blob_id
stringlengths 40
40
| repo_name
stringlengths 6
108
| path
stringlengths 3
244
| length_bytes
int64 36
870k
| score
float64 3.5
5.16
| int_score
int64 4
5
| text
stringlengths 36
870k
|
---|---|---|---|---|---|---|
e58eae9f3603be7750ae6d25bd5d48dcd1510c3f | bulongo/Scraper | /deleter.py | 1,218 | 4.1875 | 4 | #This script is written to delete items from a file that are too
#random and that would take a lot of time to select one at a time
#so it will be fed a list and a target directory to look in. If the files
#it is fed are in the directory then it will delete them.Else it will retur
#none.
#V 0.01
import os,sys
one,two,*three = sys.argv
target = input("Enter your target folder: ")
#three is a list of all the items that you will give as arguments i.e. the items
#you want the script to check for in your target folder and deletes
#review: make it easier to identify files in later versions e.g. give it a folder
#of items it should store and then use the list it stores as arguments for the
#removal in the target directory
os.chdir(target)
#need to add absolute path to this
'''for items in three:
#the for loop is not finding the items in os.getcwd,think B
if items in os.getcwd():
print(items)'''
#we will use os.walk for now
check = []
def get_items():
for i,j,k in os.walk("./"):
for items in k:
check.append(items)
get_items()
for items in check:
if two == items:
os.remove(two)
print(two + " removed")
#deletes items. It works....but why?!
|
7c0d52d8a08f4bf917f654a0f918ae787bc5664b | avallbona/python-crash-course | /comprehension_list.py | 1,193 | 3.890625 | 4 | def is_prime(value):
primes = {1, 2, 3, 5, 7}
return value in primes
print("lista")
some_list = [element + 5 for element in range(10) if is_prime(element)]
print(some_list)
print("diccionario")
results = {element: element + 5 for element in range(10) if is_prime(element)}
print(results)
print("diccionario2 refactored")
results2 = {element: element + 5 for element in range(10) if element in (1, 2, 3, 5, 7)}
print(results2)
print("generador")
some_list2 = (element + 5 for element in range(10) if is_prime(element))
print(type(some_list2))
print(some_list2)
# print(next(some_list2))
# print(next(some_list2))
# for it in some_list2:
# print(it)
print(list(some_list2))
print("operaciones")
def apply_operation(left_operand, right_operand, operator):
import operator as op
operator_mapper = {"+": op.add, "-": op.sub, "*": op.mul, "/": op.truediv}
try:
return operator_mapper[operator](left_operand, right_operand)
except KeyError:
return "Unrecognized operation"
print(apply_operation(2, 3, "+"))
print(apply_operation(2, 3, "-"))
print(apply_operation(2, 3, "*"))
print(apply_operation(2, 3, "/"))
print(apply_operation(2, 3, "."))
|
221bb16f7517aa2c350773f5839d8cce3eceaf88 | lightening0907/algorithm | /treeprint.py | 1,124 | 3.65625 | 4 | __author__ = 'ChiYuan'
class treenode:
def __init__(self,value):
self.left = None
self.right = None
self.value = value
def treeprint(root):
q_par = []
q_par.append(root)
q_child = []
order = 1
while len(q_par)>0:
while len(q_par)>0:
if order == 1:
if q_par[-1].left: q_child.append(q_par[-1].left)
if q_par[-1].right: q_child.append(q_par[-1].right)
print(q_par[-1].value,end="")
del q_par[-1]
else:
if q_par[-1].right: q_child.append(q_par[-1].right)
if q_par[-1].left: q_child.append(q_par[-1].left)
print(q_par[-1].value,end="")
del q_par[-1]
print("\n")
order *= -1
q_par, q_child = q_child, q_par
tr = treenode(5)
tr2 = treenode(7)
tr3 = treenode(8)
tr4 = treenode(1)
tr5 = treenode(10)
tr6 = treenode(2)
tr7 = treenode(3)
tr.left = tr2
tr.right = tr3
tr2.left =tr4
tr3.right = tr5
tr2.right = tr6
tr3.left = tr7
treeprint(tr)
|
c9d9b87fcd9464fe32f6ced2f0a3281e7ade9d2c | gmlwhd2092/haedal | /a.py | 723 | 3.6875 | 4 | class soccer:
soccer_count = 0
def __init__(self, name, position, club, country):
self.name = name
self.position = position
self.club = club
self.country = country
soccer.soccer_count += 1
def info(self):
print(f'축구선수: {self.name}')
print(f'포지션: {self.position}')
print(f'소속팀: {self.club}')
print(f'국: {self.country}')
print()
soccer1 = soccer("호날두", "공격수", "유벤투스", "포르투칼")
soccer2 = soccer("메시", "미드필더", "바르셀로나", "아르헨티나")
soccer3 = soccer("반다이크", "수비수", "리버풀", "네덜란드")
soccer1.info()
soccer2.info()
soccer3.info()
|
107ddc75e1d9ae6838ea5952db496a9c1d67f45e | fitigf15/PYTHON-VICTOR | /Algorismica avançada - UB/Pau/(ALGA)Algorismica avançada/(ALGA)Algorismica avançada/practica11.py | 1,294 | 3.5625 | 4 | import networkx as nx
def llegir_graf():
'''lee el grafo de un fichero de texto'''
global Grafo
Grafo = nx.Graph()
nom = raw_input("Doneu el nom del graf: ")
Grafo = nx.read_adjlist(nom,create_using=nx.DiGraph(),nodetype = int)
def crea_mat_adj():
global mat_adj
mat_adj = []
num_nodes = Grafo.number_of_nodes()
#mat_adj = [range(number_of_nodes) for i in range(number_of_nodes)]
for i in range(num_nodes):
mat_adj.append([])
for j in range(num_nodes):
mat_adj[i].append(0)
def busca_ciclo(origen):
mat_adj[origen-1][origen-1] = 1 #Marcamos el nodo origen como visitado
#print mat_adj
#mat_adj[0][2]= 1
vecinos = Grafo.neighbors(origen)
print "Nodo: ",origen,": vecinos: ", vecinos
if vecinos != []:
for i in range(len(vecinos)):
if mat_adj[origen-1][vecinos[i]-1]!=1:
print "ESTA VISITADO? : ", origen-1," ", vecinos[i]-1
mat_adj[origen-1][vecinos[i]-1] = 1
print "vecinos[i]-1: ", vecinos[i]-1
return busca_ciclo(vecinos[i])
else:
print "Vuelve hacia atras!!"
return origen-2
llegir_graf()
crea_mat_adj()
busca_ciclo(1)
print mat_adj
#print Grafo.nodes()
#print Grafo.edges()
|
03f45ff2ff6391bd8680cc2d35b6b059cc0d0280 | IrtazaChohan/Python_Essentials | /lists2.py | 254 | 3.6875 | 4 | student_grades = [9.1, 8.8, 7.5]
dir(list)
dir(int)
# shows the builtin functions of python..like print etc
dir(__builtins__)
# find the average using number of items in list
mysum = (sum(student_grades)) / len(student_grades)
print(mysum)
dir(len) |
743d45975b5db721890246d70b650620bd9f0869 | pazodilei/Smart_Calculator | /Problems/Palindrome/main.py | 142 | 4.0625 | 4 | word = input()
if word == ''.join([word[i] for i in range(len(word) - 1, -1, -1)]):
print("Palindrome")
else:
print("Not palindrome")
|
918f599630a4b3a3caa6278bc8902f1e1942fcf5 | parivgabriela/Coursera | /Python-DB/prueba-semana3.py | 334 | 3.984375 | 4 | import sqlite3
conn = sqlite3.connect(':memory:')
cursor = conn.cursor()
cursor.execute("""CREATE TABLE table_1
(ID integer primary key, name text)""")
cursor.execute("INSERT INTO table_1 VALUES (1, 'prueba')")
conn.commit()
query = "SELECT * FROM table_1"
currencies = cursor.execute(query).fetchall()
print(currencies)
conn.close()
|
5ab90c5c71ccce403e88c1022a8ced4afb55c2b6 | enzodiaz25/Scrabble | /codigo/logica/check_palabra.py | 7,190 | 3.828125 | 4 | '''
Versión de check_palabra según última modificación propuesta por la Cátedra.
Se mantiene la valuación de palabras con tilde, puesto que es una mejora en las posibilidades del usuario.
'''
import pattern.es as pes
from pattern.es import verbs, tag, spelling, lexicon
import itertools as it
def posibles_palabras (palabra):
'''
Por cada vocal que tenga la palabra seleccionada se genera una posibilidad con Tilde.
Esto permite resolver el problema que, mientras pattern posee palabras con tilde,
nuestra aplicación utiliza todas letras sin acentuación.
Se genera una lista con posible opciones con tilde para que pattern
las encuentre en sus diccionario de palabras.
'''
lisPal = []
#siempre la primer palabra será la ingresada por el jugador
lisPal.append(palabra)
vocales = {'a':'á', 'e':'é', 'i':'í', 'o':'ó', 'u':'ú'}
pos = [idx for idx, x in enumerate(palabra) if x in vocales.keys()]
#le pongo tilde a esas vocales, y agrego la palabra
for it in range(len(pos)):
pal_temp = ''
for it2 in range(len(palabra)):
if it2 != pos[it]:
pal_temp += palabra[it2]
else:
pal_temp += vocales[palabra[pos[it]]]
lisPal.append(pal_temp)
return lisPal
def clasificar(palabra):
print(tag(palabra, tokenize=True, encoding='utf-8', tagset='UNIVERSAL'))
print()
def es_palabra(palabra):
'''
Evalua si la palabra recibida existe en los diccionarios de PATTERN.ES
'''
ok = True
if palabra:
if not palabra.lower() in verbs:
if not palabra.lower() in spelling:
if (not (palabra.lower() in lexicon) and not (palabra.upper() in lexicon) and not (
palabra.capitalize() in lexicon)):
ok = False
else:
print('La encontró en lexicon')
clasificar(palabra)
else:
print('La encontró en spelling')
clasificar(palabra)
else:
print('La encontró en verbs')
clasificar(palabra)
return ok
def check_jugador(palabra, preferencias):
'''
Recibe una palabra y verifica que sea un verbo, adjetivo o sustantivo,
retorna True si es asi, o False en caso contrario.
Este módulo asignará por defecto la dificultad en FÁCIL si no es indicada
'''
dificultad = preferencias.getNivel()
if len(palabra) >= 2:
global TIPO
posibles = posibles_palabras(palabra)
ok = False
cont = 0
#en cuanto encuentre una opcion que de 'True' dejara de comprobar e insertará esa
while (not ok) and (cont < len(posibles)):
pal = ''
#La condición debe mantener este orden porque, de otro modo, es_palabra podría ejecutarse
#en el nivel incorrecto. Si el nivel es difícil, es_palabra imprimirá la misma información 3 veces
if (dificultad == 'facil') and es_palabra(posibles[cont]):
pal = pes.parse(posibles[cont]).split('/')
if pal[1] in TIPO['adj']:
ok =True
elif pal[1] in TIPO['sus']:
ok= True
elif pal[1] in TIPO['verb']:
ok= True
elif (dificultad == 'medio' or dificultad == 'dificil') and es_palabra(posibles[cont]):
pal = pes.parse(posibles[cont]).split('/')
if pal[1] in TIPO['adj']:
ok =True
elif pal[1] in TIPO['verb']:
ok= True
elif (dificultad == 'personalizado') and es_palabra(posibles[cont]):
pal = pes.parse(posibles[cont]).split('/')
for tipo_palabra in preferencias.getCategoriasPersonalizadas():
if pal[1] in TIPO[tipo_palabra]:
ok =True
break
else:
ok = False
# print("se chequeo {} el contador es {} y ok esta en {}".format(pal,cont,ok))
cont += 1
else:
return False
return ok
def check_compu(atril_pc, tablero, preferencias):
dificultad = preferencias.getNivel()
fichas_pc = atril_pc.ver_atril()
letras = ''
for ficha in fichas_pc:
letras += list(ficha.keys())[0]
palabras = set()
for i in range(2, len(letras)+1):
palabras.update(map(''.join, it.permutations(letras, i)))
posibilidades = {}
for pal in palabras:
if check_jugador(pal, preferencias):
fichas_pal = []
for letra in pal:
for ficha in fichas_pc:
if list(ficha.keys())[0] == letra:
#Notar algo importante: A la primera aparición de una ficha que coincida con la letra que busca,
#agrega la ficha a la lista. Esto es correcto; sin embargo es conveniente no olvidar que,
#si una letra se repitiese y la bolsa contuviese referencias repetidas, se estaría agregando dos veces
#la misma ficha a la lista (el mismo diccionario). En usos futuros, si se modificase una, también cambiaría la otra.
#No sucede en la implementación actual, pero es importante tenerlo en cuenta.
fichas_pal.append(ficha)
break
busqueda = tablero.buscarEspacio(fichas_pal, preferencias)
if busqueda['coordenada'] != -1:
busqueda['fichas'] = fichas_pal
posibilidades[pal] = busqueda
#En el modo "facil" y "medio", retorna la primer palabra que pueda validar y encontrarle un espacio.
#En el modo "personalizado", dependerá de la configuración seleccionada por el usuario.
if (dificultad == 'facil') or (dificultad == 'medio') or ((dificultad == 'personalizado') and not (preferencias.getIA()['palabra_inteligente'])):
return posibilidades[pal], pal
for clave, valor in posibilidades.items():
print(clave, ':', valor['interes'])
print('')
if len(posibilidades) > 0:
mejor_opcion = max(posibilidades, key = lambda d: posibilidades[d]['interes'])
print('La mejor opcion es: ' + mejor_opcion + '. En la coordenada ' + str(posibilidades[mejor_opcion]['coordenada'][0]) + ', ' + str(posibilidades[mejor_opcion]['coordenada'][1]))
return posibilidades[mejor_opcion], mejor_opcion
return posibilidades, letras
'''TIPO sera una varible global que nos permite chequear que la palabra a ingresar, este dentro
de las clasificaciones permitidas en el juego adj = adjetivo, sus= sustantivo, verb = verbos.
Las clasificiaciones estan tomadas del modulo pattern, pero la construcción de este modulo facilita su comprobación.
'''
TIPO= {'adj':["AO", "JJ","AQ","DI","DT"],
'sus':["NC", "NN", "NCS","NCP", "NNS","NP", "NNP","W"],
'verb':[ "VAG", "VBG", "VAI","VAN", "MD", "VAS" , "VMG" , "VMI", "VB", "VMM" ,"VMN" , "VMP", "VBN","VMS","VSG", "VSI","VSN", "VSP","VSS" ]
}
|
ca6b42c11324f5d0a6967d5b4554eef518b75ebc | dede1751/tcp_chess | /board_gui.py | 5,821 | 3.625 | 4 | """
This module implements solely the gui elements of the chess game. It does not
care for efficiency, implements no logic and simply allows the player to see
and interact with the board.
The board is a 1D vector, indexed from the top left to bottom right
(A8,B8, ... , G1, H1). For more info check engine module.
"""
import sys
import os
os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "hide" # avoid pygame prompt
import pygame as pg
from pygame.sprite import Sprite, Group
import numpy as np
import engine
class Point(Sprite):
"""Pygame trick for mouse interaction with sprites"""
def __init__(self, pos: tuple[int,int]) -> None:
super().__init__()
self.rect = pg.Rect(pos[0], pos[1], 1, 1)
self.rect.center = pos
class ChessPiece(Sprite):
"""
Chess piece sprite with simple tile movement.
- ChessPiece.piece 8-bit integer representing the piece
- ChessPiece.color 1-bit representing color
- ChessPiece.last_tile memory for replacing piece at original pos
"""
def __init__(self, pos: int, piece: str) -> None:
super().__init__()
self.piece = piece
self.color = piece >> 6
self.image = pg.image.load(f"images/{piece}.png")
self.rect = self.image.get_rect()
self.move_to_tile(pos)
def move_to_tile(self, move: int) -> None:
self.rect.center = (move % 8)*62.5 + 31.25, (move // 8)*62.5 + 31.25
self.last_tile = move
class PieceGroup(Group):
"""Sprite group wrapper, avoids passing game instance to all sprites"""
def __init__(self, game: 'ChessGame') -> None:
super().__init__()
self.screen = game.screen
def update_sprites(self) -> None:
if game.grab: # grabbed piece follows mouse
game.grab.rect.center = pg.mouse.get_pos()
for p in super().sprites():
self.screen.blit(p.image, p.rect)
class ChessGame():
"""
Game instance is controlled by main script, hence not much is done at init.
- ChessGame.active indicates whether the game instance is running the
gui.
- start_new_game(side) does what would normally be at init
- setup_board() updates the game to the current match attribute
everything regarding move checking and board generation should be
handled by the engine module, and then the result submitted to this
class by updating said match attribute.
"""
def __init__(self) -> None:
self.active = False
self.point = Point([0, 0])
def start_new_game(self, side: int) -> None:
pg.init()
self.image = pg.image.load("images/board.png")
self.rect = self.image.get_rect()
self.screen = pg.display.set_mode((500, 500))
pg.display.set_caption("Chess")
self.side = side # side to display board from
self.grab = None # currently grabbed piece
self.player_move = None # (start, end) scalar coordinates
self.active = True # pygame window activity
if side == 0:
start = np.copy(engine.start_white)
else:
start = np.copy(engine.start_black)
self.match = [start, np.ones((2,2), dtype=np.uint8), 0]
self.setup_board()
def setup_board(self) -> None:
"""Spawns and places pieces based on board input."""
self.turn = self.match[2]
self.pieces = PieceGroup(self)
for tile in range(64):
piece = self.match[0][tile]
if piece and not (piece & 0b10000000): # don't spawn en passant
self.pieces.add(ChessPiece(tile, piece))
def close_window(self) -> None: # close window without killing class
pg.display.quit()
pg.quit()
self.active = False
def check_events(self) -> None:
"""Event loop. Press Q or exit window to quit current instance"""
for event in pg.event.get():
if event.type == pg.QUIT:
self.close_window()
elif event.type == pg.KEYDOWN :
if event.key == pg.K_q:
self.close_window()
elif event.type == pg.MOUSEBUTTONDOWN:
self.grab_piece()
elif event.type == pg.MOUSEBUTTONUP and self.grab:
self.drop_piece()
def grab_piece(self) -> None:
"""Checks for sprite collisions."""
self.point.rect.center = pg.mouse.get_pos()
p = pg.sprite.spritecollide(self.point, self.pieces, False)
if p: # in case you don't click any piece
piece = p[0]
self.grab = piece
def drop_piece(self) -> None:
"""Translates player movement to engine-readable move"""
# grabbed piece can't be moved (opponent's piece or opponent's turn)
if not (self.grab.color == self.turn and self.turn == self.side):
self.grab.move_to_tile(self.grab.last_tile) # reset
self.grab = None
return
start = self.grab.last_tile
x, y = pg.mouse.get_pos()
end = (int(y // 62.5))*8 + int(x // 62.5)
move = [start, end]
if start != end and engine.check_legality(self.match, move):
engine.update_game(self.match, move)
self.setup_board()
self.player_move = move # start broadcasting new move
else:
self.grab.move_to_tile(self.grab.last_tile)
self.grab = None
def display_frame(self) -> None:
"""Checks events, blits to surfaces and updates display"""
self.check_events()
if self.active: # to avoid errors when closing instance
self.screen.blit(self.image, self.rect)
self.pieces.update_sprites()
pg.display.flip()
pg.time.wait(3)
|
48837ba41dd80c5d783e0d20d22890afd8af53f4 | ba-talibe/lab_netacad | /the_digit_of_life.py | 194 | 3.5625 | 4 | n = input(">>>")
def digit(n):
if len(n) == 1:
return int(n)
sum = 0
for i in range(len(n)):
sum += int(n[i])
return digit(str(sum))
print(digit(n))
|
e98e8a5e4f936f769267764ec05bf0faee78ecfa | pureoym/leetcode | /array/566_Reshape_the_Matrix.py | 1,785 | 3.6875 | 4 | # -*- coding: utf-8 -*-
# author: pureoym
# time: 2017/12/15 9:59
# Copyright 2017 pureoym. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
class Solution(object):
def matrixReshape(self, nums, r, c):
"""
:type nums: List[List[int]]
:type r: int
:type c: int
:rtype: List[List[int]]
"""
row = len(nums)
column = len(nums[0])
if r * c != row * column:
return nums
else:
return np.reshape(nums, (r, c)).tolist()
if __name__ == '__main__':
"""
Example 1:
Input: nums = [[1,2],[3,4]], r = 1, c = 4
Output: [[1,2,3,4]]
Explanation:
The row-traversing of nums is [1,2,3,4]. The new reshaped matrix is a
1 * 4 matrix, fill it row by row by using the previous list.
Example 2:
Input: nums = [[1,2],[3,4]],r = 2, c = 4
Output:[[1,2],[3,4]]
Explanation:
There is no way to reshape a 2 * 2 matrix to a 2 * 4 matrix. So output
the original matrix.
"""
s = Solution()
nums = [[1, 2], [3, 4]]
output = s.matrixReshape(nums, 1, 4)
print nums
print output
|
7f91df5090e36ee3c8a64c390abd7698ffdb77db | PyRPy/algorithms_books | /leetcode/add_digits.py | 308 | 3.640625 | 4 | # add_digits.py
class Solution:
def addDigits(self, num: int) -> int:
if num <= 0:
return 0
else:
result = (num - 1) % 9 + 1
return result
num = 383
sol = Solution()
print(num)
print(sol.addDigits(num))
# think about it again ! |
4257c2a7532e6ae0f4912bead9e91cf99a024516 | wisesky/LeetCode-Practice | /src/206.reverse-linked-list.py | 1,381 | 4.03125 | 4 | #
# @lc app=leetcode id=206 lang=python3
#
# [206] Reverse Linked List
#
# https://leetcode.com/problems/reverse-linked-list/description/
#
# algorithms
# Easy (66.47%)
# Likes: 7386
# Dislikes: 138
# Total Accepted: 1.5M
# Total Submissions: 2.2M
# Testcase Example: '[1,2,3,4,5]'
#
# Given the head of a singly linked list, reverse the list, and return the
# reversed list.
#
#
# Example 1:
#
#
# Input: head = [1,2,3,4,5]
# Output: [5,4,3,2,1]
#
#
# Example 2:
#
#
# Input: head = [1,2]
# Output: [2,1]
#
#
# Example 3:
#
#
# Input: head = []
# Output: []
#
#
#
# Constraints:
#
#
# The number of nodes in the list is the range [0, 5000].
# -5000 <= Node.val <= 5000
#
#
#
# Follow up: A linked list can be reversed either iteratively or recursively.
# Could you implement both?
#
#
# @lc code=start
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def reverseList(self, head: ListNode) -> ListNode:
oldHead = ListNode()
oldHead.next = head
# cur = oldHead
newHead = ListNode()
while oldHead.next != None:
cur = oldHead.next
oldHead.next = cur.next
cur.next = newHead.next
newHead.next = cur
return newHead.next
# @lc code=end
|
4007ae49ed5554864b3d2aceb339db6204a60d3e | sarkarChanchal105/Coding | /HackerRank/python/Easy/ctci-array-left-rotation.py | 2,344 | 4.40625 | 4 | """
https://www.hackerrank.com/challenges/ctci-array-left-rotation/problem
A left rotation operation on an array shifts each of the array's elements unit to the left. For example, if left rotations are performed on array , then the array would become . Note that the lowest index item moves to the highest index in a rotation. This is called a circular array.
Given an array of integers and a number, , perform left rotations on the array. Return the updated array to be printed as a single line of space-separated integers.
Function Description
Complete the function rotLeft in the editor below.
rotLeft has the following parameter(s):
int a[n]: the array to rotate
int d: the number of rotations
Returns
int a'[n]: the rotated array
Input Format
The first line contains two space-separated integers and , the size of and the number of left rotations.
The second line contains space-separated integers, each an .
Constraints
Sample Input
5 4
1 2 3 4 5
Sample Output
5 1 2 3 4
Explanation
When we perform left rotations, the array undergoes the following sequence of changes:
"""
# !/bin/python3
import math
import os
import random
import re
import sys
#
# Complete the 'rotLeft' function below.
#
# The function is expected to return an INTEGER_ARRAY.
# The function accepts following parameters:
# 1. INTEGER_ARRAY a
# 2. INTEGER d
#
def rotLeft(a, d):
# Write your code here
n = len(a)
if d > n:
d = d % n
if d == n:
reverseArray(a, start=0, end=n - 1)
return a
if d == 0:
return a
## reverse the subarray 0 to d-1
reverseArray(a, start=0, end=d - 1)
## reverse the subarray d to n-1
reverseArray(a, start=d, end=n - 1)
## revere the whole array now
reverseArray(a, start=0, end=n - 1)
return a
def reverseArray(array, start, end):
while start <= end:
array[start], array[end] = array[end], array[start]
start += 1
end -= 1
if __name__ == '__main__':
fptr = open(os.environ['OUTPUT_PATH'], 'w')
first_multiple_input = input().rstrip().split()
n = int(first_multiple_input[0])
d = int(first_multiple_input[1])
a = list(map(int, input().rstrip().split()))
result = rotLeft(a, d)
fptr.write(' '.join(map(str, result)))
fptr.write('\n')
fptr.close()
|
6ce2e593f6f01bd793f14ead1451067f6b93dc76 | machukhinktato/test_tasks_python | /task4/SRC/task4.py | 1,013 | 3.875 | 4 | def main(str1=None, str2=None):
"""
Функция сравнивает два строчных элемента, где
в качестве второго элемента, может быть передана строка,
внутри которой есть символ '*', заменяющий любое кол-во
любых символов.
"""
if str1 == None or str2 == None:
return print('В функцию не были переданы аргументы.\n'
'Принимаются аргументы строчного типа.\n'
'Процесс будет завершен.')
is_same = False
length = len(str2[0:(str2.index('*'))])
if '*' in str2:
is_same = True if str1[0:length] == str2[0:length] else False
elif str1 == str2:
is_same = True
elif "*" == str2[0]:
is_same = True
return print(['OK' if is_same else 'KO'][0])
if __name__ == '__main__':
main()
|
0387cdec127355d3098d47cb058420ebf0105116 | mohan78/PythonProgramming | /advanced/closure.py | 3,823 | 4.5 | 4 | """
A closure is a function object that remembers the data in enclosed scopes. To know more about
closure, we need to know about types of scopes in Python. There are 3 types of scopes in python
Built-in, Global, Local, Non-Local or Enclosing scope.
1. Built-in scope: This is the widest scope. This consist of all the names that are loaded when
we start the interpreter.
2. Global: When a variable are defined in the script not inside any conditional, loops or functional
namespace, then it is called to be a Global variable and the namespace is called Global namespace.
Global variables can be accessed from anywhere in the script. A global variable can be created using
keyword 'global'.
3. Local: When a variable are defined in a loop or condition block or function namespace, then it is
called to be local variable and it is called Local namespace.
4. Non-Local or Enclosing: When a variable is defined in a nested function it is called non-local
variable and the scope is called enclosing scope. This variable will neither have global or local scope.
a Non-Local variable can be created using the keyword 'nonlocal'.
"""
global_x = 10 # This is a global variable
print(f"Value of global variable 'global_x' is {global_x}") # Output: 10
print("\n")
def func_1():
# To be able to change the value of a global variable inside a function, we need to declare it as
# a global variable.
print("-"*30, "In func_1", "-"*30)
global global_x
print(f"Value of global variable 'global_x' inside func_1 is {global_x}")
global_x = 20
print("-"*30, "End of func_1", "-"*30, "\n")
def func_2():
# A variable declared inside a function consists of local scope. It will not be available to access
# outside this function
print("-"*30, "In func_2", "-"*30)
local_x = 10
print(f"Value of local variable 'local_x' is {local_x}") # Output: 10
print("-"*30, "End of func_2", "-"*30, "\n")
def func_3():
# In this, there is a nested function nested_func defined inside func_3. That nested function also
# consists of another local_x which is redefined with value of 30.
print("-"*30, "In func_3", "-"*30)
local_x = 10
def nested_func():
local_x = 30
print(f"Value of local variable 'local_x' inside nested_func is {local_x}")
nested_func()
print(f"Value of local variable 'local_x' inside func_3 is {local_x}")
print("-"*30, "End of func_3", "-"*30, "\n")
def func_4():
print("-"*30, "In func_4", "-"*30)
local_x = 10
print(f"Value of local variable 'local_x' inside func_4 is {local_x}")
def nested_func():
# Here we defined local_x is defined with nonlocal keyword meaning setting its scope to nonlocal
# Hence this variable will same as the local_x variable defined in above func_4. Therefore changing
# its value here will reflect in func_4's local_x.
nonlocal local_x
local_x = 30
nested_func()
print(f"Value of local variable 'local_x' inside func_4 after executing nested_func is {local_x}")
print("-"*30, "End of func_4", "-"*30, "\n")
def func_5():
print("-"*30, "In func_5", "-"*30)
local_x = 10
print(f"Value of local variable 'local_x' inside func_5 is {local_x}")
def nested_func():
# We can access local variable local_x inside nested_func even though it is not supplied to
# nested_func as an argument. This is called 'Closure'.
print(f"Value of variable 'local_x' accessed inside nested_func is {local_x}")
nested_func()
print("-"*30, "End of func_5", "-"*30, "\n")
func_1()
func_2()
func_3()
func_4()
func_5()
print(f"Value of global variable global_x after re-assignment in func_1 is {global_x}") # Output: 20
|
a950f4779ec053b7004de84f56f9411c4909b4d0 | MrHamdulay/csc3-capstone | /examples/data/Assignment_8/mzwrun001/question2.py | 366 | 3.921875 | 4 | """Program to check for paired letters in a string
Runako Muzwidzwa
06/05/2014"""
v=input("Enter a message:\n")
def pairs(v):
if len(v)<2:
return 0 #to return number
elif v[0] == v[1]:
n=v[2:]
return 1 + pairs(n)
else:
return pairs(v[1:])#calls function with the message after slicing
print("Number of pairs:",pairs(v)) |
1d2853474fd5c24f18e9f32b98efcf15fa82b2e1 | smartLp/Sort | /Sort_Algorithm.py | 5,782 | 3.828125 | 4 |
# coding: utf-8
# # 几种常见的排序算法
# ## 1.插入排序
# In[2]:
import time
from functools import wraps
def fn_timer(function):
@wraps(function)
def function_timer(*args, **kwargs):
t0 = time.time()
for i in range(100000):
result = function(*args, **kwargs)
t1 = time.time()
print ("Total time running %s: %s seconds" %
(function.func_name, str(t1-t0))
)
return result
return function_timer
@fn_timer
def insertedsort(l):
for i in range(1,len(l)):
j = i-1
while l[i]<l[j] and j>-1:
key = l[i]
l[j+1] = l[j]
i = j
l[i] = key
j -= 1
return l
if __name__ == "__main__":
l = [3,2,5,1,7,9,7,0,10]
result = insertedsort(l)
print (result)
# In[ ]:
# In[3]:
@fn_timer
def insertedsorted(l):
for i in range(1,len(l)):
for j in range(i-1,-1,-1):
while l[i]<l[j]:
key = l[i]
l[j+1] = l[j]
i = j
l[i] = key
return l
if __name__ == "__main__":
l = [3,2,5,1,7,9,7,0,10]
result = insertedsorted(l)
print (result)
# In[ ]:
# ## 2.冒泡排序
# In[4]:
@fn_timer
def maopaosort(l):
for index in range(len(l)-1):
if l[index]>l[index+1]:
l[index],l[index+1] = l[index+1],l[index]
return l
if __name__ == "__main__":
l = [3,2,5,1,7,9,7,0,10]
result = insertedsort(l)
print result
# ## 3. 快速排序
# In[1]:
'''
def QuickSort(l,front,end):
if front < end:
pivot_index = Partition(l,front,end)
QuickSort(l,front,pivot_index-1)
QuickSort(l,pivot_index+1,end)
return l
def Partition(l,front,end):
pivot = l[end]
i = front - 1
for j in range(end):
if l[j] < pivot:
i += 1
l[i],l[j] = l[j],l[i]
l[i+1],l[end]=l[end],l[i+1]
return i+1
def main():
l = [3,2,5,1,7,9,7,0,6]
index = range(len(l))
print index[0],index[-1]
result = QuickSort(l,index[0],index[-1])
print result
if __name__ == "__main__":
main()
'''
def QuickSort(Arr):
if len(Arr) <= 1:
return Arr
else:
pivot = Arr[-1]
LessThan_pivot = [element for element in Arr[:-1] if element <= pivot]
GreatThan_pivot = [element for element in Arr[:-1] if element > pivot]
return QuickSort(LessThan_pivot) + [pivot] + QuickSort(GreatThan_pivot)
if __name__ == "__main__":
l = [3,2,5,1,7,9,7,0,10]
result = QuickSort(l)
print result
# ## 4.归并排序
#
# In[33]:
def Merge(Arr,L,M,R):
Left_Size = M - L
Right_Size = R - M + 1
Left_Arr = []
Right_Arr = []
# fill in the left sub array
for i in range(L,M):
Left_Arr.append(Arr[i])
#fill in the right sub array
for j in range(M,R+1):
Right_Arr.append(Arr[j])
#Merge into the original array
i = 0
j = 0
k = L
while i<Left_Size and j<Right_Size:
if Left_Arr[i] < Right_Arr[j]:
Arr[k] = Left_Arr[i]
i += 1
k += 1
else:
Arr[k] = Right_Arr[j]
j += 1
k += 1
while i<Left_Size:
Arr[k] = Left_Arr[i]
i += 1
k += 1
while j < Right_Size:
Arr[k] = Right_Arr[j]
j += 1
k += 1
def MergeSort(Arr,L,R):
if L==R:
return
else:
M = (L + R) // 2
MergeSort(Arr,L,M)
MergeSort(Arr,M+1,R)
Merge(Arr,L,M+1,R)
if __name__ == "__main__":
items = raw_input("Please input the unsorted List separated by commas: ")
collection = [int(item) for item in items.strip().split(",")]
print collection
index = range(len(collection))
L = index[0]
R = index[-1]
MergeSort(collection,L,R)
print collection
# In[21]:
def merge_sort(collection):
"""Pure implementation of the merge sort algorithm in Python"""
length = len(collection)
if length > 1:
midpoint = length//2
left_half = merge_sort(collection[:midpoint])
right_half = merge_sort(collection[midpoint:])
i = 0
j = 0
k = 0
left_length = len(left_half)
right_length = len(right_half)
while i < left_length and j < right_length:
if left_half[i] < right_half[j]:
collection[k] = left_half[i]
i += 1
else:
collection[k] = right_half[j]
j += 1
k += 1
while i < left_length:
collection[k] = left_half[i]
i += 1
k += 1
while j < right_length:
collection[k] = right_half[j]
j += 1
k += 1
return collection
if __name__ == "__main__":
items = raw_input("Please input the unsorted List separated by commas: ")
print items
unsorted = [int(item) for item in items.split(",")]
sorted_list = merge_sort(unsorted)
print sorted_list
# ## 5.选择排序
# In[6]:
def selection_sort(collection):
length = len(collection)
if length == 1:
pass
else:
for i in range(length-1):
for j in range(i+1,length):
if collection[i] > collection[j]:
collection[i],collection[j] = collection[j],collection[i]
return collection
# In[7]:
collection = [2,3,2,5,1]
result = selection_sort(collection)
print result
# In[ ]:
|
e300db0fa9aadd9675ad77d253285ee01bf5357d | faidev/python | /day1/6.guess.py | 234 | 4.09375 | 4 | #!/usr/bin/env python3
age_of_wayne = 28
guess_age = int(input("guess age:"))
if guess_age == age_of_wayne:
print("yes,you got it.")
elif guess_age > age_of_wayne:
print("think smaller...")
else:
print("think bigger!")
|
a56a8f4ea047b3daed4c8b340e9b1af09d721c87 | lukashaverbeck/parknet | /util/concurrent.py | 3,878 | 3.625 | 4 | import math
import time
from typing import Any, Callable
import util
def stabilized_concurrent(name: str, min_delay: float, max_delay: float, steps: int, daemon: bool = True) -> Callable:
""" Decorator factory for concurrently executing a function with dynamic delays in between.
Whenever a function is decorated with ``@stabilized_concurrent(...)``, it will be executed concurrently with
dynamically changing delays in between two executions. The longer the execution has been stable, the longer the
delay.
An execution was stable exactly if the decorated function returned True.
Notes:
A ``@stabilized_concurrent`` function cannot return Values other than None since it is run in its own
thread.
Args:
name: Name of the thread the function is executed in.
min_delay: Lower bound for the dynamic delay.
max_delay: Upper bound for the dynamic delay.
steps: Number of stable executions to reach the maximum delay.
daemon: Boolean whether the thread in which the function is executed is daemonic.
Returns:
The according decorator function.
"""
# the minimum delay must be less than the maximum delay
assert 0 < min_delay < max_delay, "Minimum delay must be positive and less than max delay."
# there must be at least one step from minimum to maximum delay
assert steps > 0, "It must take at least one step to reach the maximum delay."
def calc_delay(stable_intervals: int) -> float:
""" Calculates the delay before the next execution based on the number of consecutive stable executions.
The delay d is defined as min_delay * exp(stable_intervals * ln(max_delay / min_delay) / steps) normally but is
at maximum ``max_delay``. For 0 stable intervals the delay is ``min_delay``. After ``steps`` stable intervals,
the delay is ``max_delay``.
Args:
stable_intervals: Number of consecutive stable executions.
Returns:
The delay to wait before the next execution in seconds.
"""
return min(max_delay, min_delay * math.exp(stable_intervals * math.log(max_delay / min_delay) / steps))
def decorator(function: Callable[[Any], bool]) -> Callable:
@util.threaded(name, daemon)
def concurrent_execution(*args, **kwargs) -> None:
""" Concurrently executes the decorated function with dynamically calculated delays in between.
The delay is calculated based on the number of consecutive stable executions of the function.
The execution of the decorated function was stable exactly if the function returns ``True``.
Args:
*args: Arguments, the decorated function is called with.
**kwargs: Keyword arguments, the decorated function is called with.
"""
# initially there have been no stable executions
stable_intervals = 0
while True:
# execute the decorated function and save the result
stable = function(*args, **kwargs)
# the decorated function must return a Boolean
assert stable is True or stable is False, f"A stabilized concurrent function must return a Boolean " \
f"but {function.__name__}(...) did not."
# calculate a dynamic delay and stop the execution for the corresponding duration
delay = calc_delay(stable_intervals)
time.sleep(delay)
# update number of stable executions accordingly to the result of the latest execution
stable_intervals = stable_intervals + 1 if stable else 0
return concurrent_execution
return decorator
|
e4733b2b9ef857b4fa3180a72bf6d0f44d9c44cc | kevinelong/AM_2015_04_06 | /Week2/bitmask.py | 1,458 | 3.8125 | 4 | class permissions():
READ = 4
WRITE = 2
EXECUTE = 1
def __init__(self):
self.permissions = 0
def allow(self, permission):
#USE "OR" (vertical bar) to set a bit
self.permissions = self.permissions | permission
def revoke(self, permission):
#USE "AND" (ampersand) and "NOT" (tilde)
# to invert input and unset a bit
self.permissions = self.permissions & ~permission
def can(self, permission):
#USE "AND" (ampersand) check a bit
# It will be the value of the bit 1,2,4,8 etc if set
# compare to zero so as to return true only if the bit is set
return (permission & self.permissions) != 0
def __str__(self):
#Use format to create padded binary output
return format(self.permissions, "#010b") + " --> " + str(self.permissions)
# LOGIC TRUTH TABLE
# | OR
# 0 1
#
# 0 0 1
# 1 1 1
# & AND
# 0 1
#
# 0 0 0
# 1 0 1
# ~ NOT
#
# 0 1
# 1 0
# 6 3 1
# 4 2 6 8 4 2 1
# -------------
# 0 0 0 0 1 1 1 -> decimal 7 showing 4+2+1 all three set
p = permissions()
print(p)
print("CAN READ? " + str(p.can(p.READ)))
p.allow(p.READ)
print(p)
p.allow(p.WRITE)
print(p)
p.allow(p.EXECUTE)
print(p)
p.revoke(p.WRITE)
print(p)
print("CAN READ? " + str(p.can(p.READ)))
# OUTPUTS:
# 0b00000000 --> 0
# CAN READ? False
# 0b00000100 --> 4
# 0b00000110 --> 6
# 0b00000111 --> 7
# 0b00000101 --> 5
# CAN READ? True |
552bef72b059809ae77c2658dcec7f47e76fa136 | jiaozhennan/python300 | /012-dotProduct.py | 406 | 3.5 | 4 | class Solution:
def dotProduct(self, A, B):
if len(A) == 0 or len(B) == 0 or len(A) != len(B):
return -1
ans = 0
for i in range(len(A)):
ans += A[i] * B[i]
return ans
if __name__ == '__main__':
A = [1, 1, 1]
B = [2, 2, 2]
solution = Solution()
print("A与B分别为:", A, B)
print("点积为:", solution.dotProduct(A,B)) |
0c2fcb7529b603ffb5eef3c1de0bd5cea60fac38 | rentes/Euler | /problem1.py | 577 | 3.671875 | 4 | """Project Euler - Problem 1 - http://projecteuler.net/problem=1"""
import sys
import time
import tools.timeutils as timeutils
def sum_numbers():
"""
Sums all natural numbers below 1000 that are multiples of 3 or 5
Returns: int
"""
a, b = 1, 0
while a < 1000:
if (a % 3 == 0) or (a % 5 == 0):
b += a
a += 1
return b
def main():
"""Main entry point for the script"""
start = time.time()
print(sum_numbers())
timeutils.elapsed_time(time.time() - start)
if __name__ == '__main__':
sys.exit(main())
|
41789e171b1594aa69ef8a5447f5c244b3842946 | trgreenman88/CS_21 | /greenman_archery.py | 3,766 | 4.0625 | 4 | # Trent Greenman
# CS 21, Fall 2018
# Program: Archery
# Import graphics
from graphics import *
# This function creates the target
def create_target_window():
# Creates the graphics window
win = GraphWin()
# Set the size of the graph
win.setCoords(-6, -6, 6, 6)
# Set the color of the background
win.setBackground("gray")
# Set a point in the center so the circles are all centered
p = Point(0, 0)
# Create the outer white circle with radius 5
c5 = Circle(p, 5)
c5.setFill("white")
c5.draw(win)
# Create the black circle with radius 4 over the white circle
c4 = Circle(p, 4)
c4.setFill("black")
c4.draw(win)
# Create the blue circle with radius 3 over the black circle
c3 = Circle(p, 3)
c3.setFill("blue")
c3.draw(win)
# Create the red circle with radius 2 over the blue circle
c2 = Circle(p, 2)
c2.setFill("red")
c2.draw(win)
# Create the inside yellow circle with radius 1 over the red circle
c1 = Circle(p, 1)
c1.setFill("yellow")
c1.draw(win)
# return the window in which the target is drawn
return win
# This function gives us the score of each arrow shot
def get_score(point):
# Initialize the score to be 0
score = 0
# For all of these, if the value of point (given in main()) is
# less than the radius ** 2, then add the given point values
# If the arrow hits the yellow circle, add 9 points to score
if point <= 1:
score += 9
# If the arrow hits the red circle, add 7 points to score
elif point <= 4:
score += 7
# If the arrow hits the blue circle, add 5 points to score
elif point <= 9:
score += 5
# If the arrow hits the black circle, add 3 points to score
elif point <= 16:
score += 3
# If the arrow hits the white circle, add 1 point to score
elif point <= 25:
score += 1
# If the arrow doesn't hit the target, add 0 points to score
else:
score += 0
# Return the arrow's score as an integer
return score
# The main function gets the mouse clicks
def main():
# Call the first function
win = create_target_window()
# Initialize the total score to start at 0
total = 0
# Keep taking arrow shots until the player presses "q"
while win.checkKey() != "q":
# Have the score show up on the graphics window. Center it
# at (0, -5.5) so it is right below the target
t = Text(Point(0,-5.5), "Current Score: " + str(total))
# Draw the text on the graphics window
t.draw(win)
# If there is a mouse click, set this point to be p1
p1 = win.checkMouse()
# Only execute the following code if there is actually a mouse
# click. Without the mouse click, p1 has no value and we cannot
# draw the points or get x and y values for a nonexistant point
if type(p1) == Point:
# Draw the point
p1.draw(win)
# Call the score function for each arrow and add it to the
# total score. We want to have point in get_score(point) be
# equal to x**2 + y**2 so we can use pythagorean's theorem
# to make sure our point is inside a given radius
total += get_score(p1.getX() ** 2 + p1.getY() ** 2)
# Create a gray rectangle to cover up the score each time so
# that we do not end up with a bunch of overlaped scores and
# we can only see the most recent score
r = Rectangle(Point(-6,-6),Point(6,-5.1))
r.setFill("gray")
r.setOutline("gray")
r.draw(win)
# If the loop is broken by typint "q", close the window
win.close()
# Run the main function
main()
|
8464c89eb3726f9c3cd7220785e869cf59d95c6c | jad2192/babys_first_repo | /random/graph_algs.py | 5,058 | 3.796875 | 4 | # Most of these algorithms are derived from psuedocode in Cormen et. al.
inf = float('inf')
class Vertex(object):
""" Adjacent list implementation of a graph. Create a vertex (v) and then its adjacent edges are stored
in the list v.edges. A graph will then just be a set of vertex objects. Can use this to implement
directed/undirected and weighted/unweighted graphs easily."""
def __init__(self, adj=[]):
self.adjacent = adj
def get_edges(self, adj_vert):
""" Input an array-like object "adj_vert" containing all the vertices directly connected to our
current vertex."""
for u in adj_vert:
self.adjacent.append(u)
def __repr__(self):
return str(self)
def __str__(self):
return str(self)
class Priority_Queue_Min(object):
""" Heap implementation of priority queue of objects with priorities (keys) stored in
a dictionary P."""
def __init__(self, A=[],P={}):
self.heap = A
self.P = P
if len(self.heap) > 0:
self.build_min_heap()
def min_heapify(self,i):
P = self.P
l = 2*i + 1
r = 2*i + 2
if l < len(self.heap) and P[self.heap[l]] < P[self.heap[i]]:
smallest = l
else:
smallest = i
if r < len(self.heap) and P[self.heap[r]] < P[self.heap[smallest]]:
smallest = r
if smallest != i:
self.heap[i], self.heap[smallest] = self.heap[smallest], self.heap[i]
self.min_heapify(smallest)
def build_min_heap(self):
k = (len(self.heap) // 2) - 1
for i in range(k,-1,-1):
self.min_heapify(i)
def extract_min(self):
if len(self.heap) < 1:
print('heap-underflow')
return
m = self.heap[0]
self.heap[0] = self.heap[-1]
self.heap = self.heap[:-1]
self.min_heapify(1)
return m
def decrease_key(self,x,key):
i = self.heap.get_index(x)
if key > self.P[self.heap[i]]:
print('Can only decrease key value')
return
self.P[self.heap[i]] = key
while i > 0 and self.P[self.heap[(i-1)//2]] > self.P[self.heap[i]]:
self.heap[i], self.heap[(i-1)//2] = self.heap[(i-2)//2], self.heap[i]
i = (i-1) // 2
def insert(self,x,key_x):
self.heap.append(x)
self.P[x] = inf
self.decrease_key(len(self.heap),key_x)
# Single Shortest Paths
def init_single_source(G,s):
P = {}
pi = {}
for v in G:
P[v] = inf
pi[v] = None
P[s] = 0
return P, pi
def relax(u,v,P,pi,w):
""" Sub routine that will update the distances. Here w is the dictionary encoding the edge weights,
i.e. w[(u,v)] = weight of edge from u to v."""
P, pi = P, pi
if P[v] > P[u] + w[(u,v)]:
P[v] = P[u] + w[(u,v)]
pi[v] = u
return P, pi
def Bellman_Ford(G,w,s):
""" Bellman-Ford algorithm for finding a single shortest path from a source, s, to every vertex
in the connected component containing s. This algorithm is less efficient than Dijkstra's
but can handle the case of negative edge weights. It also has a built in infinite, negative-weight
cycle detector."""
P, pi = init_single_source(G,s)
for i in range(len(G)-1):
for v in G:
for u in v.adjacent: # These two lines (100-101) are equivalent to looping over the edges of the graph.
P, pi = relax(v,u,P,pi,w)
for v in G: # Infinite negative cycle detection.
for u in v.adjacent:
if P[u] > P[v] + w[(v,u)]:
print('Negative weight cycle detected')
return False
return P, pi
def Dijkstra(G,w,s):
""" Dijkstra's is faster than Bellman-Ford, but is only valid when the weights are positive."""
P, pi = init_single_source(G,s)
S = []
Q = Priority_Queue_min(G,P)
while len(Q.heap) > 0:
u = Q.extract_min()
S.append(u)
for v in u.adjacent:
sum = Q.P[u] + w[(u,v)]
if Q.P[v] > sum:
Q.decrease_key(v,sum)
pi[v] = u
P = Q.P
return P, pi
def find_shortest_path(G,w,s,t):
""" This function will print a shortest path from s to t, as well as its weight. Assumes no
negative cycles."""
m = min(list(w.values()))
if m >= 0:
P, pi = Dijkstra(G,w,s)
else:
P, pi = Bellman_Ford(G,w,s)
if P[t] < inf:
path = []
p = t
while P[p] != 0:
path = [str(p)] + path
p = pi[p]
print("-->".join(path))
print('Weight = ', P[t])
else:
print('They are not connected')
# Bredth First Search
def BFS(G,s):
color = {}
P = {}
pi = {}
for v in G:
color[v] = 'white'
pi[v] = None
P[v] = inf
color[s] = 'grey'
P[s] = 0
Q = [s]
while Q:
u = Q.pop(0)
for v in u.adjacent:
if color[v] == 'white':
color[v] = 'grey'
P[v] = P[u] + 1
pi[v] = u
Q.append(v)
color[u] = 'black'
return P, pi
# Minimum Spanning Tree
def Prim(G,w,r):
""" Prim's algorithm starting with arbitrary root vertex r. Here we assume G is connected and undirected.
This function returns the dictionary 'pi' which keeps track of the parent of a vertex in the MST if
the vertex is in the MST and keeps it NIL otherwise. Can easily use this info to print out the tree."""
P, pi = {}, {}
for u in G:
P[u] = inf
pi[u] = None
P[r] = 0
Q = Priority_Queue_Min(G,P)
while Q.heap:
u = Q.extract_min()
for v in u.adjacent:
if v in Q.heap and w[(u,v)] < Q.P[v]:
pi[v] = u
Q.decrease_key(v,w[(u,v)])
return pi
|
de18edf082547b02c9e908203eb93078dfb86dee | thackerdynasty/Guess-the-number- | /main.py | 118 | 3.546875 | 4 | from game import *
import random
Guesses = 0
name = input("Hello! What is your name? ")
number = random.randint(1, 20) |
8aa1825e40be87360a91c93838a8a6e7224fca1a | MechaMonst3r/Python-Assignment-1 | /Assignment 1/dayoldbread.py | 918 | 3.90625 | 4 | # Name: Luke Bowden
# Student Number: t00040951
# Lab Number: 1
# Date: 2020-09-16
# Description: Takes in input from a user who wishes to buy old
# bread at a discount price and produces the total.
#Defining Constants and variables.
BREADCOST = 3.49;
DISCOUNT = 0.6;
totalBread = 0.0;
totalDiscount = 0.0;
totalSale = 0.0;
#Gets input from user.
userInput = float(input("Enter number of loaves of old bread you want to buy:\n"));
#Does caluclations to get the total cost of bread, the discount, and applies the proper amount to the sale total.
totalBread = userInput * BREADCOST;
totalDiscount = totalBread * DISCOUNT;
totalSale = totalBread - totalDiscount;
#Prints the results to the user and formats it to the second decimal.
print("Cost per loaf: $" + "{:.2f}".format(totalBread));
print("Amount you save: $" + "{:.2f}".format(totalDiscount));
print("Total price: $" + "{:.2f}".format(totalSale));
|
bfa4c8529f95a85f03cd0cce65bd3d03827c369a | SaiHarsh/twitter_anaslysis_Search | /crowd dynamics programs/date_max_min_median.py | 2,126 | 3.5 | 4 | #find median of hours group by date
#step one median for a next step of median of median
#find the min, max, sum, mean, median values per date and day
#change the group by option from date/day or any suitable as needed.
import pandas as pd
from datetime import datetime
import csv
cols = ['date', 'startTime', 'endTime', 'day', 'count', 'unique']
df = pd.read_csv('o_1_hour.csv', header=None, names=cols)
c_max = df.groupby(['day'])[['count']].max() #max of count day-wise
c_min = df.groupby(['day'])[['count']].min() #min of count day-wise
u_max = df.groupby(['day'])[['unique']].max() #max of unique day-wise
u_min = df.groupby(['day'])[['unique']].min() #min of unique day-wise
c_sum = df.groupby(['day'])[['count']].sum() #sum of count day-wise
u_sum = df.groupby(['day'])[['unique']].sum() #sum of unique day-wise
c_mean = df.groupby(['day'])[['count']].mean().astype(int) #avg of count day-wise
u_mean = df.groupby(['day'])[['unique']].mean().astype(int) #avg of unique day-wise
c_med = df.groupby(['day'])[['count']].median().astype(int) #median of count day-wise
u_med = df.groupby(['day'])[['unique']].median().astype(int) #median of unique day-wise
#dictionary created with new data and respective column names
data_dictionary = {'day': df['day'].unique(), 'max_count': list(c_max['count']), 'min_count': list(c_min['count']), 'max_unique': list(u_max['unique']),
'min_unique': list(u_min['unique']), 'sum_count': list(c_sum['count']), 'sum_unique': list(u_sum['unique']), 'mean_count': list(c_mean['count']),
'mean_unique': list(u_mean['unique']), 'med_count': list(c_med['count']), 'med_unique': list(u_med['unique'])}
#construction of new dataframe with new dictionary formed
new_df = pd.DataFrame(data = data_dictionary)
#output
new_df.to_csv('o_day_min_max.csv', index = False)
'''
cols = ['date_count', 'all_hours','c_min', 'c_max', 'c_med', 'c_med_med', 'u_min', 'u_max', 'u_med', 'u_med_med']
stats = pd.DataFrame([[date_count, all_hours, c_min, c_max, c_med, c_med_med, u_min, u_max, u_med, u_med_med]], columns = cols)
#print (stats)
stats.to_csv('o_stats_by_date.csv', index=False)
'''
|
899c4d0d162f993e54f66f0d390873ac0a7b4d84 | lgauing/Guias-dispositivas-y-ejercicios-en-clase_Lady | /condicion.py | 846 | 3.984375 | 4 | # Lady Mishell Gauin Gusñay
# 3er semestre de software A1
class condicion:
def __init__(self,num1,num2):
self.numero1=num1
self.numero2=num2
numeros=self.numero1+self.numero2
self.numero3=numeros
def usoIf(self):
#if...elif ... else ...: permiten condicionar la ejecucion de uno o varios bloques
# de sentencias al cumplimiento de una o varias condiciones.
if self.numero1 == self.numero2:
print("numero1={}=numero2={} : son iguales".format(self.numero1,self.numero2))
elif self.numero1 == self.numero3:
print("numero1 y numero3 son iguales")
else:
print ("numero diferentes")
# print("instancia de la clase
# cond2= condicion()
# print (cond2.numero3)
# cond2.usoIf()
cond1= condicion(10,10)
cond1.usoIf()
print("Gracias por su visita") |
041bc3ba085aa319a4bdf8fc4cdb822f35aebc82 | tylors1/Leetcode | /Problems/findLargestSum.py | 429 | 4.0625 | 4 | # Given a list of integers, write a function that returns the largest sum of non-adjacent numbers. Numbers can be 0 or negative.
# For example, [2, 4, 6, 8] should return 12, since we pick 4 and 8. [5, 1, 1, 5] should return 10, since we pick 5 and 5.
def findSum(nums):
max1 = nums[0]
maxi = 0
for i in range(len(nums))[1:]:
if max1 < nums[i]:
max1 = nums[i]
maxi = i
nums = [2,4,7,8,9]
print findSum(nums) |
ab3a82c04326e59c7f2c1b5123640f162b57edf4 | XuSShuai/data-structure-and-algorithm | /inverse_pair.py | 1,259 | 3.65625 | 4 | import numpy as np
def merge_sort(arr, L, R):
if L == R:
return 0
mid = (L + R) // 2
return merge_sort(arr, L, mid) + merge_sort(arr, mid + 1, R) + merge(arr, L, mid, R)
def merge(arr, L, mid, R):
p = L
q = mid + 1
res = 0
auxiliary = []
while p <= mid and q <= R:
if arr[p] > arr[q]:
res += (mid - p + 1)
auxiliary.append(arr[q])
q += 1
else:
auxiliary.append(arr[p])
p += 1
if p > mid:
auxiliary.extend(arr[q:R+1])
if q > R:
auxiliary.extend(arr[p:mid+1])
for i in range(len(auxiliary)):
arr[L + i] = auxiliary[i]
return res
def correct_method(arr):
res = 0
for i in range(len(arr)):
for j in range(i + 1, len(arr)):
if arr[j] < arr[i]:
res += 1
return res
def generate_cases():
for i in range(10000):
arr = list(np.random.randint(1, 100, 10))
res_1 = correct_method(arr)
res_2 = merge_sort(arr, 0, len(arr) - 1)
if res_2 != res_1:
print("error")
# print("input array: ")
# arr = list(map(int, stdin.readline().strip().split(",")))
# print(merge_sort(arr, 0, len(arr) - 1))
generate_cases() |
288e1ade1b1ef44ec163d087d0d8b009bb5012c0 | headend/frontend | /utils/__init__.py | 703 | 4.21875 | 4 | import datetime
import time
# Python Program to Convert seconds
# into hours, minutes and seconds
def convert_seconds_to_day(seconds):
days = seconds // (24 * 3600)
seconds = seconds % (24 * 3600)
hour = seconds // 3600
seconds %= 3600
minutes = seconds // 60
seconds %= 60
return "%dd %02dh:%02dm:%02ds" % (days, hour, minutes, seconds)
def caculate_distance(date_update):
now = int(datetime.datetime.now().strftime("%s")) - time.timezone
#print("Timezone %d"%(time.timezone))
#print("Db %s"%(str(date_update)))
#print("Now %s"%(now))
#print("Db %s"%(date_update.strftime("%s")))
return now - (int(date_update.strftime("%s")) - time.timezone)
|
c4cd16869254cf214071eb40d6c9966d5d362ce1 | VladimirKrgn/triangle_test_task | /triangle.py | 815 | 3.8125 | 4 | class Triangle:
def __init__(self, a, b, c):
self.a = a
self.b = b
self.c = c
self.ab_length = (pow(a[0] - b[0], 2) + pow(a[1] - b[1], 2)) ** 0.5
self.ac_length = (pow(a[0] - c[0], 2) + pow(a[1] - c[1], 2)) ** 0.5
self.bc_length = (pow(b[0] - c[0], 2) + pow(b[1] - c[1], 2)) ** 0.5
def is_exist(self):
f = sorted([self.ab_length, self.ac_length, self.bc_length])
if f[2] < sum([f[0], f[1]]):
return True
else:
return False
def get_perimeter(self):
return sum([self.ab_length, self.ac_length, self.bc_length])
def get_area(self):
# p = half_perimeter
p = self.get_perimeter() * 0.5
return (p * (p - self.ab_length) * (p - self.bc_length) * (p - self.ac_length)) ** 0.5
|
52c224954489725a2530ef63cec51b3cfecd16fc | likaon100/pythonbootcamp | /dzień 2/cwiczenie 3.py | 408 | 3.546875 | 4 | Miasto_A = str(input("Miasto A:"))
Miasto_B = str(input("Maisto B:"))
Dystans_z_Miasto_A_do_Miasto_B = int(input(f"Dystand {Miasto_A}-{Miasto_B}:"))
Cena_paliwa = float(input("podaj cene paliwa:"))
spalaniekm = float(input("Spalanie na 100 km:"))
koszt = round((Dystans_z_Miasto_A_do_Miasto_B / 100) * spalaniekm * Cena_paliwa,2)
# koszt = round(koszt,2)
print(f"Koszt przejazdu Warszawa-Gdañsk to {koszt} PLN") |
b50cae8c4fb8c80d5e705c3a940f0e6bdf6079bb | vinodrajendran001/python-interview-prep | /array_rotation.py | 649 | 3.75 | 4 | '''
Left array rotation
d = 4
[1 2 3 4 5] -> [2 3 4 5 1] -> [3 4 5 1 2] -> [4 5 1 2 3] -> [5 1 2 3 4]
'''
class Stack:
def __init__(self):
self.items = []
def isEmpty(self):
return self.items == []
def push(self, item):
self.items.append(item)
def pop(self, item):
return self.items.pop(item)
def peek(self):
return self.items[len(self.items)-1]
def size(self):
return len(self.items)
def __str__(self):
return str(self.items)
def rotation(n, a):
s = Stack()
count = 0
for i in range(len(a)):
s.push(a[i])
while count < n:
top = s.pop(0)
s.push(top)
count = count + 1
return s
print rotation(3,'12345') |
8f0d39fc984a0a82530f1196170914bad6d68cb9 | elikaski/BF-it | /Compiler/Functions.py | 1,223 | 3.59375 | 4 | from copy import deepcopy
from Exceptions import BFSemanticError
functions = dict() # Global dictionary of function_name --> FunctionCompiler objects
def insert_function_object(function):
functions[function.name] = function
def get_function_object(name):
"""
must return a copy of the function
because we might need to compile function recursively
and if we don't work on different copies then we will interfere with the current token pointer etc
for example:
int increase(int n) { return n+1;}
int main() {int x = increase(increase(1));}
while compiling the first call, we start a compilation of the same function object in the second call
"""
return deepcopy(functions[name])
def check_function_exists(function_token, parameters_amount):
function_name = function_token.data
if function_name not in functions:
raise BFSemanticError("Function '%s' is undefined" % str(function_token))
function = functions[function_name]
if len(function.parameters) != parameters_amount:
raise BFSemanticError("Function '%s' has %s parameters (called it with %s parameters)" % (str(function_token), len(function.parameters), parameters_amount))
|
f18fc0dd2e198b463a419d0b8c0fba0f426d2c68 | cybelewang/leetcode-python | /code726NumberOfAtoms.py | 4,089 | 4.375 | 4 | """
726 Number of Atoms
Given a chemical formula (given as a string), return the count of each atom.
An atomic element always starts with an uppercase character, then zero or more lowercase letters, representing the name.
1 or more digits representing the count of that element may follow if the count is greater than 1. If the count is 1, no digits will follow. For example, H2O and H2O2 are possible, but H1O2 is impossible.
Two formulas concatenated together produce another formula. For example, H2O2He3Mg4 is also a formula.
A formula placed in parentheses, and a count (optionally added) is also a formula. For example, (H2O2) and (H2O2)3 are formulas.
Given a formula, output the count of all elements as a string in the following form: the first name (in sorted order), followed by its count (if that count is more than 1), followed by the second name (in sorted order), followed by its count (if that count is more than 1), and so on.
Example 1:
Input:
formula = "H2O"
Output: "H2O"
Explanation:
The count of elements are {'H': 2, 'O': 1}.
Example 2:
Input:
formula = "Mg(OH)2"
Output: "H2MgO2"
Explanation:
The count of elements are {'H': 2, 'Mg': 1, 'O': 2}.
Example 3:
Input:
formula = "K4(ON(SO3)2)2"
Output: "K4N2O14S4"
Explanation:
The count of elements are {'K': 4, 'N': 2, 'O': 14, 'S': 4}.
Note:
All atom names consist of lowercase letters, except for the first character which is uppercase.
The length of formula will be in the range [1, 1000].
formula will only consist of letters, digits, and round parentheses, and is a valid formula as defined in the problem.
"""
from collections import defaultdict
class Solution:
# my own solution with bug fixed
def countOfAtoms(self, formula):
"""
:type formula: str
:rtype: str
"""
stack = []
i, element = 0, ''
count = defaultdict(int)
while i < len(formula):
c = formula[i]
if 64 < ord(c) < 91:
# this is an upper case letter, start a new element
j = i + 1 # end index (exclusive) of the new element
while j < len(formula) and 96 <ord(formula[j])< 123:
j += 1
element = formula[i:j] # new element
# now search for the number for this elements
i = j
while j < len(formula) and 47 < ord(formula[j]) < 58:
j += 1
# update count map
if i == j:
count[element] += 1
else:
count[element] += int(formula[i:j])
i = j
elif c == '(':
# enter a sub formula
stack.append(count)
count = defaultdict(int)
i += 1
else: #if c == ')':
# exit a sub formula
i += 1
# get the repeat of the sub formula
j = i
while j < len(formula) and 47 < ord(formula[j]) < 58:
j += 1
repeat = 1
if i < j:
repeat = int(formula[i:j])
i = j
# apply repeat to current count map
for e in count:
count[e] *= repeat
# merge with previous count map
previous = stack.pop()
for p in previous:
if p in count:
count[p] += previous[p]
else:
count[p] = previous[p]
# bug fixed: should not push count back to stack
#stack.append(count)
# out of while loop
res = ''
for e in sorted(count.keys()):
res += e
if count[e] > 1:
res += str(count[e])
return res
formula = "K4(ON(SO3)2)2"
print(Solution().countOfAtoms(formula))
|
87d0969fb317ffbb90bbfcc0ff280fa4e717df0b | MFTI-winter-20-21/LebedevDanya | /07 палендром.py | 160 | 3.796875 | 4 | k1 = input("слово_")
k2 = k1[::-1].lower()
if k1.lower() == k2:
print ("это палиндром")
else:
print ("это не палиндром")
|
f22fc3e370897c2b7585e3ab8b2a6a0eb0fc6179 | Lusarom/progAvanzada | /ejercicio30.py | 247 | 3.609375 | 4 | KPascal = float(input('Ingresa presion en KPascales:'))
PSI = KPascal * 0.14508
mmHg = KPascal * 0.13332
atm = KPascal / 101.325
print('\n lb in^2: %.3f'%(PSI),'(PSI)')
print('\n mmHg: %.3f'%(mmHg),'(mmHg)')
print('\n atm: %.3f'%(atm),'(atm)')
|
0154ba072831f115ce83a7171852107bee81ce7b | narasimha7854/qazi | /str1.py | 131 | 3.796875 | 4 | #example of String datatype
str="Welcome to Python"
print(str)
print(str[0])
print(str[3:7])
print(str[11:])
print(str[-1]) |
4749198dbedff2acf22ce821be69fcdd5a60293f | alcantara17/dminer | /dminer/ingestion/helpers/helpers.py | 2,219 | 3.671875 | 4 | """
This module provides a set of general purpose helpers for use in parser logic.
"""
import os
def build_filename_timestamp(regex_matcher, base_year=2000):
"""
Given a `re.match` object, this function will return a formatted
timestamp in the format of:
"yyyy:MM:dd HH:mm:ss:SSS"
This function will explicitly throw an error if the `re.match`
object passed does not have the following named groups:
year
month
day
The explicit throwing of errors on these attributes prevents wierd
indexing bugs across different storage backends.
The following attributes of the `re.match` object will be normalized
if they do not exist:
hour -> 00
minute -> 00
second -> 00
"""
# We don't normalize these values, as these are minimum necessary for indexing.
timestamp = ":".join(
[
str(int(regex_matcher.group("year")) + base_year),
str(regex_matcher.group("month")).zfill(2),
str(regex_matcher.group("day")).zfill(2)
]
)
# Normalize the hour to be the afternoon, as we are only pulling to the day
# if the values do not exist
timestamp += " " + ":".join(
[
safe_named_group_value(regex_matcher, "hour", default="00"),
safe_named_group_value(regex_matcher, "minute", default="00"),
safe_named_group_value(regex_matcher, "second", default="00")
]
)
return timestamp
def safe_named_group_value(regex_matcher, name, default=None):
"""
given a `re.match` object, this function will attempt to pull the value
of a named group. If it does not exist (IndexError thrown), the `default`
value will be returned.
"""
try:
return regex_matcher.group(name)
except IndexError:
return default
def get_files(directory):
"""
Fetches file paths for a given directory. It returns the full paths to
each file in the directory, based off of the directory given.
"""
if os.path.exists(directory):
return [os.path.join(directory, f) for f in os.listdir(directory)]
else:
raise Exception("Directory does not exist: %s" % directory)
|
0330ed19241e54b4dcadb420c67ff4a52435f0eb | python-control/python-control | /examples/cruise-control.py | 17,248 | 4.25 | 4 | # cruise-control.py - Cruise control example from FBS
# RMM, 16 May 2019
#
# The cruise control system of a car is a common feedback system encountered
# in everyday life. The system attempts to maintain a constant velocity in the
# presence of disturbances primarily caused by changes in the slope of a
# road. The controller compensates for these unknowns by measuring the speed
# of the car and adjusting the throttle appropriately.
#
# This file explores the dynamics and control of the cruise control system,
# following the material presented in Feedback Systems by Astrom and Murray.
# A full nonlinear model of the vehicle dynamics is used, with both PI and
# state space control laws. Different methods of constructing control systems
# are shown, all using the InputOutputSystem class (and subclasses).
import numpy as np
import matplotlib.pyplot as plt
from math import pi
import control as ct
#
# Section 4.1: Cruise control modeling and control
#
# Vehicle model: vehicle()
#
# To develop a mathematical model we start with a force balance for
# the car body. Let v be the speed of the car, m the total mass
# (including passengers), F the force generated by the contact of the
# wheels with the road, and Fd the disturbance force due to gravity,
# friction, and aerodynamic drag.
def vehicle_update(t, x, u, params={}):
"""Vehicle dynamics for cruise control system.
Parameters
----------
x : array
System state: car velocity in m/s
u : array
System input: [throttle, gear, road_slope], where throttle is
a float between 0 and 1, gear is an integer between 1 and 5,
and road_slope is in rad.
Returns
-------
float
Vehicle acceleration
"""
from math import copysign, sin
sign = lambda x: copysign(1, x) # define the sign() function
# Set up the system parameters
m = params.get('m', 1600.)
g = params.get('g', 9.8)
Cr = params.get('Cr', 0.01)
Cd = params.get('Cd', 0.32)
rho = params.get('rho', 1.3)
A = params.get('A', 2.4)
alpha = params.get(
'alpha', [40, 25, 16, 12, 10]) # gear ratio / wheel radius
# Define variables for vehicle state and inputs
v = x[0] # vehicle velocity
throttle = np.clip(u[0], 0, 1) # vehicle throttle
gear = u[1] # vehicle gear
theta = u[2] # road slope
# Force generated by the engine
omega = alpha[int(gear)-1] * v # engine angular speed
F = alpha[int(gear)-1] * motor_torque(omega, params) * throttle
# Disturbance forces
#
# The disturbance force Fd has three major components: Fg, the forces due
# to gravity; Fr, the forces due to rolling friction; and Fa, the
# aerodynamic drag.
# Letting the slope of the road be \theta (theta), gravity gives the
# force Fg = m g sin \theta.
Fg = m * g * sin(theta)
# A simple model of rolling friction is Fr = m g Cr sgn(v), where Cr is
# the coefficient of rolling friction and sgn(v) is the sign of v (+/- 1) or
# zero if v = 0.
Fr = m * g * Cr * sign(v)
# The aerodynamic drag is proportional to the square of the speed: Fa =
# 1/\rho Cd A |v| v, where \rho is the density of air, Cd is the
# shape-dependent aerodynamic drag coefficient, and A is the frontal area
# of the car.
Fa = 1/2 * rho * Cd * A * abs(v) * v
# Final acceleration on the car
Fd = Fg + Fr + Fa
dv = (F - Fd) / m
return dv
# Engine model: motor_torque
#
# The force F is generated by the engine, whose torque is proportional to
# the rate of fuel injection, which is itself proportional to a control
# signal 0 <= u <= 1 that controls the throttle position. The torque also
# depends on engine speed omega.
def motor_torque(omega, params={}):
# Set up the system parameters
Tm = params.get('Tm', 190.) # engine torque constant
omega_m = params.get('omega_m', 420.) # peak engine angular speed
beta = params.get('beta', 0.4) # peak engine rolloff
return np.clip(Tm * (1 - beta * (omega/omega_m - 1)**2), 0, None)
# Define the input/output system for the vehicle
vehicle = ct.NonlinearIOSystem(
vehicle_update, None, name='vehicle',
inputs=('u', 'gear', 'theta'), outputs=('v'), states=('v'))
# Figure 1.11: A feedback system for controlling the speed of a vehicle. In
# this example, the speed of the vehicle is measured and compared to the
# desired speed. The controller is a PI controller represented as a transfer
# function. In the textbook, the simulations are done for LTI systems, but
# here we simulate the full nonlinear system.
# Construct a PI controller with rolloff, as a transfer function
Kp = 0.5 # proportional gain
Ki = 0.1 # integral gain
control_tf =ct.TransferFunction(
[Kp, Ki], [1, 0.01*Ki/Kp], name='control', inputs='u', outputs='y')
# Construct the closed loop control system
# Inputs: vref, gear, theta
# Outputs: v (vehicle velocity)
cruise_tf = ct.InterconnectedSystem(
(control_tf, vehicle), name='cruise',
connections=[
['control.u', '-vehicle.v'],
['vehicle.u', 'control.y']],
inplist=['control.u', 'vehicle.gear', 'vehicle.theta'],
inputs=['vref', 'gear', 'theta'],
outlist=['vehicle.v', 'vehicle.u'],
outputs=['v', 'u'])
# Define the time and input vectors
T = np.linspace(0, 25, 101)
vref = 20 * np.ones(T.shape)
gear = 4 * np.ones(T.shape)
theta0 = np.zeros(T.shape)
# Now simulate the effect of a hill at t = 5 seconds
plt.figure()
plt.suptitle('Response to change in road slope')
vel_axes = plt.subplot(2, 1, 1)
inp_axes = plt.subplot(2, 1, 2)
theta_hill = np.array([
0 if t <= 5 else
4./180. * pi * (t-5) if t <= 6 else
4./180. * pi for t in T])
for m in (1200, 1600, 2000):
# Compute the equilibrium state for the system
X0, U0 = ct.find_eqpt(
cruise_tf, [0, vref[0]], [vref[0], gear[0], theta0[0]],
iu=[1, 2], y0=[vref[0], 0], iy=[0], params={'m': m})
t, y = ct.input_output_response(
cruise_tf, T, [vref, gear, theta_hill], X0, params={'m': m})
# Plot the velocity
plt.sca(vel_axes)
plt.plot(t, y[0])
# Plot the input
plt.sca(inp_axes)
plt.plot(t, y[1])
# Add labels to the plots
plt.sca(vel_axes)
plt.ylabel('Speed [m/s]')
plt.legend(['m = 1000 kg', 'm = 2000 kg', 'm = 3000 kg'], frameon=False)
plt.sca(inp_axes)
plt.ylabel('Throttle')
plt.xlabel('Time [s]')
# Figure 4.2: Torque curves for a typical car engine. The graph on the
# left shows the torque generated by the engine as a function of the
# angular velocity of the engine, while the curve on the right shows
# torque as a function of car speed for different gears.
# Figure 4.2
fig, axes = plt.subplots(1, 2, figsize=(7, 3))
# (a) - single torque curve as function of omega
ax = axes[0]
omega = np.linspace(0, 700, 701)
ax.plot(omega, motor_torque(omega))
ax.set_xlabel(r'Angular velocity $\omega$ [rad/s]')
ax.set_ylabel('Torque $T$ [Nm]')
ax.grid(True, linestyle='dotted')
# (b) - torque curves in different gears, as function of velocity
ax = axes[1]
v = np.linspace(0, 70, 71)
alpha = [40, 25, 16, 12, 10]
for gear in range(5):
omega = alpha[gear] * v
T = motor_torque(omega)
plt.plot(v, T, color='#1f77b4', linestyle='solid')
# Set up the axes and style
ax.axis([0, 70, 100, 200])
ax.grid(True, linestyle='dotted')
# Add labels
plt.text(11.5, 120, '$n$=1')
ax.text(24, 120, '$n$=2')
ax.text(42.5, 120, '$n$=3')
ax.text(58.5, 120, '$n$=4')
ax.text(58.5, 185, '$n$=5')
ax.set_xlabel('Velocity $v$ [m/s]')
ax.set_ylabel('Torque $T$ [Nm]')
plt.suptitle('Torque curves for typical car engine')
plt.tight_layout()
plt.show(block=False)
# Figure 4.3: Car with cruise control encountering a sloping road
# PI controller model: control_pi()
#
# We add to this model a feedback controller that attempts to regulate the
# speed of the car in the presence of disturbances. We shall use a
# proportional-integral controller
def pi_update(t, x, u, params={}):
# Get the controller parameters that we need
ki = params.get('ki', 0.1)
kaw = params.get('kaw', 2) # anti-windup gain
# Assign variables for inputs and states (for readability)
v = u[0] # current velocity
vref = u[1] # reference velocity
z = x[0] # integrated error
# Compute the nominal controller output (needed for anti-windup)
u_a = pi_output(t, x, u, params)
# Compute anti-windup compensation (scale by ki to account for structure)
u_aw = kaw/ki * (np.clip(u_a, 0, 1) - u_a) if ki != 0 else 0
# State is the integrated error, minus anti-windup compensation
return (vref - v) + u_aw
def pi_output(t, x, u, params={}):
# Get the controller parameters that we need
kp = params.get('kp', 0.5)
ki = params.get('ki', 0.1)
# Assign variables for inputs and states (for readability)
v = u[0] # current velocity
vref = u[1] # reference velocity
z = x[0] # integrated error
# PI controller
return kp * (vref - v) + ki * z
control_pi = ct.NonlinearIOSystem(
pi_update, pi_output, name='control',
inputs=['v', 'vref'], outputs=['u'], states=['z'],
params={'kp': 0.5, 'ki': 0.1})
# Create the closed loop system
cruise_pi = ct.InterconnectedSystem(
(vehicle, control_pi), name='cruise',
connections=[
['vehicle.u', 'control.u'],
['control.v', 'vehicle.v']],
inplist=['control.vref', 'vehicle.gear', 'vehicle.theta'],
outlist=['control.u', 'vehicle.v'], outputs=['u', 'v'])
# Figure 4.3b shows the response of the closed loop system. The figure shows
# that even if the hill is so steep that the throttle changes from 0.17 to
# almost full throttle, the largest speed error is less than 1 m/s, and the
# desired velocity is recovered after 20 s.
# Define a function for creating a "standard" cruise control plot
def cruise_plot(sys, t, y, label=None, t_hill=None, vref=20, antiwindup=False,
linetype='b-', subplots=None, legend=None):
if subplots is None:
subplots = [None, None]
# Figure out the plot bounds and indices
v_min = vref-1.2; v_max = vref+0.5; v_ind = sys.find_output('v')
u_min = 0; u_max = 2 if antiwindup else 1; u_ind = sys.find_output('u')
# Make sure the upper and lower bounds on v are OK
while max(y[v_ind]) > v_max: v_max += 1
while min(y[v_ind]) < v_min: v_min -= 1
# Create arrays for return values
subplot_axes = list(subplots)
# Velocity profile
if subplot_axes[0] is None:
subplot_axes[0] = plt.subplot(2, 1, 1)
else:
plt.sca(subplots[0])
plt.plot(t, y[v_ind], linetype)
plt.plot(t, vref*np.ones(t.shape), 'k-')
if t_hill:
plt.axvline(t_hill, color='k', linestyle='--', label='t hill')
plt.axis([0, t[-1], v_min, v_max])
plt.xlabel('Time $t$ [s]')
plt.ylabel('Velocity $v$ [m/s]')
# Commanded input profile
if subplot_axes[1] is None:
subplot_axes[1] = plt.subplot(2, 1, 2)
else:
plt.sca(subplots[1])
plt.plot(t, y[u_ind], 'r--' if antiwindup else linetype, label=label)
# Applied input profile
if antiwindup:
# TODO: plot the actual signal from the process?
plt.plot(t, np.clip(y[u_ind], 0, 1), linetype, label='Applied')
if t_hill:
plt.axvline(t_hill, color='k', linestyle='--')
if legend:
plt.legend(frameon=False)
plt.axis([0, t[-1], u_min, u_max])
plt.xlabel('Time $t$ [s]')
plt.ylabel('Throttle $u$')
return subplot_axes
# Define the time and input vectors
T = np.linspace(0, 30, 101)
vref = 20 * np.ones(T.shape)
gear = 4 * np.ones(T.shape)
theta0 = np.zeros(T.shape)
# Compute the equilibrium throttle setting for the desired speed (solve for x
# and u given the gear, slope, and desired output velocity)
X0, U0, Y0 = ct.find_eqpt(
cruise_pi, [vref[0], 0], [vref[0], gear[0], theta0[0]],
y0=[0, vref[0]], iu=[1, 2], iy=[1], return_y=True)
# Now simulate the effect of a hill at t = 5 seconds
plt.figure()
plt.suptitle('Car with cruise control encountering sloping road')
theta_hill = [
0 if t <= 5 else
4./180. * pi * (t-5) if t <= 6 else
4./180. * pi for t in T]
t, y = ct.input_output_response(cruise_pi, T, [vref, gear, theta_hill], X0)
cruise_plot(cruise_pi, t, y, t_hill=5)
#
# Example 7.8: State space feedback with integral action
#
# State space controller model: control_sf_ia()
#
# Construct a state space controller with integral action, linearized around
# an equilibrium point. The controller is constructed around the equilibrium
# point (x_d, u_d) and includes both feedforward and feedback compensation.
#
# Controller inputs: (x, y, r) system states, system output, reference
# Controller state: z integrated error (y - r)
# Controller output: u state feedback control
#
# Note: to make the structure of the controller more clear, we implement this
# as a "nonlinear" input/output module, even though the actual input/output
# system is linear. This also allows the use of parameters to set the
# operating point and gains for the controller.
def sf_update(t, z, u, params={}):
y, r = u[1], u[2]
return y - r
def sf_output(t, z, u, params={}):
# Get the controller parameters that we need
K = params.get('K', 0)
ki = params.get('ki', 0)
kf = params.get('kf', 0)
xd = params.get('xd', 0)
yd = params.get('yd', 0)
ud = params.get('ud', 0)
# Get the system state and reference input
x, y, r = u[0], u[1], u[2]
return ud - K * (x - xd) - ki * z + kf * (r - yd)
# Create the input/output system for the controller
control_sf = ct.NonlinearIOSystem(
sf_update, sf_output, name='control',
inputs=('x', 'y', 'r'),
outputs=('u'),
states=('z'))
# Create the closed loop system for the state space controller
cruise_sf = ct.InterconnectedSystem(
(vehicle, control_sf), name='cruise',
connections=[
['vehicle.u', 'control.u'],
['control.x', 'vehicle.v'],
['control.y', 'vehicle.v']],
inplist=['control.r', 'vehicle.gear', 'vehicle.theta'],
outlist=['control.u', 'vehicle.v'], outputs=['u', 'v'])
# Compute the linearization of the dynamics around the equilibrium point
# Y0 represents the steady state with PI control => we can use it to
# identify the steady state velocity and required throttle setting.
xd = Y0[1]
ud = Y0[0]
yd = Y0[1]
# Compute the linearized system at the eq pt
cruise_linearized = ct.linearize(vehicle, xd, [ud, gear[0], 0])
# Construct the gain matrices for the system
A, B, C = cruise_linearized.A, cruise_linearized.B[0, 0], cruise_linearized.C
K = 0.5
kf = -1 / (C * np.linalg.inv(A - B * K) * B)
# Response of the system with no integral feedback term
plt.figure()
plt.suptitle('Cruise control with proportional and PI control')
theta_hill = [
0 if t <= 8 else
4./180. * pi * (t-8) if t <= 9 else
4./180. * pi for t in T]
t, y = ct.input_output_response(
cruise_sf, T, [vref, gear, theta_hill], [X0[0], 0],
params={'K': K, 'kf': kf, 'ki': 0.0, 'kf': kf, 'xd': xd, 'ud': ud, 'yd': yd})
subplots = cruise_plot(cruise_sf, t, y, label='Proportional', linetype='b--')
# Response of the system with state feedback + integral action
t, y = ct.input_output_response(
cruise_sf, T, [vref, gear, theta_hill], [X0[0], 0],
params={'K': K, 'kf': kf, 'ki': 0.1, 'kf': kf, 'xd': xd, 'ud': ud, 'yd': yd})
cruise_plot(cruise_sf, t, y, label='PI control', t_hill=8, linetype='b-',
subplots=subplots, legend=True)
# Example 11.5: simulate the effect of a (steeper) hill at t = 5 seconds
#
# The windup effect occurs when a car encounters a hill that is so steep (6
# deg) that the throttle saturates when the cruise controller attempts to
# maintain speed.
plt.figure()
plt.suptitle('Cruise control with integrator windup')
T = np.linspace(0, 70, 101)
vref = 20 * np.ones(T.shape)
theta_hill = [
0 if t <= 5 else
6./180. * pi * (t-5) if t <= 6 else
6./180. * pi for t in T]
t, y = ct.input_output_response(
cruise_pi, T, [vref, gear, theta_hill], X0,
params={'kaw': 0})
cruise_plot(cruise_pi, t, y, label='Commanded', t_hill=5, antiwindup=True,
legend=True)
# Example 11.6: add anti-windup compensation
#
# Anti-windup can be applied to the system to improve the response. Because of
# the feedback from the actuator model, the output of the integrator is
# quickly reset to a value such that the controller output is at the
# saturation limit.
plt.figure()
plt.suptitle('Cruise control with integrator anti-windup protection')
t, y = ct.input_output_response(
cruise_pi, T, [vref, gear, theta_hill], X0,
params={'kaw': 2.})
cruise_plot(cruise_pi, t, y, label='Commanded', t_hill=5, antiwindup=True,
legend=True)
# If running as a standalone program, show plots and wait before closing
import os
if __name__ == '__main__' and 'PYCONTROL_TEST_EXAMPLES' not in os.environ:
plt.show()
else:
plt.show(block=False)
|
b51722b7d3dae2e6ecdb5ee9362900c154384a72 | Aziz1Diallo/python | /rectangle.py | 249 | 4.03125 | 4 | value=eval(input('type the height of the triangle : '))
row=0
while row<value:
count=0
while count<row:
print(end="")
count+=1
count=0
while count<value:
print(end="*")
count+=1
print()
row+=1
|
f8d7202b89d29c3f595ddc572a09f3d430fca7a1 | nfscan/fuzzy_cnpj_matcher | /models/Cnpj.py | 3,995 | 3.5 | 4 | __author__ = 'paulo.rodenas'
import random
class Cnpj:
"""
Utilty class defines certain methods related to Brazilian CNPJs validation
"""
@staticmethod
def validate(cnpj):
"""
Method to validate brazilian cnpjs
Tests:
>>> print Cnpj.validate('61882613000194')
True
>>> print Cnpj.validate('61882613000195')
False
>>> print Cnpj.validate('53.612.734/0001-98')
True
>>> print Cnpj.validate('69.435.154/0001-02')
True
>>> print Cnpj.validate('69.435.154/0001-01')
False
"""
# cleaning the cnpj
cnpj = cnpj.replace("-", "")
cnpj = cnpj.replace(".", "")
cnpj = cnpj.replace("/", "")
# verifying the length of the cnpj
if len(cnpj) != 14:
return False
# finding out the digits
base_cnpj = cnpj[:-2]
verificadores = cnpj[-2:]
calculated_digits = Cnpj.calculate_last_digits(base_cnpj)
# returnig
return bool(verificadores == calculated_digits[0] + calculated_digits[1])
@staticmethod
def calculate_last_digits(cnpj):
"""
Method to calculate the last two cnpj's digits to make it a valid cnpj
:param cnpj: a base cnpj without the last two digits containing 12 characters
:return:
"""
# verifying the length of the cnpj
if len(cnpj) != 12:
raise Exception('It should have 12 characters')
# defining some variables
lista_validacao_um = [5, 4, 3, 2, 9, 8, 7, 6, 5, 4, 3, 2]
lista_validacao_dois = [6, 5, 4, 3, 2, 9, 8, 7, 6, 5, 4, 3, 2]
# calculating the first digit
soma = 0
id = 0
for numero in cnpj:
# to do not raise indexerrors
try:
lista_validacao_um[id]
except:
break
soma += int(numero) * int(lista_validacao_um[id])
id += 1
soma %= 11
if soma < 2:
digito_um = 0
else:
digito_um = 11 - soma
digito_um = str(digito_um) # converting to string, for later comparison
# calculating the second digit
# suming the two lists
soma = 0
id = 0
cnpj += digito_um
# suming the two lists
for numero in cnpj:
# to do not raise indexerrors
try:
lista_validacao_dois[id]
except:
break
soma += int(numero) * int(lista_validacao_dois[id])
id += 1
# defining the digit
soma = soma % 11
if soma < 2:
digito_dois = 0
else:
digito_dois = 11 - soma
digito_dois = str(digito_dois)
return [digito_um, digito_dois]
@staticmethod
def generate_valid_cnpj():
"""
Generates a random valid cnpj
:return: a valid cnpj
"""
base_cnpj = ''
for x in range(0, 12):
base_cnpj += str(random.randint(0, 9))
last_two_digits = Cnpj.calculate_last_digits(base_cnpj)
base_cnpj += ''.join(last_two_digits)
return base_cnpj
@staticmethod
def generate_valid_cnpj_with_no_branch():
"""
Generates a random valid cnpj using only 0001 as company's branch
:return: a valid cnpj
"""
base_cnpj = ''
for x in range(0, 8):
base_cnpj += str(random.randint(0, 9))
base_cnpj += '0001'
last_two_digits = Cnpj.calculate_last_digits(base_cnpj)
base_cnpj += ''.join(last_two_digits)
return base_cnpj
@staticmethod
def format(cnpj):
"""
Method to format cnpj numbers.
Tests:
>>> print Cnpj.format('53612734000198')
53.612.734/0001-98
"""
return "%s.%s.%s/%s-%s" % (
cnpj[0:2], cnpj[2:5], cnpj[5:8], cnpj[8:12], cnpj[12:14] ) |
fa26b38bb75533aa689f4d28c0a2d076764eab09 | Sisyphus235/tech_lab | /algorithm/array/search_sorted_2d_array.py | 1,021 | 3.984375 | 4 | # -*- coding: utf8 -*-
"""
一个包含整数的二维数组,左到右递增,上到下递增
判断一个整数是否在二维数组中
"""
def search_sorted_2d_array(array, n):
row_len = len(array)
col_len = len(array[0])
row = 0
col = col_len - 1
while row < row_len and col >= 0:
if array[row][col] == n:
return True
elif array[row][col] < n:
row += 1
else:
col -= 1
return False
def test_search_sorted_2d_array():
array = [[1, 8, 9],
[2, 10, 21],
[5, 13, 35]]
assert search_sorted_2d_array(array, 1) is True
assert search_sorted_2d_array(array, 2) is True
assert search_sorted_2d_array(array, 3) is False
assert search_sorted_2d_array(array, 5) is True
assert search_sorted_2d_array(array, 11) is False
assert search_sorted_2d_array(array, 21) is True
assert search_sorted_2d_array(array, 31) is False
if __name__ == '__main__':
test_search_sorted_2d_array()
|
0b1c255e8c2cc6e6775c72050919280a3ff0d361 | lilianakemi/Projeto_Python_Exemplos_Exercicios | /Desenvolve_py/GravarArquvio,Invetario, Leitura,JSON_5/gravarArquivo.py | 412 | 3.953125 | 4 | with open("pagina.html", "w") as pagina:
pagina.write("<body><h1> Esta é uma pagina WEB </h1>")
pagina.write("<br><h2> Abaixo seguem alguns nomes importantes para o projeto: </h2>")
pagina.write("<h3>")
nome=" "
while nome!="SAIR":
nome=input("Digite um nome ou SAIR: ").upper()
if nome!="SAIR":
pagina.write("<br>"+nome)
pagina.write("</h3></body>")
|
8dbebf62eb3446030cfe9502f6ba7f8d1839500b | aizigao/keepTraining | /algorithm/leetCode_xx/380.o-1-时间插入、删除和获取随机元素.py | 1,212 | 3.625 | 4 | #
# @lc app=leetcode.cn id=380 lang=python3
#
# [380] O(1) 时间插入、删除和获取随机元素
#
# @lc code=start
# 变长数组 + 哈希表
class RandomizedSet:
def __init__(self):
self.nums = []
self.indeces = {}
# 如果 val 不存在集合中,则插入并返回 true,否则直接返回 false
def insert(self, val: int) -> bool:
if val in self.indeces:
return False
self.indeces[val] = len(self.nums)
self.nums.append(val)
return True
# 如果 val 在集合中,则删除并返回 true,否则直接返回 false
def remove(self, val: int) -> bool:
if val not in self.indeces:
return False
idx = self.indeces[val]
self.nums[idx] = self.nums[-1]
self.nums.pop()
self.indeces[self.nums[idx]] = idx
del self.indeces[val]
return True
# 集合中等概率地随机获得一个元素
def getRandom(self) -> int:
return choice(self.nums)
# Your RandomizedSet object will be instantiated and called as such:
# obj = RandomizedSet()
# param_1 = obj.insert(val)
# param_2 = obj.remove(val)
# param_3 = obj.getRandom()
# @lc code=end
|
4caf13581ab1f7ce234cadd399146a1dd3f5de26 | scorp6969/Python-Tutorial | /math/math.py | 424 | 3.734375 | 4 | import math
pi = 3.1414
pi_n = -3.1414
a = 10
b = 20
c = 30
# round off the value
print(round(pi))
# round off to the nearest top(ceiling) value
print(math.ceil(pi))
# round off to the nearest low(floor) value
print(math.floor(pi))
# give absolute value
print(abs(pi_n))
# gives power
print(pow(a, 2))
# gives square root
print(math.sqrt(144))
# gives maximum
print(max(a, b, c))
# gives minimum
print(min(a, b, c)) |
a1f8005dbce02f4b98a191beb6f4c6e781c6ac5e | uwseds-sp18/homework-3-dwhite105 | /test_homework3.py | 1,207 | 3.859375 | 4 |
# coding: utf-8
# (5 points). Create a python module named test_homework3.py that tests the code in homework3.py. Write at least 3 tests (e.g., checking column names, number of rows, and verifying which columns constitute a key). Also, write a test to check that the correct exception is generated when an invalid path is provided.
import unittest
from homework3 import create_dataframe
class TestCreateDatabase(unittest.TestCase):
def test_columnnames(self):
columns = create_dataframe('class.db').columns
condition = (len(columns) == 3 and
'category_id' in columns and
'video_id' in columns and
'language' in columns)
self.assertTrue(condition)
def test_keys(self):
df = create_dataframe('class.db')
df_dup = df.drop_duplicates(['language','video_id'])
self.assertTrue(df_dup.shape[0] == df.shape[0])
def test_rows(self):
df = create_dataframe('class.db')
self.assertTrue(df.shape[0] > 10)
def test_file_path(self):
self.assertRaises(ValueError,create_dataframe,'not_a_file_path')
if __name__ == '__main__':
unittest.main()
|
525212302d7411619f01585ec9af0e93cb47c769 | Mus1cBreaker/Smart-Calculator-Hyperskill | /Problems/The sum of numbers in a range/task.py | 315 | 3.84375 | 4 | def range_sum(numbers, a, b):
sum_of_specified_elements = 0
for number in numbers:
if a <= int(number) <= b:
sum_of_specified_elements += int(number)
return sum_of_specified_elements
_numbers = input().split()
_a, _b = input().split()
print(range_sum(_numbers, int(_a), int(_b))) |
490d3dc9ba6a5f750c73d854e24dfe60b649388a | Sroczka/URL | /Python/programmation_objet/wyklad/iteracja.py | 738 | 3.859375 | 4 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 16 14:00:33 2018
@author: janik
"""
class Sequentiel():
def __init__(self):
self.i = 0
def __iter__(self):
return self
def __next__(self):
self.i += 1
if self.i>1000:
raise StopIteration("fin d'itération")
return self.i*self.i
mon_seq = Sequentiel()
for i in mon_seq:
print(i,end=" ")
mon_seq = Sequentiel()
it = mon_seq.__iter__(mon_seq)
try:
i = it.__next__()
while True:
print(i,end=" ")
i = it.__next__()
except StopIteration:
pass
mon_seq = Sequentiel()
it = iter(mon_seq)
try:
i = next(it)
while True:
print(i,end=" ")
i = next(it)
except StopIteration:
pass |
bea057491b6d86e77c55c375bb3dc845a7e11a92 | daniel-reich/turbo-robot | /EyzmkffNRiEBtjAmf_20.py | 972 | 4.53125 | 5 | """
Write the function that takes three dimensions of a brick: height(a), width(b)
and depth(c) and returns `True` if this brick can fit into a hole with the
width(w) and height(h).
### Examples
does_brick_fit(1, 1, 1, 1, 1) ➞ True
does_brick_fit(1, 2, 1, 1, 1) ➞ True
does_brick_fit(1, 2, 2, 1, 1) ➞ False
### Notes
* You can turn the brick with any side towards the hole.
* We assume that the brick fits if its sizes equal the ones of the hole (i.e. brick size should be less than or equal to the size of the hole, not strictly less).
* You **can't** put a brick in at a non-orthogonal angle.
"""
# (a,b,c) -- dimensions of the brick
# (w,h) -- dimensions of the hole
import math
def does_brick_fit(a,b,c, w,h):
if max(a,b,c)==c:
return math.sqrt(a**a+b**b)<= math.sqrt(w**w+h**h)
if max(a,b,c)==b:
return math.sqrt(a**a+c**c)<= math.sqrt(w**w+h**h)
else:
return math.sqrt(c**c+b**b)<= math.sqrt(w**w+h**h)
|
33a25b0b58fc38d6aac5496b6fd232d1b97394b1 | cfranchi/CS4850-Project | /TreeBuilder/csvParser.py | 1,469 | 3.671875 | 4 | class csvParser:
def __init__(self, hierarchy, scanner):
self.hierarchy = hierarchy
self.attributes = scanner.attributes
self.attributeNames = scanner.attributeNames
def sortToHierarchy(self):
print("sorting by hierarchy...")
for i in range(0, len(self.attributes)):
count = 0
temp = self.attributes[i][:]
self.attributes[i] = self.attributes[i][: len(self.hierarchy)]
for j in self.hierarchy:
for k in range(count, len(self.attributes[i])):
self.attributes[i][k] = temp[j]
count += 1
break
print("sorting compete")
print("-----------------------------------------------------------------------------")
def printHierarchy(self):
print("HIERARCHY:\n")
for rank in self.hierarchy:
print(rank.__str__() + " - " + self.attributeNames[rank].__str__())
print("-----------------------------------------------------------------------------")
def parse(self, tree):
print("parsing...")
for i in range(0, len(self.attributes)):
for j in range(0, len(self.hierarchy)):
tree.addNode(self.attributes[i][j], self.hierarchy[j])
tree.updateParentNode(tree.rootNode)
print("parse complete")
print("-----------------------------------------------------------------------------")
|
d2f90a6f2e5494d137644d909c66b98902b3cae0 | N-ickMorris/Location-Assignment | /assignment.py | 4,662 | 3.796875 | 4 | # facilities planning: assignment IP
# this model is intended to minimize the total cost of investing in a set of producers to supply a set of consumers
# ---- setup the model ----
from pyomo.environ import * # imports the pyomo envoirnment
model = AbstractModel() # creates an abstract model
model.name = "Assignment IP Model" # gives the model a name
# ---- define set(s) ----
model.P = Set() # a set of producers
model.C = Set() # a set of consumers
# ---- define parameter(s) ----
model.k = Param(model.P) # cost to set up a producer
model.c = Param(model.P) # the total cost/distance for a producer to satisfy a consumer (ie. transportation, labor, maintenance, etc.)
model.max = Param(model.P) # the max number of consumers that a producer can satisfy
model.xcor = Param(model.C) # the x coordinate of a consumer
model.ycor = Param(model.C) # the y coordinate of a consumer
model.r = Param() # range for a consumer to be satisfied
# ---- define variable(s) ----
model.x = Var(model.C, domain = NonNegativeReals) # the x coordinate of a consumer's producer
model.y = Var(model.C, domain = NonNegativeReals) # the y coordinate of a consumer's producer
model.z = Var(model.P, model.C, domain = Binary) # a producer does/doesn't service a consumer
model.o = Var(model.P, domain = Binary) # a producer is/isn't open
model.dx = Var(model.C, domain = NonNegativeReals) # the x-distance between a consumer and it's producer
model.dy = Var(model.C, domain = NonNegativeReals) # the y-distance between a consumer and it's producer
# ---- define objective function(s) ----
def obj(model):
return sum(model.o[i] * model.k[i] for i in model.P) + sum(sum(model.c[i] * (model.dx[i,j] + model.dy[i,j]) for i in model.P) for j in model.C)
model.obj = Objective(rule = obj, sense = minimize) # a minimization problem of the function defined above
# ---- define constraint(s) ----
def Open(model, i, j):
return model.z[i,j] <= model.o[i] # a producer cannot statisfy a consumer unless it is open
def Prod(model, i):
return sum(model.z[i,j] for j in model.C) <= model.max[i] # a producer cannot satisfy more consumers than it's max
def Cons(model, j):
return sum(model.z[i,j] for i in model.P) == 1 # a consumer must be satisfied by one producer
def RangeX(model, j):
return (model.xcor[j] - model.r) <= model.x[j] <= (model.xcor[j] + model.r) # the x-coordinate of a consumer's producer must be within service range
def RangeY(model, j):
return (model.ycor[j] - model.r) <= model.y[j] <= (model.ycor[j] + model.r) # the y-coordinate of a consumer's producer must be within service range
def EqnX1(model, i, j):
return model.dx[i,j] >= model.x[j] - model.xcor[j] # set 1 of 2 to calculate the x-distance between a consumer and it's producer
def EqnX2(model, i, j):
return model.dx[i,j] >= model.xcor[j] - model.x[j] # set 2 of 2 to calculate the x-distance between a consumer and it's producer
def EqnY1(model, i, j):
return model.dy[i,j] >= model.y[j] - model.ycor[j] # set 1 of 2 to calculate the y-distance between a consumer and it's producer
def EqnY2(model, i, j):
return model.dy[i,j] >= model.ycor[j] - model.y[j] # set 2 of 2 to calculate the y-distance between a consumer and it's producer
model.Setup = Constraint(model.P, model.C, rule = Open) # the setup constraint for every producer
model.Producers = Constraint(model.P, rule = Prod) # the service constraint for every producer
model.Consumers = Constraint(model.C, rule = Cons) # the assignment constraint for every consumer
model.Xrange = Constraint(model.C, rule = RangeX) # the x range constraint on a producer for every consumer
model.Yrange = Constraint(model.C, rule = RangeY) # the y range constraint on a producer for every consumer
model.Xdistance1 = Constraint(model.P, model.C, rule = EqnX1) # the x distance calculation between every producer and consumer (set 1 of 2)
model.Xdistance2 = Constraint(model.P, model.C, rule = EqnX2) # the x distance calculation between every producer and consumer (set 2 of 2)
model.Ydistance1 = Constraint(model.P, model.C, rule = EqnY1) # the y distance calculation between every producer and consumer (set 1 of 2)
model.Ydistance2 = Constraint(model.P, model.C, rule = EqnY2) # the y distance calculation between every producer and consumer (set 2 of 2)
# ---- execute solver ----
from pyomo.opt import SolverFactory
opt = SolverFactory("glpk")
# opt = SolverFactory('ipopt',solver_io='nl')
instance = model.create_instance("assignment.dat")
results = opt.solve(instance)
instance.display() |
bbf940cb21fa2d1dfce5bff3d2180bfb5f333db2 | praxpk/Weather_accidents_prediction | /merge_thread.py | 7,765 | 3.546875 | 4 | import pandas as pd
import datetime
import time
import threading
from selenium import webdriver
import queue
import traceback
class w_sel:
def __init__(self,muni,num):
"""
The queue stores tuples where each tuple contains start and end indices of the rows of the dataframe.
:param muni: the list of municipalities whose data we need to extract
"""
self.q = queue.Queue()
self.muni = muni
self.num=num
def run(self):
"""
Each thread returns its start and end index and that is used to remove the start and end segment tuple on the queue.
This action denotes the successful extraction of data for corresponding rows in dataframe.
:return: None
"""
for i in self.muni:
df = self.filter_records(i)
d={}
for j in range(0,df.shape[0],50):
d[(j,j+50)] = 1
while(True):
if len(d)==0:
break
for j in d.copy():
t=threading.Thread(target=self.create_request,args=(df,j[0],j[1],self.q,self.num))
a = time.time()
t.start()
t.join()
k = self.q.get()
print(k)
d.pop(k)
b=time.time()
print("Time = ",int(b)-int(a))
def filter_records(self,municipality):
"""
Creates a dataframe of munipalities mentioned in the parameters.
:param municipality: municipality whose dataframe is needed.
:return:
"""
print(municipality)
print("filter records")
df = pd.read_csv("filtered_mvc.csv")
df = df.loc[df["Municipality"].isin([municipality])]
print(df.shape[0])
return df
def process_string(self,string_list, _time, _date, muni):
"""
This method takes in the list and associates the time with the particular record. The list contains
weather information where the first entry in the list is the weather condition at 1AM to the last entry
in the list which is the weather condition at 12 AM
:param string_list: weather list.
:param _time: time from the vehicle accident data
:param _date: date of the accident
:param muni: municipality where the accident occured.
:return: list containing date, time, municipality and weather conditions.
"""
data = string_list[(int(_time.split(":")[0])) - 1]
data = data.split()
result = []
result.append(_date)
result.append(_time)
result.append(muni)
result.append(data[2] + data[3])
result.append(data[4] + data[5])
result.append(data[6] + data[7])
result.append(data[8])
result.append(data[9] + data[10])
result.append(data[11] + data[12])
result.append(data[13] + data[14])
result.append(data[15] + data[16])
result.append(data[17])
return result
def create_request(self,df1,start,end,q,num):
"""
This method is used to access the county urls to extract the weather information.
:param df: dataframe of the entire accident dataset
:return: None
"""
# dictionary containing URL templates for each county, append date after last forward slash
url_dict = {"KINGS": "https://www.wunderground.com/history/daily/us/ny/new-york-city/KLGA/date/",
"BRONX": "https://www.wunderground.com/history/daily/us/ny/new-york-city/KLGA/date/",
"QUEENS": "https://www.wunderground.com/history/daily/us/ny/new-york-city/KLGA/date/",
"NEW YORK": "https://www.wunderground.com/history/daily/us/ny/new-york-city/KLGA/date/",
"BROOKHAVEN": "https://www.wunderground.com/history/daily/us/ny/brookhaven/KNYBROOK285/date/",
"HEMPSTEAD": "https://www.wunderground.com/history/daily/us/ny/hempstead/KNYHEMPS2/date/",
"ISLIP": "https://www.wunderground.com/history/daily/us/ny/ronkonkoma/KISP/date/",
"BABYLON": "https://www.wunderground.com/history/daily/us/ny/ronkonkoma/KISP/date/",
"BUFFALO": "https://www.wunderground.com/history/daily/us/ny/buffalo/KBUF/date/",
"ROCHESTER": "https://www.wunderground.com/history/daily/us/ny/rochester/KROC/date/",
"RICHMOND": "https://www.wunderground.com/history/daily/us/ny/new-york-city/KJFK/date/",
"HUNTINGTON": "https://www.wunderground.com/history/daily/us/ny/huntington/KNYHUNTI77/",
"OYSTER BAY": "https://www.wunderground.com/history/daily/us/ny/harrison/KHPN/date/"
}
try:
data_list = []
df = df1.iloc[start:end]
driver = webdriver.Firefox()
for index, row in df.iterrows():
if url_dict.get(row["Municipality"]) is not None:
url = url_dict.get(row["Municipality"])
date = datetime.datetime.strptime(row["Date"], "%m/%d/%Y").strftime(
"%Y-%m-%d") # convert date to appropriate format
url += str(date)
result = []
elem=""
# extract table from website using table's Xpath
try:
driver.get(url)
elem = driver.find_elements_by_xpath(
"/html/body/app-root/app-history/one-column-layout/wu-header/sidenav/mat-sidenav-container/mat-sidenav-content/div/section/div[2]/div[1]/div[5]/div[1]/div/lib-city-history-observation/div/div[2]/table/tbody")
except:
driver = webdriver.Firefox()
continue
# access element's text and process the string.
for i in elem:
string = ""
for j in i.text:
if j is not "\n": # append to list when break line element is encountered.
string += j
else:
result.append(string)
string = ""
try:
result = self.process_string(result, row["Time"], row["Date"],
row["Municipality"]) # obtain processed data
except:
continue
data_list.append(result) # append data to a list
# write the list to a new dataframe object
df_data = pd.DataFrame(data_list, index=None, columns=["Date", "Time", "Municipality", "Temperature",
"Dew Point", "Humidity", "Wind Direction", "Wind Speed",
"Wind Gust", "Pressure", "Precipitation", "Condition"])
# write dataframe object to CSV
df_data.to_csv("Weather_municipality"+str(num)+".csv", encoding="utf-8", index=False,mode='a')
driver.close()
q.put((start,end))
except:
traceback.print_exc()
if __name__ == '__main__':
a = w_sel(["ROCHESTER","BUFFALO","RICHMOND"],1)
b = w_sel(["KINGS", "BRONX", "QUEENS","NEW YORK"],2)
c = w_sel(["BROOKHAVEN", "ISLIP", "BABYLON", "HUNTINGTON","OYSTER BAY"],3)
# the following objects can be run as individual threads based on the processing power of the system.
a.run()
b.run()
c.run() |
00da040a1625724485f3ccfb1db5610cffa16990 | james153dot/csp-p2-millard | /toobased.py | 3,409 | 3.75 | 4 | #########################################################################
## #
# Code Maker - By James Lu #
# last revised: 9/24/21 #
# #
# A cybertext program that uses a randomly generated OTP #
# (one-time-pad) to code and decode messages. alpha characters #
# are the only inputs allowed, all others will produce no result #
# User is asked prompted to enter a word message to code or decode. #
# Messages are broken up into individual letters and comapred to the #
# OTP's values. To code the message, letters are replaced with the #
# OTP code value based on the letter's ascii position. To decode, #
# letters are replaced with the OTP code value based on the letter's #
# ascii position. Every OTP is random, so if the program is ran again #
# and the same letters are inputed, the coded message would be #
# different #
# #
#########################################################################
import random
import string
alphabet_string0 = string.ascii_uppercase
alphabet_string1 = string.ascii_lowercase
alphabet_list_up = list(alphabet_string0)
alphabet_list_low = list(alphabet_string1)
random.shuffle(alphabet_list_up)
random.shuffle(alphabet_list_low)
print("Welcome to CodeMaker!")
choice = 0
while choice != 3:
choice = int(input("\n\nPlease enter 1 to code, 2 to decode, or 3 to quit coding \n"))
if choice == 1:
toocoded = input("\nEnter the message to be coded here: ")
waytoocoded = ""
for letter in toocoded:
if (ord(letter)-97) in range(list(alphabet_string1).index('a'),(list(alphabet_string1).index('z')+1)):
waytoocoded += alphabet_list_low[alphabet_list_low.index(letter)-alphabet_list_low.index('z')]
elif (ord(letter)-65) in range(list(alphabet_string0).index('A'),(list(alphabet_string0).index('Z')+1)):
waytoocoded += alphabet_list_up[alphabet_list_up.index(letter)-alphabet_list_up.index('Z')]
elif letter == ' ': waytoocoded += ' '
else: waytoocoded += '?'
print (waytoocoded, "\n\n")
elif choice == 2:
toocoded = input("\nEnter the message to be decoded here: ")
waytoocoded = ""
for letter in toocoded:
if (ord(letter)-97) in range(list(alphabet_string1).index('a'),(list(alphabet_string1).index('z')+1)):
waytoocoded += alphabet_list_low[alphabet_list_low.index(letter)+(alphabet_list_low.index('z')-26)]
elif (ord(letter)-65) in range(list(alphabet_string0).index('A'),(list(alphabet_string0).index('Z')+1)):
waytoocoded += alphabet_list_up[alphabet_list_up.index(letter)+(alphabet_list_up.index('Z')-26)]
elif letter == ' ': waytoocoded += ' '
else: waytoocoded += '?'
print (waytoocoded, "\n\n")
print ("\n***** Thank you, please come again *****\n\n") |
090ce23803d6268131fbd6bcefa9774a702a368e | gauravdal/write_config_in_csv | /python_to_csv.py | 1,199 | 3.875 | 4 | import json
import csv
#making columns for csv files
csv_columns = ['interface','mac']
#Taking input from json file and converting it into dictionary data format
with open('mac_address_table_sw1','r') as read_mac_sw1:
fout = json.loads(read_mac_sw1.read())
print(fout)
#naming a csv file
csv_file = 'names.csv'
try:
with open(csv_file,'w') as csvfile:
#DictWriter function creates an object and maps dictionary onto output rows.
# fieldnames fieldnames parameter is a sequence of keys that identify the
# order in which values in the dictionary passed to the writerow() method are written to file "csv_file"
# extrasaction : If the dictionary passed to the writerow() method contains a key not found in fieldnames,
# the optional extrasaction parameter indicates what action to take. If it is set to 'raise', the default
# value, a ValueError is raised. If it is set to 'ignore', extra values in the dictionary are ignored.
writer = csv.DictWriter(csvfile, fieldnames=csv_columns, extrasaction='ignore')
writer.writeheader()
for data in fout:
writer.writerow(data)
except IOError:
print('I/O error') |
7b95143b47168036304e3bbe9c9dec95fa444d12 | peterjen/MyPython | /D19_Sort_list_tuple_obj.py | 1,366 | 3.84375 | 4 | li = [9,1,8,2,7,3,6,4,5]
s_li = sorted(li)
print('Sorted list variable\t',s_li)
print('Original list variable\t',li)
li.sort()
print('Original list \t',li)
s_li = sorted(li,reverse=True)
print('Sorted list variable\t',s_li)
print('#####################')
tup = (9,1,8,2,7,3,6,4,5)
s_tup = sorted(tup)
print('Sorted tuple variable\t',s_tup)
print('#####################')
dic = {'name':'Peter','job':'SE','age':50,'DOB':None}
s_dic = sorted(dic)
print('Sorted dictionary variable\t',s_dic)
li = [-6,-5,-4,1,2,3]
s_li = sorted(li)
print(s_li)
s_li = sorted(li,key=abs)
print(s_li)
print('##### SORT OBJ/ CLASS ################')
class Employee():
def __init__(self,name,age,salary):
self.name = name
self.age = age
self.salary = salary
def __repr__(self):
return '{} {} ${}'.format(self.name,self.age,self.salary)
e1 = Employee('Peter',50,11111)
e2 = Employee('June',40,22222)
e3 = Employee('Chloe',20,33333)
emp_li = [e1,e2,e3]
def s_emp_name(e):
return e.name
def s_emp_age(e):
return e.age
def s_emp_sal(e):
return e.salary
s_emp_li = sorted(emp_li,key=s_emp_name)
print(s_emp_li)
s_emp_li = sorted(emp_li,key=s_emp_age,reverse=True)
print(s_emp_li)
s_emp_li = sorted(emp_li,key=s_emp_sal)
print(s_emp_li)
print('USE lambda function')
s_emp_li = sorted(emp_li,key=lambda e:e.name)
print(s_emp_li)
|
e527860b7b40e86c4904d708638b8f9155fd6451 | Aasthaengg/IBMdataset | /Python_codes/p03502/s059117073.py | 133 | 3.5 | 4 | N = int(input())
fx = 0
Nx = N
for i in range(8):
fx += Nx % 10
Nx = Nx // 10
if N % fx == 0:
print("Yes")
else:
print("No") |
c1dc8e8e5ab3a961a46db3cd2900afc6a68eba65 | crowddynamics/crowddynamics-research | /data_analysis/radial_mean.py | 2,626 | 3.875 | 4 | import numpy as np
def radial_mean(speed, crowd_pressure, cell_size, width, height):
"""
An approximate method to calculate average speed and crowd pressure at different distances
from the exit. Points at equal spacing along a semicircle are generated, and then it is
identified to which cells in the grid these points belong. The average speed and crowd pressure
at the distance in question is calculated by averaging over the data in the cells.
Parameters
----------
speed : array
Array containing the average speed field.
crowd_pressure : array
Array containing the average crowd pressure field.
cell_size:
Size of the cell in the grid spanning the room.
width: integer
Width of the room.
height:
Length of the room.
Returns
-------
distances: array
Distances to exit.
avg_speed : array
Average speed at different distances to exit.
avg_crowd_pressure : array
Average crowd pressure at different distances to exit.
"""
if width != height:
raise ValueError("code designed for square rooms")
width = width / cell_size
width = int(width)
distances = np.arange(0, width / 2, 1, dtype=np.int16)
avg_speed = np.zeros(len(distances)) # array for storing average speed at different distances
avg_crowd_pressure = np.zeros(len(distances)) # array for storing average crowd pressure
# Loop through different distances
for dist_indx in range(0, len(distances)):
radius = distances[dist_indx] # distance
x = np.arange(width - radius, width + 1, 1) # x-values in the range of half-circle
x_flip = x[::-1]
x = np.concatenate((x_flip, x[1:len(x)]), axis=0) # y-values in the range of half-circle
# y = y0 +- sqrt(r^2 - (x-x0)^2)
periphery_y1 = width / 2 + np.sqrt(radius * radius - (x_flip - width) * (x_flip - width))
periphery_y2 = width / 2 - np.sqrt(radius * radius - (x_flip - width) * (x_flip - width))
periphery_y = np.concatenate((periphery_y1[:-1], periphery_y2[::-1]), axis=0)
# Given a distance, calculate the average speed and crowd pressure.
# Use data in the cells that intersect with the half circle.
avg_speed[dist_indx] = np.mean(speed[(periphery_y - 1).astype(int), (x - 1).astype(int)])
avg_crowd_pressure[dist_indx] = np.mean(crowd_pressure[(periphery_y - 1).astype(int), (x - 1).astype(int)])
# Change distances array data back to meters
distances = cell_size * distances
return distances, avg_speed, avg_crowd_pressure
|
dadf1f67c82e4bf5e0dba1beded55c604ef846e2 | salvadb23/CS2.2 | /challenges/challenge_3.py | 4,367 | 4.1875 | 4 | #!python
"""
Vertex Class
A helper class for the Graph class that defines vertices and vertex neighbors.
"""
from sys import argv
class Vertex(object):
def __init__(self, vertex):
"""initialize a vertex and its neighbors
neighbors: set of vertices adjacent to self,
stored in a dictionary with key = vertex,
value = weight of edge between self and neighbor.
"""
self.id = vertex
self.neighbors = {}
def addNeighbor(self, vertex, weight=0):
"""add a neighbor along a weighted edge"""
if (vertex not in self.neighbors):
self.neighbors[vertex] = weight
def __str__(self):
"""output the list of neighbors of this vertex"""
return str(self.id) + " adjancent to " + str([x.id for x in self.neighbors])
def getNeighbors(self):
"""return the neighbors of this vertex"""
return self.neighbors
def getId(self):
"""return the id of this vertex"""
return self.id
def getEdgeWeight(self, vertex):
"""return the weight of this edge"""
return self.neighbors[vertex]
class Graph:
def __init__(self):
""" initializes a graph object with an empty dictionary.
"""
self.vertList = {}
self.numVertices = 0
def __str__(self):
for item in self.vertList:
print(item)
return 'done'
def addVertex(self, key):
"""add a new vertex object to the graph with
the given key and return the vertex
"""
self.numVertices += 1
newVertex = Vertex(key)
self.vertList[key] = newVertex
return newVertex
def getVertex(self, vertex):
"""return the vertex if it exists"""
return self.vertList[vertex] if self.vertList[vertex] is not None else False
def addEdge(self, vertexOne, vertexTwo, cost=0):
"""add an edge from vertex f to vertex t with a cost
"""
if self.vertList[vertexOne] is None:
self.addVertex(vertexOne)
elif self.vertList[vertexTwo] is None:
self.addVertex(vertexTwo)
else:
self.vertList[vertexOne].addNeighbor(
self.vertList[vertexTwo], cost)
def getVertices(self):
"""return all the vertices in the graph"""
return self.vertList.keys()
def DFS_recursive(self,v,v2):
"""searches the graph to see if there is a path between two vertices using DFS"""
vertexObj = self.vertList[v]
visited = {}
visited[vertexObj.getId()] = True
def dfs(vertex):
visited[vertex.getId()] = True
for neighbor in vertex.neighbors:
if neighbor.getId() not in visited:
dfs(neighbor)
dfs(vertexObj)
path = list(visited.keys())
end_path = path.index(v2) + 1
is_path = v2 in path
return (is_path, path[:end_path])
def __iter__(self):
"""iterate over the vertex objects in the
graph, to use sytax: for v in g
"""
return iter(self.vertList.values())
def parse_data():
"""reads file from command line"""
vertices = open(argv[1], 'r')
graph_data = vertices.read().split()
vertices.close()
return graph_data
def create_graph(graph_data):
"""Create a graph from an array of graph information"""
is_graph = graph_data[0] is 'G'
graph = Graph()
for vertex in graph_data[1].split(','):
graph.addVertex(vertex)
counter = 0
for word in graph_data[2:]:
counter += 1
if is_graph:
graph.addEdge(word[3], word[1],
word[5:].replace(')', ''))
graph.addEdge(word[1], word[3],
word[5:].replace(')', ''))
else:
graph.addEdge(word[1], word[3],
word[5:].replace(')', ''))
return graph
def print_path_result(path, path_list):
print("There exist a path between vertex {} and {}: {}".format(
argv[2], argv[3], path))
print('Vertices in path: {}'.format((',').join(path_list)))
if __name__ == "__main__":
data = parse_data()
g = create_graph(data)
g.DFS_recursive(argv[2],argv[3])
path, pathlist = g.DFS_recursive(argv[2],argv[3])
print_path_result(path, pathlist)
|
ff9488069257e1b9251dc2a6e7d13b6c4e4049e4 | johnchoiniere/advent_of_code_2019 | /day_3/day3.py | 2,068 | 3.6875 | 4 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 3 00:19:41 2019
@author: john
"""
# read in input
with open('input.txt') as f:
infile = f.readlines()
# make it intotwo nice, easy lists of steps
wire1 = infile[0].split(',')
wire2 = infile[1].split(',')
def intersect_finder(wire1, wire2):
# set up coordinate lists
coords_w1 = []
coords_w2 = []
# set up starting points
x1 = 0
y1 = 0
x2 = 0
y2 = 0
# loop through wire, adding the new coordinates to the lisy
for d in wire1:
w = d[0] # the direction to go
n = int(d[1:]) # the number of steps
for i in range(n):
if w == 'R':
x1 += 1
coords_w1.append([x1,y1])
elif w == 'L':
x1 -= 1
coords_w1.append([x1,y1])
elif w == 'U':
y1 += 1
coords_w1.append([x1,y1])
elif w == 'D':
y1 -= 1
coords_w1.append([x1,y1])
# same for wire 2
for d in wire2:
w = d[0]
n = int(d[1:])
for i in range(n):
if w == 'R':
x2 += 1
coords_w2.append([x2,y2])
elif w == 'L':
x2 -= 1
coords_w2.append([x2,y2])
elif w == 'U':
y2 += 1
coords_w2.append([x2,y2])
elif w == 'D':
y2 -= 1
coords_w2.append([x2,y2])
# intersecting pts are the coords that
# are in both lists
intersections = [i for i in coords_w1 if i in coords_w2]
# Manhattan distances of intersects
distances = [abs(c[0])+abs(c[1]) for c in intersections]
p1 = min(distances)
# use index to find n(steps) to get to point
steps = [coords_w1.index(i) + coords_w2.index(i) + 2 for i in intersections]
p2 = min(steps)
return p1, p2
part1, part2 = intersect_finder(wire1,wire2)
print("Part 1 answer: " + str(part1))
print("Part 2 answer: " + str(part2))
|
5eaf7215636ff6ab4f41e2d6455c251a57ba7ed0 | Hallyson34/uPython | /numeuler.py | 199 | 3.53125 | 4 | #Professor fez/code runner
x = float(input())
n = int(input())
valor=0.0
for i in range(0,n+1):
fat=1
for j in range(1,i+1):
fat=fat*j
valor=valor + x**i/fat
print(f"{valor:.4f}") |
59a2bdad1a9604398014265be7ecac9878f73b55 | ernestoarbitrio/python-conference-beginners-day | /challenges/basic/boolean_expressions.py | 1,573 | 4.40625 | 4 | """
EXERCISES:
========================================================================================================================
Es.1
Given vars a and b float, print "a > b" if a greater than b else print "a <= b" if b is greater than or equal to a.
Es.2
Given two strings 'banana' 'watermelon' check which word has the major number of characters.
Hint: len(str) is a python function that return the string length
========================================================================================================================
A Boolean expression is an expression that is either true or false. The following
examples use the operator ==, which compares two operands and produces True if
they are equal and False otherwise:
>>> 5 == 5
True
>>> 5 == 6
False
>>> 6 < 7
True
>>> 8 <= 2
False
The == operator is one of the relational operators; the others are:
x!=y # x is not equal to y
x>y # x is greater than y
x<y # x is less than y
x>=y # x is greater than or equal to y
x<=y # x is less than or equal to y
HINT:
- in python u have the elif statement that is an abbreviation of "else if"
Tip:
If you have lines in the docstring (this string) that look like interactive
Python sessions, you can use the doctest module to run and test this code.
Try: python -m doctest -v boolean_expressions.py
See: https://docs.python.org/3/library/doctest.html
Credit to Allen Downey and his excellent book Think Python, from which I stole this descriptions.
"""
# Write your code here or in your interpreter console. Enjoy!!! |
8d764d588205566023cde227edd314455cf89a6d | mariavidrasc19/plusivo-tutorials | /RPI Lesson 02 Dim an LED/main.py | 1,583 | 4.09375 | 4 | from time import sleep #we import the sleep module from the time library
import RPi.GPIO as GPIO #we import the RPi.GPIO library with the name of GPIO
GPIO.setmode(GPIO.BOARD) #we set the pin numbering to the GPIO.BOARD numbering
#for more details check the guide atached to this code
GPIO.setup(8, GPIO.OUT) #we set the PIN8 as a output pin
pwmPIN = GPIO.PWM(8, 1000) #we create a PWM instance on the 8th pin that is set as
#an output
pwmPIN.start(0) #we start the pwm pin with a duty cycle of 0. This means that at first the pin
#has an output of a digital 0
while True: #we start a loop that never ends in which we modify the duty cycle from 0 to 100
#and back. This will make the LED change it's light intensity
for i in range(1000): #for an index i which gets the values from 0 to 100 we change the
#duty cycle.
pwmPIN.ChangeDutyCycle(i)
sleep(0.2) #We wait 1 seconds(10 milliseconds) between the cycle changes
#to make the light intensity change visible.
for i in reversed(range(1000)): #we do the same thing but going from 100 to 0.
pwmPIN.ChangeDutyCycle(i)
sleep(0.2)
#NOTE! The duty cycle in the GPIO library is represented with numbers from 0 to 100. At 0 the PIN
#has no output and at 100 the PIN is a digital 1.
#The GPIO.PWM method requires 2 arguments. The first is the previously set PIN, and the second
#the frequency at which the pin works. |
92ead6f875e82d780d89a676e0c602737dafb509 | mhelal/COMM054 | /python/evennumberedexercise/Exercise03_06.py | 175 | 4.21875 | 4 | # Prompt the user to enter a degree in Celsius
code = eval(input("Enter an ASCII code: "))
# Display result
print("The character for ASCII code", code, "is", chr(code))
|
61c1a344a26ab2bf0f5bab6e191cdf1dc7c1979e | Sophia-Li888/python-learning | /Guess the number.py | 2,581 | 4.09375 | 4 | NAME = input("Hi! What is your name?")
print("Hi,",NAME,"! You will be guessing from 1 to 10.")
randomRangeLimit = 10
import random
number = random.randrange(1, randomRangeLimit)
game = "start"
level = 1
attempts = []
attemptsLimit = 5
AGAIN = "yes"
while AGAIN =="yes":
while game == "start":
if len(attempts) == attemptsLimit:
game = "end"
losePlayAgain = input("""Game Ended :( Sorry...
Do you want to try again?""")
losePlayAgain = losePlayAgain.lower()
if losePlayAgain == "yes":
randomRangeLimit = 10
print("It's OK that you lost last time... You can try your hardest this time... :) Now, in level 1 again! :(, you will have to guess numbers from 1 to",randomRangeLimit,"! Beware, and have fun :)")
import random
number = random.randrange(1, randomRangeLimit)
game = "start"
level = 1
attempts = []
attemptsLimit = 5
break
else:
game = "end"
AGAIN = "no"
break
userAttempt = input("Guess what number I am!")
userAttempt = int(userAttempt)
if userAttempt == number:
level = level + 1
print("Correct! Horray for you! (you are currently on level",level,"!)")
winPlayAgain = input("Do you want to play again?")
winPlayAgain = winPlayAgain.lower()
if winPlayAgain == "yes":
randomRangeLimit = randomRangeLimit + 10
attemptsLimit = attemptsLimit + 1
print("What a brave soul! In the next level, you will have to guess numbers from 1 to",randomRangeLimit, "and you will have",attemptsLimit,"tries! Beware, and have fun :)")
import random
number = random.randrange(1, randomRangeLimit)
game = "start"
attempts = []
break
else:
game = "end"
AGAIN = "no"
break
elif userAttempt > number:
attempts.append(userAttempt)
print("Too high! These are your attempts:", attempts)
else:
attempts.append(userAttempt)
print("Too low! These are your attempts:", attempts)
print("BYE", NAME, "!")
randomRangeLimit = 10
import random
number = random.randrange(1, randomRangeLimit)
game = "start"
level = 1
attempts = []
attemptsLimit = 5
AGAIN = "yes" |
34226704f82c324265397c9e8d2c68032271461a | trejp404/banking-program | /banking_program.py | 4,051 | 4.28125 | 4 | # Prepedigna Trejo
# Assignment 8.1
# Parent Class - Account
class BankAccount:
def __init__(self, num, bal):
self.accountNumber = num
self.balance = float(bal)
print("A Pre-Paid Account has been created")
print("The account number is " + str(self.accountNumber))
print("The balance is $" + '{:,.2f}'.format(self.balance))
def withdraw(self):
userWithdraw = float(input("How much would you like to withdraw? "))
if self.balance >= userWithdraw:
self.balance = self.balance - float(userWithdraw)
print ("\nYou Withdrew:", '$'+'{:,.2f}'.format(userWithdraw))
self.getBalance()
else:
print("\nInsufficient funds")
print("Your current account balance is:", '{:,.2f}'.format(self.balance))
def deposit (self):
userDeposit = input("How much would you like to deposit? ")
self.balance = self.balance + float(userDeposit)
self.getBalance()
def getBalance(self):
print("Current account balance is: $" + '{:,.2f}'.format(self.balance))
# child class 1 - Pre-Paid Account
class CheckingAccount(BankAccount):
def __init__(self, num, bal, accountFees, minBal):
BankAccount.__init__(self, num, bal)
self.accountFees = accountFees
self.minimumBalance = 50
print("This account is a Checking Account")
print("The account fee is $" + '{:,.2f}'.format(self.accountFees))
print("The minimum balance is $" + '{:,.2f}'.format(self.minimumBalance))
def deductFees(self):
print("Deducting fee...")
if self.balance < self.minimumBalance:
self.balance -= 5;
else:
print("Balance after fee is now $" + '{:,.2f}'.format(self.balance))
def checkMinimumBalance(self):
print("Checking if account balance meets minimum balance...")
print("")
if float(self.balance) < self.minimumBalance:
print("Account balance is too low")
self.deductFees()
print("You must deposit $" + '{:,.2f}'.format(self.minimumBalance - self.balance) + " to meet the minimum account balance")
self.deposit()
self.checkMinimumBalance()
else:
print("Account balance meets minimum balance requirements")
#child class 2 - Savings Account
class SavingsAccount(BankAccount):
def __init__(self, num, bal, intRate):
self.intRate = 2
super().__init__(num, bal)
def add_interest(self):
self.balance *= (1 + (self.intRate/100))
# main program
print ("Welcome to the Program")
try:
flag1 = 0
while flag1 == 0:
print("")
print("--Main Menu--")
print("To open a pre-paid account, press 1")
print("To exit the program, press 2")
loop1 = input("")
if loop1 == '1':
flag2 = 0
while flag2 == 0:
flag2 = 1
print("")
print("--Account Creation--")
print("To open a Checking Account, press 1")
loop2 = input("")
if loop2 == '1':
print("")
print("--Open a Checking Account--")
print("Minimum Balance is $50.00")
print("Account fees are $5.00")
checkingAccountNumber = input("Enter an Account Number: ")
checkingAccountBalance = input("Enter Account Balance: $")
print("Please wait while account is created...")
print("")
my_checkingAccount = CheckingAccount(checkingAccountNumber, checkingAccountBalance, 5.0, 50.0)
my_checkingAccount.checkMinimumBalance()
flag3 = 0
while flag3 == 0:
print("")
print("--My Checking Account--")
print("What would you like to do?")
print("To make a deposit, press 1")
print("To check your balance, press 3")
print("To make a withdrawal, press 4")
print("To go to the Main Menu, press 5")
loop3 = input("")
if loop3 == '1':
my_checkingAccount.deposit()
elif loop3 == '3':
my_checkingAccount.getBalance()
elif loop3 == '4':
my_checkingAccount.withdraw()
elif loop3 == '5':
print("Exiting to Main Menu...")
flag3 = 1
else:
print("Command not recognized")
else:
print("Command not recognized")
flag2 = 0
elif loop1 == '2':
print("Exiting program...")
flag1 = 1
else:
print("Command not recognized")
except:
print("Command not recognized") |
32f2db9ca8ab3c43a6955102c87024a7665ba404 | rgj7/coding_challenges | /projeuler/problem_12.py | 456 | 3.78125 | 4 | import math
def getDivisorCount(n):
divisors = 0
start = 1
end = math.floor(math.sqrt(n))
while start <= end:
if n % start == 0:
if start == n//start:
divisors += 1
else:
divisors += 2
start += 1
return divisors
divisors = 0
inc = 0
triangle = 0
while divisors < 500:
inc += 1
triangle += inc
divisors = getDivisorCount(triangle)
print(triangle)
|
784ef46e6c2bc0219f0566bd7ad57385a2314538 | nownabe/competitive_programming | /AizuOnlineJudge/ITP1_Introduction_to_Programming_1/ITP1_2_D_Circle_in_a_Rectangle.py | 279 | 3.640625 | 4 | def determine(w, h, x, y, r):
if x - r < 0 or x + r > w:
return False
if y - r < 0 or y + r > h:
return False
return True
w, h, x, y, r = input().split()
if determine(int(w), int(h), int(x), int(y), int(r)):
print('Yes')
else:
print('No')
|
b644303feef1a0b0046d086b0487dca7e7c3e0d1 | asdf2014/algorithm | /Codes/asdf2014/4_median_of_two_sorted_arrays/median_of_two_sorted_arrays.py | 1,479 | 4.0625 | 4 | # https://leetcode.com/problems/median-of-two-sorted-arrays/
# There are two sorted arrays nums1 and nums2 of size m and n respectively.
#
# Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
#
# You may assume nums1 and nums2 cannot be both empty.
#
# Example 1:
# nums1 = [1, 3]
# nums2 = [2]
# The median is 2.0
#
# Example 2:
# nums1 = [1, 2]
# nums2 = [3, 4]
# The median is (2 + 3)/2 = 2.5
#
# Related Topics Array Binary Search Divide and Conquer
def median_of_two_sorted_arrays(nums1, nums2):
nums = []
count1 = 0
count2 = 0
len1 = len(nums1)
len2 = len(nums2)
total_len = len1 + len2
for i in range(total_len):
# collect the tail
if count1 == len1:
nums.extend(nums2[count2::])
break
if count2 == len2:
nums.extend(nums1[count1::])
break
# merge sort
n1 = nums1[count1]
n2 = nums2[count2]
if n1 > n2:
nums.append(n2)
count2 += 1
else:
nums.append(n1)
count1 += 1
middle = total_len // 2
if total_len % 2 == 0:
return (nums[middle - 1] + nums[middle]) / 2
else:
return nums[middle]
assert median_of_two_sorted_arrays([1], []) == 1.0
assert median_of_two_sorted_arrays([1, 3], []) == 2.0
assert median_of_two_sorted_arrays([1, 3], [2]) == 2.0
assert median_of_two_sorted_arrays([1, 2], [3, 4]) == 2.5
|
6bce92b143014d8f86d5655a5869daaa5222db1a | acemodou/Working-Copy | /DataStructures/v1/Queue/circular_queue.py | 1,162 | 3.71875 | 4 | class CircularQueue:
def __init__(self, n):
self.front = 0
self.rear = 0
self.size = n
self.Q = self.buildQueue()
def buildQueue(self):
self.Q = [0 for _ in range(self.size)]
return self.Q
def Enqueue(self, value):
if self.is_Full():
raise"Overflow"
else:
self.rear = self.rear +1 % self.size
self.Q[self.rear] = value
def Dequeue(self):
x = -1
if self.is_Empty():
raise "Underflow"
else:
self.front = self.front +1 % self.size
x = self.Q[self.front]
return x
def is_Empty(self):
return self.rear == self.front
def is_Full(self):
return self.rear +1 % self.size == self.front
def peek(self):
self.front += 1
return self.Q[self.front]
def peek_rear(self):
return self.Q[self.rear]
def display(self):
value = []
for values in range(self.front+1, self.rear +1 % self.size):
value.append(self.Q[values])
return value |
f826330e546a6da4c7ed25111e45295a87987fdd | spencerhhall/gone-fishing | /event.py | 1,787 | 3.9375 | 4 | # Contains code for Event object.
import datetime
speciesCount = { # Number of trout and average size
"rainbow trout": [0, 0],
"brown trout": [0, 0],
"brook trout": [0, 0],
"cutthroat trout": [0, 0],
"golden trout": [0, 0],
"bull trout": [0, 0],
"Arctic grayling": [0, 0]
}
class Event:
def __init__(self, location, date, fish, notes):
self.location = location
self.date = date
self.fish = fish
self.notes = notes
def add_date():
dateRange = datetime.datetime.now()
return dateRange
def add_fish():
for species in speciesCount:
while True:
try:
num = int(input("How many " + species + " did you catch? "))
except ValueError:
print("Input a valid number.")
continue
if num < 0:
print("Numer is too low.")
continue
speciesCount[species][0] = num
break
if speciesCount[species][0] != 0:
while True:
try:
num = float(input("What was the average size (inches)? "))
except ValueError:
print("Input a valid number.")
continue
if num <= 0:
print("Numer is too low.")
continue
speciesCount[species][1] = num
break
return speciesCount
@classmethod
def from_input(cls):
return cls(
input("\nNEW EVENT\nLocation: "),
cls.add_date(),
cls.add_fish(),
input("Event notes: "),
) |
9262f6d671851eab6592884f54821ff631c28966 | MikyPopescu/DataProcessingUsingPython | /tema1.py | 10,541 | 4 | 4 | # Tema 1
# 1. Să se creeze o listă de numere întregi pozitive si negative de 10 elemente.
# Să se filtreze elementele listei astfel incat acestea sa fie pozitive și să se afișeze lista ordonata crescător.
'''
from pip._vendor.distlib.compat import raw_input
nrElementeLista = 10
lista = []
for element in range(nrElementeLista):
element = int(raw_input("Adaugati un element in lista: "))
lista.append(element)
if element < 0:
lista.remove(element)
lista.sort()
if len(lista) > 0:
print(lista)
else:
print("Nu au fost introduse valori pozitive! Lista este vida")
'''
# 2. Se da lista de orase de mai jos. Să se realizeze un dictionar care sa grupeze orasele dupa lungimea denumirii.
# Dictionarul va avea valorile si cheile ordonate in ordine crescatoare, respectiv alfabetica.
# lista_o = ['Vaslui','Cluj', 'Iasi', 'Alba', 'Oradea', 'Arad', 'Craiova', 'Mehedinti', 'Bucuresti', 'Orastie’]
'''
listaOrase = ["Vaslui", "Cluj", "Iasi", "Alba", "Oradea", "Arad", "Craiova", "Mehedinti", "Bucuresti", "Orastie"]
listaOrase.sort()
dictionarOrase = {}
for oras in listaOrase:
dictionarOrase[oras] = len(oras)
print(sorted(dictionarOrase.items(), key = lambda x: x[1]))
'''
#3. Se da o listă de liste cu denumiri de electrocasnice si electronice (televizor, frigider, laptop_tip1,laptop_tip2), prețul și cantitatea acestora.
# Calculați valoarea fiecărui echipament, adăugați-o în lista fiecarui produs și sortați în funcție de pret, utilizand functia lambda.
# Pentru produsele care au pretul mai mare de 3000 si cantitatea mai mare de 5 produse, se va diminua pretul cu 10%.
#lista = [['tv', 3500,9], ['frigider', 2500, 4], ['laptop_tip1',5000,5],['laptop_tip2',10000,6]]
'''
listaDeListe = [['tv', 3500, 9], ['frigider', 2500, 4], ['laptop_tip1', 5000, 5], ['laptop_tip2', 10000, 6]]
# lista[0] = tv, frigider, laptop_tip1, laptop_tip2
# lista[1] = 3500, 2500, 5000, 10000
# lista[2] = 9, 4, 5, 6
for lista in listaDeListe:
valoare = lista[1] * lista[2] #valoareEchipament = pret*cantitate
lista.append(valoare)
if lista[1] > 3000 and lista[2] > 5:
discount = lista[1] * 0.1
lista[1] -= discount
listaDeListe.sort(key=lambda x: x[1])
print(listaDeListe)
'''
#4. Să dau două liste de liste: lista produse aflate pe stoc (lps cu denumire_produs si cantitate) și lista produse comandate (lpc cu denumire_produs si cantitate).
# Să se afiseze numele produselor care nu au fost comandate. Sa se calculeze diferenta dintre cantitatea aflata pe stoc si cantitatea comandata si sa se actualizeze cantitatea aflata pe stoc.
# Daca cantitatea comandata este mai mare decat cantitatea aflata pe stoc, aceasta va fi egala cu 0.
#lps=[['tableta',13], ['tv',50], ['smart_phone',4],['laptop_tip1',41], ['desktop',60], ['tastatura',16], ['monitor32inch',28], ['flipchart',6], ['carioca',200]]
#lpc=[['tv',52],['laptop_tip1',20], ['desktop',11], ['tastatura',3], ['monitor32inch',11], ['flipchart',1]]
'''
lps = [["tableta", 13], ["tv", 50], ["smart_phone", 4],["laptop_tip1", 41], ["desktop", 60], ['tastatura', 16], ["monitor32inch", 28], ["flipchart", 6], ["carioca", 200]]
lpc = [["tv", 52],["laptop_tip1", 20], ["desktop", 11], ["tastatura", 3], ["monitor32inch", 11], ["flipchart", 1]]
lista = []
for stoc in lps:
lista.append(stoc[0])
for comanda in lpc:
lista.append(comanda[0])
for element in lista:
if lista.count(element) == 1:
print('Produs care nu a fost comandat: ' + element)
for comanda in lpc:
cant_comanda = comanda[1]
for stoc in lps:
cant_stoc = stoc[1]
if comanda[0] == stoc[0]:
diferenta= cant_stoc - cant_comanda
if diferenta < 0:
stoc[1] = 0
else:
stoc[1] = diferenta
print(lps)
'''
#5. Să se creeze o listă de dicționare cu următoarele chei: id, denumire, pret și cantitate pentru produsele: televizor, laptop, frigider.
#lista = [{"id":1, "denumire":"tv", "pret":3500, "cantitate":30},
# {"id":2, "denumire":"laptop", "pret":10000, "cantitate":65},
# {"id":3, "denumire":"frigider", "pret":2500, "cantitate":48}]
#Dacă produsele au pretul mai mare decât 5000 sau cantitatea este mai mare decat 20, să se reduca pretul cu 5%.
'''
lista = [{"id":1, "denumire":"tv", "pret":3500, "cantitate":30}, {"id":2, "denumire":"laptop", "pret":10000, "cantitate":65}, {"id":3, "denumire":"frigider", "pret":2500, "cantitate":48}]
for element in lista:
pret = element.get("pret")
cantitate = element.get("cantitate")
if pret > 5000 and cantitate > 20:
pret -= pret * 0.05
element.update({"Pret modificat: ":pret})
print(lista)
'''
#6. Să se creeze o listă li1, formată din primele m numere naturale, apoi să se realizeze o funcție prin care să se creeze o listă li2 formată din numerele prime ale listei li1.
#se citeste de la tastatura dimensiunea
'''
from pip._vendor.distlib.compat import raw_input
li1 = []
m = int(raw_input("m= "))
for element in range(m):
element = int(raw_input("Adaugati un element in lista: "))
li1.append(element)
if element < 0:
li1.remove(element)
if len(li1)>0:
print('Lista de numere naturale introduse: ')
print(li1)
else:
print("Nu au fost introduse valori pozitive! Lista este vida")
li2 = []
for element in li1:
nrDivizori = 0
d = 1
while d <= element:
if element % d == 0:
nrDivizori += 1
d += 1
if nrDivizori == 2:
li2.append(element)
if len(li2) > 0:
print('Lista cu numere prime: ')
print(li2)
else:
print("Nu exista numere prime")
'''
#7. Sa se deschida fisierul csv clienti_leasing si sa se stocheze in 3 liste valorile din coloanele name_client, venit_per_year_ron si description.
# Sa se determine de cate ori apare produsul bancar 'CAMIN SUPER BCR - TL dob. fixa 1 an - dob. referinta var. ulterior IND EUR' in coloana descriere
'''
import pandas as pd
fisier = pd.read_csv('clienti_leasing.csv')
# print(fisier)
nume = list(fisier.loc[:,"NUME_CLIENT"])
#print(nume)
venit = list(fisier.loc[:,"VENIT_ANUAL_RON"])
#print(venit)
descriere = list(fisier.loc[:,"DESCRIERE"])
#print(descriere)
nr = descriere.count("CAMIN SUPER BCR - TL dob. fixa 1 an - dob. referinta var. ulterior IND EUR")
print("Aparitii CAMIN SUPER BCR - TL dob. fixa 1 an - dob. referinta var. ulterior IND EUR in descriere: ")
print(nr)
'''
# Tema 2
#1. Să se reprezinte grafic (de tip pie) valoarea medie a daunelor pentru al doilea semestru pentru marcile Audi si Ford pentru fiecare an de fabricatie
'''
import pandas as pd
from pprint import pprint
from matplotlib import pyplot as plt
fisier = pd.read_csv("clienti_daune.csv")
fisier['DATA_CERERE'] = pd.to_datetime(fisier['DATA_CERERE'])
# pprint(fisier['DATA_CERERE'])
fisier = fisier[(fisier.MARCA == 'AUDI') | (fisier.MARCA == 'FORD')]
fisier = fisier[((pd.DatetimeIndex(fisier['DATA_CERERE']).month) >= 4) & ((pd.DatetimeIndex(fisier['DATA_CERERE']).month) <= 6)]
fisier = fisier.groupby('AN_FABRICATIE')['VALOARE_DAUNA'].mean()
#pprint(fisier)
fisier.sort_values().plot(kind='pie')
plt.xlabel('An fabricatie')
plt.ylabel('Valoarea medie a daunei')
plt.title('Valoarea medie a daunei/an fabricatie FORD si AUDI (sem II)')
plt.legend()
plt.show()
'''
#2. Sa se grupeze dupa tara producatoare si sa afiseze valoarea medie a pretului manoperei
'''
import pandas as pd
from pprint import pprint
fisier = pd.read_csv('clienti_daune.csv')
#pprint(fisier)
pd.options.display.max_rows= 999
print(round(fisier.groupby('TARAPRODUCATOR')['PRET_MANOPERA'].mean(),2))
'''
#3. Sa se grupeze dupa tara producatoare si sa afiseze tara producatoare si toate tagurile fiecarei marci din tara producatoare respctiva. Sa se calculeze de cate ori apare tagul bad pentru fiecare tara producatoare.
'''
import pandas as pd
from pprint import pprint
fisierDaune = pd.read_csv('clienti_daune.csv')
fisierMasini = pd.read_csv('cars.csv')
fisierMasini = fisierMasini.rename(columns={'MARCA_CARS':'MARCA'})
rezultat = pd.merge(fisierDaune[['MARCA','TARAPRODUCATOR']], fisierMasini[['MARCA','TAGS']], on='MARCA')
print(rezultat.groupby(['TARAPRODUCATOR','MARCA','TAGS']).agg({'TAGS':'count'}))
rezultat=rezultat.loc[(rezultat['TAGS']=='bad')]
print('Tagul BAD pentru fiecare tara: ')
print(rezultat.groupby(['TARAPRODUCATOR']).agg({'TAGS':'count'}))
'''
#4. Să se creeze setul format din user_usage și supported_devices și să se reprezinte grafic (bare verticale) traficul însumat (coloana monthly_mb) pentru fiecare brand (coloana Retail Branding).
'''
import pandas as pd
from pprint import pprint
import matplotlib.pyplot as plt
user_usage = pd.read_csv('user_usage.csv')
user_device = pd.read_csv('user_device.csv')
supported_devices = pd.read_csv('supported_devices.csv')
rezultat = pd.merge(user_usage,user_device[['use_id', 'device']],on='use_id',how='left')
supported_devices.rename(columns={"Retail Branding": "manufacturer"}, inplace=True)
rezultat = pd.merge(rezultat,supported_devices[['manufacturer', 'Model']],left_on='device',right_on='Model',how='left')
print(rezultat.groupby("manufacturer").agg({"monthly_mb": "sum"}))
rezultat.groupby("manufacturer").agg({"monthly_mb": "sum"}).plot(kind='bar')
plt.ylabel('manufacter')
plt.xlabel('monthly_mb')
plt.show()
'''
#5. Să se afișeze, utilizând fișierul phone_data.csv, durata însumata pentru fiecare lună și durata însumată pentru un anumit tip de rețea (mobile) pentru fiecare lună.
'''
import pandas as pd
pd.set_option("display.max_columns", 10)
fisier = pd.read_csv('phone_data.csv')
print('\nDurata pe fiecare luna')
print(fisier.groupby('month')['duration'].sum())
print('\nDurata pe tip de retea mobila')
print(fisier[fisier['network_type'] == 'mobile'].groupby('month')['duration'].sum())
'''
#6. Sa se construiasca un pivot table utilizand datele: http://bit.ly/2cLzoxH
'''
import pandas as pd
date = pd.read_csv('https://raw.githubusercontent.com/resbaz/r-novice-gapminder-files/master/data/gapminder-FiveYearData.csv')
#print(date)
pivot = date.pivot(index='country', columns='year', values=['continent','pop', 'lifeExp', 'gdpPercap'])
print(pivot)
'''
#7. Sa se reprezinte grafic sub forma de bare 3 marci din Europa care au cele mai mici daune totale
'''
import pandas as pd
import matplotlib.pyplot as plt
fisier = pd.read_csv('clienti_daune.csv')
fisier = fisier[(fisier["REGIUNEPRODUCATOR"] == "Europe")].groupby('MARCA')['VALOARE_DAUNA'].sum().nsmallest(3)
fisier.plot(kind='bar', color=["blue", "green", "yellow"])
plt.show()
''' |
05e25645f3889eea27c58351d5de0fbe8bc7f744 | abhigyan709/dsalgo | /hackerrank_python_problems/finding_the_percentage.py | 396 | 3.953125 | 4 | number_of_students = int(input("Enter number of students: "))
students_marks = {}
for _ in range(number_of_students):
name, *line = input().split()
scores = list(map(float, line))
students_marks[name] = scores
query_name = input()
from decimal import Decimal
query_score = students_marks[query_name]
total_score = sum(query_score)
avg = Decimal(total_score/3)
print(round(avg, 2))
|
1620c51512627e034a4abab208aec284e581a216 | yangninghua/python_songsong | /Week1(39集)/day4(9集)/代码/test.py | 636 | 3.625 | 4 |
a,b=3,5 # a=3 b=5
print(a,b)
# a=3,b=5
# print(a,b)
a=b=c=3
print(a,b,c)
num = int(input('输入四位整数:')) # 8654
ge = num%10
num = num//10 # 865
shi = num%10
num = num//10 # 86
bai = num%10
num = num//10 # 8
print(num,bai,shi,ge)
#
num = 9
if num%2==0:
print('偶数')
else:
print('奇数')
num1=8
num2=4
num3=0 # False 任何非0的就是True
if not(num1%num2): # not True --->False
# 条件为True的时候执行的代码块
print('----------->AAAAAAAAA')
else:
print('***********>BBBBBBBBB')
if not True:
print('999999999999')
|
cb68983155f712023ac82d566b4cd02d616233f7 | aakriti-sharma/Mini-Projects | /SOP-POS-converter/SOP-POS-converter-master/sop.py | 588 | 3.515625 | 4 | print("SOP CONVERSION")
print("Enter variables:")
v=list(input().split())
n=len(v)
print("Enter expression:")
ne=list(input().split("+"))
e=[]
def sop(t,a):
e.remove(t)
nt=t+a
e.append(nt)
e.append(nt+"'")
for j in v:
if nt.find(j)==-1:
sop(nt,j)
sop(nt+"'",j)
break
for i in ne:
s=i
e.append(i)
for j in v:
if s.find(j)==-1:
sop(s,j)
break
print("Standard SOP form: ")
ne=[]
for i in e:
if i not in ne:
ne.append(i)
print(*ne,sep=" + ")
|
36033de9464a200141bc4f3e13ab69fefaaf86fd | WAT36/procon_work | /procon_python/src/atcoder/abc/past/D_166.py | 526 | 3.65625 | 4 | x=int(input())
b=0
while(True):
bi=b**5
ai=x+bi
# print(ai,bi,(ai**(1/5))%1.0)
#X-B^5 は整数を5乗した数か判定
if(int((ai**(1/5))%1.0) == 0):
aj=int((ai**(1/5))//1)
# print(ai,aj,bi,b)
if((aj**5)==ai):
print(aj,b)
break
b*=-1
bi=b**5
ai=x+bi
if(ai>=0 and int((ai**(1/5))%1.0) == 0):
aj=int((ai**(1/5))//1)
# print(ai,aj,bi,b)
if((aj**5)==ai):
print(aj,b)
break
b*=-1
b+=1
|
74978d6d511a44992d3dfeb398f0a9c6498f04e7 | hikyru/Python | /HW1MakingShapes.py | 1,107 | 3.75 | 4 | # -*- coding: utf-8 -*-
"""
Created on Sat Feb 8 1:45 2020
@author: KatherineYu
"""
# making a right triangle
print("* * * *", end = '\n' '\n' '\n')
print("* * *", end = '\n' '\n' '\n' )
print("* *", end = '\n' '\n' '\n' )
print("*", end = '\n' '\n' '\n' )
# making a isoceles triangle
print(" *", end = '\n' '\n' '\n')
print(" * *", end = '\n' '\n' '\n' )
print(" * *", end = '\n' '\n' '\n' )
print(" * * * *", end = '\n' '\n' '\n' )
# making a diamond
print(" *", end = '\n' '\n' '\n')
print(" * *", end = '\n' '\n' '\n' )
print(" * *", end = '\n' '\n' '\n' )
print(" * *", end = '\n' '\n' '\n' )
print(" * *", end = '\n' '\n' '\n' )
print(" * *", end = '\n' '\n' '\n' )
print(" *", end = '\n' '\n' '\n')
# making a solid rectangle
print("* * * *", end = '\n' '\n' '\n')
print("* * * *", end = '\n' '\n' '\n')
print("* * * *", end = '\n' '\n' '\n')
print("* * * *", end = '\n' '\n' '\n')
# making a hollow rectangle
print("* * * *", end = '\n' '\n' '\n')
print("* *", end = '\n' '\n' '\n')
print("* *", end = '\n' '\n' '\n')
print("* * * *", end = '\n' '\n' '\n') |
08f4e875029f0191e4dcc89c139d82f7b272b440 | malwadkarrk/Python | /guessnumber.py | 666 | 4.0625 | 4 | import random
guesscount = 0
number = random.randint(1,100)
username = input("Hello, what's your name?")
print(f"Well, {username}, you will get 10 chances to guess the number between (1,100) ")
while guesscount < 10:
print(f"{username}, take a guess:")
guess = int(input())
guesscount += 1
if guess > number:
print('Your guess is too high.')
elif guess < number:
print('Your guess is too low.')
elif guess == number:
print(f"Good Job {username}, you guessed the number in {guesscount} guesses!")
break
if guess != number:
print(f"Better luck next time. The number is {number}")
|
c21d9b152c0f7360f317ab1f093291fc635e9bda | hooloong/My_TensorFlow | /Test29_tf/apis/dropout.py | 1,093 | 3.6875 | 4 | '''
dropout(
x,
keep_prob,
noise_shape=None,
seed=None,
name=None
)
功能说明:
原理可参考 CS231n: Convolutional Neural Networks for Visual Recognition
参数列表:
参数名 必选 类型 说明
x 是 tensor 输出元素是 x 中的元素以 keep_prob 概率除以 keep_prob,否则为 0
keep_prob 是 scalar Tensor dropout 的概率,一般是占位符
noise_shape 否 tensor 默认情况下,每个元素是否 dropout 是相互独立。如果指定 noise_shape,若 noise_shape[i] == shape(x)[i],该维度的元素是否 dropout 是相互独立,若 noise_shape[i] != shape(x)[i] 该维度元素是否 dropout 不相互独立,要么一起 dropout 要么一起保留
seed 否 数值 如果指定该值,每次 dropout 结果相同
name 否 string 运算名称
'''
import tensorflow as tf
a = tf.constant([1,2,3,4,5,6],shape=[2,3],dtype=tf.float32)
b = tf.placeholder(tf.float32)
c = tf.nn.dropout(a,b,[2,1],1)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print (sess.run(c,feed_dict={b:0.75})) |
4084b554985dc01c396f9362d77ef7ef0f6f35b0 | GodsloveIsuor123/holbertonschool-higher_level_programming-3 | /0x07-python-test_driven_development/2-matrix_divided.py | 1,162 | 4 | 4 | #!/usr/bin/python3
"""
2-matrix_divided.py file
Functions:
-> matrix_divided(matrix, div)
"""
def matrix_divided(matrix, div):
"""
divides all elements of a matrix
matrix must be a list of lists of integers or floats
Each row of the matrix must be of the same size
div must be a number (integer or float) not 0
Returns a new matrix with element divided by div
"""
matrix_error = 'matrix must be a matrix (list of lists) of integers/floats'
if (not matrix or type(matrix) is not list
or matrix is []
or not all([type(row) is list for row in matrix])
or not all([all([isinstance(el, (int, float)) for el in row]) for row in matrix])):
raise TypeError(matrix_error)
if len(set([len(rows) for rows in matrix])) is not 1:
raise TypeError('Each row of the matrix must have the same size')
if type(div) is not int and type(div) is not float:
raise TypeError('div must be a number')
if div == 0:
raise ZeroDivisionError('division by zero')
return [[round(elmnt / div, 2) for elmnt in row] for row in matrix]
|
662989cbcc71953064d31693b425500aba3c794a | niteesh2268/coding-prepation | /placement-test/pcpt6/Linus-installs-Linux.py | 517 | 3.546875 | 4 | def getAns(string):
entries = string.split('/')
stack = []
for entry in entries:
if entry == '..':
if stack:
stack.pop()
elif entry == '':
continue
elif entry == '.':
continue
else:
stack.append(entry)
answer = '/'.join(stack)
return '/'+ answer
def main():
t = int(input().strip())
for _ in range(t):
string = input().strip()
print(getAns(string))
main() |
2a1ad4353767190f403019d7513b7c646fff7b48 | marcenavuc/python_listings | /1_basics.py | 1,319 | 3.65625 | 4 | from collections import defaultdict, Counter, namedtuple
import heapq
import enum
# Tuple
a = tuple()
a = ()
a = 12, 13
a = ('s', )
a = tuple("Hello, world!")
print(a)
# Операции
print(a.index("l"))
print(a[0])
print(a[1:5])
print(a.count("l"))
# List
a = list()
a = list("Hello")
a = []
a = [1,2,3]
# Операции
a.append(1)
a.extend([1,2,3])
a.insert(0, 10)
a.pop()
# Set
a = set("hello")
b = set("world")
# Операции
a.issubset(b)
a.union(b)
a.intersection(b)
a.difference(b)
a.add("l")
print(a)
# Dict
d = {}
d = {"a": 1, "b": 2}
d = dict(short="dict", long="dict")
print(dict.keys())
print(dict.values())
print(dict.get("some key"))
# Collections
# Counter
c = collections.Counter()
for word in ['spam', 'egg', 'spam', 'counter', 'counter', 'spam']:
c[word] += 1
print(c)
print(Counter({'spam': 3, 'counter': 2, 'egg': 1}))
print(c.elements())
print(c.most_common())
# Defaultdict
defdict = collections.defaultdict(list)
print(defdict)
for i in range(5):
defdict[i].append(i)
print(defdict)
#namedtuple
Point = namedtuple('Point', ['x', 'y'])
p = Point(1, 2)
print(p.x)
print(p.y)
print(p[0])
print(p[1])
# heapq
x = [15, 5, 10, 5, 2]
heapq.heapify(x)
heapq.heappush(x, 20)
print(x)
# Enum
class Shake(Enum):
VANILLA = 7
CHOCOLATE = 4
COOKIES = 9
MINT = 3
|
b8ca3c2f2a5d94ba85ad886a2c9193121b61d53a | niripsa/python | /20170728.py | 2,151 | 4.1875 | 4 | ### 使用python进行数学运算 ###
# 加法
# print(1 + 1)
# 减法
# print(2 - 1)
# 乘法
# print(2 * 4)
# 除法
# print(5 / 2)
# 求余
# print(5 % 2)
# 地板除
# print(5 // 2)
# 乘方
# print(2 ** 3)
### 格式控制符 ###
# print("%f" % (5/3)) # 1.666667
# print("%.2f" % (5/3)) # 1.67
# print("%f" % (415 * 20.2)) # 8383.000000
# print("%0.f" % (415 * 20.2)) # 8383
# 格式控制会进行四舍五入
# print("$%.3f" % 30.00123) # $30.001
# print("$%.3f" % 30.00173) # $30.002
# 在python中使用浮点数运算会导致整个算式改用浮点数,去掉所有浮点数会导致将所有数看做int,除非结果是浮点数
### python保留词 ###
# and, as, assert, break, class, continue, def, del, elif, else, except, exec
# False, finally, for, from, global, if, import, in, is, lambda, not, None
# or, pass, print, raise, return, try, True, while, with, yield
### python内置类型 tuple list dict set ###
## 元组 tuple ---- 不可更改的数据序列 ##
# 元组是值的序列,其中每个值都可以被访问,但不可更改;元组被小括号()包围
# a = ('first', 'second', 'third')
# print(a)
# print(a[0])
# print(a[2])
# b = (a, "b\'s second element")
# print(b)
# print(b[0][1])
# 注:若要创建一个只有一个元素的元组,需要在末尾加一个逗号,否则会被认为是字符串
## 列表 list ---- 可以更改的数据序列 ##
# 列表类似元组,包含从0开始引用元素的序列,其中元素可以被更改;被中括号[]包围;类似php数组
# 列表已有的元素,可以直接修改
# breakfast = ['coffee', 'tea', 'toast', 'egg']
# print(breakfast)
# breakfast[0] = 'pie'
# print(breakfast)
#
# # 向列表末尾添加单个元素,使用内置的append方法
# breakfast.append('milk')
# print(breakfast)
# # 向列表末尾添加多个元素,使用内置的extend方法,该方法传入一个list或tuple,将其中每个元素追加到原列表末尾
# breakfast.extend(['apple', 'banana', 'pear'])
# print(breakfast)
# # 列表的长度可以由内置的len方法确定,长度是从1开始的
# print(breakfast.__len__())
|
d2cff5feb2ae49a6bc0607c602ce4b2522a49182 | nilesh7808/CodingNinjaDSA | /BasicPythons/HeapSort.py | 291 | 3.96875 | 4 | from heapq import heappop, heappush
def heap_sort(array):
heap = []
for i in array:
heappush(heap, i)
HeapSort = []
while heap is True:
HeapSort.append(heappop(heap))
return HeapSort
array = [13, 21, 15, 5, 26, 4, 17, 18, 24, 2]
print(heap_sort(array)) |
7cc989d93e084c3e90445991dac5f33f2600750e | kajendranL/Daily-Practice | /loops_exec/01.divi_multi.py | 260 | 4.03125 | 4 | print ('''Write a Python program to find those numbers which are divisible
by 7 and multiple of 5, between 1500 and 2700 (both included)''')
print()
num = []
for num in range (1500, 2700):
if num % 7 ==0 and num % 5 == 0:
print(num, end=',')
|
e0d9894638d0428c986b3211b1f57798468d8915 | BenHesketh21/QA-Academy-Training | /Powers.py | 163 | 4.125 | 4 | number1 = float(input("First Number: "))
sqr = number1 ** 2
print(sqr)
number2 = float(input("To the power of: "))
answer = number1 ** number2
print(answer)
|
32b8a3f340960e8824d6831f217bde6c73e564d0 | ptanoop/pythonTips | /Return multiple values from functions.py | 149 | 3.84375 | 4 | # function returning multiple values.
def x():
return 1, 2, 3, 4
# Calling the above function.
a, b, c, d = x()
print(a, b, c, d)
#-> 1 2 3 4
|
2d5941b7a577ecda00108139603d32675557bb03 | jocespitia/EE381 | /project 6/lab6.py | 456 | 3.703125 | 4 | '''
EE 381
'''
p = float(input("Enter probability of a jump. "))
S = int(input("Enter the standing position. "))
N = int(input("Enter the boundry position."))
J = int(input("Enter the number of jumps wanted. "))
import random
for k in range(J):
r = random.uniform(0, 1)
if S == 0:
S = 1
if S == N:
S = N - 1
if (S < N) and (S > 0):
if r < p:
S = S + 1
else:
S = S - 1
print(S)
|
e7f600640ab9293a4788739e1fcb5f8e4ce1df24 | zoltankiss/ctci_problems | /ch-3/3-5/python/sort_stack.py | 957 | 3.890625 | 4 | class Stack:
def __init__(self, lst):
self.lst = lst
def push(self, e):
self.lst.append(e)
def pop(self):
return self.lst.pop()
def peek(self):
return self.lst[-1]
def isEmpty(self):
return self.lst == []
class SortStack:
def __init__(self):
self.stck = Stack([])
def sort(self, stack):
while not stack.isEmpty():
top = stack.pop()
counter = 0
if self.stck.isEmpty():
self.stck.push(top)
else:
if self.stck.peek() > top:
self.stck.push(top)
else:
while self.stck.peek() < top:
counter =+ 1
stack.push(self.stck.pop())
self.stck.push(top)
for _ in range(0, counter):
self.stck.push(stack.pop())
return self.stck
|
2ffb6bdaf1fc035d9ba7e827d6730a924911b485 | sharanyavenkat25/modelcompression | /data.py | 2,176 | 3.546875 | 4 | from keras.datasets import mnist
from keras.datasets import cifar10
from keras.utils import np_utils
# Import other necessary packages
import numpy as np
def get_data_cifar(num_classes=10):
"""
Get the CIFAR dataset.
Parameters:
None
Returns:
train_data - training data split
train_labels - training labels
test_data - test data split
test_labels - test labels
"""
print('[INFO] Loading the CIFAR10 dataset...')
(train_data, train_labels), (test_data, test_labels) = cifar10.load_data()
# Transform labels to one hot labels
# Example: '0' will become [1, 0, 0, 0, 0, 0, 0, 0, 0]
# '1' will become [0, 1, 0, 0, 0, 0, 0, 0, 0]
# and so on...
train_labels = np_utils.to_categorical(train_labels, num_classes)
test_labels = np_utils.to_categorical(test_labels, num_classes)
# Change type and normalize data
train_data = train_data.astype('float32')
test_data = test_data.astype('float32')
train_data /= 255
test_data /= 255
return train_data, train_labels, test_data, test_labels
def get_data_mnist(num_classes=10):
"""
Get the MNIST dataset.
Will download dataset if first time and will be downloaded
to ~/.keras/datasets/mnist.npz
Parameters:
None
Returns:
train_data - training data split
train_labels - training labels
test_data - test data split
test_labels - test labels
"""
print('[INFO] Loading the MNIST dataset...')
(train_data, train_labels), (test_data, test_labels) = mnist.load_data()
# Reshape the data from (samples, height, width) to
# (samples, height, width, depth) where depth is 1 channel (grayscale)
train_data = train_data[:, :, :, np.newaxis]
test_data = test_data[:, :, :, np.newaxis]
# Normalize the data
train_data = train_data / 255.0
test_data = test_data / 255.0
# Transform labels to one hot labels
# Example: '0' will become [1, 0, 0, 0, 0, 0, 0, 0, 0]
# '1' will become [0, 1, 0, 0, 0, 0, 0, 0, 0]
# and so on...
train_labels = np_utils.to_categorical(train_labels, num_classes)
test_labels = np_utils.to_categorical(test_labels, num_classes)
return train_data, train_labels, test_data, test_labels
# Import other necessary packages
|
209534f1df40749a6eab5038e1e2abccad088e91 | Oniwa/CodinGame | /There_is_no_Spoon_Episode_1/spoon.py | 2,786 | 3.65625 | 4 | import sys
import math
# Don't let the machines win. You are humanity's last hope...
class Node(object):
def __init__(self, x_location, y_location):
self.x = x_location
self.y = y_location
self.coordinate = f'{self.x}, {self.y}'
self.x_right = -1
self.y_right = -1
self.x_bottom = -1
self.y_bottom = -1
self.used = False
def right_neighbor(self, neighbor):
if not neighbor:
self.x_right = -1
self.y_right = -1
else:
self.x_right = neighbor.x
self.y_right = neighbor.y
def bottom_neighbor(self, neighbor):
if not neighbor:
self.x_bottom = -1
self.y_bottom = -1
else:
self.x_bottom = neighbor.x
self.y_bottom = neighbor.y
def __str__(self):
return f'{self.x} {self.y} {self.x_right} {self.y_right} {self.x_bottom} {self.y_bottom}'
def find_nodes(grid):
nodes = []
# width = int(input()) # the number of cells on the X axis
width = len(grid[0])
# print(width, file=sys.stderr)
# height = int(input()) # the number of cells on the Y axis
height = len(grid)
# max_x_distance = width
# print(height, file=sys.stderr)
for i in range(height):
# line = input() # width characters, each either 0 or .
# for idx, val in enumerate(line):
for idx, val in enumerate(grid[i]):
if val == '0':
nodes.append(Node(idx, i))
return nodes
def find_neighbors(nodes, max_x_distance, max_y_distance):
# Write an action using print
# To debug: print("Debug messages...", file=sys.stderr)
closest_x = []
closest_y = []
init_max_x = max_x_distance
init_max_y = max_y_distance
for item in nodes:
node = item
node.used = True
for item in nodes:
if not item.used:
if item.y == node.y:
distance = item.x - node.x
if 0 < distance < max_x_distance:
closest_x = item
max_x_distance = distance
if item.x == node.x:
distance = item.y - node.y
if 0 < distance < max_y_distance:
closest_y = item
max_y_distance = distance
node.used = False
node.right_neighbor(closest_x)
node.bottom_neighbor(closest_y)
# print(node, file=sys.stderr)
closest_x = []
closest_y = []
max_x_distance = init_max_x
max_y_distance = init_max_y
return nodes
#
#
# # Three coordinates: a node, its right neighbor, its bottom neighbor
# for item in nodes:
# print(item)
|
255299efedd954180cd741c90bb264451f19bd0c | juliapetiteau/ComputerScience | /do now 1.30.18.py | 280 | 4.15625 | 4 | #code for luggage weight price
weight = float(input("How much does your luggage weigh?"))
if weight >120:
print("Your luggage is too heavy for this flight")
elif weight > 50:
print ("There is a $25 fee for this luggage")
else:
print("Your luggage is accepted as is")
|
a39ba3bceaee7b53a960c3d7629ad0ef16c239e4 | fixik338/subject_269 | /Lab3.26.py | 214 | 3.6875 | 4 | M = int(input("Кол-во строк = "))
z = input("Введите слог = ").lower()
i = 0
while(i < M):
arr = input("Введите строку = ").lower()
arr = arr.replace(z, "")
print(arr)
i+=1
|
fbc62544545866c4d36a6e324ef1737a7b098714 | daniel-reich/turbo-robot | /MSX7AHcNiCZpCsiXY_17.py | 646 | 4.34375 | 4 | """
Create a function which returns how many **Friday 13ths** there are in a given
year.
### Examples
how_unlucky(2020) ➞ 2
how_unlucky(2026) ➞ 3
how_unlucky(2016) ➞ 1
### Notes
Check **Resources** for some helpful tutorials on the Python `datetime`
module.
"""
def how_unlucky(yr):
import datetime
count = 0
for mon in range(1, 13):
for day in range(1, 32):
try:
x = datetime.date(yr, mon, day)
if day == 13 and x.strftime("%A") == "Friday":
count += 1
except ValueError:
next
return count
|
764a8bceb1f69e1a50db3bfabd68f247b3b15a25 | cmgn/problems | /kattis/mirror/mirror.py | 353 | 3.65625 | 4 | #!/usr/bin/env python3
def main():
t = int(input())
for test in range(t):
n, m = map(int, input().split())
output = []
for _ in range(n):
output.append(input()[::-1])
print("Test " + str(test + 1))
for item in reversed(output):
print(item)
if __name__ == '__main__':
main() |
14b6ecf05f7d01e10ea35a66d34ab6fe81019510 | kpy4a/python | /Lesson 9/Lesson9_2.py | 456 | 3.734375 | 4 | class Road:
__weight = 25 # удельный вес 1 кв м
__thickness = 5 # толщина
def __init__(self, length, width):
self._length = length
self._width = width
def calculate_weight(self):
return self.__weight * self.__thickness * self._length * self._width
length = 5000 # метров
width = 20 # метров
road = Road(length, width)
print(road.calculate_weight(), 'кг')
|
a04744731e767ecba828583544ac33a6e8c1e8b5 | Seva-N/Physics | /phys_2/phys.py | 18,419 | 3.8125 | 4 | import math
# Welcome to the Module "Phys" 2.1
def help():
print("Dear Guest!")
print("Welcome to the physics module _Phys_ 2.1!")
print("My name is Seva Naumov. Program is made by me.")
print(" You can find a lot of physical \
constans or calculate some physical values from Mechanics.")
print("So you can find some astronomical data about our planet, \
solar system, and our galaxy from Astronimical Mechanics.")
print("Finally, you саn find functions with formula of idel gas")
print("from Thermodynamics.")
print()
print("You could enter : phys.[q_data]() ")
print("[q] is physical quantity or unit (in other case).")
print("[q] could be m, ma, f, P, p, G, F, g, a, M, R, r, c, ")
print("R_black_hole (R_bh), astro_unit (au), light_year (ly), parsec (pc) and")
print("relativity (l_relat).")
print("In Astronomical part:")
print("[M] is mass of astronomical object")
print("[R] is radius of astronomical object")
print("[r] is radius of the orbit of astronomical object")
print("[data] is some object and can be constant value:")
print()
print("density of some bodies")
print("moon")
print("sun")
print("mercury")
print("venus")
print("earth")
print("mars")
print("jupiter")
print("saturn")
print("uranus")
print("neptune")
print("pluto")
print("charon")
print("galaxy_milky_way (gMW)")
print("supermassive_black_hole (sbh)")
print()
print("If you want to calculate some values, you can use without [data].")
print("But _ should to be certainly in that case.")
print("It should be that : phys.[q_]")
print("Function without _ give you only constants M, R and r,")
print("which determines the parameters of the Earth ")
print("(it's mass, radiuses of it and orbit)")
print()
print("Good luck!")
# Mechanics:~
# Horizon distance: ~
def l_horizon(h):
R = 6356863
l_horizon = ((R + h) ** 2 - R ** 2) ** (1/2)
return l_horizon
def L_horizon(h):
R = 6356863
L_horizon = math.degrees(math.acos(R / (R + h))) * math.pi * R / 180
return L_horizon
def l_horizon_(h, R):
l_horizon_ = ((R + h) ** 2 - R ** 2) ** (1/2)
return l_horizon_
def L_horizon_(h, R):
L_horizon_ = math.degrees(math.acos(R / (R + h))) * math.pi * R / 180
return L_horizon_
# Newton's mechanics:
def ma(m, a):
ma = m * a
return ma
def f(m, a):
f = m * a
return f
def a_f(f, m): #~
a_f = f / m
return a_f
# easy physics:
def m(p, V):
m = p * V
return m
def P(F, S):
p = F / S
return p
def P_fluid(p, h): #~
g = 9.80665
p_fluid = p * g * h
return p_fluid
def P_f(p, h): #~
g = 9.80665
p_f = p * g * h
return p_f
def P_fluid_(p, h, g): #~
P_fluid_ = p * g * h
return P_fluid_
def P_f_(p, h, g): #~
P_f_ = p * g * h
return P_f_
def P_atmosphere(): #~ for 273 K (0°C)
P_atmosphere = 101325
return P_atmosphere
def F_a(p, V): #~
g = 9.80665
F_a = p * g * V
return F_a
def F_a_(p, V, g): #~
F_a_ = p * g * V
return F_a_
# Object Density (p ; kg/m³): ~
def p_air():
p_air = 1.225
return p_air
def p_aqua(): #~
p_aqua = 999.841
return p_aqua
def p_water():
p_water = 1030
return p_water
def p_ice():
p_ice = 917
return p_ice
def p_oak():
p_oak = 700
return p_oak
def p_milk():
p_milk = 1030
return p_milk
def p_honey():
p_honey = 1350
return p_honey
def p_oil_sunflower():
p_oil_sunflower = 930
return p_oil_sunflower
def p_oil_engine():
p_oil_engine = 900
return p_oil_engine
def p_sulfuric_acid():
p_sulfuric_acid = 1800
return p_sulfuric_acid
def p_quicksilver():
p_quicksilver = 13600
return p_quicksilver
def p_kerosene():
p_kerosene = 2700
return p_kerosene
def p_alcohol():
p_alcohol = 2500
return p_alcohol
def p_oil():
p_oil = 2300
return p_oil
def p_acetone():
p_acetone = 2300
return p_acetone
def p_ester():
p_ester = 1800
return p_ester
def p_gasoline():
p_gasoline = 1600
return p_gasoline
def p_aluminum():
p_aluminium = 2700
return p_aluminium
def p_cast_iron():
p_cast_iron = 7000
return cast_iron
def p_zinc():
p_zinc = 7100
return p_zinc
def p_tin():
p_tin = 7300
return p_tin
def p_steel():
p_steel = 7800
return p_steel
def p_iron():
p_iron = 7800
return p_iron
def p_copper():
p_copper = 8900
return p_copper
def p_silver():
p_silver = 10500
return p_silver
def p_lead():
p_lead = 11300
return p_lead
def p_gold():
p_gold = 19300
return p_gold
def p_platinum():
p_platinum = 21500
return p_platinum
def p_sun():
p_sun = 3300
return p_sun
def p_earth():
p_earth = 5520
return p_earth
def p_blood():
p_blood = 1050
return p_blood
def p_human():
p_human = 1036
return p_human
# Elastic force: ~
def F_e(k, x):
F_e = -k * x
return F_e
# Friction force (max): ~
def F_f(n, N):
F_f = n * N
return F_f
def N(m):
g = 9.80665
N = m * g
return N
def N_(m, b):
g = 9.80665
N_ = m * g * math.cos(math.radians(b))
return N_
def _N(m, g):
_N = m * g
return _N
def _N_(m, b, g):
_N_ = m * g * math.cos(math.radians(b))
return _N_
def a_f(F, m, n):
g = 9.80665
a_f = F / m - n * g
return a_f
def a_f_(n, b):
g = 9.80665
if math.tan(math.radians(b)) > n:
a_f_ = g * (math.sin(math.radians(b)) - n * math.cos(math.radians(b)))
else:
a_f_ = 0
return a_f_
def a_f_F(F, m, n, b):
g = 9.8066
if F / m + g * math.sin(math.radians(b)) > g * n * math.cos(math.radians(b)):
a_f_F = F / m + g * (math.sin(math.radians(b)) - n * math.cos(math.radians(b)))
else:
a_f_F = 0
return a_f_F
def _a_f(F, m, n, g):
_a_f = F / m - n * g
return _a_f
def _a_f_(n, b, g):
if math.tan(math.radians(b)) > n:
_a_f_ = g * (math.sin(math.radians(b)) - n * math.cos(math.radians(b)))
else:
_a_f_ = 0
return _a_f_
def _a_f_F_(F, m, n, b, g):
if F / m + g * math.sin(math.radians(b)) > g * n * math.cos(math.radians(b)):
_a_f_F_ = F / m + g * (math.sin(math.radians(b)) - n * math.cos(math.radians(b)))
else:
a_f_F_ = 0
return a_f_F_
# Resistance force ~
# for low speed: ~
def F_r1(k, v):
F_r1 = -k * v
return F_r1
# for high speed: ~
def F_r2(k, v):
F_r2 = -k * v * math.fabs(v)
return F_r2
# coefficient of resistance: ~
def k_r(p, C, S):
k_r = p * C * S / 2
return k_r
# C of resistance: ~
def C_parachute():
C_parachute = 1.17
return C_parachute
def C_cube():
C_cube = 1.05
return C_cube
def C_cylinder():
C_cylinder = 0.82
return C_cylinder
def C_sphere():
C_sphere = 0.47
return C_sphere
def C_hemisphere():
C_hemisphere = 0.4
return C_hemisphere
def C_teardrop():
C_teardrop = 0.04
return C_teardrop
# Astronimical Mechanics:~
# Gravity force: ~
def G():
G = 6.6740831 * 10 ** -11
return G
def F(m, M, R):
G = 6.6740831 * 10 ** -11
F = G * m * M / R ** 2
return F
def F_(m, M, R, h): #~
G = 6.6740831 * 10 ** -11
F_ = G * m * M / (R + h) ** 2
return F_
def g(): #~
g = 9.80665
return g
def a(M, R):
G = 6.6740831 * 10 ** -11
a = G * M / R ** 2
return a
def a_(M, R, h): #~
G = 6.6740831 * 10 ** -11
a_ = G * M / (R + h) ** 2
return a_
# masses of the astronomic objects ( M ; kg ):
# our planet (Earth):
def M():
M = 5.97 * 10 ** 24
return M
# search:
def M_(a, R):
G = 6.6740831 * 10 ** -11
M_= a * R ** 2 / G
return M_
# Moon:
def M_moon():
M_moon = 7.35 * 10 ** 22
return M_moon
# Sun:
def M_sun():
M_sun = 1.9885 * 10 ** 30
return M_sun
# planets in our solar system:
def M_mercury():
M_mercury = 3.33 * 10 ** 23
return M_mercury
def M_venus():
M_venus = 4.87 * 10 ** 24
return M_venus
def M_earth():
M_earth = 5.97 * 10 ** 24
return M_earth
def M_mars():
M_mars = 6.4185 * 10 ** 23
return M_mars
def M_jupiter():
M_jupiter = 1.9 * 10 ** 27
return M_jupiter
def M_saturn():
M_saturn = 5.68 * 10 ** 26
return M_saturn
def M_uranus():
M_uranus = 8.68 * 10 ** 25
return M_uranus
def M_neptune():
M_neptune = 1.02 * 10 ** 26
return M_neptune
def M_pluto():
M_pluto = 1.303 * 10 ** 22
return M_pluto
# Pluto satellites:
def M_charon():
M_charon = 1.52 * 10 ** 21
return M_charon
# galaxy Milky Way:
def M_galaxy_milky_way():
M_sun = 1.9885 * 10 ** 30
R_galaxy_milky_way = 4.8 * 10 ** 11 * R_sun
return R_galaxy_milky_way
def M_gMW():
M_sun = 1.9885 * 10 ** 30
M_gMW = 4.8 * 10 ** 11 * R_sun
return M_gMW
# Supermassive black hole
def M_supermassive_black_hole():
M_supermassive_black_hole = 1.7449856116 * 10 ** 41
return M_supermassive_black_hole
def M_sbh():
M_sbh = 1.7449856116 * 10 ** 41
return M_sbh
# radiuses of the astronomic objects ( R ; m ):
# our planet (Earth):
def R():
R = 6356863
return R
# equator of the Earth: ~
def R_equator():
R_eguator = 6378100
return R_eguator
def R_e():
R_e = 6378100
return R_e
# pole of the Earth: ~
def R_pole():
R_pole = 6356777
return R_pole
def R_p():
R_p = 6356777
return R_p
# search:
def R_(M, a):
G = 6.6740831 * 10 ** -11
R_ = (G * M / a) ** (1/2)
return R_
# Moon:
def R_moon():
R_moon = 1737100
return R_moon
# Sun:
def R_sun():
R_sun = 6.96 * 10 ** 8
return R_sun
# planets in our solar system:
def R_mercury():
R_mercury = 2439700
return R_mercury
def R_venus():
R_venus = 6051800
return R_venus
def R_earth():
R_earth = 6356863
return R_earth
def R_mars():
R_mars = 3389500
return R_mars
def R_jupiter():
R_jupiter = 69911000
return R_jupiter
def R_saturn():
R_saturn = 58232000
return R_saturn
def R_uranus():
R_uranus = 25360000
return R_uranus
def R_neptune():
R_neptune = 24622000
return R_neptune
def R_pluto():
R_pluto = 5900000
return R_pluto
# Pluto satellites:
def R_charon():
R_charon = 606000
return R_charon
# galaxy Milky Way:
def R_galaxy_milky_way():
light_year = 299792458 * 60 * 60 * 24 * 365
R_galaxy_milky_way = 50000 * light_year
return R_galaxy_milky_way
def R_gMW():
light_year = 299792458 * 60 * 60 * 24 * 365
R_gMW = 50000 * light_year
return R_gMW
# Supermassive black hole:
def R_supermassive_black_hole():
R_supermassive_black_hole = 259162433900880.38
return R_supermassive_black_hole
def R_sbh():
R_sbh = 259162433900880.38
return R_sbh
# black hole (calculate):
def R_black_hole(M, R):
G = 6.6740831 * 10 ** -11
c = 299792458
R_black_hole = 2 * G / c ** 2
return R_black_hole
def R_bh(M, R):
G = 6.6740831 * 10 ** -11
c = 299792458
R_bh = 2 * G / c ** 2
return R_bh
# radiuses of the orbits of the astronomic objects ( r ; м ):
# orbit of our planet (Earth):
def r():
r = 149597870700
return r
# search:
def r_(v, a):
r_ = v ** 2 / a
return r_
# orbit of the Moon aroud the Earth:
def r_moon():
r_moon = 384.4 * 10 ** 6
return r_moon
# orbit of the Sun in galaxy Milky Way:
def r_sun():
light_year = 299792458 * 60 * 60 * 24 * 365
r_sun = 26000 * light_year
return r_sun
# orbits of the planets in our solar system:
def r_mercury():
r_mercury = 57909227000
return r_mercury
def r_venus():
r_venus = 108.2 * 10 ** 9
return r_venus
def r_earth():
r_earth = 149597870700
return r_earth
def r_mars():
r_mars = 249.2 * 10 ** 9
return r_mars
def r_jupiter():
r_jupiter = 7.785 * 10 ** 11
return r_jupiter
def r_saturn():
r_saturn = 1429394069000
return r_saturn
def r_uranus():
r_uranus = 2876679082000
return r_uranus
def r_neptune():
r_neptune = 4503443661000
return r_neptune
def r_pluto():
r_pluto = 5906440606290.79
return r_pluto
# orbits of the Pluto satellites aroud Pluto:
def r_charon():
r_charon = 19.6 * 10 ** 6
return r_charon
# speed of light (c ; m/s ):
def c():
c = 299792458
return c
# astronomical unit:
# (a.u. = m)
def astro_unit(n):
astro_unit = n * 149597870700
return astro_unit
def au(n):
au = n * 149597870700
return au
# (m = a.u.)
def astro_unit_(n):
astro_unit_ = n / 149597870700
return astro_unit_
def au_(n):
au_ = n / 149597870700
return au_
# light year:
#(l.y. = m):
def light_year(n):
light_year = n * 299792458 * 60 * 60 * 24 * 365
return light_year
def ly(n): #~
ly = n * 299792458 * 60 * 60 * 24 * 365
return ly
# (m = l.y.):
def light_year_(n):
light_year_ = n / 299792458 / 365 / 24 / 60 / 60
return light_year_
def ly_(n):
ly_ = n / 299792458 / 365 / 24 / 60 / 60
return ly_
# parsec:
# (pc = m):
def parsec(n):
parsec = n * 149597870700 * 360 * 60 * 60 / (2 * math.pi)
return parsec
def pc(n):
pc = n * 149597870700 * 360 * 60 * 60 / (2 * math.pi)
return pc
# (m = pc):
def parsec_(n):
parsec_ = 2 * n * math.pi / (360 * 60 * 60 * 149597870700)
return parsec_
def pc_(n):
pc_ = 2 * n * math.pi / (360 * 60 * 60 * 149597870700)
return pc_
# Thermodynamics: ~
# values of an ideal gas:~
def R_k():
R_k = 8.31447
return R_k
# molar mass of air:~
def M_v():
M_v = 0.0289644
return M_v
# temperature:~
def T(t):
T = 273 + t
return T
def t(T):
t = T - 273
return t
def t_min():
t_min = -273
return t_min
# the Mendeleev-Clapeyron equation:~
def V_ideal_gas(P, v, T):
R = 8.31447
V_ideal_gas = v * R * T / P
return V_ideal_gas
def V_ig(P, v, T):
R = 8.31447
V_ig = v * R * T / P
return V_ig
def P_ideal_gas(V, v, T):
R = 8.31447
P_ideal_gas = v * R * T / V
return P_ideal_gas
def P_ig(V, v, R, T):
R = 8.31447
P_ig = v * R * T / V
return P_ig
def v_ideal_gas(P, V, T):
R = 8.31447
v_ideal_gas = P * V / (R * T)
return v_ideal_gas
def v_ig(P, V, T):
R = 8.31447
v_ig = P * V / (R * T)
return v_ig
def T_ideal_gas(P, V, v):
R = 8.31447
T_ideal_gas = P * V / (v * R)
return T_ideal_gas
def T_ig(P, V, v):
R = 8.31447
T_ig = P * V / (v * R)
return T_ig
# Dependence of temperature on height (T ; K):~
def t_h(t, h):
t_h = t - 0.0065 * h
return t_h
def T_h(T, h):
T_h = T - 0.0065 * h
return T_h
# Accurate pressure and density measurement at a specific temperature:~
def p_t(t):
R = 8.31447
M = 0.0289644
P = 101325
T = 273
l = t / 100000
d = 0
if t != 0:
while math.fabs(d) < math.fabs(t):
p = P * M / (R * T)
i = d + l
T = 273 + i
P = p * R * T / M
d = d + l
i = d + l
T = 273 + i
else:
p = P * M / (R * T)
p_t = p
return p_t
def P_t(t):
R = 8.31447
M = 0.0289644
P = 101325
T = 273
l = t / 100000
d = 0
if t != 0:
while math.fabs(d) < math.fabs(t):
p = P * M / (R * T)
i = d + l
T = 273 + i
P = p * R * T / M
d = d + l
i = d + l
T = 273 + i
else:
p = P * M / (R * T)
P_t = P
return P_t
def p_h(t, h):
R = 8.31447
M = 0.0289644
G = 6.6740831 * 10 ** -11
M_ = 5.97 * 10 ** 24
R_ = 6356863
P = 101325
T = 273
l = t / 100000
d = 0
if t != 0:
while math.fabs(d) < math.fabs(t):
p = P * M / (R * T)
i = d + l
T = 273 + i
P = p * R * T / M
d = d + l
i = d + l
T = 273 + i
else:
p = P * M / (R * T)
l = h / 100000
T = 273 + t
d = 0
while math.fabs(d) < math.fabs(h):
if T - 273 > -270.5:
T = T - 0.0065 * l
g = G * M_ / (R_ + d) ** 2
d_P = -(p * g * l)
if h >= 0:
P = P + d_P
p = P * M / (R * T)
d = d + l
p_h = p
return p_h
def P_h(t, h):
R = 8.31447
M = 0.0289644
G = 6.6740831 * 10 ** -11
M_ = 5.97 * 10 ** 24
R_ = 6356863
P = 101325
T = 273
l = t / 100000
d = 0
if t != 0:
while math.fabs(d) < math.fabs(t):
p = P * M / (R * T)
i = d + l
T = 273 + i
P = p * R * T / M
d = d + l
i = d + l
T = 273 + i
else:
p = P * M / (R * T)
l = h / 100000
T = 273 + t
d = 0
while math.fabs(d) < math.fabs(h):
if T - 273 > -270.5:
T = T - 0.0065 * l
g = G * M_ / (R_ + d) ** 2
d_P = -(p * g * l)
if h >= 0:
P = P + d_P
p = P * M / (R * T)
d = d + l
P_h = P
return P_h
# Relativity of Einstein:~
# relativity
def relativity_v(n, v):
c = 299792458
relativity_v = n / (1 - (v / c) ** 2) ** (1/2)
return relativity_v
def l_relat_v(n, v):
c = 299792458
l_relat_v = n / (1 - (v / c) ** 2) ** (1/2)
return l_relat_v
def relativity_v_(n, v):
c = 299792458
relativity_v_ = n * (1 - (v / c) ** 2) ** (1/2)
return relativity_v_
def l_relat_v_(n, v):
c = 299792458
l_relat_v_ = n * (1 - (v / c) ** 2) ** (1/2)
return l_relat_v_
def l_relativity_g(n, M, r):
G = 6.6740831 * 10 ** -11
c = 299792458
l_relativity_g = n / (1 - (2 * G * M / (r * c ** 2))) ** (1/2)
return l_relativity_g
def l_relat_g(n, M, r):
G = 6.6740831 * 10 ** -11
c = 299792458
l_relat_g = n / (1 - (2 * G * M / (r * c ** 2))) ** (1/2)
return l_relat_g
def l_relativity_g_(n, M, r):
G = 6.6740831 * 10 ** -11
c = 299792458
l_relativity_g_ = n * (1 - (2 * G * M / (r * c ** 2))) ** (1/2)
return l_relativity_g_
def l_relat_g_(n, M, r):
G = 6.6740831 * 10 ** -11
c = 299792458
l_relat_g_ = n * (1 - (2 * G * M / (r * c ** 2))) ** (1/2)
return l_relat_g_ |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.