blob_id
stringlengths 40
40
| repo_name
stringlengths 6
108
| path
stringlengths 3
244
| length_bytes
int64 36
870k
| score
float64 3.5
5.16
| int_score
int64 4
5
| text
stringlengths 36
870k
|
---|---|---|---|---|---|---|
3778d1779d42cd18e94218babea4582cd4259b93 | simamumu/python_library | /数学/素因数分解.py | 780 | 3.5625 | 4 |
# 先にふるってprimesを作る
def hurui(N):
koho = list(range(2,N))
prime = []
limit = math.sqrt(koho[-1])
while True:
p = koho[0]
if limit <= p:
prime = prime + koho
break
else:
prime.append(p)
koho = [e for e in koho if e%p != 0]
return prime
N = 10000
MAX = 100000
primes = hurui(math.sqrt(MAX))
# N を素因数分解
def factorization(N):
ans = defaultdict(int)
L = len(primes)
pind = 0
while N > 1:
p = primes[pind]
while N%p == 0:
N //= p
ans[p] += 1
pind += 1
if pind >= L:
ans[N] += 1
break
return ans
facs = factorization(N)
for p,n in facs.items():
print(p,n)
|
8db2c5b49559d9b3e9d47e21a0181948f987c6f5 | carlosvcerqueira/Projetos-Python | /ex032.py | 463 | 3.65625 | 4 | from datetime import date
ano = int(input('Que ano quer analisar? Coloque 0 para analisar o ano atual: '))
cores = {'limpa': '\033[m', 'Vermelho': '\033[1:34:31m', 'Roxo': '\033[35:45m', 'amarelo': '\033[33:33m'}
if ano == 0:
ano = date.today().year
if ano % 4 == 0 and ano % 100 != 0 or ano % 400 == 0:
print('O ano {}{}{} é BISSEXTO!'.format(cores['Vermelho'], ano, cores['limpa']))
else:
print('O ano {} NÃO é BISSEXTO!'.format(ano))
|
59185a63ac67ccf751b061c314f744c1f628dd6b | danylagacione/Codility | /Lesson2/CyclicRotation.py | 1,616 | 4.28125 | 4 | # CyclicRotation
#
# Uma matriz A consistindo de N inteiros é fornecida.
# A rotação da lista significa que cada elemento é deslocado para a direita por um índice,
# e o último elemento da lista é movido para o primeiro lugar.
# Por exemplo, a rotação da lista A = [3, 8, 9, 7, 6] é [6, 3, 8, 9, 7]
# (os elementos são deslocados para a direita por um índice e 6 é movido para o primeiro lugar).
#
# O objetivo é girar a matriz A K vezes; isto é, cada elemento de A será deslocado para o K tempo certo.
#
# Escreva uma função:
#
# solução def (A, K)
#
# que, dada uma lista A que consiste em N números inteiros e um número inteiro K,
# retorna a lista A girada K vezes.
#
# Por
# exemplo, dado
#
# A = [3, 8, 9, 7, 6]
# K = 3
#
# a
# função deve retornar[9, 7, 6, 3, 8].Foram realizadas três rotações:
#
# [3, 8, 9, 7, 6] -> [6, 3, 8, 9, 7]
# [6, 3, 8, 9, 7] -> [7, 6, 3, 8, 9]
# [7, 6, 3, 8, 9] -> [9, 7, 6, 3, 8]
# Por outro exemplo, dado
#
# A = [0, 0, 0]
# K = 1
# a função deve retornar[0, 0, 0]
#
# Dado
#
# A = [1, 2, 3, 4]
# K = 4
# a função deve retornar[1, 2, 3, 4]
#usar o pop para tirar o último item da lista e depois em uma variável o insert para inserir no começo da lista
A = [3, 8, 9, 7, 6]
def solution(A:list , k):
for item in range(k):
ultimo = A[-1]
restante = A[:-1]
A = [ultimo, *restante]
return A
A = [3, 8, 9, 7, 6]
print(solution(A,3))
# def solution(A:list, k):
# for item in range(k):
# ultimo = A.pop(-1)
# inserindo = A.insert(0, ultimo)
# A = [ultimo, *inserindo]
# return A
|
13e56e329d324199f27814f9669f4ba7b88c96fd | connormullett/PythonPacman | /pacman.py | 882 | 3.53125 | 4 |
class Pacman:
def __init__(self):
self.total_points = 5000
self.points = 5000
self.lives = 3
self.ghost_multiplier = 200
self.lives_gained = 0
def add_points(self, points):
self.points += points
self.total_points += points
if self.points >= 10000:
self.gain_life()
self.points -= 10000
def gain_life(self):
self.lives += 1
self.lives_gained += 1
def lose_life(self):
self.lives -= 1
def ghost_killed(self):
self.ghost_multiplier *= 2
self.points += self.ghost_multiplier
self.total_points += self.ghost_multiplier
fruits = {
'Cherry': 100,
'Strawberry': 300,
'Orange': 500,
'Apple': 700,
'Melon': 1000,
'Galaxian': 2000,
'Bell': 3000,
'Key': 5000
}
|
c3050b32fdc495a20d31a07266e070fafcd074d0 | optimus-kart/python-multithreading | /examples.py | 12,887 | 3.53125 | 4 | class Test:
def __init__(self):
self.tests = {}
def add(self, fn, tests):
self.tests[fn] = tests
def run(self):
for fn, tests in self.tests.items():
for test in tests:
self.run_test(fn, test)
def run_test(self, fn, test):
test.setdefault("args", ())
test.setdefault("kwargs", {})
test.setdefault("returns", None)
test.setdefault("raises", None)
result = "Testing {}(".format(fn.__qualname__)
if test["args"]:
s = [str(x) for x in test["args"]]
result += ", ".join(s)
if test["kwargs"]:
if test["args"]: result += ", "
records = ["{}={}".format(k, str(v)) \
for k, v in test["kwargs"].items()]
result += ", ".join(records)
result += ") -> "
result += "{}".format(test["raises"] if test["raises"] \
else test["returns"])
try:
ret = fn(*test["args"], **test["kwargs"])
if ret == test["returns"]:
result += ": ok."
else:
result += ": *** failed\n (got {})".format(ret)
except Exception as e:
if type(e) is not type(test["raises"]) or \
str(e) != str(test["raises"]):
result += ": *** failed\n (raised {})".format(e)
else:
result += ": ok."
print(result)
-----------------------------------------------------
from time import sleep
def foo():
for i in range(10):
yield
sleep(1)
print("foo: counting {}".format(i))
def bar():
for i in range(10):
yield
sleep(1)
print("bar: counting {}".format(i))
if __name__ == '__main__':
f = foo()
b = bar()
while True:
next(f)
next(b)
-----------------------------------------------------------
# https://public.etherpad-mozilla.org/p/Advanced_Python
from time import sleep
def foo():
for i in range(10):
sleep(1)
print("foo: counting {}".format(i))
def bar():
for i in range(10):
sleep(1)
print("bar: counting {}".format(i))
if __name__ == '__main__':
from threading import Thread
f = Thread(target=foo)
b = Thread(target=bar)
f.start()
b.start()
print("Two threads created...")
------------------------------------------------------------
# https://public.etherpad-mozilla.org/p/Advanced_Python
from itertools import count
def foo():
for i in count():
print("foo: counting {}".format(i))
def bar():
for i in count():
print("bar: counting {}".format(i))
if __name__ == '__main__':
from threading import Thread
f = Thread(target=foo)
b = Thread(target=bar)
f.start()
b.start()
for i in count():
print("main: counting {}".format(i))
------------------------------------------------------------
from time import sleep
def foo():
for i in range(7):
print("foo: counting {}".format(i))
sleep(1)
def bar():
for i in range(20):
print("bar: counting {}".format(i))
sleep(1)
if __name__ == '__main__':
from threading import Thread
f = Thread(target=foo)
b = Thread(target=bar)
f.start()
b.daemon = True
b.start()
for i in range(5):
print("main: counting {}".format(i))
sleep(1)
----------------------------------------------------------
from threading import Thread
from time import sleep
class MyThread(Thread):
def __init__(self, name):
Thread.__init__(self)
self.thread_name = name
def run(self):
for i in range(10):
print("{}: counting: {}".format(self.thread_name, i))
sleep(1)
if __name__ == '__main__':
t1 = MyThread("test-thread-1")
t2 = MyThread("test-thread-2")
t1.start()
t2.start()
----------------------------------------------------------
"""
Exercise:
---------
Implement the class - RunPeriodic that allows a function
to be executed at periodic intervals in a separate thread.
[Available at https://public.etherpad-mozilla.org/p/Advanced_Python ]
"""
from threading import Thread
class RunPeriodic(Thread):
pass # TODO: Implement the logic here.
if __name__ == '__main__':
def print_test():
print("Running print_test...")
def hello_world():
print("Hello world....")
print_thread = RunPeriodic(5, print_test)
print_thread.start()
# Execute print_test() function every 5 seconds
hello_thread = RunPeriodic(2, hello_world)
hello_thread.start()
# Execute hello_thread() function every 2 seconds
from time import sleep
for i in range(40):
print("main thread: counting", i)
sleep(0.5)
# Issue a stop request to both threads after 20 seconds
print_thread.stop()
hello_thread.stop()
# Wait for both threads to finish.
print_thread.join()
hello_thread.join()
print("main thread: finished.")
--------------------------------------------------------------
"""
Exercise:
---------
Implement the class - RunPeriodic that allows a function
to be executed at periodic intervals in a separate thread.
[Available at https://public.etherpad-mozilla.org/p/Advanced_Python ]
"""
from threading import Thread
class RunPeriodic(Thread):
def __init__(self, interval, fn, args=(), kwargs={}):
Thread.__init__(self)
self.interval = interval
self.fn = fn
self.fn_args = args
self.fn_kwargs = kwargs
def run(self):
from time import sleep
while not hasattr(self, "cancel"):
self.fn(*self.fn_args, **self.fn_kwargs)
sleep(self.interval)
def stop(self):
self.cancel = True
if __name__ == '__main__':
def print_test():
print("Running print_test...")
def hello_world():
print("Hello world....")
print_thread = RunPeriodic(5, print_test)
print_thread.start()
# Execute print_test() function every 5 seconds
hello_thread = RunPeriodic(2, hello_world)
hello_thread.start()
# Execute hello_thread() function every 2 seconds
from time import sleep
for i in range(40):
print("main thread: counting", i)
sleep(0.5)
# Issue a stop request to both threads after 20 seconds
print_thread.stop()
hello_thread.stop()
# Wait for both threads to finish.
print_thread.join()
hello_thread.join()
print("main thread: finished.")
------------------------------------------------------------------
from time import sleep
from threading import Thread, current_thread
def foo():
current = current_thread()
for i in range(20):
if hasattr(current, "cancel"): break
print("foo: counting {}".format(i))
sleep(1)
if __name__ == '__main__':
f = Thread(target=foo)
f.start()
for i in range(5):
print("main: counting {}".format(i))
sleep(1)
f.join(2)
if (f.is_alive()):
f.cancel = "True"
f.join()
print("main: foo joined...")
-----------------------------------------------------------------------
from random import random
from time import sleep
from threading import Thread
a = [10, 2, 4, 5, 6, 7]
b = [2, 3, 4]
def square(coll):
for i, v in enumerate(coll):
coll[i] = v * v
sleep(random())
def cube(coll):
for i, v in enumerate(coll):
coll[i] = v ** 3
sleep(random())
if __name__ == '__main__':
print(a, b)
s = Thread(target=square, args=(a,))
c = Thread(target=cube, args=(b,))
threads = [(s, a), (c, b)]
s.start()
c.start()
while threads:
t, r = threads.pop()
t.join(0.1)
if not t.is_alive():
print(r)
else:
threads.insert(0, (t, r))
-----------------------------------------------------------
from __future__ import print_function
from threading import Thread
SIZE = 100000
a = list(range(SIZE))
def square_list_item(i):
a[i] = a[i] * a[i]
def square_list():
for i in range(SIZE):
square_list_item(i)
if __name__ == '__main__':
t1 = Thread(target=square_list)
t2 = Thread(target=square_list)
# b = a.copy()
b = list(a)
t1.start()
t2.start()
t1.join()
t2.join()
for i, v in enumerate(a):
if (b[i] ** 4) != v:
print("a[{}] = {} NOT consistent with b[{}] ** 4 = {}".format(
i, v, i, b[i] ** 4))
-------------------------------------------------------------------
from __future__ import print_function
from threading import Thread, Lock
SIZE = 100000
a = list(range(SIZE))
lock = Lock()
def square_list_item_old(i):
try:
lock.acquire()
a[i] = a[i] * a[i]
finally:
lock.release()
def square_list_item(i):
with lock:
a[i] = a[i] * a[i]
def square_list():
for i in range(SIZE):
square_list_item(i)
if __name__ == '__main__':
t1 = Thread(target=square_list)
t2 = Thread(target=square_list)
# b = a.copy()
b = list(a)
t1.start()
t2.start()
t1.join()
t2.join()
for i, v in enumerate(a):
if (b[i] ** 4) != v:
print("a[{}] = {} NOT consistent with b[{}] ** 4 = {}".format(
i, v, i, b[i] ** 4))
-------------------------------------------------------------------------
def access_url(method, url):
import requests
from time import time
if hasattr(requests, method):
start = time()
response = getattr(requests, method)(url)
duration = time() - start
output = "{} {} took {} seconds with response code {}"
print(output.format(method.upper(), url, duration,
response.status_code))
def benchmark_urls(filename):
with open(filename) as url_file:
for line in url_file:
method, url = line.strip().split(" ")
access_url(method.lower(), url)
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("filename",
help="path to a text file containing list of URLs")
args = parser.parse_args()
benchmark_urls(args.filename)
--------------------------------------------------------------------------------
from threading import Thread, Condition, Lock
from time import sleep
from random import randint
from collections import deque
class SimpleQueue:
def __init__(self, size=10):
self.empty_slots = size
self.queue = deque()
self.empty = Condition()
self.full = Condition()
self.lock = Lock()
def show(self):
with self.lock:
r = str(self.queue)
return r
def put(self, v):
with self.full:
if not self.empty_slots: self.full.wait()
with self.empty:
with self.lock: self.queue.append(v)
self.empty_slots -= 1
self.empty.notify()
def get(self):
with self.empty:
if len(self.queue) == 0: self.empty.wait()
with self.full:
with self.lock: v = self.queue.popleft()
self.empty_slots += 1
self.full.notify()
return v
queue = SimpleQueue(10)
def producer():
while True:
v = randint(1, 100)
print("Produced: ", v, "Queue =", queue.show())
queue.put(v)
sleep(v / 200)
def consumer():
while True:
v = queue.get()
print("Consumed: ", v, "Queue =", queue.show())
sleep(v / 100)
p = Thread(target=producer)
c = Thread(target=consumer)
p.start()
c.start()
-----------------------------------------------------
from threading import Thread, Semaphore, Lock
from time import sleep
from random import randint
from collections import deque
class SimpleQueue:
def __init__(self, size):
self.queue = deque()
self.reader = Semaphore(0)
self.writer = Semaphore(size)
self.lock = Lock()
def show(self):
with self.lock:
s = str(self.queue)
print(s)
def put(self, v):
self.writer.acquire()
with self.lock: self.queue.append(v)
self.reader.release()
def get(self):
self.reader.acquire()
with self.lock: v = self.queue.popleft()
self.writer.release()
return v
queue = SimpleQueue(10)
def producer():
while True:
v = randint(1, 100)
print("Produced: ", v)
queue.put(v)
# sleep(v/100.0)
def consumer():
while True:
v = queue.get()
print("Consumed: ", v)
sleep((v / 100.0) + 0.3)
p = Thread(target=producer)
c = Thread(target=consumer)
p.start()
c.start()
|
d4149e54be8afa247dae476fd8cc5f242cff77f6 | sebanazarian/itedes | /modulo1/segmento3/examenFinal/autosABM.py | 2,895 | 3.703125 | 4 | def agregarAutos(autos):
auto={}
patente = input("Ingrese patente del Auto: ")
patenteDuplicada = verificarPatente(patente)
while patenteDuplicada=="si":
print("Patente Existente ingrese nuevamente")
patente = input("Ingrese patente del Auto: ")
patenteDuplicada=verificarPatente(patente)
auto['patente']= patente
auto['marca']=input("Ingrese marca del Auto: ")
auto['modelo']=input("Ingrese modelo del Auto: ")
auto['color']=input("Ingrese color del Auto: ")
autos.append(auto)
return autos
def verificarPatente(patenteAuto):
for auto in autos:
if auto['patente']==patenteAuto:
return "si"
return "no"
def modificarAutoxPatente(autos,patenteAuto):
i=0
contador=0
for auto in autos:
if auto['patente']==patenteAuto:
opcionMenuModificar=''
while opcionMenuModificar !="0":
print("1-Modificar Pantente")
print("2-Modificar Marca")
print("3-Modificar modelo")
print("4-Modificar Color")
print("0-Salir")
print("")
opcionMenuModificar=input("Ingrese la opcion deseada: ")
if opcionMenuModificar== "1":
patente = input("Ingrese patente del auto: ")
patenteDuplicada = verificarPatente(patente)
while patenteDuplicada=="si":
print("Patente Existente ingrese nuevamente")
patente = input("Ingrese patente del Auto: ")
patenteDuplicada=verificarPatente(patente)
autos[i]['patente'] = patente
elif opcionMenuModificar== "2":
autos[i]['marca'] = input("Ingrese marca del auto: ")
elif opcionMenuModificar=="3":
autos[i]['modelo'] = input("Ingrese modelo del auto: ")
elif opcionMenuModificar=="4":
autos[i]['color'] = input("Ingrese color del auto: ")
contador= contador +1
i=i+1
if contador == 0:
print("No existe el auto")
def eliminarAuto(autos,patenteAuto):
contador=0
i=0
for auto in autos:
if auto['patente']==patenteAuto:
del autos[i]
contador= contador +1
i=i+1
if contador == 0:
print("No existe el auto")
def escribirArchivo(listaAutos):
with open('listAutos.txt', 'w') as fileAutos:
fileAutos.writelines("%s\n" % lista for lista in listaAutos )
def limpiar():
os.system('clear')
#main
import os
autos=[]
opcionMenu=''
while opcionMenu !="0":
print("1-Cargar Auto")
print("2-Modificar Auto")
print("3-Baja de Auto")
print("4-Mostrar Lista")
print("0-Salir")
print("")
opcionMenu=input("Ingrese la opcion deseada: ")
opcion='si'
if opcionMenu == "1":
while opcion!='no':
autos=agregarAutos(autos)
limpiar()
opcion=input("Desea agregar otro auto: ")
escribirArchivo(autos)
elif opcionMenu=="2":
print("2")
patenteAuto=input("Ingresela patente del auto a modificar: ")
modificarAutoxPatente(autos,patenteAuto)
elif opcionMenu=="3":
patenteAuto=input("Ingresela patente del auto a eliminar: ")
eliminarAuto(autos,patenteAuto)
elif opcionMenu=="4":
print(autos)
|
5b3179b3ae4405bb75a8f7ab5728ff1629a0b717 | SingleMaltose/DSP_Optimizing_With_Python | /Loop_Bound_Calc.py | 3,801 | 3.546875 | 4 | # -*- coding: utf-8 -*-
"""
Created on Tue Aug 27 14:18:53 2019
This is the straight-forward implementation of algorithms in Chaptr 2,
"Iteration Bound" of "VLSI Digital Signal Processing Systems".
The class 'Graph' contains 2 algorithm for calculating iteration bound of dsp
graph, named "Longest Path Matrix(LPM)" and "Minimum Cycle Mean(MCM)"
LPM algorithm is O(d^4+de) complexity in which d is the number of delay unit and
e is the number of computing unit
MCM algorithm is O(de+de') complexity in which e' is the number of side of the
dsp graph
@author: Singlemaltmaltose
"""
import numpy as np
class Graph(object):
def __init__(self,node_calc_time, graph_matrix, graph_delay_matrix):
self.node_calc_time = node_calc_time
# graph_matrix是以计算单元为节点的图对应的矩阵M, M(i,j)为从第i个计算单元为尾
# 指向第j个计算单元的箭头的延迟数,若不存在i到j的箭头,则M(i,j)=-1
# notes:在后面的章节中对于i到j不存在的箭头将改为M(i,j)=None
self.graph_matrix = graph_matrix
# graph_delay_matrix是以延迟单元为节点的图对应的矩阵graph_delay_matrix,
# graph_delay_matrix(i,j)为从第i个延迟单元为尾,指向第j个延迟单元的箭头,
# 且中间不包含其他延迟单元的路径中,最大的总计算时长,
# 若不存在i到j且中间无其他延迟单元的箭头,则graph_delay_matrix(i,j)=-1
# notes:在后面的章节中对于i到j不存在的箭头将改为graph_delay_matrix(i,j)=None
self.graph_delay_matrix = graph_delay_matrix
def print_graph(self):
print(self.graph_matrix)
def if_looped_graph(self):
g_mat = self.graph_matrix
w = g_mat.shape[1]
for i in range(w):
if np.max(g_mat[:,i])<0:
g_mat[i,:] = -1
if np.max(g_mat)<0:
return g_mat,False
else:
return g_mat,True
def calc_loop_bound_LPM(self):
graph_delay_matrix = self.graph_delay_matrix
w = graph_delay_matrix.shape[1]
L = [graph_delay_matrix]
for i in range(1,w):
L_temp = np.zeros([w,w],dtype=int)
for j in range(w):
for k in range(w):
L_temp[j][k] = -1
for m in range(w):
if L[0][j][m] != -1 and L[i-1][m][k] != -1:
if L[0][j][m] + L[i-1][m][k] > L_temp[j][k]:
L_temp[j][k] = L[0][j][m] + L[i-1][m][k]
L.append(L_temp)
bound_candidates=[]
for i in range(w):
bound_candidates += list(np.diag(L[i])/(i+1))
loop_bound = max(bound_candidates)
return loop_bound
def calc_loop_bound_MCM(self):
graph_delay_matrix = self.graph_delay_matrix
w = graph_delay_matrix.shape[1]
f0 = 100000 * np.ones([w,1],dtype=int)
f0[0] = 0
f = [f0]
for i in range(w):
f_temp = np.zeros([w,1],dtype=int)
for j in range(w):
f_temp[j] = int(min([f[i][k]-graph_delay_matrix[k,j] \
for k in range(w) \
if graph_delay_matrix[k,j] >=0]))
if f_temp[j] > 10000:
f_temp[j] = 100000;
f.append(f_temp)
bound_candidates=np.concatenate([(f[w]-f[i])/(w-i) for i in range(w)],axis=1)
loop_bound = -min(bound_candidates[range(w),np.argmax(bound_candidates,axis=1)])
return loop_bound
|
3305512104f41a73ce7a94a26c13a232c575bed7 | alexganwd/coderdojo | /projects/2019-2020/week2/askforuserinput.py | 405 | 4.3125 | 4 | #Ask user for information
operator = input("Introduce an operation\n")
number1 = int(input("Introduce your first number\n"))
number2 = int(input("Introduce your second number\n"))
#Present information back to the user
print("The operation selected is " + operator)
if operator == '+':
result = number1 + number2
print(result)
elif operator == '-':
result = number1 - number2
print(result) |
392c88b63a163b7bc2a569599facfa62f40da343 | humachine/AlgoLearning | /leetcode/Done/500_KeyboardRow.py | 1,382 | 4.125 | 4 | #https://leetcode.com/problems/keyboard-row/
'''Given a List of words, return the words that can be typed using letters of alphabet on only one row's of the Qwerty keyboard.
Inp: ["Hello", "Alaska", "Dad", "Peace"]
Out: ["Alaska", "Dad"]
'''
class Solution(object):
def findWords(self, words):
result = []
TOP, MIDDLE, BOTTOM = 0, 1, 2
# ROWS contains the letters seen in each row of the keyboard
ROWS = ['qwertyuiop', 'asdfghjkl', 'zxcvbnm']
for word in words:
if word:
row = None
# We use the first character of the word to determine its intended row.
if word[0].lower() in ROWS[TOP]:
row = TOP
elif word[0].lower() in ROWS[MIDDLE]:
row = MIDDLE
elif word[0].lower() in ROWS[BOTTOM]:
row = BOTTOM
# We then check if the rest of the word matches the row of the first letter
for char in word[1:]:
if char.lower() not in ROWS[row]:
break
# If all characters belong to the same row (break was not encountered), then append word to result.
else:
result.append(word)
return result
s = Solution()
print s.findWords(["Hello", "Alaska", "Dad", "Peace"])
|
7f1bcfa1aee24dd1c195ea05af9c9c3667b497fc | aifulislam/Demo_First_Python_Coding | /program11.py | 1,945 | 4.4375 | 4 | #Inner If Statement--------
if 6>4:
if 6>3:
if 7>2:
print('Hi')
if 6<9:
if 4<6:
if 5<6:
if 9<8:
print('Hi')
else:
print('hello')
#Lage number find of three numbers-----
num1 = 90
num2 = 80
num3 = 50
if num1>num2:
if num1>num3:
print(num1)
else:
print(num3)
if num2>num1:
if num2>num3:
print(num2)
else:
print(num3)
#Lage number find of three numbers-----
num4 = 50
num5 = 70
num6 = 60
if num4>num5:
if num4>num6:
print(num4)
else:
print(num6)
else:
if num5>num6:
print(num5)
else:
print(num6)
#Ternary Operator-----
num7 = 50
num8 = 60
'''
if num7>num8:
print(num7)
else:
print(num8)
'''
max = num7 if num7>num8 else num8
print('Max = ',max)
#Logical operator-----and--or--not---
#Find Large Number---using-and-------
'''
num10 = 70
num11 = 80
num12 = 90
if num10>num11 and num10>num12 :
print(num10)
elif num11>num10 and num11>num12:
print(num11)
else:
print(num12)
'''
num10 = 90
num11 = 80
num12 = 60
if num10>num11 and num10>num12:
print(num10)
elif num11>num10 and num11>num12:
print(num11)
else:
print(num12)
#Logical operator-----and--or--not---
#Find Vowel(a,e,i,o,u)---using-or-------
ch='a'
if ch=='a' or ch=='e' or ch=='i' or ch=='o' or ch=='u' \
or ch=='A' or ch=='E' or ch=='I' or ch=='O' or ch=='U':
print('Vowel')
else:
print('Consonant')
#Logical operator-----and-------
# Letter Grade Program-----GPA--
mark = 55
if mark>=80 and mark<=100:
print('A+')
elif mark>=70 and mark<=79:
print('A')
elif mark>=60 and mark<=69:
print('A-')
elif mark>=50 and mark<=59:
print('B')
elif mark>=40 and mark<=49:
print('C')
elif mark>=33 and mark<=39:
print('D')
else:
print('F')
|
0c0cbea05af8a9f6ba575e74fe9c9aad540d774f | jcroskrey/csc121 | /lab6/chapter9.py | 2,806 | 3.828125 | 4 | # Problem 1
def prob_1():
for i in range(10):
print("*", end=" ")
# Problem 2
def prob_2():
for i in range(10):
print("*", end=" ")
print()
for i in range(5):
print("*", end=" ")
print()
for i in range(20):
print("*", end=" ")
print()
# Problem 3
def prob_3():
for i in range(10):
print()
for j in range(10):
print("* ", end="")
# Problem 4
def prob_4():
for i in range(10):
print()
for j in range(5):
print("* ", end="")
# Problem 5
def prob_5():
for i in range(5):
print()
for j in range(20):
print("* ", end="")
# Problem 6
def prob_6():
for i in range(10):
print()
for j in range(10):
print(i, end=" ")
# Problem 7
def prob_7():
for i in range(10):
print()
for j in range(10):
print(i, end=" ")
# Problem 8
def prob_8():
for i in range(10):
print()
for j in range(i+1):
print(j, end=" ")
# Problem 9
def prob_9():
for i in range(10):
print()
for n in range(i):
print(" ", end=" ")
for j in range(10-i):
print(j, end=" ")
# Problem 10
def prob_10():
for i in range(10):
print()
for row in range(10):
if i*row < 10:
print(" ", end=" ")
else:
print(" ", end="")
print(i*row, end=" ")
# Problem 11
def prob_11():
for i in range(10):
print()
for n in range(10-i):
print(" ", end=" ")
for row in range(1,1+i):
print(row, end=" ")
for j in range(i-1,0,-1):
print(j, end=" ")
# Problem 12
def prob_12():
for i in range(10):
print()
for n in range(10-i):
print(" ", end=" ")
for row in range(1,1+i):
print(row, end=" ")
for j in range(i-1,0,-1):
print(j, end=" ")
for i in range(10):
print()
for n in range(i):
print(" ", end=" ")
for j in range(9-i):
print(j+1, end=" ")
# Problem 13
def prob_13():
for i in range(10):
print()
for n in range(10-i):
print(" ", end=" ")
for row in range(1,1+i):
print(row, end=" ")
for j in range(i-1,0,-1):
print(j, end=" ")
for i in range(10):
print()
for n in range(i+2):
print(" ", end=" ")
for j in range(1, 9-i):
print(j, end=" ")
for j in range(7-i, 0, -1):
print(j, end=" ")
prob_1()
prob_2()
prob_3()
prob_4()
prob_5()
prob_6()
prob_7()
prob_8()
prob_9()
prob_10()
prob_11()
prob_12()
prob_13()
|
7c7386287f6763affff9ee436cd8af213178f160 | applutree/Python-Repo | /practicepython_practice1.py | 436 | 4.15625 | 4 | from datetime import date
name = input("What is your name? ")
age = int(input("what is your age? "))
current_date = date.today()
year_to_100 = (current_date.year - age) + 100
print("Hello " + name + ", you will turn 100 years old in ", year_to_100, " years." )
iter_num = int(input("Enter number of iteration: "))
for i in range(iter_num):
print("Hello " + name + ", \nyou will turn 100 years old in ", year_to_100, " years." ) |
9ff04bf2695a433287aecb4736e27e2d0d3dc216 | zerghua/leetcode-python | /N1323_Maximum69Number.py | 1,130 | 4.0625 | 4 | #
# Create by Hua on 4/16/22.
#
"""
You are given a positive integer num consisting only of digits 6 and 9.
Return the maximum number you can get by changing at most one digit (6 becomes 9, and 9 becomes 6).
Example 1:
Input: num = 9669
Output: 9969
Explanation:
Changing the first digit results in 6669.
Changing the second digit results in 9969.
Changing the third digit results in 9699.
Changing the fourth digit results in 9666.
The maximum number is 9969.
Example 2:
Input: num = 9996
Output: 9999
Explanation: Changing the last digit 6 to 9 results in the maximum number.
Example 3:
Input: num = 9999
Output: 9999
Explanation: It is better not to apply any change.
Constraints:
1 <= num <= 104
num consists of only 6 and 9 digits.
"""
class Solution(object):
def maximum69Number(self, num):
"""
:type num: int
:rtype: int
thought: scan from left to right, find the first 6 and change it
to 9, and return.
04/16/2022 10:14 Accepted 19 ms 13.5 MB python
easy 1 min. string replace
"""
return str(num).replace("6", "9", 1)
|
25d68d2472cac4d36be00e2d9217465f17f55196 | filipbartek6417/RegexEngine | /Regex Engine/task/regex/regex.py | 260 | 3.84375 | 4 | pair = input().split('|')
match = 'True'
for index, item in enumerate(pair[0]):
try:
if item != pair[1][index] and item != '.':
match = 'False'
break
except IndexError:
match = 'False'
break
print(match)
|
2d041e4fde674f00c30e90ca3c8571de3e7047d2 | Graunarmin/Krypto_SS18 | /handy_python_stuff/my_lib.py | 2,918 | 3.640625 | 4 | '''
Sammlung von nützlichen Funktionen
import my_lib
'''
def ggT(s,e):
'''
ggT von s und e mit dem euklidschen Algorithmus bestimmen
'''
tmp = 0
if s < e:
tmp = e
e = s
s = tmp
while True:
r = s % e
if r == 0:
break
s = e
e = r
#print (e)
return e
def mult_inv(x, Z_n):
'''
Multiplikatives Inverses von x in Zn bestimmen
'''
if ggT(x, Z_n) == 1:
for i in range (0, Z_n +1):
if ((i * x) % Z_n) == 1:
#print(i)
return i
else:
print("Es existiert kein multiplikatives Inverses zu %s in Z_%s." %(x, Z_n))
return(-1)
def ordnung(a, p, e):
'''
Ordnung des Elements a in Z_p mit neutralem Element e \n
ord(a) = {min(n € N | a**n = e), falls existent, sonst unendlich}
'''
for n in range(1, p):
if ((a ** n) % p) == e :
#print(n)
return n
print("infinitive")
return(-1)
def generator(p):
'''
Generatoren der Gruppe Z_p bestimmen \n
wenn in mod n {a, a^2, a^3, ..., a^n} = Z_n, dann ist a Generator von Z_n \n
GEHT NUR FÜR PRIMZAHLEN und nur für multiplikative Gruppen!
'''
Z_p = [i for i in range(1,p)]
print(Z_p)
A = []
generators = []
for a in range(0, p):
for z in range(0, p*3):
x = (a**z) % p
if x not in A:
A.append(x)
A.sort()
if A == Z_p:
generators.append(a)
A = []
if generators:
print("Z_%s ist zyklisch und hat folgende(n) Generator(en):" %p)
# print(generators)
return generators
def order_of_gi(g, i, p, e):
'''
Ordnung von g^i in Z_p mit neutralem Element e \n
ord(g^i) = (ord(g))/ ggT((ord(g)), i)
'''
ord_g = ordnung(g, p, e)
ord_gi = ord_g / ggT(ord_g, i)
return ord_gi
def aver_ord(g, n, e):
'''
average order of elements is the sum of orders of the groups elements divided by the order of the group \n
av_ord(g^ab) = sum(ord(g))/|G| \n
g = Generator von Z_n \n
n = Primzahl p \n
e = neutrales Element \n
a,b = zufällige Elemente aus Z_n \n
(takes some time! About 20-25 minutes?)
'''
sum_ = 0
for a in range (1, n):
for b in range(1, n):
counter += 1
sum_ += order_of_gi(g, (a*b), n, e)
average_order = sum_ / ((n-1)*(n-1))
return average_order
|
3415154c7002758264b5680b732b61fff43523b7 | clouds16/intro-python | /week7/test_roll.py | 866 | 3.875 | 4 | import random as r
class Dice:
def __init__(self):
self.numdice = 2 # number of dice
self.numfaces = 6
def rollDice(self):
diceRolls = []
for i in range(self.numdice):
roll = r.randint[1, self.numfaces]
return diceRolls
def main():
count = 0
dice = Dice()
diceroll = dice.rollDice()
usersum = int(input("Roll until what sum"))
rolls = []
while True:
if usersum < 1*dice.numdice or usersum > 6*dice.numdice:
print("please choose a values between 2 and 12")
else:
break
while True:
dice = Dice()
diceroll = dice.rollDice()
if diceroll != usersum:
print(diceroll, sum(diceroll))
rolls.append(diceRolls)
else:
print("done ", len(rolls))
break
main()
|
9f022b590c08cb293c7369dcfd4cd7bca9fed85b | amrithajayadev/misc | /dp/trapping_rain_water.py | 889 | 3.765625 | 4 | def greatest_element_right(nums):
output = [nums[-1],]
for i in range(len(nums) - 2, -1, -1):
output.append(max(nums[i], output[-1]))
print(output[::-1])
return output[::-1]
def greatest_element_left(nums):
output = []
for i in range(len(nums)):
if not output:
output.append(nums[i])
else:
output.append(max(output[i-1], nums[i]))
print(output)
return output
# nums = [2, 1, 5, 6, 2, 3, 2, 2] # [-1, 2, -1, -1, 6, 6,3,2]
# nearest_greatest_element_left(nums)
def rain_water_trapped(heights):
ngl = greatest_element_left(heights)
ngr = greatest_element_right(heights)
water = 0
for i in range(len(heights)):
water += min(ngr[i], ngl[i]) - heights[i]
return water
heights = [0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1]
# heights = [4,2,0,3,2,5]
print(rain_water_trapped(heights)) |
02eb0671b97df8276f876ff814827f595ae072b0 | jorinvo/r | /substitution_cipher/encrypt.py | 730 | 3.65625 | 4 | import argparse
import sys
default_abc = 'abcdefghijklmnopqrstuvwxyz '
def main():
# Parse ars
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument(
'abc',
type=str,
help=''
)
args = parser.parse_args()
abc = args.abc
# Validate alphabet
if sorted(abc) != default_abc:
print('abc has wrong length, illegal characters or duplicates', file=sys.stderr)
exit(1)
substitutions = dict(zip(default_abc, abc))
substitutions['\n'] = ''
for line in sys.stdin:
print(''.join(substitutions[c] for c in line))
if __name__ == "__main__":
main() |
5a67eb8cc78796e1ce82b64c8f08647e1f9857ea | ColeDavis99/BST | /TESTING_creation_insertion_deletion.py | 2,767 | 3.734375 | 4 | import random
#File 1 generates a C++ program to test BST values (insertion and deletion)
#File 2 generates a listing of numbers I can put into visualgo.com and
#See what the BST I just made looks like
file1 = open("test1.txt","w")
file2 = open("test2.txt","w")
file1.write("#include \"header.h\"\n")
file1.write("#include \"bst.hpp\"\n")
file1.write("#include \"node.hpp\"\n\n")
file1.write("int main()\n")
file1.write("{\n")
'''
L1 stores listing of 1000 random numbers from 1-1000 inclusive in the order they were gen.
L2 stores either "None" or 1. The index number represents y/n the number is found in L1
L3 stores the final listing of AT MOST 1000 unique elements numbered 1-1000 inclusive.
'''
MAX_NUM_NODES = 20
L1 = [None] * int(MAX_NUM_NODES+1)
L2 = [None] * int(MAX_NUM_NODES+1)
L3 = [None] * int(MAX_NUM_NODES+1)
for a in range(500):
L1 = [None] * int(MAX_NUM_NODES+1)
L2 = [None] * int(MAX_NUM_NODES+1)
L3 = [None] * int(MAX_NUM_NODES+1)
#Genereate 100 numbers 1-100 inclusive
for i in range(MAX_NUM_NODES):
randomNum = random.randint(1,MAX_NUM_NODES)
L1[i] = randomNum
#print(L1)
#print("\n\n")
#Store whether or not a number was generated in L2, index # is the # generated
for q in range(MAX_NUM_NODES):
L2[L1[q]] = 1
#print(L2)
#print("\n\n")
#Create a unique listing of all numbers generated (Every element in list is unique)
ctr = 0;
for z in range(MAX_NUM_NODES):
if(L2[L1[z]] == 1):
L2[L1[z]] = None
L3[ctr] = L1[z]
ctr += 1
#Chop off the extra "Nones"
L3 = L3[:ctr]
#print(L3)
'''
GENERATED C++ NODE INSERTION CODE BELOW
'''
length = len(L3)
for k in range(length):
#Generate the code that creates the BST with the first # that was generated
if(k == 0):
file1.write("\n\n\n\n\tBST<int,string> bst"+str(a)+"(Node<int, string> ("+str(L3[k])+", \"RootVal\"));\n")
else:
file1.write("\tbst"+str(a)+".emplace(Node<int, string>("+str(L3[k])+", \"value\"));\n")
#Remove last comma in the number listing
if(k == length-1):
file2.write(str(L3[k]))
else:
file2.write(str(L3[k]) + ",")
'''
GENERATED C++ NODE DELETION CODE BELOW
'''
#Shuffle order of L3 for delete functionality
random.shuffle(L3)
for n in range(length):
file1.write("\n\tbst"+str(a)+".ascend_printout(bst"+str(a)+".getRoot());")
file1.write("\n\tbst"+str(a)+".deleteNode(bst"+str(a)+".at("+str(L3[n])+")->getKey());")
#file1.write("\n\tbst"+str(a)+".ascend_printout(bst"+str(a)+".getRoot());\n")
file1.write("\n\treturn 0;\n}")
file1.close()
file2.close()
|
91d7bea7bca7643d173d2f94bde593b13f3687b6 | Lujinjian-hunan/python_study | /课堂笔记/day4/文件操作2.py | 805 | 3.65625 | 4 |
# f = open('user.txt')
# f.close()
# with open('user.txt',encoding='utf-8') as f: #文件对象,文件句柄
# for line in f:
# print(line)
# line = line.strip()
# if line:
# print(line)
#1、读取到文件所有内容
#2、替换 new_str
#3、清空原来的文件
#4、写进去新的
#新的
import os
# 打开a文件,再以只写的方式新建一个新文件
with open('words.txt') as fr,open('words_new.txt','w') as fw:
for line in fr:
line = line.strip()
if line:
# 把读取到的内容替换成大写再写入新文件中
line = line.upper()
fw.write(line+'\n')
# 用os模块的方法删除原文件再把新文件重命名为a
os.remove('words.txt')
os.rename('words_new.txt','words.txt')
|
21660b9a8b185b249efbbabbc41ee99c4dd65da9 | trgeiger/algorithms | /hackerrank/2d-array-ds.py | 1,879 | 3.671875 | 4 | """
Context
Given a 2D Array, :
1 1 1 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
We define an hourglass in to be a subset of values with indices falling in this pattern in 's graphical representation:
a b c
d
e f g
There are hourglasses in , and an hourglass sum is the sum of an hourglass' values.
Task
Calculate the hourglass sum for every hourglass in , then print the maximum hourglass sum.
Note: If you have already solved the Java domain's Java 2D Array challenge, you may wish to skip this challenge.
Input Format
There are lines of input, where each line contains space-separated integers describing 2D Array ; every value in will be in the inclusive range of to .
Constraints
Output Format
Print the largest (maximum) hourglass sum found in .
Sample Input
1 1 1 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 2 4 4 0
0 0 0 2 0 0
0 0 1 2 4 0
Sample Output
19
Explanation
contains the following hourglasses:
1 1 1 1 1 0 1 0 0 0 0 0
1 0 0 0
1 1 1 1 1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0
0 0 2 0 2 4 2 4 4 4 4 0
1 1 1 1 1 0 1 0 0 0 0 0
0 2 4 4
0 0 0 0 0 2 0 2 0 2 0 0
0 0 2 0 2 4 2 4 4 4 4 0
0 0 2 0
0 0 1 0 1 2 1 2 4 2 4 0
The hourglass with the maximum sum () is:
2 4 4
2
1 2 4
"""
""" SOLUTION
"""
def getHourglass(arr, i, j):
return(arr[i][j]+arr[i][j+1]+arr[i][j+2]+
arr[i+1][j+1]+
arr[i+2][j]+arr[i+2][j+1]+arr[i+2][j+2])
def getLargestHG(arr):
maxran = len(arr)-2
# set initial value as first hourglass
maxHG = getHourglass(arr, 0, 0)
for i in range(maxran):
for j in range(maxran):
result = getHourglass(arr, i, j)
if result > maxHG:
maxHG = result
return maxHG
print(getLargestHG(arr))
|
fe25dbd68bb8d7d25e650bee1341dd87c7288902 | yaoyawei/Python-Learn | /Higher_order_function.py | 2,933 | 4.1875 | 4 | #!/usr/bin/env python3
# -*- coding: utf-8 -*-
print("----函数名----")
f = abs
print("f=abs,f(-10)=%d)"%f(-10))
#abs = 10 #abs(-10)会报错
#print("abs=10,abs(-10)=%d"%abs(-10))
f = abs
def add(x, y, f):
return f(x) + f(y)
#add(5,-6,abs)=abs(5)+abs(-6)=11
print("add(5,-6,abs)=%d"%add(5,-6,abs))
# map() & reduce()
print("----map() & reduce()----")
l_map = [1,2,3,4,5,6,7,8,9]
def cube(x):
return x*x*x
print("l_map=%s"%l_map)
print("map(cube,l_map)=%s"%map(cube,l_map))
print("map(str,l_map)=%s"%map(str,l_map))
print("map(str,map(cube,l_map)=%s"%map(str,map(cube,l_map)))
#reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
from functools import reduce
print("reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)")
def sum_reduce(x,y):
return x+y
l_reduce = [n for n in range(101)]
print("l_reduce = %s"%l_reduce)
print("reduce(sum_reduce,l_map)=%d"%reduce(sum_reduce,l_reduce))
print("sum(l_reduce)=%d"%sum(l_reduce))
# example:filter()
print("----filter()----")
def is_prime_num(x):
n = 2
while(n < x):
if x%n == 0:
return False
else:
n = n+1
#print("%d is a prime nummber."%x)
return True
# test code of is_prime_num
num_test = 5000 # int(input())
#print("%d is a prime nummber:%s"%(num_test,is_prime_num(num_test)))
num_test = [n for n in range(num_test)]
num_test = filter(is_prime_num,num_test)
print("type of num_test is %s"%type(num_test)) # type of filter is <class 'filter'>
print("num_test = filter(num_test):%s"%list(num_test))
# example: sorted()
print("----sorted()----")
print(sorted(['bob', 'about', 'Zoo', 'Credit'])) # 默认按照ASCII的大小比较
print(sorted([36, 5, -12, 9, -21], key=abs)) #
print(sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower))
# example:函数作为返回值
print("----函数作为返回值----")
def lazy_sum(*args): #......
def sum():
ax = 0
for n in args:
ax = ax + n
return ax
return sum
func1 = lazy_sum(1,2,3,4,5)
print("type of func1 is %s"%type(func1)) # <class 'function'>
print("func1() = %d"%func1())
func2 = lazy_sum(2,3,4,5,6)
print("func1 == func2:%s"%(func1==func2)) # func1 不等于 func2
# example: 匿名函数
print("----匿名函数----")
print(list(map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9])))
def build(x, y):
return lambda: x * x + y * y
# 匿名函数作为返回值
func3 = build(3,4)
print("type of func3 is %s"%type(func3)) # <class 'function'>
print("func3(build(3,4)) = %d"%func3()) # 25 = 3*3 + 4*4
# example: 装饰器(Decorator)
print("----decorator----")
def today_date():
print("2018-10-06")
print("today_date._name_:%s"%today_date.__name__)
def log(func):
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
@log
def yesterday_date():
print("2018-10-05")
yesterday_date()
|
36c573882bf494deda08fd1a108581afc85e87fc | rkbrian/AirBnB_clone | /models/engine/file_storage.py | 1,671 | 3.5 | 4 | #!/usr/bin/python3
"""Module defines a class ``FileStorage`` used to serialize/deserialize
python data to/from a JSON file"""
import json
from models.base_model import BaseModel
from models.user import User
from models.city import City
from models.amenity import Amenity
from models.place import Place
from models.review import Review
from models.state import State
class FileStorage():
"""object used to store data using a dictionary representation"""
__file_path = 'file.json'
__objects = {}
def __init__(self):
"""constructor for class object ``FileStorage``"""
pass
def all(self):
"""method returns dictionary (string representation of instances)"""
return self.__objects
def new(self, obj):
"""method assigns key/pair values to private attribute ``objects``"""
key = '{}.{}'.format(obj.__class__.__name__, obj.id)
self.__objects[key] = obj
def save(self):
"""method serializes innstances to a JSON file"""
easyDict = {}
for key, val in self.__objects.items():
easyDict[key] = val.to_dict()
with open(self.__file_path, 'w') as JsFile:
json.dump(easyDict, JsFile)
def reload(self):
"""method deserializes JSON file to pythonic instances.
If JSON file is missing exception is silenced"""
try:
with open(self.__file_path, 'r') as JsFile:
json_obj = json.load(JsFile)
for key, val in json_obj.items():
my_dict = '{}(**{})'.format(val['__class__'], val)
self.__objects[key] = eval(my_dict)
except:
pass
|
ae3a1c03f4ec1d0911ba3bb0802f067f33632360 | XIG-DATA/IPO | /ex.py | 247 | 3.71875 | 4 | class Question :
answer = None
text = None
class Add(Question):
def __init__(self, num1, num2):
self.text = '{} + {}'.format(num1, num2)
self.answer = num1 + num2
from ex import Add
add1 = Add(1,2)
print(add1.text)
# print(add1.answer) |
79b5eae90926db59af2cde5982f495e7eab1d3d6 | aniGevorgyan/python | /homework.py | 2,689 | 3.75 | 4 | #!/usr/bin/python 3.7.2
from math_util import myFactorial
# 1. Գրել ֆունկցիա, որը կընդունի 1 պարամետր՝ n, և կվերադարձնի բառարան, որի key-երն են 1-ից մինչև n֊ը, իսկ value֊ները
# դրանց համապատասխան ֆակտորիալները։
def getFactorial(n):
md = {}
for i in range(1, n + 1):
md[i] = myFactorial(i)
return md
# 2. Կատարել հետևյալ քայլերը․
# - Մուտքագրել նախադասություն
# - Հաշվել դրա տառերի քանակը /առանց օգտվելու տողի որևիցե ֆունկցիայից/
# - Տպել նախադսությունը, ամբողջությամբ մեծատառերով։
# - Տպել նախադասությունը, որի յուրաքանչյուր բառի վերջին տառը մեծատառ է
# - Ստանալ լիստ, որի էլեմենտները տվյալ նախադասության կենտ երկարություն ունեցող բառերն են
# - Վերադարձնել նախադասությունում ամենաշատ և ամենաքիչ հանդիպող տառերը/1ական/
# - Դասավորել բառերը ֆայլի մեջ այբբենական կարգով, որոնց դիմաց գրել համապատասխան հակադարձ բառերը /օր․ այո - ոյա/
def getLettersLenth(ms):
sLenth = 0
for i in ms:
if i in ('abcdefghijklmnopqrstuvwxyzABSDEFGHIJKLMNOPQRSTUVWXYZ'):
sLenth += 1
return sLenth
def getUpperSentence(ms):
sUpper = ''
for i in ms:
sUpper += i.upper()
return sUpper
def capitalizeLastLetter(ms):
result = ""
for word in ms.split():
result += word[:-1] + word[-1].upper() + " "
return result
def getOdds(ms):
listOdd = []
for i in ms.split():
if(len(i)%2 == 1):
listOdd.append(i)
return listOdd
def getMaxAndMinCounts(ms):
md = {}
for i in ms:
if (i.isalpha()):
md[i] = ms.count(i)
max = 0
min = len(ms)
max_key = min_key = ""
for k, v in md.items():
if (max < v):
max = v
max_key = k
if (min > v):
min = v
min_key = k
return "Max - " + max_key +":" + str(max), "Min - " + min_key +":" + str(min)
def writeInFile(ms):
sSorted = sorted(ms.split())
f = open("test.txt", "w")
for i in sSorted:
f.write(i + " - " + i[::-1] + "\n")
return sSorted
def main():
ms = input("Your sentence here: ")
print(getFactorial(14))
print(getLettersLenth(ms))
print(getUpperSentence(ms))
print(capitalizeLastLetter(ms))
print(getOdds(ms))
print(getMaxAndMinCounts(ms))
writeInFile(ms)
if __name__ == "__main__":
main()
|
a4df27d70b1ead5f05ab470fbda720679b7f1d13 | Frederick-S/Introduction-to-Algorithms-Notes | /src/chapter_07/stack_optimized_tail_recursive_quick_sort.py | 598 | 3.59375 | 4 | from .quick_sort import partition
def stack_optimized_tail_recursive_quick_sort(numbers):
stack_optimized_tail_recursive_quick_sort_internal(
numbers, 0, len(numbers) - 1)
def stack_optimized_tail_recursive_quick_sort_internal(numbers, p, r):
while p < r:
q = partition(numbers, p, r)
if q - p > r - q:
stack_optimized_tail_recursive_quick_sort_internal(
numbers, q + 1, r)
r = q - 1
else:
stack_optimized_tail_recursive_quick_sort_internal(
numbers, p, q - 1)
p = q + 1
|
3752b08ff2472a5373393bee0a268e968dde0133 | vidgit/FAQ | /Maths/DuplicatesXOR.py | 283 | 3.59375 | 4 | def repeatedNumber(A):
k=1
i=2
A=list(A)
n=len(A)
while(i<=n-1):
k=k^i
i+=1
temp=A[0]
for j in range(1,n):
temp=temp^A[j]
return temp^k
A=[1,1,3,4,5]
print repeatedNumber(A) |
f2ab002d34be50716c362ee13e0453bb1d824bff | 1290259791/Python | /leetcode/book/2.4.2.py | 634 | 3.609375 | 4 | def MaxSum(array, n):
"""
连续子数组的最大乘积
动态规划 Max=Max{a[i],Max[i-1]*a[i],Min[i-1]*a[i]}Min=Min
创建一维数组
:param array:
:param n:
:return:
"""
maxA = [0 for i in range(n)]
minA = [0 for i in range(n)]
maxA[0] = array[0]
minA[0] = array[0]
value = maxA[0]
for i in range(1, n):
maxA[i] = max(array[i], maxA[i - 1] * array[i], minA[i - 1] * array[i])
minA[i] = min(array[i], maxA[i - 1] * array[i], minA[i - 1] * array[i])
value = max(value, maxA[i])
print(value)
List = [-2, -3, 8, -5, -2]
MaxSum(List, len(List))
|
59e99feed18c04c2caff685907f85e119f143844 | kanthuc/game-of-life | /golengine.py | 1,734 | 3.53125 | 4 | class Cell:
neighbors = ((-1, -1), (-1, 0), (-1, 1),
(0, -1), (0, 1),
(1, -1), (1, 0), (1, 1))
def __init__(self, x, y):
self.x = x
self.y = y
def __repr__(self):
return "(%i, %i)"%(self.x,self.y)
def __eq__(self, other):
return self.x==other.x and self.y==other.y
def __hash__(self):
return hash((self.x, self.y))
def get_neighbors(self):
for dx, dy in Cell.neighbors:
yield Cell(self.x+dx, self.y+dy)
class Board:
def __init__(self):
self.live_cells = set()
def __repr__(self):
return "{%s}"%", ".join(str(cell) for cell in self.get_live_cells())
def get_live_cells(self):
for cell in self.live_cells:
yield cell
def count_live_neighbors(self, cell):
return sum(n in self.live_cells for n in cell.get_neighbors())
def stays_alive(self, cell):
return 2 <= self.count_live_neighbors(cell) <= 3
def reproduces(self, cell):
return self.count_live_neighbors(cell) == 3
def update(self):
live_cells = set()
for cell in self.live_cells:
if self.stays_alive(cell):
live_cells.add(cell)
for n in cell.get_neighbors():
if n not in self.live_cells and self.reproduces(n):
live_cells.add(n)
self.live_cells = live_cells
def is_alive(self, cell):
return cell in self.live_cells
def toggle_cell(self, cell):
if cell in self.live_cells:
self.live_cells.remove(cell)
else:
self.live_cells.add(cell)
def clear_board(self):
self.live_cells.clear()
|
70e1c716e8a2a52cee4270d1baa06fede0c2707a | liucng/python-2020-study | /第三周/凯撒密码.py | 229 | 3.578125 | 4 | i = str(input())
a = ""
for t in i :
if "a"<= t <="z":
a+=chr(ord("a")+(ord(t)-ord("a")+3)%26)
elif "A"<= t <="Z":
a+= chr(ord("A") + (ord(t) - ord("A") + 3) % 26)
else:
a=a+t
print(a) |
701fab841832779fa67b30f20d72e065cd2ebdd7 | HeartFu/LeetCode | /109. Convert Sorted List to Binary Search Tree/Solution.py | 1,373 | 3.875 | 4 | # Definition for singly-linked list.
class ListNode:
def __init__(self, val=0, next=None):
self.val = val
self.next = next
# Definition for a binary tree node.
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def sortedListToBST(self, head: ListNode) -> TreeNode:
def getLength(head: ListNode) -> int:
ret = 0
while head:
ret += 1
head = head.next
return ret
def buildTree(left: int, right: int) -> TreeNode:
if left > right:
return None
mid = (left + right + 1) // 2
root = TreeNode()
root.left = buildTree(left, mid - 1)
nonlocal head
root.val = head.val
head = head.next
root.right = buildTree(mid + 1, right)
return root
length = getLength(head)
return buildTree(0, length - 1)
def buildNodeList(list_pre, i):
if i >= len(list_pre):
return None
newNode = ListNode(list_pre[i])
newNode.next = buildNodeList(list_pre, i + 1)
return newNode
solution = Solution()
list1 = [-10,-3,0,5,9]
head_org = buildNodeList(list1, 0)
print(solution.sortedListToBST(head_org)) |
487aa13f4c25a5923263d4aeb5cd2c79e39f42d0 | shen-huang/selfteaching-python-camp | /19100203/AustinJiangg/d3_exercise_calculator.py | 463 | 3.90625 | 4 | operator = input("请输入需要进行的运算(加,减,乘,除):")
number_one = float(input("请输入第一个参数:"))
number_two = float(input("请输入第二个参数:"))
if operator == "加":
a = number_one + number_two
print(a)
if operator == "减":
b = number_one - number_two
print(b)
if operator == "乘":
c = number_one * number_two
print(c)
if operator == "除":
d = number_one / number_two
print(d)
|
57e82995e134b2c7eefe378172c95b7b1e644051 | ppyy-hub/bbbb | /py_ws/day2/e1.py | 2,087 | 3.953125 | 4 | # 从键盘输入一个成绩,根据成绩输出对应的等级
# 90(包含)---100(包含) A
# 70(包含)---90(不包含) B
# 60(包含)---70(不包含) C
# 0(包含)--60(不包含) D
# 其它情况,输出“无效的成绩”
# score=input("请输入你的成绩")
# scores=int(score)
#
# if scores>=90 and scores<=100:
# print('A')
# elif scores>=70 and scores<90:
# print('B')
# elif scores>=60 and scores<70:
# print('C')
# elif scores>=0 and scores<60:
# print('D')
# else:
# print("其他成绩输入无效的成绩")
# '''
# 猜数字游戏:
# (1)提示用户“猜数字游戏开始了”
# (2)指定一个数字让用户来猜
# (3)提示用户猜一个数字并获取用户猜的数字
# (4)把用户猜的数字和指定的数字进行比较
# 如果猜对了,输入“恭喜你,猜对了,可惜没有奖励!”
# 如果猜错了,输出“猜错了,正确答案是 **”
# (5)猜完以后输出“游戏结束了,不玩了!”
# '''
# print("猜数字游戏开始了")
# H=6
# number=input("输入的数字")
# number=int(number)
# if number == H:
# print("恭喜你,猜对了,可惜没有奖励!")
# else:
# print("猜错了,正确答案是 **")
# input("游戏结束了,不玩了!")
# '''1)猜错了提示用户,猜大了还是猜小了
# (2)用户可以有3次猜的机会
# (3)猜玩两次以后提示用户"还有最后一次机会"
# (4)使用random模块,里面有一个函数randint(),可产生一个随机数
# a、导入模块
# import random
# b、产生随机数
# key=random.randint)#参数的意思是产生一个1(1,10-10之间的随机数
# '''
import random
print("-------游戏开始了-------")
H=random.randint(1,10)
a=0
while a<3:
b=input("请输入你猜的数字")
c=int(b)
if c==H:
print("回答正确")
break
else:
print("回答错误")
a=a+1
if a==2:
print("你还有一次机会")
print("正确答案是",H)
|
64608e47e768e3d4a26070a157f5c805c22f63dd | azegun/python_study | /chap07/module_study/module_with.py | 1,081 | 3.53125 | 4 | #파일을 생성하고 + 파일 이름을 변경합니다.
import os
with open("original.txt", "w") as file:
file.write("hello")
os.rename("original.txt", "new.txt")
#파일을 제거합니다
os.remove("new.txt")
std_list = [["1", "김상건", 90, 80, 70],
["2", "이나연", 80, 80, 60]]
if not os.path.exists("../std_list.txt"):
# if os.path.isfile("std_list.txt"):
with open("../std_list.txt", "w", encoding="utf-8") as f:
for std in std_list:
format_str = "{}, {}, {}, {}, {}\n".format(std[0], std[1], std[2], std[3], std[4])
print(std)
f.write(format_str)
std_list2 = []
with open("../std_list.txt", "r", encoding="utf-8") as f:
for line in f:
std = line.strip().split(",")
print("std : ", std, type(std))
std = int(std[0]), std[1], int(std[2]), int(std[3]), int(std[4])
#투플에서 리스트로 바꿔줄떄는 list()
std_list2.append(list(std))
print("파일로 읽어 들은 std_List[]", std_list2)
#시스템 명령어 실행
os.system("dir") |
9129d1802695e6d8ef1db2fbff28a6a0cb29e203 | JasonCheng1/Sudoku-Game | /Past Versions/PreSudoku.py | 2,498 | 3.890625 | 4 |
board = [[5, 3, 0, 0, 7, 0, 0, 0, 0],
[6, 0, 0, 1, 9, 5, 0, 0, 0],
[0, 9, 8, 0, 0, 0, 0, 6, 0],
[8, 0, 0, 0, 6, 0, 0, 0, 3],
[4, 0, 0, 8, 0, 3, 0, 0, 1],
[7, 0, 0, 0, 2, 0, 0, 0, 6],
[0, 6, 0, 0, 0, 0, 2, 8, 0],
[0, 0, 0, 4, 1, 9, 0, 0, 5],
[0, 0, 0, 0, 8, 0, 0, 7, 9]]
def print_board(board: [[int]]) -> None:
for i in range(len(board)):
if i % 3 == 0 and i != 0:
print("_______________________")
for j in range(len(board[0])):
if j % 3 == 0 and j != 0:
print("| ", end="")
if j == 8:
print(board[i][j])
else:
print(str(board[i][j]) + " ", end="")
print("\n<_______________________>\n")
def find_blank(board: [[int]]) -> ():
for i in range(len(board)):
for j in range(len(board[0])):
if board[i][j] == 0:
return (i, j)
return None
def valid(board, num, pos):
return check_row(board, num, pos) and check_col(board, num, pos) and check_box(board, num, pos)
def check_row(board, num, pos):
for i in range(len(board[0])):
if board[pos[0]][i] == num and i != pos[1]:
return False
return True
def check_col(board, num, pos):
for i in range(len(board)):
if board[i][pos[1]] == num and i != pos[0]:
return False
return True
def check_box(board, num, pos):
x = pos[1]//3
y = pos[0]//3
for i in range(3*y, 3*y + 3):
for j in range(3*x, 3*x + 3):
if board[i][j] == num and (i, j) != pos:
return False
return True
def possible(board, pos) -> []:
res = [0] * 10
for i in range(len(board[0])):
res[board[pos[0]][i]] += 1
for i in range(len(board)):
res[board[i][pos[1]]] += 1
x = pos[1]//3
y = pos[0]//3
for i in range(3*y, 3*y + 3):
for j in range(3*x, 3*x + 3):
res[board[i][j]] += 1
return res
def solve(board: [[int]]):
pos = find_blank(board)
if not pos:
return True
plausible = possible(board, pos)
for i in range(1, 10):
if plausible[i] == 0:
if (valid(board, i, pos)):
board[pos[0]][pos[1]] = i
if(solve(board)):
return True
board[pos[0]][pos[1]] = 0
return False
print_board(board)
solve(board)
print_board(board)
|
0ccc50990d10f40e5695365ea19a643a7af14540 | Zhenye-Na/leetcode | /python/917.reverse-only-letters.py | 1,589 | 3.8125 | 4 | #
# @lc app=leetcode id=917 lang=python3
#
# [917] Reverse Only Letters
#
# https://leetcode.com/problems/reverse-only-letters/description/
#
# algorithms
# Easy (59.56%)
# Likes: 1163
# Dislikes: 47
# Total Accepted: 112.6K
# Total Submissions: 185.9K
# Testcase Example: '"ab-cd"'
#
# Given a string s, reverse the string according to the following rules:
#
#
# All the characters that are not English letters remain in the same
# position.
# All the English letters (lowercase or uppercase) should be reversed.
#
#
# Return s after reversing it.
#
#
# Example 1:
# Input: s = "ab-cd"
# Output: "dc-ba"
# Example 2:
# Input: s = "a-bC-dEf-ghIj"
# Output: "j-Ih-gfE-dCba"
# Example 3:
# Input: s = "Test1ng-Leet=code-Q!"
# Output: "Qedo1ct-eeLg=ntse-T!"
#
#
# Constraints:
#
#
# 1 <= s.length <= 100
# s consists of characters with ASCII values in the range [33, 122].
# s does not contain '\"' or '\\'.
#
#
#
# @lc code=start
class Solution:
def reverseOnlyLetters(self, s: str) -> str:
if not s or len(s) == 0:
return s
s = [char for char in s]
left, right = 0, len(s) - 1
while left < right:
while left < right and not s[left].lower().isalpha():
left += 1
while left < right and not s[right].lower().isalpha():
right -= 1
if left < right:
print(left, right, s[left], s[right])
s[left], s[right] = s[right], s[left]
left += 1
right -= 1
return "".join(s)
# @lc code=end
|
ada59bc04c4ce2767ae2fed7501a66fb7ab579fd | MiroslavPK/Python-OOP | /01 - Defining classes/Exercise/06 - Pokemon/project/trainer.py | 1,001 | 3.703125 | 4 | from project.pokemon import Pokemon
class Trainer:
def __init__(self, name: str):
self.name = name
self.pokemon = []
def add_pokemon(self, pokemon: Pokemon):
if pokemon in self.pokemon:
return 'This pokemon is already caught'
self.pokemon.append(pokemon)
return f'Caught {pokemon.pokemon_details()}'
def release_pokemon(self, pokemon_name: str):
pokemon_names = [pokemon.name for pokemon in self.pokemon]
if pokemon_name not in pokemon_names:
return 'Pokemon is not caught'
del self.pokemon[pokemon_names.index(pokemon_name)]
return f'You have released {pokemon_name}'
def trainer_data(self):
trainer_details = [
f'Pokemon Trainer {self.name}',
f'Pokemon count {len(self.pokemon)}'
]
pokemon_details = [f'- {pokemon.pokemon_details()}' for pokemon in self.pokemon]
return '\n'.join(trainer_details + pokemon_details) + '\n'
|
c0f609852171585583e3c7474350aaf8a42f1f52 | MKDevil/Python | /学习/6、第六部分 - 类和OOP/26、类的编写基础/1、类的编写基础.py | 2,045 | 4.4375 | 4 | #!/usr/bin/env python
# -*- coding:utf-8 -*-
# 示例一、定义类--------------------------------------------------------
class FirstClass():
def setdata(self, value):
self.data = value
def display(self):
print(self.data)
x = FirstClass()
x.setdata(99)
y = FirstClass()
y.setdata(88)
x.display()
y.display()
# 可以直接给类实例增加新的没有定义过的属性
x.newvalue = 'New value'
print(x.newvalue)
# 示例二、类的继承------------------------------------------------------
class SecondClass(FirstClass):
def display(self):
print('Current value = %s' % self.data)
z = SecondClass()
z.setdata(77)
z.display()
# 示例三、运算符重载----------------------------------------------------
class ThirdClass(SecondClass):
def __init__(self, data):
"""重写构造函数"""
self.data = data
def __add__(self, other):
"""
重写 + 运算
只适用于类实例在加号左边,否则会报错
"""
return ThirdClass(self.data + other)
def __str__(self):
"""重写 print 的方法"""
return 'ThirdClass: %s' % self.data
def mul(self, other):
self.data *= other
a = ThirdClass('abc')
a.display()
print(a)
b = a + 'xyz' # 实例 a 传递给 self,字符串 'xyz' 传递给 other
b.display()
print(b)
a.mul(3)
print(a)
# 示例四、最简单的类----------------------------------------------------
class rec:
pass
# 这个类,没有实例,只存在命名空间
rec.name = 'Bob'
rec.age = 40
print(rec.name, rec.age)
x = rec()
print(x.name)
print(x.__dict__.keys()) # x 的 name 属性来自于 rec,x 自身并没有额外属性
x.name = 'Tom'
print(x.name)
print(x.__dict__.keys())
print(x.__class__)
print(rec.__dict__.keys())
# 示例五、在类外写方法--------------------------------------------------
def upper(self):
return self.name.upper()
print(upper(x))
rec.method = upper # 可以将外部写的方法,赋值给类
print(x.method())
|
ab90c5a180f4a49bbf5c64062f7049add4b3da8f | MakarVS/GeekBrains_Algorithms_Python | /Lesson_3/Check/hw_nekrasov_lesson_3/les_3_task_4_nek.py | 1,216 | 3.65625 | 4 | # -*- coding: utf-8 -*-
"""
Created on Wed Mar 4 12:01:37 2020
@author: Nekad
"""
# =============================================================================
# 4. Определить, какое число в массиве встречается чаще всего.
#Если искомый элемент(ы) встречается в массиве несколько раз, используйте один любой по вашему выбору.
# =============================================================================
import random
list_len = 10
min_item = 0
max_item = 10
array = [random.randint(min_item, max_item) for _ in range(list_len)]
print(f'\nИсходный массив:\n{array}\n')
numbers = dict()
for item in array:
if item not in numbers:
numbers[item] = 1
else:
numbers[item] += 1
for i, j in numbers.items():
print(f'Число {i} повторяется {j} раз(а)')
max_count = 0
num_max_count = []
for num in numbers:
if numbers[num] > max_count:
max_count = numbers[num]
num_max_count = num
print(f'\nОдно из самых чаще всего повторящихся чисел: {num_max_count}')
|
195df4d2de4aa76a02cbb6f6ace83861e818527c | frankier/apertium | /apertium-tools/scrapers-misc/kkitapNameFixer.py | 887 | 3.65625 | 4 | #!/usr/bin/env python3
import sys
import fileinput
import sys
if len(sys.argv) < 2:
files="kaz.bible.kkitap.txt"
else:
files=sys.argv[1]
for line in fileinput.input(files, inplace=True):
# for line in lines:
#print(lines)
i=0
j=0
line=line.strip()
if "Патшалықтар 1" in line or "Патшалықтар 2" in line:
#line="1 Самуил 1"
if i<26:
line=line.replace("Патшалықтар 1","Самуил 1").strip()
line=line.replace("Патшалықтар 2","Самуил 2").strip()
i+=1
elif "Патшалықтар 3" in line or "Патшалықтар 4" in line:
line=line.replace("Патшалықтар 3","Патшалықтар 1")
line=line.replace("Патшалықтар 4","Патшалықтар 2")
print(line)
#print("".join(lines))
|
7037f4717a933499345a69f09222e799bd612ab1 | alex-moffat/Python-Projects | /Snippets/SQLITE_assignment.py | 8,426 | 4.09375 | 4 | # PYTHON: 3.8.2
# AUTHOR: Alex Moffat
# PURPOSE: The Tech Academy Bootcamp - SQLITE ASSIGNMENT
#=============================================================================
"""
TAGS:
SQL, sqlite3.version, error handling, connect, cursor, execute, CREATE, INSERT, SELECT
slice, upper, fetchall, executescript, 'with' sqlite3.connect()
"""
# ============================================================================
#===== IMPORTED MODULES
import sqlite3
#========== CONNECT - establish connection to DB and print sqlite3 version
def dbConnect(db):
conn = None
try:
conn = sqlite3.connect(db) # creates a db if one does not exist
print(sqlite3.version)
except ValueError as e:
print("DB Connection Error: {}".format(e))
finally:
if conn: conn.close() # close db connection if open
#========== USE CONNECTION - establish connetion to DB and return open connection
def dbUse(db):
conn = None
try:
conn = sqlite3.connect(db) # creates a db if one does not exist
except ValueError as e:
print("DB Connection Error: {}".format(e))
return conn
#========== EXECUTE - can pass SQL statement
def sqlExecute(db, statement):
conn = dbUse(db)
if conn != None: #===== EXECUTE
try:
cur = conn.cursor() # creates cursor object 'cur'
cur.execute(statement)
if statement[slice(0,6)].upper() == 'SELECT': #===== SELECT
dataset = cur.fetchall()
if conn: conn.close()
return dataset
elif statement[slice(0,6)].upper() == 'UPDATE': #===== UPDATE
conn.commit()
print(cur.rowcount, " record updated.")
elif statement[slice(0,6)].upper() == 'DELETE': #===== DELETE
conn.commit()
print(cur.rowcount, " record deleted.")
except ValueError as e:
print("DB Execute Error: {}".format(e))
finally:
if conn: conn.close()
else:
print("DB Connection Error...cannot execute SQL statement")
#========== INSERT - can pass SQL db, table statement, values statement (can be single tuple or list of tuples)
def sqlInsert(db, statement, iValue):
conn = dbUse(db)
if conn != None: #===== INSERT
try:
cur = conn.cursor() # creates cursor object
if isinstance(iValue, list): #===== MULTIPLE ROW INSERT
cur.executemany(statement, iValue)
conn.commit()
print(cur.rowcount, " records inserted.")
elif isinstance(iValue, tuple): #===== SINGLE ROW INSERT
cur.execute(statement, iValue)
conn.commit()
print(cur.rowcount, " record inserted.")
else:
print("DB INSERT Error: Values are not formatted correctly - need list or tuple")
except ValueError as e:
print("DB INSERT Error: {}".format(e))
finally:
if conn: conn.close()
else:
print("DB Connection Error...cannot execute SQL statement")
#=============================================================
#========== ASSIGNMENT
#=============================================================
db = "test_database.db"
tempDB = ':memory:' # saves to RAM and is gone once connection is closed
def assignment():
con1 = sqlite3.connect(db)
con2 = sqlite3.connect(tempDB)
c1 = con1.cursor()
c2 = con2.cursor()
#===== create database
c1.execute("CREATE TABLE IF NOT EXISTS people (firstName TEXT, lastName TEXT, age INT)")
c2.execute("CREATE TABLE IF NOT EXISTS people (firstName TEXT, lastName TEXT, age INT)")
#===== insert data
c1.execute("INSERT INTO people VALUES ('Ron', 'Obvious', 42)")
c2.execute("INSERT INTO people (firstName, lastName, age) VALUES (?, ?, ?)",('Ron', 'Obvious', 42))
con1.commit()
con2.commit()
#===== select data
c1.execute("SELECT * FROM people")
c2.execute("SELECT * FROM people")
print(c1.fetchall())
print(c2.fetchall())
#===== close connection
if con1: con1.close()
if con2: con2.close() # database ':memory:' is gone when connection closed
#===== USING 'with' to simplify code - changes are commited automatically, but still need to close the connection
with sqlite3.connect(db) as con3: #
c3 = con3.cursor()
c3.execute("INSERT INTO people VALUES ('Alex', 'Moffat', 49)") # no need for commit
c3.execute("SELECT * FROM people") # new value 'Alex Moffat' already present in database
print(c3.fetchall())
if con3: # this will trigger outside with block
print("Connection still open")
con3.close()
else:
print("Connection already closed")
#===== OPEN 'with' to drop table --> create table --> insert --> select --> insert --> select
with sqlite3.connect(db) as con4:
c4 = con4.cursor()
#=== executescript() - non-parameterized code - note the comma seperated inserted values
c4.executescript("""
DROP TABLE IF EXISTS people;
CREATE TABLE people (firstName TEXT, lastName TEXT, age INT);
INSERT INTO people VALUES ('Ron', 'Obvious', 42), ('Alex', 'Moffat', 49);
""")
print("===== Created new table & added 2 records =====")
c4.execute("SELECT * FROM people")
print(c4.fetchall())
#=== executemany() - parameterized statement that takes a list or tuple of tuples
pTuple = (('Luigi', 'Vercotti', 43), ('Arthur', 'Belling', 28))
pList = [('Royal', 'Albert', 12), ('Zuli', 'Kitty', 2)]
c4.executemany("INSERT INTO people VALUES (?,?,?)", pTuple)
c4.executemany("INSERT INTO people VALUES (?,?,?)", pList)
print("===== Insert 2 records in tuple & 2 in list =====")
c4.execute("SELECT * FROM people")
print(c4.fetchall())
if con4: con4.close()
#===== INPUT - get data from user and insert with parameterized insert statement
go = True
fName = input("Enter your first name: ").title()
lName = input("Enter your last name: ").title()
while go:
age = input("Enter your your age: ")
try:
age = int(age)
go = False
except:
print('You must enter an integer for age.')
data = (fName, lName, age)
with sqlite3.connect(db) as con5:
c5 = con5.cursor()
c5.execute("INSERT INTO people VALUES (?,?,?)", data)
c5.execute("UPDATE people SET age=? WHERE firstName=? AND lastName=?", (45, 'Luigi', 'Vercotti'))
print("===== select records with last name 'Vercotti' or 'Moffat' =====")
c5.execute("SELECT * FROM people WHERE lastName=? OR lastName=?", ('Vercotti', 'Moffat'))
print(c5.fetchall())
print("===== select records with input first name =====")
c5.execute("SELECT * FROM people WHERE firstName=?", (fName,))
print(c5.fetchall())
if con5: con5.close()
#===== SELECT - using fetchall, fetchone, fetchmany
with sqlite3.connect(db) as con6:
c6 = con6.cursor()
pList = [('Peep', 'Chicken', 12), ('Plurp', 'Chicken', 3), ('Papaya', 'Chicken', 3), ('Supreme', 'Chicken', 1)]
c6.executemany("INSERT INTO people VALUES (?,?,?)", pList)
c6.execute("SELECT firstName, lastName, age FROM people WHERE age < 30 ORDER BY age DESC")
#=== NOTE: Each time you fetch a row it is gone from the retrieved dataset
print("===== fetchone() =====")
for row in c6.fetchone():
print(row)
print("===== fetchmany(3) =====")
for row in c6.fetchmany(3):
print(row)
print("===== fetchall() =====")
for row in c6.fetchall():
print(row)
print("===== count =====")
c6.execute("SELECT COUNT(*) FROM people WHERE age < 30")
print("The select statement had {} records before each fetch".format(c6.fetchone()[0]))
print("===== fetch one row at a time =====")
c6.execute("SELECT firstName, lastName, age FROM people WHERE age < 30 ORDER BY age DESC")
while True: # infinite loop requires a break
row = c6.fetchone()
if row is None: break
print(row)
if con6: con6.close()
if __name__ == '__main__':
assignment()
|
487ba07c41449c775970653e3fb4d03f6720caf9 | GaneshDesk/Python-Programs | /.history/Python_Basic_Programs/Sum_of_Digits_20200821205105.py | 378 | 4.28125 | 4 |
# program to calculate sum of digit of given number.
def SumFunction(n):
tot = 0
while(n > 0):
dig = n % 10
tot = tot+dig
n = n//10
return tot
if __name__ == '__main__':
print("Program for sum of digit of given number")
n = int(input("Enter a number:"))
ret = SumFunction(n)
print("The total sum of digits is:", ret)
|
f28b0653287a74c0dafea59e344c35ba59b054d8 | no4job/WER | /SRC/wer.py | 14,202 | 3.609375 | 4 | # import numpy
import time
import Levenshtein
import re
import os
from io import StringIO
# import csv
import csv_tools
# import editdistance
import collections
def wer(r, h):
"""
Calculation of WER with Levenshtein distance.
Works only for iterables up to 254 elements (uint8).
O(nm) time ans space complexity.
Parameters
----------
r : list
h : list
Returns
-------
int
Examples
--------
>>> wer("who is there".split(), "is there".split())
1
>>> wer("who is there".split(), "".split())
3
>>> wer("".split(), "who is there".split())
3
"""
# initialisation
# d = numpy.zeros((len(r)+1)*(len(h)+1), dtype=numpy.uint8)
d = numpy.zeros((len(r)+1)*(len(h)+1), dtype=numpy.uint16)
# d = numpy.zeros((len(r)+1)*(len(h)+1), dtype=numpy.uint32)
d = d.reshape((len(r)+1, len(h)+1))
for i in range(len(r)+1):
for j in range(len(h)+1):
if i == 0:
d[0][j] = j
elif j == 0:
d[i][0] = i
# computation
for i in range(1, len(r)+1):
for j in range(1, len(h)+1):
if r[i-1] == h[j-1]:
d[i][j] = d[i-1][j-1]
else:
substitution = d[i-1][j-1] + 1
insertion = d[i][j-1] + 1
deletion = d[i-1][j] + 1
d[i][j] = min(substitution, insertion, deletion)
return d[len(r)][len(h)]
def Convert_to_UTF_string(compared,ref):
ref_count = 0
# ref_dict = collections.OrderedDict()
# compared_dict = collections.OrderedDict()
wrd_dict = {}
# compared_dict = {}
# ref_dict = {}
# compared_dict = {}
for wrd in ref:
wrd_dict[wrd]=chr(ref_count).encode('utf-8')
ref_count += 1
for wrd in compared:
wrd_dict[wrd]=chr(ref_count).encode('utf-8')
ref_count += 1
# utf_code = ref_dict.get(compared_wrd,None)
# if not utf_code:
# utf_code = chr(ref_count).encode('utf-8')
# ref_count += 1
# compared_dict[compared_wrd]= utf_code
ref_str = ''.join(str(wrd_dict[wrd], encoding='utf-8') for wrd in ref)
compared_str = ''.join(str(wrd_dict[wrd], encoding='utf-8') for wrd in compared)
return [compared_str,ref_str]
'''
def save_csv(compared,ref,edit_ops,csv_file,append = 0):
out_csv = csv_tools.csvLog(csv_file,append)
# header_list = sort_headers(list(get_field_type_list(patent_list)))
# if append == 0:
# out_csv.add_row(header_list)
for patent in patent_list:
csv_row = []
for header in header_list:
value = filter_blank(patent.get(header) or "")
value = trim_leading_signes(value)
trim_leading_signes
csv_row.append(value)
out_csv.add_row(csv_row)
# if value !=None:
# csv_row.append(value)
# else:
# csv_row.append(value)
return out_csv
def syncronize_list__(lst_1,lst_2,edit_ops):
deletion = []
insertion = []
replacement = []
lst_1_sync = list(lst_1)
lst_2_sync = list(lst_2)
for op in edit_ops:
if op[0] == 'delete':
deletion.append(op[1])
if op[0] == 'insert':
insertion.append(op[1])
if op[0] == 'replace':
replacement.append(op[1])
insertion.sort(reverse=True)
for delete_position in deletion:
lst_1_sync[delete_position]=">"+lst_1_sync[delete_position]+"<"
for replace_position in replacement:
lst_1_sync[replace_position]="|"+lst_1_sync[replace_position]+"|"
for insert_position in insertion:
lst_1_sync.insert(insert_position,'<>')
for delete_position in range(len(lst_1_sync)):
if re.match('^>[^<>]*<$',lst_1_sync[delete_position]):
lst_2_sync.insert(delete_position,'')
return lst_1_sync,lst_2_sync
'''
def syncronize_list(lst_1,lst_2,edit_ops):
deletion = []
insertion = []
replacement = []
lst_1_sync = list( [e,''] for e in lst_1)
lst_2_sync = list( [e,''] for e in lst_2)
for op in edit_ops:
if op[0] == 'delete':
deletion.append(op[1])
if op[0] == 'insert':
insertion.append(op[1])
if op[0] == 'replace':
replacement.append(op[1])
insertion.sort(reverse=True)
for delete_position in deletion:
# lst_1_sync[delete_position]=">"+lst_1_sync[delete_position]+"<"
lst_1_sync[delete_position][1]='delete'
for replace_position in replacement:
# lst_1_sync[replace_position]="|"+lst_1_sync[replace_position]+"|"
lst_1_sync[replace_position][1]='replace'
for insert_position in insertion:
# lst_1_sync.insert(insert_position,'<>')
lst_1_sync.insert(insert_position,['','insert'])
for delete_position in range(len(lst_1_sync)):
# if re.match('^>[^<>]*<$',lst_1_sync[delete_position]):
if lst_1_sync[delete_position][1] == 'delete':
lst_2_sync.insert(delete_position,['','skip'])
return lst_1_sync,lst_2_sync
def get_all_syncronized_list_(ref_file_path,compared_file_dir_path, compared_file_pattern):
all_syncronized_list = []
for filename in os.listdir(compared_file_dir_path):
if re.match(compared_file_pattern,filename):
with open(ref_file_path, 'r', encoding='utf-8') as ref_file, \
open(compared_file_dir_path+filename, 'r', encoding='utf-8') as compared_file:
ref_str = ref_file.read().replace('\n', ' ').replace('\r', ' ')
compared_str = compared_file.read().replace('\n', ' ').replace('\r', ' ')
ref = ref_str.split()
compared = compared_str.split()
converted_str = Convert_to_UTF_string(compared,ref)
compared_str = converted_str[0]
ref_str = converted_str[1]
edit_ops = Levenshtein.editops(compared_str, ref_str)
# compared_sync,ref_sync = syncronize_list(compared,ref,edit_ops)
syncronized_list=list(syncronize_list(compared,ref,edit_ops))
syncronized_list.append(filename)
syncronized_list.append(os.path.basename(ref_file_path))
if len(ref)>0 :
syncronized_list.append(len(edit_ops)/len(ref))
else:
syncronized_list.append(None)
all_syncronized_list.append(syncronized_list)
return all_syncronized_list
def get_all_syncronized_list(ref_file_path,compared_file_dir_path, compared_file_pattern):
all_syncronized_list = []
for filename in os.listdir(compared_file_dir_path):
if re.match(compared_file_pattern,filename):
with open(ref_file_path, 'r', encoding='utf-8') as ref_file, \
open(compared_file_dir_path+filename, 'r', encoding='utf-8') as compared_file:
all_syncronized_list.append(syncronize_file(ref_file,compared_file))
return all_syncronized_list
def syncronize_str(ref_file,compared_str):
compared_file = StringIO()
compared_file.write(compared_str)
result = syncronize_file(ref_file,compared_file)
return result
def word_count(file):
with open(file,'r', encoding='utf-8') as f:
str = f.read().replace('\n', ' ').replace('\r', ' ')
return len(str.split())
def syncronize_file(ref_file,compared_file):
# all_syncronized_list = []
# for filename in os.listdir(compared_file_dir_path):
# if re.match(compared_file_pattern,filename):
# with open(ref_file_path, 'r', encoding='utf-8') as ref_file, \
# open(compared_file_path, 'r', encoding='utf-8') as compared_file:
ref_str = ref_file.read().replace('\n', ' ').replace('\r', ' ')
compared_str = compared_file.read().replace('\n', ' ').replace('\r', ' ')
ref = ref_str.split()
compared = compared_str.split()
converted_str = Convert_to_UTF_string(compared,ref)
compared_str = converted_str[0]
ref_str = converted_str[1]
edit_ops = Levenshtein.editops(compared_str, ref_str)
# compared_sync,ref_sync = syncronize_list(compared,ref,edit_ops)
syncronized_list=list(syncronize_list(compared,ref,edit_ops))
# syncronized_list.append(filename)
# syncronized_list.append(os.path.basename(compared_file_path))
syncronized_list.append(os.path.basename(compared_file.name))
syncronized_list.append(os.path.basename(ref_file.name))
if len(ref)>0 :
syncronized_list.append(len(edit_ops)/len(ref))
else:
syncronized_list.append(None)
return syncronized_list
# all_syncronized_list.append(syncronized_list)
# return all_syncronized_list
def syncronize_all(all_syncronized_list):
all_skip_num_list =[]
max_skip_num_list =[]
ref_syncronized_list = []
all_compared_syncronized_list = []
for syncronized_list in all_syncronized_list:
skip_num=0
# no_skip_count = 0
skip_num_list = []
for element in syncronized_list[1]:
if element[1]=='skip':
skip_num+=1
else:
skip_num_list.append(skip_num)
skip_num = 0
# if skip_num != 0:
skip_num_list.append(skip_num)
all_skip_num_list.append([skip_num_list,syncronized_list[2]])
for i in range(len(all_skip_num_list[0][0])):
max_skip_num_list.append(max(skip_num_list[0][i] for skip_num_list in all_skip_num_list))
# no_skip_number = None
no_skip_number = 0
for element in all_syncronized_list[0][1]:
if element[1]!='skip':
ref_syncronized_list.extend([['','skip'] for x in range(max_skip_num_list[no_skip_number])])
# ref_syncronized_list.append(['','skip']*max_skip_num_list[no_skip_number])
no_skip_number+=1
ref_syncronized_list.append(element)
# if len(max_skip_num_list)== no_skip_number+1:
ref_syncronized_list.extend([['','skip'] for x in range(max_skip_num_list[no_skip_number])])
ref_syncronized_list=[ref_syncronized_list,all_syncronized_list[0][3],all_syncronized_list[0][4]]
for syncronized_list in all_syncronized_list:
compared_syncronized_list = []
no_skip_number = 0
skip_number = 0
for element in syncronized_list[0]:
# if element[1]!='delete' and element[1]!='insert':
if element[1]!='delete':
compared_syncronized_list.extend([['','skip']
for x in range(max_skip_num_list[no_skip_number]-skip_number)])
# ref_syncronized_list.append(['','skip']*max_skip_num_list[no_skip_number])
no_skip_number+=1
skip_number = 0
else:
skip_number+=1
compared_syncronized_list.append(element)
# if len(max_skip_num_list)== no_skip_number+1:
compared_syncronized_list.extend([['','skip']
for x in range(max_skip_num_list[no_skip_number]-skip_number)])
all_compared_syncronized_list.append([compared_syncronized_list,syncronized_list[2],syncronized_list[4]])
return ref_syncronized_list,all_compared_syncronized_list
def save_csv(ref_syncronized_list,all_compared_syncronized_list,csv_file,append = 0):
out_csv = csv_tools.csvLog(csv_file,append)
header_list = [ref_syncronized_list[1]]
for compared_syncronized_list in all_compared_syncronized_list:
header_list.append(compared_syncronized_list[1])
if append == 0:
out_csv.add_row(header_list)
csv_row = [ref_syncronized_list[2]]
for compared_syncronized_list in all_compared_syncronized_list:
csv_row.append(compared_syncronized_list[2])
if append == 0:
out_csv.add_row(csv_row)
for i in range(len(ref_syncronized_list[0])):
csv_row = [mark_edit_op(ref_syncronized_list[0][i][0],ref_syncronized_list[0][i][1])]
for compared_syncronized_list in all_compared_syncronized_list:
csv_row.append(mark_edit_op(compared_syncronized_list[0][i][0],compared_syncronized_list[0][i][1]))
out_csv.add_row(csv_row)
return out_csv
def mark_edit_op(value,edit_op):
if edit_op == "skip":
return value
if edit_op == "delete":
return '#'+value
if edit_op == "insert":
return '<>'
if edit_op == "replace":
return '@'+ value
return value
if __name__ == "__main__":
CALC_DIR = 1
# import doctest
# doctest.testmod()
# print (wer("who is there".split(), "who is there 123".split()))
REF_FILE_DIR_PATH = '../REF_TXT/'
REF_FILE_NAME = 'ref.txt'
COMPARED_FILE_DIR_PATH = '../TXT_IN/'
COMPARED_FILE_NAME = 'compared.txt'
OUT_CSV_FILE_DIR_PATH = '../CSV_OUT/'
OUT_CSV_FILE_NAME = 'out.csv'
start_time = time.clock()
ref_syncronized_list = []
all_compared_syncronized_list = []
if CALC_DIR:
all_syncronized_list = get_all_syncronized_list(REF_FILE_DIR_PATH+REF_FILE_NAME,COMPARED_FILE_DIR_PATH, r'^compared_\d+')
ref_syncronized_list,all_compared_syncronized_list=syncronize_all(all_syncronized_list)
else:
with open(REF_FILE_DIR_PATH+REF_FILE_NAME, 'r', encoding='utf-8') as ref_file, \
open(COMPARED_FILE_DIR_PATH+COMPARED_FILE_NAME, 'r', encoding='utf-8') as compared_file:
ref_str = ref_file.read().replace('\n', ' ').replace('\r', ' ')
compared_str = compared_file.read().replace('\n', ' ').replace('\r', ' ')
ref = ref_str.split()
compared = compared_str.split()
converted_str = Convert_to_UTF_string(compared,ref)
compared_str = converted_str[0]
ref_str = converted_str[1]
edit_ops = Levenshtein.editops(compared_str, ref_str)
print (len(edit_ops))
print (edit_ops)
compared_sync,ref_sync = syncronize_list(compared,ref,edit_ops)
print(ref_sync)
print(compared_sync)
save_csv(ref_syncronized_list,all_compared_syncronized_list,
OUT_CSV_FILE_DIR_PATH+OUT_CSV_FILE_NAME,append = 0)
finish_time = time.clock()
print("{:.2f}s".format((finish_time-start_time)))
exit(0) |
265458e9a36ae2ac1ebb2189e2573d3ab9e4db48 | deepaksinghcv/self_training_MNIST | /model.py | 1,426 | 3.59375 | 4 | '''contains a NN model for training MNIST'''
import torch
import torch.nn as nn
class MNIST_Model(nn.Module):
'''define a custom NN for MNIST'''
def __init__(self, num_of_input_channels, num_of_output_channels):
'''initialize the model with given channels'''
super(MNIST_Model, self).__init__()
self.num_of_input_channels = num_of_input_channels
self.num_of_output_channels = num_of_output_channels
self.create_nn()
def create_nn(self):
self.l1 = nn.Linear(in_features = self.num_of_input_channels, out_features = 10, bias = True)
self.l2 = nn.Linear(in_features = 10, out_features = 10, bias = True)
self.l3 = nn.Linear(in_features = 10, out_features = 20, bias = True)
self.l4 = nn.Linear(in_features = 20, out_features = 20, bias = True)
self.l5 = nn.Linear(in_features = 20, out_features = self.num_of_output_channels, bias = True)
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim = 1)
def forward(self, x):
'''define forward propagation'''
x = self.relu(self.l1(x))
x = self.relu(self.l2(x))
x = self.relu(self.l3(x))
x = self.relu(self.l4(x))
x = self.relu(self.l5(x))
# x = self.softmax(x)
return x
if __name__ == "__main__":
model = MNIST_Model(784, 10)
x = torch.randn(784)
output = model(x)
print(output)
|
41c488b8ff926e02cc567ad7d9ed6724a672782b | Suoivy/RBF-Neural-Network | /RBFModel.py | 25,086 | 3.59375 | 4 | """"
Date:2017.4.27
Neural Network design homework
Using 3-phases-RBF NN to regression
author:Suo Chuanzhe
email: [email protected]
"""
import numpy as np
import time
from sklearn.cluster import KMeans
from scipy.spatial import distance
import matplotlib.pyplot as plt
class RBFModel():
# config model value
"""
Input: data_input(array(IN_value_num,data_num))
data_output(array(OUT_value_num,data_num)
hidden_unit_number(N)
"""
def __init__(self, data_input = np.array([[0],[0]]), data_output = np.array([[0],[0]]), hidden_units_number = 1):
self.input = data_input
self.output = data_output
self.data_number = self.input.shape[1]
self.input_units_number = self.input.shape[0]
self.hidden_units_number = hidden_units_number
self.output_units_number = self.output.shape[0]
self.center, self.spread, self.weight, self.bias = np.array([[], [], [], []])
self.radial_basis_input = np.array([])
self.radial_basis_function = self.sigmoid_activation
self.radial_basis_function_gradient = self.sigmoid_gradient
self.output_activation = self.none_activation
self.output_activation_gradient = self.none_gradient
self.loss_function = self.L2_loss
self.loss_function_gradient = self.L2_loss_gradient
self.optimizer = self.BGD_optimizer
self.eval_input = np.array([])
self.eval_output = np.array([])
# Initialize values #3-Layers BP
"""
input: activation_function(function) activation_gradient(function)
"""
def initialize_parameters(self, radial_basis_function, radial_basis_function_gradient,
output_activation, output_activation_gradient):
self.center = 8 * np.random.rand(self.hidden_units_number, self.input_units_number) - 4
self.spread = 0.2 * np.random.rand(self.hidden_units_number, 1) + 0.1
self.weight = 0.2 * np.random.rand(self.output_units_number, self.hidden_units_number) - 0.1
self.bias = 0.2 * np.random.rand(self.output_units_number, 1) - 0.1
self.set_activation(radial_basis_function, radial_basis_function_gradient, output_activation,
output_activation_gradient)
# Set activation function
def set_activation(self, radial_basis_function, radial_basis_function_gradient, output_activation,
output_activation_gradient):
self.radial_basis_function = radial_basis_function
self.radial_basis_function_gradient = radial_basis_function_gradient
self.output_activation = output_activation
self.output_activation_gradient = output_activation_gradient
# Cluster hidden unit center using Kmeans
def cluster_center(self):
estimator = KMeans(n_clusters = self.hidden_units_number)
estimator.fit(self.input.T)
self.center = estimator.cluster_centers_
alldist = distance.cdist(self.center, self.center, 'euclidean')
dist = np.where(alldist == 0, alldist.max()+1, alldist)
self.spread = dist.min(axis=1).reshape(self.hidden_units_number, 1)
# Set evaluate dataset
def set_evaluate_dataset(self, samp_input, samp_output):
self.eval_input = samp_input
self.eval_output = samp_output
# train model
"""
Input: loss_function(function)
loss_gradient(function)
optimizer(function)
learn_error(float64)
max_iteration(int64)
"""
def train(self, loss_function, loss_gradient, optimizer, learn_error, iteration, evaluate=False,
**option_hyper_param):
self.loss_function = loss_function
self.loss_function_gradient = loss_gradient
self.optimizer = optimizer
train_losses = []
eval_losses = []
param = []
elapsed_time = 0
# plt.ion()
# train_fig = plt.figure()
# loss_plt = train_fig.add_subplot(1, 1, 1)
# loss_plt.set_title('train_loss')
# loss_plt.set_xlable('train_iter')
# loss_plt.set_ylable('loss')
for iter in range(iteration):
last_time = time.time()
# Back propagation and Optimizer
loss = self.optimizer(param, option_hyper_param)
iter_time = time.time() - last_time
elapsed_time = elapsed_time + iter_time
train_losses.append(loss)
# loss_plt.plot(loss, 'b-')
# plt.draw()
if evaluate:
results, eval_loss = self.evaluate(self.eval_input, self.eval_output)
eval_losses.append(eval_loss)
if iter % 100 == 0:
print('train iteration:%d, train loss:%f, iter time:%f, elapsed time:%f' % (
iter, loss, iter_time, elapsed_time))
if loss < learn_error:
break
# plt.ioff()
# plt.show()
if evaluate:
return train_losses, eval_losses, results
else:
return train_losses
# Forward graph configure network output
def _forward(self, input_=np.array([])):
if len(input_) == 0:
input_ = self.input
self.distance = distance.cdist(input_.T, self.center, 'euclidean').T
self.radial_basis_input = self.distance / self.spread
hidden_output = self.radial_basis_function(self.radial_basis_input)
network_output = self.output_activation(self.weight.dot(hidden_output) + self.bias)
return hidden_output, network_output
# Back graph configure network gradient
def _backward(self, hidden_output, network_output):
hidden_gradient = self.loss_function_gradient(network_output, self.output) * self.output_activation_gradient(
network_output)
input_gradient = self.weight.T.dot(hidden_gradient) * self.radial_basis_function_gradient(self.radial_basis_input)
delta_weight = hidden_gradient.dot(hidden_output.T) / self.data_number
delta_bias = hidden_gradient.dot(np.ones((self.data_number, 1))) / self.data_number
ldist = np.tile(self.input, (self.hidden_units_number, 1)) - self.center.reshape(self.input_units_number*self.hidden_units_number, 1) # shape: i*h,n
ldist_gradient = (input_gradient / self.spread) / (-self.distance)
delta_center = (ldist * ldist_gradient.repeat(self.input_units_number, 0)).sum(axis=1).reshape(self.hidden_units_number, self.input_units_number) / self.data_number
delta_spread = (input_gradient * (-self.distance * np.power(self.spread, -2))).dot(np.ones((self.data_number, 1))) / self.data_number
return delta_center, delta_spread, delta_weight, delta_bias
# evaluate model
def evaluate(self, input, output, ):
hidden_output, network_output = self._forward(input)
loss = self.loss_function(network_output, output)
return network_output, loss
# predict
def predict(self, input):
output = self._forward(input)
return output
### Optimizer Functions ###
# Batch Gradient Descent (BGD)
def BGD_optimizer(self, param, hyper_param={'learn_rate': 0.01}):
# Initialize variables
try:
learn_rate = hyper_param['learn_rate']
except:
print('BGD_optimizer have no "learn_rate" hyper-parameter')
return
# Forward propagation
hidden_output_, network_output_ = self._forward()
# Loss function
loss_ = self.loss_function(network_output_, self.output)
# Backward propagation
delta_center, delta_spread, delta_weight, delta_bias = self._backward(hidden_output_, network_output_)
extended_gradient = self.extend_variables(delta_center, delta_spread, delta_weight, delta_bias)
extended_variables = self.extend_variables(self.center, self.spread, self.weight, self.bias)
# Updata variables
extended_delta = learn_rate * extended_gradient
extended_variables = extended_variables - extended_delta
self.center, self.spread, self.weight, self.bias = self.split_weights(extended_variables)
return loss_
# Momentum
def Momentum_optimizer(self, param, hyper_param={'learn_rate': 0.01, 'momentum_rate': 0.9}):
# Initialize variables
if len(param) == 0:
param.append(np.zeros(1)) # last delta_weights and delta_biases
try:
learn_rate = hyper_param['learn_rate']
except:
print('Momentum_optimizer have no "learn_rate" hyper-parameter')
return
try:
momentum_rate = hyper_param['momentum_rate']
except:
print('Momentum_optimizer have no "momentum_rate" hyper-parameter')
return
# Forward propagation
hidden_output_, network_output_ = self._forward()
# Loss function
loss_ = self.loss_function(network_output_, self.output)
# Backward propagation
delta_center, delta_spread, delta_weight, delta_bias = self._backward(hidden_output_, network_output_)
extended_gradient = self.extend_variables(delta_center, delta_spread, delta_weight, delta_bias)
extended_variables = self.extend_variables(self.center, self.spread, self.weight, self.bias)
# Updata variables
extended_delta = param[0]
extended_delta = momentum_rate * extended_delta + learn_rate * extended_gradient
param[0] = extended_delta
extended_variables = extended_variables - extended_delta
self.center, self.spread, self.weight, self.bias = self.split_weights(extended_variables)
return loss_
# Nesterov Accelerated Gradient(NAG)
def NAG_optimizer(self, param, hyper_param={'learn_rate': 0.01, 'momentum_rate': 0.9}):
# Initialize variables
if len(param) == 0:
param.append(np.zeros(1)) # last delta_weights and delta_biases
try:
learn_rate = hyper_param['learn_rate']
except:
print('NAG_optimizer have no "learn_rate" hyper-parameter')
return
try:
momentum_rate = hyper_param['momentum_rate']
except:
print('NAG_optimizer have no "momentum_rate" hyper-parameter')
return
# Forward propagation
extended_variables = self.extend_variables(self.center, self.spread, self.weight, self.bias)
extended_delta = param[0]
self.center, self.spread, self.weight, self.bias = self.split_weights(
extended_variables - momentum_rate * extended_delta)
hidden_output_, network_output_ = self._forward()
# Loss function
loss_ = self.loss_function(network_output_, self.output)
# Backward propagation
delta_center, delta_spread, delta_weight, delta_bias = self._backward(hidden_output_, network_output_)
extended_gradient = self.extend_variables(delta_center, delta_spread, delta_weight, delta_bias)
# Updata variables
extended_delta = momentum_rate * extended_delta + learn_rate * extended_gradient
param[0] = extended_delta
extended_variables = extended_variables - extended_delta
self.center, self.spread, self.weight, self.bias = self.split_weights(extended_variables)
return loss_
# Adagrad
def Adagrad_optimizer(self, param, hyper_param={'learn_rate': 0.01}):
# Initialize variables
delta = 10e-7
if len(param) == 0:
param.append(np.zeros(1)) # accumulated square gradient
try:
learn_rate = hyper_param['learn_rate']
except:
print('Adagrad_optimizer have no "learn_rate" hyper-parameter')
return
# Forward propagation
hidden_output_, network_output_ = self._forward()
# Loss function
loss_ = self.loss_function(network_output_, self.output)
# Backward propagation
delta_center, delta_spread, delta_weight, delta_bias = self._backward(hidden_output_, network_output_)
extended_gradient = self.extend_variables(delta_center, delta_spread, delta_weight, delta_bias)
extended_variables = self.extend_variables(self.center, self.spread, self.weight, self.bias)
# Updata variables
accumulated_gradient = param[0]
accumulated_gradient = accumulated_gradient + extended_gradient * extended_gradient
param[0] = accumulated_gradient
extended_delta = learn_rate / np.sqrt(accumulated_gradient + delta) * extended_gradient
extended_variables = extended_variables - extended_delta
self.center, self.spread, self.weight, self.bias = self.split_weights(extended_variables)
return loss_
# Adadelta
def Adadelta_optimizer(self, param, hyper_param={'decay_rate': 0.9}):
# Initialize variables
delta = 10e-7
if len(param) == 0:
param.append(np.zeros(1)) # accumulated square gradient
param.append(np.zeros(1)) # accumulated square delta
try:
decay_rate = hyper_param['decay_rate']
except:
print('Adadelta_optimizer have no "decay_rate" hyper-parameter')
return
# Forward propagation
hidden_output_, network_output_ = self._forward()
# Loss function
loss_ = self.loss_function(network_output_, self.output)
# Backward propagation
delta_center, delta_spread, delta_weight, delta_bias = self._backward(hidden_output_, network_output_)
extended_gradient = self.extend_variables(delta_center, delta_spread, delta_weight, delta_bias)
extended_variables = self.extend_variables(self.center, self.spread, self.weight, self.bias)
# Updata variables
accumulated_gradient = param[0]
accumulated_delta = param[1]
accumulated_gradient = decay_rate * accumulated_gradient + (
1 - decay_rate) * extended_gradient * extended_gradient
extended_delta = np.sqrt(accumulated_delta + delta) / np.sqrt(accumulated_gradient + delta) * extended_gradient
accumulated_delta = decay_rate * accumulated_delta + (1 - decay_rate) * extended_delta * extended_delta
param[0] = accumulated_gradient
param[1] = accumulated_delta
extended_variables = extended_variables - extended_delta
self.center, self.spread, self.weight, self.bias = self.split_weights(extended_variables)
return loss_
# RMSProp
def RMSProp_optimizer(self, param, hyper_param={'learn_rate': 0.01, 'decay_rate': 0.9}):
# Initialize variables
delta = 10e-6
if len(param) == 0:
param.append(np.zeros(1)) # accumulated square gradient
try:
learn_rate = hyper_param['learn_rate']
except:
print('RMSProp_optimizer have no "learn_rate" hyper-parameter')
return
try:
decay_rate = hyper_param['decay_rate']
except:
print('RMSProp_optimizer have no "decay_rate" hyper-parameter')
return
# Forward propagation
hidden_output_, network_output_ = self._forward()
# Loss function
loss_ = self.loss_function(network_output_, self.output)
# Backward propagation
delta_center, delta_spread, delta_weight, delta_bias = self._backward(hidden_output_, network_output_)
extended_gradient = self.extend_variables(delta_center, delta_spread, delta_weight, delta_bias)
extended_variables = self.extend_variables(self.center, self.spread, self.weight, self.bias)
# Updata variables
accumulated_gradient = param[0]
accumulated_gradient = decay_rate * accumulated_gradient + (
1 - decay_rate) * extended_gradient * extended_gradient
param[0] = accumulated_gradient
extended_delta = learn_rate / np.sqrt(accumulated_gradient + delta) * extended_gradient
extended_variables = extended_variables - extended_delta
self.center, self.spread, self.weight, self.bias = self.split_weights(extended_variables)
return loss_
# RMSProp_with_Nesterov
def RMSProp_Nesterov_optimizer(self, param,
hyper_param={'learn_rate': 0.01, 'momentum_rate': 0.9, 'decay_rate': 0.9}):
# Initialize variables
delta = 10e-6
if len(param) == 0:
param.append(np.zeros(1)) # last delta_weights and delta_biases
param.append(np.zeros(1)) # accumulated square gradient
try:
learn_rate = hyper_param['learn_rate']
except:
print('RMSProp_Nesterov_optimizer have no "learn_rate" hyper-parameter')
return
try:
decay_rate = hyper_param['decay_rate']
except:
print('RMSProp_Nesterov_optimizer have no "decay_rate" hyper-parameter')
return
try:
momentum_rate = hyper_param['momentum_rate']
except:
print('RMSProp_Nesterov_optimizer have no "momentum_rate" hyper-parameter')
return
# Forward propagation
extended_variables = self.extend_variables(self.center, self.spread, self.weight, self.bias)
extended_delta = param[0]
self.center, self.spread, self.weight, self.bias = self.split_weights(
extended_variables - momentum_rate * extended_delta)
hidden_output_, network_output_ = self._forward()
# Loss function
loss_ = self.loss_function(network_output_, self.output)
# Backward propagation
delta_center, delta_spread, delta_weight, delta_bias = self._backward(hidden_output_, network_output_)
extended_gradient = self.extend_variables(delta_center, delta_spread, delta_weight, delta_bias)
extended_variables = self.extend_variables(self.center, self.spread, self.weight, self.bias)
# Updata variables
accumulated_gradient = param[1]
accumulated_gradient = decay_rate * accumulated_gradient + (
1 - decay_rate) * extended_gradient * extended_gradient
param[1] = accumulated_gradient
extended_delta = learn_rate / np.sqrt(accumulated_gradient + delta) * extended_gradient
extended_variables = extended_variables - extended_delta
self.center, self.spread, self.weight, self.bias = self.split_weights(extended_variables)
return loss_
# Adam
def Adam_optimizer(self, param, hyper_param={'learn_rate': 0.01, 'decay1_rate': 0.9, 'decay2_rate': 0.999}):
# Initialize variables
delta = 10e-8
if len(param) == 0:
param.append(np.zeros(1)) # accumulated gradient
param.append(np.zeros(1)) # accumulated square gradient
param.append(0) # train steps
try:
learn_rate = hyper_param['learn_rate']
except:
print('Adam_optimizer have no "learn_rate" hyper-parameter')
return
try:
decay1_rate = hyper_param['decay1_rate']
except:
print('Adam_optimizer have no "decay1_rate" hyper-parameter')
return
try:
decay2_rate = hyper_param['decay2_rate']
except:
print('Adam_optimizer have no "decay2_rate" hyper-parameter')
return
# Forward propagation
hidden_output_, network_output_ = self._forward()
# Loss function
loss_ = self.loss_function(network_output_, self.output)
# Backward propagation
delta_center, delta_spread, delta_weight, delta_bias = self._backward(hidden_output_, network_output_)
extended_gradient = self.extend_variables(delta_center, delta_spread, delta_weight, delta_bias)
extended_variables = self.extend_variables(self.center, self.spread, self.weight, self.bias)
# Updata variables
accumulated_gradient = param[0]
accumulated_square_gradient = param[1]
step = param[2] + 1
accumulated_gradient = decay1_rate * accumulated_gradient + (1 - decay1_rate) * extended_gradient
accumulated_square_gradient = decay2_rate * accumulated_square_gradient + (
1 - decay2_rate) * extended_gradient * extended_gradient
param[0] = accumulated_gradient
param[1] = accumulated_square_gradient
param[2] = step + 1
extended_moment1 = accumulated_gradient / (1 - np.power(decay1_rate, step))
extended_moment2 = accumulated_square_gradient / (1 - np.power(decay2_rate, step))
extended_delta = learn_rate * extended_moment1 / (np.sqrt(extended_moment2) + delta)
extended_variables = extended_variables - extended_delta
self.center, self.spread, self.weight, self.bias = self.split_weights(extended_variables)
return loss_
### Activation Functions ###
# sigmoid
def sigmoid_activation(self, input_):
output_ = 1 / (1 + np.exp(-input_))
return output_
def sigmoid_gradient(self, input_):
output_ = input_ * (1 - input_)
return output_
# tanh (Bipolar sigmoid)
def tanh_activation(self, input_):
output_ = (1 - np.exp(-input_)) / (1 + np.exp(-input_))
return output_
def tanh_gradient(self, input_):
output_ = 0.5 * (1 - input_ * input_)
return output_
# ReLU
def ReLU_activation(self, input_):
output_ = np.where(input_ < 0, 0, input_)
return output_
def ReLU_gradient(self, input_):
output_ = np.where(input_ > 0, 1, 0)
return output_
# Softmax
def softmax_activation(self, input_):
output_ = np.exp(input_ - input_.max(axis=0)) / np.sum(np.exp(input_ - input_.max(axis=0)), axis=0)
return output_
def softmax_gradient(self, input_):
output_ = input_ * (self.output - input_)
return output_
# None Activation
def none_activation(self, input_):
output_ = input_
return output_
def none_gradient(self, input_):
output_ = 1
return output_
# RBF Gaussian Function
def Gaussian_basis(self, input_):
output_ = np.exp(-np.power(input_, 2))
return output_
def Gaussian_gradient(self, input_):
output_ = -2 * input_ * np.exp(-np.power(input_, 2))
return output_
# RBF Reflected sigmoid Function
def Reflected_sigmoid_basis(self, input_):
output_ = 1 / (1 + np.exp(np.power(input_, 2)))
return output_
def Reflected_sigmoid_gradient(self, input_):
output_ = -2 * input_ * np.exp(np.power(input_, 2)) / np.power(1 + np.exp(np.power(input_, 2)), 2)
return output_
### Loss Functions ###
# output_: Network predict output output: dataset output
# L2_loss (RMSE)
def L2_loss(self, output_, output):
loss = np.sum(0.5 * np.power(output_ - output, 2))
return loss
def L2_loss_gradient(self, output_, output):
loss_gradient = output_ - output
return loss_gradient
# cross_entropy loss
def cross_entropy_loss(self, output_, output):
loss = -np.sum(np.log(output_) * output)
return loss
def cross_entropy_gradient(self, output_, output):
loss_gradient = -output / output_
return loss_gradient
# sigmoid_cross_entropy loss
# softmax cross_entropy loss
### utilities ###
def extend_variables(self, center_, spread_, weight_, bias_):
variables = np.concatenate(
(center_.reshape(-1), spread_.reshape(-1), weight_.reshape(-1), bias_.reshape(-1)))
return variables
def split_weights(self, variables):
center_mark = self.input_units_number * self.hidden_units_number
spread_mark = center_mark + self.hidden_units_number
weight_mark = spread_mark + self.hidden_units_number * self.output_units_number
center = variables[: center_mark].copy()
center = center.reshape(self.hidden_units_number, self.input_units_number)
spread = variables[center_mark: spread_mark].copy()
spread = spread.reshape(self.hidden_units_number, 1)
weight = variables[spread_mark: weight_mark].copy()
weight = weight.reshape(self.output_units_number, self.hidden_units_number)
bias = variables[weight_mark:].copy()
bias = bias.reshape(self.output_units_number, 1)
return center, spread, weight, bias
def save_model(self, path='model'):
np.save(path, [self.center, self.spread, self.weight, self.bias])
def load_model(self, path):
parameters = np.load(path)
self.center = parameters[0]
self.spread = parameters[1]
self.weight = parameters[2]
self.bias = parameters[3]
self.input_units_number = self.center.shape[1]
self.hidden_units_number = self.center.shape[0]
self.output_units_number = self.weight.shape[0]
|
955f9fb338854949f7862d18ef9e5a071988d9f2 | rafaelperazzo/programacao-web | /moodledata/vpl_data/82/usersdata/233/42998/submittedfiles/decimal2bin.py | 119 | 3.71875 | 4 | # -*- coding: utf-8 -*
binario=int(input('Digite um número binário: '))
soma=0
while
soma=soma+n*2**i
n=binario%10
|
85be9a41f124a4f914124a1c7bc447eb1812db0d | Yakobo-UG/Python-by-example-challenges | /challenge 48.py | 705 | 4.25 | 4 | #Ask for the name of somebody the user wants to invite to a party. After this, display the message “[name] has now been invited” and add 1 to the count. Then ask if they want to invite somebody else. Keep repeating this until they no longer want to invite anyone else to the party and then display how many people they have coming to the party.
repeat = "yes"
repeat = "YES"
repeat = "Yes"
add = 0
while repeat == "yes" or repeat == "Yes" or repeat == "YES" :
name =str(input("Enter name to be invited: "))
print (name, "has now been invited")
add = add + 1
repeat = str(input("Do you want to add another person?: "))
print(add, "number of peaple have been invited to the party")
|
fe52f47a23d6a7422475453e86cf9a467ece99c0 | hlcr/Leetcode | /48. Rotate Image.py | 770 | 3.765625 | 4 | class Solution(object):
def rotate(self, matrix):
"""
:type matrix: List[List[int]]
:rtype: None Do not return anything, modify matrix in-place instead.
"""
for i in range(len(matrix)):
for j in range(i, len(matrix)):
matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]
start = 0
end = len(matrix) - 1
while start < end:
matrix[i][start], matrix[i][end] = matrix[i][end], matrix[i][start]
start += 1
end -= 1
if __name__ == '__main__':
r = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
for k in r:
print(k)
print()
Solution().rotate(r)
print()
for l in r:
print(l) |
f70c05721a5d5569d4d229eff43c7046311a1301 | jashidsany/Learning-Python | /Codecademy Lesson 5 Loops/L5.3_Infinite_Loops.py | 353 | 3.90625 | 4 | students_period_A = ["Alex", "Briana", "Cheri", "Daniele"]
students_period_B = ["Dora", "Minerva", "Alexa", "Obie"]
for students in students_period_A:
students_period_B.append(students) # if you change students_period_B to students_period_A, it will cause an infinite loop
print(students)
# temp variable represents elemenets in the lists
|
f5a6000e29ca7b9c6cb8f2ced47a8899f4871faa | rramosp/20182.python.sols | /utils/student_function/student_PS1_SYNTAX_4.py | 212 | 3.84375 | 4 | ## Ejercicio del estudiante
def fibonacci(n):
f_1=1
f_2=1
suma=0
if(n<3):
return 1
for i in xrange(3,n+1):
suma=f_1+f_2
f_1=f_2
f_2=suma
return suma
|
3ee568a4bee32affc4766cab773e212fe5a25e8c | EEsparaquia/Python_project | /script31_2.py | 960 | 3.75 | 4 | #! Python3
# Programming tutorial:
# Urllib Module import urllib.request
# Basicaly go to
# 'http://pythonprogramming.net'
# and serch basics and filter the
# <p></p> tags to extract thr content
import urllib.request
import urllib.parse
import re
print('''
#####################
# #
# Starting Python3 #
# Scripts. #
# It's an exciting #
# time to be alive #
# #
#####################
''')
url = 'http://pythonprogramming.net'
#values = {'s':'basics',
# 'submit':'Search'}
#data = urllib.parse.urlencode(values)
#data = data.encode('utf-8')
#req = urllib.request.Request(url, data)
req = urllib.request.Request(url)
resp = urllib.request.urlopen(req)
respData = resp.read()
#print(respData)
paragraphs = re.findall('<p>(.*?)</p>',str(respData))
for eachP in paragraphs:
print(eachP)
input('Press any key to exit!')
|
9e30b8d24b2b2d73ce039cab05d315a108b8b418 | Nep-DC-Exercises/day-7 | /frequency_pattern_1.py | 785 | 4.1875 | 4 | # Given two arrays write a function to find out if two arrays have the same frequency of digits.
array_1 = [1, 2, 3, 4]
array_2 = [1, 2, 3, 4]
frequency_1 = {}
frequency_2 = {}
# populate two dictionaries with key of the number in the array and the value is how frequent it shows up
def frequency(arr1, arr2, dict1, dict2):
for i in arr1:
if i not in dict1:
dict1[i] = 1
else:
dict1[i] += 1
for i in arr2:
if i not in dict2:
dict2[i] = 1
else:
dict2[i] += 1
frequency(array_1, array_2, frequency_1, frequency_2)
if frequency_1 == frequency_2:
print("The two arrays have the same frequency of digits.")
else:
print("The to arrays do not have the same frequency of digits.")
|
0e3ef14db7711323ea905ba2a031960d7ac21c22 | vega28/code_challenges | /codewars/mumbling.py | 1,438 | 3.90625 | 4 | # Mumbling
# https://www.codewars.com/kata/5667e8f4e3f572a8f2000039
# Challenge:
# Transform any input string by the given pattern:
# for each character, multiply by the place in the string,
# then capitalize the first one of that character,
# then string them together by dashes.
# Constraints:
# the input string will only contain characters a..z and A..Z.
# Code:
def accum1(s):
""" Build the string according to the pattern.
e.g.
>>> accum1('abcd')
'A-Bb-Ccc-Dddd'
>>> accum1("RqaEzty")
'R-Qq-Aaa-Eeee-Zzzzz-Tttttt-Yyyyyyy'
>>> accum1("cwAt")
'C-Ww-Aaa-Tttt'
"""
result = ''
for i, char in enumerate(s):
if i > 0:
result += '-'
result += char.upper() + (char.lower())*i
return result
def accum2(s):
""" Build the string according to the pattern.
e.g.
>>> accum2('abcd')
'A-Bb-Ccc-Dddd'
>>> accum2("RqaEzty")
'R-Qq-Aaa-Eeee-Zzzzz-Tttttt-Yyyyyyy'
>>> accum2("cwAt")
'C-Ww-Aaa-Tttt'
"""
return '-'.join([c.upper() + c.lower()*i for i, c in enumerate(s)])
#####################################################################
# run doctests
if __name__ == "__main__":
import doctest
print()
result = doctest.testmod()
if not result.failed:
print("ALL TESTS PASSED. NICE!")
print()
|
fe1178387fe03b627620f201c82f27396045ead2 | JMH201810/Labs | /Python/p01310a.py | 771 | 4.625 | 5 | ##Buffet: A buffet-style restaurant offers only five basic foods.
##Think of five simple foods, and store them in a tuple.
##• Use a for loop to print each food the restaurant offers.
##• Try to modify one of the items, and make sure that Python rejects the change.
##• The restaurant changes its menu, replacing two of the items with different foods.
## Add a block of code that rewrites the tuple, and then use a for loop
## to print each of the items on the revised menu.
foods = ('tortilla', 'bean', 'horchata', 'okra', 'milk')
print("Foods offered:")
for f in foods:
print (f)
#foods[0] = 'hamburger'
foods = ('tortilla', 'bean', 'pepper', 'cream', 'milk')
print ("\nRevised food list:")
for f in foods:
print (f)
|
9a0cc1ea58eb6b69cd7544588defd5c48b2325b9 | MATEO19M/ESPE202011-FP-GEO-3285 | /workshops/unit1/WS01HelloWorld/Hello World.py | 430 | 4 | 4 | print("Hello World from Mateo Martinez \n ESPE \n GEO")
# input variables
addend1 = input(" Enter the first number --> ")
addend2 = input(" Enter the second number --> ")
# add two numbers
sum = float(addend1) + float(addend2)
# displaying the sum
print("The sum of {0} and {1} is {2}".format(addend1,addend2,sum))
print("The sum is %.1f" %(float(input("Enter first number: "))+float(input("Enter second number: "))))
|
2bd3d4fce2853e4196a63ee869aae1a8a9198123 | alcal3/CSS-301-Portfolio | /problem3.4.5.py | 387 | 4.0625 | 4 | #aleks calderon
#5.2.2019
#creating a class w/method that prints greeting and students name
class Student:
def __init__(self, name, major):
self.name = name
self.major = major
def myfunc(self):
print("Good morning, " + self.name)
p1 = Student("Aleks", "Communications")
p1.myfunc()
p1.major = "Criminal Justice"
print(p1.major)
|
8819849347dbc7f6e0eaada57b02a979637d31b8 | seansliu/Escape-the-Zombies | /ZombieGame.py | 7,410 | 3.5 | 4 | # Zombie Game GUI
#
# Michelle Lee, Sean Liu, Sophie Lucy
from zombie import *
import Tkinter as Tk
from PIL import Image, ImageTk
class ZombieGame:
"""Escape the Zombie Game"""
def __init__(self):
"""define the GUI window"""
self.main_window = Tk.Tk()
self.main_window.title('Escape the Zombies!')
# create the window frames
self.top_frame = Tk.Frame()
self.diff_frame = Tk.Frame()
self.mid_frame = Tk.Frame()
self.word_frame = Tk.Frame()
self.guess_frame = Tk.Frame()
self.wrong_frame = Tk.Frame()
self.play_frame = Tk.Frame()
self.quit_frame = Tk.Frame()
self.stats_frame = Tk.Frame()
# initialize images
self.images = []
for i in range(7):
filename = 'images/zombies' + str(i) + '.ppm'
self.images.append(ImageTk.PhotoImage(Image.open(filename)))
self.game_img = ImageTk.PhotoImage(Image.open('images/zombies.ppm'))
self.win_img = ImageTk.PhotoImage(Image.open('images/win.ppm'))
self.lose_img = ImageTk.PhotoImage(Image.open('images/lose.ppm'))
# initizlize data structures
self.wordbank = index_dict('words.txt')
self.word = ''
self.guess = []
self.guesses = []
self.wrongbox = ''
self.mistakes = 0
self.mistakes_total = 0
self.losses = 0
self.wins = 0
# directions frame
self.direction = Tk.StringVar()
self.dir_label = Tk.Label(self.top_frame, width=60, bg='cyan', \
textvariable=self.direction, font=("Helvetica", 20))
self.dir_label.pack(side='left')
# difficulty buttons
self.easy_butt = Tk.Button(self.diff_frame, text='Easy', \
font=("Helvetica", 20))
self.easy_butt.pack(side='left')
self.medium_butt = Tk.Button(self.diff_frame, text='Medium', \
font=("Helvetica", 20))
self.medium_butt.pack(side='left')
self.hard_butt = Tk.Button(self.diff_frame, text='Hard', \
font=("Helvetica", 20))
self.hard_butt.pack(side='left')
# gameplay image
self.image_label = Tk.Label(self.mid_frame, image=self.game_img)
self.image_label.pack(side='top', fill='both', expand='yes')
# word display frame
self.display = Tk.StringVar()
self.word_label = Tk.Label(self.word_frame, width=60, bg='yellow', \
textvariable=self.display, font=("Helvetica", 20))
self.word_label.pack(side='left')
# wrong letters bank
self.wrong = Tk.StringVar()
self.wrong_label1 = Tk.Label(self.wrong_frame, width=60, bg='red', \
text='Incorrectly guessed letters:', font=("Helvetica", 20))
self.wrong_label2 = Tk.Label(self.wrong_frame, width=60, bg='red', \
textvariable=self.wrong, font=("Helvetica", 20))
self.wrong_label1.pack()
self.wrong_label2.pack()
# input frame
self.entry = Tk.Entry(self.guess_frame, width=2, \
font=("Helvetica", 20))
self.guess_butt = Tk.Button(self.guess_frame, text='Guess', \
font=("Helvetica", 20))
self.entry.pack(side='left')
self.guess_butt.pack(side='left')
# Play and Quit frames.
self.replay_butt = Tk.Button(self.play_frame, text='Replay', \
font=("Helvetica", 20))
self.quit_butt = Tk.Button(self.quit_frame, text='Quit',
command=self.quit_now, font=("Helvetica", 20))
self.replay_butt.pack(side='left')
self.quit_butt.pack(side='right')
self.reset()
# stat tracking frame.
self.stats = Tk.StringVar( \
value='Wins: -, Losses: -, Avg. bad guesses: -')
self.stats_label = Tk.Label(self.stats_frame, \
textvariable=self.stats, font=("Helvetica", 20))
self.stats_label.pack(side='left')
# pack frames.
self.top_frame.pack()
self.diff_frame.pack()
self.mid_frame.pack()
self.word_frame.pack()
self.wrong_frame.pack()
self.guess_frame.pack()
self.stats_frame.pack()
self.play_frame.pack(side='left')
self.quit_frame.pack(side='right')
# Variables needed in play function.
self.comp = Tk.StringVar()
Tk.mainloop()
def start_easy(self):
"""start game in easy mode"""
self.start(0)
def start_medium(self):
"""start game in easy mode"""
self.start(1)
def start_hard(self):
"""start game in easy mode"""
self.start(2)
def start(self, mode):
"""initialize the game"""
# sleep unrelated buttons
self.easy_butt.configure(command=self.chill)
self.medium_butt.configure(command=self.chill)
self.hard_butt.configure(command=self.chill)
self.image_label.configure(image=self.images[0])
self.guess_butt.configure(command=self.check_letter)
self.replay_butt.configure(command=self.reset)
self.direction.set('Save Peach! Please guess a letter below.')
self.main_window.bind('<Return>', self.check_letter)
self.mistakes = 0
self.word = generate_word(self.wordbank, mode)
self.guess = len(self.word) * ['_']
for i in range(len(self.word)):
if not self.word[i].isalpha():
self.guess[i] = self.word[i]
display = ' '.join(self.guess)
self.display.set(display)
def reset(self):
"""resets the game"""
# sleep unrelated buttons
self.replay_butt.configure(command=self.chill)
self.guess_butt.configure(command=self.chill)
self.image_label.configure(image=self.game_img)
self.easy_butt.configure(command=self.start_easy)
self.medium_butt.configure(command=self.start_medium)
self.hard_butt.configure(command=self.start_hard)
self.guesses = []
self.wrongbox = ''
self.wrong.set(self.wrongbox)
self.display.set('')
intro = 'Peach needs your help! Select a difficulty to begin.'
self.direction.set(intro)
def check_letter(self, *args):
"""checks input letter with word"""
letter = self.entry.get()
if len(letter) != 1 or not letter.isalpha():
self.direction.set('Invalid input. Please enter an letter ONLY.')
return
letter = letter.lower()
# correct guess
if (letter in self.word.lower()) and not (letter in self.guesses):
self.guesses.append(letter)
for i in range(len(self.word)):
if self.word[i].lower() == letter:
self.guess[i] = self.word[i]
display = ' '.join(self.guess)
self.display.set(display)
self.direction.set('Nice guess. Keep it up!')
if self.word == ''.join(self.guess):
self.win()
self.main_window.unbind('<Return>')
return
# wrong guess
self.mistakes += 1
if letter not in self.wrongbox:
self.wrongbox = self.wrongbox + ' ' + letter
self.wrong.set(self.wrongbox)
if self.mistakes >= 7:
self.lose()
self.main_window.unbind('<Return>')
else:
self.image_label.configure(image=self.images[self.mistakes])
self.direction.set('Oops! Wrong letter. Try harder!')
def quit_now(self):
"""quits the game by closing the GUI window"""
self.main_window.destroy()
def chill(self):
"""do nothing"""
return
def win(self):
"""win state"""
self.image_label.configure(image=self.win_img)
msg = 'Congratulations, you saved Peach! Hit Replay to play again.'
self.direction.set(msg)
self.guess_butt.configure(command=self.chill)
self.update_stats(win=True)
def lose(self):
"""loss state"""
self.image_label.configure(image=self.lose_img)
msg = 'Aw, you failed! Your word: %s. Hit Replay to play again.' \
%self.word
self.direction.set(msg)
self.guess_butt.configure(command=self.chill)
self.update_stats(win=False)
def update_stats(self, win):
"""update and displat stats"""
self.mistakes_total += self.mistakes
if win:
self.wins += 1
else:
self.losses += 1
stats_msg = 'Wins: %d, Losses: %d, Avg. bad guesses: %.2f' \
%(self.wins, self.losses, \
float(self.mistakes_total)/(self.wins+self.losses))
self.stats.set(stats_msg)
z = ZombieGame()
|
cf9e14be615e4920ace467037c8087728ecb0e6f | arifaulakh/Competitive-Programming | /DMOJ/ship/ship.py | 435 | 3.59375 | 4 | parts = input()
full = "BFLTC"
if parts == full:
print("NO MISSING PARTS")
if parts.count("B") >=1 and parts.count("F") >=1 and parts.count("L")>= 1 and parts.count("T") >= 1 and parts.count("C"):
print("NO MISSING PARTS")
if parts.count("B") == 0:
print("B")
if parts.count("F") == 0:
print("F")
if parts.count("C") == 0:
print("C")
if parts.count("T") == 0:
print("T")
if parts.count("L") == 0:
print("L") |
0ffcc2caf7a8e3989abe8d03085f67b10d089744 | homutovan/HomeWork2.3 | /main.py | 5,209 | 3.6875 | 4 | valid_symbol = {'(': [1],
')': [0],
'+': [2, lambda oper1, oper2: oper1 + oper2],
'-': [2, lambda oper1, oper2: oper1 - oper2],
'*': [3, lambda oper1, oper2: oper1 * oper2],
'/': [3, lambda oper1, oper2: oper1 / oper2]}
def two_operands():
str_in = input('Введите арифметическое выражение в форме префиксной нотации:\n').split()
try:
str_in[2]
if len(str_in) > 3:
a = b
valid_symbol[str_in[0]]
print(f'Результат вычисления: {valid_symbol[str_in[0]][1](int(str_in[1]), int(str_in[2]))}')
except NameError:
print('Введенное выражение содержит более 3 символов')
except IndexError:
print('Введенное выражение содержит менее 3 символов')
except KeyError:
print('Первая операция отсутствует в списке доступных операций')
except ZeroDivisionError:
print('Введенное выражение предусматривает деление на 0, проверьте порядок следования операндов')
except ValueError:
print('В качестве операндов возможно использовать только числа')
finally:
print('Введите новое выражение:')
return None
def multiple_operands():
#notation = input('Введите арифметическое выражение в форме префиксной нотации:\n').split()
in_string = '- * / 15 - 7 + 1 1 3 + 2 + 1 1' #Пример из Википедии
notation = in_string.split()
while len(notation) > 1:
out_string = []
digit = 0
for symbol in notation:
out_string.append(symbol)
if symbol.isdigit():
digit += 1
else:
digit = 0
if digit == 2:
operand2 = out_string.pop()
operand1 = out_string.pop()
operator = out_string.pop()
new_symbol = int(valid_symbol[operator][1](int(operand1), int(operand2)))
out_string.append(str(new_symbol))
notation = out_string + notation[(len(out_string) + 2):]
break
print(f'Результат вычисления: {notation[0]}')
return None
def symbolic_solution():
#notation = input('Введите арифметическое выражение в форме префиксной нотации:\n').split()
in_string = '- * / 15 - 7 + 1 1 3 + 2 + 1 1' #Пример из Википедии
#15 / (7 - (1 + 1)) * 3 - (2 + (1 + 1))
notation = in_string.split()
while len(notation) > 1:
out_string = []
operand2 = []
operand1 = []
digit = 0
for symbol in notation:
out_string.append(symbol)
if symbol[0].isdigit():
digit += 1
else:
digit = 0
if digit == 2:
operand2 = out_string.pop()
operand1 = out_string.pop()
operator = out_string.pop()
try:
math_symbol = operand1 + operator + operand2
except (IndexError, TypeError):
try:
math_symbol = operand1 + operator + operand2[1]
except (IndexError, TypeError):
try:
math_symbol = operand1[1] + operator + operand2
except (IndexError, TypeError):
math_symbol = operand1[1] + operator + operand2[1]
if (valid_symbol[operator][0] < 3) and (len(notation)) != 3:
math_symbol = '(' + math_symbol + ')'
try:
new_symbol = int(valid_symbol[operator][1](int(operand1), int(operand2)))
except (IndexError, TypeError):
try:
new_symbol = int(valid_symbol[operator][1](int(operand1[0]), int(operand2)))
except (IndexError, TypeError):
try:
new_symbol = int(valid_symbol[operator][1](int(operand1), int(operand2[0])))
except (IndexError, TypeError):
new_symbol = int(valid_symbol[operator][1](int(operand1[0]), int(operand2[0])))
out_string.append([str(new_symbol), math_symbol])
notation = out_string + notation[(len(out_string) + 2):]
break
print(f'Результат вычисления:{notation[0][1]} = {notation[0][0]}')
return None
#two_operands()
#multiple_operands()
symbolic_solution()
|
ca497649868b45efab43b9bec158d420fa82276d | jlaframboise/StockPrediction | /util_functions.py | 11,393 | 3.515625 | 4 | import numpy as np
import pandas as pd
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
def apply_rolling(stock, trail_size, predict_length, predict_change=False, trend_classify=False):
"""
A function that takes in a timeseries for a single stock,
and reshapes the data for input into an LSTM.
It converts (days, features) to (days, trail_size days, features).
It will set the yvalue based on the setting parameters, and predict_length.
"""
x = []
y = []
tickers = []
# for every day
for i in range(trail_size, len(stock) + 1 - predict_length):
# x is features for last trail_size days
x_point = stock.drop(columns=['Date', 'Ticker']).iloc[i-trail_size : i].values
# set y value based on settings
if trend_classify:
y_point = 1 if stock['Close'].iloc[i + predict_length -1] > stock['Close'].iloc[i -1] else 0
elif predict_change:
y_point = stock['Close'].iloc[i + predict_length -1] - stock['Close'].iloc[i -1]
else:
y_point = stock['Close'].iloc[i + predict_length -1]
ticker = stock['Ticker'].iloc[i + predict_length -1]
# only append datapoints where there is no nan values
if np.isnan(x_point).sum() ==0:
x.append(x_point)
y.append(y_point)
tickers.append(ticker)
# return the x values, the y values,
# and the ticker repeated for every point
return np.array(x), np.array(y), np.array(tickers)
def split_and_apply_rolling(stock, trail_size, predict_length, hist_features, tech_features):
"""
A function that will perform the same task as apply_rolling,
except it will split the technical indicators into a separate input
from the historical data for use in a model with separate input branches.
"""
xh = []
xt = []
y = []
tickers = []
# for every day
for i in range(trail_size, len(stock) + 1 - predict_length):
# historical data from t-trail_size to t-1 inclusive
xh_point = stock.drop(columns=['Date', 'Ticker']+tech_features).iloc[i-trail_size : i].values
# technical data at time t-1
xt_point = stock[tech_features].iloc[i - 1]
# label at time t-1 + predict_length
y_point = stock['Close'].iloc[i + predict_length -1]
ticker = stock['Ticker'].iloc[i + predict_length -1]
# check for nan values
if np.isnan(xh_point).sum() ==0 and np.isnan(xt_point).sum() ==0:
xh.append(xh_point)
xt.append(xt_point)
y.append(y_point)
tickers.append(ticker)
# return inputs, outputs, and the ticker
return np.array(xh), np.array(xt), np.array(y), np.array(tickers)
def split_and_roll_all_stocks(dataset, trail_size, predict_length, hist_features, tech_features):
"""
A function that will take in a dataset of many stocks,
and apply the split_and_apply_rolling function to
split each stock into inputs, outputs reshaped for input to LSTM,
and will return the concatenation.
"""
res = dataset.groupby('Ticker').apply(lambda x: split_and_apply_rolling(x, trail_size=trail_size, predict_length=predict_length, hist_features=hist_features, tech_features=tech_features))
xh = [x[0] for x in res.values]
xt = [x[1] for x in res.values]
y = [x[2] for x in res.values]
tickers = [x[3] for x in res.values]
return np.concatenate(xh), np.concatenate(xt), np.concatenate(y), np.concatenate(tickers)
def roll_all_stocks(dataset, trail_size, predict_length, predict_change=False, trend_classify=False):
"""
A function that takes in a dataset of stocks,
and for each stock it will apply_rolling to
reshape it into inputs and outputs for LSTM.
It then concatenates the output and returns.
"""
res = dataset.groupby('Ticker').apply(lambda x: apply_rolling(x, trail_size=trail_size, predict_length=predict_length, predict_change=predict_change, trend_classify=trend_classify))
x = [x[0] for x in res.values]
y = [x[1] for x in res.values]
tickers = [x[2] for x in res.values]
x = np.concatenate(x)
y = np.concatenate(y)
tickers = np.concatenate(tickers)
return x, y, tickers
def evaluate_model_rmse(y_preds, y_true, num_features, scaler):
"""
When performing regression, our model is trained on normalized
features (including predicted prices) and so before computing
RMSE we need to take the sklearn scaler we used to normalize
and inverse the transform so we can consider RMSE in dollars.
"""
dummies = np.zeros((y_preds.shape[0], num_features-1))
res = np.concatenate([y_preds, dummies], axis=1)
pred_dollars = scaler.inverse_transform(res)[:, 0]
res2 = np.concatenate([np.expand_dims(y_true, axis=1), dummies], axis=1)
true_dollars = scaler.inverse_transform(res2)[:, 0]
return np.sqrt(mean_squared_error(true_dollars, pred_dollars))
def plot_loss(history):
"""
A helper function to make a plot of the loss curve of
a network trained with Keras. Style from Jacob's past work.
"""
plt.figure(figsize=(8,6))
plt.plot(history.history['loss'], 'bo--')
plt.plot(history.history['val_loss'], 'ro-')
plt.ylabel('Loss')
plt.xlabel('Epochs (n)')
plt.legend(['Training loss', 'Validation loss'])
plt.title("Loss curve for LSTM")
plt.show()
def plot_acc(history):
"""
A helper function to make a plot of the loss curve of
a network trained with Keras. Style from Jacob's past work.
"""
plt.figure(figsize=(8,6))
plt.plot(history.history['accuracy'], 'bo--')
plt.plot(history.history['val_accuracy'], 'ro-')
plt.ylabel('Accuracy')
plt.xlabel('Epochs (n)')
plt.legend(['Training accuracy', 'Validation accuracy'])
plt.title("Accuracy curve for LSTM")
plt.show()
def norm_per_stock_split(train, valid, test, features, scaler_model):
"""
Takes in dataframes for train, validation, test
with a 'Ticker' column, and will split
the dataframes by this ticker, then fit_transform the data in train
with a normalizing model specified in place,
and transform the data in train and test in place
and return the mapping of tickers to scaler models.
"""
scalers = {}
for ticker in train['Ticker'].unique():
scaler = scaler_model()
# fit and transform training data
train.loc[train['Ticker']==ticker, features] = scaler.fit_transform(train.loc[train['Ticker']==ticker, features])
# only transform training and test, do not fit.
valid.loc[valid['Ticker']==ticker, features] = scaler.transform(valid.loc[valid['Ticker']==ticker, features])
test.loc[test['Ticker']==ticker, features] = scaler.transform(test.loc[test['Ticker']==ticker, features])
# save the model that was used for this stock
scalers[ticker] = scaler
return scalers
def load_climate_data(filenames, terms):
"""
A function to load in the climate google trends data
from a list of filenames and a list of corresponding
terms.
"""
# read files
dfs = [pd.read_csv(f) for f in filenames]
# rename columns, insert the search term string
for i in range(len(dfs)):
dfs[i].columns = ["Date", "Popularity"]
dfs[i].insert(2, "Term", terms[i])
# combine to one df
climate_trends_data = pd.concat(dfs).reset_index(drop=True)
# convert date col to datetime
climate_trends_data['Date'] = pd.to_datetime(climate_trends_data['Date'])
# convert the data from long to wide format
climate_trends_data = climate_trends_data.pivot(index='Date', columns="Term", values="Popularity").reset_index()
return climate_trends_data
def performance_stats(model, x, y):
"""
A function that will take in a LSTM model, and
inputs and output and will print some key stats
that can indicate performance, but also whether the model is
guessing only one class all the time to get that baseline 50%
accuracy.
"""
print("Upward ratio: {:.2%}".format(np.mean(y)))
preds = model.predict(x)
print("Mean prediction: {:.2%}".format(np.mean(preds)))
print("Predicted upward ratio: {:.2%}".format(np.mean(preds>0.5)))
print("Accuracy: {:.2%}".format(np.mean( y == [1 if x>0.5 else 0 for x in preds])))
def generate_dataset(stock_data, trends_data,
target_stocks,
train_end, valid_end, test_end,
stock_features, trend_features,
trail_size, predict_length,
stock_scaler=MinMaxScaler,
objective="classification"
):
"""
A function to generate a dataset to train a LSTM model on stock trend classification.
This function will take in the whole dataset of stocks, and dataset of trends data.
It will take the end dates of each of the splits,
and lists of stock features and trend features.
Note, 'Close' must be the first feature in stock_features.
it accepts parameters trail_size to be the number of days to look back.
predict_length is the number of days ahead to consider the trend.
"""
# filter data to only target stocks
target_stocks_dataset = stock_data[stock_data['Ticker'].isin(target_stocks)].reset_index(drop=True)
# filter to only chosen stock features
target_stocks_dataset = target_stocks_dataset[['Ticker', 'Date'] + stock_features]
# split into training, validation, testing based on provided dates
train = target_stocks_dataset.loc[target_stocks_dataset['Date'] < train_end]
valid = target_stocks_dataset.loc[(target_stocks_dataset['Date'] > train_end) & (target_stocks_dataset['Date'] < valid_end)]
test = target_stocks_dataset.loc[(target_stocks_dataset['Date'] > valid_end) & (target_stocks_dataset['Date'] < test_end)]
# normalize data per stock
_ = norm_per_stock_split(train, valid, test, stock_features, stock_scaler)
# merge in trends data
train = train.merge(trends_data[['Date']+trend_features], on=["Date"], how='left')
valid = valid.merge(trends_data[['Date']+trend_features], on=["Date"], how='left')
test = test.merge(trends_data[['Date']+trend_features], on=["Date"], how='left')
if objective=='classification':
trend_classify = True
else:
raise NotImplementedError("No other objectives supported yet!")
# reshape dataset for LSTM inputs
x_train, y_train, _ = roll_all_stocks(train, trail_size, predict_length, trend_classify=trend_classify)
x_valid, y_valid, _ = roll_all_stocks(valid, trail_size, predict_length, trend_classify=trend_classify)
x_test, y_test, _ = roll_all_stocks(test, trail_size, predict_length, trend_classify=trend_classify)
# confirm shapes are matching
assert x_train.shape[0] == y_train.shape[0]
assert x_valid.shape[0] == y_valid.shape[0]
assert x_test.shape[0] == y_test.shape[0]
assert x_train.shape[1:] == x_valid.shape[1:] == x_test.shape[1:]
# return the dataset
return x_train, y_train, x_valid, y_valid, x_test, y_test |
7cb1e76c1cb95f4e34014dd2b5e0f225fcb6e798 | JagadeeshMandala/python | /python programms/sum of natural numbers.py | 210 | 4.125 | 4 | num=int(input("enter the number"))
if num<0:
print("enter the postive numbers only")
else:
sum=0
while(num>0):
sum+=num
num-=1
print("The sum is",sum)
|
e6fdfe1837a9128e853e867bfb6158b7df12361a | DandyCV/SoftServeITAcademy | /L11/L11_HW1_2.py | 838 | 3.890625 | 4 | #Визначте атрибути fullname та email в класі Employee. При заданих first та last names:
#- В конструкторі сформуйте fullname звичайним з’єднанням через пробіл first та last name.
#В конструкторі сформуйте email з’єднанням first та last name через ‘.’ між ними та приєднуючи
# ‘@company.com’ наприкінці.
class Employee():
def __init__(self, first, last):
self.first_name = first
self.last_name = last
self.full_name = first + ' ' + last
self.email = first.lower() + '.' + last.lower() + '@company.com'
def __repr__(self):
return '%s your email address: %s' %(self.full_name, self.email)
print(Employee('Serhii', 'Velychko')) |
e4e87e57536067268168f5db77064b21fc26b1d5 | JosephLevinthal/Research-projects | /5 - Notebooks e Data/1 - Análises numéricas/Arquivos David/Atualizados/logDicas-master/data/2019-1/225/users/4311/codes/1635_1055.py | 389 | 3.703125 | 4 | # Teste seu código aos poucos.
# Não teste tudo no final, pois fica mais difícil de identificar erros.
# Use as mensagens de erro para corrigir seu código.
from math import*
vi = float(input("Velocidade inicial: "))
an = radians(float(input("angulo: ")))
d = float(input("distancia horizontal: "))
g = 9.8
R = ((vi**2)*sin(2*an))/g
if(abs(R-d)<= 0.1):
print("sim")
else:
print("nao") |
6559fafc1963ca91871f8eb37e1a883bf37a8327 | millenagena/Python-Scripts | /aula06 - desafio 003 soma.py | 148 | 3.890625 | 4 | n1 = int(input('Informe um número: '))
n2 = int(input('Informe mais um número: '))
print('A soma resultante desses números é {}'.format(n1+n2)) |
417f6ecaf27ae5b969e5e22a46270f52165e0aed | IceHilda/HallOfGrandmasters | /coding 1.2.3.py | 686 | 3.921875 | 4 |
# Create a function that takes in a list of numbers
def pwn(numbers=None, art=None):
# default set to none
# If no list provided, ask the user
if numbers == None:
numbers = input("What are your numbers (without spaces)? ")
#numbers = list(numbers)
numbers = [int(x) for x in numbers]
if art == None:
art = input("What symbol would you like to use? ")
for each_number in numbers:
# print(art * each_number)
for i in range(each_number):
print(art, end="")
print("\n", end="")
# F = 52422
# U =
# Use case 1 (give a list):
#my_list = [5, 2, 5, 2, 2]
#pwn(my_list)
# Use case 2 (user input):
pwn() |
3e5237e2d1f3998ad3b42302e8f11fdcf3e6c13a | michaelverano/PracticeWithPython | /renameDates.py | 1,322 | 3.578125 | 4 | #! python3
# renameDates.py - renames filenames with American MM-DD-YY date formats
# to European DD-MM-YY.
import shutil, os, re
# Create a regex that matches files with the American date format.
datePattern = re.compile(r"""(.*?) # all text before the date.
((0|1)?\d)- # one or two digits for month
((0|1|2|3)?\d)- # one or two digits for the day
((19|20)\d\d) # four digits for th year.
(.*?)$ # all text after the date.
""", re.VERBOSE)
# TODO: Loop over the files in the working directory.
for amerFilename in os.listdir('.'):
mo = datePattern.search(amerFilename)
# TODO: Skip files without a date.
if mo == None:
continue
# TODO: Get the different parts of the filename.
beforePart = mo.group(1)
monthPart = mo.group(2)
dayPart = mo.group(4)
yearPart = mo.group(6)
afterPart = mo.group(8)
# Form the European-style filename.
euroFilename = beforePart + dayPart + '-' + monthPart + '-' + yearPart + afterPart
# Get the full, absolute file paths.
absWorkingDir = os.path.abspath('.')
amerFilename = os.path.join(absWorkingDir, amerFilename)
euroFilename = os.path.join(absWorkingDir, euroFilename)
# TODO: Rename the files.
print('Rename "%s" to "%s"...' % (amerFilename, euroFilename))
#shutil.move(amerFilename, euroFilename) # uncomment after testingself. |
10dc1dd13ed43ece05c4d777de720a35e1f1244d | CoderGustavo/ExerciciosPython | /65.py | 628 | 4.0625 | 4 | vezes = soma = maior = menor = 0
continuar = 'S'
while continuar in 'S':
valor = int(input('Digite um valor: '))
continuar = str(input('Deseja continuar? [S/N] ')).strip().upper()[0]
vezes += 1
soma += valor
if vezes == 1:
maior = menor = valor
else:
if valor > maior:
maior = valor
if valor < menor:
menor = valor
print('Foram digitados {} numeros'.format(vezes))
print('A soma dos valores é: {}'.format(soma))
print('A média dos valores é: {}'.format(soma/vezes))
print('O maior valor é: {}'.format(maior))
print('O menor valor é: {}'.format(menor)) |
031d71300bba616925c70adad8e63007e625f47c | samrap/algebrasolver | /config/alg.py | 10,915 | 3.953125 | 4 | from __future__ import division
from fractions import Fraction, gcd
import math
"""Algebra calculation module
This module takes user input from the algebra.py module and
processes calculations based on the function called by the user.
Functions in this module should never be called explicitly in
this script, aside from testing.
Besides testing, these functions are typically called from the
algebra.py module. The exception to this is complicated equations
that may require multiple functions to be completed.
"""
# ---------- GLOBAL CALCULATIONS ---------- #
def remove_zeros(iterable, replace=1):
"""Remove zeros from a list.
This function is typically used to prevent a ZeroDivisionError when
dividing by numbers in a list. By default the number replaced has
the value of 1, unless the 'replace' parameter is specified.
"""
for num in xrange(0, len(iterable)):
if iterable[num] == 0:
iterable[num] = replace
return iterable
def check(x):
"""Return only the sign of an integer x if its value is 1. If its
value is greater than 1, return the value.
"""
if x == -1: return '-'
if x == 1: return ''
return x
def atod(a):
"""Attempt to convert the data type 'a' to digit d
This function is used for converting a string to a digit when the exact type
is unknown (i.e. integer or float). If the string cannot be converted, the
function returns False. Otherwise, the digit is returned as a float if the
decimal is greater than 0 or as an integer if the decimal is equal to 0.
Due to the nature of the function, it can also be used to round off floating
point numbers whose decimal is equal to 0 (i.e. 3.0 -> 3)
"""
try:
d = float(a)
except:
return False
if d == int(d):
# it is an integer
return int(d)
else:
return d
# ---------- SPECIFIC CALCULATIONS ---------- #
def direct_variation(x, y):
"""Check if the values of y vary directly with the values of x.
Find the constant of variation between the first two x/y values
and check the remaining values against that constant. Print if
y varies directly with x or not and if it does, include the
constant of variaition (k).
"""
# Check if any value in the x tuple is equal to 0.
if any((n == 0 for n in x)):
print "Zero division error. Type 'man dv' for more info."
return False
k = Fraction(y[0], x[0])
if all([Fraction(x[1], x[0]) == k for x in zip(x, y)]):
print "Y varies directly with x. k = %s" % (k)
else:
print "Y does not vary directly with x"
def find_slope(set_one, set_two):
"""Find the slope between two x,y coordinate sets using the
equation y2 - y1 / x2 - x1 and return it in simplest form.
"""
try:
print Fraction(set_two[1] - set_one[1], set_two[0] - set_one[0])
except ZeroDivisionError:
print "Undefined"
def numtype(n):
"""Print the type of number entered.
For example, the number 12 is a real, natural number, the number -2 is a
real integer, etc.
"""
ntype = type(n)
if ntype == int:
if n > 0:
print "%s is a real, natural number" % (n)
return
if n >= 0:
print "%s is a real, whole number" % (n)
return
if n < 0:
print "%s is a real integer" % (n)
elif ntype == float:
print "%s is a real, rational number" % (n)
return
else:
print "Error: %s is not a number" % (n)
return
def check_arithmetic_sequence(sequence, n):
"""Check if the given data, sequence is an arithmetic sequence.
If sequence is not an arithmetic sequence, print that it is not and return
False. If sequence is an arithmetic sequence, print the common difference
as well as n, the nth term, if the flag was specified.
A list of numbers is an arithmetic sequence if there is a common difference
between each term and its preceding term. If any of the differences do not
match, it is not a sequence.
"""
i, j = 0, 1
# Establish a common difference to check against for all terms
diff = sequence[j] - sequence[i]
while j < len(sequence):
if sequence[j] - sequence[i] != diff:
print "Not an arithmetic sequence"
return False
i += 1; j += 1
else:
print "The sequence is an arithmetic sequence. Common difference: %s"\
% (diff)
if n:
print "Nthterm: %s" % (sequence[0] + (n - 1) * diff)
def check_geometric_sequence(sequence, n):
"""Check if the given data is a geometric sequence.
If sequence is not a geometric sequence, print that it is not and return
False. If sequence is a geometric sequence, print the common ratio as well
as n, the nth term, if the flag was specified.
A list of numbers is a geometric sequence if there is a common ratio
between each term and its preceding term. If any of the ratios do not match,
it is a not a sequence.
"""
# Prevent a 0 division error. sequence[n] must always be greater than 0
if any((n == 0 for n in sequence)):
print "Zero division error. Type 'man sq' for more info."
return False
i, j = 0, 1
# Establish a ratio to check against for all terms
ratio = sequence[j] / sequence[i]
while j < len(sequence):
if sequence[j] / sequence[i] != ratio:
print "Not a geometric sequence"
return False
i += 1; j += 1
else:
# Convert ratio to integer if decimal is 0
ratio = atod(ratio)
print "The sequence is a geometric sequence. Common ratio: %s" % (ratio)
if n:
print "Nthterm: %s" % (sequence[0] * (ratio**(n - 1)))
def arithmetic_series(fterm, nterm, n):
"""Print and return the series of an arithmetic sequence.
The series of an arithmetic sequence is the sum of every value in the
sequence. In this function, a sequence is assumed. See /manuals/sr for more
info.
"""
ssum = atod(n / 2 * (fterm + nterm))
print "Sum of the finite arithmetic series: %s" % ssum
return ssum
def geometric_series(fterm, nterm, ratio):
"""Print and return the series of an geometric sequence.
The series of an geometric sequence is the sum of every value in the
sequence. In this function, a sequence is assumed. See /manuals/sr for more
info.
"""
# Find n, the number of elements in the series, round off decimal if needed
n = atod(math.log10(nterm / fterm) / math.log10(ratio) + 1)
# Use n to find the sum of the series
ssum = atod((fterm * (1 - ratio**n)) / (1 - ratio))
print "Sum of the geometric series: %s" % ssum
return ssum
class Quadratic(object):
def __init__(self, a, b, c):
"""Create a new instance of the quadratic object.
Quadratic takes exactly three arguments: the a, b, and c values
of a quadratic formula. This object contains many methods related
to the quadratic equation and quadratic functions.
"""
self.a = a
self.b = b
self.c = c
def FindVertex(self, out=True):
"""Given the a, b, and c values of the quadratic function,
calculate and print the vertex. Return h and k, as this
function is sometimes called by other functions. If the 'out'
parameter is False, return the values else print the vertex.
"""
h = -self.b / (2 * self.a) # -b / 2a
k = ((self.a * h * h) + (self.b * h) + self.c) # f(-b / 2a)
if not out: return h, k
print "Vertex: ({}{},{}{})".format('- '[h < 0], abs(h),
' -'[h < 0], abs(k))
def VertexForm(self):
"""Convert the standard form of a quadratic to vertex form ie
y = a(x - h)^2 + k.
"""
vertex = self.FindVertex(False)
h, k = vertex[0], vertex[1]
print u"{}(x {} {})\u00b2 {} {}".format(check(self.a), '-+'[h < 0],
abs(h), '+-'[k < 0], abs(k))
# Complete the square given the 'b' term of a quadratic equation.
def CompleteSquare(self): print (self.b / 2) ** 2
def Discriminant(self, value=False):
"""Find the value of the discriminant and return or print its value.
The discriminant is b^2 - 4ac, the value under the radical of the
quadratic equation. This method can be used either as a return value or
to print the discriminant and number of solutions to stdout, depending
on the 'value' parameter.
"""
d = self.b * self.b - 4 * self.a * self.c
if value is True: return d
if d > 0:
print "The discriminant is %s. There are 2 solutions." % d
elif d == 0:
print "The discriminant is %s. There is 1 solution." % d
else:
print "There are no real solutions."
def FactorizeQuadratic(self):
"""Factorize the quadratic expression ax^2 + bx + x over the real
numbers and print the factorization. If it is not factorable,
raise an error. If the sol parameter is True, include solutions
to the x values.
----- Examples -----
>>> factorize_quadratic(1, 4, 4)
(x + 2)(x + 2)
>>> factorize_quadratic(1, -4, 4)
(x - 2)(x - 2)
>>> factorize_quadratic(7, 19, -6)
(7x - 2)(x + 3)
"""
# Make life easier
a, b, c = self.a, self.b, self.c
# Find common factor, if any
f = abs(gcd(gcd(a, b), c))
a, b, c = a // f, b // f, c // f
# Check if the discriminant is a perfect square.
# If it is not, the equation is not factorable.
discriminant = self.Discriminant(True)
root = int(math.sqrt(abs(discriminant)))
if root * root != discriminant:
print "No real number factorization is possible"
return False
# The sorted function is strictly for visual purposes. It insures that
# the factorization will be (x + 2)(x - 1) instead of (x - 1)(x + 2).
r, s = sorted((Fraction(-b - root, 2 * a),
Fraction(-b + root, 2 * a)), key=abs)
def factor(t):
if t == 0: return "x"
n, d = t.numerator, t.denominator
return "({}x {} {})".format(check(d), '-+'[n < 0], abs(n))
print "{}{}{}".format(check(f), factor(r), factor(s))
return True
class Radical(object):
def __init__(self, rad, root=2):
self.rad = rad
self.root = root
def FindRoot(self): print self.rad ** (1 / self.root)
if __name__ == '__main__':
#check_geometric_sequence((4,12,36), False)
geometric_series(3, 3072, 2)
|
038d6011227a6cfe626473dd89323a9e4d9bc555 | Kamik423/advent-of-code-2020 | /12.py | 3,009 | 3.828125 | 4 | #!/usr/bin/env python3
from math import cos, radians, sin
from typing import List
import aoc
class Ship:
"""
▲y N 90
│ W ● E 180 ● 0
└──▶x S 270
"""
x: int
y: int
orientation: int
waypoint_x: int
waypoint_y: int
commands: List[str]
def __init__(self, commands: List[str]):
self.x, self.y = (0, 0)
self.waypoint_x, self.waypoint_y = (10, 1)
self.orientation = 0
self.commands = commands
def run(self) -> None:
for command in self.commands:
action = command[0]
value = int(command[1:])
if action == "N":
self.y += value
elif action == "S":
self.y -= value
elif action == "E":
self.x += value
elif action == "W":
self.x -= value
elif action == "L":
self.orientation += value
elif action == "R":
self.orientation -= value
elif action == "F":
self.x += int(cos(radians(self.orientation))) * value
self.y += int(sin(radians(self.orientation))) * value
else:
assert False, f"Action '{action}' not known"
while self.orientation >= 360:
self.orientation -= 360
while self.orientation < 0:
self.orientation += 360
def rotate_waypoint(self, angle: int) -> None:
"""Rotate waypoint counterclockwise for specified amount of degrees."""
theta = radians(angle)
self.waypoint_x, self.waypoint_y = (
self.waypoint_x * int(cos(theta)) - self.waypoint_y * int(sin(theta)),
self.waypoint_x * int(sin(theta)) + self.waypoint_y * int(cos(theta)),
)
def run2(self) -> None:
for command in self.commands:
action = command[0]
value = int(command[1:])
if action == "N":
self.waypoint_y += value
elif action == "S":
self.waypoint_y -= value
elif action == "E":
self.waypoint_x += value
elif action == "W":
self.waypoint_x -= value
elif action == "L":
self.rotate_waypoint(value)
elif action == "R":
self.rotate_waypoint(-value)
elif action == "F":
for _ in range(value):
self.x += self.waypoint_x
self.y += self.waypoint_y
else:
assert False, f"Action '{action}' not known"
@property
def manhattan_distance(self) -> int:
return abs(self.x) + abs(self.y)
def main() -> None:
ship = Ship(aoc.get_lines(12))
ship.run()
print(ship.manhattan_distance)
ship = Ship(aoc.get_lines(12))
ship.run2()
print(ship.manhattan_distance)
if __name__ == "__main__":
main()
|
8e878e698cc603c45fc8f59fc3cdce95de5f271e | huangde/Project_Euler-and-Python-Challenge | /Project_Euler/P27.py | 458 | 3.5625 | 4 | import Primelist
from P3 import IsPrime
listb=Primelist.primes(1000)
lista=range(-999,1000,2)
def f1(a,b):
return lambda n:n**2+a*n+b
def Nprime(c):
n=0
nprime=0
while c(n)>0:
if IsPrime(c(n)):
n+=1
nprime+=1
else:
break
return nprime
res=[]
for a in lista:
for b in listb:
c=f1(a,b)
n=Nprime(c)
# print n,a,b
res.append((n,a,b))
print max(res)
|
e032b3741971024ab77674a3b95686fb87d94697 | KIMSIYOUNG/Algorithm-study | /programmers-1/DivideArray.py | 610 | 3.65625 | 4 | '''
파이썬에서 문자열, 튜플, 리스트가 비어있는 경우 False를 반환한다.
return문에서도 and | or 를 사용하면 boolean 유무를 판단하여 리턴한다.
둘을 합치면 return answer or -1 이 가능하다.
- answer가 빈 리스트가 아니면 true이기에 그냥 리턴하고,
빈 리스트라면 false를 리턴하여 or 뒤의 구문이 실행된다.
'''
def solution(arr, divisor):
answer = sorted([v for v in arr if v % divisor == 0])
return answer or -1
print(solution([5, 9, 7, 10], 5))
print(solution([2, 36, 1, 3], 1))
print(solution([3, 2, 6], 10))
|
6731f1d1568d941135d74cdbcef070371cb6cc55 | Born-S1nner/simpleCalc | /tablet.py | 1,667 | 4.03125 | 4 | from tkinter import *
window = Tk()
expression = ""
def input_number(number, equation):
global expression
expression = expression + str(number)
equation.set(expression)
def clear_input_field(equation):
global expression
expression = ""
equation.set("Enter the Expression")
def evaluate(equation):
global expression
try:
result = str(eval(expression))
equation.set(result)
expression = ""
except:
expression = ""
def mainCalc():
window.title("SimpleCalc")
window.geometry("325x175")
Label(window, text="Simple_Calculator").grid(row=0)
equation = StringVar()
input_field = Entry(window, textvariable=equation)
input_field.place(height=100)
input_field.grid(row=1, columnspan=4, ipadx=100, ipady=5)
equation.set("Enter the Expression")
_1 = Button(window, text="1", command=lambda: input_number(1, equation))
_1.grid(row=2, column=0)
_2 = Button(window, text="2", command=lambda: input_number(2, equation))
_2.grid(row=3, column=0)
_3 = Button(window, text="3", command=lambda: input_number(3, equation))
_3.grid(row=2, column=1)
_4 = Button(window, text="4", command=lambda: input_number(4, equation))
_4.grid(row=3, column=1)
add = Button(window, text="+", command=lambda: input_number('+', equation))
add.grid(row=4)
equal = Button(window, text="=", command=lambda: evaluate(equation))
equal.grid(row=5, columnspan=6)
clear = Button(window, text='Clear', command=lambda: clear_input_field(equation))
clear.grid(row=5, columnspan=3)
window.mainloop()
if __name__ == '__main__':
mainCalc() |
7f2b7ba2657636a731f522c10d6694510849a9bd | sontekliu/python-note | /python-02/python-04.py | 827 | 4.0625 | 4 | #!/usr/bin/python
# -*- coding:utf-8 -*-
# 递归函数,如果一个函数在函数内部调用了自身,那么这个函数就是递归函数
def fact(n):
if 1 == n:
return 1
return n * fact(n-1)
print fact(10)
print fact(100)
# 栈溢出
print fact(1000)
# 尾递归是指,在函数返回的时候,调用自身本身,并且return语句不能包含表达式。
# 这样,编译器或者解释器就可已把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会溢出
# 遗憾的是,大多数语言没有针对尾递归做优化,Python也没有做优化,即使换成尾递归的写法也会导致栈溢出
# 尾递归写法
def fact(n):
return fact_iter(n, 1)
def fact_iter(num, result):
if num == 1:
return result
return fact_iter(num-1, num * result)
|
0126f30d5acbb541fe7f5c9b09deaac116a6d096 | jethrodaniel/exercism | /python/acronym/acronym.py | 159 | 3.6875 | 4 | import re
def abbreviate(words):
words = re.compile(r'[^a-zA-Z\'?!]').sub(' ', ''.join(words)).split()
return ''.join([x[0] for x in words]).upper()
|
c14b764a3ea115112b347021d4ef66f7fc43c19a | pzfrenchy/SortingMethods | /InsertionSort/InsertionSort/InsertionSort.py | 508 | 3.90625 | 4 | list = [3,2,5,8,4]
for i in range(1, len(list)):
currentValue = list[i] #copy current value to temp location
while i > 0 and list[i-1] > currentValue: #check if index greater than 0 and preceeding value greater than current
list[i] = list[i-1] #shift higher value right
i -= 1 #decrement index location
list[i] = currentValue #insert current value into correct location
print(list) |
3919e12eae9de47329e665a8f238bf8a5505bb4d | DavidNovo/ExplorationsWithPython | /ftpExperiments.py | 797 | 3.640625 | 4 | __author__ = 'davidnovogrodsky_wrk'
from ftplib import FTP
ftp = FTP('domainname.com')
ftp.login(user='username', passwd='password')
ftp.cwd('/specific domain or location/location of files/')
# getting a file
def grabFile:
#name off file we want to grab
fileName= 'fileName.txt'
# opening a local file
localfile = open(fileName, 'wb')
# retrieve a file
ftp.retrbinary('RETR ' + fileName, localfile.write,
1024)
ftp.quit()
localfile.close()
#send a file to remote server
def placeFile():
#define local file to send
fileName= 'nameoflocalffile.txt'
# use ftp commands to send file
# open remote file
ftp.storbinary('STOR '+fileName, open(fileName, 'rb'))
# close ftp connection
ftp.quit()
# close local file
|
40107a49deb5b3f2ad8d4c1e79d4769189c924f5 | Widdershin/CodeEval | /challenges/024-simplesorting.py | 1,111 | 4.375 | 4 | """
https://www.codeeval.com/browse/91/
Simple Sorting
Challenge Description:
Write a program which sorts numbers.
Input Sample:
Your program should accept as its first argument a path to a filename. Input example is the following
70.920 -38.797 14.354 99.323 90.374 7.581
-37.507 -3.263 40.079 27.999 65.213 -55.552
Output Sample:
Print sorted numbers in the following way.
-38.797 7.581 14.354 70.920 90.374 99.323
-55.552 -37.507 -3.263 27.999 40.079 65.213
-38.797 7.581 14.354 70.92 90.374 99.323
-55.552 -37.507 -3.263 27.999 40.079 65.213
"""
###### IO Boilerplate ######
import sys
if len(sys.argv) < 2:
input_file_name = "024-simplesorting-in.txt"
else:
input_file_name = sys.argv[1]
with open(input_file_name) as input_file:
input_lines = map(lambda x: x.strip(), filter(lambda x: x != '', input_file.readlines()))
###### /IO Boilerplate ######
def main():
for line in input_lines:
numbers = map(float, line.split(' '))
print " ".join(map("{:.3f}".format, sorted(numbers)))
if __name__ == '__main__':
main()
|
82c732e4cb902a915572437ac165ae1c1d1230bf | ChrisLiu95/Leetcode | /easy/Balanced_Binary_Tree.py | 1,169 | 4.125 | 4 | """
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example 1:
Given the following tree [3,9,20,null,null,15,7]:
3
/ \
9 20
/ \
15 7
Return true.
Example 2:
Given the following tree [1,2,2,3,3,null,null,4,4]:
1
/ \
2 2
/ \
3 3
/ \
4 4
Return false.
"""
# Definition for a binary tree node.
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
def isBalanced(self, root):
"""
:type root: TreeNode
:rtype: bool
"""
# 比较每一个node的左右最大树深相差是否超过1
def balance(root):
if not root:
return [True, -1]
left = balance(root.left)
right = balance(root.right)
isBalanced = left[0] and right[0] and abs(left[1] - right[1]) <= 1
return [isBalanced, max(left[1], right[1]) + 1]
return balance(root)[0]
|
d09ac79c0c81eb6c6520483d9db5faaff60bd078 | harishramuk/python-handson-exercises | /193. Important Methods and Functions for Dict keys,values,items1.py | 306 | 3.9375 | 4 | #KEYS & VALUES
d = {100:'A',200:'B',300:'C'}
print(d.keys())
for key in d.keys():
print(key)
print(d.values())
for valu in d.values():
print(valu)
#item method
print(d.items())
for item in d.items():
print(item)
for k,v in d.items():
print(k,'---------',v) |
3de071389f50099ea8bb39632bb4bdb8caae030a | yuvika22/hackerrank-python | /basic/FindingThePercentage.py | 496 | 3.609375 | 4 | # Solution to https://www.hackerrank.com/challenges/finding-the-percentage/problem?h_r=next-challenge&h_v=zen
if __name__ == '__main__':
n = int(input())
student_marks = {}
for _ in range(n):
name, *line = input().split()
scores = list(map(float, line))
student_marks[name] = scores
query_name = input()
# print(student_marks)
n = student_marks[query_name]
# print([n])
sum = 0
for marks in n:
sum = sum + marks
print("%1.2f" % (sum/len(n)))
|
fe48adf7a36ff5dc7dd0d6a30743c6214c6d2db5 | EddieHandford/Speed-Pong | /pong.py | 4,997 | 3.609375 | 4 | # -*- coding: utf-8 -*-
"""
Created on Sun Feb 10 12:00:59 2019
@author: Eddie
"""
import turtle
import winsound
wn = turtle.Screen()
wn.title("Pong by Eddie")
wn.bgcolor("blue")
wn.setup(width=800 , height=800)
wn.tracer(0)
#while True:
# wn.update()
#
#creating a paddle
#paddle a
paddle_a = turtle.Turtle()
paddle_a.speed(0) # max speed
paddle_a.shape("square")
paddle_a.color("white")
paddle_a.shapesize(stretch_wid = 5, stretch_len=1)
paddle_a.penup()
paddle_a.goto(-350,0)
#paddle b
paddle_b = turtle.Turtle()
paddle_b.speed(0) # max speed
paddle_b.shape("square")
paddle_b.color("white")
paddle_b.shapesize(stretch_wid = 5, stretch_len=1)
paddle_b.penup()
paddle_b.goto(350,0)
#ball
ball = turtle.Turtle()
ball.speed(0) # max speed
ball.shape("square")
ball.color("white")
ball.penup()
ball.goto(0,0)
# Score
score_a = 0
score_b = 0
ball.dx = (score_a+score_b) + 0.03
ball.dy = (score_a+score_b) + 0.03 # max move is by 2 pixels
#pen
pen = turtle.Turtle()
pen.speed()
pen.color("white")
pen.penup()
pen.hideturtle()
pen.goto(0,260)
pen.write("PlayerA: 0 Computer: 0" , align="center" , font=("Courier" , 24 , "normal"))
#function for moving objects
def paddle_a_up():
y = paddle_a.ycor() #assidle paddle y coor to a "y"
y += 20 # goes up by 20 pixels when you press up
paddle_a.sety(y)
def paddle_a_down():
y = paddle_a.ycor() #assidle paddle y coor to a "y"
y -= 20 # goes up by 20 pixels when you press up
paddle_a.sety(y)
def paddle_b_up():
y = paddle_b.ycor() #assidle paddle y coor to a "y"
y += 20 # goes up by 20 pixels when you press up
paddle_b.sety(y)
def paddle_b_down():
y = paddle_b.ycor() #assidle paddle y coor to a "y"
y -= 20 # goes up by 20 pixels when you press up
paddle_b.sety(y)
wn.listen()
wn.onkeypress(paddle_a_up, "w")
wn.onkeypress(paddle_a_down, "s")
#if ball.ycor > paddle_b.ycor() :
# paddle_b_up
#if ball.ycor < paddle_b.ycor() :
# paddle_b_down
count_hits = 0
#this is the two player eddition , about to be removed
#wn.onkeypress(paddle_b_up, "i")
#wn.onkeypress(paddle_b_down, "k")
while True:
wn.update()
# ball.dx = (score_a+score_b)*0.01 + 0.03
# ball.dy = (score_a+score_b)*0.01 + 0.03 # max move is by 2 pixels
#move ball
#ball.dx = ball.dx + (count_hits*0.05)
# ball.dy = ball.dy + (count_hits*0.05)
ball.setx(ball.xcor() + ball.dx)
ball.sety(ball.ycor() + ball.dy)
#border of game check
if ball.ycor() >290:
ball.sety(290)
ball.dy *= -1
winsound.PlaySound("bounce.wav" , winsound.SND_ASYNC)
if ball.ycor() <-290:
ball.sety(-290)
ball.dy *= -1
winsound.PlaySound("bounce.wav" , winsound.SND_ASYNC)
if ball.xcor() >390:
ball.goto(0,0)
ball.dx += 0.01
ball.dy += 0.01
ball.dx *= -1
score_a += 1
pen.clear()
pen.write("PlayerA: {} PlayerB: {}".format(score_a , score_b) , align="center" , font=("Courier" , 24 , "normal"))
winsound.PlaySound("reload.wav" , winsound.SND_ASYNC)
if ball.xcor() <-390:
ball.goto(0,0)
ball.dx *= -1
ball.dx += 0.01
ball.dy += 0.01
score_b += 1
pen.clear()
pen.write("PlayerA: {} PlayerB: {}".format(score_a , score_b) , align="center" , font=("Courier" , 24 , "normal"))
winsound.PlaySound("reload.wav" , winsound.SND_ASYNC)
#paddle hitting the ball
if ball.xcor() > 340 and ball.xcor() < 350 and (ball.ycor() < paddle_b.ycor() + 50 and ball.ycor() > paddle_b.ycor() - 50):
ball.setx(340)
winsound.PlaySound("bounce.wav" , winsound.SND_ASYNC)
count_hits += 1
ball.dx = ball.dx + (0.05)
ball.dy = ball.dy + (0.05)
ball.dx *= -1
if ball.xcor() < -340 and ball.xcor() > -350 and (ball.ycor() < paddle_a.ycor() + 50 and ball.ycor() > paddle_a.ycor() - 50):
ball.setx(-340)
winsound.PlaySound("bounce.wav" , winsound.SND_ASYNC)
count_hits += 1
ball.dx = ball.dx - (0.05)
ball.dy = ball.dy - (0.05)
ball.dx *= -1
if ball.ycor() > paddle_b.ycor() :
y = paddle_b.ycor() #assidle paddle y coor to a "y"
y += 20 # goes up by 20 pixels when you press up
paddle_b.sety(y)
if ball.ycor() < paddle_b.ycor() :
y = paddle_b.ycor() #assidle paddle y coor to a "y"
y -= 20 # goes up by 20 pixels when you press up
paddle_b.sety(y)
|
22a64e103ec232d8d51d2360014391f04dd3febf | Ezward/ai-for-robotics | /python/kalman_filter/gaussian.py | 3,492 | 3.5 | 4 | import sys
import math
#
# \frac{1}{\sqrt{2\pi\sigma^{2}}} \times e^{\frac{1}{2}\frac{(x-\mu)^{2}}{\sigma^{2}}}
#
def gaussian(mean, variance, x):
"""
Calculate the probability at x given a gaussian distribution.
:param mean: mean of the gaussian distribution
:param variance: variance of the gaussian distribution
:param x: value at which to get probability
:return: probability at x
"""
return (1.0 / math.sqrt(2.0 * math.pi * variance)) * math.exp(-0.5 * ((x - mean)**2 / variance))
#
# measurement uses Bayes Rule/Product
#
def update(mean1, variance1, mean2, variance2):
"""
'Measure' or 'Sense'
Update a 1D gaussian state based on new measurement of the state.
:param mean1: The mean of the prior gaussian; the most likely prior state
:param variance1: The variance of the prior gaussian; the uncertainty in the prior state
:param mean2: The mean of measurement; the most likely measured state
:param variance2: The variance of measurement; the uncertainty in the measured state
:return: (mean, variance) of updated gaussian state
"""
mean = 1.0 / (variance1 + variance2) * (variance2 * mean1 + variance1 * mean2)
variance = 1.0 / (1.0 / variance1 + 1.0 / variance2)
return (mean, variance)
#
# motion/predict uses total probability/convolution/addition
#
def predict(mean1, variance1, mean2, variance2):
"""
'Move'
Change a 1D gaussian state to a new state with some uncertainty in the change.
:param mean1: The mean of the gaussian; the prior most likely state
:param variance1: The variance of the gaussian; the uncertainty in the state.
:param mean2: The mean of the change in state; the most like change.
:param variance2: The variance of the change in the state; the uncertainty in the change
:return: (mean, variance) of predicted gaussian state
"""
return (mean1 + mean2, variance1 + variance2)
if __name__ == "__main__":
if sys.argv[1] == "probability_at":
if (len(sys.argv) != 5):
print(
'Print the probability at x for the gaussian distribution defined by the mean and variance')
print("Usage: python gaussian.py probability_at mean variance x")
quit(1)
print(gaussian(float(sys.argv[2]), float(sys.argv[3]), float(sys.argv[4])))
elif sys.argv[1] == "update":
if len(sys.argv) != 6:
print("combine two gaussian distributions and print the result")
print("Usage: python gaussian.py update mean1 variance1 mean2 variance2")
quit(1)
result = update(float(sys.argv[2]), float(sys.argv[3]), float(sys.argv[4]), float(sys.argv[5]))
print("mean = {}, variance = {}".format(str(result[0]), str(result[1])))
elif sys.argv[1] == "predict":
if len(sys.argv) != 6:
print("predict that gaussian distribution after a movement and print the result")
print("Usage: python gaussian.py predict mean1 variance1 motion motion_variance")
quit(1)
prediction = predict(float(sys.argv[2]), float(sys.argv[3]), float(sys.argv[4]), float(sys.argv[5]))
print("mean = {}, variance = {}".format(str(prediction[0]), str(prediction[1])))
else:
print("Usage: python gaussian.py probability_at mean variance x")
print("Usage: python gaussian.py update mean1 variance1 mean2 variance2")
quit(1)
|
e241f56a767c82903d1da8976cf362dc5609a483 | JohnMachado11/100-Projects-Python | /05.1_Avg_Height/avg_height_easier.py | 448 | 4.25 | 4 | # AVERAGE HEIGHT OF ALL STUDENTS
# Example input = 67 82 51 31 21
student_heights = input("Input a list of student heights ").split()
for n in range(0, len(student_heights)):
student_heights[n] = int(student_heights[n])
# Method 1 - Easy
total_height = sum(student_heights)
number_of_students = len(student_heights)
average_height = round(total_height / number_of_students)
print(f"Students average height = {average_height}.")
|
11d076db3b191d1a1dd9514ae3473dc86a0ce05c | leaner2/python | /10.1.1读取整个文件.py | 1,689 | 3.8125 | 4 | with open('pi_digits.txt') as file_object:
contents = file_object.read()
print(contents)
#10.1.2 文件路径
#绝对路径:with open('C:\users\other_files\text_files\filename.txt') as file_object:
print('\n\n')
#10.1.3 逐行读取
filename = 'pi_digits.txt'
with open(filename) as file_object:
for line in file_object:
print(line) #去除空行用line.rstrip
print('\n\n')
#10.1.4 创建一个包含文件各行内容的列表
filename = 'pi_digits.txt'
with open(filename) as file_object:
lines = file_object.readlines() #raadlines() 把文件中的每一行读取后存储在列表中
for line in lines:
print(line.rstrip())
print('\n\n')
#10.1.5使用文件内容
filename = 'pi_digits.txt'
with open(filename) as file_object:
lines = file_object.readlines()
includings = ''
for line in lines:
includings += line.rstrip()
print(includings)
print(len(includings))
#包含一百万位的大型文件
filename = 'rode.txt'
with open(filename) as file_object:
lines = file_object.readlines()
including = ''
for line in lines:
including += line.rstrip()
print(including[:600] + "...")
print(len(including))
print('\n\n')
#10.1.7 圆周率中包含你的生日吗
filename = 'rode.txt'
with open(filename) as file_object:
lines = file_object.readlines()
including = ''
for line in lines:
including += line.rstrip()
check_including = input("enter what do you wang to check: ")
if check_including in including:
print("there has what you want!")
else:
print("nothing you want")
|
f7572560f518e1ac5e678c79bbce205ff005f08d | singhwarrior/python | /python_samples/chap5/winner.py | 2,670 | 4.0625 | 4 | """
<Problem Statement>
Read race timings of james,julie,mikey,sarah from corresponding input files.
Print the top three performances of each.
<Working Description>
One line is read from all files which correspond to race-time values of each
player.
Each line is splitted by comma. Since comma separated values are not in proper
format(like contains - or : in between), hence making the values in proper
format using the function sanatize.So each value after split is sanatized and
then after sanatizing the new list created is sorted.
For each player, first three unique values are displayed from sorted list.
Note: A good example of list comprehension has been used here.
[sanatize(t) for t in james] => returns a list. it reduces quite
a good amount of code. General format is as follows:
output_list = [function(element) for element in input_list]
"""
def sanatize(time_string):
splitter=""
if "-" in time_string:
splitter = "-"
elif ":" in time_string:
splitter = ":"
else:
return(time_string)
(mins,secs)=time_string.split(splitter)
return(mins+"."+secs)
def top_three_items(time_list):
unique_list=[]
count=0
for time in time_list:
if time not in unique_list:
unique_list.append(time)
count=count+1
if count == 3:
break
return unique_list
james=[]
julie=[]
mikey=[]
sarah=[]
try:
with open("james.txt") as james_file, open("julie.txt") as julie_file, open("mikey.txt") as mikey_file, open("sarah.txt") as sarah_file:
james_time_taken = james_file.readline()
julie_time_taken = julie_file.readline()
mikey_time_taken = mikey_file.readline()
sarah_time_taken = sarah_file.readline()
james = james_time_taken.strip().split(",")
julie = julie_time_taken.strip().split(",")
mikey = mikey_time_taken.strip().split(",")
sarah = sarah_time_taken.strip().split(",")
james = sorted([sanatize(t) for t in james])
julie = sorted([sanatize(t) for t in julie])
mikey = sorted([sanatize(t) for t in mikey])
sarah = sorted([sanatize(t) for t in sarah])
top_three_performances_james=top_three_items(james)
top_three_performances_julie=top_three_items(julie)
top_three_performances_mikey=top_three_items(mikey)
top_three_performances_sarah=top_three_items(sarah)
print(james)
print(julie)
print(mikey)
print(sarah)
print("TOP THREE PERFOROMANCES JAMES :"+str(top_three_performances_james))
print("TOP THREE PERFOROMANCES JULIE :"+str(top_three_performances_julie))
print("TOP THREE PERFOROMANCES MIKEY :"+str(top_three_performances_mikey))
print("TOP THREE PERFOROMANCES SARAH :"+str(top_three_performances_sarah))
except IOError as err:
print("File Error : "+str(err))
|
72a3c78ebc5aa2dda8b123a1f396e580a9aaa1d1 | HussainAther/mathematics | /algebra/neuralnetworks/nesterov.py | 2,109 | 3.71875 | 4 | import numpy as np
"""
Nesterov's (Nesterov nesterov) method for proximal gradient descent.
"""
def grad(f, x, deltax):
"""
Compute the gradient numerically using our function f that takes in x as a variable.
"""
xval = f(x) # evaluate the function f at x.
step = f(x + deltax) # step forward with deltax
return (step - xval) / deltax # return the difference over the deltax value
def nes(f, t, dim, alpha, xinit=None, eps=.05, num=False, deltax=.0005):
"""
Use the Nesterov method for proximal gradient descent. We improve convergence
and can add a momentum term such that we relax the descent property. We update our
function with a momentum value that accounts for the step size.
f is our function that we evaluate.
t is our learning rate.
dim is the number of dimensions of x.
xinit is our initialized x value.
eps (epsilon) is our tolerance used to stop the algorithm.
num (numerical gradient) sets whether to use the numerical gradient.
deltax is the step size we use with the gradient.
"""
# initialize our x values to our dimensions.
if xinit == None:
x = np.zeros(dim)
else:
x = xinit
# lambda is the estimate sequence used to estimate the phi function used to
# minimize our function f.
lprev = 0 # previous lambda value
lcurr = 1 # current lambda value
yprev = x # previous y value
alpha = .025 # used in optimization
# evaluate the gradient numerically
g = grad(f, x, deltax)
# until we reach our tolerance epsilon value from our gradient
while np.linalg.norm(grad) >= epsilon:
ycurr = x - alpha * gradient # current y value
x = (1 - t) * ycurr + t * yprev # adjust our x value
yprev = ycurr # move to the previous y value
lmp = lcurr # temporarily save this lambda value
lcurr = (1 + np.sqrt(1 + 4 * lprev**2)) / 2 # calculate current lambda value
lprev = ltmp # move to the previous lambda value
t = (y - lprev) / lcurr
g = grad(f, x, deltax) # update our gradient
return x # return
|
ecf2ad1669596a3c7467cfa7f463d7d9225d2cb8 | marojas11/MC | /python/exercises/pyworkbook-10.py | 507 | 4.03125 | 4 | import numpy as np
print "Exercise 10:Arithmetic"
print "Create a program that reads two integers, a and b,from the user.Your program should compute and display"
print "The sum of and b"
a=float(raw_input("Please enter a="))
b=float(raw_input("Please enter b="))
print "La suma es: ", a+b
print "La resta b-a es:", b-a
print "El producto es:", a*b
print "El cociente a/b es: ", a/b
print "El residuo de a/b es: ", a%b
print "El logaritmo en base 10 de a es:", np.log10(a)
print "El exponencial a**b", a**b
|
4a07f78d93fe44d5baa928d7d8c2ee1c7c300e12 | Zihan2Wang/Checkers | /turn.py | 8,342 | 3.9375 | 4 | '''
This module contains one class, Turn, which represents the stages of the
current turn.
'''
from constants import NEW_TURN, VALID_PIECE_SELECTED, CHECK_MULTIPLE_JUMPS, \
MOVE_COMPLETE
import random
class Turn:
'''
Class -- Turn
Represents the stages of a player's turn.
Attributes:
self -- the current Turn object
player -- the player whose turn it is, black or red
step -- the stage of the turn e.g. new turn, capture required
valid_moves -- a dictionary of all possible valid moves for this
player
capture_required -- a boolean indicating if a capture is required.
This is True if a capture is possible.
possible_targets -- populated after a Piece is selected, a list of
all valid Moves for that Piece.
final_move -- the Move that is actually made.
Methods:
__init__ -- constructor
is_valid_turn -- checks if the selected Move meets the Turn
requirements.
is_turn_complete -- checks if the Turn is complete.
complete_turn -- sets the step attribute to "complete".
choose_ai_cell -- makes the AI's turn
'''
def __init__(self, player, valid_moves):
'''
Constructor -- Creates a new instance of Turn
Parameter:
self -- The current Turn object
valid_moves -- A dictionary of all possible Moves for the
current player.
'''
self.player = player
self.step = NEW_TURN
self.valid_moves = valid_moves
self.capture_required = self.is_capture_required()
self.possible_targets = []
self.final_move = None
def is_capture_required(self):
'''
Method -- is_capture_required
Checks if a capture must be made.
Parameters:
self -- The current Turn object
Returns:
True if the dictionary of valid_moves contains a capturing
Move, False otherwise.
'''
for piece in self.valid_moves:
if self.valid_moves[piece][0].is_capture():
return True
return False
def playable_cell_selected(self, cell_clicked):
'''
Method -- playable_cell_selected
Checks if the selected cell is "playable". If the turn has
just begun (no piece has been chosen), the cell must contain
one of the current player's pieces. If a turn has begun (a
piece has been chosen), the clicked cell must be a valid target
for the chosen piece. TODO allow the user to change their mind
and select a different piece to move
Parameters:
self -- The current Turn object
cell_clicked - The cell clicked by the user
Returns:
True if the cell is playable, False otherwise.
'''
if self.step == NEW_TURN:
return cell_clicked in self.valid_moves
elif not self.is_turn_complete():
return self.find_clicked_target(cell_clicked) is not None
return False
def find_clicked_target(self, cell_clicked):
'''
Method -- find_clicked_target
Helper method for completing a move. Checks if the cell that
was clicked is a valid target for the selected piece.
Parameters:
self -- The current Turn object
cell_clicked -- The cell that was clicked
Return:
The target Cell if found or None if the clicked cell is not a
valid target.
'''
for target in self.possible_targets:
if cell_clicked == target.new_loc:
return target
return None
def is_valid_turn(self, cell_clicked):
'''
Method -- is_valid_turn
Checks if the selected cell is "valid". To be valid, either no
capture is required, or, if a capture IS required, the
selected Piece can make a capture.
Parameters:
self -- The current Turn object
cell_clicked -- The cell clicked
Returns:
True if cell will allow the player to make a Turn meeting the
requirements.
'''
if not self.playable_cell_selected(cell_clicked):
return False
if self.step == NEW_TURN:
if self.allowed_start_piece(cell_clicked):
self.finish_initial_selection(cell_clicked)
return True
target = self.find_clicked_target(cell_clicked)
if target is not None and (target.is_capture() or not
self.is_capture_required()):
self.finish_piece_move(target)
return True
print("A capture is possible... piece MUST be captured!")
return False
def allowed_start_piece(self, cell_clicked):
'''
Method -- allowed_start_piece
Helper method called when the user selects a piece to move.
Checks if the selected piece meets requirements.
Parameters:
self -- The current Turn object
cell_clicked -- The cell clicked (or selected)
Returns:
True if the selected piece is allowed, False otherwise.
'''
return not self.is_capture_required() or \
self.is_capture_required() and \
self.valid_moves[cell_clicked][0].is_capture()
def finish_initial_selection(self, start_loc):
'''
Method -- finish_initial_selection
Helper method that updates Turn attributes when a valid
piece is selected.
Parameters:
self -- the current Turn object
start_loc -- The cell containing the selected piece
'''
self.step += 1
self.possible_targets = self.valid_moves[start_loc]
def finish_piece_move(self, move):
'''
Method -- finish_piece_move
Helper method that updates Turn attributes when a piece is
moved.
Parameters:
self -- the current Turn object
move -- The Move that is being made
'''
self.step = CHECK_MULTIPLE_JUMPS if self.capture_required \
else MOVE_COMPLETE
self.final_move = move
def is_turn_complete(self):
'''
Method -- is_turn_complete
Checks if the Turn is complete.
Parameters:
self -- The current Turn object
Returns:
True if the Turn is complete, False otherwise.
'''
return self.step == MOVE_COMPLETE
def complete_turn(self):
'''
Method -- complete_turn
Sets the step attribute to complete the Turn
Parameters:
self -- The current Turn object
'''
self.step = MOVE_COMPLETE
def choose_ai_cell(self):
'''
Method -- choose_ai_cell
Chooses the cells for the AI move. If there are capturing moves
available, chooses the first option. Otherwise, picks a move at
random.
Parameter:
self -- The current Turn object
'''
loc = None
if self.step == NEW_TURN:
if self.capture_required:
for location in self.valid_moves:
if self.valid_moves[location][0].is_capture():
loc = location
break
else:
key_loc = random.randint(0, len(self.valid_moves) - 1)
loc = list(self.valid_moves.keys())[key_loc]
self.finish_initial_selection(loc)
elif self.step == VALID_PIECE_SELECTED or self.step == CHECK_MULTIPLE_JUMPS:
loc = self.possible_targets[0].new_loc
self.finish_piece_move(self.possible_targets[0])
return loc |
f7cf98e69d24d996f7e061598483a609fe5b348b | DOGANAY06/My-python-project- | /librarytobb4days.py | 4,026 | 3.5 | 4 | # -*- coding: utf-8 -*-
"""
Created on Tue Aug 27 13:25:25 2019
@author: Doğan AY
"""
import os
dir(os)
#%%
import speech
import time
response = speech.input("Say something, please.")
speech.say("You said " + response)
def callback(phrase, listener):
if phrase == "goodbye":
listener.stoplistening()
speech.say(phrase)
listener = speech.listenforanything(callback)
while listener.islistening():
time.sleep(.5)
#%%
import os
os.name
if os.name=="nt":
print("Windows sizin isletim sisteminiz")
else:
print("Başka birşey")
#%%
liste=["a","b","c","d","e"]
import random
random.choice(liste)
random.randint(1,5)
#%%
import random
a=random.randint(1,7)
sayac=3
for i in range (0,5):
print(i,".")
sayi=int(input("Sayı giriniz="))
if sayi > a:
print("Sayıdan büyüksünüz=")
sayac=sayac+1
elif sayi==a:
print("Tebrikler =")
sayac=sayac+1
break
elif sayi<a:
print("Sayı dan kücüksünüz =" )
sayac=sayac+1
else:
print("Sayıyı bilemediniz=",a) #break komutundan sonraki else for elseyi ifade eder ve for la aynı hizada olmalı
#%%
a=random.randint(1,100)
hak=3
while True:
sayi=int(input("Sayıyı giriniz:"))
if (sayi<a):
print("Sayıyı giriniz...")
hak=hak-1
elif sayi>a:
print("Daha düsük bir sayi söyleyin")
hak=hak-1
else:
print("Tebrikler! Sayımız",a)
break
if (hak==0):
print("Hakkınız bitti...")
print("Sayımız:",a)
break
#%%
import datetime
gecerlizaman=datetime.datetime.now() #şuanki zamanı yazarız
print(gecerlizaman)
#%%
print("Şuanki zaman",gecerlizaman)
print("Year:",end="")
print(gecerlizaman.year)
print(gecerlizaman.month)
print(gecerlizaman.hour)
print(gecerlizaman.second)
print("Minute:",end ="")
print(gecerlizaman.minute)
#%%
zaman="2019-09-29"
print("Zamanın kaldı=",zaman-gecerlizaman)
#%%
#fibonacci sayısı ödev
def Topla(sayi1,sayi2): #fonksiyon tanımlamak için kullanılır
print(sayi1+sayi2)
Topla(3,5)
sy1=int(input("Sayı girinz=")) #sayı girdisini alın sayıları toplatın
sy2=int(input("Sayıyı giriniz="))
Topla(sy1,sy2)
#%%
x=int(input("Sınav notunuz:"))
def sinavdegerlendirme(sinavnot):
if sinavnot>100 or sinavnot<0:
print("Hatalı girdin:")
else:
if sinavnot>50:
print("Gectin")
else:
print("Sınavda kaldın")
sinavdegerlendirme(x)
#%%
name1=input("İsminizi ve soyisminizi girinz:")
name2=input("Soyisiminizi ve isminizi giriniz:")
print("Alfabetik sıraya göre")
if name1<name2:
print(name1)
print(name2)
else:
print(name2)
print(name1)
#%% 153 sayısının sayılarının rakamlarının karesini alan program
sayi=153
birlerbasamagı=3
onlarbasamafı
#%%
birds=int(input("Kuş sayısı giriniz="))
def main():
texas()
ankara()
def texas():
birds=5000
print('Texas has',birds,'birds')
def ankara():
#birds=11000
print('Ankara has got',birds,'birds')
main()
#%%
def main():
first_name=input("İsminizi giriniz=")
last_name=input("Soyadınızı giriniz=")
print("Reezervasyon iŞlemi sahibi")
reverse_name(first_name,last_name)
def reverse_name(first,last):
x=last
y=first
print(last,first)
print(y,x)
main()
#%%
def main():
value=int(input("Sayıyı giriniz="))
show_double(value)
def __init__show_double(value): # buna başka bir değişkende girebiliriz fonksiyonlar için
result =value * 2
print(result)
main()
#%%
highscore=50
def main():
test1=int(input("1.Sınav notunu giriniz="))
test2=int(input("2.Sınavı giriiz="))
test3=int(input("3.SINAVI GİRİNİZ="))
average=(test1++test2+test3)/3
print("Ortalama=",average)
def hesaplama(average):
if average>=highscore:
print("tEBRİKLER")
main() |
022fcaba4ab02fab876b5d6cb00a63bb81169f87 | jennerwein/whoami | /app/helper.py | 2,723 | 3.671875 | 4 | import math
##############################################################################
# Prettyprint duration of time
def duration(time):
def norm2(zahl):
return(("00"+str(zahl))[-2:])
gesamtzeit=time
dauer=''
# Tage
days = time // (24 * 3600)
if days == 1:
dauer=dauer+str(days)+' day '
if days > 1:
dauer=dauer+str(days)+' days '
#Stunden
time = time % (24 * 3600)
hours = time // 3600
if hours == 1:
dauer=dauer+str(hours)+' hour '
if hours > 1:
dauer=dauer+str(hours)+' hours '
#Minuten
time %= 3600
minutes = time // 60
if minutes >= 1:
dauer=dauer+str(minutes)+' min '
# Sekunden
time %= 60
seconds = time
dauer=dauer+str(seconds)+' sec'
##### Testausdruck
# print("d:h:m:s-> %d:%d:%d:%d" % (days, hours, minutes, seconds))
return dauer
##############################################################################
# Prettyprint KB, MB, GB, or TB string
def humanbytes(B):
'''Return the given bytes as a human friendly KB, MB, GB, or TB string'''
B = float(B)
KB = float(1024)
MB = float(KB ** 2) # 1,048,576
GB = float(KB ** 3) # 1,073,741,824
TB = float(KB ** 4) # 1,099,511,627,776
#
if B < KB:
return '{0} {1}'.format(B,'Bytes' if 0 == B > 1 else 'Byte')
elif KB <= B < MB:
return '{0:.3f} KB'.format(B/KB)
elif MB <= B < GB:
return '{0:.3f} MB'.format(B/MB)
elif GB <= B < TB:
return '{0:.3f} GB'.format(B/GB)
elif TB <= B:
return '{0:.3f} TB'.format(B/TB)
##############################################################################
# Calculating the Perceived Brightness of a Color
# https://www.nbdtech.com/Blog/archive/2008/04/27/Calculating-the-Perceived-Brightness-of-a-Color.aspx
def rgb_brightness(color):
R = int(color[1:3], 16)
G = int(color[3:5], 16)
B = int(color[5:7], 16)
return math.sqrt(0.241*R*R + 0.691*G*G + 0.068*B*B )
# Bessere Formel in:
# https://stackoverflow.com/questions/596216/formula-to-determine-brightness-of-rgb-color
##############################################################################
##############################################################################
##############################################################################
if __name__ == '__main__':
##### Test humanbytes
# tests = [1, 1024, 500000, 1048576, 50000000, 1073741824, 5000000000, 1099511627776, 5000000000000]
# for t in tests:
# print('{0} == {1}'.format(t,humanbytes(t)))
##### Test rgb-brghtness
print(rgb_brightness("#121314"))
##### Test Prettyprint duration of time
time = int(2*60*60+7)
print(duration(time))
|
d428c57ec98d625ca335bec9369bf6567845c0c8 | iofall/War | /war.py | 7,029 | 4.15625 | 4 | # A Simple War Game
from random import shuffle
# Two useful variables for creating Cards.
SUITE = 'H D S C'.split()
RANKS = '2 3 4 5 6 7 8 9 10 J Q K A'.split()
class Deck:
"""
Deck Class for creating a deck of 52 cards
"""
def __init__(self):
self.cards = []
for suite in SUITE:
for rank in RANKS:
card = rank + suite
self.cards.append(card)
def split(self):
return self.cards[::2], self.cards[1::2]
def shuffle(self):
return shuffle(self.cards)
class Hand:
'''
Hand class is used to keep track of the current cards with a player
'''
def __init__(self, cards):
self.cards = cards
def add(self, cards):
"""
Expects card as an iterable
In some cases a single card is supplied as an argument to this function.
This causes problems when using the insert method because it iterates through the string
and ends up separating the card letters.
"""
if (type(cards) != list):
cards = [cards]
shuffle(cards)
for card in cards:
self.cards.insert(0, card)
def remove(self):
if (len(self) == 0):
return "Loser"
else:
return self.cards.pop()
def __len__(self):
return len(self.cards)
class Player:
"""
This is the Player class, which takes in a name and an instance of a Hand
class object. The Player can then play cards and check if they still have cards.
"""
def __init__(self, name, hand):
self.name = name
self.hand = hand
def __str__(self):
return self.name
def draw_card(self):
"""
Remove 1 card from hand
"""
return self.hand.remove()
def draw_war_cards(self):
"""
Removes 3 or remaining cards in hand in case of war
"""
war_cards = []
if (len(self.hand) < 3):
for _ in self.hand.cards:
war_cards.append(self.hand.remove())
else:
for _ in range(3):
war_cards.append(self.hand.remove())
return war_cards
def empty(self):
if not len(self.hand) == 0:
return True
else:
return False
def rank(card):
if len(card) == 2:
return RANKS.index(card[0])
elif len(card) == 3:
return RANKS.index(card[:2])
def main():
print("Welcome to War, let's begin...")
# Instantiating a Deck
d = Deck()
d.shuffle()
h1, h2 = d.split()
user = Player("User", Hand(h1))
comp = Player("Computer", Hand(h2))
rounds = 0
while (user.empty() and comp.empty()):
rounds += 1
current_cards = []
user_card = user.draw_card()
comp_card = comp.draw_card()
if "Loser" in user_card or "Loser" in comp_card:
handle_loser(current_cards, user, comp, user_card, comp_card)
else:
current_cards.extend([user_card, comp_card])
if rank(user_card) > rank(comp_card):
user.hand.add(current_cards)
elif rank(user_card) < rank(comp_card):
comp.hand.add(current_cards)
else:
war_routine(current_cards, user, comp)
#war_single_routine(current_cards, user, comp)
print("{}. User: {} Comp:{}, Total: {}".format(rounds, len(user.hand), len(comp.hand), len(comp.hand) + len(user.hand)))
if rounds>100_000:
print("Hand 1:", h1)
print("Hand 2:", h2)
break
print()
print("-"*20)
if len(user.hand) > len(comp.hand):
print("Winner is {}!".format(user))
elif len(user.hand) < len(comp.hand):
print("Winner is {}!".format(comp))
else:
print("Match draw")
print("-"*20)
def war_routine(current_cards, user, comp):
# War: Adding 3 face down cards to the current cards #
user_war_cards = user.draw_war_cards()
comp_war_cards = comp.draw_war_cards()
if "Loser" in user_war_cards or "Loser" in comp_war_cards:
handle_loser(current_cards, user, comp, user_war_cards, comp_war_cards)
else:
current_cards.extend(user_war_cards)
current_cards.extend(comp_war_cards)
# One face up card for comparing ranks
user_card = user.draw_card()
comp_card = comp.draw_card()
if "Loser" in user_card or "Loser" in comp_card:
handle_loser(current_cards, user, comp, user_card, comp_card)
else:
current_cards.extend([user_card, comp_card])
if rank(user_card) > rank(comp_card):
user.hand.add(current_cards)
elif rank(user_card) < rank(comp_card):
comp.hand.add(current_cards)
else:
war_routine(current_cards, user, comp)
#war_single_routine(current_cards, user, comp)
def war_single_routine(current_cards, user, comp):
"""
Handle in war clash, according to the second variation of the game
"""
# War-Clash: Adding 1 face down card to the current cards ####
user_card = user.draw_card()
comp_card = comp.draw_card()
if "Loser" in user_card or "Loser" in comp_card:
handle_loser(current_cards, user, comp, user_card, comp_card)
else:
current_cards.extend([user_card, comp_card])
# One face up card for comparing ranks
user_card = user.draw_card()
comp_card = comp.draw_card()
if "Loser" in user_card or "Loser" in comp_card:
handle_loser(current_cards, user, comp, user_card, comp_card)
else:
current_cards.extend([user_card, comp_card])
if rank(user_card) > rank(comp_card):
user.hand.add(current_cards)
elif rank(user_card) < rank(comp_card):
comp.hand.add(current_cards)
else:
war_single_routine(current_cards, user, comp)
def handle_loser(current_cards, user, comp, user_card, comp_card):
# for strings
if "Loser" == user_card:
comp.hand.add(comp_card)
comp.hand.add(current_cards)
# for lists
elif "Loser" in user_card:
while "Loser" in user_card:
user_card.remove("Loser")
comp.hand.add(comp_card)
comp.hand.add(user_card)
# for strings
elif "Loser" == comp_card:
user.hand.add(user_card)
user.hand.add(current_cards)
# for lists
elif "Loser" in comp_card:
while "Loser" in comp_card:
comp_card.remove("Loser")
user.hand.add(comp_card)
user.hand.add(user_card)
if __name__ == "__main__":
main()
|
ce3022538d7a4b1bba134194493ddb9dcbf63571 | SlaoutiYannis/UDACITY-Hippocampal_Volume_Quantification | /out_section2/source_code/utils/volume_stats.py | 2,670 | 4.09375 | 4 | """
Contains various functions for computing statistics over 3D volumes
"""
import numpy as np
def Dice3d(a, b):
"""
This will compute the Dice Similarity coefficient for two 3-dimensional volumes
Volumes are expected to be of the same size. We are expecting binary masks -
0's are treated as background and anything else is counted as data
Arguments:
a {Numpy array} -- 3D array with first volume
b {Numpy array} -- 3D array with second volume
Returns:
float
"""
if len(a.shape) != 3 or len(b.shape) != 3:
raise Exception(f"Expecting 3 dimensional inputs, got {a.shape} and {b.shape}")
if a.shape != b.shape:
raise Exception(f"Expecting inputs of the same shape, got {a.shape} and {b.shape}")
# TASK: Write implementation of Dice3D. If you completed exercises in the lessons
# you should already have it.
intersection = np.sum(a*b)
volumes = np.sum(a) + np.sum(b)
if volumes == 0:
return -1
return 2.*float(intersection) / float(volumes)
def Jaccard3d(a, b):
"""
This will compute the Jaccard Similarity coefficient for two 3-dimensional volumes
Volumes are expected to be of the same size. We are expecting binary masks -
0's are treated as background and anything else is counted as data
Arguments:
a {Numpy array} -- 3D array with first volume
b {Numpy array} -- 3D array with second volume
Returns:
float
"""
if len(a.shape) != 3 or len(b.shape) != 3:
raise Exception(f"Expecting 3 dimensional inputs, got {a.shape} and {b.shape}")
if a.shape != b.shape:
raise Exception(f"Expecting inputs of the same shape, got {a.shape} and {b.shape}")
# TASK: Write implementation of Jaccard similarity coefficient. Please do not use
# the Dice3D function from above to do the computation ;)
# ^ as in don't call the function ?
intersection = np.sum(a*b)
volumes = np.sum(a) + np.sum(b)
union = volumes - intersection
if union == 0:
return -1
return float(intersection)/float(union)
# Sensitivity and specificity
# the lesser the sensitivity, the worse the under-segmentation
def sensitivity(a,b):
tp = np.sum(b[a==b])
fn = np.sum(b[a!=b])
if fn+tp == 0:
return -1
return (tp)/(fn+tp)
# the lesser the specificity, the worse the over-segmentation
def specificity(a,b):
# let's reverse the meaning of the values
a, b = a*(-1)+1, b*(-1)+1
return sensitivity(a, b)
# tn = np.sum(b[a==b])
# fp = np.sum(b[a!=b])
# if tn+fp == 0:
# return -1
# return (tn)/(tn+fp) |
b1f1e1cdf333359b1892158101c7952cb391bdd8 | harmansehmbi/Project17 | /practice17e.py | 258 | 3.6875 | 4 | import re # re -> Regular Expression
# Regular Expression Symbols
quote = "Search the Candle rather than Cursing the Darkness"
result = re.match("Candle", quote) # Match from starting
print(result)
print(type(result))
|
677a27d08b98f30cdd05ed3dad09f614bc7f1d93 | UWPCE-PythonCert-ClassRepos/Wi2018-Classroom | /solutions/Session03/slicing_lab.py | 1,059 | 4.125 | 4 | #!/usr/bin/env python3
"""
One solution...
"""
def swap(seq):
"""with the first and last items exchanged"""
return seq[-1:] + seq[1:-1] + seq[:1]
assert swap('something') == 'gomethins'
assert swap(tuple(range(10))) == (9, 1, 2, 3, 4, 5, 6, 7, 8, 0)
def rem(seq):
"""With every other item removed"""
return seq[::2]
assert rem('a word') == 'awr'
def rem4(seq):
"""With the first and last 4 items removed, and every other item in between"""
return seq[4:-4:2]
a_tuple = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
print(rem4(a_tuple))
assert rem4(a_tuple) == (5, 7)
def reverse(seq):
"""With the elements reversed (just with slicing)"""
return seq[::-1]
print(reverse('a string'))
assert reverse([3, 6, 1, 8, 3, 7]) == [7, 3, 8, 1, 6, 3]
def thirds(seq):
"""With the middle third, then last third, then the first third in the new order"""
i = len(seq) // 3
return seq[i:-i] + seq[-i:] + seq[:i]
print(thirds(tuple(range(12))))
assert thirds(tuple(range(12))) == (4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3)
|
eee25bd963e53cee87a3b2cde57db530897b07d2 | reshamj/DataStructures-Algorithms | /romannumbers.py | 1,261 | 4.1875 | 4 | #1. Verify if an roman number is valid
#2. sort an array of roman numbers
import re
import collections
#is it a valid Roman number
def isRoman(inputRoman):
thousand = r'M{0,3}'
hundred = r'(C[MD]|D?C{0,3})'
ten = r'(X[CL]|L?X{0,3})'
digit = r'(I[VX]|V?I{0,3})'
result = bool(re.match(thousand+ hundred+ten+digit+'$', inputRoman.upper()))
return result
def romanToint(roman_num):
#print roman_num
nums = {'M':1000, 'D':500, 'C':100, 'L':50, 'X':10, 'V':5, 'I':1}
while(isRoman(roman_num)):
sum = 0
for i in range(len(roman_num)):
value = nums[roman_num[i]]
if i+1 < len(roman_num) and nums[roman_num[i+1]] > value:
sum -= value
else: sum += value
return sum
#sort roman numbers in an array
def sortRoman(inputArray):
intValue = []
intdict = {}
for roman in inputArray:
integer = romanToint(roman)
intdict[integer] = roman
print intdict
od = collections.OrderedDict(sorted(intdict.items()))
print od
#inputArray = ["MMMDCCCLXXXVIII","IV","VII","X","CCD"]
inputArray = ["CDXXI", "X", "VIII", "XIII"]
sortRoman(inputArray)
#result = isRoman('vii')
#print result
|
d184d0427bad72649228740361dc91ea625f1852 | giovane1-8/aulas-AfroDev | /aula_9_continuação.py | 816 | 4.15625 | 4 | # I/O
import os
os.system("cls")
import pandas as pd
df = pd.read_excel("estudo_io_aula_9.xlsx")
print(df.index)
print(df)
# df1 = df.dropna() remove a linha que tiver algum valor nulo em qualquer coluna
df1 = df.fillna(0) # insere um valor para os campos nulos
print(f"================= \n {df1}")
#print("================\n",df["nome"]) mostra somente a coluna nome
#print("================\n",df.loc[3]) acesso por linha
#print("================\n",df.loc[3, "saldo bancario"]) acesso por linha e coluna
print("================\n",df.sort_values(by="nome")) # ordena por coluna nesse caso por nome
df["teste"] = "teste" # cria nova coluna
del df["teste"] # deleta uma coluna
print(df.loc[[0,3], ["nome","saldo bancario"]]) # retorna multiplas linhas e expecifica
|
272af9d5315a5e44621c3de72d7b008ab29d9df9 | anahitahassan/The-Python-Bible | /4_Logic/ifStatements.py | 694 | 4.125 | 4 | # 32: if Statements
# python immediately indents the next line.
# if I wrote False instead of true, it wouldn't print.
if True:
print("it worked!")
num1 = 100
num2 = 150
if num1 > num2:
print("num1 is bigger than num2")
else:
print("num1 is less than num2")
# what happens if num1 = num2?
num3 = 400
num4 = 400
if num3 > num4:
print("num3 is bigger than num4")
else:
print("num3 is less than num4")
# notice how the second statement was printed?
# HERE'S WHAT YOU ACTUALLY WANT TO DO:
num5 = 500
num6 = 500
if num5 > num6:
print("num5 is greater than num6")
elif num6 > num5:
print("num6 is greater than num5")
else:
print("both numbers are equal") |
3f404ba3e1791d0d49730a5943fc868f8ac49a24 | giulicom/coding-exercises | /maxAreaHist.py | 431 | 3.640625 | 4 | def maxArea(height):
"""
:type height: List[int]
:rtype: int
"""
i = 0
j = len(height)-1
area = 0
while i < j:
h = min(height[i], height[j])
currArea = h*(j-i)
area = max(currArea, area)
if height[i] > height[j]:
j -= 1
else:
i += 1
return area
if __name__ == '__main__':
hist = [1,8,6,2,5,4,8,3,7]
print(maxArea(hist)) |
9add4c13c41e03652cefd80821169c236004d793 | masumndc1/zim | /coding/python/header_masum.py | 2,427 | 3.53125 | 4 | #!/usr/bin/python3.4
import sys
from urllib.request import urlopen
from urllib.request import Request
#res=Request('http://www.debian.org')
"""
... here we will pass the url with formate of like
# ./header_masum.py debian.org
"""
template='http://www.{}'
urlreq=template.format(sys.argv[1])
#template.format(sys.argv[1])
res=Request(urlreq)
#res=Request(template)
res.add_header('Accept-Language', 'sv')
print()
print(res.header_items())
print('host name = ',res.host)
print('url type = ',res.type)
print()
response=urlopen(res)
# printing first fewlines and the page will be desplayed in swedish
# language.
#print(response.getheaders('Content-Type'))
print(response.getheaders()[:10])
print(response.readlines()[:5])
#response=urlopen(res)
#print(dir(response))
#print(response.header_items())
#print(s)
"""
there is another form of Request we can use. from the help of Request we got
class Request(builtins.object)
Methods defined here:
__init__(self, url, data=None, headers={}, origin_req_host=None, unverifiable=False, method=None)
... here we can add the header into the Request like value pair formate separeted
... with the : like below.
>>> res=Request('http://www.debian.org', headers={'Accept-language': 'sv'} )
... here we have added the header information directly into the Request in
... header attribute with : between them. note here the formate of argument
... passing with the header value.
>>> res.headers.items()
dict_items([('Accept-language', 'sv')])
>>>
>>> res.full_url
'http://www.debian.org'
>>>
"""
""" output
[('Accept-language', 'sv')]
host name = www.debian.org
url type = http
[('Date', 'Fri, 02 Jun 2017 20:04:44 GMT'), ('Server', 'Apache'), ('Content-Location', 'index.sv.html'), ('Vary', 'negotiate,accept-language,Accept-Encoding'), ('TCN', 'choice'), ('X-Content-Type-Options', 'nosniff'), ('X-Frame-Options', 'sameorigin'), ('Referrer-Policy', 'no-referrer'), ('X-Xss-Protection', '1'), ('Last-Modified', 'Fri, 02 Jun 2017 16:38:54 GMT')]
... we have instruct the program to only show upto 10th item of the tuples and above
... command is showing something like that
[b'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">\n', b'<html lang="sv">\n', b'<head>\n', b' <meta http-equiv="Content-Type" content="text/html; charset=utf-8">\n', b' <title>Debian -- Det universella operativsystemet </title>\n']
"""
|
3513114b3ba94e2481ac242c87d4c5488a55cffa | utk09/open-appacademy-io | /1_IntroToProgramming/1_Loops/4_sum_nums.py | 340 | 3.953125 | 4 | # Write a method sum_nums(max) that takes in a number max and returns the sum of all numbers from 1 up to and including max.
def sum_nums(max_val):
count = 0
for i in range(max_val+1):
count = count + i
return count
print(sum_nums(4)) # prints 10
print(sum_nums(5)) # prints 15
print(sum_nums(100)) # prints 5050
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.