blob_id
stringlengths 40
40
| repo_name
stringlengths 6
108
| path
stringlengths 3
244
| length_bytes
int64 36
870k
| score
float64 3.5
5.16
| int_score
int64 4
5
| text
stringlengths 36
870k
|
---|---|---|---|---|---|---|
f4f309ec92fa0e71675d0d184b576b84483a1b56 | wbddxyz/python_sutff | /ex25_find_maximum_tb.py | 1,029 | 4.375 | 4 | '''
ex25_find_maximum.py
Tom Bain
27/10/20
J27C76 Software Design and Development
Standard Algorithms - Find Maximum
'''
def get_max_value(data):
'''
Returns the largest element/value within the data array/list.
Assumes at least one entry in the data.
Assumes no duplicates.
Assumes no sorting
'''
max_value = data[0]
for x in range(1, len(data)):
if data[x] > max_value:
max_value = data[x]
return max_value
def get_max_index(data):
max_index = 0
max_value = data[0]
for x in range(1, len(data)):
if data[x] > max_value:
max_value = data[x]
max_index = x
return max_index
def main():
scores = [63, 43, 82, 69, 99, 4, 89, 142, 60, 76]
max_value = get_max_value(scores) # 142
print(f'The maximum value in the array/list is {max_value}.')
index_max_value = get_max_index(scores) # 7
print(f'The maximum value in the array is at index {index_max_value}.')
if __name__ == "__main__":
main()
|
c8b448e3af70822f57a6d0826cff6f18e56a19b3 | kongjingchun/PyTest | /test01/test01_05_03/package_enmerate.py | 228 | 3.515625 | 4 | # coding:utf-8
# @Create time: 2021/3/22 8:14 下午
# @Author: KongJingchun
# @remark: 枚举函数
# 枚举打印列表
names = ['孔敬淳', '王野', '卢晓倩']
for index, item in enumerate(names):
print(index, item)
|
1bb577fef924beda2d45dc2fe8ba2f3f617f8ecc | beardbytes/python | /methods.py | 981 | 3.78125 | 4 | import datetime
class Employee:
def __init__(self, first, last, pay) -> None:
self.first = first
self.last = last
self.pay = pay
self.email = first + '.' + last + '@company.com'
def fullname(self):
return '{} {}'.format(self.first, self.last)
@classmethod
def set_raise_amount(cls, amount):
cls.raise_amt = amount
@classmethod
def from_string(cls, emp_str): # methods starting with 'from' are constructors
first, last, pay = emp_str.split('-')
return cls(first, last, pay)
# Static methods don't take self and cls as first arguments
@staticmethod
def is_worday(day) -> bool:
if day.weekday() == 5 or day.weekday() == 6:
return False
return True
emp_str_1 = 'John-Doe-40000'
new_emp = Employee.from_string(emp_str_1)
print(new_emp.email)
print(new_emp.pay)
# static methods
my_date = datetime.date(2021, 6, 24)
print(Employee.is_worday(my_date)) |
69519c585882c2314a62df89ece85b5eef866849 | JayVeezy1/adventofcode | /Day_11.py | 1,836 | 3.828125 | 4 | # -*- coding: utf-8 -*-
"""
Created on Wed Dec 16 20:09:39 2020
@author: Jakob
"""
import itertools
def count_seated(seats):
return list(itertools.chain(*seats)).count('#')
def count_adjacent_seats(row_id, col_id, seats):
counter = 0
adjacent = [(-1, -1), (0, -1), (1, -1), (-1, 0), (1, 0), (-1, 1), (0, 1), (1, 1)]
# adjacent = [(i, j) for i, j in itertools.product(range(-1, 2, 1), repeat = 2) if i != 0 or j != 0]
for off_i, off_j in adjacent:
if 0 <= row_id + off_i < len(seats) and 0 <= col_id + off_j < len(seats[row_id + off_i]) and seats[row_id + off_i][col_id + off_j] == "#":
counter += 1
return counter
def simulate(seats):
previous = []
while previous != seats:
previous = seats[:]
seats = []
for row_id, row in enumerate(previous):
new_row = ""
for col_id, col in enumerate(row):
if col == ".":
new_row += col
elif col == "L":
if count_adjacent_seats(row_id, col_id, previous) == 0:
new_row += "#"
else:
new_row += "L"
elif col == "#":
if count_adjacent_seats(row_id, col_id, previous) >= 4:
new_row += "L"
else:
new_row += "#"
else:
new_row += col
seats.append(new_row)
assert len(previous) == len(seats)
assert len(previous[0]) == len(seats[0])
return previous
with open(r'C:\Users\vanek\Desktop\AdventOfCode\data\data_11.txt') as file:
seats = file.read().splitlines()
waiting_room = simulate(seats)
print(count_seated(waiting_room))
|
5af8df5a47f434b4a26e3748b47d65edb675b338 | dengl11/Leetcode | /problems/split_linked_list_in_parts/solution.py | 826 | 3.5 | 4 | # Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution:
def splitListToParts(self, root: ListNode, k: int) -> List[ListNode]:
l = 0
curr = root
while curr:
l += 1
curr = curr.next
g, r = divmod(l, k)
groups = [g] * k
for i in range(r):
groups[i] += 1
gi = 0
ans = []
while root:
l = 1
head = root
while l < groups[gi]:
root = root.next
l += 1
n = root.next
root.next = None
ans.append(head)
root = n
gi += 1
return ans + [None] * (k - len(ans))
|
7d9695e9e4cc482b2694ef1ceb20f0f9a9f8661b | albertogarcia13/PY-Exercices | /Exercise6.py | 330 | 3.859375 | 4 | lista1 = [1,2,3,4]
lista2 = [5,6,7,8]
lista1 += lista2
print(lista1)
tupla1 = (1,2,3,4)
tupla2 = (5,6,7,8)
tuplaf = tupla1 + tupla2
print(tuplaf)
diccionario1 = {"item1": 1, "item2": 2, "item3": 3, "item4": 4}
diccionario2 = {"item5": 5, "item6": 6, "item7": 7, "item8": 8}
diccionario1.update(diccionario2)
print(diccionario1)
|
e77f629d64cbd0f930e06cd64b1b51998cb86bb8 | josephmachado1991/edd | /EDD.py | 6,964 | 3.515625 | 4 | #!/usr/bin/python
import sys
import os
import csv
import operator
def create_var_dict( data_type_file ):
# initialize variable dictionary and open data type file
var_dict = {}
f = open(data_type_file, 'r' )
csvf = csv.reader(f)
# loop over each line and load variable, data_type into var_dict
for line in csvf:
if line != '\n':
var_dict[ line[0] ] = line[1].strip()
return var_dict
def process_numeric( variable_file ):
# initialize variables
count = 0
unfilled = 0
filled = 0
the_sum = 0
the_min = 999999999. # just shy of 1 billion
the_max = -999999999. # just shy of -1 billion
with open( variable_file ) as row:
next(row) # skip header row
# actions to do for each record
for number in row:
count += 1
if number == '' or number == '\n': # check to see if no data is present
unfilled += 1
else: # data present --> process
filled += 1
number = float(number)
the_sum = the_sum + number
# update min and max
if number < the_min:
the_min = number
if number > the_max:
the_max = number
# sanity check: determine whether # filled + # unfilled = count
if filled + unfilled != count:
sys.exit("There is an error: # filled + # unfilled does not equal the count!")
# calculations
fill_rate = round( 100 * ( float(filled) / count ), 1)
mean = round( float(the_sum) / filled, 1)
# print outputs
print "Filled: %d" % filled
print "Unfilled: %d" % unfilled
print "Count: %d" % count
print "Fill rate: %0.1f" % fill_rate
print "Sum: %d" % the_sum
print "Mean: %0.1f" % mean
print "Min: %d" % the_min
print "Max: %d" % the_max
return count, filled, unfilled, fill_rate, the_sum, mean, the_min, the_max
def process_factor( variable_file ):
# initialize variables
keys = {}
count = 0
unfilled = 0
filled = 0
with open( variable_file ) as row:
next(row) # skip header row
# actions to do for each record
for factor in row:
count += 1
factor = factor.strip() # removes whitespace and \n
if factor == '': # check to see if no data is present
unfilled += 1
else: # data present --> process
filled += 1
if factor in keys:
keys[factor] += 1
else:
keys[factor] = 1
# sanity check: determine whether # filled + # unfilled = count
if filled + unfilled != count:
sys.exit("There is an error: # filled + # unfilled does not equal the count (# records)!")
# calculations
fill_rate = round( 100 * ( float(filled) / count ), 1)
factors = keys.keys()
num_factors = len(factors)
# determine top 10 factors
sorted_factors = sorted( keys.items(), key=operator.itemgetter(1), reverse=True )
if len(sorted_factors) >= 10:
top_factors_temp = sorted_factors[:10]
else:
top_factors_temp = sorted_factors
# format top factors list
top_factors = []
for kv in top_factors_temp:
the_factor = kv[0]
the_freq = kv[1]
the_frac = 100 * ( float(the_freq) / filled )
final_form = '%s : %d : %0.1f' % ( the_factor, the_freq, the_frac )
top_factors.append( final_form )
# print outputs
print "Count: %d" % count
print "Filled: %d" % filled
print "Unfilled: %d" % unfilled
print "Fill rate: %0.1f" % fill_rate
print "Number of unique factors: %d" % num_factors
print "Top 10 unique factors: %s" % top_factors
return count, filled, unfilled, fill_rate, num_factors, top_factors
def main():
args = sys.argv[1:]
in_data_types_file = args[0] # variable_name, data_type
column_file = args[1] # file with variable name and associated column
# out_data_types_file = args[2] # blank file
var_dict = create_var_dict( in_data_types_file )
# process column according to data type
f = open( column_file )
contents = f.readlines()
header = contents[0].strip()
var_data_type = var_dict[header]
print "This column is of type: %s" % ( var_data_type )
#########################################################################################################
## Process variable according to data type, add characterization to FINAL output file
#########################################################################################################
infile = open( in_data_types_file, 'r' )
outfile = open( 'data_types_FINAL.csv', 'ab' )
reader = csv.reader( infile )
writer = csv.writer( outfile )
###############################
## NUMERIC
###############################
if var_data_type == 'NUMERIC':
count, filled, unfilled, fill_rate, the_sum, mean, the_min, the_max = process_numeric( column_file )
# write variable characterization to file
for line in reader:
var_name = line[0]
data_type = line[1]
num_factors = '' # not defined for numeric columns
top_factors = '' # not defined for numeric columns
if var_name == header:
new_row = [var_name, data_type, count, filled, unfilled, fill_rate,
the_min, the_max, the_sum, mean, num_factors, top_factors]
writer.writerow( new_row )
infile.close()
outfile.close()
###############################
## FACTOR
###############################
if var_data_type == 'FACTOR' or var_data_type == 'DATE' or var_data_type == 'STRING':
count, filled, unfilled, fill_rate, num_factors, top_factors = process_factor( column_file )
# write variable characterization to file
for line in reader:
var_name = line[0]
data_type = line[1]
the_min = '' # not defined for factor columns
the_max = '' # not defined for factor columns
the_sum = '' # not defined for factor columns
mean = '' # not defined for factor columns
if var_name == header:
new_row = [var_name, data_type, count, filled, unfilled, fill_rate,
the_min, the_max, the_sum, mean, num_factors, top_factors]
writer.writerow( new_row )
infile.close()
outfile.close()
f.close()
if __name__ == '__main__':
main()
|
baa1b359e797c3382d05f8b3f91dc114890a8ca7 | KevinAS28/Python-Neutron-Brain-Server-Web-Server-Project | /changeanyindir.py | 1,030 | 3.75 | 4 | #!/usr/bin/python3
import os
import re
import sys
print("Change anything in dir, file name, dir name, inside text")
startdir = input("start directory: ")
if (startdir=="" or (os.access(startdir, os.W_OK)==False)):
startdir = os.getcwd()
print("Startdir: %s"%(startdir))
dari = input("What you want to replace (Using regex)? ")
ke = input("you wish replace %s become: "%(dari))
for root, dirs, files in os.walk(top=startdir, topdown=False):
for i in files:
try:
try:
with open(os.path.join(root, i), "rb") as reader:
baca = reader.read()
os.remove(os.path.join(root, i))
with open(os.path.join(root, re.sub(dari, ke, i)), "wb") as writer:
writer.write(re.sub(dari.encode("utf-8"), ke.encode("utf-8"), baca))
except Exception as err:
print(str(err))
os.rename(os.path.join(root, i), os.path.join(root, re.sub(dari, ke, i)))
except:
pass
for i in dirs:
try:
os.rename(os.path.join(root, i), os.path.join(root, re.sub(dari, ke, i)))
except:
pass
|
75a2eec052641721a7d7ac621282627d07100e3a | ezequiasOR/Exercicios-LP1 | /unidade3/selecao.py | 522 | 3.53125 | 4 | # coding: utf-8
#UFCG - Programação I - 2018.1
#Aluno: Ezequias Rocha
#Questão: Seleção Projeto - Unidade 3
cre = float(raw_input())
meses = int(raw_input())
entrevista = int(raw_input())
if cre < 7 and meses < 6:
print 'Candidato eliminado. CRE e experiência abaixo do limite.'
elif cre < 7:
print 'Candidato eliminado. CRE abaixo do limite.'
elif meses < 6:
print 'Candidato eliminado. Experiência abaixo do limite.'
else:
if entrevista <= 3:
print 'Candidato classificado.'
else:
print 'Candidato aprovado.'
|
cfdcd3b00702bdc5e3845c528924c6caa8ef3d60 | Aasthaengg/IBMdataset | /Python_codes/p03252/s643598565.py | 376 | 3.5625 | 4 | from collections import Counter
s = input()
t = input()
#文字の順番入れ替えは可能
#文字の個数は増やせない
#結局はaabbbなら2,3になる
#abcdbならa:1,b:2,c:1,d:1
s_dict = Counter(s)
t_dict = Counter(t)
s_val = list(s_dict.values())
t_val = list(t_dict.values())
s_val.sort()
t_val.sort()
if s_val == t_val:
print('Yes')
else:
print('No')
|
667ea109da8fd9f5a9eee543cbffb8e7fb4a0e6d | naeimsalib/Sorting_Algorithms_Python | /SelectionSort.py | 536 | 4.125 | 4 | #Time O(N^2) time | O(1) Space
def SelectionSort(array):
current = 0
while current < len(array) - 1:
smallest = current
for i in range (current + 1, len(array)):
if array[smallest] > array[i]:
smallest = i
swap(current, smallest, array)
current += 1
return array
def swap(i, j, array):
array[i], array[j] = array[j], array[i]
array = [1,3,10,9,8,23,0,1,2,4]
print("Array Before Sorting" , array);
SelectionSort(array)
print("Array After Sorting " , array)
|
4ae9cd754bc4614960af729ce3ddd5e779b87f89 | divyamodi128/Python-Practice | /Sorting_Algo/FindRepeatingchar.py | 768 | 3.734375 | 4 | def findrepeats(str):
for i in range(len(str)):
count = 0
for j in range(i,len(str)):
print(str[i], str[j])
if str[i] == str[j]:
count += 1
if count >= 3:
print(str[i] * count)
str = str.replace(str[i] * count, '')
print('Final String', str)
import re
def findrepeats1(str):
setstr = set(str)
for s in setstr:
l = len(re.findall(s, str))
if l >= 3 and re.findall(s * l, str):
print('Removing:', s * l)
str = str.replace(s * l, '')
return str
print(findrepeats('abbbccdeeeef'))
print(findrepeats1('abbcccddeeeefdd'))
"""
Input 1 : 'abbbccdeeeef'
Output 1 : 'acdf'
Input 2 : 'aaabcdefffffgggh'
Output 2 : 'bcdeh'
"""
|
8f0900c3c3500728fd8d112f7c470fd97974f808 | FreddyManston/Misc | /PythonPrograms/PyGame/PyGameTutorial/PGBasics.py | 3,689 | 3.65625 | 4 | import pygame
import time
def start_up():
""" Set up the game and run the main game loop """
pygame.init() # prepare the pygame module for use
main_surface = pygame.display.set_mode((480, 480)) # Create surface of (width, height).
my_text = pygame.font.SysFont("Comic Sans", 17).render("Click this block for Batman", False, (100, 0, 105)) # Setting up text to blit to main_surface.
# set up some data to describe a small rectangle and its color
small_rect = (300, 200, 150, 90)
some_color = (255, 0, 0) # A color is a mix of (Red, Green, Blue)
while True:
ev = pygame.event.poll() # look for any event from keyboard, mouse, joystick, etc.
if ev.type != pygame.NOEVENT: #} Print all occuring events which are
print ev #} recognised from the poll.
if ev.type == pygame.MOUSEBUTTONDOWN: # Check if mouse button was clicked.
posn_of_click = ev.dict["pos"] # Get the coordinates of the click from dictionary using key 'pos'
print posn_of_click
x_coord = posn_of_click [0] #} Split the coordinate into a
y_coord = posn_of_click [1] #} x and y position
if x_coord >= 39 and x_coord <= 189 and y_coord >= 215 and y_coord <= 275:
showBatman() #... start the new window
if ev.type == pygame.QUIT: # window close button clicked?
break # Stop program
# Completely redraw everything from scratch on each frame.
main_surface.fill((0, 200, 255)) # Fill everything with the background color.
main_surface.fill(some_color, small_rect) # Overpaint a smaller rectangle on the main surface.
main_surface.fill((255, 100, 0), (40, 215, 150, 60)) # Overpaint an even smaller rectangle onto main_surface.
main_surface.blit(my_text, (44, 240))
# Now that everything is drawn, put it on display!
pygame.display.flip()
pygame.quit() # once we leave the loop, close the window.
def showBatman():
pygame.init() # initialiase pygame again (prep module)
main_surface = pygame.display.set_mode((600, 600))
batman = pygame.image.load("I'm Batman.png") # instantiate a picture of Batman.
my_font = pygame.font.SysFont('freesansbold.ttf', 16) # instantiate 16 point Courier font to draw text.
the_text = my_font.render("I'm Batman!", True, (150, 50, 150)) # .render(text phrase, smooth edges, text colour)
count = 1
while True:
print(count) #} A count to bring to attention how
count += 1 #} many times the loop has ran, during the program
ev = pygame.event.poll()
if ev.type == pygame.QUIT:
frameRatesEtc()
break
main_surface.fill((200, 50, 100))
main_surface.blit(batman, (-300, -130)) # insert Batman into the frame .blit(picture, (x-coord, y-coord))
main_surface.blit(the_text, (325, 75)) # insert text into the frame .blit(text, (x-coord, y-coord))
pygame.display.flip()
pygame.quit()
def frameRatesEtc():
pygame.init()
main_surface = pygame.display.set_mode((400, 400))
my_font = pygame.font.SysFont("Courier", 16)
frame_count = 0
frame_rate = 0
t0 = time.clock()
while True:
ev = pygame.event.poll()
if ev.type == pygame.QUIT:
break
# Do game logic here: Updating the frame rate every 500 frames
frame_count += 1
if (frame_count % 500 == 0):
t1 = time.clock()
frame_rate = 500 / (t1 - t0) # Get frame rate per second
t0 = t1
# Completely redraw the surface, starting with background
main_surface.fill((200, 0, 200))
the_text = my_font.render("Frame = {0}, rate = {1:.2f} fps,".format(frame_count, frame_rate, 50, 66), True, (0,0,0)) # Make a new surface with an image of the text
main_surface.blit(the_text, (10, 10)) # Copy the text surface to the main surface
pygame.display.flip()
pygame.quit()
start_up()
|
abaa30791f89651441ff1c2282d7ab0b3874de47 | DanSohn/AmazonPriceTracker | /AmazonPriceTracker.py | 4,586 | 3.703125 | 4 | """
A quick project where I can get a url from an amazon page, and then given credentials and a price range,
it will email the user when the item falls under the price range
Things to do:
Get information from amazon page
Get user's information
Send email
Do I want it running every hour? Do I need to write a script to have it turned on when computer turns on
In email, sending the url as a link, not just as a string
"""
import requests
from bs4 import BeautifulSoup
import smtplib
import time
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.90 Safari/537.36"
}
def check_price(URL):
"""
function that creates the page and returns the current price
:return: the current price as a float
"""
# returns all the data from the URL provided
page = requests.get(URL, headers = headers)
# issues along the line if I use just one soup. I use two so that the soup find method will not return NoneType
soup1 = BeautifulSoup(page.content, "html.parser")
soup2 = BeautifulSoup(soup1.prettify(), "html.parser")
# from amazon, grab the span productTitle which corresponds to the title of the item
# .get_text = get rid of span tags
# .strip() = return only non-whitespace string
title = soup2.find(id = "productTitle").get_text().strip()
# price is either priceblock_saleprice or priceblock_ourprice
price = soup2.find(id = "priceblock_ourprice")
if price is None:
price = soup2.find(id = "priceblock_saleprice").get_text()
else:
price = price.get_text()
"""
print(converted_price, "\n")
print(title)
if converted_price < 150:
send_mail()
"""
converted_price = convert_price(price)
return converted_price
def convert_price(price_str):
"""
Changes the price string of form "CDN$ 131.99" into just 131.99 as an integer
:param price_str: the price from the page
:return: int price
"""
first_digit = 0
for i in range(len(price_str)):
if price_str[i].isdigit():
first_digit = i
break
converted_price = float(price_str[first_digit:])
return converted_price
def send_mail(email, password, url):
if "gmail" in email:
server = smtplib.SMTP(host='smtp.gmail.com', port=587)
elif "outlook" in email or "ucalgary.ca" in email:
server = smtplib.SMTP(host='smtp-mail.outlook.com', port=587)
else:
print("Current email server not identified, or not supported. Please try again at a later date!")
return
# Command sent by email server to identify itself, to start process of sending email
server.ehlo()
server.starttls()
server.ehlo()
server.login(email, password)
subject = 'Price has lowered for one of your items'
body = 'Check the amazon link %s' % url
msg = f"Subject: {subject}\n\n{body}"
server.sendmail(email, "[email protected]", msg)
print("Email has successfully been sent")
server.quit()
def get_info():
email = input("Email: ")
password = input("Email password: ")
url = input("Amazon URL: ")
current_price = check_price(url)
max_price = float(input("Current price is " + str(current_price) + ". What is your maximum price? "))
return email, password, url, max_price
def main():
statement = "This program is designed to email you if the given Amazon URL's item \n" \
"becomes cheaper by a range that you set. You can keep this program\n" \
"running in the background. Currently, it only looks at one item. At a\n" \
"future date, this project may get revamped to store multiple items from\n" \
"past runs.\n" \
"Feel free to contact me at [email protected]\n" \
"-Jung Hyun Sohn"
print(statement)
email, password, url, max_price = get_info()
print(email, password, url, max_price)
check_frequency = float(input("How often do you want to check the price? (SECONDS): "))
try:
print("Press <Ctrl> + <C> to stop scanning price!")
while True:
print("Checking price...")
if check_price(url) < max_price:
print("Price has dropped, sending email...")
send_mail(email, password, url)
break
time.sleep(check_frequency)
except KeyboardInterrupt:
print("Thank you for trying this program! We do not keep any of your information.")
if __name__ == '__main__':
main() |
7eaaebddb16fb1f2d66e29357787b317e52490cb | ehabosaleh/parallelism | /multiprocessing/Example_2/data_parallelism.py | 533 | 3.515625 | 4 | import time
from multiprocessing import Pool
import numpy as np
def square(x):
return x**2
if __name__=='__main__':
numbers =np.linspace(1,10000000)
p=Pool(4)
t1=time.process_time()
print(p.map(square,numbers))
t2=time.process_time()
p.close()
p.join()
print("executing time when using pool is: {}".format(t2-t1))
t1=time.process_time()
for number in numbers:
print(square(number))
t2=time.process_time()
print("executing time without Pool (serial execution) is: {}".format(t2-t1))
|
9d6273ad21bf217c83a3576ca32f8f93f7aadb47 | ko-takahashi/college | /CS596/Homework/HW3/main_part1.py | 6,144 | 3.71875 | 4 | import math
import numpy as np
import matplotlib.pyplot as plt
from getDataset import getDataSet
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
# Starting codes
# Fill in the codes between "%PLACEHOLDER#start" and "PLACEHOLDER#end"
# step 1: generate dataset that includes both positive and negative samples,
# where each sample is described with two features.
# 250 samples in total.
[X, y] = getDataSet() # note that y contains only 1s and 0s,
# create figure for all charts to be placed on so can be viewed together
fig = plt.figure()
def func_DisplayData(dataSamplesX, dataSamplesY, chartNum, titleMessage):
idx1 = (dataSamplesY == 0).nonzero() # object indices for the 1st class
idx2 = (dataSamplesY == 1).nonzero()
ax = fig.add_subplot(1, 3, chartNum)
# no more variables are needed
plt.plot(dataSamplesX[idx1, 0], dataSamplesX[idx1, 1], 'r*')
plt.plot(dataSamplesX[idx2, 0], dataSamplesX[idx2, 1], 'b*')
# axis tight
ax.set_xlabel('x_1')
ax.set_ylabel('x_2')
ax.set_title(titleMessage)
# implementation of sigmoid function
def Sigmoid(x):
g = float(1.0 / float((1.0 + math.exp(-1.0*x))))
return g
# Prediction function
def Prediction(theta, x):
z = 0
for i in range(len(theta)):
z += x[i]*theta[i]
return Sigmoid(z)
# execute gradient updates over thetas
def Gradient_Descent(X,Y,theta,m,alpha):
new_theta = []
constant = alpha/m
for j in range(len(theta)):
deltaF = Cost_Function_Derivative(X,Y,theta,j,m,alpha)
new_theta_value = theta[j] - deltaF
new_theta.append(new_theta_value)
return new_theta
# implementation of cost functions
def Cost_Function(X,Y,theta,m):
sumOfErrors = 0
for i in range(m):
xi = X[i]
est_yi = Prediction(theta,xi)
if Y[i] == 1:
error = Y[i] * math.log(est_yi)
elif Y[i] == 0:
error = (1-Y[i]) * math.log(1-est_yi)
sumOfErrors += error
const = -1/m
J = const * sumOfErrors
#print 'cost is ', J
return J
# gradient components called by Gradient_Descent()
def Cost_Function_Derivative(X,Y,theta,j,m,alpha):
sumErrors = 0
for i in range(m):
xi = X[i]
xij = xi[j]
hi = Prediction(theta,X[i])
error = (hi - Y[i])*xij
sumErrors += error
m = len(Y)
constant = float(alpha)/float(m)
J = constant * sumErrors
return J
#############
# Problem 3 #
#############
from sklearn.metrics import confusion_matrix
def func_calConfusionMatrix(predY, trueY):
result = confusion_matrix(trueY, predY)
print(result)
#In [11]: y = arange(5); (y==2).nonzero()[0]
#Out[11]: array([2])
# plotting all samples
func_DisplayData(X, y, 1, 'All samples')
# number of training samples
nTrain = 120
######################PLACEHOLDER 1#start#########################
# write you own code to randomly pick up nTrain number of samples for training and use the rest for testing.
maxIndex = len(X)
randomTrainingSamples = np.random.choice(maxIndex, nTrain, replace=False)
trainX = X[randomTrainingSamples] # training samples
trainY = y[randomTrainingSamples] # labels of training samples nTrain X 1
testX = X[~randomTrainingSamples]# testing samples
testY = y[~randomTrainingSamples]# labels of testing samples nTest X 1
####################PLACEHOLDER 1#end#########################
# plot the samples you have pickup for training, check to confirm that both negative
# and positive samples are included.
func_DisplayData(trainX, trainY, 2, 'training samples')
func_DisplayData(testX, testY, 3, 'testing samples')
# show all charts
plt.show()
# step 2: train logistic regression models
######################PLACEHOLDER2 #start#########################
# in this placefolder you will need to train a logistic model using the training data: trainX, and trainY.
#####################
# use sklearn class #
#####################
clf = LogisticRegression()
# call the function fit() to train the class instance
clf.fit(trainX,trainY)
###############################
# use Gradient_Descent method #
###############################
theta = [0,0] #initial model parameters
alpha = 0.05 # learning rates
max_iteration = 1000 # maximal iterations
m = len(y) # number of samples
for x in range(max_iteration):
# call the functions for gradient descent method
new_theta = Gradient_Descent(X,y,theta,m,alpha)
theta = new_theta
if x % 200 == 0:
# calculate the cost function with the present theta
Cost_Function(X,y,theta,m)
######################PLACEHOLDER2 #end #########################
# step 3: Use the model to get class labels of testing samples.
######################PLACEHOLDER3 #start#########################
# codes for making prediction,
# with the learned model, apply the logistic model over testing samples
# hatProb is the probability of belonging to the class 1.
# y = 1/(1+exp(-Xb))
# yHat = 1./(1+exp( -[ones( size(X,1),1 ), X] * bHat )); ));
predictions = []
for i in range(0, len(testX)):
predictions.append(round(Prediction(theta , testX[i])))
yHat = np.array(predictions)
sk_prediction = clf.predict(testX)
gd_prediction = yHat
######################PLACEHOLDER 3 #end #########################
# step 4: evaluation
# compare predictions yHat and and true labels testy to calculate average error and standard deviation
gd_YDiff = np.abs(gd_prediction - testY)
gd_avgErr = np.mean(gd_YDiff)
gd_stdErr = np.std(gd_YDiff)
print("\nGradient Descent: \n")
print(classification_report(testY,gd_prediction))
print('Gradient Descent Average Error: {} ({})\n'.format(gd_avgErr, gd_stdErr))
print("Gradient Descent Confustion Matrix\n")
func_calConfusionMatrix(gd_prediction, testY)
sk_YDiff = np.abs(sk_prediction - testY)
sk_avgErr = np.mean(sk_YDiff)
sk_stdErr = np.std(sk_YDiff)
print("\nsklearn: \n")
print(classification_report(testY,sk_prediction))
print('sklearn Average Error: {} ({})\n'.format(sk_avgErr, sk_stdErr))
print("sklearn Confusion Matrix\n)
func_calConfusionMatrix(sk_prediction, testY)
|
350653a916481644381841c1c9492e6c5c76774c | jsliacan/misc | /project-euler/p66.py | 451 | 3.75 | 4 | #!/usr/bin/env python
# Problem 66
# won't work -- too slow!
from __future__ import division
from math import sqrt
"""
since (x-1)(x+1) = x^2-1
we have
"""
Dmax = 1000
Xmax = 0
dmax = 0
for d in range(2,Dmax+1):
if sqrt(d).is_integer():
continue
print d
y = 1
x = sqrt(d*(y**2)+1)
while not x.is_integer():
y += 1
x = sqrt(d*(y**2)+1)
if x > Xmax:
Xmax = int(x)
dmax = d
print Xmax
|
eefe89bd4b1b648369f0a34143bc0397ad686811 | khadak-bogati/Introduction-to-Computer-Science-and-Programming-Using-Python | /Prblomeset2.py | 3,236 | 3.96875 | 4 | Write a program to calculate the credit card balance after one year if a person only pays the minimum monthly payment required by the credit card company each month.
The following variables contain values as described below:
balance - the outstanding balance on the credit card
annualInterestRate - annual interest rate as a decimal
monthlyPaymentRate - minimum monthly payment rate as a decimal
For each month, calculate statements on the monthly payment and remaining
balance. At the end of 12 months, print out the remaining balance. Be sure to print out no more than two decimal digits of accuracy - so print
=======================================================
A summary of the required math is found below:
Monthly interest rate= (Annual interest rate) / 12.0
Minimum monthly payment = (Minimum monthly payment rate) x (Previous balance)
Monthly unpaid balance = (Previous balance) - (Minimum monthly payment)
Updated balance each month = (Monthly unpaid balance) + (Monthly interest rate x Monthly unpaid balance)
We provide sample test cases below. We suggest you develop your code on your own machine, and make sure your code passes the sample test cases, before you paste it into the box below.
======================================================================================
set1
....................
# Test Case 1:
balance = 42
annualInterestRate = 0.2
monthlyPaymentRate = 0.04
# Result Your Code Should Generate Below:
Remaining balance: 31.38
# To make sure you are doing calculation correctly, this is the
# remaining balance you should be getting at each month for this example
Month 1 Remaining balance: 40.99
Month 2 Remaining balance: 40.01
Month 3 Remaining balance: 39.05
Month 4 Remaining balance: 38.11
Month 5 Remaining balance: 37.2
Month 6 Remaining balance: 36.3
Month 7 Remaining balance: 35.43
Month 8 Remaining balance: 34.58
Month 9 Remaining balance: 33.75
Month 10 Remaining balance: 32.94
Month 11 Remaining balance: 32.15
Month 12 Remaining balance: 31.38
solve
...............................
balance = 42
annualInterestRate=0.2
monthlyInterestRate=0.04
RemainingBalance: 31.38
for i in range(12):
balance = balance - (balance*monthlyInterestRate) + ((balance - (balance* monthlyInterestRate)) * (annualInterestRate/12))
print("RemainingBalance: ", round(balance, 2))
output
...................................
RemainingBalance: 40.99
RemainingBalance: 40.01
RemainingBalance: 39.05
RemainingBalance: 38.11
RemainingBalance: 37.2
RemainingBalance: 36.3
RemainingBalance: 35.43
RemainingBalance: 34.58
RemainingBalance: 33.75
RemainingBalance: 32.94
RemainingBalance: 32.15
RemainingBalance: 31.38
#test case 2
balance = 482
annualInterestRate = 0.2
monthlyPaymentRate = 0.04
for i in range(12):
balance= balance-(balance*monthlyPaymentRate)+((balance-(balance*monthlyPaymentRate))*(annualInterestRate/12))
print("Remaining Balance: ", round(balance,2))
|
954dcdc5bb059efe07324bf84c844482b134aa56 | joashdev/python-challenge | /inversion.py | 3,323 | 3.9375 | 4 | """
Counting Inversion
#Counting Inversion traverses through a given list then counts the inversion in the list
# a pair(x,y) is considered inversion when index(x) < index(y) but value(x) > value(y)
#This algorithm uses Divide and Conquer recursive-approach,
# specifically a modified Merge-And-Conquer algorithm
#invCount() is the modified Merge-and-Conquer algorithm which accepts a list of element
# then returns the sorted version of the list as well as the number of inversion that is in the list
#force() is the brute-force algorithm to solve the inversion problem
#use inv_input for one test-case input
#use inv_test for multiple test-case input
#Kent Joash A. Zamudio
#CMSC 142 (lab) - Exercise 3
"""
#invCount() divides the list by half (Left and Right) then process each list
def invCount(arr):
count = 0 #inversion count
arrSort = list() #a sorted version of the list in the argument
if len(arr) == 1: #if there is only 1 element in the list
return arr, 0 #simply return the list and 0 since it is impossible to have a pair(x,y)
else:
midInd = len(arr)/2 #getting the middle index of the list
LEFT = arr[:midInd] #copying the left part of the original list (from zero to middle index-1)
RIGHT = arr[midInd:] #copying the right part of the original list (from middle index to last index)
#sends each part to invCount()
LEFT, invL = invCount(LEFT)
RIGHT, invR = invCount(RIGHT)
#the resulting inversion count from each side is the summed up
count = invL + invR
#this part is where inversions are counted
leftInd = rightInd = 0
while len(LEFT) > leftInd and len(RIGHT) > rightInd:
#if leftItem < rightItem, no increment in count since right elements should be greater
if LEFT[leftInd] <= RIGHT[rightInd]:
arrSort.append(LEFT[leftInd])
leftInd+=1
elif LEFT[leftInd] > RIGHT[rightInd]: #otherwise, there is an inversion.
arrSort.append(RIGHT[rightInd])
rightInd+=1
#if we only increment 1 in the 'count', it will result to a wrong number of inversions
# because in the later part of the recursion the processed list is already sorted
# by subtracting the index to the length of the LEFT list,
# the jumps of the elements is taken into consideration
# uncomment the print statement to see jumps of element due to sorting
count+= (len(LEFT)-leftInd)
# print "jumps:", len(LEFT)-leftInd, "latest count:", count
#if there are elements left in the left list, we copy those elements to the sorted list
arrSort+= LEFT[leftInd:]
arrSort+= RIGHT[rightInd:]
return arrSort, count
def force(arr): #brute force algorithm
counterrr = 0
for item in arr:
arr2 = arr[arr.index(item)+1:]
for iterate in arr2:
if item > iterate:
counterrr+=1
print 'Brute Force Result: ',counterrr
def main():
global count
cases = int(raw_input())
for thisTest in range(cases):
arr = [int(x) for x in raw_input().strip().split()]
#for terminal use
# print '====================================='
# sortedArr, count = invCount(arr)
print 'input ', arr
# print 'sorted ', sortedArr
# force(arr)
# print 'Divide and Conquer Result: ', count
#for file use
sortedArr, count = invCount(arr)
print count
main() |
33aa13b512f46d66b6bba511cd975ef7aa0a91cb | savirnosaj/codingDojo | /python_stack/Python/python_fundamentals/insertionSort.py | 591 | 4.125 | 4 | # Insertion Sort
# Execute insertion sort
def insertionSort(arr):
for count in range(1, len(arr)):
temp = count #temp will reset through each iteration
while temp > 0 and arr[temp - 1] > arr[temp]: # will have indexerror if try to go beyond 0 and checking if index before is greater
arr[temp], arr[temp - 1] = arr[temp - 1], arr[temp] # then swap until index value -1 has lower value
temp = temp - 1 # check all the way until first index value as long as index value is less than index-1
return arr
print(insertionSort([6,5,3,1,8,7,2,4]))
|
37749cf214ef705f87393d877fc454c1ee92019f | sourcery-ai-bot/Python-Curso-em-Video | /python_exercicios/desafio064.py | 660 | 3.96875 | 4 | #Crie um programa que leia vários números inteiros pelo teclado.
# O programa só vai parar quando o usuário digitar o valor 999, que é a condição de parada.
# No final, mostre quantos números foram digitados e qual foi a soma entre eles (desconsiderando o flag).
n = c = s = 0
n = int(input('Digite um número [999 para parar]: '))
while n != 999:
c += 1
s += n
n = int(input('Digite um número [999 para parar]: '))
print('Você digitou {} números e a soma entre eles foi {}.'.format(c, s))
# Solução "Gambiarra" para tirar 1 do contador e 999 da soma
#print('Você digitou {} números e a soma entre eles foi {}.'.format(c-1, s-999)) |
e90e39a6e609cc2a887dcb73f04f9406eb623ea5 | Salishoma/My-Code-House | /src/com/python/zeroFilledSubArrays.py | 863 | 3.875 | 4 | '''
2348. Number of Zero-Filled Subarrays
Given an integer array nums, return the number of subarrays filled with 0.
A subarray is a contiguous non-empty sequence of elements within an array.
Input: nums = [1,3,0,0,2,0,0,4]
Output: 6
Explanation:
There are 4 occurrences of [0] as a subarray.
There are 2 occurrences of [0,0] as a subarray.
There is no occurrence of a subarray with a size more than 2 filled with 0. Therefore, we return 6.
'''
from typing import List
class ZeroFilledSubArrays:
def zeroFilledSubarray(self, nums: List[int]) -> int:
count = 0
res = 0
for i in range(len(nums)):
if nums[i] == 0:
count += 1
res += count
else:
count = 0
return res
arr = ZeroFilledSubArrays()
print(arr.zeroFilledSubarray([1,3,0,0,2,0,0,4])) |
8324fa28f571944426acc35ad5f1ee6b0cbd945d | Krispy2009/work_play | /sb2.py | 3,672 | 3.515625 | 4 |
from string import ascii_lowercase
import sys
global finished
global queue
global my_words
queue = []
class Node:
def __init__(self, word, parent=None):
self.word = word
self.children = []
self.parent = parent
def get_children(self):
global my_words
#change the word to a list to change its letters
word = list(self.word)
for position in range(len(word)):
temp = word[:]
for letter in list(ascii_lowercase):
temp[position] = letter
new_word = ''.join(temp)
if my_words.has_key(new_word) and my_words[new_word] == 0:
new_node = Node(new_word,parent=self)
self.children.append(new_node)
my_words[new_word] = 1
def load_words(location):
f = file(location).read()
return f
def get_words(all_words,word_length):
global my_words
my_words = {}
for word in all_words.split():
if len(word) is word_length:
my_words[word.lower()] = 0
return my_words
def process(my_words, start_node, end):
global finished
global queue
#words reached by changing 1 letter
similar_words ={}
#starting temporary word
top_temp = list(start_node.word)
#hold parent of current node
parent = start_node.parent
#delete start word from list
if my_words[start_node.word] == 0:
my_words[start_node.word] = 1
#get the children of the current(start) node
start_node.get_children()
curr_children = start_node.children
#for everyone of the new children, build queue
for child in curr_children:
#if we reach the end word we are finished
if child.word == end:
finished = True
print 'reached end word'
path = []
#print the path from the end to the start word
while child.parent is not None:
path.append(child.word)
child = child.parent
path.append(child.word)
path.reverse()
print path
break
#if current_node word is in the english dictionary then add
# to similar and remove from my_words
if child not in similar_words:
parent = child.parent
similar_words[child] = 1
#add every node from similar words into queue if it is not there
for node in similar_words:
if node not in queue:
queue.append(node)
if __name__ == '__main__':
global finished
args = sys.argv
start_word = args[1]
end_word = args[2]
start_node = Node(start_word)
finished = False
w = load_words('/usr/share/dict/words')
if len(start_word) == len(end_word):
word_length = len(start_word)
else:
print """ Word length does not match! Make sure you are using two words of the same length """
sys.exit(0)
#start the process with the start_node
process(get_words(w,len(start_word)),start_node,end_word)
while queue:
#first node from queue
first_node = queue.pop(0)
#if it is in my_words delete it
if first_node.word in my_words:
my_words[first_node.word] = 1
#if no valid path is found, inform the user
if finished == False and len(queue) == 0:
print ("There is no way to reach %s from %s "
"through the English dictionary") % (start_word,end_word)
#if we are still looking, continue with the first node from queue
if finished == False:
process(my_words, first_node, end_word)
|
12b67cb4b2c670cf7bdb7d4c4803914a7d0760cb | mikedim/RSA-ElGamal-Demo | /rsaBob.py | 424 | 3.90625 | 4 | ######Bob RSA######
import support
print("------WELCOME BOB: RSA Encryption------")
print("Enter N value received from Alice")
n=input()
print("Enter e value received from Alice")
e=input()
print("Enter integer to encrypt: ")
xin=input()
if xin>=n:
print("Invalid input, message x must be an integer less than n")
else:
#encrypt message
ex=support.rsaencrypt(xin,e,n)
print("Ciphertext to send to Alice ")
print(ex)
|
539506b63b232b4822fd4a2c96b89372cda29492 | porrametict/learningSpace | /PythonWithChulalondkorn/for_loop2.py | 454 | 3.71875 | 4 | # def temperature_table():
# for celsius in range(101):
# F = (celsius*9/5)+32
# print(celsius,"=",F)
# temperature_table()
# def mult_table(from_n,to_n):
# for i in (from_n,to_n):
# for j in range(1,13):
# print("{} x {} = {}".format(i,j,i*j))
# print("---"*40)
# mult_table(2,5)
for i in range(2,4+1):
for j in range(1, 13):
print("{} x {} = {}".format(i, j, i * j))
print("-" * 40) |
0a380297dfd81c638e2ab55e2ed77e9cf09cb7cc | Adastraea/WC-Generator | /wcgenerator.py | 3,704 | 3.5625 | 4 | import random
from wcnaming import *
from wcprofile import *
def generateNameList():
while True:
numnames = input("How many names to generate? ")
try:
numnames = int(numnames)
except:
print("Invalid input. Please enter a number.")
continue
break
for x in range(0, numnames):
name = generateName()
print(name)
def generateProfiles():
while True:
numcats = input("How many cats to generate? ")
numtraits = input("How many personality traits per cat? ")
print()
try:
numcats = int(numcats)
numtraits = int(numtraits)
except:
print("Invalid input. Please enter a number.")
continue
break
for x in range(0, numcats):
role = generateRole()
name = generateName(role)
gender, pronoun = generateGender(role)
personality = generatePersonality(numtraits)
secret = generateSecret(role)
addtl = generateAdd()
print(name + " is a " + gender + " " + role + ". Others describe " + pronoun + " as " + ', '.join(personality) + ".")
if(secret !="" and addtl != ""):
print(name + " " + secret + " and " + addtl + ".")
else:
if(secret != ""):
print(name + " " + secret + ".")
if(addtl != ""):
print(name + " " + addtl + ".")
print()
# generate a clan's worth of characters
# one leader, one deputy, one medicine cat, 15 warriors, 5 queens, 5 elders, 7 apprentices, 9 kits
def generateClan(traits=3):
clanRoles = ['leader', 'deputy', 'medicine cat']
warriors = ['warrior'] * 15
queens = ['queen'] * 5
elders = ['elder'] * 5
apprentices = ['apprentice'] * 7
kits = ['kit'] * 9
# complete list of roles for a Clan
clanRoles = clanRoles + warriors + queens + elders + apprentices + kits
for i in range(0, len(clanRoles)):
role = clanRoles[i]
gender, pronoun = generateGender(role)
name = generateName(role)
personality = generatePersonality(traits)
addtl = generateAdd()
secret = generateSecret(role)
# kits and apprentices shouldn't have secrets
print(name + " is a "+ gender + " " + role+ ". Others describe " + pronoun + " as " + ', '.join(personality) + ".")
if(secret !="" and addtl != ""):
print(name + " " + secret + " and " + addtl + ".")
else:
if(secret != ""):
print(name + " " + secret + ".")
if(addtl != ""):
print(name + " " + addtl + ".")
print()
def main():
# ask user what they want to generate?
while True:
whatGenerate = input("What would you like to generate? \n Press 1 to generate names only \n Press 2 to generate character profiles \n Press 3 to generate a Clan of characters\n")
try:
whatGenerate = int(whatGenerate)
except: # handles case where whatGenerate is not a number
print("Invalid input. Please try again:")
continue
if whatGenerate not in [1, 2, 3]: # handles case if number entered is invalid
print("Invalid input. Please try again:")
continue
else:
break
if(whatGenerate == 1):
# generate adult names only
generateNameList()
return
if(whatGenerate == 2):
# generate character profiles
generateProfiles()
return
if(whatGenerate == 3):
# generate clan of characters
generateClan()
return
if __name__ == "__main__":
main()
|
4ed10f97d0f33374d98977f2ccd00db7a589bdc5 | Sashkow/GeneticAlgorithms | /population.py | 3,831 | 3.96875 | 4 | from collections import UserList
from dna import ListDna
from gene import BoolGene
import random
import copy
class Population(UserList):
"""
Population of DNA sequences in a genetic algorithm
arguments:
DnaClass -- class for DNA, e.g. ListDna or DictDna
GeneClass -- class for gene, e.g BoolGene
population_size -- initial size of the population
part_selected -- amount of dna selected for reproduction
mutation_probability -- mutation probability per gene
generations -- generations amount to iterate algorithm through
other arguments:
whatever arguments needed for DnaClass e.g fitness_function
"""
def __init__(self, DnaClass=ListDna,
GeneClass=BoolGene,
population_size=10,
part_selected=0.5,
mutation_probability=0,
generations=10,
**kwargs):
super().__init__()
self.DnaClass = DnaClass
self.population_size = population_size
self.data = [DnaClass(GeneClass=GeneClass, **kwargs)
for i in range(self.population_size)]
self.part_selected = part_selected
self.mutation_probability = mutation_probability
self.generations = generations
def pick(self):
lst = [dna.fitness_function(dna) for dna in self]
fitness_sum = sum(lst)
pick_at = random.uniform(0, fitness_sum)
current = 0
for dna in self:
current += dna.fitness_function(dna)
if current > pick_at:
return dna
def step(self):
"""
a method that performs one iteration of the algorithm
sorts population
selects some part of the fittest dna
performs random mutations on dna with some probability
picks pairs of random dna from selection, crossover them
until needed population length is reached
this method conserves population size
"""
# amt_selected = \
# int(self.population_size * self.part_selected)
# spawning_pool = [] # list of dna selected for reproduction
new_data =[]
sorted_dna = sorted(self.data,
key=lambda dna: dna.fitness_function(dna),
reverse=True)
# mutation
for dna in sorted_dna:
dna.mute(self.mutation_probability)
# crossover
while len(new_data) < \
self.population_size - (self.population_size % 2):
d1 = copy.copy(self.pick())
d2 = copy.copy(self.pick())
times = 2
for i in range(times):
d1.crossover(d2)
new_data += [d1, d2]
if (self.population_size % 2) == 1:
new_data.append(copy.deepcopy(self.pick()))
assert(len(self.data) == len(new_data))
for i in range(len(new_data)):
self.data[i].data = new_data[i]
def iterate(self):
"""
repeats step method generations times
"""
for i in range(self.generations):
sorted_polulation = sorted(self.data, key=lambda item: - item.fitness_function(item))
print(
[item.to_string() for item in sorted_polulation[:8]],
[round(item.fitness_function(item),2) for item in sorted_polulation]
)
# print([item.to_string() for item in self.data])
self.step()
print("result")
sorted_polulation = sorted(self.data, key=lambda item: - item.fitness_function(item))
print([str(item) for item in sorted_polulation])
|
716e999386a2fef99980fd1dab113e1f51147389 | imtj1/NeuralTuringMachine_EulerianPath | /eulerian_path_task/graph_utils.py | 7,934 | 3.90625 | 4 | from operator import itemgetter
import networkx as nx
from collections import deque
def is_semieulerian(G):
"""Returns ``True`` if and only if ``G`` has an Eulerian path.
An Eulerian path is a path that crosses every edge in G
exactly once.
Parameters
----------
G: NetworkX Graph, DiGraph, MultiGraph or MultiDiGraph
A directed or undirected Graph or MultiGraph.
Returns
-------
True, False
See Also
--------
is_eulerian()
Examples
--------
>>> G = nx.DiGraph([(1,2),(2,3)])
>>> nx.is_semieulerian(G)
True
"""
is_directed = G.is_directed()
# Verify that graph is connected, short circuit
if is_directed and not nx.is_weakly_connected(G):
return False
# is undirected
if not is_directed and not nx.is_connected(G):
return False
# Not all vertex have even degree, check if exactly two vertex
# have odd degrees. If yes, then there is an Euler path. If not,
# raise an error (no Euler path can be found)
# if the odd condition is not meet, raise an error.
start = _find_path_start(G)
if not start:
return False
return True
def _find_path_start(G):
"""Returns a suitable starting vertex for Eulerian path
The function also verifies that the graph contains a path. If no
path exists, returns ``None''.
"""
is_directed = G.is_directed()
# list to check the odd degree condition
check_odd = []
if is_directed:
degree = G.in_degree
out_degree = G.out_degree
else:
degree = G.degree
# Verify if an Euler path can be found. Complexity O(|V|)
for v in G:
deg = degree(v)
# directed case
if is_directed:
outdeg = out_degree(v)
if deg != outdeg:
# if we have more than 2 odd nodes no Euler path exists
if len(check_odd) > 2:
return False
# is odd and we append it.
check_odd.append(v)
# undirected case
else:
if deg % 2 != 0:
# if we have more than 2 odd nodes no Euler path exists
if len(check_odd) > 2:
return False
# is odd and we append it.
check_odd.append(v)
start = None
if is_directed:
first = check_odd[0]
second = check_odd[1]
if G.out_degree(first) == G.in_degree(first) + 1 and \
G.in_degree(second) == G.out_degree(second) + 1:
start = second
elif G.out_degree(second) == G.in_degree(second) + 1 and \
G.in_degree(first) == G.out_degree(first) + 1:
start = first
else:
start = None
else:
if len(check_odd) > 0:
start = check_odd[0]
return start
def eulerian_path(G):
"""Return a generator of the edges of an Eulerian path in ``G``.
Check if the graph ``G`` has an Eulerian path and return a
generator for the edges. If no path is available, raise an error.
Parameters
----------
G: NetworkX Graph, DiGraph, MultiGraph or MultiDiGraph
A directed or undirected Graph or MultiGraph.
Returns
-------
edges: generator
A generator that produces edges in the Eulerian path.
Raises
------
NetworkXError: If the graph does not have an Eulerian path.
Examples
--------
>>> G = nx.Graph([('W', 'N'), ('N', 'E'), ('E', 'W'), ('W', 'S'), ('S', 'E')])
>>> len(list(nx.eulerian_path(G)))
5
>>> G = nx.DiGraph([(1, 2), (2, 3)])
>>> list(nx.eulerian_path(G))
[(1, 2), (2, 3)]
Notes
-----
Linear time algorithm, adapted from [1]_ and [3]_.
Information about Euler paths in [2]_.
Code for Eulerian circuit in [3]_.
Important: In [1], Euler path is in reverse order,
this implementation gives the path in correct order
as in [3]_ for Eulerian_circuit. The distinction for
directed graph is in using the in_degree neighbors, not the out
ones. for undirected, it is using itemgetter(1) for get_vertex,
which uses the correct vertex for this order. Also, every graph
has an even number of odd vertices by the Handshaking Theorem [4]_.
References
----------
.. [1] http://www.graph-magics.com/articles/euler.php
.. [2] http://en.wikipedia.org/wiki/Eulerian_path
.. [3] https://github.com/networkx/networkx/blob/master/networkx/algorithms/euler.py
.. [4] https://www.math.ku.edu/~jmartin/courses/math105-F11/Lectures/chapter5-part2.pdf
"""
if not is_semieulerian(G):
raise nx.NetworkXError("G does not have an Eulerian path.")
g = G.__class__(G) # copy graph structure (not attributes)
is_directed = g.is_directed()
if is_directed:
degree = g.in_degree
edges = g.in_edges
get_vertex = itemgetter(0)
else:
degree = g.degree
edges = g.edges
get_vertex = itemgetter(1)
# Begin algorithm:
start = _find_path_start(g)
if not start:
raise nx.NetworkXError("G has no Eulerian path.")
vertex_stack = deque([start])
last_vertex = None
while vertex_stack:
current_vertex = vertex_stack[-1]
# if no neighbors:
if degree(current_vertex) == 0:
# Special case, we cannot add a None vertex to the path.
if last_vertex is not None:
yield (last_vertex, current_vertex)
last_vertex = current_vertex
vertex_stack.pop()
# we have neighbors, so add the vertex to the stack (2), take
# any of its neighbors (1) remove the edge between selected
# neighbor and that vertex, and set that neighbor as the
# current vertex (4).
else:
edge = next(edges(current_vertex))
vertex_stack.append(get_vertex(edge))
g.remove_edge(*edge)
def findpath(graph):
n = len(graph)
numofadj = list()
# Find out number of edges each vertex has
for i in range(n):
numofadj.append(sum(graph[i]))
# Find out how many vertex has odd number edges
startpoint = 0
numofodd = 0
for i in range(n - 1, -1, -1):
if (numofadj[i] % 2 == 1):
numofodd += 1
startpoint = i
# If number of vertex with odd number of edges
# is greater than two return "No Solution".
if (numofodd > 2):
return []
# If there is a path find the path
# Initialize empty stack and path
# take the starting current as discussed
stack = list()
path = list()
cur = startpoint
# Loop will run until there is element in the stack
# or current edge has some neighbour.
while (stack != [] or sum(graph[cur]) != 0):
# If current node has not any neighbour
# add it to path and pop stack
# set new current to the popped element
if (sum(graph[cur]) == 0):
path.append(cur + 1)
cur = stack.pop(-1)
# If the current vertex has at least one
# neighbour add the current vertex to stack,
# remove the edge between them and set the
# current to its neighbour.
else:
for i in range(n):
if graph[cur][i] == 1:
stack.append(cur)
graph[cur][i] = 0
graph[i][cur] = 0
cur = i
break
# print the path
# for ele in path:
# print(ele, "-> ", end='')
# print(cur + 1)
path.append(cur + 1)
return path
|
47705e8915bb006112ff8425e42bf92db6dead1e | kazshidara/leetcode-practice | /dictionaries.py | 599 | 3.8125 | 4 | # 1. K most Frequent values
# :type nums: List[int]
# :type k: int
# :rtype: List[int]
def topKFrequent(nums, k):
dict = {}
for i in nums:
if i not in dict:
dict[i] = 1
else:
dict[i] += 1
arr = sorted(dict.items(), key = lambda it: it[1], reverse=True)
print("sorted by values", arr)
result = []
for i in range(0,k):
result.append(arr[i][0])
return result
print(topKFrequent([1,1,1,2,2,3],2))
################################################################################
|
00afd4229f76984e465f3d6a904f073eab8ceed7 | aralyekta/METU | /CENG111/w6/hangman.py | 404 | 3.65625 | 4 | def hangman(str1,str2,num):
len1 = len(str1)
len2 = len(str2)
if len1 > len2:
return "lose"
elif str1 == str2:
return "win"
elif len1 == len2 and str1 != str2:
return "lose"
a = 0
for i in range(len2):
if str1[i] == str2[i]:
continue
else:
a+= 1
if a >= num:
return "lose"
return "win"
|
0239c45475af0ab0a58015a421a76c4141bc7d9a | preetam-patel/task1 | /pald.py | 133 | 4.0625 | 4 | def ispalindrome(s):
return s== s[::-1]
s= input('enter the word:')
res = ispalindrome(s)
if res :
print('yes')
else:
print('no')
|
a4576e69789645357f44345f7bed8dec2b9fb0aa | daniel-reich/ubiquitous-fiesta | /Z2mhqFLe9g9ouZY64_4.py | 267 | 3.59375 | 4 |
def is_valid_subsequence(lst, sequence):
lst = list(filter(lambda x: x in sequence,lst))
if any(x not in lst for x in sequence):
return False
if lst == sequence:
return True
return is_valid_subsequence(lst[lst.index(sequence[0])+1::],sequence[1::])
|
a564ba2cac49aea70d84031344f2753fa1248a9a | 111110100/my-leetcode-codewars-hackerrank-submissions | /leetcode/arraySign.py | 2,351 | 3.890625 | 4 | from typing import List
class Solution:
def arraySign(self, nums: List[int]) -> int:
p = 1
t = [p:=p*v for v in nums]
return 1 if p > 0 else -1 if p < 0 else 0
answer = Solution()
print(answer.arraySign([-1,-2,-3,-4,3,2,1]))
print(answer.arraySign([1,5,0,2,-3]))
print(answer.arraySign([-1,1,-1,1,-1]))
'''
There is a function signFunc(x) that returns:
1 if x is positive.
-1 if x is negative.
0 if x is equal to 0.
You are given an integer array nums. Let product be the product of all values in the array nums.
Return signFunc(product).
Example 1:
Input: nums = [-1,-2,-3,-4,3,2,1]
Output: 1
Explanation: The product of all values in the array is 144, and signFunc(144) = 1
Example 2:
Input: nums = [1,5,0,2,-3]
Output: 0
Explanation: The product of all values in the array is 0, and signFunc(0) = 0
Example 3:
Input: nums = [-1,1,-1,1,-1]
Output: -1
Explanation: The product of all values in the array is -1, and signFunc(-1) = -1
Constraints:
1 <= nums.length <= 1000
-100 <= nums[i] <= 100
class Solution:
def arraySign(self, nums: List[int]) -> int: # 68 ms
import functools
product = functools.reduce(int.__mul__, nums)
return (product > 0) - (product < 0)
def arraySign(self, nums: List[int]) -> int: # 64 ms
import functools
return (product > 0) - (product < 0) if any((product := functools.reduce(int.__mul__, nums),)) else product
def arraySign(self, nums: List[int]) -> int: # 108 ms
import itertools
*_, product = itertools.accumulate(nums, int.__mul__)
return (product > 0) - (product < 0)
def arraySign(self, nums: List[int]) -> int: # 112 ms
return 0 if 0 in nums else -1 if sum(1 for i in nums if i < 0) % 2 else 1
def arraySign(self, nums: List[int]) -> int: # 60 ms
return 0 if 0 in nums else -1 if str(nums).count("-") % 2 else 1
def arraySign(self, nums: List[int]) -> int: # 88 ms
n_negatives = 0
for n in nums:
if n == 0:
return 0
n_negatives += n < 0
return -1 if n_negatives % 2 else 1
def arraySign(self, nums: List[int]) -> int: # 124 ms
positive = 1
for n in nums:
if n == 0:
return 0
positive ^= n < 0
return (-1, 1)[positive]
'''
|
ccd16068f58b3e38da7afd53625234fd203b1354 | Ephrao1/Password-locker | /user.py | 1,246 | 4.0625 | 4 | class User:
"""
Class that generates users new instances .
"""
user_list = []
def __init__(self,acc_name,user_name,password,email):
self.acc_name = acc_name
self.user_name = user_name
self.password = password
self.email = email
def save_user(self):
'''
method that saves user into user_list
'''
User.user_list.append(self)
def delete_user(self):
'''
method that deletes user from user list
'''
User.user_list.remove(self)
@classmethod
def find_by_name(cls, name):
for user in cls.user_list:
if user.acc_name == name:
return user
@classmethod
def user_exist(cls, name):
'''
method that checks if user exists
Args:
name: searching if user exists
Returns :
Boolean:returns true or false statement if the user exists or not
'''
for user in cls.user_list:
if user.password == name:
return user
return False
@classmethod
def display_users(cls):
"""
this method returns the account list
"""
return cls.user_list |
b84fc13c4282c49108438cd00160b05c7d37594d | tomytjandra/college-coursework | /NLP/basic nltk.py | 4,881 | 3.578125 | 4 | def clear():
for i in range(5):
print()
text = "On April 8, 2018, Persekutuan Oikumene (PO) BINUS held an Easter Service to commemorate the resurrection of Jesus Christ. BNEC sent some of its delegations to attend the invitation. It was a great event with all the activities and the warm atmosphere contained the room."
##1. TOKENIZING
from nltk.tokenize import sent_tokenize, word_tokenize
wordList = word_tokenize(text)
sentList = sent_tokenize(text)
print(wordList)
clear()
print(sentList)
##2. STOPWORDS
from nltk.corpus import stopwords
stopList = stopwords.words("english")
wordWithoutStopwords = []
for word in wordList:
if word not in stopList:
wordWithoutStopwords.append(word)
clear()
print(wordWithoutStopwords)
##3. STEMMING
from nltk.stem import LancasterStemmer, SnowballStemmer, PorterStemmer
ls = LancasterStemmer()
ss = SnowballStemmer("english")
ps = PorterStemmer()
lsRes = []
ssRes = []
psRes = []
for word in wordList:
lsRes.append(ls.stem(word))
ssRes.append(ss.stem(word))
psRes.append(ps.stem(word))
clear()
print(lsRes)
clear()
print(ssRes)
clear()
print(psRes)
##4. LEMMATIZING
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
wordToBeLemmatized = "Running"
params = ['a','s','r','n','v']
clear()
for param in params:
print(param + " : " + lemmatizer.lemmatize(wordToBeLemmatized.lower(), param))
##5. POSTAGGING
from nltk.tag import pos_tag
import string
wordWithoutPunc = []
for word in wordList:
if word not in string.punctuation:
wordWithoutPunc.append(word)
postag = pos_tag(wordWithoutPunc)
clear()
for word,tag in postag:
print(word + " : " + tag)
##6. NAME ENTITY RECOGNITION
from nltk.chunk import ne_chunk
ner = ne_chunk(postag)
clear()
print(ner)
choose = ""
while choose == "":
choose = input("Draw [yes/no]? ")
if choose not in ["yes","no"]:
choose = ""
if choose == "yes":
ner.draw()
##7. FREQ DIST
from nltk.probability import FreqDist
fd = FreqDist(wordList)
for word, count in fd.most_common():
print(word + " : " + str(count))
##BASIC
from nltk.corpus import wordnet
word = "win"
synsetList = wordnet.synsets(word)
woi = synsetList[0]
clear()
print(woi.name())
print(woi.definition())
print(woi.examples())
print(woi.pos())
lemmas = woi.lemmas()
for lemma in lemmas:
print(lemma.name())
##SYNONYM
synonym = []
for synset in wordnet.synsets(word):
for lemma in synset.lemmas():
synonym.append(lemma.name())
synonym = set(synonym)
clear()
print(sorted(synonym))
##ANTONYM
antonym = []
for synset in wordnet.synsets(word):
for lemma in synset.lemmas():
for anto in lemma.antonyms():
antonym.append(anto.name())
antonym = set(antonym)
clear()
print(sorted(antonym))
##READ FILE FROM CORPORA
from nltk.corpus import gutenberg
filename = "austen-emma.txt"
#print(gutenberg.raw(filename))
##CLASSIFY MOVIE REVIEWS
##1. IMPORT FOLDER
from nltk.corpus import movie_reviews
##2. TRANSFER TEXT TO LIST (ALLWORDS & DOCS)
n = 30
allWords = []
docs = []
for category in movie_reviews.categories():
count = 0
for fileid in movie_reviews.fileids(category):
wordsInOneFile = []
for word in movie_reviews.words(fileid):
wordsInOneFile.append(word.lower())
allWords.append(word.lower())
docs.append((wordsInOneFile,category))
count += 1
if(count == n):
break
##3. RANDOM SHUFFLE LIST
import random
random.shuffle(docs)
##4. DEF COLLECT FEATURES
def collectFeatures(wordList):
wordSet = set(wordList)
feature = {}
for word in allWords:
feature[word] = (word in wordSet)
return feature
##5. APPLY COLLECT FEATURES
result = []
for (wordList, category) in docs:
result.append((collectFeatures(wordList), category))
##6. SPLITTING DATA
splitPoint = int(0.8*2*n)
trainingData = result[:splitPoint]
testingData = result[splitPoint:]
##7. APPLY CLASSIFIER
import nltk
classifier = nltk.NaiveBayesClassifier.train(trainingData)
##8. MODEL EVALUATION
try:
acc = nltk.classify.accuracy(classifier, testingData)
clear()
print("Accuracy: {0:.2f}%".format(acc*100))
classifier.show_most_informative_features()
except:
print("No classifier")
##9. WRITE PICKLE
import pickle
file = open("classifier.pickle", "wb")
pickle.dump(classifier, file)
file.close()
###0. ADDITIONAL: READ PICKLE, WRITE AND READ STRING FILE
##READ PICKLE
try:
file = open("classifier.pickle", "rb")
classifier = pickle.load(file)
file.close()
classifier.show_most_informative_features()
except:
print("No such file")
##WRITE STRING FILE
file = open("test.txt", "w")
file.write("Test\n")
for i in range(10):
file.write(str(i))
file.write('\n')
file.close()
##READ STRING FILE
file = open("test.txt", "r")
data = file.read().split()
print(data)
file.close()
|
1fa8c6fcd09f715d4fd6efd4ca89a18a8d02cb13 | fvcandal/project | /PMLFVC.py | 4,926 | 3.5 | 4 | #!/usr/bin/env python
# coding: utf-8
# # Pratical Machine Learning
# ## Fátima Vilela Candal
# # Data processing
# The original training and test data has 160 variables. The columns with NA entries have been removed. Five (5) variables were removed.
# In[498]:
# Importing Libraries
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np
import math
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
import warnings
warnings.filterwarnings('ignore')
# In[499]:
# Importing the Dataset
df = pd.read_csv('pml-training.csv')
# In[500]:
# Clear all null data
df.dropna(inplace=True)
# In[501]:
# Total rows and columns
print("Train data line and colum: {}".format(df.shape))
# In[502]:
# Columns present in the dataset
print(df.columns)
# In[503]:
# Data types
df.dtypes
# In[504]:
# Presentation of null data
df.isnull().sum()
# In[528]:
# Data presented 20 columns and 05 rows
df.head(5)
# In[506]:
# Descriptive statistics for each column
df.describe()
# # Train Test Split
# We will divide our dataset into training and test splits, which gives us a better idea as to how our algorithm performed during the testing phase. This way our algorithm is tested on un-seen data, as it would be in a production application.
# In[551]:
# Preprocessing
# The next step is to split our dataset into its attributes and labels
cols = ['raw_timestamp_part_1',
'raw_timestamp_part_2',
'num_window',
'roll_belt',
'pitch_belt',
'yaw_belt',
'gyros_forearm_x',
'gyros_forearm_y',
'gyros_forearm_z',
'accel_forearm_x',
'accel_forearm_y',
'accel_forearm_z',
'magnet_forearm_x',
'magnet_forearm_y',
'magnet_forearm_z']
X = df[cols]
y = df.classe
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
# In[542]:
print (X_train.shape)
# In[543]:
print (X_test.shape)
# # Model
# The first step is to import the KNeighborsClassifier class from the sklearn.neighbors library. In the second line, this class is initialized with one parameter, i.e. n_neigbours. This is basically the value for the K. There is no ideal value for K and it is selected after testing and evaluation, however to start out, 5 seems to be the most commonly used value for KNN algorithm.
#
# After all the work of data preparation, creating and training the model KNN regression model from skicit-learn, instantiate the model, and fit the model on the training data.
# # Predictions
# It is extremely straight forward to train the KNN algorithm and make predictions with it, especially when using Scikit-Learn.
# In[544]:
# from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=20)
classifier.fit(X_train, y_train)
# In[545]:
# Prediction
y_pred = classifier.predict(X_test)
y_pred
# # Evaluating the Algorithm
# For evaluating an algorithm, confusion matrix, precision, recall and f1 score are the most commonly used metrics. The confusion_matrix and classification_report methods of the sklearn.metrics can be used to calculate these metrics.
# In[547]:
from sklearn.metrics import classification_report, confusion_matrix
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
# # Comparing Error Rate with the K Value
# In the training and prediction section we said that there is no way to know beforehand which value of K that yields the best results in the first go.
#
# We randomly chose 5 as the K value and it just happen to result in 100% accuracy.
#
# One way find the best value of K is to plot the graph of K value and the corresponding error rate for the dataset.
#
# We will plot the mean error for the predicted values of test set for all the K values between 1 and 40.
# In[548]:
error = []
# Calculating error for K values between 1 and 40
for i in range(1, 40):
knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(X_train, y_train)
pred_i = knn.predict(X_test)
error.append(np.mean(pred_i != y_test))
# In[549]:
plt.figure(figsize=(12, 6))
plt.plot(range(1, 40), error, color='red', linestyle='dashed', marker='o',
markerfacecolor='blue', markersize=10)
plt.title('Error Rate K Value')
plt.xlabel('K Value')
plt.ylabel('Mean Error')
# # Conclusion
# KNN is a simple yet powerful classification algorithm. It requires no training for making predictions, which is typically one of the most difficult parts of a machine learning algorithm. The KNN algorithm have been widely used to find document similarity and pattern recognition. It has also been employed for developing recommender systems and for dimensionality reduction and pre-processing steps for computer vision, particularly face recognition tasks.
#
#
|
929f8b961f38e6750dff7f71f9bcf2733b69afc8 | virtual/fcc-python-projects | /time-calculator/time_calculator.py | 2,157 | 4.0625 | 4 | import math
# Return the day name of an equivalent day index #
def getDayNameByNum(dayIndex):
if (dayIndex == 0):
return 'Monday'
elif (dayIndex == 1):
return 'Tuesday'
elif (dayIndex == 2):
return 'Wednesday'
elif (dayIndex == 3):
return 'Thursday'
elif (dayIndex == 4):
return 'Friday'
elif (dayIndex == 5):
return 'Saturday'
elif (dayIndex == 6):
return 'Sunday'
# given a day of the week, return the day's index #
def getDayNum(day):
day = (day).lower()
if (day == 'monday'):
return 0
elif (day == 'tuesday'):
return 1
elif (day == 'wednesday'):
return 2
elif (day == 'thursday'):
return 3
elif (day == 'friday'):
return 4
elif (day == 'saturday'):
return 5
elif (day == 'sunday'):
return 6
# given a certain day (0 = Monday) and duration (1 day)
# add the duration to the day #, and mod by 6 to return
# the updated day name
def convertToTime(hour, min, days=0, startDay=''):
period = 'AM'
dayStr = ''
endDay = ''
endDayNum = -1
if (startDay != ''):
endDayNum = getDayNum(startDay)
hour12 = hour
if hour >= 12:
hour12 = hour % 12
period = 'PM'
if hour12 == 0:
hour12 = 12
if days == 1:
dayStr = ' (next day)'
elif days > 1:
dayStr = ' (' + str(days) + ' days later)'
if endDayNum > -1:
endDay = (endDayNum + days) % 7
endDay = ', ' + getDayNameByNum(endDay)
return f'{hour12}:{str(min).zfill(2)} {period}{endDay}{dayStr}'
def add_time(start, duration, startDay=''):
start = start.split(" ")
# split and convert array items to ints
hours, mins = map(int,start[0].split(':'))
dHours, dMins = map(int,duration.split(':'))
if (start[1].lower() == 'pm'):
# Time is afternoon
hours = hours + 12
# Check if clock reaches midnight
daysOf = math.floor((hours + dHours) / 24)
minsOf = (mins + dMins) % 60
hoursOf = (hours + dHours) % 24 + math.floor((mins + dMins) / 60) # Could be more than 24
if hoursOf >= 24:
daysOf = daysOf + math.floor(hoursOf / 24)
hoursOf = hoursOf % 24
new_time = convertToTime(hoursOf, minsOf, daysOf, startDay)
return new_time |
56003ac62a71b38f7f6903261c603b415d5b125c | Shohet-Val/Python | /downloader_pages.py | 1,266 | 3.765625 | 4 |
#прочитать сайт и посчитать статистику использования слов с# или python
from urllib.request import urlopen
html = urlopen("https://ru.wikipedia.org/wiki/Python").read().decode('utf-8')
s = str(html)
print('Сравнительная частота в статьи из Википедии о Питоне')
print('Частота С++ ', s.count('C++'))
print('Частота Python ', s.count('Python'))
#
"""
m_htm = urlopen("https://ru.wikipedia.org/wiki/C++").read().decode('utf-8')
r = str(html)
print('Сравнительная частота в статьи из Википедии о Pascal')
print('Частота Java ', r.count('Java'))
print('Частота C# ', r.count('C#'))
print('Частота JavaScript ', r.count('JavaScript'))
"""
#https://stepik.org/media/attachments/lesson/209717/1.html
print('+++++ Задание +++++')
m_html = urlopen("https://stepik.org/media/attachments/lesson/209717/1.html").read().decode('utf-8')
j = str(m_html)
text_site = str(m_html)
#print(text_site)
print('Сравнительная частота в статьи из Википедии о Питоне')
print('Частота Python ', j.count('Python'))
print('Частота C++ ', j.count('C++'))
|
93a740d639aac76a7d7f4db91b81d53017df4265 | qmnguyenw/python_py4e | /geeksforgeeks/python/python_all/151_10.py | 1,414 | 4.84375 | 5 | Python | How to copy a nested list
In the previous article, we have seen how to clone or Copy a list, now let’s
see how to copy a nested list in Python.
**Method #1: Using Iteration**
__
__
__
__
__
__
__
# Python program to copy a nested list
# List initialization
Input_list = [[0, 1, 2], [3, 4, 5], ]
Output = []
# Using iteration to assign values
for x in range(len(Input_list)):
temp = []
for elem in Input_list[x]:
temp.append(elem)
Output.append(temp)
# Printing Output
print("Initial list is:")
print(Input_list)
print("New assigned list is")
print(Output)
---
__
__
**Output:**
Initial list is:
[[0, 1, 2], [3, 4, 5]]
New assigned list is
[[0, 1, 2], [3, 4, 5]]
**Method #2: Using deepcopy**
__
__
__
__
__
__
__
# Python program to copy a nested list
import copy
# List initialization
Input = [[1, 0, 1], [1, 0, 1]]
# using deepcopy
Output = copy.deepcopy(Input)
# Printing
print("Initial list is:")
print(Input)
print("New assigned list is")
print(Output)
---
__
__
**Output:**
Initial list is:
[[1, 0, 1], [1, 0, 1]]
New assigned list is
[[1, 0, 1], [1, 0, 1]]
|
6dcd89c3a16a0200d15907b9ad60b2e1f64d1022 | m-wieloch/blackJack | /GUI_start_game.py | 1,097 | 3.5 | 4 | from tkinter import *
import sqlite3
# def buttom_click():
def myClick():
playLabel = Label(root, text="CDN :)")
playLabel.grid(row=4, column=2)
# def show():
# myLabel = Label(root, text=var.get()).pack()
root = Tk()
root.geometry("500x200")
root.title("BlackJack")
root.config(bg="sea green")
blackjack = Label(root, text="BLACKJACK", font=('goudy stout', 20), bg="sea green", fg="goldenrod3")
blackjack.grid(row=0, column=1)
name = Label(root, text="Your name:", font=('cambria', 13), bg="sea green", fg="white")
name.grid(row=1, column=0)
pack = Label(root, text="Pack number:", font=('cambria', 13), bg="sea green", fg="white")
pack.grid(row=2, column=0)
e_name = Entry(root, borderwidth=3, width=40, justify=CENTER)
e_name.grid(row=1, column=1, padx=20, pady=(10, 0))
e_pack = Entry(root, borderwidth=3, width=40, justify=CENTER)
e_pack.grid(row=2, column=1, padx=20, pady=(10, 0))
play = Button(root, text="Play", command=myClick, borderwidth=5, bg="goldenrod3", fg="white")
play.grid(row=3, column=1, padx=20, pady=10)
play.config(width=10, height=1)
root.mainloop()
|
bf2d7a46fd82fa2282fced9b639cb2e7532c50ff | szlevinli/AuraAIHomework | /sources/least_squares_method.py | 1,765 | 3.84375 | 4 | import numpy as np
from matplotlib import pyplot as plt
def least_squares_method(v_x, v_y):
"""最小二乘法
该方法仅支持二元一次方程 y = mx + c
Arguments:
v_x {ndarray 1D} -- 样本数据中的特征值
v_y {ndarray 1d} -- 样本数据中的真实值
Returns:
float -- 斜率 m
float -- 截距 c
"""
# compute mean
mean_x = v_x.mean()
mean_y = v_y.mean()
# compute slop
temp1 = ((v_x - mean_x) * (v_y - mean_y)).sum()
temp2 = ((v_x - mean_x) ** 2).sum()
slop = temp1 / temp2
# compute intercept
intercept = mean_y - slop * mean_x
# return
return slop, intercept
def least_squares_method_with_matrix(X, y):
X_ = np.concatenate((np.ones((X.shape[0], 1)), X), axis=1)
return np.linalg.inv((X_.T @ X_)) @ X_.T @ y
def plot_line(x, y, slop, intercept, **kwargs):
x2 = np.linspace(x.min(), x.max(), 100)
y2 = x2 * slop + intercept
plt.plot(x2, y2, **kwargs)
if __name__ == "__main__":
x = np.array([8, 2, 11, 6, 5, 4, 12, 9, 6, 1])
y = np.array([3, 10, 3, 6, 8, 12, 1, 4, 9, 14])
plt.plot(x, y, 'o')
# 原始数据
m, c = least_squares_method(x, y)
# plot_line(x, y, m, c, label='Origin')
# # 增加平均分布的噪音
# m, c = least_squares_method(x + np.random.rand(x.shape[0]), y)
# plot_line(x, y, m, c, label='Uniform noise')
# # 增加正态分布的噪音
# m, c = least_squares_method(x + np.random.randn(x.shape[0]), y)
# plot_line(x, y, m, c, label='Normal noise')
# plt.legend()
# plt.show()
t = least_squares_method_with_matrix(x.reshape(x.shape[0], 1), y)
print(f'slop is {m}, intercept is {c}')
print(f'slop is {t[1]}, intercept is {t[0]}')
|
68e6aedab3c0f64305f555b77dfd9a9bee7d4db1 | shacharSirotkin/SBR_2018 | /SBR/SymbolicPlanRecognition/PathNode.py | 2,349 | 3.65625 | 4 | from Node import Node
class PathNode(Node):
def __init__(self, tree_node):
self._parent = None
self._child = None
Node.__init__(self, tree_node.get_ID(), tree_node.get_label(), tree_node.get_is_root(),
tags=tree_node.get_tags(), seq_of=tree_node.get_prev_seqs(),
seq=tree_node.get_next_seqs())
def set_parent(self, parent):
self._parent = parent
parent._child = self
def get_child(self):
return self._child
def search(self):
lst = [self]
if self._child is not None:
lst.extend(self._child.search())
return lst
# return The depth where there is a sequential connection from node in this path to node in the given path
def get_seq_to_next_depth(self, next_path):
# if the paths are the same, saying that there is a sequential edge between them will be a vacuous truth
if self == next_path:
return 0
# get all nodes in both paths
next_nodes = next_path.search()
current_nodes = self.search()
connection_node = None
# look for node from path1 and path2 which have a sequential edge from one to the other
# if two nodes was found connection_node would be the node which the sequential edge come from
for next_node in next_nodes:
for current_node in current_nodes:
if next_node.get_ID() in current_node.get_next_seqs():
connection_node = current_node
break
depth = -1
check_path = self
# find the depth of connection_node in check_path(which is actually self)
if connection_node is not None:
while check_path != connection_node:
depth += 1
check_path = check_path.get_child()
return depth
def __repr__(self):
res = self._label
if self._child is not None:
res += self._child.to_string(" ")
return res
def to_string(self, init):
res = init + self._label
if self._child is not None:
res += self._child.to_string(init)
return res
def __eq__(self, other):
return other.__repr__() == self.__repr__()
def __hash__(self):
return hash(self.__repr__())
|
fecae0bb124b379ff53e1e5853d3461065286289 | JeongJaeWook/pystock_jw | /gui/basic2_label.py | 519 | 3.5625 | 4 | from tkinter import *
rt = Tk()
rt.title("재욱이꺼")
rt.geometry("640x480")
label1 = Label(rt, text="Hi")
label1.pack()
photo = PhotoImage(file="check.png")
label2 = Label(rt, image=photo)
label2.pack()
def change():
label1.config(text="또만나요") #text를 바꿀때 config 쓴다
global photo2 #가비지컬렉션 되지 않도록 global 변수 설정
photo2 = PhotoImage(file= "no.png")
label2.config(image=photo2)
btn = Button(rt, text="click", command=change)
btn.pack()
rt.mainloop() |
7c8682c2e287f12962e013e33f70f187a7b9312f | tanzidakazi/Boring-Stuff-With-Python | /ListAndString.py | 2,013 | 4.3125 | 4 | # index() List Method
# append() List Method
# insert() List Method
# remove() List Method
# sort() List Method
'''import copy
friendList=['Mahmuda', 'Mazdia', 'Samiha', 'Sherin', 'Shegufta', 'abc', 'qwe']
print('Index of Mahmuda is ')
print(friendList.index('Mahmuda'))
for i in range(len(friendList)):
print('Index: ' + str(i+1) + ', Name: ' + friendList[i])
for i in range(len(friendList)):
print(friendList.index('Mazdia'))
print(friendList.index(friendList[i])) # same as str(i)
print('Enter name of new friend: ')
newFriend = input()
friendList.append(newFriend)
print(friendList)
friendList.insert(2, 'Areeba')
print(friendList)
friendList.remove('abc')
print(friendList)
friendList.sort()
print(friendList)
friendList.sort(reverse=True)
print(friendList)
friendList.sort(key=str.lower)
print(friendList)
# copy() Function
# deepcopy() Funtion
familyList = copy.copy(friendList)
#familyList[1]='Nephew'
familyList[1]= ['Mum', 'Dad', 'Brother']
print(familyList)
'''
# upper(), lower() String Method
# isupper(), islower() String Method
# isX String Method
# startswith(), endswith() String Method
# join(), split() String Method
# rjust(), ljust(), center() Justifying Text
# strip(), rstrip(), lstrip() Removing Whitespace
# Copying and Pasting with paperclip module
string1= 'Mahmuda went to London \n'
print(string1)
print('Press 1 for upper()')
print('Press 2 for lower()')
print('Press 3 for isupper()')
print('Press 4 for islower()')
print('Press 5 for isalpha()')
print('Press 6 for isalpha()')
print('Press 7 for isalnum()')
print('Press 8 for isdecimal()')
print('Press 9 for isspace()')
print('Press 10 for istitle()')
def manipulateString(x):
for i in range(10):
x=input()
if x=='1':
print(string1.upper())
elif x=='2':
print(string1.lower())
elif x=='3':
print(string1.isupper())
elif x=='4':
print(string1.islower())
manipulateString(string1)
|
6018c3f22e34f7a64f970658928f17a58bc75a2f | arnav900/Dcoder-Challenges | /Easy/Python/The_light_Switch.py | 156 | 3.703125 | 4 | s1, s2 = [int(i) for i in input().split()]
if s1 and s2:
print(0)
elif not s1 and s2:
print(1)
elif s1 and not s2:
print(1)
else:
print(0)
|
19c4d63a769367eec7f7efebb821d61bd89f3e2f | MrHamdulay/csc3-capstone | /examples/data/Assignment_6/dlymuh001/question3.py | 539 | 3.828125 | 4 | print("Independent Electoral Commission")
print("--------------------------------")
print("Enter the names of parties (terminated by DONE):")
print()
election_results = {}
party = ""
while party != "DONE":
party = input()
if party == "DONE": break
if (party in election_results) == False:
election_results [party] = 1
else:
election_results [party] += 1
print("Vote counts:")
for party in sorted(election_results):
print(party + " "*(11 - len(party)) + "-", election_results[party]) |
a299f78b4efd23124414bcd342f4df7621eaefbf | yongmon01/AlgorithmStudy | /자료구조/sort/selectionSort.py | 615 | 3.9375 | 4 | # 불안정 정렬 / 시간 O(n**2) / 공간 O(n)
def selection_sort(my_list):
for i in range(len(my_list)):
min_index = i
for j in range(i, len(my_list)):
if my_list[j] < my_list[min_index]:
min_index = j
my_list[min_index], my_list[i] = my_list[i], my_list[min_index]
# 테스트 1
list1 = [1, 3, 5, 7, 9, 11, 13, 11]
selection_sort(list1)
print(list1)
# 테스트 2
list2 = [28, 13, 9, 30, 1, 48, 5, 7, 15]
selection_sort(list2)
print(list2)
# 테스트 3
list3 = [2, 5, 6, 7, 1, 2, 4, 7, 10, 11, 4, 15, 13, 1, 6, 4]
selection_sort(list3)
print(list3)
|
75d1985fbad762304991c22d56fef6a01cb4eb39 | sshalu12/turtle-programs | /turtle_random_walk.py | 468 | 3.703125 | 4 | from turtle import Turtle, Screen
import random
import turtle
turtle.colormode(255)
directions = [0, 90, 180, 270, 360]
t1 = Turtle()
t1.pensize(15)
t1.speed("normal")
def random_color():
r = random.randint(0, 255)
g = random.randint(0, 255)
b = random.randint(0, 255)
rr = (r, g, b)
return rr
for i in range(200):
t1.setheading(random.choice(directions))
t1.color(random_color())
t1.forward(30)
s1 = Screen()
s1.exitonclick()
|
a5b11c2deb13a9444096030d422418fa5cf26306 | EricVenom/myfirstcalculator | /calculator.py | 1,456 | 4.1875 | 4 | calculator = "On"
def sum():
x = int(input("What is the first number? "))
y = int(input("What is the second number? "))
result = x + y
print(f"The sum of {x} and {y} is: {result}")
print()
def sub():
x = int(input("What is the first number? "))
y = int(input("What is the second number? "))
result = x - y
print(f"The subtraction of {x} and {y} is: {result}")
print()
def multi():
x = int(input("What is the first number? "))
y = int(input("What is the second number? "))
result = x * y
print(f"The multiplication of {x} and {y} is: {result}")
print()
def divide():
x = int(input("What is the first number? "))
y = int(input("What is the second number? "))
result = x / y
print(f"The division of {x} and {y} is: {result}")
print()
while calculator == "On":
print("Welcome to calculator 1.0! Choose an operator to proceed. ")
print("1. Add")
print("2. Subtract")
print("3. Multiply")
print("4. Divide")
print("5. Exit")
proceed = input("1/2/3/4/5: ")
if proceed == "1":
sum()
elif proceed == "2":
sub()
elif proceed == "3":
multi()
elif proceed == "4":
divide()
elif proceed == "5":
print()
print("Goodbye!")
exit()
else:
print()
print("That's not a valid input. Try again!")
print()
|
644a1281eb6216eb9e0991c9e6839afbf45b4831 | hguochen/code | /python/questions/ctci/arrays_and_strings/is_unique.py | 1,003 | 4.09375 | 4 | """
CtCi
1.1 Implement an algorithm to determine if a string has all the unique characters.
What if you cannot use additional data structures?
"""
def is_unique_using_hashtable(word):
"""
Time: O(n)
Space: O(n)
where n is the word length
"""
if not word:
return False
table = {}
for i in xrange(len(word)):
if word[i] not in table:
table[word[i]] = None
else:
return False
return True
def is_unique_using_sort(word):
"""
Time: O(nlgn)
Space: O(n)
where n is the word length
"""
chars = list(word)
chars.sort()
for i in xrange(1,len(chars)):
if chars[i] == chars[i-1]:
return False
return True
if __name__ == '__main__':
word1 = "Word"
word2 = "Nootunique"
print is_unique_using_hashtable(word1) # True
print is_unique_using_hashtable(word2) # False
print is_unique_using_sort(word1) # True
print is_unique_using_sort(word2) # False
|
ece6c049b034ec2cd68b66686fecb9e9a822b229 | bartnic2/Python-Guides | /2 - Program Flow Control in Python.py | 6,830 | 4.28125 | 4 | # Indenting: Note that one indent (or tab) is equivalent to 4 spaces. Try not to mix up spaces and tabs!
# Note the for look is calling the print method, which makes up the code block; everything with the same level
# of indentation is part of the same code block
# Also, you can select "reformat code" from the code drop-down menu at the top, which will clear up any errors or
# problematic spacing.
# Example:
for i in range(1, 12):
print('No. {} squared is {} and cubed is {:<4}'.format(i, i ** 2, i ** 3))
# -------------------------------------------------------------------------------------------------------------------- #
# If: Runs indented code block if condition is met
# Elif: Runs indented code block if alternative condition is met (this is short for else if)
# Else: Runs indented code block if none of the previous conditions are met
name = input("Please enter your name: ")
age = int(input("How old are you, {0}? ".format(name)))
print(age)
#
if age >= 18:
print("You are old enough to vote")
print("Please put an X in the box")
else:
print("Please come back in {0} years".format(18-age))
print("Please guess a number between 1 and 10: ")
guess = int(input())
if guess < 5:
print("Please guess higher")
guess = int(input())
if guess == 5:
print("Well done, you guessed it!")
else:
print("Sorry, you have not guessed correctly")
elif guess > 5:
print("Please guess lower")
guess = int(input())
if guess == 5:
print ("Well done, you guessed it!")
else:
print("Sorry, you have not guessed correctly")
else:
print('You got it first time!')
# Better formatted version:
if guess != 5:
if guess < 5:
print("Please guess higher")
else:
print("Please guess lower")
guess = int(input())
if guess == 5:
print("Well done, you guessed it!")
else:
print("Sorry, you have not guessed correctly")
else:
print("You got it first time!")
# -------------------------------------------------------------------------------------------------------------------- #
# More complex else, elif conditions:
age = int(input("How old are you? "))
if 16 <= age <= 65:
print("Have a good day at work")
if age < 16 or age > 65:
print("Enjoy your free time")
else:
print("Have a good day at work")
# True/false conditions. Note that there is no boolean data type, but by using the built-in boolean function, certain
# expressions can evaluate to true or false (in addition to typing in true/false explicitly).
# Also note that many empty statements are automatically evaluated as False without any boolean function (see below
# for an example where simply pressing return (no text entered) is equivalent to false.
x = False
print("""False: {0}
None: {1}
0: {2}
0.0: {3}
empty list []: {4}
empty tuple (): {5}
empty string '': {6}
empty string "": {7}
empty mapping {{}}: {8}
""".format(False, bool(None), bool(0), bool(0.0), bool([]), bool(()), bool(''), bool(""), bool({})))
if x == bool([]):
print('works')
# Cool things you can do with booleans:
x = input("Please enter some text: ")
if x:
print("You entered '{}'".format(x))
else:
print("You did not enter anything")
# One last example using 'not'. Note, its often recommended to use brackets around the true/false condition for
# clarity, though its not necessary.
age = int(input("How old are you? "))
if not (age < 18):
print("You are old enough to vote")
print("Please put an X in the box")
else:
print("Come back in {0} years".format(18-age))
# -------------------------------------------------------------------------------------------------------------------- #
parrot = "Norwegian Blue"
letter = input("Enter a character: ")
if letter in parrot:
if letter in 'aeiou':
print("Give me an {}, Bob".format(letter))
else:
print("give me a {}, Bob".format(letter))
else:
print("I don't need that letter")
# Note that you could also do it the other way, by typing in "if letter not in parrot:" etc.
# -------------------------------------------------------------------------------------------------------------------- #
# For loops:
# for i in "statement":
# print('{}'.format(i))
number = "9,223,372,036,854,775,807"
cleanedNumber = ""
for i in range(0, len(number)):
if number[i] in '0123456789':
cleanedNumber = cleanedNumber + number[i]
print('{}'.format(number[i]), end='')
newNumber = int(cleanedNumber)
print("\nThe number is {} ".format(newNumber))
for state in ["not pinin'", "no more", "a stiff", "bereft of life"]:
# print("This parrot is " + state)
print("this parrot is {}".format(state))
# -------------------------------------------------------------------------------------------------------------------- #
# Can use continue to bypass the remainder of a block of code, and move on to the next iteration of the for loop
shopping_list = ["milk", "pasta", "eggs", "spam", "bread", "rice"]
for item in shopping_list:
if item == "spam":
print("I am ignoring " + item)
continue
print("Buy " + item)
# Note that break exits the for loop entirely:
for item in shopping_list:
if item == "spam":
print("I am ignoring " + item)
break
print("Buy " + item)
# Note this interesting example. If spam is found, it breaks out of the for loop, and since the 'if' statement was
# found to be true, then the else doesn't activate. Note that it can't refer to the third if statement, since the
# else precedes that statement and code must follow sequentially as the line number increases.
# Otherwise, if spam was not found, then the else statement activates.
# Aside: "Camel case" is the term used to describe variable casing done in the following way: nastyFoodItem.
# That is, the first letter is uncapitalized, while the first letters of every following word are capitalized, with
# no spaces between the words. Often these are good conventions to follow, and maintain throughout all your
# programming languages.
# Remember though, that Python variables are case sensitive!
meal = ["egg", "bacon", "spam", "sausages"]
# meal = ["egg", "bacon", "tomato", "sausages"]
nasty_food_item = ''
for item in meal:
if item == 'spam':
nasty_food_item = item
break
else:
print("I'll have a plate of that, then, please")
if nasty_food_item:
print("Can't I have anything without spam in it?")
# -------------------------------------------------------------------------------------------------------------------- #
# End of Section 2
|
d9cf72221e90b16bda1be3f3f6017d9202653e42 | worldofmagic/leetcode | /python/73.set-matrix-zeroes.py | 708 | 3.546875 | 4 | #
# @lc app=leetcode id=73 lang=python3
#
# [73] Set Matrix Zeroes
#
# @lc code=start
class Solution:
def setZeroes(self, matrix: List[List[int]]) -> None:
"""
Do not return anything, modify matrix in-place instead.
"""
rows = len(matrix)
cols = len(matrix[0])
zero_elements = []
for i in range(rows):
for j in range(cols):
if matrix[i][j] == 0:
zero_elements.append([i,j])
for element in zero_elements:
for i in range(rows):
matrix[i][element[1]] = 0
for j in range(cols):
matrix[element[0]][j] = 0
# @lc code=end
|
938df9342a56c9d629f7dbf7e9222678c737a073 | Vigyrious/python_fundamentals | /Dictionaries-More-Exercises/Ranking.py | 1,339 | 3.515625 | 4 | dect_contests = {}
dect_submissions = {}
command = input()
while command != "end of contests":
contest, password = command.split(":")
dect_contests[contest] = 0
dect_contests[contest] = password
command = input()
command = input()
while command != "end of submissions":
contest, password, username, points = command.split("=>")
if contest in dect_contests and password == dect_contests[contest]:
if username not in dect_submissions:
dect_submissions[username] = {}
if contest not in dect_submissions[username]:
dect_submissions[username][contest] = int(points)
else:
if int(points) > dect_submissions[username][contest]:
dect_submissions[username][contest] = int(points)
command = input()
max_points = 0
biggest_user = ""
for user in dect_submissions:
current = 0
for subject in dect_submissions[user]:
current += dect_submissions[user][subject]
if current > max_points:
max_points = current
biggest_user = user
print(f"Best candidate is {biggest_user} with total {max_points} points.")
print("Ranking:")
for user in sorted(dect_submissions):
print(f"{user}")
for contest, points in sorted(dect_submissions[user].items(),key=lambda x:-x[1]):
print(f"# {contest} -> {points}") |
47775db30df01709c789c1e4b78b10a92b74d91b | Ashishchougule009/Practice-examples | /Practice/Basics1/e11.py | 166 | 3.8125 | 4 | def myfun(list,n):
if n in list:
return True
else:
return False
list = [1,5,3,8]
print(myfun(list,3))
print(myfun(list,-1)) |
95fef61c70a3445d4e6c626a736664733c10ae11 | Mengeroshi/Python-Crash-Course-exercises | /chapter_5/5.9_no_users.py | 318 | 4 | 4 | usernames = ["admin", "mengeroshi", "gartox", "satoshi", "mendax"]
if usernames:
for user in usernames:
if user == "admin":
print("Hello admin, would you like to see a status report?")
else:
print(f"Hello {user}, great to see you again")
else:
print("There's no users") |
d1183c310c5a30c911a6ad3156a7539bda1b4db1 | Herophillix/cp1404practicals | /prac_06/people.py | 1,985 | 4.09375 | 4 | """
Describe many people in a table
"""
import math
from person import Person
from table import *
def get_input(prompt):
"""Get user input as raw value"""
user_input = input(prompt)
while user_input == "":
print("Input cannot be empty")
user_input = input(prompt)
return user_input
def get_input_int(prompt, min_range=-math.inf, max_range=math.inf):
"""Get user input as integer"""
is_input_valid = False
user_input = 0
while not is_input_valid:
try:
user_input = int(input(prompt))
if not min_range <= user_input <= max_range:
print("Please put in value within range {0} - {1}".format(min_range, max_range))
else:
is_input_valid = True
except ValueError:
print("Please input a valid integer")
return user_input
def print_people_table(people: [Person]):
"""Print the list of people in a table"""
table = Table()
header_rows = [Cell("First Name"), Cell("Last Name"), Cell("Age")]
table.add_row(header_rows)
table.add_buffer()
for person in people:
row = [Cell(person.first_name), Cell(person.last_name), Cell(str(person.age), '>')]
table.add_row(row)
table.add_buffer()
table.print_table()
def main():
"""Describe many people in a table"""
num_of_times = get_input_int("Number of people: ")
while num_of_times <= 0:
print("Please input a value > 0")
num_of_times = get_input_int("Number of people: ")
people = []
for i in range(num_of_times):
print("Person {0}".format(i + 1))
first_name = get_input("First Name: ")
last_name = get_input("Last Name: ")
age = get_input_int("Age: ", min_range=0)
new_person = Person(first_name, last_name, age)
people.append(new_person)
people.sort(key=lambda person: person.age)
print_people_table(people)
if __name__ == "__main__":
main()
|
660795974fb4106aa2333b5c6cd819e48899e8d7 | renansald/Python | /cursos_em_video/Desafio69.py | 755 | 3.875 | 4 | countIdade = nHomens = nMulheres = 0;
while(True):
idade = int(input("Informe a idade: "));
while(True):
sexo = str(input("Informe o sexo da pessoa[M/F]")).strip().upper();
if((sexo == 'M') or (sexo =='F')):
break;
if(idade > 18):
countIdade += 1;
if(sexo == 'M'):
nHomens += 1;
if((sexo == 'F') and (idade < 20)):
nMulheres += 1;
while(True):
opcao = str(input("Deseja efetuar um novo cadastro[S/N]: ")).strip().upper();
if((opcao == "S") or (opcao == "N")):
break;
if(opcao == 'N'):
break;
print(f"Foram cadastrada {countIdade} com mais de 18 anos\nForam cadastrado {nHomens} homens\nForam cadastradas {nMulheres} com menos de 20 anos")
|
ec626fcce05227e389111ecdb0c34538cbe6e418 | ssh6189/2019.12.16 | /배열insert.py | 396 | 3.859375 | 4 | import numpy as np
a = np.arange(1, 10).reshape(3,3)
print(a)
#a 배열을 일차원 ㅐ열로 변환하고 1번 index에 99추가
np.insert(a, 1, 999)
#a배열의 axis 0방향 1번 인덱스에 추가
#인덱스가 1인 row에 999가 추가됨
np.insert(a, 1, 999, axis=0)
#a배열의 axis 1방향 1번 인덱스에 추가
#index가 1인 column에 999가 추가됨
np.insert(a, 1, 999, axis=1)
|
062b51d8709deb5bddf86a443062b63a86d23748 | shockim3710/Baekjoon-Algorithm | /bronze/14652_나는 행복합니다~.py | 134 | 3.515625 | 4 | num = input()
N = int(num.split(" ")[0])
M = int(num.split(" ")[1])
K = int(num.split(" ")[2])
x = int(K/M)
y = int(K%M)
print(x, y) |
3e4002b358878f61598ad5a686abc96b944b89bb | zeeshan1414/AlgoExpert-Solutions | /0023. bst-construction.py | 3,109 | 3.65625 | 4 | class BST:
def __init__(self, val):
self.left = None
self.right = None
self.val = val
# O(log(n)) time | O(1) space
def insert(self, val):
currNode = self
while True:
if val < currNode.val:
if currNode.left is None:
currNode.left = BST(val)
break
else:
currNode = currNode.left
else:
if currNode.right is None:
currNode.right = BST(val)
break
else:
currNode = currNode.right
return self
# O(log(n)) time | O(1) space
def contains(self, val):
currNode = self
while currNode is not None:
if val == currNode.val:
return True
elif val < currNode.val:
currNode = currNode.left
else:
currNode = currNode.right
return False
def remove(self, val, parentNode=None):
currNode = self
while currNode is not None:
if val < currNode.val:
parentNode = currNode
currNode = currNode.left
elif val > currNode.val:
parentNode = currNode
currNode = currNode.right
else:
if currNode.left is not None and currNode.right is not None:
currNode.val = currNode.right.getMinValue()
currNode.right.remove(currNode.val, currNode)
elif parentNode is None:
if currNode.left is not None:
currNode.val = currNode.left.val
currNode.right = currNode.left.right
currNode.left = currNode.left.left
elif currNode.right is not None:
currNode.val = currNode.right.val
currNode.left = currNode.right.left
currNode.right = currNode.right.right
else:
currNode.val = None
elif parentNode.left == currNode:
parentNode.left = (
currNode.left if currNode.left is not None else currNode.right
)
elif parentNode.right == currNode:
parentNode.right = (
currNode.left if currNode.left is not None else currNode.right
)
break
return self
def getMinValue(self):
currNode = self
while currNode.left is not None:
currNode = currNode.left
return currNode.val
def printBST(self, node):
if node is None:
return
self.printBST(node.left)
print(node.val, end=" ")
self.printBST(node.right)
if __name__ == "__main__":
bst = BST(10)
bst.insert(12)
bst.insert(13)
bst.insert(15)
bst.insert(4)
print(bst.contains(12))
bst.remove(4)
bst.printBST(bst)
|
c3967c681e0c77158330fe12f14fde2f94143102 | albamdr/TFG | /CÓDIGO/PROBLEMA DE LA MOCHILA/read_knapsack_files.py | 848 | 4 | 4 | def read_knapsack(filename):
"""
Lee el fichero filename y devuleve el número de items, el peso máximo de la mochila y los items
input:
filename:: Str, nombre del fichero en el que se encuentra la instancia
output:
N:: Int, número de items
max_weight:: Int, peso máximo de la mochila
items:: Set, conjunto de tuplas (valor,peso) que representan los items
"""
# Open input file
infile = open(filename, 'r')
# Read instance header
N, MAX_WEIGHT = infile.readline().strip().split() # Number of items, maximum weight
max_weight = int(MAX_WEIGHT)
items = {}
N = int(N)
for i in range(0, N):
value, weight = infile.readline().strip().split()
items[i] = (float(value), float(weight))
return N, max_weight, items |
47324c36dbfbe50d9841db69409191b872639f8f | kamireddym28/Technical_Interview | /solutions.py | 5,811 | 3.765625 | 4 | ## Question 1:
def anagram(s1, t1):
s1 = list(s1)
t1 = list(t1)
s1.sort()
t1.sort()
return s1 == t1
def question1(s, t):
complete_string = len(s)
matching_substring = len(t)
for i in range(complete_string - matching_substring + 1):
if anagram(s[i: i+matching_substring], t):
return True
return False
def q1():
print question1('udacity', 'ad')
print question1('udacity', ' ')
print question1('udacity', 'yt')
q1()
print ('******************************************************')
## Question 2:
def question2(s):
start = 0
end = 0
for i in range(len(s)):
left, right = form_palindrome(s, i, i)
if right - left > end - start:
start = left
end = right
left, right = form_palindrome(s, i, i + 1)
if right - left > end - start:
start = left
end = right
return s[start:end + 1]
def form_palindrome(s, left, right):
if right >= len(s):
return (0, 0)
start = left
end = right
while start >= 0 and end < len(s) and s[start] == s[end]:
start -= 1
end += 1
return (start + 1, end - 1)
def q2():
print question2('babad')
print question2('banana')
print question2('my favorite ferrariracecar')
print question2('AXZCBACAECBBCEA')
print question2('a')
q2()
print ('******************************************************')
## Question 3:
import collections
# Global Variables declartion.
parent = dict()
rank = dict()
# Make vertices.
def make_vertex(v):
parent[v] = v
rank[v] = 0
# Find vertices.
def find_vertex(v):
if parent[v] != v:
parent[v] = find_vertex(parent[v])
return parent[v]
# Creates union between vertices.
def union_vertices(v1, v2):
r1 = find_vertex(v1)
r2 = find_vertex(v2)
if r1 != r2:
if rank[r1] > rank[r2]:
parent[r2] = r1
else:
parent[r1] = r2
if rank[r1] == rank[r2]:
rank[r2] += 1
# Main Function.
def question3(G):
for v in G.keys():
make_vertex(v)
MST = set()
edges = get_edges(G)
edges.sort()
for e in edges:
w, v1, v2 = e
if find_vertex(v1) != find_vertex(v2):
union_vertices(v1, v2)
MST.add(e)
node_info = collections.defaultdict(list)
for w, v1, v2 in MST:
node_info[v1].append((v2, w))
node_info[v2].append((v1, w))
return node_info
def get_edges(node_info):
edge_list = []
for v, edges in node_info.iteritems():
for e in edges:
if v < e[0]:
edge_list.append((e[1], v, e[0]))
return edge_list
def q3():
graph1 = {
'A': [('B', 1), ('C', 5), ('D', 3)],
'B': [('A', 1), ('C', 4), ('D', 2)],
'C': [('B', 4), ('D', 1)],
'D': [('A', 3), ('B', 2), ('C', 1)],
}
print question3(graph1)
graph2 = {
'A': [('B', 4), ('C', 3)],
'B': [('A', 4), ('C', 1)],
'C': [('B', 1), ('A', 3)]
}
print question3(graph2)
graph3 = {
'A': [('B', 1)],
'B': [('A', 1), ('C', 7)],
'C': [('B', 7)]
}
print question3(graph3)
q3()
print ('******************************************************')
## Question 4:
def question4(T, root, n1, n2):
if (n1 > root and n2 < root) or (n1 < root and n2 > root):
return root
elif (n1 < root and n2 < root):
l = T[root].index(1)
if n1 == l or n2 == l:
return root
else:
root = l
elif (n1 > root and n2 > root):
r = len(T[root]) - T[root][::-1].index(1) - 1
if n1 == r or n2 == r:
return root
else:
root = r
return question4(T, root, n1, n2)
def q4():
print question4([[0, 1, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[1, 0, 0, 0, 1],
[0, 0, 0, 0, 0]], 3, 1, 4)
print question4([[0, 1, 0, 1],
[0, 0, 0, 0],
[1, 0, 1, 0],
[1, 1, 1, 0]], 0, 2, 4)
print question4([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 6, 8, 10)
q4()
print ('******************************************************')
## Question 5:
global head
head = None
class Node(object):
def __init__(self, data):
self.data = data
self.next = None
def push(new_data):
global head
new_node = Node(new_data)
new_node.next = head
head = new_node
def question5(head, m):
node_start = head
ref_node = head
count = 0
if(head is not None):
while(count < m):
ref_node = ref_node.next
count += 1
while(ref_node is not None):
node_start = node_start.next
ref_node = ref_node.next
return node_start.data
push("nine")
push("eight")
push("seven")
push("six")
push("five")
push("four")
push("three")
push("two")
push("one")
push("zero")
def q5():
print(question5(head, 4))
print(question5(head, 10))
print(question5(head, 1))
q5()
print ('******************************************************')
|
9d2f5c6ecfc4f36c815349d090a2910891c1eb24 | captainjack331089/captainjack33.LeetCode | /LeetCode_Hash_Table/409_Longest_Palindrome.py | 842 | 3.90625 | 4 | """
409. Longest Palindrome
Category: Hash Table
Difficulty: Easy
"""
"""
Given a string which consists of lowercase or uppercase letters, find the length of the longest palindromes that can be built with those letters.
This is case sensitive, for example "Aa" is not considered a palindrome here.
Note:
Assume the length of given string will not exceed 1,010.
Example:
Input:
"abccccdd"
Output:
7
Explanation:
One longest palindrome that can be built is "dccaccd", whose length is 7.
"""
import collections
class Solution(object):
def longestPlindrome(self,s):
result = 0
for count in collections.Counter(s).values():
result += count // 2 * 2
if result % 2 == 0 and count % 2 == 1:
result += 1
return result
s = 'abccccdd'
print(Solution().longestPlindrome(s)) |
d28e56c882bcc6cd28263638c48831357ece5d6e | VB6Hobbyst7/Pre-release-Materials | /June-2021/OL/Variant 21/Python/main.py | 6,579 | 4 | 4 | # DECLARATIONS
candidateNames = ["", "", "", ""]
candidateVotes = [0, 0, 0, 0]
groupStudents = 0
voteAbstentions = 0
numCandidates = 0
def task1():
# DECLARATIONS
global groupStudents
global numCandidates
groupName = input("Enter the tutor group name: ")
if groupStudents < 2 or groupStudents > 35:
groupStudents = int(input("Enter the number of students in the tutor group [28-35]: "))
while groupStudents < 2 or groupStudents > 35:
groupStudents = int(input("Enter a valid number of students [28-35]: "))
numCandidates = int(input("Enter the number of candidates [1-4]: "))
while numCandidates < 1 or numCandidates > 4:
numCandidates = int(input("Enter a valid number of candidates [1-4]: "))
if numCandidates >= 1:
candidateOne = input("Enter the name of the first candidate: ")
candidateNames[0] = candidateOne
if numCandidates >= 2:
candidateTwo = input("Enter the name of the second candidate: ")
candidateNames[1] = candidateTwo
if numCandidates >= 3:
candidateThree = input("Enter the name of the third candidate: ")
candidateNames[2] = candidateThree
if numCandidates == 4:
candidateFour = input("Enter the name of the fourth candidate: ")
candidateNames[3] = candidateFour
task2()
print("")
print("")
print("Tutor Group: " + groupName)
print("")
print("Votes for " + candidateNames[0] + ": " + str(candidateVotes[0]))
if numCandidates >= 2:
print("Votes for " + candidateNames[1] + ": " + str(candidateVotes[1]))
if numCandidates >= 3:
print("Votes for " + candidateNames[2] + ": " + str(candidateVotes[2]))
if numCandidates >= 4:
print("Votes for " + candidateNames[3] + ": " + str(candidateVotes[3]))
maxVotes = -1000
if candidateVotes[0] > maxVotes or candidateVotes[0] == maxVotes:
print("Candidate " + candidateNames[0] + ", with " + str(candidateVotes[0]) + " vote(s) has the most votes!")
maxVotes = candidateVotes[0]
if candidateVotes[1] > maxVotes or candidateVotes[1] == maxVotes:
print("Candidate " + candidateNames[1] + ", with " + str(candidateVotes[1]) + " vote(s) has the most votes!")
maxVotes = candidateVotes[1]
if candidateVotes[2] > maxVotes or candidateVotes[2] == maxVotes:
print("Candidate " + candidateNames[2] + ", with " + str(candidateVotes[2]) + " vote(s) has the most votes!")
maxVotes = candidateVotes[2]
if candidateVotes[3] > maxVotes or candidateVotes[3] == maxVotes:
print("Candidate " + candidateNames[3] + ", with " + str(candidateVotes[3]) + " vote(s) has the most votes!")
maxVotes = candidateVotes[3]
def task2():
global groupStudents
global voteAbstentions
voterID = []
groupStudentsLoop = groupStudents
while groupStudentsLoop >= 1:
studentID = input("Enter your voter number: ")
if studentID in voterID:
print("You have already voted!")
else:
voterID.append(studentID)
studentChoice = input("Enter the voting choice of the next student (Enter 'SKIP' for abstention): ")
if studentChoice == candidateNames[0]:
candidateVotes[0] = candidateVotes[0] + 1
groupStudentsLoop = groupStudentsLoop - 1
elif studentChoice == candidateNames[1]:
candidateVotes[1] = candidateVotes[1] + 1
groupStudentsLoop = groupStudentsLoop - 1
elif studentChoice == candidateNames[2]:
candidateVotes[2] = candidateVotes[2] + 1
groupStudentsLoop = groupStudentsLoop - 1
elif studentChoice == candidateNames[3]:
candidateVotes[3] = candidateVotes[3] + 1
groupStudentsLoop = groupStudentsLoop - 1
elif studentChoice == "SKIP":
voteAbstentions = voteAbstentions + 1
groupStudentsLoop = groupStudentsLoop - 1
continue
else:
print("Enter a correct choice.")
def task3():
global groupStudents
global voteAbstentions
global numCandidates
numVotes = groupStudents - voteAbstentions
print("The total votes cast were: " + str(numVotes) + " votes.")
print("The total number of abstentions were: " + str(voteAbstentions))
percOne = (candidateVotes[0] / numVotes) * 100
print("Candidate name: " + str(candidateNames[0]))
print("Number of votes: " + str(candidateVotes[0]))
print("Percentage votes: " + str(percOne) + "%")
if numCandidates >= 2:
percTwo = (candidateVotes[1] / numVotes) * 100
print("Candidate name: " + str(candidateNames[1]))
print("Number of votes: " + str(candidateVotes[1]))
print("Percentage votes: " + str(percTwo) + "%")
if numCandidates >= 3:
percThree = (candidateVotes[2] / numVotes) * 100
print("Candidate name: " + str(candidateNames[2]))
print("Number of votes: " + str(candidateVotes[2]))
print("Percentage votes: " + str(percThree) + "%")
if numCandidates == 4:
percFour = (candidateVotes[3] / numVotes) * 100
print("Candidate name: " + str(candidateNames[3]))
print("Number of votes: " + str(candidateVotes[3]))
print("Percentage votes: " + str(percFour) + "%")
if numCandidates >= 2:
if percOne == percTwo:
print("The elections are to be run again with candidates " + candidateNames[0] + " and " + candidateNames[1])
if numCandidates >= 3:
if percOne == percThree:
print("The elections are to be run again with candidates " + candidateNames[0] + " and " + candidateNames[2])
if percTwo == percThree:
print("The elections are to be run again with candidates " + candidateNames[1] + " and " + candidateNames[2])
if numCandidates == 4:
if percOne == percFour:
print("The elections are to be run again with candidates " + candidateNames[0] + " and " + candidateNames[3])
if percTwo == percFour:
print("The elections are to be run again with candidates " + candidateNames[1] + " and " + candidateNames[3])
if percThree == percFour:
print("The elections are to be run again with candidates " + candidateNames[2] + " and " + candidateNames[3])
task1()
|
a2cf1f28698ce6eb9de2976f0b962bae61db3016 | AlphaGoat/DnDHelper- | /spell_json_parser.py | 1,722 | 3.78125 | 4 | import json
def open_spells_json(path="/home/peter/Programming/Python_Files/" +
"DnDHelper/SpellConfigFiles/5e-spells-master/spells.json"):
with open(path) as spells_data_json:
spells_data = json.load(spells_data_json)
# Make the name of spells invariant by spacing and capitalization
list_of_spells = list()
for key, _ in spells_data.items():
new_key = key.lower().replace(' ','')
spell_tuple = (new_key, key)
list_of_spells.append(spell_tuple)
for spell_tuple in list_of_spells:
new_key = spell_tuple[0]
old_key = spell_tuple[1]
spells_data[new_key] = spells_data[old_key]
del spells_data[old_key]
return spells_data
def spell_lookup(spell, spells_data):
return spells_data[spell]
if __name__ == '__main__':
spells_data = open_spells_json()
continueLoop = True
while continueLoop:
spell_name = input("Type in a spell name: ")
invariant_spell_name = spell_name.lower().replace(' ','')
try:
info = spells_data[spell_name]
for key, value in info:
print("{0} : {1}".format(key, value))
except KeyError:
print("Error: name of spell not recognized. Try again")
while True:
confirmation = input("Continue? (Y/n): ")
if confirmation.lower() == "y" or confirmation.lower() == "yes":
break
elif confirmation.lower() == 'n' or confirmation.lower() == 'no':
continueLoop = False
else:
print("Error: input not understood. Try again.")
pass
|
7f45d302d4779d0f3c0900713f3b6ecf5c54c55b | amalphonse/Python_WorkBook | /29.py | 230 | 3.75 | 4 | # -*- coding: utf-8 -*-
"""
Created on Tue Feb 14 19:48:40 2017
@author: Anju
"""
from math import pi
r =10
def liquid_volume(h):
l_v = ((4 * pi * (r**3))/3)-((pi * h**2 *(3*r - h))/3)
return l_v
print(liquid_volume(2)) |
f9ec68cdecdc9b54a90d38e803e3660c6dd24360 | prarthananbhat/Algorithms | /prime_numbers.py | 310 | 3.8125 | 4 | n= 16
p=2
isPrime = [True for i in range(n+1)]
print(isPrime)
while p*p < n:
if isPrime[p] == True:
for i in range(p*p,n+1,p):
isPrime[i] = False
p+=1
prime_list = []
for p in range(2,n+1):
if isPrime[p]:
prime_list.append(p)
print(prime_list)
#SieveOfEratosthenes |
4e8e0de8ea3ddd90c905b295802ea6083db35c3a | issacianmutiara/Issacian-Mutiara-Paska_I0320053_Tiffany-Bella_Tugas-3 | /I0320053_Exercise 3.7.py | 320 | 3.84375 | 4 | #Contoh cara menghapus pada Dictionary Python
dict = {'Nama': 'Issacian', 'Umur': 19, 'Kelas': 'First'}
del dict['Nama'] # Hapus entri dengan key 'Nama'
dict.clear() # Hapus semua entri di dict
del dict # Hapus dictionary yang sudah ada
print("dict['Umur']: ",dict['Umur'])
print("dict['Sekolah']: ",dict['Sekolah'])
|
3863f5d6183105318092e3de33ce718bdf646628 | SiddhiShirke/-IT-TOOLS | /class rectangle.py | 1,244 | 4.25 | 4 | class Rectangle:
def calculate_area(self):
#this function will accept input of length and breadth and calculate area
self.width = int(input("Enter Length:"))
self.height = int(input("Enter breadth:"))
area = self.width*self.height
print(area)
return (area)
def calculate_perimeter(self):
#this function will accept input and calculate perimeter
perimeter = 2 * (self.width + self.height)
print(perimeter)
return (perimeter)
class Square:
def calculate_area(self):
#this function will accept input side and calculate area
print("Enter side:")
self.s = float(input())
area = self.s * self.s
return(area)
def calculate_perimeter(self):
#this function will accept input and calculate perimeter
perimeter = 4 * self.s
return(perimeter)
#calling the functions
c = Square()
x = c.calculate_area()
y = c.calculate_perimeter()
print("Area of square is = % f" % (x))
print("perimeter of square is = % f" % (y))
c = Rectangle()
x = c.calculate_area()
y = c.calculate_perimeter()
print("Area of rectangle is = % f" % (x))
print("Perimeter of rectangle is = % f" % (y))
|
728b043c4142771c49f7a98b1ecb673378cd618b | AdamZhouSE/pythonHomework | /Code/CodeRecords/2734/58547/307562.py | 776 | 3.65625 | 4 | def my_hash(string):
total = 0
total += len(string) * ord(string[0]) * 1428571
i = 0
mul = 37
while i < len(string):
total += mul * ord(string[i])
i += 1
mul += 7
return total
def func():
arr = [int(x) for x in input().split()]
string = input()
for i in range(arr[2]):
string += input()
v = my_hash(string)
if v == 2100183839:
print("1\n1\n2\n2\n1")
elif v == 2100182870:
print("1\n2\n1\n0\n0")
elif v == 2100184244:
print("3\n3\n3\n3\n3")
elif v == 1260075574:
print("0\n1\n0")
elif v == 1680121873:
print("1\n1\n0")
elif v == 1680123431:
print("2\n0\n0\n1\n0")
else:
print(v)
func()
|
396801cc292788d3570ebf1f3d9580a5b20c46ea | RobertMcCutchen/DigitalCrafts_Assignments | /July/July 4th/alphabetize_string.py | 374 | 3.875 | 4 | import collections
string = input("Enter a string: ")
chars = "`*_{}[]()>#+-.!$?"
for c in chars:
string = string.replace(c, " ")
array = sorted(string.lower().split())
print('\n')
print(array)
counter = collections.Counter(array)
most_common_word = counter.most_common(1)
print('\n')
print(f'The most common word in the string is \'{most_common_word[0][0]}\'.')
|
521d17be99dadaba57e6ea2c999b4036252ccbe7 | gogozd/SIT1718 | /Osnove programiranja/Vjezba 8/vjezba8_zd01.py | 684 | 3.6875 | 4 | # Gordan Volarević
# Vježba 8, zadatak 1
import math
def zbroj(a=0, b=0):
'''Funkcija zbroj vraća zbroj brojeva a i b'''
return a + b
def zbroj_znamenaka(n):
if n < 0: n *= -1
zbroj_n = 0
while n != 0:
zbroj_n += n % 10
n //= 10
return zbroj_n
def udaljenost_od_0(x, y):
d = math.sqrt(x**2 + y**2)
return d
def udaljenost_tocaka(T_1, T_2):
'''Funkcija vraća udaljenost između točaka T-1 i T_2 koje su uređeni parovi brojeva'''
d = math.sqrt((T_1[0] - T_2[0])**2 + (T_1[1] - T_2[1])**2)
return d
def main():
T = (1, 2)
F = (4, 5)
print(udaljenost_tocaka(T, F))
return
main() |
019c77d79012f553191dba2e31a72614eec4aaa8 | pepi99/MMAssignment | /Grid.py | 3,656 | 3.703125 | 4 | __author__ = "Petar Ulev"
import numpy as np
# Green vs red
# Green - 1
# Red - 0
class Grid:
def __init__(self, grid):
# Generation Zero
self.grid = grid
self.x = self.grid.shape[1] # number of columns
self.y = self.grid.shape[0] # number of rows
assert self.is_valid_grid()
def is_valid_grid(self):
# Ensure assumption about x and y holds.
return 1000 > self.y >= self.x
def create_generation(self):
# Create next generation
for i in range(0, self.y): # Iterate over rows
for j in range(0, self.x): # Iterate over columns
neighbours = []
# Check all surrounding cells (neighbours) of current cell,
# making sure no exception is thrown if some neighbour
# does not exist (if cell is on a corner or a side).
if i - 1 >= 0: # Index check
neighbours.append(self.grid[i - 1, j].get_color()) # Push neighbour to array
if i - 1 >= 0 and j + 1 < self.x:
neighbours.append(self.grid[i - 1, j + 1].get_color())
if j + 1 < self.x:
neighbours.append(self.grid[i, j + 1].get_color())
if i + 1 < self.y and j + 1 < self.x:
neighbours.append(self.grid[i + 1, j + 1].get_color())
if i + 1 < self.y:
neighbours.append(self.grid[i + 1, j].get_color())
if j - 1 >= 0 and i + 1 < self.y:
neighbours.append(self.grid[i + 1, j - 1].get_color())
if j - 1 >= 0:
neighbours.append(self.grid[i, j - 1].get_color())
if j - 1 >= 0 and i - 1 >= 0:
neighbours.append(self.grid[i - 1, j - 1].get_color())
green_neighbours = 0
red_neighbours = 0
for neighbour in neighbours: # Find how many green and red neighbours current cell has.
if neighbour == 1:
green_neighbours += 1
if neighbour == 0:
red_neighbours += 1
if self.grid[i, j].get_color() == 0: # if the cell is red, check for conditions 1 and 2
if green_neighbours == 3 or green_neighbours == 6: # Condition 1
self.grid[i, j].set_next_color(1) # Change to green
# Condition 2 needs no more programming.
elif self.grid[i, j].get_color() == 1: # if the cell is green, check for conditions 3 and 4
if not (green_neighbours == 2 or green_neighbours == 3 or green_neighbours == 6): # Condition 3
self.grid[i, j].set_next_color(0) # Change to red
# Condition 4 needs no more programming
self.color_grid() # Colors the grid with the next colors
def color_grid(self):
# Colors every cell if it has non-None next color.
for i in range(0, self.y): # Iterate over rows
for j in range(0, self.x): # Iterate over columns
cell = self.grid[i, j]
cell.color_cell()
def compute(self, x, y, N):
# Computes the number of generations in which cell (x, y)
# was green (from gen. Zero to gen N, including).
answer = 0
if self.grid[x, y].get_color() == 1: # If the cell was green initally.
answer = 1
for i in range(0, N):
self.create_generation()
if self.grid[x, y].get_color() == 1:
answer += 1
return answer
|
1e859b5181fd51bf32f72f972a4db90f8fc3e0b0 | Lindisfarne-RB/guizero-examples | /michael.py | 211 | 4.0625 | 4 | def sum(n1, n2):
return (n1 + n2)
n1 = float(input("Enter first number="))
n2 = float(input("Enter second number="))
result = sum(n1, n2)
print(result)
name = input("Enter your name=")
print(result, name) |
b35d9079d911495dfd290615970df1b9108e3d19 | mhjensen/Physics321 | /doc/LectureNotes/_build/jupyter_execute/chapter3.py | 72,412 | 4.40625 | 4 | #!/usr/bin/env python
# coding: utf-8
# # Simple Motion problems and Reminder on Newton's Laws
#
#
# ## Basic Steps of Scientific Investigations
#
#
# An overarching aim in this course is to give you a deeper
# understanding of the scientific method. The problems we study will all
# involve cases where we can apply classical mechanics. In our previous
# material we already assumed that we had a model for the motion of an
# object. Alternatively we could have data from experiment (like Usain
# Bolt's 100m world record run in 2008). Or we could have performed
# ourselves an experiment and we want to understand which forces are at
# play and whether these forces can be understood in terms of
# fundamental forces.
#
# Our first step consists in identifying the problem. What we sketch
# here may include a mix of experiment and theoretical simulations, or
# just experiment or only theory.
#
#
# ### Identifying our System
#
# Here we can ask questions like
# 1. What kind of object is moving
#
# 2. What kind of data do we have
#
# 3. How do we measure position, velocity, acceleration etc
#
# 4. Which initial conditions influence our system
#
# 5. Other aspects which allow us to identify the system
#
# ### Defining a Model
#
# With our eventual data and observations we would now like to develop a
# model for the system. In the end we want obviously to be able to
# understand which forces are at play and how they influence our
# specific system. That is, can we extract some deeper insights about a
# system?
#
# We need then to
# 1. Find the forces that act on our system
#
# 2. Introduce models for the forces
#
# 3. Identify the equations which can govern the system (Newton's second law for example)
#
# 4. More elements we deem important for defining our model
#
# ### Solving the Equations
#
# With the model at hand, we can then solve the equations. In classical mechanics we normally end up with solving sets of coupled ordinary differential equations or partial differential equations.
# 1. Using Newton's second law we have equations of the type $\boldsymbol{F}=m\boldsymbol{a}=md\boldsymbol{v}/dt$
#
# 2. We need to define the initial conditions (typically the initial velocity and position as functions of time) and/or initial conditions and boundary conditions
#
# 3. The solution of the equations give us then the position, the velocity and other time-dependent quantities which may specify the motion of a given object.
#
# We are not yet done. With our lovely solvers, we need to start thinking.
#
#
# ### Analyze
#
# Now it is time to ask the big questions. What do our results mean? Can we give a simple interpretation in terms of fundamental laws? What do our results mean? Are they correct?
# Thus, typical questions we may ask are
# 1. Are our results for say $\boldsymbol{r}(t)$ valid? Do we trust what we did? Can you validate and verify the correctness of your results?
#
# 2. Evaluate the answers and their implications
#
# 3. Compare with experimental data if possible. Does our model make sense?
#
# 4. and obviously many other questions.
#
# The analysis stage feeds back to the first stage. It may happen that
# the data we had were not good enough, there could be large statistical
# uncertainties. We may need to collect more data or perhaps we did a
# sloppy job in identifying the degrees of freedom.
#
# All these steps are essential elements in a scientific
# enquiry. Hopefully, through a mix of numerical simulations, analytical
# calculations and experiments we may gain a deeper insight about the
# physics of a specific system.
#
#
# ## Newton's Laws
#
# Let us now remind ourselves of Newton's laws, since these are the laws of motion we will study in this course.
#
#
# When analyzing a physical system we normally start with distinguishing between the object we are studying (we will label this in more general terms as our **system**) and how this system interacts with the environment (which often means everything else!)
#
# In our investigations we will thus analyze a specific physics problem in terms of the system and the environment.
# In doing so we need to identify the forces that act on the system and assume that the
# forces acting on the system must have a source, an identifiable cause in
# the environment.
#
# A force acting on for example a falling object must be related to an interaction with something in the environment.
# This also means that we do not consider internal forces. The latter are forces between
# one part of the object and another part. In this course we will mainly focus on external forces.
#
# Forces are either contact forces or long-range forces.
#
# Contact forces, as evident from the name, are forces that occur at the contact between
# the system and the environment. Well-known long-range forces are the gravitional force and the electromagnetic force.
#
#
#
#
# In order to set up the forces which act on an object, the following steps may be useful
# 1. Divide the problem into system and environment.
#
# 2. Draw a figure of the object and everything in contact with the object.
#
# 3. Draw a closed curve around the system.
#
# 4. Find contact points—these are the points where contact forces may act.
#
# 5. Give names and symbols to all the contact forces.
#
# 6. Identify the long-range forces.
#
# 7. Make a drawing of the object. Draw the forces as arrows, vectors, starting from where the force is acting. The direction of the vector(s) indicates the (positive) direction of the force. Try to make the length of the arrow indicate the relative magnitude of the forces.
#
# 8. Draw in the axes of the coordinate system. It is often convenient to make one axis parallel to the direction of motion. When you choose the direction of the axis you also choose the positive direction for the axis.
#
# Newton’s second law of motion: The force $\boldsymbol{F}$ on an object of inertial mass $m$
# is related to the acceleration a of the object through
# $$
# \boldsymbol{F} = m\boldsymbol{a},
# $$
# where $\boldsymbol{a}$ is the acceleration.
#
# Newton’s laws of motion are laws of nature that have been found by experimental
# investigations and have been shown to hold up to continued experimental investigations.
# Newton’s laws are valid over a wide range of length- and time-scales. We
# use Newton’s laws of motion to describe everything from the motion of atoms to the
# motion of galaxies.
#
# The second law is a vector equation with the acceleration having the same
# direction as the force. The acceleration is proportional to the force via the mass $m$ of the system under study.
#
#
# Newton’s second law introduces a new property of an object, the so-called
# inertial mass $m$. We determine the inertial mass of an object by measuring the
# acceleration for a given applied force.
#
#
#
# ### Then the First Law
#
# What happens if the net external force on a body is zero? Applying Newton’s second
# law, we find:
# $$
# \boldsymbol{F} = 0 = m\boldsymbol{a},
# $$
# which gives using the definition of the acceleration
# $$
# \boldsymbol{a} = \frac{d\boldsymbol{v}}{dt}=0.
# $$
# The acceleration is zero, which means that the velocity of the object is constant. This
# is often referred to as Newton’s first law. An object in a state of uniform motion tends to remain in
# that state unless an external force changes its state of motion.
# Why do we need a separate law for this? Is it not simply a special case of Newton’s
# second law? Yes, Newton’s first law can be deduced from the second law as we have
# illustrated. However, the first law is often used for a different purpose: Newton’s
# First Law tells us about the limit of applicability of Newton’s Second law. Newton’s
# Second law can only be used in reference systems where the First law is obeyed. But
# is not the First law always valid? No! The First law is only valid in reference systems
# that are not accelerated. If you observe the motion of a ball from an accelerating
# car, the ball will appear to accelerate even if there are no forces acting on it. We call
# systems that are not accelerating inertial systems, and Newton’s first law is often
# called the law of inertia. Newton’s first and second laws of motion are only valid in
# inertial systems.
#
# A system is an inertial system if it is not accelerated. It means that the reference system
# must not be accelerating linearly or rotating. Unfortunately, this means that most
# systems we know are not really inertial systems. For example, the surface of the
# Earth is clearly not an inertial system, because the Earth is rotating. The Earth is also
# not an inertial system, because it ismoving in a curved path around the Sun. However,
# even if the surface of the Earth is not strictly an inertial system, it may be considered
# to be approximately an inertial system for many laboratory-size experiments.
#
#
# ### And finally the Third Law
#
# If there is a force from object A on object B, there is also a force from object B on object A.
# This fundamental principle of interactions is called Newton’s third law. We do not
# know of any force that do not obey this law: All forces appear in pairs. Newton’s
# third law is usually formulated as: For every action there is an equal and opposite
# reaction.
#
#
#
#
#
#
#
# ## Falling baseball in one dimension
#
# We anticipate the mathematical model to come and assume that we have a
# model for the motion of a falling baseball without air resistance.
# Our system (the baseball) is at an initial height $y_0$ (which we will
# specify in the program below) at the initial time $t_0=0$. In our program example here we will plot the position in steps of $\Delta t$ up to a final time $t_f$.
# The mathematical formula for the position $y(t)$ as function of time $t$ is
# $$
# y(t) = y_0-\frac{1}{2}gt^2,
# $$
# where $g=9.80665=0.980655\times 10^1$m/s$^2$ is a constant representing the standard acceleration due to gravity.
# We have here adopted the conventional standard value. This does not take into account other effects, such as buoyancy or drag.
# Furthermore, we stop when the ball hits the ground, which takes place at
# $$
# y(t) = 0= y_0-\frac{1}{2}gt^2,
# $$
# which gives us a final time $t_f=\sqrt{2y_0/g}$.
#
# As of now we simply assume that we know the formula for the falling object. Afterwards, we will derive it.
#
#
#
# We start with preparing folders for storing our calculations, figures and if needed, specific data files we use as input or output files.
# In[1]:
get_ipython().run_line_magic('matplotlib', 'inline')
# Common imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"
if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)
if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)
if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)
def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)
def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)
def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')
#in case we have an input file we wish to read in
#infile = open(data_path("MassEval2016.dat"),'r')
# You could also define a function for making our plots. You
# can obviously avoid this and simply set up various **matplotlib**
# commands every time you need them. You may however find it convenient
# to collect all such commands in one function and simply call this
# function.
# In[2]:
from pylab import plt, mpl
plt.style.use('seaborn')
mpl.rcParams['font.family'] = 'serif'
def MakePlot(x,y, styles, labels, axlabels):
plt.figure(figsize=(10,6))
for i in range(len(x)):
plt.plot(x[i], y[i], styles[i], label = labels[i])
plt.xlabel(axlabels[0])
plt.ylabel(axlabels[1])
plt.legend(loc=0)
# Thereafter we start setting up the code for the falling object.
# In[3]:
get_ipython().run_line_magic('matplotlib', 'inline')
import matplotlib.patches as mpatches
g = 9.80655 #m/s^2
y_0 = 10.0 # initial position in meters
DeltaT = 0.1 # time step
# final time when y = 0, t = sqrt(2*10/g)
tfinal = np.sqrt(2.0*y_0/g)
#set up arrays
t = np.arange(0,tfinal,DeltaT)
y =y_0 -g*.5*t**2
# Then make a nice printout in table form using Pandas
import pandas as pd
from IPython.display import display
data = {'t[s]': t,
'y[m]': y
}
RawData = pd.DataFrame(data)
display(RawData)
plt.style.use('ggplot')
plt.figure(figsize=(8,8))
plt.scatter(t, y, color = 'b')
blue_patch = mpatches.Patch(color = 'b', label = 'Height y as function of time t')
plt.legend(handles=[blue_patch])
plt.xlabel("t[s]")
plt.ylabel("y[m]")
save_fig("FallingBaseball")
plt.show()
# Here we used **pandas** (see below) to systemize the output of the position as function of time.
#
#
#
# We define now the average velocity as
# $$
# \overline{v}(t) = \frac{y(t+\Delta t)-y(t)}{\Delta t}.
# $$
# In the code we have set the time step $\Delta t$ to a given value. We could define it in terms of the number of points $n$ as
# $$
# \Delta t = \frac{t_{\mathrm{final}-}t_{\mathrm{initial}}}{n+1}.
# $$
# Since we have discretized the variables, we introduce the counter $i$ and let $y(t)\rightarrow y(t_i)=y_i$ and $t\rightarrow t_i$
# with $i=0,1,\dots, n$. This gives us the following shorthand notations that we will use for the rest of this course. We define
# $$
# y_i = y(t_i),\hspace{0.2cm} i=0,1,2,\dots,n.
# $$
# This applies to other variables which depend on say time. Examples are the velocities, accelerations, momenta etc.
# Furthermore we use the shorthand
# $$
# y_{i\pm 1} = y(t_i\pm \Delta t),\hspace{0.12cm} i=0,1,2,\dots,n.
# $$
# ### Compact equations
#
# We can then rewrite in a more compact form the average velocity as
# $$
# \overline{v}_i = \frac{y_{i+1}-y_{i}}{\Delta t}.
# $$
# The velocity is defined as the change in position per unit time.
# In the limit $\Delta t \rightarrow 0$ this defines the instantaneous velocity, which is nothing but the slope of the position at a time $t$.
# We have thus
# $$
# v(t) = \frac{dy}{dt}=\lim_{\Delta t \rightarrow 0}\frac{y(t+\Delta t)-y(t)}{\Delta t}.
# $$
# Similarly, we can define the average acceleration as the change in velocity per unit time as
# $$
# \overline{a}_i = \frac{v_{i+1}-v_{i}}{\Delta t},
# $$
# resulting in the instantaneous acceleration
# $$
# a(t) = \frac{dv}{dt}=\lim_{\Delta t\rightarrow 0}\frac{v(t+\Delta t)-v(t)}{\Delta t}.
# $$
# **A note on notations**: When writing for example the velocity as $v(t)$ we are then referring to the continuous and instantaneous value. A subscript like
# $v_i$ refers always to the discretized values.
#
#
# We can rewrite the instantaneous acceleration as
# $$
# a(t) = \frac{dv}{dt}=\frac{d}{dt}\frac{dy}{dt}=\frac{d^2y}{dt^2}.
# $$
# This forms the starting point for our definition of forces later. It is a famous second-order differential equation. If the acceleration is constant we can now recover the formula for the falling ball we started with.
# The acceleration can depend on the position and the velocity. To be more formal we should then write the above differential equation as
# $$
# \frac{d^2y}{dt^2}=a(t,y(t),\frac{dy}{dt}).
# $$
# With given initial conditions for $y(t_0)$ and $v(t_0)$ we can then
# integrate the above equation and find the velocities and positions at
# a given time $t$.
#
# If we multiply with mass, we have one of the famous expressions for Newton's second law,
# $$
# F(y,v,t)=m\frac{d^2y}{dt^2}=ma(t,y(t),\frac{dy}{dt}),
# $$
# where $F$ is the force acting on an object with mass $m$. We see that it also has the right dimension, mass times length divided by time squared.
# We will come back to this soon.
#
#
# ### Integrating our equations
#
# Formally we can then, starting with the acceleration (suppose we have measured it, how could we do that?)
# compute say the height of a building. To see this we perform the following integrations from an initial time $t_0$ to a given time $t$
# $$
# \int_{t_0}^t dt a(t) = \int_{t_0}^t dt \frac{dv}{dt} = v(t)-v(t_0),
# $$
# or as
# $$
# v(t)=v(t_0)+\int_{t_0}^t dt a(t).
# $$
# When we know the velocity as function of time, we can find the position as function of time starting from the defintion of velocity as the derivative with respect to time, that is we have
# $$
# \int_{t_0}^t dt v(t) = \int_{t_0}^t dt \frac{dy}{dt} = y(t)-y(t_0),
# $$
# or as
# $$
# y(t)=y(t_0)+\int_{t_0}^t dt v(t).
# $$
# These equations define what is called the integration method for
# finding the position and the velocity as functions of time. There is
# no loss of generality if we extend these equations to more than one
# spatial dimension.
#
#
# Let us compute the velocity using the constant value for the acceleration given by $-g$. We have
# $$
# v(t)=v(t_0)+\int_{t_0}^t dt a(t)=v(t_0)+\int_{t_0}^t dt (-g).
# $$
# Using our initial time as $t_0=0$s and setting the initial velocity $v(t_0)=v_0=0$m/s we get when integrating
# $$
# v(t)=-gt.
# $$
# The more general case is
# $$
# v(t)=v_0-g(t-t_0).
# $$
# We can then integrate the velocity and obtain the final formula for the position as function of time through
# $$
# y(t)=y(t_0)+\int_{t_0}^t dt v(t)=y_0+\int_{t_0}^t dt v(t)=y_0+\int_{t_0}^t dt (-gt),
# $$
# With $y_0=10$m and $t_0=0$s, we obtain the equation we started with
# $$
# y(t)=10-\frac{1}{2}gt^2.
# $$
# ### Computing the averages
#
# After this mathematical background we are now ready to compute the mean velocity using our data.
# In[4]:
# Now we can compute the mean velocity using our data
# We define first an array Vaverage
n = np.size(t)
Vaverage = np.zeros(n)
for i in range(1,n-1):
Vaverage[i] = (y[i+1]-y[i])/DeltaT
# Now we can compute the mean accelearatio using our data
# We define first an array Aaverage
n = np.size(t)
Aaverage = np.zeros(n)
Aaverage[0] = -g
for i in range(1,n-1):
Aaverage[i] = (Vaverage[i+1]-Vaverage[i])/DeltaT
data = {'t[s]': t,
'y[m]': y,
'v[m/s]': Vaverage,
'a[m/s^2]': Aaverage
}
NewData = pd.DataFrame(data)
display(NewData[0:n-2])
# Note that we don't print the last values!
#
#
#
#
# ## Including Air Resistance in our model
#
# In our discussions till now of the falling baseball, we have ignored
# air resistance and simply assumed that our system is only influenced
# by the gravitational force. We will postpone the derivation of air
# resistance till later, after our discussion of Newton's laws and
# forces.
#
# For our discussions here it suffices to state that the accelerations is now modified to
# $$
# \boldsymbol{a}(t) = -g +D\boldsymbol{v}(t)\vert v(t)\vert,
# $$
# where $\vert v(t)\vert$ is the absolute value of the velocity and $D$ is a constant which pertains to the specific object we are studying.
# Since we are dealing with motion in one dimension, we can simplify the above to
# $$
# a(t) = -g +Dv^2(t).
# $$
# We can rewrite this as a differential equation
# $$
# a(t) = \frac{dv}{dt}=\frac{d^2y}{dt^2}= -g +Dv^2(t).
# $$
# Using the integral equations discussed above we can integrate twice
# and obtain first the velocity as function of time and thereafter the
# position as function of time.
#
# For this particular case, we can actually obtain an analytical
# solution for the velocity and for the position. Here we will first
# compute the solutions analytically, thereafter we will derive Euler's
# method for solving these differential equations numerically.
#
#
#
# For simplicity let us just write $v(t)$ as $v$. We have
# $$
# \frac{dv}{dt}= -g +Dv^2(t).
# $$
# We can solve this using the technique of separation of variables. We
# isolate on the left all terms that involve $v$ and on the right all
# terms that involve time. We get then
# $$
# \frac{dv}{g -Dv^2(t) }= -dt,
# $$
# We scale now the equation to the left by introducing a constant
# $v_T=\sqrt{g/D}$. This constant has dimension length/time. Can you
# show this?
#
# Next we integrate the left-hand side (lhs) from $v_0=0$ m/s to $v$ and
# the right-hand side (rhs) from $t_0=0$ to $t$ and obtain
# $$
# \int_{0}^v\frac{dv}{g -Dv^2(t) }= \frac{v_T}{g}\mathrm{arctanh}(\frac{v}{v_T}) =-\int_0^tdt = -t.
# $$
# We can reorganize these equations as
# $$
# v_T\mathrm{arctanh}(\frac{v}{v_T}) =-gt,
# $$
# which gives us $v$ as function of time
# $$
# v(t)=v_T\tanh{-(\frac{gt}{v_T})}.
# $$
# With the velocity we can then find the height $y(t)$ by integrating yet another time, that is
# $$
# y(t)=y(t_0)+\int_{t_0}^t dt v(t)=\int_{0}^t dt[v_T\tanh{-(\frac{gt}{v_T})}].
# $$
# This integral is a little bit trickier but we can look it up in a table over
# known integrals and we get
# $$
# y(t)=y(t_0)-\frac{v_T^2}{g}\log{[\cosh{(\frac{gt}{v_T})}]}.
# $$
# Alternatively we could have used the symbolic Python package **Sympy** (example will be inserted later).
#
# In most cases however, we need to revert to numerical solutions.
#
#
#
# ## Our first attempt at solving differential equations
#
# Here we will try the simplest possible approach to solving the second-order differential
# equation
# $$
# a(t) =\frac{d^2y}{dt^2}= -g +Dv^2(t).
# $$
# We rewrite it as two coupled first-order equations (this is a standard approach)
# $$
# \frac{dy}{dt} = v(t),
# $$
# with initial condition $y(t_0)=y_0$ and
# $$
# a(t) =\frac{dv}{dt}= -g +Dv^2(t),
# $$
# with initial condition $v(t_0)=v_0$.
#
# Many of the algorithms for solving differential equations start with simple Taylor equations.
# If we now Taylor expand $y$ and $v$ around a value $t+\Delta t$ we have
# $$
# y(t+\Delta t) = y(t)+\Delta t \frac{dy}{dt}+\frac{\Delta t^2}{2!} \frac{d^2y}{dt^2}+O(\Delta t^3),
# $$
# and
# $$
# v(t+\Delta t) = v(t)+\Delta t \frac{dv}{dt}+\frac{\Delta t^2}{2!} \frac{d^2v}{dt^2}+O(\Delta t^3).
# $$
# Using the fact that $dy/dt = v$ and $dv/dt=a$ and keeping only terms up to $\Delta t$ we have
# $$
# y(t+\Delta t) = y(t)+\Delta t v(t)+O(\Delta t^2),
# $$
# and
# $$
# v(t+\Delta t) = v(t)+\Delta t a(t)+O(\Delta t^2).
# $$
# ### Discretizing our equations
#
# Using our discretized versions of the equations with for example
# $y_{i}=y(t_i)$ and $y_{i\pm 1}=y(t_i+\Delta t)$, we can rewrite the
# above equations as (and truncating at $\Delta t$)
# $$
# y_{i+1} = y_i+\Delta t v_i,
# $$
# and
# $$
# v_{i+1} = v_i+\Delta t a_i.
# $$
# These are the famous Euler equations (forward Euler).
#
# To solve these equations numerically we start at a time $t_0$ and simply integrate up these equations to a final time $t_f$,
# The step size $\Delta t$ is an input parameter in our code.
# You can define it directly in the code below as
# In[5]:
DeltaT = 0.1
# With a given final time **tfinal** we can then find the number of integration points via the **ceil** function included in the **math** package of Python
# as
# In[6]:
#define final time, assuming that initial time is zero
from math import ceil
tfinal = 0.5
n = ceil(tfinal/DeltaT)
print(n)
# The **ceil** function returns the smallest integer not less than the input in say
# In[7]:
x = 21.15
print(ceil(x))
# which in the case here is 22.
# In[8]:
x = 21.75
print(ceil(x))
# which also yields 22. The **floor** function in the **math** package
# is used to return the closest integer value which is less than or equal to the specified expression or value.
# Compare the previous result to the usage of **floor**
# In[9]:
from math import floor
x = 21.75
print(floor(x))
# Alternatively, we can define ourselves the number of integration(mesh) points. In this case we could have
# In[10]:
n = 10
tinitial = 0.0
tfinal = 0.5
DeltaT = (tfinal-tinitial)/(n)
print(DeltaT)
# Since we will set up one-dimensional arrays that contain the values of
# various variables like time, position, velocity, acceleration etc, we
# need to know the value of $n$, the number of data points (or
# integration or mesh points). With $n$ we can initialize a given array
# by setting all elelements to zero, as done here
# In[11]:
# define array a
a = np.zeros(n)
print(a)
# In the code here we implement this simple Eurler scheme choosing a value for $D=0.0245$ m/s.
# In[12]:
# Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt
import os
# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"
if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)
if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)
if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)
def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)
def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)
def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')
g = 9.80655 #m/s^2
D = 0.00245 #m/s
DeltaT = 0.1
#set up arrays
tfinal = 0.5
n = ceil(tfinal/DeltaT)
# define scaling constant vT
vT = sqrt(g/D)
# set up arrays for t, a, v, and y and we can compare our results with analytical ones
t = np.zeros(n)
a = np.zeros(n)
v = np.zeros(n)
y = np.zeros(n)
yanalytic = np.zeros(n)
# Initial conditions
v[0] = 0.0 #m/s
y[0] = 10.0 #m
yanalytic[0] = y[0]
# Start integrating using Euler's method
for i in range(n-1):
# expression for acceleration
a[i] = -g + D*v[i]*v[i]
# update velocity and position
y[i+1] = y[i] + DeltaT*v[i]
v[i+1] = v[i] + DeltaT*a[i]
# update time to next time step and compute analytical answer
t[i+1] = t[i] + DeltaT
yanalytic[i+1] = y[0]-(vT*vT/g)*log(cosh(g*t[i+1]/vT))
if ( y[i+1] < 0.0):
break
a[n-1] = -g + D*v[n-1]*v[n-1]
data = {'t[s]': t,
'y[m]': y-yanalytic,
'v[m/s]': v,
'a[m/s^2]': a
}
NewData = pd.DataFrame(data)
display(NewData)
#finally we plot the data
fig, axs = plt.subplots(3, 1)
axs[0].plot(t, y, t, yanalytic)
axs[0].set_xlim(0, tfinal)
axs[0].set_ylabel('y and exact')
axs[1].plot(t, v)
axs[1].set_ylabel('v[m/s]')
axs[2].plot(t, a)
axs[2].set_xlabel('time[s]')
axs[2].set_ylabel('a[m/s^2]')
fig.tight_layout()
save_fig("EulerIntegration")
plt.show()
# Try different values for $\Delta t$ and study the difference between the exact solution and the numerical solution.
#
#
# ### Simple extension, the Euler-Cromer method
#
# The Euler-Cromer method is a simple variant of the standard Euler
# method. We use the newly updated velocity $v_{i+1}$ as an input to the
# new position, that is, instead of
# $$
# y_{i+1} = y_i+\Delta t v_i,
# $$
# and
# $$
# v_{i+1} = v_i+\Delta t a_i,
# $$
# we use now the newly calculate for $v_{i+1}$ as input to $y_{i+1}$, that is
# we compute first
# $$
# v_{i+1} = v_i+\Delta t a_i,
# $$
# and then
# $$
# y_{i+1} = y_i+\Delta t v_{i+1},
# $$
# Implementing the Euler-Cromer method yields a simple change to the previous code. We only need to change the following line in the loop over time
# steps
# In[13]:
for i in range(n-1):
# more codes in between here
v[i+1] = v[i] + DeltaT*a[i]
y[i+1] = y[i] + DeltaT*v[i+1]
# more code
# ## Air Resistance in One Dimension
#
#
# Here we look at both a quadratic in velocity resistance
# and linear in velocity. But first we give a qualitative argument
# about the mathematical expression for the air resistance we used last
# Friday.
#
#
# Air resistance tends to scale as the square of the velocity. This is
# in contrast to many problems chosen for textbooks, where it is linear
# in the velocity. The choice of a linear dependence is motivated by
# mathematical simplicity (it keeps the differential equation linear)
# rather than by physics. One can see that the force should be quadratic
# in velocity by considering the momentum imparted on the air
# molecules. If an object sweeps through a volume $dV$ of air in time
# $dt$, the momentum imparted on the air is
# <!-- Equation labels as ordinary links -->
# <div id="_auto1"></div>
#
# $$
# \begin{equation}
# dP=\rho_m dV v,
# \label{_auto1} \tag{1}
# \end{equation}
# $$
# where $v$ is the velocity of the object and $\rho_m$ is the mass
# density of the air. If the molecules bounce back as opposed to stop
# you would double the size of the term. The opposite value of the
# momentum is imparted onto the object itself. Geometrically, the
# differential volume is
# <!-- Equation labels as ordinary links -->
# <div id="_auto2"></div>
#
# $$
# \begin{equation}
# dV=Avdt,
# \label{_auto2} \tag{2}
# \end{equation}
# $$
# where $A$ is the cross-sectional area and $vdt$ is the distance the
# object moved in time $dt$.
#
#
# Plugging this into the expression above,
# <!-- Equation labels as ordinary links -->
# <div id="_auto3"></div>
#
# $$
# \begin{equation}
# \frac{dP}{dt}=-\rho_m A v^2.
# \label{_auto3} \tag{3}
# \end{equation}
# $$
# This is the force felt by the particle, and is opposite to its
# direction of motion. Now, because air doesn't stop when it hits an
# object, but flows around the best it can, the actual force is reduced
# by a dimensionless factor $c_W$, called the drag coefficient.
# <!-- Equation labels as ordinary links -->
# <div id="_auto4"></div>
#
# $$
# \begin{equation}
# F_{\rm drag}=-c_W\rho_m Av^2,
# \label{_auto4} \tag{4}
# \end{equation}
# $$
# and the acceleration is
# $$
# \begin{eqnarray}
# \frac{dv}{dt}=-\frac{c_W\rho_mA}{m}v^2.
# \end{eqnarray}
# $$
# For a particle with initial velocity $v_0$, one can separate the $dt$
# to one side of the equation, and move everything with $v$s to the
# other side. We did this in our discussion of simple motion and will not repeat it here.
#
# On more general terms,
# for many systems, e.g. an automobile, there are multiple sources of
# resistance. In addition to wind resistance, where the force is
# proportional to $v^2$, there are dissipative effects of the tires on
# the pavement, and in the axel and drive train. These other forces can
# have components that scale proportional to $v$, and components that
# are independent of $v$. Those independent of $v$, e.g. the usual
# $f=\mu_K N$ frictional force you consider in your first Physics courses, only set in
# once the object is actually moving. As speeds become higher, the $v^2$
# components begin to dominate relative to the others. For automobiles
# at freeway speeds, the $v^2$ terms are largely responsible for the
# loss of efficiency. To travel a distance $L$ at fixed speed $v$, the
# energy/work required to overcome the dissipative forces are $fL$,
# which for a force of the form $f=\alpha v^n$ becomes
# $$
# \begin{eqnarray}
# W=\int dx~f=\alpha v^n L.
# \end{eqnarray}
# $$
# For $n=0$ the work is
# independent of speed, but for the wind resistance, where $n=2$,
# slowing down is essential if one wishes to reduce fuel consumption. It
# is also important to consider that engines are designed to be most
# efficient at a chosen range of power output. Thus, some cars will get
# better mileage at higher speeds (They perform better at 50 mph than at
# 5 mph) despite the considerations mentioned above.
#
#
#
# As an example of Newton's Laws we consider projectile motion (or a
# falling raindrop or a ball we throw up in the air) with a drag force. Even though air resistance is
# largely proportional to the square of the velocity, we will consider
# the drag force to be linear to the velocity, $\boldsymbol{F}=-m\gamma\boldsymbol{v}$,
# for the purposes of this exercise.
#
# Such a dependence can be extracted from experimental data for objects moving at low velocities, see for example Malthe-Sørenssen chapter 5.6.
#
# We will here focus on a two-dimensional problem.
#
#
#
# The acceleration for a projectile moving upwards,
# $\boldsymbol{a}=\boldsymbol{F}/m$, becomes
# $$
# \begin{eqnarray}
# \frac{dv_x}{dt}=-\gamma v_x,\\
# \nonumber
# \frac{dv_y}{dt}=-\gamma v_y-g,
# \end{eqnarray}
# $$
# and $\gamma$ has dimensions of inverse time.
#
# If you on the other hand have a falling raindrop, how do these equations change? See for example Figure 2.1 in Taylor.
# Let us stay with a ball which is thrown up in the air at $t=0$.
#
# ## Ways of solving these equations
#
# We will go over two different ways to solve this equation. The first
# by direct integration, and the second as a differential equation. To
# do this by direct integration, one simply multiplies both sides of the
# equations above by $dt$, then divide by the appropriate factors so
# that the $v$s are all on one side of the equation and the $dt$ is on
# the other. For the $x$ motion one finds an easily integrable equation,
# $$
# \begin{eqnarray}
# \frac{dv_x}{v_x}&=&-\gamma dt,\\
# \nonumber
# \int_{v_{0x}}^{v_{x}}\frac{dv_x}{v_x}&=&-\gamma\int_0^{t}dt,\\
# \nonumber
# \ln\left(\frac{v_{x}}{v_{0x}}\right)&=&-\gamma t,\\
# \nonumber
# v_{x}(t)&=&v_{0x}e^{-\gamma t}.
# \end{eqnarray}
# $$
# This is very much the result you would have written down
# by inspection. For the $y$-component of the velocity,
# $$
# \begin{eqnarray}
# \frac{dv_y}{v_y+g/\gamma}&=&-\gamma dt\\
# \nonumber
# \ln\left(\frac{v_{y}+g/\gamma}{v_{0y}-g/\gamma}\right)&=&-\gamma t_f,\\
# \nonumber
# v_{fy}&=&-\frac{g}{\gamma}+\left(v_{0y}+\frac{g}{\gamma}\right)e^{-\gamma t}.
# \end{eqnarray}
# $$
# Whereas $v_x$ starts at some value and decays
# exponentially to zero, $v_y$ decays exponentially to the terminal
# velocity, $v_t=-g/\gamma$.
#
#
#
# Although this direct integration is simpler than the method we invoke
# below, the method below will come in useful for some slightly more
# difficult differential equations in the future. The differential
# equation for $v_x$ is straight-forward to solve. Because it is first
# order there is one arbitrary constant, $A$, and by inspection the
# solution is
# <!-- Equation labels as ordinary links -->
# <div id="_auto5"></div>
#
# $$
# \begin{equation}
# v_x=Ae^{-\gamma t}.
# \label{_auto5} \tag{5}
# \end{equation}
# $$
# The arbitrary constants for equations of motion are usually determined
# by the initial conditions, or more generally boundary conditions. By
# inspection $A=v_{0x}$, the initial $x$ component of the velocity.
#
#
# ## Differential Equations, contn
# The differential equation for $v_y$ is a bit more complicated due to
# the presence of $g$. Differential equations where all the terms are
# linearly proportional to a function, in this case $v_y$, or to
# derivatives of the function, e.g., $v_y$, $dv_y/dt$,
# $d^2v_y/dt^2\cdots$, are called linear differential equations. If
# there are terms proportional to $v^2$, as would happen if the drag
# force were proportional to the square of the velocity, the
# differential equation is not longer linear. Because this expression
# has only one derivative in $v$ it is a first-order linear differential
# equation. If a term were added proportional to $d^2v/dt^2$ it would be
# a second-order differential equation. In this case we have a term
# completely independent of $v$, the gravitational acceleration $g$, and
# the usual strategy is to first rewrite the equation with all the
# linear terms on one side of the equal sign,
# <!-- Equation labels as ordinary links -->
# <div id="_auto6"></div>
#
# $$
# \begin{equation}
# \frac{dv_y}{dt}+\gamma v_y=-g.
# \label{_auto6} \tag{6}
# \end{equation}
# $$
# Now, the solution to the equation can be broken into two
# parts. Because this is a first-order differential equation we know
# that there will be one arbitrary constant. Physically, the arbitrary
# constant will be determined by setting the initial velocity, though it
# could be determined by setting the velocity at any given time. Like
# most differential equations, solutions are not "solved". Instead,
# one guesses at a form, then shows the guess is correct. For these
# types of equations, one first tries to find a single solution,
# i.e. one with no arbitrary constants. This is called the {\it
# particular} solution, $y_p(t)$, though it should really be called
# "a" particular solution because there are an infinite number of such
# solutions. One then finds a solution to the {\it homogenous} equation,
# which is the equation with zero on the right-hand side,
# <!-- Equation labels as ordinary links -->
# <div id="_auto7"></div>
#
# $$
# \begin{equation}
# \frac{dv_{y,h}}{dt}+\gamma v_{y,h}=0.
# \label{_auto7} \tag{7}
# \end{equation}
# $$
# Homogenous solutions will have arbitrary constants.
#
# The particular solution will solve the same equation as the original
# general equation
# <!-- Equation labels as ordinary links -->
# <div id="_auto8"></div>
#
# $$
# \begin{equation}
# \frac{dv_{y,p}}{dt}+\gamma v_{y,p}=-g.
# \label{_auto8} \tag{8}
# \end{equation}
# $$
# However, we don't need find one with arbitrary constants. Hence, it is
# called a **particular** solution.
#
# The sum of the two,
# <!-- Equation labels as ordinary links -->
# <div id="_auto9"></div>
#
# $$
# \begin{equation}
# v_y=v_{y,p}+v_{y,h},
# \label{_auto9} \tag{9}
# \end{equation}
# $$
# is a solution of the total equation because of the linear nature of
# the differential equation. One has now found a *general* solution
# encompassing all solutions, because it both satisfies the general
# equation (like the particular solution), and has an arbitrary constant
# that can be adjusted to fit any initial condition (like the homogeneous
# solution). If the equations were not linear, that is if there were terms
# such as $v_y^2$ or $v_y\dot{v}_y$, this technique would not work.
#
#
#
# Returning to the example above, the homogenous solution is the same as
# that for $v_x$, because there was no gravitational acceleration in
# that case,
# <!-- Equation labels as ordinary links -->
# <div id="_auto10"></div>
#
# $$
# \begin{equation}
# v_{y,h}=Be^{-\gamma t}.
# \label{_auto10} \tag{10}
# \end{equation}
# $$
# In this case a particular solution is one with constant velocity,
# <!-- Equation labels as ordinary links -->
# <div id="_auto11"></div>
#
# $$
# \begin{equation}
# v_{y,p}=-g/\gamma.
# \label{_auto11} \tag{11}
# \end{equation}
# $$
# Note that this is the terminal velocity of a particle falling from a
# great height. The general solution is thus,
# <!-- Equation labels as ordinary links -->
# <div id="_auto12"></div>
#
# $$
# \begin{equation}
# v_y=Be^{-\gamma t}-g/\gamma,
# \label{_auto12} \tag{12}
# \end{equation}
# $$
# and one can find $B$ from the initial velocity,
# <!-- Equation labels as ordinary links -->
# <div id="_auto13"></div>
#
# $$
# \begin{equation}
# v_{0y}=B-g/\gamma,~~~B=v_{0y}+g/\gamma.
# \label{_auto13} \tag{13}
# \end{equation}
# $$
# Plugging in the expression for $B$ gives the $y$ motion given the initial velocity,
# <!-- Equation labels as ordinary links -->
# <div id="_auto14"></div>
#
# $$
# \begin{equation}
# v_y=(v_{0y}+g/\gamma)e^{-\gamma t}-g/\gamma.
# \label{_auto14} \tag{14}
# \end{equation}
# $$
# It is easy to see that this solution has $v_y=v_{0y}$ when $t=0$ and
# $v_y=-g/\gamma$ when $t\rightarrow\infty$.
#
# One can also integrate the two equations to find the coordinates $x$
# and $y$ as functions of $t$,
# $$
# \begin{eqnarray}
# x&=&\int_0^t dt'~v_{0x}(t')=\frac{v_{0x}}{\gamma}\left(1-e^{-\gamma t}\right),\\
# \nonumber
# y&=&\int_0^t dt'~v_{0y}(t')=-\frac{gt}{\gamma}+\frac{v_{0y}+g/\gamma}{\gamma}\left(1-e^{-\gamma t}\right).
# \end{eqnarray}
# $$
# If the question was to find the position at a time $t$, we would be
# finished. However, the more common goal in a projectile equation
# problem is to find the range, i.e. the distance $x$ at which $y$
# returns to zero. For the case without a drag force this was much
# simpler. The solution for the $y$ coordinate would have been
# $y=v_{0y}t-gt^2/2$. One would solve for $t$ to make $y=0$, which would
# be $t=2v_{0y}/g$, then plug that value for $t$ into $x=v_{0x}t$ to
# find $x=2v_{0x}v_{0y}/g=v_0\sin(2\theta_0)/g$. One follows the same
# steps here, except that the expression for $y(t)$ is more
# complicated. Searching for the time where $y=0$, and we get
# <!-- Equation labels as ordinary links -->
# <div id="_auto15"></div>
#
# $$
# \begin{equation}
# 0=-\frac{gt}{\gamma}+\frac{v_{0y}+g/\gamma}{\gamma}\left(1-e^{-\gamma t}\right).
# \label{_auto15} \tag{15}
# \end{equation}
# $$
# This cannot be inverted into a simple expression $t=\cdots$. Such
# expressions are known as "transcendental equations", and are not the
# rare instance, but are the norm. In the days before computers, one
# might plot the right-hand side of the above graphically as
# a function of time, then find the point where it crosses zero.
#
# Now, the most common way to solve for an equation of the above type
# would be to apply Newton's method numerically. This involves the
# following algorithm for finding solutions of some equation $F(t)=0$.
#
# 1. First guess a value for the time, $t_{\rm guess}$.
#
# 2. Calculate $F$ and its derivative, $F(t_{\rm guess})$ and $F'(t_{\rm guess})$.
#
# 3. Unless you guessed perfectly, $F\ne 0$, and assuming that $\Delta F\approx F'\Delta t$, one would choose
#
# 4. $\Delta t=-F(t_{\rm guess})/F'(t_{\rm guess})$.
#
# 5. Now repeat step 1, but with $t_{\rm guess}\rightarrow t_{\rm guess}+\Delta t$.
#
# If the $F(t)$ were perfectly linear in $t$, one would find $t$ in one
# step. Instead, one typically finds a value of $t$ that is closer to
# the final answer than $t_{\rm guess}$. One breaks the loop once one
# finds $F$ within some acceptable tolerance of zero. A program to do
# this will be added shortly.
#
# ## Motion in a Magnetic Field
#
#
# Another example of a velocity-dependent force is magnetism,
# $$
# \begin{eqnarray}
# \boldsymbol{F}&=&q\boldsymbol{v}\times\boldsymbol{B},\\
# \nonumber
# F_i&=&q\sum_{jk}\epsilon_{ijk}v_jB_k.
# \end{eqnarray}
# $$
# For a uniform field in the $z$ direction $\boldsymbol{B}=B\hat{z}$, the force can only have $x$ and $y$ components,
# $$
# \begin{eqnarray}
# F_x&=&qBv_y\\
# \nonumber
# F_y&=&-qBv_x.
# \end{eqnarray}
# $$
# The differential equations are
# $$
# \begin{eqnarray}
# \dot{v}_x&=&\omega_c v_y,\omega_c= qB/m\\
# \nonumber
# \dot{v}_y&=&-\omega_c v_x.
# \end{eqnarray}
# $$
# One can solve the equations by taking time derivatives of either equation, then substituting into the other equation,
# $$
# \begin{eqnarray}
# \ddot{v}_x=\omega_c\dot{v_y}=-\omega_c^2v_x,\\
# \nonumber
# \ddot{v}_y&=&-\omega_c\dot{v}_x=-\omega_cv_y.
# \end{eqnarray}
# $$
# The solution to these equations can be seen by inspection,
# $$
# \begin{eqnarray}
# v_x&=&A\sin(\omega_ct+\phi),\\
# \nonumber
# v_y&=&A\cos(\omega_ct+\phi).
# \end{eqnarray}
# $$
# One can integrate the equations to find the positions as a function of time,
# $$
# \begin{eqnarray}
# x-x_0&=&\int_{x_0}^x dx=\int_0^t dt v(t)\\
# \nonumber
# &=&\frac{-A}{\omega_c}\cos(\omega_ct+\phi),\\
# \nonumber
# y-y_0&=&\frac{A}{\omega_c}\sin(\omega_ct+\phi).
# \end{eqnarray}
# $$
# The trajectory is a circle centered at $x_0,y_0$ with amplitude $A$ rotating in the clockwise direction.
#
# The equations of motion for the $z$ motion are
# <!-- Equation labels as ordinary links -->
# <div id="_auto16"></div>
#
# $$
# \begin{equation}
# \dot{v_z}=0,
# \label{_auto16} \tag{16}
# \end{equation}
# $$
# which leads to
# <!-- Equation labels as ordinary links -->
# <div id="_auto17"></div>
#
# $$
# \begin{equation}
# z-z_0=V_zt.
# \label{_auto17} \tag{17}
# \end{equation}
# $$
# Added onto the circle, the motion is helical.
#
# Note that the kinetic energy,
# <!-- Equation labels as ordinary links -->
# <div id="_auto18"></div>
#
# $$
# \begin{equation}
# T=\frac{1}{2}m(v_x^2+v_y^2+v_z^2)=\frac{1}{2}m(\omega_c^2A^2+V_z^2),
# \label{_auto18} \tag{18}
# \end{equation}
# $$
# is constant. This is because the force is perpendicular to the
# velocity, so that in any differential time element $dt$ the work done
# on the particle $\boldsymbol{F}\cdot{dr}=dt\boldsymbol{F}\cdot{v}=0$.
#
# One should think about the implications of a velocity dependent
# force. Suppose one had a constant magnetic field in deep space. If a
# particle came through with velocity $v_0$, it would undergo cyclotron
# motion with radius $R=v_0/\omega_c$. However, if it were still its
# motion would remain fixed. Now, suppose an observer looked at the
# particle in one reference frame where the particle was moving, then
# changed their velocity so that the particle's velocity appeared to be
# zero. The motion would change from circular to fixed. Is this
# possible?
#
# The solution to the puzzle above relies on understanding
# relativity. Imagine that the first observer believes $\boldsymbol{B}\ne 0$ and
# that the electric field $\boldsymbol{E}=0$. If the observer then changes
# reference frames by accelerating to a velocity $\boldsymbol{v}$, in the new
# frame $\boldsymbol{B}$ and $\boldsymbol{E}$ both change. If the observer moved to the
# frame where the charge, originally moving with a small velocity $v$,
# is now at rest, the new electric field is indeed $\boldsymbol{v}\times\boldsymbol{B}$,
# which then leads to the same acceleration as one had before. If the
# velocity is not small compared to the speed of light, additional
# $\gamma$ factors come into play,
# $\gamma=1/\sqrt{1-(v/c)^2}$. Relativistic motion will not be
# considered in this course.
#
#
#
# ## Summarizing the various motion problems
#
# The examples we have discussed above were included in order to
# illustrate various methods (which depend on the specific problem) to
# find the solutions of the equations of motion.
# We have solved the equations of motion in the following ways:
#
# **Solve the differential equations analytically.**
#
# We did this for example with the following object in one or two dimensions or the sliding block.
# Here we had for example an equation set like
# $$
# \frac{dv_x}{dt}=-\gamma v_x,
# $$
# and
# $$
# \frac{dv_y}{dt}=-\gamma v_y-g,
# $$
# and $\gamma$ has dimension of inverse time.
#
#
#
#
#
# We could also in case we can separate the degrees of freedom integrate. Take for example one of the equations in the previous slide
# $$
# \frac{dv_x}{dt}=-\gamma v_x,
# $$
# which we can rewrite in terms of a left-hand side which depends only on the velocity and a right-hand side which depends only on time
# $$
# \frac{dv_x}{v_x}=-\gamma dt.
# $$
# Integrating we have (since we can separate $v_x$ and $t$)
# $$
# \int_{v_0}^{v_t}\frac{dv_x}{v_x}=-\int_{t_0}^{t_f}\gamma dt,
# $$
# where $v_f$ is the velocity at a final time and $t_f$ is the final time.
# In this case we found, after having integrated the above two sides that
# $$
# v_f(t)=v_0\exp{-\gamma t}.
# $$
# Finally, using for example Euler's method, we can solve the
# differential equations numerically. If we can compare our numerical
# solutions with analytical solutions, we have an extra check of our
# numerical approaches.
#
# ## Exercises
#
#
# ### Electron moving into an electric field
#
# An electron is sent through a varying electrical
# field. Initially, the electron is moving in the $x$-direction with a velocity
# $v_x = 100$ m/s. The electron enters the field when it passes the origin. The field
# varies with time, causing an acceleration of the electron that varies in time
# $$
# \boldsymbol{a}(t)=\left(−20 \mathrm{m/s}^2 −10\mathrm{m/s}^3t\right) \boldsymbol{e}_y,
# $$
# or if we replace $\boldsymbol{e}_y$ with $\boldsymbol{e}_2$ (the unit vectors in the $y$-direction) we have
# $$
# \boldsymbol{a}(t)=\left(−20 \mathrm{m/s}^2 −10\mathrm{m/s}^3t\right) \boldsymbol{e}_2.
# $$
# Note that the velocity in the $x$-direction is a constant and is not affected by the force which acts only in the $y$-direction.
# This means that we can decouple the two degrees of freedom and skip the vector symbols.
# We have then a constant velocity in the $x$-direction
# $$
# v_x(t) = 100\mathrm{m/s},
# $$
# and integrating up the acceleration in the $y$-direction (and using that the initial time $t_0=0$) we get
# $$
# v_y(t) = -20\mathrm{m/s^2}t-5\mathrm{m/s^3}t^2.
# $$
# Find the position as a function of time for the electron.
#
#
# We integrate again in the $x$-direction
# $$
# x(t) = 100\mathrm{m/s}t,
# $$
# and in the $y$-direction (remember that these two degrees of freedom don't depend on each other)
# we get
# $$
# y(t) = -10\mathrm{m/s^2}t^2-\frac{5}{3}\mathrm{m/s^3}t^3.
# $$
# The field is only acting inside a box of length $L = 2m$.
#
# How long time is the electron inside the field?
#
#
# If we use the equation for the $x$-direction (the length of the box), we can then use the equation for $x(t) = 100\mathrm{m/s}t$
# and simply set $x=2$m and we find
# $$
# t=\frac{1}{50}\mathrm{s}.
# $$
# What is the displacement in the $y$-direction when the electron leaves the box. (We call this the deflection of the electron).
#
#
# Here we simply use
# $$
# y(t) = -10\mathrm{m/s^2}t^2-\frac{5}{3}\mathrm{m/s^3}t^3,
# $$
# and use $t=1/50$s and find that
# $$
# y = -0.004013 \mathrm{m}.
# $$
# Find the angle the velocity vector forms with the horizontal axis as the electron leaves the box.
#
#
# Again, we use $t=1/50$s and calculate the velocities in the $x$- and the $y$-directions (the velocity in the $x$-direction is just a constant) and find the angle using
# $$
# \tan{\alpha} = \frac{v_y(t=1/50)}{v_x(t=1/50)},
# $$
# which leads to
# $$
# \alpha = -0.23,
# $$
# in degrees (not radians).
#
# ### Drag force
#
# Using equations (2.84) and (2.82) in Taylor, we have that $f_{\mathrm{quad}}/f_{\mathrm{lin}}=(\kappa\rho Av^2)/(3\pi\eta Dv)$. With $\kappa =1/4$ and $A=\pi D^2/4$ we obtain $f_{\mathrm{quad}}/f_{\mathrm{lin}}=(\rho Dv)/(48\eta)$ or $R/48$ with $R$ given by equation (2.83) of Taylor.
#
# With these numbers $R=1.1\times 10^{-2}$ and it is safe to neglect the quadratic drag.
#
# ### Falling object
#
# If we insert Taylor series for $\exp{-(t/\tau)}$ into equation (2.33) of Taylor, we have
# $$
# v_y(t) = v_{\mathrm{ter}}\left[1-\exp{-(t/\tau)}\right] = v_{\mathrm{ter}}\left[1-(1-\frac{t}{\tau}+\frac{t^2}{2\tau^2}+\dots )\right].
# $$
# The first two terms on the right cancel and, if $t$ is sufficiently small, we can neglect terms with higher powers than two in $t$. This gives us
# $$
# v_y(t) \approx v_{\mathrm{ter}}\frac{t}{\tau}=gt,
# $$
# where we used that $v_{\mathrm{ter}}=g\tau$ from equation (2.34) in Taylor. This means that for small velocities it is the gravitational force which dominates.
#
# Setting $v_y(t_0)=0$ in equation (2.35) of Taylor and using the Taylor series for the exponential we find that
# $$
# y(t) = v_{\mathrm{ter}}t-v_{\mathrm{ter}}\tau\left[1-\exp{-(t/\tau)}\right] = v_{\mathrm{ter}}t-v_{\mathrm{ter}}\tau\left[1-(1-\frac{t}{\tau}+\frac{t^2}{2\tau^2}+\dots )\right].
# $$
# On the rhs the second and third terms cancel, as do the first and fourth. If we neglect all terms beyond $t^2$, this leaves us with
# $$
# y(t) \approx v_{\mathrm{ter}}\frac{t^2}{2\tau}=\frac{1}{2}gt^2.
# $$
# Again, for small times, as expected, the gravitational force plays the major role.
#
# ### Motion of a cyclist
#
# Putting in the numbers for the characteristic time we find
# $$
# \tau = \frac{m}{Dv_0} = \frac{80}{0.20\times 20}=20\mathrm{s}.
# $$
# From an initial velocity of 20m/s we will slow down to half the initial speed, 10m/s in 20s. From Taylor equation (2.45) we have then that the time to slow down to any speed $v$ is
# $$
# t = \frac{M}{D}\left(\frac{1}{v}-\frac{1}{v_0}\right).
# $$
# This gives a time of 6.7s for a velocity of 15m/s, 20s for a velocity of 10m/s and 60s for a velocity of 5m/s. We see that this approximation leads to an infinite time before we come to rest. To ignore ordinary friction at low speeds is indeed a bad approximation.
#
#
#
# ### Falling ball and preparing for the numerical exercise
#
# In this example we study the motion of an object subject to a constant force, a velocity dependent
# force, and for the numerical part a position-dependent force.
# Without the position dependent force, we can solve the problem analytically. This is what we will do in this exercise.
# The position dependent force requires numerical efforts (exercise 7).
# In addition to the falling ball case, we will include the effect of the ball bouncing back from the floor in exercises 7.
#
#
# Here we limit ourselves to a ball that is thrown from a height $h$
# above the ground with an initial velocity
# $\boldsymbol{v}_0$ at time $t=t_0$.
# We assume we have only a gravitational force and a force due to the air resistance.
# The position of the ball as function of time is $\boldsymbol{r}(t)$ where $t$ is time.
# The position is measured with respect to a coordinate system with origin at the floor.
#
# We assume we have an initial position $\boldsymbol{r}(t_0)=h\boldsymbol{e}_y$ and an initial velocity $\boldsymbol{v}_0=v_{x,0}\boldsymbol{e}_x+v_{y,0}\boldsymbol{e}_y$.
#
# In this exercise we assume the system is influenced by the gravitational force
# $$
# \boldsymbol{G}=-mg\boldsymbol{e}_y
# $$
# and an air resistance given by a square law
# $$
# -Dv\boldsymbol{v}.
# $$
# The analytical expressions for velocity and position as functions of
# time will be used to compare with the numerical results in exercise 6.
#
# Identify the forces acting on the ball and set up a diagram with the forces acting on the ball. Find the acceleration of the falling ball.
#
# The forces acting on the ball are the gravitational force $\boldsymbol{G}=-mg\boldsymbol{e}_y$ and the air resistance $\boldsymbol{F}_D=-D\boldsymbol{v}v$ with $v$ the absolute value of the velocity. The accelaration in the $x$-direction is
# $$
# a_x = -\frac{Dv_x\vert v\vert}{m},
# $$
# and in the $y$-direction
# $$
# a_y = -g-\frac{Dv_y\vert v\vert}{m},
# $$
# where $\vert v\vert=\sqrt{v_x^2+v_y^2}$. Note that due to the dependence on $v_x$ and $v_y$ in each equation, it means we may not be able find an analytical solution. In this case we cannot.
# In order to compare our code with analytical results, we will thus study the problem only in the $y$-direction.
#
# In the general code below we would write this as (pseudocode style)
# In[14]:
ax = -D*vx[i]*abs(v[i])/m
ay = -g - D*vy[i]*abs(v[i])/m
# Integrate the acceleration from an initial time $t_0$ to a final time $t$ and find the velocity.
#
# We reduce our problem to a one-dimensional in the $y$-direction only since for the two-dimensional motion we cannot find an analtical solution. For one dimension however, we have an analytical solution.
# We specialize our equations for the $y$-direction only
# $$
# \frac{dv_y}{dt}= -g +Dv_y^2(t).
# $$
# We can solve this using the technique of separation of variables. We
# isolate on the left all terms that involve $v$ and on the right all
# terms that involve time. We get then
# $$
# \frac{dv_y}{g -Dv_y^2(t) }= -dt,
# $$
# We scale now the equation to the left by introducing a constant
# $v_T=\sqrt{g/D}$. This constant has dimension length/time.
#
# Next we integrate the left-hand side (lhs) from $v_{y0}=0$ m/s to $v$ and
# the right-hand side (rhs) from $t_0=0$ to $t$ and obtain
# $$
# \int_{0}^{v_y}\frac{dv_y}{g -Dv_y^2(t) }= \frac{v_T}{g}\mathrm{arctanh}(\frac{v_y}{v_T}) =-\int_0^tdt = -t.
# $$
# We can reorganize these equations as
# $$
# v_T\mathrm{arctanh}(\frac{v_y}{v_T}) =-gt,
# $$
# which gives us $v_y$ as function of time
# $$
# v_y(t)=v_T\tanh{-(\frac{gt}{v_T})}.
# $$
# With a finite initial velocity we need simply to add $v_{y0}$.
#
#
#
# Find thereafter the position as function of time starting with an initial time $t_0$. Find the time it takes to hit the floor. Here you will find it convenient to set the initial velocity in the $y$-direction to zero.
#
#
# With the velocity we can then find the height $y(t)$ by integrating yet another time, that is
# $$
# y(t)=y(t_0)+\int_{t_0}^t dt v_y(t)=\int_{0}^t dt[v_T\tanh{-(\frac{gt}{v_T})}].
# $$
# This integral is a little bit trickier but we can look it up in a table over
# known integrals and we get
# $$
# y(t)=y(t_0)-\frac{v_T^2}{g}\log{[\cosh{(\frac{gt}{v_T})}]}.
# $$
# Here we have assumed that we set the initial velocity in the $y$-direction to zero, that is $v_y(t_0)=0$m/s. Adding a non-zero velocity gives us an additional term of $v_{y0}t$.
# Using a zero initial velocity and setting
# $$
# y(t)=0=y(t_0)-\frac{v_T^2}{g}\log{[\cosh{(-\frac{gt}{v_T})}]}=y(t_0)-\frac{v_T^2}{g}\log{[\cosh{(\frac{gt}{v_T})}]},
# $$
# (note that $\cosh$ yields the same values for negative and positive arguments)
# allows us to find the final time by solving
# $$
# y(t_0)=\frac{v_T^2}{g}\log{[\cosh{(\frac{gt}{v_T})}]},
# $$
# which gives
# $$
# t = \frac{v_T}{g}\mathrm{arccosh}(\exp{(gy_0/v_T^2)}).
# $$
# In the code below we would code these analytical expressions (with zero initial velocity in the $y$-direction) as
# In[ ]:
yanalytic[i+1] = y[0]-(vT*vT/g)*log(cosh(g*t[i+1]/vT))+vy[0]*t[i+1]
# We will use the above analytical results in our numerical calculations in the next exercise
#
#
#
#
# ### Numerical elements, solving the previous exercise numerically and adding the bouncing from the floor
#
# Here we will:
# 1. Learn and utilize Euler's Method to find the position and the velocity
#
# 2. Compare analytical and computational solutions
#
# 3. Add additional forces to our model
# In[ ]:
# let's start by importing useful packages we are familiar with
import numpy as np
import matplotlib.pyplot as plt
get_ipython().run_line_magic('matplotlib', 'inline')
# We will choose the following values
# 1. mass $m=0,2$ kg
#
# 2. accelleration (gravity) $g=9.81$ m/s$^{2}$.
#
# 3. initial position is the height $h=2$ m
#
# 4. initial velocities $v_{x,0}=v_{y,0}=10$ m/s
#
# Can you find a reasonable value for the drag coefficient $D$?
# You need also to define an initial time and
# the step size $\Delta t$. We can define the step size $\Delta t$ as the difference between any
# two neighboring values in time (time steps) that we analyze within
# some range. It can be determined by dividing the interval we are
# analyzing, which in our case is time $t_{\mathrm{final}}-t_0$, by the number of steps we
# are taking $(N)$. This gives us a step size $\Delta t = \dfrac{t_{\mathrm{final}}-t_0}{N}$.
#
# With these preliminaries we are now ready to plot our results from exercise 5.
#
# Set up arrays for time, velocity, acceleration and positions for the results from exercise 5. Define an initial and final time. Choose the final time to be the time when the ball hits the ground for the first time. Make a plot of the position and velocity as functions of time. Here you could set the initial velocity in the $y$-direction to zero and use the result from exercise 5. Else you need to try different initial times using the result from exercise 5 as a starting guess. It is not critical if you don't reach the ground when the initial velocity in the $y$-direction is not zero.
#
#
# We move now to the numerical solution of the differential equations as discussed in the [lecture notes](https://mhjensen.github.io/Physics321/doc/pub/motion/html/motion.html) or Malthe-Sørenssen chapter 7.5.
# Let us remind ourselves about Euler's Method.
#
# Suppose we know $f(t)$ and its derivative $f'(t)$. To find $f(t+\Delta t)$ at the next step, $t+\Delta t$,
# we can consider the Taylor expansion:
#
# $f(t+\Delta t) = f(t) + \dfrac{(\Delta t)f'(t)}{1!} + \dfrac{(\Delta t)^2f''(t)}{2!} + ...$
#
# If we ignore the $f''$ term and higher derivatives, we obtain
#
# $f(t+\Delta t) \approx f(t) + (\Delta t)f'(t)$.
#
# This approximation is the basis of Euler's method, and the Taylor
# expansion suggests that it will have errors of $O(\Delta t^2)$. Thus, one
# would expect it to work better, the smaller the step size $h$ that you
# use. In our case the step size is $\Delta t$.
#
# In setting up our code we need to
#
# 1. Define and obtain all initial values, constants, and time to be analyzed with step sizes as done above (you can use the same values)
#
# 2. Calculate the velocity using $v_{i+1} = v_{i} + (\Delta t)*a_{i}$
#
# 3. Calculate the position using $pos_{i+1} = r_{i} + (\Delta t)*v_{i}$
#
# 4. Calculate the new acceleration $a_{i+1}$.
#
# 5. Repeat steps 2-4 for all time steps within a loop.
#
# Write a code which implements Euler's method and compute numerically and plot the position and velocity as functions of time for various values of $\Delta t$. Comment your results.
#
# Below you will find two codes, one which uses explicit expressions for the $x$- and $y$-directions and one which rewrites the expressions as compact vectors, as done in homework 2. Running the codes shows a sensitivity to the chosen step size $\Delta t$. You will clearly notice that when comparing with the analytical results, that larger values of the step size in time result in a poorer agreement with the analytical solutions.
#
# * Compare your numerically obtained positions and velocities with the analytical results from exercise 5. Comment again your results.
#
# The codes follow here. Running them allows you to probe the various parameters and compare with analytical solutions as well.
#
# The analytical results are discussed in the lecture notes, see the slides of the week of January 25-29 <https://mhjensen.github.io/Physics321/doc/pub/week4/html/week4-bs.html>.
#
#
# The codes here show two different ways of solving the two-dimensional problem. The first one defines arrays for the $x$- and $y$-directions explicitely, while the second code uses a more
# compact (and thus closer to the mathmeatics) notation with a full two-dimensional vector.
#
#
# The initial conditions for the first example are set so that we only an object falling in the $y$-direction. Then it makes sense to compare with the analytical solution. If you change the initial conditions, this comparison is no longer correct.
# In[ ]:
# Exercise 6, hw3, brute force way with declaration of vx, vy, x and y
# Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt
import os
# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"
if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)
if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)
if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)
def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)
def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)
def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')
# Output file
outfile = open(data_path("Eulerresults.dat"),'w')
from pylab import plt, mpl
plt.style.use('seaborn')
mpl.rcParams['font.family'] = 'serif'
g = 9.80655 #m/s^2
# The mass and the drag constant D
D = 0.00245 #mass/length kg/m
m = 0.2 #kg, mass of falling object
DeltaT = 0.001
#set up arrays
tfinal = 1.4
# set up number of points for all variables
n = ceil(tfinal/DeltaT)
# define scaling constant vT used in analytical solution
vT = sqrt(m*g/D)
# set up arrays for t, a, v, and y and arrays for analytical results
#brute force setting up of arrays for x and y, vx, vy, ax and ay
t = np.zeros(n)
vy = np.zeros(n)
y = np.zeros(n)
vx = np.zeros(n)
x = np.zeros(n)
yanalytic = np.zeros(n)
# Initial conditions, note that these correspond to an object falling in the y-direction only.
vx[0] = 0.0 #m/s
vy[0] = 0.0 #m/s
y[0] = 10.0 #m
x[0] = 0.0 #m
yanalytic[0] = y[0]
# Start integrating using Euler's method
for i in range(n-1):
# expression for acceleration, note the absolute value and division by mass
ax = -D*vx[i]*sqrt(vx[i]**2+vy[i]**2)/m
ay = -g - D*vy[i]*sqrt(vx[i]**2+vy[i]**2)/m
# update velocity and position
vx[i+1] = vx[i] + DeltaT*ax
x[i+1] = x[i] + DeltaT*vx[i]
vy[i+1] = vy[i] + DeltaT*ay
y[i+1] = y[i] + DeltaT*vy[i]
# update time to next time step and compute analytical answer
t[i+1] = t[i] + DeltaT
yanalytic[i+1] = y[0]-(vT*vT/g)*log(cosh(g*t[i+1]/vT))+vy[0]*t[i+1]
if ( y[i+1] < 0.0):
break
data = {'t[s]': t,
'Relative error in y': abs((y-yanalytic)/yanalytic),
'vy[m/s]': vy,
'x[m]': x,
'vx[m/s]': vx
}
NewData = pd.DataFrame(data)
display(NewData)
# save to file
NewData.to_csv(outfile, index=False)
#then plot
fig, axs = plt.subplots(4, 1)
axs[0].plot(t, y)
axs[0].set_xlim(0, tfinal)
axs[0].set_ylabel('y')
axs[1].plot(t, vy)
axs[1].set_ylabel('vy[m/s]')
axs[1].set_xlabel('time[s]')
axs[2].plot(t, x)
axs[2].set_xlim(0, tfinal)
axs[2].set_ylabel('x')
axs[3].plot(t, vx)
axs[3].set_ylabel('vx[m/s]')
axs[3].set_xlabel('time[s]')
fig.tight_layout()
save_fig("EulerIntegration")
plt.show()
# We see a good agreement with the analytical solution. This agreement
# improves if we decrease $\Delta t$. Furthermore, since we put the
# initial velocity and position in the $x$ direction to zero,
# the motion in the $x$-direction is
# zero, as expected.
# In[ ]:
# Smarter way with declaration of vx, vy, x and y
# Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt
import os
# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"
if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)
if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)
if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)
def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)
def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)
def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')
from pylab import plt, mpl
plt.style.use('seaborn')
mpl.rcParams['font.family'] = 'serif'
g = 9.80655 #m/s^2 g to 6 leading digits after decimal point
D = 0.00245 #m/s
m = 0.2 # kg
# Define Gravitational force as a vector in x and y. It is a constant
G = -m*g*np.array([0.0,1])
DeltaT = 0.01
#set up arrays
tfinal = 1.3
n = ceil(tfinal/DeltaT)
# set up arrays for t, a, v, and x
t = np.zeros(n)
v = np.zeros((n,2))
r = np.zeros((n,2))
# Initial conditions as compact 2-dimensional arrays
r0 = np.array([0.0,10.0])
v0 = np.array([10.0,0.0])
r[0] = r0
v[0] = v0
# Start integrating using Euler's method
for i in range(n-1):
# Set up forces, air resistance FD, not now that we need the norm of the vector
# Here you could have defined your own function for this
vabs = sqrt(sum(v[i]*v[i]))
FD = -D*v[i]*vabs
# Final net forces acting on falling object
Fnet = FD+G
# The accelration at a given time t_i
a = Fnet/m
# update velocity, time and position using Euler's method
v[i+1] = v[i] + DeltaT*a
r[i+1] = r[i] + DeltaT*v[i]
t[i+1] = t[i] + DeltaT
fig, axs = plt.subplots(4, 1)
axs[0].plot(t, r[:,1])
axs[0].set_xlim(0, tfinal)
axs[0].set_ylabel('y')
axs[1].plot(t, v[:,1])
axs[1].set_ylabel('vy[m/s]')
axs[1].set_xlabel('time[s]')
axs[2].plot(t, r[:,0])
axs[2].set_xlim(0, tfinal)
axs[2].set_ylabel('x')
axs[3].plot(t, v[:,0])
axs[3].set_ylabel('vx[m/s]')
axs[3].set_xlabel('time[s]')
fig.tight_layout()
save_fig("EulerIntegration")
plt.show()
# Till now we have only introduced gravity and air resistance and studied
# their effects via a constant acceleration due to gravity and the force
# arising from air resistance. But what happens when the ball hits the
# floor? What if we would like to simulate the normal force from the floor acting on the ball?
#
# We need then to include a force model for the normal force from
# the floor on the ball. The simplest approach to such a system is to introduce a contact force
# model represented by a spring model. We model the interaction between the floor
# and the ball as a single spring. But the normal force is zero when
# there is no contact. Here we define a simple model that allows us to include
# such effects in our models.
#
# The normal force from the floor on the ball is represented by a spring force. This
# is a strong simplification of the actual deformation process occurring at the contact
# between the ball and the floor due to the deformation of both the ball and the floor.
#
# The deformed region corresponds roughly to the region of **overlap** between the
# ball and the floor. The depth of this region is $\Delta y = R − y(t)$, where $R$
# is the radius of the ball. This is supposed to represent the compression of the spring.
# Our model for the normal force acting on the ball is then
# $$
# \boldsymbol{N} = −k (R − y(t)) \boldsymbol{e}_y.
# $$
# The normal force must act upward when $y < R$,
# hence the sign must be negative.
# However, we must also ensure that the normal force only acts when the ball is in
# contact with the floor, otherwise the normal force is zero. The full formation of the
# normal force is therefore
# $$
# \boldsymbol{N} = −k (R − y(t)) \boldsymbol{e}_y,
# $$
# when $y(t) < R$ and zero when $y(t) \le R$.
# In the numerical calculations you can choose $R=0.1$ m and the spring constant $k=1000$ N/m.
#
# * Identify the forces acting on the ball and set up a diagram with the forces acting on the ball. Find the acceleration of the falling ball now with the normal force as well.
#
# * Choose a large enough final time so you can study the ball bouncing up and down several times. Add the normal force and compute the height of the ball as function of time with and without air resistance. Comment your results.
#
# The following code shows how
# to set up the problem with gravitation, a drag force and a normal
# force from the ground. The normal force makes the ball bounce up
# again.
#
#
# The code here includes all forces. Commenting out the air resistance will result in a ball which bounces up and down to the same height.
# Furthermore, you will note that for larger values of $\Delta t$ the results will not be physically meaningful. Can you figure out why? Try also different values for the step size in order to see whether the final results agrees with what you expect.
# In[ ]:
# Smarter way with declaration of vx, vy, x and y
# Here we have added a normal force from the ground
# Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt
import os
# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"
if not os.path.exists(PROJECT_ROOT_DIR):
os.mkdir(PROJECT_ROOT_DIR)
if not os.path.exists(FIGURE_ID):
os.makedirs(FIGURE_ID)
if not os.path.exists(DATA_ID):
os.makedirs(DATA_ID)
def image_path(fig_id):
return os.path.join(FIGURE_ID, fig_id)
def data_path(dat_id):
return os.path.join(DATA_ID, dat_id)
def save_fig(fig_id):
plt.savefig(image_path(fig_id) + ".png", format='png')
from pylab import plt, mpl
plt.style.use('seaborn')
mpl.rcParams['font.family'] = 'serif'
# Define constants
g = 9.80655 #in m/s^2
D = 0.0245 # in mass/length, kg/m
m = 0.2 # in kg
R = 0.1 # in meters
k = 1000.0 # in mass/time^2
# Define Gravitational force as a vector in x and y, zero x component
G = -m*g*np.array([0.0,1])
DeltaT = 0.001
#set up arrays
tfinal = 15.0
n = ceil(tfinal/DeltaT)
# set up arrays for t, v, and r, the latter contain the x and y comps
t = np.zeros(n)
v = np.zeros((n,2))
r = np.zeros((n,2))
# Initial conditions
r0 = np.array([0.0,2.0])
v0 = np.array([10.0,10.0])
r[0] = r0
v[0] = v0
# Start integrating using Euler's method
for i in range(n-1):
# Set up forces, air resistance FD
if ( r[i,1] < R):
N = k*(R-r[i,1])*np.array([0,1])
else:
N = np.array([0,0])
vabs = sqrt(sum(v[i]*v[i]))
FD = -D*v[i]*vabs
Fnet = FD+G+N
a = Fnet/m
# update velocity, time and position
v[i+1] = v[i] + DeltaT*a
r[i+1] = r[i] + DeltaT*v[i]
t[i+1] = t[i] + DeltaT
fig, ax = plt.subplots()
ax.set_xlim(0, tfinal)
ax.set_ylabel('y[m]')
ax.set_xlabel('x[m]')
ax.plot(r[:,0], r[:,1])
fig.tight_layout()
save_fig("BouncingBallEuler")
plt.show()
|
d9e38e46024b564573bd90203fb3bde88434fe63 | NurhandeAkyuz/Guess-the-number-game | /game.py | 6,895 | 4.375 | 4 | import random
def game(): #this function is used for showing main menu and working in that part
name = '' #when program starts, name is initially an empty string
password = '' #when program starts, password is initially an empty string
while True: #to make program shows the main menu constantly
print ("--- Welcome to 'Guess the Number' Game V.0.3 ---")
print("1. Login")
print("2. Sign Up (Limited to 1 user)")
print ("3. Description")
while True: #while True it will work in the main menu
option = raw_input()
if option == '1': #if user selects first option which is login
option_1(name,password) #function namely option_1 is called
break #break is used to get out of this while loop to see the main menu
elif option == '2': #if user selects second option which is sign up
name,password = option_2(name,password) #name and password are updated from function option_two
break #break is used to get out of this while loop to see the main menu
elif option == '3': #if user selects third option which is description
option_3() #function option_3 is called
break #break is used to get out of this while loop to see the main menu
else: #this part for the condition when user enters number which is not in the main menu
print 'Please enter a valid number!'
def option_1(name,password): #it takes two parameters which are name and password to check if name and password are correct or not
if name == '': #if name is an empty string, it means that there is no user signed up
print ("Warning! There is no users :( Please sign up first" + "\nGoing back to main menu...")
else:
user = raw_input('Please enter your username:')
passw = raw_input('Please enter your password:')
if user == name and passw == password: #check if user write her/his user name and password correctly or not
print "Game starts..."
point = 100 #user's initial point
while True:
if point <= 0: #if point is neegative or equal to zero, it prints statement below and finish this while loop so that point starts from 100
break
generated_number = random.randint(0, 100) # number is randomly chosen betweeon 0 and 100 which both are included
print "Let's start with a new number" + "\nYour Point: 100" + "\nGuess the number:"
while True:
if point <= 0: #if point is neegative or equal to zero, it prints statement below and finish this while loop
print "< Your Point is ZERO >" + "\n--------------------------------" + "\n----- < Game Over > -----" + \
"\n--------------------------------"
break
else: #if point is bigger than zero, then it asks user's guessed number
guessed_number = raw_input()
if int(guessed_number) == generated_number: # it checks if user's number is the same as randomly generated one
point += 25 # and update the point value
print "Your Point: " + str(point) + "\nCongratulations, that's right you got +25 points" + \
"\nLet's start with a new number"
else: # if user's number is not same as generated number then we have four options
if int(guessed_number) < (generated_number / 2.0): # if guessed_number is less than the half of the generated number
point -= 10 #and update the point value
print "Your Point: " + str(point) + "\nThe number you guess is too low, you loss 10 points" + \
"\n You still have a chance. Try Again!"
elif (generated_number / 2.0) < int(guessed_number) < (generated_number): # if typed number is less than the half of the generated number
point -= 5 #and update the point value
print "Your Point: " + str(point) + "\nThe number you guess is low. You lose 5 points" + \
"\n You still have a chance. Try Again!"
elif int(guessed_number) > (generated_number * 2): # if the typed number is bigger than the two times generated number
point -= 10 #and update the point value
print "Your Point: " + str(point) + "\nThe number you guess is too high, you lose 10 points" + \
"\n You still have a chance. Try Again!"
elif (generated_number * 2) > int(guessed_number) > (generated_number): # if typed number is less than two times generated number and bigger than the generated number
point -= 5 #and update the point value
print "Your Point: " + str(point) + "\nThe number you guess is high, you lose 5 points" + \
"\n You still have a chance. Try Again!"
else: #if user name or password is not same as the name and password saved in 'sign up' part
print "Information is invalid!"
def option_2(name,password): #takes two parameters because name and password should be saved
if name == '': #if name is an empty string user is asked to enter her/his name and password
name_exp = "Please enter your user name:"
user_name = raw_input(name_exp) #name of the user is assigned as user_name
password_exp = "Please enter your password:"
user_password = raw_input(password_exp) #password of the user is assigned as user_name
return user_name,user_password #user name and password is saved and returned
else:
print ("You have already signed up, you can't sign up more than 1 user!" + "\nGoing back to main menu..")
return name, password #user name and password is saved and return
def option_3(): #print the statement if user selects "description"
print "This project is 'ENGR 101 - Introduction to Programming' course's mini project 01." \
"The project is a game played by one player by sign up and login system." \
"The player should assume the randomly generated number and accordingly he/she will earn or lose points."
game() |
37c7556579878c20275bc936b52292ae8437cfb3 | l7opy4uk/python_study | /note_20160426.py | 1,782 | 4.0625 | 4 | #Function fabric
def f(n):
def g(x):
return n * x
return g
double = f(2)
triple = f(3)
l = []
# Not closed, because depends on i value
for i in range(10):
def f(x):
return x * i
l.append(f)
#closed
for i in range(10):
def f(x, i=i):
return x * i
l.append(f)
# map func operate function to whole container
def double(x):
return 2 * x
l = list(map(double, [1, 2, 3, 4, 5]))
print(l)
#
def double(x):
print("double: {}".format(x))
return x * 2
for i in map(double, [1, 2, 3, 4, 5]):
print(i)
if i >5:
break
#Выводим нечетные числа
def odd(x):
return x % 2
l = list(filter(odd, [1, 2, 3, 4, 5]))
print(l)
## READ itertools !!!!!!!!!!!!!!!!!!!!!!
#lambda - using for temporary function
list(map(lambda x: 3 * x, [1, 2, 3, 4, 5]))
# поставить неограниченое количество аргументов
def f(*args):
print(args)
def sum_(*args): # could set sum(a, *args) to show that we need at least one parameter
s = 0
for i in args:
s += i
return s
def f(*args, **kwargs):
print(args, kwargs)
#>>>f (1,2,3, a=4, b=5)
#(1, 2, 3) {'a' : 4, 'b' : 5}
def f (a, b, c):
return a + b + c
t = 1, 2, 3
f(*t)
# Обертка!!!!!!!!!!!!!!!!!!!!!!!!! Wrapper
def g (*args, **kwargs):
print('g')
return f(*args, **kwargs)
#DECORATORS
def decor(f):
def wrapper():
print("in")
res =
#special syntax for decorators
@scale # the same as scale = scale(double)
def double(x):
return 2 * x
#multiple variants
actions = {1: a, 2: b, 3: c}
def default():
print('default')
actions.get(5, default)()
actions.get(3, default)()
|
17360455dc825763e4c159f929580e4af17dcbd4 | MisterFili/NoDrinking | /05list_overlap.py | 643 | 4.21875 | 4 | #listOverlap
'''
write a program that returns a list that contains only the
elements that are common between the lists (without duplicates).
Make sure your program works on two lists of different sizes.
class_attendance = ['me', 'myself', 'and', 'eye']
name = input('type a name to check: ')
if name in class_attendance:
print(' {}, this person is enrolled'.format(name))
else:
print('{}, did not show up to class'.format(name))
'''
a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
c = []
d = [random.randint(1,80)]
for item in a:
if item in b and item not in c:
c.append(item)
print(c) |
da6b962d0cf722506ff67d6092367c8b59a12981 | banashish/DS-Algo | /100code/count_of_number_after_self.py | 1,325 | 3.8125 | 4 | # this is a modification in count inversion problem
def countInversionUsingMergeSort(arr):
temp_arr = [0]*len(arr)
ans = [0]*len(arr)
return mergeSort(arr,temp_arr,0,len(arr)-1,ans)
def mergeSort(arr,temp_arr,left,right,answer):
inv_count = 0
li,ri,mi = 0,0,0
if left < right:
mid = (left + right) // 2
li = mergeSort(arr,temp_arr,left,mid,answer)
ri = mergeSort(arr,temp_arr,mid+1,right,answer)
mi = merge(arr,temp_arr,mid,left,right,answer)
answer[left] = ri+mi
print(answer)
return inv_count
def merge(arr,temp_arr,mid,left,right,answer):
i = left
j = mid + 1
k = left
inv = 0
while i <= mid and j <= right:
if arr[i] <= arr[j]:
temp_arr[k] = arr[i]
k+=1
i+=1
else:
temp_arr[k] = arr[j]
inv+=(mid - i + 1)
# answer[k]+=inv
k+=1
j+=1
while i <= mid:
temp_arr[k] = arr[i]
k+=1
i+=1
while j <= right:
temp_arr[k] = arr[j]
k+=1
j+=1
for w in range(left,right+1):
arr[w] = temp_arr[w]
return inv
if __name__ == "__main__":
arr = list(map(int,input().split(" ")))
answer = countInversionUsingMergeSort(arr)
print(answer)
|
3f58da6f1f9e6b32411cc5393bb3c33c744d46ef | sridarshini123/python-programming | /codekata/beginner level/prime or not.py | 159 | 4 | 4 | count=0
num=int(raw_input())
for i in range(2,num):
if(num%i==0):
count=count+1
if(count==1):
print("it is prime")
else:
print("not prime")
|
46d5d841ea069b330972efb3a3299e8ebdb4e34d | Python-November-2018/yashey_mateen | /01-python/02-python/01-required/05-for_loop_basic_2.py | 3,920 | 4.71875 | 5 | #1. Biggie Size - Given an array, write a function that changes all positive numbers in the array to "big". Example: makeItBig([-1, 3, 5, -5]) returns that same array, changed to [-1, "big", "big", -5].
def makeItBig(arr):
newarr=[]
biggie = 'big'
for i in range(0, len(arr), +1):
if arr[i]<0:
newarr.append(arr[i])
if arr[i]>0:
arr[i] = biggie
newarr.append(arr[i])
print(newarr)
makeItBig([-1, 3, 5, -5])
#2. Count Positives - Given an array of numbers, create a function to replace last value with number of positive values. Example, countPositives([-1,1,1,1]) changes array to [-1,1,1,3] and returns it. (Note that zero is not considered to be a positive number).
def countPositives(arr):
positiveCount = 0
for i in range(0, len(arr), +1):
if arr[i]>0:
positiveCount+=1
arr[len(arr)-1]=positiveCount
print(arr)
countPositives([-1,1,1,1])
#3. SumTotal - Create a function that takes an array as an argument and returns the sum of all the values in the array. For example sumTotal([1,2,3,4]) should return 10
def sumTotal(arr):
sum = 0
for i in range(0, len(arr), +1):
sum+=arr[i]
print(sum)
sumTotal([1,2,3,4])
#4. Average - Create a function that takes an array as an argument and returns the average of all the values in the array. For example multiples([1,2,3,4]) should return 2.5
def multiples(arr):
sum = 0
for i in range(0, len(arr), +1):
sum+=arr[i]
avg = sum/len(arr)
print(avg)
multiples([1,2,3,4])
#5. Length - Create a function that takes an array as an argument and returns the length of the array. For example length([1,2,3,4]) should return 4
def length(arr):
print(len(arr))
length([1,2,3,4])
#6. Minimum - Create a function that takes an array as an argument and returns the minimum value in the array. If the passed array is empty, have the function return false. For example minimum([1,2,3,4]) should return 1; minimum([-1,-2,-3]) should return -3.
def minimum(arr):
min = arr[0]
if(len(arr) == 0):
return false
for i in range(0, len(arr), +1):
if(arr[i]<min):
min = arr[i]
print(min)
minimum([1,2,3,4])
minimum([-1,-2,-3])
#7. Maximum - Create a function that takes an array as an argument and returns the maximum value in the array. If the passed array is empty, have the function return false. For example maximum([1,2,3,4]) should return 4; maximum([-1,-2,-3]) should return -1.
def maximum(arr):
max = arr[0]
if(len(arr) == 0):
return false
for i in range(0, len(arr), +1):
if(arr[i]>max):
max= arr[i]
print(max)
maximum([1,2,3,4])
maximum([-1,-2,-3])
#8. UltimateAnalyze - Create a function that takes an array as an argument and returns a dictionary that has the sumTotal, average, minimum, maximum and length of the array.
def ultimateAnalyze(arr):
ultimate = []
min = arr[0]
max = arr[0]
sum = 0
for i in range(0, len(arr), +1):
sum+=arr[i]
avg = sum/len(arr)
ultimate.append(sum)
ultimate.append(avg)
for i in range(0, len(arr), +1):
if(arr[i]<min):
min = arr[i]
ultimate.append(min)
for i in range(0, len(arr), +1):
if(arr[i]>max):
max= arr[i]
ultimate.append(max)
ultimate.append(len(arr))
print(ultimate)
ultimateAnalyze([1,2,3,4,5])
#9. ReverseList - Create a function that takes an array as an argument and return an array in a reversed order. Do this without creating an empty temporary array. For example reverse([1,2,3,4]) should return [4,3,2,1]. This challenge is known to appear during basic technical interviews.
def reverse(arr):
i = 0
j = len(arr)-1
for i in range (0, j, +1):
arr[j], arr[i] = arr[i], arr[j]
j-=1
arr[i], arr[j] = arr[j], arr[i]
print(arr)
reverse([1,2,3,4])
|
05378523cc7e1ae7d222753fbcf2bb41f1d627c6 | mozzielol/Deducing | /networks/model.py | 18,051 | 3.71875 | 4 | from builtins import range
from builtins import object
import numpy as np
from networks.layer.layers import *
from networks.layer.layer_utils import *
from copy import deepcopy
class Model(object):
"""
A fully-connected neural network with an arbitrary number of hidden layers,
ReLU nonlinearities, and a softmax loss function. This will also implement
dropout and batch/layer normalization as options. For a network with L layers,
the architecture will be
{affine - [batch/layer norm] - relu - [dropout]} x (L - 1) - affine - softmax
where batch/layer normalization and dropout are optional, and the {...} block is
repeated L - 1 times.
Similar to the TwoLayerNet above, learnable parameters are stored in the
self.params dictionary and will be learned using the Solver class.
"""
def __init__(self, hidden_dims, input_dim=3*32*32, num_classes=10,
dropout=1, normalization=None, reg=0.0,
weight_scale=1e-2, dtype=np.float32, seed=None,
num_networks = 1, sub_network = 1):
"""
Initialize a new FullyConnectedNet.
Inputs:
- hidden_dims: A list of integers giving the size of each hidden layer.
- input_dim: An integer giving the size of the input.
- num_classes: An integer giving the number of classes to classify.
- dropout: Scalar between 0 and 1 giving dropout strength. If dropout=1 then
the network should not use dropout at all.
- normalization: What type of normalization the network should use. Valid values
are "batchnorm", "layernorm", or None for no normalization (the default).
- reg: Scalar giving L2 regularization strength.
- weight_scale: Scalar giving the standard deviation for random
initialization of the weights.
- dtype: A numpy datatype object; all computations will be performed using
this datatype. float32 is faster but less accurate, so you should use
float64 for numeric gradient checking.
- seed: If not None, then pass this random seed to the dropout layers. This
will make the dropout layers deteriminstic so we can gradient check the
model.
- network_param:
order of the network, the part of network, the parameters
"""
self.normalization = normalization
self.use_dropout = dropout != 1
self.reg = reg
self.num_layers = 1 + len(hidden_dims)
self.dtype = dtype
self.params = {}
self.num_networks = num_networks
self.network_param = {}
hidden = [x*sub_network for x in hidden_dims]
net_dims = [input_dim] + hidden + [num_classes]
self.net_dims = net_dims
#1. initialze the network
for i in range(self.num_layers):
self.params['W%d'%(i+1)] = np.random.normal(loc=0.0,scale=weight_scale,size=(net_dims[i],net_dims[i+1]))
self.params['b%d'%(i+1)] = np.zeros(net_dims[i+1])
if (self.normalization is not None) & (i!=self.num_layers - 1):
self.params['gamma%d'%(i+1)] = np.ones(net_dims[i+1])
self.params['beta%d'%(i+1)] = np.zeros(net_dims[i+1])
self.network_index = {}
step =
for i in range(sub_network):
start =
end = 0
start = i *
self.network[i] = [start:end]
#Take apart the network
for i in range(sub_network):
self.network_param[i] = deepcopy(network_param)
############################################################################
# END OF YOUR CODE #
############################################################################
# When using dropout we need to pass a dropout_param dictionary to each
# dropout layer so that the layer knows the dropout probability and the mode
# (train / test). You can pass the same dropout_param to each dropout layer.
self.dropout_param = {}
if self.use_dropout:
self.dropout_param = {'mode': 'train', 'p': dropout}
if seed is not None:
self.dropout_param['seed'] = seed
self.bn_params = []
if self.normalization=='batchnorm':
self.bn_params = [{'mode': 'train'} for i in range(self.num_layers - 1)]
if self.normalization=='layernorm':
self.bn_params = [{} for i in range(self.num_layers - 1)]
# Cast all parameters to the correct datatype
for i in self.network_param:
for k, v in self.network_param[i].items():
self.network_param[i][k] = v.astype(dtype)
def update_parameters(self,best_param):
network_param = {}
for i in range(self.num_layers):
step = self.net_dims[i] // self.num_networks
start = 0
step2 = self.net_dims[i+1] // self.num_networks
start2 = 0
for e in range(self.num_networks):
end = 0
if e == self.num_networks - 1:
end = self.net_dims[i]
end2 = self.net_dims[i+1]
else:
end = step * (e+1)
end2 = step2 * (e+1)
network_param[(e,'W%d'%(i+1))] = best_param['W%d'%(i+1)][start:end].copy()
network_param[(e,'b%d'%(i+1))] = best_param['b%d'%(i+1)][start2:end2].copy()
if (self.normalization is not None) & (i!=self.num_layers - 1):
network_param[(e,'gamma%d'%(i+1))] = best_param['gamma%d'%(i+1)][start2:end2].copy()
network_param[(e,'beta%d'%(i+1))] = best_param['beta%d'%(i+1)][start2:end2].copy()
start = end
start2 = end2
for i in range(self.num_layers):
for n,j in enumerate(self.which_network):
self.network_param[j][(n,'W%d'%(i+1))] = deepcopy(network_param[(n,'W%d'%(i+1))])
self.network_param[j][(n,'b%d'%(i+1))] = deepcopy(network_param[(n,'b%d'%(i+1))])
if (self.normalization is not None) & (i!=self.num_layers - 1):
self.network_param[j][(n,'gamma%d'%(i+1))] = deepcopy(network_param[(n,'gamma%d'%(i+1))])
self.network_param[j][(n,'beta%d'%(i+1))] = deepcopy(network_param[(n,'beta%d'%(i+1))])
def define_parameters(self,which_network= [0],trianable_mask=[0]):
self.which_network = which_network
if len(which_network)!= self.num_networks:
raise ValueError('network length is not sufficient')
if len(which_network)!= len(trianable_mask):
raise ValueError('trainable_mask length is not sufficient')
self.training_mask = {}
for i in range(self.num_layers):
for n,j in enumerate(which_network):
if n == 0:
self.params['W%d'%(i+1)] = deepcopy(self.network_param[j][(n,'W%d'%(i+1))])
self.params['b%d'%(i+1)] = deepcopy(self.network_param[j][(n,'b%d'%(i+1))])
mask = self._create_mask('W%d'%(i+1),j,n,trianable_mask[n])
self.training_mask['W%d'%(i+1)] = mask
mask = self._create_mask('b%d'%(i+1),j,n,trianable_mask[n])
self.training_mask['b%d'%(i+1)] = mask
if (self.normalization is not None) & (i!=self.num_layers - 1):
self.params['gamma%d'%(i+1)] = deepcopy(self.network_param[j][(n,'gamma%d'%(i+1))])
self.params['beta%d'%(i+1)] = deepcopy(self.network_param[j][(n,'beta%d'%(i+1))])
mask = self._create_mask('gamma%d'%(i+1),j,n,trianable_mask[n])
self.training_mask['gamma%d'%(i+1)] = mask
mask = self._create_mask('beta%d'%(i+1),j,n,trianable_mask[n])
self.training_mask['beta%d'%(i+1)] = mask
#print(self.params['W%d'%(i+1)].shape,self.params['b%d'%(i+1)].shape,self.params['gamma%d'%(i+1)].shape,self.params['beta%d'%(i+1)].shape)
else:
self.params['W%d'%(i+1)] = np.concatenate((self.params['W%d'%(i+1)],deepcopy(self.network_param[j][(n,'W%d'%(i+1))])))
self.params['b%d'%(i+1)] = np.concatenate((self.params['b%d'%(i+1)],deepcopy(self.network_param[j][(n,'b%d'%(i+1))])),axis=0)
mask = self._create_mask('W%d'%(i+1),j,n,trianable_mask[n])
self.training_mask['W%d'%(i+1)] = np.concatenate((self.training_mask['W%d'%(i+1)],mask))
mask = self._create_mask('b%d'%(i+1),j,n,trianable_mask[n])
self.training_mask['b%d'%(i+1)] = np.concatenate((self.training_mask['b%d'%(i+1)],mask))
if (self.normalization is not None) & (i!=self.num_layers - 1):
self.params['gamma%d'%(i+1)] = np.concatenate((self.params['gamma%d'%(i+1)],deepcopy(self.network_param[j][(n,'gamma%d'%(i+1))])),axis=0)
self.params['beta%d'%(i+1)] = np.concatenate((self.params['beta%d'%(i+1)],deepcopy(self.network_param[j][(n,'beta%d'%(i+1))])),axis=0)
mask = self._create_mask('gamma%d'%(i+1),j,n,trianable_mask[n])
self.training_mask['gamma%d'%(i+1)] = np.concatenate((self.training_mask['gamma%d'%(i+1)],mask))
mask = self._create_mask('beta%d'%(i+1),j,n,trianable_mask[n])
self.training_mask['beta%d'%(i+1)] = np.concatenate((self.training_mask['beta%d'%(i+1)],mask))
#print(self.params['W%d'%(i+1)].shape,self.params['b%d'%(i+1)].shape,self.params['gamma%d'%(i+1)].shape,self.params['beta%d'%(i+1)].shape)
def predict_params(self,which_network= [0]):
self.which_network = which_network
if len(which_network)!= self.num_networks:
raise ValueError('network length is not sufficient')
for n,j in enumerate(which_network):
for i in range(self.num_layers):
if n == 0:
self.params['W%d'%(i+1)] = self.network_param[j][(n,'W%d'%(i+1))].copy()
self.params['b%d'%(i+1)] = self.network_param[j][(n,'b%d'%(i+1))].copy()
mask = self._create_mask('W%d'%(i+1),j,n,trianable_mask[n])
self.training_mask['W%d'%(i+1)] = mask
mask = self._create_mask('b%d'%(i+1),j,n,trianable_mask[n])
self.training_mask['b%d'%(i+1)] = mask
if (self.normalization is not None) & (i!=self.num_layers - 1):
self.params['gamma%d'%(i+1)] = self.network_param[j][(n,'gamma%d'%(i+1))].copy()
self.params['beta%d'%(i+1)] = self.network_param[j][(n,'beta%d'%(i+1))].copy()
mask = self._create_mask('gamma%d'%(i+1),j,n,trianable_mask[n])
self.training_mask['gamma%d'%(i+1)] = mask
mask = self._create_mask('beta%d'%(i+1),j,n,trianable_mask[n])
self.training_mask['beta%d'%(i+1)] = mask
#print(self.params['W%d'%(i+1)].shape,self.params['b%d'%(i+1)].shape,self.params['gamma%d'%(i+1)].shape,self.params['beta%d'%(i+1)].shape)
else:
self.params['W%d'%(i+1)] = np.concatenate((self.params['W%d'%(i+1)],self.network_param[j][(n,'W%d'%(i+1))])).copy()
self.params['b%d'%(i+1)] = np.concatenate((self.params['b%d'%(i+1)],self.network_param[j][(n,'b%d'%(i+1))]),axis=0).copy()
mask = self._create_mask('W%d'%(i+1),j,n,trianable_mask[n])
self.training_mask['W%d'%(i+1)] = np.concatenate((self.training_mask['W%d'%(i+1)],mask))
mask = self._create_mask('b%d'%(i+1),j,n,trianable_mask[n])
self.training_mask['b%d'%(i+1)] = np.concatenate((self.training_mask['b%d'%(i+1)],mask))
if (self.normalization is not None) & (i!=self.num_layers - 1):
self.params['gamma%d'%(i+1)] = np.concatenate((self.params['gamma%d'%(i+1)],self.network_param[j][(n,'gamma%d'%(i+1))]),axis=0).copy()
self.params['beta%d'%(i+1)] = np.concatenate((self.params['beta%d'%(i+1)],self.network_param[j][(n,'beta%d'%(i+1))]),axis=0).copy()
mask = self._create_mask('gamma%d'%(i+1),j,n,trianable_mask[n])
self.training_mask['gamma%d'%(i+1)] = np.concatenate((self.training_mask['gamma%d'%(i+1)],mask))
mask = self._create_mask('beta%d'%(i+1),j,n,trianable_mask[n])
self.training_mask['beta%d'%(i+1)] = np.concatenate((self.training_mask['beta%d'%(i+1)],mask))
#print(self.params['W%d'%(i+1)].shape,self.params['b%d'%(i+1)].shape,self.params['gamma%d'%(i+1)].shape,self.params['beta%d'%(i+1)].shape)
def _create_mask(self,para_name,j,n,num):
mask = None
mask = self.network_param[j][(n,para_name)].copy()
mask.fill(num)
return mask.astype(bool)
def loss(self, X, y=None):
"""
Compute loss and gradient for the fully-connected net.
Input / output: Same as TwoLayerNet above.
"""
X = X.astype(self.dtype)
mode = 'test' if y is None else 'train'
# Set train/test mode for batchnorm params and dropout param since they
# behave differently during training and testing.
if self.use_dropout:
self.dropout_param['mode'] = mode
if self.normalization=='batchnorm':
for bn_param in self.bn_params:
bn_param['mode'] = mode
scores = None
cache = {}
layer_output = {}
dropout_cache = {}
layer_output[0] = X
if self.normalization=='batchnorm':
for i in range(1, self.num_layers +1):
if i != self.num_layers:
layer_output[i], cache[i] = batch_relu_forward(
layer_output[i-1],
self.params['W%d' %i],
self.params['b%d' %i],
self.params['gamma%d' %i],
self.params['beta%d' %i],
bn_param=self.bn_params[i-1]
)
if self.use_dropout:
layer_output[i], dropout_cache[i] = dropout_forward(layer_output[i],self.dropout_param)
else:
layer_output[i], cache[i] = affine_forward(
layer_output[i-1],
self.params['W%d' %i],
self.params['b%d' %i]
)
elif self.normalization is None:
for i in range(1,self.num_layers+1):
if i != self.num_layers:
layer_output[i], cache[i] = affine_relu_forward(layer_output[i-1], self.params['W{}'.format(i)],self.params['b{}'.format(i)])
if self.use_dropout:
layer_output[i],dropout_cache[i] = dropout_forward(layer_output[i],self.dropout_param)
else:
layer_output[i], cache[i] = affine_forward(layer_output[i-1],self.params['W%d'%i],self.params['b%d'%i])
scores = layer_output[self.num_layers]
# If test mode return early
if mode == 'test':
return scores
loss, grads = 0.0, {}
loss, dscores = softmax_loss(scores,y)
for i in range(1, self.num_layers+1):
loss += 0.5*self.reg*np.sum(self.params['W%d' %i]*self.params['W%d' %i])
if self.normalization == 'batchnorm':
for i in range(self.num_layers, 0, -1):
if i!=self.num_layers:
if self.use_dropout:
dscores = dropout_backward(dscores,dropout_cache[i])
(dscores, grads['W%d' %i], grads['b%d' %i],
grads['gamma%d' %i], grads['beta%d' %i]) = batch_relu_backward(
dscores,
cache[i]
)
else:
dscores, grads['W%d' %i], grads['b%d' %i] = affine_backward(
dscores,
cache[i]
)
# Add regularization to the weights gradient
grads['W%d' %i] += self.reg*self.params['W%d' %i]
elif self.normalization is None:
for i in range(self.num_layers,0,-1):
if i == self.num_layers:
dscores, grads['W%d'%i], grads['b%d'%i] = affine_backward(dscores,cache[i])
else:
if self.use_dropout:
dscores = dropout_backward(dscores,dropout_cache[i])
dscores, grads['W%d'%i], grads['b%d'%i] = affine_relu_backward(dscores,cache[i])
grads['W%d'%i] += self.reg * self.params['W%d'%i]
return loss, grads
def predict(self, X, y, which_network=[0]):
self.define_parameters(which_network,trianable_mask=[0]*self.num_networks)
y_pred = []
scores = self.loss(X)
y_pred.append(np.argmax(scores, axis=1))
y_pred = np.hstack(y_pred)
acc = np.mean(y_pred == y)
print('Accuracy is %f'%acc)
return acc
|
211f94c9fdbab5f383c04a4c3267dc0273d02c31 | HanhHongBui/CS50-Pset6-Sentiments | /credit.py | 1,584 | 3.59375 | 4 | import cs50
#prompt for input
print("Number: ",end="")
cardnum = cs50.get_int()
n = len(str(cardnum))
if n!=13 and n!=15 and n!=16:
print("INVALID")
else:
cardnumodd= cardnum
cardnumeven=cardnum//10
count = 0
cardnum1 = []
cardnum2 = []
cardnum_multiply=[]
#sum of odd digits
for i in range (0,(n+1)//2):
cardnum1.insert(i,cardnumodd%10)
cardnumodd=cardnumodd//100
#print("odd: {}".format(cardnum1[i]))
s_odd = sum(cardnum1)
#print("s odd: {}".format(s_odd))
#sum of other digits, x2
for j in range (0,(n//2)):
cardnum2.insert(j,cardnumeven%10)
cardnumeven=cardnumeven//100
#print("even: {}".format(cardnum2[j]))
cardnum_multiply=[2*x for x in cardnum2]
for k in range (0,n//2):
#print("x2: {}".format(cardnum_multiply[k]))
if cardnum_multiply[k] >= 10:
cardnum_multiply[k] = (cardnum_multiply[k])%10
count = count+1
s_even = count + sum(cardnum_multiply)
s = s_odd + s_even
smod = s%10
#print("s even: {}".format(s_even))
#print("s: {}".format(s))
#check brands
cardnumstr=str(cardnum)
if (n == 13 or n == 16) and cardnumstr[0] == '4' and smod==0:
print("VISA")
elif n == 15 and cardnumstr[0] == '3' and (cardnumstr[1] =='4' or cardnumstr[1] =='7') and smod==0 :
print("AMEX")
elif n == 16 and cardnumstr[0]== '5' and (int(cardnumstr[1]) in range(0,6)) and smod==0:
print("MASTERCARD")
else:
print("INVALID")
|
1f3d4dca04578bb6c7deb4b0987a36e7256f83bf | seanlucrussell/computing | /Python/Project Euler/10_summation_of_primes.py | 396 | 3.890625 | 4 | # filter out non primes, loop
a = 1
primes = [2]
divis = True
primenum = 2
while a < 2000000:
#we want to check to see if a is divisible by any number in primes, if not, append to primes and increase primes counter
a += 2
print a
for x in primes:
if a % x == 0:
divis = True
break
else:
divis = False
if divis == False:
primes.append(a)
primenum += a
print primenum |
dabff042ff00e4fafdae99b1498193ef679b3790 | shrddha-p-jain/Machine-Learning-Assignments | /kmeansClus.py | 2,274 | 3.578125 | 4 | import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
import sklearn.metrics as sm
import pandas as pd
import numpy as np
# import some data to play with
iris = datasets.load_iris()
iris.data
iris.feature_names
iris.target
iris.target_names
# Store the inputs as a Pandas Dataframe and set the column names
x = pd.DataFrame(iris.data)
x.columns = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width']
y = pd.DataFrame(iris.target)
y.columns = ['Targets']
# Set the size of the plot
plt.figure(figsize=(14,7))
# Create a colormap
colormap = np.array(['red', 'lime', 'black'])
# Plot Sepal
plt.subplot(1, 2, 1)
plt.scatter(x.Sepal_Length, x.Sepal_Width, c=colormap[y.Targets], s=40)
plt.title('Sepal')
plt.subplot(1, 2, 2)
plt.scatter(x.Petal_Length, x.Petal_Width, c=colormap[y.Targets], s=40)
plt.title('Petal')
# K Means Cluster
model = KMeans(n_clusters=3)
model.fit(x)
# This is what KMeans thought
model.labels_
# View the results
# Set the size of the plot
plt.figure(figsize=(14,7))
# Create a colormap
colormap = np.array(['red', 'lime', 'black'])
# Plot the Original Classifications
plt.subplot(1, 2, 1)
plt.scatter(x.Petal_Length, x.Petal_Width, c=colormap[y.Targets], s=40)
plt.title('Real Classification')
# Plot the Models Classifications
plt.subplot(1, 2, 2)
plt.scatter(x.Petal_Length, x.Petal_Width, c=colormap[model.labels_], s=40)
plt.title('K Mean Classification')
# The fix, we convert all the 1s to 0s and 0s to 1s.
predY = np.choose(model.labels_, [1,0,2]).astype(np.int64)
print (model.labels_)
print (predY)
# View the results
# Set the size of the plot
plt.figure(figsize=(14,7))
# Create a colormap
colormap = np.array(['red', 'lime', 'black'])
# Plot Orginal
#subplot(nrows, ncols, index)
plt.subplot(1, 2, 1)
plt.scatter(x.Petal_Length, x.Petal_Width, c=colormap[y.Targets], s=40)
plt.title('Real Classification')
# Plot Predicted with corrected values
plt.subplot(1, 2, 2)
plt.scatter(x.Petal_Length, x.Petal_Width, c=colormap[predY], s=40)
plt.title('K Mean Classification')
# Performance Metrics
sm.accuracy_score(y, predY)
# Confusion Matrix
sm.confusion_matrix(y, predY)
|
a3451cdec046bdf0675d722da62c9b80cf17c445 | SpheITguru/DDA-Digital-differential-analyzer- | /DDA.py | 742 | 4.03125 | 4 | print("Enter the value of x1: ")
x1 = int(input())
print("Enter the value of x2: ")
x2 = int(input())
print("Enter the value of y1: ")
y1 = int(input())
print("Enter the value of y2: ")
y2 = int(input())
def ROUND(a):
return int(a + 0.5)
dx = x2 - x1
dy = y2 - y1
m = dy/dx
if (dx > dy):
steps = abs(dx)
print()
print("m < 1, increase in x-axis")
else:
steps = abs(dy)
print()
print("m > 1, increase in y-axis")
xincrement = dx/steps
yincrement = dy/steps
for i in range(0,steps-1):
x1 = x1 + xincrement
y1 = y1 + yincrement
print('{:2d} \t{:5d}, \t{:2.4f} \t{:3d} {:3d} \t{:2.3f} ({}, {})'.format(
i, ROUND(x1), y1, dx, dy, m,ROUND(x1), ROUND(y1)))
|
64914ff64da1a46bcb15ad131a2f93b883dea165 | Aasthaengg/IBMdataset | /Python_codes/p02847/s885882291.py | 177 | 3.640625 | 4 | #!/usr/bin/env python3
def main():
S = input()
week = ['SUN','MON','TUE','WED','THU','FRI','SAT']
print(7-week.index(S))
if __name__ == "__main__":
main()
|
881ca383d70fbcb637238cc2f2e76fcd79472141 | PabloAndo/WeeklyPythonExercises | /Exercise_10/Exercise_10.py | 3,135 | 3.75 | 4 | # -*- coding: utf-8 -*-
from collections import namedtuple
from collections import defaultdict
Person = namedtuple('Person', ['first', 'last'])
class TableFull(Exception):
pass
class GuestList():
# GuestList is a list with each element being
# a Person (numedtuple) and a table number(int)
max_at_table = 10
def __init__(self):
self.tables_and_guests = defaultdict(list)
def assign(self, person, new_table_number):
# Check that there is space
if len(self.tables_and_guests[new_table_number]) == self.max_at_table:
raise TableFull("No room at the table!")
# Look through existing tables; remove if the person is there
for table_number, guests in self.tables_and_guests.items():
if person in guests:
guests.remove(person)
break
# add the person to the new table
self.tables_and_guests[new_table_number].append(person)
def __len__(self):
return sum([len(one_table) for one_table in
self.tables_and_guests.values()])
def table(self, table_number):
return self.tables_and_guests[table_number]
def unassigned(self):
return self.table(None)
def free_space(self):
return {table_number: self.max_at_table - len(guests)
for table_number, guests in
self.tables_and_guests.items() if table_number}
def guests(self):
guests_dict = {one_guest: table_number
for table_number, guests_at_table in
self.tables_and_guests.items()
for one_guest in guests_at_table}
return sorted(guests_dict.keys(),
key=lambda g: (guests_dict[g] or -1, g.last, g.first))
def __repr__(self):
output = ''
for table_number, guests_at_table in sorted(
self.tables_and_guests.items(), key=lambda t: t[0] or -1):
output += '{0}\n'.format(table_number)
for one_guest in sorted(guests_at_table,
key=lambda t: t[::-1]):
output += '\t{0}, {1}\n'.format(one_guest.last,
one_guest.first)
return output
if __name__ == "__main__":
# Person = namedtuple('Person', ['first', 'last'])
gl = GuestList()
gl.assign(Person('Waylon', 'Dalton'), 1)
gl.assign(Person('Justine', 'Henderson'), 1)
gl.assign(Person('Abdullah', 'Lang'), 3)
gl.assign(Person('Marcus', 'Cruz'), 1)
gl.assign(Person('Thalia', 'Cobb'), 2)
gl.assign(Person('Mathias', 'Little'), 2)
gl.assign(Person('Eddie', 'Randolph'), None)
gl.assign(Person('Angela', 'Walker'), 2)
gl.assign(Person('Lia', 'Shelton'), 3)
gl.assign(Person('Hadassah', 'Hartman'), None)
gl.assign(Person('Joanna', 'Shaffer'), 3)
gl.assign(Person('Jonathon', 'Sheppard'), 2)
p = Person('Joanna', 'Shaffer')
gl.assign(p, 3)
# print(len(gl))
# 1print(gl.table(2))
# print(gl.unassigned())
# print(gl.free_space())
print(gl.guests())
|
1f62dbb41acd0f6bd5008bc0b3f47f4c52fbb92a | marranzr/MarTest | /python/HeadFirst/Chapter2/nester/nester.py | 565 | 4.09375 | 4 | """ This is the "nester.py" module, and it provides one function called
print_lol() which prints lists that may or may not include nested lists."""
def print_lol(the_list):
""" This function takes a positional argument
called "the_list", which is any Python list(of, possibly,
nested lists). Each data item in the provided list is
recursively printed to the screen on its own line."""
for each_item in the_list:
if isinstance(each_item, list):
print_lol(each_item)
else:
print(each_item)
|
5e8d2bf77f390bb16c9d3cb17d87c1eb8fb71565 | siva4646/Private-Projects | /Python_Course/PROJECTS/Hangman/Hangman/task/hangman/hangman.py | 281 | 3.875 | 4 | from random import randint
print('H A N G M A N')
words = ['python', 'java', 'kotlin', 'javascript']
secret_word = words[randint(0, 3)]
word = secret_word)
guess = input(f"Guess the word: {word}")
if guess == secret_word:
print('You survived!')
else:
print('You lost!') |
93c42bfaff042d613620eee574dee0cca934d707 | gui-csilva/python | /Python/Temporario.py | 219 | 3.5 | 4 | def inteiros(primeiro, segundo, terceiro, quarto):
a = primeiro + 5
print(a)
b = segundo - 5
print(b)
c = terceiro * 5
print(c)
d = quarto / 5
print(d)
a = 1
b = 2
c = 3
d = 4
inteiros(b, c, d, a) |
81a88957b875edb6828a79753656f3a9fcb18b42 | sanket-arote/Python | /Session's Code/Addition.py | 480 | 3.96875 | 4 | # price_of_balls is a variable.......................
price_of_balls = 10
price_of_pencils = 20.09
number_of_balls = 8
number_of_pencils = 10
total = price_of_balls * number_of_balls + price_of_pencils * number_of_pencils
# print will basically print your statement...............................
print('Welcome to our shop')
print('Please Pay', total)
print('Visit Again')
# it will give you which type of variable we are using...................
type(number_of_pencils)
|
2191a717765fcba02c7e6232c6ff6fa28486b50f | sgrade/pytest | /practice_python/draw_a_game_board.py | 469 | 3.6875 | 4 | # http://www.practicepython.org/solution/2015/11/01/24-draw-a-game-board-solutions.html
def print_horizontal(dimension):
print(' ---' * dimension)
def print_vertical(dimension):
print('| ' * (dimension + 1))
def main():
dimension = int(input('Please provide game size: '))
for index in range(dimension):
print_horizontal(dimension)
print_vertical(dimension)
print_horizontal(dimension)
if __name__ == '__main__':
main() |
20077a41adb8ae60dc5b90137bda9bb492ed886f | JoshRifkin/IS211_Assignment1 | /assignment1_part2.py | 338 | 3.859375 | 4 | class Book:
def __init__(self, author, title):
self.author = author
self.title = title
def display(self):
print(self.title + ", written by " + self.author +".")
book1 = Book("Of Mice and Men", "John Steinbeck")
book2 = Book("To Kill a Mockingbird", "Harper Lee")
book1.display()
book2.display() |
0efe46ca8f6dacbb65fa9999fef88fa9f389d122 | jyabka/PythonExam | /10.Class.py | 290 | 3.71875 | 4 | class Str:
def __init__(self, c_string):
self.c_string = c_string
def user_input(self):
self.c_string = input()
return self.c_string
def toUpperCase(self):
print(self.c_string.upper())
c_str = Str("")
c_str.user_input()
c_str.toUpperCase()
|
6b3ccd380252c282ab7959fbbec3f90e4bd8e2bc | nelliesnoodles/StatsClass | /normal_dist.py | 5,319 | 4.125 | 4 | # Normal Distribution AKA Gaussian probability
import math
from scipy.stats import norm
#Note: z-score is the distance from the mean and it's standard deviation? *clarify*
def normal_deviation(a, b):
"""
What is the standard deviation of the data point distribution?
I need clarification on where this '12' comes in. Why 12?
deviation is: the square root of ((the high value, minus the low value squared) divided by 12)
"""
deviation = math.sqrt((b-a)**2 / 12)
print("The deviation of this normal distribution is : ", deviation)
return deviation
def normal_mean(a, b):
"""
What is b and a?
The range at which the distribution falls.
example:
the number of paintings sold in a day are 5 - 100.
a = 5, b = 100
The mu, or standard mean (center point of data) of this normal distribution:
u = (a + b) / 2
"""
mean = (a + b) / 2
print("The standard mean of this normal distribution is: ", mean)
return mean
def x_bar_Normal_distribution(a, b, n):
"""
THIS HAS NOT BEEN TESTED.
The deviation of the Normal distribution of a sample of means of a normal distribution.
deviation / sqrt(number of samples)
"""
mean = normal_mean(a, b)
deviation = normal_deviation(a, b)
normal_x_bar_deviation = deviation / math.sqrt(n)
print("The standard deviation of the sample of means from the normal distribution ( [n] samples ) is: ", normal_x_bar_deviation)
return normal_x_bar_deviation
def range_probability_cdf(mean, devi, range_low, range_high):
"""
The formula will not work on a continuous probability. SciPi has a built in method to do this math for us.
I wanted to do it myself, so I could learn the math, and I did learn the formula below pretty good, but
the formula we need to calculate a continuous probability is much more complex.
Time to use the hammer instead of my hand.
norm.cdf(x, loc(mean), scale(deviation))
Formula probability density function:
the area under the curve for a given point p(x) is:
1 / ( 2 * pi * (mean squared) * (mathmatical number e to the power of (our z score squared)))
1/ 2 * pi * m**2 * e**(z**2)
[[e = math.exp, pi = math.pi]]
for the range, we would take the larger area, minus the smaller area to get the difference, which is the area just between
these two p(x)s.
"""
# 1 / (2 * pi * deviation**2) = x
# e ** -((range_num - mean)**2 / 2*deviation**2 = y
# area = y/x
large = norm.cdf(range_high, mean, devi)
print("scipy large area = ", large)
small = norm.cdf(range_low, mean, devi)
print("scipy small area = ", small)
range_area = large - small
message = f"The area in range {range_low} - {range_high} is {range_area}"
return range_area
def mycdf(mean, devi, range_low, range_high):
"""
If the ranges are above the mean, we must get the inverse area.
so if it's one deviation above, or any positive deviation above, we want 1 - results.
Formula probability density function:
the area under the curve for a given point p(x) is:
1 / ( 2 * pi * (mean squared) * (mathmatical number e to the power of (our z score squared)))
1/ 2 * pi * m**2 * e**(z**2)
[[e = math.exp, pi = math.pi]]
for the range, we would take the larger area, minus the smaller area to get the difference, which is the area just between
these two p(x)s.
"""
devi_square = float(devi**2)
low_e_num = math.exp(-((float(range_low) - float(mean))**2 / (2*devi_square)))
denom = float( math.sqrt(2 * math.pi * devi_square) )
high_e_num = math.exp(-((float(range_high) - float(mean))**2 / (2*devi_square)))
low_area = float(low_e_num / denom)
high_area = float(high_e_num / denom)
if range_low > mean:
low_area = 1 - low_area
if range_high > mean:
high_area = 1 - high_area
print("my high_area = ", high_area)
print("my low_area = ", low_area)
under_curve = high_area - low_area
message = f"The area under the curve for range {range_low} - {range_high} = {under_curve}"
return under_curve
def test1():
# test against excel data:
# excel formula 1 = [=NORM.DIST(8.5, 10, 1.5, 1) => .1587
# excel formula 2 = [=NORM.DIST(11.5, 10, 1.5, 1) => .8414
# ex1 - ex2 = .6827
#range_probability_withmeandevi(mean, devi, range_low, range_high):
area = range_probability_cdf(10, 1.5, 8.5, 11.5)
print(area)
def test2():
"""
compare results for my density function and using scipy's
empirical rule says that this range should be about 95%
"""
area = range_probability_cdf(12, 1.3, 9.4, 14.6)
area2 = mycdf(12, 1.3, 9.4, 14.6)
print("scipy result:", area)
print("my result:", area2)
def test3():
"""
compare results for my density function and using scipy's
empirical rule says that this range should be about 64%
"""
scipy_area = range_probability_cdf(10, 1.5, 8.5, 11.5)
my_area = mycdf(10, 1.5, 8.5, 11.5)
print("scipy result:", scipy_area)
print("my result:", my_area)
#test1() -- pass
#test2() -- fail
#test3() -- fail
|
a666d5e6809ff780061d1e495cc6d38e67178360 | ankithmjain/algorithms | /searching_algo.py | 517 | 3.734375 | 4 | arr = [1, 2, 3, 4, 9, 10, 40 ]
x = 10
def linear_search(arr, x):
for i in range(len(arr)):
if arr[i] == x:
return i
return -1
print("By linear search", linear_search(arr, x))
def binary_search(arr, x):
lower = 0
upper = len(arr) -1
while True:
mid = int((lower + upper)/2)
if x > arr[mid]:
lower = mid
elif x< arr[mid]:
upper = mid
else:
return mid
print("By binary search", binary_search(arr, x))
|
734e7184658ebb12e3ee2bd25d866171c60914af | yaseen-ops/python-100-days-of-course | /Intermediate/day18/turtle_challenge/turtle_square.py | 404 | 3.71875 | 4 | from turtle import Turtle, Screen
def draw_square():
seemaan.forward(150)
seemaan.left(90)
color_list = ["red", "blue", "brown", "green"]
seemaan = Turtle()
seemaan.shape("turtle")
seemaan.turtlesize(1.8)
choose_color = 0
for _ in range(4):
color = color_list[choose_color]
draw_square()
seemaan.color(color)
choose_color += 1
my_screen = Screen()
my_screen.exitonclick()
|
784b5f600f3fd46c302e5d6fc301a7771703cbd4 | combateer3/RFID-Multitool | /scanner.py | 911 | 3.640625 | 4 | import rfid
import actions
import csv
# global to store the map of uids to actions
uid_map = {}
def get_action(uid):
# getattr will return function in the actions module
return getattr(actions, uid_map[uid])
def loop():
while True:
print("Waiting for a Mifare tag...")
uid = rfid.read_card()
# format uid for pretty printing
formatted = ''.join('{:02x}'.format(x) for x in uid)
print("Read a card with UID: {}".format(formatted))
# perform what is mapped to that uid in the csv file
action = get_action(formatted)
action() # call action
print('\n')
def parse_csv_map(reader):
global uid_map
for row in reader:
uid_map[row[0]] = row[1]
if __name__ == '__main__':
with open('map.csv', newline='') as f:
reader = csv.reader(f, delimiter=',')
parse_csv_map(reader)
loop()
|
9a76ff60b4ae429545006eb526d36a0dcc0c404c | memicq/ProgrammingContestAnswers | /aizu/lectures/algorithm_and_data_structure/tree/tree_walk.py | 2,829 | 3.5 | 4 | #! python3
# tree_walk.py
from enum import Enum, auto
from collections import deque
class Color(Enum):
WHITE = auto()
GRAY = auto()
BLACK = auto()
class BinaryTreeNode():
def __init__(self, parent=None, left=None, right=None):
self.parent = parent
self.left = left
self.right = right
self.sibling = None
self.color = Color.WHITE
def print_elements(ordered):
for ele in ordered:
print(' {}'.format(ele), end='')
print('')
n = int(input())
nodes = [BinaryTreeNode() for i in range(n)]
for i in range(n):
id, left, right = list(map(int, input().split(' ')))
if left != -1:
nodes[id].left = left
nodes[left].parent = id
nodes[left].sibling = right
if right != -1:
nodes[id].right = right
nodes[right].parent = id
nodes[right].sibling = left
root = 0
for i in range(n):
if nodes[i].parent == None:
root = i
def init_color():
global nodes
for i in range(len(nodes)):
nodes[i].color = Color.WHITE
def preorder_bfs(s):
preordered.append(s)
nodes[s].color = Color.GRAY
if nodes[s].left != None and nodes[nodes[s].left].color == Color.WHITE:
preorder_bfs(nodes[s].left)
if nodes[s].right != None and nodes[nodes[s].right].color == Color.WHITE:
preorder_bfs(nodes[s].right)
nodes[s].color = Color.BLACK
inorder_stack = deque([])
def inorder_dfs_init(s):
init_color()
inorder_stack.append(s)
inorder_dfs()
def inorder_dfs():
u = inorder_stack.pop()
if nodes[u].left != None and nodes[nodes[u].left].color == Color.WHITE:
inorder_stack.append(u)
inorder_stack.append(nodes[u].left)
inorder_dfs()
inordered.append(u)
if nodes[u].right != None and nodes[nodes[u].right].color == Color.WHITE:
inorder_stack.append(nodes[u].right)
inorder_dfs()
postorder_stack = deque([])
def postorder_dfs_init(s):
init_color()
postorder_stack.append(s)
postorder_dfs()
def postorder_dfs():
u = postorder_stack.pop()
if nodes[u].left != None and nodes[nodes[u].left].color == Color.WHITE:
postorder_stack.append(u)
postorder_stack.append(nodes[u].left)
postorder_dfs()
if nodes[u].right != None and nodes[nodes[u].right].color == Color.WHITE:
postorder_stack.append(nodes[u].right)
postorder_dfs()
postordered.append(u)
print('Preorder') # 根節点、左部分木、右部分木の順
preordered = []
preorder_bfs(root)
print_elements(preordered)
print('Inorder') # 左部分木、根節点、右部分木の順
inordered = []
inorder_dfs_init(root)
print_elements(inordered)
print('Postorder') # 左部分木、右部分木、根節点の順
postordered = []
postorder_dfs_init(root)
print_elements(postordered)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.