blob_id
stringlengths 40
40
| repo_name
stringlengths 6
108
| path
stringlengths 3
244
| length_bytes
int64 36
870k
| score
float64 3.5
5.16
| int_score
int64 4
5
| text
stringlengths 36
870k
|
---|---|---|---|---|---|---|
a6c0324efd7588288b83d3e541bce695aa8fafa2 | easternpillar/AlgorithmTraining | /Programmers Level 1&2 완전 정복/신고 결과 받기.py | 781 | 3.546875 | 4 | # 링크: https://programmers.co.kr/learn/courses/30/lessons/92334?language=python3
# 문제 접근
# 1. 딕셔너리에 나를 신고한 사람의 이름을 담음
# 2. 딕셔너리 길이가 기준을 넘으면 딕셔너리 values에게 메일이 전송
# 3. 딕셔너리 value값은 중복되면 안되므로 set
from collections import defaultdict
def solution(id_list, report, k):
answer = []
report_dict = defaultdict(set)
cnt_dict = defaultdict(int)
for re in report:
a, b = re.split(" ")
report_dict[b].add(a)
for key in report_dict:
if len(report_dict[key]) >= k:
for value in report_dict[key]:
cnt_dict[value] += 1
for id in id_list:
answer.append(cnt_dict[id])
return answer
|
7961117c272b5935e03c6d61ae78c99632d9258d | jnguyen1991/Rosalind | /sset.py | 658 | 3.625 | 4 | # -*- coding: utf-8 -*-
"""
Created on Thu May 24 09:48:11 2018
@author: jnguyen3
"""
def sset(n, output):
for i in n:
temp = n.copy()
temp.remove(i)
if temp not in output:
output.append(temp)
output.append(sset(temp, output))
def main(n):
'''
Recursive solution, doesn't work well for large numbers
'''
largest = set(range(1,n+1))
output = []
output.append(largest)
output.append(sset(largest, output))
return len([x for x in output if x != None])
#print sset(lst)
x = 827
#print main(x)
print 2**x % 1000000
#or pow(2,x,1000000) for better efficiency |
40d4aa7bfab318dac684558ad18adbe095f206ef | JohanGro/CSE | /DictionaryNotes.py | 2,283 | 3.546875 | 4 | states = {
"CA": "California",
"VA": "Virginia",
"MD": "Maryland",
"RI": "Rhode Island",
"NV": "Nevada"
}
'''
print(states["CA"])
print(states["NV"])
'''
nested_dictionary = {
"CA": {
"NAME": "California",
"POPULATION": 39557045 # 39,557,045
},
"VA": {
"NAME": "Virginia",
"POPULATION": 8517685 # 8,517,685
},
"MD": {
"NAME": "Maryland",
"POPULATION": 6042718 # 6,042,718
},
"RI": {
"NAME": "Rhode Island",
"POPULATION": 1057315 # 1,057,315
},
"NV": {
"NAME": "Nevada",
"POPULATION": 3034392 # 3,034,392
}
}
print(nested_dictionary["NV"]["POPULATION"])
print(nested_dictionary["RI"]["NAME"])
complex_dictionary = {
"CA": {
"NAME": "California",
"POPULATION": 39557045, # 39,557,045
"CITIES": [
"Fresno",
"San Fransisco",
"Los Angeles"
]
},
"VA": {
"NAME": "Virginia",
"POPULATION": 8517685, # 8,517,685
"CITIES": [
"Richmond",
"Norfolk",
"Alexandria"
]
},
"MD": {
"NAME": "Maryland",
"POPULATION": 6042718, # 6,042,718
"CITIES": [
"Bethesda",
"Annapolis",
"Baltimore"
]
},
"RI": {
"NAME": "Rhode Island",
"POPULATION": 1057315, # 1,057,315
"CITIES": [
"Providence",
"Newport",
"Warwick"
]
},
"NV": {
"NAME": "Nevada",
"POPULATION": 3034392, # 3,034,392
"CITIES": [
"Carson City",
"Las Vegas",
"Reno"
]
}
}
print(complex_dictionary["RI"]["CITIES"][2])
print(complex_dictionary["VA"]["NAME"])
print(complex_dictionary["MD"]["CITIES"][0])
print(complex_dictionary.keys())
print(nested_dictionary.items())
print()
for key, value in complex_dictionary.items():
print(key)
print(value)
print("-" * 20)
# were going to make it look great...
for state, facts in complex_dictionary.items():
for attr, value in facts.items():
print(attr)
print(value)
print("-" * 20)
print("=" * 20)
states["AL"] = "Alabama"
|
7f362996aa4bd6fdd02d571c21ee41037c40bd78 | bgoonz/UsefulResourceRepo2.0 | /MY_REPOS/web-dev-notes-resource-site/2-content/ciriculumn/week-17/python/my-intro-BG/2/Module3PersonalizedStorySolution.py | 1,316 | 4.40625 | 4 | # initialize the variables
girldescription = " "
boydescription = " "
walkdescription = " "
girlname = " "
boyname = " "
animal = " "
gift = " "
answer = " "
# Ask the user to specify values for the variables
girlname = input("Enter a girl's name: ")
boyname = input("Enter a boy's name: ")
animal = input("Name a type of animal: ")
gift = input("Name something you find in the bathroom: ")
girldescription = input("Enter a description of a flower: ")
boydescription = input("Enter a description of a car: ")
walkdescription = input("Enter a description of how you might dance: ")
answer = input("What would you say to someone who gave you a cow: ")
# Display the story
# Don't forget to format the strings when they are displayed
print("Once upon a time,")
print("there was a girl named " + girlname.capitalize() + ".")
print(
"One day, "
+ girlname.capitalize()
+ " was walking "
+ walkdescription.lower()
+ " down the street."
)
print(
"Then she met a "
+ boydescription.lower()
+ " boy named "
+ boyname.capitalize()
+ "."
)
print("He said, 'You are really " + girldescription.lower() + "!'")
print("She said '" + answer.capitalize() + ", " + boyname.capitalize() + ".'")
print(
"Then they both rode away on a " + animal.lower() + " and lived happily ever after."
)
|
edfba19244397e3c444e910b9650de1a855633b3 | Allaye/Data-Structure-and-Algorithms | /Stacks/balancedParen.py | 2,399 | 4.4375 | 4 | #!/usr/bin/env python
# coding: utf-8
# In[1]:
from Stack import Stack # personal implementation of stack using python list
# In[12]:
def check_balance(string, opening='('):
'''
a function to check if parenthesis used in a statement is balanced
this solution used a custom implementation of a stack using python list.
the below steps was used:
a: check if the length of the string to be checked is even, if yes:
c: loop through the string, if the any item there is == to the opening variable:
d: push then into the stack, else:
e: check if the length is not zero, if it is not pop the stack, else:
f: return false:
g: if we reach the end of the loop, return True if the size of the stack is zero else return False
b:
'''
s = Stack()
if len(string) % 2 == 0:
for w in string:
if w == opening:
s.push(w)
else:
if s.size() > 0:
s.pop()
else:
return False
return s.size() == 0
else:
return False
# In[2]:
def double_balance(string, openings=['[', '{', '(']):
'''
a function to check if the 3 types of parenthesis used in a statement is balanced
this solution used a custom implementation of a stack using python list.
the below steps was used:
a: check if the length of the string to be checked is even, if yes:
c: loop through the string, if the item matches openings:
d: push then into the stack, else:
e: check if the top element in the stack and item matches any tuple in our matches and pop the stack else:
f: return false:
g: if we reach the end of the loop, return True if the size of the stack is zero else return False
b: return False since the parenthesis can only be balance if the have a corresponding closing one
'''
s = Stack()
matches = [('{', '}'), ('(', ')'), ('[', ']')]
if len(string) % 2 == 0:
for w in string:
if w in openings:
s.push(w)
else:
if (s.peek(), w) in matches:
s.pop()
else:
return False
return s.size() == 0
else:
<<<<<<< HEAD
return False
=======
return False
>>>>>>> 34dd19a4c05ecb4cd984fb078a578c1934859c39
|
9841e35ff7828069dd6e31617549104603a1cb8b | marcuschiriboga/RPS-se-q3-oct-2021-class | /RPS.py | 400 | 4.09375 | 4 | # https://realpython.com/python-rock-paper-scissors/
import random
# pictures
user_action = input("enter a choice (rock, paper, scissors): ")
if user_action not in ["rock", "paper", "scissors"]:
print("you chose poorly")
quit()
possible_actions = ["rock", "paper", "scissors"]
computer_action = random.choice(possible_actions)
print(f"\n human: {user_action} | computer: {computer_action}")
|
92984714b31d0371d71ecf1b5199079e4954a089 | saetar/pyEuler | /not_done/py_not_started/euler_618.py | 768 | 3.859375 | 4 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
# ~ Jesse Rubin ~ project Euler ~
"""
Numbers with a given prime factor sum
http://projecteuler.net/problem=618
Consider the numbers 15, 16 and 18:
15=3× 5 and 3+5=8.
16 = 2× 2× 2× 2 and 2+2+2+2=8.
18 = 2× 3× 3 and 2+3+3=8.
15, 16 and 18 are the only numbers that have 8 as sum of the prime factors (counted with multiplicity).
We define S(k) to be the sum of all numbers n where the sum of the prime factors (with multiplicity) of n is k.
Hence S(8) = 15+16+18 = 49.
Other examples: S(1) = 0, S(2) = 2, S(3) = 3, S(5) = 5 + 6 = 11.
The Fibonacci sequence is F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5, ....
Find the last nine digits of ∑_k=2^24S(F_k).
"""
def p618():
pass
if __name__ == '__main__':
p618() |
105ae8f9f679e7152364420c391995e6cd32d9a1 | minus9d/python_exercise | /parallel_and_concurrent/multiprocessing_pool.py | 208 | 3.59375 | 4 | #!/usr/bin/python3
import multiprocessing
def pow2(n):
return n * n
before = list(range(100000000))
with multiprocessing.Pool(4) as p:
after = p.map(pow2, before)
print(before[:5])
print(after[:5])
|
f46a1a47e165d5b894de0b9877fb046f42017f1a | selenazhen/planetParasite | /movingSprites.py | 13,420 | 4.0625 | 4 |
TESTING CODE FOR FEATURES, IGNORE FILE
# """
# Sample Python/Pygame Programs
# Simpson College Computer Science
# http://programarcadegames.com/
# http://simpson.edu/computer-science/
#
# Explanation video: http://youtu.be/qbEEcQXw8aw
# """
#
# import pygame
# import random
#
# # Define some colors
# BLACK = (0, 0, 0)
# WHITE = (255, 255, 255)
# GREEN = (0, 255, 0)
# RED = (255, 0, 0)
#
#
# class Block(pygame.sprite.Sprite):
# """
# This class represents the ball
# It derives from the "Sprite" class in Pygame
# """
# def __init__(self, color, width, height):
# """ Constructor. Pass in the color of the block,
# and its x and y position. """
# # Call the parent class (Sprite) constructor
# super().__init__()
#
# # Create an image of the block, and fill it with a color.
# # This could also be an image loaded from the disk.
# self.image = pygame.Surface([width, height])
# self.image.fill(color)
#
# # Fetch the rectangle object that has the dimensions of the image
# # image.
# # Update the position of this object by setting the values
# # of rect.x and rect.y
# self.rect = self.image.get_rect()
#
# def reset_pos(self):
# """ Reset position to the top of the screen, at a random x location.
# Called by update() or the main program loop if there is a collision.
# """
# self.rect.y = random.randrange(-300, -20)
# self.rect.x = random.randrange(0, screen_width)
#
# def update(self):
# """ Called each frame. """
#
# # Move block down one pixel
# self.rect.y += 1
#
# # If block is too far down, reset to top of screen.
# if self.rect.y > 410:
# self.reset_pos()
#
#
# class Player(Block):
# """ The player class derives from Block, but overrides the 'update'
# functionality with new a movement function that will move the block
# with the mouse. """
# def update(self):
# # Get the current mouse position. This returns the position
# # as a list of two numbers.
# pos = pygame.mouse.get_pos()
#
# # Fetch the x and y out of the list,
# # just like we'd fetch letters out of a string.
# # Set the player object to the mouse location
# self.rect.x = pos[0]
# self.rect.y = pos[1]
#
# # Initialize Pygame
# pygame.init()
#
# # Set the height and width of the screen
# screen_width = 700
# screen_height = 400
# screen = pygame.display.set_mode([screen_width, screen_height])
#
# # This is a list of 'sprites.' Each block in the program is
# # added to this list. The list is managed by a class called 'Group.'
# block_list = pygame.sprite.Group()
#
# # This is a list of every sprite. All blocks and the player block as well.
# all_sprites_list = pygame.sprite.Group()
#
# for i in range(50):
# # This represents a block
# block = Block(BLACK, 20, 15)
#
# # Set a random location for the block
# block.rect.x = random.randrange(screen_width)
# block.rect.y = random.randrange(screen_height)
#
# # Add the block to the list of objects
# block_list.add(block)
# all_sprites_list.add(block)
#
# # Create a red player block
# player = Player(RED, 20, 15)
# all_sprites_list.add(player)
#
# # Loop until the user clicks the close button.
# done = False
#
# # Used to manage how fast the screen updates
# clock = pygame.time.Clock()
#
# score = 0
#
# # -------- Main Program Loop -----------
# while not done:
# for event in pygame.event.get():
# if event.type == pygame.QUIT:
# done = True
#
# # Clear the screen
# screen.fill(WHITE)
#
# # Calls update() method on every sprite in the list
# all_sprites_list.update()
#
# # See if the player block has collided with anything.
# blocks_hit_list = pygame.sprite.spritecollide(player, block_list, False)
#
# # Check the list of collisions.
# for block in blocks_hit_list:
# score += 1
# print(score)
#
# # Reset block to the top of the screen to fall again.
# block.reset_pos()
#
# # Draw all the spites
# all_sprites_list.draw(screen)
#
# # Limit to 20 frames per second
# clock.tick(20)
#
# # Go ahead and update the screen with what we've drawn.
# pygame.display.flip()
#
# pygame.quit()
#! /usr/bin/env python
############################################################################
# File name : detectSpriteCollsion.py
# Purpose : Demostarting The Killing of Sprite On Collision
# Usages : Logic can be used in real time games
# Start date : 04/01/2012
# End date : 04/01/2012
# Author : Ankur Aggarwal
# License : GNU GPL v3 http://www.gnu.org/licenses/gpl.html
# How To Run: python detectSpriteCollision.py
############################################################################
# import pygame
# from pygame.locals import *
# import random
#
# screen=pygame.display.set_mode((640,480),0,32)
# pygame.display.set_caption("Collision Detection")
#
#
# #creating the boxes
# class Boxes(pygame.sprite.Sprite):
# def __init__(self):
# pygame.sprite.Sprite.__init__(self)
# self.image=pygame.Surface((50,50))
# self.rect=self.image.get_rect()
# self.image.fill((255,255,255))
# pygame.draw.circle(self.image,(0,0,0),(25,25),25,0)
#
# self.rect.center=(100,100)
#
# #creating circle
# class Circle(pygame.sprite.Sprite):
# def __init__(self):
# pygame.sprite.Sprite.__init__(self)
# self.image=pygame.Surface((50,50))
# self.image.fill((0,255,0))
# pygame.draw.circle(self.image,(255,0,0),(25,25),25,0)
# self.rect=self.image.get_rect()
# def update(self):
# self.rect.center=pygame.mouse.get_pos()
#
#
# def main():
# background=pygame.Surface(screen.get_size())
# background=background.convert()
# background.fill((255,255,255))
# screen.blit(background,(0,0))
#
# boxes=[]
# for i in range(0,10):
# boxes.append(Boxes())
#
# circle=Circle()
# allSprites=pygame.sprite.Group(boxes)
# circleSprite=pygame.sprite.Group(circle)
# while 1:
# for i in pygame.event.get():
# if i.type==QUIT:
# exit()
#
#
# #checking the collision.check 'pydoc pygame.sprite.spritecollide' for mode details. True is used for sprite killing. It doesn't kill the sprite in actual.It is still present in the computer memory though.It has just removed it from the group so that no further display of that sprite is possible.
# if pygame.sprite.spritecollide(circle,allSprites,True):
# print ("collision")
#
# #following the CUD method
# allSprites.clear(screen,background)
# circleSprite.clear(screen,background)
# allSprites.update()
# circleSprite.update()
# allSprites.draw(screen)
# circleSprite.draw(screen)
# pygame.display.flip()
#
#
# if __name__=='__main__':
# main()
#
# """You can also check the collision about the rect attributes. There are many ways to do that.Example:
# 1.circle.rect.colliderect(box1) will check the collision between the circle and box1 collision
# 2. pygame.sprite.collide_rect(sprite1,sprite2) willl also do the same """
#
####
# import pygame
# import sys
# from pygame.locals import *
#
# class StickMan(pygame.sprite.Sprite):
#
# # We’ll just accept the x-position here
# def __init__(self, xPosition, yPosition):
#
# pygame.sprite.Sprite.__init__(self)
# self.old = (0, 0, 0, 0)
# self.image = pygame.image.load('img/planet1.png').convert_alpha()
# self.rect = self.image.get_rect()
# self.rect.x = xPosition
# self.rect.y = yPosition
#
# # The x-position remains the same
# def update(self, xPosition):
#
# self.old = self.rect
# self.rect = self.rect.move([xPosition - self.rect.x, 0])
#
# # Define a function to erase old sprite positions
# # This will be used later
# def eraseSprite(screen, rect):
# screen.blit(blank, rect)
#
# pygame.init()
# screen = pygame.display.set_mode((256, 256))
# # pygame.display.set_caption(‘Sprite Groups’)
# screen.fill((255, 255, 255))
#
# # Create the three stick men
# stick1 = StickMan(0,25)
# stick2 = StickMan(0,75)
# stick3 = StickMan(0,125)
#
# # Create a group and add the sprites
# stickGroup = pygame.sprite.Group()
# stickGroup.add((stick1, stick2, stick3))
#
# # Add a variable for the direction, y-position and height of the
# # sprite we are dealing with
# stickGroup.direction = 'up'
# stickGroup.y = screen.get_rect().centery
# stickGroup.x = screen.get_rect().centerx
# stickGroup.height = stick1.rect.height
#
# # Create a blank piece of background
# blank = pygame.Surface((stick1.rect.width, stick1.rect.height))
# blank.fill((255, 255, 255))
#
# pygame.display.update()
#
# # Create an event that will appear ever 100 milliseconds
# # This will be used to update the screen
# pygame.time.set_timer(pygame.USEREVENT + 1, 100)
#
# while True:
#
# for event in pygame.event.get():
# if event.type == pygame.QUIT:
# sys.exit()
# if (event.type == pygame.KEYDOWN) and (event.key == K_UP):
# print ('left')
# # stickGroup.rect.x = stickGroup.rect.x - 10
# stickGroup.y = stickGroup.y + 10
#
# # Check for our update event
# if event.type == pygame.USEREVENT + 1:
#
# # Update the y-position
# if stickGroup.direction == 'up':
# stickGroup.y = stickGroup.y - 10
# else:
# stickGroup.y = stickGroup.y + 10
#
# # Check if we have gone off the screen
# # If we have, fix it
# if stickGroup.direction == 'up' and stickGroup.y <= 0:
# stickGroup.direction = 'down'
# elif stickGroup.direction == 'down' and stickGroup.y >= (screen.get_rect().height - stickGroup.height):
# stickGroup.direction = 'up'
# stickGroup.y = screen.get_rect().height - stickGroup.height
#
# # Clear the old sprites
# # Notice that we pass our eraseSprite function
# # This will be called, and the screen and old position will be passed
# stickGroup.clear(screen, eraseSprite)
#
# # Update the sprites
# stickGroup.update(stickGroup.y)
#
# # Blit the sprites
# stickGroup.draw(screen)
#
# # Create a list to store the updated rectangles
# updateRects = []
#
# # Get the updated rectangles
# for man in stickGroup:
# updateRects.append(man.old)
# updateRects.append(man.rect)
# pygame.display.update(updateRects)
##### WORKING: MOVING PLANETS WITH ARROW KEYS BELOW
# ''' pygame_sprite_keys1.py
# move a sprite rect with the arrow keys
# see also ...
# http://www.pygame.org/docs/ref/sprite.html
# http://www.pygame.org/docs/ref/time.html
# '''
#
# import pygame as pygame
# import sys
# from pygame.locals import *
# import random
#
# speed = 5
#
# pygame.init()
# width = 640
# height = 480
# screen = pygame.display.set_mode((width, height))
# pygame.display.set_caption("move with arrow keys (escape key to exit)")
#
# # color (r, g, b) tuple, values 0 to 255
# white = (255, 255, 255)
# background = pygame.Surface(screen.get_size())
# background.fill(white)
#
# class Planet(pygame.sprite.Sprite):
#
# def __init__(self, xPosition, yPosition):
# pygame.sprite.Sprite.__init__(self)
# self.image = pygame.image.load('img/planet1.png').convert_alpha()
# self.rect = self.image.get_rect()
# self.rect.centerx = xPosition
# self.rect.centery = yPosition
# def move(self, xMove,yMove):
# self.rect.centerx = self.rect.centerx + xMove
# self.rect.centery = self.rect.centery + yMove
#
# planet1 = Planet(random.randrange(0,width),random.randrange(0,height))
# planet2 = Planet(random.randrange(0,width),random.randrange(0,height))
# planetGroup = pygame.sprite.Group()
# planetGroup.add((planet1, planet2))
#
# clock = pygame.time.Clock()
# while 1:
# # limit runtime speed to 30 frames/second
# clock.tick(30)
# keyinput = pygame.key.get_pressed()
# for event in pygame.event.get():
# if event.type == pygame.QUIT:
# pygame.quit()
# raise SystemExit
# if (event.type == pygame.KEYDOWN) and (event.key == K_LEFT):
# for planet in planetGroup:
# planet.move(-speed,0)
# if (event.type == pygame.KEYDOWN) and (event.key == K_RIGHT):
# for planet in planetGroup:
# planet.move(speed,0)
# if (event.type == pygame.KEYDOWN) and (event.key == K_UP):
# for planet in planetGroup:
# planet.move(0,-speed)
# if (event.type == pygame.KEYDOWN) and (event.key == K_DOWN):
# for planet in planetGroup:
# planet.move(0,speed)
# if (event.type == pygame.KEYDOWN) and (event.key == K_ESCAPE):
# playing = False
# screen.blit(background, (0, 0))
# planetGroup.draw(screen)
# # update display
# pygame.display.flip()
|
a3f5f074f54b27b21a1d257ab3688165a303beff | its-me-debk007/Simple-GUI-Calculator | /GUI_Calculator.py | 5,269 | 3.875 | 4 | from tkinter import *
from math import *
window=Tk()
window.title("Calculator")
window.configure(bg="black")
e = Entry(window, borderwidth=10, width=14, fg="white", bg="black", font=("Arial",20))
e.grid(row=0, column=0, columnspan=4, pady = 1)
flag=0
def click(n):
global flag
if flag:
e.delete(0,END)
flag=0
txt=e.get()
if n=="c":
if txt!="":
txt=txt[:-1]
else:
txt=e.get()+str(n)
e.delete(0,END)
e.insert(0,txt)
def power():
global first_num
first_num = e.get() + "P"
e.delete(0,END)
def add():
global first_num
first_num = e.get()+"A"
e.delete(0,END)
def sub():
global first_num
first_num = e.get()+"S"
e.delete(0,END)
def mult():
global first_num
first_num = e.get()+"M"
e.delete(0,END)
def div():
global first_num
first_num = e.get()+"D"
e.delete(0,END)
def root():
num=float(e.get())
e.delete(0,END)
if num < 0:
e.insert(0,"Error")
else:
ans = sqrt(num)
if(ans - int(ans) == 0):
ans = int(ans)
e.insert(0, ans)
global flag
flag=1
def absolute():
num = float(e.get())
e.delete(0,END)
if num<0:
num = abs(num)
else:
num = -num
if not num - int(num):
num = int(num)
e.insert(0, num)
def equal():
second_num = float(e.get())
e.delete(0,END)
num=float(first_num[:-1])
if first_num[-1]=="A":
ans = num + second_num
elif first_num[-1]=="S":
ans = num - second_num
elif first_num[-1]=="M":
ans = num * second_num
elif first_num[-1]=="D":
if num%second_num ==0:
ans=int(num/second_num)
else:
ans=num/second_num
elif first_num[-1] == "P":
ans = pow(num, second_num)
if(ans - int(ans) == 0):
ans = int(ans)
e.insert(0,ans)
global flag
flag=1
bt7=Button(window,text="7",font=("Arial",20),fg="white",bg="black",width=3,command=lambda:click(7))
bt7.grid(row=2,column=0)
window.bind("7", lambda event: click(7))
bt8=Button(window,text="8",font=("Arial",20),fg="white",bg="black",width=3,command=lambda:click(8))
bt8.grid(row=2,column=1)
window.bind("8", lambda event: click(8))
bt9=Button(window,text="9",font=("Arial",20),fg="white",bg="black",width=3,command=lambda:click(9))
bt9.grid(row=2,column=2)
window.bind("9", lambda event: click(9))
bt4=Button(window,text="4",font=("Arial",20),fg="white",bg="black",width=3,command=lambda:click(4))
bt4.grid(row=3,column=0)
window.bind("4", lambda event: click(4))
bt5=Button(window,text="5",font=("Arial",20),fg="white",bg="black",width=3,command=lambda:click(5))
bt5.grid(row=3,column=1)
window.bind("5", lambda event: click(5))
bt6=Button(window,text="6",font=("Arial",20),fg="white",bg="black",width=3,command=lambda:click(6))
bt6.grid(row=3,column=2)
window.bind("6", lambda event: click(6))
bt1=Button(window,text="1",font=("Arial",20),fg="white",bg="black",width=3,command=lambda:click(1))
bt1.grid(row=4,column=0)
window.bind("1", lambda event: click(1))
bt2=Button(window,text="2",font=("Arial",20),fg="white",bg="black",width=3,command=lambda:click(2))
bt2.grid(row=4,column=1)
window.bind("2", lambda event: click(2))
bt3=Button(window,text="3",font=("Arial",20),fg="white",bg="black",width=3,command=lambda:click(3))
bt3.grid(row=4,column=2)
window.bind("3", lambda event: click(3))
bt0=Button(window,text="0",font=("Arial",20),fg="white",bg="black",width=3,command=lambda:click(0))
bt0.grid(row=5,column=1)
window.bind("0", lambda event: click(0))
btadd=Button(window,text="+",font=("Arial",20),fg="white",bg="black",width=3,command=add)
btadd.grid(row=4,column=3)
window.bind("+", lambda event: add())
btsub=Button(window,text="-",font=("Arial",20),fg="white",bg="black",width=3,command=sub)
btsub.grid(row=3,column=3)
window.bind("-", lambda event: sub())
btmult=Button(window,text="*",font=("Arial",20),fg="white",bg="black",width=3,command=mult)
btmult.grid(row=2,column=3)
window.bind("*", lambda event: mult())
btdiv=Button(window,text="/",font=("Arial",20),fg="white",bg="black",width=3,command=div)
btdiv.grid(row=1,column=3)
window.bind("/", lambda event: div())
btdot=Button(window,text=".",font=("Arial",20),fg="white",bg="black",width=3,command=lambda:click("."))
btdot.grid(row=5,column=0)
window.bind(".", lambda event: click("."))
btroot = Button(window, text="√", font=("Arial",20),command=root,fg="white",bg="black",width=3).grid(row=1,column=0)
btcut=Button(window,text="c",font=("Arial",20),fg="white",bg="black",width=3,command=lambda:click("c") )
btcut.grid(row=1,column=2)
window.bind("<BackSpace>", lambda event: click("c"))
btpow = Button(window, text = "^", font = ("Arial",20), fg = "white", bg = "black",width = 3, command = power)
btpow.grid(row = 1, column = 1)
window.bind("^", lambda event: power())
bteq=Button(window,text="=",font=(" Arial",20),fg="white",bg="black",width=3,command=equal)
window.bind("<Return>", lambda event: equal())
bteq.grid(row=5,column=3)
btabs = Button(window, text = "+/-", fg = "white", bg = "black", font = ("Arial",20), command = absolute, width = 3).grid(row = 5, column = 2)
window.mainloop()
|
6bcb7aad9b7a23689eeed75a78fe1a1f154e0c00 | sharadsharmam/DataStructures-in-Python | /Queues.py | 2,116 | 3.859375 | 4 | # -*- coding: utf-8 -*-
"""
Created on Thu Sep 12 15:07:21 2019
@author: sharad sharma
"""
class Queue:
def __init__(self, queueLimit):
self.head = None
self.tail = None
self.limit = queueLimit
def isEmpty(self):
if self.head == None:
return True
else:
return False
def isFull(self):
if self.isEmpty():
return False
currNode = self.head
count=0
while(currNode != None):
count += 1
currNode = currNode.next
if count<self.limit:
return False
else:
return True
def enqueue(self, data):
if self.isFull():
print("QueueOverFlow")
return
tempNode = queueNode(data)
if self.isEmpty():
self.tail = tempNode
else:
tempNode.next = self.head
self.head.prev = tempNode
self.head = tempNode
def dequeue(self):
if self.isEmpty():
print("Queue is Empty")
return
temp = self.tail.val
if self.head == self.tail:
self.head = None
self.tail = None
else:
self.tail = self.tail.prev
self.tail.next = None
return temp
def printQueue(self):
if self.isEmpty():
print("Queue is Empty")
return
currNode = self.head
while(currNode!=None):
print("<--",currNode.val, end=" ")
currNode = currNode.next
print("\n")
def changeLimit(self, newLimit):
self.limit = newLimit
class queueNode:
def __init__(self, data):
self.val = data
self.next = None
self.prev = None
'''
qu = Queue(5)
qu.enqueue(1)
qu.printQueue()
qu.enqueue(2)
qu.printQueue()
qu.enqueue(3)
qu.printQueue()
qu.enqueue(4)
qu.printQueue()
print(qu.dequeue())
qu.printQueue()
qu.enqueue(5)
qu.printQueue()
''' |
701b95d2a47ca261293e41a70a90a4641c7bacb7 | olopez15401/Python_Exercises | /favorite_number.py | 1,032 | 4.25 | 4 | """
Simple program that prompts a user's favorite number, stores it, and prints it out.
Author: Oscar Lopez
Date: Jan 11, 2019
"""
import json
class favorite_number():
def __init__(self):
self.number = 0
self.prompt_user()
self.save_number()
print("Your favorite number is : " + self.read_number())
def prompt_user(self):
while True:
try:
self.number = int(input("What is your favorite number?\n"))
break
except ValueError:
print("ERROR: Please enter a valid number!")
def save_number(self, filename = 'favorite_number.json'):
with open(filename,'w') as f_obj:
json.dump(str(self.number),f_obj)
def read_number(self,filename = 'favorite_number.json'):
try:
with open(filename) as f_obj:
return json.load(f_obj)
except FileNotFoundError:
print("ERROR! File " + filename + " cannot be read!")
favorite_number() |
210037f1cb8e3cb64d8aabcf69258238307bb519 | aestriplet1279/cs109-osp | /hw3_with_hint_ArmaniEstriplet.py | 2,689 | 4.5 | 4 | ###############################
# Print Range
#
# Giving the following variables:
# start (number): The lower bound of the range.
# end (number): The upper bound of the range.
# stride (number): The amount to increment when counting.
#
#
# Print all numbers between `start` and `end` at
# intervals of `stride`
#
# Example:
# if start = 0, end = 5, stride = 1, then print
# 0
# 1
# 2
# 3
# 4
# 5
#
# Example:
# if start = 2, end = 3.2, stride = 0.5, then print
# 2
# 2.5
# 3.0
start = 2
end = 3.2
stride = 0.5
### Your code here ###
start = 0
end = 20
stride = .2
while stride < int(end):
print(start + stride)
stride += .2
###############################
# Wheel of Fortune
#
# WARNING: This exersise is significantly harder than what
# we have done up until this point. You should attempt it,
# but if you cannot complete it that is fine.
#
# Giving the following variables:
# word (string): The secret word to guess
#
# Write a program that shows a string of underscores ("_") of
# the same length as `word`. We will refer to this sting as the
# board. Using a loop, take a single character input from the
# user. If the input character exists in the secret word,
# replace the underscores on the board in the same positions
# as character in the secret word with the character.
#
# Once all characters in the secret word have been input,
# the board should be equal to the secret word.
#
# Basically we are trying to recreate a simple version of
# the "Wheel of Fortune" or "hangman".
# https://www.coolmath-games.com/0-hangman
#
# EXAMPLE: Using the word "lollipop" the output should look
# something like this:
#
# ________ | Enter a letter: l
# l_ll____ | Enter a letter: p
# l_ll_p_p | Enter a letter: i
# l_llip_p | Enter a letter: o
# lollipop Correct!
word = "lollipop"
### Your code here ###
# Here we loop through every board position and
# replace all of the "_" with "l" in positions
# where there is an "l" in the secret word.
guess = input("letters")
board = "_____p_p"
new_board = ""
counter = 0
i ="l_llip_p"
o = "lollipop"
while counter < len(board):
# Here we assume "l" is our guess.
if word[counter] == "l":
# Add the guess to the new_board at the position counter.
new_board = new_board + "l"
else:
# Keep what already exists on the board at the position.
new_board = new_board + board[counter]
counter = counter + 1
board = new_board
print(board)
if i in word:
print("l_llip_p")
if o in word:
print("lollipop")
|
43bb7546c2030ed60cb3cec80e5649f582b20c7b | VictorRielly/bhk | /neuralnet.py | 67,060 | 3.53125 | 4 | # This python script will be used to implement a neural network.
# The neural network will be nested in a class so it may integrated
# more easily with other code later on.
import sklearn.metrics
from sklearn import svm
import numpy as np
import csv
import pandas as pd
import copy
import time
import math
np.random.seed()
import gc
class Neuralnet:
# The network will be set up to allow any number of
# layers and any number of nodes per layer. The only
# parameter passed into the constructor is an array
# holding the number of nodes per layer starting with
# the input layer and continuing to the output layer
def __init__(*arg):
# by default, we will make a 785 by 25 by 10
# neural network.
self = arg[0]
self.eta = 0.01
self.alpha = 0
self.netl = [785,26,10]
self.numl = 3
self.netw = [np.zeros((25,785)),np.zeros((10,26))]
self.netwd = [np.zeros((25,785)),np.zeros((10,26))]
self.netx = [np.ones(785),np.ones(26),np.ones(10)]
self.netd = [np.ones(785),np.ones(26),np.ones(10)]
# sets default values for self.train and self.test
self.train = './mnist_train.csv'
self.test = './mnist_test.csv'
# creates a matrix target vector matrix
self.target = np.ones((10,10))
self.target = self.target*.1
temp = np.eye(10)
temp = temp*.8
self.target = self.target + temp
numi = 0
for i in arg:
if numi == 1:
self.numl = np.size(i)
self.netl = i
self.netw = [0,]*(self.numl - 1)
self.netwd = [0,]*(self.numl - 1)
self.netx = [1,]*(self.numl)
self.netd = [1,]*(self.numl)
for k in range(0,self.numl):
self.netx[k]=np.ones(self.netl[k])
self.netd[k]=np.ones(self.netl[k])
for j in range(0,self.numl-2):
self.netw[j] = np.zeros((self.netl[j+1]-1,self.netl[j]))
self.netwd[j] = np.zeros((self.netl[j+1]-1,self.netl[j]))
self.netw[self.numl-2] = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
self.netwd[self.numl-2] = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
# creates a matrix target vector matrix
self.target = np.ones((i[self.numl-1],i[self.numl-1]))
self.target = self.target*.1
temp = np.eye(i[self.numl-1])*.8
self.target = self.target + temp
if numi == 2:
self.train = i
if numi == 3:
self.test = i
if numi == 4:
self.eta = i
if numi == 5:
self.alpha = i
numi = numi +1
# Initializes the weights to be random
self.rand_weights()
# reads training and test data into self.train and
# self.test respectively
self.traind = (pd.read_csv(self.train,sep=',',header=None)).values
self.testd = (pd.read_csv(self.test,sep=',',header=None)).values
self.traindata = np.ones((np.shape(self.traind)[0],np.shape(self.traind)[1]+1))
self.testdata = np.ones((np.shape(self.testd)[0],np.shape(self.testd)[1]+1))
self.testdata[:,:-1] = self.testd
self.traindata[:,:-1] = self.traind
self.testdata[:,1:-1] = self.testdata[:,1:-1]/255.0
self.traindata[:,1:-1] = self.traindata[:,1:-1]/255.0
# Randomizes the weights
def rand_weights(self):
for i in range(0,self.numl-1):
self.netw[i] = (np.random.rand(np.shape(self.netw[i])[0],np.shape(self.netw[i])[1])-.5)*.1
# apply sigmoid function to the num'th vector of self.netx
def sigmoid(self,num):
if num < self.numl-1:
self.netx[num][:-1] = 1.0/(1+np.exp(-self.netx[num][:-1]))
else :
self.netx[num] = 1.0/(1+np.exp(-self.netx[num]))
# apply the sgn function to the num'th vector of self.netx
def sgn(self,num):
if num < self.numl-1:
for i in range(0,self.netl[num]-1):
if self.netx[num][i] > 0:
self.netx[num][i] = 1
else :
self.netx[num][i] = 0
else :
for i in range(0,self.netl[num]):
if self.netx[num][i] > 0:
self.netx[num][i] = 1
else :
self.netx[num][i] = 0
# propagates the first vector of self.netx through all of the vectors in self.netx
def propagate_sigmoid(self):
for i in range(0,self.numl-2):
self.netx[i+1][:-1] = np.dot(self.netw[i],self.netx[i])
self.sigmoid(i+1)
self.netx[self.numl-1] = np.dot(self.netw[self.numl-2],self.netx[self.numl-2])
self.sigmoid(self.numl-1)
# propagates the first vector of self.netx through all of the vectors in self.netx
def propagate_sgn(self):
for i in range(0,self.numl-2):
self.netx[i+1][:-1] = np.dot(self.netw[i],self.netx[i])
self.sgn(i+1)
self.netx[self.numl-2] = np.dot(self.netw[self.numl-2],self.netx[self.numl-2])
# shuffles the training data
def shuffle(self):
np.random.shuffle(self.traindata)
# This function calculates the accuracy of the network on
# the train data
def train_accuracy_sigmoid(self):
total = 0
for i in self.traindata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
if (np.argmax(self.netx[self.numl-1]) == i[0]):
total = total + 1
self.train_accuracy = (0.0+total)/(np.shape(self.traindata)[0])
# This function calculates the accuracy of the network on
# the test data
def test_accuracy_sigmoid(self):
total = 0
for i in self.testdata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
if (np.argmax(self.netx[self.numl-1]) == i[0]):
total = total + 1
self.test_accuracy = (0.0+total)/(np.shape(self.testdata)[0])
# This function calculates the accuracy of the network on
# the train data using the covarience weight matrix for the last layer
def train_accuracy_sigmoid_conv(self):
total = 0
for i in self.traindata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
self.netx[self.numl-1] = np.dot(self.covw,self.netx[self.numl-2])
if (np.argmax(self.netx[self.numl-1]) == i[0]):
total = total + 1
self.train_accuracy = (0.0+total)/(np.shape(self.traindata)[0])
# This function calculates the accuracy of the network on
# the test data using the covarience weight matrix for the last layer
def test_accuracy_sigmoid_conv(self):
total = 0
for i in self.testdata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
self.netx[self.numl-1] = np.dot(self.covw,self.netx[self.numl-2])
if (np.argmax(self.netx[self.numl-1]) == i[0]):
total = total + 1
self.test_accuracy = (0.0+total)/(np.shape(self.testdata)[0])
# This function calculates the accuracy of the network on
# the train data this uses the sgn function in place of the sigmoid
def train_accuracy_sgn(self):
total = 0
for i in self.traindata:
self.netx[0] = i[1:]
self.propagate_sgn()
if (np.argmax(self.netx[self.numl-1]) == i[0]):
total = total + 1
self.train_accuracy = (0.0+total)/(np.shape(self.traindata)[0])
# This function calculates the accuracy of the network on
# the test data using the sgn function
def test_accuracy_sgn(self):
total = 0
for i in self.testdata:
self.netx[0] = i[1:]
self.propagate_sgn()
if (np.argmax(self.netx[self.numl-1]) == i[0]):
total = total + 1
self.test_accuracy = (0.0+total)/(np.shape(self.testdata)[0])
#This function prepares target vectors for neural network stock
# market applications. Prepares training vector
def stochastic_stock_prep(self):
self.traintarget = np.zeros((np.shape(self.traindata)[0],123));
for i in range(0,np.shape(self.traindata)[0]-1):
rowsum = 0;
for j in range(0,123):
if self.traindata[i+1][-123+j:] > 0:
self.traintarget[i][j] = self.traindata[i+1][-123+j:];
rowsum = rowsum + self.traindata[i+1][-123+j:];
self.traintarget[k][:] = self.traintarget[k][:]/rowsum;
#This function prepares target vectors for neural network stock
# market applications prepares the test vector
def stochastic_stock_prep_test(self):
self.testtarget = np.zeros((np.shape(self.testdata)[0],123));
k = 0;
l = 0;
for i in self.testdata:
rowsum = 0;
for j in i:
if j > 0:
self.testtarget[k][l] = j;
rowsum = rowsum + j;
l = l + 1;
k = k + 1;
l = 0;
# This function trains using stochastic gradient descent
# for 1 epoch with target vectors [.1 .1 .9 .1 ...]
def stochastic_stocks(self):
self.stochastic_stock_prep();
currentc = 0;
for i in self.traindata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
# calculates the delta for the last layer
self.netd[-1] = self.netx[-1]*(1-self.netx[-1])*(self.traintarget[currentc]-self.netx[-1])
# calculates the delta for all other layers
self.netd[-2] = self.netx[-2]*(1-self.netx[-2])*(np.dot(self.netw[-1].T,self.netd[-1]))
for j in range(0,self.numl-2):
self.netd[-j-3] = self.netx[-j-3]*(1-self.netx[-j-3])*(np.dot(self.netw[-j-2].T,self.netd[-j-2][:-1]))
# Now we update all of the weights based on the deltas, etas, and alphas
for j in range(0,self.numl-2):
# computes the momentum including delta w
self.netwd[j] = self.eta*np.outer(self.netd[j+1][:-1],self.netx[j]) + self.alpha*self.netwd[j]
# updates the weights
self.netw[j] = self.netw[j] + self.netwd[j]
# computes the momentum including delta w
self.netwd[-1] = self.eta*np.outer(self.netd[-1],self.netx[-2]) + self.alpha*self.netwd[-1]
# updates the weights
self.netw[-1] = self.netw[-1] + self.netwd[-1]
currentc = currentc + 1;
# This function trains using stochastic gradient descent
# for 1 epoch with target vectors [.1 .1 .9 .1 ...]
def stochastic_gradient_sigmoid(self):
for i in self.traindata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
# calculates the delta for the last layer
self.netd[-1] = self.netx[-1]*(1-self.netx[-1])*(self.target[int(i[0])]-self.netx[-1])
# calculates the delta for all other layers
self.netd[-2] = self.netx[-2]*(1-self.netx[-2])*(np.dot(self.netw[-1].T,self.netd[-1]))
for j in range(0,self.numl-2):
self.netd[-j-3] = self.netx[-j-3]*(1-self.netx[-j-3])*(np.dot(self.netw[-j-2].T,self.netd[-j-2][:-1]))
# Now we update all of the weights based on the deltas, etas, and alphas
for j in range(0,self.numl-2):
# computes the momentum including delta w
self.netwd[j] = self.eta*np.outer(self.netd[j+1][:-1],self.netx[j]) + self.alpha*self.netwd[j]
# updates the weights
self.netw[j] = self.netw[j] + self.netwd[j]
# computes the momentum including delta w
self.netwd[-1] = self.eta*np.outer(self.netd[-1],self.netx[-2]) + self.alpha*self.netwd[-1]
# updates the weights
self.netw[-1] = self.netw[-1] + self.netwd[-1]
# This function trains just one layer at a time
def stochastic_gradient_sigmoid_2(self,layer):
for i in self.traindata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
# calculates the delta for the last layer
self.netd[-1] = (self.target[int(i[0])]-self.netx[-1])*self.netx[-1]*(1-self.netx[-1])
# calculates the delta for all other layers
self.netd[-2] = self.netx[-2]*(1-self.netx[-2])*(np.dot(self.netw[-1].T,self.netd[-1]))
for j in range(0,self.numl-2):
self.netd[-j-3] = self.netx[-j-3]*(1-self.netx[-j-3])*(np.dot(self.netw[-j-2].T,self.netd[-j-2][:-1]))
# Now we update all of the weights based on the deltas, etas, and alphas
for j in range(0,self.numl-2):
# computes the momentum including delta w
self.netwd[j] = self.eta*np.outer(self.netd[j+1][:-1],self.netx[j]) + self.alpha*self.netwd[j]
# updates the weights
if j == layer:
self.netw[j] = self.netw[j] + self.netwd[j]
# computes the momentum including delta w
self.netwd[-1] = self.eta*np.outer(self.netd[-1],self.netx[-2]) + self.alpha*self.netwd[-1]
if layer == self.numl-2:
# updates the weights
self.netw[-1] = self.netw[-1] + self.netwd[-1]
# This function trains using stochastic gradient descent
# for 1 epoch with target vectors [0 0 1 0 0 0 0 ...]
def stochastic_gradient_sigmoid_1(self):
temp = np.eye(self.netl[self.numl-1])
for i in self.traindata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
# calculates the delta for the last layer
self.netd[-1] = self.netx[-1]*(1-self.netx[-1])
self.netd[-1] = self.netd[-1]*(temp[int(i[0])]-self.netx[-1])
# calculates the delta for all other layers
self.netd[-2] = self.netx[-2]*(1-self.netx[-2])
self.netd[-2] = self.netd[-2]*(np.dot(self.netw[-1].T,self.netd[-1]))
for j in range(0,self.numl-2):
self.netd[-j-3] = self.netx[-j-3]*(1-self.netx[-j-3])
self.netd[-j-3] = self.netd[-j-3]*(np.dot(self.netw[-j-2].T,self.netd[-j-2][:-1]))
# Now we update all of the weights based on the deltas, etas, and alphas
for j in range(0,self.numl-2):
# computes the momentum including delta w
self.netwd[j] = self.eta*np.outer(self.netd[j+1][:-1],self.netx[j]) + self.alpha*self.netwd[j]
# updates the weights
self.netw[j] = self.netw[j] + self.netwd[j]
# computes the momentum including delta w
self.netwd[-1] = self.eta*np.outer(self.netd[-1],self.netx[-2]) + self.alpha*self.netwd[-1]
# updates the weights
self.netw[-1] = self.netw[-1] + self.netwd[-1]
# This function calculates and stores the confusion matrix with sigmoid function
def conf_train_sigmoid(self):
self.conf_train = np.zeros((self.netl[self.numl-1],self.netl[self.numl-1]))
for i in self.traindata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
temp = np.argmax(self.netx[self.numl-1])
self.conf_train[int(i[0])][temp] += 1
# This function calculates and stores the confusion matrix with sigmoid function
def conf_test(self):
self.conf_test = np.zeros((self.netl[self.numl-1],self.netl[self.numl-1]))
for i in self.testdata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
temp = np.argmax(self.netx[self.numl-1])
self.conf_test[int(i[0])][temp] += 1
# This function uses inverse covariance matrix to calculate the weights for the
# last layer of the neural network, using training data
def calc_last_layer3(self):
self.covariancep = np.zeros((self.netl[self.numl-2],self.netl[self.numl-2],self.netl[self.numl-1]))
self.covariancen = np.zeros((self.netl[self.numl-2],self.netl[self.numl-2],self.netl[self.numl-1]))
self.meanp = np.zeros((self.netl[self.numl-2],self.netl[self.numl-1]))
self.meann = np.zeros((self.netl[self.numl-2],self.netl[self.numl-1]))
self.mean = np.zeros((self.netl[self.numl-2],self.netl[self.numl-1]))
self.c = np.zeros((self.netl[self.numl-2],self.netl[self.numl-2],self.netl[self.numl-1]))
self.cinv = np.zeros((self.netl[self.numl-2],self.netl[self.numl-2],self.netl[self.numl-1]))
self.ptot = np.zeros(self.netl[self.numl-1])
self.ntot = np.zeros(self.netl[self.numl-1])
for i in self.traindata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
for k in range(0,self.netl[self.numl-1]):
if i[0] == k:
self.ptot[k] += 1
self.covariancep[:,:,k] += np.outer(self.netx[self.numl-2],self.netx[self.numl-2])
self.meanp[:,k] += self.netx[self.numl-2]
else :
self.ntot[k] += 1
self.covariancen[:,:,k] += np.outer(self.netx[self.numl-2],self.netx[self.numl-2])
self.meann[:,k] += self.netx[self.numl-2]
for k in range(0,self.netl[self.numl-1]):
self.covariancep[:,:,k] = self.covariancep[:,:,k]/(self.ptot[k]) - np.outer(self.meanp[:,k],self.meanp[:,k])/((self.ptot[k])*(self.ptot[k]))
self.covariancen[:,:,k] = self.covariancen[:,:,k]/(self.ntot[k]) - np.outer(self.meann[:,k],self.meann[:,k])/((self.ntot[k])*(self.ntot[k]))
self.mean[:,k] = self.meanp[:,k]/(self.ptot[k]) - self.meann[:,k]/(self.ntot[k])
self.c = self.covariancep+self.covariancen
# we begin by splitting the training data into 10 classes one
# for each digit
self.numnums = np.zeros(self.netl[-1])
for i in self.traindata:
self.numnums[int(i[0])] += 1
# Creates an array for each of the classes
self.classes = [0,]*self.netl[-1]
for i in range(0,self.netl[-1]):
self.classes[i] = np.zeros((int(self.numnums[i]),np.shape(self.traindata)[1]))
temp = np.zeros(self.netl[-1])
for i in self.traindata:
self.classes[int(i[0])][int(temp[int(i[0])])] = i
temp[int(i[0])] += 1
# We will start with the zero weight vector
self.covw = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
for epoch in range(0,epochs):
self.covw += self.covw + (self.c*self.covw - self.mean)
#for k in range(0,self.netl[self.numl-1]):
# self.cinv[:,:,k] = np.linalg.inv(self.c[:,:,k])
#
#self.covw = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
#for k in range(0,self.netl[self.numl-1]):
# self.covw[k,:] = np.dot(self.cinv[:,:,k],self.mean[:,k])
# This function computes the weight matrix for the last layer using
# gradient descent so as to maximize the area under the roc_auc curve
# using W^{t+1} = W^{t} - gamma_t(C^{hat}W^{t}-mu^{hat})
# where C^{hat}= 1/(n-1)(sum(Z*Z^T)-1/n^2sum(Z)sum(Z)^T)
def calc_last_layer_gradient(self,batchs,epochs):
# we begin by splitting the training data into 10 classes one
# for each digit
self.numnums = np.zeros(self.netl[-1])
for i in self.traindata:
self.numnums[int(i[0])] += 1
# Creates an array for each of the classes
self.classes = [0,]*self.netl[-1]
for i in range(0,self.netl[-1]):
self.classes[i] = np.zeros((int(self.numnums[i]),np.shape(self.traindata)[1]))
temp = np.zeros(self.netl[-1])
for i in self.traindata:
self.classes[int(i[0])][int(temp[int(i[0])])] = i
temp[int(i[0])] += 1
# We will start with the zero weight vector
self.covw = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
z = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
c = np.zeros(self.netl[self.numl-1])
cov = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
mean = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
# We attempt to scale all the output weight vectors so the mean
# of the positive class is sent to -1 and the mean of the negative
# input vector is sent to +1. This way, the outputs should be more
# comparable
self.meanpt = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
self.meannt = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
self.b = np.ones(self.netl[self.numl-1])
for epoch in range(0,epochs):
for i in range(0,int(np.floor(self.numnums[0]/batchs))):
for j in range(0,batchs):
for k in range(0,self.netl[-1]):
randomc = np.random.randint(self.netl[-1]-1)
randomc = (k + randomc)%(self.netl[-1])
self.netx[0] = self.classes[k][i,1:]
self.propagate_sigmoid()
xp = copy.copy(self.netx[self.numl-2])
self.meanpt[k] += xp
self.netx[0] = self.classes[randomc][i,1:]
self.propagate_sigmoid()
xn = self.netx[self.numl-2]
self.meannt[k] += xn
z[k,:] = xp - xn
c[k] = np.dot(z[k,:],self.covw[k,:])
cov += z*c[:,None]
mean += z
for k in range(0,self.netl[-1]):
mean[k,:] = (batchs/(batchs-1.0)*1.0/(batchs*batchs)*np.dot(mean[k,:],self.covw[k,:]) + self.b[k]*1.0/batchs)*mean[k,:]
cov = 1.0/(batchs-1)*cov
self.covw = self.covw - 1.0/(i+1+epoch*np.floor(self.numnums[0]/batchs))*(cov - mean)
# zero the mean and cov
cov = 0*cov
mean = 0*mean
# scales the view vectors by their magnitudes
for k in range(0,self.netl[-1]):
blittle = (1./abs(np.linalg.norm(self.covw[k,:])))
self.covw[k,:] = self.covw[k,:]*blittle
self.b[k] = self.b[k]*blittle
for i in range(0,self.netl[-1]):
np.random.shuffle(self.classes[i])
# This function computes the weight matrix for the last layer using
# gradient descent so as to maximize the area under the roc_auc curve
# using W^{t+1} = W^{t} - gamma_t(C^{hat}W^{t}-mu^{hat})
# where C^{hat}= 1/(n-1)(sum(Z*Z^T)-1/n^2sum(Z)sum(Z)^T)
def calc_last_layer_gradient2(self,batchs,epochs):
# we begin by splitting the training data into 10 classes one
# for each digit
self.numnums = np.zeros(self.netl[-1])
for i in self.traindata:
self.numnums[int(i[0])] += 1
# Creates an array for each of the classes
self.classes = [0,]*self.netl[-1]
for i in range(0,self.netl[-1]):
self.classes[i] = np.zeros((int(self.numnums[i]),np.shape(self.traindata)[1]))
temp = np.zeros(self.netl[-1])
for i in self.traindata:
self.classes[int(i[0])][int(temp[int(i[0])])] = i
temp[int(i[0])] += 1
# We will start with the zero weight vector
self.covw = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
zp = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
zn = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
cp = np.zeros(self.netl[self.numl-1])
cn = np.zeros(self.netl[self.numl-1])
cov = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
mean = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
# sums of positives and negatives
self.meanpt = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
self.meannt = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
# unit conversion constant
self.b = np.ones(self.netl[self.numl-1])
for epoch in range(0,epochs):
for i in range(0,int(np.floor(self.numnums[0]/batchs))):
for j in range(0,batchs):
for k in range(0,self.netl[-1]):
randomc = np.random.randint(self.netl[-1]-1)
randomc = (k + randomc)%(self.netl[-1])
self.netx[0] = self.classes[k][i,1:]
self.propagate_sigmoid()
xp = copy.copy(self.netx[self.numl-2])
self.meanpt[k] += xp
self.netx[0] = self.classes[randomc][i,1:]
self.propagate_sigmoid()
xn = self.netx[self.numl-2]
self.meannt[k] += xn
zp[k,:] = xp
zn[k,:] = xn
cp[k] = np.dot(zp[k,:],self.covw[k,:])
cn[k] = np.dot(zn[k,:],self.covw[k,:])
cov += zp*cp[:,None] + zn*cn[:,None]
mean += zp - zn
for k in range(0,self.netl[-1]):
#mean[k,:] = (batchs/(batchs-1.0)*1.0/(batchs*batchs)*np.dot(mean[k,:],self.covw[k,:]) + self.b[k]*1.0/batchs)*mean[k,:]
mean[k,:] = self.b[k]*1.0/batchs*mean[k,:]
cov[k,:] = cov[k,:]-1.0/batchs*(self.meanpt[k,:]*np.dot(self.meanpt[k,:],self.covw[k,:])+self.meannt[k,:]*np.dot(self.meannt[k,:],self.covw[k,:]))
cov = 1.0/(batchs-1)*cov
self.covw = self.covw - 1.0/(i+1+epoch*np.floor(self.numnums[0]/batchs))*(cov - mean)
# zero the mean and cov
cov = 0*cov
mean = 0*mean
self.meanpt = 0*self.meanpt
self.meannt = 0*self.meannt
# scales the view vectors by their magnitudes
for k in range(0,self.netl[-1]):
blittle = (1./abs(np.linalg.norm(self.covw[k,:])))
self.covw[k,:] = self.covw[k,:]*blittle
self.b[k] = self.b[k]*blittle
for i in range(0,self.netl[-1]):
np.random.shuffle(self.classes[i])
# This function uses svm to calculate the weight vectors. This needs to be improved to
# work for second to last layer so it can live at the end of a neuralnet
def calc_last_layer_svm(self):
temp = 0
self.train_target = np.zeros((self.netl[-1],np.shape(self.traindata)[0]))
for i in range(0,self.netl[-1]):
self.train_target[i][0:int(self.numnums[i])] = 1
#self.trainsvmdata = np.zeros((self.netl[-1],np.shape(self.traindata)[0],np.shape(self.traindata)[1]))
self.trainsvmdata = np.zeros((np.shape(self.traindata)[0],np.shape(self.traindata)[1]-1))
self.svmw = np.zeros((self.netl[-1],self.netl[-2]))
self.svm = svm.SVC(kernel='linear')
for i in range(0,self.netl[-1]):
self.trainsvmdata[0:int(self.numnums[i])] = self.classes[i][:,0:-1]
temp = int(self.numnums[i])
for j in range(0,self.netl[-1]):
if j != i:
self.trainsvmdata[temp:temp+int(self.numnums[j])] = self.classes[j][:,0:-1]
temp += int(self.numnums[j])
self.svm.fit(self.trainsvmdata,self.train_target[i])
self.svmw[i] = copy.copy(self.svm.coef_)
print i
def sigmoid2(self,mat):
mat[:,:-1] = 1.0/(1+np.exp(-mat[:,:-1]))
return mat
def sigmoid3(self,mat):
mat = 1.0/(1+np.exp(-mat))
return mat
# apply sigmoid function to the num'th vector of self.netx
def sigmoid(self,num):
if num < self.numl-1:
self.netx[num][:-1] = 1.0/(1+np.exp(-self.netx[num][:-1]))
else :
self.netx[num] = 1.0/(1+np.exp(-self.netx[num]))
# This function will use gradient descent but increase the presence of
# negatively classified instances in the training set.
def stochastic_gradient_sigmoid_e(self,epochs):
self.temp = self.traindata[:]
self.shuffle()
self.stochastic_gradient_sigmoid()
for j in range(0,epochs):
self.traindata = self.temp[:]
self.train_accuracy_nice()
print self.train_accuracy
numerrors = np.sum(self.errors)
self.newdata = np.zeros((int(np.sum(self.errors)),np.shape(self.traindata)[1]))
countolaf = 0
for i in range(0,np.shape(self.traindata)[0]):
if self.errors[i] == 1:
self.newdata[countolaf] = self.traindata[i]
np.vstack((self.traindata,self.newdata))
self.shuffle()
self.traindata = self.traindata[:int(-numerrors)]
print np.shape(self.traindata)
self.traindata = self.temp[:]
def train_accuracy_nice(self):
self.tempx1 = np.dot(self.traindata[:,1:],self.netw[0].T)
self.errors = np.zeros(np.shape(self.traindata)[0])
for i in range(1,self.numl-1):
print np.shape(self.tempx1)
self.tempx1 = np.concatenate((self.tempx1,np.ones((np.shape(self.traindata)[0],1))),axis=1)
print np.shape(self.tempx1)
self.tempx1 = self.sigmoid2(self.tempx1)
print np.shape(self.tempx1)
self.tempx1 = np.dot(self.tempx1,self.netw[i].T)
self.sigmoid3(self.tempx1)
count = 0
for i in range(0,np.shape(self.tempx1)[0]):
if np.argmax(self.tempx1[i,:]) != self.traindata[i,0]:
self.errors[i] = 1
else :
count += 1
self.train_accuracy = (count+0.0)/(np.shape(self.traindata)[0])
def test_accuracy_nice(self):
self.tempx1 = np.dot(self.testdata[:,1:],self.netw[0].T)
self.errors = np.zeros(np.shape(self.testdata)[0])
for i in range(1,self.numl-1):
print np.shape(self.tempx1)
self.tempx1 = np.concatenate((self.tempx1,np.ones((np.shape(self.testdata)[0],1))),axis=1)
print np.shape(self.tempx1)
self.tempx1 = self.sigmoid2(self.tempx1)
print np.shape(self.tempx1)
self.tempx1 = np.dot(self.tempx1,self.netw[i].T)
self.sigmoid3(self.tempx1)
count = 0
for i in range(0,np.shape(self.tempx1)[0]):
if np.argmax(self.tempx1[i,:]) != self.testdata[i,0]:
self.errors[i] = 1
else :
count += 1
self.test_accuracy = (count+0.0)/(np.shape(self.testdata)[0])
# This function uses inverse covariance matrix to calculate the weights for the
# last layer of the neural network, using training data
def calc_last_layer(self):
self.covariancep = np.zeros((self.netl[self.numl-2],self.netl[self.numl-2],self.netl[self.numl-1]))
self.covariancen = np.zeros((self.netl[self.numl-2],self.netl[self.numl-2],self.netl[self.numl-1]))
self.meanp = np.zeros((self.netl[self.numl-2],self.netl[self.numl-1]))
self.meann = np.zeros((self.netl[self.numl-2],self.netl[self.numl-1]))
self.mean = np.zeros((self.netl[self.numl-2],self.netl[self.numl-1]))
self.c = np.zeros((self.netl[self.numl-2],self.netl[self.numl-2],self.netl[self.numl-1]))
self.cinv = np.zeros((self.netl[self.numl-2],self.netl[self.numl-2],self.netl[self.numl-1]))
self.ptot = np.zeros(self.netl[self.numl-1])
self.ntot = np.zeros(self.netl[self.numl-1])
for i in self.traindata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
for k in range(0,self.netl[self.numl-1]):
if i[0] == k:
self.ptot[k] += 1
self.covariancep[:,:,k] += np.outer(self.netx[self.numl-2],self.netx[self.numl-2])
self.meanp[:,k] += self.netx[self.numl-2]
else :
self.ntot[k] += 1
self.covariancen[:,:,k] += np.outer(self.netx[self.numl-2],self.netx[self.numl-2])
self.meann[:,k] += self.netx[self.numl-2]
for k in range(0,self.netl[self.numl-1]):
self.covariancep[:,:,k] = self.covariancep[:,:,k]/(self.ptot[k]) - np.outer(self.meanp[:,k],self.meanp[:,k])/((self.ptot[k])*(self.ptot[k]))
self.covariancen[:,:,k] = self.covariancen[:,:,k]/(self.ntot[k]) - np.outer(self.meann[:,k],self.meann[:,k])/((self.ntot[k])*(self.ntot[k]))
self.mean[:,k] = self.meanp[:,k]/(self.ptot[k]) - self.meann[:,k]/(self.ntot[k])
self.c = self.covariancep+self.covariancen
for k in range(0,self.netl[self.numl-1]):
self.cinv[:,:,k] = np.linalg.inv(self.c[:,:,k])
self.covw = np.zeros((self.netl[self.numl-1],self.netl[self.numl-2]))
for k in range(0,self.netl[self.numl-1]):
self.covw[k,:] = np.dot(self.cinv[:,:,k],self.mean[:,k])
# This function computes the roc_auc_cov over the training set for the output node specified by the
# parameter
def roc_auc_train_cov(self,vals):
x = np.zeros((np.shape(self.traindata)[0],np.size(vals)))
y = np.zeros((np.shape(self.traindata)[0],np.size(vals)))
j = 0
for i in self.traindata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
self.netx[self.numl - 1] = np.dot(self.covw,self.netx[self.numl - 2])
for k in range(0,np.size(vals)):
if i[0] == vals[k]:
x[j][k] = 1
y[j][k] = self.netx[self.numl-1][vals[k]]
j = j + 1
self.train_auc = np.zeros(np.size(vals))
for k in range(0,np.size(vals)):
self.train_auc[k] = sklearn.metrics.roc_auc_score(x[:,k],y[:,k])
# This function computes the roc_auc over the training set for the output node specified by the
# parameter
def roc_auc_test_cov(self,vals):
x = np.zeros((np.shape(self.testdata)[0],np.size(vals)))
y = np.zeros((np.shape(self.testdata)[0],np.size(vals)))
j = 0
for i in self.testdata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
self.netx[self.numl - 1] = np.dot(self.covw,self.netx[self.numl - 2])
for k in range(0,np.size(vals)):
if i[0] == vals[k]:
x[j][k] = 1
y[j][k] = self.netx[self.numl-1][vals[k]]
j = j + 1
self.test_auc = np.zeros(np.size(vals))
for k in range(0,np.size(vals)):
self.test_auc[k] = sklearn.metrics.roc_auc_score(x[:,k],y[:,k])
# This function computes the roc_auc over the training set for the output node specified by the
# parameter
def roc_auc_train(self,vals):
x = np.zeros((np.shape(self.traindata)[0],np.size(vals)))
y = np.zeros((np.shape(self.traindata)[0],np.size(vals)))
j = 0
for i in self.traindata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
for k in range(0,np.size(vals)):
if i[0] == vals[k]:
x[j][k] = 1
y[j][k] = self.netx[self.numl-1][vals[k]]
j = j + 1
self.train_auc = np.zeros(np.size(vals))
for k in range(0,np.size(vals)):
self.train_auc[k] = sklearn.metrics.roc_auc_score(x[:,k],y[:,k])
# This function computes the roc_auc over the training set for the output node specified by the
# parameter
def roc_auc_test(self,vals):
x = np.zeros((np.shape(self.testdata)[0],np.size(vals)))
y = np.zeros((np.shape(self.testdata)[0],np.size(vals)))
j = 0
for i in self.testdata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
for k in range(0,np.size(vals)):
if i[0] == vals[k]:
x[j][k] = 1
y[j][k] = self.netx[self.numl-1][vals[k]]
j = j + 1
self.test_auc = np.zeros(np.size(vals))
for k in range(0,np.size(vals)):
self.test_auc[k] = sklearn.metrics.roc_auc_score(x[:,k],y[:,k])
# This function computes the roc_auc_cov over the training set for the output node specified by the
# parameter
def roc_auc_train_svm(self,vals):
x = np.zeros((np.shape(self.traindata)[0],np.size(vals)))
y = np.zeros((np.shape(self.traindata)[0],np.size(vals)))
j = 0
for i in self.traindata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
self.netx[self.numl - 1] = np.dot(self.svmw,self.netx[self.numl - 2])
for k in range(0,np.size(vals)):
if i[0] == vals[k]:
x[j][k] = 1
y[j][k] = self.netx[self.numl-1][vals[k]]
j = j + 1
self.train_auc = np.zeros(np.size(vals))
for k in range(0,np.size(vals)):
self.train_auc[k] = sklearn.metrics.roc_auc_score(x[:,k],y[:,k])
# This function computes the roc_auc over the training set for the output node specified by the
# parameter
def roc_auc_test_svm(self,vals):
x = np.zeros((np.shape(self.testdata)[0],np.size(vals)))
y = np.zeros((np.shape(self.testdata)[0],np.size(vals)))
j = 0
for i in self.testdata:
self.netx[0] = i[1:]
self.propagate_sigmoid()
self.netx[self.numl - 1] = np.dot(self.svmw,self.netx[self.numl - 2])
for k in range(0,np.size(vals)):
if i[0] == vals[k]:
x[j][k] = 1
y[j][k] = self.netx[self.numl-1][vals[k]]
j = j + 1
self.test_auc = np.zeros(np.size(vals))
for k in range(0,np.size(vals)):
self.test_auc[k] = sklearn.metrics.roc_auc_score(x[:,k],y[:,k])
###############################################################################################
# The stuff in the neuralnet class that follows this comment will be used to implement the
# kernalized version of the binary classifier that optimizes the area under the roc curve.
# the hypothesis h(x) given the sample x, and training vectors {x_i} is computed with:
# h(x) = sum_{i=1}^{n}alpha_{i}K(x_i,x). Notice, to compute the hypothesis, we need to do the
# computational equivalent of n dot products of d dimensional vectors where n is the number of
# training points and d is the dimension of the training points. We will assume the user wants
# the input vectors to these to be the first layer of the neuralnetwork, if the user
# wants the input to be a hidden layer of the neuralnetwork, then the user must copy the hidden
# layer to the first layer. To do all computations we need, at a bare minimum, the K_{i}
# vectors and the K_{+} and K_{-} vectors. We may do the computations without using a lot of
# memory, at the expense of computational compexity, or we may save on computational complexity
# by n^2 storage (for the mnist data, for instance, this amounts to about 10Gb). In either case
# we need to compute K_{-} and K_{+}.
###############################################################################################
# Computes the polynomial kernel of the vector stored in self.vec1 and self.vec2 and stores the
# answer into self.a1
def linear_kernel_vec(self,n,c):
self.a1 = (np.dot(self.vec1,self.vec1)+c)**n
# Computes the linear kernel of the vector stored in self.vec1 with every vector stored in
# self.mt1 and stores the resulting vector into self.veca1
def linear_kernel_mt1(self,n,c):
self.veca1 = (np.dot(self.mt1,self.vec1)+c)**n
# Computes the linear kernel of every vector stored in self.mt2 with every vector stored in
# self.mt1 and stores the resulting matrix into self.mta1
def linear_kernel_mt2(self,n,c):
self.mta1 = (np.dot(self.mt1,self.mt2)+c)**n
# Computes the polynomial kernel of the vector stored in self.vec1 and self.vec2 and stores the
# answer into self.a1
def tanh_kernel_vec(self,n,c):
self.a1 = np.tanh((1.0/n)*np.dot(self.vec1,self.vec1)+c)
# Computes the linear kernel of the vector stored in self.vec1 with every vector stored in
# self.mt1 and stores the resulting vector into self.veca1
def tanh_kernel_mt1(self,n,c):
self.veca1 = np.tanh((1.0/n)*np.dot(self.mt1,self.vec1)+c)
# Computes the linear kernel of every vector stored in self.mt2 with every vector stored in
# self.mt1 and stores the resulting matrix into self.mta1
def tanh_kernel_mt2(self,n,c):
self.mta1 = np.tanh((1.0/n)*np.dot(self.mt1,self.mt2)+c)
# Computes kplus and kminus 5/6 of the training data will be used to create the alphas and
# 1/6th of the data will be used to find lambda.
def compute_K_plus_minus(self,n,c):
# we want it to concatenate
self.n = (5*np.shape(self.traindata)[0])/6;
self.traintrain = self.traindata[:self.n,1:]
self.mt1 = self.traintrain
self.traintest = self.traindata[self.n:,1:]
self.kplus = np.zeros(self.n)
self.kminus = np.zeros(self.n)
# we can optimize the following comptation
# by using a matrix matrix multiplication to compute
# all the kernals, however, that would require storing
# an n by n matrix where n is the number of training
# points. So instead we will have a loop of matrix vector
# multiplications
self.posnum = 0
self.negnum = 0
for i in range(0,self.n):
# place the vector in the appropriate register
self.vec1 = self.traintrain[i]
# replace this operation with the desired kernal function
self.linear_kernel_mt1(n,c)
# if in the negative class
if self.traindata[i][0] == 0:
self.negnum += 1
self.kminus += self.veca1
else :
self.kplus += self.veca1
self.posnum += 1
self.kminus *= 1.0/self.negnum
self.kplus *= 1.0/self.posnum
# Computes kplus and kminus 5/6 of the training data will be used to create the alphas and
# 1/6th of the data will be used to find lambda.
def compute_all_tanh(self,n,c):
# we want it to concatenate
self.n = (5*np.shape(self.traindata)[0])/6;
self.traintrain = self.traindata[:self.n,1:]
self.mt1 = self.traintrain
self.traintest = self.traindata[self.n:,1:]
self.mt2 = self.traintrain.T
self.tanh_kernel_mt2(n,c)
print np.shape(self.mta1)
self.k = self.mta1
# we can optimize the following comptation
# by using a matrix matrix multiplication to compute
# all the kernals, however, that would require storing
# an n by n matrix where n is the number of training
# points. So instead we will have a loop of matrix vector
# multiplications
self.posnum = int(np.sum(self.traindata[:self.n,0]))
self.negnum = self.n - self.posnum
print self.posnum
self.traintemp = np.zeros(np.shape(self.k))
self.posind = 0
self.negind = self.posnum
for i in range(0,self.n):
if self.traindata[i][0] == 1:
self.traintemp[self.posind]=self.k[i]
self.posind += 1
else :
self.traintemp[self.negind] = self.k[i]
self.negind += 1
print self.posind
print self.negind
self.kplus = (1.0/self.posnum)*(self.traintemp[:self.posnum][:]).sum(axis = 0)
self.kminus = (1.0/self.negnum)*(self.traintemp[self.posnum:][:]).sum(axis = 0)
print np.shape(self.kplus)
self.gp = np.dot((self.traintemp[:self.posnum,:]-self.kplus).T,(self.traintemp[:self.posnum,:]-self.kplus))
self.gp = (1.0/self.posnum)*self.gp
self.gm= np.dot((self.traintemp[self.posnum:,:]-self.kminus).T,(self.traintemp[self.posnum:,:]-self.kminus))
self.gm = (1.0/self.negnum)*self.gm
self.g = self.gp + self.gm
# Computes kplus and kminus 5/6 of the training data will be used to create the alphas and
# 1/6th of the data will be used to find lambda.
def compute_all(self,n,c):
# we want it to concatenate
self.n = (5*np.shape(self.traindata)[0])/6;
self.traintrain = self.traindata[:self.n,1:]
self.mt1 = self.traintrain
self.traintest = self.traindata[self.n:,1:]
self.mt2 = self.traintrain.T
self.linear_kernel_mt2(n,c)
print np.shape(self.mta1)
self.k = self.mta1
# we can optimize the following comptation
# by using a matrix matrix multiplication to compute
# all the kernals, however, that would require storing
# an n by n matrix where n is the number of training
# points. So instead we will have a loop of matrix vector
# multiplications
self.posnum = int(np.sum(self.traindata[:self.n,0]))
self.negnum = self.n - self.posnum
print self.posnum
self.traintemp = np.zeros(np.shape(self.k))
self.posind = 0
self.negind = self.posnum
for i in range(0,self.n):
if self.traindata[i][0] == 1:
self.traintemp[self.posind]=self.k[i]
self.posind += 1
else :
self.traintemp[self.negind] = self.k[i]
self.negind += 1
self.k = 0
gc.collect()
print self.posind
print self.negind
self.kplus = (1.0/self.posnum)*(self.traintemp[:self.posnum][:]).sum(axis = 0)
self.kminus = (1.0/self.negnum)*(self.traintemp[self.posnum:][:]).sum(axis = 0)
print np.shape(self.kplus)
self.g = (1.0/self.posnum)*np.dot((self.traintemp[:self.posnum,:]-self.kplus).T,(self.traintemp[:self.posnum,:]-self.kplus))
self.g += (1.0/self.negnum)*np.dot((self.traintemp[self.posnum:,:]-self.kminus).T,(self.traintemp[self.posnum:,:]-self.kminus))
def evaluate_alpha(self,n,c):
self.mt1 = self.traintrain
self.mt2 = self.traintest.T
self.linear_kernel_mt2(n,c)
self.h = np.dot(self.alpha,self.mta1)
return sklearn.metrics.roc_auc_score(self.traindata[self.n:,0],self.h)
def evaluate_alpha_tanh(self,n,c):
self.mt1 = self.traintrain
self.mt2 = self.traintest.T
self.tanh_kernel_mt2(n,c)
self.h = np.dot(self.alpha,self.mta1)
return sklearn.metrics.roc_auc_score(self.traindata[self.n:,0],self.h)
def compute_alpha2(self,n,c):
self.roc_auc = -1
self.alpha = np.zeros(self.n)
self.falpha = np.zeros(self.n)
self.new_roc_auc = self.evaluate_alpha(n,c)
while self.new_roc_auc >= self.roc_auc:
self.falpha = self.alpha[:]
self.roc_auc = self.new_roc_auc
self.alpha = self.alpha - self.eta*(np.dot(self.g,self.alpha) - (self.kplus - self.kminus))
self.new_roc_auc = self.evaluate_alpha(n,c)
print self.new_roc_auc
def compute_alpha3(self,n,c,l):
self.roc_auc = -1
self.alpha = np.dot(np.linalg.inv(.5*self.g+self.traintemp*l),(self.kplus - self.kminus))
self.new_roc_auc = self.evaluate_alpha(n,c)
print self.new_roc_auc
def compute_alpha(self,n,c):
self.roc_auc = -1
self.alpha = np.zeros(self.n)
self.new_roc_auc = self.evaluate_alpha(n,c)
while self.new_roc_auc >= self.roc_auc:
self.roc_auc = self.new_roc_auc
self.Gpalpha = np.zeros(self.n)
self.Gmalpha = np.zeros(self.n)
for i in range(0,self.n):
self.vec1 = self.traintrain[i]
self.linear_kernel_mt1(n,c)
if self.traindata[i][0] == 0:
self.zp = self.veca1 - self.kplus
self.Gpalpha += self.zp*np.dot(self.zp,self.alpha)
elif self.traindata[i][0] == 1:
self.zm = self.veca1 - self.kminus
self.Gmalpha += self.zm*np.dot(self.zm,self.alpha)
self.Gpalpha *= (1.0)/(self.posnum*self.posnum)
self.Gmalpha *= (1.0)/(self.negnum*self.negnum)
self.alpha -= self.eta*(self.Gpalpha + self.Gmalpha - self.kplus + self.kminus)
self.new_roc_auc = self.evaluate_alpha(n,c)
print self.new_roc_auc
# This part of the code will be to try to test the idea of using neural networks
# to come up with numbers of hamming distance close to an inputs smallest factor
def doPrimeStuff():
from Crypto.Util import number
target = open('primes.csv','w')
target2 = open('primetest.csv','w')
for i in range(0,6000):
num1 = number.getPrime(500)
num2 = number.getPrime(500)
if num1 > num2:
num3 = num1
num1 = num2
num2 = num3
num3 = num2*num1
target.write(str(num1)+','+str(num3)+','+str(num2)+"\n")
for i in range(0,1000):
num1 = number.getPrime(500)
num2 = number.getPrime(500)
if num1 > num2:
num3 = num1
num1 = num2
num2 = num3
num3 = num2*num1
target2.write(str(num1)+','+str(num3)+','+str(num2)+"\n")
target.close()
target2.close()
s = Neuralnet([1000,500,500],'primes.csv','primetest.csv')
target = open('primes.csv','r')
index = 0
s.traindata = []
s.testdata = []
for i in target:
s.traindata.append(i.split(","))
index += 1
target.close()
target = open('primetest.csv')
index = 0
for i in target:
s.testdata.append(i.split(","))
target.close()
count = 0
secount = 0
for i in s.traindata:
for j in i:
s.traindata[count][secount] = []
s.traindata[count][secount] = np.array([int(x) for x in bin(long(j))[2:]])
secount += 1
count += 1
secount = 0
count = 0
secount = 0
for i in s.testdata:
for j in i:
s.testdata[count][secount] = []
s.testdata[count][secount] = np.array([int(x) for x in bin(long(j))[2:]])
secount += 1
count += 1
secount = 0
s.target = np.zeros((7000,500))
for i in range(0,6000):
s.target[i,500-np.size(s.traindata[i][0]):] = s.traindata[i][0]
for i in range(0,1000):
s.target[i+6,500-np.size(s.testdata[i][0]):] = s.testdata[i][0]
s.target2 = np.zeros((7000,500))
for i in range(0,6000):
s.target2[i,500-np.size(s.traindata[i][2]):] = s.traindata[i][2]
for i in range(0,1000):
s.target2[i+6,500-np.size(s.testdata[i][2]):] = s.testdata[i][2]
s.traindata2 = np.zeros((6000,1000))
for i in range(0,6000):
s.traindata2[i,1000-np.size(s.traindata[i][1]):] = s.traindata[i][1]
s.testdata2 = np.zeros((1000,1000))
for i in range(0,1000):
s.testdata2[i,1000-np.size(s.testdata[i][1]):] = s.testdata[i][1]
s.traindata = s.traindata2
s.testdata = s.testdata2
return s
# Removes NANs and stores percent differences
def prepnan():
data = (pd.read_csv('MV1E0081c.csv',',',header=None)).values;
i = np.shape(data)[0]-1;
for j in range(1,i):
for k in range(0,np.shape(data)[1]):
if math.isnan(float(data[i-1][k])):
data[i-1][k] = data[i][k];
if ((float(data[i-1][k]) <= .0001) and (float(data[i-1][k]) >= -.0001)):
print "here";
data[i-1][k] = data[i][k];
i = i - 1;
print np.argmin(data[1:][:].astype(float));
for j in range(1,np.shape(data)[0]-1):
data[j][:] = 100*255*np.divide((data[j+1][:].astype(float) - data[j][:].astype(float)),data[j][:].astype(float));
np.savetxt('prepreped.csv',data,delimiter=',',fmt='%s');
# more preprocessing
def prep():
data = (pd.read_csv('prepreped.csv',',',header=None)).values;
output = np.zeros((np.shape(data)[0]-10,np.shape(data)[1]*10+1));
i = 1;
for row in output:
for j in range(0,10):
output[i-1][1+j*(np.shape(data)[1]):1+(j+1)*(np.shape(data)[1])]=data[:][i+j];
i = i + 1;
for i in range(0,np.shape(output)[0]-1):
output[i][0] = np.nanargmax(output[i+1][-122:]);
np.savetxt('training.csv',output[0:3000][:],delimiter=',',fmt='%f');
np.savetxt('testing.csv',output[3001:][:],delimiter=',',fmt='%f');
# more preprocessing
def prep2():
data = (pd.read_csv('prepreped.csv',',',header=None)).values;
output = np.zeros((np.shape(data)[0]-10,np.shape(data)[1]*10+1));
i = 1;
for row in output:
for j in range(0,10):
output[i-1][1+j*(np.shape(data)[1]):1+(j+1)*(np.shape(data)[1])]=data[:][i+j];
i = i + 1;
for i in range(0,np.shape(output)[0]-1):
output[i][0] = i;
np.savetxt('training.csv',output[0:3000][:],delimiter=',',fmt='%f');
np.savetxt('testing.csv',output[3001:][:],delimiter=',',fmt='%f');
# assumes there are no skipped months
def preprocesstr():
monthAr1 = [30]*12;
monthAr1[0] = 31;
monthAr1[1] = 28;
monthAr1[2] = 31;
monthAr1[4] = 31;
monthAr1[6] = 31;
monthAr1[7] = 31;
monthAr1[9] = 31;
monthAr1[11] = 31;
monthAr2 = monthAr1[:];
monthAr2[1] = 29;
print(monthAr1);
print(monthAr2);
data = pd.read_csv('MV1E0081.csv',',',header=None);
increment = 0;
last = data[0][1];
output = np.zeros(np.size(data[0][1:]));
for row in data[0][1:]:
if (increment == 0):
output[increment] = 0;
else:
if (int(row[9:11]) == int(last[9:11])) and (int(row[0:4]) == int(last[0:4])):
tempdate = data[0][increment+1];
output[increment] = output[increment-1] + int(row[16:18]) - int(last[16:18]);
last = tempdate;
elif (int(row[0:4])%4 != 0):
tempdate = data[0][increment+1];
output[increment] = output[increment-1] + monthAr1[int(last[9:11])-1] - int(last[16:18]) + int(row[16:18]);
last = tempdate;
elif (int(row[0:4])%4 == 0) :
tempdate = data[0][increment+1];
output[increment] = output[increment-1] + monthAr2[int(last[9:11])-1] - int(last[16:18]) + int(row[16:18]);
last = tempdate;
increment = increment + 1;
output = output.astype(int);
np.savetxt('output.csv',output,delimiter=',',fmt='%d');
def stockStuff():
import copy
stocks = Neuralnet([1231,200,123],'training.csv','testing.csv');
stocks.testdatacopy = copy.copy(stocks.testdata);
stocks.traindatacopy = copy.copy(stocks.traindata);
for i in range(0,1):
stocks.shuffle();
stocks.stochastic_gradient_sigmoid();
stocks.total = 1;
i = 0;
for j in stocks.testdatacopy:
stocks.netx[0] = j[1:];
stocks.propagate_sigmoid();
## calculates the delta for the last layer
#stocks.netd[-1] = stocks.netx[-1]*(1-stocks.netx[-1])*(stocks.target[int(j[0])]-stocks.netx[-1])
## calculates the delta for all other layers
#stocks.netd[-2] = stocks.netx[-2]*(1-stocks.netx[-2])*(np.dot(stocks.netw[-1].T,stocks.netd[-1]))
#for j in range(0,stocks.numl-2):
# stocks.netd[-j-3] = stocks.netx[-j-3]*(1-stocks.netx[-j-3])*(np.dot(stocks.netw[-j-2].T,stocks.netd[-j-2][:-1]))
# # Now we update all of the weights based on the deltas, etas, and alphas
#for j in range(0,stocks.numl-2):
# # computes the momentum including delta w
# stocks.netwd[j] = stocks.eta*np.outer(stocks.netd[j+1][:-1],stocks.netx[j]) + stocks.alpha*stocks.netwd[j]
# # updates the weights
# stocks.netw[j] = stocks.netw[j] + stocks.netwd[j]
## computes the momentum including delta w
#stocks.netwd[-1] = stocks.eta*np.outer(stocks.netd[-1],stocks.netx[-2]) + stocks.alpha*stocks.netwd[-1]
## updates the weights
#stocks.netw[-1] = stocks.netw[-1] + stocks.netwd[-1]
temp = stocks.netx[2].argsort()[-4:];
print temp;
const = 0;
for k in temp:
const = const + stocks.netx[2][k];
ans = 0;
for k in temp:
ans = ans + (stocks.netx[2][int(k)]*stocks.testdatacopy[i+10][int(k)+2]/const)/100;
if (ans < .5) and (ans > -.5):
stocks.total = stocks.total*(1+ans);
print stocks.testdatacopy[i][0];
print ans;
i = i + 1;
if (i > np.shape(stocks.testdatacopy)[0] -20):
return stocks;
return stocks;
def stockStuff_2p():
import copy
stocks = Neuralnet([1231,200,123],'training.csv','testing.csv');
stocks.testdatacopy = copy.copy(stocks.testdata);
stocks.traindatacopy = copy.copy(stocks.traindata);
# creates the target matrix and destroys the last testing datapoint
stocks.target = np.ones((np.shape(stocks.traindata)[0]+np.shape(stocks.testdata)[0]-1,123))*.1;
for i in range(0,np.shape(stocks.target)[0]):
if (i < np.shape(stocks.traindata)[0] - 2):
for j in range(0,123):
if (stocks.traindata[i+1][-123+j] > 1):
stocks.target[i][j] = .9;
if (i >= np.shape(stocks.traindata)[0] - 2):
for j in range(0,123):
if (stocks.testdata[i - np.shape(stocks.traindata)[0]][-123+j] > 1):
stocks.target[i][j] = .9;
for i in range(0,10):
stocks.shuffle();
stocks.stochastic_gradient_sigmoid();
stocks.total = 1;
i = 0;
for j in stocks.testdatacopy:
stocks.netx[0] = j[1:];
stocks.propagate_sigmoid();
temp = stocks.netx[2].argsort()[-4:];
print temp;
const = 0;
for k in temp:
const = const + stocks.netx[2][k];
ans = 0;
for k in temp:
ans = ans + (stocks.netx[2][int(k)]*stocks.testdatacopy[i+10][int(k)+2]/const)/100;
if (ans < .5) and (ans > -.5):
stocks.total = stocks.total*(1+ans);
print ans;
print stocks.total;
i = i + 1;
if (i > np.shape(stocks.testdatacopy)[0] -20):
return stocks;
return stocks;
def stockStuff_3p():
import copy
stocks = Neuralnet([1231,200,123],'training.csv','testing.csv');
stocks.testdatacopy = copy.copy(stocks.testdata);
stocks.traindatacopy = copy.copy(stocks.traindata);
# creates the target matrix and destroys the last testing datapoint
stocks.target = np.zeros((np.shape(stocks.traindata)[0]+np.shape(stocks.testdata)[0]-1,123));
for i in range(0,np.shape(stocks.target)[0]):
if (i < np.shape(stocks.traindata)[0] - 1):
for j in range(0,123):
if (stocks.traindata[i+1][-123+j] > 2):
stocks.target[i][j] = 1;
if (i >= np.shape(stocks.traindata)[0] - 1):
for j in range(0,123):
if (stocks.testdata[i - np.shape(stocks.traindata)[0]][-123+j] > 2):
stocks.target[i][j] = 1;
for i in range(0,20):
stocks.shuffle();
stocks.stochastic_gradient_sigmoid();
stocks.total = 1;
i = 0;
for j in stocks.testdatacopy:
if (i % 20 == 0) and (i != 0):
stocks.traindata = copy.copy(stocks.traindatacopy);
stocks.traindata[0:i] = copy.copy(stocks.testdata[0:i]);
stocks.rand_weights();
for zk in range(0,20):
stocks.shuffle();
stocks.stochastic_gradient_sigmoid();
stocks.netx[0] = j[1:];
stocks.propagate_sigmoid();
temp = stocks.netx[2].argsort()[-4:];
print temp;
const = 0;
for k in temp:
const = const + stocks.netx[2][k];
ans = 0;
for k in temp:
ans = ans + (stocks.netx[2][int(k)]*stocks.testdatacopy[i+10][int(k)+2]/const)/100;
if (ans < .5) and (ans > -.5):
stocks.total = stocks.total*(1+ans);
print ans;
print stocks.total;
i = i + 1;
if (i > np.shape(stocks.testdatacopy)[0] -20):
return stocks;
return stocks;
def stockStuff_5():
import copy
stocks = Neuralnet([1231,200,123],'training.csv','testing.csv');
stocks.testdatacopy = copy.copy(stocks.testdata);
stocks.traindatacopy = copy.copy(stocks.traindata);
stocks2 = Neuralnet([1231,200,123],'training.csv','testing.csv');
stocks2.testdatacopy = copy.copy(stocks2.testdata);
stocks2.traindatacopy = copy.copy(stocks2.traindata);
# creates the target matrix and destroys the last testing datapoint
stocks.target = np.ones((np.shape(stocks.traindata)[0]+np.shape(stocks.testdata)[0]-1,123))*.1;
for i in range(0,np.shape(stocks.target)[0]):
if (i < np.shape(stocks.traindata)[0] - 2):
for j in range(0,123):
if (stocks.traindata[i+1][-123+j] > 2):
stocks.target[i][j] = 1;
if (i >= np.shape(stocks.traindata)[0] - 2):
for j in range(0,123):
if (stocks.testdata[i - np.shape(stocks.traindata)[0]][-123+j] > 2):
stocks.target[i][j] = 1;
stocks2.target = np.ones((np.shape(stocks2.traindata)[0]+np.shape(stocks2.testdata)[0]-1,123))*.1;
for i in range(0,np.shape(stocks2.target)[0]):
if (i < np.shape(stocks2.traindata)[0] - 2):
for j in range(0,123):
if (stocks2.traindata[i+1][-123+j] < -1):
stocks2.target[i][j] = 1;
if (i >= np.shape(stocks2.traindata)[0] - 2):
for j in range(0,123):
if (stocks2.testdata[i - np.shape(stocks2.traindata)[0]][-123+j] < -1):
stocks2.target[i][j] = 1;
for i in range(0,10):
stocks.shuffle();
stocks.stochastic_gradient_sigmoid();
for i in range(0,10):
stocks2.shuffle();
stocks2.stochastic_gradient_sigmoid();
stocks.total = 1;
i = 0;
for j in stocks.testdatacopy:
stocks.netx[0] = j[1:];
stocks2.netx[0] = j[1:];
stocks.propagate_sigmoid();
stocks2.propagate_sigmoid();
temp = (stocks.netx[2] - stocks2.netx[2]).argsort()[-4:];
print temp;
const = 0;
for k in temp:
const = const + (stocks.netx[2][k] - stocks2.netx[2][k]);
ans = 0;
for k in temp:
ans = ans + ((stocks.netx[2][int(k)] - stocks2.netx[2][k])*stocks.testdatacopy[i+10][int(k)+2]/const)/100;
if (ans < .5) and (ans > -.5):
stocks.total = stocks.total*(1+ans);
print ans;
print stocks.total;
i = i + 1;
if (i > np.shape(stocks.testdatacopy)[0] -20):
return stocks;
return stocks;
def stockStuff_6():
import copy
stocks = Neuralnet([1231,200,123],'training.csv','testing.csv');
stocks.testdatacopy = copy.copy(stocks.testdata);
stocks.traindatacopy = copy.copy(stocks.traindata);
# creates the target matrix and destroys the last testing datapoint
stocks.target = np.ones((np.shape(stocks.traindata)[0]+np.shape(stocks.testdata)[0]-1,123))*.1;
for i in range(0,np.shape(stocks.target)[0]):
if (i < np.shape(stocks.traindata)[0] - 2):
for j in range(0,123):
if ((stocks.traindata[i+1][-123+j] > 2) and (stocks.traindata[i+1][-123+j] < 20)):
stocks.target[i][j] = 1;
if (i >= np.shape(stocks.traindata)[0] - 2):
for j in range(0,123):
if ((stocks.testdata[i - np.shape(stocks.traindata)[0]][-123+j] > 2) and stocks.testdata[i-np.shape(stocks.traindata)[0]][-123+j] < 20):
stocks.target[i][j] = 1;
for i in range(0,10):
stocks.shuffle();
stocks.stochastic_gradient_sigmoid();
stocks.total = 1;
i = 0;
temptotal = stocks.total;
tempweights = copy.copy(stocks.netw);
for k in range(0,10):
stocks.netx[0] = stocks.testdatacopy[k][1:];
stocks.propagate_sigmoid();
temp = stocks.netx[2].argsort()[-4:];
print temp;
const = 0;
for k in temp:
const = const + stocks.netx[2][k];
ans = 0;
for k in temp:
ans = ans + (stocks.netx[2][int(k)]*stocks.testdatacopy[i+10][int(k)+2]/const)/100;
if (ans < .5) and (ans > -.5):
stocks.total = stocks.total*(1+ans);
print ans;
print stocks.total;
i = i + 1;
print "test1";
while (stocks.total < 1.10):
if stocks.total < temptotal:
stocks.netw = copy.copy(tempweights);
stocks.total = temptotal;
else :
tempweights = copy.copy(stocks.netw);
temptotal = stocks.total;
for i in range(0,1):
stocks.shuffle();
stocks.stochastic_gradient_sigmoid();
stocks.total = 1;
i = 0;
for k in range(0,10):
stocks.netx[0] = stocks.testdatacopy[k][1:];
stocks.propagate_sigmoid();
temp = stocks.netx[2].argsort()[-4:];
print temp;
const = 0;
for k in temp:
const = const + stocks.netx[2][k];
ans = 0;
for k in temp:
ans = ans + (stocks.netx[2][int(k)]*stocks.testdatacopy[i+10][int(k)+2]/const)/100;
if (ans < .5) and (ans > -.5):
stocks.total = stocks.total*(1+ans);
print ans;
print stocks.total;
print "test";
i = i + 1;
print "out of test";
stocks.total = 1;
i = 0;
for j in stocks.testdatacopy:
if (i % 20 == 19):
print "month";
stocks.netx[0] = j[1:];
stocks.propagate_sigmoid();
temp = stocks.netx[2].argsort()[-4:];
print temp;
const = 0;
for k in temp:
const = const + stocks.netx[2][k];
ans = 0;
for k in temp:
ans = ans + (stocks.netx[2][int(k)]*stocks.testdatacopy[i+10][int(k)+2]/const)/100;
if (ans < .5) and (ans > -.5):
stocks.total = stocks.total*(1+ans);
print ans;
print stocks.total;
i = i + 1;
if (i > np.shape(stocks.testdatacopy)[0] -20):
return stocks;
return stocks;
def stockStuff_7():
import copy
stocks = Neuralnet([1231,200,123],'training.csv','testing.csv');
stocks.testdatacopy = copy.copy(stocks.testdata);
stocks.traindatacopy = copy.copy(stocks.traindata);
# creates the target matrix and destroys the last testing datapoint
stocks.target = np.ones((np.shape(stocks.traindata)[0]+np.shape(stocks.testdata)[0]-1,123))*.1;
for i in range(0,np.shape(stocks.target)[0]):
if (i < np.shape(stocks.traindata)[0] - 2):
for j in range(0,123):
if ((stocks.traindata[i+1][-123+j] > 2) and (stocks.traindata[i+1][-123+j] < 20)):
stocks.target[i][j] = 1;
if (i >= np.shape(stocks.traindata)[0] - 2):
for j in range(0,123):
if ((stocks.testdata[i - np.shape(stocks.traindata)[0]][-123+j] > 2) and stocks.testdata[i-np.shape(stocks.traindata)[0]][-123+j] < 20):
stocks.target[i][j] = 1;
closest = np.zeros((20,2));
prediction = np.zeros(123);
i = 0;
stocks.total = 1;
for j in stocks.testdata:
for k in stocks.traindata:
temp = np.inner(j[1:],k[1:])/(np.linalg.norm(j[1:])*np.linalg.norm(k[1:]));
if temp > closest[-1][0]:
for l in range(0,20):
if temp > closest[i][0]:
for t in range(-2,i-20):
closest[t+1] = closest[t];
closest[l][0] = temp;
closest[l][1] = k[0];
break;
for q in closest:
prediction += stocks.target[int(q[1])];
temp = prediction.argsort()[-4:];
print temp;
const = 0;
for q in temp:
const = const + stocks.netx[2][q];
ans = 0;
for q in temp:
ans = ans + (prediction[int(q)]*stocks.testdatacopy[i+10][int(q)+2]/const)/100;
if (ans < .5) and (ans > -.5):
stocks.total = stocks.total*(1+ans);
print ans;
print stocks.total;
i = i + 1;
if (i > np.shape(stocks.testdatacopy)[0] -20):
return stocks;
def tempstuff():
import matplotlib.pyplot as plt
data = (pd.read_csv('prepreped.csv',',',header=None)).values;
ourdata = data[1:,1].astype('float');
length = np.size(ourdata);
convolution = np.zeros((length,length));
for i in range(0,length):
for j in range(0,length):
convolution[i][j] = ourdata[i]*ourdata[j];
stdard = np.std(convolution);
print stdard;
for i in range(0,length):
for j in range(0,length):
if np.abs(convolution[i][j]) > stdard:
if convolution[i][j] > 0:
convolution[i][j] = stdard;
else:
convolution[i][j] = -stdard;
plt.imshow(convolution, cmap='hot',interpolation='nearest')
plt.show()
return convolution;
# Creates a csv file called mnist_train_#.csv where # is num
# that is exactly the same as mnist_train.csv except the expected
# value of each row is one if the row is num, and zero otherwise.
def create_mnist_binary_train(num):
with open('../mnist_train.csv') as csvfile:
trainreader = csv.reader(csvfile, delimiter=',', quotechar='|')
csvwrite = open('../mnist_train_'+str(num)+'.csv','w');
csvwriter = csv.writer(csvwrite,delimiter=',',quotechar="|",quoting=csv.QUOTE_MINIMAL)
for row in trainreader:
if int(row[0]) == num:
row[0] = '1'
else :
row[0] = '0'
csvwriter.writerow(row)
csvwrite.close();
# Creates a csv file called mnist_train_#.csv where # is num
# that is exactly the same as mnist_train.csv except the expected
# value of each row is one if the row is num, and zero otherwise.
def create_mnist_binary_minitrain(num):
with open('../mnist_train.csv') as csvfile:
trainreader = csv.reader(csvfile, delimiter=',', quotechar='|')
csvwrite = open('../mnist_minitrain_'+str(num)+'.csv','w');
csvwriter = csv.writer(csvwrite,delimiter=',',quotechar="|",quoting=csv.QUOTE_MINIMAL)
num = 6000;
for row in trainreader:
if int(row[0]) == num:
row[0] = '1'
else :
row[0] = '0'
csvwriter.writerow(row)
num -= 1
if num == 0:
break
csvwrite.close();
# Creates a csv file called mnist_test_#.csv where # is num
# that is exactly the same as mnist_test.csv except the expected
# value of each row is one if the row is num, and zero otherwise.
def create_mnist_binary_test(num):
with open('../mnist_test.csv') as csvfile:
trainreader = csv.reader(csvfile, delimiter=',', quotechar='|')
csvwrite = open('../mnist_test_'+str(num)+'.csv','w');
csvwriter = csv.writer(csvwrite,delimiter=',',quotechar="|",quoting=csv.QUOTE_MINIMAL)
for row in trainreader:
if int(row[0]) == num:
row[0] = '1'
else :
row[0] = '0'
csvwriter.writerow(row)
csvwrite.close();
# small binary classifier test
def small_test():
output = open("mnist_09_1_11_0_10_test.csv","w")
for i in range(0,10):
mn = Neuralnet([785,1],"mnist_train_"+str(i)+".csv","mnist_test_"+str(i)+".csv")
mn.traindata = mn.traindata[:12000][:]
for j in range(1,11):
for k in range(0,10):
mn.compute_all(j,k)
s = str(i)+","+str(j)+","+str(k)+","+str(mn.compute_alpha3(j,k,0))
mn.mt2 = (mn.testdata[:,1:]).T
mn.linear_kernel_mt2(j,k)
mn.h = np.dot(mn.alpha,mn.mta1)
s += str(sklearn.metrics.roc_auc_score(mn.testdata[:,0],mn.h))
print s
output.write(s)
output.close()
|
c7b7e889a0be44893d49b0aff09711340d7af055 | clevelandhighschoolcs/p4mawpup-DexterCarpenter | /Versions/WebScraper8.py | 4,232 | 3.53125 | 4 | #
# Web Scraper
# Version: 8
"""
cd C:\Users\Dexter Carpenter\Documents\GitHub\WebScraper\environment
c:\Python27\Scripts\virtualenv.exe -p C:\Python27\python.exe .lpvenv
.lpvenv\Scripts\activate
# on at home computer:
cd C:\Users\dexte\Documents\GitHub\WebScraper\environment
"""
# import libraries
import sys
import urllib2
try:
from bs4 import BeautifulSoup
except Exception as e:
print "Are you sure you have BeautifulSoup installed?"
print "Type 'pip install BeautifulSoup4' in the terminal to install it."
sys.exit()
import time
from twilio.rest import Client
#variables
global tagcountnow
global tagcountold
global scrape_interval
global Twillo_null #a variable that will determine the functionality of Twillo in this program
Twillo_null = False
global account_sid
global auth_token
global twilio_phone_number
global my_phone_number
print ''
print "Press 'Ctrl + C' to exit the Scraper"
# specify the url
print 'Enter what website you want to scrape:'
quote_page = raw_input()
try:
webUrl = urllib2.urlopen(quote_page)
if(webUrl.getcode() == 200):
quote_page = '%s' %quote_page
else:
code = webUrl.getcode()
except Exception:
quote_page = raw_input('Enter a valid website: ')
print ''
print 'How often do you want to scrape the webpage? (seconds)'
scrape_interval = raw_input()
print ''
#These next 20 lines have to do with Twillo and allowing that to work
print ' '
print "Would you like me to send you a text message when I find a change(y/n)? (You will need to gave a twillo number for this to work.)"
txtmessage = raw_input()
if txtmessage == "y":
print ' '
print 'Enter your account SID (all of the following can be obtained on your Twillo dashboard)'
account_sid = raw_input()
print ' '
print 'Enter your authentification token'
auth_token = raw_input()
print ' '
print 'Enter your Twillo phone number'
twilio_phone_number = raw_input()
if (twilio_phone_number[:2] != "+1"): #this ensures a "+1" is given at the beginning of the phone number
twilio_phone_number = "+1" + twilio_phone_number
print ' '
print "Enter your own phone number"
my_phone_number = raw_input()
if (my_phone_number[:2] != "+1"): #this ensures a "+1" is given at the beginning of the phone number
my_phone_number = "+1" + my_phone_number
#This makes sure that the info inputted is valid, if not, it skips this part.
if (len(account_sid) != 34) or (len(auth_token) != 32) or (len(twilio_phone_number) != 12) or (len(my_phone_number) != 12) or (twilio_phone_number[:2] != "+1") or (my_phone_number[:2] != "+1"):
Twillo_null = True #if this is triggered, the program will refrain from doing anything with the information given above
else:
Twillo_null = True
print 'The Scraper will check the number of tags in the webpage.'
print 'The Scraper will display "Change!" if the number of tags has changed from the previous scan.'
print ''
print 'Scraping...'
#get the initial count for tags
def initial():
global tagcountnow
global tagcountold
# query the website and return the html to the variable page
page = urllib2.urlopen(quote_page)
# parse the html using beautiful soup and store in variable 'soup'
soup = BeautifulSoup(page, 'html.parser')
#find number of tags
tagcountold = len(soup.find_all())
if __name__ == "__main__":
initial()
def scraper():
global tagcountnow
global tagcountold
global Twillo_null
global account_sid
global auth_token
global twilio_phone_number
global my_phone_number
# query the website and return the html to the variable page
page = urllib2.urlopen(quote_page)
# parse the html using beautiful soup and store in variable 'soup'
soup = BeautifulSoup(page, 'html.parser')
#find number of tagss
tagcountnow = len(soup.find_all())
if tagcountnow == tagcountold:
print 'No Change'
body = 'No Change'
elif tagcountnow != tagcountold:
print 'Change!'
body = 'Change!'
tagcountold = tagcountnow
#This sends the message to your phone
if Twillo_null == False:
client = Client(account_sid, auth_token)
client.messages.create(
body=body,
to=my_phone_number,
from_=twilio_phone_number
)
while True:
if __name__ == "__main__":
scraper()
time.sleep(float(scrape_interval))
|
9fe11203587e6965eef579ea703cb422698b8c42 | Jhangsy/ta_eval | /func.py | 501 | 3.59375 | 4 | # -*- coding: utf-8 -*-
character_dict = "E:/ta_eval/character_dict.txt"
kungfu_dict = "E:/ta_eval/kungfu_dict.txt"
def split_name(character_name,kungfu_name):
character = open(character_dict).read()
kungfu = open(kungfu_dict).read()
with open("name_dic.txt","wb") as outfile:
outfile.write(kungfu)
outfile.write(character.replace("、","\n").replace(")","").replace("(","\n")
.replace(":","\n"))
print outfile
split_name(character_dict, kungfu_dict)
|
7cf3636502de6a1c38dab9a7dd890cdff3f35e1a | montlebalm/euler | /python/problems/problem4.py | 819 | 4.0625 | 4 | """
Question:
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.
Find the largest palindrome made from the product of two 3-digit numbers.
Answer:
906609
"""
from helpers.timer import print_timing
def is_palindrome(num):
digits = str(num)
return digits == digits[::-1]
@print_timing
def problem4(digits):
highest_val = int("9" * digits)
lowest_val = 10 ** (digits - 1)
p1 = p2 = highest_val
largest_palindrome = 0
while p1 >= lowest_val and p2 >= lowest_val:
p1 -= 1
product = p1 * p2
if product > largest_palindrome and is_palindrome(product):
largest_palindrome = product
# Reset
if p1 == lowest_val:
p2 -= 1
p1 = 999
return largest_palindrome
if __name__ == "__main__":
print(problem4(3))
|
3fd212cf4b006b196aa8d5ff387b1d6295f491d2 | JaiminBhagat5021/CyberstormGriffin | /Binary.py | 1,367 | 3.953125 | 4 | ###########################################################################################
# Name: Jaimin Bhagat
# Date: 3/23/2020
# Description: Binary Decoder for Bits evenly divisible by 7 and 8(Done in Python 2.7.17)
###########################################################################################
from sys import stdin #standard input library
def decode(binary, n): #takes binary and some number of bits as parameters
text = ""
i = 0
while(i < len(binary)):
byte = binary[i:i+n] #Isolate a byte with n number of bits
byte = int(byte, 2) #convert each byte of 1's and 0's to int in base 2
if(byte == 8): #if character is a backspace
text = text[:-1] #remove last character of the string stored in text
else:
text += chr(byte) #convert each ASCII value to its character version
i += n
return text
#read input and get rid of the new line and store it in a variable
binary = stdin.read().rstrip("\n")
if(len(binary) %7 == 0): #length of binary is evenly divisible by 7
text = decode(binary, 7) #get the result of decode function and store it in text
print "7-bit:"
print text
if(len(binary) %8 == 0): #length of binary is evenly divisible by 8
text = decode(binary, 8) #get the result of deocde function and store it in text
print "8-bit:"
print text
|
d922663c4e172e8bd321644ea934378a76541303 | navdeepbeniwal16/Daily-Coding-Problem | /Python Solutions/day2.py | 1,145 | 3.984375 | 4 | """
Good morning! Here's your coding interview problem for today.
This problem was asked by Uber.
Given an array of integers, return a new array such that each element at index i of the new array is the product of all the numbers in the original array except the one at i.
For example, if our input was [1, 2, 3, 4, 5], the expected output would be [120, 60, 40, 30, 24]. If our input was [3, 2, 1], the expected output would be [2, 3, 6].
Follow-up: what if you can't use division?
"""
def findProduct(arr):
arrLen = len(arr)
if arrLen == 0:
return 0
leftArr = [None] * arrLen
rightArr = [None] * arrLen
resultArr = [None] * arrLen
leftArr[0] = 1
rightArr[-1] = 1
# Forward pass for left products
for i in range(1, arrLen):
leftArr[i] = leftArr[i-1] * arr[i-1]
# Backward pass for right products
for i in range(len(array)-2, -1, -1):
rightArr[i] = rightArr[i+1] * arr[i+1]
for i in range(arrLen):
resultArr[i] = leftArr[i] * rightArr[i]
return resultArr
array = [1, 2, 3, 4, 5]
resultArray = findProduct(array)
print(resultArray)
|
11c1b46b320c8c0ca2337654870c759456591a46 | liqima/Machine_Learning_books | /kaggle竞赛之路/classification/decisontree.py | 1,170 | 3.5 | 4 | # obtain the dataset
import pandas as pd
titanic = pd.read_csv('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt')
#titanic.info()
#print(titanic.head())
# preprocessing
x = titanic[['pclass', 'age', 'sex']]
y = titanic['survived']
x['age'].fillna(x['age'].mean(), inplace = True) # add data for age feature
#x.info()
# split
from sklearn.cross_validation import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=33)
# feature extraction
from sklearn.feature_extraction import DictVectorizer
vec = DictVectorizer(sparse = False)
x_train = vec.fit_transform(x_train.to_dict(orient = 'record'))
#print(vec.feature_names_)
x_test = vec.transform(x_test.to_dict(orient = 'record'))
# import decision tree model
from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier()
dtc.fit(x_train, y_train)
y_predict = dtc.predict(x_test)
# report
from sklearn.metrics import classification_report
print('the accuracy is ', dtc.score(x_test, y_test))
print(classification_report(y_predict, y_test, target_names = ['died', 'survived']))
|
570bf9388c854f5084b9d9c783314be0117433ee | deepikasr03/python-basic-examples | /hello.py | 295 | 3.65625 | 4 | #defining a function called say_hello .This function takes no parameters.and hence there are no variable
#declared in the parenthesis.
def say_hello():
print("hello world")
#calling the function twice.This means there is no neccesity to write the same code twice.
say_hello()
say_hello() |
9160bbad83029a80b5d5ee2e66c0ba3ab72d5cc1 | radomirbrkovic/algorithms | /matrices/row-wise-sorting-2d-array.py | 411 | 4.15625 | 4 | # Row wise sorting in 2D array https://www.geeksforgeeks.org/row-wise-sorting-2d-array/
def sortRowWise(matrix):
for i in range(len(matrix)):
matrix[i].sort()
for i in range(len(matrix)):
for j in range(len(matrix[i])):
print(matrix[i][j], end=" ")
print()
sortRowWise([
[9, 8, 7, 1 ],
[7, 3, 0, 2],
[9, 5, 3, 2],
[ 6, 3, 1, 2 ]
]) |
046002906d814aa4229f3185b8fc9e5c666591b6 | veratsurkis/enjoy_sleeping | /ex1_2.py | 149 | 3.671875 | 4 | import turtle as tr
from random import *
tr.shape('turtle')
for i in range(100):
tr.forward(randint(10,100))
tr.right(randint(0,360))
|
8822bd05b3c007f28646074bcb20e8abe4eafe17 | Mehulagrawal710/learnings | /python/algorithms/merge_set_of_ranges.py | 341 | 3.84375 | 4 | def merge(l):
l.sort()
merged = [l[0]]
for x in l:
a = merged[-1][0]
b = merged[-1][1]
c = x[0]
d = x[1]
###########################
if d>b:
if c>b: merged.append(x)
else: merged[-1][1] = d
###########################
return merged
print(merge([[2, 4], [1, 2], [3, 5]]))
print(merge([[2,3],[1,3],[5,8],[4,6],[5,7]])) |
5506cb76e56bfcdcabe675561b41ff755e3736b3 | Lolita88/GenomeSequencing | /k_universal_circular_string_problem.py | 4,030 | 3.59375 | 4 | # Function finds a universal circular string in binary numbers
# example uses eight binary 3-mers (000, 001, 011, 111, 110, 101, 010, and 100) exactly once
# output is 00011101
from copy import deepcopy
from random import randint
import random, sys
import itertools
def k_universal_circular_string_problem(k):
# get length of a binary (k)mer
# if k == 3, then length is 8, 8 binary 3-mers possible
# if k == 4, then there would be 16
# The only thing we need to do is solve the k-Universal Circular String Problem
# is to find an Eulerian cycle in DeBruijn(BinaryStringsk). Note that the nodes
# of this graph represent all possible binary (k - 1)-mers. A directed edge
# connects (k - 1)-mer Pattern to (k - 1)-mer Pattern' in this graph if there
# exists a k-mer whose prefix is Pattern and whose suffix is Pattern'.
# turn k into binary version of kmers
# itertools.product - cartesian product of input iterables., equivalent to a nested for-loop
# product(range(2), repeat=3) or can use product([0,1], ...)
lst = [list(i) for i in itertools.product([0, 1], repeat=k)]
binary_list = []
for each in lst:
binary_list.append(''.join(map(str, each)))
de_bruijn = de_bruijn_graph_from_kmers(binary_list)
eulerian = find_eulerian_cycle(de_bruijn)
genome = genome_path_from_eulerian_path(eulerian)
return genome
def de_bruijn_graph_from_kmers(kmers):
adjacency_list = {}
kmers.sort()
for i in range(len(kmers)):
pre = kmers[i][0:-1]
suf = kmers[i][1:]
if(pre[1:] == suf[:-1]):
#add to dict for output
if pre in adjacency_list.keys(): # if already there, append
adjacency_list[pre] += ("," + suf)
else: # write anew
adjacency_list[pre] = pre + " -> " + suf
return adjacency_list.values()
def find_eulerian_cycle(my_list):
#create adj my_list - key/value pairs
# keys are the pre, values are the sufs they can point to
adj_list, circuit_max = create_adjacency_my_list(my_list)
#reduced adj my_list to keep track of traveled edges
red_adj_list = {}
red_adj_list = deepcopy(adj_list) #exact copy of dict
#arbitrary starting point (if graph is directed/balanced)
start = random.choice(list(my_list))
start = start.split(" ")
start = start[0]
curr_vert = start
stack = []
circuit = []
while len(circuit) != circuit_max:
if red_adj_list[curr_vert] != []: #if neighbor nodes exist
stack.append(curr_vert)
pick = randint(0,len(red_adj_list[curr_vert])-1) #what is pick?
temp = deepcopy(curr_vert) #why use deepcopy
curr_vert = red_adj_list[temp][pick]
red_adj_list[temp].remove(curr_vert)
else:
circuit.append(curr_vert)
curr_vert = stack[len(stack)-1]
stack.pop()
#formatting
path = start + '->'
path = ""
for vert in circuit[::-1]:
path += (vert + '->')
return path
def create_adjacency_my_list(my_list):
adj_list = {}
circuit_max = 0
for line in my_list:
node = line.strip('\n')
node = node.replace(' -> ', ' ')
node = node.split(' ')
adj_list.setdefault(node[0],[]) #adj my_list gets the start of the node pair(ie. first num)
for num in node[1].split(','): #num gets assigned the end node of the pair. Split on comma needed when multiple end nodes
adj_list[node[0]].append(num)
circuit_max += 1
return adj_list, circuit_max
def genome_path_from_eulerian_path(eulerian_path):
# takes in something like this GGC->GCT->CTT->TTA->TAC->ACC->CCA
# returns a genome sequence like this GGCTTACCA
kmers = eulerian_path.split("->")
genome = ""
for i in range(len(kmers)):
genome = genome[:i] + kmers[i]
return genome
#k = 4
k = sys.stdin
print(k_universal_circular_string_problem(k))
# sample output for binary 4mer: 0000110010111101
|
960225f77054ce48a9a52a3a2a550c91391dcfae | MPankajArun/Python-Proctice-Examples | /Day 4/RegexDemo-findall.py | 603 | 3.609375 | 4 | import re
patt =r"PSL"
s1 = "PSLaaa welcome to Pune. PSL PErsistyent ..."
s2 = "Welcome to PSL ... Good Morning PSL"
m = re.findall(patt,s1)
#print "m = ",m
if m != None: #match start search begining of line from first character
print patt ,"Occures " ,len(m) ,"time"
print "Match found as = ",m
else:
print "Match not found"
print "---------------------------------------------------------------"
print re.findall("car","car")
print re.findall("car","scary")
print re.findall("car","carry the tarcardi to the car")
print "---------------------------------------------------------------"
|
fa9c0a49375e63526af795222ccd459e9c3bc3bd | AR123456/python-deep-dive | /work-from-100-days/Intermediate days 15-100/Day-32/Birthday-wisher-v2-datetime-module/main.py | 214 | 3.515625 | 4 | import datetime as dt
now = dt.datetime.now()
year = now.year
month = now.month
day_of_week = now.weekday()
print(day_of_week)
date_of_birth = dt.datetime(year=1995, month=12, day=15, hour=4)
print(date_of_birth) |
1fec54c7c2a05270e2656c481bf1b0c248219cea | cstrahan/python_practice | /coding_bat/warmup_1/pos_neg.py | 959 | 3.53125 | 4 | import pytest
# Given 2 int values, return True if one is negative and one is positive.
# Except if the parameter "negative" is True, then return True only if both are
# negative.
def pos_neg(a, b, negative):
pass
@pytest.mark.parametrize(
"a,b,negative,expected",
[
(1, -1, False, True),
(-1, 1, False, True),
(-4, -5, True, True),
(-4, -5, False, False),
(-4, 5, False, True),
(-4, 5, True, False),
(1, 1, False, False),
(-1, -1, False, False),
(1, -1, True, False),
(-1, 1, True, False),
(1, 1, True, False),
(-1, -1, True, True),
(5, -5, False, True),
(-6, 6, False, True),
(-5, -6, False, False),
(-2, -1, False, False),
(1, 2, False, False),
(-5, 6, True, False),
(-5, -5, True, True),
],
)
def test_pos_neg(a, b, negative, expected):
assert pos_neg(a, b, negative) == expected
|
ddac4756f16e2c042f78e1ed6dcf4abe20a3c8e7 | dolomaniuk/FirstStepsInPython | /solution.py | 2,538 | 3.859375 | 4 | import math
y1 = int(input())
x1 = int(input())
y2 = int(input())
x2 = int(input())
res = 'y'
distance = y2 - y1 # макс разброс по X
isEvenY1 = y1 % 2 # четность Y1
isEvenY2 = y2 % 2 # четность Y2
minX = int(math.fabs(x1 - distance)) # миним значение X
if minX < 1:
if isEvenY2 == 0:
minX = 2
else:
minX = 1
maxX = (x1 + distance) # макс значение X
if maxX > 8:
if isEvenY2 == 0:
maxX = 8
else:
maxX = 7
def isClrBlack(n, m): # опр. цвет клетки
res = 'y'
if n % 2 == 0:
if m % 2 != 0:
res = 'n'
else:
if m % 2 == 0:
res = 'n'
return res
if distance > 0 and isClrBlack(y1, x1) == 'y' and isClrBlack(y2, x2) == 'y':
if isEvenY1 != 0: # нечетные строки
if isEvenY2 == 0:
if maxX - minX > 2: # больше 2х значений
if (x2 >= minX) and (x2 <= maxX):
res = 'y'
else:
res = 'n'
else: # меншье двух значений
if x2 == minX or x2 == maxX:
res = 'y'
else:
res = 'n'
else:
if maxX - minX > 2: # больше 2х значений
if (x2 >= minX) and (x2 <= maxX) or x2 == x1:
res = 'y'
else:
res = 'n'
else:
if x2 == minX or x2 == maxX:
res = 'y'
else:
res = 'n'
else: # нечетные строки
if isEvenY2 == 0:
if maxX - minX > 2: # больше 2х значений
if (x2 >= minX) and (x2 <= maxX) or x2 == x1:
res = 'y'
else:
res = 'n'
else:
if x2 == minX or x2 == maxX:
res = 'y'
else:
res = 'n'
else:
if maxX - minX > 2: # больше 2х значений
if (x2 >= minX) and (x2 <= maxX):
res = 'y'
else:
res = 'n'
else:
if x2 == minX or x2 == maxX:
res = 'y'
else:
res = 'n'
else:
res = 'n'
if res == 'y':
print('YES')
else:
print('NO')
|
5a54812f2362e01abf23750d533eb8ced2727ae2 | spisheh/Udacity-ML-projects | /outliers/outlier_cleaner.py | 634 | 3.734375 | 4 | #!/usr/bin/python
def outlierCleaner(predictions, ages, net_worths):
"""
Clean away the 10% of points that have the largest
residual errors (difference between the prediction
and the actual net worth).
Return a list of tuples named cleaned_data where
each tuple is of the form (age, net_worth, error).
"""
cleaned_data = []
### your code goes here
for i in range(len(ages)):
cleaned_data.append((ages[i], net_worths[i], predictions[i]-net_worths[i]))
cleaned_data = sorted(cleaned_data, key = lambda x : abs(x[2]))
return cleaned_data[:81]
|
e294cbebf9fb8a1a0d2e0eaf0799620e6d7d1ea3 | FrederikLehn/modpy | /modpy/plot/_tornado.py | 6,305 | 3.515625 | 4 | import numpy as np
from matplotlib import pyplot as plt
# ###############################################################################
# # The data (change all of this to your actual data, this is just a mockup)
# variables = [
# 'apple',
# 'juice',
# 'orange',
# 'peach',
# 'gum',
# 'stones',
# 'bags',
# 'lamps',
# ]
#
# base = 3000
#
# lows = np.array([
# base - 246 / 2,
# base - 1633 / 2,
# base - 500 / 2,
# base - 150 / 2,
# base - 35 / 2,
# base - 36 / 2,
# base - 43 / 2,
# base - 37 / 2,
# ])
#
# values = np.array([
# 246,
# 1633,
# 500,
# 150,
# 35,
# 36,
# 43,
# 37,
# ])
#
# ###############################################################################
# # The actual drawing part
#
# # The y position for each variable
# ys = range(len(values))[::-1] # top to bottom
#
# # Plot the bars, one by one
# for y, low, value in zip(ys, lows, values):
# # The width of the 'low' and 'high' pieces
# low_width = base - low
# high_width = low + value - base
#
# # Each bar is a "broken" horizontal bar chart
# plt.broken_barh(
# [(low, low_width), (base, high_width)],
# (y - 0.4, 0.8),
# facecolors=['white', 'white'], # Try different colors if you like
# edgecolors=['black', 'black'],
# linewidth=1,
# )
#
# # Display the value as text. It should be positioned in the center of
# # the 'high' bar, except if there isn't any room there, then it should be
# # next to bar instead.
# x = base + high_width / 2
# if x <= base + 50:
# x = base + high_width + 50
# plt.text(x, y, str(value), va='center', ha='center')
#
# # Draw a vertical line down the middle
# plt.axvline(base, color='black')
#
# # Position the x-axis on the top, hide all the other spines (=axis lines)
# axes = plt.gca() # (gca = get current axes)
# axes.spines['left'].set_visible(False)
# axes.spines['right'].set_visible(False)
# axes.spines['bottom'].set_visible(False)
# axes.xaxis.set_ticks_position('top')
#
# # Make the y-axis display the variables
# plt.yticks(ys, variables)
#
# # Set the portion of the x- and y-axes to show
# plt.xlim(base - 1000, base + 1000)
# plt.ylim(-1, len(variables))
#
# plt.show()
col_low = np.array([253., 191., 111.]) / 255.
col_high = np.array([32., 120., 180.]) / 255.
def tornado(ax, low, high, base=0., labels=(), facecolors=(col_low, col_high)):
"""
Draws a tornado chart.
Originally based on:
https://stackoverflow.com/questions/32132773/a-tornado-chart-and-p10-p90-in-python-matplotlib
Parameters
----------
ax : matplotlib.Axes
Axes on which to draw tornado chart.
low : array_like, shape (n,)
Values of low case results.
high : array_like, shae (n,)
Values of high case results.
base : float
Base case value.
labels : tuple
Labels for the y-axis.
facecolors : tuple
Tuple of (color_low, color_high).
"""
# ensure consistent input ------------------------------------------------------------------------------------------
low = np.array(low)
high = np.array(high)
n = low.size
if high.size != n:
raise ValueError('`low` ({}) and `high` ({}) must have the same length.'.format(n, high.size))
if not labels:
labels = [str(i) for i in range(1, n + 1)]
if len(labels) != n:
raise ValueError('`labels` ({}) must have the same length as `low` and `high` ({}).'.format(len(labels), n))
if np.any(low > base):
raise ValueError('All values of `low` must be less than or equal to `base`.')
if np.any(high < base):
raise ValueError('All values of `high` must be greater than or equal to `base`.')
# sort according to largest difference -----------------------------------------------------------------------------
diff = high - low
idx = np.argsort(diff)[::-1]
low = low[idx]
high = high[idx]
labels = [labels[i] for i in idx]
# for labeling
min_dist = np.amax(diff) * 0.05
# draw chart -------------------------------------------------------------------------------------------------------
# The y position for each variable
ys = range(n)[::-1] # top to bottom
# Plot the bars, one by one
for y, l, h in zip(ys, low, high):
# The width of the 'low' and 'high' pieces
low_width = base - l
high_width = h - base
# Each bar is a "broken" horizontal bar chart
ax.broken_barh(
[(l, low_width), (base, high_width)],
(y - 0.4, 0.8),
facecolors=facecolors,
edgecolors=['black', 'black'],
linewidth=1,
)
# display text for negative increments
xl = base - low_width / 2.
if xl >= base - min_dist:
xl = base - low_width - min_dist
ha = 'right'
else:
ha = 'center'
low_width = int(low_width) if low_width >= 10. else low_width
ax.text(xl, y, str(low_width), va='center', ha=ha)
# display text for positive increments
xh = base + high_width / 2.
if xh <= base + min_dist:
xh = base + high_width + min_dist
ha = 'left'
else:
ha = 'center'
high_width = int(high_width) if high_width >= 10 else high_width
ax.text(xh, y, str(high_width), va='center', ha=ha)
# Draw a vertical line down the middle
ax.axvline(base, color='black')
# Position the x-axis on the top, hide all the other spines (=axis lines)
#ax.spines['left'].set_visible(False)
#ax.spines['right'].set_visible(False)
#ax.spines['bottom'].set_visible(False)
ax.xaxis.set_ticks_position('top')
# Make the y-axis display the variables
ax.set_yticks(ys)
ax.set_yticklabels(labels)
ax.tick_params(axis='y', which='both', length=0)
# set grid
ax.grid(True)
ax.set_axisbelow(True)
# Set the portion of the x- and y-axes to show
ax.set_ylim([-1, n])
|
e08e58d929f62044eb5e95bc43e69d9209de1a2b | Kai-log-93/python_modules_for_work | /pandas/filter.py | 1,335 | 3.609375 | 4 | import pandas as pd
from openpyxl.workbook import Workbook
df_csv = pd.read_csv('Names.csv', header=None)
# specify header for CSV
df_csv.columns = ['First', 'Last', 'Address', 'City', 'State', 'Area Code', 'Income']
# get City == 'Riverside'
print(df_csv.loc[df_csv['City'] == 'Riverside'])
print('-------------------------------------------')
# get City == 'Riverside' and First == 'John'
print(df_csv.loc[(df_csv['City'] == 'Riverside') & (df_csv['First'] == 'John')])
print('-------------------------------------------')
# Lamda funtion base on income get the tax rate
df_csv['Tax %'] = df_csv['Income'].apply(lambda x: .15 if 10000 < x < 40000 else .2 if 40000 < x < 80000 else .25)
print(df_csv)
print('-------------------------------------------')
# get Taxes
df_csv['Texes Owed'] = df_csv['Income'] * df_csv['Tax %']
print(df_csv['Texes Owed'])
print(df_csv)
print('-------------------------------------------')
# drop collums
to_drop = ['Area Code', 'First', 'Address']
df_csv.drop(columns = to_drop, inplace = True)
print(df_csv)
print('-------------------------------------------')
# boolean
df_csv['Test col'] = False
df_csv.loc[df_csv['Income'] < 60000, 'Test Col'] = True
print(df_csv)
print('-------------------------------------------')
# group by
print(df_csv.groupby(['Test Col']).mean().sort_values('Income'))
|
da5a0302e4459f0246d2d500bdea981542387f02 | vesso8/Functions | /07. Chairs.py | 513 | 3.703125 | 4 | # from itertools import combinations
#
# result = list(combinations(input().split(", "), int(input())))
# for x , y in result:
# print(x, y , sep= ", ")
def combination(name, count, current_names=[]):
if len(current_names) == count:
print(', '.join(current_names))
return
for i in range(len(name)):
current_names.append(name[i])
combination(name[i+1:], count,current_names)
current_names.pop()
names = input().split(", ")
n = int(input())
combination(names,n) |
c18e99603c2be1080538050092c07bf74c930a2e | anubhavsrivastava10/Python-ML | /DAY 20/prostate_cancer.py | 3,172 | 3.5625 | 4 | import pandas as pd
dataset = pd.read_csv("http://www.stat.cmu.edu/~ryantibs/statcomp/data/pros.dat", delimiter =' ')
features = dataset.iloc[:,:-1]
labels = dataset.iloc[:,-1]
#performing train test and spliy
from sklearn.model_selection import train_test_split
features_train, features_test, labels_train, labels_test = train_test_split(features,labels,test_size = 0.2, random_state=0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
features_train = sc.fit_transform(features_train)
features_test = sc.transform(features_test)
# Fitting Logistic Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(features_train, labels_train)
# Predicting the Test set results
labels_pred = regressor.predict(features_test)
import numpy as np
labels_test = np.array(labels_test)
#yes we can predict lspa
df = pd.DataFrame(labels_test,labels_pred)
df
#(1) Train the unregularized model (linear regressor) and calculate the mean squared error.
from sklearn import metrics
print ("Simple Regression Mean Square Error (MSE) for TEST data is")
print (np.round (metrics .mean_squared_error(labels_test, labels_pred),2) )
#(2) Apply a regularized model now - Ridge regression and lasso as well and check the mean squared error.
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
lm_lasso = Lasso()
lm_ridge = Ridge()
lm_lasso.fit(features_train, labels_train)
lm_ridge.fit(features_train, labels_train)
predict_test_lasso = lm_lasso.predict (features_test)
predict_test_ridge = lm_ridge.predict (features_test)
print ("RSquare Value for Lasso Regresssion TEST data is-")
print (np.round (metrics.mean_squared_error(predict_test_lasso,labels_test)*100,2))
print ("RSquare Value for Ridge Regresssion TEST data is-")
print (np.round (metrics.mean_squared_error(predict_test_ridge,labels_test)*100,2))
#(b) Can we predict whether lpsa is high or low, from other variables?
mean_val = dataset['lpsa'].mean()
labels = labels.to_frame()
labels['lpsa'] = labels['lpsa'].map(lambda x : 1 if x > mean_val else 0)
#performing train test and spliy
from sklearn.model_selection import train_test_split
features_train1, features_test1, labels_train1, labels_test1 = train_test_split(features,labels,test_size = 0.2, random_state=0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
features_train1 = sc.fit_transform(features_train1)
features_test1 = sc.transform(features_test1)
# Fitting Logistic Regression to the Training set
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression()
classifier.fit(features_train1, labels_train1)
# Predicting the Test set results
labels_pred = classifier.predict(features_test1)
import numpy as np
labels_test = np.array(labels_test1)
#yes we can predict lspa
df2 = pd.DataFrame(labels_test1,labels_pred)
df2
#making confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(labels_test1,labels_pred)
cm |
2a6d9bdaae27a64cec7d6487ac55c370f3c343fd | bingyihua/bing | /help/py/jicheng_duo.py | 325 | 3.765625 | 4 | class Parent2():
print('我是第二个爹')
class Parent():
print('我是第一个爹')
class SubClass(Parent, Parent2):
print('我是子类')
#
# 结果:我是第二个爹
# 我是第一个爹
# 我是子类
#注意:类在定义的时候就执行类体代码,执行顺序是从上到下
|
4d9b5a16da2436ee293b1e88806c37ffd272c024 | nadiaguedess/SistemasDistribuidosEstruturaSequencialPython | /ListaSequencial/atividade_8.py | 232 | 3.875 | 4 | salarioHora = float(input("Digite quantos você ganha por hora:"))
horasTrabalhadas = int(input("Digite quantas horas você trabalhou no mês:"))
salarioFinal = salarioHora * horasTrabalhadas
print("Seu salário é:", salarioFinal)
|
6c3042b4dc5760ff78adaa38f1addc54968d8d36 | ianlai/Two-Circle-Intersection-Area | /two-circle-intersection-area.py | 3,026 | 3.828125 | 4 | #!/usr/local/bin/python3
# -*- coding: utf-8 -*-
import math
import numpy as np
import sys
PI = 3.14159265359
### Default Setting
x1 = 2.1
y1 = 1.8
r1 = 1.9
x2 = 5.3
y2 = 2.5
r2 = 3.2
numerical = False
def p(x):
return pow(x,2)
def s(x):
return pow(x,0.5)
def sin(x):
return math.sin(x)
def cos(x):
return math.cos(x)
def acos(x):
return math.acos(x)
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self):
return "("+str(self.x)+","+str(self.y)+")"
class Circle:
def __init__(self, r, p):
self.r = r
self.c = p
def __str__(self):
mystring = "radius=" + str(self.r) + ", center=" + str(self.c)
return mystring
def area(self):
return str(PI*p(self.r))
def distance(p1,p2):
return s(p(p1.x-p2.x)+p(p1.y-p2.y))
#target angle is between a and b
def cosine_rule(a,b,c):
angle=acos((p(a)+p(b)-p(c))/(2*a*b))
return angle
#theta is between a and b
def triangle_area(a,b,theta):
return 0.5*a*b*sin(theta)
def cone_area(r,theta):
return p(r)*PI*theta/(2*PI)
if "-x1" in sys.argv:
x1 = float(sys.argv[sys.argv.index("-x1")+1])
if "-y1" in sys.argv:
y1 = float(sys.argv[sys.argv.index("-y1")+1])
if "-r1" in sys.argv:
r1 = float(sys.argv[sys.argv.index("-r1")+1])
if "-x2" in sys.argv:
x2 = float(sys.argv[sys.argv.index("-x2")+1])
if "-y2" in sys.argv:
y2 = float(sys.argv[sys.argv.index("-y2")+1])
if "-r2" in sys.argv:
r2 = float(sys.argv[sys.argv.index("-r2")+1])
if "-n" in sys.argv:
numerical = True
if "--numerical" in sys.argv:
numerical = True
p1 = Point(x1,y1)
p2 = Point(x2,y2)
c1 = Circle(r1,p1)
c2 = Circle(r2,p2)
if not numerical:
print("=================================================================")
print("Circle-1: " + str(c1) + " | Area=" + c1.area())
print("Circle-2: " + str(c2) + " | Area=" + c2.area())
print("=================================================================")
d = distance(c1.c, c2.c)
external_distance_bound = c1.r + c2.r
internal_distance_bound = math.fabs(c1.r - c2.r)
if d >= external_distance_bound:
if not numerical:
print("Two circles have no overlap.")
else:
print(0)
elif d <= internal_distance_bound:
if not numerical:
if r1 <= r2:
print("Circle 1 is totally inside Circle 2.")
else:
print("Circle 2 is totally inside Circle 1.")
else:
if r1 <= r2:
print(r1*r1*PI)
else:
print(r2*r2*PI)
else:
theta1 = 2 * cosine_rule(c1.r, d, c2.r)
theta2 = 2 * cosine_rule(c2.r, d, c1.r)
t_area1 = triangle_area(c1.r, c1.r, theta1)
c_area1 = cone_area(c1.r,theta1)
t_area2 = triangle_area(c2.r,c2.r,theta2)
c_area2 = cone_area(c2.r,theta2)
two_circle_overlap_area = c_area1 + c_area2 - t_area1 - t_area2
if not numerical:
print("Overlap Area: " + str(two_circle_overlap_area))
else:
print(two_circle_overlap_area)
|
eecdf56616975b28768a8c7b689ae28796cb5cda | SantaPoro/IT-Chalmers | /Contains.py | 1,252 | 4.4375 | 4 | #!/bin/python
def contains(list, e):
""" determines whether e is contained in the list """
for elem in list:
if elem == e:
return True
return False
integer_list = [0, 1, 2, 3]
print("")
print("Does the list contain 3?: %r" % contains(integer_list, 3))
print("Does the list contain 5?: %d" % contains(integer_list, 5))
print("")
list1 = [1, 2, 3, 4]
list2 = [1, 2, 3, 4, 5, 6, 7]
list3 = [1, 2, 3, 5]
# Create a function which determines whether a list is contained in another list.
# Some tips:
# - use the contains function defined above in your function.
# - you want to check if each element in the sublist is contained in the list
# - you can use boolean arithmetics, short example in boolean_arithmetic.py
# 4.
def sublist_contains(real_list, sublist):
for elem in real_list:
if not contains(sublist,elem):
return False
return True
print ("Are the list the same?: %r" % sublist_contains(list1,list2))
print("")
print("Expected True, Actual %r" % sublist_contains(list2, list1))
print("Expected False, Actual %r" % sublist_contains(list3, list1))
print("Expected True, Actual %r" % sublist_contains(list1, list1))
print("")
|
3ead2197c78a6414100389b2b2cde2f9df8e1760 | LizinczykKarolina/Python | /Practice Python/ListEx3.py | 312 | 3.875 | 4 | a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
z=[]
for i in a:
if i <= 5:
print "Adding element %d to the list" % i
z.append(i)
print z
print "Please enter the number: "
num = int(raw_input("> "))
x = [i for i in a if i < num]
c = []
for y in x:
c.append(y)
print c |
be47d91f72e229c20353485ff009d2fd02a7d22a | praveen5658/cspp1 | /cspp1_practise/cspp1-assignments/m8/GCD using Recursion/gcd_recr.py | 501 | 3.75 | 4 | '''
Author : Praveen
Date : 07-08-2018
'''
def gcd_recur(input_a, input_b):
'''
This function returns GCD of two numbers using Recursion
'''
if input_a < input_b:
input_a, input_b = input_b, input_a
if input_a % input_b == 0:
return input_b
return gcd_recur(input_b, input_a % input_b)
def main():
'''This is main function'''
data = input()
data = data.split()
print(gcd_recur(int(data[0]), int(data[1])))
if __name__ == "__main__":
main()
|
182d1b0c993b77213bbc353e0cae94e23754341f | abhilashmaddineni/Terraform_Abhi | /Challenge#3/Scenario1.py | 602 | 4.3125 | 4 | #Scenario 1: If some undefined variable is given in the dictionary which is not present, below code will skip the undefined Varibale and check for next variable.
#taking the dictionary into cont variable
cont = {"x":{"y":{"z":"a"}}}
#Validating with key
key = "john/x"
#using split function to separate the keys and using it for further iterations
new_key = key.split("/")
#looping the separated key with the dictionary
for item in new_key:
#checking if the given key present in the dictionary
if item in cont:
cont = cont[item]
#printing the dictionary based on the key check.
print cont |
2e71e66d31a1cf9aa3f0d31dfff101c35395d08a | AdrianM20/Hangman---PracticalExam | /src/hangman/ui/console.py | 3,105 | 3.5 | 4 | """
console Module
Created on 30.01.2017
@author adiM
"""
from hangman.domain.validators import HangmanException
class Console(object):
def __init__(self, sentence_controller, game_controller):
self.__sentence_controller = sentence_controller
self.__game_controller = game_controller
def run_app(self):
"""
Program starting point
"""
options = {1: self.__add_sentences,
2: self.__play_game,
3: self.__print_available_sentences}
while True:
self.__print_menu()
option = input("Enter option: ")
if option == "x":
break
try:
option = int(option)
options[option]()
except ValueError as ve:
print("Invalid input: ", ve)
print("Try again!")
except KeyError as ke:
print("Option not available. Try again!")
except HangmanException as he:
print("An error occurred: ", he)
print("Try again!")
def __print_menu(self):
print()
print("What would you like to do?")
print("\t1 - Add sentences to game")
print("\t2 - Play Hangman")
print("\tx - Exit app")
def __add_sentences(self):
print("Enter a sentence: ")
sentence = input()
self.__sentence_controller.add_sentence(sentence)
self.__sentence_controller.save_to_file()
def __print_available_sentences(self):
sentences = self.__sentence_controller.get_all()
for s in sentences:
print(s)
def __print(self, sentence, tries):
hang = ["h", "a", "n", "g", "m", "a", "n"]
if tries >= 0:
print(sentence + ' - "{0}"'.format(''.join(hang[:tries + 1])))
else:
print(sentence + ' - ""')
def __play_game(self):
tries = -1
self.__game_controller.start_game()
self.__print(self.__game_controller.print_sentence(), tries)
while True:
if tries >= 6:
print("YOU LOST! Good luck next time!")
break
letter = input("Enter a letter: ")
if letter.isalpha():
if self.__game_controller.is_letter(letter):
if self.__game_controller.is_available(letter):
self.__game_controller.fill_letter(letter)
if self.__game_controller.game_end():
print(self.__game_controller.print_sentence() + "\tYOU WON!!!\nPlay again?")
break
self.__print(self.__game_controller.print_sentence(), tries)
else:
tries += 1
self.__print(self.__game_controller.print_sentence(), tries)
else:
tries += 1
self.__print(self.__game_controller.print_sentence(), tries)
else:
print("Incorrect input. Not a letter.")
|
7a3535e82cf7a851995070fefc6304def69b9537 | shebac22/remote | /check_number.py | 90 | 3.859375 | 4 | # check whether 4 is even
num = 4
if (num % 2) == 0:
print("{0} is Even".format(num))
|
f0c17fbe451f63d334ed57a1179095ea69c9faf2 | xavi-/random | /Euler/problem27.py | 649 | 3.703125 | 4 | def isPrime(n):
if n < 2: return False
if n == 2: return True
if n % 2 == 0: return False
i = 3
while(n / i >= i):
if(n % i == 0): return False
i += 2
return True
def testExpression(a, b):
for n in range(1, 900):
if not isPrime(n*n + a*n + b):
return (n, a, b)
return (89, a, b)
maxSeq = (0, 0, 0)
primes = [i for i in range(2, 1000) if isPrime(i)]
for b in primes:
for a in range(-999, 1000, 2):
seq = testExpression(a, b);
if seq[0] > maxSeq[0]: maxSeq = seq
print("on b: %s" % b)
print("maxSeq: %s", maxSeq) |
2948a131295b9fecf0bcb71841e0d91cf3feb844 | joseangel-sc/CodeFights | /Arcade/BookMarket/ProperNounCorrection.py | 621 | 4.1875 | 4 | #Proper nouns always begin with a capital letter, followed by small letters.
#Correct a given proper noun so that it fits this statement.
#Example
#For noun = "pARiS", the output should be
#properNounCorrection(noun) = "Paris";
#For noun = "John", the output should be
#properNounCorrection(noun) = "John".
#Input/Output
#[time limit] 4000ms (py)
#[input] string noun
#A string representing a proper noun with a mix of capital and small Latin letters.
#Constraints:
#1 ≤ noun.length ≤ 10.
#[output] string
#Corrected (if needed) noun.
def properNounCorrection(noun):
return noun[0].upper()+noun[1:].lower()
|
f737a16017cb5f7eec8c58d5ba1b633eb482977f | renyi1314/Source-code | /basis/data/card.py | 2,697 | 3.984375 | 4 | '''
需求:1,显示用户菜单
'''
card_list = []
tmp_card = {} # 临时保存查找到的数据
tmp_name = "" # 临时保存查找的名字
tmp_index = int() # 临时保存查找到数据的索引,用于更新数据
def main():
print("欢迎进入名片管理系统")
print("请选择操作: ")
print("1.新增名片")
print("2.显示全部")
print("3.查找名片")
print("0.退出系统")
choice = input("请输入选择的操作")
if choice == "1":
insert_card()
elif choice == "2":
display_all_card()
elif choice == "3":
search_card_by_name()
elif choice == "0":
print("退出操作")
else:
print("请选择正确的操作")
main()
def insert_card():
name = input("请输入名字: ")
phone = input("请输入电话: ")
QQ = input("请输入QQ号: ")
email = input("请输入邮箱: ")
card_list.append({"name": name, "phone": phone, "QQ": QQ, "email": email})
print("新建成功")
main()
def display_all_card():
print("名字\t\t电话\t\tQQ\t\t邮箱")
for card in card_list: # 遍历列表,获取所有字典
print("{name}\t{phone}\t{QQ}\t{email}".format(**card)) # 打印字典所有值
# for value in card.values():
# print(value, end="\t")
print()
main()
def search_card_by_name():
tmp_name = input("请输入要查询的名字: ")
for card in card_list:
tmp_card = card
tmp_index = card_list.index(tmp_card)
if tmp_name == card["name"]:
print(tmp_index)
print("名字\t\t电话\t\tQQ\t\t邮箱")
print("{name}\t{phone}\t{QQ}\t{email}".format(**card))
# for value in card.values():
# print(value, end="\t")
print()
choice = input("请选择要执⾏的操作 [1] 修改 [2] 删除 [0] 返回上级菜单")
if choice == "1":
update_search_card()
elif choice == "2":
delete_search_card()
elif choice == "0":
main()
else:
print("没有找到相应的名字")
main()
def update_search_card():
name = input("请输入名字: ")
phone = input("请输入电话: ")
QQ = input("请输入QQ号: ")
email = input("请输入邮箱: ")
tmp_card["name"] = name
tmp_card["phone"] = phone
tmp_card["QQ"] = QQ
tmp_card["email"] = email
card_list[tmp_index] = tmp_card
print("数据修改成功")
print(tmp_index)
main()
def delete_search_card():
del card_list[tmp_index]
print("数据删除成功")
main()
main()
|
1dfc76b312eebcde9d3612b05eaad4af1d56b4c1 | vikky12343/python_basic-programs | /lab_6/lab6.9.py | 304 | 3.90625 | 4 | class power:
def __init__(self,a,b):
self.x=a
self.n=b
self.p=1
def pow(self):
while(self.n>0):
self.p=self.p*self.x
self.n=self.n-1
def display(self):
print self.p
a,b=input()
ob=power(a,b)
ob.pow()
ob.display()
|
c42cee88d2157af6428e11c11a5be8aa2fba83ca | noisebridge/PythonClass | /guest-talks/20171204-profiling/001-string-concat.py | 540 | 4.3125 | 4 | def lowercase(string):
return string.lower()
# Concatenate using a loop
def concat_loop(strings):
result = ''
for string in strings:
result += ','
result += lowercase(string) # !
return result
# Concatenate using string.join
def concat_join(strings):
return ','.join([lowercase(string) for string in strings]) # !
# Read in the system dictionary and produce a comma-separated
# list of lowercase words
strings = open('/usr/share/dict/words').readlines()
concat_loop(strings)
concat_join(strings)
|
67c1d8262a87b233dfccbe0425be12b3b3f55f73 | Botany-Downs-Secondary-College/password_manager-joshua-saunders | /password_manager.py | 2,499 | 4.21875 | 4 | #password_manager.py
#Joshua Saunders 25/02/2021
#Lists
password_list = ["Pass1234"]
username_list = ["BDSC2021"]
#Functions
def line():
print(" ")
def age():
while True:
try:
age = int(float(input("What is you age: ")))
if age < 13:
print("Sorry you are not old enough")
break
elif age >= 13:
print("Hello {}".format(name))
menu()
break
except ValueError:
print("Enter an integer not a word please")
def menu():
while True:
try:
options = int(input("1: New User | 2: Existing User | 3: View Username List | 4: View Passwords List | 5: Exit: "))
if options == 1:
line()
add_user()
elif options == 2:
log_in()
elif options == 3:
print(username_list)
menu()
elif options == 4:
print(password_list)
menu()
elif options == 5:
break
else:
print("Please enter a number from the ones shown")
except ValueError:
print("Enter a number shown from the options given")
def add_user():
while True:
add_username = input(("Enter a username to create a user for a new account: "))
x = len(add_username)
if x >= 10:
print("Username is created")
username_list.append(add_username)
password()
else:
print("Username is too short, it must contain 5 or more letters")
def password():
while True:
add_password = input("Please enter a password, must be 8 letters or more: ")
y = len(add_password)
if y >= 8:
print("Password length is sufficent")
password_list.append(add_password)
menu()
else:
print("Password is too short please enter one with 8 letters or more")
def log_in():
while True:
user = input("Are you an existing user? Yes/No: ").lower()
if user == "yes":
username = input("Username: ")
elif user == "no":
menu()
if username in username_list:
password = input("Password: ")
if username not in username_list:
print("Username not found, we have returned you back to the menu")
menu()
if password in password_list:
add_extra = input("Welcome, Press 1 To View Your Lists, And Press 2 To Add More Passwords: ")
if add_extra == 1:
print(username_list)
print(password_list)
break
if add_extra == 2:
add_user()
password()
else:
print("User was not found please try again")
name = input("What is you name: ")
age()
|
56d954ec2ab4773adb186ce9f240117e792507c7 | My-Students/Turtle_UDP_Server | /Turtle_Giavelli/Server.py | 1,105 | 3.640625 | 4 | import socket
import turtle
#TURTLE_KING=turtle.Turtle()
#TURTLE_KING.hideturtle()
MOVE=10
server_ip="127.0.0.1"
server_port=10000
s=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
s.bind((server_ip,server_port))
port_table=[]
turtle_dict={}
def turtle_create(address,movement):
turtle_dict[address[1]]=turtle.Turtle()
#turtle_dict[address[1]]=TURTLE_KING.clone()
#turtle_dict[address[1]].showturtle()
move(address,movement)
def move(address,movement):
if movement=="w":
turtle_dict[address[1]].forward(MOVE)
elif movement=="s":
turtle_dict[address[1]].backward(MOVE)
elif movement=="a":
turtle_dict[address[1]].left(MOVE)
elif movement=="d":
turtle_dict[address[1]].right(MOVE)
while True:
command,address = s.recvfrom(4096)
movement=command.decode()
if address[1] in port_table:
print(address[1])
move(address,movement)
else:
port_table.append(address[1])
turtle_create(address,movement)
print(address[1])
|
0c8b1fcc3b7d63371bd24a06c2d66b63fb4920f3 | hdantas/prog-puzzles | /codewars/python/5kyu/processes.py | 1,041 | 3.5625 | 4 | # http://www.codewars.com/kata/542ea700734f7daff80007fc
def processes(start, end, original_processes, solution_candidate=[]):
# uses recursion to greedily explore trees, then returns the shortest tree of those with the correct start and end node
if (start == end): return solution_candidate # found a possible solution
tmp_result = []
matched_processes = [] # nodes traversed
non_matched_processes = [] # nodes to traverse in the recursion
for p in original_processes:
if p[1] == start:
matched_processes += [p]
else:
non_matched_processes += [p]
for m in matched_processes:
tmp_result += [processes(m[2], end, non_matched_processes, solution_candidate + [m[0]])]
clean_tmp_result = [item for item in tmp_result if len(item) > 0] # remove empty solution candidates
if clean_tmp_result == []:
result = []
else:
result = min(clean_tmp_result, key=len) # off the possible solutions pick the one with the smallest length
return result |
408babae6f2e8b73ff56eaab659d421628c46cab | Aditya-A-Pardeshi/Coding-Hands-On | /4 Python_Programs/6 Problems on characters/2_CheckCapital/Demo.py | 408 | 4.15625 | 4 | '''
Accept Character from user and check whether it is capital or not
(A-Z).
Input : F
Output : TRUE
Input : d
Output : FALSE
'''
def CheckCapital(ch):
if((ch >= 'A') and (ch <= 'Z')):
return True;
else:
return False;
def main():
ch = input("Enter character:");
result = False;
result = CheckCapital(ch);
print(result);
if __name__ == "__main__":
main(); |
99541d9078f385475dfd6f0ccd5a1fac274b034a | justinta89/Work | /PythonProgramming/Chapter 8/Exercises/fibonacci.py | 487 | 4.28125 | 4 | # fibonacci.py
# Calculates the nth number in fibonacci sequence.
def fibonacci(n):
if n > 0:
if n == 1:
fn = 1
elif n == 0:
fn = 0
else:
fn = (n - 1) + (n - 2)
if n < 0:
if n == -1:
fn = 1
else:
fn = ((-1) ** (n + 1)) * n
return fn
def main():
num = int(input("Enter a number >> "))
print(fibonacci(num))
if __name__ in ['__console__', '__main__']:
main() |
e9c3ed5154d1bf0b35ed01a70634ad2eb1cbb290 | scolphew/leetcode_python | /leetcode/_043_MultiplyStrings.py | 877 | 3.59375 | 4 | class Solution(object):
def multiply(self, num1, num2):
"""
string乘法
:type num1: str
:type num2: str
:rtype: str
"""
len_1 = len(num1)
len_2 = len(num2)
result = [0 for _ in range(len_1 + len_2)]
print(result)
for i in range(len_1 - 1, -1, -1):
for j in range(len_2 - 1, -1, -1):
num = int(num1[i]) * int(num2[j])
p1 = i + j
p2 = p1 + 1
sum_num = num + result[p2]
result[p1] += sum_num // 10
result[p2] = sum_num % 10
r = []
for i in result:
if r or i != 0:
r.append(str(i))
result = ''.join(r)
return result if result else '0'
if __name__ == '__main__':
s = Solution()
print(s.multiply("00", "009"))
|
06a0ea2f01878451b4abf17d2e930a62585d9f86 | IM-MC/LCsol | /49.py | 572 | 3.765625 | 4 | def groupAnagrams(strs):
"""
:type strs: List[str]
:rtype: List[List[str]]
"""
dic = dict()
res = []
for i in range(len(strs)):
checker = [0]*26
for char in strs[i]:
value = ord(char) - ord('a')
checker[value] += 1
key = tuple(checker)
if key not in dic.keys():
dic[key] = [strs[i]]
else:
dic[key].append(strs[i])
for key in dic.keys():
res.append(dic[key])
return res
print(groupAnagrams(["eat", "tea", "tan", "ate", "nat", "bat"]))
|
27432145ccb7d6656fabe18b41b3eb0124355d6b | ngchitrungkien/nguyenchitrungkien-fundamental-c4e20 | /Session01/homework01/Turtle exercise session01/turtle_equilateraltriangle.py | 243 | 3.625 | 4 | from turtle import *
speed(1)
shape("classic")
color("green")
pencolor("green")
fillcolor("yellow")
begin_fill()
for i in range (3):
forward(300)
left(120)
color("yellow")
end_fill()
pencolor("green")
fillcolor("yellow")
mainloop() |
be59f6e67e8ce78560b107c50280e38bbc976fab | SouzaCadu/guppe | /Secao_19_Manipulando_data_hora/19_138_Metodos_data_hora.py | 3,575 | 4 | 4 | """
Metodos
import datetime
from textblob import TextBlob
# aceita parâmetro de fuso horário (timezone)
agora = datetime.datetime.now()
print(type(agora), repr(agora), agora)
hoje = datetime.datetime.today()
print(type(hoje), repr(hoje), hoje)
# Mudanças acontecendo a meia noite
manutencao = datetime.datetime.combine(datetime.datetime.now() + datetime.timedelta(days=3), datetime.time())
print(type(manutencao), repr(manutencao), manutencao)
# 0 - Monday
# 1 - Tuesday
# 2 - Wednesday
# 3 - Thursday
# 4 - Friday
# 5 - Saturday
# 6 - Sunday
print(manutencao.weekday())
nascimento = input("Informe sua data de nascimento no formato dd/mm/yyyy: ")
nascimento = nascimento.split("/")
aniversario = datetime.datetime(int(nascimento[2]), int(nascimento[1]), int(nascimento[0]))
if aniversario.weekday() == 0:
print('Você nasceu em uma segunda-feira')
elif aniversario.weekday() == 1:
print('Você nasceu em uma terça-feira')
elif aniversario.weekday() == 2:
print('Você nasceu em uma quarta-feira')
elif aniversario.weekday() == 3:
print('Você nasceu em uma quinta-feira')
elif aniversario.weekday() == 4:
print('Você nasceu em uma sexta-feira')
elif aniversario.weekday() == 5:
print('Você nasceu em um sábado')
elif aniversario.weekday() == 6:
print('Você nasceu em um domingo')
# formatando datas/horas com str(time) string format time
hoje = datetime.datetime.today()
hoje_formatado = hoje.strftime("%d/%m/%y")
print(hoje_formatado)
def formata_data(data):
if data.month == 1:
return f'{data.day} de Janeiro de {data.year}'
elif data.month == 2:
return f'{data.day} de Fevereiro de {data.year}'
elif data.month == 3:
return f'{data.day} de Março de {data.year}'
elif data.month == 4:
return f'{data.day} de Abril de {data.year}'
elif data.month == 5:
return f'{data.day} de Maio de {data.year}'
elif data.month == 6:
return f'{data.day} de Junho de {data.year}'
elif data.month == 7:
return f'{data.day} de Julho de {data.year}'
elif data.month == 8:
return f'{data.day} de Agosto de {data.year}'
elif data.month == 9:
return f'{data.day} de Setembro de {data.year}'
elif data.month == 10:
return f'{data.day} de Outubro de {data.year}'
elif data.month == 11:
return f'{data.day} de Novembro de {data.year}'
elif data.month == 12:
return f'{data.day} de Dezembro de {data.year}'
print(formata_data(hoje))
# Refatorando
def formata_data(data):
return f"{data.day} de {TextBlob(data.strftime('%B')).translate(to='pt-br')} de {data.year}"
hoje = datetime.datetime.today()
print(formata_data(hoje))
# utilizando o método strptime
nascimento = input("Informe sua data de nascimento no formato dd/mm/yyyy: ")
aniversario = datetime.datetime.strptime(nascimento, "%d/%m/%Y")
print(nascimento)
# horários
almoco = datetime.time(13, 10, 00)
print(almoco)
# Avaliando o tempo de processamento do código
import timeit, functools
# marcando o tempo de processamento de códigos
# Loop
tempo = timeit.timeit('"-".join(str(n) for n in range(100))', number=10000)
print(tempo)
# List Comprehension
tempo = timeit.timeit('"-".join([str(n) for n in range(100)])', number=10000)
print(tempo)
# Map
tempo = timeit.timeit('"-".join(map(str, range(100)))', number=10000)
print(tempo)
def teste(n):
soma = 0
for num in range(n * 200):
soma = soma + num ** num + 4
return soma
print(timeit.timeit(functools.partial(teste, 2), number=10000))
"""
|
0de34e7f84a0aff75af827cb56f12e3d3e6075f8 | astral-sh/ruff | /crates/ruff/resources/test/fixtures/tryceratops/TRY400.py | 1,283 | 3.703125 | 4 | """
Violation:
Use '.exception' over '.error' inside except blocks
"""
import logging
import sys
logger = logging.getLogger(__name__)
def bad():
try:
a = 1
except Exception:
logging.error("Context message here")
if True:
logging.error("Context message here")
def bad():
try:
a = 1
except Exception:
logger.error("Context message here")
if True:
logger.error("Context message here")
def bad():
try:
a = 1
except Exception:
log.error("Context message here")
if True:
log.error("Context message here")
def bad():
try:
a = 1
except Exception:
self.logger.error("Context message here")
if True:
self.logger.error("Context message here")
def good():
try:
a = 1
except Exception:
logger.exception("Context message here")
def good():
try:
a = 1
except Exception:
foo.exception("Context message here")
def fine():
try:
a = 1
except Exception:
logger.error("Context message here", exc_info=True)
def fine():
try:
a = 1
except Exception:
logger.error("Context message here", exc_info=sys.exc_info())
|
a7a9ec4067ff45625b0429831e01a175fc86a8a2 | southzyzy/FILAttack | /main_ui.py | 3,963 | 3.546875 | 4 | """
Python Version 3.8
Singapore Institute of Technology (SIT)
Information and Communications Technology (Information Security), BEng (Hons)
ICT-2203 Network Security Assignment 1
Author: @
Tan Zhao Yea / 1802992
Chin Clement / 1802951
Gerald Peh Wei Xiang / 1802959
Academic Year: 2020/2021
Lecturer: Woo Wing Keong
Submission Date: 25th October 2020
This script holds the code to perform various attacks in our Assignment.
- Telnet Bruteforce, DHCP Staravation, Rogue DHCP Server, DNS Poisoning
"""
import os
import subprocess
import cowsay
from pyfiglet import Figlet, figlet_format
# Log File Configurations
DHCP_STARVE_LOG = os.path.abspath("logs/dhcp_starve.txt")
DNS_POISON_LOG = os.path.abspath("logs/dns_poison.txt")
# Error Message Dictionary
ERRMSG = {
1: "Value Error! The option input is not provided in the function"
}
# Rogue DHCP Abs Path
META_DHCP_SERVER_DIR = os.path.abspath("scripts/meta_dhcp_setup.rc")
# Function to display the main menu
def display_ui():
""" Display the Banner Message """
print(figlet_format("Welcome To ICT-2203-F17 Attack Script"))
cowsay.cow("Do anything you want, just don't get caught :)")
cowsay.cow("Moooo")
def options_ui():
""" Diplay the Options """
print("")
print("-=-=-=-=-=-=-=-=-=-=-= OPTIONS -=-=-=-=-=-=-=-=-=-=-=-=")
print("1. Host Discovery.")
print("2. Telnet Bruteforce Attack.")
print("3. DHCP Starvation Attack.")
print("4. Run Rogue DHCP Server.")
print("5. DNS Poisoning.")
print("6. Exit.")
print("0. Clear Screen (Enter 0 to clear screen)")
print("-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=")
def exit_ui():
"""Exit UI """
cowsay.cow("Goodbye, Mooo, Mooo, Mooo :)")
def main():
""" Main Function """
display_ui()
# Infinite Loop
while True:
try:
options_ui()
print("[*] Which attack would you like to perform?")
choice = int(input("[>]: "))
except ValueError:
print(ERRMSG.get(1))
continue
except KeyboardInterrupt:
exit_ui()
break
else:
if choice < 0 or choice > 6:
print(ERRMSG.get(1))
continue
# Clear the Screen
if choice == 0:
os.system("clear")
# Host Discovery
elif choice == 1:
print("\t[+] Enter Network IP Address/Subnet")
network_cidr = input("\t[>]: ")
print("\n[*] Running Host Discovery")
subprocess.run(["python3","scripts/host_discovery.py",network_cidr])
# Telnet Bruteforce Attack
elif choice == 2:
print("\t[+] Enter Target IP Address")
target_ip = input("\t[>]: ")
print("\t[+] Enter Dictionary File")
password_file = input("\t[>]:")
print("\n[*] Running Telnet Bruteforce Attack")
try:
subprocess.run(["python3","scripts/telnet_bruteforce.py",target_ip,password_file])
except EOFError:
print("[ERR] Telnet Connection Closed")
input("Press Enter to return to main menu...")
continue
# DHCP Starvation Attack
elif choice == 3:
print("\n[*] Running DHCP Starvation Attack")
subprocess.Popen(["python3","scripts/dhcp_starvation.py"], close_fds=True)
print(f"[*] Please refer to {DHCP_STARVE_LOG} for runtime information ...")
input("Press Enter to return to main menu...")
continue
# Rogue DHCP Server
elif choice == 4:
print("\n[*] Setting up Rogue DHCP Server")
print("\n[*] Please open a new terminal and run the following commands:")
print(f"\t[+] sudo msfconsole -q -r '{META_DHCP_SERVER_DIR}'")
input("Press Enter to return to main menu...")
continue
# DNS Attack
elif choice == 5:
print("\n[*] Running DNS Poisoning Attack")
subprocess.Popen(["python3","scripts/dns_poison.py"], close_fds=True)
print(f"[*] Please refer to {DNS_POISON_LOG} for runtime information ...")
input("Press Enter to return to main menu...")
continue
# Exit Program
elif choice == 6:
exit_ui()
break
if __name__ == '__main__':
# Make log directory folder if it does not exist
if not os.path.exists('logs/'):
os.makedirs('logs/')
main() |
d4b17b8ee5a1a13e75bf1ea9f3100fdb31b83317 | dinhhuyminh03/C4T21 | /session3/turtle_intro.py | 342 | 3.859375 | 4 | from turtle import *
shape ("turtle")
speed(-1)
# forward(100)
# left(90)
# forward(100)
# left(90)
# forward(100)
# left(90)
# forward(100)
# left(30)
# forward(100)
# left(90)
# forward(100)
# left(90)
# forward(100)
# left(90)
# forward(100)
# left(30)
for i in range (10,200,5):
forward(10 + i)
left(90)
for r in range
mainloop () |
cba3ef8acfa0a67b9d9718f968ecf2df4f3ff17c | DanielRrr/Algorithms-Studies | /gcd3.py | 184 | 3.84375 | 4 | def gcd3(a, b):
assert a >= 0 and b >= 0
if a == 0 or b == 0:
return max(a, b)
elif a >= b:
return gcd3(a % b, b)
else:
return gcd3(a, b % a)
|
8663b54614d6361def4d1b4605bad4a9d3c04a2c | Barbariansyah/pyjudge | /test/loop_2.py | 139 | 3.546875 | 4 | def loop_2(in1,in2):
if in1 > in2:
i = 0
while i < in1:
i = i+1
return i
else:
return 0 |
e9bf3e88f740d9d2f8f092d494b44a852fc4f5e0 | rochejohn/ATBS | /Projects/Character_Picture_Grid.py | 1,072 | 4.0625 | 4 | #! /usr/bin/env python3
'''
Chapter 4 Character Picture Grid
Basically take this grid below and print it so the image is shifted 90 degrees
to the right
You will need to use a loop in a loop in order to print grid[0][0],
then grid[1][0], then grid[2][0], and so on, up to grid[8][0].
This will finish the first row, so then print a newline.
Then your program should print grid[0][1], then grid[1][1], then grid[2][1], and so on.
The last thing your program will print is grid[8][5].
'''
from time import sleep
grid = [['.', '.', '.', '.', '.', '.'],
['.', 'O', 'O', '.', '.', '.'],
['O', 'O', 'O', 'O', '.', '.'],
['O', 'O', 'O', 'O', 'O', '.'],
['.', 'O', 'O', 'O', 'O', 'O'],
['O', 'O', 'O', 'O', 'O', '.'],
['O', 'O', 'O', 'O', '.', '.'],
['.', 'O', 'O', '.', '.', '.'],
['.', '.', '.', '.', '.', '.']]
for x in range(len(grid[0])):
print()
for y in range(len(grid)-1,-1,-1):
print(grid[y][x],end=' ')
sleep(0.2) #added sleep to display the image being drawn
print()
print() |
b531b455550925271b011e4dd5ab1dc51bcee440 | rishikeshpuri/python-codes | /assignment-2 one complex number from user and display the greater number between real part and imaginary part.py | 281 | 4.4375 | 4 | #To accept one complex number from user and display the greater number between real part and imaginary part.
x=int(input("Enter one real number"))
y=complex(input("Enter one imaginary number"))
if x>y:
print("%d is greater number"%x)
else:
print("%d is greatest number"%y)
|
bf96ba839c7df2c0e5be37a3cebfa6fb3b83acf7 | shreya1sharma/Coding | /programming-puzzles/jump_game.py | 808 | 3.84375 | 4 | '''
Method 1: recursion
pseudo-code
1. read the first element
2. initialize a canJump variable to False
3. Check all possible jumps starting from maximum to 0 (reverse order)
4. For each jump repeat steps 1-3
5. if the jump leads to the end of the array (len(arr)=1):
Update canJump to True, else do not update
6. If while jumping the arr length is exceeded:
reduce the jump size and repeat steps 1-5
7. return canJump
'''
def jumps(arr):
first_element = arr[0]
canJump = False
if len(arr)==1:
return True
for i in range( first_element, 0, -1):
if len(arr[i:])!=0:
canJump = jumps(arr[i:])
if canJump == True:
break
return canJump
'''
Method 2: dynamic programming
pseudo-code
'''
#%% |
8692211470383feed28dae0e008aa2a20194a513 | FrankJonasmoelle/Matrix-Library | /matrix/test_unittest.py | 423 | 3.546875 | 4 | import unittest
from matrix import *
class TestMatrix(unittest.TestCase):
def setUp(self):
self.m1 = Matrix([[1,2,3],[4,5,6]])
self.m2 = Matrix([[1,1,1],[1,1,1]])
self.m3 = Matrix([[1,2],[3,4],[5,6]])
def test_add(self):
out = self.m1 + self.m2
expected = Matrix([[2,3,4], [5,6,7]])
self.assertEqual(out, expected)
if __name__ == "__main__":
unittest.main()
|
86912d6585057f5618747f0ff5e43c36b0d35a8a | dan1el5/cs50-lectures | /lecture2/square.py | 187 | 3.8125 | 4 | from functions import square # could also use import functions
num = int(input("number: "))
print("The square is" , square(num)) # and then change square(num) to functions.square(num) |
ee11cd3dba463874062b05e9d15b89031fff7f5d | deep141997/web-scraping | /web scraping3 | 1,260 | 3.671875 | 4 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 13 02:05:15 2018
@author: deepak
"""
import requests
from bs4 import BeautifulSoup
# when we run request.get it return a response object
page=requests.get("http://dataquestio.github.io/web-scraping-pages/simple.html")
print(page.status_code) #response oject has a property status code and status_code=200 page succesfully downloaded
#print(page.content) # read data in html format
soup=BeautifulSoup(page.content,"html.parser")
#print(soup.prettify)
#print(soup.title)
# to fetch the data of paragraph
paragraph=soup.find('p')
print(paragraph.text)
for i,pg in enumerate(soup.find_all('p')):
print(i,pg.text)
# all tags are nested we can select all the elements at the first level
# we have to use children method of soup it will generate list so we have to use list
#print(soup.children) list type
for item in list(soup.children):
print(type(item)) #<class 'bs4.element.Doctype'>
#<class 'bs4.element.NavigableString'>
#<class 'bs4.element.Tag'>
tags=list(soup.children)[2]
print(tags)
print(type(tags))
tags_html=list(tags.children)
print(tags_html)
print(type(tags_html))
for tag in tags_html:
print(tag.get_text()) |
f61cedd2d260d3c74d9e1766d5b6508cbd0f5b71 | trevornagaba/Agile-project | /logic.py | 706 | 3.75 | 4 | user_name = raw_input('Please enter your username: ')
user_type = raw_input('Hello {}, what type of user are you? :'.format(user_name))
if user_type == user_type.lower('user'):
comment = raw_input('Enter new comment here: ')
add_comment()
edt_comment = raw_input('If you want to edit a comment, please the comment id here: ')
edit_comment()
elif user_type == user_type.lower('moderator'):
comment = raw_input('Enter new comment here: ')
add_comment()
del_comment = raw_input('If you want to delete a comment, enter the comment id here: ')
delete_comment()
edt_comment = raw_input('If you want to edit a comment, please the comment id here: ')
edit_comment()
|
d4c5aba6f9e1ef97458bf3c50342b596a54a6e1e | meagles/advent-of-code-2020 | /app.py | 12,419 | 3.609375 | 4 | import re #regex
def open_puzzle_input(day):
with open('./Day{}/input.txt'.format(day), 'r') as file:
data = file.read()
splitData = data.splitlines()
return splitData
if __name__ == "__main__":
day = 10
puzzle = 2
input = open_puzzle_input(day)
if day == 10:
int_input = []
for val in input:
int_input.append(int(val))
prev_joltage = 0
differences_1 = 0
differences_3 = 0
for joltage in sorted(int_input):
if joltage == prev_joltage + 1:
differences_1 = differences_1 + 1
elif joltage == prev_joltage + 3:
differences_3 = differences_3 + 1
prev_joltage = joltage
print(differences_1)
print(differences_3)
elif day == 9:
if puzzle == 1:
previous_nums = []
preamble_length = 25
for line_num in range(len(input)):
if line_num < preamble_length:
print("Still in preamble")
else:
value = input[line_num]
previous_nums = input[(line_num-preamble_length):(line_num)]
for preceding_pos in range(line_num-preamble_length, line_num):
if (str(int(value) - int(input[preceding_pos]))) in previous_nums:
# print("Found sum for "+str(value)+": "+str(input[preceding_pos])+" and "+str(int(value) - int(input[preceding_pos])))
break
elif preceding_pos == line_num-1:
print("Could not find "+str(value))
elif puzzle == 2:
desired_sum = 1639024365
for line_num in range(len(input)):
ongoing_sum = 0
nums = []
sum_line_num = int(line_num)
while ongoing_sum < desired_sum:
nums.append(int(input[sum_line_num]))
ongoing_sum = ongoing_sum + int(input[sum_line_num])
sum_line_num = sum_line_num + 1
if ongoing_sum == desired_sum:
print("Row "+str(line_num)+" to "+str(sum_line_num-1))
print(sorted(nums))
elif day == 8:
if puzzle == 2:
# we're gonna try this with slightly modified inputs until we get an answer
for index_to_modify in range(len(input)):
if input[index_to_modify][0:3] != "acc":
# print("Trying with changed row "+str(index_to_modify+1))
this_input = input.copy()
line_to_modify = this_input[index_to_modify]
if line_to_modify[:3] == "jmp":
modified_line = "nop"+line_to_modify[3:len(line_to_modify)]
elif line_to_modify[:3] == "nop":
modified_line = "jmp"+line_to_modify[3:len(line_to_modify)]
this_input[index_to_modify] = modified_line
keep_running = True
accumulator = 0
current_row = 0
executed_rows = []
while keep_running:
if current_row > len(this_input) or current_row in executed_rows:
# print("+ infinite loop or out of bounds.")
break
elif current_row == len(this_input):
print("Found infinite loop fix! Changed row "+str(index_to_modify+1))
keep_running = False
break
else:
executed_rows.append(current_row)
line = this_input[current_row]
# print("Running row "+str(current_row)+": "+line)
line_parts = line.split(" ")
if line_parts[0] == "acc":
accumulator = accumulator + int(line_parts[1])
current_row = current_row + 1
elif line_parts[0] == "jmp":
current_row = current_row + int(line_parts[1])
elif line_parts[0] == "nop":
current_row = current_row + 1
continue
if not keep_running:
print("++++++Accumulator is at "+str(accumulator))
elif puzzle == 1:
print('aoeu')
keep_running = True
accumulator = 0
current_row = 0
executed_rows = []
while keep_running:
line = input[current_row]
print("Running row "+str(current_row)+" (accumulator at "+str(accumulator)+"): "+line)
if current_row in executed_rows:
break
else:
executed_rows.append(current_row)
line_parts = line.split(" ")
if line_parts[0] == "acc":
accumulator = accumulator + int(line_parts[1])
current_row = current_row + 1
elif line_parts[0] == "jmp":
current_row = current_row + int(line_parts[1])
elif line_parts[0] == "nop":
current_row = current_row + 1
continue
print("Accumulator is at "+str(accumulator))
elif day == 7:
# create rules dictionary
rules = {}
for line in input:
line_parts = line.split(" bags contain ")
outer_color = line_parts[0]
inner_colors = line_parts[1].split(', ')
rules[outer_color] = {}
for this_bag in inner_colors:
num_color = this_bag[0:(this_bag.find(' bag'))]
inner_color = num_color.lstrip('1234567890 ')
inner_number = num_color.split(" ")[0]
if inner_number == 'no':
inner_number = 0
rules[outer_color][inner_color] = int(inner_number)
# create
def check_bag_contains(rules, outer_color, desired_color, seen_colors=[]):
contents_dict = rules[outer_color]
for this_color in contents_dict:
if this_color == "no other":
return False
elif this_color == desired_color:
return True
elif this_color not in seen_colors:
# not the color we are looking for, but could it contain that color?
if check_bag_contains(rules, this_color, desired_color, seen_colors):
return True
else:
seen_colors.append(this_color)
return False
def count_bag_contents(rules, this_bag_color):
num_bags = 1 # we have this bag at least
contents_dict = rules[this_bag_color]
for color in contents_dict:
if color == "no other":
return num_bags
else:
num_outer_bags = contents_dict[color]
num_inner_bags = count_bag_contents(rules, color)
num_bags = num_bags + (num_outer_bags * num_inner_bags)
return num_bags
if puzzle == 1:
# look for shiny gold in each bag
num_valid = 0
for bag_color in rules:
if check_bag_contains(rules, bag_color, 'shiny gold'):
num_valid = num_valid + 1
print(bag_color+" is valid")
print("Total valid: "+str(num_valid))
elif puzzle == 2:
gold_bag_contents = count_bag_contents(rules, 'shiny gold') - 1 # don't count the gold bag
print("Gold bag contains "+str(gold_bag_contents)+" bags")
elif day == 6:
group_yeses = ''
answer_sum = 0
new_group = True
for line in input:
if len(line) == 0:
answer_sum = answer_sum + len(group_yeses)
group_yeses = ''
new_group = True
continue
if puzzle == 1:
group_yeses = ''.join(set(group_yeses+line))
elif puzzle == 2:
if new_group:
new_group = False
group_yeses = line # at this point everyone has said yes
continue
else:
personset = set(line)
new_group_yeses = ''
for char in group_yeses:
if char in personset:
new_group_yeses = new_group_yeses + char
group_yeses = new_group_yeses
answer_sum = answer_sum + len(group_yeses) # last set
print("Sum: "+str(answer_sum))
elif day == 5:
highest_seat_id = 0
all_seat_ids = []
for line in input:
front_back_info = line[0:7]
left_right_info = line[7:10]
front_back_binary = ""
left_right_binary = ""
for pos in range(7):
if front_back_info[pos] == "F":
front_back_binary += "0"
elif front_back_info[pos] == "B":
front_back_binary += "1"
for pos in range(3):
if left_right_info[pos] == "L":
left_right_binary += "0"
elif left_right_info[pos] == "R":
left_right_binary += "1"
row = int(front_back_binary,2)
column = int(left_right_binary,2)
seat_id = row * 8 + column
all_seat_ids.append(seat_id)
if seat_id > highest_seat_id:
highest_seat_id = seat_id
print("Highest seat id is: "+str(highest_seat_id))
prev_seat_id = None
for this_seat_id in sorted(all_seat_ids):
if prev_seat_id is not None and this_seat_id != prev_seat_id + 1:
print("We have seats "+str(this_seat_id)+" and "+str(prev_seat_id)+" with a seat between them")
prev_seat_id = this_seat_id
elif day == 4:
def validate_passport(puzzle, passport_fields, passport_data):
required_fields = ["byr", "iyr", "eyr", "hgt", "hcl", "ecl", "pid", "cid"]
missing_fields = [field for field in required_fields if field not in passport_fields]
if len(missing_fields) == 0 or missing_fields == ["cid"]:
if puzzle == 1:
return True
else:
for index in range(len(passport_fields)):
this_data = str(passport_data[index])
this_field = passport_fields[index]
if this_field == 'byr' and (len(this_data) != 4 or int(this_data) < 1920 or int(this_data) > 2002):
print('byr')
return False
elif this_field == 'iyr' and (len(this_data) != 4 or int(this_data) < 2010 or int(this_data) > 2020):
print('iyr')
return False
elif this_field == 'eyr' and (len(this_data) != 4 or int(this_data) < 2020 or int(this_data) > 2030):
print('eyr')
return False
elif this_field == 'hgt':
print('hgt')
if not re.search("^([0-9]+(cm|in))", this_data):
return False
if this_data.find('cm') != -1: # dealin' with metric
number_centimeters = int(this_data[0:this_data.find('cm')])
if number_centimeters < 150 or number_centimeters > 193:
return False
else: # dealin' with imperialism
number_inches = int(this_data[0:this_data.find('in')])
if number_inches < 59 or number_inches > 76:
return False
elif this_field == 'hcl' and not re.search("^#([a-f0-9]{6})", this_data):
print('hcl')
return False
elif this_field == 'ecl' and this_data not in ['amb', 'blu', 'brn', 'gry', 'grn', 'hzl', 'oth']:
print('ecl')
return False
elif this_field == 'pid' and (len(this_data) != 9 or not int(this_data)):
print('pid')
return False
return True
else:
return False
valid_passports = 0
passport_fields = []
passport_data = []
for row_num in range(0, len(input)+1):
if row_num >= len(input): # we need an empty line at the end lol
line = ""
else:
line = input[row_num]
if len(line) > 0: # line with data
line_parts = line.split(' ')
for pair in line_parts:
key_value = pair.split(':')
passport_fields.append(key_value[0])
passport_data.append(key_value[1])
else: # blank line, check old user, go to new user
if validate_passport(puzzle, passport_fields, passport_data):
valid_passports = valid_passports + 1
passport_fields = []
passport_data = []
print(str(valid_passports)+" valid passports found")
elif day == 3:
if puzzle == 1:
velocities = [[3,1]]
elif puzzle == 2:
velocities = [[1,1],[3,1],[5,1],[7,1],[1,2]]
mult_product = 1
for velocity in velocities:
x_pos = 0
y_pos = 0
x_vel = velocity[0]
y_vel = velocity[1]
print("Doing velocity: "+str(x_vel)+","+str(y_vel))
trees_encountered = 0
for row_num in range(0, len(input), y_vel):
line = input[row_num]
if x_pos >= len(line):
x_pos = x_pos - len(line)
if line[x_pos] == "#":
trees_encountered = trees_encountered + 1
x_pos = x_pos + x_vel
if puzzle == 2:
mult_product = mult_product * trees_encountered
print(str(trees_encountered)+" trees encountered")
if puzzle == 2:
print("Multiplied product: "+str(mult_product))
elif day == 2:
valid_passwords = 0
for line in input:
line_parts = line.split(' ')
pw_policy_parts = line_parts[0].split('-') # array of 2 values
char = line_parts[1][0]
password = line_parts[2]
if puzzle == 1:
char_count = password.count(char)
min_char_count = int(pw_policy_parts[0])
max_char_count = int(pw_policy_parts[1])
if (char_count >= min_char_count and char_count <= max_char_count):
valid_passwords = valid_passwords + 1
elif puzzle == 2:
position_1 = int(pw_policy_parts[0]) - 1 # they aren't 0-indexed, so policy char x is at python index x-1
position_2 = int(pw_policy_parts[1]) - 1
if (len(password) >= position_2): # check it's even long enough
if ((password[position_1] == char and password[position_2] != char) or (password[position_2] == char and password[position_1] != char)):
valid_passwords = valid_passwords + 1
print(str(valid_passwords)+" passwords are valid")
elif day == 1:
if puzzle == 1:
for line in input:
for line2 in input:
if (int(line)+int(line2))==2020:
print("Result is "+str(int(line) * int(line2)))
if puzzle == 2:
for line in input:
for line2 in input:
for line3 in input:
if (int(line)+int(line2)+int(line3))==2020:
print("Result is "+str(int(line) * int(line2) * int(line3))) |
a7b2aec62b5b7f1a8ebb4b5e3facfeaf3cea2aa9 | saitoshin45/AnimalTetris- | /tetris.py | 917 | 3.65625 | 4 | #saitoshin45 tetris game
import tkinter
#variables for the positions
mouseX = 0
mouseY = 0
mouseC = 0
cursorX = 0
cursorY = 0
#function to get the mouse's positions
def mouse_move(e):
global mouseX, mouseY
mouseX = e.x
mouseY = e.y
def mouse_press(e):
global mouseC
mouseC = 1
def mouse_release(e):
global mouseC
mouseC = 0
def game_main():
fnt =("Times New Roman", 30)
txt = "mouse({},{}){}".format(mouseX, mouseY, mouseC)
cvs.delete("test")
cvs.create_text(456, 384, text=txt, fill="black",font=fnt,tag="test")
root.after(100, game_main)
root = tkinter.Tk()
root.title("mouse input")
root.resizable(False, False)
root.bind("<Motion>", mouse_move)
root.bind("<ButtonPress>",mouse_press)
root.bind("<ButtonRelease>",mouse_release)
cvs = tkinter.Canvas(root, width=912, height = 768)
cvs.pack()
game_main()
root.mainloop()
|
2e85ac86faf369f94a100a6efdadc8cbb53500d1 | AndreiBratkovski/CodeFights-Solutions | /Interview Practice/Arrays/firstNotRepeatingCharacter.py | 818 | 4.25 | 4 | """
Note: Write a solution that only iterates over the string once and uses O(1) additional memory, since this is what you would be asked to do during a real interview.
Given a string s, find and return the first instance of a non-repeating character in it. If there is no such character, return '_'.
Example
For s = "abacabad", the output should be
firstNotRepeatingCharacter(s) = 'c'.
There are 2 non-repeating characters in the string: 'c' and 'd'. Return c since it appears in the string first.
For s = "abacabaabacaba", the output should be
firstNotRepeatingCharacter(s) = '_'.
There are no characters in this string that do not repeat.
"""
def firstNotRepeatingCharacter(s):
for i in range(len(s)):
if i == s.index(s[i]) and s.count(s[i]) == 1:
return s[i]
return '_' |
dcfeb2cdbb6613c8be2925b9b61a08b696c17b15 | adamorhenner/Fundamentos-programacao | /vp2/objeto2.py | 460 | 3.8125 | 4 | class Pessoa:
def __init__(self, nome, cpf, email):
self.nome = nome
self.cpf = cpf
self.email = email
p1 = Pessoa("adamor","065054343", "[email protected]")
p2 = Pessoa("adamo","06505434", "[email protected]")
p3 = Pessoa("adam","0650543", "[email protected]")
p4 = Pessoa("ada","065054", "[email protected]")
print(p1.nome, p1.cpf, p1.email)
p = []
p.append(p1)
p.append(p2)
p.append(p3)
p.append(p4)
for pessoa in p:
print(pessoa.nome, pessoa.cpf, pessoa.email) |
fd7a9eab46b710503c991c10717b215617e08471 | sgrade/pytest | /leetcode/convert_sorted_array_to_binary_search_tree.py | 1,933 | 4.03125 | 4 | # https://leetcode.com/problems/convert-sorted-array-to-binary-search-tree/description/
"""
Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees
of every node never differ by more than 1.
Example:
Given the sorted array: [-10,-3,0,5,9],
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
0
/ \
-3 9
/ /
-10 5
"""
# Definition for a binary tree node.
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
@staticmethod
def sorted_array_to_bst(nums):
"""
:type nums: List[int]
:rtype: TreeNode
"""
def inner_function(arr):
# corner cases
arr_length = len(arr)
if arr_length == 0:
return
mid = int(arr_length / 2)
# print('mid', mid)
root = TreeNode(arr[mid])
# print('root', root.val)
try:
# print('\ntrying LEFT with array:', arr[:mid])
root.left = inner_function(arr[:mid])
except:
return
try:
# print('\ntrying RIGHT with array:', arr[mid+1:])
root.right = inner_function(arr[mid+1:])
except:
return
return root
return inner_function(nums)
# ++++++++++++++
# Helper function
# Utility function to print BST traversal
def bst_traversal_print(node):
if not node:
return
print(node.val)
bst_traversal_print(node.left)
bst_traversal_print(node.right)
sol = Solution()
# inp = [1, 2, 3, 4, 5]
inp = [-10, -3, 0, 5, 9]
x = sol.sorted_array_to_bst(inp)
bst_traversal_print(x)
|
c19baa97e81bd46c5a9f662e3eb2cec86c621c3b | ICCV/coding | /others/of52.py | 466 | 3.578125 | 4 | # Definition for singly-linked list.
# class ListNode(object):
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution(object):
def getIntersectionNode(self, headA, headB):
"""
:type head1, head1: ListNode
:rtype: ListNode
"""
L1,L2 = headA,headB
while L1!=L2:
L1 = headB if L1==None else L1.next
L2 = headA if L2== None else L2.next
return L1 |
2841a3be0a2107c129223ca26d3d7954ffc79d48 | UWPCE-PythonCert-ClassRepos/Self_Paced-Online | /students/NatalieRodriguez/Lesson08/test_Circle.py | 1,835 | 3.59375 | 4 | from Circle import *
import pytest
from math import *
a = Circle(10)
b = Circle(5)
c = Circle(2)
d = Circle(1)
def getter_test():
assert a.radius == 10
assert b.radius == 5
assert c.radius == 2
assert d.radius == 1
assert a.diameter == 20
assert b.diameter == 10
assert c.diameter == 4
assert d.diameter == 2
def setter_test():
a.diameter = 10
assert a.diameter == 10
assert a.radius == 5
a.radius = 5
assert a.diameter == 10
assert a.radius == 5
def area_test():
assert a.area == pi*100
assert b.area == pi*25
assert c.area == pi*4
def init_diameter_test():
aa = Circle.from_diameter(8)
ab = Circle.from_diameter(7)
ac = Circle.from_diameter(6)
assert aa.radius == 4
assert ab.radius == 3.5
assert ac.radius == 3
assert aa.diameter == 8
assert ab.diameter == 7
assert ac.diameter == 6
def str_repr_test():
assert str(a) == "Circle with radius: " + str(a.radius)
assert str(b) == "Circle with radius: " + str(b.radius)
assert repr(a) == 'Circle(12)'
assert repr(b) == 'Circle(1)'
def add_multiple_test():
assert repr(a + b) == "Circle(15)"
assert repr(a * 3) == "Circle(30)"
assert repr(3 * a) == "Circle(30)"
assert a * 3 == 3 * a
def compare_test():
assert a > b
assert b < a
assert a == Circle(10)
assert b == b
assert a != b
assert a >= b
assert b <= a
def len_circumference_test():
assert len(a) == round(2 * pi * 10)
assert a.circumference == 2 * pi * 10
assert len(a) == round(a.circumference)
assert len(b) == round(2 * pi)
assert b.circumference == 2 * pi
def aug_operators_test():
ba = Circle(16)
bb = Circle(20)
ba += bb
bb *= 2
assert ba == Circle(42)
assert bb == Circle(40)
assert bb/2 == Circle(20) |
72c91389167bd08dd363dd1fe132e3c919aad4ea | xhimanshuz/time-pass | /Python/fileio_ui.py | 454 | 3.640625 | 4 | #Input Data by user in file
from sys import argv
from os.path import exists
source, filename = argv
print("Enter Data in %r" %filename)
print("Currently in %r \n" %filename)
ofile = open(filename, "r+w+")
print(ofile.read())
line1 = raw_input("Enter Text to Line 1: ")
line2 = raw_input("Enter Text to Line 2: ")
ofile.write(line1)
ofile.write(line2)
ofile = open(filename, "r")
print("Printing %r Text: \n " %filename)
print(ofile.read())
ofile.close()
|
37b9acd8596877fb6d4ee7252ff124a5db16a09d | mstrzelczyk4/Exercism---python-track | /wordy/wordy.py | 983 | 3.796875 | 4 | import re
def answer(question):
operators = ["plus", "minus", "multiplied", "divided"]
tab = [word for word in question[:-1].split() if re.search("[0-9]+", word) or word in operators]
if len(tab) % 2 == 0 or not re.search("[0-9]+", question[-2]):
raise ValueError("Invalid question!")
for x in range(len(tab)):
if x % 2 == 0:
try:
tab[x] = int(tab[x])
except ValueError:
raise ValueError("Invalid question!")
elif tab[x] not in operators:
raise ValueError("Invalid question!")
if len(tab) == 1:
return tab[0]
result = tab[0]
i = 1
while i < len(tab):
if tab[i] == "plus":
result += tab[i + 1]
elif tab[i] == "minus":
result -= tab[i + 1]
elif tab[i] == "multiplied":
result *= tab[i + 1]
elif tab[i] == "divided":
result /= tab[i + 1]
i += 2
return result
|
e75ca20199a09434371b6a9f6c5e797a5807a7a2 | SebastianAthul/pythonprog | /OOP/INHERITANCE/person_child.py | 735 | 4 | 4 | #MULTIPLE INHERITANCE
class Person:
def set(self,name,age,address):
self.name=name
self.age=age
self.address=address
print("Name=",self.name)
print("AGE=",self.age)
class Child:
def setvalue(self,school,std):
self.school=school
self.std=std
print("school=",self.school)
print("std=",self.std)
class Student(Person,Child): #multiple inheritance, inheriting proprty of both Person and child classes
def printvalue(self,rollno,marks):
self.rollno=rollno
self.marks=marks
print("Roll=",self.rollno)
print("marks=",self.marks)
obj=Student()
obj.set("ATHUL",23,"kurisingal")
obj.setvalue("LUMINAR",12)
obj.printvalue(18,45)
|
dc9ae09a62ac884572a56bbd649c9c40e31da970 | karolinanikolova/SoftUni-Software-Engineering | /2-Python-Fundamentals (Jan 2021)/Course-Exercises-and-Exams/06-Objects-and-Classes/02_Exercises/02-Weapon.py | 1,069 | 4.0625 | 4 | # 2. Weapon
# Create a class Weapon. The __init__ method should receive an amount of bullets (integer). Create an attribute called bullets, to store them.
# The class should also have the following methods:
# • shoot() - if there are bullets in the weapon, reduce them by 1 and return a message "shooting…".
# If there are no bullets left, return: "no bullets left"
# You should also override the toString method, so that the following code: print(weapon) should work.
# To do that define a __repr__ method that returns "Remaining bullets: {amount_of_bullets}".
# You can read more about the __repr__ method here: link
class Weapon:
def __init__(self, bullets):
self.bullets = bullets
def shoot(self):
if self.bullets > 0:
self.bullets -= 1
return "shooting..."
return "no bullets left"
def __repr__(self):
return f"Remaining bullets: {self.bullets}"
# weapon = Weapon(5)
# weapon.shoot()
# weapon.shoot()
# weapon.shoot()
# weapon.shoot()
# weapon.shoot()
# weapon.shoot()
# print(weapon)
|
0eb02469796ba91bad5473c6f3f6c73f3b8be1db | praba230890/Simultaneity | /queue_threading.py | 558 | 3.53125 | 4 | import threading, queue
import time
q = queue.Queue()
def task(i):
d = 0
for v in range(100000):
d += 1
q.put(d)
print("Thread: %s" % (i))
time.sleep(1)
if __name__ == "__main__":
tasks = []
for i in range(100):
add_task = threading.Thread(target=task, args=(i,))
add_task.start()
tasks.append(add_task)
for task in tasks:
task.join()
out = 0
while not q.empty():
out += q.get()
q.task_done()
print("Final result of 100 times 100000: %s" % out) |
23ed86aa27ee01da36c29b9f43575a81c7e296ea | Kushbak/python-tasks | /Neobis/Logic/#biggestDigit.py | 473 | 3.71875 | 4 | hundred = []
def setDig(n):
i = 0
while n > i:
i += 1
anyNum = int(input(str(i) + ' число: '))
hundred.append(anyNum)
showArr()
def showArr():
maxNum = max(hundred)
indexOfMax = hundred.index(maxNum)
print('Самое большое число: ' + str(maxNum))
print('Его индекс: ' + str(indexOfMax + 1))
nums = int(input('Количество чисел, которые вы хотите ввести: '))
setDig(nums)
|
e9e85d18792bf3175a691fdb3cff116435a645ef | JinzhuoYang/hogwarts | /class_pritice/class_pritice1.py | 682 | 3.65625 | 4 | class person:
def __init__(self,name,age,gender):
self.name = name
self.age = age
self.gender = gender
def set_att(self,value):
self.value = value
def eat(self):
print(f" name : {self.name}, age : {self.age}, gender : {self.gender} i'm eat")
def drink(self):
print(f" name : {self.name}, age : {self.age}, gender : {self.gender} i'm drink")
def run(self):
print(f" name : {self.name}, age : {self.age}, gender : {self.gender} i'm run")
goulin = person("goulin" , 25 ,"femail")
yangjinzhuo = person("yangjinzhuo" , 24 , "mail")
print(goulin.name)
goulin.run()
goulin.set_att("fat")
print(goulin.value) |
56c2e62daffd1d133cbda5a484ddcf60f20c2d26 | dimitar-daskalov/SoftUni-Courses | /python_advanced/labs_and_homeworks/01_lists_as_stacks_and_queues_exercise/02_maximum_and_minimum_element.py | 623 | 3.5 | 4 | manipulation_stack = []
commands_number = int(input())
for _ in range(commands_number):
command = input()
if command.startswith("1"):
element = int(command.split()[1])
manipulation_stack.append(element)
elif command == "2":
if manipulation_stack:
manipulation_stack.pop()
elif command == "3":
if manipulation_stack:
print(max(manipulation_stack))
elif command == "4":
if manipulation_stack:
print(min(manipulation_stack))
manipulation_stack = [str(el) for el in manipulation_stack][::-1]
print(", ".join(manipulation_stack)) |
a8f4d0a132e0fb22a367e067692ac81540537b7b | rafaelperazzo/programacao-web | /moodledata/vpl_data/380/usersdata/315/95895/submittedfiles/principal.py | 162 | 3.671875 | 4 | # -*- coding: utf-8 -*-
from minha_bib import *
#COMECE AQUI ABAIXO
for x in range(-10,10,1):
a = ((x**2)-(2*x)+1)
if a ==0:
print(i)
|
bdac19986e18ad413e11500c344aaf3df0b68ea6 | doPggy/py-try | /3-str.py | 1,562 | 4.21875 | 4 | # 单引双引号都可以创建字符串
s = "hello world"
print(s)
s = 'hello, world'
print(s)
# 简单操作
## 加法
s = 'h' + 'w'
print(s)
## 与数字相乘
print("echo" * 3)
# 字符串方法
## 分割
line = "1 2 3 \t 4 5"
print(line.split())
line = '1, 2, 3, 4, 5'
print(line.split(','))
## 连接
s = ','
'''以 s 为连接符连接成一个字符串'''
ss = s.join(['1', '2', '3']) # char list
print(ss)
## 替换
s = "hello world"
'''s.replace(p1, p2), 将 s 的 p1 部分换成 p2。'''
ss = s.replace('world', '111')
print(ss)
## 大小写转化
print('hello'.upper())
print('HELLO'.lower())
## 去除多余空白字符
s = " he\t\n "
print(s.strip())
print(s.lstrip())
print(s.rstrip())
## 查看更多成员方法
print(dir(s))
# 使用 \ 来换行
"""最后一行不用加 '\'"""
a = "hellll" \
"1111" \
"my name"
print(a)
# 强制转化为 str
print(str(1.1 + 2.2))
print(repr(1.1 + 2.2))
# 整数 -> 不同进制 str
'''to 16 进制'''
print(hex(255))
'''to 8 进制'''
print(oct(255))
'''to 2 进制'''
print(bin(255))
# str -> int
print(int('23'))
'''指定进制'''
print(int('FF', 16))
print(int('377', 8))
print(int('11111111111', 2))
# str -> float
print(float('4.55'))
# 格式化字符串
print('{} {} {}'.format('a', 'b', 'c'))
## 指定参数位置
print('{2} {1} {0}'.format('a', 'b', 'c'))
## 指定参数名称
print('{color} {0} {x} {1}'.format(10, 'foo', x = 1.5, color = 'blue'))
## 占位符
'''类似 c 的 printf'''
print('{color:10} {0:10d} {x} {1}'.format(10, 'foo', x = 1.5, color = 'blue')) |
2018849a56da6195fd7b6734a90e5a7ef5830f43 | sjogleka/General_codes | /criticalRouters.py | 3,197 | 3.84375 | 4 | import collections
'''
def FindCriticalNodes(numEdges, numNodes, edges):
# Get all the node
nodes = []
for i in range(numEdges):
# Get nodes
if edges[i][0] not in nodes:
nodes.append(edges[i][0])
if edges[i][1] not in nodes:
nodes.append(edges[i][1])
# Get all the neighbours
neighbours = {node: [] for node in nodes}
for i in range(numEdges):
# Get neighbours
neighbours[edges[i][0]].append(edges[i][1])
neighbours[edges[i][1]].append(edges[i][0])
def dfs(parent, seen):
nonlocal neighbours
# print("Visiting node {}".format(parent))
# Mark the parent as explored
seen[parent] = 1
# Get all the neighbours from parent
neig = neighbours[parent]
# Iterate all the neighbours
for i in range(len(neig)):
# return if this node was exlored
if seen[neig[i]] == 1:
continue
# DFS
dfs(neig[i], seen)
# Loop over all the nodes
output = []
for i in range(numNodes):
explored = {node: 0 for node in nodes}
# Mark the cutting point as explored as we
# don't wanna explore this point
explored[nodes[i]] = 1
# DFS
# Traverse from 0 every time
total_visited = 1
dfs(nodes[0], explored)
print("Node {}: Explores {} nodes.".format(nodes[i], sum(explored.values())))
# If all nodes are explored, it means it's not articulate point
if (sum(explored.values()) < numNodes):
output.append(nodes[i])
print(neighbours, nodes)
print(output)
if __name__ == "__main__":
numNodes, numEdges = 7, 7
#edges = [[0, 1], [0, 2], [1, 3], [2, 3], [2, 5], [5, 6], [3, 4]]
edges = [[1, 2], [1, 3], [2, 4], [3, 4], [3, 6], [6, 7], [4, 5]]
FindCriticalNodes(numNodes, numEdges, edges)
'''
# Input:
# numNodes = 7,
# numEdges = 7,
# edges = [[0, 1], [0, 2], [1, 3], [2, 3], [2, 5], [5, 6], [3, 4]]
# Output:
# [2, 3, 5]
def findcriticalnodes(n, edges):
g = collections.defaultdict(list)
for conn in edges:
g[conn[0]].append(conn[1])
g[conn[1]].append(conn[0])
visited = [0] * n
isarticulationpoints = [0] * n
order = [0] * n
low = [0] * n
seq = 0
def dfs(u, p):
nonlocal seq
visited[u] = 1
order[u] = low[u] = seq
seq = seq + 1
children = 0
for to in g[u]:
if to == p:
continue
if visited[to]:
low[u] = min(low[u], low[to])
else:
dfs(to, u)
low[u] = min(low[u], low[to])
if order[u] <= low[to] and p != -1:
isarticulationpoints[u] = 1
children += 1
if p == -1 and children > 1:
isarticulationpoints[u] = 1
dfs(0, -1)
ans = []
for i in range(len(isarticulationpoints)):
if isarticulationpoints[i]:
ans.append(i)
return ans
if __name__ == "__main__":
a = [[1, 2], [1, 3], [2, 4], [3, 4], [3, 6], [6, 7], [4, 5]]
print(findcriticalnodes(7, a)) |
9bfa12055dc14833cc06613977ae83e784953612 | BarisAkkus/Main | /Sezon1/Ders10-Formatting.py | 571 | 4.25 | 4 | for i in range(1, 13):
print("No.{0:2} squared is {1:3} and cube is {2:4}".format(i,i**2,i**3))
print()
for i in range(1, 13):
print("No.{0:2} squared is {1:<3} and cube is {2:<4}".format(i,i**2,i**3))
#sola dayalı
print()
print("Pi is approximately {0:<12}".format(22 / 7 ))
print("Pi is approximately {0:<12f}".format(22 / 7 ))
print("Pi is approximately {0:<12.50f}".format(22 / 7 ))
print("Pi is approximately {0:<52.50f}".format(22 / 7 ))
print("Pi is approximately {0:<62.50f}".format(22 / 7 ))
print("Pi is approximately {0:<72.50f}".format(22 / 7 ))
|
6c0188ab2a17ddb968f9476865101313531a5a98 | ErvinHRivasM/Python | /basicPython/conversor_mejorado_v_alfa.py | 990 | 4.09375 | 4 | """
Bienvenido al conversor de monedas
1 - Pesos Colombianos
2 - Pesos Argentinos
3 - Pesos Mexicanos
Elige una opción:
"""
opcion = input("¿Cuanto pesos colombiano tienes?")
if opcion == 1:
pesos = input("¿Cuanto pesos colombiano tienes?")
pesos = float(pesos)
valor_dolar = 3846.40
dolares = pesos / valor_dolar
dolares = round(dolares,2)
dolares = str(dolares)
print("Tienes $"+dolares+" dolares")
elif opcion == 2:
pesos = input("¿Cuanto pesos Argentinos tienes?")
pesos = float(pesos)
valor_dolar = 98.10
dolares = pesos / valor_dolar
dolares = round(dolares,2)
dolares = str(dolares)
print("Tienes $"+dolares+" dolares")
elif opcion == 3:
pesos = input("¿Cuanto pesos Mexicanos tienes?")
pesos = float(pesos)
valor_dolar = 19.87
dolares = pesos / valor_dolar
dolares = round(dolares,2)
dolares = str(dolares)
print("Tienes $"+dolares+" dolares")
else:
print("Elige una opción valida") |
a39e0196f034b1ea086a3d321beb605126acc78d | RobertaLara/BankAccount | /Bank.py | 2,931 | 4.0625 | 4 | # Consulta ao saldo na conta corrente e liberação do valor somente se for dentro do valor disponível na conta
# Programadora Roberta Lara
import os
def clear(): # Função para limpar console
os.system('clear')
clear()
print("\n\n\tBANCO 24 HORAS - Não aceite ajuda de estranhos\n")
auxiliar = 0 # Declarei um auxiliar para encerrar o while quando o usuário desejar encerrar a operação
saldo = 500.00 # Saldo do usuário é inicialmente fixo
while (auxiliar == 0): # Somente vai sair do while quando o auxiliar for diferente de 0
operacao = input("\nQual a operação desejada?\n\n" # Instrução para o usuário digitar qual operação ele deseja
"Para consultar saldo, digite 1\n"
"Para saque, digite 2\n"
"Para finalizar a operação, digite 3\n")
while (operacao != '1') and (operacao != '2') and (operacao != '3'): # Caso usuário digite um número diferente
operacao = input(" OPÇÃO INVÁLIDA! DIGITE OPERAÇÃO NOVAMENTE.\n")
clear()
if (operacao == '3'): # Caso usuário solicite finalizar a operação, uma mensagem é exibida e o progama é encerrado
print("\n\n\tOBRIGADO POR USAR O BANCO 24 HORAS!\n\n")
auxiliar = 1 # Alteração do valor do auxiliar para encerrar o while macro
if (operacao == '1'): # Caso o usuário solicite ver o saldo, o mesmo será exibido na tela
print("\n\n\tSALDO DISPONÍVEL PARA SAQUE: ",round(float(saldo),2),"\n\n")
elif (operacao == '2'): # Caso usuário solicite sacar valor
valorSaque = input("\n\nDigite valor que deseja sacar: ") # Instrução para o usuário digitar valor do saque
while (float(valorSaque) > saldo) or (float(valorSaque) < 0 or (int(float(valorSaque)) != float(valorSaque))):
# Valor do saque não pode ser maior que o saldo, negativo ou conter casas decimais (não trabalhamos com moedas)
valorSaque = input("\n\tSALDO INSUFICIENTE OU VALOR INVÁLIDO! DIGITE OUTRO VALOR.\n\n")
clear()
print("\n\n\tVALOR SACADO: ",round(float(valorSaque),2),"\n\n") # Informa valor sacado
saldo = saldo - float(valorSaque) # Subtrai o valor sacado do saldo, gerando um saldo atualizado
if (auxiliar == 0):
simNao = input("Dejesa fazer mais alguma operação?\n\n" # Opção do usuário continuar com outra operação ou não
"Sim, digite 1\n" # Se usuário quiser continuar, todo o processo é repetido
"Não, digite qualquer outro valor\n")
if (simNao != '1'): # Caso ele não queira continuar, uma mensagem é exibida e o progama é encerrado
clear()
print("\n\n\tOBRIGADO POR USAR O BANCO 24 HORAS!\n\n")
auxiliar = 1 # Alteração do valor do auxiliar para encerrar o while macro
|
5db87bbf83793956f96325a6baf8b13ff8f530aa | grand-mother/h5py-examples | /examples/units.py | 3,566 | 3.78125 | 4 | #! /usr/bin/env python3
# The following example illustrates how numerical data can be wrapped with
# units using the Pint package.
#
# Note that while using Physical units can prevent some type of bugs it can
# also create new ones. In particular when wrapping data with units one must
# take care if a copy or a reference of the data is returned. Performance wise
# references are better for large data sets however they can lead to unexpected
# results, i.e. bugs.
import h5py
import numpy
# First we create a new unit registry and define some shortcuts. Note that this
# would actually be imported from a dedicated package, e.g. as:
# `from grand import Quantity, units`
import pint
units = pint.UnitRegistry()
Quantity = units.Quantity
# The unit registry starts populated with standard units. Extra / custom units
# can be added using a definition file or programmatically, e.g. as:
units.define('bigfoot = 3 * meter = Bf')
# See: https://pint.readthedocs.io/en/0.10.1/defining.html#defining for more
# examples
# Let us use dummy positions data for this illustration. The Quantity
# constructor allows to wrap data with a unit. Note that the new Quantity holds
# a reference to the initial data, i.e. the data are NOT copied
data = numpy.eye(3, dtype='f8')
positions = Quantity(data, units.m)
# If a copy is desired one can use the multiplication operator instead, as:
positions_copy = data * units.m
# Changing the units inplace is done with the `ito` method.
positions.ito(units.cm) # <== This changes the unit inplace to cm. Note
# that the data are also converted accordingly,
# i.e. the initial data array IS modified
print(data[0,0]) # <== Now data[0,0] is 100, no more 1!
# If a copy is desired then the `to` method can be used instead, e.g. as:
positions_cm = positions.to(units.cm)
# Note however that IF the initial Quantity already has the desired unit then
# a REFERENCE is returned instead of a copy! Therefore the following code would
# be better if a copy is desired in all cases:
if positions.units == units.cm:
positions_cm = positions.copy()
else:
positions_cm = positions.to(units.cm)
data[0, 0] = 0
print(positions[0,0]) # <== This is 0 because it refers to data. The
print(positions_copy[0,0]) # copies below are not modified as expected
print(positions_cm[0,0])
positions[0, 0] = 100 * units.cm
# Let write and read back the Quantity to and HDF5 file. Pint is not natively
# supported by H5Py. Therefore we use an attribute (units) in order to store
# the units information
with h5py.File('example.hdf5', 'w') as f:
dataset = f.create_dataset('positions',
data=positions.magnitude) # <== Those are the
# numerical values
dataset.attrs['units'] = str(positions.units) # <== A string representation
# of the unit is written
# to the HDF5 file
with h5py.File('example.hdf5', 'r') as f:
dataset = f['positions'] # <== This is only a handle. It does not read
# the data from file
positions = Quantity(dataset[:], # <== Build the Quantity from
dataset.attrs['units']) # numerical data and the
# unit string
print(positions)
print(type(positions.magnitude))
print(numpy.all(positions == positions_copy))
|
a986f208e42103ac976ee17b213e0711ac31745b | CNZedChou/python-web-crawl-learning | /spider/codes/37_variable_thread.py | 788 | 3.546875 | 4 | # !/usr/bin/python3
# -*- coding: utf-8 -*-
"""
@Author : Zed
@Version : V1.0.0
------------------------------------
@File : 37_variable_thread.py
@Description :
@CreateTime : 2020-5-8 14:21
------------------------------------
@ModifyTime :
"""
from threading import Thread
import time
import random
g_num = 100#104--GIL#100
def work1():
global g_num
for i in range(3):
g_num += 1
time.sleep(random.random())
print('in work1,gum=%d' % g_num)
def work2():
global g_num
for i in range(3):
g_num += 1
time.sleep(random.random())
print('in work2,gum=%d' % g_num)
if __name__ == '__main__':
t1 = Thread(target=work1)
t2 = Thread(target=work2)
t1.start()
t2.start()
|
93b728a28fe8f3ffcf2926837ab97bdfe992d23e | Long0Amateur/Self-learnPython | /Chapter 6 Strings/Problem/16. A program asks user their name and generates offer.py | 428 | 3.640625 | 4 | #
s = input('Enter name:')
s1 = s.split()[0]
print('Dear',s+',\n')
print('I am pleased to offer you our new Platinum Plus Reward card at a special',end=' ')
print('introductory APR of 47.99%.',s1+',','an offer like this does not come along',end=' ')
print('every day, so I urge you to call now toll-free at 1-800-314-1592.', end=' ')
print('We cannot offer such a low rate for long,',s1+',','so call right away.')
|
edd0fa92f5ee53fb114cb39361c00a0882cc12e6 | ARTIC-TTS-experiments/2021-ICASSP | /lib/densenet.py | 2,121 | 3.515625 | 4 | from keras.layers import BatchNormalization, Dropout, Flatten, Dense, Activation
import numpy as np
# Function for creating a dense layer(s)
def dense_block(layer, n_neurons, flatten=True, inner_activation='relu', last_activation='sigmoid', batch_norm=True,
batch_norm_after_activation=True, dropout=None, name='dense'):
# Check input
assert isinstance(n_neurons, (tuple, list)) and len(n_neurons) > 0, 'Input dense layers must be tuple or list of ' \
'at least 1 elements, typically (n, 1) or (1)'
# Check input dropout
if dropout is None:
dropout = list(np.zeros(len(n_neurons)-1))
assert isinstance(dropout, (tuple, list)) and len(dropout) == len(n_neurons)-1, \
'Input dense layers must be tuple or list of the same length as n_neurons-1'
if flatten:
layer = Flatten()(layer)
# Add inner layers
if batch_norm:
for i, (n, d) in enumerate(zip(n_neurons[:-1], dropout)):
layer = Dense(n, name='{}{}'.format(name, i+1))(layer)
if batch_norm_after_activation:
layer = Activation(inner_activation)(layer)
if d > 0:
layer = Dropout(d, name='{}_dropout{}_{}'.format(name, i+1, d))(layer)
layer = BatchNormalization(name='{}_bn{}'.format(name, i+1))(layer)
else:
layer = BatchNormalization(name='{}_bn{}'.format(name, i+1))(layer)
layer = Activation(inner_activation)(layer)
if d > 0:
layer = Dropout(d, name='{}_dropout{}_{}'.format(name, i+1, d))(layer)
else:
for i, (n, d) in enumerate(zip(n_neurons[:-1], dropout)):
layer = Dense(n, activation=inner_activation, name='{}{}'.format(name, i + 1))(layer)
if d > 0:
layer = Dropout(d, name='{}_dropout{}_{}'.format(name, i+1, d))(layer)
# Add the last dense layer - the prediction layer
layer = Dense(n_neurons[-1], activation=last_activation, name='predictions')(layer)
return layer
|
c5cc900c47e979eb91f96b4a206834925577f311 | jasoncsonic/CS313E | /Intervals.py | 3,703 | 4.40625 | 4 | # File: Intervals.py
# Description: A program that scans a list of tupples and sees if they are overlapping with one another. Whichever tuples are no
#longer overlapping with one another are sent to another list that will tell the user which tuples are no longer overapping.
# Student's Name: Peyton Breech
# Student's UT EID: pb23489
# Course Name: CS 313E
# Unique Number: 50205
# Date Created: 9/9/2019
# Date Last Modified: 9/9/2019
#These are the two lists that will be needed to track the entire list of the data file for the intervals, the list that keeps track of
#the tuples that do not intersect, and the variable that opens the file.
tupleList = []
nonOverLapList = []
f = open("D:\CS313E\intervals.txt", "r")
#This function is used to strip each line of the file and store it as a tupple within the list. It turns them into strings initially
#but then they are converted into integers so that they can be sorted ascending based on the [x][0] value of the tuple. It then
#sends the list to another functioned to be filtered.
def main():
#Loop made to go through each line within the file.
for line in f:
line = line.strip()
interval = line.split(" ")
num1 = int(interval[0])
num2 = int(interval[1])
tupleList.append((num1, num2))
#Closes the txt file we have open to gather our tuples.
f.close()
#Sorts the list that we create of the tuples.
tupleList.sort()
checkLapping(tupleList, nonOverLapList, f)
#This function is used to check the lists to see if tuple n and tuple n+1 are overlapping. If they are, it will combine both tuples
#making it tuple n. Once tuple n and tuple n+1 are no longer overlapping, it will send that tuple to the list that is designated for the
#non overlapping tuples which will be printed in the next function.
def checkLapping (tupleList, nonOverLapList, f):
#Used to identify which tuple we are currently on
y = 1
#keeps track of the current low value and high value within the current tupple.
currentLowNum = 0
currentHighNum = 0
#keeps track of the lowest value we have within our given overlapping tuples, and highest number we have within our given
#overlapping tuples.
lowestNum = tupleList[0][0]
highestNum = tupleList[0][1]
#loop that is used to filter through the tuples and see which ones are overlapping.
while y < len(tupleList):
currentLowNum = tupleList[y][0]
currentHighNum = tupleList[y][1]
#If the highest value of the tuple we are given/created is higher than the n+1 tuple's lower value and lower than the
#high number of the n+1 tuple, then we will know the tuples are overlapping.
if highestNum > currentLowNum and highestNum < currentHighNum:
highestNum = currentHighNum
#If the if statement above is false, then the tuples are no longer overlapping and the current tuple we are on will be sent
#to the list of the non-overlapping tuples.
else:
nonOverLapList.append((lowestNum, highestNum))
highestNum = currentHighNum
lowestNum = currentLowNum
y = y+1
printList(tupleList, nonOverLapList, f)
#This function is made to print the non intersecting intervals within our given data.
def printList (tupleList, nonOverLapList, f):
print("Non-intersecting Intervals:")
#Value used to loop the while loop so that we can print out all of the non-overlapping intervals.
wrong = 0
while wrong < len(nonOverLapList):
print(nonOverLapList[wrong])
wrong = wrong + 1
main() |
3dd9201b0b228fecabb349efb0bd1903fc6bf09b | szabgab/slides | /python/examples/basics/calculator_argv.py | 454 | 3.5625 | 4 | import sys
def main():
if len(sys.argv) < 4:
exit("Usage: " + sys.argv[0] + " OPERAND OPERATOR OPERAND")
a = float(sys.argv[1])
b = float(sys.argv[3])
op = sys.argv[2]
if op == '+':
res = a + b
elif op == '-':
res = a - b
elif op == '*':
res = a * b
elif op == '/':
res = a / b
else:
print("Invalid operator: '{}'".format(op))
exit()
print(res)
main()
|
39d70e9babb3ef7ee258054893d5afc872b70e40 | wbshobhit1/Python3.7 | /finally_else.py | 251 | 3.703125 | 4 | f1 = open("eyes.txt")
try:
f = open("water.txt")
except Exception as e:
print(e)
else:
print("This will run only if except is not running")
finally:
print("Run this anyway...")
f.close()
f1.close()
print("Important to run")
|
07607c9b673d9a5145848e9cd607a1cd1111ea73 | sheng1993/coding-problems | /interview/04_tree_and_graphs/12_paths_with_sum.py | 1,236 | 3.546875 | 4 | # Paths with Sum: You are given a binary tree in which each node contains an integer value (which
# might be positive or negative). Design an algorithm to count the number of paths that sum to a
# given value. The path does not need to start or end at the root or a leaf, but it must go downwards
# (traveling only from parent nodes to child nodes).
from utils.models.trees import Node
from collections import defaultdict
def count_paths_with_sum(node:Node, target: int):
return count_paths_with_sum(node, target, 0, defaultdict(lambda: 0))
def count_paths_with_sum(node :Node, target: int, running: int, table:defaultdict):
if not node: return 0
running += node.val
sum = running - target
total_paths = table[sum]
if running == target:
total_paths += 1
increment_hash_table(table, running, 1)
total_paths += count_paths_with_sum(node.left, target, running, table)
total_paths += count_paths_with_sum(node.right, target, running, table)
increment_hash_table(table, running, -1)
return total_paths
def increment_hash_table(table: defaultdict, key, delta):
new_count = table[key] + delta
if new_count == 0:
del table[key]
else:
table[key] = new_count |
3536d39f0c2ea49e6888a96ede54aa1be165896a | maygrey/RimeIce | /Codeeval/primepalindrome.py | 936 | 3.90625 | 4 | '''
Codeeval challenge 3
Created on 02/06/2014
@author: maygrey
'''
import sys
def search_primes(n):
"""Search all the primes from 2 to n"""
num = [2]
i = 3
while i < n:
for j in num[:]:
if i % j == 0:
i = i + 1
break
else:
num.append(i)
i = i + 1
return num
def iden_palindrome(num):
"""Identifies all the palindromes in list 'num' """
tmp = []
for i in range(len(num)):
tmp.append(str(num[i]))
for i in range(len(tmp)):
for j in range(len(tmp[i])):
if tmp[i][j] != tmp[i][len(tmp[i])-j-1]:
break
else:
result =tmp[i]
print(result),
if __name__ == '__main__':
"""I search all the primes till 1000 and identify the palindromes"""
primes = search_primes(1000)
iden_palindrome(primes)
sys.exit(0) |
3f01872b9ddb442b7f94b29ee9d026ee82e77735 | super3/PyDev | /Old Projects/ident/Helper.py | 615 | 3.65625 | 4 | # Name: Helper.py
# Author: Super3(super3.org)
import random
def FiletoArray(filename):
"""Converts a .txt file to list"""
try:
tmp = []
file = open(filename)
except:
print("Error Reading File:",filename)
else:
for line in file:
line = line.strip()
line = line.lower()
tmp.append(line)
file.close()
return tmp
def ArraytoFile(array, filename):
"""Converts a list to a .txt file"""
file = open(filename+'.txt', 'w')
for line in array:
file.write(line+"\n")
file.close()
def getRandVal(aList):
"""Returns a random value from a list"""
return aList[random.randrange(len(aList))] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.