blob_id
stringlengths
40
40
repo_name
stringlengths
6
108
path
stringlengths
3
244
length_bytes
int64
36
870k
score
float64
3.5
5.16
int_score
int64
4
5
text
stringlengths
36
870k
e64bc951c27896293f8b1da440cc731de5ff8f3e
sabhishekpratap5/Python_Programs
/tuple/program10.py
284
4.21875
4
# # Write a Python program to reverse a tuple. # # tuple1 = "abhishekSingh" # rev_tuple = reversed(tuple1) # print(tuple(rev_tuple)) import time st = time.time() a = tuple(range(0, 100000000)) a = set(a) a = list(a) print(a) ed = time.time() to = ed - st print(time.time() - st)
9aac6d23d587955773c791cc7d597de0c30fb98d
PPerminov/python
/stuff/chessboard.py
1,028
3.546875
4
import sys sys.setrecursionlimit(20000) def chessBoard_loops(): board = "----------\n" for r in range(8): line = '|' for c in range(8): if ((c + r) % 2 == 0): line += "x" else: line += " " board += line + "|\n" return board + "----------" def chessBoard_recursion(row=0, col=0, size=8): if row == (size - 1) and col == size: line="" for i in range(size+2): line+='-' return "\n"+line if col == size: return "\n" + chessBoard_recursion(row + 1, 0) if ((col + row) % 2 == 0): current = "x" else: current = " " if col == 0: current = '|' + current if col == size-1: current += '|' if row == 0 and col == 0: line="" for i in range(size+2): line+='-' current = line + "\n" + current return current + chessBoard_recursion(row, col + 1) print(chessBoard_recursion()) print(chessBoard_loops())
3d64f6a5db4532b004e3ee92e2e45bb111f23f9e
chenlei0x/leetcode
/728/728.py
419
3.59375
4
#! /usr/bin/env python3 class Solution: def selfDividingNumbers(self, left, right): """ :type left: int :type right: int :rtype: List[int] """ res = [] for i in range(left, right + 1): cur = i while cur != 0: digit = cur % 10 if digit == 0: break cur = cur// 10 if i % digit != 0: break else: res.append(i) return res s = Solution() s.selfDividingNumbers(1, 22)
c74db4ea2fc30a2797d899c8e2828781ad8e0291
AlbanerPabaMandon/IA
/nqueens_FINAL.py
2,309
3.5625
4
import random tablero=[] DIMENSIONES=15 #Establece la matriz vacia para el tablero def establecer(): global tablero for i in range(DIMENSIONES): tablero.append([]) for j in range(DIMENSIONES): tablero[i].append(None) for x in range(DIMENSIONES): for y in range(DIMENSIONES): tablero[x][y]="_" #Imprime el tablero def imprimir(): global tablero for y in range(DIMENSIONES): print str([i[y] for i in tablero])+"\n" #Ejecuta las funciones necesarias para la simulacion def simular(): #Posiciones de la dama aleatoria x=random.randint(0, DIMENSIONES-1) y=random.randint(0, DIMENSIONES-1) #Dama aleatoria distingida por la letra R posicionar(x,y,"R") iterar(x,y) print "Damas Colocadas: "+str(contar())+" \n \n " #Algoritmo para colocar las damas def iterar(x,y): global tablero y=(y+3)%DIMENSIONES for i in range(DIMENSIONES): x=(x+1)%DIMENSIONES for j in range(DIMENSIONES): if(tablero[x][(y+j)%DIMENSIONES]=="_"): posicionar(x,(y+j)%DIMENSIONES,"Q")#str(i)) j=DIMENSIONES+1 y=(((y+j)%DIMENSIONES)+3)%DIMENSIONES #Posiciona y define los ataques de una dama def posicionar(x,y,letra): global tablero for i in range(DIMENSIONES): #Ataques en cruz tablero[x][i]="*" tablero[i][y]="*" #Ataques en diagonal if((x+i)<DIMENSIONES and (y+i)<DIMENSIONES): tablero[(x+i)][(y+i)]="*" if((x-i)>=0 and (y+i)<DIMENSIONES): tablero[(x-i)][(y+i)]="*" if((x+i)<DIMENSIONES and (y-i)>=0): tablero[(x+i)][(y-i)]="*" if((x-i)>=0 and (y-i)>=0): tablero[(x-i)][(y-i)]="*" #Coloca la ficha en la posicion indicaca tablero[x][y]=letra #Cuenta cuantas damas hay en el tablero def contar(): global tablero counter=0 for x in range(DIMENSIONES): for y in range(DIMENSIONES): if(tablero[x][y]!="_" and tablero[x][y]!="*"): counter=counter+1 return counter establecer() simular() imprimir()
d4cfa42d8dcc953856c25b20e828a3d800ba2aa3
bradstrat/ContinuousAveragelist
/average_via_input.py
981
4.03125
4
from functools import reduce def programy(): running = True print("I output the average of a list that you add files to. \nType MENU to access the menu. \n") listy = [] while running == True: def listaverage(givenlist): print(sum(listy) / len(listy)) currentnum = input("Please type a number to add to the list: ") if currentnum.isdigit(): listy.append(int(currentnum)) listaverage(listy) else: if str(currentnum.lower()) == "menu": running = False else: print("Not a number!") active = True while active == True: answer = input("Please type either: EXIT or START\n") if str(answer.lower()) == "start": print("Starting... \n") programy() if str(answer.lower()) == "exit": print("Now exiting...") active = False else: print("Not valid answer...\n")
5d3211bb98c70a56db6b1ff6ebfd881c488bc219
CallumTCarter/Python-Code-
/mazeSolver.py
5,557
3.765625
4
# def addTempBlock(): # global tempBlock # # currentPos[0][1] = position(y,x) # global currentPos # y = currentPos[0] # x = currentPos[1] # try: # if (maze[y+1][x] != 1) and (y+1!= height+1): # possibleDirection +=1 # print 'can move down' # except: pass # try: # if (maze[y-1][x] != 1) and (y-1 != -1): # possibleDirection +=1 # print 'can move up' # except: pass # try: # if (maze[y][x+1] != 1) and (x+1 != width): # possibleDirection +=1 # print 'can move right' # except: pass # try: # if (maze[y][x-1] != 1) and (x-1 != -1): # possibleDirection +=1 # print 'can move left' # except: pass # def direction(): global currentPos y = currentPos[0] x = currentPos[1] try: if (maze[y+1][x] != 1) and (hasAlreadyBeenVisited([y+1,x]) == False) and (y+1!= height+1): return 'down' except: print 'down is off index' try: if (maze[y-1][x] != 1) and (hasAlreadyBeenVisited([y-1,x]) == False) and (y-1 != -1): return 'up' except: print 'up is off index' try: if (maze[y][x+1] != 1) and (hasAlreadyBeenVisited([y,x+1]) == False) and (x+1 != width): return 'right' except: print 'right is off index' try: if (maze[y][x-1] != 1) and (hasAlreadyBeenVisited([y,x-1]) == False) and (x-1 != -1): return 'left' except: print 'left is off index' def markLocationAsVisited(): global currentPos global alreadyVisitedLocations alreadyVisitedLocations.append(currentPos) def returnToSavedLocation(): global currentPos global savedLocations currentPos = savedLocations[(len(savedLocations)-1)] del savedLocations[-1] def move (x): global currentPos global previousLocation previousLocation = currentPos if (x == 'up'): currentPos = [(previousLocation[0]-1), (previousLocation[1])] print 'moved up' if (x == 'right'): currentPos = [(previousLocation[0]), (previousLocation[1]+1)] print 'moved right' if (x == 'down'): currentPos = [(previousLocation[0]+1), (previousLocation[1])] print 'moved down' if (x == 'left'): currentPos = [(previousLocation[0]), (previousLocation[1]-1)] print 'moved left' return def lookForIntersection (): # currentPos[0][1] = position(y,x) global currentPos possibleDirection = 0 y = currentPos[0] x = currentPos[1] try: if (maze[y+1][x] != 1) and (hasAlreadyBeenVisited([y+1,x]) == False) and (y+1!= height+1): possibleDirection +=1 print 'can move down' except: pass try: if (maze[y-1][x] != 1) and (hasAlreadyBeenVisited([y-1,x]) == False) and (y-1 != -1): possibleDirection +=1 print 'can move up' except: pass try: if (maze[y][x+1] != 1) and (hasAlreadyBeenVisited([y,x+1]) == False) and (x+1 != width): possibleDirection +=1 print 'can move right' except: pass try: if (maze[y][x-1] != 1) and (hasAlreadyBeenVisited([y,x-1]) == False) and (x-1 != -1): possibleDirection +=1 print 'can move left' except: pass return (possibleDirection) def hasAlreadyBeenVisited (nextPos): global previousLocation global tempBlock for location in alreadyVisitedLocations: if location == nextPos: return True if nextPos == previousLocation: return True for location in tempBlock: if location == nextPos: return True return False def answer(map): # x # ---> # | [0,1,1,0] # y | [0,0,0,1] # v [0,1,0,1] # [1,1,0,0] # when doing co-ordinates use (y,x)! global alreadyVisitedLocations global width global height global previousLocation global currentPos global savedLocations global steps global tempBlock # Arrays # -To hold one coord previousLocation = [0,0] currentPos = [0,0] # -To hold a list of coords savedLocations = [] alreadyVisitedLocations = [[0,0]] tempBlock = [] # Variables width = len(map[0]) height = len(map) steps = 0 print 'while loop starting' while (currentPos != [height-1,width-1]) or (len(savedLocations) != 0): print lookForIntersection() # if your at a dead end if (lookForIntersection() == 0): print 'DEAD END!' print savedLocations returnToSavedLocation() del tempBlock[:] # at an intersection if (lookForIntersection() > 1): alreadyVisitedLocations.append(previousLocation) savedLocations.append(currentPos) # addTempBlock() move(direction()) alreadyVisitedLocations.append(currentPos) print 'SAVING LOCATION' print savedLocations print tempBlock # one way to go if (lookForIntersection() == 1): move(direction()) print currentPos steps+=1 for i in maze: print i return(steps) maze = [[0,0,0,0,0], [0,1,1,1,1], [0,1,0,0,0], [0,0,0,1,0]] print(answer(maze))
777a61fecc4184078a49b8a29c97545315492d35
raswolf/Python
/module6/more_functions/inner_functions_assignment.py
707
4.5
4
""" Program: inner_functions_assignment.py Author: Rachael Wolf Last date modified: 10/03/2020 The purpose of this program is to. """ def measurements(m_list): """Takes the length and width of a rectangle and describes the perimeter and area :param m_list, a list containing the side measurements of the rectangle :returns a string describing the perimeter and area of the specified rectangle""" def area(a_list): return float(a_list[0]) * float(a_list[len(a_list) - 1]) def perimeter(a_list): return (float(a_list[0]) + float(a_list[len(a_list) - 1])) * 2 description = 'Perimeter = ' + str(perimeter(m_list)) + ' Area = ' + str(area(m_list)) return description
f9df93cca75e97d2db761e5100ca81b99894e42c
dp1608/python
/LeetCode/1806/180612implement_strstr.py
1,185
4.28125
4
# -*- coding: utf-8 -*- # @Start_Time : 2018/6/12 16:13 # @End_time: # @Author : Andy # @Site : # @File : 180612implement_strstr.py """ Implement strStr(). Return the index of the first occurrence of needle in haystack, or -1 if needle is not part of haystack. Example 1: Input: haystack = "hello", needle = "ll" Output: 2 Example 2: Input: haystack = "aaaaa", needle = "bba" Output: -1 Clarification: What should we return when needle is an empty string? This is a great question to ask during an interview. For the purpose of this problem, we will return 0 when needle is an empty string. This is consistent to C's strstr() and Java's indexOf(). """ class Solution(object): def strStr(self, haystack, needle): """ :type haystack: str :type needle: str :rtype: int """ if needle == "": return 0 size = len(needle) for i in range(len(haystack)): # j = 0 if haystack[i:size + i] == needle[0:size]: return i # while j < size: # if haystack return -1 print(Solution().strStr("hello","ll")) # print("hello"[2:4])
396d27598c32e1d62655b7fbfd3c2fd42f3133c6
sbsdevlec/PythonEx
/Hello/Lecture/Day04/Tuple/06. TupleEx.py
671
4.5625
5
# empty tuple # Output: () my_tuple = () print(my_tuple, type(my_tuple)) # tuple having integers # Output: (1, 2, 3) my_tuple = (1, 2, 3) print(my_tuple) # tuple with mixed datatypes # Output: (1, "Hello", 3.4) my_tuple = (1, "Hello", 3.4) print(my_tuple) # nested tuple # Output: ("mouse", [8, 4, 6], (1, 2, 3)) my_tuple = ("mouse", [8, 4, 6], (1, 2, 3)) print(my_tuple) # tuple can be created without parentheses # also called tuple packing # Output: 3, 4.6, "dog" my_tuple = 3, 4.6, "dog" print(my_tuple, type(my_tuple)) # tuple unpacking is also possible # Output: # 3 # 4.6 # dog a, b, c = my_tuple print(a) print(b) print(c)
f2f3bc568c9e7696c48658432c1ce5ed84e6094e
Kailash-Sankar/learning_python
/day3/ping.py
695
3.671875
4
''' ping a list of hosts to check status ''' import os def clean_hosts(x): x = x.strip() print x if not x.startswith('#'): return x return None fin = open("hosts.txt", "r") # hosts = map(lambda x: x.rstrip() if not x.lstrip().startswith('#') else pass , fin.readlines()) # hosts = filter(lambda x: x.strip() if not x.lstrip().startswith('#') else None, fin.readlines()) hosts = filter(clean_hosts, fin.readlines()) fin.close() print hosts def isdown(host, n=1): pingstr = "ping {} -n {} >> ping.log" return os.system(pingstr.format(host, n)) for host in hosts: if isdown(host): print host + " is down" else: print host + " is up"
8d78ec28fd6910f170b11d3e316e8ce609d1f5fa
suzywho/Million-Song-Database
/asn2.py
6,445
4.1875
4
## CS 2120 Assignment #2 -- Zombie Apocalypse ## Name: Shi (Susan) Hu ## Student number: 250687453 import numpy import pylab as P #### This stuff you just have to use, you're not expected to know how it works. #### You just need to read the plain English function headers. #### If you want to learn more, by all means follow along (and ask questions if #### you're curious). But you certainly don't have to. def make_city(name,neighbours): """ Create a city (implemented as a list). :param name: String containing the city name :param neighbours: The city's row from an adjacency matrix. :return: [name, Infection status, List of neighbours] """ return [name, False, list(numpy.where(neighbours==1)[0])] def make_connections(n,density=0.25): """ This function will return a random adjacency matrix of size n x n. You read the matrix like this: if matrix[2,7] = 1, then cities '2' and '7' are connected. if matrix[2,7] = 0, then the cities are _not_ connected. :param n: number of cities :param density: controls the ratio of 1s to 0s in the matrix :returns: an n x n adjacency matrix """ import networkx # Generate a random adjacency matrix and use it to build a networkx graph a=numpy.int32(numpy.triu((numpy.random.random_sample(size=(n,n))<density))) G=networkx.from_numpy_matrix(a) # If the network is 'not connected' (i.e., there are isolated nodes) # generate a new one. Keep doing this until we get a connected one. # Yes, there are more elegant ways to do this, but I'm demonstrating # while loops! while not networkx.is_connected(G): a=numpy.int32(numpy.triu((numpy.random.random_sample(size=(n,n))<density))) G=networkx.from_numpy_matrix(a) # Cities should be connected to themselves. numpy.fill_diagonal(a,1) return a + numpy.triu(a,1).T def set_up_cities(names=['City 0', 'City 1', 'City 2', 'City 3', 'City 4', 'City 5', 'City 6', 'City 7', 'City 8', 'City 9', 'City 10', 'City 11', 'City 12', 'City 13', 'City 14', 'City 15']): """ Set up a collection of cities (world) for our simulator. Each city is a 3 element list, and our world will be a list of cities. :param names: A list with the names of the cities in the world. :return: a list of cities """ # Make an adjacency matrix describing how all the cities are connected. con = make_connections(len(names)) # Add each city to the list city_list = [] for n in enumerate(names): city_list += [ make_city(n[1],con[n[0]]) ] return city_list def draw_world(world): """ Given a list of cities, produces a nice graph visualization. Infected cities are drawn as red nodes, clean cities as blue. Edges are drawn between neighbouring cities. :param world: a list of cities """ import networkx import matplotlib.pyplot as plt G = networkx.Graph() bluelist=[] redlist=[] plt.clf() # For each city, add a node to the graph and figure out if # the node should be red (infected) or blue (not infected) for city in enumerate(world): if city[1][1] == False: G.add_node(city[0]) bluelist.append(city[0]) else: G.add_node(city[0],node_color='r') redlist.append(city[0]) for neighbour in city[1][2]: G.add_edge(city[0],neighbour) # Lay out the nodes of the graph position = networkx.circular_layout(G) # Draw the nodes networkx.draw_networkx_nodes(G,position,nodelist=bluelist, node_color="b") networkx.draw_networkx_nodes(G,position,nodelist=redlist, node_color="r") # Draw the edges and labels networkx.draw_networkx_edges(G,position) networkx.draw_networkx_labels(G,position) # Force Python to display the updated graph plt.show() plt.draw() def print_world(world): """ In case the graphics don't work for you, this function will print out the current state of the world as text. :param world: a list of cities """ import string print string.ljust('City',15), 'Zombies?' print '------------------------' for city in world: print string.ljust(city[0],15), city[1] #### That's the end of the stuff provided for you. #### Put *your* code after this comment. #Zombify the chosen city in the list of cities def zombify(cities,cityno): #Set the infected property to True cities[cityno][1] = True #Cure the chosen city in the list of cities def cure(cities,cityno): #Make sure that the zeroth city is not cured if (cityno != 0): #Set the infected property to True cities[cityno][1] = False #Do one simulation of the zombie plague based on the values of p_spread and p_cure def sim_step(cities,p_spread,p_cure): #counter to keep track of the index of the city counter = 0; #Iterate through every city in the list of cities for city in cities: #If the city is infected , infect one of its neighbour if city[1] and numpy.random.rand() < p_spread: no_of_neighbours = len(city[2]) #Generate random index based on the length of the neighbour random_city = city[2][numpy.random.randint(0, no_of_neighbours)] #Zombify the random city zombify(cities,random_city) #If the city is infected , attemp to cure it if city[1] and numpy.random.rand() < p_cure: #Cure the current city cure(cities,counter) counter += 1 #Function to check whether it is the end of the world def is_end_of_world(cities): #Iterate through every city in the list of cities for city in cities: if not(city[1]): #Return False if the city is not infected return False #Return true if the loop didnt find any cured cities return True #Function that counts how many steps it takes to reach the end of the world def time_to_end_of_world(p_spread,p_cure): #Sets up city world = set_up_cities() #Infect world 0 since it is always infected zombify(world,0) #Counter to keep track of the number of days it takes day_counter = 0 #Simulate another step and count the days while its not the end of the world while not(is_end_of_world(world)): sim_step(world, p_spread, p_cure) day_counter += 1 return day_counter #Execute time_to_end_of_world n times def end_world_many_times(n,p_spread,p_cure): times_to_the_end_of_the_world = [] for x in range(0, n): #Appends the number of days to a list to be returned times_to_the_end_of_the_world.append(time_to_end_of_world(p_spread,p_cure)) print x return times_to_the_end_of_the_world #Graphing code ttl = end_world_many_times(500, 1, 0) P.hist(ttl) P.ylabel("Number Per Bin") P.xlabel("Number of Days") P.show()
60edb9e2614232e5fc35fa876e47af3e5e1c49f7
tehs0ap/Project-Euler-Python
/Solutions/Problems_20-29/Problem_29.py
813
3.796875
4
''' Created on 2012-12-26 @author: Marty ''' ''' Consider all integer combinations of a**b for 2 <= a => 5 and 2 <= b => 5: 2**2=4, 2**3=8, 2**4=16, 2**5=32 3**2=9, 3**3=27, 3**4=81, 3**5=243 4**2=16, 4**3=64, 4**4=256, 4**5=1024 5**2=25, 5**3=125, 5**4=625, 5**5=3125 If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms: 4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125 How many distinct terms are in the sequence generated by a**b for 2 <= a => 100 and 2 <= b >= 100? ''' import time startTime = time.time() distinctTerms = set() for a in range(2,101): for b in range(2,101): distinctTerms.add(a**b) print len(distinctTerms) print "Time Elapsed: " + str(time.time() - startTime)
7dca0bcc61a7eff04a45a22e9dae87afc02972a3
karolinaewagorska/lesson2
/str.py
1,095
4.125
4
# Вывести последнюю букву в слове word = 'Архангельск' print(word[-1:]) # Вывести количество букв а в слове word = 'Архангельск' print(len(word)) # Вывести количество гласных букв в слове word = 'Архангельск' vowels_sum = 0 for letter in word: if letter in "а, А, е": vowels_sum = vowels_sum + 1 print("vowels_sum =", vowels_sum) # Вывести количество слов в предложении sentence = 'Мы приехали в гости' words = sentence.split() print(len(words)) # Вывести первую букву каждого слова на отдельной строке sentence = 'Мы приехали в гости' words = sentence.split() letters = [word[0] for word in words] print("".join(letters)) # Вывести усреднённую длину слова. sentence = 'Мы приехали в гости' words = sentence.split() average = sum(len(word) for word in words) / len(words) print(average)
5d9548eb01f4c012e96ff9fb68bbe9738a00aadd
einorjohn/Pycharm
/Lec 10 Ex. 1.py
460
3.609375
4
fname = input('Enter file name: ') try: fhandle = open(fname) except: print('File cannot be opened:', fname) exit() emails = dict() for line in fhandle: if line.startswith('From '): line = line.split() email = line[1] emails[email] = emails.get(email,0) + 1 emailslist = [] for email, count in emails.items(): emailslist.append( (count, email) ) emailslist.sort(reverse=True) for count, email in emailslist[:1]: print(email, count)
363d4f9d7f6a17bbab322c10fcb0db8bf8c5642d
generationzcode/question-13
/main.py
244
3.65625
4
Registered = input("Are you registered with us?") if Registered == "Y": username = input("user:") password = input("pass:") elif Registered == "N": print("go to the registration page") else: print("please try again. Input Y/N")
edc5bb48d56e8c065d92cb8473a4426267aa8e13
JoseVictorHendz/estudo-de-inteligencia-artificial
/aula3/terceiroNeoronio.py
1,148
3.921875
4
def calculoDeSaida(soma): saida = 0 if (tipoCalculo == 1): if (soma < 0): saida = 0 elif (soma >= 0 & soma <= 1): saida = soma elif (soma > 1): saida = 1 elif (tipoCalculo == 2): if (soma <= 0): saida = -1 elif (soma > 0): saida = 1 elif (tipoCalculo == 3): if (soma >= 0): saida = 1 - 1 / (1 + soma) elif (soma < 0): saida = -1 + 1 / (1 - soma) return saida peso1 = -2 peso2 = 2 peso3 = 2 peso4 = -1 peso5 = 1 peso6 = 1 saida = 0 continua =1 while continua == 1: entrada1 = int(input("Digite a primeira entra: ")) entrada2 = int(input("Digite a segunda entrada: ")) tipoCalculo = int(input('Digite qual calculo: 1-fr 2-lr 3-fs ')) soma1 = (entrada1 * peso1) + (entrada2 * peso2) saida1 = calculoDeSaida(soma1) soma2 = (entrada1 * peso3) + (entrada2 * peso4) saida2 = calculoDeSaida(soma2) soma3 = (saida1 * peso5) + (saida2 * peso6) print(calculoDeSaida(soma3)) continua = int(input("Continuar? 0 para sair 1 - para continuar"))
3e1fce5c0ff0bf5de817f9a58e5e98a3c0262d2b
ephillips408/cribbage_repo
/declarations.py
2,110
3.609375
4
import random import scoring as score values = { "Ace": 1, "Two": 2, "Three": 3, "Four": 4, "Five": 5, "Six": 6, "Seven": 7, "Eight": 8, "Nine": 9, "Ten": 10, "Jack": 10, "Queen": 10, "King": 10, } straight_ranks = { "Ace": 1, "Two": 2, "Three": 3, "Four": 4, "Five": 5, "Six": 6, "Seven": 7, "Eight": 8, "Nine": 9, "Ten": 10, "Jack": 11, "Queen": 12, "King": 13, } suits = ("H", "D", "S", "C") ranks = ( "Ace", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine", "Ten", "Jack", "Queen", "King") class Card: def __init__(self, suit, rank): self.suit = suit self.rank = rank self.value = values[rank] self.straight_rank = straight_ranks[rank] def __str__(self): return f"{self.rank}:{self.suit}" class Deck: def __init__(self): self.all_cards = [] for suit in suits: for rank in ranks: created_card = Card(suit, rank) self.all_cards.append(created_card) def shuffle(self): random.shuffle(self.all_cards) def deal_one(self): return self.all_cards.pop() class Player: def __init__(self): self.hand = [] self.is_dealer = None self.score = 0 def discard_two(self, list, indices): # Fix the issue when a user inputs a higher number before a lower number. if indices[0] > indices[-1]: for entry in indices: del list[entry] else: rev_indices = indices[::-1] #Reversed to allow for accurately deleting list elements. for entry in rev_indices: del list[entry] def find_score(list_one, list_two, list_three): #list_one will represent the value list, list two will represent the straight rank list, and list three is the suit list. points = score.find_fifteens(list_one) + score.find_matches(list_two) + score.find_straights(list_two) + score.find_flush(list_three) return points
f8882e85f00f79b59cc2d563da472cd423320fc6
sp33daemon/design_patterns
/python/iterator.py
304
4.125
4
def month_name(number): list_of_month = ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"] iterator = zip(range(number),list_of_month) for position, monthname in iterator: yield monthname val = month_name(4) print(type(val)) for month in val: print("{}".format(month))
2e0d27b414109d56736df8df10dcd69b6e6ba981
cuibjut/binary_tree
/binary_tree_traversal.py
2,220
4.21875
4
#!coding=UTF_8 """ 参考:http://www.cnblogs.com/freeman818/p/7252041.html """ class Node: """ 如何表达一棵树: 使用一个类的__init__()方法,方法中含有3个参数,分别是value, left, right, 并为其赋初识值 """ def __init__(self, value=None, left=None, right=None): self.value = value self.left = left self.right = right def pre_traverse(root): """ 前序遍历二叉树 :param root: root为一颗二叉树 :return: """ if not root: # 首先要判断边界条件 return print(root.value, end=" ") pre_traverse(root.left) pre_traverse(root.right) def mid_traverse(root): """ 中序遍历二叉树 :param root: root为一颗二叉树 :return: """ if not root: return mid_traverse(root.left) print(root.value, end=" ") mid_traverse(root.right) def after_traverse(root): """ 后序遍历二叉树 :param root: root为一颗二叉树 :return: """ if not root: return after_traverse(root.left) after_traverse(root.right) print(root.value, end=" ") def traverse(root): """ 二叉树的层次遍历 :param root: :return: 返回一颗按层次遍历的二叉树 """ # 基本上都是用两个list来实现的,一个是用来存储值,一个是用来存储指针的 if not root: return q = [root] result = [root.value] while len(q) != 0: pop_node = q.pop(0) if pop_node.left is not None: q.append(pop_node.left) result.append(pop_node.left.value) if pop_node.right is not None: q.append(pop_node.right) result.append(pop_node.right.value) return result if __name__ == "__main__": root = Node('D', Node('B', Node('A'), Node('C')), Node('E', right=Node('G', Node('F')))) print("前序遍历:") pre_traverse(root) print("\n---------------------\n") print("中序遍历:") mid_traverse(root) print("\n---------------------\n") print("后序遍历:") after_traverse(root) traverse(root) print("层次遍历:", traverse(root))
5b8f2c835b193f3dd0fbbd3d7abdfb693a70ee2d
pron1n/HH
/task_2.py
240
3.65625
4
def strToList(n): list = [] for i in n: list.append(i) return(list) for i in range(10, 10000): x5 = strToList(str(i * 5)) x5.sort() x6 = strToList(str(i * 6)) x6.sort() if x5 == x6: print(i)
f0d3e5fab08eea30ef57af8b37848642cf05c47a
benfred/py-spy
/tests/scripts/recursive.py
93
3.625
4
def recurse(x): if x == 0: return recurse(x-1) while True: recurse(20)
4175702418560f8aee1f2c04bd740e068e21bc0f
screechingghost/Calculator-1.0
/Calculator-1.0.py
1,314
4.1875
4
print("Hello") print("welcome to calculator-1.0") start=input("PRESS 'R' TO ACTIVATE OR PRESS ANY KEY TO CLOSE- CALCULATO") try: if start=="R" or start=="r" : import math print("mode of calculation:") print("+~Add") print("-~Subtract") print("x~Multiply") print("/~Divide") print("s~Square root") l='y' while l=="y" or l=="Y": option=input("please enter your mode of calculation (+|-|x|/|s): ") if option=="s": num=float(input("enter number=")) elif option=="+" or option=="-" or option=="x" or option=="X" or option=="/" : num1=float(input("enter first number=")) num2=float(input("enter second number=")) else: print('Invalid input please choose from above options') if option=="+": print(num1,"+",num2,"=",num1+num2) elif option=="-": print(num1,"-",num2,"=", num1-num2) elif option=="x": print(num1,"x",num2,"=",num1*num2) elif option=="/": print(num1,"/",num2,"=",num1/num2) elif option=="s" or option=="S": print(num,"square root is",math.sqrt(num)) l=input("Do you have more calculation- y,n:") if l=="n" or l=="N": print("Thanks For Using calculator") else: print("thanks for using calculator ") except: print("Invalid Entry")
c9fb18b668e8de811e9c8a7841ed394d47bfd8e9
xiaojinghu/Leetcode
/Leetcode0090_Backtrack.py
742
3.75
4
class Solution(object): def backtracking(self, nums, i, path, res): res.append(path) # for each number in nums[i:], we choose one to add into our path # we need to avoid duplicate in this situation for j in range(i, len(nums)): if j == i or nums[j]!=nums[j-1]: #this means nums[j] is the first unique one behind i self.backtracking(nums,j+1,path+[nums[j]], res ) return def subsetsWithDup(self, nums): """ :type nums: List[int] :rtype: List[List[int]] """ nums.sort() res = [] path = [] self.backtracking(nums, 0, path, res) return res
53c13339f8c20e1d15c12fc617d35aa39904b225
peterjpierce/project_euler
/solutions/010.py
534
3.671875
4
""" Problem 10 The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. Find the sum of all the primes below two million. """ from shared import util def run(): start_time = util.now() total, count = 0, 0 maximum = 2000000 for prime in util.primes(maximum, verbose=True): count += 1 total += prime answer = {'sum': total, 'count': count} print('answer is: %s' % str(answer)) print('elapsed seconds: %f' % (util.now() - start_time).total_seconds()) if __name__ == '__main__': run()
284a0900bc95b98dc107c1e714be92967779bd43
jngmk/Training
/Python/Programmers/[2019카카오공채] 징검다리 건너기/solution2.py
640
3.5625
4
# 통과 def check(stones, num, k): impossible = 0 for stone in stones: if stone < num: impossible += 1 else: impossible = 0 if impossible >= k: return False return True def solution(stones, k): answer = 1 left = 1 right = max(stones) + 1 while left < right: mid = (left + right) // 2 if check(stones, mid, k): answer = mid left = mid + 1 else: right = mid return answer dataset = [ [[2, 4, 5, 3, 2, 1, 4, 2, 5, 1], 3] ] for stones, k in dataset: print(solution(stones, k))
d79aa165cf588cf944c9629999f1423d272e3640
camohe90/mision_tic_G6
/s14/13.10_ejercicio2.py
448
3.8125
4
"""Escribir un programa que permita al usuario ingresar dos años y luego imprima todos los años en ese rango, que sean bisiestos y múltiplos de 10""" anio1 = int(input("Ingrese el primer año que desea validar")) anio2 = int(input("Ingrese el segundo año que desea validar")) for anio in range(anio1,anio2): if(anio % 4 == 0 and (anio % 100 != 0 or anio % 400 == 0)) and anio % 10 == 0: print(f"{anio} es bisiesto")
1fa0d38cc1b2618e766308333a3bf4bd2eaf67c0
EverettBerry/ie336
/hw1/stocksimulation.py
435
3.90625
4
import matplotlib.pyplot as plt import random def binomial_model(): up = 500 price = 1 stock = [] for x in range(1000): if random.random() < up / 1000: price = price * 1.02 up -= 1 else: price = price / 1.02 up += 1 stock.append(price) plt.plot(stock) plt.ylabel('Stock price') plt.xlabel('Days') plt.show() binomial_model()
9a9d2d0727521adfe19c206327327c1dda8f6fba
YeasirArafatRatul/Python
/SortingAlgorithms/InsertionSort.py
1,359
4.375
4
#insertion sort def insertion_sort(a_list): n = len(a_list) for i in range(1,n): #assign the vlaue of a_list[i] in the variable item item = a_list[i] j = i-1 while j >= 0 and a_list[j] > item: a_list[j+1] = a_list[j] j = j-1 a_list[j+1] = item if __name__ == "__main__": L = [2,4,1,5,6] print("before sorting",L) insertion_sort(L) print("after_sorting",L) """ for i = 1 item = 4 then j= i-1 =1-1 =0 aList[0] = 2 is not greater than item = 4 (so the program will not enter in while loop) for i = 2 item = 1 then j= i-1 =2-1 =1 aList[1] = 4 is greater than item = 1 (so the program will enter in the while loop) alist[1+1=2] = alist[1] = 4 then j = j-1 =1-1 =0 alist[j+1/0+1=1] = item which is 1 (swapped the value) list after this step = [2,1,4,5,6] now, j = 0 so a_list[0] = 2 and item = 1 so, a_list[j] is less than item so it will again enter in the while loop and swap the value after this iteration the list is = [1,2,4,5,6] """ """ complexity of insertion sort is O(n^2) if the list is sorted first then it is O(n) cz it will execute the for loop """
d75a05dfd428b9b8dc19dbe88e5dbe7b5d6071e1
lungen/algorithms
/chapter-4/423-01-reverseString.py
226
4.15625
4
# a function that takes a string and returns a reverse def revString(s): s = str(s) if len(s) == 1: #BASE CASE return s[0] else: return s[-1] + revString(s[:-1]) print(revString('salami'))
47457fca82689454308e6644e7a489a80718dd9c
AnthonyDeFallo/F19352
/ADMDProg1.py
532
3.78125
4
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ def bSort(listT) : for cnt in range (0, len(listT) - 1): for cnt2 in range(0, len(listT) - 1 - cnt): if listT[cnt2] > listT[cnt2+1]: listT[cnt2], listT[cnt2+1] = listT[cnt2+1], listT[cnt2] return listT listT = [] i = int(input("Enter the length of the list: ")) for j in range(0, i): eInt = int(input()) listT.append(eInt) print (bSort(listT)) print (bSort(listT)[::-1])
05c542b502d90a2bafc5134b273ae1dadbdbf877
MHakem/Axelrod
/axelrod/strategies/axelrod_second.py
6,186
3.703125
4
""" Additional strategies from Axelrod's second tournament. """ import random from axelrod.action import Action from axelrod.player import Player from axelrod.random_ import random_choice C, D = Action.C, Action.D class Champion(Player): """ Strategy submitted to Axelrod's second tournament by Danny Champion. This player cooperates on the first 10 moves and plays Tit for Tat for the next 15 more moves. After 25 moves, the program cooperates unless all the following are true: the other player defected on the previous move, the other player cooperated less than 60% and the random number between 0 and 1 is greater that the other player's cooperation rate. Names: - Champion: [Axelrod1980b]_ """ name = "Champion" classifier = { 'memory_depth': float('inf'), 'stochastic': True, 'makes_use_of': set(["length"]), 'long_run_time': False, 'inspects_source': False, 'manipulates_source': False, 'manipulates_state': False } def strategy(self, opponent: Player) -> Action: current_round = len(self.history) expected_length = self.match_attributes['length'] # Cooperate for the first 1/20-th of the game if current_round == 0: return C if current_round < expected_length / 20: return C # Mirror partner for the next phase if current_round < expected_length * 5 / 40: return opponent.history[-1] # Now cooperate unless all of the necessary conditions are true defection_prop = opponent.defections / len(opponent.history) if opponent.history[-1] == D: r = random.random() if defection_prop >= max(0.4, r): return D return C class Eatherley(Player): """ Strategy submitted to Axelrod's second tournament by Graham Eatherley. A player that keeps track of how many times in the game the other player defected. After the other player defects, it defects with a probability equal to the ratio of the other's total defections to the total moves to that point. Names: - Eatherley: [Axelrod1980b]_ """ name = "Eatherley" classifier = { 'memory_depth': float('inf'), 'stochastic': True, 'makes_use_of': set(), 'long_run_time': False, 'inspects_source': False, 'manipulates_source': False, 'manipulates_state': False } @staticmethod def strategy(opponent: Player) -> Action: # Cooperate on the first move if not len(opponent.history): return C # Reciprocate cooperation if opponent.history[-1] == C: return C # Respond to defections with probability equal to opponent's total # proportion of defections defection_prop = opponent.defections / len(opponent.history) return random_choice(1 - defection_prop) class Tester(Player): """ Submitted to Axelrod's second tournament by David Gladstein. This strategy is a TFT variant that attempts to exploit certain strategies. It defects on the first move. If the opponent ever defects, TESTER 'apologies' by cooperating and then plays TFT for the rest of the game. Otherwise TESTER alternates cooperation and defection. This strategy came 46th in Axelrod's second tournament. Names: - Tester: [Axelrod1980b]_ """ name = "Tester" classifier = { 'memory_depth': float('inf'), 'stochastic': False, 'makes_use_of': set(), 'long_run_time': False, 'inspects_source': False, 'manipulates_source': False, 'manipulates_state': False } def __init__(self) -> None: super().__init__() self.is_TFT = False def strategy(self, opponent: Player) -> Action: # Defect on the first move if not opponent.history: return D # Am I TFT? if self.is_TFT: return D if opponent.history[-1:] == [D] else C else: # Did opponent defect? if opponent.history[-1] == D: self.is_TFT = True return C if len(self.history) in [1, 2]: return C # Alternate C and D return self.history[-1].flip() class Gladstein(Player): """ Submitted to Axelrod's second tournament by David Gladstein. This strategy is also known as Tester and is based on the reverse engineering of the Fortran strategies from Axelrod's second tournament. This strategy is a TFT variant that defects on the first round in order to test the opponent's response. If the opponent ever defects, the strategy 'apologizes' by cooperating and then plays TFT for the rest of the game. Otherwise, it defects as much as possible subject to the constraint that the ratio of its defections to moves remains under 0.5, not counting the first defection. Names: - Gladstein: [Axelrod1980b]_ - Tester: [Axelrod1980b]_ """ name = "Gladstein" classifier = { 'memory_depth': float('inf'), 'stochastic': False, 'makes_use_of': set(), 'long_run_time': False, 'inspects_source': False, 'manipulates_source': False, 'manipulates_state': False } def __init__(self) -> None: super().__init__() # This strategy assumes the opponent is a patsy self.patsy = True def strategy(self, opponent: Player) -> Action: # Defect on the first move if not self.history: return D # Is the opponent a patsy? if self.patsy: # If the opponent defects, apologize and play TFT. if opponent.history[-1] == D: self.patsy = False return C # Cooperate as long as the cooperation ratio is below 0.5 cooperation_ratio = self.cooperations / len(self.history) if cooperation_ratio > 0.5: return D return C else: # Play TFT return opponent.history[-1]
4b2399b5af397bf62a13cf3458e6bc5432566a89
lucNovais/Caminho-Minimo---Grafos
/teste.py
105
3.5
4
q = [1, 2, 3, 4] e = [0, 3, 5, 2] for i in q: print(i) q.remove(3) print() for i in q: print(i)
c8c8f7b9d127d2762ccddabf54e7e6b917ffb167
agalyaswami/infytq-python
/circle color.py
331
3.734375
4
alex.color("green") # alex has a color alex.right(60) # alex turns 60 degrees right alex.left(60) # alex turns 60 degrees left color = ["green", "blue", "red"] for i in range(0,3): alex.color(color[i]) for counter in range(1,5): alex.circle(20*counter) alex.right(120) alex.left(0)
ad50ab5335c7ecc42e9a71c0141a96df6ab21689
cseshahriar/The-python-mega-course-practice-repo
/function_and_condition/func.py
1,005
3.96875
4
""" functions """ def mean(value): """ isinstance(object, type) The isinstance() function returns True if the specified object is of the specified type, otherwise False """ if isinstance(value == dict): the_mean = sum(value.values()) / len(value) else: the_mean = sum(value) / len(value) return the_mean my_list = [1, 2, 3, 4, 5, 6] print(mean(my_list)) """ print or none """ # by default return none def mean_another(my_list): the_mean = sum(my_list) + len(my_list) # print(the_mean) # wrong return the_mean mymean = mean_another([0, 3, 4]) print(mymean + 10) # unsupported operand type(s) for +: 'NoneType' and 'int' # always use return for function, not print """ use of white spaces """ if 3 > 1: # wrong print('a') print('aa') print('aaa') if 3>1: # worng print('b') print('bb') print('bbb') # correct if 3 > 1: print('c') # break line for if S print('cc') print('ccc') # break line def foo(): pass
8359b4b2795185252a9f18dc0276fc46f78d1f52
Mohammad-Nobaveh/count-votes
/count-votes-2.py
598
3.75
4
#importing library collections for counting items import collections #creat a list to save inputs(candidates) list1=[] votes=int(input()) #bring iterable for set range for i in range(0,votes): candidates=input() #add input items to list1 list1.append(candidates) #sort list of strings list1.sort() #use counter from collections library list2=collections.Counter(list1) #turn list2 to dictionary d=dict(list2) #use below code to control all items in dictionary for key in d: #use below code to print keys and values in each lines print(key,d[key])
495f25772b7196ba065ee32306b0f2f95edb6ad1
filbertlai/Image-Processing
/image_processing.py
31,257
3.546875
4
import subprocess import sys import os subprocess.check_call([sys.executable, "-m", "pip", "install", 'PySimpleGUI']) subprocess.check_call([sys.executable, "-m", "pip", "install", 'Pillow']) subprocess.check_call([sys.executable, "-m", "pip", "install", 'opencv-python']) import PySimpleGUI as sg from PIL import Image import cv2 ''' This function will split a larger image into serveral smaller equal-sized images. This function is fully coded by myself using basic functions provided by PIL module, such as crop and paste. There are three input parameter: 1. image path: it is a string that contains the path of the image stored. 2. horizontal_number: it is an integer that represents the number of splitting on the horizontal side. (e.g. 2 means splitting the image into left and right) 3. vertical_number: it is an integer that represents the number of splitting on the vertical side. (e.g. 2 means splitting the image into up and down) The output will be the smaller images saved on the local storage. Note that this function is different from other functions, this function will not open the processed images after processing since the number of images processed may be large. ''' def split_image(image_path, horizontal_number, vertical_number): # Updating status widget status_widget("Status: Splitting image") # Open the larger image that stored in the image path larger_image=Image.open(image_path) # Print the number of pixels on horizontal side and vertical side respectively print("Size of larger image:", larger_image.size[0], "x", larger_image.size[1]) # Determine the number of pixels on horizontal side of smaller image # It can only be an integer so floor division is used horizontal_length=larger_image.size[0]//horizontal_number print("Horizontal length of smaller image:", horizontal_length) # Determine the number of pixels on vertical side of smaller image # It can only be an integer so floor division is used vertical_length=larger_image.size[1]//vertical_number print("Vertical length of smaller image:", vertical_length) # The horizontal position to crop the larger image which is the position of 'left edge' horizontal_position=0 # The vertical position to crop the larger image which is the position of 'top edge' vertical_position=0 # The order to crop the larger image (let the image be 2 pixels x 2 pixels): # 1 2 # 3 4 for i in range(vertical_number): for o in range(horizontal_number): # loop counter that start from 1 counter=i*horizontal_number+o+1 print('\nLooping',counter,'/',vertical_number*horizontal_number,':') # Create smaller image so that part of larger image can be pasted into it # Size of smaller image: horizontal_length x vertical_length # Color space: RGB # Color: White (250, 250, 250) smaller_image=Image.new('RGB', (horizontal_length, vertical_length), (250,250,250)) # Cropping the image with the position of 'left edge', 'top edge', 'right edge', 'bottom edge' print('Cropping larger image at position:',(horizontal_position, vertical_position, horizontal_position + horizontal_length, vertical_position + vertical_length),"(left, top, right, bottom)") cropped_image=larger_image.crop((horizontal_position, vertical_position, horizontal_position + horizontal_length, vertical_position + vertical_length)) # Paste the cropped image onto the smaller image created at position (0,0) (fully cover the smaller image) smaller_image.paste(cropped_image,(0,0)) # Save the smaller image as jpg smaller_image.save('cropped image '+str(counter)+'.jpg',"JPEG") # Update the progress bar progress_widget( int( counter/(vertical_number*horizontal_number)*10000 ) ) # Update horizontal position to crop the next image in the same row horizontal_position+=horizontal_length # Update vertical position to crop the next row vertical_position+=vertical_length # Update hoizontal position to crop the leftest image in the next row horizontal_position=0 # End of splitting images print('\nImage splitted successfully at path', os.getcwd()) # Initialize the progress bar to zero progress_widget(0) # Update the status widget status_widget(str(vertical_number*horizontal_number)+' images saved at path: '+os.getcwd()) return ''' This function will cartooning an image. This function is referenced from the url: https://www.geeksforgeeks.org/cartooning-an-image-using-opencv-python/ Changes of code: 1. Usability: the code from url allows fixed path of image only while this program allows selection of path of image with graphical user interface. 2. Customization: the code from url has fixed setting of processing while this program allows customized setting, such as the level of image smoothing. 3. Speed: many unused lines are removed to enhance speed, such as image resizing. 4. Comment: many comment lines are added for explaination. 5. Reactivity: progress bar and status widget are provided to report the progress. There are four input parameters: 1. image path: it is a string that contains the path of the image stored. 2. numDownSamples: it is an integer that determines the number of downsampling to process using Guassian pyramid. 3. numBilateralFilters: it is an integer that determines the number of bilateral filter to apply. 4. thickness: it is an integer that determines the number of nearest neighbour pixels used in adaptive threshold. The output will be the cartoon version of image saved on the local storage. ''' def cartooning_image(image_path, numDownSamples, numBilateralFilters, thickness): # Updating status widget status_widget('Start cartooning image') # Initialized as zero to used for updating progress bar current_progress=0 # Used for updating progress bar, it is the number of processing steps total_progress=numDownSamples*2+numBilateralFilters+7 print('\nReading image that stored in the image path') img_rgb = cv2.imread(image_path) print('Duplicating image for later processing') img_color = img_rgb # Downsampling image for faster processing speed # More downsampling will lead to lower quality # Default number of downsampling is 1 for i in range(numDownSamples): print('Downsampling image using Gaussian pyramid',i+1,'/',numDownSamples) img_color = cv2.pyrDown(img_color) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) # Applying bilateral filter to smoothing image # Bilateral filter replaces the intensity of each pixel with a weighted average of intensity values from nearby pixels # Default number of applying is 50. for i in range(numBilateralFilters): print('Applying bilateral filter to reduce noise',i+1,'/',numBilateralFilters) img_color = cv2.bilateralFilter(img_color, 9, 9, 7) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) # Upsampling image to restore it # Number of upscaling = number of downscaling for i in range(numDownSamples): print('Upsampling image to the original size',i+1,'/',numDownSamples) img_color = cv2.pyrUp(img_color) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) # Convert the image to grayscale so that the edges can be detected later print('Converting image to grayscale to enhancing edges') img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) print('Applying median blur to make the edges sharper') img_blur = cv2.medianBlur(img_gray, 3) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) print('Applying adaptiveThreshold to detect and enhance edges') # Adaptive threshold using 'thickness' nearest neighbour pixels # Default setting of 'thickness' is 4 # The number can only be odd number and larger than 1 thickness=2*thickness+1 # Make the number be odd and larger than 1 img_edge = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, thickness, 2) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) print('Obtaining the shape detail of the colored image') # x, y, z are the number of rows, columns, and channels (x,y,z) = img_color.shape # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) print('Resizing the edged image to fit the shape of colored image') img_edge = cv2.resize(img_edge,(y,x)) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) print("Converting the image from grayscale to color so that it can be bit-ANDed with colored image") img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) print("Merging the edged image and colored image to form the cartoon version of image") res=cv2.bitwise_and(img_color, img_edge) # bit-ANDed two images # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) # Saving the cartoon version of the image with the filename 'Cartoon version.jpg' cv2.imwrite("Cartoon version.jpg", res) # Showing the cartoon version of the image for viewing cv2.imshow("Cartoon version", res) # Update the status widget status_widget('Image cartooned successfully saved at path: '+os.getcwd()) # Initialize the progress bar to zero progress_widget(0) # Make the showing of image not disappeared immediately cv2.waitKey(0) cv2.destroyAllWindows() return ''' This function will draw the edges of an image. This function is referenced from the url: https://www.geeksforgeeks.org/cartooning-an-image-using-opencv-python/ (the same link as above) Changes of code: 1. Usability: the code from url allows fixed path of image only while this program allows selection of path of image with graphical user interface. 2. Customization: the code from url has fixed setting of processing while this program allows customized setting, such as the level of image smoothing. 3. Speed: many unused lines are removed to enhance speed, such as image resizing. 4. Comment: many comment lines are added for explaination. 5. Reactivity: progress bar and status widget are provided to report the progress. There are four input parameters: 1. image path: it is a string that contains the path of the image stored. 2. numDownSamples: it is an integer that determines the number of downsampling to process using Guassian pyramid. 3. numBilateralFilters: it is an integer that determines the number of bilateral filter to apply. 4. thickness: it is an integer that determines the number of nearest neighbour pixels used in adaptive threshold. The output will be the edges version of the image saved on the local storage. ''' def edging_image(image_path, numDownSamples, numBilateralFilters, thickness): # Updating status widget status_widget('Start edging image') # Initialized as zero to used for updating progress bar current_progress=0 # Used for updating progress bar, it is the number of processing steps total_progress=numDownSamples*2+numBilateralFilters+3 print('\nReading image that stored in the image path') img_rgb = cv2.imread(image_path) # Downsampling image for faster processing speed # More downsampling will lead to lower quality # Default number of downsampling is 1 for i in range(numDownSamples): print('Downsampling image using Gaussian pyramid',i+1,'/',numDownSamples) img_rgb = cv2.pyrDown(img_rgb) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) # Applying bilateral filter to smoothing image # Bilateral filter replaces the intensity of each pixel with a weighted average of intensity values from nearby pixels # Default number of applying is 50. for i in range(numBilateralFilters): print('Applying bilateral filter to reduce noise',i+1,'/',numBilateralFilters) img_rgb = cv2.bilateralFilter(img_rgb, 9, 9, 7) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) # Upsampling image to restore it # Number of upscaling = number of downscaling for i in range(numDownSamples): print('Upsampling image to the original size',i+1,'/',numDownSamples) img_rgb = cv2.pyrUp(img_rgb) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) # Convert the image to grayscale so that the edges can be detected later print('Converting image to grayscale to enhancing edges') img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) print('Applying median blur to make the edges sharper') img_blur = cv2.medianBlur(img_gray, 3) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) print('Applying adaptiveThreshold to detect and enhance edges') # Adaptive threshold using 'thickness' nearest neighbour pixels # Default setting of 'thickness' is 4 # The number can only be odd number and larger than 1 thickness=2*thickness+1 # Make the number be odd and larger than 1 img_edge = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, thickness, 2) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) # Saving the edges version of the image with the filename 'Edge version.jpg' cv2.imwrite("Edges version.jpg", img_edge) # Showing the edges version of the image for viewing cv2.imshow("Edges version", img_edge) # Update the status widget status_widget('Edges of image successfully saved at path: '+os.getcwd()) # Initialize the progress bar to zero progress_widget(0) # Make the showing of image not disappeared immediately cv2.waitKey(0) cv2.destroyAllWindows() return ''' This function will grayscale an image. This function is referenced from the url: https://www.geeksforgeeks.org/cartooning-an-image-using-opencv-python/ (the same link as above) Changes of code: 1. Usability: the code from url allows fixed path of image only while this program allows selection of path of image with graphical user interface. 2. Customization: the code from url has fixed setting of processing while this program allows customized setting, such as the level of image smoothing. 3. Speed: many unused lines are removed to enhance speed, such as image resizing. 4. Comment: many comment lines are added for explaination. 5. Reactivity: progress bar and status widget are provided to report the progress. There are three input parameters: 1. image path: it is a string that contains the path of the image stored. 2. numDownSamples: it is an integer that determines the number of downsampling to process using Guassian pyramid. 3. numBilateralFilters: it is an integer that determines the number of bilateral filter to apply. The output will be the grayscale version of the image. Note that the variable 'thickness' is not related to this function as the edge version of image will not be generated in this function. ''' def grayscaling_image(image_path, numDownSamples, numBilateralFilters): # Updating status widget status_widget('Start grayscaling image') # Initialized as zero to used for updating progress bar current_progress=0 # Used for updating progress bar, it is the number of processing steps total_progress=numDownSamples*2+numBilateralFilters+1 print('\nReading image that stored in the image path') img_rgb = cv2.imread(image_path) # Downsampling image for faster processing speed # More downsampling will lead to lower quality # Default number of downsampling is 1 for i in range(numDownSamples): print('Downsampling image using Gaussian pyramid',i+1,'/',numDownSamples) img_rgb = cv2.pyrDown(img_rgb) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) # Applying bilateral filter to smoothing image # Bilateral filter replaces the intensity of each pixel with a weighted average of intensity values from nearby pixels # Default number of applying is 50. for i in range(numBilateralFilters): print('Applying bilateral filter to reduce noise',i+1,'/',numBilateralFilters) img_rgb = cv2.bilateralFilter(img_rgb, 9, 9, 7) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) # Upsampling image to restore it # Number of upscaling = number of downscaling for i in range(numDownSamples): print('Upsampling image to the original size',i+1,'/',numDownSamples) img_rgb = cv2.pyrUp(img_rgb) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) # Convert the image to grayscale print('Converting image to grayscale') img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY) # Update progress bar current_progress+=1 progress_widget(int(current_progress/total_progress*10000)) # Saving the grayscale version of the image with the filename 'Grayscale version.jpg' cv2.imwrite("Grayscale version.jpg", img_gray) # Showing the Grayscale version of the image for viewing cv2.imshow("Grayscale version", img_gray) # Update the status widget status_widget('Grayscale version of image successfully saved at path: '+os.getcwd()) # Initialize the progress bar to zero progress_widget(0) # Make the showing of image not disappeared immediately cv2.waitKey(0) cv2.destroyAllWindows() return ''' This function will blur an image. This function is referenced from the url: https://www.geeksforgeeks.org/python-image-blurring-using-opencv/ Changes of code: 1. Usability: the code from url allows fixed path of image only while this program allows selection of path of image with graphical user interface. 2. Customization: the code from url has fixed level of blurring while this program allows customized level of blurring. 3. Speed: many unused lines are removed to enhance speed, including two other blurring methods. Only Gaussian Blur is adapted in this function. 4. Comment: comment lines are added for explaination. 5. Reactivity: progress bar and status widget are provided to report the progress. There are two input parameters: 1. image path: it is a string that contains the path of the image stored. 2. blur_level: it is an integer that determines the level of blurring. The output will be the blurred version of the image. ''' def blurring_image(image_path, blur_level): # Updating status widget status_widget('Start blurring image') # Update progress bar progress_widget(int(1/3*10000)) print('\nReading image that stored in the image path') image = cv2.imread(image_path) # Update progress bar progress_widget(int(2/3*10000)) # Perform Gaussian Blur # The blur level can only be odd number and larger than 1 # Default setting of the blurring level is 4 blur_level=2*blur_level+1 # Make the number be odd and larger than 1 print('Performing Gaussian Blur') Gaussian = cv2.GaussianBlur(image, (blur_level, blur_level), 0) # Update progress bar progress_widget(int(3/3*10000)) # Saving the blurred version of the image with the filename 'Blurred version.jpg' cv2.imwrite("Blurred version.jpg", Gaussian) # Showing the Blurred version of the image for viewing cv2.imshow("Blurred version", Gaussian) # Update the status widget status_widget('Blurred version of image successfully saved at path: '+os.getcwd()) # Initialize the progress bar to zero progress_widget(0) # Make the showing of image not disappeared immediately cv2.waitKey(0) cv2.destroyAllWindows() return ''' This function will denoise an image. This function is referenced from the url: https://www.geeksforgeeks.org/python-denoising-of-colored-images-using-opencv/ Changes of code: 1. Usability: the code from url allows fixed path of image only while this program allows selection of path of image with graphical user interface. 2. Customization: the code from url has fixed level of setting while this program allows customized setting, such as filter strength. 3. Comment: Comment lines are added for explaination. 4. Reactivity: progress bar and status widget are provided to report the progress. There are three input parameters: 1. image path: it is a string that contains the path of the image stored. 2. performance: it is an integer that determines the performance. Larger values will consume more time. 3. filter_strength: it is an interger that determines the filter strength. Larger values may lead to loss of image details. The output will be the denoised version of the image. ''' def denoising_image(image_path, performance, filter_strength): # Updating status widget status_widget('Start denoising image') # Update progress bar progress_widget(int(1/3*10000)) print('\nReading image that stored in the image path') image = cv2.imread(image_path) # Update progress bar progress_widget(int(2/3*10000)) # Perform Denoising # Default setting of the performance is 10. # Default setting of the filter strength is 15. print('Performing Denoising') img_denoised= cv2.fastNlMeansDenoisingColored(image, None, 10, 10, performance, filter_strength) # Update progress bar progress_widget(int(3/3*10000)) # Saving the Denoised version of the image with the filename 'Denoised version.jpg' cv2.imwrite("Denoised version.jpg", img_denoised) # Showing the Denoised version of the image for viewing cv2.imshow("Denoised version", img_denoised) # Update the status widget status_widget('Denoised version of image successfully saved at path: '+os.getcwd()) # Initialize the progress bar to zero progress_widget(0) # Make the showing of image not disappeared immediately cv2.waitKey(0) cv2.destroyAllWindows() return # Declare some commonly used elements in order to update them easily # Showing path of image # have '\t' to reserve space as the length of initialized string will be the maxium length path_widget=sg.Text('Image not selected\t\t\t\t\t\t\t\t\t\t') # Showing status of program # have '\t' to reserve space as the length of initialized string will be the maxium length status_widget=sg.Text('Status: Pending\t\t\t\t\t\t\t\t\t\t') # Showing progress of program progress_widget=sg.ProgressBar(10000, orientation='h') # Declare some layouts that will be included in frames path_layout=[[path_widget, sg.FileBrowse('Browse an image', key='file')]] split_layout=[[sg.Text('Number of photos on horizontal side:'), sg.Input(key='h', size=(5,5)), sg.Text('Number of photos on vertical side:'), sg.Input(key='v', size=(5,5)), sg.Button('Split the image')]] cartoon_layout=[[sg.Text('Processing speed \n(may sacrifice quality):'), sg.Slider( range=(1,3), default_value = 1, orientation='horizontal', key='downsample', size=(5,20) ), sg.Text('Image smoothing:'), sg.Slider( range=(25,75), default_value = 50, orientation='horizontal', key='bilateral', size=(10,20) ), sg.Text('Thickness of edge\n(Not related to grayscaling):'), sg.Slider( range=(1,7), default_value = 4, orientation='horizontal', key='thickness', size=(10,20) )] ,[sg.Button('Cartooning the image'), sg.Button('Draw Edges of the image'), sg.Button('Grayscaling the image')]] blur_layout=[[sg.Text('\nBlurring level:'), sg.Slider( range=(1,100), default_value = 4, orientation='horizontal', key='blur', size=(40,20) ), sg.Button('Blurring the image')]] denoise_layout=[[sg.Text('Performance\n(consume more time):'), sg.Slider( range=(1,20), default_value = 10, orientation='horizontal', key='performance', size=(10,20) ), sg.Text('Filter strength\n(may sacrifice detail of image):'), sg.Slider( range=(15,30), default_value = 10, orientation='horizontal', key='filter', size=(10,20) ), sg.Button('Denoising the image')]] # Declare layout of the main gui window layout=[[sg.Text('Please pick an image first. Then choose the image processing function(s).\nYou are recommended to use default settings but you are still free to change the settings.')] ,[sg.Frame(layout=path_layout, title='Path of image')] ,[sg.Text('\nImage Processing Functions:\n')] ,[sg.Frame(layout=split_layout, title='1. Split the photo into equal-sized smaller photos which can be posted on Instagram.')] ,[sg.Text('')] ,[sg.Frame(layout=cartoon_layout, title='2. Cartoon the image to look more entertaining. 3. Draw the edges of the image to focus the shape. 4. Grayscaling the image to focus the detail.')] ,[sg.Text('')] ,[sg.Frame(layout=blur_layout, title='5. Blur the image for products that not announced yet.')] ,[sg.Text('')] ,[sg.Frame(layout=denoise_layout, title='6. Denoise the image to restore the true image.')] ,[sg.Text('')] ,[status_widget, sg.Button('Open folder of processed images')] ,[progress_widget]] # Declare a window with the layout aforementioned window=sg.Window("Image Processing",layout) while True: event, values=window.read(timeout=20) # gui window refresh every 20 ms # Error may occur if user closes the window but the program is still reading the value of 'file' try: # Read the values of input field with key 'file' image_path=values['file'] # Users have chosen the path of image if len(image_path)>0: # Update the path widget to show the path of image path_widget(image_path) except: pass # User closes the gui window if event==sg.WIN_CLOSED: break # User presses the button 'Split the image' if event=='Split the image': # Check if image path is empty if len(image_path)==0: sg.popup('Please browse a image first.') continue # Try to read the number of smaller images on horizontal and vertical sides try: horizontal_number=int(values['h']) vertical_number=int(values['v']) print('There will be',horizontal_number,'images per row and',vertical_number,'images per column.') except: status_widget('Status: Error! Please confirm the two numbers you entered are integers') sg.popup('Error! Please confirm the two numbers you entered are integers') print('Error! Please confirm the two numbers you entered are integers') continue split_image(image_path, horizontal_number, vertical_number) # User presses the button 'Cartooning the image' if event=='Cartooning the image': # Check if image path is empty if len(image_path)==0: sg.popup('Please browse a image first.') continue # Read the values of three sliders numDownSamples=int(values['downsample']) numBilateralFilters=int(values['bilateral']) thickness=int(values['thickness']) cartooning_image(image_path, numDownSamples, numBilateralFilters, thickness) # User presses the button 'Draw Edges of the image' if event=='Draw Edges of the image': # Check if image path is empty if len(image_path)==0: sg.popup('Please browse a image first.') continue # Read the values of three sliders numDownSamples=int(values['downsample']) numBilateralFilters=int(values['bilateral']) thickness=int(values['thickness']) edging_image(image_path, numDownSamples, numBilateralFilters, thickness) # User presses the button 'Grayscaling the image' if event=='Grayscaling the image': # Check if image path is empty if len(image_path)==0: sg.popup('Please browse a image first.') continue # Read the values of two sliders numDownSamples=int(values['downsample']) numBilateralFilters=int(values['bilateral']) grayscaling_image(image_path, numDownSamples, numBilateralFilters) # User presses the button 'Blurring the image' if event=='Blurring the image': # Check if image path is empty if len(image_path)==0: sg.popup('Please browse a image first.') continue # Read the value of blur level in the slider blur_level=int(values['blur']) blurring_image(image_path, blur_level) # User presses the button 'Denoising the image' if event=='Denoising the image': # Check if image path is empty if len(image_path)==0: sg.popup('Please browse a image first.') continue # Read the values of two sliders performance=int(values['performance']) filter_strength=int(values['filter']) denoising_image(image_path, performance, filter_strength) # User presses the button 'Open folder of processed images' if event=='Open folder of processed images': subprocess.Popen('explorer '+os.getcwd()) window.close()
634ac1cc131f9af01f7fedd450a5c17edebb3896
sdpython/teachpyx
/teachpyx/practice/rues_paris.py
17,689
3.640625
4
# -*- coding: utf-8 -*- from typing import Callable, Dict, List, Optional, Tuple import random import math from ..tools.data_helper import download_and_unzip def distance_paris(lat1: float, lng1: float, lat2: float, lng2: float) -> float: """ Distance euclidienne approchant la distance de Haversine (uniquement pour Paris). """ return ((lat1 - lat2) ** 2 + (lng1 - lng2) ** 2) ** 0.5 * 90 def distance_haversine(lat1: float, lng1: float, lat2: float, lng2: float) -> float: """ Calcule la distance de Haversine `Haversine formula <http://en.wikipedia.org/wiki/Haversine_formula>`_ """ radius = 6371 dlat = math.radians(lat2 - lat1) dlon = math.radians(lng2 - lng1) a = math.sin(dlat / 2) * math.sin(dlat / 2) + math.cos( math.radians(lat1) ) * math.cos(math.radians(lat2)) * math.sin(dlon / 2) * math.sin(dlon / 2) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a)) d = radius * c return d def get_data( url: str = "https://github.com/sdpython/teachpyx/raw/main/_data/paris_54000.zip", dest: str = ".", timeout: int = 10, verbose: bool = False, keep: int = -1, ) -> List[Tuple[int, int, int, Tuple[float, float], Tuple[float, float], float]]: """ Retourne les données des rues de Paris. On suppose que les arcs sont uniques et qu'il si :math:`j \\rightarrow k` est présent, :math:`j \\rightarrow k` ne l'est pas. Ceci est vérifié par un test. :param url: location of the data :param dest: répertoire dans lequel télécharger les données :param timeout: timeout (seconds) when estabishing the connection :param verbose: affiche le progrès :param keep: garde tout si la valeur est -1, sinon garde les 1000 premières rues, ces rues sont choisies de façon à construire un ensemble connexe :return: liste d'arcs Un arc est défini par un 6-uple contenant les informations suivantes : - v1: indice du premier noeud - v2: indice du second noeud - ways: sens unique ou deux sens - p1: coordonnées du noeud 1 - p2: coordonnées du noeud 2 - d: distance """ data = download_and_unzip(url=url, timeout=timeout, verbose=verbose) name = data[0] with open(name, "r") as f: lines = f.readlines() vertices = [] edges = [] for i, line in enumerate(lines): spl = line.strip("\n\r").split(" ") if len(spl) == 2: vertices.append((float(spl[0]), float(spl[1]))) elif len(spl) == 5 and i > 0: v1, v2 = int(spl[0]), int(spl[1]) ways = int(spl[2]) # dans les deux sens ou pas p1 = vertices[v1] p2 = vertices[v2] edges.append( (v1, v2, ways, p1, p2, distance_haversine(p1[0], p1[1], p2[0], p2[1])) ) elif i > 0: raise RuntimeError(f"Unable to interpret line {i}: {line!r}") pairs = {} for e in edges: p = e[:2] if p in pairs: raise ValueError(f"Unexpected pairs, already present: {e}") pairs[p] = True if keep is not None: new_vertices = {} already_added = set() new_edges = [] for _ in range(0, int(keep**0.5) + 1): for edge in edges: if edge[:2] in already_added: continue p1, p2 = edge[-3:-1] if ( len(new_vertices) > 0 and p1 not in new_vertices and p2 not in new_vertices ): # On considère des rues connectées à des rues déjà sélectionnées. continue if p1 not in new_vertices: new_vertices[p1] = len(new_vertices) if p2 not in new_vertices: new_vertices[p2] = len(new_vertices) i1, i2 = new_vertices[p1], new_vertices[p2] new_edges.append((i1, i2, edge[2], p1, p2, edge[-1])) already_added.add(edge[:2]) if len(new_edges) >= keep: break if len(new_edges) >= keep: break items = [(v, i) for i, v in new_vertices.items()] items.sort() vertices = [_[1] for _ in items] edges = new_edges return edges, vertices def graph_degree( edges: List[Tuple[int, int, int, Tuple[float, float], Tuple[float, float], float]] ) -> Dict[Tuple[int, int], int]: """ Calcul le degré de chaque noeud. :param edges: list des arcs :return: degrés """ nb_edges = {} for edge in edges: v1, v2 = edge[:2] nb_edges[v1] = nb_edges.get(v1, 0) + 1 nb_edges[v2] = nb_edges.get(v2, 0) + 1 return nb_edges def possible_edges( edges: List[Tuple[int, int, int, Tuple[float, float], Tuple[float, float], float]], threshold: float, distance: Callable = distance_haversine, ): """ Construit la liste de tous les arcs possibles en filtrant sur la distance à vol d'oiseau. :param edges: list des arcs :param threshold: seuil au-delà duquel deux noeuds ne seront pas connectés :param distance: la distance de Haversine est beaucoup trop longue sur de grands graphes, on peut la changer :return: arcs possibles (symétrique --> incluant edges) """ vertices: Dict[int : Tuple[float, float]] = {e[0]: e[3] for e in edges} vertices.update({e[1]: e[4] for e in edges}) possibles = {(e[0], e[1]): e[-1] for e in edges} possibles.update({(e[1], e[0]): e[-1] for e in edges}) # initial = possibles.copy() for i1, v1 in vertices.items(): for i2, v2 in vertices.items(): if i1 >= i2: continue d = distance(*(v1 + v2)) if d < threshold: possibles[i1, i2] = d possibles[i2, i1] = d return possibles def bellman( edges: List[Tuple[int, int, int, Tuple[float, float], Tuple[float, float], float]], max_iter: int = 20, allow: Optional[Callable] = None, init: Optional[Dict[Tuple[int, int], float]] = None, verbose: bool = False, ) -> Dict[Tuple[int, int], float]: """ Implémente l'algorithme de `Bellman-Ford <http://fr.wikipedia.org/wiki/Algorithme_de_Bellman-Ford>`_. :param edges: liste de tuples (noeud 1, noeud 2, ?, ?, ?, poids) :param max_iter: nombre d'itérations maximal :param allow: fonction déterminant si l'algorithme doit envisager cette liaison ou pas :param init: initialisation (pour pouvoir continuer après une première exécution) :param verbose: afficher le progrès :return: listes des arcs et des distances calculées """ if init is None: init: Dict[Tuple[int, int], float] = {(e[0], e[1]): e[-1] for e in edges} init.update({(e[1], e[0]): e[-1] for e in edges}) def always_true(e): return True if allow is None: allow = always_true edges_from = {} for e in edges: if e[0] not in edges_from: edges_from[e[0]] = [] if e[1] not in edges_from: edges_from[e[1]] = [] edges_from[e[0]].append(e) if len(e) == 2: edges_from[e[1]].append((e[1], e[0], 1.0)) elif len(e) == 3: edges_from[e[1]].append((e[1], e[0], e[2])) elif len(e) == 6: edges_from[e[1]].append((e[1], e[0], e[2], e[4], e[3], e[5])) else: raise ValueError( f"an edge should be a tuple of 2, 3, or 6 elements, " f"last item is the weight, not:\n{e}" ) modif = 1 total_possible_edges = (len(edges_from) ** 2 - len(edges_from)) // 2 it = 0 while modif > 0: modif = 0 # to avoid RuntimeError: dictionary changed size during iteration initc = init.copy() s = 0 for i, d in initc.items(): if allow(i): fromi2 = edges_from[i[1]] s += d for e in fromi2: # on fait attention à ne pas ajouter de boucle sur le même # noeud if i[0] == e[1]: continue new_e = i[0], e[1] new_d = d + e[-1] if new_e not in init or init[new_e] > new_d: init[new_e] = new_d modif += 1 if verbose: print( f"iteration {it} #modif {modif} # " f"{len(initc) // 2}/{total_possible_edges} = " f"{len(initc) * 50 / total_possible_edges:1.2f}%" ) it += 1 if it > max_iter: break return init def kruskal( edges: List[Tuple[int, int, int, Tuple[float, float], Tuple[float, float], float]], extension: Dict[Tuple[int, int], float], ) -> List[Tuple[int, int]]: """ Applique l'algorithme de Kruskal (ou ressemblant) pour choisir les arcs à ajouter. :param edges: listes des arcs :param extension: résultat de l'algorithme de Bellman :return: added_edges """ original: Dict[Tuple[int, int], float] = {(e[0], e[1]): e[-1] for e in edges} original.update({(e[1], e[0]): e[-1] for e in edges}) additions: Dict[Tuple[int, int], float] = { k: v for k, v in extension.items() if k not in original } additions.update({(k[1], k[0]): v for k, v in additions.items()}) degre: Dict[Tuple[int, int], int] = {} for k, v in original.items(): # original est symétrique degre[k[0]] = degre.get(k[0], 0) + 1 tri = [ (v, k) for k, v in additions.items() if degre[k[0]] % 2 == 1 and degre[k[1]] % 2 == 1 ] tri.extend( [ (v, k) for k, v in original.items() if degre[k[0]] % 2 == 1 and degre[k[1]] % 2 == 1 ] ) tri.sort() impairs = sum(v % 2 for k, v in degre.items()) added_edges = [] if impairs > 2: for v, a in tri: if degre[a[0]] % 2 == 1 and degre[a[1]] % 2 == 1: # il faut refaire le test car degre peut changer à chaque # itération degre[a[0]] += 1 degre[a[1]] += 1 added_edges.append(a + (v,)) impairs -= 2 if impairs <= 0: break return added_edges def eulerien_extension( edges: List[Tuple[int, int, int, Tuple[float, float], Tuple[float, float], float]], max_iter: int = 20, alpha: float = 0.5, distance: Callable = distance_haversine, verbose: bool = False, ) -> List[Tuple[int, int]]: """ Construit une extension eulérienne d'un graphe. :param edges: liste des arcs :param max_iter: nombre d'itérations pour la fonction @see fn bellman :param alpha: coefficient multiplicatif de ``max_segment`` :param distance: la distance de Haversine est beaucoup trop longue sur de grands graphes, on peut la changer :param verbose: afficher l'avancement :return: added edges """ max_segment = max(e[-1] for e in edges) possibles = possible_edges(edges, max_segment * alpha, distance=distance) init = bellman(edges, allow=lambda e: e in possibles) added = kruskal(edges, init) d = graph_degree(edges + added) allow = [k for k, v in d.items() if v % 2 == 1] totali = 0 while len(allow) > 0: if verbose: print(f"------- # odd vertices {len(allow)} iteration {totali}") allowset = set(allow) init = bellman( edges, max_iter=max_iter, allow=lambda e: e in possibles or e[0] in allowset or e[1] in allowset, init=init, verbose=verbose, ) added = kruskal(edges, init) d = graph_degree(edges + added) allow = [k for k, v in d.items() if v % 2 == 1] totali += 1 if totali > 20: # tant pis, ça ne marche pas break return added def connected_components( edges: List[Tuple[int, int, int, Tuple[float, float], Tuple[float, float], float]] ) -> Dict[int, int]: """ Computes the connected components. :param edges: edges :return: dictionary { vertex : id of connected components } """ res = {} for k in edges: for _ in k[:2]: if _ not in res: res[_] = _ modif = 1 while modif > 0: modif = 0 for k in edges: a, b = k[:2] r, s = res[a], res[b] if r != s: m = min(res[a], res[b]) res[a] = res[b] = m modif += 1 return res def euler_path( edges: List[Tuple[int, int, int, Tuple[float, float], Tuple[float, float], float]], added_edges, ): """ Computes an eulerian path. We assume every vertex has an even degree. :param edges: initial edges :param added_edges: added edges :return: path, list of `(vertex, edge)` """ alledges = {} edges_from = {} somme = 0 for e in edges: k = e[:2] # indices des noeuds v = e[-1] # distance alledges[k] = ["street", *k, v] a, b = k alledges[b, a] = alledges[a, b] if a not in edges_from: edges_from[a] = [] if b not in edges_from: edges_from[b] = [] edges_from[a].append(alledges[a, b]) edges_from[b].append(alledges[a, b]) somme += v for e in added_edges: # il ne faut pas enlever les doublons k = e[:2] # indices ds noeuds v = e[-1] # distance a, b = k alledges[k] = ["jump", *k, v] alledges[b, a] = alledges[a, b] if a not in edges_from: edges_from[a] = [] if b not in edges_from: edges_from[b] = [] edges_from[a].append(alledges[a, b]) edges_from[b].append(alledges[a, b]) somme += v # les noeuds de degré impair odd = [a for a, v in edges_from.items() if len(v) % 2 == 1] if len(odd) > 0: raise ValueError("Some vertices have an odd degree.") # les noeuds de degré 2, on les traverse qu'une fois two = [a for a, v in edges_from.items() if len(v) == 2] begin = two[0] # checking for v, le in edges_from.items(): # v est une extrémité for e in le: # to est l'autre extrémité to = e[1] if v != e[1] else e[2] if to not in edges_from: raise RuntimeError(f"Unable to find vertex {to} for edge {to},{v}") if to == v: raise RuntimeError(f"Circular edge {to}") # On sait qu'il existe un chemin. La fonction explore les arcs # jusqu'à revenir à son point de départ. Elle supprime les arcs # utilisées de edges_from. path = _explore_path(edges_from, begin) # Il faut s'assurer que le chemin ne contient pas de boucles non visitées. while len(edges_from) > 0: # Il reste des arcs non visités. On cherche le premier # arc connecté au chemin existant. start = None for i, p in enumerate(path): if p[0] in edges_from: start = i, p break if start is None: raise RuntimeError( f"start should not be None\npath={path}\nedges_from={edges_from}" ) sub = _explore_path(edges_from, start[1][0]) i = start[0] path[i : i + 1] = path[i : i + 1] + sub return path def _delete_edge(edges_from, n: int, to: int): """ Removes an edge from the graph. :param edges_from: structure which contains the edges (will be modified) :param n: first vertex :param to: second vertex :return: the edge """ le = edges_from[to] f = None for i, e in enumerate(le): if (e[1] == to and e[2] == n) or (e[2] == to and e[1] == n): f = i break assert f is not None del le[f] if len(le) == 0: del edges_from[to] le = edges_from[n] f = None for i, e in enumerate(le): if (e[1] == to and e[2] == n) or (e[2] == to and e[1] == n): f = i break assert f is not None keep = le[f] del le[f] if len(le) == 0: del edges_from[n] return keep def _explore_path(edges_from, begin): """ Explores an eulerian path, remove used edges from edges_from. :param edges_from: structure which contains the edges (will be modified) :param begin: first vertex to use :return: path """ path = [(begin, None)] stay = True while stay and len(edges_from) > 0: n = path[-1][0] if n not in edges_from: # fin break le = edges_from[n] if len(le) == 1: h = 0 e = le[h] to = e[1] if n != e[1] else e[2] else: to = None nb = 100 while to is None or to == begin: h = random.randint(0, len(le) - 1) if len(le) > 1 else 0 e = le[h] to = e[1] if n != e[1] else e[2] nb -= 1 if nb < 0: raise RuntimeError(f"algorithm issue {len(path)}") if len(edges_from[to]) == 1: if begin != to: raise RuntimeError("wrong algorithm") else: stay = False keep = _delete_edge(edges_from, n, to) path.append((to, keep)) return path[1:]
1519e6d70a647222cc8c97744987ed69dac524e8
martinaoliver/GTA
/ssb/m1a/exercise_answers/ex7a.py
508
4
4
months = {1:'January', 2:'February', 3:'March', 4:'April', 5:'May', 6:'June', 7:'July', 8:'August',9:'September', 10:'October', 11:'November', 12:'December'} for m in months.keys(): print (m, "is", months[m]) # Or if the keys are stored as strings: months = {'1':'January', '2':'February', '3':'March', '4':'April', '5':'May', '6':'June', '7':'July', '8':'August', '9':'September', '10':'October', '11':'November', '12':'December'} for m in months.keys(): print (m, "is", months[m])
b920f867017fd8e708fe0ed96633b251aff5304a
brunorijsman/euler-problems-python
/euler/problem068.py
3,030
3.59375
4
import math import itertools from tkinter import * canvas_width = 800 canvas_height = 800 ring_radius = 100 point_radius = 20 def point_location(point, nr_points): arm = point // 2 nr_arms = nr_points // 2 mid_x = canvas_width // 2 mid_y = canvas_height // 2 base_angle = -math.pi / 2 one_arm_angle = 2 * math.pi / nr_arms angle = base_angle + arm * one_arm_angle inner_x = mid_x + math.cos(angle) * ring_radius inner_y = mid_y + math.sin(angle) * ring_radius if point % 2 == 0: next_x = mid_x + math.cos(angle + one_arm_angle) * ring_radius next_y = mid_y + math.sin(angle + one_arm_angle) * ring_radius dx = next_x - inner_x dy = next_y - inner_y x = inner_x - dx y = inner_y - dy else: x = inner_x y = inner_y return (x, y) def draw_solution(solution): nr_points = len(solution) nr_arms = nr_points // 2 tk = Tk() canvas = Canvas(tk, width=canvas_width, height=canvas_height) canvas.pack() for arm in range(nr_arms): i1 = (arm*2) % nr_points i3 = (arm*2 + 3) % nr_points (x1, y1) = point_location(i1, nr_points) (x2, y2) = point_location(i3, nr_points) canvas.create_line(x1, y1, x2, y2, fill="blue") for point in range(nr_points): (x, y) = point_location(point, nr_points) canvas.create_oval(x - point_radius, y - point_radius, x + point_radius, y + point_radius, outline="blue", fill="lightblue") nr = solution[point] canvas.create_text(x, y, text=str(nr)) canvas.pack() def same_sums(candidate): nr_points = len(candidate) nr_arms = nr_points // 2 sums = [] for arm in range(nr_arms): i1 = (arm*2) % nr_points i2 = (arm*2 + 1) % nr_points i3 = (arm*2 + 3) % nr_points sums.append(candidate[i1] + candidate[i2] + candidate[i3]) for arm in range(nr_arms - 1): if sums[arm] != sums[arm+1]: return False return True def first_arm_lowest(candidate): nr_points = len(candidate) nr_arms = nr_points // 2 for arm in range(1, nr_arms): i = (arm*2) % nr_points if candidate[i] < candidate[0]: return False return True def to_nr(candidate): nr_points = len(candidate) nr_arms = nr_points // 2 nr_str = "" for arm in range(nr_arms): i1 = (arm*2) % nr_points i2 = (arm*2 + 1) % nr_points i3 = (arm*2 + 3) % nr_points nr_str += str(candidate[i1]) nr_str += str(candidate[i2]) nr_str += str(candidate[i3]) return int(nr_str) def find_best_solution(nr_points, digits): max_nr = 0 best_solution = None numbers = list(range(1, nr_points+1)) for candidate in itertools.permutations(numbers): candidate = list(candidate) if first_arm_lowest(candidate) and same_sums(candidate): nr = to_nr(candidate) if (nr > max_nr) and (len(str(nr)) == digits): max_nr = nr best_solution = candidate return best_solution def solve(): solution = find_best_solution(10, 16) draw_solution(solution) print(to_nr(solution))
b711961aa017e140327e8ccdc681619e3a85611a
jimmus69/python-projects
/Ch10_OO/Classic_vs_New_Classes/New/TomCat.py
254
3.546875
4
from Cat import Cat class TomCat(Cat): def talk(self): """ To call a method in the superclass when the method is overridden in the current class. use super(current_class_name, self).method() """ super(TomCat, self).talk() print "Burp!"
cc184e3a4546ada02065c7216610341e791e9931
khygu0919/codefight
/Intro/matrixElementsSum.py
904
4.15625
4
''' After they became famous, the CodeBots all decided to move to a new building and live together. The building is represented by a rectangular matrix of rooms. Each cell in the matrix contains an integer that represents the price of the room. Some rooms are free (their cost is 0), but that's probably because they are haunted, so all the bots are afraid of them. That is why any room that is free or is located anywhere below a free room in the same column is not considered suitable for the bots to live in. Help the bots calculate the total price of all the rooms that are suitable for them. ''' def matrixElementsSum(matrix): a=len(matrix) b=[] c=0 for i in range(0,a): for k in b: matrix[i][k]=0 b=[] for j in range(0,len(matrix[i])): if matrix[i][j]==0: b.append(j) else:c+=matrix[i][j] return c
ca44d1179fb8094ef56c2290b4ffa59ac45b3e23
dongqui/problemSolving
/structure/Stack.py
752
3.78125
4
import unittest class Stack: def __init__(self): self.items = [] self.max = 5 def push(self, item): if len(self.items) < max: self.items.append(item) else: print("stack overflow") def popitem(self): self.items.pop() def peak(self): return self.items[len(self.items)-1] def print_stack(self): print(self.items) class StackTest(unittest.TestCase): def test(self): st = Stack() st.push(1) st.push(2) st.print_stack() st.popitem() st.print_stack() st.push(3) st.push(3) self.assertEquals(st.peak(), 3) st.popitem() st.popitem() st.print_stack()
c8fa6e5addfc64a1cf7cc203f1d5e295c343bc44
SaanyaV/RSAEncryption
/testTimeForPrime.py
1,583
3.953125
4
# -*- coding: utf-8 -*- """ Code to create PrimeNumbers """ import math import time def testPrimeBrute(a): if a <= 1: return False elif a == 2: return True for i in range(2, math.ceil(a**.5)+1): if a % i == 0: return False return True def firstPrime(biggerThan = 10): numAdd = 1 while testPrimeBrute(biggerThan + numAdd) == False: numAdd = numAdd + 1 return biggerThan + numAdd def createPrimes(biggerThan = 10, quantity = 5): result = [] while len(result) < quantity: prime = firstPrime(biggerThan) result.append(prime) biggerThan = prime return result def primeFactorList(a): for i in range(2,math.ceil(a/2)+1): if testPrimeBrute(i): if a % i == 0: return [i,a/i] #s = firstPrime(10000000000000000000) #print(f"The number is {len(str(s))} digit long and is {s}. Time taken is {round(time.time() - start_time,2)} seconds") for x in range(1,10): biggerThan = int(10**x) smallPrime = createPrimes(biggerThan,1) bigPrime = createPrimes(10**10,1) num = int(smallPrime[0]*bigPrime[0]) start_time = time.time() lenP = len(str(smallPrime[0])) t = primeFactorList(num) print(f"It took {round(time.time() - start_time,2)} seconds to find the prime factors. The smallest prime factor is {lenP} digits long.") #print(f"The prime numbers greater than {len(str(biggerThan))-1} digit long are {s}. Time taken is {round(time.time() - start_time,2)} seconds")
194cd1716c79d967d656779d7698e4be6982a7ed
CRHS-Winter-2021/project---tic-tac-toe-TylerKennedy1660
/main.py
2,740
3.703125
4
# Tic Tak Toe # Tyler Kennedy # Feb 17th 2021 import sys #constants turn = 0 stop = 0 X_O_pos = [] def print_board(): the_board = (' | | \n '+ X_O_pos[7] + ' | '+ X_O_pos[8] + ' | '+ X_O_pos[9] + ' \n_____|_____|_____\n | | \n '+ X_O_pos[4] + ' | '+ X_O_pos[5] + ' | '+ X_O_pos[6] + ' \n_____|_____|_____\n | | \n '+ X_O_pos[1] + ' | '+ X_O_pos[2] + ' | '+ X_O_pos[3] + ' \n | | \n') print(the_board) def check_win(): if X_O_pos[1] == 'X' and X_O_pos[2] == 'X' and X_O_pos[3] == 'X' or X_O_pos[4] == 'X' and X_O_pos[5] == 'X' and X_O_pos[6] == 'X' or X_O_pos[7] == 'X' and X_O_pos[8] == 'X' and X_O_pos[9] == 'X' or X_O_pos[7] == 'X' and X_O_pos[4] == 'X' and X_O_pos[1] == 'X' or X_O_pos[8] == 'X' and X_O_pos[5] == 'X' and X_O_pos[2] == 'X' or X_O_pos[9] == 'X' and X_O_pos[6] == 'X' and X_O_pos[3] == 'X' or X_O_pos[7] == 'X' and X_O_pos[5] == 'X' and X_O_pos[3] == 'X' or X_O_pos[9] == 'X' and X_O_pos[5] == 'X' and X_O_pos[1] == 'X': print('X Wins!') sys.exit() if X_O_pos[1] == 'O' and X_O_pos[2] == 'O' and X_O_pos[3] == 'O' or X_O_pos[4] == 'O' and X_O_pos[5] == 'O' and X_O_pos[6] == 'O' or X_O_pos[7] == 'O' and X_O_pos[8] == 'O' and X_O_pos[9] == 'O' or X_O_pos[7] == 'O' and X_O_pos[4] == 'O' and X_O_pos[1] == 'O' or X_O_pos[8] == 'O' and X_O_pos[5] == 'O' and X_O_pos[2] == 'O' or X_O_pos[9] == 'O' and X_O_pos[6] == 'O' and X_O_pos[3] == 'o' or X_O_pos[7] == 'O' and X_O_pos[5] == 'O' and X_O_pos[3] == 'O' or X_O_pos[9] == 'O' and X_O_pos[5] == 'O' and X_O_pos[1] == 'O': print('O Wins!') sys.exit() def check_draw(): if X_O_pos.count(' ') == 0: stop = 1 print('Draw!') sys.exit() def play(): global turn while stop == 0: if turn % 2 == 0: x_o = 'X' print("X's Turn") else: x_o = 'O' print("O's Turn") move = input('Where would you like to play ') while move not in ['1','2','3','4','5','6','7','8','9'] or X_O_pos[int(move)] != ' ': print('Invalid move') move = input('Where would you like to play ') X_O_pos[int(move)] = x_o print_board() check_win() check_draw() turn +=1 def setup(): global X_O_pos global turn print("Welcome to Tyler's Tic Tac Toe\nThe spaces are related to the numbers on the number pad") first_move = input("Player 1 would you like to be:\nX (1)\nO (2)\n") while first_move != '1' and first_move != '2': print('You must pick 1 or 2') first_move = input("Player 1 would you like to be:\nX (1)\nO (2)\n") if first_move == '2': turn += 1 X_O_pos = ['not a space',' ',' ',' ',' ',' ',' ',' ',' ',' '] setup() print_board() play()
4708f35ef7dd0de9f716643970b0f242e17cd736
aderas2/Zuri
/OOP deep dive.py
2,406
4.0625
4
class Animal: animal_type = 'Mammal' counter = 0 def __init__(self,name,number_of_legs): self.name=name self.number_of_legs =number_of_legs Animal.counter +=1 def can_run(self): print('Animal %s runs with %s' %(self.name,self.number_of_legs)) @classmethod #class mwthod comes with all the declarations def can_see(cls): print('Animal can see') @staticmethod def tail_wiggle(): print('Animal can wiggle it"s tail') animal_1 = Animal('rat', 4) animal_2 = Animal('cat', 4) animal_1.can_run() animal_2.can_run() print('='*40) print(animal_1.animal_type) print(animal_2.animal_type) print('='*60) animal_1.can_see() animal_2.can_see() print(Animal.counter) #types of method in classes: instance method, class method and static method print('\n') #inheritance and composition # 1. Inheritance is a relationship #class BaseClass: #class SubClass(BaseClass): print('='*60) class food: def solid_food(self): return 'hard foods' class water(food): pass food_1 = water().solid_food() print(food_1) print('\n') print('\n') print('='*60) class CustomException(Exception): pass #raise CustomException('An error occurred') class ValueTooSmallException(CustomException): pass class ValueTooBigException(CustomException): pass number_value = 20 while True: try: input_number = int(input('Enter a number \n')) if input_number < number_value: raise ValueTooSmallException elif input_number > number_value: raise ValueTooBigException break except ValueTooSmallException as _: print('Value too small') except ValueTooBigException as _: print('Value too big') except Exception as _: print(_.__str__()) print('Hey you got it correctly') print('='*60) print('\n') #2. Composition shows has a relationship class Employee: def __init__(self,name,department,salary): self.name = name self.department = department self.salary = salary def check_salary(self): return self.salary.check_salary() class Salary: def __init__(self,amount,bonus): self.amount = amount self.bonus = bonus def check_salary(self): return ('Marketer"s salary is %d+ (%d*%d) with bonus of %d' %(self.amount,self.amount,self.bonus,self.bonus) ) marketer_salary = Salary(400000,5) marketer_employee = Employee("Jones",'MArketing',marketer_salary) print(marketer_employee.check_salary())
822880148669ac16f0428a0ce163ed646a46cc4a
prabhurd/DataScientistPython
/exerciseleetcodeArraysStrings.py
2,244
3.625
4
from typing import List class Solution: def moveZerosToBack(self, nums:List[int]) -> None: print("moveZerosToBack") print(nums) j = 0 for num in nums: if num != 0: nums[j] = num j = j+1 else: for c_index in range(j,len(nums)): nums[c_index] = 0 print(nums) # Time Complexity: O(2n) => O(n) [Linear algorithm] # Space Complexity: 0(1) def moveZerosToFront(self, nums: List[int]) -> None: print("moveZerosToFront") print(nums) j = len(nums)-1 for c_index in range(len(nums)-1,-1,-1): if nums[c_index] != 0: nums[j] = nums[c_index] j= j-1 else: for c_index in range(j+1): nums[c_index] = 0 print(nums) # Time Complexity: O(2n) => O(n) [Linear algorithm] # Space Complexity: 0(1) def boats_to_save_people(self,persons_weight:List[int],max_weight:int): persons_weight.sort(); print(persons_weight) left = 0; right = len(persons_weight)-1 no_of_boats = 0 while(left <= right): if left == right: no_of_boats = no_of_boats + 1 break; elif persons_weight[left] + persons_weight[right] <= max_weight: left = left+1 no_of_boats = no_of_boats+1 right = right-1 print(no_of_boats) # Time Complexity: O(nlog(n)) - because of Sorting Algorithm # Space Complexity: 0(n) def valid_mountain_array(self,nums:List[int]): j = 1 while j < len(nums) and nums[j] > nums[j-1]: j += 1 if j == 1 or j == len(nums): return False while j < len(nums) and nums[j] < nums[j-1]: j += 1 return j == len(nums) # Time Complexity: O(N) # Space Complexity: O(1) solution = Solution() nums = [1,2,3,4,0,0,5,4,0,4,6] persons_weight = [2,2,1,1,1,1,1,1,3] # solution.moveZerosToBack(nums) # solution.moveZerosToFront(nums) # solution.boats_to_save_people(persons_weight,3) print(solution.valid_mountain_array([0,2,3,4,5,2,1]))
669e61e7b45996d477f77dc8413ca545a0b926f1
Wyqq-kerio/Lab2
/lab2/fun3.py
903
3.953125
4
import string import os import re # Count the number of "if else" structures def count_if_else(lines): # Number of structures if_else_num = [] if_else_total=0 for line in lines: line1=line.strip().split('\n') # Convert the list to a string line2=''.join(line1) # remove "else if" interference if line2.find("else if")!=-1: if_else_num.append('0') # mark "if" and "else" with '1' and '2' respectively elif line2.find("if")!=-1: if_else_num.append('1') elif line2.find("else")!=-1: if_else_num.append('2') else: continue for i in range(len(if_else_num)): if if_else_num[i]=='1' and if_else_num[i+1]=='2': if_else_total+=1 print("\nif-else num: ",if_else_total) return if_else_total
5ac8c4d1a16c14a2ed34e072f71e57c33a3de963
Jayshri-Rathod/loop
/sum.py
319
3.890625
4
# counter = 0 # while counter < 5: # print ("NavGurukul") # counter = counter + 1 # print ("one time print" ) # number=0 # sum=0 # while number <= 10: # sum=sum+number # number=number+1 # print(sum) # num=10 # sum=0 # while num>=0: # sum=sum+num # num=num-1 # print(sum)
d24fa0880322cfab9bd4c687a8f3e092dbcdc6af
Ca11me1ce/PSU-CMPSC122-LAB
/LAB8.py
2,242
3.65625
4
class Node: def __init__(self, value): self.value = value self.next = None def __str__(self): return "Node({})".format(self.value) __repr__ = __str__ class OrderedLinkedList: def __init__(self): self.head=None self.tail=None def __str__(self): temp=self.head out='' while temp: out+=str(temp.value)+ ' ' temp=temp.next return ('Head:{}\nTail:{}\nList:{}'.format(self.head,self.tail,out)) __repr__=__str__ def add(self, value): tmp=None if isinstance(value, Node):tmp=value else:tmp=Node(value) if not self.head:self.head=tmp else: node=self.head while node.next:node=node.next node.next=tmp if self.head is None:return curr=self.head.next while curr!=None: curr_next, ptr=curr.value, self.head while ptr!=curr and ptr.value<=curr_next:ptr=ptr.next while ptr!=curr: curr_next,ptr.value=ptr.value,curr_next ptr=ptr.next curr.value=curr_next curr=curr.next self.tail=tmp def pop(self): if self.head==None:return 'List is empty' tmp=self.head if tmp.next==None: n=tmp.value self.head,self.tail=None return n while tmp.next.next!=None: tmp=tmp.next self.tail=tmp n=tmp.next.value tmp.next=None return n def isEmpty(self): return (self.head==None) def size(self): if self.head==None:return 0 count, curr=1, self.head while curr!=self.tail: count+=1 curr=curr.next return count ############################# # # # test cases, do not copy # # # ############################# x=OrderedLinkedList() print(x.size()) print(x.isEmpty()) print(x.pop()) #x.isEmpty() x.add(7) x.add(-11) x.add(9) x.add(1) x.add(-1000) print(x) print(x.isEmpty()) print(x.size())
1bc83d914187103ec00d3e15a9e1113fd91ddc64
xuyanlinux/code
/module04/chapter01/09线程的互斥锁.py
789
3.515625
4
#Author:Timmy from threading import Thread import time n = 100 def task(): global n num = n time.sleep(0.1) n = num - 1 if __name__ == '__main__': t_l = [] for i in range(100): t = Thread(target=task) t_l.append(t) t.start() print(len(t_l)) for t in t_l: t.join() print('主',n) # from threading import Thread,Lock # import time # # n = 100 # def task(lock): # global n # lock.acquire() # num = n # time.sleep(0.1) # n = num - 1 # lock.release() # # if __name__ == '__main__': # lock = Lock() # t_l = [] # for i in range(100): # t = Thread(target=task,args=(lock,)) # t_l.append(t) # t.start() # # for t in t_l: # t.join() # print('主',n)
8d52912d9fe99cf044f9e24063faaa284f34d7d1
alanaalfeche/ml-sandbox
/kaggle/data_cleaning/scaling_and_normalization.py
2,995
3.78125
4
# # Get our environment set up # To practice scaling and normalization, we're going to use a [dataset of Kickstarter campaigns](https://www.kaggle.com/kemical/kickstarter-projects). import pandas as pd import numpy as np # for Box-Cox Transformation from scipy import stats # for min_max scaling from mlxtend.preprocessing import minmax_scaling # plotting modules import seaborn as sns import matplotlib.pyplot as plt # read in all our data kickstarters_2017 = pd.read_csv("../input/kickstarter-projects/ks-projects-201801.csv") np.random.seed(0) # # 1) Scaling - Change the range of data so that it fits within a specific scale e.g. 0-100, 0-1 # Let's start by scaling the goals of each campaign, which is how much money they were asking for. # select the usd_goal_real column original_data = pd.DataFrame(kickstarters_2017.usd_goal_real) # scale the goals from 0 to 1 scaled_data = minmax_scaling(original_data, columns=['usd_goal_real']) # plot the original & scaled data together to compare fig, ax=plt.subplots(1,2,figsize=(15,3)) sns.distplot(kickstarters_2017.usd_goal_real, ax=ax[0]) ax[0].set_title("Original Data") sns.distplot(scaled_data, ax=ax[1]) ax[1].set_title("Scaled data") # After scaling, all values lie between 0 and 1 (you can read this in the horizontal axis of the second plot above, and we verify in the code cell below). print('Original data\nPreview:\n', original_data.head()) print('Minimum value:', float(original_data.min()), '\nMaximum value:', float(original_data.max())) print('_'*30) print('\nScaled data\nPreview:\n', scaled_data.head()) print('Minimum value:', float(scaled_data.min()), '\nMaximum value:', float(scaled_data.max())) # # 2) Normalization - Change the shape of the distribution of your data to be more like of a normal 'gaussian' distribution # Now you'll practice normalization. We begin by normalizing the amount of money pledged to each campaign. # get the index of all positive pledges (Box-Cox only takes positive values) index_of_positive_pledges = kickstarters_2017.usd_pledged_real > 0 # get only positive pledges (using their indexes) positive_pledges = kickstarters_2017.usd_pledged_real.loc[index_of_positive_pledges] # normalize the pledges (w/ Box-Cox) normalized_pledges = pd.Series(stats.boxcox(positive_pledges)[0], name='usd_pledged_real', index=positive_pledges.index) # plot both together to compare fig, ax=plt.subplots(1,2,figsize=(15,3)) sns.distplot(positive_pledges, ax=ax[0]) ax[0].set_title("Original Data") sns.distplot(normalized_pledges, ax=ax[1]) ax[1].set_title("Normalized data") print('Original data\nPreview:\n', positive_pledges.head()) print('Minimum value:', float(positive_pledges.min()), '\nMaximum value:', float(positive_pledges.max())) print('_'*30) print('\nNormalized data\nPreview:\n', normalized_pledges.head()) print('Minimum value:', float(normalized_pledges.min()), '\nMaximum value:', float(normalized_pledges.max()))
0453665d8a19a952cc781c8bbdfbc3b621236cb6
InimigoMortal/Casino
/Casino2.py
3,201
3.640625
4
import tkinter as tk from random import * class App(tk.Tk): def __init__(self): tk.Tk.__init__(self) self.msg = tk.Label(self,text="Quantidade de dinheiro apostado:") self.msg.pack() self.en = tk.Entry(self) self.en.pack() self.banco = float(500) self.valban = tk.Label(self,text="Saldo: " + str(self.banco), bg = "green") self.valban.pack() self.lb = tk.Label(self,text="O dado vai cair em um valor maior ou menor que 3?") self.lb2 = tk.Label(self,text="") self.bmaior = tk.Button(self,text = "Maior", command = self.jogaDadoMaior) self.bmenor = tk.Button(self,text = "Menor", command = self.jogaDadoMenor) self.lb.pack() self.bmaior.pack() self.bmenor.pack() self.lb2.pack() def jogaDadoMaior(self): self.valorap = self.en.get() if float(self.valorap) > self.banco: if self.banco == 0: self.gameOver() else: self.lb2['text'] = "Aposta maior do que Saldo!" else: self.numero = randint(1,6) if self.numero > 3: self.lb2['text'] = "Caiu: " + str(self.numero) + "\n Você Ganhou!" self.banco += float(self.valorap)*2 self.valban['text'] = str(self.banco) if self.numero < 3 : self.lb2['text'] = "Caiu: " + str(self.numero) + "\n Você Perdeu!" self.banco -= float(self.valorap) self.valban['text'] = str(self.banco) if self.numero == 3: self.lb2['text'] = "Caiu: " + str(self.numero) + "\n Empate!" def jogaDadoMenor(self): self.valorap = self.en.get() if float(self.valorap) > self.banco: if self.banco == 0: self.gameOver() else: self.lb2['text'] = "Aposta maior do que Saldo!" else: self.numero = randint(1,6) if self.numero < 3: self.lb2['text'] = "Caiu: " + str(self.numero) + "\n Você Ganhou!" self.banco += float(self.valorap)*2 self.valban['text'] = str(self.banco) if self.numero > 3: self.lb2['text'] = "Caiu: " + str(self.numero) + "\n Você Perdeu!" self.banco -= float(self.valorap) self.valban['text'] = str(self.banco) if self.numero == 3: self.lb2['text'] = "Caiu: " + str(self.numero) + "\n Empate!" def gameOver(self): self.msg.pack_forget() self.lb.pack_forget() self.en.pack_forget() self.valban.pack_forget() self.lb.pack_forget() self.bmaior.pack_forget() self.bmenor.pack_forget() self.lb2['text'] = "Você perdeu todo o seu dinheiro e foi expulso do Casino!" casino2 = App() casino2.geometry("350x200") casino2.title("Casino") casino2.mainloop()
b44b7669d5697f2dda9fa909ba4104929aeff70d
liliancor/cursoemvideo
/desafio08.1aula07.py
159
3.734375
4
m = float(input('metragem: ')) print('O valor de {}m corresponde a {}km, {}hm, {}dam, {}dm, {}cm e {}mm.'.format(m, m/1000, m/100, m/10, m*10, m*100, m*1000))
dfa5055c60f77e2d511af6da21e4ed07ae48bfd5
xxw1122/Leetcode
/Python/Linked-List-Cycle-II.py
621
3.65625
4
#!/usr/bin/env python class ListNode: def __init__(self, x): self.val = x self.next = None # @param head, a ListNode # @return a list node def detectCycle(self, head): if head == None: return None node1 = head node2 = head while node1 != None: node2 = node2.next node1 = node1.next if node1 == None: return None node1 = node1.next if node2 == node1: break if node1 == None: return None node2 = head while node2 != node1: node1 = node1.next node2 = node2.next return node2
0cb61163cd2888fa76f8fb2c4671da98b85f89cc
yubanUpreti/IWAcademy_PythonAssignment
/Python Assignment/Data Types/question29.py
173
3.6875
4
dic1={1:10, 2:20} dic2={3:30, 4:40} dic3={5:50,6:60} for key,value in dic2.items(): dic1[key]=value for key,value in dic3.items(): dic1[key]=value print(dic1)
0b0e7597bc21a71b267b2426225bd341cf6fc35f
Kayransteelink/F1M1PYT
/ditbenik3.py
533
3.953125
4
import datetime print('hallo!') print('ik ben kayran') naam = input('') print(f"hallo {naam}") print(f"datum en tijd is {datetime.datetime.today()}") print(f"{naam} wil jij dit programma nog een keer doen?\nType Y/N") option = input ('') if option.lower() == 'yes': print("wil je hem im stukjes?") else: print("fout") if option.lower() == 'ja': print("zit je in klas sd1d?") else: print("fout") if option.lower() == 'y': print("ben ik een mens?") else: print("fout")
afcc520df8830d7804404e90fe4a34540d6d5dcc
VenkataChadalawada/Machine-Learning
/Apriori_Python/apriori_mine.py
1,488
3.78125
4
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Oct 7 17:39:50 2018 @author: vchadalawada """ # we are going to use apyori.py in the same directory which we got from python community import numpy as np import matplotlib.pyplot as plt import pandas as pd #importing the dataset dataset = pd.read_csv('Market_Basket_Optimisation.csv', header = None) #header none as by default pandas makes first line as header but here we dont have any header in data file #apriori expection a list of lists eg - a list of transaction lists #transform the dataset transactions = [] # we need to travers all the rows for i in range(0, 7501): transactions.append([str(dataset.values[i, j]) for j in range(0, 20)]) #training Apriori on the dataset from apyori import apriori rules = apriori(transactions, min_support=0.003, min_confidence=0.2, min_lift = 3, min_length=2) #min_length helps to tell algorithm that it should take minimum 2 transactions in basket to be considered # how to compute support , confidence, lift? # let say you wanna fix with an idea that if an apple purchased 3 times a day which is 7*3 = 21 times a week # now support would be on our weekly data set = 21/7500 = 0.0028 =~0.003 # similarly 0.2 is a good confidence percentage #Visualising the results results = list(rules) results_list = [] for i in range(0, len(results)): results_list.append('RULE:\t' + str(results[i][0]) + '\nSUPPORT:\t' + str(results[i][1])) # these rules are sorted
9726c0156515cc567a57aa75647ed990f339bb09
rbangamm/algos
/dcp254.py
1,068
3.90625
4
def prune(node): if node.left is None and node.right is None: return node if node.left is not None and node.right is not None: node.left = prune(node.left) node.right = prune(node.right) return node if node.right is None: return prune(node.left) if node.left is None: return prune(node.right) class Node(): def __init__(self, val, left, right): self.val = val self.left = left self.right = right def in_order(node): if node is None: return in_order(node.left) print(node.val) in_order(node.right) return n = Node(0, Node(1, Node(3, None, Node(5, None, None)), None), Node(2, None, Node(4, Node(6, None, None), Node(7, None, None)))) in_order(n) print("\n") n = prune(n) in_order(n)
36f3f34cb2a65f30750fe0cc99eec96e975f57f4
amandabrosseau/planets
/planets.py
1,156
4.125
4
#!/usr/bin/env python3 worlds = { "mercury" : "burning", "venus" : "greenhousy", "earth" : "comfy", "mars" : "ruddy", "jupiter" : "biggly", "saturn" : "ringy", "neptune" : "bluey", "uranus" : "buttly", "pluto" : "NOT A PLANET", } def solar_sys_info(): """ Instructional function that takes input from the user and prints information to the screen about the corresponding planet. Args: none Returns: none """ print("\nHello, it is time to learn about the planets!") while True : planet = input("What planet would you like to learn about?\n Enter Q to quit\n").lower() if planet == "q" : print("No more learning today...") break else : try : print("The planet {0}, is {1}!\n".format(planet, worlds[planet])) except KeyError : print("This isn't grade school, I know that's not a planet!\n") except : print("No idea what went wrong here...") if __name__ == '__main__': solar_sys_info()
9843995d491549aaf05cbc767d4616aea48b05eb
brynelee/gk_dataanalysis_practices
/dataminingDemo1/xdtools.py
214
3.5
4
def print_line(char,times): print(char * times) def print_one_line(): print_line('*', 50) def print_lines(): row = 0 while row < 5: print_line("*",50) row += 1 print_lines()
f8316ffaf8958285dbdbcce324f6e9a6b4b539cb
dylanplayer/ACS-1100
/lesson-8/example-1.py
669
4.125
4
''' Let's practice using .read()! .read() reads the entire file. If want it to read a number of characters, pass the number (int) between the parentheses. ''' # STEP 1: Store file name in a variable input_file_name = 'languages.txt' # STEP 2: Open the file in read mode ('r') infile = open(input_file_name, "r") # STEP 3: # Example: Using .read() read the first 100 characters of the file and print results read_data = infile.read(5) # Read a number of characters print(read_data) entire_file = infile.read(3) # Remove the number to read the entire file print(entire_file) # STEP 4: Close the file (We will learn about this the next few slides!) infile.close()
4b36dbeec9ce211536bc602a56613b0b7402a7ad
nicoglennon/project-euler
/problem-1.py
367
4.0625
4
# Problem 1: Multiples of 3 and 5 # If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. # Find the sum of all the multiples of 3 or 5 below 1000. # my solution: i = 1 sum = 0 while i < 1000: if (i % 3 == 0) or (i % 5 == 0): sum = sum + i i = i + 1 print(sum) # 233168
b032b929a6b2b37e6c254dad6db7665980b11c5f
hlissner/practice
/codeeval/hard/014stringpermutations/solution.py
459
3.71875
4
#!/usr/bin/env python from sys import argv def permutations(word): if len(word) == 1: return [word] first = word[0] perms = permutations(word[1:]) result = [] for perm in perms: for i in range(len(perm)+1): result.append(perm[:i] + first + perm[i:]) return result for line in open(argv[1], 'r'): line = line.strip() if line == "": continue print(",".join(sorted(permutations(line))))
21c0978fc961abe52c49ac489715a591a0259427
wsims/CS434
/src/assignment_3/mlp_relu.py
2,987
4.09375
4
"""Use this to complete part 2 Usage: $ python mlp_relu.py Trains a three layer neural network using the relu function as the activation function. Trains on four different learning rates (0.1, 0.01, 0.001, 0.0001) and plots the results. Finally, performs a classifier test on the testing data set from CIFAR10 and prints the results. """ import mlp #import matplotlib.pyplot as plt EPOCHS = 100 if __name__ == '__main__': train_loader = mlp.get_cifar10_data(train=True) validation_loader = mlp.get_cifar10_data(train=False) test_loader = mlp.get_cifar10_test_data() # training and validation train_loss1, accv1, model1 = mlp.relu_NN_train_and_val(train_loader, validation_loader, lr=0.1, epochs=EPOCHS) train_loss2, accv2, model2 = mlp.relu_NN_train_and_val(train_loader, validation_loader, lr=0.01, epochs=EPOCHS) train_loss3, accv3, model3 = mlp.relu_NN_train_and_val(train_loader, validation_loader, lr=0.001, epochs=EPOCHS) train_loss4, accv4, model4 = mlp.relu_NN_train_and_val(train_loader, validation_loader, lr=0.0001, epochs=EPOCHS) epochs = range(1, EPOCHS + 1) # Training loss plot #plt.figure(1) #plt.plot(epochs, train_loss1, '-b', label='lr=0.1') #plt.plot(epochs, train_loss2, '-r', label='lr=0.01') #plt.plot(epochs, train_loss3, '-g', label='lr=0.001') #plt.plot(epochs, train_loss4, '-p', label='lr=0.0001') #plt.legend(loc='lower right') #plt.xlabel('Number of epochs') #plt.ylabel('Average loss') #plt.title('Negative Log Loss on Training Data as a Function of Epochs') #plt.savefig("relu_training_loss.png") #print 'Plot saved as "relu_training_loss.png"' # Validation accuracy plot #plt.figure(2) #plt.plot(epochs, accv1, '-b', label='lr=0.1') #plt.plot(epochs, accv2, '-r', label='lr=0.01') #plt.plot(epochs, accv3, '-g', label='lr=0.001') #plt.plot(epochs, accv4, '-p', label='lr=0.0001') #plt.legend(loc='lower right') #plt.xlabel('Number of epochs') #plt.ylabel('Accuracy') #plt.title('Classifier Accuracy on Validation Data as a Function of Epochs') #plt.savefig("relu_accuracy.png") #print 'Plot saved as "relu_accuracy.png"' # Determine which model is best and then perform validation on test data modelv = [model1, model2, model3, model4] model_accuracy = [accv1[EPOCHS-1], accv2[EPOCHS-1], accv3[EPOCHS-1], accv4[EPOCHS-1]] model_index = model_accuracy.index(max(model_accuracy)) best_model = modelv[model_index] print("\nBest model -- Learning rate of %f" % (10**(-1*(model_index + 1)))) print("Results of validation on testing set:") lossv, accv = [], [] mlp.validate(lossv, accv, best_model, test_loader)
70b8cc0039e61655f3b38eb26a141e7b359f7c79
rudzy123-zz/Py2
/A11.py
2,314
4
4
#Rudolf Musika #CIS 1400 #Chapter 11 Assignment ConstantMealPlan1 = 560.00 ConstantMealPlan2 = 900.00 ConstantMealPlan3 = 1300.00 def main(): while True: displayMenu() if menuSelectedNumber ==1: calcNumberOfSemesterTot() if menuSelectedNumber ==2: calcNumberOfSemesterTot() if menuSelectedNumber==3: calcNumberOfSemesterTot() if menuSelectedNumber ==4: print("Goodbye!") break; # displayMenu Calls the menu on which the user will read the instructions def displayMenu(): print('COLLEGE OF DUPAGE MENU PLAN OPTIONS') print('1. One-Meal-A-Day Plan -7 meals per week for $560.00 ') print('2. Two-Meal-A-Day -14 meals per week for $900.00') print('3. Unlimited-Meals-A-Day Plan - $1300.00') print('4. END THE PROGRAM') global menuSelectedNumber menuSelectedNumber = int(input("Enter Your Selection: ")) # Input Validation loop while menuSelectedNumber <1 or menuSelectedNumber > 4: print ("That is an invalid selection") menuSelectedNumber = int(input("Enter 1,2, 3 or 4: ")) #calcNumberOfSemesterTot is the module that calculates the total price for the semesters also as specified by user def calcNumberOfSemesterTot(): semesterCount = float(input("Enter the number of semesters -1 or 2: ")) # Input Validation loop while semesterCount<1 or semesterCount>2: print("It is up to only 2 semesters per year, so please enter either 1 or 2, ") semesterCount = float(input("Enter the number of semesters -1 or 2: ")) while True: if menuSelectedNumber == 1: totalPrice = semesterCount*ConstantMealPlan1 print("The total price of one meal a day for "+str(semesterCount)+"semesters is $ ",format(totalPrice,".0f"),"\n") if menuSelectedNumber == 2: totalPrice = semesterCount*ConstantMealPlan2 print("The total price of two meals a day for "+str(semesterCount)+"semesters is $ ",format(totalPrice,".0f"),"\n") if menuSelectedNumber == 3: totalPrice = semesterCount*ConstantMealPlan3 print("Unlimited total price for "+str(semesterCount)+"semesters is $ ",format(totalPrice,".0f"),"\n") break; main()
c2357a66972665c4c40431bbd189bf150a811c62
cbass2404/bottega_homework
/day08/string_index.py
170
3.953125
4
sentence = 'The quick brown fox jumps over the lazy dog' # sentence = 'T' if len(sentence) < 2: print('Empty String') else: print(sentence[0:2] + sentence[-2:])
16c3986a4505e8b657f12b80991c3317e79906fb
UnixLoverSaurabh/AssistantYui
/tasks/2048/2048.py
4,349
3.859375
4
import random import single_input class Board(object): def __init__(self, size): self.size = size self.board = [[0] * self.size for i in range (self.size)] self.empty_cell = [] def update_empty_cell(self): self.empty_cell[:] = [] for i in range (self.size): for j in range (self.size): if self.board[i][j] == 0: self.empty_cell.append((i, j)) return len(self.empty_cell) def generate_random(self): if self.update_empty_cell(): random.seed(None) index = random.randrange(len(self.empty_cell)) value = random.randrange(1, 3) * 2 x, y = self.empty_cell[index] self.board[x][y] = value return True return False def print_board(self): for row in range (self.size): for col in range(self.size): print self.board[row][col], print print class Game(object): def __init__(self, name, board): self.score = 0 self.name = name self.board = board self.size = self.board.size def handle_up_util(self): for col in range (self.size): for row in range(self.size): temp = row while (self.board.board[temp][col] != 0) and \ (temp - 1 >= 0) and (self.board.board[temp - 1][col] == 0): self.board.board[temp - 1][col] = self.board.board[temp][col] self.board.board[temp][col] = 0 temp -= 1 def handle_up(self): self.handle_up_util() for col in range (self.size): for row in range(self.size): if (self.board.board[row][col] != 0) and \ (row - 1 >= 0) and (self.board.board[row][col] ==\ self.board.board[row - 1][col]): self.board.board[row - 1][col] *= 2 self.board.board[row][col] = 0 self.handle_up_util() def handle_left_util(self): for row in range (self.size): for col in range(self.size): temp = col while (self.board.board[row][temp] != 0) and \ (temp - 1 >= 0) and (self.board.board[row][temp - 1] == 0): self.board.board[row][temp - 1] = self.board.board[row][temp] self.board.board[row][temp] = 0 temp -= 1 def handle_left(self): self.handle_left_util() for row in range (self.size): for col in range(self.size): if (self.board.board[row][col] != 0) and \ (col - 1 >= 0) and (self.board.board[row][col] ==\ self.board.board[row][col - 1]): self.board.board[row][col - 1] *= 2 self.board.board[row][col] = 0 self.handle_left_util() def handle_down_util(self): for col in range (self.size): for row in xrange(self.size - 1, -1, -1): temp = row while (self.board.board[temp][col] != 0) and \ (temp + 1 < self.size) and (self.board.board[temp + 1][col] == 0): self.board.board[temp + 1][col] = self.board.board[temp][col] self.board.board[temp][col] = 0 temp += 1 def handle_down(self): self.handle_down_util() for col in range (self.size): for row in xrange(self.size - 1, -1, -1): if (self.board.board[row][col] != 0) and \ (row + 1 < self.size) and (self.board.board[row][col] ==\ self.board.board[row + 1][col]): self.board.board[row + 1][col] *= 2 self.board.board[row][col] = 0 self.handle_down_util() def handle_right_util(self): for row in range (self.size): for col in xrange(self.size - 1, -1, -1): temp = col while (self.board.board[row][temp] != 0) and \ (temp + 1 < self.size) and (self.board.board[row][temp + 1] == 0): self.board.board[row][temp + 1] = self.board.board[row][temp] self.board.board[row][temp] = 0 temp += 1 def handle_right(self): self.handle_right_util() for row in range (self.size): for col in xrange(self.size - 1, -1, -1): if (self.board.board[row][col] != 0) and \ (col + 1 < self.size) and (self.board.board[row][col] ==\ self.board.board[row][col + 1]): self.board.board[row][col + 1] *= 2 self.board.board[row][col] = 0 self.handle_right_util() def handle_move(self, move): if move == 'w': self.handle_up() elif move == 'a': self.handle_left() elif move == 's': self.handle_down() elif move == 'd': self.handle_right() elif move == 'q': exit(0) else: print "Invalid move! Try again" def play(self): while self.board.generate_random(): self.board.print_board() self.handle_move(single_input.getch()) print "Game Over" board = Board(4) game = Game("Prakhar", board) game.play()
99fd98d9c1165ebec531b144afedb9942a5502be
MSDubey25/Python-Programs
/Python_Progs/DictionaryPython.py
842
4.21875
4
print("Accessing elements from a Dictionary") dict1={1:1,2:2,3:3} print(dict1) print(dict1[1]) print(dict1.get(6)) print("adding a value") dict1[4]="Namaste" print(dict1) print("creating dictionary of squares") squares={1:1,2:4,3:9,4:16,5:25} print(squares) print("removing a particular item :25") print(squares.pop(5)) print(squares) print("removing arbitary item") print(squares.popitem()) print(squares) del squares print("creating a new dictionary using comprehension") squares={x:x*x for x in range (7)} print(squares) print("There is a membership test but they are only for keys not values") print("iterating through a dictionary using- for") for i in squares: print(squares[i]) print("built in functions") print("len() and sorted") print(len(squares)) print("sorted() will sort the keys in order") print(sorted(squares))
81447881ee0e3dd76ed4e5efd2369a7a735efab5
akshatakulkarni98/ProblemSolving
/DataStructures/stacks/remove_adjacent_dups.py
625
3.59375
4
# https://leetcode.com/problems/remove-all-adjacent-duplicates-in-string #TC:O(N) #SC:O(N-D)D=duplicates class Solution: def stack_helper(self, S): stack=list() for i in range(len(S)): ch=S[i] if not stack: stack.append(ch) else: if ch==stack[-1]: stack.pop() else: stack.append(ch) return ''.join(stack) def removeDuplicates(self, S: str) -> str: if not S: return S return self.stack_helper(S)
2357cd42f5eacbc449c3410adb17b18016167afa
kriti-ixix/ml830
/python/dictionary hw.py
452
3.921875
4
students = [] keys = ['Name', 'Roll No', 'Marks', 'Percentage'] for i in range(3): studentDict = {} for key in keys: if key == 'Name': studentDict[key] = input("Enter your " + key + ": ") elif key == 'Percentage': studentDict[key] = (studentDict['Marks'] * 100) / 50 else: studentDict[key] = int(input("Enter your " + key + ": ")) students.append(studentDict) print(students)
254977ce67f3fd6df19edc592334e5cf893c7015
jmorgancusick/micheals-project
/calculator.py
551
4.09375
4
print 'Welcome to my calculator!' x = raw_input('Enter your first number: ') y = raw_input('Enter your second number: ') operation = raw_input('Enter your operation (+-*/): ') answer = 0 if operation == '+': answer = float(x) + float(y) elif operation == '-': answer = float(x) - float(y) elif operation == '/': answer = float(x) / float(y) elif operation == '*': answer = float(x) * float(y) else: print "invalid operation" int_answer = answer - int(answer) if int_answer == 0: print int(answer) else: print float(answer)
0c5c6f5374ca68d35a13bac473ae09925eb17d5a
nguyentrantrung986/python
/pythonLearnToProgram/test_palindrome.py
1,910
3.734375
4
import unittest import palindrome_v3 class TestPalindrome(unittest.TestCase): def test_palindrome_1(self): """Test is_palindrome with an empty string ''""" actual = palindrome_v3.is_palindrome_v3('') expected = True self.assertEqual(actual,expected) def test_palindrome_2(self): """Test is_palindrome with a string of length 1""" actual = palindrome_v3.is_palindrome_v3('a') expected = True self.assertEqual(actual,expected) def test_palindrome_3(self): """Test is_palindrome_v3 with a string of length 2""" actual = palindrome_v3.is_palindrome_v3('ab') expected = False self.assertEqual(actual,expected) def test_palindrome_4(self): """Test is_palindrome_v3 with a string of length 2""" actual = palindrome_v3.is_palindrome_v3('11') expected = True self.assertEqual(actual,expected) def test_palindrome_5(self): """Test is_palindrome_v3 with a string of odd length > 2""" actual = palindrome_v3.is_palindrome_v3('ad1') expected = False self.assertEqual(actual,expected) def test_palindrome_6(self): """Test is_palindrome_v3 with a string of odd length > 2""" actual = palindrome_v3.is_palindrome_v3('racecar') expected = True self.assertEqual(actual,expected) def test_palindrome_7(self): """Test is_palindrome_v3 with a string of even length > 2""" actual = palindrome_v3.is_palindrome_v3('pendent') expected = False self.assertEqual(actual,expected) def test_palindrome_8(self): """Test is_palindrome_v3 with a string of even length > 2""" actual = palindrome_v3.is_palindrome_v3('HannaH') expected = True self.assertEqual(actual,expected) if __name__ == '__main__': unittest.main(exit=False)
4d4e8d75d7a21560c19ff350e441a2834c64871c
alinemitri/Python_para_zumbis
/Lista_II/L2E4.py
290
3.921875
4
n1 = float (input ('Digite o primeiro valor: ')) n2 = float (input ('Digite o segundo valor: ')) n3 = float (input ('Digite o terceiro valor: ')) if n1 > n2 and n1 > n3 : print ('%f é o maior' %n1) elif n2 > n3 : print ('%f é o maior' %n2) else : print ('%f é o maior' %n3)
40779b8cb5b68d58d1894cc85d1edfd97e661a68
jim1949/car_controller
/src/kalman_1D.py
2,415
3.921875
4
# Kalman filter example demo in Python # A Python implementation of the example given in pages 11-15 of "An # Introduction to the Kalman Filter" by Greg Welch and Gary Bishop, # University of North Carolina at Chapel Hill, Department of Computer # Science, TR 95-041, # http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html # by Andrew D. Straw import numpy as np import matplotlib.pyplot as plt pose = np.loadtxt("/Users/jj/car_controller_ws/src/car_controller/src/data/test2/people_position.dat") # N = 20 # true_x = np.linspace(0.0, 10.0, N) # true_y = true_x**3 # print(pose) # observed_x = true_x + 0.05*np.random.random(N)*true_x # observed_y = true_y + 0.05*np.random.random(N)*true_y true_x=[] true_y=[] observed_x=[] observed_y=[] for i in range(len(pose)): # print(i) true_x.append(pose[i-1][2]) true_y.append(pose[i-1][3]-5) observed_x.append(pose[i-1][0]) observed_y.append(pose[i-1][1]) plt.rcParams['figure.figsize'] = (10, 8) # intial parameters n_iter = len(true_x) sz = (n_iter,) # size of array x = np.array(true_x) # truth value (typo in example at top of p. 13 calls this z) z = observed_x # observations (normal about x, sigma=0.1) Q = 1e-5 # process variance # allocate space for arrays xhat=np.zeros(sz) # a posteri estimate of x P=np.zeros(sz) # a posteri error estimate xhatminus=np.zeros(sz) # a priori estimate of x Pminus=np.zeros(sz) # a priori error estimate K=np.zeros(sz) # gain or blending factor R = 0.1**2 # estimate of measurement variance, change to see effect # intial guesses xhat[0] = 0.0 P[0] = 1.0 for k in range(1,n_iter): # time update xhatminus[k] = xhat[k-1] Pminus[k] = P[k-1]+Q # measurement update K[k] = Pminus[k]/( Pminus[k]+R ) xhat[k] = xhatminus[k]+K[k]*(z[k]-xhatminus[k]) P[k] = (1-K[k])*Pminus[k] plt.figure() plt.plot(z,'k+',label='noisy measurements') plt.plot(xhat,'b-',label='a posteri estimate') plt.plot(x,color='g',label='truth value') plt.legend() plt.title('Estimate vs. iteration step', fontweight='bold') plt.xlabel('Iteration') plt.ylabel('x axis') plt.figure() valid_iter = range(1,n_iter) # Pminus not valid at step 0 plt.plot(valid_iter,Pminus[valid_iter],label='a priori error estimate') plt.title('Estimated $\it{\mathbf{a \ priori}}$ error vs. iteration step', fontweight='bold') plt.xlabel('Iteration') plt.ylabel('x axis') plt.setp(plt.gca(),'ylim',[0,.01]) plt.show()
aa98aab4fa9a956c0abc16bb4c7036dcaff7528d
caoxiang104/Practical_Python
/ins_sort.py
320
3.65625
4
# O(n^2) def ins_sort(seq): for i in range(1, len(seq)): j = i while j > 0 and seq[j] < seq[j - 1]: seq[j], seq[j - 1] = seq[j - 1], seq[j] j -= 1 def main(): seq = [1, 5, 3, 4, 6, 2] ins_sort(seq) print("".join(str(seq))) if __name__ == '__main__': main()
e212ea22916e688fde81bcdc65f16d7d3382d727
sbhavisha/As_Practical
/pra33.py
673
4.21875
4
#!/usr/bin/python ####### Code written by Shah Bhavisha ########## ####### This code is for comparing that the no is divisible by 2 and 3 ###### import sys import math def compare(): try: a = raw_input("Enter an number:") ####Taking An input#### n = int(a) print "Number:",n while n >=0: if n%2 == 0 and n%3 == 0: print "BOTH" break elif (n%2 == 0 and n%3 != 0) or (n%2 != 0 and n%3 == 0): print "ONE" break elif n%2 != 0 and n%3 !=0: print "NEITHER" break else: print "NONE" break print "Please enter positive number" except ValueError: print "Enter valid no" def main(): compare() if __name__ == '__main__': main()
9ec5a04acbbe7c60d00d927e90497f2be0e1187a
CynthiaYbz/coder-algorithm
/algorithm/strings/last_word_length.py
279
4.03125
4
def get_last_word_length(s: str) -> int: result = s.rstrip() return len(result.split(" ")[-1]) if __name__ == "__main__": print(get_last_word_length("hello world ")) print(get_last_word_length("hello world")) print(get_last_word_length(" hello world "))
b9dcb17056eb66317404d7b088bf27f2ed5ecaee
Riversubs/PythonElementaryCourses
/认识python/py_24迭代遍历.py
212
3.59375
4
name_list = ["czh","lhz","river","chenzhihe","subs"] """ 顺序的从列表中依次获取数据 每次获取的数据都将保存在my_name中 """ for my_name in name_list: print("我的名字叫%s" % my_name)
712e614caeb29f21b795ab8b61dc0867f610bd1f
Eric-J-G/Eric-J-G
/Chess Stuff.py
1,565
3.546875
4
#Permutations mapped to the board from itertools import permutations list = list(range(8)) perms = permutations(list) for perm in perms: print(perm) table = [[0]*8 for _ in range(8)] def print_table(): for row in range(8): print(table[row]) def put_queen(x,y): if table[y][x] == 0: for m in range(8): table[y][m] = 1 table[m][x] = 1 table[y][x] = 2 if y+m <= 7 and x+m <= 7: table[y+m][x+m] = 1 if y-m >= 0 and x+m <= 7: table[y-m][x+m] = 1 if y+m <= 7 and x-m >= 0: table[y+m][x-m] = 1 if y-m >= 0 and x-m >= 0: table[y-m][x-m] = 1 return True else: return False list = list(range(8)) perms = permutations(list) num_comb = 0 for perm in perms: if put_queen(perm[0], 0) == True: if put_queen(perm[1], 1) == True: if put_queen(perm[2], 2) == True: if put_queen(perm[3], 3) == True: if put_queen(perm[4], 4) == True: if put_queen(perm[5], 5) == True: if put_queen(perm[6], 6) == True: if put_queen(perm[7], 7) == True: print_table() num_comb += 1 print(f"solution{num_comb}") print(" ") table = [[0] * 8 for _ in range(8)]
4f6bc663340501d5742237bdf6e1d0d20cb2171c
lihongwen1/XB1929_-
/ch02/strtoint.py
251
3.640625
4
no1=input("請輸入甲班全班人數:") no2=input("請輸入乙班全班人數:") total1=no1+no2 print(type(total1)) print("兩班總人數為%s" %total1) total2=int(no1)+int(no2) print(type(total2)) print("兩班總人數為%d" %total2)
8f867909f42278e959735c0133059efc457923b9
x0215hui/learnpython
/openpyxlstudy.py
5,404
3.671875
4
''' 要使用Python对Excel表格进行读取,我们需要安装一个用于读取数据的工具 openpyxl 。openpyxl 是一个用于读、写Excel文件的开源模块。 安装openpyxl非常简单,在终端中输入代码:pip install openpyxl即可。 如果在自己电脑上安装不上或安装缓慢,可在命令后添加如下配置进行加速: pip install openpyxl -i https://pypi.tuna.tsinghua.edu.cn/simple/ ''' import openpyxl # 在安装和导入openpyxl之后,读取指定路径的工作簿需要使用函数:openpyxl.load_workbook()。 # 工作簿文件的路径需要作为函数参数传入。 wb = openpyxl.load_workbook("文件路径") # 得到了工作表名称后,我们可以通过在变量wb后添加中括号[ ]和工作表名称的方式来获得对应的工作表对象。 orderSheet = wb["工作表名称"] # 如果事先不知道工作簿内有哪些工作表,我们可以通过访问工作簿的 .sheetnames 属性来获取一个包含所有工作表名称的列表。 # 具体操作为在变量wb之后添加代码 .sheetnames 。 # print(wb.sheetnames) # 要获取工作表中指定的单元格对象,我们可以通过在中括号[ ]内填入列号和行号的方式去获取。 print(orderSheet["A1"]) # <Cell '工作表名称'.A1> # 输出单元格对象并没有输出单元格内的值。要访问单元格里的值,我们可以在单元格对象后加一个 .value 。 print(orderSheet["A1"].value) # 若单元格中包含公式,现有方式读取出的值是公式本身。若需要读取公式计算后的值,要在读取工作簿的代码部分,传入一个参数: data_only=True ,便可以得出公式计算后的值了。 wb = openpyxl.load_workbook("文件路径", data_only=True) print(orderSheet["A1"].value) # 要对整个工作表的每一行数据进行浏览查询,可以使用for循环对工作表对象的行属性(rows)进行遍历。具体代码为 for rowData in orderSheet.rows: # 这样程序就会以从上到下的顺序,逐个获取到指定工作表内的每一行数据。 # 可以从运行结果中看到,读取出的每一行数据是由单元格对象组成的元组。 for rowData in orderSheet.rows: print(rowData) # 行遍历的输出结果,是由单元格对象组成的元组。在元组中要定位到具体的列需要用索引。 productName = rowData[2].value print(productName) # 如果要定位的列数字比较大,比如在第I列,通过肉眼观察来确定索引略显繁琐。这时,可以使用函数:openpyxl.utils.cell.column_index_from_string(),来获取列号对应的数字,比如传入参数“E”就会获取到数字5,表示“E”列是第5列。这个数字减一即可得到对应的索引。 priceIndex = openpyxl.utils.cell.column_index_from_string("I") - 1 price = rowData[priceIndex].value print(price) """ 对于重复的取表,可以采用定义函数的方法,将上述内容打包为函数。 """ # 将计算单月销售额的步骤移到函数getMonthlySold中 # 获取单月“火龙果可乐”销售额的函数 # 参数 filePath: 销售数据Excel文件路径 # 返回值: 计算出的销售额结果 def getMonthlySold(filePath): # 使用openpyxl.load_workbook()函数读取工作簿 # 文件路径使用函数参数filePath,然后赋值给变量wb # 添加data_only=True打开工作簿,获取公式计算后的值 wb = openpyxl.load_workbook(filePath, data_only = True) # 通过工作簿对象wb获取名为“销售订单数据”的工作表对象,并赋值给变量orderSheet orderSheet = wb["销售订单数据"] # 定义一个变量colaSold用来表示本月“火龙果可乐”的销售金额 colaSold = 0 # 遍历工作表的所有行数据 for rowData in orderSheet.rows: productName = rowData[2].value priceIndex = openpyxl.utils.cell.column_index_from_string("I") - 1 price = rowData[priceIndex].value if productName == "目标": colaSold = colaSold + price return colaSold # 接下来,通过观察销售订单的Excel文件名,我们可以发现,每个文件名仅有月份数字不同。 # 因此,我们可以很方便的使用for循环加range()函数,配合上格式化字符串,来批量生成每个Excel表格的文件路径:2019年{month}月销售订单.xlsx。 # 再把这个文件路径传入到getMonthlySold函数中,来计算各个月份的销售额。最后逐个添加到一个列表soldList中。 soldList = [] for month in range(1,13): monthlySold = getMonthlySold(f"2019年{month}月销售订单.xlsx") soldList.append(monthlySold) print(soldList) # 要获取一个列表中的最大值,可以使用Python内置的max()函数。 maxSold = max(soldList) print(maxSold) # 当我们知道了列表中的一个元素,想要去列表中找到这个元素位于什么位置,可以使用列表的index()函数。 # 通过要查询的列表对象使用index()函数,将要查询的元素作为参数传入,则该元素从左往右第一次出现的索引将会被返回。 # 如果查询的元素不在列表中,会报一个ValueError的错误。 maxMonth = soldList.index(maxSold) + 1 print(f"火龙果可乐在{maxMonth}月份卖得最好")
8b4e4066d54d94f63d324415fd65e356be989ac7
VaibhavSi47/CB
/covid_bot_test4/text_to_speech.py
688
3.515625
4
# import the required module for text to speech recognition import os import subprocess from gtts import gTTS # The text that you want to convert to audio mytext = "Welcome to Covid-19 Fighting bot!" # language in which you want to convert language = 'en' # Passing the text and language to the engine, # here we have marked slow=False. which tells # the module that the converted audio should # have a high speed myobj = gTTS(text=mytext, lang=language) # Saving the converted audio in a mp3 file named "welcome.mp3" myobj.save("welcome.mp3") # playing the converted file #subprocess.call(['MPyg321', "welcome.mp3", '--play-and-exit'], shell = True) os.system("start welcome.mp3")
b132edf3ca3db843191f6c40d5939df7f4c0e5db
pettybai/my_practice
/function/closure.py
897
4.25
4
# 一个函数返回了一个内部函数,该内部函数引用了外部函数的相关参数和变量,我们把该返回的内部函数称为闭包(Closure) def make_pow(n): def inner(x): return pow(x, n) return inner a = make_pow(2) print(a(7)) ################################################## # 闭包的最大特点就是引用了自由变量,即使生成闭包的环境已经释放,闭包仍然存在。 # 闭包在运行时可以有多个实例,即使传入的参数相同。 # 闭包实现类 class point(object): def __init__(self, x, y): self.x, self.y = x, y def get_distance(self, u, v): return (self.x - u) ** 2 + (self.y - v) ** 2 # def point(x, y): # def get_distance(u, v): # return (x - u) ** 2 + (y - v) ** 2 # # return get_distance init_point = point(4, 4) print(init_point.get_distance(7, 8))
19613f6ff6cf5ab1bf888c6b817f28c91d8e0f46
fitzcn/oojhs-code
/functions/deck.py
950
4.0625
4
# coding: utf-8 import random """ write a function that prints a random card in the deck. """ def selectRandom(lst): index = random.randint(0,51) print lst[index] """ write a function that will print each card in a deck. hint: use a "for/in" loop. """ def nameYourFunction(nameYourVariable): None """ write a function that prints each card in a deck in reverse you can use: 1-as a "for/in" loop 2-as a "while" loop 3-as a "in range" loop """ def yourReverseFunction(yourVariable): None deck = ["A♠","2♠","3♠","4♠","5♠","6♠","7♠","8♠","9♠","10♠","J♠","Q♠","K♠", "A♥","2♥","3♥","4♥","5♥","6♥","7♥","8♥","9♥","10♥","J♥","Q♥","K♥", "A♦","2♦","3♦","4♦","5♦","6♦","7♦","8♦","9♦","10♦","J♦","Q♦","K♦", "A♣","2♣","3♣","4♣","5♣","6♣","7♣","8♣","9♣","10♣","J♣","Q♣","K♣"] selectRandom(deck) printEach(deck) printEachInReverse(deck) printEach(deck)
1e7127a4ba6cf8a3d89b32e1cb756e93c7c50708
nebofeng/python-study
/03python-books/python3-cookbook/第一章:数据结构和算法/1.6 字典中的键映射多个值.py
1,984
3.765625
4
#怎样实现一个键对应多个值的字典(也叫 multidict)? #可以很方便的使用 collections 模块中的 defaultdict 来构造这样的字典。 # defaultdict 的一个特征是它会自动初始化每个 key 刚开始对应的值,所以你只需要关注添加元素操作了。比如: from collections import defaultdict #允许多个重复 d = defaultdict(list) d['a'].append(1) d['a'].append(2) d['a'].append(2) d['b'].append(4) #重复 只有一个 dset = defaultdict(set) dset['a'].add(1) dset['a'].add(1) dset['b'].add(4) print(d) print(dset) #需要注意的是, defaultdict 会自动为将要访问的键(就算目前字典中并不存在这样的键)创建映射实体。 ''' 映射是指 k v 对应 https://www.cnblogs.com/colorfulday/p/10833078.html defaultdict类的初始化函数接受一个类型作为参数,当所访问的键不存在的时候,可以实例化一个值作为默认值: >>> dd['foo'] [] >>> dd defaultdict(<type 'list'>, {'foo': []}) >>> dd['bar'].append('quux') >>> dd defaultdict(<type 'list'>, {'foo': [], 'bar': ['quux']}) 需要注意的是,这种形式的默认值只有在通过dict.__getitem__(key)访问的时候才有效 https://www.cnblogs.com/jidongdeatao/p/6930325.html ''' # 如果你并不需要这样的特性,你可以在一个普通的字典上使用 setdefault() 方法来代替。比如: d = {} # 一个普通的字典 d.setdefault('a', []).append(1) d.setdefault('a', []).append(2) d.setdefault('b', []).append(4) #一般来讲,创建一个多值映射字典是很简单的。但是,如果你选择自己实现的话,那么对于值的初始化可能会有点麻烦, 你可能会像下面这样来实现: pairs=[('a',"b"),('a',"c")] d = {} for key, value in pairs: if key not in d: d[key] = [] d[key].append(value) #如果使用 defaultdict 的话代码就更加简洁了: d = defaultdict(list) for key, value in pairs: d[key].append(value)
f416e7b2495b4c3f5459ca3ad02507883e344a56
akimasa-l/aidemy
/learned/supervised-learning/H1juFh8jIeG.py
655
3.90625
4
# 必要なモジュールのインポート from sklearn.linear_model import LinearRegression from sklearn.datasets import make_regression from sklearn.model_selection import train_test_split # データの生成 X, y = make_regression(n_samples=100, n_features=10, n_informative=3, n_targets=1, noise=5.0, random_state=42) train_X, test_X, train_y, test_y = train_test_split(X, y, random_state=42) # 以下にコードを記述してください model = LinearRegression() model.fit(train_X, train_y) model.score(test_X, test_y) # test_Xに対する推測結果を出力してください(print関数を用います。) print(model.predict(test_X))
779968d8357a729a4e0142ba19eafda9a9251fa3
pruhnuhv/Historical-Stock-Data
/Getdata.py
2,225
3.515625
4
import urllib.request import sys from datetime import date default_date=date(int("2019"),int("01"),int("01")) #Python3 can't take 0 as the first char here due to octal interpretation default_equivalence=1546300800 print("Welcome! Keep Starting-Ending dates and Stock Tickers handy as we proceed :) \n") for i in (0,2): if i==0: input_taken='Starting' else: input_taken='Ending' rawInput=input("Enter the {} date in the YYYY-MM-DD format with no spaces between the hiphens: ".format(input_taken)) try: YYYY,MM,DD=map(int,rawInput.split('-')) if i==False: starting_date=date(YYYY,MM,DD) delta=starting_date-default_date starting_equivalence=default_equivalence+(86400*delta.days) #This can be changed by yahoo to avoid scrapers else: #Just let me know if that happens we can compute it again ;) ending_date=date(YYYY, MM, DD) delta=ending_date-default_date ending_equivalence=default_equivalence+(86400*delta.days+86400) except: print("The format of the entered date was incorrect, the program terminates here. \n") sys.exit() if starting_equivalence>ending_equivalence: #You actually deserve to be confused by a HTTPS bad request error here. But I'm a good guy :) print("Starting Date cannot be after ending date \n") sys.exit() ticker=input("Nice, now type in the ticker for the stock (All caps): ") url="""https://query1.finance.yahoo.com/v7/finance/download/"""+ticker+"""?period1="""+str(starting_equivalence)+"""&period2="""+str(ending_equivalence)+"""&interval=1d&events=history""" file_name=input("What should we name the the downloaded csv file? (File name should have a .csv extension & Enter exact path if this isn't the desired download directory): ") try: urllib.request.urlretrieve(url,file_name) print("Downloaded Successfully! \n") except: print("Something Went wrong, I'd request you to try again and recheck your ticker.") #Invalid ticker, file name without csv and unstable internet connections are the possible issues here.
b6df3a2729ccb35b58d91efab8b63e2557028fbe
ji3g4freddy/NBA3PointContest
/Three_Pointer_Contest.py
11,296
3.578125
4
import random import math import csv import matplotlib.pyplot as plt # Define the class player class player: name='' FG_3PCT = 0 stamina = 0 onfire = 0 variance = 0 def __init__(self,attr_list,bonus=1,strategy=0): self.name = attr_list[0] self.FG_3PCT=eval(attr_list[1]) self.stamina= eval(attr_list[2]) self.onfire = eval(attr_list[3]) self.variance=eval(attr_list[4]) self.bonus = bonus self.strategy = strategy def get_score(self): """ simulate the score based on the shooting percetage of the player :param FG_3PCT: shooting percentage of a player :return score: the simulated score of the player """ score=0 onfire = self.onfire lefttime = 60.0 for i in range(25): shoot = random.randint(1,100) runtime = self.runtime(i) shootingtime = self.shootingtime(i, lefttime) # run out of time if lefttime<shootingtime: break # making shot elif shoot <= self.FG_3PCT * (1-self.stamina/100*(i)) \ * math.log2(min(2.5,(0.5*shootingtime+1))) \ + self.variance * self.get_onfire(onfire): # Moneyball spot if i in range(self.bonus * 5 - 4, self.bonus * 5 + 1): score += 2 onfire += 5 else: score += 1 onfire += 5 # fail to make the shot else: onfire -= 3 # time deduction lefttime -= shootingtime + runtime return score def get_onfire(self, onfire): """ define the if a player is in onfire_mode or oncold_mode(onfire_mode = -1) for each shoot. :param onfire: the basic probability that the player get into the on_fire mode :return: onfire_mode: 1 means player is in onfire_mode which can increase their shooting % and 0 means player is not in the onfire_mode, and there's no shooing % increase and -1 means player is in the oncold_mode which would decrease their shooting % """ prob = random.randint(1,100) # player get onfire if prob <= onfire: onfire_mode = 1 # player shoot as normal elif prob <= onfire+50: onfire_mode = 0 # player get oncold else: onfire_mode = -1 return onfire_mode def runtime(self, i): """ simulate the time to run between each shooting spot :param i: the number of shoot :return: the simulated time spent of each run """ # after 5 shoots, player moves to the next spot if (i + 1) % 5 == 0 and i < 24: runtime = random.uniform(2, 4) else: runtime = 0 return runtime def choose_strategy(self,simulation_time): """ let the player simulate every possible strategy and bonus point to find out the best combination :param: simulation_time: The number of times of the simulation """ best_bonus = 0 best_strategy = 0 best_score = 0.0 for bonus in range(1,6): self.bonus = bonus for strategy in range(0,6): score_list = [] self.strategy=strategy for r in range(simulation_time): score = self.get_score() score_list.append(score) avg_score = round((sum(score_list)/len(score_list)),2) print('{:5} {:12} {:15} '.format(self.bonus,self.strategy,avg_score)) if avg_score>best_score: best_score = avg_score best_bonus = self.bonus best_strategy=self.strategy self.bonus = best_bonus self.strategy=best_strategy print('\n >>> The best strategy for {} is: bonus {} and strategy {} \n >>> Average score = {} \n'.format(self.name,self.bonus,self.strategy,best_score)) def shootingtime(self, i, lefttime): """ simulate the time to shoot each ball :param i: the number of shoot :param lefttime: total time left in the game :return: the simulated shooting time for each shoot """ shootingtime = 0 # quick release if self.strategy == 0: shootingtime = random.uniform(1, 3) # high quality elif self.strategy == 1: shootingtime = random.uniform(2, 4) # high quality & time controlling elif self.strategy == 2: shootingtime= random.uniform(2, lefttime / (25-i)) # focus on bonus spot elif self.strategy == 3: if i in range(self.bonus * 5 - 4, self.bonus * 5 + 1): shootingtime = random.uniform(3, 4) else: shootingtime = random.uniform(1, lefttime/(25-i)) # focus on first ten shots elif self.strategy == 4: if i in range(10): shootingtime = random.uniform(2, 4) else: shootingtime = random.uniform(1, lefttime / (25 - i)) # focus on last ten shots elif self.strategy == 5: if i in range(16,25): shootingtime = random.uniform(2, 4) else: shootingtime = random.uniform(1, lefttime / (25 - i)) return shootingtime def sort_dic(dic): """ get the sorted game result based on the socres :param dic: the game result :return: the sorted game result >>> dic = {'Curry':18, 'George':13, 'Thompson':15, 'Booker':20} >>> sort_dic(dic) [('Booker', 20), ('Curry', 18), ('Thompson', 15), ('George', 13)] """ return sorted(dic.items(),key = lambda item:item[1],reverse=True) def get_game_result(player_list): """ To get the result of the game based on the player list of current round. :param player_list: the player list of current round :return result: the result of the game """ result = {} for player in player_list: score = player.get_score() result[player.name] = score return result def get_next_round(candidate_number, result): """ Based on the game result and the assign candidate_number to choose the candidate for next round :param candidate_number: how many candidates can advance to next round :param result: the game result with the players' scores :return: the candidate list for next round """ next_round_candidate = {} next_round_candidate_list = [] # set the threshold for next round candidate threshold = sort_dic(result)[candidate_number-1][1] for key, value in result.items(): if value >= threshold: next_round_candidate[key] = value for player in player_list: if player.name in next_round_candidate.keys(): next_round_candidate_list.append(player) return next_round_candidate_list def one_simulation(player_list): """ Simulate one game :param player_list: player list who attend the competition :return: The winner of the game """ over_time_flag=True candidate_list = get_next_round(3,get_game_result(player_list)) candidate_list = get_next_round(1,get_game_result(candidate_list)) while over_time_flag: if len(candidate_list)==1: over_time_flag=False else: candidate_list=get_next_round(1,get_game_result(candidate_list)) winner = candidate_list[0].name return winner if __name__ == '__main__': # read csv file with player data file = csv.reader(open('player_data.csv')) headers = next(file) player_list=[] for row in file: num = 0 attr_list=[] for header in headers: attr_list.append(row[num]) num+=1 player_list.append(player(attr_list)) # simulation one game print('\nOne game simulation: \n') # first round first = get_game_result(player_list) print('=========================') print("First round") print('=========================') print('Player Score') print('-------------- -----') for key, value in first.items(): print('{:20} {:<5}'.format(key, value)) next_round_candidate_list = get_next_round(3, first) # Final round print('\n=========================') print("Final round") print('=========================') print('Player Score') print('-------------- -----') final = get_game_result(next_round_candidate_list) for key, value in final.items(): print('{:20} {:<5}'.format(key, value)) next_round_candidate_list = get_next_round(1, final) # OverTime or Winner while len(next_round_candidate_list) != 1: print('\n=========================') print("Overtime") print('=========================') print('Player Score') print('-------------- -----') ot = get_game_result(next_round_candidate_list) for key, value in ot.items(): print('{:20} {:<5}'.format(key, value)) next_round_candidate_list = get_next_round(1, ot) print('\n>>> The winner is: {}\n'.format(next_round_candidate_list[0].name)) print('===================================\n') print('Strategy Detail: \n') for player in player_list: print(player.name) print('\nBonus Strategy Average Score') print('----- -------- -------------') player.choose_strategy(1200) winner_list = [] for index in range(1000): winner = one_simulation(player_list) winner_list.append(winner) print('\n===============================================') print("Winning rate") print('===============================================') print('\nPlayer Bonus Strategy Winning %') print('------------- ----- -------- ---------') for player in player_list: print('{:15} {:6} {:10} {:10}%'.format(player.name, player.bonus, player.strategy, round(winner_list.count(player.name) / len(winner_list)*100, 2))) #print('(Bonus:{}, Strategy:{})'.format(player.bonus, player.strategy)) print('\n================================================================') print("Winning rate when Love & Thompson apply bad bonus and strategy") print('================================================================') print('\nPlayer Bonus Strategy Winning %') print('------------- ----- -------- ---------') player_list[3].bonus = 5 player_list[3].strategy = 1 player_list[4].bonus = 1 player_list[4].strategy = 5 winner_list = [] for index in range(1000): winner = one_simulation(player_list) winner_list.append(winner) for player in player_list: print('{:15} {:6} {:10} {:10}%'.format(player.name, player.bonus, player.strategy, round(winner_list.count(player.name) / len(winner_list) * 100, 2)))
2356c82bf653aa6061863ba3654ccfb812cd8c4f
dzhao14/HackerRank_code
/practice/algorithms/DP/fibonacci_modified.py
486
3.9375
4
#https://www.hackerrank.com/challenges/fibonacci-modified def solution(f1, f2, n, memo): key = n if key in memo: return memo[key] if n == 1: return f1 elif n == 2: return f2 else: memo[key] = pow(solution(f1, f2, n-1, memo), 2) + solution(f1,f2, n-2, memo) return memo[key] if __name__ == "__main__": f1, f2, n = [int(temp) for temp in input().strip().split()] ans = solution(f1, f2, n, {}) print(str(ans))
9ead14450e474c717142142a3d909fc05f9a47f5
enzngin/Guessing-a-number-Binary-Search-
/Part3.py
938
3.921875
4
# -*- coding: utf-8 -*- """ Created on Tue Apr 28 23:14:32 2020 @author: USER """ from random import randint def guess_number_pc(upper_bound): a_number = randint(0, upper_bound) #7 up= upper_bound down = 0 attempts = 0 print("A: I guess a number from 1 to {upper}".format(upper = upper_bound)) i = True while i: mid = (up+down) / 2 #5 b_number = mid #9 attempts = attempts + 1 print("B: your number is: {number}".format(number = b_number)) if b_number < a_number: print("A: My number is bigger") down = mid elif b_number > a_number: print("A: My number is smaller") up = mid elif b_number == a_number: print("Yeah, that is it!") print("Estimated on {number} attempts".format(number = attempts)) i = False guess_number_pc(10)
218a5781eb0cef4203307dcc05ad2617a3149739
yosef8234/test
/hackerrank/python/math/triangle-quest-1.py
866
4.25
4
# -*- coding: utf-8 -*- # You are given a positive integer NN. Print a numerical triangle of height N−1N−1 like the one below: # 1 # 22 # 333 # 4444 # 55555 # ...... # Can you do it using only arithmetic operations, a single for loop and print statement? # Use no more than two lines. The first line (the for statement) is already written for you. You have to complete the print statement. # Note: Using anything related to strings will give a score of 00. # Input Format # A single line containing integer, NN. # Constraints # 1≤N≤91≤N≤9 # Output Format # Print N−1N−1 lines as explained above. # Sample Input # 5 # Sample Output # 1 # 22 # 333 # 4444 for i in range(1,int(input())): #More than 2 lines will result in 0 score. Do not leave a blank line also # print((pow(10,i)/9)*i) print(sum(map(lambda x: i * 10**x, range(i))))
bfb3370c8ac7d9af56d3f44b2551d4d321160f60
zzdxlee/Sword2Offer_Python
/位运算/不用加减乘除做加法.py
2,750
3.53125
4
# -*- coding:utf-8 -*- # 写一个函数,求两个整数之和,要求在函数体内不得使用 +、-、 * 、 / 四则运算符号。 # https: // blog.csdn.net / zhongjiekangping / article / details / 6855864 # 用位运算实现加法也就是计算机用二进制进行运算,32 # 位的CPU只能表示32位内的数,这里先用1位数的加法来进行,在不考虑进位的基础上,如下 # # 1 + 1 = 0 # 1 + 0 = 1 # 0 + 1 = 1 # 0 + 0 = 0 # # 很明显这几个表达式可以用位运算的“ ^ ”来代替,如下 # # 1 ^ 1 = 0 # 1 ^ 0 = 1 # 0 ^ 1 = 1 # 0 ^ 0 = 0 # 这样我们就完成了简单的一位数加法,那么要进行二位的加法,这个方法可行不可行呢?肯定是不行的,矛盾就在于,如何去 # 获取进位?要获取进位我们可以如下思考: # # 0 + 0 = 0 # 1 + 0 = 0 # 0 + 1 = 0 # 1 + 1 = 1 # // 换个角度看就是这样 # 0 & 0 = 不进位 # 1 & 0 = 不进位 # 0 & 1 = 不进位 # 1 & 1 = 进位 # 正好,在位运算中,我们用“ << ”表示向左移动一位,也就是“进位”。那么我们就可以得到如下的表达式 # # // 进位可以用如下表示: # (x & y) << 1 # 到这里,我们基本上拥有了这样两个表达式 # # x ^ y // 执行加法 # (x & y) << 1 // 进位操作 # 我们来做个2位数的加法,在不考虑进位的情况下 # # 11 + 01 = 100 // 本来的算法 # # // 用推算的表达式计算 # (11 & 01) << 1 = 10 # 11 ^ 01 = 10 # # // 到这里 # 我们用普通的加法去运算这两个数的时候就可以得到 # 10 + 10 = 100 # // 但是我们不需要加法,所以要想别的方法,如果让两个数再按刚才的算法计算一次呢 # (10 & 10) << 1 = 100 # 10 ^ 10 = 00 # # 到这里基本上就得出结论了,其实后面的那个 “00” 已经不用再去计算了,因为第一个表达式就已经算出了结果。 # 继续推理可以得出三位数的加法只需重复的计算三次得到第一个表达式的值就是计算出来的结果。 # 其余基础知识:关于原补反,计算机中整数都是以补码形式存储的。正数的原反补是一样的, # 而负数的原码是符号位置1;负数的反码是在原码的基础上,符号位不变,其余位置取反;负数的补码是在反码的基础上再加1。 # [+1] = [00000001]原 = [00000001]反 = [00000001]补 # [-1] = [10000001]原 = [11111110]反 = [11111111]补 class Solution: def Add(self, carry, sum): if carry == 0: # // a = ~b +1,b = ~(a-1) return sum if sum <= 0x7FFFFFFF else -(~(sum - 1) & 0x7FFFFFFF) return self.Add((carry & sum) << 1, (carry ^ sum) & 0x7FFFFFFF) if __name__ == '__main__': s = Solution() print(s.Add(-1, 3))
e940071fc294ac24363b86f6feb0a5a1eaf5ae87
Sefan90/AdventOfCode2020
/Day10/Day10.py
979
3.65625
4
def Part1(): f = open("input.txt","r") currentsum = 0 jolt = [0,0,1] #your device's built-in adapter is always 3 higher than the highest adapter inputlist = sorted([int(i) for i in f.readlines()]) for i in inputlist: jolt[i - currentsum-1] += 1 currentsum = i print(jolt[0]*jolt[2]) def Part2(): f = open("input.txt","r") inputlist = [0] + sorted([int(i) for i in f.readlines()]) inputlist.append(max(inputlist)+3) result = 1 counter = 0 for i in range(len(inputlist)-1): if inputlist[i+1] - inputlist[i] == 1: counter += 1 elif inputlist[i+1] - inputlist[i] == 3: if counter == 2: result *= 2 elif counter == 3: result *= 4 elif counter == 4: result *= 7 counter = 0 print(result) import time start_time = time.time() Part2() print("--- %s seconds ---" % (time.time() - start_time))
338f8ea126e9f6d585b9ade56a50110db4ead224
VD2410/Data_Structure_And_Algorithms
/Basics of Python/Task4.py
1,539
4.1875
4
""" Read file into texts and calls. It's ok if you don't understand how to read files. """ import csv with open('texts.csv', 'r') as f: reader = csv.reader(f) texts = list(reader) with open('calls.csv', 'r') as f: reader = csv.reader(f) calls = list(reader) """ TASK 4: The telephone company want to identify numbers that might be doing telephone marketing. Create a set of possible telemarketers: these are numbers that make outgoing calls but never send texts, receive texts or receive incoming calls. Print a message: "These numbers could be telemarketers: " <list of numbers> The list of numbers should be print out one per line in lexicographic order with no duplicates. """ calls_from_num = list([item[0] for item in calls]) # ''' Complexity n''' calls_to_num = list([item[1] for item in calls]) # ''' Complexity n''' text_from_num = list([item[0] for item in texts]) # ''' Complexity n''' text_to_num = list([item[1] for item in texts]) # ''' Complexity n''' telemarketers = list() # ''' Complexity 1''' for n in calls_from_num: # ''' Complexity n''' if n not in calls_to_num and n not in text_from_num and n not in text_to_num: # ''' Complexity n''' telemarketers.append(n) # ''' Complexity m''' print("These numbers could be telemarketers: ") # ''' Complexity 1''' print("\n".join(sorted(set(telemarketers),key=str))) # ''' Complexity n log n''' # ''' Complexity O(n log n))'''
51f765a32817a1141edd8115869a8ed789566ced
Nehal31/Python
/PProgramz/pz11.py
366
4.3125
4
''' check the given year is leap or not ''' #taking the given year y = int(input('Enter the year : ')) #check the Leap year if y % 4 == 0: if y % 100 == 0: if y % 400 == 0 : print('Leap Year') else: print('Not leap Number') else : print('Leap year ') else: print('Not leap Year')
08989484c0b5ed100c5203aa10102812439acb30
maike-hilda/pythonLearning
/count_items.py
390
4.125
4
#Count items in a loop nums = [3, 41, 12, 9, 74, 15] count = 0 for itervar in nums: #itervar is the iteration variable count = count + 1 print 'Count: ', count #Add up items in a loop total = 0 for itervar in nums: total = total + itervar print 'Total: ', total #But there are built-in functions for this print 'Count: ', len(nums) print 'Total: ', sum(nums)
f8840974a55f960b4a9bcf8b236bb3f7a331c90f
Kblens56/ccbb_pythonspring2014
/2014-05-21_class_pt2.py
2,969
3.546875
4
import pandas import numpy cd documents/ccbb_pythonspring2014/ # open sites_complicated in pandas as an Excell file and then parse out Sheet 1 xl_c = pandas.ExcelFile('sites_complicated.xlsx') df_c = xl_c.parse('Sheet1') # how to output file in pandas # to write file in pandas and make csv will be called output.csv outfile = open('output.csv', 'w') df_c.to_csv(outfile) outfile.close() # to import all "*" from pandas from pandas import * # now can write excell file from pandas writer = ExcelWriter('output.xlsx') df_c.to_excel(writer, 'Sheet1') ## now moving onto ploting #import all "*" from ggplot from ggplot import * # open and parse sites simple xl = pandas.ExcelFile('sites_simple.xlsx') df = xl.parse('Sheet1', index_col = 0, header = 0) # make a plot saying what data will use etc my_plot = ggplot(df, aes(x = 'Expenditure', y = 'Species')) + geom_point() + xlim(0,350) + ylim(0,25) # to see plot my_plot #to save the plot # can save while looking at the plot by pushing the save button # or can save it programaticaly ggsave(my_plot, "demo_plot", "png") # now we will switch to working with a very large excel document # to import the data and name it big_matrix big_matrix = pandas.read_csv('big_matrix.csv') # to see the beginning of "big_matric" big_matrix.head() # this is what I see, April saw several of the first columns I assume this is a setting thing Out[37]: <class 'pandas.core.frame.DataFrame'> Int64Index: 5 entries, 0 to 4 Columns: 1001 entries, 0 to 0.5034046342 dtypes: float64(1000), int64(1) # to import te dat in a slightly differnt way ... not sure why the collumn now says entries 0 to 100 instead of 1 to 0.5 big_matrix = pandas.read_csv('big_matrix.csv', index_col=None, header=None) big_matrix.head() Out[40]: <class 'pandas.core.frame.DataFrame'> Int64Index: 5 entries, 0 to 4 Columns: 1001 entries, 0 to 1000 dtypes: float64(1000), int64(1) # to add a 1002nd collumn that will say Me for the first 250 rows and then My_Labmate for the rest of the rows big_matrix['1002'][0:250] = 'Me' big_matrix['1002'][250:] = 'My_Labmatee' # to display a sample of what column 1002 looks like big_matrix['1002'] # this is what it looks like Out[49]: 0 Me 1 Me 2 Me 3 Me 4 Me 5 Me 6 Me 7 Me 8 Me 9 Me 10 Me 11 Me 12 Me 13 Me 14 Me ... 485 My_Labmatee 486 My_Labmatee 487 My_Labmatee 488 My_Labmatee 489 My_Labmatee 490 My_Labmatee 491 My_Labmatee 492 My_Labmatee 493 My_Labmatee 494 My_Labmatee 495 My_Labmatee 496 My_Labmatee 497 My_Labmatee 498 My_Labmatee 499 My_Labmatee Name: 1002, Length: 500, dtype: object # make a plot where me and my labmates data are differnt colors on a scatterplot overlay = ggplot(aes(x=big_matrix.ix[0:499,2], y = big_matrix.ix[:,1], color='1002'), data=big_matrix) + geom_point() +geom_jitter() + ylab("Y Axis") + xlab("X Axis") +ylim(0,1) + xlim(0,1) + theme_bw() # to see plot overlay
db486b71520901b6b817e2696bf40e354de504dd
Snehal2605/Technical-Interview-Preparation
/ProblemSolving/450DSA/Python/src/arrays/MaximumProductSubarray.py
1,047
4.09375
4
""" @author Anirudh Sharma Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. """ def maxProduct(nums): # Special cases if nums is None or len(nums) == 0: return -1 # Overall maximum product globalMaxima = nums[0] # Maximum product until the current index localMaxima = nums[0] # Minimum product until the current index localMinima = nums[0] # Loop for the remaining elements for i in range(1, len(nums)): # Save localMaxima for localMinima calculation temp = localMaxima localMaxima = max(nums[i], max(localMaxima * nums[i], localMinima * nums[i])) localMinima = min(nums[i], min(temp * nums[i], localMinima * nums[i])) globalMaxima = max(localMaxima, globalMaxima) return globalMaxima if __name__ == "__main__": print(maxProduct([2, 3, -2, 4])) print(maxProduct([-2, 0, -1])) print(maxProduct([6, -3, -10, 0, 2])) print(maxProduct([2, 3, 4, 5, -1, 0]))
6179f1b62ff82ca0972f5414654e5734b4f1a290
mgijax/lib_py_misc
/symbolsort.py
3,042
3.703125
4
# Name: symbolsort.py # Purpose: provide a splitter() function that can be shared across Python products to # consistently split an alphanumeric string into a tuple of integers and strings for # sorting. # global dictionaries used by splitter() for speedy lookups: sdict = { '' : ('') } digits = { '1' : 1, '2' : 1, '3' : 1, '4' : 1, '5' : 1, '6' : 1, '7' : 1, '8' : 1, '9' : 1, '0' : 1 } intPrefix = 9999999999 def splitter (s): # Purpose: split string 's' into a tuple of strings and integers, # representing the contents of 's' for sorting purposes # Returns: tuple containing a list of strings and integers # Assumes: s is a string or None # Effects: nothing # Throws: nothing # Notes: Because Python 3.7 does not allow strings to be compared with # integers, we must ensure that all tuples have the same ordering of # integers and strings. # (So even for ones that would begin with a string, we'll prepend an integer # to force it to appear after those beginning with integers.) # Examples: # 'Ren1' ==> (999999999, 'ren', 1) # 'abc123def' ==> (9999999999, 'abc', 123, 'def') # '789xyz32' ==> (789, 'xyz', 32) global sdict if s == None: return (intPrefix,) if s in sdict: return sdict[s] last = 0 items = [] sl = s.lower () in_digits = sl[0] in digits for i in range(0, len(sl)): if (sl[i] in digits) != in_digits: if in_digits: items.append (int(sl[last:i])) else: items.append (sl[last:i]) last = i in_digits = not in_digits if in_digits: items.append (int(sl[last:])) else: items.append (sl[last:]) if type(items[0]) != int: items.insert(0, intPrefix) sdict[s] = tuple(items) return sdict[s] # # Warranty Disclaimer and Copyright Notice # # THE JACKSON LABORATORY MAKES NO REPRESENTATION ABOUT THE SUITABILITY OR # ACCURACY OF THIS SOFTWARE OR DATA FOR ANY PURPOSE, AND MAKES NO WARRANTIES, # EITHER EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE OR THAT THE USE OF THIS SOFTWARE OR DATA WILL NOT # INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS, OR OTHER RIGHTS. # THE SOFTWARE AND DATA ARE PROVIDED "AS IS". # # This software and data are provided to enhance knowledge and encourage # progress in the scientific community and are to be used only for research # and educational purposes. Any reproduction or use for commercial purpose # is prohibited without the prior express written permission of the Jackson # Laboratory. # # Copyright (c) 1996, 1999, 2002 by The Jackson Laboratory # All Rights Reserved #
eca23bf18497424a3c47d939e717251934041869
tiagolsouza/exercicios-Curso-em-video-PYTHON
/exercicios/exe030/exe030.py
108
3.859375
4
a = int(input('Digite um numero inteiro: ')) b = a % 2 if b != 0: print('impar') else: print('par')