blob_id
stringlengths
40
40
repo_name
stringlengths
6
108
path
stringlengths
3
244
length_bytes
int64
36
870k
score
float64
3.5
5.16
int_score
int64
4
5
text
stringlengths
36
870k
e58e2b78b45e66a480d412af07ec8ee954230556
BreeBot/IntroToProg-Python
/Assigment07.py
986
4.40625
4
#-------------------------------------------------# # Title: Working with Dictionaries # Dev: Breana K. Merriweather # Date: August 26, 2019 # ChangeLog: #-------------------------------------------------# #1). Create a simple example of how you would use Python Exception Handling. #Demonstrate handling exceptions Miles = int(input("Please Enter Total Miles Driven: ")) Gallon = int(input("Please Enter Gallons of Gas Used: ")) MPG = 0 try: MPG = int(Miles/Gallon) except ZeroDivisionError: print("Please Try Again.") print("Your MPG is: ",MPG) #2). Create a simple example of how you would use Python Pickling. #import pickle import pickle #ask user for personal information fstName = str(input("Enter your First Name: ")) lstName = str(input("Enter your Last Name: ")) userInfo = [fstName, lstName] print(userInfo) #Store data with the pickle.dump objFile = open("users.dat", "ab") pickle.dump(userInfo, objFile) objFile.close()
37e447400336b7c839e1b305b66ce5f228edf7e4
MihirMore/Fun-Python-Projects
/Guess_the_number/user-guess.py
789
4.40625
4
# Guess the number is a game where user is asked to guess a number, the computer then comments if the number is high, low or the correct number. # Here we are using the random function to generate a random number betwwen x to y. import random def guess(x): random_number = random.randint(1, x) guess = 0 while guess != random_number: guess = int(input(f"Guess a integer between 1 and {x}: ")) if guess < random_number: print("Oops!, guess again. You guessed too low.") elif guess > random_number: print("Oops!, guess again. You guessed too high.") print(f"Yay! Congrats you've guessed the number {random_number}.") guess(10)
efc1f55a43fd4532c3b6cde9276d996e0faa304e
cyclades1/Python-Programs
/p11.py
107
3.53125
4
'''input 12 3 ''' n = int(input()) c = int(input()) if(n%c==0): print("YES") else: print("No")
597f7f559071465f21323f205d4ec503b5efec5f
Dpalazzari/codeChallenges
/Python/basic_stack/basic_stack.py
810
3.65625
4
from itertools import chain class BasicStack(object): def push_to_array(self, arr, num): return list(chain.from_iterable([arr, [num]])) def push_to_array_with_append(self, arr, num): arr.append(num) return arr def remove_last_element(self, arr): arr = arr[0:-1] return arr def remove_last_element_with_pop(self, arr): arr.pop() return arr def count_elements_in_list(self, arr): count = 0 for index in arr: count += 1 return count def count_elements_in_list_with_len(self, arr): return len(arr) def maximum_number_in_list(self, arr): max_num = 0 while (len(arr) > 0): num = arr.pop() if num > max_num: max_num = num return max_num def maximum_number_in_list_with_max(self, arr): return max(arr)
e9479627d41cb048285a0af07494884aa295ff6b
Alex-Wei-bot/python-learning-diary
/exercise code/day3.1.py
304
4.1875
4
#英尺厘米换算 i=float(input('input an number')) j=input('is it inch or centimeter?') if j == 'inch': inch=i centimeter=inch*2.54 print(f'the length in centimeter is {centimeter:.2}') else: centimeter=i inch=centimeter/2.54 print('the length in inch is %.2f' %inch)
1f496a7e604f3449f03d945b34a3517741b198a0
nikithasake/Python
/python coding(prep)/fibonnaci.py
134
4.09375
4
#fibonaci def fib(n): if n==1: return 0 if n==2: return 1 return fib(n-1)+fib(n-2) n=int(input("Enter input:")) print(fib(n))
38945d14315783bf445d82814180c28b7f9dfc0e
alysonla/Full-Stack
/names.py
830
4.46875
4
# Open names.txt file # Write a Python script which loads the names from the file, and converts your own name to a # superhero (or supervillain) name by picking the name corresponding to your first name's position # in the alphabet (there are 26 superheroes in the list). For example, if your name starts with A, # you want superhero name #1. Mine (J) is name #10. with open('names.txt') as f: data = f.readlines() # for name in data: # print name.strip() # Figure out how to put all in list & access the list # Here's a snippet of code to help with the letter part of this: import string uppers = string.uppercase # print uppers # this will help you figure out what this is a_position = uppers.find('A') # .find shows you what position the letter is in. print a_position print data[a_position].strip()
b07323b38c4b60f7da1307ca9d870fbc059a9d51
greend6807/cti110
/CTI 110/P4T1A_Green/P4T1A_Green.py
689
4.125
4
#CTI-110 #P4T1A_Green #Darius Green #11/20/18 import turtle #Allows us to use turtle. wn = turtle.Screen() #Creates a playground for turtles blues = turtle.Turtle() #Create a turtle, assign to blues #Display options blues.pensize(3) blues.pencolor("blue") blues.shape("turtle") #Have the turtle draw out the shape you want. #Square first. #Use for or whole loops to execute. for i in [0, 1, 2, 3]: blues.forward(100) blues.left(90) #Reposition blues.left (150) blues.penup() blues.forward(50) blues.pendown() blues.left (90) #Triangle Second. for x in [0, 1, 2, 3]: blues.forward(100) blues.left(120)
d449d303b2831c9198b4018dcacd1fa7b1a9fa30
Kapo4eso4i/CheckIO
/Home/Pawn Brotherhood.py
363
3.609375
4
def safe_pawns(pawns): letters = [' ', 'a', 'b', 'c', 'd', 'e' , 'f', 'g', 'h', ' '] safe_place = [] for pawn in pawns: next_row = str(int(pawn[1])+1) safe_place += [letters[letters.index(pawn[0])+1] + next_row, letters[letters.index(pawn[0])-1] + next_row] return len([x for x in pawns if x in safe_place])
e9e60f5bbaad2e4111ba98e77d0605ff628c76a8
SeungpilHan/Python_Tutorial
/Desktop/Coding/Jump to Python/practice.py
69
3.765625
4
for a in [1,2,3]: print(a) i = 0 while i < 3: i=i+1 print(i)
d8355d46dc6b0aac828f6c6249e7ce07d507b28a
ZhengweiHou/python-learn-hzw
/optionSYS_test/进程同步/mutex_lock_demo_lock.py
980
3.90625
4
#!/usr/bin/python # -*- coding: UTF-8 -*- import threading lock = threading.Lock() # 定义一个互斥量-互斥锁 num = 0 def producer(): global num times = 1000000 while times >0 : global lock lock.acquire() # 加锁 num += 1 lock.release() # 解锁 times -= 1 print('producer end!!') def comsumer(): global num times = 1000000 while times >0 : global lock lock.acquire() # 加锁 num -= 1 lock.release() # 解锁 times -= 1 print('comsumer end!!') if __name__ == '__main__': print('start in main function.') p = threading.Thread(target=producer) c = threading.Thread(target=comsumer) p.start() c.start() p.join() # main wait p end c.join() # main wait c end print('Print in mian function: num = %d' % num) # 输出: # start in main function. # producer end!! # comsumer end!! # Print in mian function: num = 0
a60249008de805cbb06538751ceddfa93568d9d1
oereo/Algorithm_thursday
/YounJongSu/mid_hw/quick_sort.py
577
3.8125
4
def partition(arr, l, h): i = l-1 piv = arr[h] for j in range(l, h): if arr[j]<piv: i+=1 arr[i],arr[j]=arr[j],arr[i] print(arr) arr[i+1],arr[h] = arr[h], arr[i+1] print(arr) print("pt end") print(i+1) return i+1 def quickSort(arr, l, h): if l<h: pi = partition(arr, l, h) quickSort(arr, l, pi-1) quickSort(arr, pi+1, h) print("qs end") arr = [10, 7, 1, 8] n = len(arr) print("given arr: {}".format(arr)) quickSort(arr,0,n-1) print("Sorted arr: {}".format(arr))
ff733043a6af1f002e7fc938b53947ad137bbc94
thomasmontoya123/holbertonschool-machine_learning
/supervised_learning/0x03-optimization/9-Adam.py
1,116
3.703125
4
#!/usr/bin/env python3 """Adam module""" def update_variables_Adam(alpha, beta1, beta2, epsilon, var, grad, v, s, t): """ updates a variable in place using the Adam optimization algorithm Parameters ---------- alpha : float learning rate beta1 : float weight used for the first moment beta2 : float weight used for the second moment epsilon : float small number to avoid division by zero var : numpy.ndarray contains the variable to be updated grad : numpy.ndarray contains the gradient of var v : previous first moment of var s : is the previous second moment of var t : time step used for bias correction """ v = (v * beta1) + ((1 - beta1) * grad) v_hat = v / (1 - (beta1 ** t)) s = (s * beta2) + ((1 - beta2) * (grad ** 2)) s_hat = s / (1 - (beta2 ** t)) var = var - ((alpha * v_hat) / (s_hat ** (1 / 2) + epsilon)) return var, v, s
47e7512a8c8dec280aab01d06218cc8b5a37c808
Marie-EveGauthier/whatIShouldWatch
/bin/tag-analysis/process_categories.py
867
4.3125
4
import pandas as pd filename1 = raw_input("Enter the name of the file you want to process categories from:\n") #Import the data in file as a pandas object data = pd.read_csv(filename1, names = ['name', 'categories']) #get a list of names who don't have entries in wikipedia no_categories = data[data.categories.isnull()]['name'].tolist() #and saves it to a file filename2 = raw_input("Enter a filename to save the list of names with no entries on wikipedia:\n") with open(filename2, 'wb') as h: for name in no_categories: h.write(name +'\n') have_cats = data[data.categories.notnull()] women = have_cats[have_cats['categories'].str.contains("women")]['name'].tolist() filename3 = raw_input("Enter a filename to save the list of names of people who are women:\n") with open(filename3, 'wb') as h: for name in women: h.write(name +'\n')
9c171f0dbca62bec644364ebb504ec5818ee3c2f
TuongTuan3T/PythonNC
/Lab05/Bai03.py
364
3.75
4
class Student: def __init__(self, name:str, number: str, course:str, mail:str): self.name = name self.number = number self.course = course self.mail = mail def __str__(self): return ('{}\n{}\n{}\n{} '.format(self.name, self.number, self.course, self.mail)) pupil = Student('TuongTuan', '187it07012', '[email protected]', 'K10' ) ##Câu a print(pupil)
95715c18eb0ec9519b481b0a667e38cb7b87e5bd
allankeiiti/Learning_Pytest
/modulo_2_validando_teste_com_erros_esperados.py
1,087
3.875
4
""" Aqui temos funções cujo possuem condições que caso sejam ou não atendidas, um erro é invocado e isso é esperado. Portanto aqui é utilizado o pytest.raises(<Tipo de Erro>) para falar pro Pytest que este erro é esperado e que deve ser invocado. Pois quando é testado um software também é necessário tentar quebrá-lo e ver como ele se comporta. """ import pytest def validar_idade(idade: int): if isinstance(idade, int): if idade < 0: raise ValueError(f'O valor passado: {idade} é inválido (Valor menor que 0)') else: raise ValueError(f'O valor passado: {idade}, não é um inteiro, por favor passe um valor do tipo Integer') def test_validar_idade_valida(): """ Item 1 :return: """ validar_idade(10) def test_validar_idade_nao_valida(): """ Item 2 :return: """ with pytest.raises(ValueError): validar_idade(-1) def test_validar_idade_string(): """ Item 3 :return: """ with pytest.raises(ValueError): validar_idade('allan')
5f377bc81345db5adaa1a3a32c3170f669048194
alters-mit/tdw_sound20k
/tdw_scene_size.py
837
3.65625
4
from abc import ABC, abstractmethod from typing import Tuple from numpy.random import RandomState class TDWSceneSize(ABC): """ The size of a TDW scene room. """ @abstractmethod def get_size(self) -> Tuple[int, int]: """ :return: The dimensions of the room. """ raise Exception() class StandardSize(TDWSceneSize): """ A "normal-sized" room. """ def get_size(self) -> Tuple[int, int]: return 12, 12 class SmallSize(TDWSceneSize): """ A small room. """ def get_size(self) -> Tuple[int, int]: return 4, 4 class RandomSize(TDWSceneSize): """ A randomly-sized room. """ _RNG = RandomState(0) def get_size(self) -> Tuple[int, int]: return RandomSize._RNG.randint(4, 16), RandomSize._RNG.randint(4, 16)
215cd0b991f514076a58152eed8e2c2cd4839853
hwins/triangle-puzzle-python3
/TrianglePuzzlePython3/src/Triangle.py
5,956
3.53125
4
#!/usr/bin/env python3 import sys class Node_Tree_Element(object): """individual element of the node tree These objects contain node information such as left child, right child, level on the tree and node integer value """ def __init__(self, node_value): assert isinstance(node_value, int) self.__node_level = None self.__node_value = node_value self.__best_path_down = None self.__left_child = None self.__right_child = None def get_nl(self): return self.__node_level def set_nl(self, node_level): assert isinstance(node_level, int) assert node_level > -1 self.__node_level = node_level def del_nl(self): pass node_level = property(get_nl, set_nl, del_nl) def get_nv(self): return self.__node_value def set_nv(self, node_value): assert isinstance(node_value, int) assert node_value > -1 self.__node_value = node_value def del_nv(self): pass node_value = property(get_nv, set_nv, del_nv) def get_bpd(self): return self.__best_path_down def set_bpd(self, best_path_down): assert isinstance(best_path_down, str) self.__best_path_down = best_path_down def del_bpd(self): pass best_path_down = property(get_bpd, set_bpd, del_bpd) def get_lc(self): return self.__left_child def set_lc(self, left_child): assert isinstance(left_child, int) assert left_child > 0 self.__left_child = left_child def del_lc(self): pass left_child = property(get_lc, set_lc, del_lc) def get_rc(self): return self.__right_child def set_rc(self, right_child): assert isinstance(right_child, int) assert right_child > 0 self.__right_child = right_child def del_rc(self): pass right_child = property(get_rc, set_rc, del_rc) class Node_Tree(list): """this class is an extension of the list class set to only allow Node_Tree_Elements in it """ def append(self, *args, **kwargs): assert isinstance(args[0], Node_Tree_Element) return list.append(self, *args, **kwargs) def insert(self, *args, **kwargs): assert isinstance(args[0], Node_Tree_Element) return list.insert(self, *args, **kwargs) def main(argv=None): file_name = argv number_of_levels = 0 number_of_elements = 0 nt = Node_Tree() # load text files into the tree by creating elements based on input # file contains lines with numbers, each line new level # file must contain only valid integers with separating space with open(file_name, encoding='utf-8') as file_in: for line_in in file_in: # remove trailing newline, etc. line_in = line_in.rstrip() split_line = line_in.split(" ") for value_in in split_line: nte = Node_Tree_Element(int(value_in)) nte.node_level = number_of_levels number_of_elements += 1 nt.append(nte) number_of_levels += 1 # now that all of the values are in the tree the left and right children # locations need to be set so the tree can be traversed # the last level - leaf nodes will be left null this_element = 0 this_level = 0 add_child_pointers_below_these_levels = number_of_levels - 1 # only up to last level while this_level < add_child_pointers_below_these_levels: # left and right children are determined by a calculation to determine # position in the tree based on input file lc_position = this_element + this_level + 1 rc_position = lc_position + 1 nt[this_element].left_child = lc_position nt[this_element].right_child = rc_position this_element += 1 this_level = nt[this_element].node_level # start at last node and roll up the best path for each node based on # the either the left or right child # use number of elements for relative subscript so decrease by 1 max_nodes = number_of_elements - 1 for i in range(max_nodes, -1, -1): lc = nt[i].left_child rc = nt[i].right_child new_node_value = 0 if ((lc == None) or (rc == None)): # the bottom nodes have no children new_node_value = nt[i].node_value new_best_path_down = "\n" \ + str(nt[i].node_value) \ + " at node " \ + str(i) \ + " on level " \ + str(nt[i].node_level) else: if (nt[lc].node_value > nt[rc].node_value): new_node_value = nt[i].node_value + nt[lc].node_value new_best_path_down = "\n" \ + str(nt[i].node_value) \ + " at node " \ + str(i) \ + " on level " \ + str(nt[lc].node_level) \ + str(nt[lc].best_path_down) else: new_node_value = nt[i].node_value + nt[rc].node_value new_best_path_down = "\n" \ + str(nt[i].node_value) \ + " at node " \ + str(i) \ + " on level " \ + str(nt[rc].node_level) \ + str(nt[rc].best_path_down) nt[i].node_value = new_node_value nt[i].best_path_down = new_best_path_down with open("solution.txt", "w") as solution_file: solution_file.write("Max Value is " + str(nt[0].node_value) + "\n") solution_file.write("The Best Path chosen was: " \ + str(nt[0].best_path_down)) return 0 if __name__ == '__main__': if len(sys.argv) < 2: sys.stderr.write("no file name provided") else: main(sys.argv[1]) sys.exit()
0500416f388df1a6a047545b2e8432f7dd1ca24f
chao-ji/LeetCode
/python/string/lc49.py
1,189
4.0625
4
"""49. Group Anagrams Given an array of strings, group anagrams together. Example: Input: ["eat", "tea", "tan", "ate", "nat", "bat"], Output: [ ["ate","eat","tea"], ["nat","tan"], ["bat"] ] Note: All inputs will be in lowercase. The order of your output does not matter. """ from string import ascii_lowercase class Solution(object): def groupAnagrams(self, strs): """ :type strs: List[str] :rtype: List[List[str]] """ # The idea: # We need to map each string in `strs` to a key, then group # strings by the key # To compute the key, we use the counting method: # 'eat' ==> [1, 0, 0, 0, 1, ..., 1, ... 0] # a e t # 'tea' ==> [1, 0, 0, 0, 1, ..., 1, ... 0] # a e t # So 'eat' and 'tea' map to the same key. # string is converted to its 'one-hot' encoding anagrams = {} for s in strs: if self.key(s) not in anagrams: anagrams[self.key(s)] = [] anagrams[self.key(s)].append(s) return list(anagrams.values()) def key(self, s): return tuple([s.count(c) for c in ascii_lowercase])
a8c5e28379d9f4d8b39e6ed35b775f06d00a6e48
xuting1108/Programas-de-estudo
/exercicios-pythonBrasil/estrutura-de-decisao/ex15.py
997
4.25
4
#Faça um Programa que peça os 3 lados de um triângulo. O programa deverá informar se os valores podem ser um triângulo. Indique, caso os lados formem um triângulo, se o mesmo é: equilátero, isósceles ou escaleno. # Dicas: # Três lados formam um triângulo quando a soma de quaisquer dois lados for maior que o terceiro; # Triângulo Equilátero: três lados iguais; # Triângulo Isósceles: quaisquer dois lados iguais; # Triângulo Escaleno: três lados diferentes; lado_a = float(input('informe a medida do lado a: ')) lado_b = float(input('informe a medida do lado b: ')) lado_c = float(input('informe a medida do lado c: ')) if lado_a == lado_b == lado_c: print('o triangulo é equilátero') elif lado_a == lado_b or lado_a == lado_c or lado_b == lado_c: print('o triangulo é isósceles') elif lado_a + lado_b < lado_c or lado_b + lado_c < lado_a or lado_c + lado_a < lado_b: print('nO SE PODE FORMAR UM TRIANGULO') else: print('o triangulo é escaleno')
965313b0c4a2748bdd1e6ede0ac8bec04b79956f
gabriellaec/desoft-analise-exercicios
/backup/user_242/ch162_2020_06_15_19_06_37_199855.py
321
3.65625
4
lista = [1,3,7,9] def verifica_lista(lista): par = True impar = True for i in lista: if lista%2 == 0: impar = False else: par = False if par and not impar: return 'par' elif impar and not par: return 'impar' return 'misturado'
7b7a97d7dc33fa33d73a7e3ce823a960d8432d74
shanminlin/Cracking_the_Coding_Interview
/chapter-1/6_string_compression.py
3,620
4.21875
4
""" Chapter 1 - Problem 1.6 - String Compression Problem: Implement a method to perform basic string compression using the counts of repeated characters. For example, the string aabcccccaaa would become a2b1c5a3. If the "compressed" string would not become smaller than the original string, your method should return the original string. You can assume the string has only uppercase and lowercase letters (a - z). Solution: 1. Clarify the question: Rephrase the question: We are given a string. And we need to compress the string using character counts. Clarify assumptions: - only uppercase and lowercase letters. So there will be no confusion when we have 10 or more consecutive identical characters. - case sensitive? (We will assume case sensitivity.) 2. Inputs and outputs: input: a string output: a compressed string, or original string if the compressed string is not shorter than the original string. 3. Test and edge cases: edge: So we can also take in an empty string or None object as an input. test: We can also have regular input like this: 'aaaabbbaacccc' -> 'a4b3a2c4' 4. Brainstorm solution: We iterate through the string, check if the current character is the same as the previous character. If so, add count to the previous character; Otherwise, add previous character and count to the compressed string. As python string is immutable, string concatenation (adding to a string) involves creating a copy of that string, particulary for long string where there is no overallocation of space. Then at each iteration a reallocation (linear time) would be performed, and the full runtime would be quadratic in worse-case. So we will append to a list instead. For very long string, we can also use generator to save memory. 5. Runtime analysis: Time complexity: O(N) in always-case as we need to iterate through the whole string. Space complexity: O(N) as we need to allocate space for the compressed string. In the worst case where there are no consecutive characters, we need twice as long as the input. 6. Code """ # Solution 1 def compress1(input_str): if (input_str is None) or (len(input_str) < 3): return input_str compressed_str = [] prev_char = input_str[0] count = 1 for char in input_str[1:]: if char == prev_char: count += 1 else: compressed_str.append(prev_char + str(count)) prev_char = char count = 1 # Add last character count compressed_str.append(prev_char + str(count)) compressed_str = ''.join(compressed_str) if len(compressed_str) >= len(input_str): return input_str return compressed_str # Solution 2 from itertools import groupby def compress2(input_str): if (input_str is None) or (len(input_str) < 3): return input_str compressed_str = ''.join(char + str(sum(1 for _ in group)) for char, group in groupby(input_str)) return min(input_str, compressed_str, key=len) # 7. Test and debug def test(): solutions = [compress1, compress2] test_cases = [('aaaabbbaacccc', 'a4b3a2c4'), ('aaaabbbbcde', 'a4b4c1d1e1'), ('', ''), (None, None)] for solution in solutions: for (test_input, result) in test_cases: if test_input is None: assert solution(test_input) is result try: assert solution(test_input) == result print('Passed') except AssertionError: print(solution.__name__, test_input, 'Failed') test()
1dc43e7491a4f1701f4f7da8dd48e7c257e4dcb5
adnan-mehremic/guess-phrase
/guess_phrase.py
3,223
3.53125
4
import random population_size = 150 target = "Machine learning is awesome." genes = '''qwertzuiopasdfghjklyxcvbnmQWERTZUIOPASDFGHJKLYXCVBNM1234567890 ,.-_;:?!@$''' # percente value of elitism to be performed elitism_factor = 10 mating_percent = 50 class Individual(object): def __init__(self, chromosome): self.chromosome = chromosome self.fitness_score = self.calculate_fitness() @classmethod def mutated_genes(self): # create a competely random chromosome global genes rand_gene = random.choice(genes) return rand_gene @classmethod def create_gnome(self): # create a new choromosome global target gnome_length = len(target) return [self.mutated_genes() for _ in range(gnome_length)] def mate(self, second_parent): # create a new offspring (using 2 parents) child_chromosome = [] for gp1, gp2 in zip(self.chromosome, second_parent.chromosome): probability = random.random() if probability < 0.45: child_chromosome.append(gp1) elif probability < 0.90: child_chromosome.append(gp2) else: child_chromosome.append(self.mutated_genes()) return Individual(child_chromosome) def calculate_fitness(self): global target fitness_score = 0 # cg - character from generation # ct - character from text for cg, ct in zip(self.chromosome, target): if cg != ct: fitness_score += 1 return fitness_score def main(): global population_size global elitism_factor global mating_percent population = [] is_solved = False generation_number = 1 # create the initial population for _ in range(population_size): # generate a new chromosome gnome = Individual.create_gnome() # generate a new individual new_individual = Individual(gnome) population.append(new_individual) while not is_solved: population = sorted(population, key=lambda x: x.fitness_score) # if we have solved the problem break out of the loop if population[0].fitness_score <0: is_solved = True break new_population = [] # elitism s = int((elitism_factor*population_size)/100) new_population.extend(population[:s]) # perform the process of mating mating_factor = 100 - elitism_factor s = int((mating_factor * population_size) / 100) for _ in range(s): real_population = int((mating_percent*population_size)/100) parent_1 = random.choice(population[:real_population]) parent_2 = random.choice(population[:real_population]) child = parent_1.mate(parent_2) new_population.append(child) population = new_population print("Generation: {}\tString: {}\t Fitness: {}". \ format(generation_number, "".join(population[0].chromosome), population[0].fitness_score)) generation_number += 1 if __name__ == '__main__': main()
8c60164ae99a06f82d08bb538af4449bfacdd421
rajlath/rkl_codes
/Best_algo/Flying_with_Numbers/anagrams.py
621
3.984375
4
str1 = "marina" str2 = "anaram" def verify_anagrams(s1, s2): ''' verify if two strings are anagram to each other ''' dicts = {} if len(s1) != len(s2):return False for i in range(len(s1)): dicts[s1[i]] = dicts.get(s1[i], 0) + 1 dicts[s2[i]] = dicts.get(s2[i], 0) - 1 return all([ x == 0 for x in dicts.values()]) def verify_anagrams_1(s1, s2): if len(s1) != len(s2): return False sum1 = sum([ord(x) for x in str1]) % 11 sum2 = sum([ord(x) for x in str2]) % 11 return sum1 == sum2 print(verify_anagrams(str1, str2)) print(verify_anagrams_1(str1, str2))
968ac463970b4f45b4d03d147e779c5246ee845f
grigorescu/Pygminion
/trunk/pygminion/utils.py
996
3.671875
4
import string def cmpMoney(a, b): try: a = a.lower() b = b.lower() return cmp(int(a), int(b)) except ValueError: # Something has a potion in the cost... a_coins = sum([int(c) for c in a if c in string.digits]) b_coins = sum([int(c) for c in b if c in string.digits]) a_potions = sum([1 for c in a if c == 'p']) b_potions = sum([1 for c in b if c == 'p']) # Equal? if a_coins == b_coins and a_potions == b_potions: return 0 elif a_coins < b_coins or a_potions < b_potions: return -1 else: return 1 def addMoney(a, b): a = a.lower() b = b.lower() a_coins = sum([int(c) for c in a if c in string.digits]) b_coins = sum([int(c) for c in b if c in string.digits]) a_potions = sum([1 for c in a if c == 'p']) b_potions = sum([1 for c in b if c == 'p']) return str(a_coins + b_coins) + "p"*(a_potions + b_potions)
f76c559b08c7075f299f09f0af0d6fe160857508
alexisbird/BC2repo
/madlibs.py
1,022
4.625
5
"""Make a simple madlib, you can look one up. Ask for three words, save them in variables, fill in the madlib, then print the final madlib.""" # Create a variable for each word the user must input via input prompt word1_person = input("Please enter a person: ") word2_person = input("Please enter another person: ") word3_noun = input("Please enter a noun: ") word4_plural_noun = input("Please enter a plural noun: ") word5_place = input("Please enter a place: ") # The madlib passage, using string concatination to put the variables (user input) at the appropriate places madlib = "Tennis News: The Miami Open\nSeemingly in control of his opening match at the Miami Open on Saturday, " + word1_person + " fell ill and promptly retired against No. 94 " + word2_person + ". It was a disappointment for the fifth-ranked " + word3_noun + ", who has always enjoyed playing in front of his large contingent of " + word4_plural_noun + " in " + word5_place + "." # Print completed madlib with user's word choices print(madlib)
f1c3d643764fc6661f4d46f044cfd179599200b9
kiranmaipuli/DATA-STRUCTURES
/trees/binarySearchTree/leftNRightView.py
2,718
3.84375
4
""" finding left and right view in a binary search tree """ # inputArray = [50,30,20,40,70,60,80,10,59] inputArray = [50,30,70,40,60,80,59] levelDict = {} class Node: def __init__(self,value): self.value = value self.left = None self.right = None # inserting nodes in a binary search tree def insertBinaryTree(self,node,key): if node != None: if node.value > key.value: if node.left == None: node.left = key else: self.insertBinaryTree(node.left,key) elif node.value < key.value: if node.right == None: node.right = key else: self.insertBinaryTree(node.right,key) else: print("duplicates not allowed") def inOrderTraversal(self,node): if node == None: return self.inOrderTraversal(node.left) print(node.value) self.inOrderTraversal(node.right) def leftViewOfBinaryTree(self,node,level): if node == None: return if level not in levelDict: levelDict[level] = 0 print(node.value,"left") self.leftViewOfBinaryTree(node.left,level + 1) self.leftViewOfBinaryTree(node.right,level + 1) def rightViewOfBinaryTree(self,node,level): if node == None: return if level not in levelDict: levelDict[level] = 0 print(node.value,"right") self.rightViewOfBinaryTree(node.right,level + 1) self.rightViewOfBinaryTree(node.left,level + 1) root = p = Node(inputArray[0]) for i in range(1,len(inputArray)): node = Node(inputArray[i]) root.insertBinaryTree(root,node) #root.inOrderTraversal(root) #root.leftViewOfBinaryTree(root,1) #levelDict = {} #root.rightViewOfBinaryTree(root,1) ######################################################################################## # right view of binary tree using breadth first search (level order traversal) def rightViewWithBFS(): queue = [p] queue1 = [] queueLeft = [] queueRight = [] while len(queue) != 0: queueRight.append(queue[-1].value) queueLeft.append(queue[0].value) for i in queue: if i.left != None: queue1.append(i.left) if i.right != None: queue1.append(i.right) queue = queue1 queue1 = [] print("right view of the binary search tree",queueRight) print("left view of the binary search tree",queueLeft) rightViewWithBFS()
be0c0eac2694290e053d394c3d83829b8ed17404
tamoghnaaa2012/P342_Assignment-5
/Own_library.py
4,494
3.890625
4
#!/usr/bin/env python # coding: utf-8 # In[ ]: import math def bisection_method(f,a,b,tol,file): step = 0 #iteration counter for i in range(1,200): if f(a)*f(b)<0: continue else: if (abs(f(a)) < abs(f(b))): a=a - 0.5*(b-a) else: b=b + 0.5*(b-a) #upto this portion we are bracketing print("{:<12} {:<12}".format("Iterations", "Absolute error")) #This is used to tabulate the output while(b-a)/2.0 >tol and step<200: mid_point = (a+b)/2.0 #print("Iteration-%d ,mid_point= %f ,f(mid_point) =%f)" %(step,mid_point,f(mid_point))) #print('Iteration-%d,') if f(mid_point)==0: return(mid_point) #The midpoint is the root; elif f(a)*f(mid_point) < 0: b = mid_point else: a= mid_point step = step+1 #print(f(a)) #print(a) #print(f(b)) #print(b) #print(f(a)*f(b)) error=abs(b-a) file.write("{:^12} {:<12.3e}\n".format(step, error)) print("{:^12} {:<12.3e}".format(step, error)) file.close() return(mid_point) def regula_falsi(f,a,b,tol,file): step=0 ## a,b is initial guess for i in range(1,200): if f(a)*f(b)<0: continue else: if (abs(f(a)) < abs(f(b))): a=a - 0.5*(b-a) else: b=b + 0.5*(b-a) ## Upto this portion we are bracketing. last_c=a c=a+1*tol condition = True print("{:<12} {:<12}".format("Iterations", "Absolute error")) #This is used to tabulate the output while condition and step<200: last_c=c c = b - ((b-a)*f(b))/(f(b)-f(a)) #print(c) if f(a)*f(c)<0: b=c else: a=c step =step+1 error =abs(c-last_c) #print(error) condition = abs(f(c))>tol file.write("{:^12} {:<12.3e}\n".format(step, error)) print("{:^12} {:<12.3e}".format(step, error)) file.close() return (c) def N_raphson(f,derivative, x0, tol,file): step=0 last_X = x0 next_X = last_X + 1* tol # "different than lastX so loop starts OK print("{:<12} {:<12}".format("Iterations", "Absolute error")) while (abs(next_X - last_X) >= tol) and step<200: # this is how you terminate the loop - note use of abs() new_Y = f(next_X) step =step+1 last_X = next_X next_X = last_X - new_Y / derivative(f, last_X, tol) # update estimate using N-R error = abs(next_X-last_X) file.write("{:^12} {:<12.3e}\n".format(step, error)) print("{:^12} {:<12.3e}".format(step, error)) file.close() return next_X def laguerre(f,f_derivative,s_derivative,alpha,n,tol,file): if f(alpha)== 0: print("The root is",alpha) else: alpha1=alpha+ 1*tol # "different than lastX so loop starts OK step=0 print("{:<12} {:<12}".format("Iterations", "Absolute error")) while abs(alpha1-alpha)>tol and step<200: step = step+1 G = f_derivative(alpha,0.4,f)/f(alpha) H = G*G-(s_derivative(alpha,0.4)/f(alpha)) F =math.sqrt((n-1)*(n*H-(G*G))) if abs(G+F)<abs(G-F): a = n/(G-F) else: a = n/(G+F) alpha1=alpha alpha = alpha -a error= (alpha1-alpha) file.write("{:^12} {:<12.3e}\n".format(step, error)) print("{:^12} {:<12.3e}".format(step, error)) #print(step,error) print() file.write("{:^12} {:<12}\n".format("Iter number", "error")) print("The root is",alpha) return (alpha) def synthetic_div(coeff,alpha): while abs(coeff[0])!=1: for k in range(len(coeff)): coeff[k]=coeff[k]/coeff[0] for l in range(1,len(coeff)): coeff[l]=coeff[l]+alpha*coeff[l-1] #print("Coeff",coeff) return (coeff)
8c5c86d9b0a165f027b8e1a7a61adcd9ad85730e
Chelton-dev/ICTPRG-Python
/temp.py
169
3.8125
4
mylist =["Fred:123", "Smith:475" ] checkUser = "Smith" for i in mylist: arr=i.split(":") if arr[0] == checkUser: print("found")
3993e5446723b8592aa4adb1f70c3bdfd6c2018f
ipcoo43/algorithm
/lesson127.py
176
3.609375
4
print('행고정 열변화') import pprint matrix = [[0]*5 for i in range(5)] i=0 for row in range(5): for col in range(5): i=i+1 matrix[row][col]=i pprint.pprint(matrix)
d1c54e8551de9f15f053da7e61a4d6d615de0e15
thomashigdon/puzzles
/scratch/properties.py
178
3.515625
4
class A(object): def __init__(self, foo): self.foo = foo @property def bar(self): print "returning foo" return self.foo print A('blah').bar
495ebdb2ba4cc43717338fdf255efc6ebed8e85e
8563a236e65cede7b14220e65c70ad5718144a3/introduction-python-programming-solutions
/Chapter05/0002_palindrome.py
348
4.375
4
""" Program 5.1 Determine whether a Given String is a Palindrome or not using slicing """ def main(): user_string = input("Enter string:\n") if user_string == user_string[::-1]: print("User entered string is a palindrome") else: print("User entered string is not a palindrome") if __name__ == "__main__": main()
a058ec6561d9d7dac2e7df081fd943a9bf2c77bd
elidaniel/chore-tracker
/calc.py
612
3.875
4
import sys num = raw_input('Enter the first number: ') opr = raw_input('Enter operator + - / *: ') den = raw_input('enter the other number: ') try: num = int(num) except ValueError: print "You did not enter a good first number" sys.exit() try: den = int(den) except ValueError: print "You did not enter a good other number" sys.exit() if opr == '+': ans = num + den elif opr == '-': ans = num - den elif opr == '/': ans = num / den elif opr == '*': ans = num * den else: print "You did not enter a good operator." sys.exit() print print "The answer is: ", ans print
a2249dc39675c8b55e4216b590683dee0cfb46a2
mbravofuentes/Codingpractice
/python/round.py
95
3.96875
4
print("Enter an input: ") x = input() if (int(x) > 3): print("Sup") else: print("hey")
f80a25ff7e401e7a65d2516156a047725f859cb9
kscott94/qBio
/project_submissions/cp_upper_beginner.py
1,625
3.828125
4
gene1 = "gtgggagacatagtggtcaaggtccccccgagtgtggacgaaaagctggccgatttgatagcaaagactatcgcggagagactgaaaaccctcgcaaggctcaatgagatgctcaagaactccgaactctcagaagaggatgcaatagaactcggacggaaggcgaaaatgggaaggggcgagtaccttgagagaagatattcttctcgtagttaa" gene2 = "atgagagaagatattcttctcgtagttaacacaaacgtgctattctctttcttcgggaaatcaacagtaaccagagagctcgtgttcttggtatcagggagacttataagtcccgagtttgcactggaagagcttcacgagcacagggacgaagtcctgaaaaaagcaaagatcggagagaaagagttcgaggaaatactgtccgttcttaaagagcatgtcatattcgtaaacgaggggttctacgccgagttcatacctctagcactcgaataa" gene3 = "atggaagttatccgtctgctgaagagaaagtcccaagacaaggttgagttcgtgcgcgatctggtagttttcatggcttctcccgacgttgatttttccaacgaggttctgtttaaggacgccgttgatgagatatactcaatcctgagggaggaagtcattgaaaatgggaacaaagagctagccagcgcgtatgaaaaagccgttctccttagagctgcggtttttggagaggaaatggatccgaaaaagctccttaagggtattctcgaggagctgaggtga" def rev_comp(sequence): complement_dictionary = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A', 'a': 't', 'c': 'g', 'g': 'c', 't': 'a'} rev_complement = "".join(complement_dictionary.get(base, base) for base in reversed(sequence)) return rev_complement ## write a script to print the sequence of the forward and reverse primers in fasta format. ## '\n' will print a new line. You could also stack two print statements on separate lines to separate the fasta header from the sequence. gene_list = [gene1,gene2,gene3] gene_number = 1 for gene in gene_list: print("Forward primer",number) print(gene[:-18:-1]) print("Reverse primer",number) print(rev_comp(gene)[0:18]) gene_number = gene_number + 1 #add a number to gene_number after each loop to keep track of which gene we are on
ad2e63d83ee9c4ef6b21a27e7ccce92afc589cab
AdamZhouSE/pythonHomework
/Code/CodeRecords/2882/58586/253698.py
503
3.515625
4
nums=int(input()) arr=list(map(int,input().split(" "))) if nums==1: print("YES") else: peek=-1 index=-1 for i in range(0,nums-1): if arr[i]>=arr[i+1]: index=i break if index==-1: print("YES") else: flag=True peek=arr[index] for i in range(index,nums-1): if arr[i]<arr[i+1]: flag=False break if flag: print("YES") else: print("NO")
4d7603a1000d64888815bbfa55176464b8aeaaad
rebekahorth/Week-Two-Assignment
/convert.py
258
3.703125
4
__author__ = 'Rebekah Orth' # CIS 125 Fall 2015 # Temperature Table def main(): F=eval(input("Please enter a temperature in Fahrenheit:")) C= (F-32) * 5 / 9 print("The temperature ", F , " in Fahrenheit is equal to ", C , " Celsius") main()
dc3c6a4189b86147d9bd2629d582d31536586eb0
lyc192130/MCTS-with-OCBA
/inventory/inventory_control.py
8,835
3.65625
4
""" An example implementation of the abstract Node class for use in MCTS for the inventory control problem """ from numpy.random import random from collections import namedtuple, defaultdict from monte_carlo_tree_search import MCTS, Node from numpy import sqrt import os import argparse import dill # pip install dill _Tree = namedtuple( "_Tree", "state terminal num_actions stage action node_type cap horizons") class Tree(_Tree, Node): def find_children(self): # If the game is finished then no moves can be made if self.terminal: return set() # Otherwise, you can make a move in the next empty spots elif self.node_type == 's': return { self.make_move(i) for i in range(self.num_actions+1) if self.state + i <= self.cap } else: raise "NOT a state node!" def find_random_child(self): if self.terminal: return None # If the game is finished then no moves can be made if self.node_type == 's': # faster than np.random.randint(1+self.cap - self.state) return self.make_move(int((1+self.cap-self.state) * random() )) else: return self.sample_next_state() def reward(self, randomness=None): D = randomness cost = h*max([0, self.state + self.action - D]) \ + p * max([0, D-self.state-self.action]) + K * (self.action > 0) return -cost def is_terminal(self): return self.terminal def make_move(self, k): assert self.node_type == 's', "The current node is not a state node!" state = self.state action = k stage = self.stage is_terminal = (stage == self.horizons) return Tree(state=state, stage=stage, terminal=is_terminal, num_actions=self.num_actions, action=action, node_type='a', cap=20, horizons=self.horizons) def sample_next_state(self, path_reward={}): assert self.node_type == 'a', "The current node is not an action node!" D = int(10*random()) path_reward[self] = self.reward(D) stage = self.stage+1 state = max(self.state + self.action - D, 0) is_terminal = (stage == self.horizons) return Tree(state=state, stage=stage, terminal=is_terminal, num_actions=self.num_actions, action=None, node_type='s', cap=20, horizons=self.horizons) def play_game_uct(budget=1000, exploration_weight=1, optimum=0, n0=2, sigma_0=1): mcts = MCTS(policy='uct', exploration_weight=exploration_weight, budget=budget, n0=n0, sigma_0=sigma_0) tree = new_tree() for _ in range(budget): mcts.do_rollout(tree) next_tree = mcts.choose(tree) return (mcts, tree, next_tree) def play_game_ocba(budget=1000, optimum=0, n0=5, sigma_0=1): mcts = MCTS(policy='ocba', budget=budget, optimum=optimum, n0=n0, sigma_0=sigma_0) tree = new_tree() for _ in range(budget): mcts.do_rollout(tree) next_tree = mcts.choose(tree) return (mcts, tree, next_tree) def new_tree(): horizons = 3 root = 5 return Tree(state=root, stage=0, num_actions=20, terminal=False, action=None, node_type='s', cap=20, horizons=horizons) if __name__ == "__main__": os.makedirs("results", exist_ok=True) os.makedirs("ckpt", exist_ok=True) parser = argparse.ArgumentParser() parser.add_argument('--rep', type=int, help='number of replications', default=2000) parser.add_argument('--budget_start', type=int, help='budget (number of rollouts) starts from (inclusive)', default=50) parser.add_argument('--budget_end', type=int, help='budget (number of rollouts) end at (inclusive)', default=200) parser.add_argument('--step', type=int, help='stepsize in experiment', default=10) parser.add_argument( '--n0', type=int, help='initial samples to each action', default=2) parser.add_argument('--sigma_0', type=int, help='initial variance', default=10) parser.add_argument( '--p', type=int, help='invetory control penalty cost', default=1) parser.add_argument( '--K', type=int, help='invetory control fixed ordering cost', default=5) parser.add_argument( '--checkpoint', type=str, help='relative path to checkpoint', default='') args = parser.parse_args() rep = args.rep budget_start = args.budget_start budget_end = args.budget_end step = args.step budget_range = range(budget_start, budget_end+1, step) n0 = args.n0 sigma_0 = args.sigma_0 p = args.p K = args.K results_uct = [] results_ocba = [] uct_selection = [] ocba_selection = [] exploration_weight = 1 h = 1 if p == 1 and K == 5: optimum = 0 elif p == 10 and K == 0: optimum = 4 else: raise ValueError('p and K must be either (1, 5) or (10, 0)') uct_visit_ave_cnt_list, ocba_visit_ave_cnt_list = [], [] uct_ave_Q_list, ocba_ave_Q_list = [], [] uct_ave_std_list, ocba_ave_std_list = [], [] ckpt = args.checkpoint if ckpt != '': dill.load_session(ckpt) # start experiment from the last finished budget budget_range = range(budget+step, budget_end+1, step) for budget in budget_range: PCS_uct = 0 PCS_ocba = 0 uct_visit_cnt, ocba_visit_cnt = defaultdict(int), defaultdict(int) uct_ave_Q, ocba_ave_Q = defaultdict(int), defaultdict(int) uct_ave_std, ocba_ave_std = defaultdict(int), defaultdict(int) for i in range(rep): uct_mcts, uct_root_node, uct_cur_node =\ play_game_uct(budget=budget, exploration_weight=exploration_weight, optimum=optimum, n0=n0, sigma_0=sigma_0) PCS_uct += (uct_cur_node.action == optimum) ocba_mcts, ocba_root_node, ocba_cur_node = play_game_ocba( budget, n0=n0, optimum=optimum, sigma_0=sigma_0) PCS_ocba += (ocba_cur_node.action == optimum) ''' Update the cnt dict ''' uct_visit_cnt.update(dict( (c, uct_visit_cnt[c]+uct_mcts.N[c]) for c in uct_mcts.children[uct_root_node])) ocba_visit_cnt.update(dict( (c, ocba_visit_cnt[c]+ocba_mcts.N[c]) for c in ocba_mcts.children[ocba_root_node])) uct_ave_Q.update(dict( (c, uct_ave_Q[c]+uct_mcts.ave_Q[c]) for c in uct_mcts.children[uct_root_node])) ocba_ave_Q.update(dict( (c, ocba_ave_Q[c]+ocba_mcts.ave_Q[c]) for c in ocba_mcts.children[ocba_root_node])) uct_ave_std.update(dict((c, uct_ave_std[c]+sqrt( uct_mcts.std[c]**2 - sigma_0**2 / uct_mcts.N[c])) for c in uct_mcts.children[uct_root_node])) ocba_ave_std.update(dict((c, ocba_ave_std[c]+sqrt( ocba_mcts.std[c]**2 - sigma_0**2 / ocba_mcts.N[c])) for c in ocba_mcts.children[ocba_root_node])) if (i+1) % 20 == 0: print('%0.2f%% finished for budget limit %d' % (100*(i+1)/rep, budget)) print('Current PCS: uct=%0.3f, ocba=%0.3f' % (PCS_uct/(i+1), (PCS_ocba/(i+1)))) uct_visit_cnt.update( dict((c, uct_visit_cnt[c]/rep) for c in uct_mcts.children[uct_root_node])) ocba_visit_cnt.update( dict((c, ocba_visit_cnt[c]/rep) for c in ocba_mcts.children[ocba_root_node])) uct_ave_Q.update(dict((c, uct_ave_Q[c]/rep) for c in uct_mcts.children[uct_root_node])) ocba_ave_Q.update(dict((c, ocba_ave_Q[c]/rep) for c in ocba_mcts.children[ocba_root_node])) uct_ave_std.update( dict((c, uct_ave_std[c]/rep) for c in uct_mcts.children[uct_root_node])) ocba_ave_std.update( dict((c, ocba_ave_std[c]/rep) for c in ocba_mcts.children[ocba_root_node])) uct_visit_ave_cnt_list.append(uct_visit_cnt) ocba_visit_ave_cnt_list.append(ocba_visit_cnt) uct_ave_Q_list.append(uct_ave_Q) ocba_ave_Q_list.append(ocba_ave_Q) uct_ave_std_list.append(uct_ave_std) ocba_ave_std_list.append(ocba_ave_std) results_uct.append(PCS_uct/rep) results_ocba.append(PCS_ocba/rep) print("Budget %d has finished" % (budget)) print('PCS_uct = %0.3f, PCS_ocba = %0.3f' % (PCS_uct/rep, PCS_ocba/rep)) ckpt_output = 'ckpt/Inventory_K{}_p{}_budget_{}.pkl'.format(K, p, budget) dill.dump_session(ckpt_output) print('checkpoint saved!')
c5a0b1053620d5e32705ed4b47c7710669454144
CafeYuzuHuang/coding
/MaximumDepthofBinaryTree.py
2,574
3.796875
4
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def maxDepth(self, root: TreeNode) -> int: # 2021.03.19 # Max depth ~10^4, extreme unbalanced binary tree! # For fully balanced tree: ~14 # 1st solution: Use iterative method and scanning # Time complexity: O(N) = O(2^n); where N is # of nodes, n is the max depth # Space complexity: min O(1), max O(2^n-1) = O(N/2) # Balanced: 1 -> 2 -> 4 -> 8 ... # Unbalanced: e.g. 1 -> 2 -> 3 -> 6 ... """ if root is None: return 0 queue = list([root, ]) max_depth = 1 max_count = 2 count_val = 0 count_none = 0 while len(queue) > 0: p = queue.pop(0) if p.left: queue.append(p.left) count_val += 1 else: count_none += 1 if p.right: queue.append(p.right) count_val += 1 else: count_none += 1 if (count_val + count_none) == max_count and count_val > 0: max_depth += 1 max_count = 2 * count_val count_val = 0 count_none = 0 return max_depth """ # 3rd solution: breadth-first search (BFS) # more elegant and simple than 1st solution """ if not root: return 0 max_depth, queue = 0, [(root, 1)] while queue: p, depth = queue.pop(0) max_depth = max(depth, max_depth) if p.left: queue.append((p.left, depth + 1)) if p.right: queue.append((p.right, depth + 1)) return max_depth """ # 4th solution: recursive, depth-first search (DFS) # The most elegant approach # Pre-order, in-order, or post-order DFS does not matter here if not root: return 0 return self.dfs(root) def dfs(self, p, depth = 0): if not p: return depth return max(depth, self.dfs(p.left, depth + 1), self.dfs(p.right, depth + 1)) # 1st solution: 40 ms (77%) and 15.3 MB (97%) # 3rd solution: 40 ms (77%) and 15.3 MB (92%) # 4th solution: 36 ms (92%) and 16.7 MB (5%)
fa8741b975be7fa8adfad1ed56cc2e1812425d80
danielzhangau/Data-Mining
/wk11_tutorial/decisiontreec/dataset.py
6,149
3.8125
4
from collections import Counter class DatasetInstance: """ Class that represents an instance of a dataset """ # CONSTRUCTOR def __init__(self, attributes_names, attributes_values, target_name, target_value): """ Build a new instance Parameters: - attributes_names: names of the attributes (list of Strings) - attributes_values: values of the attributes (list of values) - target_name: the name of the target (String) - target_value: target value (value) """ self.attributes = {} for index, name in enumerate(attributes_names): self.attributes[name] = attributes_values[index] self.target_name = target_name self.target_value = target_value # GETTERS def get_attribute_value(self, attribute_name): """ Return the value related to the specified attribute (value) Parameters: - attribute_name: the name of the desired attribute """ return self.attributes[attribute_name] def get_target_name(self): """ Return the name of the target (String) """ return self.target_name def get_target_value(self): """ Return the value of the target (value) """ return self.target_value class Dataset: """ Class that represents a dataset """ # CONSTRUCTOR def __init__(self, attributes_names, target_name): """ Build a new empty dataset Parameters: - attributes_names: names of the attributes (list of Strings) - target_name: name of the target (String) """ self.attributes_names = attributes_names self.target_name = target_name self.instances = [] # ITERATOR def __iter__(self): return iter(self.instances) # GETTERS def get_attributes_names(self): """ Return the names of the attributes (list of Strings) """ return self.attributes_names def get_target_name(self): """ Return the name of the target (String) """ return self.target_name def get_instance(self, index): """ Return the instance at the specified index (DatasetInstance) Parameters: - index: the index of the desired instance (int) """ return self.instances[index] # SETTERS def add_instance(self, attributes_values, target_value): """ Add a new instance to the dataset Parameters: - attributes_values: values of the attributes (list of values) - target_value: target value (value) """ self.instances.append(DatasetInstance(self.attributes_names, attributes_values, self.target_name, target_value)) # AGGREGATORS def get_target_values(self): """ Return a set of all the target values in the dataset (set of values) """ return set(instance.get_target_value() for instance in self) def get_most_common_target(self): """ Return the most common target value in the dataset (value) """ return Counter([instance.get_target_value() for instance in self]).most_common(1)[0][0] def get_attribute_values(self, attribute_name): """ Return a set of all the values that a specified attribute has in the dataset (set of values) Parameters: - attribute_name: the name of the attribute (String) """ return set(instance.get_attribute_value(attribute_name) for instance in self) def count_instances(self, target=None, attribute=None): """ Return the number of instances the dataset contains, subject to some constraints Parameters: - target: the value of the target, default to None (value) - attribute: object with name of an attribute and the related value, default to None ({"name": String, "value": value}) """ return len(self._get_instances(target=target, attribute=attribute)) # PRIVATE METHODS # These methods should not be used outside the module def _get_instances(self, target=None, attribute=None): """ Return the instances the dataset contains, subject to some constraints (list of DatasetInstance) Parameters: - target: the value of the target, default to None (value) - attribute: object with name of an attribute and the related value, default to None ({"name": String, "value": value}) """ instances = [instance for instance in self] if target is not None: instances = [instance for instance in instances if instance.get_target_value() == target] if attribute is not None: instances = [instance for instance in instances if instance.get_attribute_value(attribute["name"]) == attribute["value"]] return instances # UTILITY FUNCTIONS def copy_dataset(dataset, target=None, attribute=None): """ Return a copy of the dataset, taking into account only the instances that satisfy certain constraints (Dataset) Parameters: - target: the value of the target, default to None (value) - attribute: object with name of an attribute and the related value, default to None ({"name": String, "value": value}) """ instances = dataset._get_instances(target=target, attribute=attribute) attributes_names = [attribute_name for attribute_name in dataset.get_attributes_names()] if attribute is not None: attributes_names.remove(attribute["name"]) new_dataset = Dataset(attributes_names, dataset.get_target_name()) for instance in instances: new_dataset.add_instance([instance.get_attribute_value(attribute_name) for attribute_name in attributes_names], instance.get_target_value()) return new_dataset
5fbc02eecd4c13a07780b8a0c66c42f7dd554b8e
Allen-C-Guan/Leetcode-Answer
/python_part/Leetcode/DP/Greedy Alg/1221. Split a String in Balanced Strings/Solution.py
452
3.625
4
''' 边走边看,凑成一对算一对,这就是贪心!!丝毫不管以后发生什么。 这里用R和L计数,其实用一个就行,遇见R, +1, 遇见L, -1 ''' class Solution: def balancedStringSplit(self, s: str) -> int: R = L = cnt = 0 for c in s: if c == "R": R += 1 else:L += 1 if R == L and R != 0: R = L = 0 cnt += 1 return cnt
03283ef494ca975db2c4808dc73fe8440429ba6d
karoscha/python-study
/PycharmProjects/study/lecture-inheri.py
331
3.875
4
# -*- coding: utf-8 -*- class Person: def __init__(self, name, age, gender): self.name = name self.age = age self.gender = gender def personInfo(self): print('name={}, age={}, gender={}'.format(self.name,self.age,self.gender)) person = Person('karoscha', '36', '남') person.personInfo()
7819f16c7bc6118496d9321c3fc4c702026d03f4
arnabs542/DS-AlgoPrac
/bitmanupulations/shops.py
3,074
3.625
4
"""Open minimum shops Problem Description There are A shops numbered 1 to A and B items numbered 1 to B. Shop contains different items denoted by 2-D array C of size N x 2 where C[i][0] denotes shop number and C[i][1] denotes item number. There are D people number 1 to D which wants to buy item. Need of the people is denoted by a 2-D array E of size M x 2 where E[i][0] denotes person number and E[i][1] denotes item number. Find the minimum number of shops that needs to be opened such that demand of each and every person is fulfilled. Return -1 if not possible. NOTE: The shopkeeper has an infinte number of supplies for the item number he contains. Problem Constraints 1 <= A, B, D <= 20 1 <= N, M <= 400 Input Format First argument is an integer A denoting number of shops. Second argument is an integer B denoting number of items. Third argument is a 2-D array C of size N x 2 denoting the items shop contains. Fourth argument is an integer D denoting the number of people. Fifth argument is a 2-D array E of size M x 2 denoting the items people need. Output Format Return an integer denoting the minimum number of shops needs to be opened such that demand of each and every person is fulfilled. Return -1 if not possible. Example Input Input 1: A = 4 B = 5 C = [ [1, 2], [1, 3], [2, 1], [2, 2], [3, 4] ] D = 4 E = [ [1, 3], [1, 2], [2, 3], [2, 1], [4, 1] ] Input 2: A = 2 B = 3 C = [ [1, 2], [2, 1] ] D = 2 E = [ [1, 2], [2, 3], [2, 1] ] Example Output Output 1: 2 Output 2: -1 Example Explanation Explanation 1: Each shopkeeper has the following items: Shop 1 : [2, 3] Shop 2 : [1, 2] Shop 3 : [4] Shop 4 : [] (has nothing) Items we need = [1, 2, 3] We need 2 shops i.e Shop 1 and 2, to be kept open so that demands of all people is satisfied. Explanation 2: Items we need = [1, 2, 3]. No shop has item 3. So will return -1.""" import math class Solution: # @param A : integer # @param B : integer # @param C : list of list of integers # @param D : integer # @param E : list of list of integers # @return an integer def countSetBits(self, ele): n = int(math.log2(ele))+1 ans = 0 for i in range(n): if (1<<i) & ele: ans += 1 return ans def solve(self, A, B, C, D, E): from collections import defaultdict merchant = defaultdict(int) for m, it in C: merchant[1 << (m-1)] += (1<<(it-1)) req = 0 for p, it in E: if (1<<(it-1) & req) == 0: req += (1 << (it-1)) ans = [] for mer in range(2**A-1): till = 0 for bit in range(A): till = till | merchant[(1<<bit)&(mer)] if till & req == req: ans.append(mer) if not ans: return -1 return min([self.countSetBits(i) for i in ans])
b24848c4cee3b4def1e7108c935d64ce6a413232
tntterri615/Pdx-Code-Guild
/Python/lab20creditcardvalidation.py
580
3.828125
4
# write fn to determine if cc# is valid (as a boolean) def check_credit_card(card): check_digit = card.pop() # print(check_digit) # print(card) # list w/o check digit card.reverse() # print(card) # double every other element AND sub 9 fr/nums > 9 for i in range(0, len(card), 2): card[i] *= 2 if card[i] > 9: card[i] -= 9 return sum(card) % 10 == check_digit card = list(input('enter your cc: ')) # convert the string into a list for i in range(len(card)): card[i] = int(card[i]) print(check_credit_card(card))
ee461243895da3bd84bfbc8551d9dc3887dcfe71
vedant-2103/nand2tetris
/ex8/Parser.py
2,495
3.53125
4
__author__ = 'Itay' class Parser: CommandTypes = {"C_ARITHMETIC", "C_PUSH", "C_POP", "C_LABEL", "C_GOTO", "C_IF", "C_FUNCTION", "C_CALL", "C_RETURN"} def __init__(self, file): """ Opens the input file/stream and gets ready to parse it """ self.file = open(file) self.lineCount = 0 self.currCommand = "" self.lines = self.file.readlines() # split lines self.lines = [line.replace('\n', '').replace('\t', '') for line in self.lines] # removes '\n' and '\t' self.lines = [line.split("//")[0].strip() for line in self.lines]# if "//" in line] self.lines = [line for line in self.lines if line != ''] # removes empty lines def hasMoreCommands(self): """ Are there more commands in the input? """ return self.lineCount < len(self.lines) def advance (self): """ Reads the next command from the input and makes it the current command. Should be called only if hasMoreCommands() is true. Initially there is no current command. """ self.currCommand = self.lines[self.lineCount] self.lineCount += 1 return self.currCommand arithmeticCodes = {"sub", "add", "neg", "eq", "gt", "lt", "and", "or", "not"} def commandType(self): """ Returns the type of the current command. C_ARITHMETIC is returned for all the arithmetic VM commands """ if self.currCommand in self.arithmeticCodes: return "C_ARITHMETIC" elif "push" in self.currCommand: return "C_PUSH" elif "pop" in self.currCommand: return "C_POP" elif "goto" in self.currCommand: if "if" in self.currCommand: return "C_IF" return "C_GOTO" elif "function" in self.currCommand: return "C_FUNCTION" elif "call" in self.currCommand: return "C_CALL" elif "return" in self.currCommand: return "C_RETURN" elif "label" in self.currCommand: return "C_LABEL" else: print("error in commandType") def arg1(self): """ Returns the first argument of the current command """ return self.currCommand.split(" ")[1] def arg2(self): """ Returns the second argument of the current command """ return self.currCommand.split(" ")[2]
4323c1f3a05e9698f1df34c0f6b925052e544e6b
ddnimara/KTH_Projects
/Artificial Neural Networks/DD2437_Artificial_Neural_Network_Lab_3/functions.py
17,392
3.765625
4
# Import libraries import numpy as np import itertools import load_data as ld import matplotlib.pyplot as plt import seaborn as sns """ This lab is addressed to: - Explain the principles underlying the operation and functionality of au- toassociative networks; - Train the Hopfield network; - Explain the attractor dynamics of Hopfield networks the concept of energy function; - Demonstrate how autoassociative networks can do pattern completion and noise reduction; - Investgate the question of storage capacity and explain features that help increase it in associative memories. """ def fit(training, method = 'self_connection'): M = training.shape[1] weights = np.zeros((M,M)) N = training.shape[0] for i in range(M): for j in range(M): if method == 'self_connection': weights[i, j] = 1/M * np.dot(training[:,i],training[:,j]) else: if i == j: weights[i, j] = 0 else: weights[i, j] = 1/M * np.dot(training[:,i],training[:,j]) return weights def sparse_fit(training,method='self_connection'): M = training.shape[1] weights = np.zeros((M, M)) N = training.shape[0] rho = training.mean() #print('rho',rho) for i in range(M): for j in range(M): if method == 'self_connection': weights[i, j] = np.dot(training[:, i]-rho, training[:, j]-rho) else: if i == j: weights[i, j] = 0 else: weights[i, j] = np.dot(training[:, i]-rho, training[:, j]-rho) #print('weights', weights.mean()) #print('training size ', N) #print('max weight ', np.max(weights)) return weights def sparse_activation(x,bias,weight_row): print("activation magnitude ",np.dot(weight_row,x)) return 0.5 + 0.5*sign(np.dot(weight_row,x)-bias) def sparse_predict(weights,bias,test_original,max_iterations=100): M = weights.shape[0] previous_test = np.zeros((1, M)) counter = 0 np.random.seed(42) test = test_original.copy() while(counter<max_iterations): previous_test = test.copy() #update_index = np.random.randint(M) #updated_bit = sign(np.dot(weights[update_index],test)) for i in range(M): update_bit = sparse_activation(test,bias,weights[i]) test[i] = update_bit if (np.array_equal(previous_test,test)): break counter+=1 #print("Total number of iterations ",counter) return test def sign(x): if x>=0: return 1 else: return -1 def sign_vec(x): for i in range(x.shape[0]): if (x[i]>=0): x[i]=1 else: x[i]=-1 return x def predict_little_model(weights,test_original,max_iterations=100): M = weights.shape[0] previous_test = np.zeros((1, M)) counter = 0 np.random.seed(42) test = test_original.copy() while (counter < max_iterations): previous_test = test.copy() # update_index = np.random.randint(M) # updated_bit = sign(np.dot(weights[update_index],test)) test = sign_vec(np.dot(weights,previous_test)) if (np.array_equal(previous_test, test)): break counter += 1 # print("Total number of iterations ",counter) return test def predict(weights,test_original,max_iterations=200,energy = False): M = weights.shape[0] previous_test = np.zeros((1,M)) counter=0 np.random.seed(42) test = test_original.copy() if (not energy): while(counter<max_iterations): previous_test = test.copy() #update_index = np.random.randint(M) #updated_bit = sign(np.dot(weights[update_index],test)) for i in range(M): update_bit = sign(np.dot(weights[i],test)) test[i] = update_bit if (np.array_equal(previous_test,test)): break counter+=1 #print("Total number of iterations ",(counter+M)) return test else: energy_vector = [] energy_vector_step = [] energy_vector_step.append(compute_lyapunov_energy(test,weights)) energy_vector.append(compute_lyapunov_energy(test,weights)) while(counter<max_iterations): previous_test = test.copy() for i in range(M): immediate_previous = test.copy() update_bit = sign(np.dot(weights[i],test)) test[i] = update_bit energy_vector_step.append(compute_lyapunov_energy(test,weights)) #Every time we run through the for loop we compute the energy. If the #pattern does not change we will see a plateu and, therefore, a stepped plot until reaching the minimum if(not np.array_equal(immediate_previous,test)): energy_vector.append(compute_lyapunov_energy(test,weights)) #In this case, the energy is stored everytime the pattern changes in order to #get a more continuous plot. In the end, both lists will be returned and the one explaining the data in a better format can be plotted if (np.array_equal(previous_test,test)): break counter+=1 print("Total number of iterations ",counter) return test, np.array(energy_vector),np.array(energy_vector_step) def number_of_attractors(weights): lst = np.array(list(itertools.product([-1, 1], repeat=8))) results = [] for i in range(lst.shape[0]): results.append(predict(weights,lst[i],100)) results=np.array(results) return results def compute_lyapunov_energy(x,w): return -x@[email protected] def compute_accuracy(real,predicted): return real[real==predicted].shape[0]/real.shape[0] def get_random_image(pixels=1024,p=[0.5,0.5]): return np.random.choice([-1,1],size=pixels,p=p) def three_point_five_first_bullet(): # Load data filepath = r"data/pict.dat" pictures_matrix = ld.get_pictures(filepath) # Learning max_training_num = [3,4, 5, 6, 7] training = np.zeros((max_training_num[-1], pictures_matrix.shape[1] * pictures_matrix.shape[2])) for i in range(max_training_num[-1]): training[i] = np.ravel(pictures_matrix[i]) np.random.seed(42) max_iter = 5 percentage_check = np.arange(15, 20, 5) accuracy_mean = accuracy_with_sample_images(percentage_check, max_training_num, max_iter, training) plt.plot(max_training_num, accuracy_mean[0, :, 0],label='p1') plt.plot(max_training_num, accuracy_mean[0, :, 1],label='p2') plt.plot(max_training_num, accuracy_mean[0, :, 2],label='p3') plt.title("Accuracy as a function of Number of Pictures Memorized") plt.legend() plt.xlabel("Number of Patterns memorized-trained on") plt.ylabel("Accuracy (% pixels)") plt.show() def three_point_five_second_bullet(): filepath = r"data/pict.dat" pictures_matrix = ld.get_pictures(filepath) # Learning number_of_random_samples = 15 max_training_num = np.arange(3, 4 + number_of_random_samples, 1) # [3,4, 5, 6, 7] np.random.seed(42) max_iter = 1 percentage_check = np.arange(15, 20, 5) training = np.zeros((3 + number_of_random_samples, pictures_matrix.shape[1] * pictures_matrix.shape[2])) for i in range(3): training[i] = np.ravel(pictures_matrix[i]) for i in range(number_of_random_samples): training[i + 3] = get_random_image() accuracy_mean = accuracy_with_sample_images(percentage_check, max_training_num, max_iter, training) plt.plot(max_training_num, accuracy_mean[0, :, 0],label='p1') plt.plot(max_training_num, accuracy_mean[0, :, 1],label='p2') plt.plot(max_training_num, accuracy_mean[0, :, 2],label='p3') plt.title("Accuracy as a function of Number of Pictures Memorized") plt.legend() plt.xlabel("Number of Patterns memorized-trained on") plt.ylabel("Accuracy (% pixels)") plt.show() def three_point_five_fourth_bullet(): number_of_random_samples = 300 max_training_num = np.arange(1, number_of_random_samples + 1, 1) # [3,4, 5, 6, 7] np.random.seed(1) max_iter = 1 percentage_check = np.arange(0, 55, 5) training = np.zeros((number_of_random_samples, 10 * 10)) for i in range(number_of_random_samples): training[i] = get_random_image(pixels=100) print(training.shape) stable_patterns = np.zeros(number_of_random_samples) for i in range(number_of_random_samples): examined_trainining = training[:i + 1].copy() weights = fit(examined_trainining, method='self_connection') if i == 0 or i == 99 or i == 199 or i == 299: sns.heatmap(weights, cmap = 'winter') plt.title('Heatmap after stack %i patterns' %(i+1)) plt.show() stable_points = 0 for j in range(examined_trainining.shape[0]): output = predict(weights, examined_trainining[j], max_iterations=1) if (np.array_equal(examined_trainining[j], output)): stable_points += 1 stable_patterns[i] = stable_points / examined_trainining.shape[0] print(stable_patterns) plt.plot(np.arange(1, 301, 1), stable_patterns, label='Stable Points %') plt.vlines(13.8, 0, 1, linestyles='dashed', label='0.138*N') plt.title('Stable Pattern Percentage as a function of the training size') plt.xlabel('Number of Training Patterns') plt.ylabel('Stable Pattern Percentage') plt.legend() plt.show() def three_point_five_fifth_bullet(method='self_connection'): number_of_random_samples = 300 max_training_num = np.arange(1, number_of_random_samples + 1, 1) # [3,4, 5, 6, 7] np.random.seed(42) max_iter = 1 percentage_check = np.arange(0, 55, 5) training = np.zeros((number_of_random_samples, 10 * 10)) for i in range(number_of_random_samples): training[i] = get_random_image(pixels=100) print(training.shape) stable_patterns = np.zeros(number_of_random_samples) percentage = 0.1 for i in range(number_of_random_samples): examined_trainining = training[:i + 1].copy() weights = fit(examined_trainining, method) stable_points = 0 for j in range(examined_trainining.shape[0]): M = examined_trainining.shape[1] examined_trainining_noise = examined_trainining[j].copy() noise_magnitude = int(percentage * M) flipped_indeces = np.random.choice(M, noise_magnitude, replace=False) examined_trainining_noise[flipped_indeces] = -examined_trainining_noise[flipped_indeces] output = predict(weights, examined_trainining_noise, max_iterations=100) if (np.array_equal(examined_trainining[j], output)): stable_points += 1 stable_patterns[i] = stable_points / examined_trainining.shape[0] print(stable_patterns) plt.plot(np.arange(1,301,1), stable_patterns,label='Stable Points %') plt.vlines(13.8,0,1,linestyles='dashed',label='0.138*N') plt.legend() plt.title('Stable Pattern Percentage as a function of the training size') plt.xlabel('Number of Training Patterns') plt.ylabel('Stable Pattern Percentage') plt.show() def three_point_five_sixth_bullet(method='self_connection',p=[0.1,0.9]): number_of_random_samples = 300 max_training_num = np.arange(1, number_of_random_samples + 1, 1) # [3,4, 5, 6, 7] np.random.seed(42) max_iter = 1 percentage_check = np.arange(0, 55, 5) training = np.zeros((number_of_random_samples, 10 * 10)) for i in range(number_of_random_samples): training[i] = get_random_image(pixels=100,p=p) print(training.shape) stable_patterns = np.zeros(number_of_random_samples) percentage = 0.1 for i in range(number_of_random_samples): examined_trainining = training[:i + 1].copy() weights = fit(examined_trainining, method) stable_points = 0 for j in range(examined_trainining.shape[0]): M = examined_trainining.shape[1] examined_trainining_noise = examined_trainining[j].copy() noise_magnitude = int(percentage * M) flipped_indeces = np.random.choice(M, noise_magnitude, replace=False) examined_trainining_noise[flipped_indeces] = -examined_trainining_noise[flipped_indeces] output = predict(weights, examined_trainining_noise, max_iterations=100) if (np.array_equal(examined_trainining[j], output)): stable_points += 1 stable_patterns[i] = stable_points / examined_trainining.shape[0] print(stable_patterns) plt.plot(np.arange(1 / 300, 1 + 1 / 300, 1 / 300), stable_patterns) plt.show() def accuracy_with_sample_images(percentage_check,max_training_num,max_iter,training): accuracy = np.zeros((percentage_check.shape[0], max_iter, len(max_training_num), max_training_num[-1])) for per in range(percentage_check.shape[0]): print('percentage:',percentage_check[per]) for k in range(len(max_training_num)): print('model:',str(k+1)) print('with size',max_training_num[k]) for it in range(max_iter): #distort image sub_train = training[:max_training_num[k]] weights = fit(sub_train) for j in range(sub_train.shape[0]): train = sub_train[j] training_noise = train.copy() M = training_noise.shape[0] noise_magnitude = int(percentage_check[per]/100 * M) if(percentage_check[per]>0): print(noise_magnitude) flipped_indeces = np.random.choice(M, noise_magnitude, replace=False) training_noise[flipped_indeces] = -training_noise[flipped_indeces] output = predict_little_model(weights,training_noise) accuracy[per,it,k,j] = compute_accuracy(train,output) print('accuracies ', accuracy[per,it,k]) print(accuracy) accuracy_mean = accuracy.mean(axis=1) return accuracy_mean def three_point_six(activity=10,bias_low=0,bias_high=6,bias_step=0.5): number_of_random_samples = 300 training = np.zeros((number_of_random_samples, 100)) skeleton = np.zeros(100) skeleton[:activity] = 1 np.random.seed(42) if(activity==1): training = np.zeros((100, 100)) number_of_random_samples=100 for i in range(100): training[i][i]=1 else: for i in range(training.shape[0]): training[i] = np.random.permutation(skeleton) print("Unique samples ", np.unique(training,axis=0).shape[0]) print('training size', training.shape) bias_range = np.arange(bias_low, bias_high, bias_step) capacity_size = np.zeros(bias_range.shape[0]) count=0 for bias in bias_range: stable_patterns = np.zeros(number_of_random_samples) for i in range(number_of_random_samples-1): examined_training = training[:i + 1].copy() weights = sparse_fit(examined_training, method='self_connection') stable_points = 0 for j in range(examined_training.shape[0]): output = sparse_predict(weights, bias, examined_training[j], max_iterations=100) # print('outputs ratio',output[output==1].shape[0]/output.shape[0]) if (np.array_equal(examined_training[j], output)): stable_points += 1 stable_patterns[i] = stable_points / examined_training.shape[0] if (stable_patterns[i]<1): break print(stable_patterns) capacity_size[count] = measure_capacity(stable_patterns) print('capacity size',capacity_size[count]) ''' plt.plot(np.arange(1, 301, 1), stable_patterns, label='Stable Points %') plt.vlines(13.8, 0, 1, linestyles='dashed', label='0.138*N') plt.legend() plt.title('Stable Pattern Percentage as a function of the training size') plt.xlabel('Number of Training Patterns') plt.ylabel('Stable Pattern Percentage') plt.show() ''' count+=1 plt.plot(bias_range, capacity_size, label = 'Capacity Size') position = bias_low + np.argmax(capacity_size)*bias_step plt.vlines(position,0,np.max(capacity_size),linestyles='dashed',label='At '+str(round(position,1))) plt.title("Capacity size as a function of the bias") plt.xlabel("Bias") plt.ylabel("Capacity Size") plt.legend() plt.show() def measure_capacity(stable_patterns): counter=0 for num in stable_patterns: if (num==1): counter+=1 else: break return counter
f656e6c8eef37eff82d83c98c1352b9322d3bc53
green-fox-academy/RudolfDaniel
/[week-02]/[day-01]/Exercise-26.py
208
4.03125
4
nr1 = int(input("Type in number one: ")) nr2 = int(input("Type in number two: ")) if nr2 <= nr1: print("The second number should be bigger") elif nr2 > nr1: for i in range(nr1, nr2): print(i)
4f9bf5d5e60b078e314bb4d6008a58e1b1a18713
BohdanLiuisk/python-course-beginner
/Solution/seqLen.py
115
3.8125
4
n = int(input()) len = 0 while n > 0: len += 1 n = int(input()) if n == 0: continue print(len)
07eb56181e2314aa54c7002756290c07dc8109d5
6igsm0ke/Introduction-to-Programming-Using-Python-Liang-1st-edtion
/CH07/EX7.8.py
803
4.34375
4
# 7.8 (Stopwatch) Design a class named StopWatch. The class contains: # ■ The private data fields startTime and endTime with get methods. # ■ A constructor that initializes startTime with the current time. # ■ A method named start() that resets the startTime to the current time. # ■ A method named stop() that sets the endTime to the current time. # ■ A method named getElapsedTime() that returns the elapsed time for the # stop watch in milliseconds. # Draw the UML diagram for the class, and then implement the class. Write a test # program that measures the execution time of adding numbers from 1 to # 1,000,000. from CH7.StopWatch import StopWatch sw = StopWatch() res = 0 sw.start() for i in range(1, 1000001): res += i sw.end() print("The elapsed time is:", sw.getElapsedTime())
4e50553975988dcc877118df84d9a86710261f7c
Bachatero/AKOB
/assignments/assignment10.2_last.py
275
3.546875
4
name = raw_input("Enter file:") if len(name) < 1 : name = "mbox-short.txt" handle = open(name) distrib = dict() for line in handle: if not line.startswith("From "): continue lst = list() lst = distrib.items() lst.sort() for key,val in lst: print key, val
6a13372dcd83864ece8e00dbfd29d6af2603086a
YiwenCui/Interview_questions
/string_to_int.py
1,179
3.671875
4
# interview step 1: clarifying questions/High level discussion # step 2: chooose approach, list potential solutions and approach def add_one(given_array): carry = 1 result = [] for i in range(len(given_array)-1,-1, -1): total = given_array[i] + carry if total == 10: carry = 1 else: carry = 0 result.insert(0,total%10) if carry ==1: result.insert(0,1) return result def list_to_int_add_one(given_list): concatenate = "" for int_element in given_list: concatenate += str(int_element) concatenate_sum = int(concatenate)+1 return_list =[] for char in str(concatenate_sum): return_list.append(int(char)) return return_list def list_add_one (given_list): sum_int=0 for index, integer in enumerate(given_list[::-1]): res = integer * 10**index sum_int += res sum_int += 1 return_list =[] for char in str(sum_int): return_list.append(int(char)) return return_list print(list_add_one([2,3,4])) #see link https://www.youtube.com/watch?v=uQdy914JRKQ&list=PLBZBJbE_rGRVnpitdvpdY9952IsKMDuev&index=4"
8054031756b9245f7f3c2e129032f47f00c7dd29
guojixu/interview
/leetcode/0. 树的非递归遍历.py
1,686
3.953125
4
def preorder(root): # 先序 stack = [] while stack or root: while root: print(root.val) stack.append(root) root = root.lchild root = stack.pop() root = root.rchild def inorder(root): # 中序 stack = [] while stack or root: while root: stack.append(root) root = root.lchild root = stack.pop() print(root.val) root = root.rchild def inorder(root): stack = [] while stack or root: while root: stack.append(root) root = root.left root = stack.pop() root = root.rchild def postorder(root): res = deque() stack = deque() p = root while p != None or len(stack) > 0: while p != None: res.appendleft(p.val) stack.append(p) p = p.right p = stack.pop() p = p.left def postorder(root): # 后序 stack = [] while stack or root: while root: stack.append(root) root = root.lchlid if root.lchild else root.right root = stack.pop() print(root.val) if stack and stack[-1].lchild == root: root = stack[-1].rchild else: root = None from collections import deque def postorderTraversal(self, root): res = deque() stack = deque() p = root while p != None or len(stack) > 0: while p != None: res.appendleft(p.val) stack.append(p) p = p.right p = stack.pop() p = p.left return res
8e35ccb2fbb118864f471113ddb871f20ed757de
zhaoxuyan/LeetCode_Python
/058_Length_of_Last_Word.py
515
3.75
4
# 给定一个仅包含大小写字母和空格 ' ' 的字符串,返回其最后一个单词的长度。 # 如果不存在最后一个单词,请返回 0 。 # 输入: "Hello World" # 输出: 5 class Solution: def lengthOfLastWord(self, s): """ :type s: str :rtype: int """ if s == ' ': return 0 elif len(s) == 1 and s != ' ': return 1 else: split_res = s.rstrip().split(' ') return len(split_res[::-1][0])
b7fb18b1d37df291a7a7bc9a71d268ca99ea36ba
nirajan5/Demo
/TupleIndexingAndSlicing.py
207
4.15625
4
tuple = (1, 2, 3, 4, 5, 6, 7) # element 1 to end print(tuple[1:]) # element 0 to 3 element print(tuple[:4]) # element 1 to 4 element print(tuple[1:5]) # element 0 to 6 and take step of 2 print(tuple[0:6:2])
e364ac3e891692b1066ceca38079c37619abe4ee
Aru09/JangoRepo
/Week1/HackerRank/ifelse.py
280
4.09375
4
# Enter your code here. Read input from STDIN. Print output to STDOUT n = int(input()) if(n%2!=0): print("Weird") if(n%2==0 and n in range(1,6)): print ("Not Weird") if(n%2==0 and n in range(5,21)): print("Weird") if (n%2==0 and n>20): print ("Not Weird")
2072a01629b678332f5b02d2542744186413f162
jaina-sunny/jsm
/a.py
223
4.03125
4
s = raw_input("enter a string ") n = input("enter a key ") st="" def encrypt(s,n): st="" for i in range(0,len(s)): char=s[i] st=st+ chr((ord(char) + n - 97) % 26 + 97) return st print "the result:" + encrypt(s,n)
c5efd7729a34d5dcac5f1766a4f08e57092bceaa
rafaelperazzo/programacao-web
/moodledata/vpl_data/445/usersdata/323/103287/submittedfiles/matriz2.py
900
3.671875
4
# -*- coding: utf-8 -*- import numpy as np z = int(input('Digite a dimensão da matriz(i=j): ')) m = [] for i in range(0,z,1): n=[] for j in range(0,z,1): n.append(float(input('Digite o valor da linha%d e da coluna%d: '%((j+1),(i+1))))) m.append(n) if z<=2: med1=0 med1=med1+m[0][0]+m[0][1] med1=med1/2.0 med2=0 med2=med2+m[0][0]+m[1][1] med2=med2/2.0 if med1!=med2: print('N') else: print('S') else: med1=0 for i in range(0): for j in range(0,z,1): med1=med1+m[i][j] med1=med1/3 med2=0 for i in range(1): for j in range(0,z,1): med2=med2+m[i][j] med2=med2/3 med3=0 for i in range(2): for j in range(0,z,1): med3=med3+m[i][j] med3=med3/3 if med1==med2 and med2==med3 and med1==med3: print('N') else: print('S')
f79acaf2c487d74eb9c0bfbc1f16aa19a1708eed
babiswas/Tree
/test18.py
917
3.90625
4
class Node: def __init__(self,value): self.value=value self.left=None self.right=None def inorder(node): if node: if node.left: inorder(node.left) print(node.value) if node.right: inorder(node.right) def delete_full_tree(node): if node: node=delete_tree(node) node=None return node def delete_tree(node): if not node: return else: delete_tree(node.left) delete_tree(node.right) print(f"deleting{node.value}") node.left=None node.right=None del node node=None if __name__=="__main__": node=Node(12) node.left=Node(21) node.right=Node(22) node.left.left=Node(25) node.left.right=Node(27) node.right.left=Node(16) node.right.right=Node(19) inorder(node) node=delete_tree(node) inorder(node)
77ec9d228c98accedd08f7b9078163cd6e43273f
gabriellaec/desoft-analise-exercicios
/backup/user_374/ch28_2020_03_23_19_55_07_100940.py
126
3.59375
4
n = 0 calcula = 0 while n < 100: calcula = calcula + (1/(2**n)) n = n + 1 if n == 99: print(calcula)
45bc9c1e656eb9d947b90f10532b7c64d51b3f85
BlogBlocks/jupnote
/searcH.py
285
3.6875
4
# Simple File Search #import searcH #searcH.search() def search(filename, term): datafile = open(filename, "r") data = datafile.readlines() for line in data: if term in line: print line, if __name__ == "__main__": search(filename, term)
f6064c35bc8dbbcfff2efcc2717b91034bf9891c
yanomateus/loan-calculator
/loan_calculator/irr.py
7,513
3.90625
4
def newton_raphson_solver( target_function, target_function_derivative, initial_point, maximum_relative_error=0.0000000001, max_iterations=100, ): """Numerical solver based on Newton-Raphson approximation method. The Newton-Raphson method allows algorithmic approximation for the root of a differentiable function, given its derivative and an initial point at which this derivative does not vanish. Let :math:`f:\\left[a,b\\right]\\longrightarrow\\mathbb{R}` a differentiable function, :math:`f^{\\prime}` its derivative function and :math:`x_0\\in\\left[a,b\\right]`. A root of :math:`f` is then iteratively approximated by the recurrence .. math:: x_n := x_{n-1} - \\frac{f(x_{n-1})}{f^{\\prime}(x_{n-1})}, n\\geq 1. The *relative error* associated with the :math:`n`-th iteration of the recurrence above is defined as .. math:: e_n := | \\frac{x_n - x_{n-1}}{x_{n-1}} |, n \\geq 1. The approximation stops if either :math:`e_n` > `maximum_relative_error` or :math:`n` > `max_iterations`. """ def _iterating_function(x): return x - target_function(x) / target_function_derivative(x) def _error_function(reference_point, new_point): return abs((new_point - reference_point) / reference_point) past_point = initial_point iterating_point = _iterating_function(past_point) relative_error = _error_function(past_point, iterating_point) num_iterations = 1 while ( relative_error >= maximum_relative_error and num_iterations < max_iterations ): past_point, iterating_point = ( iterating_point, _iterating_function(iterating_point) ) relative_error = _error_function(past_point, iterating_point) num_iterations += 1 return iterating_point def return_polynomial_factory(net_principal, returns, return_days): """Factory for a callable with point evaluation of the return polynomial. The return polynomial for a loan with net principal :math:`s_\circ`, returns :math:`r_1,r_2,\ldots,r_k` to be paid :math:`n_1,n_2,\ldots,n_k` days after the loan is granted, respectively, is given by .. math:: f(c) = s_\\circ (1 + c)^{n_k} - r_1 (1 + c)^{n_k-n_1} - \\cdots - r_{k-1} (1 + c)^{n_k-n_{k-1}} - r_k. This function builds and returns a callable implementing such polynomial. Parameters ---------- net_principal : float, required The net principal of a grossed up loan. returns : list of floats, required Due payments that completely pay off the grossed up principal when respectively applied for the given return days. return_days : list of ints, required List with the number of days since the taxable event (which is usually a "loan granted" event) happened. Returns ------- Callable Python callable implementing the return polynomial for the given parameters """ coefficients_vec = [net_principal] + [-1 * r for r in returns] def return_polynomial(irr_): powers_vec = [ (1 + irr_) ** (return_days[-1] - n) for n in [0] + return_days ] return sum( coef * power for coef, power in zip(coefficients_vec, powers_vec) ) return return_polynomial def return_polynomial_derivative_factory(net_principal, returns, return_days): """ Factory for a callable implementing point evaluation of the derivative of the return polynomial for the given parameters. The return polynomial for a loan with net principal :math:`s_\circ`, returns :math:`r_1,r_2,\ldots,r_k` to be paid :math:`n_1,n_2,\ldots,n_k` days after the loan is granted, respectively, is given by .. math:: f(c) = s_\\circ (1 + c)^{n_k} - r_1 (1 + c)^{n_k-n_1} - \\cdots - r_{k-1} (1 + c)^{n_k-n_{k-1}} - r_k. Therefore, the derivative of :math:`f(c)` is given by .. math:: f^\\prime (c) = n_k s_\\circ (1 + c)^{n_k - 1} - \\sum_{i=1}^{k-1} (n_k - n_i) r_i (1 + c)^{n_k - n_i - 1}. Parameters ---------- net_principal : float, required The net principal of a grossed up loan. returns : list of floats, required Due payments that completely pay off the grossed up principal when respectively applied for the given return days. return_days : list of ints, required List with the number of days since the taxable event (which is usually a "loan granted" event) happened. Returns ------- Callable Python callable implementing the return polynomial for the given parameters """ derivative_coefficients_vec = [ net_principal * (return_days[-1] - return_days[-2]) ] + [ r * (return_days[-1] - r_day) # last term does not need to be evaluated for r, r_day in zip(returns[:-1], return_days[:-1]) ] def return_polynomial_derivative(irr_): powers_vec = [ (1 + irr_) ** (return_days[-1] - r_day - 1) for r_day in return_days ] return sum( coef * power for coef, power in zip(derivative_coefficients_vec, powers_vec) ) return return_polynomial_derivative def approximate_irr( net_principal, returns, return_days, daily_interest_rate, ): """Approximate the internal return rate of a series of returns. Use a Newton-Raphson solver implementation to approximate the IRR for the given loan parameters. Let :math:`s_\\circ` be a net principal (i.e., a principal with eventual taxes and fees properly deduced), :math:`r_1,r_2\\ldots,r_k` a sequence of returns and :math:`n_1,n_2,\\ldots,n_k` the due days for these returns. The *internal return rate* :math:`c` is then defined as the least positive root of the polynomial .. math:: f(X) = s_\\circ X^{n_k} - r_1 X^{n_k-n_1} - \\cdots - r_{k-1} X^{n_k-n_{k-1}} - r_k on the real unknown .. math:: X = 1 + c. The derivative of :math:`f` is given by .. math:: f^\\prime (X) = n_k s_\\circ X^{n_k - 1} - \\sum_{i=1}^{k-1} (n_k - n_i) r_i X^{n_k - n_i - 1}. The polynomial :math:`f` and its derivative derivative :math:`f^\\prime` are implemented as Python callables and passed to the Newton-Raphson search implementation with the daily interest rate as initial approximation for the IRR. Parameters ---------- net_principal: float, required The principal used as reference to evaluate the irr, i.e., this is the amount of money which is, from the perspective of the borrower, affected by the irr. returns: list, required List of expected returns or due payments. return_days: list, required List of number of days since the loan was granted until each expected return. daily_interest_rate: float, required Loan's daily interest rate (for the grossed up principal), used as the start point for the approximation of the IRR. """ return_polynomial = return_polynomial_factory( net_principal, returns, return_days) return_polynomial_derivative = return_polynomial_derivative_factory( net_principal, returns, return_days) return newton_raphson_solver( return_polynomial, return_polynomial_derivative, daily_interest_rate )
4c72949e80eb904540d38e66e04bbf0725084afb
cherry-wb/quietheart
/codes/trunk/codes/pythonDemo/14_queue_simple.py
1,295
3.96875
4
#!/usr/bin/python from Queue import Queue from Queue import PriorityQueue a1='a1' a2='a2' a3='a3' a4='a4' a5='a5' b1='b1' b2='b2' b3='b3' b4='b4' b5='b5' q = Queue() pq = PriorityQueue() for i in xrange(5): p = 5 - i q.put("a"+str(p)) q.put("b"+str(p)) pq.put((p,"a"+str(p))) pq.put((p,"b"+str(p))) for i in xrange(5): p = 5 - i q.put("a"+str(p)+str(i+5)) q.put("b"+str(p)+str(i+5)) pq.put((p,"a"+str(p)+str(i+5))) pq.put((p,"b"+str(p)+str(i+5))) size = q.qsize() print "queue item size:%s" %size print "queue items:" for i in xrange(size): print q.get() size = pq.qsize() print "priority queue item size:%s" %size print "priority queue items:" for i in xrange(size): print pq.get() #"but priority queue with same priority is not queue, if we want so, do the following:" import itertools count = itertools.count() poq = PriorityQueue() for i in xrange(5): p = 5 - i poq.put((p,count.next(),"a"+str(p))) poq.put((p,count.next(),"b"+str(p))) for i in xrange(5): p = 5 - i poq.put((p,count.next(),"a"+str(p)+str(i+5))) poq.put((p,count.next(),"b"+str(p)+str(i+5))) size = poq.qsize() print "priority ordered queue item size:%s" %size print "priority ordered queue items:" for i in xrange(size): print poq.get()
4aa2258db3db6eda84e9eb2cf80f007e434a0461
syurskyi/Algorithms_and_Data_Structure
/_temp/Python for Data Structures Algorithms/template/16 Trees/Tree Representation Implementation (Lists).py
754
3.5
4
# Tree Representation Implementation (Lists) # # Below is a representation of a Tree using a list of lists. Refer to the video lecture for an explanation and # a live coding demonstration! ___ BinaryTree(r r_ [r, # list, []] ___ insertLeft(root,newBranch t _ root.p.. 1) __ l..(t) > 1: root.i.. (1,[newBranch,t,[]]) ____ root.i.. (1,[newBranch, # list, []]) r_ root ___ insertRight(root,newBranch t _ root.p.. 2) __ l..(t) > 1: root.i.. (2,[newBranch, # list,t]) ____ root.i.. (2,[newBranch, # list,[]]) r_ root ___ getRootVal(root r_ root[0] ___ setRootVal(root,newVal root[0] _ newVal ___ getLeftChild(root r_ root[1] ___ getRightChild(root r_ root[2]
65e84d6c8775c43a2046b0ad3200e97ceb5474ed
SimonSlominski/Codewars
/3_kyu/3_kyu_The Lift.py
4,696
4.03125
4
""" All tasks come from www.codewars.com """ """ TASK: The Lift Synopsis A multi-floor building has a Lift in it. People are queued on different floors waiting for the Lift. Some people want to go up. Some people want to go down. The floor they want to go to is represented by a number (i.e. when they enter the Lift this is the button they will press) 1. Rules 1.1 Lift Rules - The Lift only goes up or down! - Each floor has both UP and DOWN Lift-call buttons (except top and ground floors which have only DOWN and UP respectively) - The Lift never changes direction until there are no more people wanting to get on/off in the direction it is already travelling - When empty the Lift tries to be smart. For example, - If it was going up then it may continue up to collect the highest floor person wanting to go down - If it was going down then it may continue down to collect the lowest floor person wanting to go up - The Lift has a maximum capacity of people - When called, the Lift will stop at a floor even if it is full, although unless somebody gets off nobody else can get on! - If the lift is empty, and no people are waiting, then it will return to the ground floor 1.2 People Rules - People are in "queues" that represent their order of arrival to wait for the Lift - All people can press the UP/DOWN Lift-call buttons - Only people going the same direction as the Lift may enter it - Entry is according to the "queue" order, but those unable to enter do not block those behind them that can - If a person is unable to enter a full Lift, they will press the UP/DOWN Lift-call button again after it has departed without them Kata Task - Get all the people to the floors they want to go to while obeying the Lift rules and the People rules - Return a list of all floors that the Lift stopped at (in the order visited!) NOTE: The Lift always starts on the ground floor (and people waiting on the ground floor may enter immediately) I/O Input - queues a list of queues of people for all floors of the building. - The height of the building varies - 0 = the ground floor - Not all floors have queues - Queue index [0] is the "head" of the queue - Numbers indicate which floor the person wants go to - capacity maximum number of people allowed in the lift Parameter validation - All input parameters can be assumed OK. No need to check for things like: - People wanting to go to floors that do not exist - People wanting to take the Lift to the floor they are already on - Buildings with < 2 floors - Basements Output - A list of all floors that the Lift stopped at (in the order visited!) """ class Dinglemouse(object): def __init__(self, queues, capacity): self.queues = [list(person) for person in queues] self.capacity = capacity def theLift(self): visited_floors = [0] elevator = [] people_waiting = True while people_waiting: people_waiting = False # Going up for floor in range(0, len(self.queues)): stop_at_floor = False for person in elevator[:]: if person == floor: elevator.remove(person) stop_at_floor = True for person in self.queues[floor][:]: if person > floor: stop_at_floor = True if self.capacity > len(elevator): elevator.append(person) self.queues[floor].remove(person) else: people_waiting = True if stop_at_floor and not visited_floors[-1] == floor: visited_floors.append(floor) # Going down for floor in range(len(self.queues) -1, -1, -1): stop_at_floor = False for person in elevator[:]: if person == floor: elevator.remove(person) stop_at_floor = True for person in self.queues[floor][:]: if person < floor: stop_at_floor = True if self.capacity > len(elevator): elevator.append(person) self.queues[floor].remove(person) else: people_waiting = True if stop_at_floor and not visited_floors[-1] == floor: visited_floors.append(floor) if visited_floors[-1] != 0: visited_floors.append(0) return visited_floors
43b246b5e1b9dcf1dcbdc8424581343b7d3aee12
AlexTheKing/python-course
/classes.py
266
3.71875
4
class Cat: def __init__(self, name): self.name = name def meow(self): print('Meow!') def drink(self, beverage): print('Meow! I drink {}!'.format(beverage)) cat = Cat('Tom') cat.color = 'black' print(cat.name) print(cat.color) cat.meow() cat.drink('milk')
aad023c862faceb058b0dfbe3e3c9dbf2a138f9e
le-birb/advent-of-code_2020
/day3.py
907
3.71875
4
from math import prod as mult from itertools import zip_longest, product infile = open('day3-input', 'r') trees = [[c == '#' for c in line.strip()] for line in infile] infile.close() height = len(trees) width = len(trees[0]) def count_trees(right, down): tree_count = 0 for i in range(0, height//down): tree_count += trees[down*i][(right*i) % width] return tree_count # part 1 right= 3 down = 1 print(count_trees(right, down)) # part 2 rights = [1, 3, 5, 7, 1] downs = [1, 1, 1, 1, 2] slopes = zip_longest(rights, downs) print(mult(count_trees(*slope) for slope in slopes)) # for fun, determine a slope with minimum tree collisions rights = range(width*height//2) downs = range(1, height//2) curr_min = (height, ()) for slope in product(rights, downs): count = count_trees(*slope) if count < curr_min[0]: curr_min = (count, slope) print(curr_min)
6fca13066743f2dffe8d51ced7843dea0664cb18
signoreankit/PythonLearn
/set.py
556
4.375
4
#Sets - Unordered collections of unique elements # To Define Set set_1 = set() # To add element to a set set_1.add('Ankit') set_1.add('Ankit') # It wont take duplicate items. Try it! set_1.add('Dell Xps 15') set_1.add('Python 3.6') set_1.add('Machine Learning') print("Set_1: ", set_1) # Casting a list with duplicate items into Set - To get only unique values, It can be unordered. list_toCast = [1, 1, 1, 3, 3, 3, 3, 2, 2, 2, 2, 2] new_set = set(list_toCast) print('Our list is: {l}\nOur set from that list is: {s}'.format(l = list_toCast, s = new_set))
0ecc206f18e17e5df485c4437a10c4ee4692aae7
gustavo621/projetos-em-python
/projetos em python/exercicio45.py
871
3.8125
4
import random pc = ["pedra", "papel", "tesoura"] pc2 = random.choice(pc) print('''suas opções: [ 1 ] pedra [ 2 ] papel [ 3 ] tesoura''') seu = int(input("escolha uma opção: ")) if pc2 == "pedra" and seu == 3: print("você perdeu! o pc escolheu pedra") elif pc2 == "papel" and seu == 1: print("você perdeu! o pc escolheu papel") elif pc2 == "tesoura" and seu == 2: print("você perdeu! o pc scolheu tesoura") elif pc2 == "pedra" and seu == 2: print("você ganhou! o pc escolheu pedra") elif pc2 == "papel" and seu == 3: print("você ganhou! o pc escolheu papel") elif pc2 == "tesoura" and seu == 1: print("você ganhou! o pc escolheu tesoura") elif pc2 == "pedra" and seu == 1: print("o jogo deu empate!") elif pc2 == "papel" and seu == 2: print("o jogo deu empate!") elif pc2 == "tesoura" and seu == 3: print("o jogo deu empate!")
84f65c3cec5d670f35cacd817dbb9f1741e4059c
Saranya2616/hello-world
/power.py
137
3.8125
4
a=int(input()) b=int(input()) if a & b is int: c=a**b print(c) else: c=int(a) d=int(b) e=c**d print(e)
9620f5ab669734e1ec5082416d09b00cd2606fc3
anonymint/euler
/python/euler002.py
994
4.03125
4
""" Project Euler #2: Even Fibonacci numbers Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first terms will be: 1,2,3,5,8,13,21,34,55,89,... By considering the terms in the Fibonacci sequence whose values do not exceed , find the sum of the even-valued terms. """ def solution(n: int): """ pass integer and loop while keep buffer(last one before) and current and keep updating the value of current fibonacci = current + buffer which current = fibonacci and buffer = current :param n: input :type n: int :return: sum of value that's even and not over n :rtype: int """ if n < 2: return 0 buffer = 1 current = 1 count = 0 while current < n: temp = current + buffer if temp % 2 == 0 and temp < n: count += temp buffer = current current = temp return count if __name__ == '__main__': print(solution(100))
08e33e4645bfb1716171c6fdf0f895e5eaf4e002
zmalpq/CodeWars
/take a ten minute walk.py
2,873
4.40625
4
#You live in the city of Cartesia where all roads are laid out in a perfect grid. #You arrived ten minutes too early to an appointment, so you decided to take the opportunity to go for a short walk. #The city provides its citizens with a Walk Generating App on their phones -- everytime you press the button it sends you an array of one-letter strings representing directions to walk (eg. ['n', 's', 'w', 'e']). #You always walk only a single block for each letter (direction) and you know it takes you one minute to traverse one city block, #so create a function that will return true if the walk the app gives you will take you exactly ten minutes (you don't want to be early or late!) and will, of course, return you to your starting point. Return false otherwise. #Note: you will always receive a valid array containing a random assortment of direction letters ('n', 's', 'e', or 'w' only). #It will never give you an empty array (that's not a walk, that's standing still!). #solution def is_valid_walk(walk): # two conditions to meet: # 1. walk must take exactly 10 minutes. This means that the length of the directions provided must be equal to 10 (1 minute for each direction). # 2. walk must bring you back to original position. This means that number of north values must be equal to number of south values (sum equal to zero) and number of east values must be equal to number of west values. # First: create dictionary with "x" key to track sum of north/south values and "y" key to track sum of east/west values dict = {"x": 0, "y": 0} # first condition: walk must take exactly 10 minutes. if length of directions is less than or greater than 10, return False. if len(walk) < int(10): return False elif len(walk) > int(10): return False # if length of directions is equal to 10, we can now take a look at the second condition (walk must bring you back to original position). elif len(walk) == int(10): # use a for loop to iterate over the elements 'n', 's', 'e', 'w' in the list: for i in walk: # if i is equal to 'n' (north), add a count of +1 to the value of the key 'x' in the dictionary previously created. if equal to 's' (south), subtract 1. if i == "n": dict["x"] += 1 if i == "s": dict["x"] -= 1 # if i is equal to 'e' (east), add a count of +1 to the value of the key 'y' in the dictionary. if equal to 'w' (west), subtract 1. if i == "e": dict["y"] += 1 if i == "w": dict["y"] -= 1 # if north and south balance out to 0, and east and west balance out to 0, this means that the walk has brought you back to your original position. if dict == {"x": 0, "y": 0}: return True else: return False
cf2fb52172448eac18f83428de4e4d6cd7d6b605
Nahidjc/python_problem_solving
/armstrong.py
182
3.84375
4
N= int(input()) temp=N sum=0 while N != 0: rem = N%10 N = N//10 sum = sum+ (rem**3) if sum == temp: print("the Number is armstrong") else: print("Not Armstrong")
8a2041d7aee907757a2cbf5e650047ef6feaaad0
ayushiagarwal99/leetcode-lintcode
/leetcode/depth_first_search/124.binary_tree_maximum_path_sum/124.BinaryTreeMaximumPathSum_zheyuuu.py
1,315
3.828125
4
# Source : https://leetcode.com/problems/binary-tree-maximum-path-sum # Author : zheyuuu # Date : 2020-08-05 ##################################################################################################### # # Given a non-empty binary tree, find the maximum path sum. # # For this problem, a path is defined as any sequence of nodes from some starting node to any node in # the tree along the parent-child connections. The path must contain at least one node and does not # need to go through the root. # # Example 1: # # Input: [1,2,3] # # 1 # / \ # 2 3 # # Output: 6 # # Example 2: # # Input: [-10,9,20,null,null,15,7] # # -10 # / \ # 9 20 # / \ # 15 7 # # Output: 42 # ##################################################################################################### class Solution: def maxPathSum(self, root: TreeNode) -> int: self.ans = float("-inf") self.helper(root) return self.ans def helper(self, node): if not node: return 0 left = self.helper(node.left) right = self.helper(node.right) lval = left if left>=0 else 0 rval = right if right>=0 else 0 self.ans = max(node.val+lval+rval, self.ans) return max(node.val+lval, node.val+rval)
f6c3bc55ec38fefd1cf9b8dd646f6bf5135716d4
itsanti/gbu-ch-py-algo
/hw2/hw2_task5.py
489
3.6875
4
"""HW2 - Task 5 Вывести на экран коды и символы таблицы ASCII, начиная с символа под номером 32 и заканчивая 127-м включительно. Вывод выполнить в табличной форме: по десять пар «код-символ» в каждой строке. """ i = 1 for code in range(32, 128): end = '\n' if i % 10 == 0 else '\t' print(f'{code:3}-{chr(code)}', end=end) i += 1
f0122e83bce6f99185eca3ff20c799b5d5e0a09a
mkorycinski/algorithms-and-data-structures
/searching/binary_search.py
1,175
3.84375
4
import unittest def binary_search(arr, ele): first = 0 last = len(arr) - 1 found = False while first <= last and not found: mid = (first + last) // 2 if arr[mid] == ele: found = True else: if ele < arr[mid]: last = mid - 1 else: first = mid + 1 return found def binary_search_rec(arr, ele): if len(arr) == 0: return False else: mid = len(arr) // 2 if arr[mid] == ele: return True else: if ele < arr[mid]: return binary_search_rec(arr[:mid], ele) else: return binary_search_rec(arr[mid+1:], ele) class TestSearches(unittest.TestCase): def setUp(self): self.arr = [1,2,3,4,5,6,7,8,9,10] def test_binary_search(self): self.assertFalse(binary_search(self.arr, 25)) self.assertTrue(binary_search(self.arr, 5)) def test_binary_search_rec(self): self.assertFalse(binary_search_rec(self.arr, 25)) self.assertTrue(binary_search_rec(self.arr, 5)) if __name__ == '__main__': unittest.main()
31f855cac904eea71623dd33aa6ab3ef7fb855fe
Pshinde100/Natural-language-processing
/NLP.py
2,765
3.515625
4
# -*- coding: utf-8 -*- """ Created on Fri Mar 15 10:24:02 2019 @author: Pranit """ import nltk nltk.download() import re sent1 = "this is my first sentense. this sentense has some lines and words. this is the third sentense" # split para into words # \s = space re.split(r"\s", sent1) # split at a letter - exlcude letter re.split("e", sent1) ## spilt at word re.split("sentense",sent1) ## spilt on range of characters re.split(r"[a-z]",sent1) ## spilt on combination of words re.split(r"is [a-z]",sent1) # 2) pattern matching sent2 = "The Cat is chasing the Mouse in the Room" # extract all capital letters re.findall(r'[A-Z][a-z]+',sent2) re.findall(r'[A-Z][a-z]*',sent2) # *for stating with zero # extract all word start with small letters re.findall(r'\s[a-z]+',sent2) re.findall(r'\s[a-z]*',sent2) # get all email ids from yhe sentence sent3 = "primary email id is [email protected], secondary email id [email protected]" re.findall(r'\s[\w]+@[\w]+', sent3) # find one particular pattern of email eg : gmail sent4 = "primary email id is [email protected], secondary email id [email protected], [email protected]" re.findall(r"\s[\w]+@gmail[\w.]+", sent4) # find values within an XMl tag sent5 = "<itemcode>BK100IM10018</itemcode>" re.findall(r'>(\w+)</', sent5) # 3) extract number from sentence sent6 = "there are 7 days , 12 week , 3600, 54862" re.findall(r"\d{5}", sent6) # all 5 digit re.findall(r'\d{4}', sent6) re.findall(r'(?<=\s)\d{4}(?![0-9])', sent6) re.findall(r'(?<=\s)\d{1}(?![0-9])', sent6) ################################################# ## NLTK import nltk sent1 = "the resources can be classified as Natural and aman-made.Natural resources are unlimited .man made resources can get depleted sooner or later " nltk.word_tokenize(sent1) # word split nltk.sent_tokenize(sent1) # sentence # stop words from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) stop_words.update({"|-","--", ">"}) print(stop_words) sent2 = "the boy was behaving badly and very impolite " words = nltk.word_tokenize(sent2) set(words).difference(stop_words) ## Part of speech tagging POS sent3 = "the old man is walking on the road slowly" words = nltk.word_tokenize(sent3) print(words) pos_words = nltk.pos_tag(words) print(pos_words) ## get only the Nouns nouns = ['NN', 'NNS', 'NNP', 'NNPS'] for w,p in pos_words: if (p in nouns): print("{0} is a noun". format(w)) ## similarly extract the adjective adverbs, verbs ## n-grams from textblob import TextBlob as tb blob = tb(sent3) n1 = blob.ngrams(n=1) n2 = blob.ngrams(n=2) n3 = blob.ngrams(n=3) n4 = blob.ngrams(n=4) n2
be1b22931d637df369df2b0450eae036baebdccc
espazo/sicp-in-python
/2 使用对象构建抽象/列表和字典的实现.py
2,678
4.28125
4
empty_rlist = None def make_rlist(first, rest): """Make a recursive list from its first element and the rest.""" return (first, rest) def first(s): """Return the first element of a recursive list s.""" return s[0] def rest(s): """Return the rest of the elements of a recursive list s.""" return s[1] def len_rlist(s): """Return the length of recursive list s.""" length = 0 while s != empty_rlist: s, length = rest(s), length + 1 return length def getitem_rlist(s, i): """Return the element at index i of recursive list s.""" while i > 0: s, i = rest(s), i - 1 return first(s) def make_mutable_rlist(): """Return a functional implementation of a mutable recursive list.""" contents = empty_rlist def dispatch(message, value=None): nonlocal contents if message == 'len': return len_rlist(contents) elif message == 'getitem': return getitem_rlist(contents, value) elif message == 'push_first': contents = make_rlist(value, contents) elif message == 'pop_first': f = first(contents) contents = rest(contents) return f elif message == 'str': return str(contents) return dispatch def to_mutable_rlist(source): """Return a functional list with the same contents as source.""" s = make_mutable_rlist() for element in reversed(source): s('push_first', element) return s # 消息传递 def make_dict(): """Return a functional implementation of a dictionary.""" records = [] def getitem(key): for k, v in records: if k == key: return v def setitem(key, value): for item in records: if item[0] == key: item[1] = value return records.append([key, value]) def dispatch(message, key=None, value=None): if message == 'getitem': return getitem(key) elif message == 'setitem': return setitem(key, value) elif message == 'keys': return tuple(k for k, _ in records) elif message == 'values': return tuple(v for _, v in records) return dispatch if __name__ == '__main__': suits = ['heart', 'diamond', 'apade', 'club'] s = to_mutable_rlist(suits) print(type(s)) print(s('str')) print(s('pop_first')) d = make_dict() d('setitem', 3, 9) d('setitem', 4, 16) print(d('getitem', 3)) print(d('getitem', 4)) print(d('keys')) print(d('values')) c = make_dict() print('c', c('keys'))
d6c668f74590864614fbe19db2d0a00dc6495003
wly6250/Python3.6
/Python-base/list2.py
200
3.90625
4
# -*- coding: utf-8 -*- # 从0到99的100个数中,删除所有的偶数! r=list(range(100)) for i in range(len(r)//2): r.pop(i) print('循环条件i:',i) print('处理后的list:',r)
09878b9c10dcf97f9b056fe97d2d7bc0bca76bf1
Mararsh/yard
/docs/algorithms/selection_sort.py
5,068
4.25
4
# -*- coding: utf-8 -*- """ Title : Selection Sorting Objective : Show each step of comparing and movement in intuitive way Created by: Mara Created on: 2018/3/19 21:01 """ import random ODATA = [] DATA_LENGTH = 20 def generate_data(number): while len(ODATA) < number: data = random.randint(0, number-1) if data not in ODATA: ODATA.append(data) print("\nDATA: " + str(ODATA)) def selection_sort_find_max(): DATA = ODATA.copy() compare_count = 0 move_count = 0; print("\n** selection_sort_find_max") print("** This algorithm always finds the largest data and move it to end.") print("DATA: " + str(DATA)) for i in range(0, DATA_LENGTH): current_index = DATA_LENGTH - 1 - i print("i=" + str(current_index)) max_index = current_index for j in range(0, DATA_LENGTH - 1 - i): compare_count = compare_count + 1 print(" j=" + str(j) + " comparing:'" + str( DATA[j]) + "' and '"+ str( DATA[max_index]) + "'") if DATA[j] > DATA[max_index]: max_index = j print(" max=" + str(DATA[max_index]) ) if max_index == current_index: continue tmp1 = DATA[max_index] tmp2 = DATA[current_index] DATA[max_index] = tmp2 DATA[current_index] = tmp1 move_count = move_count + 1 print(" exchanging:'" + str( DATA[max_index]) + "' and '"+ str( DATA[current_index]) + "'") print(" DATA: [", end="") for m in range(0, DATA_LENGTH): if m==current_index: print('\033[1;33;40m', end="") print(str(DATA[m]), end="") if m!=(DATA_LENGTH-1): print(", ", end="") print("\033[0m", end="") elif m == max_index: print('\033[1;33;m', end="") print(str(DATA[m]), end="") if m != (DATA_LENGTH - 1): print(", ", end="") print("\033[0m", end="") elif m >= DATA_LENGTH - 1 - i: print('\033[1;32;40m', end="") print(str(DATA[m]), end="") if m != (DATA_LENGTH - 1): print(", ", end="") print("\033[0m", end="") else: print(str(DATA[m]), end="") if m!=(DATA_LENGTH-1): print(", ", end="") print("]") return compare_count, move_count def selection_sort_find_min(): DATA = ODATA.copy() compare_count = 0 move_count = 0; print("\n** selection_sort_find_min") print("** This algorithm always finds the smallest data and move it to front.") print("DATA: " + str(DATA)) for i in range(0, DATA_LENGTH): current_index = i print("i=" + str(current_index)) min_index = current_index for j in range(i+1, DATA_LENGTH): compare_count = compare_count + 1 print(" j=" + str(j) + " comparing:'" + str(DATA[j]) + "' and '" + str(DATA[min_index]) + "'") if DATA[j] < DATA[min_index]: min_index = j print(" min=" + str(DATA[min_index])) if min_index == current_index: continue tmp1 = DATA[min_index] tmp2 = DATA[current_index] DATA[min_index] = tmp2 DATA[current_index] = tmp1 move_count = move_count + 1 print(" exchanging:'" + str(DATA[min_index]) + "' and '" + str(DATA[current_index]) + "'") print(" DATA: [", end="") for m in range(0, DATA_LENGTH): if m==current_index: print('\033[1;33;40m', end="") print(str(DATA[m]), end="") if m!=(DATA_LENGTH-1): print(", ", end="") print("\033[0m", end="") elif m == min_index: print('\033[1;33;m', end="") print(str(DATA[m]), end="") if m != (DATA_LENGTH - 1): print(", ", end="") print("\033[0m", end="") elif m <= i: print('\033[1;32;40m', end="") print(str(DATA[m]), end="") if m != (DATA_LENGTH - 1): print(", ", end="") print("\033[0m", end="") else: print(str(DATA[m]), end="") if m != (DATA_LENGTH - 1): print(", ", end="") print("]") return compare_count, move_count if __name__ == '__main__': generate_data(DATA_LENGTH) compare_count, move_count = selection_sort_find_max() print("## Data size: " + str(DATA_LENGTH)) print("## Total compared: " + str(compare_count)) print("## Total moved: " + str(move_count)) compare_count, move_count = selection_sort_find_min() print("## Data size: " + str(DATA_LENGTH)) print("## Total compared: " + str(compare_count)) print("## Total moved: " + str(move_count))
4e69f55ec7e9e0a3a870ba03bc7b0c0ebe7de417
rajababulukka/PythonPrograms
/recursive_string_permutation.py
446
3.765625
4
def permutation(str_1): if len(str_1)<=1: return set([str_1]) all_permutations=[] for i in range(len(str_1)): first=str_1[i] rest=str_1[:i]+str_1[i+1:] permutations=permutation(rest) for permute in permutations: all_permutations.append(first+permute) return set(all_permutations) print(permutation("ab")) print(permutation("abc")) print(permutation("raja"))
2f7b84480815942d4f30111de08783577c18d61a
parwez6969/fossproject
/python 786.py
167
4
4
a=int(input('enter the first number')) b=int(input('enter the second number')) addition=a+b multipliction=a*b print('addition=',a+b) print('multipliction=',a*b)
c5027a7c2c5f14c446f6e294e309fd68e603fca8
loxygenK/blin-tool
/scripts/lib/color.py
655
3.625
4
class Color: BLACK = 0 RED = 1 GREEN = 2 YELLOW = 3 BLUE = 4 PINK = 5 CYAN = 6 WHITE = 7 @classmethod def colored(cls, string, color, bold=False): if type(color) == int: return cls.__colored(string, color, bold) elif type(color) == str: color_code = eval("Color." + color) return cls.__colored(string, color_code, bold) raise TypeError("color should be int or str.") @classmethod def __colored(cls, string, color_code, bold=False): return "\033[38;5;{}{}m{}\033[m".format( color_code, ";1" if bold else "", string )
9a29fe6f20d13d587327bf84001979425224cd9b
Aasthaengg/IBMdataset
/Python_codes/p03803/s724674653.py
200
3.609375
4
strength = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1] A, B = [strength.index(n) for n in map(int, input().split())] if A > B: print('Alice') elif A < B: print('Bob') else: print('Draw')
893ae9a7901c8ce7030ca0efdb4c81dba293c3ba
nicolealdurien/Assignments
/week-02/day-1/user_address.py
1,673
4.4375
4
# Week 2 Day 1 Activity - User and Address # Create a User class and Address class, with a relationship between # them such that a single user can have multiple addresses. class User: def __init__(self, first_name, last_name): self.first_name = first_name self.last_name = last_name self.addresses = [] def get_first_name(self, first_name): return self.first_name def get_last_name(self, last_name): return self.last_name def add_address(self, address): str_address = str(address) self.addresses.append(str_address) def display_addresses(self): print(f"""Addresses listed for {self.first_name} {self.last_name}:\n {self.addresses}""") def __str__(self): return f"{str(self.first_name)} {str(self.last_name)}" class Address: def __init__(self, street, city, state, zip_code): self.street = street self.city = city self. state = state self.zip_code = zip_code def get_street(self, street): return self.street def get_city(self, city): return self.city def get_state(self, state): return self.state def get_zip_code(self, zip_code): return self.zip_code def __str__(self): return f"{str(self.street)}, {str(self.city)}, {str(self.state)} {str(self.zip_code)}" mickey_mouse = User('Mickey', 'Mouse') magic_kingdom = Address('1180 Seven Seas Dr', 'Lake Buena Vista', 'FL', '32836') epcot = Address('200 Epcot Center Dr', 'Orlando', 'Florida', '32821') mickey_mouse.add_address(magic_kingdom) mickey_mouse.add_address(epcot) mickey_mouse.display_addresses()
c0e1994cf06d96f0b03dfb3c9469748bf63772d6
rmfaber/FootballPredictions
/getgames.py
3,521
3.5
4
import requests from selenium import webdriver from selenium.webdriver.common.by import By from bs4 import BeautifulSoup import pandas as pd import time def start_browser(url='https://www.voetbal.com/'): browser = webdriver.Chrome() browser.get(url) # agree to use cookies time.sleep(2) browser.find_element_by_css_selector('button[mode="primary"]').click() return browser def get_teamslist_games(browser,season,roundnr): """Get all the games for a given season and roundnr Parameters ------------- browser, Selenium browserobject season, str String with format: {firstyear}-{secondyear} roundnr, str String of the roundnr (digit between 1 and 34)""" url = f"https://www.voetbal.com/wedstrijdgegevens/ned-eredivisie-{season}-spieltag/{roundnr}/" browser.get(url) data = requests.get(browser.current_url) soup = BeautifulSoup(data.text,'html.parser') games = soup.select("a[title*=Wedstrijddetails]") table = soup.findAll('table', { 'class' : 'standard_tabelle' }) teams = table[1].select("a[href*=teams]") teams teamslist = [] for team in teams: teamslist.append(team.get_text()) return teamslist, games def get_teamslist(soup): """Find all teams that participate in this year of the Eredivisie""" table = soup.findAll('table', { 'class' : 'standard_tabelle' }) teams = table[1].select("a[href*=teams]") teams teamslist = [] for team in teams: teamslist.append(team.get_text()) return(teamslist) def team_identification(game,teamslist): """Identify the home and awayteams of a game""" for team in teamslist: if team in game['title'].split(' -')[0]: hometeam = team elif team in game['title'].split(' -')[1]: awayteam = team return hometeam,awayteam def goals(game): """Identify the goals scored and the result of the game""" goals_scored = game.get_text().split()[0] homegoals = goals_scored.split(':')[0] awaygoals = goals_scored.split(':')[1] if homegoals>awaygoals: return([homegoals,awaygoals,1]) elif awaygoals>homegoals: return([homegoals,awaygoals,2]) else: return([homegoals,awaygoals,3]) def gamestats(game, teamslist): """Combine the team identification and result""" hometeam, awayteam = team_identification(game, teamslist) resultlist = goals(game) homegoals = resultlist[0] awaygoals = resultlist[1] result = resultlist[2] if result == 1: homepoints = 3 awaypoints = 0 elif result == 2: homepoints = 0 awaypoints = 3 else: homepoints = 1 awaypoints = 1 return({"Home":hometeam,"Away":awayteam,"HomeGoals":homegoals,"AwayGoals":awaygoals,"Result":result, "HomePoints":homepoints,"AwayPoints":awaypoints}) def create_df(browser,columns,roundnrs,startjaar,eindjaar): df = pd.DataFrame(columns=columns) jaar = startjaar while jaar <= eindjaar: season = f"{jaar}-{jaar+1}" for roundnr in roundnrs: teamslist, games = get_teamslist_games(browser,season=season,roundnr=str(roundnr)) for game in games: resultdict = gamestats(game,teamslist) resultdict["Season"] = season resultdict["Round"] = roundnr df = df.append(resultdict,ignore_index=True) jaar+=1 return df def test(a,b): return a + b
595cebfd880642511997f4b352e431e30b11600e
Vanid64/atbspython
/ch5/inventory.py
1,113
3.859375
4
def displayInventory(inventory): if type(inventory) != dict: print('Please pass a dictionary as an inventory.') return totalItems = 0 print("Inventory:") for k, v in inventory.items(): print(str(v) + ' ' + k) totalItems += v print("Total number of items: " + str(totalItems)) def addToInventory(inventory, addedItems): if type(inventory) != dict or type(addedItems) != list: print('Invalid arguments passed.') return for item in addedItems: inventory.setdefault(item, 0) inventory[item] += 1 inventory1 = {'rope': 1, 'torch': 6, 'gold coin': 42, 'dagger': 1, 'arrow': 12} inventory2 = 'hello!' # displayInventory(inventory1) # displayInventory(inventory2) adding1 = ['gold coin', 'dagger', 'gold coin', 'gold coin', 'ruby'] adding2 = ['gold coin', 'dagger', 'dagger', 'bow', 'potion'] adding3 = 'hello!' # addToInventory(inventory1, adding1) # displayInventory(inventory1) # addToInventory(inventory1, adding2) # displayInventory(inventory1) # addToInventory(inventory1, adding3) # displayInventory(inventory1)
95e032f227acf2e3ac2e818aaa7e38f6950095f4
HuangPengcheng-0207/file-transfer-python
/FTPClientUsingTCP.py
2,590
4.25
4
""" FTPClientUsingTCP.py [STUDENTS FILL IN THE ITEMS BELOW] Libin Feng, Yuqi Liu CISC-650 Fall 2014 Sep 26, 2014 This module will: a. start a TCP control connection to the server b. ask the client to input the name of a file c. receive the response from server. If the response is 'yes', then start using TCP transfer to receive the file. If the response is 'no', then give the client a prompt and exit. """ from socket import * # server machine's name serverName = "hostname" # port numbers of server serverPort_ctrl = 12306 serverPort_transf= 12307 # start using TCP transfer to transfer the file def start_transfer(): # create TCP transfer socket on client to use for connecting to remote # server. Indicate the server's remote listening port clientSocket_transf = socket(AF_INET,SOCK_STREAM) # open the TCP transfer connection clientSocket_transf.connect((serverName,serverPort_transf)) # connection prompt print("TCP transfer connected. | Server: %s, Port: %d" % (serverName, serverPort_transf)) # get the data back from the server filedata = clientSocket_transf.recv(5000) # creat a file named "filename" and ready to write binary data to the file filehandler = open(filename, 'wb') # write the data to the file filehandler.write(filedata) # close the file filehandler.close() # close the TCP transfer connection return clientSocket_transf.close() # create TCP socket on client to use for connecting to remote # server. Indicate the server's remote listening port clientSocket_ctrl = socket(AF_INET, SOCK_STREAM) # open the TCP control connection clientSocket_ctrl.connect((serverName,serverPort_ctrl)) # connection prompt print("TCP control connected. | Server: %s, Port: %d" % (serverName, serverPort_ctrl)) # input the file name client wants filename = input("Input file name: ") # send the file name to the server clientSocket_ctrl.send(bytes(filename, "utf-8")) # get the status of the file from server "yes" or "No" filestatus = clientSocket_ctrl.recv(1024).decode("utf-8").strip() # check whether the file is on the server. If yes, receive the file. # If no, do give a prompt if filestatus == "yes": # download prompt print("Start downloading..") # start using TCP transfer start_transfer() # success prompt print("Done!") else: # cannot find the file on the server print("No such file found on the server!") # close the TCP control connection clientSocket_ctrl.close()
6a822e550a8f3e51efc7bdca386b078d7f6a559f
yusif-ifraimov/TowerDefense
/source/button.py
3,755
3.75
4
# Button class # # Rectangular object that displays an image, # can respond to mouse-overs, and # send a message on click # # 2014/4/9 # written by Michael Shawn Redmond from config import * import pygame import rectangle class Button(rectangle.Rectangle): def __init__(self, position, width, height, image, image_hover): # image shown when the mouse is on the button self.image_hover = pygame.image.load(image_hover) rectangle.Rectangle.__init__(self, KIND_BUTTON, position, width, height, image) # mouse-over data self.message = None self.hover = False # message shown on mouse-over self.description = "" # object to be sent on click self.item = None def paint(self, surface): # display the hover image on mouse-overs if self.hover: surface.blit(self.image_hover, self.position) # otherwise use the normal image else: surface.blit(self.image, self.position) def game_logic(self, keys, newkeys, mouse_pos, newclicks): actions = [] # if the mouse is on the button, set the hover data member if self.is_inside(mouse_pos): self.hover = True # if the button was clicked, send a message with the applicable item if MOUSE_LEFT in newclicks: actions.append((self.message, self.item)) # reset the hover data member if the mouse is not on the button else: self.hover = False return actions def get_description(self): return self.description def set_description(self, description): self.description = description def get_item(self): return self.item def set_item(self, item): self.item = item # Button-specific child classes # Only changes needed are the message, image, dimensions, message, and item class NewWave(Button): def __init__(self, position = (0, 0)): Button.__init__(self, position, BUTTON_NEW_WAVE_WIDTH, BUTTON_NEW_WAVE_HEIGHT, BUTTON_NEW_WAVE_IMG, BUTTON_NEW_WAVE_HOVER_IMG) self.message = BUTTON_NEW_WAVE_MSG self.item = None class Upgrade(Button): def __init__(self, position = (0, 0)): Button.__init__(self, position, BUTTON_UPGRADE_WIDTH, BUTTON_UPGRADE_HEIGHT, BUTTON_UPGRADE_IMG, BUTTON_UPGRADE_HOVER_IMG) self.message = BUTTON_UPGRADE_MSG self.item = None class Sell(Button): def __init__(self, position = (0, 0)): Button.__init__(self, position, BUTTON_SELL_WIDTH, BUTTON_SELL_HEIGHT, BUTTON_SELL_IMG, BUTTON_SELL_HOVER_IMG) self.message = BUTTON_SELL_MSG self.item = None class Play(Button): def __init__(self, position = (0, 0)): Button.__init__(self, position, BUTTON_PLAY_WIDTH, BUTTON_PLAY_HEIGHT, BUTTON_PLAY_IMG, BUTTON_PLAY_HOVER_IMG) self.message = BUTTON_PLAY_MSG self.item = None class Quit(Button): def __init__(self, position = (0, 0)): Button.__init__(self, position, BUTTON_QUIT_WIDTH, BUTTON_QUIT_HEIGHT, BUTTON_QUIT_IMG, BUTTON_QUIT_HOVER_IMG) self.message = BUTTON_QUIT_MSG self.item = None class Help(Button): def __init__(self, position = (0, 0)): Button.__init__(self, position, BUTTON_HELP_WIDTH, BUTTON_HELP_HEIGHT, BUTTON_HELP_IMG, BUTTON_HELP_HOVER_IMG) self.message = BUTTON_HELP_MSG self.item = None class Level(Button): def __init__(self, position = (0, 0), name = ""): Button.__init__(self, position, BUTTON_LEVEL_WIDTH, BUTTON_LEVEL_HEIGHT, BUTTON_LEVEL_IMG, BUTTON_LEVEL_HOVER_IMG) self.message = BUTTON_LEVEL_MSG # where self.item is the name of the map file self.item = name
7ad8f7dffba52c64a8bab06e8be920967d6c6d31
apalala/exercism
/python/sublist/sublist.py
527
3.9375
4
SUBLIST = 1 SUPERLIST = 2 EQUAL = 3 UNEQUAL = 4 def check_lists(alist, blist): if alist == blist: return EQUAL elif _has_sublist(blist, alist): return SUBLIST elif _has_sublist(alist, blist): return SUPERLIST else: return UNEQUAL def _has_sublist(alist, sub): # See: # http://stackoverflow.com/a/12576755/545637 return not sub or any( sub[0] == alist[i] and sub == alist[i:i + len(sub)] for i in range(1 + len(alist) - len(sub)) )
f72f94385f029819972e2d72d975af5d9788f538
jcohen66/python-sorting
/questions/easy/two_sum_hash_better.py
545
4.09375
4
def two_sum(nums, target): ''' Given an array of integers and a target integer, return an array containing the indexes of the elements that add up to the target. >>> two_sum([2,7,11,15], 9) [0, 1] >>> two_sum([3, 2, 4], 6) [1, 2] >>> two_sum([3,3], 6) [0] ''' result = [] num_elems = len(nums) dict = {} for i in range(num_elems): complement = target - nums[i] if complement in dict.keys(): result.append(i) dict[nums[i]] = i return result
50783ab670ce256cb473c3cb184c5f34fee312c0
paalso/mipt_python_course
/7_pictures_1/2/spec_figures.py
961
3.59375
4
import pygame def draw_bordered_ellipsis( screen, ellipse_rect, ellipse_color, border_color, border_width=0): rect_topleft_x, rect_topleft_y, rect_width, rect_height = ellipse_rect inner_rect = (rect_topleft_x + border_width, rect_topleft_y + border_width, rect_width - 2 * border_width, rect_height - 2 * border_width) pygame.draw.ellipse(screen, ellipse_color, inner_rect) pygame.draw.ellipse(screen, border_color, ellipse_rect, border_width) def draw_triangle( screen, bottom_left, base, leg, color, border_color, border_width=0): bottom_left_x, bottom_left_y = bottom_left bottom_right = bottom_left_x + base, bottom_left_y half_base = base // 2 top = bottom_left_x + half_base, \ bottom_left_y - (leg ** 2 + half_base ** 2) ** 0.5 pygame.draw.polygon(screen, color, (bottom_left, bottom_right, top))
6b362adfd78d92e5820996ec6a4e7a269664e23f
ernie0423/introprogramacion
/practico2/practico2_ejercicio2.py
246
4.125
4
def numeroMax (num1, num2, num3): MAX = max(num1,num2,num3) print("El mayor es:", MAX) num1 = int(input("ingrese un numero: ")) num2 = int(input("ingrese un numero: ")) num3 = int(input("ingrese un numero: ")) numeroMax(num1, num2, num3)
adc2f4ac9d674fd85ffe2fe225e3102e5096345e
imdangodaane/tetris
/test.py
242
4.125
4
#!/usr/bin/env python3 def rotate(m): b = list(zip(*reversed(m))) for i in range(len(b)): b[i] = list(b[i]) for i in b: print(i) return b rotate([ [0, 1, 1], [1, 1, 0] ]) rotate([ [0, 1], [0, 1], [1, 1] ])
77d9f49b82e3bbdf949e70339d893fe17f77111d
DKanyana/PythonProblems
/4_UniqueOne.py
218
3.953125
4
def find_one_uniq(numbers): uniq =0 for num in numbers: uniq ^= num return uniq numbers= [1,2,2,3,3,4,4,5,5,1,7] print(find_one_uniq(numbers)) #Time complexity - O(n) #Space complexity - O(1)
1e48a33617e37c016b85b40d94355c74e54abe3c
Ayesha116/piaic.assignment
/q7.py
230
4
4
#Write a Python program to get the difference between a given number and 17, difference cannot be negative a = int(input("enter any number: ")) if a>=17: print("difference is ",a-17) elif a<17: print("difference is ",17-a)
09769295bee9a4c84307241bd8a0b1932d94d621
eronekogin/leetcode
/2022/cinema_seat_allocation.py
939
3.6875
4
""" https://leetcode.com/problems/cinema-seat-allocation/ """ from collections import defaultdict class Solution: def maxNumberOfFamilies( self, n: int, reservedSeats: list[list[int]] ) -> int: # Build seats. seats = defaultdict(int) for r, c in reservedSeats: seats[r] |= 1 << (c - 1) # Check groups. # A row with no reserved seat can have maximum 2 groups. cnt = (n - len(seats)) << 1 l = int('0111100000', 2) r = int('0000011110', 2) m = int('0001111000', 2) for row in seats.values(): group = 0 group += (row & l) == 0 group += (row & r) == 0 group += (row & m) == 0 and group == 0 cnt += group return cnt print(Solution().maxNumberOfFamilies(3, [[1, 2], [1, 3], [1, 8], [2, 6], [3, 1], [3, 10]]))
9f35dadd26f47c77978f42018a9d7f73326b1c5b
elvisliyx/python-learn
/learn-day3/encode.py
212
3.796875
4
#-*- coding:utf-8 -*- import sys print(sys.getdefaultencoding()) s = '你好' print(s.encode()) s_gbk = s.encode('gbk') print(s_gbk) s_to_utf = s_gbk.decode('gbk').encode('utf-8') print('utf-8',s_to_utf)
9e61dd627bb4ba4fc285271eadd0fd599854561e
sunil10000/outlab7
/prep_stmt.py
3,220
3.578125
4
import sqlite3 table_no = int(input()) def insert_team(): team_id = int(input()) team_name = input() conn = sqlite3.connect('ipl.db') crsr = conn.cursor() crsr.execute("INSERT INTO TEAM (team_id, team_name) VALUES (?, ?);", (team_id, team_name)) conn.commit() conn.close() def insert_match(): match_id = int(input()) season_year = int(input()) team1 = int(input()) team2 = int(input()) battedfirst = int(input()) battedsecond = int(input()) venue_name = input() city_name = input() country_name = input() toss_winner = input() match_winner = input() toss_name = input() win_type = input() man_of_match = int(input()) win_margin = int(input()) conn = sqlite3.connect('ipl.db') crsr = conn.cursor() crsr.execute("""INSERT INTO MATCH (match_id, season_year, team1, team2, battedfirst, battedsecond, venue_name, city_name, country_name, toss_winner, match_winner, toss_name, win_type, man_of_match, win_margin) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);""", (match_id, season_year, team1, team2, battedfirst, battedsecond, venue_name,city_name, country_name, toss_winner, match_winner, toss_name, win_type, man_of_match, win_margin)) conn.commit() conn.close() def insert_player(): player_id = int(input()) player_name = input() dob = input() batting_hand = input() bowling_skill = input() country_name = input() conn = sqlite3.connect('ipl.db') crsr = conn.cursor() crsr.execute("""INSERT INTO PLAYER (player_id, player_name, dob, batting_hand, bowling_skill, country_name) VALUES (?, ?, ?, ?, ?, ?);""", (player_id, player_name, dob, batting_hand,bowling_skill, country_name)) conn.commit() conn.close() def insert_player_match(): playermatch_key = int(input()) match_id = int(input()) player_id = int(input()) batting_hand = input() bowling_skill = input() role_desc = input() team_id = int(input()) conn = sqlite3.connect('ipl.db') crsr = conn.cursor() crsr.execute("""INSERT INTO PLAYER_MATCH (playermatch_key, match_id, player_id, batting_hand, bowling_skill, role_desc, team_id) VALUES (?, ?, ?, ?, ?, ?, ?);""", (playermatch_key, match_id, player_id, batting_hand, bowling_skill, role_desc, team_id)) conn.commit() conn.close() def insert_ball(): match_id = int(input()) innings_no = int(input()) over_id = int(input()) ball_id = int(input()) striker_batting_position = int(input()) runs_scored = int(input()) extra_runs = int(input()) out_type = input() striker = int(input()) non_striker = int(input()) bowler = int(input()) conn = sqlite3.connect('ipl.db') crsr = conn.cursor() crsr.execute("""INSERT INTO BALL_BY_BALL (match_id, innings_no, over_id, ball_id, striker_batting_position, runs_scored, extra_runs,\ out_type, striker, non_striker, bowler) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);""", (match_id, innings_no, over_id, ball_id, striker_batting_position, runs_scored, extra_runs, out_type, striker, non_striker, bowler)) conn.commit() conn.close() if table_no == 1: insert_team() elif table_no == 2: insert_player() elif table_no == 3: insert_match() elif table_no == 4: insert_player_match() elif table_no == 5: insert_ball() else: print("wrong_input")
8d32ec8f4c75c6eb1436122c45aa5680391dfef5
Ian100/Curso_em_Video-exercicios-
/desafio_49.py
372
4.0625
4
# Refaça o desafio 09, mostrando a tabuada de um número que o usuário escolher, # só que agora utilizando um laço for. n = int(input('Digite um número inteiro para ver sua tabuada: ')) print('=' * 40, end='\n\t\t\t\t') print('TABUADA DO {}'.format(n)) print('=' * 40) for i in range(1, 11): print('{} x {:2} = {}'.format(n, i, i*n)) print('=' * 40)
55a1fe608743ef248e9b6e7b0691571784640cb9
liqueur/leetcode
/sol_Add_Two_Numbers.py
1,017
3.59375
4
class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def addTwoNumbers(self, l1, l2): """ :type l1: ListNode :type l2: ListNode :rtype: ListNode """ _sum = 0 l1stk = [] l2stk = [] while l1 or l2: if l1: l1stk.append(l1.val) l1 = l1.next if l2: l2stk.append(l2.val) l2 = l2.next i = 0 while l1stk or l2stk: l1v = l1stk.pop(0) if l1stk else 0 l2v = l2stk.pop(0) if l2stk else 0 _sum += (l1v + l2v) * (10 ** i) i += 1 root = pre = None while _sum or (root is None): v = _sum % 10 _sum //= 10 if pre is None: root = pre = ListNode(v) else: cur = ListNode(v) pre.next = cur pre = cur return root