blob_id
string
repo_name
string
path
string
length_bytes
int64
score
float64
int_score
int64
text
string
ea98e09a847e3342735e6be680f6b30f70ea82bc
nownabe/competitive_programming
/AtCoder/JOI2008YOA_Otsuri.py
314
3.671875
4
# https://atcoder.jp/contests/joi2008yo/tasks/joi2008yo_a def search(amount): otsuri = 1000 - amount count = 0 for coin in [500, 100, 50, 10, 5]: if otsuri >= coin: count += otsuri // coin otsuri = otsuri % coin return count + otsuri print(search(int(input())))
3d4f45c674aa87192d2e5516f93ad657ed354a5c
paul-schwendenman/advent-of-code
/2015/day05/day5.py
1,291
4
4
import fileinput import re def has_three_vowels(word): vowels = "aeiou" count = 0 for letter in word: if letter in vowels: count += 1 return count >= 3 def has_double_letter(word): for num, letter in enumerate(word[:-1]): if letter == word[num+1]: return True return False def has_restricted_pairs(word): bad_substrings = ["ab", "cd", "pq", "xy"] return any(substring in word for substring in bad_substrings) def is_nice_string(word): return has_three_vowels(word) and has_double_letter(word) and not has_restricted_pairs(word) def part1(filename = "input"): count = 0 for line in fileinput.input(filename): if is_nice_string(line): count += 1 return count def has_repeated_pair(word): return re.search(r'(..).*\1', word) is not None def has_letter_sandwich(word): return re.search(r'(.).\1', word) is not None def is_nice_string2(word): return has_repeated_pair(word) and has_letter_sandwich(word) def part2(filename = "input"): count = 0 for line in fileinput.input(filename): if is_nice_string2(line): count += 1 return count def main(): print(part1()) print(part2()) if __name__ == '__main__': main()
c5d02c80368ae7e0de9aa47cef9ace451fe89428
den01-python-programming-exercises/exercise-1-32-inheritance-tax-MrFathed
/src/exercise.py
541
3.8125
4
def main(): #write your code below this line inheritance = int(input("Inheritance:")) years = int(input("Years since death:")) taxable = inheritance - 325000 tax = 0.0 if years < 3: tax_rate = 0.40 elif years < 4: tax_rate = 0.32 elif years < 5: tax_rate = 0.24 elif years < 6: tax_rate = 0.16 elif years < 7: tax_rate = 0.08 else: tax_rate = 0.0 tax = taxable * tax_rate print("Tax: " + str(tax)) if __name__ == '__main__': main()
28cc129160bdae17315f3c21132cfc5ff9b60d25
rheehot/baekjun
/1_dimention/3052.py
160
3.59375
4
arr = [0] * 10 num_arr = [] for i in range(10): arr[i] = int(input()) for j in arr: num_arr.append(j % 42) num_arr = set(num_arr) print(len(num_arr))
a7dea7b5a6491e851e01ae68c80ece489b789a92
mepujan/IWAssignment_1_python
/data_types/data_type_40.py
185
4
4
# Write a Python program to add an item in a tuple. def main(): sample_tuple=(1,2,3) new_tuple= sample_tuple + (5,) print(new_tuple) if __name__ == "__main__": main()
8c7df9386326069d7af8d47fc5f443245ac61c9e
Gendo90/topCoder
/0-300 pts/topcoderMagicSquare.py
1,452
4.25
4
# Problem Statement # # A magic square is a 3x3 array of numbers, such that the sum of each row, column, and diagonal are all the same. For example: # # 8 1 6 # 3 5 7 # 4 9 2 # In this example, all rows, columns, and diagonals sum to 15. # You will be given a tuple (integer) representing the nine numbers of a magic square, listed left-to-right, top-to-bottom. However, one of these numbers will be replaced by a -1. Write a method to determine which number was removed. For example, if the 7 was removed from the magic square above, you would be given { 8, 1, 6, 3, 5, -1, 4, 9, 2 }, and your program should return 7. # The completed magic square will consist of exactly 9 distinct positive integers. # Definition # # Class: # MagicSquare # Method: # missing # Parameters: # tuple (integer) # Returns: # integer # Method signature: # def missing(self, square): #Gendo90 has submitted the 250-point problem for 230.40 points #Successful on first try! class MagicSquare(object): def missing(self, square): reshaped = [square[0:3], square[3:6], square[6:9]] target_num = 0 replaced_val = 0 for item in reshaped: if(-1 not in item): target_num = sum(item) break for item in reshaped: if(-1 in item): replaced_val = target_num-(sum(item)+1) return replaced_val test = MagicSquare() print(test.missing(()))
042580e404aa4082d010372ac2239bde1a7e7893
4RCAN3/D-Crypter
/D-Crypter/Beaufort.py
3,196
4.375
4
'''Taking the input of CIPHERTEXT from the user and removing UNWANTED CHARACTERS and/or WHITESPACES''' Input = input("Enter ciphertext:") Input = Input.upper() NotRecog = '''`~1234567890!@#$%^&*()-_=+[{]}\|'";:.>/?,< ''' for i in Input: if i in NotRecog: Input = Input.replace(i,'') '''Taking the input of KEY from the user and removing UNWANTED CHARACTERS and/or WHITESPACES''' Key = input("Enter key:") Key = Key.upper() NotRecog = '''`~1234567890!@#$%^&*()-_=+[{]}\|'";:.>/?,< ''' for i in Key: if i in NotRecog: Key = Key.replace(i,'') '''Making the KEYWORD which will be used to decipher the ciphertext Keyword is made on the basis of two things: 1) LENGTH of the Ciphertext = Keyword 2) The KEY is REPEATED again and again till the length is statisfied Ex: Ciphertext: Aeeealuyel Key: Hippo Keyword:HippoHippo''' Keyword = '' for i in range(0,len(Input)): if len(Keyword)<=len(Input): if len(Input)==len(Key): n = len(Input) Keyword += Key[0:n] elif len(Input)-len(Key)<=len(Input)-len(Keyword): n = len(Input)-len(Key) Keyword += Key[0:n] else: n = len(Input)-len(Keyword) Keyword += Key[0:n] if len(Keyword)==len(Input): break '''Deciphering the Ciphertext using the Keyword and TempLists The AlphaList and TempLists are reversed,i.e.,A will be Z, B will be Y and so on, This is the main difference between Vigenere and Beaufort Cipher''' AlphaList = ['Z','Y','X','W','V','U','T','S','R','Q','P','O','N','M','L','K','J','I','H','G','F','E','D','C','B','A'] Result = '' '''Creation of TempLists: TempLists(Required row of letters from vigenere grid) is made on the basis of Caesar shift. A Beaufort Square has 26 Rows & Columns each labeled as a LETTER of the ALPHABET in ORDER. Each row is shifted(Caesar Shift) according to the formula: Index/Number of Label Letter-1 Ex: Let the row be Z Number of Label Letter: 26 Shift: 26-1=25 After Shifting the List is reversed on the basis explained above. Deciphering: Deciphering is done in 3 steps: 1) A letter of the Keyword is taken 2) Corresponding(Same index/number) Letter of Ciphertext is searched in the row of TempLists 3) After finding the Ciphertext Letter the Column Letter/Index(Check the letter at same index in original AlphaList) is the Deciphered Letter Ex: Ciphertext: Aeeealuyel Key: Hippo Keyword: Hippohippo Let letter be H Corresponding Letter in Ciphertext: A TempList: ['H', 'G', 'F', 'E', 'D', 'C', 'B', 'A', 'Z', 'Y', 'X', 'W', 'V', 'U', 'T', 'S', 'R', 'Q', 'P', 'O', 'N', 'M', 'L', 'K', 'J', 'I'] Location of A in TempList: Index 7 In AlphaList at Index 7 is H ColumnName/Index: H Deciphered Letter: H''' for i in range(0,len(Keyword)): TempLi = ['Z','Y','X','W','V','U','T','S','R','Q','P','O','N','M','L','K','J','I','H','G','F','E','D','C','B','A'] if Keyword[i]=='A': Result += Input[i] else: for j in range(0,AlphaList.index(Keyword[i])): TempLi+=[TempLi.pop(0)] L = Input[i] n = TempLi.index(L) Result += AlphaList[25-n] print("Deciphered text:",Result)
6eb78f742fe36d3460c58d6947f5ba03bb180fd8
moon0331/baekjoon_solution
/programmers/고득점 Kit/위장.py
530
3.71875
4
from collections import defaultdict def solution(clothes): clothes_dict = defaultdict(int) for x, y in clothes: clothes_dict[y] += 1 answer = 1 for x in clothes_dict.values(): answer *= (x+1) return answer - 1 clothes_list = [ [["yellowhat", "headgear"], ["bluesunglasses", "eyewear"], ["green_turban", "headgear"]], [["crowmask", "face"], ["bluesunglasses", "face"], ["smoky_makeup", "face"]] ] returns = [5, 3] for c, r in zip(clothes_list, returns): print(solution(c) == r)
3e8368833319e2d6d6d5fb552e803d346dec720b
vector5891/Perceptrons
/test-demos/stringops.py
2,635
3.78125
4
# stringops.py # String processing functions # Test-Driven Development (TDD): write failing tests FIRST, then write # code to make tests pass. from hypothesis import given, assume from hypothesis.strategies import text def capitalizeWord(word): """Make the first character of word uppercase. If first character is not a letter, or the word is the empty string, just return the word as-is. >>> capitalizeWord('Chris') 'Chris' >>> capitalizeWord('chris') 'Chris' >>> capitalizeWord('42') '42' >>> capitalizeWord('-6') '-6' >>> capitalizeWord(' ') ' ' >>> capitalizeWord(' hello') ' hello' >>> capitalizeWord('étienne') 'Étienne' >>> capitalizeWord('δx') 'Δx' >>> capitalizeWord('') '' """ if len(word) == 0: return word else: return word[0].upper() + word[1:] def trimSpaces(s): """Remove trailing and leading spaces, but leave interior spaces alone. >>> trimSpaces(' yes ') 'yes' >>> trimSpaces(' not here ') 'not here' """ return s.strip() # Example of using unittest module # Often, unittest code is put into a *separate* file. import unittest class StringOpsTests(unittest.TestCase): # Each test is written as a separate method in this class. def test_trim_spaces(self): self.assertEqual('hello world', trimSpaces(' hello world ')) def test_trim_preserves_interior_spaces(self): self.assertEqual(trimSpaces('wow! it works. '), 'wow! it works.') # Can specify some initialization code that runs before/after each # test. def setUp(self): print("BEFORE") def tearDown(self): print("AFTER") # We're still within the unittest-derived class, but we're going # to use hypothesis for specifying properties. @given(s=text()) def test_first_char_is_capital(self, s): assume(len(s) > 0) # if false, this test case won't count lc_latin_b_curls = [0x221, 0x234, 0x235, 0x236] assume(s[0].isalpha() and ord(s[0]) < 128) # ascii only assert capitalizeWord(s)[0].isupper() @given(s=text()) def test_rest_of_string_unchanged(self, s): assume(len(s) > 0) assert capitalizeWord(s)[1:] == s[1:] if __name__ == "__main__": # This block runs only if this script is being run directly, not # if it's being imported into another module. import doctest fails, tests = doctest.testmod() assert fails == 0 and tests > 0 print("Passed", tests, "doc tests.") unittest.main()
4628aec6692f05704bd74d799a40d08f34ae0502
marekbrzo/PythonDataAnalysisNotes
/5-1_OutlierAnalysisExtremeUnivariateMethods.py
3,601
3.828125
4
# OUTLIER ANALYSIS # Outlier detection is useful for the following: Preprocessing task for analysis or machine learning. Analytical # methods of its own. # Three main types of outliers: # Point outliers: observations anomalous with respect to the majority of observation in a feature( univariate outlier) # Contextual outliers: observations considered anomalous give a specific context. (E.g., Warm day, but where and when) # Collective outliers: a collection of observations anomalous but appear to close to one another because they all have # a similar anomalous value. # Methods for Outlier Detection # Extreme value analysis with the Tukey methods. # Multivariate analysis with boxplots and scatterplot matrices. # Machine learning - density-based spatial clustering of applications with noise (DBSCAN) and PCA. # Outlier Analysis can be used for: Discovering anomalies such as, Equipment failure, Fraud, Cybersecurity event. # In this section we will be using the Tukey method. They can be used to find extreme values outside the interquartile # range. # When looking at boxplots, the whiskers are set at 1.5 the interquartile range. Most likely data points outside the # whiskers are outliers. The most top whisker to the most top box bar represents the UPPER QUARTILE, here 25% of the # data points are higher then the box bar value. Analogues with the UPPER QUARTILE, is the LOWER QUARTILE, where the # extreme lows are. # Instead of using the BOXPLOT we can determine the TUKEY Outlier Label mathematically. # Interquartile Range (Spread: IQR) = Distance between the Lower Quartile (@25% [1st:Q1]) and the Upper Quartile(@75% [3rd:Q3]) # a = Q1 - 1.5(IQR) # b = Q3 + 1.5(IQR) # Mins below a or maxs above b, then the variable is suspect for outliers. #%% import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sb from matplotlib.pylab import rcParams #%% rcParams['figure.figsize'] = 5,4 sb.set_style('whitegrid') #%% address = "C:/Users/Marek/Desktop/Python/Ex_Files_Python_Data_Science_EssT/Ex_Files_Python_Data_Science_EssT/Exercise Files/Ch05/05_01/iris.data.csv" # Indication that comma seperates data flower_data = pd.read_csv(address, header = None, sep = ',') flower_data.columns=['Sepal Length','Sepal Width', 'Petal Lenght','Petal Width', 'Species'] # X and Y values of the data flower_data_x = flower_data.iloc[:,0:4].values flower_data_y = flower_data.iloc[:,4].values flower_data[:5] #%% # Lets make a BoxPlot flower_data.boxplot(return_type = 'dict') plt.plot() #%% # Notice in the Sepal width plot, values above 4 and below 2.05 are great outlier candidates. The lie outside the whiskers. # Let us deal with this outliers. First we need to filter out the data. sepal_width =flower_data.iloc[:,1] iris_outliers = (sepal_width > 4) flower_data[iris_outliers] #%% # Now values of sepal width less than 2.05 sepal_width =flower_data.iloc[:,1] iris_outliers = (sepal_width < 2.05) flower_data[iris_outliers] # This is how visually we determine outliers #%% # Applying the Tukey outlier method. pd.options.display.float_format = '{:.1f}'.format x_flower_data = pd.DataFrame(flower_data_x) print (x_flower_data.describe()) #%% # We can determine the IQR mathematically. # IQR = 3.3 - 2.8 = 0.5 # Tukey = (1.5)*IQR = 0.75 # Outliers in the first quartile = 2.8 - 0.75 = 2.05 # Our min values is less than that. # Outliers in the third quartile = 3.3 + 0.75 = 4.05 # Our max value is more than that.
4d7da82ee3cb1c2ad364b70070013da79fb7b618
Harini-Pavithra/GFG-11-Week-DSA-Workshop
/Week_11/Dynamic Programming/Longest Increasing Subsequence.py
2,516
4.09375
4
Longest Increasing Subsequence Given an array of integers, find the length of the longest (strictly) increasing subsequence from the given array. Example 1: Input: N = 16 A[]={0,8,4,12,2,10,6,14,1,9,5 13,3,11,7,15} Output: 6 Explanation:Longest increasing subsequence 0 2 6 9 13 15, which has length 6 Example 2: Input: N = 6 A[] = {5,8,3,7,9,1} Output: 3 Explanation:Longest increasing subsequence 5 7 9, with length 3 Your Task: Complete the function longestSubsequence() which takes the input array and its size as input parameters and returns the length of the longest increasing subsequence. Expected Time Complexity : O( N*log(N) ) Expected Auxiliary Space: O(N) Constraints: 1 ≤ N ≤ 105 0 ≤ A[i] ≤ 106 Solution class Solution: #binary search function finds the position of the first integer #in arr[] which is greater than or equal to 'value'. def binarySearch(self,lst, l, h, value): #if new value is greater than all array values, #then it is placed at the end. if value > lst[h]: return h+1 #binary search algorithm. while h>l: middle = (h+l)//2 if lst[middle] == value: return middle if lst[middle] > value: h = middle else: l = middle + 1 return h #Function to find length of longest increasing subsequence. def longestSubsequence(self,a,n): #tail[i] holds the last value in a subsequence of length i+1. tail = [0 for _ in range(n)] tail[0] = a[0] #the position of last filled index in tail[]. lastIndex = 0 for i in range(1,n): #getting the furthest possible index for a[i]. index = self.binarySearch( tail, 0, lastIndex, a[i] ) tail[index] = a[i] #updating lastIndex. lastIndex = max( lastIndex, index ) #returning the result. return lastIndex+1 #{ # Driver Code Starts #Initial Template for Python 3 if __name__ == '__main__': for _ in range(int(input())): n = int(input()) a = [ int(x) for x in input().split() ] ob=Solution() print(ob.longestSubsequence(a,n)) # } Driver Code Ends
4baf97aeec02c5cfd6bb230125e43d7ecedfeae9
davidnge/euler
/prob-7.py
520
4.03125
4
#What is the 10 001st prime number? import math def isPrime(number): if number == 2: return True if number % 2 == 0: return False i = 3 sqrtOfNumber = math.sqrt(number) while i <= sqrtOfNumber: if number % i == 0: return False i = i+2 return True def main(): n = 2 count = 0 while n > 0: if isPrime(n): count+=1 if count == 10001: print n break n+=1 main()
f47622994a626386f0e8861c2c60561e3337b37e
juliodparedes/python_para_dioses
/ejercicios/08MayorNumero.py
293
3.96875
4
print("Humano vas a ingresar dos números:") n1=int(input("Numero 1: ")) n2=int(input("Numero 2: ")) if n1==n2: print("Humano los 2 numeros son iguales") elif n1>n2: print(f"Humano el número {n1} es mayor que {n2}") else: print(f"Humano el número {n2} es mayor que {n1}")
631270d081b572d6901a8147220cd8e434ee705a
camelct/python-study
/5-6.如何在环状数据结构中管理内存.py
1,521
3.875
4
''' 问题:如何在环状数据结构中管理内存? 实际案例 在python中,垃圾回收器通过引用计数来回收垃圾对象,但某些环状数据结构(树,图...)存在对象间的循环引用, 比如树的父节点引用子节点子节点也同时引用父节点.此时同时del掉引用父子节点两个对象不能被立即回收. 如何解决此类的内存管理问题? 解决方案 使用标准库weakref,它可以创建一种能访问对象但不增加引用计数的对象, ''' # import weakref # class A(object): # # 析构函数 在回收的时候,会被调用 # def __del__(self): # print('in A.__del__') # a = A() # import sys # print(sys.getrefcount(a) - 1) # a2 = a # print(sys.getrefcount(a) - 1) # del a2 # print(sys.getrefcount(a) - 1) # # a = '79' # # print(sys.getrefcount(a) - 1) # a_wref = weakref.ref(a) # a2 = a_wref() # print(a is a2) import weakref class Data(object): def __init__(self, value, owner): self.owner = weakref.ref(owner) self.value = value def __str__(self): return '%s"s data, value is %s' % (self.owner(), self.value) def __del__(self): print('in Data.__del__') class Node(object): def __init__(self, value): self.data = Data(value, self) def __del__(self): print('in Node.__del__') node = Node(100) del node input('wait...') # 强制回收 也不能进行回收 # import gc # gc.collect()
530fcc088b054e1d293e498e7b4b72a82942d94a
deadbok/eal_programming
/Assignment 2A/prog4.py
4,985
3.859375
4
#!/usr/bin/env python # -*- coding: utf-8 -*- # The above lines tell the shell to use python as interpreter when the # script is called directly, and that this file uses utf-8 encoding, # because of the country specific letter in my surname. """ Name: Program 4 Author: Martin Bo Kristensen Grønholdt. Version: 1.0 (13/11-2016) Asks the user to enter the monthly costs for expenses incurred from operating and owning an automobile. Print out the total cost of the expenses for a month and a year. """ class Car(object): """ Class to calculate the expenses incurred from operating and owning an automobile. """ # Loan payment per month. loan_payment = 0 # Insurance payment per month. insurance = 0 # Expenses on gas per month. gas = 0 # Expenses on oil per month. oil = 0 # Expences on tires per month. tires = 0 # Expenses on maintenance per moth. maintenance = 0 def __init__(self): """ Ask for values from the user, for expenses, when instantiating this object. """ print('Enter the monthly payment for each of these expenses:') try: self.loan_payment = float(input('\tLoan payment: ')) self.insurance = float(input('\tInsurance: ')) self.gas = float(input('\tGas: ')) self.oil = float(input('\tOil: ')) self.tires = float(input('\tTires: ')) self.maintenance = float(input('\tMaintainance: ')) except ValueError: # Complain when something unexpected was entered. print('\nPlease use only numbers.') exit(1) def calc_expenses_for_months(self, current_expenses=None, months=1): """ Calculate the expenses for an span of months. :param current_expenses: Tuple of the current expenses incurred up until the current call of the function. :param months: Span of months to calculate expenses for. :return: A dictionary with the total cost for each expense. """ # If there are still more month to go. if months != 0: # If this is not the first call to this function. if current_expenses is not None: # Add monthly expenses to the current expenses. current_expenses['Loan payment'] += self.loan_payment current_expenses['Insurance'] += self.insurance current_expenses['Gas'] += self.gas current_expenses['Oil'] += self.oil current_expenses['Tires'] += self.tires current_expenses['Maintenance'] += self.maintenance else: # If this is the first call create a dictionary for the # expenses and add them for the current month. current_expenses = dict() current_expenses['Loan payment'] = self.loan_payment current_expenses['Insurance'] = self.insurance current_expenses['Gas'] = self.gas current_expenses['Oil'] = self.oil current_expenses['Tires'] = self.tires current_expenses['Maintenance'] = self.maintenance # Make the function recursive, to shoot myself in the foot when # I have to create the hierarchy diagram. # The function calls itself until month is 0. return(self.calc_expenses_for_months(current_expenses, months - 1)) else: # If this is the final call, return a dictionary of the acumulated # expenses. return(current_expenses) def expenses_for_months(self, months=1): """ Calculate and output the expenses for a span of months. :param months: Span of months to calculate expenses for. """ # Print a header for the expenses output. print('\nExpenses for {} months: '.format(months)) # Get a dictionary with the total expenses as values and expense name # as key. expenses = self.calc_expenses_for_months(None, months) # Variable to keep the total cost of all expenses. total_cost = 0 # Run through all expenses in the dictionary printing their key # as description and value as result. for key, value in expenses.items(): # Align both the description and the result using new style string # formatting. print('\t{:<12}: {:12.2f}'.format(key, value)) total_cost += value #Print the total cost print('\t{:<12}: {:12.2f}'.format('Total cost', total_cost)) def main(): """ Program main entry point. """ #Create the Car instance car = Car() # Calculate and print the expenses for one month. car.expenses_for_months(1) # Calcualte and print the expenses for a year. car.expenses_for_months(12) # Run this when invoked directly if __name__ == '__main__': main()
a8c93cc0bdf7455e1873d157ab4abab0ffbaa51a
Gavinzqk/python-1
/python实战一期/python基础篇/1.python基础/流程控制-for/for.py
2,131
3.578125
4
#! /usr/bin/env python # encoding: utf-8 ''' @author:Gavin @contact: [email protected] @file: for.py @time: 2019/1/7 15:38 ''' # dic = dict.fromkeys("abcde",100) # for i in dic: # print(i) # dic = dict(name='gavin',age=29) # for k in dic: # print("%s: %s" % (k,dic[k])) # dic = dict(name='gavin',age=29) # for k in dic: # print("%s--->%s" % (k,dic[k]),end=' ') # dic = dict(name='gavin',age=29) # for k in dic.items(): # print(k) # dic = dict(name='gavin',age=29) # for x,y in dic.items(): # print("%s: %s" % (x,y)) # for x in range(1,10): # for y in range(1,x+1): # print("%s*%s=%s" % (y,x,y*x),end=' ') # print() # sum = 0 # for i in range(1,101): # sum = sum + i # print(sum) # import random # ran = random.randint(1,20) # for i in range(1,7): # num = int(input("please input a number: ")) # if num == ran: # print('你赢了') # break # else: # if num >ran: # if 6-i != 0: print("太大了") # elif num <ran: # if 6-i != 0: print("太小了") # else: # print('你输了') # import random # ran = random.randint(1,20) # for i in range(1,7): # while True: # num = input("please input a number: ") # if num.isdigit(): # break # else: # continue # num = int(num) # if num == ran: # print("you win") # break # else: # if num > ran: # if 6-i !=0 :print('too large') # if 6 - i != 0: print('you have '+ str(6-i) + ' test') # elif num < ran: # if 6 - i != 0: print('too small') # if 6 - i != 0: print('you have ' + str(6-i) + ' test') # else: # print('you lose') # for i in range(1,5): # if i == 3: # continue # if i == 4: # break # print(i) # else: # print('main end') # import sys # for i in range(1,11): # if i == 3: # continue # if i == 8: # sys.exit() # print(i) # else: # print('end') # import time # for i in range(1,10): # print(i) # time.sleep(1) # else: # print('main end')
c8770b7c4d94c9e49c015f200aff5e285d35ee7c
MonoNazar/MyPy
/0.7/Rank.py
998
3.859375
4
n = [1, 2, 3, 8, 5, 3, 6] l = 1 n.append(l) n.sort() print(len(n) - n.index(l)) #Петя перешёл в другую школу. На уроке физкультуры ему понадобилось определить своё место в строю. Помогите ему это сделать. # Программа получает на вход невозрастающую последовательность натуральных чисел, означающих рост каждого человека в строю. # После этого вводится число X – рост Пети. Все числа во входных данных натуральные и не превышают 200. # Выведите номер, под которым Петя должен встать в строй. # Если в строю есть люди с одинаковым ростом, таким же, как у Пети, то он должен встать после них.
982a248377910a3d5d546421742f87f7a24ec9d2
Aasthaengg/IBMdataset
/Python_codes/p02262/s935999369.py
715
3.625
4
n = input() A = [input() for i in range(n)] def insertionSort(A,n,g): cnt = 0 for i in range(g,n): v = A[i] j = i - g while j >= 0 and A[j] > v: A[j+g] = A[j] j -= g cnt += 1 A[j+g] = v return cnt def shellSort(A,n): cnt = 0 m = int((n-1)/3) G = [1] for i in range(1,n): gn = G[i-1]+3**i if gn > n: break G.append(gn) m = len(G) for i in range(m): j = (m-1) - i cnt += insertionSort(A,n,G[j]) return m, G, cnt m, G, cnt = shellSort(A,n) print m for i in range(1,m): j = m - i print G[j], print G[0] print cnt for item in A: print item
e54877eca7323d768536d1cb303ab395f0fc778e
innovatorved/BasicPython
/x33- if element in list.py
225
3.875
4
fruits=('apple','bannana','pine apple','guava') a=input('Enter the fruit name: ') if a in fruits: print('fruit is already available-@',fruits.index(a)) print(fruits.index(a)) else: print('fruit is not available')
c2a24a42c40b748b0b81c7dc84d5985081af0832
martinegeli/TDT4110
/øving5/øving5-8.py
1,000
3.65625
4
def gcd(a,b): while b!=0: gammel_b=b #i løkken setter vi gammel_b til å være b b=a%b #finner b ved å ta a modulo b, som gir rest etter at a er delt på b a=gammel_b #setter a til å være gammel_b, slik at fra øverst så vil nå resten fra a%b bli til a, som vil brukes til å finne ny rest i neste runde hvor løkken kjører. Dette kjører helt til b blir 0, som da har funnet minste felles divisor. Løkken returnerer a som blir minste felles divisor. return a print(gcd(100, 8)) def reduce_fraction(a,b): d = gcd(a, b) #setter variabelen d til å være gcd mellom a og b fra gcd-funksjonen. a2=int(a/d) #d som er et heltall fra gcd mellom a og b, vil gi et heltall når a deles med d. Dette settes til variabelen a2 som returneres. b2=int(b/d) return [a2,b2] a=int(input('a: ')) b=int(input('b: ')) ab=reduce_fraction(a, b) #fordi jeg returnerte som en liste så vil ab[0] høre til a2 print('brøken a = ', a, '; b = ', b, 'skriver programmet ut "',ab[0], '/',ab[1], '"')
ea3c26852f08784c46fe4538b4d184e173941145
AlanMorningLight/GAN_work_internship
/python_training/p11.py
342
3.734375
4
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Dec 14 18:59:19 2019 @author: sarfaraz """ class employee: def __init__(self, id1, name): self.id1 = id1 self.name = name def display(self): print(self.id1, self.name) obj = employee(17103078, "Sarfaraz"); obj.display()
42730e22946b8a4adf78b9a36ee27902dacc3ce5
xiaogy0318/coding-exercises
/python/PythonTreeTest/PythonTreeTest.py
5,097
3.53125
4
treedata = '425a68393141592653599f22b34c00003edd80001040047ff00002bf209a00500507800001a00004aa7a69a9ea35334c937aa69e81aa7a6a327b48d4680029a3401a0000a68d00680000aaa9e099302152834f5371f4758d491b5e50959d6b4854861548a73b519ee445ad39276874864a9fda586cf19f1f3810ece4b1b98071c83f0e6a744c62e4164d77f8a986547dfd8b6d32d2cee6ff1474ffdfdfeb4fef10fdd2785143d61441a51551fc6974167f1059879fc434eda55a9b492e82c78617614d9a748b4b2ae96a21a8a041232cbd727b830a2ee3b49076824d41749b2cb9b3a69749a74a26db0f7dc36fe4aef10befdb49c47f7ce956d259145c48b26ea88a304544d541c5932b755641e27e24a13fd74d35cb3bca69f649277ebefd0612c2cd32db2f5174d3083b209a1dba6d95dd2cd9461b77044f7dda6f5969551679ce8e20da8bb4b9245e31c841ef5f791fd241daafd2e3083e79e55936abecd527af59f9f32f9a789bf6de395bcde34dbef3d876f2eabe7105d94d58206a7d2f7ab8c71555db8e977a8a7dee774289be4d874f914dc73925db6d045b59051f63d7a8b8e30aace927ab49545debcd26da2979a6544f884eaf5046a8a2bf906de38baa9308acbb8820822d34da5743f45ef957155117af11c4fdda6e3a4e4f5ae3d5d359359e3cf34e32869ea2d36e3d4c9b3e42f7938da282abba78edeacf58e9da2ca0e918b28f6e915905137e8ab671061c74c2cbbef6bc5dd6d6692414ed0bba4df5f2abe5515de3b2d6f967ce964585d07104d069c55b7adb0f1674a26cbb5bb7bc951c71eb6ce90baaca6d2654fa687ee24e206587aa20d341038c811790299d432519d685614b63687a83a4e2e1d64c263538e2cfbed36f5c34bb28bb55b4517aa22c63e49cd21a6d75174507a933ada28b8cbb4ddb8f0da892486d0fd84def9c49769bcbe674e9441e27341475a43b3b4dc5986dc74aa2e9e14554744966177de7157b2f165139d0e26f9ebed3a749b6f1abf4f1e28f565d741eb2aa4f57599cc2184b2e9c4166596dc76f5545274e3082b845d28ba6d6a10a32c30f17419edd36e9e3a79543a3493c2cf136512acb5996abdacc2584d1b30bcfc511509f6d27743f57a434eff4d976945869445674b3b753cdb3a6996db49f32eda554536db29a8a51069759541d2abfcb22c2acbefbcaa0a3b61369c7ac22f1a48bb49be7af976925d793e74ba4aa8c20b28e8dbb69343efd069f7df3b2af1841359961751345478e26edeac824ed651671661759876a25daacbe7a932dacd30b36cbb7c9a4e32b2aedf7efdffc5dc914e142427c8acd30' import binascii import os import bz2 from os import listdir import shutil class Node: text = ""# For holding the file name as key nodes = []# For the children value = "" # the leaf's value. Only when nodes is empty def printNode(self): #print "text: ", self.text #print "value: ", self.value if (len(self.value) > 0): print self.value, #print "nodes: ", counter = 0 for i in self.nodes: #print "child #", counter, ": ", i counter = counter + 1 #print def printTreeNode(node): # print node itself node.printNode() # print children from left to right for childKey in node.nodes: #print "Found child: ", childKey #printTreeNode(child) # Now I have child's text, Now find it in the dict childNode = filedict[childKey] printTreeNode(childNode); ''' # Test a simple tree node1 = Node() node1.text = "node1" node2 = Node() node2.text = "node2" node1.nodes.append(node2); print node1.text print node1.nodes print node2.text ''' shutil.rmtree("tree") #os.rmdir("tree") os.mkdir('tree') for f in bz2.decompress(binascii.unhexlify(treedata)).split(','): arr = f.split(':') fid = open('tree/'+arr[0], 'w') fid.write(arr[1]) fid.close() # Interviewee starts below here. You can look at the above if you like but it won't help. # The above code created a directory called 'tree' with ~ 30 files in it. # Each file defines a node in the tree and contains either: # - A single character. This is a leaf node of the tree; or # - A list of space separated file names. These nodes are the children of the node associated with the file name. # The children are listed as nodes left-to-right. # Your job is to: # A) Find the root node. # B) Traverse the tree using a left first traversal and print the characters in each leaf node. This should produce # English text. # #print("Here's a list of files in the 'tree' directory: %s" % '\n'.join(sorted(os.listdir('tree')))) # Construct the tree # Read from files and put them into Node class, and then the nodes into an array filelist = [] # Read the file names from directory "tree" and put into the Node class for f in listdir('tree'): node = Node() node.text = f filelist.append(node) # Now open the file and read the content fid = open('tree/' + f, 'r') #print node.text, "has: ", fid.read() # either a single character (leaf), or a space delimetered string of file names content = fid.read() # Now parse the content if (len(content) == 1): # leaf node.value = content else: # Now just need to convert to array and put in nodes node.nodes = str.strip(content).split(" ") #node.printNode() #for i in filelist: # print i.printNode() # Now scan the filelist, and construct the tree # Find root first, then from root, just scan the rest and link to all childrens, recursively # Use dict instead of list of better in searching... Now try to convert list to dict ''' filedict = {} #print filedict["af30f30738b20428a2dd39df98e93e97"]; ''' # Find root now... # Root is the node whose text never appears in its any other nodes' children list filedict = {} for i in filelist: filedict[i.text] = i filedict = dict(filedict) root = Node() for i in filelist: nodeText = i.text # This is the node's text for the test # Now scan all nodes in the dict (for simplicity, including itself, which doesn't matter) isRoot = True for key in filedict: # Check if nodes contains the text nodes = filedict[key].nodes for temp in nodes: if nodeText in temp: # this node is not root isRoot = False else: # Should continue the test until exhausted continue # Now we know if it's a root or not if(isRoot): # Now we know i is the root, stop #print "Found root:" root = i; break else: continue # Now print the root #root.printNode() printTreeNode(root) ''' # print children from left to right for childKey in root.nodes: print "Found child: ", childKey #printTreeNode(child) # Now I have child's text, Now find it in the dict childNode = filedict[child] childNode.printNode() ''' # Now we build up the tree by truely linking to each other (previously the link is by text, now update the nodes with actual nodes...) # Oh, actually, no need to if the job is to print out the stuff. ''' fid = open('tree/'+arr[0], 'w') fid.write(arr[1]) fid.close() '''
e9c8db28d30cb6c5a70114107e249aeb8cc524f4
dailycode4u/python4u
/Topics/functions.py
157
3.890625
4
def scan_letter(word:str,letters:str='aeiou') ->set: """returns a set of letters found in a phrase""" return set(letters).intersection(set(word))
e9e52334d88294ffaf39fb3f8f33e39e5d7b2047
IsinghGitHub/advanced_python
/adv_py_1_try_accept_raise/assert_example.py
279
4.1875
4
raw_a = raw_input("Enter a positive number: ") try: a = float(raw_a) except ValueError: print('You must enter a number') raw_a = raw_input("Enter a positive number: ") a = float(raw_a) assert (a > 0), "A is not positive" b = 7.0 c = a + b print('c = %s' % c)
0077e236869fbf5ee9f76e06a89827c2626cfa8b
alexyi822/122bprog2
/findkthlargest.py
908
3.96875
4
#sort an array and return kth element #take input file as command line argument and k value as command line argument # http://interactivepython.org/runestone/static/pythonds/SortSearch/TheInsertionSort.html import time import sys comp = 0 # number of comparisons def insertion_sort(arr): global comp for index in range(1, len(arr)): currentValue = arr[index] pos = index while pos > 0 and arr[pos-1] > currentValue: comp = comp+1 arr[pos]=arr[pos-1] pos=pos-1 arr[pos] = currentValue def main(): start = time.clock() # k = 5 k = int(sys.argv[2]) nums = [] with open(sys.argv[1]) as f: for line in f: nums.append(int(line)) # nums.sort() insertion_sort(nums) end = time.clock() print("kth element:\t %d" % (nums[k-1])) print("Comparisons:\t %d" % (comp)) print("Time:\t %f" % (end-start)) if __name__ == "__main__": main()
26bdc8888a13d9ad20e5587818cde136804e18c3
supremeKAI40/NumericalMethods
/Root Finding Mehtod/BisectionMethod.py
749
3.84375
4
import math def f(x): return x**(3)+x**-100 x0= float(input('enter first guess: ')) x1= float(input('enter second guess: ')) question=float(input ('question number: ')) error= 0.0001 def bisection(x0,x1,x2): step=1 print('\n\n solution to question %0.2f \n****Bisection Method Implementing***\n'%(question)) print('\n Iteration \t a \t\t b \t\t xn \t\t f(xn)\n') condition= True while condition : x2= (x0+x1)/2 print('Iteration -%d, \t %0.6f, \t %0.6f, \t %0.6f, \t %0.6f' % (step,x0,x1,x2,f(x2))) i=f(x0)/f(x2) if i<0: x1=x2 else: x0=x2 step+=1 condition = abs(f(x2))>error print('\nRequired root is : %0.8f' % x2) if f(x0)/f(x1)>0: print("The guess value don't bracket a root") else: bisection(x0,x1,error)
8ea7b827ab9753dbd47f3e74c589dd9f52b1bb90
Bloodielie/tg_contrallers_bot
/utils/utils.py
1,736
3.671875
4
from configuration.message import MESSAGE_KEYBOARD def converting_time(sec_time: int): """ Добавления правильного окончания для времени """ hours = sec_time // 3600 minutes = None if sec_time % 3600 == 0.0: pass else: minutes = int((sec_time - hours * 3600) / 60) if hours == 1: hours_prefix = "час" else: hours_prefix = "часа" min_prefix = "минут" if hours == 0: return f'{minutes} {min_prefix}' elif minutes: return f'{hours} {hours_prefix} {minutes} {min_prefix}' else: return f'{hours} {hours_prefix}' def deconverting_time(time: str): """ Декодирование окончания в секунды """ _str = time.split() sec = 0 if len(_str) == 2: if _str[1] == "час": sec += 3600 elif _str[1] == "часа": if len(_str) == 2: sec += int(_str[0]) * 3600 elif _str[1] == "мин": sec = 1800 else: sec += (int(_str[0]) * 3600) + 1800 return sec def text_display(data: list): """ Представление словаря в тексте """ text = '\n'.join([f'{stop[0]}, {stop[1][0]}, {stop[1][1]}' for stop in data]) if text: return text else: return 'Остутствуют сообщения людей.' def get_data_from_list(data_list: list) -> list: text_city = [] for _ in data_list: for text_keyb in _: if text_keyb == MESSAGE_KEYBOARD['back_keyb'] or text_keyb == MESSAGE_KEYBOARD['menu_keyb']: continue text_city.append(text_keyb) return text_city
b279a10910865ed288d9e6a51ec599605154ce89
navy-xin/Python
/Python 100例/Python 练习实例9.py
261
3.65625
4
#!/usr/bin/python # -*- codeing = utf-8 -*- # @Time : 2020/12/11 16:47 # @Author : navy # @File : Python 练习实例9.py # @Software: PyCharm import time myD = {1: 'a', 2: 'b', 3: 'c'} for key, value in dict.items(myD): print(key,value) # time.sleep(1)
c3d3ee3946922d95da53def8c724dd0acda226f6
causeyo/udemy_modern_bootcamp
/csv/12_delete_users.py
1,211
3.65625
4
""" delete_users("Grace", "Hopper") # Users deleted: 1. delete_users("Colt", "Steele") # Users deleted: 2. delete_users("Not", "Here") # Users deleted: 0. """ from csv import reader, writer def delete_users(first, last): with open('users.csv') as file: user_list = list(reader(file)) users_matched = sum([1 for user in user_list if user == [first, last]]) new_user_list = [elem for elem in user_list if elem != [first, last]] if users_matched: with open('users.csv', "w") as file: csv_writer = writer(file) for user in new_user_list: csv_writer.writerow(user) return "Users deleted: {}.".format(users_matched) """ udemy solution import csv def delete_users(first_name, last_name): with open("users.csv") as csvfile: csv_reader = csv.reader(csvfile) rows = list(csv_reader) count = 0 with open("users.csv", "w") as csvfile: csv_writer = csv.writer(csvfile) for row in rows: if row[0] == first_name and row[1] == last_name: count += 1 else: csv_writer.writerow(row) return "Users deleted: {}.".format(count) """
2024ce51873d26eae12c3fd122e404fb5192bd9b
nupur24/python-
/nupur_gupta_16.py
433
3.703125
4
# -*- coding: utf-8 -*- """ Created on Wed May 16 11:40:34 2018 @author: HP """ s=raw_input("enter string:") def translate(): str2 = '' x=['a','e','i','o','u',' '] for i in s: if i in x: str2 = str2 + i else: str2 = str2 + (i+'o'+i) print str2 translate()
0cd79e483c0ece6b4c48777f6b88a998f662dd12
noahmelngailis/business-resources
/webscraping_dynamic_webpages_for_boa.py
3,534
3.6875
4
import pandas as pd # for running selenium from time import sleep import selenium from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager def find_nearest_bank_of_america(df): """This function pulls in data from a csv and returns a dataframe with the additional columns of address and distance of the closest bank locations""" rank_list = [] location_name = [] bank_location_address = [] bank_location_name = [] distance_to_bank = [] text = 'This Financial Center has been temporarily closed. Please visit one of our neighboring ATMs or utilize Online and Mobile Banking, all of which are available 24 hours a day, 7 days a week. To make an appointment to access your safe deposit box during regular business hours, email us your full name, address and phone number at:[email protected] .' browser = webdriver.Chrome(ChromeDriverManager().install()) sleep(1) for i in df.index: # get url from dataframe url = f'https://locators.bankofamerica.com/?lat={df.Latitude[i]}&lng={df.Longitude[i]}' # let selenium do its magic browser.get(url) sleep(2) location = browser.find_elements_by_class_name("map-list-item") # debugging print(i) #number of inputs returned: this returns top five closest locations, unless it has less than 5 locations then it returns that number of locations. if len(location) >= 5: z = 5 else: z = len(location) #build out lists of responses from webscrape for x in range(z): if location[x].text.split('\n')[6] == text: continue else: location_id = df.location_id[i] address = location[x].text.split('\n')[5] distance = location[x].text.split('\n')[3] name = location[x].text.split('\n')[1] # create lists from data rank_list.append(x) location_name.append(location_id) bank_location_name.append(name) bank_location_address.append(address) distance_to_bank.append(distance) return df, rank_list, location_name, bank_location_name, bank_location_address, distance_to_bank def create_bank_df(location_name, rank_list, bank_location_name, bank_location_address, distance_to_bank): """This function takes in a series of lists and turns them into a data frame. Then pivots the data frame by location id to return a usable df for locating nearest banks""" data = {'location_id': location_name, 'distance_rank': rank_list, f'name_of_bank_location': bank_location_name, f'address_of_bank': bank_location_address, f'distance_to_bank': distance_to_bank} locations = pd.DataFrame(data) locations['for_operators'] = (locations.name_of_bank_location + " Bank of America Location is at " + locations.address_of_bank + ". This is " + locations.distance_to_bank + " miles from your retail location" ) for_export = locations.pivot(index='location_id', columns='distance_rank', values='for_operators').fillna('location closed') return for_export
e7376b92e6eeefdf3048e70557eab438eebe4d91
hooj0/python-examples
/17_examples_object/init.py
827
3.625
4
#!/usr/bin/env python3 # encoding: utf-8 # @author: hoojo # @email: [email protected] # @github: https://github.com/hooj0 # @create date: 2018-04-01 18:09:37 # @copyright by hoojo@2018 # @changelog Added python3 `object -> init` example class Student: name = 'jack' age = 22 ''' 初始化方法,构造方法 ,在实例化创建''' def __init__(self): self.name = 'jason' self.age = 33 # 创建实例化,init方法被执行 stu = Student() print('name: %s, age: %s' % (stu.name, stu.age)) class Class: name = 'calss 1' # 有参构造函数 def __init__(self, no, author): self.Num = no self.Author = author cla = Class('453122645', 'tom') print('name: %s' % cla.name) print('Num: %s, Author: %s' % (cla.Num, cla.Author))
ff74b24b9d57ba80b7b9a7e53ed675e96aa899b5
aysla001/ExploreDataScience
/Ch1 Fundamentals/Ex 1.4.1 SciKit.py
744
3.59375
4
#scikit-learn, scikit imported as sklearn is a machine learning library that is built on top of NumPy, SciPy, and matplotlib. #scaling data import numpy as np import sklearn as sk from sklearn import preprocessing data = np.genfromtxt('sample.data', delimiter=',', dtype='f8,f8,f8,f8',names='a,b,c,d') #this method of import creates a flexible type which does not allow `mean.()` to be called X = np.array([data[x] for x in data.dtype.names]) mean = X.mean(axis=0) stdev = X.std(axis=0) mean #will return the mean of each column #preprocessing subtracts the mean and divides by the standard deviation scaledData = preprocessing.scale(X) # mean of scaledData scaledData.mean(axis=0) # standard deviation of scaledData scaledData.std(axis=0)
10f78fc10279b209766cdaf22309e3b4a13e7a8a
presscad/Some_codes
/aboutPython/DATAstructure By Python/arraylist_1.py
1,505
4.21875
4
""" File:arraylist_1.py Date:Sep 14 2018 20:29 Description:重构后的ArrayList类的代码 """ from arrays import Array from abstractlist import AbstractList from arraysortedlist import ArraySoredList from arraylistiterator import ArrayListIterator class ArrayList(ArraySoredList): """An array-based list implementation""" def __init__(self,soureCollection = None): """Set the initial atate of selt ,which include the cntent of soureCollection if it's present.""" ArraySoredList.__init__(self,soureCollection) # Accessor methods def index(self,item): """Precondition: item is in the list.Return the position of the item , Raise: ValueError if the item is not in the list """ return AbstractList.index(self,item) # Mutator methods def __setitem__(self,i,item): """Preconditon 0<=i<len(self), Replace the item at position i Raise: indexError if i is out of the range """ if i<0 or i>=len(self): raise IndexError("List index out of range") self._items[i] =item def insert(self,i,item): """Insert the item at position i""" #Resize the array here if necessary if i<0: i=0 elif i>len(self): i=len(self) if i<len(self): for j in range(len(self),i,-1): self._items[j] = self._items[j-1] self._items[i] = item self._size +=1 self.incModCount() def add(self,item): """ Add item to self.""" AbstractList.add(self,item) def listIterator(self): """return a list iterator """ return ArrayListIterator(self)
ba34e6c97dab49313d2ad1883013aa73b5e99a42
MichSzczep/PythonLab
/zad7b2.py
2,817
3.59375
4
import threading import time from threading import Lock class Lokaj: def __init__(self): self.mutex = Lock() def licz_paleczki (self): zajete = 0 for palka in paleczki: if palka.zajety: zajete += 1 return zajete def zapytaj_kelnera(self, lpaleczka, ppaleczka, pesel): if self.mutex.acquire(): if self.licz_paleczki() >= 4: res = False else: if (lpaleczka.zajety==False and ppaleczka.zajety==False): res = lpaleczka.wez_paleczke(pesel) and ppaleczka.wez_paleczke(pesel) else: res = False self.mutex.release() return res else: return False class Filozof: def __init__(self, pesel, lewaPaleczka, prawaPaleczka): self.pesel = pesel self.lewaPaleczka = lewaPaleczka self.prawaPaleczka = prawaPaleczka def posilek(self): #process for i in range(10): while not lokaj.zapytaj_kelnera(self.lewaPaleczka, self.prawaPaleczka, self.pesel): pass print("Filozof %s rozpoczyna posiłek" %self.pesel) time.sleep(1) # eat print("Filozof %s skończył posiłek" %self.pesel) self.lewaPaleczka.oddaj_paleczke(self.pesel) self.prawaPaleczka.oddaj_paleczke(self.pesel) print("Posilek numer: ", i) class Paleczka: def __init__(self, numer): self.numer = numer self.zajety = False self.semafor = threading.Semaphore() def wez_paleczke (self, pesel): zz= [] for j in paleczki: if j.zajety: zz.append(j.numer) print(zz) if self.zajety: return False self.semafor.acquire() self.zajety = True print("Paleczka o numerze %s jest wlasnie zabierana przez Filozofa %s" %(self.numer, pesel)) return True def oddaj_paleczke (self, pesel): self.semafor.release() self.zajety = False print("Paleczka o numerze %s została właśnie oddana przez Filozofa %s" %(self.numer, pesel)) paleczki = [] for i in range(5): paleczki.append(Paleczka(i)) lokaj = Lokaj() filozofowie = [] for i in range(5): if i==4: filozofowie.append(Filozof(i, paleczki[i], paleczki[0])) print("Filozof %s dostal paleczki %s, %s" %(i, i, 0)) else: filozofowie.append(Filozof(i, paleczki[i], paleczki[i+1])) print("Filozof %s dostal paleczki %s, %s" %(i, i, i+1)) watki = [] for i in range(5): watki.append(threading.Thread(target=filozofowie[i].posilek)) watki[i].start()
43796025fe8d1342758176901e91b5fbd0d91630
PashaKlybik/Python
/lab2/z6.py
597
3.6875
4
__author__ = 'pasha' class Defaultdict(): def __init__(self): self.dic = dict() def __get__(self, instance, owner): return self.dic def __setitem__(self, key, value): self.dic[key]=value def __getitem__(self, item): return Defaultdict.getitem(self,item,0) def getitem(self, item,point): if not self.dic.get(item): self.dic[item]=Defaultdict() return self.dic[item] def __str__(self): a = '{' for key in self.dic: a+=str(key)+": "+str(self.dic[key])+", " return a[:-2]+"}"
bb2ef09c654edf48e8c42eb9c281d5e180340a48
MayankHirani/Spring-Internship-2020
/realsimulator.py
6,993
3.515625
4
""" Spring Internship with Prof. Sinha Mayank Hirani 2020 [email protected] """ # Import everything from simulator for the class import simulator from importlib import reload reload(simulator) from simulator import * # Import random for probabilities import random # Import matplotlib for graphing import matplotlib.pyplot as plt # Import pandas dataframe for plotting heatmap from pandas import DataFrame # Import numpy for making DataFrame import numpy as np # Main simulator class class RealSimulator(): # Get the values needed, generate the sequences, insert the patterns def __init__(self): # ----- Stats ----- # Chance of pattern appearing in a sequence self.p = 1 # Chance for error in pattern self.e = 0 # Number of sequences self.num_of_sequences = 100 # Length of Pattern self.patlen = 10 # ----- Data ------ # This will be dictionary of accuracy self.p_data = {} self.e_data = {} self.vary_stats() print('P Results:', self.p_data) print('E Results:', self.e_data) # ----- Data Plotting ----- self.plot_data(self.p_data, 'P Data') self.plot_data(self.e_data, 'E Data') # General run, create pattern, create sequences, insert pattern def run(self): self.create_pattern() self.sequences_pattern = 'sequences_pattern.txt' self.create_sequences() return self.determine_accuracy(self.run_pattern_finder()) # Specific run, for each stat it will be varied and use the run() command def vary_stats(self): # Number of times run for each variable num = 1 # For whatever variable is being tested, a list of all successful/unsuccessful runs self.general_data = [] ''' # P for p in range(0, 101): # Default (90, 101) self.general_data = [] self.p = p / 100 # How many times you want to run with same stat value for x in range(num): self.general_data.append(self.run()) self.p_data[self.p] = self.general_data.count(1) self.p = 1 # Reset value for p to default (1) # E for e in range(0, 101): # Default (10, 61) self.general_data = [] self.e = e / 100 for x in range(num): self.general_data.append(self.run()) self.e_data[self.e] = self.general_data.count(1) self.e = 0 # Reset value for e to default (0) ''' # Pattern Length # Removed because the pattern length does not affect the accuracy (except for values 1-6) # Number of Sequences # Removed because the number of sequences does not affect the accuracy (except for values 1-10) # Varying two variables (p and e) at once and recording data in heat map self.plot_heatmap(num) # Create normal sequences and sequences with patterns and write them to designated files def create_sequences(self): f = open(self.sequences_pattern, 'w+') for sequence_counter in range(self.num_of_sequences): sequence = "" for x in range(1000): sequence += random.choice(['T', 'C', 'G', 'A']) # Only insert for chance p prob = random.random() if prob <= self.p: sequence = self.insert_pattern(sequence) f.write(sequence + '\n') f.close() # Input a sequence and output a sequence with the pattern inserted def insert_pattern(self, sequence): # Starting index of the patter pat_start = random.randint(0, len(sequence) - self.patlen + 1) # With chance e, alter the pattern prob = random.random() if prob < self.e: sequence = sequence[0:pat_start] + self.alter_pattern() + sequence[pat_start+self.patlen:] else: # Before pattern + Pattern + Ending part sequence = sequence[0:pat_start] + self.pattern + sequence[pat_start+self.patlen:] return sequence # Function to create the pattern def create_pattern(self): self.pattern = '' for x in range(self.patlen): self.pattern += random.choice(['T', 'C', 'G', 'A']) self.pattern_file = open('pattern.txt', 'w+') self.pattern_file.write(self.pattern) self.pattern_file.close() # Used to alter the pattern by 1 letter for chance e def alter_pattern(self): altered_pattern = list(self.pattern) index = random.randint(0, self.patlen - 1) # Choose a random letter that is not its own letter = self.pattern[index] while letter == self.pattern[index]: letter = random.choice(['T', 'C', 'G', 'A']) altered_pattern[index] = letter altered_pattern = ''.join(altered_pattern) return altered_pattern # Determine the accuracy by comparing the pattern found to right pattern (exact match) def determine_accuracy(self, pattern_found): if pattern_found == self.pattern: return 1 else: return 0 # ----------------------------------------------------------------------------- # Pattern Finder Section # Generate a dictionary of the frequency of all potential patterns present # in all the sequences def run_pattern_finder(self): self.pattern_counts = {} for sequence in open(self.sequences_pattern): for index in range(0, 1000 - self.patlen + 1): pat = sequence[ index : index + self.patlen ] if pat in self.pattern_counts: self.pattern_counts[pat] += 1 else: self.pattern_counts[pat] = 1 return max(self.pattern_counts, key=self.pattern_counts.get) # ----------------------------------------------------------------------------- # Plotting Section # Function for plotting the data from dictionary form def plot_data(self, data, type): # Convert the dictionary to usable form lists = sorted(data.items()) x, y = zip(*lists) # Plot the data plt.plot(x, y) plt.xlabel(type) plt.ylabel('Accuracy out of 100') plt.show() # Function for plotting the data into a heatmap def plot_heatmap(self, num): # Each row is a value of p, each column is a value of e rows = []; col = [] self.heatmap_data = np.zeros((101, 101)) for indexp, p in enumerate(range(0, 101, 1)): self.p = p / 100 # Add the values for the x axis labels and y axis labels rows.append(str(self.p)) col.append(str(self.p)) for indexe, e in enumerate(range(0, 101, 1)): self.e = e / 100 print(self.p, self.e) self.general_data = [] for x in range(num): self.general_data.append(self.run()) self.heatmap_data[indexp][indexe] = self.general_data.count(1) # Create a DataFrame of the results self.heatmap_data = DataFrame(self.heatmap_data, index=rows, columns=col) # Plot the DataFrame as a heatmap plt.pcolor(self.heatmap_data) # Set intervals for x and y axis plt.yticks(np.arange(0.5, len(self.heatmap_data.index), 1), self.heatmap_data.index) plt.xticks(np.arange(0.5, len(self.heatmap_data.columns), 1), self.heatmap_data.columns, rotation=90) # Set labels plt.xlabel('E Value') plt.ylabel('P Value') # The colorbar on the side showing what colors mean what colorbar = plt.colorbar() colorbar.ax.set_ylabel('Accuracy out of ' + str(num)) # Save the plot file as PNG type plt.savefig('heatmap') # Final Plot plt.show() if __name__ == '__main__': simulator = RealSimulator()
cdba980ce7c54174714288ba192ff62275e5209c
Ethan30749/monthy-python-and-the-holy-grail
/Creador de matrices.py
592
4.15625
4
def crear_matriz(M,N): matriz= [] #atribuye al valor "matriz" una lista vacía for i in range(M): matriz.append([]) #agrega listas vacías a la matriz equivalente al valor M for j in range (N): value=int(input("ingrese valores: ")) matriz[i].append(value) #agrega N valores a cada lista de la matriz return matriz #devuelve la matriz completa M=int(input("ingrese cantidad de filas: ")) N=int(input("ingrese cantidad de columnas: ")) #solicita los valores M y N para construir la matriz print(crear_matriz(M,N))
3fe9b0c225fc5ad42891692f2f5e0461f99bc01e
mdjglover/hotmail-eml-to-text-converter
/hotmail_eml_to_txt_converter/parser/Email.py
782
3.875
4
class Email(): # Simple object to hold email data def __init__(self): self.sender_name = "" self.sender_email = "" self.receiver_name = "" self.receiver_email = "" self.date = "" self.time = "" self.datetime_hotmail_format = "" self.subject = "" self.body = "" def __str__(self): output = f"From: {self.sender_name} <{self.sender_email}>\n" output += f"To: {self.receiver_name} <{self.receiver_email}>\n" output += f"Subject: {self.subject}\n" output += f"Date: {self.datetime_hotmail_format}\n" output += f"-------------------------------------------------------------\n" output += f"\n" output += f"{self.body}" return output
9515194406010ebd924b2632fd5c22d5df6b1383
ivan-ops/progAvanzada
/Ejercicio25.py
780
3.765625
4
# Ejercicio 25 # En este ejercicio usted revertira el proceso descrito en el ejercicio previo. # Desarrolle un programa que comnienze por leer una cantidad en segundos introducidos por el usuario. # Su programa debe desplegar la cantidad equivlente en forma de D:HH:NN:SS, # Donde D son los dias, HH las horas, MM los minutos y SS los segundos. # Las horas, minutos y segundos deben estar en formato de 2 digitos, con un 0 al inicio, si es necesario. d = 86400 h = 3600 m = 60 segundos = int(input('Introduce los segundos: ')) dias = segundos / d segundos = segundos % d horas = segundos / h segundos = segundos % h minutos = segundos / m segundos = segundos % m print('\n %d:%02d:%02d:%02d.' %(dias, horas, minutos, segundos))
c955d3ba563542bc0a7e780f885133898e341b46
2020marion/jtc_class_code
/challenges/03_primitive_data_types_part_1/temperature.py
657
4.25
4
#question 1 formula for converting F to C x = 100 celsius_100 = (x-32)*(5/9) print(celsius_100) #the resulting temp is a float (it has a decimal) #question 2 convert temp of 0 degrees F to C x = 0 celsius_0 = (x-32)*(5/9) print(celsius_0) #question 3 convert temp os 34.2 F to celsius print((34.2-32)*(5/9)) #question 4 convert BACK. 5 degrees C to F x = 5 farenheit_5 = ((9/5)*x)+32 print(farenheit_5) #question 5 first convert 85.1 F to celsius, f = 85.1 celsius = (f-32)*(5/9) print(celsius) #question 5 second - if they are both now celsius i can make the comparison which is hotter print("30.2 degrees celsius is hotter than 85.1 degrees farenheit")
c77b2cea6019b312c771aaaac3d75db9eba1d004
here0009/LeetCode
/Python/1774_ClosestDessertCost.py
3,557
4.28125
4
""" You would like to make dessert and are preparing to buy the ingredients. You have n ice cream base flavors and m types of toppings to choose from. You must follow these rules when making your dessert: There must be exactly one ice cream base. You can add one or more types of topping or have no toppings at all. There are at most two of each type of topping. You are given three inputs: baseCosts, an integer array of length n, where each baseCosts[i] represents the price of the ith ice cream base flavor. toppingCosts, an integer array of length m, where each toppingCosts[i] is the price of one of the ith topping. target, an integer representing your target price for dessert. You want to make a dessert with a total cost as close to target as possible. Return the closest possible cost of the dessert to target. If there are multiple, return the lower one. Example 1: Input: baseCosts = [1,7], toppingCosts = [3,4], target = 10 Output: 10 Explanation: Consider the following combination (all 0-indexed): - Choose base 1: cost 7 - Take 1 of topping 0: cost 1 x 3 = 3 - Take 0 of topping 1: cost 0 x 4 = 0 Total: 7 + 3 + 0 = 10. Example 2: Input: baseCosts = [2,3], toppingCosts = [4,5,100], target = 18 Output: 17 Explanation: Consider the following combination (all 0-indexed): - Choose base 1: cost 3 - Take 1 of topping 0: cost 1 x 4 = 4 - Take 2 of topping 1: cost 2 x 5 = 10 - Take 0 of topping 2: cost 0 x 100 = 0 Total: 3 + 4 + 10 + 0 = 17. You cannot make a dessert with a total cost of 18. Example 3: Input: baseCosts = [3,10], toppingCosts = [2,5], target = 9 Output: 8 Explanation: It is possible to make desserts with cost 8 and 10. Return 8 as it is the lower cost. Example 4: Input: baseCosts = [10], toppingCosts = [1], target = 1 Output: 10 Explanation: Notice that you don't have to have any toppings, but you must have exactly one base. Constraints: n == baseCosts.length m == toppingCosts.length 1 <= n, m <= 10 1 <= baseCosts[i], toppingCosts[i] <= 104 1 <= target <= 104 """ from bisect import bisect_left from typing import List class Solution: def closestCost(self, baseCosts: List[int], toppingCosts: List[int], target: int) -> int: t_cost = [0] for _curr in toppingCosts: tmp = t_cost[:] t_cost.extend([_t + _curr for _t in tmp]) t_cost.extend([_t + _curr * 2 for _t in tmp]) t_cost.extend([-float('inf'), float('inf')]) t_cost.sort() res = float('inf') gap = float('inf') # print(t_cost) for _b in baseCosts: tmp_target = target - _b idx = bisect_left(t_cost, tmp_target) tmp_gap = abs(t_cost[idx] - tmp_target) tmp_res = t_cost[idx] + _b if tmp_gap < gap or (tmp_gap == gap and tmp_res < res): gap = tmp_gap res = tmp_res tmp_gap = abs(t_cost[idx - 1] - tmp_target) tmp_res = t_cost[idx - 1] + _b if tmp_gap < gap or (tmp_gap == gap and tmp_res < res): gap = tmp_gap res = tmp_res return res S = Solution() baseCosts = [1,7] toppingCosts = [3,4] target = 10 print(S.closestCost(baseCosts, toppingCosts, target)) baseCosts = [2,3] toppingCosts = [4,5,100] target = 18 print(S.closestCost(baseCosts, toppingCosts, target)) baseCosts = [3,10] toppingCosts = [2,5] target = 9 print(S.closestCost(baseCosts, toppingCosts, target)) baseCosts = [10] toppingCosts = [1] target = 1 print(S.closestCost(baseCosts, toppingCosts, target))
da7c096ef3b6ed7c6e517d3472b4480535635e89
CSPInstructions/HR-1819-Analysis-6
/Unit Test/Test.py
1,098
3.78125
4
# We import the unittest library and the content of the Fac file import unittest import Fac # We create a class that will contain or tests class TestFactional( unittest.TestCase ): # We define a test case for the fac function def test_factional(self): # We wanna check whether we receive a value error with self.assertRaises( ValueError ): # We run the fac function with 0 as argument Fac.fac( 0 ) # We wanna check whether we receive a value error with self.assertRaises( ValueError ): # We run the fac function with -1 as argument Fac.fac( -1 ) # We wanna check whether we receive a value error with self.assertRaises( ValueError ): # We run the fac function with 'hi' as argument Fac.fac( "Hi" ) # We wanna check whether we receive the right result for arguments 5 and 1 self.assertEqual(Fac.fac(5), 120) self.assertEqual(Fac.fac(1), 1) ############### # Python Crap # ############### if __name__ == '__main__': unittest.main()
4e4179abf3ed2cfe4df7672045284426dc01fdf4
jingtaisong/LeetCodePython
/CountSmallerNumbersAfter.py
4,059
3.71875
4
from unittest import (TestCase, main) class CountSmallerToTheRight(object): def mergeSortWithInverseOrderCount(self, nums, low, high, counts): """ mergeSort an array nums on [low, high), adjust counts[i] by the number of elements from the right of nums[i] to the left of nums[i] """ if low >= high: raise ValueError( 'low index {lowIndex} cannot be higher than or equal to the high index {highIndex}'.format(lowIndex=low, highIndex=high)) elif low == high - 1: return [nums[low]] # no need to do anything if low == high - 1 else: mid = (low + high) // 2 # guaranteed that low < mid < high sortedLowToMid = self.mergeSortWithInverseOrderCount(nums, low, mid, counts) sortedMidToHigh = self.mergeSortWithInverseOrderCount(nums, mid, high, counts) # mergeSort: sortedLowToHigh = [] lowInd = low highInd = mid while lowInd < mid and highInd < high: if sortedLowToMid[lowInd - low]['value'] > sortedMidToHigh[highInd - mid]['value']: sortedLowToHigh.append(sortedMidToHigh[highInd - mid]) highInd += 1 else: sortedLowToHigh.append(sortedLowToMid[lowInd - low]) # when we decide to add an element in LowToMid, # we count how many elements have been added from MidToHigh, # and that is the number of elements that have been moved to the left of this element in LowToMid counts[sortedLowToMid[lowInd - low]['index']] += highInd - mid lowInd += 1 if highInd < high: while highInd < high: # trailing elements in MidToHigh sortedLowToHigh.append(sortedMidToHigh[highInd - mid]) highInd += 1 elif lowInd < mid: while lowInd < mid: # trailing elements in LowToMid sortedLowToHigh.append(sortedLowToMid[lowInd - low]) counts[sortedLowToMid[lowInd - low]['index']] += highInd - mid # also do this for the trailing elements in LowToMid lowInd += 1 ind = len(sortedLowToHigh) if ind != high - low: raise ValueError( 'ind {indVal} must be equal to high {highVal} minus low {lowVal}'.format(indVal=ind, highVal=high, lowVal=low)) return sortedLowToHigh def countSmaller(self, nums): """ :type nums: List[int] :rtype: List[int] """ if not len(nums): return [] else: augmentedNums = [] augmentedNumsIndex = 0 for x in nums: # index will keep track the original position of an element # this is important because we need to keep track the number of elements moved to the left of each original position # during the mergeSort procedure augmentedNums.append({'index': augmentedNumsIndex, 'value': x}) augmentedNumsIndex += 1 counts = [0] * len(nums) self.mergeSortWithInverseOrderCount(augmentedNums, 0, len(nums), counts) return counts class TestCountSmallerToTheRight(TestCase): """ Regtest """ def setUp(self): self.test_object = [{ 'test_nums': [21, 84,66,65,36,100,41], 'test_output': [0, 4,3,2,0,1,0], }] def test_result(self): obj = CountSmallerToTheRight() for test_case in self.test_object: result = obj.countSmaller(test_case['test_nums']) self.assertEqual(test_case['test_output'], result) if __name__ == '__main__': main()
8261fb4e4e1d46da4c52ef27ffd7522815e7e3c8
turb0bur/tsp-heuristics
/heuristics.py
2,153
3.625
4
from random import randrange def nearest_neighbour_algorithm(graph): if graph.size == 0: return -1, [] points = [i for i in range(graph.size())] current = randrange(0, graph.size()) tour = [current] points.remove(current) while len(points) > 0: next = points[0] for point in points: if graph.get_distance(current, point) < graph.get_distance(current, next): next = point tour.append(next) points.remove(next) current = next tour.append(tour[0]) length = graph.get_tour_length(points=tour) return length, tour def nearest_insertion_algorithm(graph): if graph.size == 0: return -1, [] points = [i for i in range(graph.size())] current = randrange(0, graph.size()) points.remove(current) i = current j = points[0] cij = graph.get_distance(i, j) for point in points: if graph.get_distance(i, point) < cij: cij = graph.get_distance(i, point) j = point points.remove(j) edges = [(i, j)] visited = [] visited.append(i) visited.append(j) while len(points) > 0: i = visited[0] k = points[0] crj = graph.get_distance(k, i) for point in points: for c in visited: dist = graph.get_distance(point, c) if dist < crj: k = point i = edges[0][0] j = edges[0][1] c_min = graph.get_distance(i, k) + graph.get_distance(k, j) - graph.get_distance(i, j) for e in edges: aux_i = e[0] aux_j = e[1] dist = graph.get_distance(aux_i, k) + graph.get_distance(k, aux_j) - graph.get_distance(aux_i, aux_j) if dist < c_min: c_min = dist i = aux_i j = aux_j if len(edges) == 1: edges.append((j, i)) edges.remove((i, j)) edges.append((i, k)) edges.append((k, j)) visited.append(k) points.remove(k) length = graph.get_tour_length(edges=edges) return length, edges
3e60333d8041939881ad52eabe9c7324b62f31f5
lekshmijraj/PythonPrograms
/loops/ifpass.py
134
4.03125
4
a=35 b=36 if b>a: print("a <b") elif a==b: print("a and b are equal") else: print(" a > b") print("hello, the checks are done!")
17d71e890229021008aa3036692544e9dc6abb04
thatislav/flightscraper
/parsing_machine_4.1_task.py
16,926
3.6875
4
""" This module parse information about flight tickets from http://www.flybulgarien.dk/en/ with parameters taken from user """ from datetime import datetime, timedelta import re import requests from lxml import html from texttable import Texttable # 1. Параметры юзера принимаем функцией, полёты обрабатываем классом DATA = dict() def check_dep_city(city_from_user): """Check for input accuracy of departure city""" response = requests.get('http://www.flybulgarien.dk/en/') parsed = html.fromstring(response.text) cities_from_html = parsed.xpath('//*[@id="departure-city"]/option[@value]/text()') cities_for_dep = [re.search('[A-Z]{3}', city).group() for city in cities_from_html] while city_from_user.upper() not in cities_for_dep: city_from_user = input( ' - город введён неверно. Введите код города из списка: {}\n'.format(cities_for_dep)) DATA['dep_city'] = city_from_user.upper() r_new = requests.get('http://www.flybulgarien.dk/script/getcity/2-{}'. format(DATA['dep_city'])) cities_for_arr = [city for city in r_new.json()] if not cities_for_arr: print('\n..самолёты из {}, к сожалению, никуда не летают..'. format(DATA['dep_city'])) # take_data_from_user() check_dep_city(input('введите другой город: ')) elif len(cities_for_arr) == 1: DATA['arr_city'] = cities_for_arr[0] print('\nПрекрасно! Самолётом из {0} можно добраться только до {1}.' '\n2) город прибытия: {1}'. format(DATA['dep_city'], DATA['arr_city'])) check_arr_city(DATA['arr_city']) else: text = ' или '.join(cities_for_arr) print('\nПрекрасно! Самолётом из {} можно добраться до {}. Куда направляетесь?'. format(DATA['dep_city'], text)) check_arr_city(input('\n2) город прибытия: ')) def check_arr_city(city_from_user): """Check for input accuracy of arrival city""" r_new = requests.get('http://www.flybulgarien.dk/script/getcity/2-{}'. format(DATA['dep_city'])) cities_for_arr = [code for code in r_new.json()] while city_from_user.upper() not in cities_for_arr: city_from_user = input( ' - город введён неверно. Введите код города из списка: {}\n'.format(cities_for_arr) ) DATA['arr_city'] = city_from_user.upper() def available_dates(for_depart=True): """Pull out available dates""" if for_depart: # Runs scenario for getting dates for departure body = 'code1={0}&code2={1}'.format(DATA['dep_city'], DATA['arr_city']) headers = {'Content-Type': 'application/x-www-form-urlencoded'} # make POST-request to site with selected cities, to know available dates r_new = requests.post('http://www.flybulgarien.dk/script/getdates/2-departure', data=body, headers=headers) raw_dates_from_html = set(re.findall(r'(\d{4},\d{1,2},\d{1,2})', r_new.text)) dates_for_dep = \ [datetime.strptime(raw_date, '%Y,%m,%d') for raw_date in raw_dates_from_html] dates_for_dep = sorted(dates_for_dep) DATA['dates_for_dep'] = dates_for_dep return dates_for_dep # Runs scenario for getting dates for arrive dates_for_arr = [i for i in DATA['dates_for_dep'] if i >= DATA['dep_date']] DATA['dates_for_arr'] = dates_for_arr return dates_for_arr def get_date_in_format(date_from_user): """Check for date input accuracy, and convert date into Datetime format""" # проверяем, совпадает ли введенная дата с форматом res = re.search(r'\d{1,2}\.\d{1,2}\.\d{4}', date_from_user) if not res: return get_date_in_format(input(' - формат даты: "ДД.ММ.ГГГГ". Повторите ввод:\n')) try: return datetime.strptime(date_from_user, '%d.%m.%Y') except ValueError: return get_date_in_format(input( 'Дата введена некорректно. Формат даты: "ДД.ММ.ГГГГ". Повторите ввод:\n')) def check_dep_date(date_from_user): """Check if user's date suitable for choice for departure date""" verified_dep_date = get_date_in_format(date_from_user) dates_for_dep = available_dates() if verified_dep_date not in dates_for_dep: check_dep_date(input( ' - для выбора доступна любая из этих дат:\n{}\nКакую выберЕте?\n'. format([datetime.strftime(date, '%d.%m.%Y') for date in dates_for_dep])) ) else: DATA['dep_date'] = verified_dep_date DATA['dep_date_for_url'] = datetime.strftime(DATA['dep_date'], '%d.%m.%Y') print('\nСупер! Почти всё готово. Обратный билет будем брать?' '\nЕсли да - введите дату, если нет - нажмите Enter') def check_arr_date(date_from_user): """Check for the presence of the input of arrival date""" if not date_from_user: print('Ок! One-way ticket!\nИтак, что мы имеем...') check_if_oneway_flight() else: verified_arr_date = get_date_in_format(date_from_user) dates_for_arr = available_dates(for_depart=False) if verified_arr_date not in dates_for_arr: check_arr_date(input( ' - выберите любую из этих дат:\n{}\n'. format([datetime.strftime(date, '%d.%m.%Y') for date in dates_for_arr]))) else: DATA['arr_date'] = verified_arr_date check_if_oneway_flight(one_way=False) def check_if_oneway_flight(one_way=True): """Check return flight""" print('\n===============..Минутчку, пожалст..====================') if one_way: DATA['arr_date_for_url'] = '' DATA['flag'] = 'ow' DATA['arr_date'] = '' else: DATA['arr_date_for_url'] = '&rtdate=' + datetime.strftime(DATA['arr_date'], '%d.%m.%Y') DATA['flag'] = 'rt' # FIXME Program starts here print('\nСалют! Билеты на самолёт??\nПроще простого! Введите:\n') check_dep_city(input('1)город отправления: ')) check_dep_date(input('\n3) дата вылета (ДД.ММ.ГГГГ): ')) check_arr_date(input('\n4) дата возврата (необязательно) (ДД.ММ.ГГГГ): ')) URL = 'https://apps.penguin.bg/fly/quote3.aspx?{4}=&lang=en&depdate={2}' \ '&aptcode1={0}{3}&aptcode2={1}&paxcount=1&infcount='.\ format(DATA['dep_city'], DATA['arr_city'], DATA['dep_date_for_url'], DATA['arr_date_for_url'], DATA['flag']) R_FINAL = requests.get(URL) TREE = html.fromstring(R_FINAL.text) INFO_DEP = TREE.xpath('//tr[starts-with(@id, "flywiz_rinf")]') PRICE_DEP = TREE.xpath('//tr[starts-with(@id, "flywiz_rprc")]') INFO_ARR = TREE.xpath('//tr[starts-with(@id, "flywiz_irinf")]') PRICE_ARR = TREE.xpath('//tr[starts-with(@id, "flywiz_irprc")]') # список (словарей) релевантных вылетов ТУДА DEPARTURE_LIST_RELEVANT = [] # список (словарей) всех вылетов ТУДА, выданных сайтом DEPARTURE_LIST_ALL = [] # список (словарей) релевантных вылетов ОБРАТНО ARRIVAL_LIST_RELEVANT = [] # список (словарей) всех вылетов ОБРАТНО, выданных сайтом ARRIVAL_LIST_ALL = [] def change_data_dict(): """Меняем главный словарь с параметрами от юзера для использования при поиске обратного полёта""" data_reverse = DATA.copy() DATA['dep_city'] = data_reverse['arr_city'] DATA['arr_city'] = data_reverse['dep_city'] DATA['dep_date'] = data_reverse['arr_date'] DATA['arr_date'] = data_reverse['dep_date'] def prepare_finishing_flight_info(flight): """Проверяем подходят ли данные о вылете под параметры юзера""" finished_flight_info = dict() # время взлета в формате datetime finished_flight_info['dep_time'] = \ datetime.strptime(flight[0] + ' ' + flight[1], '%a, %d %b %y %H:%M') # время посадки в формате datetime finished_flight_info['arr_time'] = \ datetime.strptime(flight[0] + ' ' + flight[2], '%a, %d %b %y %H:%M') # к дате посадки +1 день, если время взлёта позднее времени посадки if finished_flight_info['dep_time'] > finished_flight_info['arr_time']: finished_flight_info['arr_time'] += timedelta(days=1) finished_flight_info['duration'] = \ finished_flight_info['arr_time'] - finished_flight_info['dep_time'] finished_flight_info['price'] = float(flight[5].split()[1]) finished_flight_info['currency'] = flight[5].split()[2] finished_flight_info['from'] = re.search('[A-Z]{3}', flight[3]).group() finished_flight_info['to'] = re.search('[A-Z]{3}', flight[4]).group() return finished_flight_info def check_site_info(flight_info, price_info, relevant_list, all_list, return_flight=False): """Получаем 1 из 2 списков: 1) подходящих под параметры вылетов - relevant_list 2) и всех вылетов, прежложенных сайтом - all_list""" # необработанные данные с сайта о вылетах в списке prepared_flights_info = [] i = 0 # наполняем необрабортанными данными список prepared_flights_info for flight_variant in [full_info for full_info in zip(flight_info, price_info)]: prepared_flights_info.append([]) for element in flight_variant: for piece in element.xpath('./td/text()'): prepared_flights_info[i].append(piece) i += 1 # если функция используется для проверки вылетов в обратном направлении (direction == 2), # то правим словарь с параметрами вылета, чтобы по-прежнему можно пользоваться этой функцией if return_flight: change_data_dict() # теперь отбираем из выдачи сайта (prepared_flights_info) - # все подходящие под запрос юзера вылеты ТУДА в список словарей site_info_finished for flight in prepared_flights_info: # если вылет подходит под запрос юзера, # сохраняем его в соотв-щий список relevant_list if (re.search('[A-Z]{3}', flight[3]).group() == DATA['dep_city']) \ and (re.search('[A-Z]{3}', flight[4]).group() == DATA['arr_city'])\ and (datetime.strptime(flight[0], '%a, %d %b %y') == DATA['dep_date']): relevant_list.append(prepare_finishing_flight_info(flight)) # если вылет не подходит под запрос юзера, # тоже сохраняем его, но уже в список всех вылетов all_list else: all_list.append(prepare_finishing_flight_info(flight)) def print_flights_table(flights_list, header, list_is_relevant=True): table_for_suitable_flights = Texttable(max_width=100) table_for_suitable_flights.header(header) for flight in flights_list: table_for_suitable_flights.add_row(flight) # FIXME можно попробовать table_for_suitable_flights.add_rows(flights_list) print(table_for_suitable_flights.draw()) def pretty_time(time): return datetime.strftime(time, '%H:%M %d.%m.%Y') def show_suitable_flights(list_relevant, list_all, return_flight=False): """Проверяем, есть ли подходящие вылеты""" # если подходящие вылеты были, выводим их на экран list_filtered = list() if list_relevant: print('\nДля маршрута из {} в {} нашлось следующее:'. format(DATA['dep_city'], DATA['arr_city'])) header = 'Взлёт в:\tПосадка в:\tДлительность перелёта:\tЦена билета:'.split('\t') for flight in list_relevant: flight_restruct = [pretty_time(flight['dep_time']), pretty_time(flight['arr_time']), flight['arr_time'] - flight['dep_time'], str(flight['price']) + ' ' + flight['currency']] list_filtered.append(flight_restruct) print_flights_table(list_filtered, header) # иначе выводим сообщение, что подходящих вылетов нет, # и на всякий выдаём инфу о всех предложенных сайтом вылетах else: print('\nК сожалению, вылетов из {} в {} не нашлось.' '\nНо это только пока, не отчаивайтесь ;)' '\nЗато есть вот такие варианты:\n'. format(DATA['dep_city'], DATA['arr_city'])) header = \ 'Откуда:\tВзлёт в:\tКуда:\tПосадка в:\tДлительность перелёта:\tЦена билета:'.split('\t') for flight in list_all: flight_restruct = [flight['from'], pretty_time(flight['dep_time']), flight['to'], pretty_time(flight['arr_time']), flight['arr_time'] - flight['dep_time'], str(flight['price']) + ' ' + flight['currency']] list_filtered.append(flight_restruct) print_flights_table(list_filtered, header, list_is_relevant=False) check_site_info(INFO_DEP, PRICE_DEP, DEPARTURE_LIST_RELEVANT, DEPARTURE_LIST_ALL) show_suitable_flights(DEPARTURE_LIST_RELEVANT, DEPARTURE_LIST_ALL) if DATA['arr_date']: check_site_info(INFO_ARR, PRICE_ARR, ARRIVAL_LIST_RELEVANT, ARRIVAL_LIST_ALL, return_flight=True) show_suitable_flights(ARRIVAL_LIST_RELEVANT, ARRIVAL_LIST_ALL, return_flight=True) # если нашлись подходящие вылеты и ТУДА, и ОБРАТНО, # то считаем все возможные варианты пар ТУДА-ОБРАТНО, # сортируем по общей стоимости, выводим на экран if DEPARTURE_LIST_RELEVANT and ARRIVAL_LIST_RELEVANT: print('\n' + (36 * '=') + ' ИТОГО ' + (36 * '=') + '\n') FLIGHT_LIST_OF_DICTS = [] for dep_flight in DEPARTURE_LIST_RELEVANT: for arr_flight in ARRIVAL_LIST_RELEVANT: if dep_flight['arr_time'] > arr_flight['dep_time']: print('После посадки в {0} в {1} обратным рейсом в {2} улететь уже не успеете.'. format(DATA['dep_city'], pretty_time(dep_flight['arr_time']), pretty_time(arr_flight['dep_time']))) continue flight_dict = dict() flight_dict['dep_time_tuda'] = pretty_time(dep_flight['dep_time']) flight_dict['dep_time_obratno'] = pretty_time(arr_flight['dep_time']) flight_dict['v_polete'] = \ (dep_flight['arr_time'] - dep_flight['dep_time']) \ + (arr_flight['arr_time'] - arr_flight['dep_time']) flight_dict['itog_price'] = \ str(dep_flight['price'] + arr_flight['price']) + ' ' + dep_flight['currency'] FLIGHT_LIST_OF_DICTS.append(flight_dict) if FLIGHT_LIST_OF_DICTS: SORTED_FLIGHT_LIST_OF_DICTS = sorted(FLIGHT_LIST_OF_DICTS, key=lambda k: k['itog_price']) SORTED_FLIGHT_LIST_OF_LISTS = \ [[v for v in flight_d.values()] for flight_d in SORTED_FLIGHT_LIST_OF_DICTS] header = 'Из {} в {}:\tНазад:\tИтого в полёте(ЧЧ:ММ):\tИтого цена:'.\ format(DATA['arr_city'], DATA['dep_city']).split('\t') print_flights_table(SORTED_FLIGHT_LIST_OF_LISTS, header) # input('\n\n\nWait a minute...\n')
b36169cf1712dca276d8bc33bca89412500342d1
Bngzifei/PythonNotes
/学习路线/1.python基础/day04/09-切片.py
834
4.1875
4
""" 切片:取出字符串的一部分字符 字符串[开始索引:结束索引:步长] 步长不写,默认为1 下一个取得索引的字符 = 当前正在取得字符索引 + 步长 其他语言叫截取 步长:1.步长的正负控制字符串截取的方向 2.截取的跨度 """ str1 = "hello python" # print(str1[0:5]) # print(str1[:5]) # 如果开始索引为0,可以省略 # str2 = str1[6:12] # str2 = str1[6:] # 如果结束索引最后,可以省略 # print(str2) # list1 = [11, 12, 14] # print(list1[-1]) # 负索引,倒着数,比较方便 # # str2 = str1[-1:] # print(str2) # str2 = str1[::-1] # 倒置,翻转 # str2 = str1[4::-1] # 步长是-1,方向:右->左,跨度1 str2 = str1[4::-2] # 步长为-2,隔一个取一个 print(str2) # 在列表,元组,字符串中都可以使用 # 可变参数.预习到这里
13c7f87d5affd2f7f3ca396f27141cc4e6ae9a39
zainabkhosravi/runge_kutta_lane_emden
/runge_kutta.py
823
3.546875
4
from __future__ import division, print_function # define functions used in integrate def f(x, y, z): return z def g(x, y, z, n): return -y**n-2/x*z # integrate def integrate(x_0, y_0, z_0, n, t_step): '''Integrates one time step''' k_0 = t_step * f(x_0, y_0, z_0) l_0 = t_step * g(x_0, y_0, z_0, n) k_1 = t_step * f(x_0+1/2*t_step, y_0+1/2*k_0, z_0+1/2*l_0) l_1 = t_step * g(x_0+1/2*t_step, y_0+1/2*k_0, z_0+1/2*l_0, n) k_2 = t_step * f(x_0+1/2*t_step, y_0+1/2*k_1, z_0+1/2*l_1) l_2 = t_step * g(x_0+1/2*t_step, y_0+1/2*k_1, z_0+1/2*l_1, n) k_3 = t_step * f(x_0+t_step, y_0+k_2, z_0+l_2) l_3 = t_step * g(x_0+t_step, y_0+k_2, z_0+l_2, n) x_1 = x_0 + t_step y_1 = y_0 + 1/6 * (k_0+2*k_1+2*k_2+k_3) z_1 = z_0 + 1/6 * (l_0+2*l_1+2*l_2+l_3) return (x_1, y_1, z_1)
6134642fe17bd1a09d8e5390bec89671fdf73b42
XenyLet/hse-percollation
/modules/utils.py
350
3.578125
4
# https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-list-of-lists def flatten(L): if L is None: return None for item in L: try: if type(item) is not tuple: yield from flatten(item) else: yield item except TypeError: yield item
88dce776aefea393eba3246af3f4fb8af4793062
Elonet/python3_formation_1
/mymath/geom.py
258
3.765625
4
def perimeter(length, width): """ Return perimeter of square or rect :param length: :type length: float|int :param width: :type width: float|int :return: Perimeter :rtype: float|int """ return 2 * length + 2 * width
859b114f5f2589434dea429a16b6a1abb4b8a558
JackM15/Python-Basics
/random_number_game.py
1,862
4.0625
4
import random # generate a random number between 1 and 10 secretNumber = random.randint(1,10) def game(): guesses = 0 while True: # get a number guess from the player, if it's not a number, tell them and ask again. while True: try: guess = int(input("Guess a number between 1 and 10 \n")) break except ValueError: print("You didn't enter a number!") guesses += 1 print("You have used {}/5 guesses.".format(guesses)) #Give the user 5 guesses to do it! if guesses < 5: # compare guess to secret number, if it matches then break, if not tell them they're wrong. if guess == secretNumber: guesses += 1 print("-" * 30) print("You got it, my number was {}.".format(secretNumber)) print("It took you: {} tries to guess.".format(guesses)) print("-" * 30) #reset guesses to 0 guesses = 0 break #print hit or miss elif guess <= 0: print("That number is less than 1, try again!") guesses += 1 print("You have used {}/5 guesses.".format(guesses)) elif guess >= 11: print("That number is higher than 10, please try again!") guesses += 1 print("You have used {}/5 guesses.".format(guesses)) else: print("That's not it!") print("Try guessing again!") guesses += 1 print("You have used {}/5 guesses.".format(guesses)) #Break out of the loop if they took too long. else: print("You took too many times to guess, my number was: {}.".format(secretNumber)) break #ask user if they want to play again playAgain = input("Do you want to play again? - Y/n \n > ") #if its not n, play again. if playAgain.lower() != 'n': game() #Run game game()
807c2620cfec3e4e92a84dd0be270732ff16a5fd
daniel-reich/ubiquitous-fiesta
/7kZhB4FpJfYHnQYBq_16.py
214
3.84375
4
def gcd(a, b): if a < b: a, b = b, a while b > 0: a, b = b, a % b return a def lcm(a, b): g = gcd(a, b) return a * b // g ​ def lcm_three(num): a, b, c = num return lcm(lcm(a,b), lcm(b,c))
180ad11db84200995b6010d38f0537349b63c4ff
mshellik/automate_the_boring_stuff
/if_spam.py
202
3.9375
4
spam=0 if spam<5: print("hello world") spam=spam+1 print(spam) #This will only print Hello World once, as once the condition is evalutes to True. it will print .. while new vaule spam will be 1
c5e7fe15e87cf568da5e33233cd38d6ef6938fb4
yangzongwu/leetcode
/20200215Python-China/0166. Fraction to Recurring Decimal.py
1,232
4.15625
4
''' Given two integers representing the numerator and denominator of a fraction, return the fraction in string format. If the fractional part is repeating, enclose the repeating part in parentheses. Example 1: Input: numerator = 1, denominator = 2 Output: "0.5" Example 2: Input: numerator = 2, denominator = 1 Output: "2" Example 3: Input: numerator = 2, denominator = 3 Output: "0.(6)" ''' class Solution: def fractionToDecimal(self, numerator: int, denominator: int) -> str: if numerator%denominator==0: return str(numerator//denominator) flag='' if numerator*denominator<0: flag='-' numerator=abs(numerator) denominator=abs(denominator) first_part=str(numerator//denominator)+'.' cur=numerator%denominator rep=[] second_part='' while cur not in rep: rep.append(cur) if 10*cur%denominator==0: return flag+first_part+second_part+str(10*cur//denominator) second_part+=str(10*cur//denominator) cur=10*cur%denominator k=0 while rep[k]!=cur: k+=1 return flag+first_part+second_part[:k]+'('+second_part[k:]+')'
72fd4e3f392e88ed6ff37886fa022d9ae182f05c
marinov98/fall-127-proof-of-work
/Python_127_proof_winter/applesnoranges07.py
2,260
4.15625
4
#When a fruit falls from its tree, it lands units of distance from its tree of origin along the -axis. # A negative value of means the fruit fell units to the tree's left, and #a positive value of means it falls units to the tree's right. #Given the value of for apples and oranges, #can you determine how many apples and oranges will fall on Sam's house (i.e., in the inclusive range )? #Print the number of apples that fall on Sam's house as your first line of output, #then print the number of oranges that fall on Sam's house as your second line of output. #Input Format #The first line contains two space-separated integers denoting the respective values of and . #The second line contains two space-separated integers denoting the respective values of and . #The third line contains two space-separated integers denoting the respective values of and . #The fourth line contains space-separated integers denoting the respective distances that each apple falls from point . #The fifth line contains space-separated integers denoting the respective distances that each orange falls from point . #Constraints #Output Format #Print two lines of output: #On the first line, print the number of apples that fall on Sam's house. #On the second line, print the number of oranges that fall on Sam's house. #Sample Input 0 #7 11 #5 15 #3 2 #-2 2 1 #5 -6 #Sample Output #1 #1 def fruitree(): totalapple=0 totalorange=0 print("mark the start and end points of Sam's house") s,t=input().split(' ') s=int(s) t=int(t) print('what are the endpoints of the apple tree located?') a,b=input().split(' ') a=int(a) b=int(b) print('Almost there. Write the number of apples and oranges') m,n=input().split(' ') m=int(m) n=int(n) print('Final steps. write the position of the apples') arange=[int(arange) for arange in input().split(' ')] print('Now write the position of the oranges') orrange=[int(orrange) for orrange in input().split(' ')] for i in arange: if s<=i+a<=t: totalapple+=1 for z in orrange: if s<=z+b<=t: totalorange+=1 print(totalapple) print(totalorange) fruitree()
30a3a62c28e99cef20246e4a709f1d0b7cd729a2
itsme-vivek/Akash-Technolabs-Internship
/Day-3/leapyear.py
300
4.25
4
print("Check Weather Year Is Leap Year Or Not") year = int(input("Enter A Year:")) if (year%4) == 0: print("This Is Leap Year") elif (year%400) == 0: print("This Is Leap Year") elif (year%100) != 0: print("This Is Leap Year") else : print("This Is Not Leap Year")
f83c22e67fda404820934542e16e8dc3be77312f
zaur557/python.zzz
/taack 1/Автопробег.py
100
3.546875
4
N = int(input()) K = int(input()) if K % N > 0: print(K // N + 1) else: print(K // N)
5541272eb9eb2fc1cd69242c7e93045400c41983
matthewnorman/testscore_extractor
/extractor.py
922
3.53125
4
import shutil import urllib import pandas import os.path import zipfile import tempfile DATA_URL = 'http://www5.cde.ca.gov/caasppresearchfiles/2015/ca2015_all_csv_v1.zip' FILE_NAME = 'ca2015_all_csv_v1.txt' def download_data(target_dir): """ Get the file from the internet :param target_path: Local path for storing the file. :return: """ download_file = os.path.join(target_dir, 'download.zip') urllib.urlretrieve(DATA_URL, download_file) zip_handler = zipfile.ZipFile(download_file) zip_handler.extractall(path=target_dir) def run(): """ Run the entire process :return: """ try: target_dir = tempfile.mkdtemp() download_data(target_dir=target_dir) csv_file = os.path.join(target_dir, FILE_NAME) df = pandas.DataFrame.from_csv(path=csv_file) finally: shutil.rmtree(target_dir) if __name__=='__main__': run()
0463496bf5c0ccc9bbb7ca151a2fe2351b69fdfa
AmaralScientist/CourseworkCode
/KNN_Classifier.py
52,326
3.8125
4
## # This program uses the k nearest neighbors (KNN) algorithm, the condensed KNN # algorithm, and the edited KNN algorithm to train and test machine learning # classifiers. Five-fold cross-validation is performed and a KNN, condensed KNN, # and edited KNN classifier are each tuned to determine the optimal value of k # between k = 1 to k = 12. Summary statistics are output to separate files. The # data set is again split for five-fold cross validation and the optimal value # of k for each respective algorithm is used to train and test a classifier. The # summary statistics for these experiments are output to separate files. # The input is a pre-processed data set organized in a pandas dataframe such that # the target class is located in the first column and the attributes in the # remaining columns. # @author Michelle Amaral # @version 1.0 ## import sys,re,os # Load pandas import pandas as pd # Load numpy import numpy as np import random from collections import Counter import math # Receive the name of input file from the command line input_file_name = sys.argv[1] # This method accesses a data frame and splits its row numbers into k # lists of row numbers, each corresponding to k unique test folds # for use with k fold cross-validation def split_for_cross_validation(data_frame, number_of_folds): # Create empty list to hold the final row numbers for each test fold list_of_row_numbers_for_test_folds = [] # Calculate the number of data instances per fold number_instances_per_fold = math.floor(data_frame.shape[0] / number_of_folds) # Create empty list to hold k number of test data sets list_of_data_sets = [] # Create empty list to hold row numbers corresponding to each class list_of_class_row_numbers = [] # Create empty list to hold proportion of each class number_instances_of_each_class = [] # Determine the number of instances of each class class_breakdown = data_frame.groupby(["Class"])["Class"].count() # Determine the row numbers in data frame that correspond to each class for class_index in range(0, len(class_breakdown)): # Create a temporary data frame containing instances from a given class temp_data_frame = data_frame.loc[data_frame['Class'] == class_breakdown.index.values[class_index]] # Determine the actual row numbers of those instances row_numbers_for_class = list(temp_data_frame.index.values.astype(int)) # Append these row numbers to list list_of_class_row_numbers.append(row_numbers_for_class) # Calculate the ratio class instances:number total instancess in big data set composition_ratio = len(row_numbers_for_class) / data_frame.shape[0] # Calculate the number of instances needed for each fold number_instances_of_this_class_needed = number_instances_per_fold * composition_ratio rounded_number_instances_of_this_class_needed = round(number_instances_of_this_class_needed, 0) number_instances_of_each_class.append( rounded_number_instances_of_this_class_needed) # In each fold, maintain the same ratio of the classes as in the full data set for k_index in range(0, number_of_folds): # Create empty list to store the row numbers for current fold temp_row_numbers_for_this_fold = [] # Grab the row numbers needed for each class to be represented for class_index in range(0, len(list_of_class_row_numbers)): # The number of instances needed from given class number_instances_needed = number_instances_of_each_class[class_index] # Access eligible row numbers from given class row_numbers_of_interest = list_of_class_row_numbers[class_index] # Initialize counter variable counter = 0 while counter < number_instances_needed: # Randomly select the index of the eligible row number for given class index_of_row_number_to_grab = random.randrange(len(row_numbers_of_interest)) # Access the actual row number from original data frame row_number_to_grab = row_numbers_of_interest[index_of_row_number_to_grab] # Append this row number to list temp_row_numbers_for_this_fold.append(row_number_to_grab) # Remove this row number from list of eligible row numbers row_numbers_of_interest.pop(index_of_row_number_to_grab) # Increment counter variable by 1 counter = counter + 1 # Append all row numbers to final list list_of_row_numbers_for_test_folds.append( temp_row_numbers_for_this_fold ) # Return the unique row numbers for all 5 test sets return( list_of_row_numbers_for_test_folds ) # This method implements the KNN algorithm by calculating Euclidean distances, # identifying the k nearest neighbors, predicting a class based on the classes # of the nearest neighbors, evaluates the accuracy of the predictions, and # returns that measure. def knn_algorithm_for_tuning( temp_test_data_frame, temp_train_data_frame, k_index ): # Determine the number of rows in the test data frame number_test_instances = temp_test_data_frame.shape[0] # Determine the number of rows in the train data frame number_train_instances = temp_train_data_frame.shape[0] # Create temporary numpy array to store results temp_df_for_test_results = np.zeros( shape=( number_test_instances, 5 ) ) # Create dataframe only consisting of attributes for test data temp_test_df_attributes_only = temp_test_data_frame.drop(["Class"], axis=1) # Initialize a variable to count the correctly classified instances correct_class_counter = 0 # Initialize a variable to count the incorrectly classified instances incorrect_class_counter = 0 for test_row_index in range( 0, number_test_instances ): # Create temporary numpy array to store euclidean distances temp_df_for_distances = np.zeros( shape=( number_train_instances, 2 ) ) # Create dataframe only consisting of attributes for train data temp_train_df_attributes_only = temp_train_data_frame.drop(["Class"], axis=1) temp_train_class_column = temp_train_data_frame["Class"] number_train_columns = temp_test_df_attributes_only.shape[1] # Calculate Euclidean distance between test instance and training instances for train_row_index in range( 0, number_train_instances ): # Initialize a variable to sum the squared distance of each feature squared_distance = 0 # Increment over each feature to obtain the difference between # each test and train instance for feature_index in range( 0, number_train_columns ): squared_distance = squared_distance + ( temp_test_df_attributes_only.iloc[test_row_index, feature_index] - temp_train_df_attributes_only.iloc[train_row_index, feature_index] )** 2 # Calculate the square root of the sum of the differences euclidean_distance = np.sqrt( squared_distance ) # Store the Euclidean distances and the location of that training instance temp_df_for_distances[train_row_index, 0] = euclidean_distance temp_df_for_distances[train_row_index, 1] = train_row_index # Sort the numpy array containing the distances sorted_temp_df_for_distances = temp_df_for_distances[temp_df_for_distances[:,0].argsort()] # Grab the k neighbors that are closest to the training instance k_nearest_neighbors = sorted_temp_df_for_distances[0:k_index,] # Store the classes of these neighbors correct_class = [] for j in range(0, k_index): class_row_number = int(k_nearest_neighbors[j, 1]) correct_class.append(temp_train_data_frame.iloc[class_row_number, 0]) # Count the number of each class from the neighbors k_classes = Counter(correct_class) # If all neighbors are of the same class, call the prediction if len(k_classes) == 1: for key in k_classes: this_class_predicted = key # If the neighbors represent more than one class, find most frequent else: # Create empty list to hold the number of each class counts_of_neighbors = [] # Create empty list to hold the names of each class class_name_of_neighbors = [] # Append counter output to lists for thing in k_classes: counts_of_neighbors.append(k_classes[thing]) class_name_of_neighbors.append(thing) # Initialize variable to track the most frequent class largest_count = 0 # Empty list to hold class counts in case there is a tie tied_neighbor_counts = [] # Empty list to hold class names in case there is a tie tied_neighbor_names = [] # Iterate over the counts of the classes to find the largest for j in range(0, len(counts_of_neighbors)): if counts_of_neighbors[j] > largest_count: largest_count = counts_of_neighbors[j] name_of_class = class_name_of_neighbors[j] # If there is a tie, store name and count of the class elif counts_of_neighbors[j] == largest_count: tied_neighbor_counts.append(counts_of_neighbors[j]) tied_neighbor_names.append(class_name_of_neighbors[j]) # If there was not a tie call the predicted class if len(counts_of_neighbors) == 0: this_class_predicted = name_of_class # There was a tie, break it randomly else: tied_neighbor_counts.append(largest_count) tied_neighbor_names.append(name_of_class) select_one_class_index = random.randrange(len(tied_neighbor_names)) this_class_predicted = tied_neighbor_names[select_one_class_index] # Compare predicted to actual correct_class = temp_test_data_frame.iloc[test_row_index, 0] if this_class_predicted == correct_class: correct_class_counter = correct_class_counter + 1 else: incorrect_class_counter = incorrect_class_counter + 1 #print("\tCorrectly classified instances: ", correct_class_counter) #print("\tIncorrectly classified instances: ", incorrect_class_counter) # Calculate the accuracy for this data subset performance = correct_class_counter / (correct_class_counter + incorrect_class_counter) # Return the performance value return( performance ) # This method accepts a training data set and implements the condensed nearest # neighbors algorithm to produce a smaller training data set def condensed_nearest_neighbor( temp_train_data_frame ): # Determine the number of rows in the train data frame number_train_instances = temp_train_data_frame.shape[0] # Create empty list to hold row numbers of the original training data set (X) original_training_set = [] # Append the row numbers to the list, then randomly shuffle for k in range(0, number_train_instances): original_training_set.append ( k ) random.shuffle( original_training_set ) # Create empty list to hold row numbers that will be contained in # the condensed training set (Z) condensed_training_set = [] # Move row number of the first instance to the condensed training set remove_one_training_example = original_training_set.pop( 0 ) condensed_training_set.append( remove_one_training_example ) # Perform 1NN until a full pass is made over the original training data set for p in range(0, len(original_training_set)): # Grab next training example from original training data set remove_one_training_example = original_training_set.pop( 0 ) # Create a temporary array to hold the Euclidean distances and the row number temp_df_for_distances = np.zeros( shape=( len( condensed_training_set ), 2 ) ) # Create dataframe only consisting of attributes for train data temp_train_df_attributes_only = temp_train_data_frame.drop(["Class"], axis=1) number_train_columns = temp_train_df_attributes_only.shape[1] # Calculate the Euclidean distances between the example and the instances # contained in the condensed training data set (Z) for m in range(0, len(condensed_training_set)): squared_distance = 0 for feature_index in range( 0, number_train_columns ): squared_distance = squared_distance + ( temp_train_df_attributes_only.iloc[remove_one_training_example, feature_index] - temp_train_df_attributes_only.iloc[condensed_training_set[m], feature_index] ) ** 2 euclidean_distance = np.sqrt( squared_distance ) temp_df_for_distances[m, 0] = euclidean_distance temp_df_for_distances[m, 1] = condensed_training_set[m] # Sort the array by distance sorted_temp_df_for_distances = temp_df_for_distances[temp_df_for_distances[:,0].argsort()] # k = 1 so remove the row of the array with the smallest distance k_nearest_neighbors = sorted_temp_df_for_distances[0,] # Extract the row number corresponding to that instance in the data frame class_row_number = int(k_nearest_neighbors[1,]) # Extract the class of that instance predicted_class = temp_train_data_frame.iloc[class_row_number, 0] # Compare predicted class to actual class of the instance in question correct_class = temp_train_data_frame.iloc[remove_one_training_example, 0] # If the predicted and correct classes are not equal, append the # row number of that instance to the condensed training set. # Otherwise, add it back to the original training data set if predicted_class != correct_class: condensed_training_set.append(remove_one_training_example) else: original_training_set.append(remove_one_training_example) # Initialize a variable to track the point at which no more instances # are being added to the condensed training data set instance_not_added_to_Z = 0 # Continue performing 1NN until a complete pass is made over the # original training data and no instances are added to the condensed set while ( len(original_training_set) != 0 ) and instance_not_added_to_Z < len(original_training_set): # Grab next training example from original training data set remove_one_training_example = original_training_set.pop( 0 ) # Create a temporary array to hold the Euclidean distances and the row number temp_df_for_distances = np.zeros( shape=( len( condensed_training_set ), 2 ) ) # Create dataframe only consisting of attributes for train data temp_train_df_attributes_only = temp_train_data_frame.drop(["Class"], axis=1) # Calculate the Euclidean distances between the example and the instances # contained in the condensed training data set (Z) for m in range(0, len(condensed_training_set)): squared_distance = 0 for feature_index in range( 0, number_train_columns ): squared_distance = squared_distance + ( temp_train_df_attributes_only.iloc[remove_one_training_example, feature_index] - temp_train_df_attributes_only.iloc[condensed_training_set[m], feature_index] ) ** 2 euclidean_distance = np.sqrt( squared_distance ) temp_df_for_distances[m, 0] = euclidean_distance temp_df_for_distances[m, 1] = condensed_training_set[m] # Sort the array by distance sorted_temp_df_for_distances = temp_df_for_distances[temp_df_for_distances[:,0].argsort()] # k = 1 so remove the row of the array with the smallest distance k_nearest_neighbors = sorted_temp_df_for_distances[0,] # Extract the row number corresponding to that instance in the data frame class_row_number = int(k_nearest_neighbors[1,]) # Extract the class of that instance predicted_class = temp_train_data_frame.iloc[class_row_number, 0] # Compare predicted class to actual class of the instance in question correct_class = temp_train_data_frame.iloc[remove_one_training_example, 0] # If the predicted and correct classes are not equal, append the # row number of that instance to the condensed training set. # Otherwise, add it back to the original training data set if predicted_class != correct_class: condensed_training_set.append(remove_one_training_example) # Reset indicator variable to 0 since the instance was added instance_not_added_to_Z = 0 else: original_training_set.append(remove_one_training_example) # Instance was not added so increment by 1 instance_not_added_to_Z = instance_not_added_to_Z + 1 # Evaluate differences between original and condensed training data sets print("\tInstances before condensing: ", number_train_instances) print("\tInstances after condensing: ", len(condensed_training_set)) reduction_in_number_of_instances = ( ( number_train_instances - len(condensed_training_set) ) / number_train_instances ) percent_reduction = reduction_in_number_of_instances * 100 print("\tPercent reduction: ", round( percent_reduction, 2 ), "%\n") condensed_training_data_set = temp_train_data_frame.iloc[condensed_training_set,] return( condensed_training_data_set, reduction_in_number_of_instances ) # This method accepts a training data set and implements the edited # nearest neighbors algorithm to produce a smaller training data set def edited_nearest_neighbor( temp_train_data_frame ): # Determine the number of rows in the train data frame number_train_instances = temp_train_data_frame.shape[0] # Create empty list to hold row numbers of the original training data set original_training_set = [] # Append the row numbers to the list, then randomly shuffle for k in range(0, number_train_instances): original_training_set.append ( k ) random.shuffle( original_training_set ) number_train_columns = temp_train_data_frame.shape[1] # Perform k=3 nearest neighbors until a full pass # is made over the original training data set for p in range(0, number_train_instances): # Grab one training example from original training data set remove_one_training_example = original_training_set.pop( 0 ) # Create a temporary array to hold the Euclidean distances and the row number temp_df_for_distances = np.zeros( shape=( len( original_training_set ), 2 ) ) # Create dataframe only consisting of attributes for train data temp_train_df_attributes_only = temp_train_data_frame.drop(["Class"], axis=1) number_train_columns = temp_train_df_attributes_only.shape[1] # Calculate the Euclidean distances between the example instance and # the remaining instances contained in the original training data set for m in range(0, len(original_training_set)): squared_distance = 0 for feature_index in range( 0, number_train_columns ): squared_distance = squared_distance + ( temp_train_df_attributes_only.iloc[remove_one_training_example, feature_index] - temp_train_df_attributes_only.iloc[original_training_set[m], feature_index] ) ** 2 euclidean_distance = np.sqrt( squared_distance ) temp_df_for_distances[m, 0] = euclidean_distance temp_df_for_distances[m, 1] = original_training_set[m] # Sort the temporary array by distance sorted_temp_df_for_distances = temp_df_for_distances[temp_df_for_distances[:,0].argsort()] # Take the three instances with the smallest distance k_nearest_neighbors = sorted_temp_df_for_distances[0:3,] # Obtain the class for these instances correct_class = [] for j in range(0, 3): class_row_number = int(k_nearest_neighbors[j, 1]) correct_class.append(temp_train_data_frame.iloc[class_row_number, 0]) k_classes = Counter(correct_class) predicted_class = max(k_classes, key=lambda key: k_classes[key]) # Compare predicted class to actual class of the instance in question correct_class = temp_train_data_frame.iloc[remove_one_training_example, 0] # If the predicted and correct classes are equal, append the # row number of that instance back to the original training set. # Otherwise, remove instance if predicted_class == correct_class: original_training_set.append(remove_one_training_example) else: remove_one_training_example = None # Initialize a variable to track the point at which no more # instances are being added back to the original training data set instance_not_removed = 0 while ( instance_not_removed < len(original_training_set) ): # Grab next training example from original training data set remove_one_training_example = original_training_set.pop( 0 ) # Create a temporary array to hold the Euclidean distances and the row number temp_df_for_distances = np.zeros( shape=( len( original_training_set ), 2 ) ) # Create dataframe only consisting of attributes for train data temp_train_df_attributes_only = temp_train_data_frame.drop(["Class"], axis=1) # Calculate the Euclidean distances between the example # and the instances contained in the condensed training data set for m in range(0, len(original_training_set)): squared_distance = 0 for feature_index in range( 0, number_train_columns ): squared_distance = squared_distance + ( temp_train_df_attributes_only.iloc[remove_one_training_example, feature_index] - temp_train_df_attributes_only.iloc[original_training_set[m], feature_index] ) ** 2 euclidean_distance = np.sqrt( squared_distance ) temp_df_for_distances[m, 0] = euclidean_distance temp_df_for_distances[m, 1] = original_training_set[m] # Sort the array by distance sorted_temp_df_for_distances = temp_df_for_distances[temp_df_for_distances[:,0].argsort()] # Take the three instances with the smallest distance k_nearest_neighbors = sorted_temp_df_for_distances[0:3,] # Obtain the class for these instances correct_class = [] for j in range(0, 3): class_row_number = int(k_nearest_neighbors[j, 1]) correct_class.append(temp_train_data_frame.iloc[class_row_number, 0]) k_classes = Counter(correct_class) predicted_class = max(k_classes, key=lambda key: k_classes[key]) # Compare predicted class to actual class of the instance in question correct_class = temp_train_data_frame.iloc[remove_one_training_example, 0] # If the predicted and correct classes are equal, append the # row number of that instance back to the original training set. # Otherwise, remove instance if predicted_class == correct_class: original_training_set.append(remove_one_training_example) instance_not_removed = instance_not_removed + 1 else: remove_one_training_example = None instance_not_removed = 0 # Evaluate differences between original and condensed training data sets print("\tInstances before editing: ", number_train_instances) print("\tInstances after editing: ", len(original_training_set)) reduction_in_number_of_instances = ( number_train_instances - len(original_training_set) ) / number_train_instances percent_reduction = reduction_in_number_of_instances * 100 print("\tPercent reduction: ", round(percent_reduction, 2), "%\n") edited_train_data_frame = temp_train_data_frame.iloc[original_training_set,] return( edited_train_data_frame, reduction_in_number_of_instances ) ################################################ ############## Main Driver ##################### ################################################ # Load input file temp_df = pd.read_csv(input_file_name, header=[0], sep='\t') # Parse input file name for output file split_input_path = input_file_name.strip().split("/") split_input_file_name = split_input_path[7].split("_") output_file_name_list = [] words_to_drop_from_name = ['clean'] for split_index in range(0, len(split_input_file_name)): if words_to_drop_from_name[0] not in split_input_file_name[split_index]: output_file_name_list.append(split_input_file_name[split_index]) output_file_name_final = '_'.join(output_file_name_list) ################################################ # Perform KNN, tuning for the k parameter ################################################ # Write results to an output file with open ("/Users/michelleamaral/Desktop/Intro_to_Machine_Learning/Programming_Project_2/Outputs/" + output_file_name_final + "_output_KNN_Classifier_Tune_K", 'w') as tuneOutputFile: tuneOutputFile.write( "\nData set: " + output_file_name_final + "\n" ) tuneOutputFile.write( "\nType of problem: Classification\n" ) # Split data set into 5 folds test_folds_row_numbers = split_for_cross_validation(temp_df, 5) # Tune the nearest neighbors parameter k tuneOutputFile.write( "\n************************\n" ) tuneOutputFile.write( "\nTuning the parameter k\n" ) tuneOutputFile.write( "\n************************\n" ) # Create an empty list to store accuracy measure for each k performance_for_this_k = [] # Create an empty list to track the values of k list_of_k_values = [] for k_index in range(1, 13): # Store the value of k for this run list_of_k_values.append( k_index ) # Output value of k for this run tuneOutputFile.write( "\nFor k = " + str(k_index) + ":\n" ) # Create empty list to store accuracy measure for each of the 5 folds list_of_performances = [] for index_lists in range(0, len(test_folds_row_numbers)): tuneOutputFile.write( " When fold "+str(index_lists)+" is the test set:\n" ) # Obtain row numbers for test fold temp_df_row_list = test_folds_row_numbers[index_lists] # Obtain test data frame using row numbers for test fold temp_test_data_frame = temp_df.iloc[temp_df_row_list,] temp_test_data_frame = temp_test_data_frame.reset_index( drop=True ) # Obtain train data frame by dropping row numbers for test fold temp_train_data_frame = temp_df.drop( temp_df.index[temp_df_row_list] ) temp_train_data_frame = temp_train_data_frame.reset_index( drop=True ) # Perform the knn algorithm this_fold_performance = knn_algorithm_for_tuning( temp_test_data_frame, temp_train_data_frame, k_index ) # Store the accuracy measure list_of_performances.append( this_fold_performance ) # Express the accuracy as a percentage this_fold_percent_accuracy = this_fold_performance * 100 tuneOutputFile.write( "\tClassification accuracy: " + str(round( this_fold_percent_accuracy, 2 )) + "%\n" ) # Calculate the average of the 5 accuracy performances average_of_5_performances = np.mean( list_of_performances ) performance_for_this_k.append( average_of_5_performances ) # Express the average accuracy as a percentage percent_accuracy = average_of_5_performances * 100 # Calculate the standard deviation for the 5 accuracy measures stdev_accuracy = np.std( list_of_performances ) stdev_accuracy_as_percent = stdev_accuracy * 100 tuneOutputFile.write( "\nAverage classification accuracy: " + str(round( percent_accuracy, 2 )) + "% for k equals " + str(k_index) + "\n" ) tuneOutputFile.write( "Standard deviation: " + str(round( stdev_accuracy_as_percent, 2 )) + "%\n" ) # Write the raw average accuracy measures for each k tuneOutputFile.write( "\nSummary of raw average accuracy over all k: " + str(performance_for_this_k) + "\n" ) # Determine k value associated with highest accuracy max_accuracy = 0 optimal_k_for_knn = 0 for accuracy_index in range( 0, len(performance_for_this_k) ): if performance_for_this_k[ accuracy_index ] > max_accuracy: max_accuracy = performance_for_this_k[ accuracy_index ] optimal_k_for_knn = list_of_k_values[ accuracy_index ] tuneOutputFile.write( "\nHighest accuracy over all k: " + str(max_accuracy) + "\n" ) tuneOutputFile.write( "Optimal value of k parameter: " + str(optimal_k_for_knn)+"\n") # Close this output file tuneOutputFile.close() #################################################### # Perform Condensed KNN, tuning for the k parameter #################################################### # Write condensed nearest neighbors results to an output file with open ("/Users/michelleamaral/Desktop/Intro_to_Machine_Learning/Programming_Project_2/Outputs/" + output_file_name_final + "_output_Condensed_KNN_Classifier_Tune_K", 'w') as condensedOutputFile: condensedOutputFile.write( "\nData set: " + output_file_name_final + "\n" ) condensedOutputFile.write( "\nType of problem: Classification\n" ) condensedOutputFile.write( "\n****************************\n" ) condensedOutputFile.write( "\nCondensed Nearest Neighbors\n" ) condensedOutputFile.write( "\n Tuning the parameter k\n" ) condensedOutputFile.write( "\n****************************\n" ) # Create empty list to store accuracy measure for each k condensed_performance_for_this_k = [] # Create an empty list to track the values of k list_of_k_values = [] for k_index in range(1, 13): # Track the value of k for this run list_of_k_values.append( k_index ) # Write this value of k to the output file condensedOutputFile.write( "\nFor k = " + str(k_index) + ":\n" ) # Create empty list to store the reduction in size between original # data set and condensed data set list_of_reduction_in_data_size = [] # Create empty list to store accuracy measure for each of the 5 folds condensed_list_of_performances = [] for index_lists in range( 0, len(test_folds_row_numbers) ): condensedOutputFile.write( " When fold " + str(index_lists) + " is the test set:\n" ) # Obtain row numbers for test fold temp_df_row_list = test_folds_row_numbers[index_lists] # Obtain test data frame using row numbers for test fold temp_test_data_frame = temp_df.iloc[temp_df_row_list,] temp_test_data_frame = temp_test_data_frame.reset_index( drop=True ) # Obtain train data frame by dropping row numbers for test fold temp_train_data_frame = temp_df.drop( temp_df.index[temp_df_row_list] ) temp_train_data_frame = temp_train_data_frame.reset_index( drop=True ) # Call the condensed nearest neighbors method in an attempt to reduce the data size condensed_train_data_frame, instance_reduction = condensed_nearest_neighbor( temp_train_data_frame ) list_of_reduction_in_data_size.append( instance_reduction ) # Call the knn algorithm to determine the nearest neighbors this_fold_performance = knn_algorithm_for_tuning( temp_test_data_frame, condensed_train_data_frame, k_index ) condensed_list_of_performances.append( this_fold_performance ) # Express the accuracy measure as a percentage this_fold_percent_accuracy = this_fold_performance * 100 condensedOutputFile.write( "\tClassification accuracy: " + str(round( this_fold_percent_accuracy, 2 )) + "%\n" ) condensedOutputFile.write( "\tPercent reduction in number of instances: " + str(round( this_fold_percent_accuracy, 2 )) + "%\n" ) # Calculate the average reduction in the size of the data set average_of_5_instance_reductions = np.mean(list_of_reduction_in_data_size) percent_reduction_of_instances = average_of_5_instance_reductions * 100 # Calculate the standard deviation of the reduction in the size of the data set stdev_reduction_of_instances = np.std( list_of_reduction_in_data_size ) stdev_reduction_as_percent = stdev_reduction_of_instances * 100 condensedOutputFile.write( "\nAverage reduction in number of instances: " + str(round( percent_reduction_of_instances, 2 )) + "%\n" ) condensedOutputFile.write( "Standard deviation: " + str(round( stdev_reduction_as_percent, 2 )) + "%\n" ) # Calculate the average accuracy of the classifier average_of_5_performances = np.mean( condensed_list_of_performances ) condensed_performance_for_this_k.append( average_of_5_performances ) percent_accuracy = average_of_5_performances * 100 # Calculate the standard deviation of the average accuracy stdev_accuracy = np.std( condensed_list_of_performances ) stdev_accuracy_as_percent = stdev_accuracy * 100 condensedOutputFile.write( "\nAverage classification accuracy: " + str(round( percent_accuracy, 2 )) + "%\n" ) condensedOutputFile.write( "Standard deviation: " + str(round( stdev_accuracy_as_percent, 2 )) + "%\n" ) # Write the raw average accuracy measures for each k condensedOutputFile.write( "\nSummary of raw average accuracy over all k: " + str(condensed_performance_for_this_k) + "\n" ) # Determine k value associated with highest accuracy max_accuracy = 0 condensed_optimal_k = 0 for accuracy_index in range( 0, len(condensed_performance_for_this_k) ): if condensed_performance_for_this_k[ accuracy_index ] > max_accuracy: max_accuracy = condensed_performance_for_this_k[ accuracy_index ] condensed_optimal_k = list_of_k_values[ accuracy_index ] condensedOutputFile.write( "\nHighest accuracy over all k: " + str(max_accuracy) + "\n" ) condensedOutputFile.write( "Optimal value of k parameter: " + str(condensed_optimal_k) + "\n" ) # Close this output file condensedOutputFile.close() ################################################ # Perform Edited KNN, tuning for the k parameter ################################################ # Write condensed nearest neighbors results to an output file with open ("/Users/michelleamaral/Desktop/Intro_to_Machine_Learning/Programming_Project_2/Outputs/" + output_file_name_final + "_output_Edited_KNN_Classifier_Tune_K", 'w') as editedOutputFile: editedOutputFile.write( "\nData set: " + output_file_name_final + "\n" ) editedOutputFile.write( "\nType of problem: Classification\n" ) editedOutputFile.write( "\n************************\n" ) editedOutputFile.write( "\nEdited Nearest Neighbors\n" ) editedOutputFile.write( "\n Tuning the parameter k\n" ) editedOutputFile.write( "\n************************\n" ) # Create empty list to store accuracy measure for each k edited_performance_for_this_k = [] for k_index in range(1, 13): editedOutputFile.write( "\nFor k = " + str(k_index) + ":\n" ) # Create empty list to store the reduction in size between original # data set and edited data set list_of_reduction_in_data_size = [] # Create empty list to store accuracy measure for each of the 5 folds edited_list_of_performances = [] for index_lists in range( 0, len(test_folds_row_numbers) ): editedOutputFile.write( " When fold " + str(index_lists) + " is the test set:\n" ) # Obtain row numbers for test fold temp_df_row_list = test_folds_row_numbers[index_lists] # Obtain test data frame using row numbers for test fold temp_test_data_frame = temp_df.iloc[temp_df_row_list,] temp_test_data_frame = temp_test_data_frame.reset_index( drop=True ) # Obtain train data frame by dropping row numbers for test fold temp_train_data_frame = temp_df.drop( temp_df.index[temp_df_row_list] ) temp_train_data_frame = temp_train_data_frame.reset_index( drop=True ) # Call the edited nearest neighbors method in an attempt to # reduce the data set size edited_train_data_frame, instance_reduction = edited_nearest_neighbor( temp_train_data_frame ) list_of_reduction_in_data_size.append( instance_reduction ) # Call the knn algorithm; accuracy of the classifier will be returned this_fold_performance = knn_algorithm_for_tuning( temp_test_data_frame, edited_train_data_frame, k_index ) edited_list_of_performances.append( this_fold_performance ) this_fold_percent_accuracy = this_fold_performance * 100 editedOutputFile.write( "\tClassification accuracy: " + str(round( this_fold_percent_accuracy, 2 )) + "%\n" ) editedOutputFile.write( "\tPercent reduction in number of instances: " + str(round( this_fold_percent_accuracy, 2 )) + "%\n" ) # Calculate the average reduction in size of the data set average_of_5_instance_reductions = np.mean( list_of_reduction_in_data_size ) percent_reduction_of_instances = average_of_5_instance_reductions * 100 # Calculate the standard deviation of the data size reductions stdev_reduction_of_instances = np.std( list_of_reduction_in_data_size ) stdev_reduction_as_percent = stdev_reduction_of_instances * 100 editedOutputFile.write( "\nAverage reduction in number of instances: " + str(round( percent_reduction_of_instances, 2 )) + "%\n" ) editedOutputFile.write( "Standard deviation: " + str(round( stdev_reduction_as_percent, 2 )) + "%\n" ) # Calculate the average accuracy of the classifier average_of_5_performances = np.mean( edited_list_of_performances ) edited_performance_for_this_k.append( average_of_5_performances ) percent_accuracy = average_of_5_performances * 100 # Calculate the standard deviation of the accuracy measures stdev_accuracy = np.std( edited_list_of_performances ) stdev_accuracy_as_percent = stdev_accuracy * 100 editedOutputFile.write( "\nAverage classification accuracy: " + str(round( percent_accuracy, 2 )) + "%\n" ) editedOutputFile.write( "Standard deviation: " + str(round( stdev_accuracy_as_percent, 2 )) + "%\n" ) # Write the raw average accuracy measures for each k editedOutputFile.write( "\nSummary of raw average accuracy over all k: " + str(edited_performance_for_this_k) + "\n" ) # Determine k value associated with highest accuracy max_accuracy = 0 edited_optimal_k = 0 for accuracy_index in range( 0, len(edited_performance_for_this_k) ): if edited_performance_for_this_k[ accuracy_index ] > max_accuracy: max_accuracy = edited_performance_for_this_k[ accuracy_index ] edited_optimal_k = list_of_k_values[ accuracy_index ] editedOutputFile.write( "\nHighest accuracy over all k: " + str(max_accuracy) + "\n" ) editedOutputFile.write( "Optimal value of k parameter: " + str(edited_optimal_k) + "\n" ) # Close this output file editedOutputFile.close() #################################################### # Perform KNN using optimal k parameter from tuning #################################################### # Split data set into 5 folds optimal_k_test_folds_row_numbers = split_for_cross_validation(temp_df, 5) # Prepare output file with open ("/Users/michelleamaral/Desktop/Intro_to_Machine_Learning/Programming_Project_2/Outputs/" + output_file_name_final + "_output_KNN_Classifier_Optimal_K", 'w') as tunedKOutputFile: tunedKOutputFile.write( "\nData set: " + output_file_name_final + "\n" ) tunedKOutputFile.write( "\nType of problem: Classification\n" ) tunedKOutputFile.write( "\n************************\n" ) tunedKOutputFile.write( "\nKNN with optimal k = " + str( optimal_k_for_knn ) + "\n" ) tunedKOutputFile.write( "\n************************\n" ) # Create empty list to store accuracy measure for each of the 5 folds optimal_k_list_of_performances = [] for index_lists in range(0, len(optimal_k_test_folds_row_numbers)): tunedKOutputFile.write( " When fold " + str(index_lists) + " is the test set:\n") # Obtain row numbers for test fold temp_df_row_list = optimal_k_test_folds_row_numbers[index_lists] # Obtain test data frame using row numbers for test fold temp_test_data_frame = temp_df.iloc[temp_df_row_list,] temp_test_data_frame = temp_test_data_frame.reset_index( drop=True ) # Obtain train data frame by dropping row numbers for test fold temp_train_data_frame = temp_df.drop( temp_df.index[temp_df_row_list] ) temp_train_data_frame = temp_train_data_frame.reset_index( drop=True ) # Perform the knn algorithm with optimal k parameter this_fold_performance = knn_algorithm_for_tuning( temp_test_data_frame, temp_train_data_frame, optimal_k_for_knn ) optimal_k_list_of_performances.append( this_fold_performance ) this_fold_percent_accuracy = this_fold_performance * 100 tunedKOutputFile.write( "\tClassification accuracy: " + str(round( this_fold_percent_accuracy, 2 )) + "%\n" ) # Calculate average accuracy from the five folds average_of_5_performances = np.mean( optimal_k_list_of_performances ) percent_accuracy = average_of_5_performances * 100 # Calculate standard deviation for the average accuracy measure stdev_accuracy = np.std( optimal_k_list_of_performances ) stdev_accuracy_as_percent = stdev_accuracy * 100 tunedKOutputFile.write( "\nAverage classification accuracy: " + str(round( percent_accuracy, 2 )) + "% for k equals " + str(optimal_k_for_knn) + "\n" ) tunedKOutputFile.write( "Standard deviation: " + str(round( stdev_accuracy_as_percent, 2 )) + "%\n" ) # Close this output file tunedKOutputFile.close() ############################################################## # Perform Condensed KNN using optimal k parameter from tuning ############################################################## # Write condensed nearest neighbors results to an output file with open ("/Users/michelleamaral/Desktop/Intro_to_Machine_Learning/Programming_Project_2/Outputs/" + output_file_name_final + "_output_Condensed_KNN_Classifier_Optimal_K", 'w') as optimalKCondensedOutputFile: optimalKCondensedOutputFile.write( "\nData set: " + output_file_name_final + "\n" ) optimalKCondensedOutputFile.write( "\nType of problem: Classification\n" ) optimalKCondensedOutputFile.write( "\n********************************\n" ) optimalKCondensedOutputFile.write( "\nCondensed KNN with optimal k = " + str( condensed_optimal_k ) + "\n" ) optimalKCondensedOutputFile.write( "\n********************************\n" ) # Create empty list to store the reduction in size between original # data set and condensed data set list_of_reduction_in_data_size_optimal_k = [] # Create empty list to store accuracy measure for each of the 5 folds condensed_list_of_performances_optimal_k = [] for index_lists in range( 0, len(optimal_k_test_folds_row_numbers) ): optimalKCondensedOutputFile.write( " When fold " + str(index_lists) + " is the test set:\n" ) # Obtain row numbers for test fold temp_df_row_list = optimal_k_test_folds_row_numbers[index_lists] # Obtain test data frame using row numbers for test fold temp_test_data_frame = temp_df.iloc[temp_df_row_list,] temp_test_data_frame = temp_test_data_frame.reset_index( drop=True ) # Obtain train data frame by dropping row numbers for test fold temp_train_data_frame = temp_df.drop( temp_df.index[temp_df_row_list] ) temp_train_data_frame = temp_train_data_frame.reset_index( drop=True ) condensed_train_data_frame, instance_reduction = condensed_nearest_neighbor( temp_train_data_frame ) list_of_reduction_in_data_size_optimal_k.append( instance_reduction ) percent_reduction_in_data_set_size = instance_reduction * 100 this_fold_performance = knn_algorithm_for_tuning( temp_test_data_frame, condensed_train_data_frame, condensed_optimal_k ) condensed_list_of_performances_optimal_k.append( this_fold_performance ) this_fold_percent_accuracy = this_fold_performance * 100 optimalKCondensedOutputFile.write( "\tClassification accuracy: " + str(round( this_fold_percent_accuracy, 2 )) + "%\n" ) optimalKCondensedOutputFile.write( "\tPercent reduction in number of instances: " + str(round( percent_reduction_in_data_set_size, 2 )) + "%\n" ) # Calculate the average reduction in the size of the data set average_of_5_instance_reductions = np.mean(list_of_reduction_in_data_size_optimal_k) percent_reduction_of_instances = average_of_5_instance_reductions * 100 # Calculate the standard deviation for the reduction in the data set size stdev_reduction_of_instances = np.std( list_of_reduction_in_data_size_optimal_k ) stdev_reduction_as_percent = stdev_reduction_of_instances * 100 optimalKCondensedOutputFile.write( "\nAverage reduction in number of instances: " + str(round( percent_reduction_of_instances, 2 )) + "%\n" ) optimalKCondensedOutputFile.write( "Standard deviation: " + str(round( stdev_reduction_as_percent, 2 )) + "%\n" ) # Calculate the average accuracy of the classifier average_of_5_performances = np.mean( condensed_list_of_performances_optimal_k ) percent_accuracy = average_of_5_performances * 100 # Calculate the standard deviation of the accuracy measures stdev_accuracy = np.std( condensed_list_of_performances ) stdev_accuracy_as_percent = stdev_accuracy * 100 optimalKCondensedOutputFile.write( "\nAverage classification accuracy: " + str(round( percent_accuracy, 2 )) + "%\n" ) optimalKCondensedOutputFile.write( "Standard deviation: " + str(round( stdev_accuracy_as_percent, 2 )) + "%\n" ) # Close this output file optimalKCondensedOutputFile.close() ########################################################### # Perform Edited KNN using optimal k parameter from tuning ########################################################### # Write edited nearest neighbors results to an output file with open ("/Users/michelleamaral/Desktop/Intro_to_Machine_Learning/Programming_Project_2/Outputs/" + output_file_name_final + "_output_Edited_KNN_Classifier_Optimal_K", 'w') as optimalKEditedOutputFile: optimalKEditedOutputFile.write( "\nData set: " + output_file_name_final + "\n" ) optimalKEditedOutputFile.write( "\nType of problem: Classification\n" ) optimalKEditedOutputFile.write( "\n************************\n" ) optimalKEditedOutputFile.write( "\nEdited KNN with optimal k = " + str( edited_optimal_k ) + "\n" ) optimalKEditedOutputFile.write( "\n************************\n" ) # Create empty list to store the reduction in size between original # data set and edited data set list_of_reduction_in_data_size = [] # Create empty list to store accuracy measure for each of the 5 folds edited_list_of_performances = [] for index_lists in range( 0, len(test_folds_row_numbers) ): optimalKEditedOutputFile.write( " When fold " + str(index_lists) + " is the test set:\n" ) # Obtain row numbers for test fold temp_df_row_list = test_folds_row_numbers[index_lists] # Obtain test data frame using row numbers for test fold temp_test_data_frame = temp_df.iloc[temp_df_row_list,] temp_test_data_frame = temp_test_data_frame.reset_index( drop=True ) # Obtain train data frame by dropping row numbers for test fold temp_train_data_frame = temp_df.drop( temp_df.index[temp_df_row_list] ) temp_train_data_frame = temp_train_data_frame.reset_index( drop=True ) # Call the edited nearest neighbor method in an attempt to reduce the data set size edited_train_data_frame, instance_reduction = edited_nearest_neighbor( temp_train_data_frame ) list_of_reduction_in_data_size.append( instance_reduction ) percent_reduction_in_data_set_size = instance_reduction * 100 # Call the knn method; will return the accuracy of the classifier this_fold_performance = knn_algorithm_for_tuning( temp_test_data_frame, edited_train_data_frame, edited_optimal_k ) edited_list_of_performances.append( this_fold_performance ) this_fold_percent_accuracy = this_fold_performance * 100 optimalKEditedOutputFile.write( "\tClassification accuracy: " + str(round( this_fold_percent_accuracy, 2 )) + "%\n" ) optimalKEditedOutputFile.write( "\tPercent reduction in number of instances: " + str(round( percent_reduction_in_data_set_size, 2 )) + "%\n" ) # Calculate the average reduction in the size of the data set average_of_5_instance_reductions = np.mean( list_of_reduction_in_data_size ) percent_reduction_of_instances = average_of_5_instance_reductions * 100 # Calculate the standard deviation of the reduction in data set size stdev_reduction_of_instances = np.std( list_of_reduction_in_data_size ) stdev_reduction_as_percent = stdev_reduction_of_instances * 100 optimalKEditedOutputFile.write( "\nAverage reduction in number of instances: " + str(round( percent_reduction_of_instances, 2 )) + "%\n" ) optimalKEditedOutputFile.write( "Standard deviation: " + str(round( stdev_reduction_as_percent, 2 )) + "%\n" ) # Calculate the average accuracy of the classifier average_of_5_performances = np.mean( edited_list_of_performances ) edited_performance_for_this_k.append( average_of_5_performances ) percent_accuracy = average_of_5_performances * 100 # Calculate the standard deviation of the accuracy measures stdev_accuracy = np.std( edited_list_of_performances ) stdev_accuracy_as_percent = stdev_accuracy * 100 optimalKEditedOutputFile.write( "\nAverage classification accuracy: " + str(round( percent_accuracy, 2 )) + "%\n" ) optimalKEditedOutputFile.write( "Standard deviation: " + str(round( stdev_accuracy_as_percent, 2 )) + "%\n" ) # Close this output file optimalKEditedOutputFile.close()
571ceab172ce97ac5e0ec54ec22fdebe886cf18a
teacherzhu/Physics-Olimpiad-Problems-Database
/arabic2rom.py
2,672
3.609375
4
#!/usr/bin/env python2 # Por Luis Mex # funciones sencillas para numeros arabicos a romanos y viceversa import sys def arab2rom(val): rabc=['I','II','III','IV','V','VI','VII','VIII','IX', 'X','XX','XXX','XL','L','XC','C','CC','CCC' ,'CD','D','CM','M','MM','MMM','MV_','V_'] abc=[1,2,3,4,5,6,7,8,9,10,20,30,40,50,90,100,200,300,400, 500,900,1000,2000,3000,4000,5000] string='' i=0 val_act=val if val_act > 5000 : print " el valor supera la gramtica" exit() while True: if (val_act == 0): break else: for j in range(0,len(abc)): if (val_act < abc[j]): val_tmp=-abc[j-1]+val_act val_act=val_tmp i=j string+=rabc[j-1] break elif (val_act >= abc[len(abc)-1]): #print "True" val_tmp=-abc[j-1]+val_act val_act=val_tmp i=j string+=rabc[j-1] break return string def rom2arab(string): rabc=['I','II','III','IV','V','VI','VII','VIII','IX', 'X','XX','XXX','XL','L','XC','C','CC','CCC' ,'CD','D','CM','M','MM','MMM','MV_','V_'] abc=[1,2,3,4,5,6,7,8,9,10,20,30,40,50,90,100,200,300,400, 500,900,1000,2000,3000,4000,5000] num=[] for i in range(0,len(string)): for j in range(0,len(abc)): if string[i]==rabc[j]: num.append(abc[j]) for j in range(0,len(num)-1): for i in range(j,j+1): if num[i] < num[i+1]: num[i]=-num[i] return sum(num) for val in sys.argv[1:]: if val.isalpha (): print rom2arab (val.upper()) elif val.isdigit (): print arab2rom (int(val)) else: print val + " doesn't look like a roman nor arabic numeral!" #val=45 #val_r='XLV' #f=arab2rom(val) #g=rom2arab(val_r) #print f,g
b85eb8cdfb85573ef679ccde0177019e7740315f
Aninhacgs/Programando_com_Python
/Condicionais-Python/CondicionalExercicio07.py
878
3.96875
4
#Criar um algoritmo em PYTHON que leia o valor da compra e imprima o valor da venda. #Entrada de dados compra = float(input("Digite o valor da compra: ")) while(compra == 0 or compra < 0): print("Digite um valor válido para compra: ") compra = float(input("Digite o valor da compra: ")) #processamento e impressão if(compra < 10): venda = compra + compra *(70 / 100) conversao = round(venda,2) print("Valor da venda R$:",conversao) elif(compra < 30): venda = compra + compra * (50 / 100) conversao = round(venda,2) print("Valor da venda R$:",conversao) elif(compra < 50): venda = compra + compra * (40 / 100) conversao = round(venda,2) print("Valor da compra R$:",conversao) else: venda = compra + compra * (30 / 100) conversao = round(venda,2) print("Valor da compra R$:",conversao)
df8466854b643478c0cebd984ad86d09de01cc9b
yrto/python-coding-tank
/aula-14-fixacao/aula-14-fix-04.py
381
3.9375
4
# Faça um script que recebe um texto da entrada # e exibe a maior palavra contida nesse texto. texto = input("Digite algo: ") texto_lista = texto.split(" ") maior_palavra = '' contador = 0 for i in texto_lista: qtd_caracteres = len(i) if qtd_caracteres > contador: contador = qtd_caracteres maior_palavra = i print(maior_palavra, "é a maior palavra")
27a520d8939037a2438566bf5f4e2e3d40959dce
KSDN-05/pythonassignment
/f4.py
243
4.3125
4
def reversed(name,length): reverse="" while(length>0): reverse+=name[length-1] length-=1 return(reverse) a=input("enter string to be reversed:") lengt=len(a) reversed_string=reversed(a,lengt) print(reversed_string)
01cdbc166a6360ad6ab758275426f045c600b4aa
gary-gggggg/gary
/1-mouth01/day15/exe02.py
520
4.03125
4
"""练习 1:创建列表,使用迭代思想,打印每个元素. 练习 2:创建字典,使用迭代思想,打印每个键值对""" list1 = [1, 2, 3, 4, 5, 6, 7, 8, 9] iterator = list1.__iter__() while 1: try: item = iterator.__next__() print(item) except StopIteration: break dic = {"giao": "giao1", "fiao": "fiao1", "xiao": "xiao1"} iterator1 = dic.__iter__() while 1: try: key1 = iterator1.__next__() print(key1,dic[key1]) except StopIteration: break
b447c18c80e2c6a3456a480a29d131bb9c341fdb
Minu94/PythonWorkBook1
/luminar_for_python/language_fundamentals/collections/word_count.py
433
3.78125
4
line="hello hai how are you" words=line.split(" ") #split by space to get word seperatele dict={} for word in words: if(word not in dict): dict{word}=1 #word:1 # supposed to make the form {"hello":1,"hai":2 else: dict[word]+=1 #create list [1,2,3,4,5,6] find square of each element then from result even even listodd odd list [10,20,30,40,50]=50 count of 50 [2,4,8]=ouput to be [12,10,6] [3,2,5]=ouput [7,8,5]
d42a8783db2610030a9efdbd17d119bee245b4c4
sea-lab-wm/burt
/crashscope/lib/python-scripts/ApkParsing/check_aapt.py
1,582
3.703125
4
""" Last Edited by Richard Bonett: 3/25/2017 This program counts the apks from a json file of ApkInfos, outputting a table of each discovered API level and the number of apks having that API level. Usage: python3 check_aapt.py INPUT_JSON_FILE """ import json import sys from prettytable import PrettyTable apks = [] for i in range(1, len(sys.argv)) : apks += json.load(open(sys.argv[i])) print("From %d apks..." % (len(apks))) targets = {-1: 0} versions = {-1: 0} for apk in apks : if 'targetSdkVersion' in apk : if int(apk['targetSdkVersion']) in targets : targets[int(apk['targetSdkVersion'])] += 1 else : targets[int(apk['targetSdkVersion'])] = 1 if 'sdkVersion' in apk : sdk = apk['sdkVersion'] if int(sdk) in versions : versions[int(sdk)] += 1 else : versions[int(sdk)] = 1 table = PrettyTable() table.field_names = ["API Level", "sdkVersion", "targetSdkVersion"] table.align = "r" for v in sorted(list(set(list(versions.keys()) + list(targets.keys())))) : if v in versions and v in targets : table.add_row([v, versions[v], targets[v]]) elif v in versions : table.add_row([v, versions[v], 0]) else : table.add_row([v, 0, targets[v]]) print("Counts of sdkVersion and targetSdkVersion for each API level") print(table) """ print("Sdk Versions:") for v in sorted(versions.keys()) : print(str(v) + " -- " + str(versions[v])) print("Target Sdk Versions:") for v in sorted(targets.keys()) : print(str(v) + " -- " + str(targets[v])) """
7eb277b5d534bcb8013c3a488af29bc1878908e7
siddiqsy/Handwritten-Digits-CelebFaces-Attributes-Classification
/nnScript.py
13,908
3.734375
4
import numpy as np from scipy.optimize import minimize from scipy.io import loadmat from math import sqrt import pandas as pd import time import matplotlib.pyplot as plt def initializeWeights(n_in, n_out): """ # initializeWeights return the random weights for Neural Network given the # number of node in the input layer and output layer # Input: # n_in: number of nodes of the input layer # n_out: number of nodes of the output layer # Output: # W: matrix of random initial weights with size (n_out x (n_in + 1))""" epsilon = sqrt(6) / sqrt(n_in + n_out + 1) W = (np.random.rand(n_out, n_in + 1) * 2 * epsilon) - epsilon return W def sigmoid(z): """# Notice that z can be a scalar, a vector or a matrix # return the sigmoid of input z""" return 1.0/(1.0 + np.exp(-1.0*z))# your code here def preprocess(): """ Input: Although this function doesn't have any input, you are required to load the MNIST data set from file 'mnist_all.mat'. Output: train_data: matrix of training set. Each row of train_data contains feature vector of a image train_label: vector of label corresponding to each image in the training set validation_data: matrix of training set. Each row of validation_data contains feature vector of a image validation_label: vector of label corresponding to each image in the training set test_data: matrix of training set. Each row of test_data contains feature vector of a image test_label: vector of label corresponding to each image in the testing set Some suggestions for preprocessing step: - feature selection""" mat = loadmat('mnist_all.mat') # loads the MAT object as a Dictionary train = [] test = [] train_data = np.zeros((50000,np.shape(mat["train0"])[1])) validation_data = np.zeros((10000,np.shape(mat["train0"])[1])) test_data = np.zeros((10000,np.shape(mat["test0"])[1])) train_label = np.zeros((50000,)) validation_label = np.zeros((10000,)) test_label = np.zeros((10000,)) train_len=0 validation_len=0 test_len=0 train_len_l=0 validation_len_l=0 for key in mat: if("train" in key): train = mat[key]#np.zeros(np.shape(mat.get(key))) shuffle = np.random.permutation(range(train.shape[0])) train_data[train_len:train_len+len(train)-1000] = train[shuffle[0:len(train)-1000],:] train_label[train_len_l:train_len_l+len(train)] = int(key[-1]) validation_data[validation_len:validation_len+1000]=train[shuffle[len(train)-1000:len(train)],:] validation_len=validation_len+1000 validation_label[validation_len_l:validation_len_l+1000] = int(key[-1]) validation_len_l=validation_len_l+1000 train_len=train_len+len(train)-1000 train_len_l=train_len_l+len(train)-1000 elif("test" in key): test = mat[key]#np.zeros(np.shape(mat.get(key))) test_data[test_len:test_len+len(test)] = test[np.random.permutation(range(test.shape[0])),:] test_label[test_len:test_len+len(test)] = key[-1] test_len=test_len+len(test) train_shuffle = np.random.permutation(range(train_data.shape[0])) train_data = train_data[train_shuffle] validate_shuffle = np.random.permutation(range(validation_data.shape[0])) validation_data = validation_data[validate_shuffle] test_shuffle = np.random.permutation(range(test_data.shape[0])) test_data = test_data[test_shuffle] train_data=(train_data)/255 test_data=(test_data)/255 validation_data=np.double(validation_data)/255 train_label=train_label[train_shuffle] validation_label=validation_label[validate_shuffle] test_label = test_label[test_shuffle] # Split the training sets into two sets of 50000 randomly sampled training examples and 10000 validation examples. # Your code here. # Feature selection # Your code here. data = np.array(np.vstack((train_data,validation_data,test_data))) features_count = np.shape(data)[1] #col_index = np.arange(features_count) count = np.all(data == data[0,:],axis=0) data = data[:,~count] train_data=data[0:len(train_data),:] validation_data=data[len(train_data):len(train_data)+len(validation_data),:] test_data=data[len(train_data)+len(validation_data):len(train_data)+len(validation_data)+len(test_data),:] print('preprocess done') return train_data, train_label, validation_data, validation_label, test_data, test_label tracker = 0 def nnObjFunction(params, *args): """% nnObjFunction computes the value of objective function (negative log % likelihood error function with regularization) given the parameters % of Neural Networks, thetraining data, their corresponding training % labels and lambda - regularization hyper-parameter. % Input: % params: vector of weights of 2 matrices w1 (weights of connections from % input layer to hidden layer) and w2 (weights of connections from % hidden layer to output layer) where all of the weights are contained % in a single vector. % n_input: number of node in input layer (not include the bias node) % n_hidden: number of node in hidden layer (not include the bias node) % n_class: number of node in output layer (number of classes in % classification problem % training_data: matrix of training data. Each row of this matrix % represents the feature vector of a particular image % training_label: the vector of truth label of training images. Each entry % in the vector represents the truth label of its corresponding image. % lambda: regularization hyper-parameter. This value is used for fixing the % overfitting problem. % Output: % obj_val: a scalar value representing value of error function % obj_grad: a SINGLE vector of gradient value of error function % NOTE: how to compute obj_grad % Use backpropagation algorithm to compute the gradient of error function % for each weights in weight matrices. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % reshape 'params' vector into 2 matrices of weight w1 and w2 % w1: matrix of weights of connections from input layer to hidden layers. % w1(i, j) represents the weight of connection from unit j in input % layer to unit i in hidden layer. % w2: matrix of weights of connections from hidden layer to output layers. % w2(i, j) represents the weight of connection from unit j in hidden % layer to unit i in output layer.""" n_input, n_hidden, n_class, training_data, training_label, lambdaval = args training_data = np.concatenate((np.ones((np.shape(training_data)[0],1)),training_data),1) w1 = params[0:n_hidden * (n_input + 1)].reshape((n_hidden, (n_input + 1))) w2 = params[(n_hidden * (n_input + 1)):].reshape((n_class, (n_hidden + 1))) obj_val = 0 aj = np.dot(w1,np.transpose(training_data)) zj=sigmoid(aj) zj = np.concatenate((np.ones((np.shape(np.transpose(zj))[0],1)),np.transpose(zj)),1) bj = np.dot(w2,np.transpose(zj)) ol=sigmoid(bj) outputclass = np.zeros((n_class,training_label.shape[0])) #initialize all output class to 0 i=0 for i in range(len(training_label)): label=0 label= int(training_label[i]) outputclass[label,i] = 1 error = -(np.sum((outputclass*np.log(ol)) + ((1-outputclass)*np.log(1-ol)))) delta = ol - outputclass delta_new = (delta*(ol*(1-ol))) gradient_w2 = np.dot(delta_new,zj) product = ((1 - zj) * zj)*(np.dot(delta_new.T,w2)) gradient_w1 = np.dot(np.transpose(product),training_data) error = error/np.shape(training_data)[0] sqr_weights = np.sum(w1**2) + np.sum(w2**2) grad = lambdaval * sqr_weights/(2*np.shape(training_data)[0]) obj_val = error + grad gradient_w1 = (gradient_w1[1:n_hidden+1,] + (lambdaval*w1))/np.shape(training_data)[0] gradient_w2 = (gradient_w2 + lambdaval*w2)/np.shape(training_data)[0] obj_grad = np.concatenate((gradient_w1.flatten(),gradient_w2.flatten()),0) # Make sure you reshape the gradient matrices to a 1D array. for instance if your gradient matrices are grad_w1 and grad_w2 # you would use code similar to the one below to create a flat array # obj_grad = np.concatenate((grad_w1.flatten(), grad_w2.flatten()),0) #obj_grad = np.array([]) return (obj_val, obj_grad) def nnPredict(w1, w2, data): """% nnPredict predicts the label of data given the parameter w1, w2 of Neural % Network. % Input: % w1: matrix of weights of connections from input layer to hidden layers. % w1(i, j) represents the weight of connection from unit i in input % layer to unit j in hidden layer. % w2: matrix of weights of connections from hidden layer to output layers. % w2(i, j) represents the weight of connection from unit i in input % layer to unit j in hidden layer. % data: matrix of data. Each row of this matrix represents the feature % vector of a particular image % Output: % label: a column vector of predicted labels""" labels = np.array([]) # Your code here # dataWithBias = np.concatenate(( np.ones((data.shape[0], 1)),data),1) # hiddenLayerSigma = np.dot(dataWithBias, np.transpose(w1)) # hiddenLayerOp = sigmoid(hiddenLayerSigma) # hiddenLayerOp = np.concatenate(( np.ones((hiddenLayerOp.shape[0],1)),hiddenLayerOp),1) # opLayerSigma = np.dot(hiddenLayerOp, np.transpose(w2)) # finalOp = sigmoid(opLayerSigma) # global tracker # tracker = finalOp # labels = np.argmax(finalOp,axis=1) data = np.concatenate((np.ones((np.shape(data)[0],1)),data),1) aj = np.dot(w1,np.transpose(data)) zj=sigmoid(aj) zj = np.concatenate((np.ones((np.shape(np.transpose(zj))[0],1)),np.transpose(zj)),1) bj = np.dot(w2,np.transpose(zj)) ol=sigmoid(bj) labels = np.argmax(ol.T,axis=1) return labels """**************Neural Network Script Starts here********************************""" colNames = ['Lambda','No_Hidden_Nodes','Train_Accuracy','Validation_Accuracy','Test_Accuracy','Time'] obs = pd.DataFrame(columns = colNames) train_data, train_label, validation_data, validation_label, test_data, test_label = preprocess() noOfHiddenNodes = np.arange(0,100,5) #lambas = np.arange(0,60,10) #noOfHiddenNodes = [50] lambas = [0] count = 0 # Train Neural Network for l in lambas: for hns in noOfHiddenNodes: # set the number of nodes in input unit (not including bias unit) startTime = time.time() n_input = train_data.shape[1] # set the number of nodes in hidden unit (not including bias unit) n_hidden = hns # set the number of nodes in output unit n_class = 10 # initialize the weights into some random matrices initial_w1 = initializeWeights(n_input, n_hidden) initial_w2 = initializeWeights(n_hidden, n_class) # unroll 2 weight matrices into single column vector initialWeights = np.concatenate((initial_w1.flatten(), initial_w2.flatten()), 0) # set the regularization hyper-parameter lambdaval = l args = (n_input, n_hidden, n_class, train_data, train_label, lambdaval) # Train Neural Network using fmin_cg or minimize from scipy,optimize module. Check documentation for a working example opts = {'maxiter': 50} # Preferred value. nn_params = minimize(nnObjFunction, initialWeights, jac=True, args=args, method='CG', options=opts) # In Case you want to use fmin_cg, you may have to split the nnObjectFunction to two functions nnObjFunctionVal # and nnObjGradient. Check documentation for this function before you proceed. # nn_params, cost = fmin_cg(nnObjFunctionVal, initialWeights, nnObjGradient,args = args, maxiter = 50) # Reshape nnParams from 1D vector into w1 and w2 matrices w1 = nn_params.x[0:n_hidden * (n_input + 1)].reshape((n_hidden, (n_input + 1))) w2 = nn_params.x[(n_hidden * (n_input + 1)):].reshape((n_class, (n_hidden + 1))) # Test the computed parameters predicted_label_train = nnPredict(w1, w2, train_data) # find the accuracy on Training Dataset print('\n For Number of Nodes and Lambda ' +str(hns) +'and '+str(l)) print('\n Training set Accuracy:' + str(100 * np.mean((predicted_label_train == train_label).astype(float))) + '%') train_acc = str(100 * np.mean((predicted_label_train == train_label).astype(float))) predicted_label_validate = nnPredict(w1, w2, validation_data) # find the accuracy on Validation Dataset print('\n Validation set Accuracy:' + str(100 * np.mean((predicted_label_validate == validation_label).astype(float))) + '%') val_acc = str(100 * np.mean((predicted_label_validate == validation_label).astype(float))) predicted_label_test = nnPredict(w1, w2, test_data) # find the accuracy on Validation Dataset print('\n Testing set Accuracy:' + str(100 * np.mean((predicted_label_test == test_label).astype(float))) + '%') #collections.Counter(predicted_label) test_acc = str(100 * np.mean((predicted_label_test == test_label).astype(float))) endTime = time.time() runtime = endTime-startTime obs.loc[count] = [l,hns,train_acc,val_acc,test_acc,runtime] count += 1
ca3368a6105513bf6a8e6f8a9525a64857a0bfd0
PauloVilarinho/algoritmos
/problemas uri/Problema1159.py
160
3.703125
4
x = 1 while x!= 0 : total = 0 x = int(input()) y = x if x%2 == 1: x += 1 if y!= 0 : for i in range(5): total += x x += 2 print ("%d" %total)
35561ff018c91efd6e5bb8489486cace89941086
jiadaizhao/LeetCode
/1001-1100/1047-Remove All Adjacent Duplicates In String/1047-Remove All Adjacent Duplicates In String.py
233
3.5625
4
class Solution: def removeDuplicates(self, S: str) -> str: St = [] for c in S: if St and c == St[-1]: St.pop() else: St.append(c) return ''.join(St)
1ec58889352e8919c1614492b40921b29b0f4ff8
vvalcristina/exercicios-python
/curso_em_video/09_guanabara.py
568
4.21875
4
#Tabuada v.01 num = int(input("Digite um numero para ver sua tabuada: ")) print("-"*15) print("TABUADA DE {}".format(num)) print("-"*15) print("{} * {} = {}".format(num,1,num*1)) print("{} * {} = {}".format(num,2,num*2)) print("{} * {} = {}".format(num,3,num*3)) print("{} * {} = {}".format(num,4,num*4)) print("{} * {} = {}".format(num,5,num*5)) print("{} * {} = {}".format(num,6,num*6)) print("{} * {} = {}".format(num,7,num*7)) print("{} * {} = {}".format(num,8,num*8)) print("{} * {} = {}".format(num,9,num*9)) print("{} * {} = {}".format(num,10,num*10))
aa848492ce5486bb8dc72104a6434c05fbd829fc
Alexanderklau/Start_again-python-
/Loop_and_condition/_list_comprehensions.py
344
3.75
4
# -*-coding:utf-8 -*- __author__ = 'Yemilice_lau' print map(lambda x:x ** 2 ,range(6)) def odd(n): return n % 2 print odd(125) seq = [1,2,3,4,5,6,7,8,9] # filter判断是否是奇数 print filter(lambda x :x % 2,seq) print [x for x in seq if x % 2] print [(x+1,y+1) for x in range(10) for y in range(10)] # if __name__ == '__main__':
947c6159e35a3a2de0a7179f3e3e205e50b9a403
darthsuogles/phissenschaft
/algo/leetcode_64.py
622
3.65625
4
''' Min path sum in a matrix ''' def minPathSum(grid): if not grid: return -1 m = len(grid) n = len(grid[0]) if 0 == n: return -1 path_sum = [] for i in range(m): path_sum.append([None] * n) path_sum[0][0] = grid[0][0] for j in range(1, n): path_sum[0][j] = path_sum[0][j-1] + grid[0][j] for i in range(1, m): path_sum[i][0] = path_sum[i-1][0] + grid[i][0] for i in range(1, m): for j in range(1, n): prev = min(path_sum[i-1][j], path_sum[i][j-1]) path_sum[i][j] = prev + grid[i][j] return path_sum[m-1][n-1]
f8295dc2bb7764c798edc06212eca7587a1ad841
devipriyak/IICSEA_Chapter2
/SubsetandSuperSet_symmetricsDifference.py
548
3.875
4
set1={1,2,3,4,5,6,7,24,25,26} set2={1,2,3,4,5,6,7,8,9,10,11,12,13,14} '''#Subset or not verification print "Is the set1 is sub set of Set2:%s" %set1.issubset(set2) print "set1<set2 %s" %(set1<set2) #SuperSet Verification print "Is the set1 is super set of Set2:" ,set1.issuperset(set2) print "set1>set2 %s" %(set1>set2) #Symmetric Differenece ''' res=set1.symmetric_difference(set2) print("Symmetric Difference two sets are %s" %res) print("Set1^Set2 %s" %(set1^set2)) ''' set([8, 9, 10, 11, 12, 13, 14, 24, 25, 26]) '''
04c90bb532a41bb17a47c5ba903d38f4992d150e
artisodua/Hillel
/2_5.py
1,531
3.890625
4
# 5) Есть строка со словами и числами, разделенными пробелами (один пробел между словами и/или числами). # Слова состоят только из букв. Вам нужно проверить есть ли в исходной строке три слова подряд. # Для примера, в строке "hello 1 one two three 15 world" есть три слова подряд. pline = 'hello 1 one two three 15 world' def finde_three_word(line): flist = line.split() fx = 0 flist2 = ['1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20'] flist3 = [] for i in range(len(flist)): if fx < 3: for j in flist: if j not in flist2: flist3.append(j) fx += 1 else: fx -= 1 flist3.pop() return flist3 print(finde_three_word(pline)) # Строка 10 Не смог добиться что бы задать диапазон чисел от 0 до ~ например в массиве с 'кавычками'! Что бы руками не вводить # Если есть возможность подскажи как это реализовать! # Или может есть какой то другой способ проверить в данном массиве являются ли данные цифрами или буквами
d0732314423fe814587702e80a6802c7eaf3860f
WarMasterGenral/OPS435-Rep
/Practices/Collatz.py
177
4.21875
4
def collatz(number): if number %2 ==0: return number // 2 elif number %2 == 1: return 3 * number + 1 user_input = int(input('Enter number: '))
652784e8ff6b5140b16fb59e441d568f829f4b6c
arturchesnokov/hillel_pyton_intro
/luhn.py
1,123
3.796875
4
def luhn_check(card_number: str) -> bool: """ Validate card number :param card_number: credit card number :returns: True if number is valid """ card_number = card_number.replace(' ', '') # удаляем пробелы if card_number.isdigit(): # если в строке остались только цифры numbers = list(int(n) for n in card_number) # получаем список из цифр for i in range(0, len(numbers), 2): # удваиваем значения чисел с четных индексов numbers[i] = numbers[i] * 2 if numbers[i] * 2 < 10 else numbers[i] * 2 - 9 return sum(numbers) % 10 == 0 else: return False if __name__ == '__main__': assert luhn_check('4532 3455 1540 6633') is True assert luhn_check('3528 5070 9380 0507') is True assert luhn_check('5106330611011704') is True assert luhn_check('36813670686745') is False assert luhn_check('4532 3455 154O 6633') is False assert luhn_check('1122 3344 5566 7788') is False assert luhn_check('11_2 3344 5566 7788') is False
0564dd5f5acca737aaf09afbc9358a2e2f8a9605
Harshin1/Python-and-DL
/Labs/Lab 1/hospital admission system/patient.py
1,153
3.96875
4
class Patient(object): def __init__(self, name, age, disease): self.set_Patient_Details(name,age,disease) # set Patient Details def set_Patient_Details(self,name,age,disease): self.name = name self.age = age self.disease = disease print('The patient details are: ') print(self.get_Patient_Details()) # Get Patient Name def get_Patient_Name(self): return self.name # Get Patient Age def get_Patient_Age(self): return self.age # Get Patient Disease def get_Patient_Disease(self): return self.disease # Get Patient Details def get_Patient_Details(self): return self.get_Patient_Name() + " " + str(self.get_Patient_Age()) + " " + self.get_Patient_Disease() class VisitingPatient(Patient): #assigning patient type def __init__(self): Patient.__init__(self) self.patientType = 'Visiting' class InHousePatient(Patient): # assigning patient type def __init__(self): Patient.__init__(self) self.patientType = 'InHouse' if __name__ == "__main__": x = Patient("ABC",22,"fever")
d5c4d2b5edbcc2a6a5c9fccd7991be29caa1a496
shellcreasy/python_study
/loop.py
1,518
4.09375
4
#遍历列表 magicians = ['alice','david','carolina'] for magician in magicians: print(magician.title() + ",that was a great trick!") print("i can't wait to see your next trick," + magician.title() + "\n") print("Thank you,everyone,that was a wonderful magic show") #range函数生成数字 for value in range(1,5): print(value) #使用range()创建数字列表 numbers = list(range(1,6)) print(numbers) #range函数指定步长 numbers1 = list(range(2,11,2)) print(numbers1) #range函数生成1-10的平方数字列表 squares = [] for value in range(1,11): square = value**2 squares.append(square) print(squares) #数字列表统计函数 digits = [1,2,3,4,5,6,7,8,9,0] print(min(digits)) print(max(digits)) print(sum(digits)) #列表解析 squares1 = [value**2 for value in range(1,11)] print(squares1) #列表切片 players = ['charles','martina','michael','florence','eli'] print(players[0:3]) #没有开始索引 print(players[:4]) #没有结束索引 print(players[2:]) #遍历切片 for player in players[:3]: print(player.title()) #复制列表 my_foods = ['pizza','falafel','carrot cake'] friend_foods = my_foods[:] print(my_foods) print(friend_foods) my_foods.append('cannoli') friend_foods.append('ice cream') print(my_foods) print(friend_foods) #元组:不可变的列表 dimensions = (200,50) print(dimensions[0]) print(dimensions[1]) #遍历元组 for dimension in dimensions: print(dimension) #修改元组 dimensions = (250,50) for dimension in dimensions: print(dimension)
51a6a482914d388151f33f764f8e0812d1338f3d
Jonathan-aguilar/DAS_Sistemas
/Ene-Jun-2020/sanchez-niño-angela-gabriela/Practicas1.0/practica1.py
329
3.671875
4
resultado=1 i=0 n=int(input('Ingrese un numero base:')) m=int(input('Ingrese numero de potencia:')) if m!=0: print("1") while True: resultado=n*resultado print(resultado) i=i+1 if i>= abs(m): if m<0: resultado=1/resultado print(resultado) break
99215cc96054e2bf665b6cde703c4d82e9a54d5d
jonataseo/PythonStudys
/chapter12/ch2.py
239
3.90625
4
import math class Circle: def __init__(self, radius): self.radius = radius def area(self): return math.pi * (self.radius * self.radius) if __name__ == "__main__": circle = Circle(3) print(circle.area())
930f6bc6704cbbbcfaf811d4f931d111637fd118
mlratj/Python-Scripts
/Short_exercises/fibonacci_sequence.py
337
4.03125
4
t=int(input("Place a number of terms: ")) print() n1=0 n2=1 counter=0 if t<=0: print("Invalid value.") elif t==1: print("1") else: print("Fibonacci sequence up to ", t, ": ") while counter<t: print(n1, end=" ,") x=n1+n2 n1=n2 n2=x counter+=1 print("\n Have a nice day!") input()
f6cda72eec2c67d3f3d22ce7492cb450649ba58b
marcoportela/python
/exercicio04_marco_02.py
564
3.625
4
# -*- coding: utf-8 -*- """ Created on Mon Aug 18 14:24:51 2014 2. Sorteie 20 inteiros entre 1 e 100 numa lista. Armazene os números pares na lista PAR e os números ímpares na lista IMPAR. Imprima as três listas. @author: [email protected] """ import random lista = [] listaPar = [] listaImpar = [] for i in range(20): lista.append(random.randint(1,100)) if (lista[i] % 2) == 0: listaPar.append(lista[i]) else: listaImpar.append(lista[i]) print('Lista') print(lista) print('Lista par') print(listaPar) print('Lista impar') print(listaImpar)
27cfbebbd04ad72a63cb7bd2c9538d76e402a79c
ziweifan177/Data-Science-Knowledge-Base
/DataScience/python/PythonThread.py
3,488
4.125
4
import threading #1. threading foundation: def test(): print('threading.active_count():',threading.active_count()) # Current threading number. print('threading.enumerate():',threading.enumerate())#What the specific thread? print('threading.current_thread():',threading.current_thread()) #Current threading. print('1. threading foundation:') test() #Output: 1 #Output: [<_MainThread(MainThread, started 7488)>] #Output: <_MainThread(MainThread, started 7808)> #2. threading: Add new thread: def thread_job(): print('This is added thread: num is %s' % threading.current_thread()) #OUTPUT:<Thread(Thread-1, started 1772)> def AddNewThread(): added_thread=threading.Thread(target=thread_job)#Add new thread. added_thread.start()#Start this new thread. print('threading.active_count():', threading.active_count()) #OUTPUT: 2 print('threading.enumerate():', threading.enumerate()) #OUTPUT: [<_MainThread(MainThread, started 20092)>] print('threading.current_thread():', threading.current_thread()) # OUTPUT:<_MainThread(MainThread, started 20092)> print('\n2. threading-Add new thread:') AddNewThread() #3.Thread_join(): import time def addThread1(): print('Thread 1 start! number is %s' % threading.current_thread()) for i in range(10): time.sleep(0.1) print('Thread 1 done.') def addThread2(): print('Thread 2 start! Number is %s' % threading.current_thread()) print('Thread 2 done.') def threadsWork(): thread_1=threading.Thread(target=addThread1, name='thread1') thread_1.start() thread_1.join() #Wait for Thread1 done! then go ahead. thread_2=threading.Thread(target=addThread2(),name='thread2') thread_2.start() print('main done.') print('\n3.Thread_join():') threadsWork() #4. Threading-queue: No return in thread, just queue! from queue import Queue def thread_job(list,queue): for i in range(len(list)): list[i]=list[i]**2 queue.put(list) #No return here! just queue. def createMultiThread(data): q=Queue() #Queue: Store the result of every queue. threadList=[] #List: Store threads. for i in range(4): thread=threading.Thread(target=thread_job, args=(data[i],q)) thread.start() threadList.append(thread) for thread in threadList: thread.join() return q def getResult(queue): results=[] for _ in range(4): results.append(queue.get()) print(results) print('\n4. Threading-queue:') list=[[1,2,3],[3,4,5],[5,2,6],[7,4,2]] q=createMultiThread(list) getResult(q) #5. Thread-Lock:线程不仅仅可以是一个短function,也可是是一个长的, # 而在执行长功能的时候,可以对长功能中的一小部分实现lock,这样只有那一小部分不会互相影响。 #Compare with join(): lock 是锁住变量的更新, join 是不让主线程比某个 thread 先结束 def job1(): global A,lock lock.acquire() for i in range(10): A+=10 print('Job1:',A) lock.release() def job2(): global A,lock lock.acquire() for i in range(10): A+=10 print('Job2:',A) lock.release() print("\n5. Thread-Lock:") lock=threading.Lock() A=0 thread1=threading.Thread(target=job1) thread2=threading.Thread(target=job2) thread1.start() thread1.join() thread2.start() thread2.join()
4dbb7e7f9ebaa73dfafc11dbfdc3b7624a0872e2
kf2312/kelaskita
/kelas_kita/api/question3.py
201
3.765625
4
number = [0, 1] i = 2 while i <= 8: number.append(number[i-1] + number[i-2]) i += 1 print(str(number)) # numberStr = [] # for x in number: # numberStr.append(str(x) + ', ') # print(number)
b3cf30aee08935244c9e20aa49bbbc83568d7a04
Nora-Wang/Leetcode_python3
/Trie/212. Word Search II.py
3,529
3.921875
4
Given a 2D board and a list of words from the dictionary, find all words in the board. Each word must be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once in a word. Example: Input: board = [ ['o','a','a','n'], ['e','t','a','e'], ['i','h','k','r'], ['i','f','l','v'] ] words = ["oath","pea","eat","rain"] Output: ["eat","oath"] Note: All inputs are consist of lowercase letters a-z. The values of words are distinct. 这里用Trie + DFS 还有DFS的方法,直接看DFS中的212 **************************************** result要设置为set避免重复 Input [["a","a"]] ["a"] Output ["a","a"] Expected ["a"] **************************************** code: DIRECTIONS = [(1,0),(-1,0),(0,1),(0,-1)] class TrieNode(object): def __init__(self): self.children = {} self.word = None self.is_word = False class Trie(object): def __init__(self): self.root = TrieNode() def add(self, word): node = self.root for char in word: if char not in node.children: node.children[char] = TrieNode() node = node.children[char] node.is_word = True node.word = word def find(self, word): node = self.root for char in word: if char not in node.children: return False node = node.children[char] return node class Solution(object): def wordSearchII(self, board, words): """ :type board: List[List[str]] :type words: List[str] :rtype: List[str] """ if not len(board) or not len(board[0]): return [] #设为set,避免重复 #eg: [['a'], ['a']], ['a'] result = set() #初始化trie trie = Trie() for word in words: trie.add(word) #以board的每个char开头,判断是否能在trie中找到word for i in range(len(board)): for j in range(len(board[0])): char = board[i][j] self.search(board, i, j, trie.root.children.get(char), set([(i,j)]), result) #结果为list return list(result) def search(self, board, x, y, node, visited, result): #node.children中不存在char,则说明node的剩下路都不用走了 if not node: return #递归出口 if node.is_word: result.add(node.word) #dfs向4个方向扩散 for direct in DIRECTIONS: new_x = x + direct[0] new_y = y + direct[1] #判断新的点是否在board的范围内,并且不在visited里 if self.is_valid(board, new_x, new_y, visited): visited.add((new_x, new_y)) char = board[new_x][new_y] self.search(board, new_x, new_y, node.children.get(char), visited, result) #set的删除是remove visited.remove((new_x, new_y)) def is_valid(self, board, x, y, visited): if x < 0 or x >= len(board) or y < 0 or y >= len(board[0]): return False if (x,y) in visited: return False return True
fb0f19ef2d30eb5c7694c574d253fca28e5bbbd7
gdh756462786/Leetcode_by_python
/Bit Manipulation/Single Number II.py
1,252
3.6875
4
# coding: utf-8 ''' Given an array of integers, every element appears three times except for one. Find that single one. ''' ''' 如果我们把 第 ith 个位置上所有数字的和对3取余, 那么只会有两个结果 0 或 1 (根据题意,3个0或3个1相加余数都为0). 因此取余的结果就是那个 “Single Number”。 ''' # public class Solution { # public int singleNumber(int[] nums) { # int cnt[] = new int[32]; # int single = 0; # for (int i = 0; i < 32; i++) { # for (int j = 0; j < nums.length; j++) { # cnt[i] += (nums[j] >> i) & 0x1; # } # single |= cnt[i] % 3 << i; # } # # return single; # } # } ''' ones 代表第ith 位只出现一次的掩码变量 twos 代表第ith 位只出现两次次的掩码变量 threes 代表第ith 位只出现三次的掩码变量 ''' class Solution: def singleNumber(self, A): one = 0; two = 0; three = 0 for i in range(len(A)): two |= A[i] & one one = A[i] ^ one three = ~(one & two) one &= three two &= three return one solution = Solution() print solution.singleNumber([-2,-2,-3,-3,-3,-4,-2])
eea2bc4392abe06f2a0da15b1f22440784df0461
yeshwanthmoota/Physics_Pong_Singleplayer
/Ball_class_file.py
2,292
3.859375
4
import pygame import random import math from universal_constants_file import * from ball_collision import * class Ball: def __init__(self, x, y): self.x = x self.y = y self.current_ball_speed = BALL_SPEED self.current_theta = 0 def ball_movement(self): # points scored # for restricting position left and right if self.x <= RESTRIANT - BALL_SIDE: # off left side of screen return 1 elif self.x >= WIDTH - RESTRIANT + BALL_SIDE: #off right side of screen return -1 # wall collisions # for restricting position up and down if(self.y < 0 + UP_DOWN_BORDER_HEIGHT): # UP_WALL self.y = UP_DOWN_BORDER_HEIGHT code = wall_ball_collision(self) return code elif(self.y + BALL_SIDE > HEIGHT -UP_DOWN_BORDER_HEIGHT): #DOWN_WALL self.y = HEIGHT - UP_DOWN_BORDER_HEIGHT - BALL_SIDE code = wall_ball_collision(self) return code self.x += self.current_ball_speed * round(math.cos(self.current_theta),1) self.y += self.current_ball_speed * round(math.sin(self.current_theta),1) return 0 def draw_ball(self, gameDisplay): if (self.x <= RESTRIANT - BALL_SIDE) and (self.x >= WIDTH - RESTRIANT + BALL_SIDE): # off left side of screen pass # Making Ball dissappear off the screen else: pygame.draw.rect(gameDisplay, WHITE, pygame.Rect(self.x, self.y, BALL_SIDE, BALL_SIDE)) # r = (BALL_SIDE) / 2 # g = math.sqrt(2) # pygame.draw.circle(gameDisplay, WHITE, (int(self.x + r*g), int(self.y + r*g)), int(r)) # To print out a circle ball. def initial_ball_movement(self): # To provide the initial push to the ball just after a point scored or at the beginning self.x = WIDTH/2 - BALL_SIDE/2 # x - position reset self.y = HEIGHT/2 - BALL_SIDE/2 # y - position reset degrees_1 = random.randrange(60, 121, 20) degrees_2 = random.randrange(240, 301, 20) degrees = random.choice([degrees_1, degrees_2]) theta = math.radians(degrees) self.current_ball_speed = BALL_SPEED self.current_theta = theta self.ball_movement()
8e7b9d96cf69f7ec34ccc9df090ff3c0544be01b
bigeyesung/Leetcode
/863. All Nodes Distance K in Binary Tree.py
1,411
3.796875
4
import collections # Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def distanceK(self, root, target, K): #find target node #find distance below node #find distance above node conn = collections.defaultdict(list) def connect(parent, child): if parent and child: conn[parent.val].append(child.val) conn[child.val].append(parent.val) if child.left: connect(child, child.left) if child.right: connect(child, child.right) connect(None, root) bfs = [target.val] seen = set(bfs) for i in range(K): # bfs = [y for x in bfs for y in conn[x] if y not in seen] new_level = [] for x in bfs: for y in conn[x]: if y not in seen: new_level.append(y) bfs = new_level # add all the values in bfs into seen seen = seen | set(bfs) return bfs node3 = TreeNode(3) node5 = TreeNode(5) node1 = TreeNode(1) node2 = TreeNode(2) node7 = TreeNode(7) node4 = TreeNode(4) node3.left = node5 node3.right = node1 node5.right = node2 node2.left = node7 node2.right = node4 sol = Solution() res = sol.distanceK(node3, node5, 2) print(res)
b994b81d6b5d53eb76d4d82422e2a0068cd43033
TanveerAhmed98/Full-Stack-Programming
/Programming Concepts/loops.py
460
3.78125
4
# while loop a = 0 while a < 11: print("a = "+str(a)) a = a+1 while True: print("Loop ends here") break # for loop for b in range(1,12,2): print(b) numbers = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] for c in numbers: print(c) d = 0 while d < len(numbers): print(numbers[d]) d = d +1 dictionary = { "name" : "jacky", "state" : "stable", "performance" : .89 } for e in dictionary: print(dictionary[e])
1ac4cf6cb17a0236e35616f1324c69a5f5f6f59f
ivangrebeniuk/weather-forecast-parser
/weather_forecast.py
1,541
3.625
4
#! Python 3.7 # Script to parse data from weather forecast web site import requests from bs4 import BeautifulSoup # Download web page page = requests.get('https://forecast.weather.gov/MapClick.php?lat=40.7146&lon=-74.0071#.X0IsJS2w3q0') # Create a BeautifulSoup class to parse the page soup = BeautifulSoup(page.content, 'html.parser') # Find the div with id seven-day-forecast, and assign to seven_day seven_day = soup.find(id='seven-day-forecast') # Inside seven_day, find each individual forecast item. forecast_items = seven_day.find_all(class_='forecast-tombstone') tonight = forecast_items[0] # TODO Extract and print it # print(tonight.prettify()) city = seven_day.find(class_='panel-title').get_text() period = tonight.find(class_='period-name').get_text() short_desc = tonight.find(class_='short-desc').get_text() temp = tonight.find(class_='temp').get_text() img = tonight.find('img') desc = img['title'] periods = [i.get_text() for i in seven_day.select('.tombstone-container .period-name')] short_descs = [i.get_text() for i in seven_day.select('.tombstone-container .short-desc')] temps = [i.get_text() for i in seven_day.select('.tombstone-container .temp')] descs = [i['title'] for i in seven_day.select('.tombstone-container img')] # print(periods) # print(short_descs) # print(temps) # print(descs) with open('./forecast.txt', 'w') as f: f.write(f'Weather forecast in {city.strip()}:\n') ls = list(zip(periods, short_descs, temps, descs)) for i in ls: s = " | ".join(i) f.write(s + '\n')
5bcb38572bd60c6783dbacd4725aec0488b65438
arodan10/ejercicios
/5Ejercicio.py
758
3.859375
4
#Se tiene el nombre y la edad de tres personas. Se desea saber el nombre y la edad de la persona de menor edad. Realice el algoritmo correspondiente y represéntelo con un diagrama de flujo, pseudocodigo y diagrama N/S. def estCondicional01(): #Definir variable regaloP=0 #Datos de entrada cantidadX=int(input("De que persona desea saber su edad y su nombre del de -Mayor edad(opcion 1) -Media edad(opcion 2) -Menor edad(opcion 3):")) #Proceso if cantidadX==1: nombreP="Bryan" edadP=17 elif cantidadX==2: nombreP="Josue" edadP=12 elif cantidadX==3: nombreP="Matius" edadP=10 else: nombreP="-----" edadP="--" #Datos de salida print("NOMBRE:",nombreP," ","EDAD:",edadP) estCondicional01()
1b25e77239d3c462f34470b22af52fa564b07ac8
Unidade/GCC218-Algoritmos-em-Grafos
/0 - Introdução a Python/Exemplos/Classes e objetos/bancos.py
426
3.640625
4
# Classe Banco (bancos.py) class Banco: def __init__(self, nome): self.nome = nome self.clientes = [] self.contas = [] def abre_conta(self, conta): self.contas.append(conta) def lista_contas(self): for c in self.contas: c.resumo # Fonte: Introdução à programação com Python : algoritmos e lógica de programação para iniciantes / Nilo Ney Coutinho Menezes.
0581aa9a35ffbe2abc43d1cb45d1bb122706f253
AlexGCPrint/HW_P
/hw4/2task.py
244
3.609375
4
li = [300, 564, 334, 338, 2, 12, 44, 1, 1, 4, 10, 7, 1, 78, 123, 55] li2 = [] for i in range(1, len(li)): if li[i] > li[i-1]: li2.append(li[i]) print(li2) li3 = [li[i] for i in range(1, len(li)) if li[i] > li[i-1]] print(li3)
e3f63e9c747426fb666931e283838915a496eb2e
karsonk09/CMSC-150
/Sample Programs/test4.py
4,523
3.96875
4
import arcade SCREEN_WIDTH = 500 SCREEN_HEIGHT = 600 SQUARE_LENGTH = 35 SQUARE_HEIGHT = 35 TRIANGLE_COORDINATES = [] SQUARE_MOVE_SPEED = 3 class Square: def __init__(self, position_x, position_y, change_x, change_y, side_length, side_height, color): self.position_x = position_x self.position_y = position_y self.change_x = change_x self.change_y = change_y self.side_length = side_length self.side_height = side_height self.color = color class MyApplication(arcade.Window): """ Main application class. NOTE: Go ahead and delete the methods you don't need. If you do need a method, delete the 'pass' and replace it with your own code. Don't leave 'pass' in this program. """ def __init__(self, width, height): super().__init__(width, height) # Draw the Square self.square_x_position = 150 self.square_y_position = 300 self.square_change_x = 3 self.square_change_y = 3 # Draw the Triangle self.triangle_x1_y1 = [100, 50] TRIANGLE_COORDINATES.append(self.triangle_x1_y1) self.triangle_x2_y2 = [50, 50] TRIANGLE_COORDINATES.append(self.triangle_x2_y2) self.triangle_x3_y3 = [75, 100] TRIANGLE_COORDINATES.append(self.triangle_x3_y3) self.triangle_movement = 1 arcade.set_background_color(arcade.color.BLACK) # Note: # You can change how often the animate() method is called by using the # set_update_rate() method in the parent class. # The default is once every 1/80 of a second. # self.set_update_rate(1/80) def on_draw(self): """ Render the screen. """ # This command should happen before we start drawing. It will clear # the screen to the background color, and erase what we drew last frame. arcade.start_render() arcade.set_background_color(arcade.color.BLACK) arcade.draw_triangle_filled(TRIANGLE_COORDINATES[0][0], TRIANGLE_COORDINATES[0][1], TRIANGLE_COORDINATES[1][0], TRIANGLE_COORDINATES[1][1], TRIANGLE_COORDINATES[2][0], TRIANGLE_COORDINATES[2][1], arcade.color.RED_DEVIL) arcade.draw_rectangle_filled(self.square_x_position, SCREEN_HEIGHT // 2, SQUARE_LENGTH, SQUARE_HEIGHT, arcade.color.ALLOY_ORANGE) def animate(self, delta_time): """ All the logic to move, and the game logic goes here. """ # Move the ball # self.ball_x_position += self.ball_x_pixels_per_second * delta_time # Did the ball hit the right side of the screen while moving right? """ if self.ball_x_position > SCREEN_WIDTH - BALL_RADIUS \ and self.ball_x_pixels_per_second > 0: self.ball_x_pixels_per_second *= -1 # Did the ball hit the left side of the screen while moving left? if self.ball_x_position < BALL_RADIUS \ and self.ball_x_pixels_per_second < 0: self.ball_x_pixels_per_second *= -1 """ self.square_x_position += self.square_change_x * delta_time self.square_y_position += self.square_change_y * delta_time def on_key_press(self, key, key_modifiers): """ Called whenever a key on the keyboard is pressed. For a full list of keys, see: http://pythonhosted.org/arcade/arcade.key.html """ # See if the user hit Shift-Space # (Key modifiers are in powers of two, so you can detect multiple # modifiers by using a bit-wise 'and'.) if key == arcade.key.SPACE and key_modifiers == arcade.key.MOD_SHIFT: print("You pressed shift-space") # See if the user just hit space. elif key == arcade.key.SPACE: print("You pressed the space bar.") if key == arcade.key.RIGHT: print("Right pressed") self.square_change_x = SQUARE_MOVE_SPEED def on_key_release(self, key, key_modifiers): """ Called whenever the user lets off a previously pressed key. """ if key == arcade.key.SPACE: print("You stopped pressing the space bar.") def on_mouse_motion(self, x, y, delta_x, delta_y): """ Called whenever the mouse moves. """ pass window = MyApplication(SCREEN_WIDTH, SCREEN_HEIGHT) arcade.run()
a77a44250ff16b2c16d6161624e3c8e23d024e60
suh-fee/nyuCoursework
/Intro to Python Labs/lab9.py
1,804
3.75
4
# pen and paper 1 # a: ['hi', 'mom', 'dad', 1, 57, 25] # b: ['hi', 25] # c: ['hi', 'mom', 'dad', [1, 57, 25]] # d: ['hi', 'mom', 'dad', [1, 57, 25]] # pen and paper 2 # a: 5 # b: 3 # c: [3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8] #programming # q 1 def staircase(myint, n): num_list = [] for i in range(n): num_list.append(myint+i) return num_list # q 2 def count(lst, item): length = len(lst) counter = 0 for i in range(length): if lst[i] == item: counter += 1 return counter # q 3 def two_powers(): n = int(input("Please input an n: ")) num_list = [] for i in range(n): num_list.append(2**(i+1)) return num_list # q 4 def find_max_even_index(lst): length = len(lst) last_even_place = -1 last_even = 0 for i in range(length): if (lst[i] % 2) == 0: if lst[i] > last_even: last_even_place = i last_even = lst[last_even_place] return last_even_place # q 5 def get_common_element(lst1, lst2): fin_list = [] for i in range(len(lst1)): for j in range(len(lst2)): if lst1[i] == lst2[j]: fin_list.append(lst1[i]) lst2.pop(j) break return fin_list # q 6 def squared(lst): sum = 0 for i in range(len(lst)): sum += lst[i] ** 2 return sum # q 7 def remove_below_average(lst): sum = 0 for i in range(len(lst)): sum += lst[i] average = sum / len(lst) difference = 0 for i in range(len(lst)): if lst[i-difference] < average: lst.pop(i - difference) difference += 1 return lst # q 8 def circular_shift_list(lst, k): for i in range(k): lst.insert(0, lst.pop()) return lst
6827701372de8eddb41d575c7cb0dee8f32435b1
OleksandrMakeiev/python_hw
/random digit.py
540
3.9375
4
# 23 import random print("Программа загадывает целое число от 1 до 10, Ваша задача отдгадать его, следуя подсказкам программы. Для выхода нажми q ") number = random.randint(1, 11) while True: choice = int(input("Сделай свой выбор [1-10]: ")) if choice > number: print("Меньше") elif choice < number: print("Больше") elif choice == number: print("Угадал") break
14c5f7bba90b9f6f64f30a4dfb323db91e3a0aff
BruceHi/leetcode
/String/1reverseString.py
793
4.125
4
# 使用递归 # def reverseString(s): # def helper(left, right): # if left < right: # s[left], s[right] = s[right], s[left] # helper(left + 1, right - 1) # # helper(0, len(s) - 1) # 双指针 # def reverse_string(s) -> None: # left, right = 0, len(s) - 1 # while left < right: # s[left], s[right] = s[right], s[left] # left, right = left + 1, right - 1 # def reverse_string(s) -> None: # left, right = 0, len(s) - 1 # while left < right: # s[left], s[right] = s[right], s[left] # left, right = left+1, right-1 def reverse_string(s) -> None: s.reverse() string = ["h","e","l","l","o"] reverse_string(string) print(string) string = ["H","a","n","n","a","h"] reverse_string(string) print(string)
df7ea5c9baf77fd97baef3414bbea65013be23e5
jasch-shah/python_codes
/countdown.py
710
4
4
import time from datetime import datetime, timedelta def setcount(): global hrs global mins global secs global totalsecs print('#### enter the requested values of the countdown timer #') hrs = int(input('hrs: ' )) mins = int(input('minutes: ')) secs = int(input('seconds: ')) totalsecs = 3600 * hrs + 60 * mins + secs def countdown(): run = str(raw_input('Start? (y/n) >')) if run == "y": ltotalsecs = totalsecs while ltotalsecs != 0: sec = timedelta(seconds=int(ltotalsecs)) d = datetime(1, 1, 1) + sec print("%d hr %d minutes %d seconds over"% (d.hour, d.minute, d.second)) time.sleep(1) ltotalsecs -= 1 if ltotalsecs == 0: print("Time is Up") setcount() countdown()
2d0291af4a8e7a6a9fe3e9399d9383471d7ce144
Yunzhe-Yu/products
/products.py
2,055
3.984375
4
# check the file if it is exist import os # operating system products = [] if os.path.isfile('products_price.csv'): # check the file if is existent isfile() print('The file is existent!') # products = [] # create a new list with open('products_price.csv', 'r', encoding = 'utf-8') as f: for line in f: if 'Items, Price' in line: continue # jump to next loop name, price = line.strip().split(',') # split to cut the line use everything # use strip to remove '\n' # From left to right # After split will generate a list [] # name = s[0] # price = s[1] products.append([name, price]) print(products) else: print('The file is nonexistent!') # read file # products = [] # create a new list # with open('products_price.csv', 'r', encoding = 'utf-8') as f: # for line in f: # if 'Items, Price' in line: # continue # jump to next loop # name, price = line.strip().split(',') # split to cut the line use everything # use strip to remove '\n' # From left to right # After split will generate a list [] # name = s[0] # price = s[1] # products.append([name, price]) #print(products) # 2-D list # insert a list into the first list # input import while True: name = input('Please enter the name of the item: ') if name == 'q': # quit break price = input('Please enter the price of this item: ') price = int(price) product = [] # new list product.append(name) product.append(price) # product = [name, price] products.append(product) # products.append([name, price]) print(products) # print each record for p in products: print('The price of', p[0], 'is', p[1], 'dollar!') # 'abc' + '123' = 'abc123' # 'abc' * 3 = 'abcabcabc' # write in csv file # with open('products_price.txt', 'w') as f: with open('products_price.csv', 'w', encoding = 'utf-8') as f: f.write('Items, Price\n') for p in products: f.write(p[0] + ',' + str(p[1]) + '\n') # f.write: write function # Can not plus integer to string use str() and int() # use encoding = utf - 8 can write chinese *****