([[1, 2], [3, 4]] , [[3, 1], [4, 2]]) test_3 = ([[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[7, 4, 1], [8, 5, 2], [9, 6, 3]]) test_4 = ( [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], [[13, 9, 5, 1], [14, 10, 6, 2], [15, 11, 7, 3], [16, 12, 8, 4]], ) for test in [test_2, test_3, test_4]: result = rotate_matrix(test[0]) assert result == test[1] test_matrix()
91e830c34984c65e3e6b19dffbad9fcc16d56669
Deeklogu/Codek
/fact.py
70
3.5625
4
import math s=int(input("enter any number")) print(math.factorial(s))
75fc2b455bd9dd48d7b20fa2981fee1f2a49706a
anthonynolan/coding-for-schools
/grades.py
331
4.03125
4
# Get the input english = input("What grade did you get in English?") maths = input("What grade did you get in Maths?") computers = input("What grade did you get in Computers?") # Change them all to integers a = int(english) b = int(maths) c = int(computers) print("Your average grade is " + str((int(a) + int(b) + int(c)) / 3))
e321a91b066fc6ee8367ebf7fcef27925284d184
scobbyy2k3/python-challenge
/pyPoll/main.py
2,104
3.875
4
#import modules import os import csv election_data = "Resources/election_data.csv" # list names of candidates candidates = [] # number of votes for each candidate num_votes = [] # total number of votes total_votes = 0 # percentage of total votes for each candidate percent_votes = [] with open(election_data, newline = "") as csvfile: csvreader = csv.reader(csvfile, delimiter = ",") csv_header = next(csvreader) for row in csvreader: # Count the total number of votes total_votes += 1 # Set the candidate names to candidatelist if row[2] not in candidates: candidates.append(row[2]) index = candidates.index(row[2]) num_votes.append(1) else: index = candidates.index(row[2]) num_votes[index] += 1 # total vote count per candidate for votes in num_votes: percentage = (votes/total_votes) * 100 percentage = round(percentage) percentage = "%.3f%%" % percentage percent_votes.append(percentage) # winner winner = max(num_votes) index = num_votes.index(winner) winning_candidate = candidates[index] # Election results print("Election Results") print("--------------------------") print(f"Total Votes: {str(total_votes)}") print("--------------------------") for i in range(len(candidates)): print(f"{candidates[i]}: {str(percent_votes[i])} ({str(num_votes[i])})") print("--------------------------") print(f"Winner: {winning_candidate}") print("--------------------------") #output to txt file # Name white file write_election_datacsv = f"pyPoll_results.txt" text = open("write_election_datacsv", mode = 'w') text.write("Election Results\n") text.write("---------------------------------------\n") text.write(str(f"Total Votes: {str(total_votes)}\n")) text.write("---------------------------------------\n") for i in range(len(candidates)): text.write("---------------------------------------\n") text.write(str(f"Winner: {winning_candidate}")) text.write("---------------------------------------\n")
4de807dc7ea0381d03bd98d0c77d4b3a24933b33
gaurav-dwivedi/mypracticecodes
/Fibonacci 4 methods.py
692
3.65625
4
def fib1(n): a, b = 0, 1 for i in range(n): print(a) a, b = b, a + b def fib2(n): if n == 0: return 0 if n == 1: return 1 return fib2(n - 1) + fib2(n - 2) def fib3(n): c = 0 a, b = 0, 1 while True: if c > n: return yield a a, b = b, a + b c += 1 def fib4(n): a, b = 0, 1 for i in range(n): nex = a + b if i <= 1: print(i) else: print(nex) a, b = b, nex print('Method 1:') fib1(5) print('Method 2:') for i in range(5): print(fib2(i)) print('Method 3:') n = fib3(5) for i in n: print(i) print('Method 4:') fib4(5)
eb6cec76feb86c1601ba06c931c67b268127ee4c
ChetnaRajput/Python-Basics-Day1-2
/2-factorials.py
377
4.25
4
""" Write a program which can compute the factorial of a given numbers. The results should be printed in a comma-separated sequence on a single line. Suppose the following input is supplied to the program: 8 Then, the output should be: 40320 """ n = int(input("Enter a number to calculate factorial:")) fact = 1 for i in range(1,n+1): fact *=i print(fact)
bd828f4715855be2470be81b9d7fd53e48867f3e
Datatu/datascience
/datascience/assignment3/multiply.py
966
3.90625
4
import MapReduce import sys """ Implementation of Matrix multiplication in MapReduce """ mr = MapReduce.MapReduce() # ============================= # Do not modify above this line def mapper(record): value = record if(value[0]=='a'): for i in range(0,5): mr.emit_intermediate(str(value[1])+" "+str(i),value) else: for j in range(0,5): mr.emit_intermediate(str(j)+" "+str(value[2]),value) def reducer(key, list_of_values): total=0 lista=[0]*5 listb=[0]*5 print key print list_of_values print " " for v in list_of_values: if (v[0]=='a'): lista[v[2]]=v[3] else: listb[v[1]]=v[3] for j in range(0,5): total+=lista[j]*listb[j] mr.emit((int(key[0]),int(key[2]),total)) # Do not modify below this line # ============================= if __name__ == '__main__': inputdata = open(sys.argv[1]) mr.execute(inputdata, mapper, reducer)
8813fb2506743db415d641b129ed3c7cc3464d38
ybillchen/Simple-Examples-Keras
/Keras_linear_fitting.py
1,406
3.578125
4
# 'Keras_linear_fitting' is used to fit linear data with one layer # created by Bill from tensorflow import keras as kr import numpy as np import matplotlib.pyplot as plt # generate data and add random noise x = np.linspace(-1, 1, 200) np.random.shuffle(x) y = 0.5 * x + 2 + np.random.normal(0, 0.05, (200, )) # uncomment to show data # plt.plot(x, y, '^b', markersize = 4.0) # plt.show() x_train, y_train = x[: 160], y[: 160] # training set x_test, y_test = x[160 :], y[160 :] # testing set # initialize model model = kr.Sequential() model.add(kr.layers.Dense(units = 1, input_dim = 1)) # add input layer (also output layer) model.compile(loss = 'mse', optimizer = 'sgd') # set loss function and optimizer # training print('Begin Training') for step in range(301): # repeat 301 times cost = model.train_on_batch(x_train, y_train) if step % 100 == 0: print('Loss: ', cost) print('End Training\n') # testing print('Begin Testing') cost = model.evaluate(x_test, y_test, batch_size = 40) print('Loss:', cost) print('End Testing') # print weight and bias W, b = model.layers[0].get_weights() print('Weight=', W, '\nBias=', b) # uncomment to show fitting result # x = np.sort(x) # y_predict = model.predict(x) # plt.plot(x_test, y_test, '^b', markersize = 4.0) # plt.plot(x, y_predict, 'r') # plt.axis([-1.1, 1.1, -1.1, 1.1]) # plt.show()
942a2cab78d72c9dd2b8e58d7f035a0d54370dfd
mahiradayal/foundations
/homework_2/homework-2-part1-dayal.py
1,315
4.15625
4
# Mahira Dayal # Oct 30, 2020 # Homework 2, Part 1 # Part One: Lists Numbers = [22, 90, 0, -10, 3, 22, 48] print(len (Numbers)) print(Numbers[3]) print(Numbers[1]+Numbers[3]) print(sorted(Numbers, reverse=True) [1]) print(Numbers [-1]) print((sum (Numbers))/2) import statistics # I didn't want to add and divide, thought this was quicker. if (statistics.mean(Numbers))>(statistics.median(Numbers)): print ("Mean is larger") else: print ("Median is larger") #Part One: Dictionaries movie = { 'title': 'The Parent Trap', 'year': '1998', 'director': 'Nancy Meyers' } print("My favorite movie is", movie['title'], "which was released in", movie['year'], "and was directed by", movie['director']) movie['budget'] = 15500000 movie['revenue'] = 92000000 print ("The difference between revenue and budget is $",movie['revenue']-movie['budget']) if movie['budget']>movie['revenue']: print ("That was a bad investment") elif movie['revenue']>(5*movie['budget']): print ("That was a great investment") else: print("That was an okay investment") population = { 'Manhattan': 1.6, 'Brooklyn': 2.6, 'Bronx': 1.4, 'Queens': 2.3, 'Staten Island': 0.5 } print (population['Brooklyn']) print (sum(population.values())) print ((population['Manhattan']/(sum(population.values())))*100, "%")
7e52cf50f97a380fd642400ed77ac5c0e6e9706a
LukeBrazil/fs-imm-2021
/python_week_1/day1/fizzBuzz.py
324
4.15625
4
number = int(input('Please enter a number: ')) def fizzBuzz(number): if number % 3 == 0 and number % 5 == 0: print('FizzBuzz') elif number % 3 == 0: print('Fizz') elif number % 5 == 0: print('Buzz') else: print(f'Number does not fit requirements: {number}') fizzBuzz(number)
88871276907ca035324a4bfb0e4f06cb2064c79a
sakshigoyal58/Python
/PythonDictionary.py
321
3.90625
4
dictionary = {"name" :"sakshi", "name" : "varnit"} print(dictionary) #wont give error but will take the last one only dic1 = {"name" : "sakshi", "age" : 23} for i in dic1: print(dic1[i]) tuple= (1,2,1,1) print(sorted(tuple)) x=10 y=x y=12 z=12 if id(z) == id(y): print("yes") else: print("No") #pull request
a7a0128e77c0b50df320cc4e38977228e8d8c997
Shisan-xd/testPy
/python_work/day3_三目运算符.py
415
3.71875
4
""" 语法: 条件成立执行表达式 if 条件 else 条件不成立执行表达式 """ a = 8 b = 2 c = a if a > b else b # 判断a是否大于b,a大于b则执行a变量赋值给c,否则执行b赋值给c print(c) # 需求:有两个变量,比较大小 如果变量1 大于 变量2 执行 变量1 - 变量2 否则 变量2 - 变量1 aa = 91 bb = 90 cc = aa - bb if aa > bb else bb - aa print(cc)
9dccb72e337bcc49f565112437d2ac3b37f0ce77
traviswu0910/Intern_Project
/News_try_and_delete_redundant.py
609
3.578125
4
#抓贅字用,修正清洗資料用 #也可看時間序列變化 import pickle import pandas as pd with open('top_news_keys','rb')as f: data = pickle.load(f) def show_key_words_with_score(): total_date = pd.date_range('20180101','20200708',freq='d') total_date = total_date.strftime('%Y%m%d') for date in total_date: try: print(date) print(data[date][:3]) except: print('This day is wrong:',date) pass return() def show_only_key_words(): for i in data: for x,y in data[i][:3]: print(x) return() if __name__ == '__main__': # show_only_key_words() show_key_words_with_score()
fad1ab671b20db6e864fcb4901309182543fc4bf
XuJunhao-jiaojiao/Time
/2级python资料/Python部分/上机练习/2/2.2.py
97
3.578125
4
N=input("请输入一段文字:") i=0 for l in range(len(N)): print(N[i]) i=i+1
1bcede79f3cf143f12089e1b6987aea4be497fc2
Aiyane/aiyane-LeetCode
/1-50/搜索旋转排序数组.py
1,556
3.6875
4
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # 搜索旋转排序数组.py """ 假设按照升序排序的数组在预先未知的某个点上进行了旋转。 ( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] )。 搜索一个给定的目标值,如果数组中存在这个目标值,则返回它的索引,否则返回 -1 。 你可以假设数组中不存在重复的元素。 你的算法时间复杂度必须是 O(log n) 级别。 示例 1: 输入: nums = [4,5,6,7,0,1,2], target = 0 输出: 4 示例 2: 输入: nums = [4,5,6,7,0,1,2], target = 3 输出: -1 """ """ 思路:取中间数字,分四种情况 """ __author__ = 'Aiyane' class Solution: def search(self, nums, target): """ :type nums: List[int] :type target: int :rtype: int """ l = len(nums) i = 0 j = l-1 while i <= j: m = (i + j) // 2 if nums[m] == target: return m if nums[i] <= nums[m]: if nums[i] <= target < nums[m]: j = m -1 else: i = m + 1 else: if nums[m] < target <= nums[j]: i = m + 1 else: j = m - 1 return -1 def main(): sol = Solution() print(sol.search([4,5,6,7,0,1,2], 0)) print(sol.search([4,5,6,7,0,1,2], 3)) print(sol.search([], 3)) print(sol.search([1], 1)) print(sol.search([1], 2)) if __name__ == '__main__': main()
4e3e9e8d4cd97f98eedbf41beb1c653245f87669
crab-a/hw02
/statistics.py
673
4.28125
4
def mean(values): """ calculate the mean of all values in the iterable 'values' :param values: iterable containing numbers(int/float/double) :return: the mean """ total = sum(values) length = len(values) return total / length def median(values): """ calculate the median of all values in the iterable 'values' :param values: iterable containing numbers(int/float/double) :return: the median """ length = len(values) sorted_values = sorted(values) med = 0 if length % 2: return sorted_values[int(length / 2)] return (sorted_values[int(length / 2)] + sorted_values[int((length / 2)) - 1]) / 2
c891f30f12fc1e48b967817380b5b2cae4338e27
pascal19821003/python
/study/tutorial/runoob/7.py
1,234
4.3125
4
#Python 列表(List) #https://www.runoob.com/python/python-lists.html list1 = ['physics', 'chemistry', 1997, 2000] list2 = [1, 2, 3, 4, 5, 6, 7 ] print ("list1[0]: ", list1[0]) print ("list2[1:5]: ", list2[1:5]) print("============================") #list = [] ## 空列表 #list.append('Google') ## 使用 append() 添加元素 #list.append('Runoob') #print (list) print("============================") list1 = ['physics', 'chemistry', 1997, 2000] print (list1) del list1[2] print ("After deleting value at index 2 : ") print (list1) print("============================") L=["Google", "Runoob", 'Taobao'] print(L[2]) print(L[-2]) print(L[1:]) print("============================") print(len([1, 2, 3])) print([1, 2, 3] + [4, 5, 6]) print(['Hi!'] * 4) print(3 in [1, 2, 3]) for x in [1,2,3]: print (x) print("===============list=============") aTuple=( 'xyz', 'zara', 'abc') aList=list(aTuple) print("列表元素:", aList) print("============================") aList=[123, 'xyz', 123, 'zara','abc'] aList.append(2009) print("Updated List: ", aList) print("count of 123: ", aList.count(123)) print(aList.index('zara')) aList.insert(3, "hhh") print(aList) aList.pop(-1) print(aList) aList.reverse() print(aList)
d86868b1c56b0028c414efb13f74ade56c5ddb99
Hassan-Sher/DS-Labs
/Quick Sort.py
485
3.921875
4
def quicksort(A,low,high): if low < high: p = partition(A,low,high) quicksort(A,low,p-1) quicksort(A,p+1,high) def partition(A,low,high): i = low-1 pivot = A[high] for j in range(low,high): if A[j] <= pivot: i = i+1 A[i],A[j] = A[j],A[i] A[i+1],A[high] = A[high],A[i+1] return i+1 A = [5,3,4,1,2,6,7] print("Original Array",A) quicksort(A,0,len(A)-1) print("Sorted Array",A)
2d06b1366e0745be87a9ad997f745d6235ea5b3f
jbelo-pro/CoffeeMachine
/Problems/Game over/task.py
229
3.671875
4
scores = input().split() # put your python code here i = 0 c = 0 for score in scores: if score == 'C': c += 1 else: i += 1 if i == 3: break print('You won' if i < 3 else 'Game over') print(c)
e342707bbb1ff14024589b2a8944cdf8df57124c
kumbhani/pingpong
/solution_bitmapXOR2.py
1,170
4.0625
4
''' Given an array containing n distinct numbers taken from 0, 1, 2, ..., n, find the one that is missing from the array. For example, Given nums = [0, 1, 3] return 2. Note: Your algorithm should run in linear runtime complexity. Could you implement it using only constant extra space complexity? ''' class Solution(object): def missingNumber(self, nums): ''' :type nums: List[int] :rtyp: int There are two approaches as hinted by the tags on leetcode. 1. Math - Missing number would be the difference between the sum of n number minus sum of elements in in nums array 2. Bit Manipulation - Using XOR, we set x1 as an accumulator like you mentioned for the elements in nums then x2 is set to 1 and then ran all the way to n. The remaining bits in x1 and x2 when XORed gives the missing number ''' if not nums: return 0 x1 = nums[0] x2 = 1 n = len(nums) for i in xrange(1, n): x1 ^= nums[i] for i in xrange(2, n+1): x2 ^= i return (x1 ^ x2)
619ec1b6a2c44dceffe8f2c9497f6e6193dd1686
dinabseiso/HW10
/seventeen2.py
4,812
3.671875
4
#! usr/bin/env python # seventeen2.py ### Import here from random import randint ### Body def draws(file): with open(file) as fin1: future_draws = fin1.readlines() return future_draws def play_game(file): """This function initiates the game. For this particular game, there will be 17 marbles in a jar. Turns between the user and the CPU are taken in grabbing marbles from the jar, and this will continue for as long as there are marbles in the jar. Because the user always goes first, a value is returned for the number of marbles left after the user grabs 1-3 marble/s. The values have already been read from a file in a variable future_draws, which recognizes line breaks. An empty list winner is instantiated for future appending/record-keeping of who has won. Each line (aka game) in future_draws is read as a string, including commas. Instead, a list of draws would be prefered, so that we could step through the user choices for as long as there are marbles in the jar. There is a check for whether there are no marbles remaining, and if so the game ends and the computer wins. If not, the CPU takes its turn. If the CPU grabs the last marble, then the user wins. If not, then... Repeat until there are no marbles left. """ winner = [] future_draws = draws(file) for line in future_draws: marbles_in_jar = 17 marbles_in_jar_after_user = 17 line_string = line.split(",") while marbles_in_jar > 0 and marbles_in_jar_after_user > 0: for draw in line_string: marbles_in_jar_after_user = your_turn(marbles_in_jar, draw) if marbles_in_jar_after_user == 0: winner.append("P2") break marbles_in_jar = cpu_turn(marbles_in_jar_after_user) if marbles_in_jar == 0: winner.append("P1") break results(future_draws, winner) def your_turn(marbles_in_jar, future_draws): """ This was not entirely necessary, but because I already implemented it previously I figured it would be good to have here as well. It takes in the input from the user explicitly and verifies that the input is valid. If it is not, it iterates again. Returns the number of marbles left in the jar for the CPU to evaluate. """ your_turn = True while your_turn == True: for draws in future_draws: draws = draws.split(",") for grab in draws: your_turn, grabbed = check_valid_input(grab, marbles_in_jar) marbles_in_jar -= grabbed return marbles_in_jar def cpu_turn(marbles_in_jar): """ The computer grabs a random integer between 1 and 3, unless taking that quantity is impossible (for example, attempting to grab 3 marbles when only 2 exist). In that case, the CPU will take only two. It is printed to the console the number of marbles the CPU took. The number of marbles remaining is then computed, printed, and returned for evaluating into the next turn of the user. """ computer_grab = randint(1, min(3, marbles_in_jar)) marbles_in_jar -= computer_grab return marbles_in_jar def check_valid_input(grabbed, marbles_in_jar): """ This function checks a few possible inputs that would not allow the script to run as it should. For example, if the input is not an integer value, if the user tries to grab more than three marbles, if the user tries to grab no marbles, and if the user tries to grab more marbles than there are in the jar, they will be asked to try again. Something additionally covered here is for the number of marbles grabbed to equal the number of marbles remaining if the predetermined grab-value is more than the number of marbles left in the jar. Until proper input is received, the loop will continue (see your_turn() and cpu_turn() for the while loop that contains this function.) """ try: grabbed = int(grabbed) if grabbed > 3: raise ValueError("Don't be greedy! Try again!") elif grabbed == 0: raise ValueError("Nice try. Try again!") elif marbles_in_jar - grabbed < 0: grabbed = marbles_in_jar except Exception: print("Sorry, that is not a valid option. Try again! ") return True, grabbed your_turn = False return your_turn, grabbed def results(future_draws, winner): with open("seventeen2_output.txt", "w") as fin2: game_number = 1 winner_index = 0 for options in future_draws: options = options.strip() options = options.replace(",","-") the_winner = winner[winner_index] fin2.write("Game #{}. Play sequence: {}. Winner: {} \n".format(game_number, options, the_winner)) game_number += 1 winner_index += 1 player_one_wins = winner.count("P1") player_two_wins = winner.count("P2") fin2.write("Player 1 won {} times; Player 2 won {} times.".format(player_one_wins, player_two_wins)) ### Define main() def main(): play_game("seventeen2_input.txt") ## Boilerplate if __name__ == "__main__": main()
e25aa025141e8d1fabd276df4054e0bd7a348f1c
jaychan09070339/Python_Basic
/practice_1/ABCD_Z.py
132
3.828125
4
#!/usr/bin/python word="A" num=ord(word) count=0 while count<=25: print(word,end="") num+=1 word=chr(num) count+=1
402794a866d092d623be988b2358ed1285e7c26b
aambrioso1/Effective_Python
/Item42.py
5,410
3.875
4
#!/usr/bin/env PYTHONHASHSEED=1234 python3 """ Item 42: Prefer Public Attributes Over Private Ones """ # Reproduce book environment import random random.seed(1234) import logging # Used for exception handling from pprint import pprint from sys import stdout as STDOUT # Write all output to a temporary directory import atexit import gc import io import os import tempfile TEST_DIR = tempfile.TemporaryDirectory() atexit.register(TEST_DIR.cleanup) # Make sure Windows processes exit cleanly OLD_CWD = os.getcwd() atexit.register(lambda: os.chdir(OLD_CWD)) os.chdir(TEST_DIR.name) def close_open_files(): everything = gc.get_objects() for obj in everything: if isinstance(obj, io.IOBase): obj.close() atexit.register(close_open_files) """ There are only two types of visibility in Python for class attributes: public and private Some things to remember: Private atrributes are not rigorously enforced. Use the documentation for protected fields rather than trying to control access with private attributes. Use private attributes only to control naming conflicts. Document protected fields carefully. """ # Example 1: Indicate a private field by prefixed it with a double underscore. class MyObject: def __init__(self): self.public_field = 5 self.__private_field = 10 def get_private_field(self): return self.__private_field # Example 2: Public attributes can be directly accessed by anyone foo = MyObject() assert foo.public_field == 5 # Example 3: Note that the foo class has access to its own private field assert foo.get_private_field() == 10 # Example 4: You cannot access a private field directly from outside the class. try: foo.__private_field except: logging.exception('Expected') else: assert False # Example 5 class MyOtherObject: def __init__(self): self.__private_field = 71 @classmethod def get_private_field_of_instance(cls, instance): return instance.__private_field bar = MyOtherObject() assert MyOtherObject.get_private_field_of_instance(bar) == 71 # Example 6: A subclass cannot access its parent class's private fields try: class MyParentObject: def __init__(self): self.__private_field = 71 class MyChildObject(MyParentObject): def get_private_field(self): return self.__private_field baz = MyChildObject() baz.get_private_field() except: logging.exception('Expected') else: assert False # Example 7: Note that the reason that the subclass access to a private field fails # is that the field is prefix with the name of the class it was created in. # Understanding this makes it is to access a parent class's private field if you need to. assert baz._MyParentObject__private_field == 71 # Example 8: Shows how the private fiels attributes are stored print(baz.__dict__) # Example 9 class MyStringClass: def __init__(self, value): self.__value = value def get_value(self): return str(self.__value) foo = MyStringClass(5) assert foo.get_value() == '5' # Example 10 class MyIntegerSubclass(MyStringClass): def get_value(self): return int(self._MyStringClass__value) foo = MyIntegerSubclass('5') assert foo.get_value() == 5 # Example 11 class MyBaseClass: def __init__(self, value): self.__value = value def get_value(self): return self.__value class MyStringClass(MyBaseClass): def get_value(self): return str(super().get_value()) # Updated class MyIntegerSubclass(MyStringClass): def get_value(self): return int(self._MyStringClass__value) # Not updated # Example 12: Problem with private field renamed by subclasses. try: foo = MyIntegerSubclass(5) foo.get_value() except: logging.exception('Expected') else: assert False # Example 13 class MyStringClass: def __init__(self, value): # This stores the user-supplied value for the object. # It should be coercible to a string. Once assigned in # the object it should be treated as immutable. self._value = value def get_value(self): return str(self._value) class MyIntegerSubclass(MyStringClass): def get_value(self): return self._value foo = MyIntegerSubclass(5) assert foo.get_value() == 5 # Example 14: Use private fields only when you are concerned that names will conflict because a # particular name is commonly used. class ApiClass: def __init__(self): self._value = 5 def get(self): return self._value class Child(ApiClass): def __init__(self): super().__init__() self._value = 'hello' # Conflicts # Example 15: Use the double underscore and a private attribute to avoid a nameing conflict. # This can be useful when working with unknown API's and common using common names. a = Child() print(f'{a.get()} and {a._value} should be different') class ApiClass: def __init__(self): self.__value = 5 # double underscore def get(self): return self.__value class Child(ApiClass): def __init__(self): super().__init__() self._value = 'hello' # Conflicts a = Child() print(f'{a.get()} and {a._value} should be different') # We can access the "private" attribute directly. print(f'a._ApiClass__value is {a._ApiClass__value} just like a.get()!')
46c3db3ca5a7bc31051b203406aaaabb3fd1eca0
NoGroceries/python2021
/tutorial/numbers.py
457
4.09375
4
# Division (/) always returns a float print(17 / 3) print(17 // 3) # 商 print(17 % 3) # 余数 print(4 * 3.75 - 1) # 混合类型时,会将int转换为float # In interactive mode, the last printed expression is assigned to the variable _ # >>> 8/5 # 1.6 # >>> print(_) # 1.6 # Python strings cannot be changed — they are immutable. language = "Python" print(language[0]) language[0] = 'J' # TypeError: 'str' object does not support item assignment
f2f47058972d2b0616d9ddec2133bd5efc334d46
NiuNiu-jupiter/Leetcode
/137. Single NumberII.py
1,965
3.75
4
""" Given a non-empty array of integers, every element appears three times except for one, which appears exactly once. Find that single one. Note: Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory? Example 1: Input: [2,2,3,2] Output: 3 Example 2: Input: [0,1,0,1,0,1,99] Output: 99 数组为[2,2,2,3],一共有四个元素,进行四次循环。 第一次循环,b=(0000^0010)&1111=0010=2,a=(0000^0010)&1101=0000=0 第二次循环,b=(0010^0010)&1111=0000=0,a=(0000^0010)&1111=0010=2 第三次循环,b=(0000^0010)&1101=0000=0,a=(0010^0010)&1111=0000=0 第四次循环,b=(0000^0011)&1111=0011=3,a=(0000^0011)&1100=0000=0 某个值nums[i]第一次出现的时候,b把它记录了下来,这时候a=0;接着第二次出现的时候,b被清空了,记录到了a里面;接着第三次出现的时候,b和a都被清空了。 如果一个数组中,所有的元素除了一个特殊的只出现一次,其他都出现了三次,那么根据我们刚刚观察到的结论,最后这个特殊元素必定会被记录在b中。 那么这次我们同样利用异或运算,看能不能设计出一种变换的方法让a和b按照上述变换规则,进行转换。 b=0时碰到x,就变成x;b=x时再碰到x,就变成0,这个不就是异或吗?所以我们也许可以设计b=b xor x。 但是当b=0时再再碰到x,这时候b还是要为0,但这时候不同的是a=x,而前两种情况都是a=0。所以我们可以设计成:b=(b xor x)&~a 同样道理,我们可以设计出:a=(a xor x)&~b """ def singleNumber(nums): a,b = 0, 0 for num in nums: b = (b ^ num) & ~a # when the third nums[i] coming, b need to be 1 again, but at this time previous nums[i] in a, so & ~a can set b to 1. a = (a ^ num) & ~b return b
1a0b2059b961d67244c732ea18fbc0c2102e22c0
trevornagaba/titanic_spyder
/app.py
7,373
3.5625
4
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') # %matplotlib inline # Import train data train_df=pd.read_csv("data/train.csv") train_df.head() # Determine percentage of missing data def missingdata(data): total = data.isnull().sum().sort_values(ascending = False) percent = (data.isnull().sum()/data.isnull().count()*100).sort_values(ascending = False) ms=pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) ms= ms[ms["Percent"] > 0] f,ax =plt.subplots(figsize=(8,6)) plt.xticks(rotation='90') fig=sns.barplot(ms.index, ms["Percent"],color="green",alpha=0.8) plt.xlabel('Features', fontsize=15) plt.ylabel('Percent of missing values', fontsize=15) plt.title('Percent missing data by feature', fontsize=15) return ms missingdata(train_df) def cleandata(train_df, param1, param2, param_drop): # Fill empty fields # Find a way to automate the selection of these empty fields train_df[param1].fillna(train_df[param1].mode()[0], inplace = True) train_df[param2].fillna(train_df[param2].median(), inplace = True) drop_column = [param_drop] train_df.drop(drop_column, axis=1, inplace = True) print('check the nan value in data') print(train_df.isnull().sum()) dataset = train_df # Create a new feature Familysize based on number if siblings and parch dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1 # Define function to extract titles from passenger names import re def get_title(name): title_search = re.search(' ([A-Za-z]+)\.', name) # If the title exists, extract and return it. if title_search: return title_search.group(1) return "" # Create a new feature Title, containing the titles of passenger names dataset['Title'] = dataset['Name'].apply(get_title) # Group all non-common titles into one single grouping "Rare" dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') # Group age and fare features into bins dataset['Age_bin'] = pd.cut(dataset['Age'], bins=[0,14,20,40,120], labels=['Children','Teenage','Adult','Elder']) dataset['Fare_bin'] = pd.cut(dataset['Fare'], bins=[0,7.91,14.45,31,120], labels=['Low_fare','median_fare', 'Average_fare','high_fare']) # Drop columns traindf=train_df drop_column = ['Age','Fare','Name','Ticket'] dataset.drop(drop_column, axis=1, inplace = True) drop_column = ['PassengerId'] traindf.drop(drop_column, axis=1, inplace = True) traindf = pd.get_dummies(traindf, columns = ["Sex","Title","Age_bin","Embarked","Fare_bin"], prefix=["Sex","Title","Age_type","Em_type","Fare_type"]) return traindf traindf = cleandata(train_df, 'Embarked', 'Age', 'Cabin') # Plot heat to illustrate correlation and identify unessential features sns.heatmap(traindf.corr(),annot=True,cmap='RdYlGn',linewidths=0.2) #data.corr()-->correlation matrix fig=plt.gcf() fig.set_size_inches(20,12) plt.show() # Import sklearn and split data into train and test set from sklearn.model_selection import train_test_split #for split the data from sklearn.metrics import accuracy_score #for accuracy_score from sklearn.model_selection import KFold #for K-fold cross validation from sklearn.model_selection import cross_val_score #score evaluation from sklearn.model_selection import cross_val_predict #prediction from sklearn.metrics import confusion_matrix #for confusion matrix all_features = traindf.drop("Survived",axis=1) Targeted_feature = traindf["Survived"] # X_train,X_test,y_train,y_test = train_test_split(all_features,Targeted_feature,test_size=1,random_state=42) # X_train.shape,X_test.shape,y_train.shape,y_test.shape # Fit and test data from sklearn.ensemble import RandomForestClassifier #model = RandomForestClassifier(criterion='gini', n_estimators=700, # min_samples_split=10,min_samples_leaf=1, # max_features='auto',oob_score=True, # random_state=1,n_jobs=-1) model = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', max_depth=None, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=800, n_jobs=None, oob_score=False, random_state=None, verbose=0, warm_start=False) model.fit(all_features, Targeted_feature) #prediction_rm=model.predict(X_test) #print('--------------The Accuracy of the model----------------------------') #print('The accuracy of the Random Forest Classifier is', round(accuracy_score(prediction_rm,y_test)*100,2)) #kfold = KFold(n_splits=10, random_state=22) # k=10, split the data into 10 equal parts #result_rm=cross_val_score(model,all_features,Targeted_feature,cv=10,scoring='accuracy') #print('The cross validated score for Random Forest Classifier is:',round(result_rm.mean()*100,2)) #y_pred = cross_val_predict(model,all_features,Targeted_feature,cv=10) #sns.heatmap(confusion_matrix(Targeted_feature,y_pred),annot=True,fmt='3.0f',cmap="summer") #plt.title('Confusion_matrix', y=1.05, size=15) # Import data test_df=pd.read_csv("data/test.csv") test_df.head() missingdata(test_df) testdf = cleandata(test_df, 'Fare', 'Age', 'Cabin') # Plot heat to illustrate correlation and identify unessential features sns.heatmap(testdf.corr(),annot=True,cmap='RdYlGn',linewidths=0.2) #data.corr()-->correlation matrix fig=plt.gcf() fig.set_size_inches(20,12) plt.show() prediction_rm=model.predict(testdf) np.savetxt("submission.csv", prediction_rm, delimiter=",") # Optimizing the model using GridSearch and the RandomForest Classifier from sklearn.model_selection import GridSearchCV # Random Forest Classifier Parameters tunning model = RandomForestClassifier() n_estim=range(100,1000,100) ## Search grid for optimal parameters param_grid = {"n_estimators" :n_estim} model_rf = GridSearchCV(model,param_grid = param_grid, cv=5, scoring="accuracy", n_jobs= 4, verbose = 1) model_rf.fit(all_features, Targeted_feature) # Best score print(model_rf.best_score_) #best estimator model_rf.best_estimator_ #model = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', # max_depth=None, max_features='auto', max_leaf_nodes=None, # min_impurity_decrease=0.0, min_impurity_split=None, # min_samples_leaf=1, min_samples_split=2, # min_weight_fraction_leaf=0.0, n_estimators=800, # n_jobs=None, oob_score=False, random_state=None, # verbose=0, warm_start=False) # #model.fit(all_features, Targeted_feature)
535e4bea1b336ba5c31d7a5e1930601de1e8a519
prakash4531/Python_basics2
/11_Text_Alignments.py
1,003
4.3125
4
# -*- coding: utf-8 -*- """ Problem No: 11 (Text Alignments) "User enter the text (0 < len < 20) and alignment (left, center, right). print the aligned out put and by adding - to make alignment" Formula: -Left: >>> print 'Praveen'.ljust(width,'-') Praveen---------- -Right >>> print 'Praveen'.rjust(width,'-') ----------Praveen -Center >>> print 'Praveen'.center(width,'-') -----Praveen----- Example: Input: String: Praveen Alignment: center output: -----Praveen----- """ string = input('Enter your text here: ') alignment = input('Enter your alignment here: ') print("Thea original string is : \n", string, "\n") width = 20 left = string.ljust(width, '-') right = string.rjust(width, '-') center = string.center(width, '-') if alignment == 'left': print(left) elif alignment == 'right': print(right) elif alignment == 'center': print(center) else: print("Please write the alignment input from left,right and center: ")
a882d4466d05b55b925e04735602dc860ba6787a
harinisridhar1310/Guvi
/fibonnaic.py
124
3.671875
4
#harini a=int(input()) first=0 second=1 for i in range(0,a): print(second) third=first+second first=second second=third
19576cdb776a951310d6625b07473defb0d5e77e
JaredLGillespie/OpenKattis
/Python/boundingrobots.py
755
3.828125
4
# https://open.kattis.com/problems/boundingrobots def walk_think(x, y, c, v): if c == 'u': return x, y + v if c == 'r': return x + v, y if c == 'd': return x, y - v return x - v, y def walk_actual(w, l, x, y, c, v): x, y = walk_think(x, y, c, v) return min(max(0, x), w - 1), min(max(0, y), l - 1) w, l = map(int, input().split()) while w != 0 and l != 0: n = int(input()) tx, ty, ax, ay = 0, 0, 0, 0 for _ in range(n): c, v = input().split() tx, ty = walk_think(tx, ty, c, int(v)) ax, ay = walk_actual(w, l, ax, ay, c, int(v)) print('Robot thinks %s %s' % (tx, ty)) print('Actually at %s %s' % (ax, ay)) print() w, l = map(int, input().split())
5c9a63b08723cad8c03ef299631ae75942f60b4e
hdjsjyl/LeetcodeFB
/29.py
1,324
3.78125
4
""" 29. Divide Two Integers Given two integers dividend and divisor, divide two integers without using multiplication, division and mod operator. Return the quotient after dividing dividend by divisor. The integer division should truncate toward zero, which means losing its fractional part. For example, truncate(8.345) = 8 and truncate(-2.7335) = -2. Example 1: Input: dividend = 10, divisor = 3 Output: 3 Explanation: 10/3 = truncate(3.33333..) = 3. Example 2: Input: dividend = 7, divisor = -3 Output: -2 Explanation: 7/-3 = truncate(-2.33333..) = -2. """ ## binary search, TC: O(logn) ## bit operation: << means *2, >> means /2 class Solution: def divide(self, dividend: int, divisor: int) -> int: if dividend == 0: return 0 flag = 1 if dividend < 0: flag *= -1 dividend *= -1 if divisor < 0: flag *= -1 divisor *= -1 ant = 0 while dividend >= divisor: cnt = 1 while dividend >= divisor << cnt: cnt += 1 ant += 1 << cnt - 1 dividend -= divisor << cnt - 1 res = ant * flag if res > 2 ** 31 - 1: return 2 ** 31 - 1 elif res < -1 * 2 ** 31: return -1 * 2 ** 31 return ant * flag
8d1239b00f976c1bf180daf2d41b4a5186703eba
blue0712/blue
/demo25.py
553
3.78125
4
day_of_week = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'] lengthArray = [] for d in day_of_week: lengthArray.append(len(d)) print(lengthArray) print([len(d) for d in day_of_week]) print([d for d in day_of_week if len(d) > 6]) x1, x2, x3, x4, x5, x6, x7 = day_of_week print(x1, x3, x5) print(x2, x4, x6, x7) number_list = [3, 1, 4, 1, 5, 9, 26, 83, 42, 0, 100, 83, 99] over30 = sorted(d**2 for d in number_list if d>30) print(over30) under50 = sorted((e for e in number_list if e < 50),reverse=True) print(under50)
13d9c525a9785751ba2978c7cf6ef943e4fab247
sethdeane16/projecteuler
/027.py
665
3.5
4
import resources.pef as pef import time """ https://projecteuler.net/problem=27 8.877437829971313 """ def main(): maxn = 0 answer = 0 for a in range(-1000,1001): for b in range(-1000,1000): streak = 0 for n in range(80): if pef.is_prime(n**2 + (n*a) + b): streak += 1 else: break if maxn <= n: maxn = n answer = a * b return answer if __name__ == "__main__": start_time = time.time() answer = main() end_time = time.time() pef.answer(answer, end_time - start_time)
7d9f770c4c89d81a98cd3af70b8811948e573a8a
sreeharisreddy/MachineLearning
/RandomForestClassificationExample.py
2,059
3.53125
4
# Loading the library with the iris dataset from sklearn.datasets import load_iris # Loading scikit's randomforest classifier library from sklearn.ensemble import RandomForestClassifier #loading pandas import pandas as pd #loading numpy import numpy as np #seeting random seed np.random.seed(0) #creating an object called iris with the iris data iris = load_iris() #print(iris) #craeting a data frame with foure featur variables df = pd.DataFrame(iris.data,columns=iris.feature_names) #df.head() #Adding a new column for the species name df['species'] = pd.Categorical.from_codes(iris.target,iris.target_names) #Creating the Test and Train data randomly df['is_train'] = np.random.uniform(0,1,len(df)) <= .75 df.head() #Creating adataframe with test rows and training rows train,test = df[df['is_train']==True], df[df['is_train']==False] #Show the number of observations for the test and training dataframes print('Numbe of observations in the training dataset:',len(train)) print('Numbe of observations in the test dataset:',len(test)) #Creating the list of the feature column's names features = df.columns[:4] print(features) #Converting each species into digits y=pd.factorize(train['species'])[0] #Creating Random ForestClassifier clf = RandomForestClassifier(n_jobs=2,random_state=0) #Training the classifier clf.fit(train[features],y) #Applying the trained classifier to the test clf.predict(test[features]) #Viewing the predicted probabilities of the first 10 observations clf.predict_proba(test[features])[0:10] #mapping names for thr plans for each plant class preds = iris.target_names[clf.predict(test[features])] #view thr predicted species for the first five observations preds[0:5] #view the Actual species for the five first observation test['species'].head() #creating confusion matrix pd.crosstab(test['species'],preds,rownames=['Actual Species'],colnames=['Predicted Species']) #Predicting for new dataset preds = iris.target_names[clf.predict( [[9.0,3.6,7.4,7.0],[5.0,3.6,1.4,2.0]])] preds
9beea0207e8a6961b8c014f83e6dbeac51ba0388
adjmunro/origin-srs
/data/scripts/AddEntry.py
3,160
3.71875
4
class WordList: def __init__(self, filename, n_cols): self.filename = filename + '.txt' if '.txt' not in filename else filename self.n_cols = n_cols self.elements = {} self.other_files = {} self.other_keys = [] self.read() self.add() def add(self): n = 0 while n < self.n_cols: while n == 0: key = input(f'(key) 0: ') if key == '': n += 1 continue if key in self.elements: v = input( f"Key '{key}' already exists in this file!\n{key} -> {self.elements[key]}\nEnter a new value (single column), or 'x' to cancel.") if v != 'x': self.elements[key] = [v] continue if key in self.other_keys: filename, value = self.find(key) if input( f"Key '{key}' found in '{filename}'!\n{key} -> {value}\nEnter 'y' if you still wish to add this key.") != 'y': continue self.elements.update({key: []}) for key in self.elements.keys(): if '' in self.elements[key]: self.elements[key].remove('') if len(self.elements[key]) >= self.n_cols - 1: continue elem = input(f'({n}) [{key}] -> ') if elem == '': n = self.n_cols break self.elements[key].append(elem.replace(',', ';')) n += 1 self.write() def find(self, key): for f, i in self.other_files.items(): if key in i: return (f, i[key]) return None def read(self): if os.path.exists(self.filename): print('Adding to existing file') with open(self.filename, 'r', encoding='UTF-8') as f: temp = [i.split(',') for i in f.read().split('\n') if i != ''] self.elements = {i[0]: i[1:] for i in temp} for filename in os.listdir(): if filename == self.filename or '.txt' not in filename: continue print(f'Scanning {filename}') with open(filename, 'r', encoding='UTF-8') as f: temp = [i.split(',') for i in f.read().split('\n') if i != ''] self.other_files.update({filename: {i[0]: i[1:] for i in temp}}) self.other_keys += self.other_files[filename].keys() def write(self): with open(self.filename, 'w', encoding='UTF-8') as f: f.write('\n'.join([','.join([k] + v) for k, v in self.elements.items()])) if __name__ == "__main__": import os filename = input('Enter filename: ') while filename == '': filename = input('Enter filename: ') n_cols = input('Enter max number of columns: ') while not n_cols.isdigit(): print(f'"{n_cols}" is invalid!') n_cols = input('Enter max number of columns: ') WordList(filename, int(n_cols))
9afc83208c7522872bda29d23ca1cd6e1d848b98
Zerpha-Rova/draw
/line1.py
333
3.65625
4
import turtle as td from turtle import Turtle as turt z = -1 wn = td.Screen() bob = turt() def line(a,b): ###a=(x1, y1) b=(x2,y2) bob.penup() bob.goto(a) bob.pendown() bob.goto(b) bob.penup() line((70,-50),(110,55)) q = 66 w = (q, q*z) v = (q*z, q) line(w,v) '''u = (((10,100*z),bob.ycor()), (w)) line(u)''' wn.mainloop()
d5dcc719a6146820a70050797f69c02416abb223
simonada/AI-Projects
/ANN/Networks.py
14,787
3.546875
4
import numpy as np import random verbose = False monitor_test = True l1_regularization = False class Network(object): def __init__(self, sizes, activationFcns, test_data): """ :param: sizes: a list containing the number of neurons in the respective layers of the network. See project description. """ self.num_layers = len(sizes) self.sizes = sizes self.activation_functions = activationFcns self.biases = [np.random.randn(y, 1) for y in sizes[1:]] self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])] self.test_data = test_data def inference(self, x): """ :param: x: input of ANN :return: the output of ANN with input x, a 1-D array """ # print('Original input', x) # print('Number of layers', len(self.weights)) L = len(self.weights) W = self.weights B = self.biases activation = x for layer in range(1, L + 1): # print('Layer Input', input_z.shape) # flatten the dimensions of the biases, otherwise the sum is not pointwise hidden_layer = (np.dot(W[layer - 1], activation)) + B[layer - 1] # .ravel() activation = self.activation_functions[layer](hidden_layer) if verbose: print('Weights', W[layer - 1], 'biases', B[layer - 1]) print('Input after weighting', hidden_layer.shape, hidden_layer) print('Input after activation', activation) # print('Final output', input_z) return activation def training(self, trainData, T, n, alpha, validationData=None, lmbda = 0): """ trains the ANN with training dataset using stochastic gradient descent :param trainData: a list of tuples (x, y) representing the training inputs and the desired outputs. :param T: total number of iteration :param n: size of mini-batches :param alpha: learning rate """ self.N = len(trainData) # needed for Regularization epochs = [] training_accuracy = [] validation_accuracy = [] max_validation_score = 0 count_epochs_without_improvement = 0 testing_accuracy = [] for iterations in range(T): print('Epoch', iterations) epochs.append(iterations) batches = self.splitTrainData(trainData, n) print('Batches', len(batches)) # Epoch = iteration over the whole data set for batch in batches: self.updateWeights(batch, alpha, lmbda) if validationData: val_accuracy = self.evaluate(validationData) print("Performance on validation data: {0} / {1} ({2})".format(val_accuracy, len(validationData), val_accuracy / len(validationData))) validation_accuracy.append((val_accuracy / len(validationData) * 100)) if val_accuracy > max_validation_score: max_validation_score = val_accuracy count_epochs_without_improvement = 0 else: count_epochs_without_improvement += 1 if count_epochs_without_improvement == 10: print('Early stopping after ten epochs no improvement in accuracy.') print('Max accuracy', max_validation_score) print('Epochs', epochs) return validation_accuracy, training_accuracy, testing_accuracy training_accuracy.append((self.evaluate(trainData) / len(trainData)) * 100) if monitor_test: testing_accuracy.append((self.evaluate(self.test_data) / len(self.test_data)) * 100) # print() # print('Performance statistics') # print('Epochs', epochs) # print('Training acc') # print(training_accuracy) # print('Validation acc') # print(validation_accuracy) return validation_accuracy, training_accuracy, testing_accuracy def splitTrainData(self, trainData, n): random.shuffle(trainData) batches = [trainData[k:k + n] for k in range(0, len(trainData), n)] return batches def updateWeights(self, batch, alpha, lmbda = 0): """ called by 'training', update the weights and biases of the ANN :param batch: mini-batch, a list of pair (x, y) :param alpha: learning rate """ biases_aggregated_updates = [] weights_aggregated_updates = [] batch_size = len(batch) # 1. Prepare to aggregate the gradients computed for each sample in the mini-batch # aggregated into an list of array of the same dimensions as the original weights and biases # initialized with zeros for w in self.weights: weights_aggregated_updates.append(np.zeros(w.shape)) for b in self.biases: biases_aggregated_updates.append(np.zeros(b.shape)) for x, y in batch: delta_nabla_w, delta_nabla_b = self.backprop(x, y) # zip them together to be able to iterate over them pair wise and update the W and B layer by layer weights_pairs = zip(weights_aggregated_updates, delta_nabla_w) biases_pairs = zip(biases_aggregated_updates, delta_nabla_b) biases_aggregated_updates = [batch_bias + sample_bias_delta for batch_bias, sample_bias_delta in biases_pairs] weights_aggregated_updates = [batch_weigths + sample_weights_delta for batch_weigths, sample_weights_delta in weights_pairs] # Final Batch update weights_final_pairs = zip(self.weights, weights_aggregated_updates) biases_final_pairs = zip(self.biases, biases_aggregated_updates) updated_weights = [] updated_biases = [] # Average the updates by dividing the learning rate by the number of samples in the mini batch alpha = (alpha / batch_size) for old_weights, batch_gradients_weights in weights_final_pairs: if l1_regularization: #print('Performing L1 regularization:') regularized_weights = old_weights - alpha * (lmbda/self.N)*np.sign(old_weights) # if reg term is zero, the results are the same as if no reg. is applied else: regularized_weights = old_weights * (1 - alpha * (lmbda/self.N)) # if reg term is zero, the results are the same as if no reg. is applied updated_weights.append(regularized_weights - alpha * batch_gradients_weights) for old_biases, batch_gradients_biases in biases_final_pairs: updated_biases.append(old_biases - alpha * batch_gradients_biases) self.weights = updated_weights self.biases = updated_biases def backprop(self, x, y): """ called by 'updateWeights' :param: (x, y): a tuple of batch in 'updateWeights' :return: a tuple (nablaW, nablaB) representing the gradient of the empirical risk for an instance x, y nablaW and nablaB follow the same structure as self.weights and self.biases """ W = self.weights nr_layers = len(W) # Data structure for the final outputs gradients_weights = [] gradients_biases = [] for w in self.weights: gradients_weights.append(np.zeros(w.shape)) for b in self.biases: gradients_biases.append(np.zeros(b.shape)) layers_activations, layers_outputs = self.forward_pass(x) # First step get loss derivatives of the final layer # Matrix to store the deltas for each layer, should have a shape dependent on # the number of HL and the number of nodes in each HL prediction = layers_activations[-1] last_layer_outputs = layers_outputs[-1] if self.activation_functions[-1].__name__ == "sigmoid": last_layer_output_derivatives = sigmoid_prime(last_layer_outputs) elif self.activation_functions[-1].__name__ == "tanh": last_layer_output_derivatives = tanh_prime(last_layer_outputs) elif self.activation_functions[-1].__name__ == "relu": last_layer_output_derivatives = relu_prime(last_layer_outputs) elif self.activation_functions[-1].__name__ == "leaky_relu": last_layer_output_derivatives = leaky_relu_prime(last_layer_outputs) last_layer_delta = dSquaredLoss(prediction, y) * last_layer_output_derivatives if verbose: print('Squared loss derivatives', dSquaredLoss(prediction, y)) print('Z last layer derivatives', last_layer_output_derivatives) print('Deltas last layer', last_layer_delta) # Next compute the derivatives w.r.t. to the errors at each layer, i.e. by how much does each node contribute # logic for delta = weights of layer above * delta of layer above dot sigmoid derivative of node output? layers_deltas = np.zeros(nr_layers, dtype=object) layers_deltas[-1] = last_layer_delta # Compute the deltas for each layer based on the deltas of the layer above it (iterate backwards) for layer in range(nr_layers - 2, -1, -1): w_previous_layer = W[layer + 1] deltas_previous_layer = layers_deltas[layer + 1] error_contributions_per_node = np.dot(w_previous_layer.T, deltas_previous_layer) if self.activation_functions[layer + 1].__name__ == "sigmoid": slope_derivatives_per_node = sigmoid_prime(layers_outputs[layer]) elif self.activation_functions[layer + 1].__name__ == "tanh": slope_derivatives_per_node = tanh_prime(layers_outputs[layer]) elif self.activation_functions[layer + 1].__name__ == "relu": slope_derivatives_per_node = relu_prime(layers_outputs[layer]) elif self.activation_functions[layer + 1].__name__ == "leaky_relu": slope_derivatives_per_node = leaky_relu_prime(layers_outputs[layer]) layer_delta = error_contributions_per_node * slope_derivatives_per_node layers_deltas[layer] = layer_delta # Final step, computing the deltas for weights updates at each layer for i in range(nr_layers): # weights activation = layers_activations[i] delta = layers_deltas[i] gradient_w = np.dot(delta, activation.T) gradients_weights[i] = gradient_w gradients_biases = layers_deltas return (gradients_weights, gradients_biases) def forward_pass(self, x): W = self.weights B = self.biases L = len(W) # print('---Forward pass---') activation = x activations_array = [x] # the first activation is the input itself function_outputs_array = [] for layer in range(1, L + 1): hidden_layer_output = (np.dot(W[layer - 1], activation)) + B[layer - 1] # .ravel() function_outputs_array.append(hidden_layer_output) activation = self.activation_functions[layer](hidden_layer_output) activations_array.append(activation) return activations_array, function_outputs_array def evaluate(self, data): """ :param data: dataset, a list of tuples (x, y) representing the training inputs and the desired outputs. :return: the number of correct predictions of the current ANN on the input dataset. The prediction of the ANN is taken as the argmax of its output """ accuracy = 0 count = 0 for x, y in data: count += 1 probabilities = self.inference(x) max_probability_class_id = probabilities.argmax(axis=0) # check if prediction matches the target if y[max_probability_class_id] == 1: accuracy += 1 return accuracy # activation functions together with their derivative functions: def dSquaredLoss(a, y): """ :param a: vector of activations output from the network :param y: the corresponding correct label :return: the vector of partial derivatives of the squared loss with respect to the output activations """ # assuming that we measure the L(a, y) by sum(1/2*square(y_i - a_i)) for all i parameters, so that the two cancels out # for each partial derivation L/a_i we have 1/2*square(a_j -y_j) = 0 where j != i # partial derivation for a single 1/2*square(a_i -y_i) = 1/2 * 2 * (y_i - a_i) * -1 = a_i - y_i # (a_i - y_i) gives the contribution of the final output per node to the total error return (a - y) # * a_derivatives def squaredLoss(x, y): print('prediction', x) print('target', y) return np.sum(np.square(x - y)) def sigmoid(z): """The sigmoid function""" return 1.0 / (1.0 + np.exp(-z)) def sigmoid_prime(z): """Derivative of the sigmoid function""" return sigmoid(z) * (1 - sigmoid(z)) def tanh(z): return (1.0 - np.exp(-2 * z)) / (1.0 + np.exp(-2 * z)) def tanh_prime(z): return 1 - np.square(tanh(z)) def relu(z): return np.maximum(z, 0) def relu_prime(z): return (z > 0) * 1 # if the element is greater than zero, it'll be set to one, otherwise zero def leaky_relu(z): # if value above 0, keep the value, else replace value with beta * value beta = 0.01 return np.where(z > 0, z, - beta * z) def leaky_relu_prime(z): beta = 0.01 dz = np.ones_like(z) dz[z < 0] = - beta return dz def main(): # ref. for the example: https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ print('Running Networks example') net = Network([2, 2, 2]) sample_weigths_l1 = np.array([[0.15, 0.25], [0.2, 0.30]]) sample_weigths_l2 = np.array([[0.40, 0.50], [0.45, 0.55]]) net.weights[0] = sample_weigths_l1 net.weights[1] = sample_weigths_l2 net.biases[0] = np.array([[0.35], [0.35]]) net.biases[1] = np.array([[0.60], [0.60]]) x = np.array([0.05, 0.10]) # input y = np.array([0.01, 0.99]) # target nablaW, nablaB = net.backprop(x, y) print('Weights') print(nablaW) print('Biases') print(nablaB) # for i in range(10): # nablaW, nablaB = net.backprop(x, y) # print(nablaW) # net.weights -= 0.5 * nablaW # net.biases -= 0.5 * nablaB if __name__ == '__main__': main()
da721234e24fc476a24ac93d5216948697ba03fe
arfsufpe/scheduler
/scheduler.py
6,438
3.640625
4
''' Created on 12 de jan de 2020 @author: Rodrigo ''' from __future__ import print_function from ortools.sat.python import cp_model # Each volunteer has a predefined job to do and also predefined is his total number of shifts during the whole month # for example John is a volunteer (John is a senior) and he's going to take 7 shifts during the whole month # since John is a senior he might be designated to work as a one of the three jobs: # (supervisor, report operator, team member) # Albert is a senior and he's going to take 5 shifts during the whole month as a (supervisor or report operator or team member) # Alfred is a driver and he's going to take 4 shifts during the whole month as a driver # (driver can work as driver or team member) # same reasoning applies to the other volunteers. # the input is a dictionary with the total of shifts during the month and the corresponding type of volunteer and its rank: # volunteers{'Name'} = (type of volunteer, total number of shifts in a month, rank) # volunteers{'John'} = (senior,7, 0) # volunteers{'Albert'} = (senior, 5,10) # volunteers{'Alfred'} = (driver,4, 12) # volunteers{'Layse'} = (report operator assistant,5, 13) # volunteers{'Mia'} = (supervisor assistant, 8, 51) # volunteers{'Jim'} = (team member, 8,56) # SHIFT (in a single shift we have the following jobs): # 1 - seniors can work as # supervisor (required - only 1 is enough) # OR report operator (required - 1 or 2) # 2 operators is preferable for the case we have a day with 4 teams # in the case we run out of senior volunteers it is possible to have # only one report operator # OR team member (in case all all others - supervisor or report operator 'chair'- are busy already) # 2 - supervisors' assistant can work as (supervisor assistant OR team member) # (desirable - can be 0 in the case we don't have enough volunteers) # 3 - report operators' assistant can work as (report operator assistant OR team member) # [required*](only one is necessary no matter we have 1 or 2 report operators) # 4 - drivers can work as (drivers OR team member) # 5 - ordinary volunteers can work as (team member) # TEAM # 1 - each team is responsible for 1 of the 12 police facilities for that shift # 2 - each team is composed of ordinary volunteers and a driver (minimum of 2 [ 1 driver + 1 team member], # maximum of 4 [ 1 driver + 3 team member]) # in a week there are two shifts of 12 hours each # from Mondays to Fridays there is only the second shift (from 7pm to 7am)(no one works at shift 1) # on Saturdays there are two shifts (one from 7am to 7pm and another from 7pm to 7am (of Sunday)(there are workers on shift 1 and 2) # on Sundays there is only one shift from 9am to 9pm (workers on shift 1 only) #what to do: create a schedule for the volunteers for the whole month for all shifts for all 12 police facilities # Facility constraints: # there are 12 facilities which will 'place' the operation # for the the whole month in each facility there must be at least two teams placed on that facility every weekend(Friday, Saturday, Sunday) # the teams should be evenly (as even as possible) distributed among the facilities during the whole month # at Fridays, Saturdays and Sundays the total number of teams associated to the facility must be a minimum of 3 and maximum of 4 (if we have enough volunteers) # from Monday to Thursday there must be at least on team member associated to a facility # Volunteers constraints # there is a rank among seniors and the ones with higher rank must work as a supervisor # (seniors with higher rank should work as supervisor first, then report operator and finally team member) # there must be at least one day off after a shift # the shifts of every volunteer should be evenly (as even as possible)distributed for the whole month # for every volunteer the number of shifts must be equal to the total number of shifts passed as input # The following information is a complement of the information above (just to make it clear) # There are these types of volunteers: # seniors - preferably can be assigned to supervisor OR report operator # in the case where all the supervisor's job or report operator's job are full # it is possible for seniors to compose the team # There is a rank in the senior subgroup and the ones with higher rank must take the supervisor's job first # then the report operator next and finally a team member # senior's assistant - a list of volunteers for the specific service # report operators' assistant - a subgroup of volunteers whose job is to assist the report operator # team members - the remaining volunteers # team - composed of ordinary volunteers and a driver # each team must be assigned to one of the 12 police facilities for the day # drivers - each team must have one driver (subgroup of volunteers allowed to drive) def main(): #Data. num_days = 29 num_shifts = 2 num_facilities = 12 num_supervisors = 20 num_supervisor_assistants = 15 num_report_operators = 20 num_report_operator_assistants = 15 num_drivers = 15 num_team_members = 100 # will be a member of a team all_days = range(num_days) all_shifts = range(num_shifts) all_facilities = range(num_facilities) all_supervisors = range(num_supervisors) all_supervisor_assistants = range(num_supervisor_assistants) all_report_operators = range(num_report_operators) all_report_operator_assistants = range(num_report_operator_assistants) all_drivers = range(num_drivers) all_team_members = range(num_team_members) # Creates the model. model = cp_model.CpModel() # Creates shift variables. # shifts[(v, d, s, j,t,f)]: volunteer 'v' works on shift 's' on day 'd' doing the 'j' job on team 't' associated to facility 'f'. shifts = {} if __name__ == '__main__': pass
c78718b0e1afcb6f9d8b11bfe4f905f606135bb8
V-Plum/ITEA
/lesson_2/homework_2.py
310
3.71875
4
def main(): # Get number n = int(input("Enter number: ")) # Calculate result n1 = n + 1 n2 = n - 1 result = n1 ** 2 - n2 ** 2 # display result print(f"Різниця добутків чисел n+1 та n-1 дорівнює: {result}") if __name__ == "__main__": main()
b8e176885d95a609f35beb603c8159c22c0f0045
archerckk/PyTest
/Ar_Script/ar_286_循环分支练习.py
1,432
3.8125
4
""" 今天习题: 习题一: 1 用while语句的2种方法输出数字:1到10 2 用for语句和continue 输出结果:1 3 5 7 9 习题二:假设有列表 a = [1,2,3,4,5,6] 1 用for if else 的方法查找数字8是否在列表a里,如果在的话,输出字符串'find',如果不存在的话, 输出字符串'not find' 2 用while语句操作上面的列表a,输出下面结果: [2,3,4,5,6,7] """ # 练习1 用while语句的2种方法输出数字:1到10 print('练习1方法1结果展示:') x = 1 while True: print(x) x += 1 if x > 10: break print('练习1方法2结果展示:') x = 1 while x < 11: print(x) x += 1 # 练习2 用for语句和continue 输出结果:1 3 5 7 9 print('练习2结果展示:') x = 1 for i in range(1, 10, 2): print(i) print('练习2方法2结果展示:') for i in range(1, 10): if i % 2 == 1: print(i) # 练习3 用for if else 的方法查找数字8是否在列表a里,如果在的话,输出字符串'find',如果不存在的话,输出字符串'not find' print('练习3结果展示:') a = [1, 2, 3, 4, 5, 6] for i in a: if 8 in a: print('find') break else: print('not find') # 练习4 2 用while语句操作上面的列表a,输出下面结果:[2,3,4,5,6,7] print('练习4结果展示:') a = [1, 2, 3, 4, 5, 6] while True: del a[0] a.append(7) break print(a)
ec0ea09be5bc48eca7c73a2736fc813c0245b554
jpieczar/Euler
/Python/twelve.py
458
3.8125
4
from itertools import accumulate, count from math import sqrt def count_factors(num): sum_ = 2 * sum(num % i == 0 for i in range(1, int(sqrt(num)) + 1)) return sum_ def triangular_numbers(): yield from accumulate(count()) def main(): for triangle_nr in triangular_numbers(): if count_factors(triangle_nr) > 500: return triangle_nr if __name__ == "__main__": answer = main() if answer: print(answer)
c39c9220965bcbb75f947043243cf7d6c21bdd5a
bhanurangani/code-days-ml-code100
/code/day-2/4.Loops/WhileLoop/WhileLoop.py
74
3.875
4
#this is how while loop is used i=1 while i < 6 : print(i) i += 1
d2356e0091cc32fc97af06942f69e653d3753640
MatthewC221/Algorithms
/license_format.py
964
3.703125
4
# Leetcode: https://leetcode.com/problems/license-key-formatting/description/ # Some of these questions are hella weird to be honest. Quite straight forward, be careful of edge cases. # Realise there's an elegant way to find out the length of the first group. If you have 8 chars and groups of 3, your first group # is length 2. That's why start = len(S) % K makes sense. class Solution(object): def licenseKeyFormatting(self, S, K): """ :type S: str :type K: int :rtype: str """ S = S.upper() S = S.replace('-', '') ret = "" start = len(S)%K if (start != 0): for i in xrange(0, start): ret += S[i] if (i != len(S)-1): ret += "-" count = 0 for i in xrange(start, len(S)): if (count%K == 0 and count != 0): ret += "-" ret += S[i] count += 1 return ret
a2f38fe8698ad7ded399dbf26dc8dfd1bd8f46bd
jardellx/arcade
/base/181/solver.py
142
3.578125
4
words = input().split(" ") cont = 0 for w in words: try: value = int(w) cont += value except: pass print(cont)
e0aaab68845ea2081e62013339c84e4b37d9cb0a
DandyCV/LITS
/Lesson05.py
720
3.625
4
def check_float(s): if '.' in s: return True else: return False s = '5.8' print (check_float(s)) def decor(func): def inner(*args, **kw): print('\n') func() print('\n') return inner @decor def smart_input(): numbers = input('Введіть кілька чисел через пробіл ') numbers_list = numbers.split() max = float('-inf') for n in numbers_list: num = int(n) if num > max: max = num print('Максимальне число = ',max) #def max_input(): #print(max(map(int,input().split()))) smart_input()
cfd1602fc6dbc6fc1adfd299bbfeb8db31bc3f34
Nicolaks/prime-number
/prime-number-master/programm/prime-0.1.py
930
3.96875
4
import os from math import * # Function return true if a number is prime. def is_prime(n): for i in range(2, int(sqrt(n)+1)): if n%i == 0: return False return True # Create a while, with a top number, and check if the number # is prime ans after put him in file. def launch(): n = int(input("What number should I go up to ? ")) for p in range(2, n+1): if is_prime(p): print(p) prime_file = open("prime", "a") prime_file.write(str(p) + " " + str(is_prime(p)) + "\n") prime_file.close() # Convert bytes. def convert_bytes(num): global res res = num / 1024.0 return res # Allow to see the size of a file. def file_size(file_path): if os.path.isfile(file_path): file_info = os.stat(file_path) return convert_bytes(file_info.st_size) # Main function who launch all the program. def main(): launch() file_path = "prime" marks = str(int(file_size(file_path))) print(marks + " ko") main()
2c2423a260c44bfb8c3583863789811a4682cd14
brookslybrand/CS303E
/CodingBat/Logic-1/in1to10.py
261
3.625
4
# coding: utf-8 # In[129]: def in1to10(n, outside_mode): ''' return True if between 1 and 10 inclusive, or outside those numbers if outside_mode = True ''' return ( (not outside_mode and 1 <= n <= 10) or (outside_mode and (n <= 1 or n >= 10) ) )
f9f6e29dd029f32c0c80e1c53aba796e2a62e90c
efficacy/aoc2020
/day14/day14.py
3,680
3.59375
4
import re import math BITS = 36 MAX = 0b111111111111111111111111111111111111 def invert(x): return MAX - x def double(values, bit): # print("double:",values,bit) ret = [] for value in values: # print("considering:",value) zero = value & invert(bit) one = zero | bit ret.append(zero) ret.append(one) # print("appended:",ret) return ret class Cpu: def __init__(self): self.enable = 0 self.value = 0 self.mem = {} def __str__(self): return "mask:"+str(self.enable)+","+str(self.value)+"\n mem:"+str(self.mem) def set_mask(self, mask): nbits = len(mask) if not nbits == BITS: raise(Exception("mask must be 36 bits, was",nbits)) # print("set_mask:", mask) e = '' v = '' for i in range(BITS): c = mask[i] if c == 'X': e += '0' v += '0' else: e += '1' v += c self.enable = int(e,2) self.value = int(v,2) def apply_mask(self, value): a = self.enable & self.value b = (invert(self.enable)) & value ret = a | b # print("apply mask e:",self.enable,"v:",self.value,"a:",a,"b:",b,"->",ret) return ret def apply_mask2(self, value): floaters = invert(self.enable) # print("apply mask 2 e:",format(self.enable,'b'),"f:",format(floaters,'b'),"v:",self.value,"i",value) base = self.value | value ret = [base] for i in range(BITS): bit = int(math.pow(2,i)) if (floaters & bit): ret = double(ret, bit) # print("after double:", ret) # raise(Exception("huh")) # print("apply mask 2 e:",self.enable,"v:",self.value,"->",ret) return ret def put(self, addr, value): # print("put:",addr,':=',value) if value > 0: self.mem[addr] = value else: self.mem.pop(addr, None) def set_value(self, addr, value, qpart): if (qpart == 1): masked = self.apply_mask(value) self.put(addr, masked) else: masked = self.apply_mask2(addr) for a in masked: self.put(a, value) return masked def count_memory(self): ret = 0 for loc in self.mem: ret += self.mem[loc] return ret # return all possible combinations of bits where mask is 0 def splurge(mask,value, input): pass def solve(qpart, filename='input.txt'): print("Part " + str(qpart)) with open(filename, 'r') as f: lines = f.read().splitlines() cpu = Cpu() for line in lines: possible = re.match("mask = ([01X]{36})", line) if possible: mask = possible.group(1) cpu.set_mask(mask) print("set mask: ",mask) continue possible = re.match("mem\[(\d+)\] = (\d+)", line) if possible: addr,value = possible.groups() masked = cpu.set_value(int(addr),int(value), qpart) print("set addr:",addr,"value:",value,"->",masked) continue print("unknown line: " + line) # print(cpu) print("result:",cpu.count_memory()) if __name__ == '__main__': # solve(1, "test1.txt") # solve(1) # cpu = Cpu() # cpu.set_mask('000000000000000000000000000000000X0X') # v = 0xF # print('app1',cpu.apply_mask(v)) # print('app2',cpu.apply_mask2(v)) # solve(2, "test2.txt") # solve(2, "test3.txt") # solve(2, "test1.txt") solve(2)
0ee18bd49d1d04a1eb865bee71c7d6963d7f6117
kawaiiblitz/Introduction-to-Computer-Science-Python
/IteracionRecursion.py
1,859
4.03125
4
###################################### Iteración y Recursión ###################################### # Solución Iterativa - Multiplicación # def mult_iter(a,b): result = 0 while b > 0: result += a b -= 1 return result # Cuando salga del while manda el resultado # mult_iter(3,3) # Factorial por recursión # def factorial(n): if n == 1: return 1 else: return n * factorial(n-1) factorial (4) # Factorial por iteración # def factorial_iter(n): prod = 1 for i in range (1, n+1): prod *= i return prod factorial_iter(4) # Potencia de un número usando recursión # def iterPower(base, exp): result = 1 while exp > 0: result *= base exp -= 1 return result iterPower(2, 4) # Potencia de un número usando iteración no x ** x def iterPower(base, exp): ''' base: int or float. exp: int >= 0 returns: int or float, base^exp ''' if exp <= 0 : return 1 else : return base * iterPower(base,exp-1) #Una vez completado el ciclo o el if, se va regresando pasos atrás # iterPower(2, 4) # Torres de Hanoi # def printMove(fr, to): print('move from' + str(fr) + 'to' + str(to)) def Towers(n,fr,to,spare): if n == 1: printMove(fr,to) else: Towers(n-1, fr, spare, to) Towers(1, fr, to, spare) Towers(n-1, spare, to, fr) print(Towers(4, 'P1','P2','P3')) # Máximo Común Divisor iteración # def gcdIter(a, b): ''' a, b: positive integers returns: a positive integer, the greatest common divisor of a & b. ''' minimo = min(a,b) if a % minimo = 0 and
131b39c139ee96c367634e002383b8c4ccd0d220
davorgraj/SluzbenaVozila
/main.py
1,453
3.78125
4
# -*- coding: utf-8 -*- from Vehicles import Vehicle, add_new_vehicle, list_all_vehicles, edit_number_of_kilometers_or_date_service, delete_vehicle, save_vehicles_in_txt def main(): print "Dobrodošl v programu za urejanje vaših avtomobilov" print "" vehicles = [] while True: print "" print "Izberite opcijo:" print "a) Dodajte novo vozilo" print "b) Ogled seznama vozil" print "c) Uredite število prevoženih kilometrov ali datum servisa." print "d) Izbrišite vozilo iz seznama." print "e) Shrani vozila v txt datoteko." print "" selection = raw_input("Izberite opcijo (a, b, c, d or e): ") print "" if selection.lower() == "a": add_new_vehicle(vehicles) elif selection.lower() == "b": list_all_vehicles(vehicles) elif selection.lower() == "c": if not vehicles: print "Nimate vozil v vašem seznamu." else: edit_number_of_kilometers_or_date_service(vehicles) elif selection.lower() == "d": if not vehicles: print "Nimate vozil v vašem seznamu." else: delete_vehicle(vehicles) elif selection.lower() == "e": save_vehicles_in_txt(vehicles) else: print "Niste izprali pravilne opcije. Poskusite ponovno" if __name__ == "__main__": main()
6e2f2468dd4f5dffa7392d34d3860f943a8924e2
florije1988/manman
/learn/005.py
226
3.515625
4
# -*- coding: utf-8 -*- __author__ = 'manman' """ 求 2/1+3/2+5/3+8/5+13/8.....前20项之和? """ a = 1.0 b = 2.0 sum = 0 c = 0 for i in range(0, 20): sum = sum + b/a c = a + b a = b b = c print(sum)
22cd43a4045dd296910b52e4485660aafa89ba53
irenatrend/Data_Analyst_Nanodegree_Udacity
/Data_Wrangling_With_Mongo_DB/Final Project/AdditionalDataExploration.py
2,689
3.5625
4
#!/usr/bin/env python import pprint def get_db(db_name): from pymongo import MongoClient client = MongoClient('localhost:27017') database = client[db_name] return database if __name__ == '__main__': db = get_db('cities') # Count different Amenities print "Count different Amenities:" pprint.pprint(db.miami_fl.aggregate(([ {"$group": {"_id": "$amenity", "count": {"$sum": 1}}}, {"$sort": {"count": -1}}]))['result']) # Top 10 appearing amenities print "Top 10 appearing amenities:" pprint.pprint(db.miami_fl.aggregate([{"$match": {"amenity": {"$exists": 1}}}, {"$group": {"_id": "$amenity", "count": {"$sum": 1}}}, {"$sort": {"count": -1}}, {"$limit": 10}])['result']) # Number of cafes print "Number of cafes:", db.miami_fl.find({"amenity": "cafe"}).count() # Number of Dunkin Donuts print "Number of Dunkin Donuts:", db.miami_fl.find({"name": "Dunkin Donuts"}).count() # Number of shops print "Number of shops:", db.miami_fl.find({"shop": {"$exists": "true"}}).count() # Restaurant's name, the food they serve, contact number and opening hours print "Restaurants:" pprint.pprint(db.miami_fl.aggregate([ {'$match': {'amenity': 'restaurant', 'name': {'$exists': 1}}}, {'$project': {'_id': '$name', 'cuisine': '$cuisine', 'contact': '$phone', 'opening_hours': '$opening_hours'}}]) ['result']) # Nightclubs, phone contact and opening hours print "Nightclubs:" pprint.pprint(db.miami_fl.aggregate([ {'$match': {'amenity': 'nightclub', 'name': {'$exists': 1}}}, {'$project': {'_id': '$name', 'contact': '$phone', 'opening_hours': '$opening_hours'}}])['result']) # Biggest religion (no surprise here) print "Biggest religion:" pprint.pprint(db.miami_fl.aggregate([ {"$match": {"amenity": {"$exists": 1}, "amenity": "place_of_worship"}}, {"$group": {"_id": "$religion", "count": {"$sum": 1}}}, {"$sort": {"count": -1}}, {"$limit": 1}])['result']) # Most popular cuisines print "Top 5 most popular cuisines:" pprint.pprint(db.miami_fl.aggregate([ {"$match": {"amenity": {"$exists": 1}, "amenity": "restaurant"}}, {"$group": {"_id": "$cuisine", "count": {"$sum": 1}}}, {"$sort": {"count": -1}}, {"$limit": 5}])['result'])
9221e4f9d26162f25cb37cd9f20045ea35170084
Charleso19/Python3-Text-Adventure-ex45
/ex45m.py
12,242
3.78125
4
# As well as built-in modules, I have imported two self-made modules, # mainly to shorten the current python file and improve readabiltiy from sys import exit from random import randint, randrange, choice from math import sqrt from textwrap import dedent from entity_module import CreateEntity from attack_module import Attack class Blackboard(object): """ This class is to display the controls of the game. I have named it as a blackboard, as the centre of the game (i.e. the HouseRoom), has a blackboard on the wall that displays the controls. """ def view_controls(self): print(dedent(""" DIRECTIONS: • 'north' • 'east' • 'south' • 'west' ACTIONS: • 'check case': Checks the trophy case • 'examine'/'look': Examines the object • 'attack': Attacks an enemy • 'stats': View player's stats """)) class TreasureCase(object): """ The TreasureCase is styled in a composition format; i.e. the HouseRoom has-a TreasureCase. I thought this composition format made more sense. N.B. a possible annoyance is that the user must initiate the check_case method below in order to win the game. """ treasure = [] def check_case(self): print("Checking treasure in case...") print("You have the following treasure:") for i in TreasureCase.treasure: print(f"• {i}") if len(TreasureCase.treasure) >= 3: return 'end_room' else: pass class HouseRoom(object): """ This is the main central hub of the game, it is where the game starts and where access to all other rooms are available. """ def __init__(self): """ I've set this so that the HouseRoom has-a treasure-case and has-a blackboard. It seemed easier to work with this way. """ self.treasure_case = TreasureCase() self.controls = Blackboard() def activate(self, player, troll): """ This is basically the same as the enter() function from exercise 43. The Engine object below however passes the player and troll (CreateEntity()) objects to every room's activate, often unnecessarily; perhaps there is a better way to do this. """ print(dedent(""" A short sharp sound crackles through the air. Groggy you awake, slowly; a pale cold light shines through cracks in the ceiling above you. What do you do? """)) answer = input("> ") if answer == 'north': return 'troll_room' elif answer == 'east': return 'death_room' elif answer == 'south': return 'gallery_room' elif answer == 'west': print(dedent(""" The door is locked. """)) return 'house_room' elif ("examine" in answer) or ("look" in answer): print(dedent(""" The room is dreary and unintersting. However, in the corner lies a beautifully displayed treasure case. """)) return 'house_room' elif answer == 'stats': player.view_entity() return 'house_room' elif answer == 'attack': print(dedent(""" In a wild frenzy you pace around the house and attack the various inanimate objects like a loon. Eventually you knock into the trophy case, causing a vase on top to fall and break upon your head. """)) return 'house_room' elif answer == 'check case': var = self.treasure_case.check_case() if var: return var elif not var: return 'house_room' else: raise Exception("ERROR HERE OWEN") elif answer == 'controls' or answer == 'help': print(dedent(""" On the far side of the wall, a blackboard is poorly pinned to the crumbling wall. On it there are various scribbles, as follows: """)) self.controls.view_controls() return 'house_room' else: print("\nSorry, I didn't quite get that.") return 'house_room' class CollectTreasure(object): """ This class is perhaps more of a function than a class, perhaps I could have made this into a module, or included it as a method in the TrollRoom class instead. """ def activate(self, player, troll): print(dedent(""" Congratulations, the troll is dead! Behind his corpse looms a shiny diamond. You pick it up and head south back to the house. After which, you add it to the Treasure Case. """)) TreasureCase.treasure.append('Shiny diamond') return 'house_room' class TrollRoom(object): """ This is the room where the player fights the only enemy in the game. I've split this across the Troll Room and an Attack module. This is so in the future, I can add more enemies that have an attack sequence via the Attack module, rather than only the troll having it. """ def __init__(self): """ Used composition style again here. The TrollRoom class has-a Attack class """ self.attack_sequence = Attack() def activate(self, player, troll): print(dedent(""" You walk north through a pitch-black hole. Before you towers a massive troll like monster, teeth snarling and a mean-looking axe. """)) answer2 = input("> ") if (answer2 == 'north' or answer2 == 'east') or (answer2 == 'west'): print(dedent(""" The troll blocks all of your escape routes, however, a quick move south may save you.""")) return 'troll_room' # Added a luck element here just to make it more intersting elif answer2 == 'south': luck = randint(1,2) if luck == 1: print(dedent(""" You decide to retreat, however the Troll has had his weat-a-bix this morning and out steps you. Before you've even turned around, the troll swings his axe and your head tumbles to the floor. """)) return 'death_room' else: print(dedent(""" The troll seems to anticipate your intentions and cut off your angle of retreat. Luckily, he slips on a precariously placed banana skin, buying you precious seconds to escape. """)) return 'house_room' # If I had coded the attack sequence here, I believe the TrollRoom # class would be too long, and decrease readability. Outsourcing it to # a different class (or in this case, a module) stops this issue. elif answer2 == 'attack': # The Attack module returns a result for us to use and it is # assigned to var, this is then returned back to the engine. var = self.attack_sequence.activate(player, troll) return var else: print("\nSorry, I didn't quite get that.") return 'troll_room' class GalleryRoom(object): """ This room is nice and simple and borderline lazy. The user must access this room first before attacking the troll, otherwise, the user dies. """ def activate(self, player, troll): if player.inventory == {} and TreasureCase.treasure == []: # I have created this if-else statement so that the user can only # get the treasure and items once; without it a user could enter # this room twice and win the game without facing the Troll. print(dedent(""" You discover one Golden Coin and a Silver Jewel Encrusted Crown. Moreover, on the walls, you discover a sword and shield. You decide to take everything, and return to the House. """)) # The use of random intergers means the attack_sequence will be # slighlty different every time, however, see the attack_module # file for a note on a bug. player.inventory['Sword'] = randrange(10, 41, 10) player.inventory['Shield'] = randrange(10, 41, 10) TreasureCase.treasure.append('Golden Coin') TreasureCase.treasure.append('Silver Jewel Encrused Crown') return 'house_room' else: print(dedent(""" You have already colleced the Sword, Shield, and two treasures; there are no more items here for you. """)) return 'house_room' class EndRoom(object): """ Quite simply ends the game once the user has won.""" def activate(self, player, troll): print(dedent(""" Congratulations! You won! """)) exit(0) class DeathRoom(object): """A classic death scene/room; very similiar to ex.43 version.""" def activate(self, player, troll): death_quotes = [ "You're dead. You're not very good at this, are you?", "You're dead. Honestly, what did you expect?", "You're dead. My 80 year old gran' can play better than this.", "You're dead. Not much of a surprise is it?", "You're dead. Surprise surprise...", "You're dead, bucko.", ] # A simpiier version of the ex43's version of choosing a random quote # from the list above; however one should take the time to understand # ex43's version. print(choice(death_quotes)) exit(0) class Map(object): """A simple Map that the engine uses to navigate through the script.""" # Unsure of class is needed for such a simple bit of code. # The use of a dictionary here ensure that only one instance of each class # is stored. Some other ways kept producing new instances. rooms = { 'house_room': HouseRoom(), 'troll_room': TrollRoom(), 'gallery_room': GalleryRoom(), 'end_room': EndRoom(), 'death_room': DeathRoom(), 'collect_treasure': CollectTreasure(), } class Engine(object): """ The engine here is the driving force of the entire programme. It is based on ex43's design, however I believe it is slightly simplier """ def __init__(self): """ Once again I have used a composition format here. The engine has-a map of the game/script that it needs to run, it also has-a two entites that it needs to pass certain classess, in order for the attack sequence to work. """ self.game_map = Map() self.player = CreateEntity() self.troll = CreateEntity() def run_engine(self): current_room = self.game_map.rooms.get('house_room') final_room = self.game_map.rooms.get('end_room') while current_room != final_room: next_room = current_room.activate(self.player, self.troll) current_room = self.game_map.rooms.get(next_room) current_room.activate(self.player, self.troll) engine_obj = Engine() engine_obj.run_engine()
d54e601375118780dfd2572e3618c119d25188f1
gitter-badger/pymanopt
/pymanopt/solvers/steepest_descent.py
3,161
3.609375
4
""" Module containing steepest descent (gradient descent) algorithm based on steepestdescent.m from the manopt MATLAB package. """ import time from pymanopt.solvers import linesearch from pymanopt.solvers.solver import Solver class SteepestDescent(Solver): def __init__(self, ownlinesearch=None, *args, **kwargs): super(SteepestDescent, self).__init__(*args, **kwargs) if ownlinesearch is None: self._searcher = linesearch.LineSearch() else: self._searcher = ownlinesearch # Function to solve optimisation problem using steepest descent. def solve(self, problem, x=None): """ Perform optimization using gradient descent with linesearch. This method first computes the gradient (derivative) of obj w.r.t. arg, and then optimizes by moving in the direction of steepest descent (which is the opposite direction to the gradient). Arguments: - problem Pymanopt problem setup using the Problem class, this must have a .man attribute specifying the manifold to optimize over, as well as a cost and enough information to compute the gradient of that cost. - x=None Optional parameter. Starting point on the manifold. If none then a starting point will be randomly generated. Returns: - x Local minimum of obj, or if algorithm terminated before convergence x will be the point at which it terminated. """ man = problem.man # Compile the objective function and compute and compile its # gradient. if self._verbosity >= 1: print("Computing gradient and compiling...") problem.prepare(need_grad=True) objective = problem.cost gradient = problem.grad # If no starting point is specified, generate one at random. if x is None: x = man.rand() if self._verbosity >= 1: print("Optimizing...") # Initialize iteration counter and timer iter = 0 time0 = time.time() if self._verbosity >= 2: print(" iter\t\t cost val\t grad. norm") while True: # Calculate new cost, grad and gradnorm cost = objective(x) grad = gradient(x) gradnorm = man.norm(x, grad) iter = iter + 1 if self._verbosity >= 2: print("%5d\t%+.16e\t%.8e" % (iter, cost, gradnorm)) # Descent direction is minus the gradient desc_dir = -grad # Perform line-search step_size, x = self._searcher.search(objective, man, x, desc_dir, cost, -gradnorm**2) stop_reason = self._check_stopping_criterion( time0, stepsize=step_size, gradnorm=gradnorm, iter=iter) if stop_reason: if self._verbosity >= 1: print(stop_reason) print('') break return x
025faad9007cb7b8db2ee7234749047d501320f8
kMatejak/recruitment-tasks-gdansk
/ZADANIE_2_missing_numbers.py
612
3.828125
4
def missing_numbers(m: list, n: int) -> list: data = {number: None for number in range(1, n + 1)} missing_numbers = list() for x in m: data.update({x: 1}) for number in data: if data[number]: continue else: missing_numbers.append(number) return missing_numbers if __name__ == '__main__': m = [2, 3, 7, 4, 9] n = 10 mn = missing_numbers(m, n) print(f"\nDla danego zbioru m = {m}") print(f"brakujące liczby w tym zbiorze z ciągu liczb 1..{n} to:") for x in mn: print(f"{x}", end=", ") print() print()
fcbfd8faaad28f4bc7f554d8f1e3fe0b409e8a8d
rafaelperazzo/programacao-web
/moodledata/vpl_data/34/usersdata/83/13869/submittedfiles/moedas.py
403
3.859375
4
# -*- coding: utf-8 -*- from __future__ import division a=input('Digite o valor de a: ') b=input('Digite o valor de b: ') c=input('Digite o valor de c: ') if a>=b : w=c//a r=(c%a)//b if (c%a)%b==0 : print (w) print (r) else : print ('N') else : r=c//b w=(c%b)//a if (c%b)%a==0 : print (w) print (r) else : print ('N')
9c4292fd7559a9ef782a9f1cc52cfe5dbcda8716
elrion018/CS_study
/beakjoon_PS/no1874.py
769
3.546875
4
n = int(input()) stack = [0] num = 0 arr_1 = [] arr_2 = [] for _ in range(n): _input = int(input()) if stack[-1] < _input and _input not in arr_1: while stack[-1] < _input: num += 1 if num not in arr_1: stack.append(num) arr_2.append("+") arr_1.append(stack.pop()) arr_2.append("-") elif stack[-1] == _input and _input not in arr_1: arr_1.append(stack.pop()) arr_2.append("-") elif stack[-1] > _input and _input not in arr_1: while stack[-1] > _input: arr_1.append(stack.pop()) arr_2.append("-") else: arr_1.append("NO") break if "NO" in arr_1: print("NO") else: for i in arr_2: print(i)
90a31b9be41e4ba7eef5244f99ab8b5c327e6b25
adylshanov/Home_Work_Adylshanov
/number_system.py
2,605
3.65625
4
''' Модуль перевода в разные системы исчисления ''' __all__ = [ 'dec2bin', 'dec2oct', 'dec2hex', 'bin2dec', 'oct2dec', 'hex2dec' ] def dec2bin(number): """Переводит из десятиричной системы в двоичную""" return code(number, 2) def dec2oct(number): """Переводит из десятиричной системы в восьмеричную""" return code(number, 8) def dec2hex(number): """Переводит из десятиричной системы в шестнадцатиричную""" return code(number, 16) def code(number, sysnum): """ Функция перевода десятичного числа в sysnum систему исчисления """ rez = '' while (number >= 1): if (number%sysnum >= 10): rez = ifinhex(number%sysnum) + rez else : rez = str(number%sysnum) + rez number = number//sysnum return str(rez) def bin2dec(number): """Переводит из двоичной системы в десятиричную""" return decode(number, 2) def oct2dec(number): """Переводит из восьмеричной системы в десятиричную""" return decode(number, 8) def hex2dec(number): """Переводит из шестнадцатеричную системы в десятиричную""" return decode(number, 16) def decode(number, sysnum): """ Функция перевода числа из sysnum систем исчисления в десятиричную """ tx = str(number) tx = tx[::-1] rez = 0 for i in range(len(tx)): if tx[i].isalpha() == True: rez += int(ifouthex(tx[i])) * (sysnum ** (i)) else : rez += int(tx[i]) * (sysnum ** (i)) return int(rez) def ifouthex(char): """ замена буквы на число в системе исчисления больше десятичной """ if char == 'a': return 10 elif char == 'b': return 11 elif char == 'c': return 12 elif char == 'd': return 13 elif char == 'e': return 14 elif char == 'f': return 15 def ifinhex(char): """ вставка символа буквы в систему исчисления больше десятичной """ if char == 10 : return 'a' elif char == 11: return 'b' elif char == 12: return 'c' elif char == 13: return 'd' elif char == 14: return 'e' elif char == 15: return 'f' if __name__ == '__main__' : print(dec2bin(250)) print(dec2oct(493)) print(dec2hex(11259375)) print(bin2dec(dec2bin(250))) print(oct2dec(dec2oct(493))) print(hex2dec(dec2hex(11259375)))
087f25ccdae50bc5d7ecb2ec9acfeac082026593
James-Lee1/Unit_5-02
/unit_5-02-1.py
662
4.4375
4
# Created by : James Lee # Created on : 13 Nov. 2017 # Created for : ICS3UR # This program shows the largest number in an array def find_highest_value(arrays = []): # Finds the highst value in am array value_number_in_array = 0 for value in arrays: if value_number_in_array < value: value_number_in_array = value else: value_number_in_array = value_number_in_array return value_number_in_array array = [5,4,7,9,3,10] find_highest_value(array) max_value = find_highest_value(array) print("The max value of the array is: " + str(max_value))
b72f97f2746a06e18c4f6faf1838fc68de46e853
kurund/edx-mit-compscience-python
/bsearch.py
778
4.03125
4
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Feb 2 22:45:31 2017 @author: kurund """ def isIn(char, aStr): ''' char: a single character aStr: an alphabetized string returns: True if char is in aStr; False otherwise ''' if len(aStr) == 0: return False elif char == aStr: return True elif len(aStr) == 1: return False half = int(len(aStr)/2) if half < 0: return False elif char == aStr[half]: return True elif char < aStr[half]: return isIn(char, aStr[0:half]) elif char > aStr[half]: return isIn(char, aStr[half:]) #print(isIn('a', 'halloo')) #print(isIn('e', 'bdvv')) #print(isIn('s', 'm'))
b36580b261d1a705b3e1c32bc3eb543ca2f51631
blackmoses67/programming-portfolio
/programming/percentcalc.py
2,347
3.53125
4
def main(): #all variables pts = 0 shotsMade = 0 shotsTaken = 0 reb = 0 ast = 0 stl = 0 blk = 0 mins = 0 games = 1 #start the loop while games <= 82: print "\n" #points per game p = float(raw_input("Enter Points: ")) pts += p PPG = pts / games print "Player scored", p, "Points in this game" print "Player has scored", pts, "Points this season" print "Player averages", PPG, "Points per game" print "\n" #field goal percentage sm = float(raw_input("Enter shots made: ")) st = float(raw_input("Enter shots taken: ")) print "\n" shotsMade += sm shotsTaken += st print "He has made", shotsMade, "this season" print "He has taken", shotsTaken, "this season" print "\n" gameFGP = sm / st seasonFGP = shotsMade / shotsTaken print "The player shot", gameFGP, "percent in this game" print "The player averages", seasonFGP, "this season" print "\n" #rebounds per game r = float(raw_input("Enter Rebounds: ")) reb += r RPG = reb / games print "Player got", r, "Rebounds in this game" print "Player has gotten", reb, "Rebounds this season" print "Player averages", RPG, "Rebounds per game" print "\n" #assists per game a = float(raw_input("Enter Assists: ")) ast += a APG = ast / games print "Player got", a, "Assists in this game" print "Player has gotten", ast, "Assists this season" print "Player averages", APG, "Assists per game" print "\n" #steals s = float(raw_input("Enter Steals: ")) stl += s SPG = stl / games print "Player got", s, "Steals in this game" print "Player has gotten", stl, "Steals this season" print "Player averages", SPG, "Steals per game" print "\n" #blocks b = float(raw_input("Enter Blocks: ")) blk += b BPG = blk / games print "Player got", b, "Blocks in this game" print "Player has gotten", blk, "Blocks this season" print "Player averages", BPG, "Blocks per game" print "\n" #minutes m = float(raw_input("Enter minutes played: ")) mins += m MPG = mins / games print "Player played", m, "Minutes this game" print "Player averages", MPG, "Minutes per game" print "\n" #add to the counter games += 1 #break the loop print "Are you finished?" end = raw_input("end or no: ") if end == "end": break #end the program very pleasantly print "the season has ended" main()
b589cd6ab904a0883979716a31cc1578731bdf66
younkyounghwan/python_class
/lab5_2.py
847
3.8125
4
""" 쳅터: day 5 주제: 함수 문제: 문자열의 듀플을 매개변수로 받아서, 해당 문자열들을 ','로 한 줄에 연결하여 출력하는 함수 print_sting을 정의한다. 소프트웨어공학과, 정보통신공학과, 글로컬it학과, 컴퓨터공학과를요소로 가지는 튜플을 매개변수로 해서 print_string을 호출한다. 작성자:윤경환 작성일: 18 10 02 """ def print_string(a): #함수 정의 # 연결된 문자열을 반환 for i in range(0,len(a)): #반복문 print(a[i], end="") #출력 if i != len(a): #콤마 넣기 print(end=", ") #콤마를 넣기 a = ("소프트웨어공학과", "정보통신공학과", "글로컬it학과", "컴퓨터공학과") #문자열 정의 print_string(a) #함수 호출 #문자열 합으로 도출하는 것 연습하기
220e861d868f7d01123ef0416133df59901a1c34
jknsware/python-crash-course
/chapter_6/person.py
597
4.03125
4
people = [] person = { 'first_name': 'jason', 'last_name': 'ware', 'age': '42', 'city': 'cedar park', } people.append(person) person = { 'first_name': 'stuart', 'last_name': 'ware', 'age': '39', 'city': 'liberty hill', } people.append(person) person = { 'first_name': 'chad', 'last_name': 'ware', 'age': '37', 'city': 'euless', } people.append(person) for person in people: name = f"{person['first_name'].title()} {person['last_name'].title()}" age = person['age'] city = person['city'].title() print(f"{name}, of {city}, is {age} years old.")
1c241fbc085dcb4ff4df6a7d090f3bac75f69b3f
RobertEJohnson/python-intro
/conditionals.py
175
3.546875
4
if 3 > 2: print('The rules of the universe still apply') elif 2 > 3: print('I am a 47 foot tall purple platypus bear') else: print('How did you even get here?')
46c5f93235e2d3f9da0efccab452d7ab29a4e060
dr-dos-ok/Code_Jam_Webscraper
/solutions_python/Problem_118/2790.py
481
3.671875
4
from numpy import sqrt,ceil,floor def palind(n): if ceil(n)!=floor(n): return False n=int(n) if str(n)==str(n)[::-1]: return True return False def count_palind(a,b): count=0 for i in range(a,b+1): if palind(i) and palind(sqrt(i)): count=count+1 return count if __name__=='__main__': fp=open("input.txt") T=int(fp.readline()) for i in range(0,T): x=fp.readline().strip().split() a=int(x[0]) b=int(x[1]) print "Case #"+str(i+1)+":",count_palind(a,b)
9d4969927009e8492c75ef3c9e088cb2910b4c42
HankDa/UCD_S1_Python_Assignment
/p6_19209435_08Oct/p6p5.py
1,081
4.09375
4
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 8 15:47:46 2020 @author: Hank.Da """ """ #pseudocode if enter password == correct password: print('You have successfully logged in') else: print('password incorrect') print('Plz enter correct passwaord three times') for loop 3 times: if enter password == correct password: count of correct password +=1 if count of correct password ==3: print('You have successfully logged in') else: print('You have been denied access.') """ password_default = '1234abcd' count = 0 pw_input = input('plz enter password:') if pw_input == password_default: print('You have successfully logged in') else: print('password incorrect') print('Plz enter correct passwaord three times') for i in range(3): pw_input = input('plz enter password:') if pw_input == password_default: count += 1 if count==3: print('You have successfully logged in') else: print('You have been denied access.')
7b80c75808d3a73e75db0dfeaa0e7cbd0f6e4671
Rishika1983/Python-code-practice
/mumber.py
223
4.1875
4
#The program takes a number n and computes n+nn+nnn n = int( input('enter your number')) num = '' total = 0 for i in range(0,n+1): num = num + str(n) print (num) total = total + int(num) print(total)
37879554ca69ceec2c2b1e5c49b2ad93e0e5788a
jdee77/100DaysOfPython
/Day-02/codes/leapyear.py
427
4.28125
4
print("LEAP YEAR") year = int(input("Enter the year :")) leapYear = False # a year is leap year if its evenly divisible by 4 # except evenly divisible by 100 # unless not divisible by 400 if year % 100 == 0: if year % 400 == 0: leapYear = True else: if year % 4 == 0: leapYear = True if leapYear: print(f"{year} is leap year.") else: print(f"{year} is not a leap year.")
06b43121f55062f22988a5b9411f16234b2dd4c9
pankajdahilkar/python_codes
/gender.py
402
3.921875
4
import csv name = input("Enter your name ") with open("Female.csv",'r', encoding='utf-8') as f: reader = csv.reader(f) for row in reader : for field in row : if field == name: print(name,"is girl") break else : print("not found")
ddc06a5b1e493fa6a87bf83aeb93ca25e6784a80
bespontoff/checkio
/solutions/Blizzard/palindromic_palindrome.py
780
3.828125
4
#!/home/bespontoff/PycharmProjects/checkio/venv/bin/checkio --domain=py run palindromic-palindrome # Write a palindromic program with acheckio(s)function that checks whethers(a string) is a palindrome. # # For this task, using "#" is forbidden. # # You can use other methods for the function's definition (for example a lambda). The test will try to run the function "checkio" from your code. # # The example of the palindromic code: # # # checkio=lambda x: x#x :x adbmal=oikcehc # However, in your code, you can not use "#". # # Input:A text as a string. # # Output:Palindrome or not as a boolean. # # Precondition:1<|text| ≤ 20 # The text contains only ASCII letters in lowercase. # # # END_DESC def checkio(s): return s == s[::-1] #checkio = lambda s:
03e98da48b534616b82afb084c7016ff9d225af6
RAVE-V/python-programs
/matrix and transpose.py
486
3.953125
4
list1=[[1,1,1],[2,2,2],[1,1,1]] list2=[[1,1,1],[1,1,1],[1,1,1]] #list3=[[0,0,0],[0,0,0],[0,0,0]] for k in range(3): print '|', for l in range(3): print list1[k][l], print '|\n' print'*********' f=0 for i in range(3): for j in range(3): list2[i][j]=list1[j][i] print 'The tranpose :' for m in range(3): print '|', for n in range(3): print list2[m][n], print '|\n'
59a1e376ae8bf470a623070f71eca6ea2d2791e4
InesTeudjio/FirstPythonProgram
/ex3.py
238
4.40625
4
# 3. Write a Python program to get a string made of the first 2 and the last 2 chars from a given a string. If the string length is less than 2, return instead of the empty string. new_string = string [:2] + string[-2:] print(new_string)
94c8681ed44e9da010bedd0d54c9d219e0fc6a2e
the-nans/py_repo_4gb
/lesson_4/lesson4_cw6.py
2,974
3.53125
4
""" Реализовать два небольших скрипта: а) итератор, генерирующий целые числа, начиная с указанного, б) итератор, повторяющий элементы некоторого списка, определенного заранее. Подсказка: использовать функцию count() и cycle() модуля itertools. Обратите внимание, что создаваемый цикл не должен быть бесконечным. Необходимо предусмотреть условие его завершения. Например, в первом задании выводим целые числа, начиная с 3, а при достижении числа 10 завершаем цикл. Во втором также необходимо предусмотреть условие, при котором повторение элементов списка будет прекращено. """ from itertools import count, cycle from sys import argv def iter1(start, fin): """ итератор, генерирующий целые числа, начиная с указанного :return: список целых чисел начиная со start и до fin """ for i in range(start, fin+1): yield i def iter2(user_list, fin): """ итератор, повторяющий элементы некоторого списка, определенного заранее :return: список, состоящий из элементов входящего списка, повторённых fin раз """ result = [] c = 0 for i in cycle(user_list): c += 1 result.append(i) if c <= fin*len(user_list): yield result else: break iteration = "Вводите аргументы правильно" if int(argv[1]) == 1: try: arg_start = int(argv[2]) arg_end = int(argv[3]) iteration = iter1(arg_start, arg_end) while True: print(next(iteration)) except ValueError: print('Аргументы должны быть целыми числами!') except IndexError: print('Минимум три аргумента!') except StopIteration: print("Конец") elif int(argv[1]) == 2: try: arg_end = int(argv[2]) arg_start_list = argv[3::] iteration = iter2(arg_start_list or ["No list defined"], arg_end or 1) while True: print(next(iteration)) except IndexError: print('Минимум три аргумента!') except StopIteration: print("Конец") else: print("lesson4_cw6.py [1 <начало отсчета> <конец последовательности>|2 <множество, " "через пробел> <кол-во повторений>] ")
a2b465ed58bee8e0c11fe4697d7ee694ac3670a6
guardeivid/aiuta
/Lenguajes/Python/Curso/90-Geolocalizacion.py
1,291
3.625
4
#!/usr/bin/env python 3 # -*- coding: utf-8 -*- # instalar # pip install geopy # """ from geopy.geocoders import Nominatim punto = "22.1577057, -102.2731303" geolocation = Nominatim() result = geolocation.reverse(punto) print result.address # direccion print(result.latitude, result.longitude) print result.raw # json #------------------------------- from geopy.geocoders import GoogleV3 geolocation = GoogleV3() try: result = geolocation.reverse(punto) #print str(result[0]).encode('utf-8') print u' '.join((result[0])).encode('utf-8').strip() print (result[0]) # direccion except Exception as e: print e #a = "Pabellón de Arteaga, Aguascalientes, 20620, México" #print a.decode('unicode-escape') # si da error de timeout, # aumentar el valor de la variable DEFAULT_TIMEOUT = 1 # en python/lib/site-package/geopy/geocoders/base-py """ ######################################################### #otra manera # pip install geocoder # import geocoder #latlon = geocoder.google("San Diego, California") #print ("San Diego, California", latlon.latlng) # reverse #direccion = geocoder.google([45.1221, 54.1212], method="reverse") #print direccion.city, direccion.state_long, direccion.country_long postal_zip = geocoder.google("300 Post Street, San Francisco, CA") print postal_zip.postal
99a4f752e7924393936cb57d4a38153024c9089d
johanqr/python_basico_2_2019
/Tarea5/Ejemplo.py
1,258
3.8125
4
# Misc classes class misc: def __repr__(self): # return the clase name return self.__class__.__name__ def __str__(self): # return the clase name return self.__class__.__name__ class Animal(misc): def __init__(self, especie): self.especie = especie def reproducirse(self): print(f'El {self} está reproduciendose') def comer(self): print(f'El {self} está comiendo') def crecer(self): print(f'El {self} está creciendo') def nacer(self): print(f'El {self} está naciendo') def morir(self): print(f'El {self} está muriendo') class Mono(Animal): def __init__(self): super().__init__(especie='Mono') self.cola = True def jugar(self): print(f'El {self.especie} está jugando') def mueve_la_cola(self): print(f'El {self.especie} mueve la cola') class Humano(Mono): def __init__(self): self.especie = 'Humano' self.cola = False def mueve_la_cola(self): if not self.cola: print(f'El {self.especie} no tiene cola') else: print(f'El {self.especie} tiene cola') yo = Humano() print(yo)
244244432e2911b854fb56d9e5f4acf33a39d2f6
preetha-mani/IBMLabs
/Calculator.py
292
4
4
first=int(input("enter a first number:")) second=int(input("enter a second number:")) add=(first+second) sub=(first-second) div=(first/second) mul=(first*second) print("The addition is",add) print("The Subtraction is",sub) print("The multiplication is",mul) print("The division",div)
fc9c76f8a4106e82a687adbabf688476306a179f
wasp-lahis/PED-1s2020
/lab_06/lab06.py
1,011
3.609375
4
percurso = 33 qtd_nivel_0 = 0 qtd_nivel_1 = 0 qtd_nivel_2 = 0 tempo = 0 tempo_medio = 0. max_velocidade = 0. min_velocidade = 1000 soma_tempo = 0 cont = 0 tempo = float(input()) while tempo != -1: if tempo < 180: qtd_nivel_0 +=1 elif tempo >= 180 and tempo < 240: qtd_nivel_1 +=1 elif tempo >= 240: qtd_nivel_2 +=1 tempo_min = tempo/60 velocidade = percurso/tempo_min if velocidade > max_velocidade: max_velocidade = velocidade if velocidade < min_velocidade: min_velocidade = velocidade soma_tempo += tempo cont += 1 tempo = int(input()) tempo_medio = soma_tempo/cont print("Caracois no nivel 0:", qtd_nivel_0) print("Caracois no nivel 1:", qtd_nivel_1) print("Caracois no nivel 2:", qtd_nivel_2) print("Tempo medio:", round(tempo_medio,1), "s") print("Velocidade maxima:", round(max_velocidade,1), "cm/min") print("Velocidade minima:", round(min_velocidade,1), "cm/min")
1b2d60ddb87afd52191b3a699003657830bde59d
jannekai/project-euler
/061.py
741
3.53125
4
from collections import OrderedDict import time import math from euler import * start = time.time() def triangle(n): return int(n*(n+1)/2) def square(n): return int(n*n) def pentagonal(n): return int(n*(3*n-1)/2) def hexagonal(n): return int(n*(2*n-1)) def heptagonal(n): return int(n*(5*n-3)/2) def octagonal(n): return int(n*(3*n-2)) i = 1 triangles = [] squares = [] pentagonals = [] heptagonals = [] octagonals = [] while True: i += 1 break i = 0 d = OrderedDict() while True: i += 1 t = triangle(i) s = square(i) p = pentagonal(i) h = hexagonal(i) o = octagonal(i) end = time.time() - start print ("Total time was " + str(end)+ " seconds")
cf68801c5aae8c1e5a2182f226e583b0966a36d9
jaeminjung/algoexpert
/productSum.py
476
3.78125
4
def helpf(array, depth): ans = 0 while array: first = array.pop(0) if type(first) != list: ans += first * depth else: ans += helpf(first, depth + 1) return ans def productSum(array): # Write your code here. ans = 0 depth = 1 while array: first = array.pop(0) if type(first) != list: ans += first * depth else: ans += helpf(first, depth + 1) return ans print(productSum([5, 2, [7, -1], 3, [6, [-13, 8], 4]])) # 12
1eb3bede29decc9d40711569f48172c5a9702489
BharathiSundaravadivel/Practise_Python
/cal_age.py
1,692
4.25
4
''' -Create a program that asks the user to enter their name and their age. Print out a message addressed to them that tells them the year that they will turn 100 years old. - -Extras: - -Add on to the previous program by asking the user for another number and printing out that many copies of the previous message. (Hint: order of operations exists in Python) -Print out that many copies of the previous message on separate lines. (Hint: the string "\n is the same as pressing the ENTER button) ''' from datetime import date def caluclateCentYear(curr_age,name,num): diff_in_age = 100 - curr_age curr_year=int(date.today().year) cent_age = curr_year + diff_in_age if (num==0): print("Number Cannot be Zero") return else: printNum(num,name,cent_age) printNumMultLine(num,name,cent_age) return def printNum(number,name,cent_age): print ("\nPrinting "+str(num)+" Times\n") print (("Hello "+name+", You will turn Hundred in " + str(cent_age)+"\n")*number) print("Printed the Lines "+": "+str(number) + " times\n") def printNumMultLine(number,name,cent_age): print ("\nPrinting "+str(num)+" Times, Split into Multiple Lines\n") print (("Hello "+name+",\nYou will turn Hundred in\n" + str(cent_age)+"\n")*number) print("Printed the Lines "+": "+str(number) + " times, spit into Multiple Lines") name = input("Enter your Name:") cur_age = int(input("Enter Your Age:")) num =int(input("Enter a number:")) caluclateCentYear(cur_age,name,num)
8f308473e75c57c93ee878ee2466277507ae2e79
Hidayattullah/first_repo
/Example1.py
141
4.0625
4
#Simple example a = 10 b = 50 if a > b: print("A more than B") print(a-b) else: print("B more or equal A") print(b-a) print("The End")
1413ee82b38c2178cc0429cd9e755ec8fd3ca370
DeepaShrinidhiPandurangi/Problem_Solving
/Rosalind/Formatting_FASTA_files/Remove_empty_lines.py
454
3.734375
4
# Remove empty lines from the file openfile = open("L3_char.txt") contents = openfile.read() #print(read) new_contents = [] for line in contents: # Strip whitespace, should leave nothing if empty line was just "\n" if not line.strip(): continue # We got something, save it else: new_contents.append(line) for i,j in enumerate(new_contents): if j in L: print("",end="") else: print(j,end="")
e59fafae44068ba3e52fc104e26454939c334833
arsummers/python-data-structures-and-algorithms
/data-structures/graph/graph.py
791
3.671875
4
class Graph: def __init__(self): self._vertices = [] def add_vertex(self, value): vert = Vertex(value) self._vertices.append(vert) return vert def get_vertices(self): return self._vertices or None def add_edge(self, vert1, vert2, weight=0): if vert1 in self._vertices and vert2 in self._vertices: vert1.neighbors.append(Edge(vert2, weight)) def get_neighbors(self, vertex): return vertex.neighbors def __len__(self): return len(self._vertices) class Edge: def __init__(self, vertex, weight=0): self.vertex = vertex self.weight = weight class Vertex: def __init__(self, value): self.value = value self.neighbors = [] self.visited = False
4aff5328f4d32d46d8fb0273caee126b40bbb844
andrewrosss/rake-spacy
/rake_spacy/aggregators.py
1,247
3.546875
4
from abc import ABC from abc import abstractmethod from typing import List import numpy as np class BaseAggregator(ABC): @abstractmethod def __call__(self, scores: List[float]) -> float: """Reduces a list of numbers to a single number. Args: scores (List[float]): The numbers over which to perform the reduction. Returns: float: The result. """ pass class SumAggregator(BaseAggregator): def __call__(self, scores: List[float]) -> float: return sum(scores) class MeanAggregator(BaseAggregator): def __call__(self, scores: List[float]) -> float: return sum(scores) / len(scores) class PenalizedNormAggregator(BaseAggregator): def __init__(self, max_len_before_penalization: int = 5): self.max_len_before_penalization = max_len_before_penalization def __call__(self, scores: List[float]) -> float: N = np.linalg.norm(scores) D = len( [s for s in scores if s != 0] ) # omit ignoreable words from length penalty # if there are 4 or fewer non-stop words, don't penalize D = 1 if (1 <= D <= self.max_len_before_penalization) else D return float(N / D) if D != 0 else 0