blob_id
string
repo_name
string
path
string
length_bytes
int64
score
float64
int_score
int64
text
string
32b885cb28b5d02b0671f08143f2bc9cbd41da71
ArmandoCarrillo91/Platzi
/Cursos/basic_python/break_continue.py
520
3.65625
4
def run(): # for contador in range(1000): # if contador % 2 != 0: # continue # print(contador) # for i in range(10000): # print(i) # if i == 5668: # break # texto = input('Esccribe un Texto: ') # for letra in texto: # if letra == 'o': # break # print(letra) for i in range(6): if i == 5: print('Figaroooo') break print('Galileo') if __name__ == '__main__': run()
0adc5de808e6c03f240ca745e39b417bb84d5b1d
zhagyilig/AdvancePy
/03-深入类和对象/class_method.py
1,350
3.703125
4
# -*- encoding: utf-8 -*- ''' @Author : ericzhang @Version : python3.6 @File : class_methid.py @Time : 2019/11/10 21:59:40 @Desc : 类方法、静态方法、实例方法 @Docs : ''' class Data: def __init__(self, year, month, day): self.year = year self.month = month self.day = day # 实例方法 def tomorrow(self): self.day += 1 # 静态方法 @staticmethod def data_static_parse(data_str): year, month, day = data_str.split('-') return Data(year, month, day) # 类方法 @classmethod def data_class_parsr(cls, data_str): year, month, day = data_str.split('-') return cls(year, month, day) def __str__(self): return '{}/{}/{}'.format(self.year, self.month, self.day) if __name__ == '__main__': new_day = Data(2019, 11, 10) print(new_day) # 在外面解析合适的格式再传入类中 # 2019-11-10 data_str = '2019-11-10' year, month, day = data_str.split('-') print(year, month, day) new_day = Data(year, month, day) print(new_day) # 使用staticmothod完成初始化 new_day = Data.data_static_parse(data_str) print(new_day) # 使用classmothod完成初始化 new_day = Data.data_class_parsr(data_str) print(new_day)
6e30b8cc3a87012ef061e574dcc674ca3c150dae
xia0m/LPTHW-Next
/Trees/DFS_pre_order.py
2,286
3.75
4
class Node(object): def __init__(self, value=None): self.value = value self.left = None self.right = None def get_value(self): return self.value def set_value(self, value): self.value = value def set_left_child(self, node): self.left = node def set_right_child(self, node): self.right = node def get_left_child(self): return self.left def get_right_child(self): return self.right def has_left_child(self): return self.left is not None def has_right_child(self): return self.right is not None class Tree(): def __init__(self, value): self.root = Node(value) def get_root(self): return self.root tree = Tree("F") tree.get_root().set_left_child(Node("B")) tree.get_root().set_right_child(Node("G")) tree.get_root().get_left_child().set_left_child(Node("A")) tree.get_root().get_left_child().set_right_child(Node("D")) tree.get_root().get_left_child().get_right_child().set_left_child(Node("C")) tree.get_root().get_left_child().get_right_child().set_right_child(Node("E")) tree.get_root().get_right_child().set_right_child(Node("I")) tree.get_root().get_right_child().get_right_child().set_left_child(Node("H")) # def post_order(tree): # visit_order = list() # if tree is None: # return [] # root = tree.get_root() # if root.has_left_child(): # post_order_traverse(root.get_left_child(), visit_order) # if root.has_right_child(): # post_order_traverse(root.get_right_child(), visit_order) # visit_order.append(root.get_value()) # return visit_order # def post_order_traverse(node, visit_order): # if node.has_left_child(): # post_order_traverse(node.get_left_child(), visit_order) # if node.has_right_child(): # post_order_traverse(node.get_right_child(), visit_order) # visit_order.append(node.get_value()) # return def pre_order(tree): visit_order = list() root = tree.get_root() def traverse(node): if node: visit_order.append(node.get_value()) traverse(node.get_left_child()) traverse(node.get_right_child()) traverse(root) return visit_order print(pre_order(tree))
edb6c962043125d6390f063973e2d73463508436
andyc1997/Data-Structures-and-Algorithms
/Advanced-Algorithms-and-Complexity/Week1/stock_charts.py
6,745
4.34375
4
# python3 from queue import Queue # Task. You’re in the middle of writing your newspaper’s end-of-year economics summary, and you’ve decided # that you want to show a number of charts to demonstrate how different stocks have performed over the # course of the last year. You’ve already decided that you want to show the price of n different stocks, # all at the same k points of the year. # A simple chart of one stock’s price would draw lines between the points (0, price[0]), (1, price[1]), . . . , (k− # 1, price[k - 1]), where price[i] is the price of the stock at the i-th point in time. # Input Format. The first line of the input contains two integers n and k — the number of stocks and the # number of points in the year which are common for all of them. Each of the next n lines contains k # integers. The i-th of those n lines contains the prices of the i-th stock at the corresponding k points # in the year. # Output Format. Output a single integer — the minimum number of overlaid charts to visualize all the # stock price data you have. class DirectedGraph: # a directed graph object, use adjacency matrix to store the relation def __init__(self, stock_data): self.data = stock_data self.n = len(stock_data) # n <= 100 in this problem, using adjacency matrix costs little memory! self.adj_list = [[0]*self.n for _ in range(self.n)] def compare(self, i, j): # a function to compare two stocks, i and j. If all elements of stock i are strictly smaller than those of stock j, return True stock_1, stock_2 = self.data[i], self.data[j] for (p_1, p_2) in zip(stock_1, stock_2): if p_1 >= p_2: return False return True def build_graph(self): # a function to fill the adjacency matrix for i in range(self.n): for j in range(self.n): if i != j: if self.compare(i, j): self.adj_list[i][j] = 1 class Edge: # an edge object, see airline.py def __init__(self, u, v, capacity): self.u = u self.v = v self.capacity = capacity self.flow = 0 class FlowGraph: # a network object, see airline.py def __init__(self, n): self.edges = [] self.graph = [[] for _ in range(n)] def add_edge(self, from_, to, capacity): forward_edge = Edge(from_, to, capacity) backward_edge = Edge(to, from_, 0) self.graph[from_].append(len(self.edges)) self.edges.append(forward_edge) self.graph[to].append(len(self.edges)) self.edges.append(backward_edge) def size(self): return len(self.graph) def get_ids(self, from_): return self.graph[from_] def get_edge(self, id): return self.edges[id] def add_flow(self, id, flow): self.edges[id].flow += flow self.edges[id ^ 1].flow -= flow def update_residual_graph(graph, X, edges, prev, from_, to): while to != from_: graph.add_flow(edges[to], X) to = prev[to] return graph def reconstruct_path(graph, from_, to, prev, edges): # see airline.py result = [] X = 10000 + 1 while to != from_: result.append(to) X = min(X, graph.get_edge(edges[to]).capacity - graph.get_edge( edges[to]).flow) to = prev[to] return [from_] + [u for u in reversed(result)], X, edges, prev def find_a_path(graph, from_, to): # see airline.py dist = [False] * graph.size() dist[from_] = True prev = [None] * graph.size() edges = [None] * graph.size() q = Queue() q.put(from_) while not q.empty(): u = q.get() for id in graph.get_ids(u): to_edge_v = graph.get_edge(id) v = to_edge_v.v flow = to_edge_v.flow capacity = to_edge_v.capacity if (dist[v] == False) and ( flow < capacity): q.put(v) dist[v] = True prev[v] = u edges[v] = id if dist[to] == True: return reconstruct_path(graph, from_, to, prev, edges) else: return [], 0, [], [] def max_flow(graph, from_, to): # Standard implementation of Edmonds-Karp algorithm, see airline.py flow = 0 while True: path, X, edges, prev = find_a_path(graph, from_, to) if len(path) == 0: return flow flow += X graph = update_residual_graph(graph, X, edges, prev, from_, to) return flow class StockCharts: def read_data(self): # read input n, k = map(int, input().split()) stock_data = [list(map(int, input().split())) for i in range(n)] return stock_data def write_response(self, result): # write output print(result) def min_charts(self, stock_data): # Idea: If stock[i] > stock[j] for all elements, then these two stocks can be put together in the same chart # Let there be a bipartite graph of two set of vertices of size n. # We can draw a line to connect a pair of vertices only if stock[i] in left hand side > stock[j] in right hand side # Simple cases: # If stock[i] > stock[j] and stock[j] > stock[k] (which automatically implies stock[i] > stock[k] , then there are three matches and all of them can be put into a single chart # If stock[i] > stock[j] and stock[k] > stock[j] but stock[k] !> stock[i], then there are two matches in the bipartite graph # So, n - number of matches = number of chart needed n = len(stock_data) # n = number of stocks in total dag = DirectedGraph(stock_data) # Initialize the directed graph dag.build_graph() # Build adjacency matrix network = FlowGraph(2*(n + 1)) # Initialize the network source, sink, capacity = 0, 2*n + 1, 1 # Let source has index 0, sink has index 2*n + 1, capacity is 1 for each edge for i in range(1, n + 1): network.add_edge(source, i, 1) # add edges from source to stock[i] for j in range(n + 1, 2*n + 1): if dag.adj_list[i - 1][j - (n + 1)] == 1: # if stock[i] > stock[j] at all time point, add edges from stock[i] to stock[j] network.add_edge(i, j, 1) for j in range(n + 1, 2*(n + 1)): # add edges from stock[j] to sink network.add_edge(j, sink, 1) return n - max_flow(network, source, sink) # the maxflow is the maximum number of stocks def solve(self): stock_data = self.read_data() result = self.min_charts(stock_data) self.write_response(result) if __name__ == '__main__': stock_charts = StockCharts() stock_charts.solve()
6c8514cd8de14acd6324f6d692915aeff8060de4
yyxt11/Leetcodes
/树结构/98.验证二叉树搜索树.py
898
3.90625
4
#确保左边子节点恒小于当前节点和父节点的值, 右边子节点恒大于当前节点和父节点的值 # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def isValidBST(self, root: TreeNode) -> bool: def search(root:TreeNode,lowbonde = float('-inf'),highbonde = float('inf')): if root is None: return True else: if root.val <= lowbonde or root.val >= highbonde: return False #recall elif not search(root.left,lowbonde,root.val): return False elif not search(root.right,root.val,highbonde): return False return True return search(root)
9f9806894d0c369a462ce21f7c540216d2e4cfa4
tnfranco/courses
/Java/Login.py
253
4.09375
4
usuario = input("Digite o nome do seu usuario: ") senha = input("Digite sua senha: ") while senha == usuario: print("Senha nao pode ser igual ao usuario") usuario = input("Digite o nome do seu usuario: ") senha = input("Digite sua senha: ")
53879e9fe3a6705e8aba7ee98ec52443cebb2950
pandas-dev/pandas
/pandas/tests/arithmetic/common.py
4,362
3.609375
4
""" Assertion helpers for arithmetic tests. """ import numpy as np import pytest from pandas import ( DataFrame, Index, Series, array, ) import pandas._testing as tm from pandas.core.arrays import ( BooleanArray, NumpyExtensionArray, ) def assert_cannot_add(left, right, msg="cannot add"): """ Helper to assert that left and right cannot be added. Parameters ---------- left : object right : object msg : str, default "cannot add" """ with pytest.raises(TypeError, match=msg): left + right with pytest.raises(TypeError, match=msg): right + left def assert_invalid_addsub_type(left, right, msg=None): """ Helper to assert that left and right can be neither added nor subtracted. Parameters ---------- left : object right : object msg : str or None, default None """ with pytest.raises(TypeError, match=msg): left + right with pytest.raises(TypeError, match=msg): right + left with pytest.raises(TypeError, match=msg): left - right with pytest.raises(TypeError, match=msg): right - left def get_upcast_box(left, right, is_cmp: bool = False): """ Get the box to use for 'expected' in an arithmetic or comparison operation. Parameters left : Any right : Any is_cmp : bool, default False Whether the operation is a comparison method. """ if isinstance(left, DataFrame) or isinstance(right, DataFrame): return DataFrame if isinstance(left, Series) or isinstance(right, Series): if is_cmp and isinstance(left, Index): # Index does not defer for comparisons return np.array return Series if isinstance(left, Index) or isinstance(right, Index): if is_cmp: return np.array return Index return tm.to_array def assert_invalid_comparison(left, right, box): """ Assert that comparison operations with mismatched types behave correctly. Parameters ---------- left : np.ndarray, ExtensionArray, Index, or Series right : object box : {pd.DataFrame, pd.Series, pd.Index, pd.array, tm.to_array} """ # Not for tznaive-tzaware comparison # Note: not quite the same as how we do this for tm.box_expected xbox = box if box not in [Index, array] else np.array def xbox2(x): # Eventually we'd like this to be tighter, but for now we'll # just exclude NumpyExtensionArray[bool] if isinstance(x, NumpyExtensionArray): return x._ndarray if isinstance(x, BooleanArray): # NB: we are assuming no pd.NAs for now return x.astype(bool) return x # rev_box: box to use for reversed comparisons rev_box = xbox if isinstance(right, Index) and isinstance(left, Series): rev_box = np.array result = xbox2(left == right) expected = xbox(np.zeros(result.shape, dtype=np.bool_)) tm.assert_equal(result, expected) result = xbox2(right == left) tm.assert_equal(result, rev_box(expected)) result = xbox2(left != right) tm.assert_equal(result, ~expected) result = xbox2(right != left) tm.assert_equal(result, rev_box(~expected)) msg = "|".join( [ "Invalid comparison between", "Cannot compare type", "not supported between", "invalid type promotion", ( # GH#36706 npdev 1.20.0 2020-09-28 r"The DTypes <class 'numpy.dtype\[datetime64\]'> and " r"<class 'numpy.dtype\[int64\]'> do not have a common DType. " "For example they cannot be stored in a single array unless the " "dtype is `object`." ), ] ) with pytest.raises(TypeError, match=msg): left < right with pytest.raises(TypeError, match=msg): left <= right with pytest.raises(TypeError, match=msg): left > right with pytest.raises(TypeError, match=msg): left >= right with pytest.raises(TypeError, match=msg): right < left with pytest.raises(TypeError, match=msg): right <= left with pytest.raises(TypeError, match=msg): right > left with pytest.raises(TypeError, match=msg): right >= left
394b17d841707da8dc2b13c48581e250dd69390b
NagahShinawy/problem-solving
/pynative/3_ifelse_forloop/ex_7.py
316
3.9375
4
""" Exercise 7: Print the following pattern using for loop 5 4 3 2 1 4 3 2 1 3 2 1 2 1 1 """ for i in range(5, 0, -1): for j in range(i, 0, -1): print(j, end=" ") print() print("#" * 30) n = 5 k = 5 for i in range(0, n + 1): for j in range(k - i, 0, -1): print(j, end=" ") print()
9dcf1d1e3d13782fd1a5788fafcd64b3b6cfeba6
codeepicure/python-bootcamp
/09 - Secret Auction/main.py
643
4.03125
4
from replit import clear from art import logo #HINT: You can call clear() to clear the output in the console. print(logo) user_bids = {} no_more_users = False while not no_more_users: name = input("What is your name? ") bid = int(input("What is your bid? ")) user_bids[name] = bid has_more_users = input("Are there other users? 'yes/no' ") no_more_users = True if has_more_users != 'yes' else False;clear() winner = "" win_bid = 0 for user in user_bids: if(user_bids[user] > win_bid): win_bid = user_bids[user] winner = user print(f"The winner of the auction is {winner} with a winning bid of {win_bid}")
aed22b4b26a44135f1c665ea3ecae379177aef0c
phlalx/algorithms
/leetcode/274.h-index.python3.py
416
3.765625
4
# TAGS array # can we do without a sort? def hindex(citations): citations.sort(reverse=True) i = 0 n = len(citations) while i < n and citations[i] >= i + 1: i = i + 1 return i class Solution: def hIndex(self, citations): """ :type citations: List[int] :rtype: int """ if not citations: return 0 return hindex(citations)
5bd177fa807b68a4399669242ff90d17ef0374e0
Mystified131/DAPSupplementalCode
/Lists2.py
414
4.125
4
#Here I set up the three lists alst = [1, 5, 6, 8, 7, 6, 3] blst = ["bear", "cat", "shark"] clst = [1.2, 3.6, 3.42] #Here I create a new list finlst = [] #Here I loop through each list, adding the elements to the new list for elem in alst: finlst.append(elem) for elem2 in blst: finlst.append(elem2) for elem3 in clst: finlst.append(elem3) #Here I print the contents of the new list print(finlst)
fe38966903cc139b6f2f3c7b31eaa55ccc171bf1
jtannas/intermediate_python
/slots_magic.py
1,539
4.4375
4
""" 10. __slots__ Magic In Python every class can have instance attributes. By default Python uses a dict to store an object’s instance attributes. This is really helpful as it allows setting arbitrary new attributes at runtime. However, for small classes with known attributes it might be a bottleneck. The dict wastes a lot of RAM. Python can’t just allocate a static amount of memory at object creation to store all the attributes. Therefore it sucks a lot of RAM if you create a lot of objects (I am talking in thousands and millions). Still there is a way to circumvent this issue. It involves the usage of __slots__ to tell Python not to use a dict, and only allocate space for a fixed set of attributes. Here is an example with and without __slots__: """ # Without slots class MyClass1(object): def __init__(self, name, identifier): self.name = name self.identifier = identifier self.set_up() def set_up(self): pass # With slots class MyClass2(object): __slots__ = ['name', 'identifier'] def __init__(self, name, identifier): self.name = name self.identifier = identifier self.set_up() def set_up(self): pass #: In essence, it is telling Python that the class will take up a fixed #: amount of space and that it can optimize memory around that fixed #: amount. #: Some people have reported RAM savings of 40 to 50% using this. #: Side note from author: You may want to give PyPy a try. It does all #: these optimizations by default.
5787e2b352c4a64b4ced2adaa169b8cd52effb94
crypdick/btree
/btreenode.py
5,840
3.796875
4
class BTreeNode(object) : '''represents a node in a B-tree, containing q < p references to child nodes and a key-pointer pair between each pair of references: ... | child i | key i, ptr i | child i+1 | key i+1, ptr i+1 | ... In the picture, child node ref i refers to the root of a tree of nodes whose keys are <= key i child node ref i+1 refers to the root of a tree of nodes whose keys are > key i and <= key i+1 key i is the value of a data column, ptr i is an integer or string representing the location of a data record Note: This Python implementation uses references to nodes instead of pointers to nodes. In a leaf node each node reference is None.''' def __init__(self, p) : self.p = p self.q = 0 self.childKeyPtrs = list() # contains tuples (child i, (key i, ptr i)) self.rightChild = None self.parent = None def setRightChild(self, rightChild): self.rightChild = rightChild def getRightChild(self): return self.rightChild def setParent(self, node): self.parent = node def getParent(self): return self.parent def isOverfull(self) : return (q>=p) def isLeaf(self) : return (self.rightChild is None) def insertDown(self, keyPtr) : '''Searches for the leaf node to insert a new key-pointer pair into, and does the insertion. Returns None, or a reference to the new root if one is created.''' # if this node is a leaf, insert the pair (node ref, (key, pointer)) if self.isLeaf(): if self.q == 0: #if node is empty, just inset key_ptr self.childKeyPtrs = self.childKeyPtrs.append((None,keyPtr)) self.q += 1 else: #if node has other keys #loop through keys to find right position # for i in range(q+1): # # if keyPtr[0] > self.childKeyPtrs[i][1][0] and i < q: # continue # else: # self.childKeyPtrs = self.childKeyPtrs.insert(i,(None,keyPtr)) # self.q += 1 if keyPtr[0] < self.childKeyPtrs[0][1][0]: self.childKeyPtrs = self.childKeyPtrs.insert(0,(None,keyPtr)) if keyPtr[0] < self.childKeyPtrs[1][1][0]: self.childKeyPtrs = self.childKeyPtrs.insert(i,(None,keyPtr)) # if after insertion this node is overfull: if self.isOverfull(): # if this node is root (and leaf!), call insertRoot() if self.getParent() == None: return self.insertRoot() # if this node is not root # insert the rightmost key-pointer pair into this node's parent # with insertUp(None, key-ptr, rightChild) # and fix this node's references else: right_most_keyPtr = self.childKeyPtrs[-1][1] return self.insertUp(None,right_most_keyPtr,self.getRightChild) else: return None # if this node has children, insert the key-ptr pair into the correct child and recurse else: #loop through all keys to locate correct child for i in range(q+1): if keyPtr[0] > self.childKeyPtrs[i][1][0] and i < q: continue else: if i > q: child = self.getRightChild child.insertDown(keyPtr) else: child = self.childKeyPtrs[i][0] child.insertDown(keyPtr) return # None or return value of insertRoot, insertUp, or insertDown def insertUp(self, leftNode, keyPtr, rightNode) : '''Inserts a key-pointer pair into a node. Typically called by an overfull child or sibling. Returns None, or a reference to the new root if one is created.''' #This method isn't making any sense to me since it pushes the right-most #key-ptr pair up to the parent and not the middle key-ptr pair # insert the leftNode-keyPtr tuple into the list at the correct index # replace the child in the next list element, or the rightChild, with rightNode # if this node is overfull # if this node is not root, insert the rightmost key-pointer pair into this node's parent # if this node is root, call insertRoot() return # None or return value of insertRoot, insertUp, or insertDown def insertRoot(self): '''Called when this node is root and overfull, creates a new parent/root node and a sibling node to contain half the entries. Returns a reference to the new root.''' # create a new parent/root node and a new sibling node # set the return value new_root = BTreeNode(self.p) new_sibling = BTreeNode(self.p) # move this node's middle key-pointer pair into the parent # with insertUp(self, key-ptr, sibling) # and fix this node's references middle_keyptr = self.childKeyPtrs[self.p//2][1] self.insertUp(self,middle_keyptr,new_sibling) self.childKeyPtrs = self.childKeyPtrs[0] # give this node's right child to the sibling # give the right half of this node's child-key-pointer tuples to the sibling # with calls to insertUp(child, key-ptr, None) #i # make the root the parent of this node and its sibling. new_sibling.setParent(new_root) self.setParent(new_root) return # reference to new root
84d9a29b4b28a287f5dff164a25b2e28b27d3bd3
danield309/cs1.1-bank-account
/BankAccount.py
2,062
4.125
4
# bank account class class BankAccount: def __init__(self, full_name, account_number, routing_number, balance): self.full_name = full_name self.account_number = account_number self.routing_number = routing_number self.balance = balance # deposit method def deposit(self, amount): self.balance += amount print(f"Amount deposited: ${amount}") # withdraw method def withdraw(self, amount): self.balance -= amount print(f"Amount withdrawn: ${amount}") if amount > self.balance: print("Insufficient funds.") self.balance -= 10 # balance method def get_balance(self): print(f"Balance: ${self.balance}") # add interest method def add_interest(self): balance = self.balance interest = balance * 0.00083 self.balance = self.balance + interest # print receipt method def print_receipt(self): stars = [] for i in str(self.account_number): stars.append("*") hide_accountnum = str(self.account_number) stars[len(stars)-1] = hide_accountnum[len(stars)-1] stars[len(stars)-2] = hide_accountnum[len(stars)-2] stars[len(stars)-3] = hide_accountnum[len(stars)-3] stars[len(stars)-4] = hide_accountnum[len(stars)-4] acc_stars = "" acc_stars = acc_stars.join(stars) print(self.full_name) print(f"Account No.: {acc_stars}") print(f"Routing No.: {self.routing_number}") print(f"Balance: {self.balance}") # bank account 1 daniel_account = BankAccount("Daniel Duque", 490281789, 1982331, 7000) daniel_account.deposit(5000) daniel_account.print_receipt() # bank account 2 travis_account = BankAccount("Travis Scott", 914253880, 8982331, 5300) travis_account.get_balance() travis_account.withdraw(5301) travis_account.print_receipt() # bank account 3 aubrey_account = BankAccount("Aubrey Graham", 666666666, 7982331, 100000) aubrey_account.add_interest() aubrey_account.print_receipt()
8bdc54a4132656ea67d24c419965fab0358879aa
shapovalovdev/AlgorythmsAndDataStructures
/src/LinkedList/linked_list_sum.py
1,059
4.1875
4
from src.LinkedList.linked_list_realization import LinkedList, Node def sum_equal_lists(List1, List2): #check if List1 or List2 is Linked list if not return if type(List1) is not LinkedList or type(List2) is not LinkedList: raise Exception("Types of parameters are not linked list. ") return #check if some the lists are empty if List1.head is None or List2.head is None: raise Exception("Lists should not be empty") return #check if lists are not equal if List1.len() != List2.len(): raise Exception("Lists are not equal. Try again") return #create new list with sum of every element sum_list= LinkedList() node1=List1.head node2=List2.head while node1 is not None: if type(node1.value) is not int or type(node2.value) is not int: raise Exception("Lists have not integer values") return n=Node(node1.value+node2.value) sum_list.add_in_tail(n) node1=node1.next node2=node2.next return sum_list
9068b68e3a098f8ac8685f4f240306bfae738bad
pirate765/bridgelabzbootcamp
/day1/nosuchmethod.py
201
3.75
4
class MyClass: "This is my custom class" a = 10 def func(self): print('Hello', self.a) obj1 = MyClass() print(obj1) print(obj1.func()) print(obj1.func2()) # print(MyClass.a) # print(obj1.func())
562b810ac10c047df807426b78452123ef995336
eselyavka/python
/leetcode/solution_99.py
1,965
3.765625
4
import unittest class TreeNode(object): def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution(object): def recoverTree(self, root): """ :type root: TreeNode :rtype: None Do not return anything, modify root in-place instead. """ arr = [] curr = root stack = [] while True: if curr is not None: stack.append(curr) curr = curr.left elif stack: node = stack.pop() arr.append(node.val) curr = node.right else: break sorted_arr = sorted(arr) n = len(arr) swap_from, swap_to = None, None for i in range(n): if arr[i] != sorted_arr[i]: swap_from = sorted_arr[i] swap_to = arr[i] q = [root] while q: node = q.pop() if node.val == swap_to: node.val = swap_from elif node.val == swap_from: node.val = swap_to if node.left: q.append(node.left) if node.right: q.append(node.right) class TestSolution(unittest.TestCase): def test_recoverTree(self): root = TreeNode(1) root.left = TreeNode(3) root.left.right = TreeNode(2) solution = Solution() solution.recoverTree(root) arr = [] curr = root stack = [] while True: if curr is not None: stack.append(curr) curr = curr.left elif stack: node = stack.pop() arr.append(node.val) curr = node.right else: break self.assertListEqual(arr, [1, 2, 3]) if __name__ == '__main__': unittest.main()
d780813480c20b2f1c1dc546bf58b29adbe3ca54
arcogelderblom/AppliedAI
/Week_5/6.2.py
16,850
4.1875
4
""" Genotype is a list/array of 24 items, with the first 6 being A, the next 6 being B and so on. Each item can be a 1 or a 0. The fitness will be calculated by calculating the lift. The higher the fitness the better the individual. Mutation will happen on 4 spots. Every input for the lift function gets mutated. A random gene gets selected and changed from 1 to 0 or the other way around. The formula that we will use for lift is as follows: lift = (A - B)^2 + (C + D)^2 - (A - 30)^3 - (C - 40)^3 """ import random def create_population(amount, listLength, minValue, maxValue): """ Create a population :param amount: amount of individuals in the population :param listLength: needed for create_individual :param minValue: needed for create_individual :param maxValue: needed for create_individual :return: returns a list of individual, a population """ return [create_individual(listLength, minValue, maxValue) for x in range(amount)] def create_individual(listLength, minValue, maxValue): """ Create a individual based on a few constraints :param listLength: length of the created genotype :param minValue: minimal value a gene can have :param maxValue: maximal value a gene can have :return: returns a list with values representing an individual """ return [random.randint(minValue, maxValue) for x in range(listLength)] def get_abcd(individual): """ Individual consists of 4 variables encoded as a binary. This function extracts the variables and returns them as a base 10 integer :param individual: list of 0 and 1 representing the individual :return: returns a list of the variables easy for slicing: [a, b, c, d] """ a, b, c, d = [individual[x:x+6] for x in range(0, len(individual), 6)] a = int("".join(str(number) for number in a), 2) b = int("".join(str(number) for number in b), 2) c = int("".join(str(number) for number in c), 2) d = int("".join(str(number) for number in d), 2) return [a, b, c, d] def fitness(individual): """ Calculate fitness of an individual based on the formula for lift lift = (A - B)^2 + (C + D)^2 - (A - 30)^3 - (C - 40)^3 :param individual: list representing an individual :return: fitness as a number, higher is better """ a, b, c, d = get_abcd(individual) return ((a - b) ** 2) + ((c + d) ** 2) - ((a - 30) ** 3) - ((c - 40) ** 3) def sort_generation(population): """ Get the population and return a sorted one based on how they perform on the fitness function :param population: population to sort :return: returns a sorted population """ fitnessList = [] for individual in population: fitnessList.append(fitness(individual)) return [individual for fit, individual in reversed(sorted(zip(fitnessList, population)))] def create_new_generation(population, keepBestAmount): """ Create a new generation by inverting one random gene in the genotype per variable that is represented :param population: expects an list of the current generation ordered by fitness, the best are first, worst are last :param keepBestAmount: amount of 'best' that you want to keep, the rest gets mutated :return: returns the new generation """ for i in range(len(population[keepBestAmount:])): sliced = [population[i+keepBestAmount][x:x+6] for x in range(0, len(population[i+keepBestAmount]), 6)] tmp = [] for variable in sliced: index = random.randint(0, len(sliced)-1) if variable[index] == 0: variable[index] = 1 else: variable[index] = 0 tmp += variable population[i+keepBestAmount] = tmp return population # individuals are now mutated so just return the new generation population = create_population(1000, 24, 0, 1) amountOfGenerations = 100 for generation in range(amountOfGenerations): population = sort_generation(population) population = create_new_generation(population, 10) population = sort_generation(population) # sort generation so we can take the best 10 print("The best individual is: {} with a fitness of: {}".format(population[0], fitness(population[0]))) # index 0 because of the sorted population """ After running the algorithm a 100 times the average of the max lift is: 97022.32 There is a difference between the results of about 2000. This is not a lot since the values go almost to 100000. So this is about 2% Furthermore, it stands out that a and c almost always are 0 while b and d are changing. The results of 100 times running are as follows: The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0] with a fitness of: 98333 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] with a fitness of: 96650 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1] with a fitness of: 96981 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1] with a fitness of: 95969 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1] with a fitness of: 97221 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0] with a fitness of: 96809 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1] with a fitness of: 96965 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0] with a fitness of: 96636 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1] with a fitness of: 97290 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0] with a fitness of: 98200 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0] with a fitness of: 97548 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0] with a fitness of: 97280 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1] with a fitness of: 95874 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0] with a fitness of: 95900 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0] with a fitness of: 96904 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] with a fitness of: 97273 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1] with a fitness of: 96537 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0] with a fitness of: 97173 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] with a fitness of: 98450 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0] with a fitness of: 97469 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1] with a fitness of: 97058 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0] with a fitness of: 97736 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0] with a fitness of: 96128 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1] with a fitness of: 97625 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] with a fitness of: 96490 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0] with a fitness of: 97085 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0] with a fitness of: 97760 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0] with a fitness of: 96625 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1] with a fitness of: 97506 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] with a fitness of: 97178 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0] with a fitness of: 96945 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0] with a fitness of: 96904 The best individual is: [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1] with a fitness of: 95082 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1] with a fitness of: 95441 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1] with a fitness of: 96650 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1] with a fitness of: 97322 The best individual is: [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] with a fitness of: 96079 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0] with a fitness of: 97389 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1] with a fitness of: 98690 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0] with a fitness of: 96513 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1] with a fitness of: 95561 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1] with a fitness of: 97653 The best individual is: [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0] with a fitness of: 95148 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1] with a fitness of: 97849 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0] with a fitness of: 96945 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0] with a fitness of: 98200 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0] with a fitness of: 95624 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1] with a fitness of: 96626 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1] with a fitness of: 98565 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] with a fitness of: 96733 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1] with a fitness of: 96274 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0] with a fitness of: 96517 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0] with a fitness of: 96017 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1] with a fitness of: 96850 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0] with a fitness of: 96620 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0] with a fitness of: 97344 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1] with a fitness of: 97849 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1] with a fitness of: 95338 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1] with a fitness of: 98085 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0] with a fitness of: 97425 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0] with a fitness of: 95165 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0] with a fitness of: 97857 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1] with a fitness of: 97506 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0] with a fitness of: 97161 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0] with a fitness of: 96840 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0] with a fitness of: 97389 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1] with a fitness of: 98325 The best individual is: [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1] with a fitness of: 95591 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1] with a fitness of: 97409 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0] with a fitness of: 97736 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1] with a fitness of: 96941 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] with a fitness of: 98105 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0] with a fitness of: 98569 The best individual is: [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0] with a fitness of: 95685 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1] with a fitness of: 96506 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1] with a fitness of: 96941 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1] with a fitness of: 96850 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0] with a fitness of: 96413 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] with a fitness of: 97370 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1] with a fitness of: 97857 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0] with a fitness of: 97344 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0] with a fitness of: 98208 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1] with a fitness of: 97025 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0] with a fitness of: 98333 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1] with a fitness of: 98450 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] with a fitness of: 98218 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1] with a fitness of: 96234 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0] with a fitness of: 96204 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1] with a fitness of: 97857 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] with a fitness of: 95993 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1] with a fitness of: 97778 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] with a fitness of: 97370 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0] with a fitness of: 95961 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0] with a fitness of: 97068 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1] with a fitness of: 97613 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1] with a fitness of: 97058 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1] with a fitness of: 96834 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0] with a fitness of: 97053 The best individual is: [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1] with a fitness of: 96650 The best individual is: [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1] with a fitness of: 95874 """
70aaab72bc3bc85794d4fda30d589184f3368935
1769258532/python
/py_core/day5/day1/d19.py
440
3.703125
4
#-*-coding:utf-8 -*- #!/usr/bin/python3 # @Author:liulang ''' for in 循环 ''' test_datas = [ 1 , 2, 3, 4 ] # for i in test_datas: # in 列表,元组 # if i == 3: # break #完全跳出循环 # print(i) for i in test_datas: # in 列表,元组 if i == 3: continue # 终止本次循环,接着执行下一次迭代 print(i) # i = 0 # # while i < 4 : # print(test_datas[i]) # i += 1
037f1246d1fbc7ffb57eb13f058dc1d8271abc03
mh70cz/py
/misc/t_and_t/default_val_dict.py
1,079
3.875
4
""" Using get() to return a default value from a Python dict keywords: disctionary, default_value, lefpad, padleft, string_format based on: https://dbader.org/blog/python-dict-get-default-value """ name_for_userid = { 382: "Alice", 950: "Bob", 590: "Dilbert" } ids_to_greet = [382, 999] def non_pythonic_get(userid): """ verbose, dictionary is accessed twice""" if userid in name_for_userid: return "Hi %s!" % name_for_userid[userid] else: return "Hi there!" def pythonic_get(userid): """ standard """ return "Hi %s!" % name_for_userid.get(userid, "there") for uid in ids_to_greet: print((str(uid) + " non pythonic, old string format: ").ljust(40) + str(non_pythonic_get(uid))) print("{:<40}".format(str(uid) + " non pythonic, new string format: ") + str(non_pythonic_get(uid))) print((str(uid) + " pythonic, old string format: ").ljust(40) + str(pythonic_get(uid))) print("{:<40}".format(str(uid) + " pythonic, new string format: ") + str(pythonic_get(uid)))
9cd9d932fa246692c485172aaec6f7d2b7fd07b4
AlexisPin/TP_CS-DEV
/penduConsole/Pendu.py
4,794
3.625
4
#Alexis PINCEMIN #30/11/2020 #Jeu du Pendu version console #Lien gitbub https://github.com/AlexisPin/TP_CS-DEV import random #on ouvre le fichier contenant la liste de tout les mots / le fichier est dans le même répertoire que le code continuer_partie = True while continuer_partie: # varibales utiles words = [] error = 0 wordList = [] myWordList = [] bodyItems = [' \n -----','|','O', ' /', '|', '\\', '/', '\\'] myBody = ['', '', '', '', '', '', '', ''] # but : on choisi un mot aleatoire et on crée les variables nécessaires # sorties : word : mot choisi aléatoirement, wordList : liste des lettres de word , # myWordList : liste qui contient les lettres trouvés par le joueur utile pour détecter si le joueur à gagné # letters : lettres déjà utilisé ici première lettre du mot def wordChoice() : allWords = open("words.txt", "r") allWordsSort = sorted(allWords) allWords.close() for oneWord in allWordsSort: words.append(oneWord.rstrip('\n')) word = random.choice(words) # on créer une liste avec les letters du mot choisi aléatoirement for x in word: wordList.append(x) # on donne déjà la première letter letters = [wordList[0]] # on créer une liste vide de la longueur de word qui sert à afficher le mot au fur et à mesure qu'on trouve les letters for _ in word: myWordList.append("") return word,wordList,myWordList,letters word,wordList,myWordList,letters = wordChoice() # but : vérifie si la letter est déjà utilisé, # entrée : letters : liste des lettres utilisés, # sorties : alreadyUse : varibales booléenne, letter : lettre choisie , letters : liste des lettres utilisés def checkAlreadyUse(letters): #vérifie si la letter est déjà utilisé alreadyUse = False if letter in letters: alreadyUse = True print('lettre déjà proposé') else: letters.append(letter) # liste qui nous permet de stocker les letters utilisé return alreadyUse,letter,letters # but : afficher le mot en cours de recherche, # entrée : letters : liste des lettres utilisés, def wordToFind(letters): for (index, i) in enumerate(word): if i in letters: myWordList[index] = i # on complète au fur et à mesure la liste du joueur print(i, end=" ") else: print("_", end=" ") # but : gérer le nombre d'erreur du joueur, # entrée : error : nombre d'erreur type : entier, # sorties : error : nombre d'erreur type : entier, def inscreaseError(error): if letter not in word and alreadyUse == False: myBody[error] = bodyItems[error] error += 1 print('Il vous reste {} tentative(s)'.format(8 - error)) if error == 8: print(' \n -----') print(' | |') print(' | O') print(' | /|\\') print(' | / \\') print('_|_') print('Perdu ! Le mot qui fallait trouvé était {}'.format(word)) return error # but : vérifier la validité de la lettre # sortie : letter : lettre choisie par le joueur type str def checkLetter(): letter = input('Choisissez une lettre : ') letter = letter.lower() if not letter.isalpha(): #vérifie sur letter est une lettre de a-z print("Letter non valide.") return checkLetter() else: return letter while error < 8: print('{}'.format(myBody[0])) print(' | {}'.format(myBody[1])) print(' | {}'.format(myBody[2])) print(' | {}{}{}'.format(myBody[3], myBody[4], myBody[5])) print(' | {} {}'.format(myBody[6], myBody[7])) print('_|_') # on place ici la première letter wordToFind(letters) letter = checkLetter() alreadyUse,letter,letters = checkAlreadyUse(letters) # on parcours la liste contenant les letter du mot et on verifie si elles sont dans les letters utilisé wordToFind(letters) # si on écrit le mot directement on gagne ou on compare les deux listes celle du joueur et celle du mot défini au début if len(letter) > 1 and letter == word or myWordList == wordList: print('Vous avez gagné !') break error = inscreaseError(error) quitter = input("Souhaitez-vous quitter le jeu (o/n) ? ") if quitter == "o" or quitter == "O": print("Vous avez quittez le jeu.") continuer_partie = False else : continuer_partie = True
00e1eb6cd027002dc208c6c171c31fafea11b7f7
ABCmoxun/AA
/AB/linux2/day14/code/raise.py
519
3.71875
4
# raise.py # 此示例示意raise语句的用法 # 以下示意其它语言中不用异常机制,用返回值方式返回错误问题 def make_except(n): # 假设n必须是 0~100之间的数 print("begin...") if n > 100: # 传过的来参数无效,怎么告诉调用者呢? return -1 if n < 0: return -2 print("end") return 0 value = int(input("请输入一个整数:")) r = make_except(value) if r < 0: print("发生错误") else: print("程序正常完成")
590f7625baa96553fd28a68dd170f44445ca2851
Pranay2309/Python_Programs
/unity matrix.py
214
3.671875
4
x=[[7,12,17], [18,45,19], [65,14,13]] y=[[0,0,0], [0,0,0], [0,0,0]] for i in range(len(x)): for j in range(len(x[i])): y[i][j]=x[i][j]//x[i][j] for r in y: print(r)
b37ff95d5249f8ff913f382a7767f0e79c51fb70
brarajit18/Credit-Card-Fraud-Detection
/analyzeData2.py
25,424
3.984375
4
# -*- coding: utf-8 -*- """ Credit card fraud detection This notebook will test different methods on skewed data. The idea is to compare if preprocessing techniques work better when there is an overwhelming majority class that can disrupt the efficiency of our predictive model. You will also be able to see how to apply cross validation for hyperparameter tuning on different classification models. My intention is to create models using: Logistic Regression We also want to have a try at anomaly detection techniques, but I still have to investigate a bit on that, so any advise will be appreciated! """ """ OVERALL SCENARIO: Clearly the data is totally unbalanced!! This is a clear example where using a typical accuracy score to evaluate our classification algorithm. For example, if we just used a majority class to assign values to all records, we will still be having a high accuracy, BUT WE WOULD BE CLASSIFYING ALL "1" INCORRECTLY!! There are several ways to approach this classification problem taking into consideration this unbalance. Collect more data? Nice strategy but not applicable in this case Changing the performance metric: Use the confusio nmatrix to calculate Precision, Recall F1score (weighted average of precision recall) Use Kappa - which is a classification accuracy normalized by the imbalance of the classes in the data ROC curves - calculates sensitivity/specificity ratio. Resampling the dataset Essentially this is a method that will process the data to have an approximate 50-50 ratio. One way to achieve this is by OVER-sampling, which is adding copies of the under-represented class (better when you have little data) Another is UNDER-sampling, which deletes instances from the over-represented class (better when he have lot's of data) """ # import libraries import pandas as pd import matplotlib.pyplot as plt import numpy as np """ Approach We are not going to perform feature engineering in first instance. The dataset has been downgraded in order to contain 30 features (28 anonamised + time + amount). We will then compare what happens when using resampling and when not using it. We will test this approach using a simple logistic regression classifier. We will evaluate the models by using some of the performance metrics mentioned above. We will repeat the best resampling/not resampling method, by tuning the parameters in the logistic regression classifier. We will finally perform classifications model using other classification algorithms. """ # loading the dataset data = pd.read_csv("creditcard.csv") data.head() # find the target classes count_classes = pd.value_counts(data['Class'], sort = True).sort_index() count_classes.plot(kind = 'bar') plt.title("Fraud class histogram") plt.xlabel("Class") plt.ylabel("Frequency") # setting our input and target variables # also apply the resampling # Normalising the amount column. The amount column is not in line # with the anonimised features. from sklearn.preprocessing import StandardScaler data['normAmount'] = StandardScaler().fit_transform(data['Amount'].reshape(-1, 1)) data = data.drop(['Time','Amount'],axis=1) data.head() """ 2. Assigning X and Y. No resampling. """ # extracting the training and testing data X = data.ix[:, data.columns != 'Class'] y = data.ix[:, data.columns == 'Class'] """ 3. Resampling. As we mentioned earlier, there are several ways to resample skewed data. Apart from under and over sampling, there is a very popular approach called SMOTE (Synthetic Minority Over-Sampling Technique), which is a combination of oversampling and undersampling, but the oversampling approach is not by replicating minority class but constructing new minority class data instance via an algorithm. In this notebook, we will use traditional UNDER-sampling. I will probably try to implement SMOTE in future versions of the code, but for now I will use traditional undersamplig. The way we will under sample the dataset will be by creating a 50/50 ratio. This will be done by randomly selecting "x" amount of sample from the majority class, being "x" the total number of records with the minority class. """ # Number of data points in the minority class number_records_fraud = len(data[data.Class == 1]) fraud_indices = np.array(data[data.Class == 1].index) # Picking the indices of the normal classes normal_indices = data[data.Class == 0].index # Out of the indices we picked, randomly select "x" number (number_records_fraud) random_normal_indices = np.random.choice(normal_indices, number_records_fraud, replace = False) random_normal_indices = np.array(random_normal_indices) # Appending the 2 indices under_sample_indices = np.concatenate([fraud_indices,random_normal_indices]) # Under sample dataset under_sample_data = data.iloc[under_sample_indices,:] X_undersample = under_sample_data.ix[:, under_sample_data.columns != 'Class'] y_undersample = under_sample_data.ix[:, under_sample_data.columns == 'Class'] # Showing ratio print("Percentage of normal transactions: ", len(under_sample_data[under_sample_data.Class == 0])/len(under_sample_data)) print("Percentage of fraud transactions: ", len(under_sample_data[under_sample_data.Class == 1])/len(under_sample_data)) print("Total number of transactions in resampled data: ", len(under_sample_data)) #Splitting data into train and test set. Cross validation will be used # when calculating accuracies. from sklearn.cross_validation import train_test_split # Whole dataset X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state = 0) print("Number transactions train dataset: ", len(X_train)) print("Number transactions test dataset: ", len(X_test)) print("Total number of transactions: ", len(X_train)+len(X_test)) # Undersampled dataset X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample = train_test_split(X_undersample ,y_undersample ,test_size = 0.3 ,random_state = 0) print("") print("Number transactions train dataset: ", len(X_train_undersample)) print("Number transactions test dataset: ", len(X_test_undersample)) print("Total number of transactions: ", len(X_train_undersample)+len(X_test_undersample)) from sklearn.cross_validation import train_test_split # Whole dataset X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state = 0) print("Number transactions train dataset: ", len(X_train)) print("Number transactions test dataset: ", len(X_test)) print("Total number of transactions: ", len(X_train)+len(X_test)) # Undersampled dataset X_train_undersample, X_test_undersample, y_train_undersample, y_test_undersample = train_test_split(X_undersample ,y_undersample ,test_size = 0.3 ,random_state = 0) print("") print("Number transactions train dataset: ", len(X_train_undersample)) print("Number transactions test dataset: ", len(X_test_undersample)) print("Total number of transactions: ", len(X_train_undersample)+len(X_test_undersample)) """ Logistic regression classifier - Undersampled data We are very interested in the recall score, because that is the metric that will help us try to capture the most fraudulent transactions. If you think how Accuracy, Precision and Recall work for a confusion matrix, recall would be the most interesting: Accuracy = (TP+TN)/total Precision = TP/(TP+FP) Recall = TP/(TP+FN) As we know, due to the imbalacing of the data, many observations could be predicted as False Negatives, being, that we predict a normal transaction, but it is in fact a fraudulent one. Recall captures this. Obviously, trying to increase recall, tends to come with a decrease of precision. However, in our case, if we predict that a transaction is fraudulent and turns out not to be, is not a massive problem compared to the opposite. We could even apply a cost function when having FN and FP with different weights for each type of error, but let's leave that aside for now. """ from sklearn.linear_model import LogisticRegression from sklearn.cross_validation import KFold, cross_val_score from sklearn.metrics import confusion_matrix,precision_recall_curve,auc,roc_auc_score,roc_curve,recall_score,classification_report # Very ad-hoc function to print K_fold_scores def printing_Kfold_scores(x_train_data,y_train_data): fold = KFold(len(y_train_data),5,shuffle=False) # Different C parameters c_param_range = [0.01,0.1,1,10,100] results_table = pd.DataFrame(index = range(len(c_param_range),2), columns = ['C_parameter','Mean recall score']) results_table['C_parameter'] = c_param_range # the k-fold will give 2 lists: train_indices = indices[0], test_indices = indices[1] j = 0 for c_param in c_param_range: print('-------------------------------------------') print('C parameter: ', c_param) print('-------------------------------------------') print('') recall_accs = [] for iteration, indices in enumerate(fold,start=1): # Call the logistic regression model with a certain C parameter lr = LogisticRegression(C = c_param, penalty = 'l1') # Use the training data to fit the model. In this case, we use the portion of the fold to train the model # with indices[0]. We then predict on the portion assigned as the 'test cross validation' with indices[1] lr.fit(x_train_data.iloc[indices[0],:],y_train_data.iloc[indices[0],:].values.ravel()) # Predict values using the test indices in the training data y_pred_undersample = lr.predict(x_train_data.iloc[indices[1],:].values) # Calculate the recall score and append it to a list for recall scores representing the current c_parameter recall_acc = recall_score(y_train_data.iloc[indices[1],:].values,y_pred_undersample) recall_accs.append(recall_acc) print('Iteration ', iteration,': recall score = ', recall_acc) # The mean value of those recall scores is the metric we want to save and get hold of. results_table.ix[j,'Mean recall score'] = np.mean(recall_accs) j += 1 print('') print('Mean recall score ', np.mean(recall_accs)) print('') best_c = results_table.loc[results_table['Mean recall score'].idxmax()]['C_parameter'] # Finally, we can check which C parameter is the best amongst the chosen. print('*********************************************************************************') print('Best model to choose from cross validation is with C parameter = ', best_c) print('*********************************************************************************') return best_c # call the function for k-fold assessment best_c = printing_Kfold_scores(X_train_undersample,y_train_undersample) # Create a function to plot a fancy confusion matrix import itertools def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=0) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] #print("Normalized confusion matrix") else: 1#print('Confusion matrix, without normalization') #print(cm) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # Predictions on test set and plotting confusion matrix """ We have been talking about using the recall metric as our proxy of how effective our predictive model is. Even though recall is still the recall we want to calculate, just bear mind in mind that the undersampled data hasn't got a skewness towards a certain class, which doesn't make recall metric as critical. """ # Use this C_parameter to build the final model with the whole training dataset and predict the classes in the test # dataset lr = LogisticRegression(C = best_c, penalty = 'l1') lr.fit(X_train_undersample,y_train_undersample.values.ravel()) y_pred_undersample = lr.predict(X_test_undersample.values) # Compute confusion matrix cnf_matrix = confusion_matrix(y_test_undersample,y_pred_undersample) np.set_printoptions(precision=2) print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1])) # Plot non-normalized confusion matrix from small data chunk class_names = [0,1] plt.figure() plot_confusion_matrix(cnf_matrix , classes=class_names , title='Confusion matrix') plt.show() # let's apply the model we fitted and test it on the whole data # Use this C_parameter to build the final model with the whole training dataset and predict the classes in the test # dataset lr = LogisticRegression(C = best_c, penalty = 'l1') lr.fit(X_train_undersample,y_train_undersample.values.ravel()) y_pred = lr.predict(X_test.values) # Compute confusion matrix cnf_matrix = confusion_matrix(y_test,y_pred) np.set_printoptions(precision=2) print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1])) # Plot non-normalized confusion matrix class_names = [0,1] plt.figure() plot_confusion_matrix(cnf_matrix , classes=class_names , title='Confusion matrix') plt.show() """ Still a very decent recall accuracy when applying it to a much larger and skewed dataset! """ """ We can start to be happy with how initial approach is working. Plotting ROC curve and Precision-Recall curve. I find precision-recall curve much more convenient in this case as our problems relies on the "positive" class being more interesting than the negative class, but as we have calculated the recall precision, I am not going to plot the precision recall curves yet. AUC and ROC curve are also interesting to check if the model is also predicting as a whole correctly and not making many errors """ # ROC CURVE lr = LogisticRegression(C = best_c, penalty = 'l1') y_pred_undersample_score = lr.fit(X_train_undersample,y_train_undersample.values.ravel()).decision_function(X_test_undersample.values) fpr, tpr, thresholds = roc_curve(y_test_undersample.values.ravel(),y_pred_undersample_score) roc_auc = auc(fpr,tpr) # Plot ROC plt.title('Receiver Operating Characteristic') plt.plot(fpr, tpr, 'b',label='AUC = %0.2f'% roc_auc) plt.legend(loc='lower right') plt.plot([0,1],[0,1],'r--') plt.xlim([-0.1,1.0]) plt.ylim([-0.1,1.01]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() """ Explanaton of graph above: An additional comment that would be interesting to do is to initialise multiple undersampled datasets and repeat the process in loop. Remember that, to create an undersample data, we randomly got records from the majority class. Even though this is a valid technique, is doesn't represent the real population, so it would be interesting to repeat the process with different undersample configurations and check if the previous chosen parameters are still the most effective. In the end, the idea is to use a wider random representation of the whole dataset and rely on the averaged best parameters. """ """ Logistic regression classifier - Skewed data Having tested our previous approach, I find really interesting to test the same process on the skewed data. Our intuition is that skewness will introduce issues difficult to capture, and therefore, provide a less effective algorithm. To be fair, taking into account the fact that the train and test datasets are substantially bigger than the undersampled ones, I believe a K-fold cross validation is necessary. I guess that by splitting the data with 60% in training set, 20% cross validation and 20% test should be enough... but let's take the same approach as before (no harm on this, it's just that K-fold is computationally more expensive) """ best_c = printing_Kfold_scores(X_train,y_train) # Use this C_parameter to build the final model with the whole training dataset and predict the classes in the test # dataset lr = LogisticRegression(C = best_c, penalty = 'l1') lr.fit(X_train,y_train.values.ravel()) y_pred_undersample = lr.predict(X_test.values) # Compute confusion matrix cnf_matrix = confusion_matrix(y_test,y_pred_undersample) np.set_printoptions(precision=2) print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1])) # Plot non-normalized confusion matrix class_names = [0,1] plt.figure() plot_confusion_matrix(cnf_matrix , classes=class_names , title='Confusion matrix') plt.show() """ Before continuing... changing classification threshold. We have seen that by undersampling the data, our algorithm does a much better job at detecting fraud. I wanted also to show how can we tweak our final classification by changing the thresold. Initially, you build the classification model and then you predict unseen data using it. We previously used the "predict()" method to decided whether a record should belong to "1" or "0". There is another method "predict_proba()". This method returns the probabilities for each class. The idea is that by changing the threshold to assign a record to class 1, we can control precision and recall. """ # Let's check this using the undersampled data (best C_param = 0.01) lr = LogisticRegression(C = 0.01, penalty = 'l1') lr.fit(X_train_undersample,y_train_undersample.values.ravel()) y_pred_undersample_proba = lr.predict_proba(X_test_undersample.values) thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] plt.figure(figsize=(10,10)) j = 1 for i in thresholds: y_test_predictions_high_recall = y_pred_undersample_proba[:,1] > i plt.subplot(3,3,j) j += 1 # Compute confusion matrix cnf_matrix = confusion_matrix(y_test_undersample,y_test_predictions_high_recall) np.set_printoptions(precision=2) print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1])) # Plot non-normalized confusion matrix class_names = [0,1] plot_confusion_matrix(cnf_matrix , classes=class_names , title='Threshold >= %s'%i) """ Analysis of graphs above The pattern is very clear: the more you lower the required probability to put a certain in the class "1" category, more records will be put in that bucket. """ """ About the following code: This implies an increase in recall (we want all the "1"s), but at the same time, a decrease in precision (we misclassify many of the other class). Therefore, even though recall is our goal metric (do not miss a fraud transaction), we also want to keep the model being accurate as a whole. There is an option I think could be quite interesting to tackle this. We could assing cost to misclassifications, but being interested in classifying "1s" correctly, the cost for misclassifying "1s" should be bigger than "0" misclassifications. After that, the algorithm would select the threshold which minimises the total cost. A drawback I see is that we have to manually select the weight of each cost... therefore, I will leave this know as a thought. Going back to the threshold changing, there is an option which is the Precisio-Recall curve. By visually seeing the performance of the model depending on the threshold we choose, we can investigate a sweet spot where recall is high enough whilst keeping a high precision value. """ # Investigate Precision-Recall curve and area under this curve from itertools import cycle lr = LogisticRegression(C = 0.01, penalty = 'l1') lr.fit(X_train_undersample,y_train_undersample.values.ravel()) y_pred_undersample_proba = lr.predict_proba(X_test_undersample.values) thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal', 'red', 'yellow', 'green', 'blue','black']) plt.figure(figsize=(5,5)) j = 1 for i,color in zip(thresholds,colors): y_test_predictions_prob = y_pred_undersample_proba[:,1] > i precision, recall, thresholds = precision_recall_curve(y_test_undersample,y_test_predictions_prob) # Plot Precision-Recall curve plt.plot(recall, precision, color=color, label='Threshold: %s'%i) plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title('Precision-Recall example') plt.legend(loc="lower left") ##PROPOSED CLASSIFICATION MODEL from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC import numpy as np import warnings warnings.filterwarnings("ignore") from sklearn.metrics import confusion_matrix from sklearn.preprocessing import MinMaxScaler import pandas as pd from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_absolute_error rotation = 1 #Apply MinMax scaler scaler = MinMaxScaler() scaler.fit(X_train_undersample.values) X_train1 = scaler.transform(X_train_undersample.values) X_test1 = scaler.transform(X_test_undersample.values) y_train1 = y_train_undersample.values.ravel() y_test1 = y_test_undersample.values.ravel() raw_data = {'classifier_name' : ['NB','KNN','SVM'], 'precision': [0.0, 0.0, 0.0], 'recall' : [0.0, 0.0, 0.0], 'f1err' : [0.0, 0.0, 0.0], 'accuracy' : [0.0, 0.0, 0.0], 'TP' : [0, 0, 0], 'TN' : [0, 0, 0], 'FP' : [0, 0, 0], 'FN' : [0, 0, 0]} Overall_results = pd.DataFrame(raw_data, columns = ['classifier_name', 'precision', 'recall', 'f1err', 'accuracy', 'TP', 'TN', 'FP', 'FN','MAE','RAE']) #Naive Bayes classifier = MultinomialNB() classifier.fit(X_train1, y_train1) labels = classifier.predict(X_test1) print("Naive Bayes Results:") cm = confusion_matrix(labels,y_test1) TN = cm[0,0] FP = cm[0,1] FN = cm[1,0] TP = cm[1,1] accuracy = float(TP+TN)/(TP+FP+FN+TN) precision = float(TP) / (TP+FP) recall = float(TP) / (TP+FN) f1err = 2 * (float (precision * recall) / (precision + recall)) #print(cm) #print(str(accuracy*100) + "%") iiddx = 0 Overall_results['precision'][iiddx]=precision Overall_results['recall'][iiddx]=recall Overall_results['f1err'][iiddx]=f1err Overall_results['accuracy'][iiddx]=accuracy Overall_results['TP'][iiddx]=TP Overall_results['TN'][iiddx]=TN Overall_results['FP'][iiddx]=FP Overall_results['FN'][iiddx]=FN Overall_results['MAE'][iiddx]=mean_absolute_error(labels,y_test1) # KNN CLassifier classifier = KNeighborsClassifier(n_neighbors=3) classifier.fit(X_train1, y_train1) labels = classifier.predict(X_test1) print("KNN Results:") cm = confusion_matrix(labels,y_test1) TN = cm[0,0] FP = cm[0,1] FN = cm[1,0] TP = cm[1,1] accuracy = float(TP+TN)/(TP+FP+FN+TN) precision = float(TP) / (TP+FP) recall = float(TP) / (TP+FN) f1err = 2 * (float (precision * recall) / (precision + recall)) #print(cm) #print(str(accuracy*100) + "%") iiddx = 1 Overall_results['precision'][iiddx]=precision Overall_results['recall'][iiddx]=recall Overall_results['f1err'][iiddx]=f1err Overall_results['accuracy'][iiddx]=accuracy Overall_results['TP'][iiddx]=TP Overall_results['TN'][iiddx]=TN Overall_results['FP'][iiddx]=FP Overall_results['FN'][iiddx]=FN Overall_results['MAE'][iiddx]=mean_absolute_error(labels,y_test1) print (Overall_results) fname = 'Overall_results_'+str(rotation)+'.csv' Overall_results.to_csv(fname, index=False, header=False) # SVM CLassifier classifier = LinearSVC() classifier.fit(X_train1, y_train1) labels = classifier.predict(X_test1) print("SVM Results:") cm = confusion_matrix(labels,y_test1) TN = cm[0,0] FP = cm[0,1] FN = cm[1,0] TP = cm[1,1] accuracy = float(TP+TN)/(TP+FP+FN+TN) precision = float(TP) / (TP+FP) recall = float(TP) / (TP+FN) f1err = 2 * (float (precision * recall) / (precision + recall)) #print(cm) #print(str(accuracy*100) + "%") iiddx = 2 Overall_results['precision'][iiddx]=precision Overall_results['recall'][iiddx]=recall Overall_results['f1err'][iiddx]=f1err Overall_results['accuracy'][iiddx]=accuracy Overall_results['TP'][iiddx]=TP Overall_results['TN'][iiddx]=TN Overall_results['FP'][iiddx]=FP Overall_results['FN'][iiddx]=FN Overall_results['MAE'][iiddx]=mean_absolute_error(labels,y_test1) print (Overall_results) fname = 'Overall_results_'+str(rotation)+'.csv' Overall_results.to_csv(fname, index=False, header=False)
9a91f5e25b27cbd52e827d324ef3dd064dd4d1ec
jeffbulmer/DnDStuff
/Goblinator/SkillSet.py
2,631
3.53125
4
# -*- coding: utf-8 -*- """ Created on Fri Mar 10 15:44:47 2017 @author: jeff """ from random import randint import math class SkillSet: def __init__(self, possibleSkills): self.skills = {} self.populateSkills(possibleSkills) def populateSkills(self, possibleSkills): for i in possibleSkills: self.skills[i] = [possibleSkills[i], 0] def getSkills(self): return self.skills def assignSkills(self, points, init, attr): panic = 0 while points > 0: #select skill to modify addAttr = randint(0,len(self.skills)-1) skill = self.skills[self.skills.keys()[addAttr]] maxV = attr[skill[0]] #determine modifier mod = randint(1,5) #determine incentive #skill assignment incentivizes putting points into #useful skills that correspond to attributes #which the goblin possesses. incentive = math.floor(maxV/2); if(maxV > 1): if init: incentive += 1 else: incentive -= 1 else: incentive -= 2 if(skill[1] > maxV): incentive -= 1 elif(skill[1] < maxV): incentive += 1 if(skill[0].lower == 'smarts' or skill[0].lower == 'agility'): incentive += 1 incentive += maxV - (mod+skill[1]-1) #modify skill check = randint(0,maxV) #print("Skill: " + str(self.skills.keys()[addAttr])) #print("Incentive = " + str(incentive)) #print("Check = " + str(check)) #print("Mod = " + str(mod)) if incentive >= check or panic >= 5: if panic == 5: panic = 0; cost = 0; for i in range(0,mod): currV = skill[1] currCost = 0 if (currV + 1) > 5: break; if (currV >= maxV) or (currV == 0 and not init): currCost = 2 else: currCost = 1 cost += currCost if points - cost < 0: break; skill[1] += 1 points -= cost else: panic += 1
6c78d7b69c798c835dc21edc1b17b06c3e58baa0
oscarEDA1/EDA1
/practica11/ejerc8.py
1,368
3.828125
4
# Medición y gráficas de los tiempos de ejecución importar matplotlib . pyplot como plt de mpl_toolkits . mplot3d import Axes3D importar al azar del tiempo de importación tiempo desde programa5 import insertSort desde programa6 import quicksort datos = [ ii * 100 para ii en el rango ( 1 , 21 )] tiempo_is = [] tiempo_qs = [] para ii en datos : lista_is = aleatorio . muestra ( rango ( 0 , 10000000 ), ii ) lista_qs = lista_is . copia () t0 = tiempo () insertSort ( lista_is ) tiempo_is . agregar ( round ( time () - t0 , 6 )) t0 = tiempo () clasificación rápida ( lista_qs ) tiempo_qs . agregar ( round ( time () - t0 , 6 )) print ( "Tiempos parciales de ejecución en insert sort {} [s]" . format ( tiempo_is )) print ( "Tiempos parciales de ejecución en clasificación rápida {} [s]" . format ( tiempo_qs )) fig , ax = plt . subtramas () #ax = plt.subplots (111) hacha . plot ( datos , tiempo_is , label = "insert sort" , marker = "*" , color = "r" ) hacha . plot ( datos , tiempo_qs , label = "clasificación rápida" , marcador = "o" , color = "b" ) hacha . set_xlabel ( "Datos" ) hacha . set_ylabel ( "Tiempo" ) hacha . cuadrícula ( verdadero ) hacha . leyenda ( loc = 2 ) plt . título ( "Tiempos de ejecución [s] inser sort" ) plt . show ()
378e7e5fa5f71cc81d58f3bbd1a561108fe68365
bishalpokharel325/python7am
/fourthday conditionalandloops/ecommerce.py
3,181
4.25
4
print("------------WELCOME TO E-COMMERCE WEBSITE----------") print("Here are our products and their selling prices:") print("SN Products Price") print("---------------------------\n") print("1 Dell 50000") print("2 Mac 150000") print("3 Tosiba 65000") print("----------------------------") """!Defining no of different quantities of products user want to buy in three variables.""" dell=int(input("Enter no. of dell laptops you want to buy:")) mac=int(input("Enter no. of Mac laptops you want to buy:")) tosiba=int(input("Enter no. of Tosiba laptops you want to buy:")) subtotal=dell*50000+mac*150000+tosiba*65000 location=input("Enter your address (ktm/bkt/ltp):") deliverycharge=0 packcost=0 taxamount=0 total=0 grandtotal=0 if location=="ktm" or location=="bkt" or location=="ltp": print("For making a purchase, You can choose two options:") print("1. Either to be delivered at home.") print("2. Or your will pick up the product yourself.") print("Note: our home delivery charge is Rs. 1000") print("Do you want to your products to be delivered at home? (Y or N)") choice=input() if choice=="Y" or choice=="y": deliverycharge=1000 print("Our packaging services:") print("----------------------------") print("1. normal packaging: Rs. 1000") print("2. Packaging with laptop bags: Rs. 2500") print("3. packaging as gift: Rs. 5000") print("---------------------------") packaging=int(input("Enter your packaging option(1/2/3):")) if packaging==1: packcost=1000 if packaging==2: packcost=2500 if packaging==3: packcost=5000 total=subtotal+deliverycharge+packcost if location=="ktm": taxamount=0.13*total grandtotal=total+taxamount print("Your cost details:") print("----------------------------------------------------------------------------") print("SN Description quantity rate amount Remarks") print("----------------------------------------------------------------------------") print(f"1 Dell {dell} 50000 {dell*50000} ") print(f"2 Mac {mac} 150000 {mac*150000} ") print(f"3 Tosiba {tosiba} 65000 {tosiba * 65000} ") print("--------------------------------------------------------------------------") print(f" Sub-Total: Rs.{subtotal}") print(f" packaging fees: Rs.{packcost}") print(f" delivery charges: Rs.{deliverycharge}") print(f" Total Cost: Rs.{total}") print(f" VAT(13% of total): Rs.{taxamount}") print(f"------------------------------------------------------------------------") print(f" Grand Total: Rs.{grandtotal}") print("-------------------------------------------------------------------------") else: print("Sorry, Our service is limited only in kathmandu valley.")
8cdd9fdfa9be8e7b1e0479b3ba36c22cb3b34a2c
meenakshi25jan/python_assignment
/assign16.py
604
4.125
4
""" 16.Take the input from the user for(Total number of people, toatl number of busses, Number of seats for bus). Based on the input Deside whether there is su fficient busses or not and give solution for how many extra busses required. """ import math tp=input("Enter total number of people:") tb=input("Enter total number of buses:") ns=input("Enter number of seats in one bus:") def sufbus(tp,tb,ns): if tp==tb*ns: print "sufficient bus are avaliable" else: br=(float(tp)/float(ns))-tb print "Number of bus required is ", math.ceil(br) sufbus(tp,tb,ns)
d50e395e05c5b6486ff5463c6f21e295540cc947
basu-sanjana1619/database_files
/create_table.py
539
3.8125
4
import sqlite3 con = sqlite3.connect('IT_company.db') cur = con.cursor() cur.execute('''DROP TABLE IF EXISTS Employee''') cur.execute('''CREATE TABLE Employee( name TEXT, emp_ID INTEGER)''') #[IF NOT EXISTS] option will create a table if table does not exist cur.execute('''CREATE TABLE IF NOT EXISTS Department( dep_name TEXT, dep_ID INTEGER)''') #commit and save the changes con.commit() #close the connection con.close()
4f6ec68e46e3768b1f585a2a3fa3d2f1273dc9bd
landry-ming/leetcode_python
/Tree/offer34_二叉搜索树的后序遍历.py
2,097
3.96875
4
""" 后序遍历:左子树 + 右子树 + 根节点 二叉搜索树:左子树所有节点的值<根节点, 右子树所有节点的值>根节点,其左右子树也是二叉搜索树 递归分治: 根据递归, 判断所有子树的正确性。 递归终止条件:当i>=j,说明此子树的节点数量<=1,无需判别正确性, 直接返回True 递推工作: 1. 划分左右子树, 遍历后序遍历的[i,j]的元素, 寻找第一个大于根节点的节点, 索引为m, 此时左右子树的区间为[i, m-1], [m, j-1], 根节点索引为j 2. 判断是否为二叉搜索树, 左子树区间[i, m-1]中的所有节点都应<postorder[j], 而第 1.划分左右子树 步骤已经保证左子树区间的正确性,因此只需要判断右子树区间即可。 右子树区间 [m, j-1][m,j−1] 内的所有节点都应 >> postorder[j]postorder[j] 。实现方式为遍历,当遇到 \leq postorder[j]≤postorder[j] 的节点则跳出;则可通过 p = jp=j 判断是否为二叉搜索树。 返回值: 所有子树都需正确才可判定正确,因此使用 与逻辑符 \&\&&& 连接。 p = jp=j : 判断 此树 是否正确。 recur(i, m - 1)recur(i,m−1) : 判断 此树的左子树 是否正确。 recur(m, j - 1)recur(m,j−1) : 判断 此树的右子树 是否正确。 """ class Solution: def verifyPostorder(self, postorder: List[int]) -> bool: def dfs(i, j): if i >= j: return True p = i while postorder[p] < postorder[j]: p += 1 m = p while postorder[p] > postorder[j]: p += 1 return p == j and dfs(i, m-1) and dfs(m ,j-1) return dfs(0, len(postorder)-1) 时间复杂度 O(N^2): 每次调用 recur(i,j)recur(i,j) 减去一个根节点,因此递归占用 O(N)O(N) ;最差情况下(即当树退化为链表),每轮递归都需遍历树所有节点,占用 O(N)O(N) 。 空间复杂度 O(N) : 最差情况下(即当树退化为链表),递归深度将达到N。
c6021b00af713e70ec08955078caba153b177acf
lucasbezerra06/Exercicios
/exe045.py
530
3.734375
4
from random import randint from time import sleep op = int(input('''1 - pedra 2 - papel 3 - tesoura: ''')) jokenpo = ('Pedra', 'Papel', 'Tesoura') oppc = randint(1, 3) print('JO') sleep(1) print('KEN') sleep(1) print('PO') if 0 > op > 3: print('opção invalida') else: print('-='*10) print('{} X {}'.format(jokenpo[op-1], jokenpo[oppc-1])) print('-='*10) if op == oppc: print('Empate') elif op-oppc == (-2) or op-oppc == 1: print('Você venceu!') else: print('Você perdeu!')
2357b9b27ad38511b7ab5ad75c580c4c365eb5dd
Jiawei-Wang/LeetCode-Study
/528. Random Pick with Weight.py
2,579
3.859375
4
# 暴力解:将每个元素的下标以它的weight的数量加入一个list,从list中随机取一个返回 # space超标 class Solution: def __init__(self, w: List[int]): self.w = w self.weight = [] for i in range(len(self.w)): self.weight += [i] * self.w[i] def pickIndex(self) -> int: index = random.randint(0, len(self.weight)-1) return self.weight[index] # Your Solution object will be instantiated and called as such: # obj = Solution(w) # param_1 = obj.pickIndex() # built in class Solution: def __init__(self, w): self.w = w def pickIndex(self): return random.choices(range(len(self.w)), weights=self.w)[0] """ choice() method returns a randomly selected element from the specified sequence,返回的是一个只有一个元素的list If a weights sequence is specified, selections are made according to the relative weights """ # built in class Solution: def __init__(self, w): self.w = list(itertools.accumulate(w)) # 将w中两两元素相加,然后返回一个值,然后再拿这个值和下一个元素相加,返回另一个值 # 所以最后会得到[w[0], w[0]+w[1], w[0]+w[1]+w[2], etc] # 举例: # import itertools # a = [1,2,3,4] # for item in itertools.accumulate(a): # print(item):1,3,6,10 def pickIndex(self): return bisect.bisect_left(self.w, random.randint(1, self.w[-1])) # 从w最后一个元素的值(即w[0]+w[1]+w[2]+etc)中随机取一个数字,然后找到该数字在w中(如果要进行插入操作)应该存在的最左边的位置 # 举例 # w = [1,2,3,4] # 新的w = [1,3,6,10] # 随机取5, 则应当返回2 # 将上面的built in换成正常代码 # accumulated freq sum + binary search class Solution: def __init__(self, w: List[int]): self.w = w self.n = len(w) for i in range(1,self.n): w[i] += w[i-1] self.s = self.w[-1] def pickIndex(self): seed = random.randint(1,self.s) l,r = 0, self.n-1 while l<r: mid = (l+r)//2 if seed <= self.w[mid]: r = mid else: l = mid+1 return l # 还有一个更优化的答案: # https://leetcode.com/problems/random-pick-with-weight/discuss/671439/Python-Smart-O(1)-solution-with-detailed-explanation
ce169b8caa488199f9f9db67075eb578125e4bbe
liubei90/leetcode
/405.数字转换为十六进制数.py
1,473
3.703125
4
# # @lc app=leetcode.cn id=405 lang=python3 # # [405] 数字转换为十六进制数 # # https://leetcode-cn.com/problems/convert-a-number-to-hexadecimal/description/ # # algorithms # Easy (50.68%) # Likes: 76 # Dislikes: 0 # Total Accepted: 12.5K # Total Submissions: 24.7K # Testcase Example: '26' # # 给定一个整数,编写一个算法将这个数转换为十六进制数。对于负整数,我们通常使用 补码运算 方法。 # # 注意: # # # 十六进制中所有字母(a-f)都必须是小写。 # 十六进制字符串中不能包含多余的前导零。如果要转化的数为0,那么以单个字符'0'来表示;对于其他情况,十六进制字符串中的第一个字符将不会是0字符。  # 给定的数确保在32位有符号整数范围内。 # 不能使用任何由库提供的将数字直接转换或格式化为十六进制的方法。 # # # 示例 1: # # # 输入: # 26 # # 输出: # "1a" # # # 示例 2: # # # 输入: # -1 # # 输出: # "ffffffff" # # # # @lc code=start class Solution: def toHex(self, num: int) -> str: if num == 0: return '0' # 负数转换为二进制补码 if num < 0: num = 2**32 + num hex_arr = list('0123456789abcdef') res = [] while num != 0: i = num & 15 res.append(hex_arr[i]) num = num >> 4 res.reverse() return ''.join(res) # @lc code=end
d6412139b348989b01130ace9357a3e0f8665126
Alcogu/Master-Python
/12-Modulos/main.py
917
3.640625
4
""" Son funcionalidades ya hechas para reutilizar. """ #Importar modulo propio #primera forma """ import mimodulo print(mimodulo.holaMundo("Peluchito")) print(mimodulo.calculadora(3,5, True)) """ #Segunda Forma #from mimodulo import * importa todo from mimodulo import holaMundo #print(holaMundo("Peluchito")) # Modulo Fechas import datetime #print(datetime.date.today()) fechacompleta = datetime.datetime.now() """ print(fechacompleta) print(fechacompleta.year) print(fechacompleta.day) print(fechacompleta.month) """ fechapersonalizada = fechacompleta.strftime("%d/%m/%Y, ") #print("Mi fecha personalizada", fechapersonalizada) #Modulo Matematicas import math print("Pi es: ", math.pi) print("Raiz cuadrada de 10: ", math.sqrt(5)) print("Redondear: ", math.floor(6.1545521)) print("Redondear: ", math.ceil(6.1545521)) import random print("Número aleatorio entre 50 a 100 = ", random.randint(50, 100))
b34cca6ba3c28de26e833f5a562a6209884120d6
pariamahmoudi/GN.Portal.Odoo
/Addons/gn_portal_parnian/distance.py
1,650
4
4
def iterative_levenshtein(s, t, costs=(1, 1, 1)): """ iterative_levenshtein(s, t) -> ldist ldist is the Levenshtein distance between the strings s and t. For all i and j, dist[i,j] will contain the Levenshtein distance between the first i characters of s and the first j characters of t costs: a tuple or a list with three integers (d, i, s) where d defines the costs for a deletion i defines the costs for an insertion and s defines the costs for a substitution """ rows = len(s)+1 cols = len(t)+1 deletes, inserts, substitutes = costs dist = [[0 for x in range(cols)] for x in range(rows)] # source prefixes can be transformed into empty strings # by deletions: for row in range(1, rows): dist[row][0] = row * deletes # target prefixes can be created from an empty source string # by inserting the characters for col in range(1, cols): dist[0][col] = col * inserts for col in range(1, cols): for row in range(1, rows): if s[row-1] == t[col-1]: cost = 0 else: cost = substitutes dist[row][col] = min(dist[row-1][col] + deletes, dist[row][col-1] + inserts, dist[row-1][col-1] + cost) # substitution for r in range(rows): #print(dist[r]) pass return dist[row][col] print(iterative_levenshtein('hey you', 'hey you')) print(iterative_levenshtein('hey you there', 'hey you'))
15307d63373622f4d3052c38c22bdfb65a2f4dfa
jvs--/rl
/cliff_walk.py
9,833
3.546875
4
#!/opt/local/bin/python2.7 # An implementation of Q-learning and SARSA on the cliff walk environment based # on [Sutton & Barto, 1998]'s exmaple 6.6. # # Written by: # github.com/jvs-- May 2014 import numpy as np import matplotlib.pyplot as plt import random import pprint ################################################################################ ### LEARNING METHODS ### ################################################################################ def Q_learning(agent, env, episodes, alpha=0.1, gamma=0.9): stats = [] # for book keeping how much reward was gained in each episode Q = init_Q(env.states) # Initialize Q arbitrarily for episode in xrange(episodes): accumulated_reward = 0 # for book keeping of the reward s = env.start while not s in env.goals: # Choose a from s using Q, take action, observe reward, next state (a, s_, reward) = agent.take_action(env, s, Q) Q[s][a] = Q[s][a] + alpha * (reward + gamma * max(Q[s_].values()) - Q[s][a]) s = s_ accumulated_reward += reward print "FOUND GOAL!" stats.append((episode, accumulated_reward)) return (Q, stats) def SARSA(agent, env, episodes, alpha=0.1, gamma=0.9): stats = [] # for book keeping how much reward was gained in each episode Q = init_Q(env.states) #Initialize Q arbitrarily for episode in xrange(episodes): accumulated_reward = 0 # for book keeping of the reward s = env.start #Choose a from s using policy derived from Q (eg greedy) a = agent.best_action(s, Q) while not s in env.goals: #Take action a and observe r, s' (a, s_, reward) = agent.take_action(env, s, Q) a_ = agent.best_action(s_, Q) #Choose a' form s' using policy derived from Q (eg greedy) Q[s][a] = Q[s][a] + alpha * (reward + gamma * Q[s_][a_] - Q[s][a]) s = s_ a = a_ accumulated_reward += reward print "FOUND GOAL!" stats.append((episode, accumulated_reward)) return (Q, stats) ### Utility functions def init_Q(states): Q = {} for state in states: Q[state] = {'down': 0, 'up': 0, 'left': 0, 'right': 0} return Q def states_from_grid(grid): states = [] for i, lst in enumerate(grid): for j, entry in enumerate(lst): if grid[i][j] != "#": states.append((i,j)) return states ### Class definitions class Experiment: """Runs agent on environment and displays reward statistics. Arguments: env -- the environment to run on agent -- the agent nr_episodes --- how many episodes to run""" def __init__(self, env, agent, nr_episodes): self.env = env self.agent = agent self.episodes = nr_episodes def run(self): # Let the agent learn on the provided environment (Q, stats) = agent.learn(self.env, self.episodes) # Print the learned Q function and reward statistics # Uncomment if you don't wanna see the clutter pp = pprint.PrettyPrinter(indent=2) pp.pprint(stats) pp.pprint(Q) # Plot reward statistics plt.plot(stats) plt.show() class Env: """The environment modeled as a Markov decision process. We assume a perfect model of the world. Thus states, actions, transition function and immediate reward function are known. Arguments: states -- states of the mdp goals -- a subset of the states defining which are goals states actions -- possible actions transitions -- P(s'|s,a) a function that defines transitionprobabilities reward -- r(s,a,s') a function defining the immediate reward """ def __init__(self, grid, states, start, terminals, cliff): self.grid = grid self.states = states self.start = start self.goals = terminals self.cliff = cliff def show(self): for line in self.grid: print line print "" def on_grid(self, state): # ** In this implementation we should never even get into a stituation # where requested states are outside the dimensions of the grid #print "Is ", str(state), " on the grid?" assert ( (state[0] < len(grid) and state[1] < len(grid[0]) ) and (state[0] >= 0 and state[1] >= 0) ) # Since we start from inside the grid walls define the boundaries of the # world and are not walkable. if self.grid[state[0]][state[1]] == "#": #print "no." return False else: #print "yes." return True def R(self, state): """Reward function for the cliff environment.""" if state in self.goals: return 100 elif state in cliff: return -100 else: return -1 def T(self, state, action): """A transition-function for the cliff environment. Substitute your own for other environments and tasks.""" # Otherwise same as normal grid transitions if not self.on_grid(state): log = str(state) + " is not a valid position on the grid." raise Exception(log) if state in cliff: # Reset to start state when fallen into cliff return self.start direction = action if direction == "up": newpos = (state[0]-1, state[1]) elif direction == "down": newpos = (state[0]+1, state[1]) elif direction == "left": newpos = (state[0], state[1]-1) elif direction == "right": newpos = (state[0], state[1]+1) else: log = str(direction) + " is not a valid direction." raise Exception(log) # Show attempted move #print "Try moving from ", str(state), direction," to ", newpos if self.on_grid(newpos): new_state = newpos else: new_state = state # if invalid just stay were you are return new_state class Agent: """An agent with eps greedy action selection and learns using a supplied learning method Arguments: actions -- possible actions the agent can take learning_method -- learning method (eg. Q-learning) """ def __init__(self, actions, learning_method): self.actions = actions self.state = () self.Q = [] self.learning_method = learning_method def learn(self, env, episodes): return self.learning_method(self, env, episodes) def take_action(self, env, state, Q): # Given the current state select an action according to Q # and try to transition using this action and observe the new state #action = self.select_random() # random action selection action = self.select_epsilon_greedy(state, Q) # greedy action selection new_state = env.T(state, action) print action, " ", new_state self.state = new_state #return the new state and reward receives from the environment return (action, new_state, env.R(new_state)) ### Action selection methods ### def select_epsilon_greedy(self, state, Q, eps=0.1): if random.random() < eps: action = random.choice(self.actions) # With prob. eps choose random else: action = self.best_action(state, Q) # Otherwise choose best action return action def select_random(self): return random.choice(self.actions) # random action selection for testing def best_action(self, state, Q): best = 0 best_action = random.choice(self.actions) # init randomly for action in Q[state]: curr = Q[state][action] if curr > best: best = curr best_action = action return best_action if __name__ == '__main__': ### Set up environment, agent and experiment to run### episodes = 500 # Number of episodes to run experiment actions = ['up', 'down', 'left', 'right'] # Possible actions to take # Defining a cliff world # This grid is moslty for visualisation on commandline except for the # walls '#' which are actually used to test world boundaries but they could # as well be defines down below as an extra variable like goals and cliff. grid = [['#','#','#','#','#','#','#','#','#','#','#','#','#','#'], ['#',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ','#'], ['#',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ','#'], ['#',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ','#'], ['#','A','U','U','U','U','U','U','U','U','U','U','G','#'], ['#','#','#','#','#','#','#','#','#','#','#','#','#','#']] states = states_from_grid(grid) goals = [(4, 12)] start = (4,1) cliff = [(4,2), (4,3), (4,4), (4,5), (4,6), (4,7), (4,8), (4,9), (4, 10), (4,11)] # Init environment env = Env(grid, states, start, goals, cliff) env.show() # Let's take a look at our world ### Init agent with Q_learning as learning strategy and run experiment ### agent = Agent(actions, Q_learning) experiment = Experiment(env, agent, episodes) experiment.run() ### Set up agent with SARSA as learning strategy and run experiment ### agent = Agent(actions, SARSA) experiment = Experiment(env, agent, episodes) experiment.run()
a28a3cf535cf4cf1e9382e9414b213d17c9dd1ed
subinYoun/python-basics
/Lambda Express.py
163
3.640625
4
def add(a, b): return a+b #일반적인 add() 메서드 사용 print(add(3,7)) #람다 표현식으로 구현한 add()메서드 print((lambda a, b: a+b)(3, 7))
7db1fadd942d3460c4ff29d6078a167e9177582b
stacygo/2021-01_UCD-SCinDAE-EXS
/08_Statistical-Thinking-in-Python-1/08_ex_2-10.py
644
3.8125
4
# Exercise 2-10: The standard deviation and the variance import numpy as np versicolor_petal_length = [4.7, 4.5, 4.9, 4., 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4., 4.7, 3.6, 4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4., 4.9, 4.7, 4.3, 4.4, 4.8, 5., 4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4., 4.4, 4.6, 4., 3.3, 4.2, 4.2, 4.2, 4.3, 3., 4.1] # Compute the variance: variance variance = np.var(versicolor_petal_length) # Print the square root of the variance print(np.sqrt(variance)) # Print the standard deviation print(np.std(versicolor_petal_length))
4c683a97b45606897563b12ead45911c089d34cd
dxmahata/codinginterviews
/leetcode/swap_nodes_in_pairs.py
1,016
3.984375
4
''' Given a linked list, swap every two adjacent nodes and return its head. For example, Given 1->2->3->4, you should return the list as 2->1->4->3. Your algorithm should use only constant space. You may not modify the values in the list, only nodes itself can be changed. URL: https://leetcode.com/problems/swap-nodes-in-pairs/ ''' # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: # @param {ListNode} head # @return {ListNode} def swapPairs(self, head): if head == None or head.next == None: return head else: temp = head while temp != None and temp.next != None: self.swapData(temp, temp.next) temp = temp.next.next return head def swapData(self,node1,node2): tempNode = node1.val node1.val = node2.val node2.val = tempNode
93b0e864fa4e825fe7d28fd4e0e0ce5ae780d181
PdxCodeGuild/class_redmage
/code/scott/python/lab06_passgen.py
1,503
4.15625
4
#lab6_passgen.py #import random and string to source characters and to randomly choose from them import random import string # priming usercaps = "" userlower = "" usersym = "" capstring = string.ascii_uppercase lowerstring = string.ascii_lowercase symstring = string.punctuation password = "" # collecting desired values while usercaps == "": usercaps = input("How many capital letters do you want in your password? (enter a number or 'none'): ") if usercaps == "none": break else: usercaps = int(usercaps) while userlower == "": userlower = input("How many lowercase letters do you want in your password? (enter a number or 'none'): ") if userlower == "none": break else: userlower = int(userlower) while usersym == "": usersym = input("How many special characters do you want in your password? (enter a number or 'none'): ") if usersym == "none": break else: usersym = int(usersym) # randomly selecting from the right list if usercaps != "none": for i in range(abs(usercaps)): password = password + random.choice(capstring) if userlower != "none": for i in range(abs(userlower)): password = password + random.choice(lowerstring) if usersym != "none": for i in range(abs(usersym)): password = password + random.choice(symstring) password = list(password) random.shuffle(password) pass_string = "".join(password) print(f"Your new password is {pass_string}")
effabe997cec338c4697fb36b3dbd38e443caf7d
BrunoCruzIglesias/Python
/Pacote Download/Ex039_12_Alistamento_Militar.py
1,531
4.15625
4
#programa que leia o ano de nascimento de um jovem e informe: # Se ele ainda vai se alistar no serviço militar # Se é a hora de se alistar # Se já passou o tempo do alistamento # O programa tb deverá mostrar o tempo que falta ou tempo q passou para o alistamento import datetime # from datetime import date # ano_nasc = int(input('Digite o ano do seu nascimento (Ex: 1988): ')) # ano_atual = date.today().year # calculo = ano_atual - ano_nasc # if ano_atual - ano_nasc == 18: # print('Você está com {} anos, está no tempo certo de se alistar'.format(calculo)) # elif ano_atual - ano_nasc < 18: # print('Você está com {} anos, ainda falta(m) {} ano(s) para o alistamento.'.format(calculo, (18 - calculo))) # elif ano_atual - ano_nasc > 18: # print('Você está com {} anos, já passou/passaram {} ano(s) do alistamento'.format(calculo, (calculo - 18))) #Jeito do professor from datetime import date atual = date.today().year nasc = int(input('Ano de nascimento: ')) idade = atual - nasc print('Quem nasceu em {} tem {} anos em {}.'.format(nasc, idade, atual)) if idade == 18: print('Você tem que se alistar imediatamente') elif idade < 18: saldo = 18 - idade print('Ainda falta(m) {} ano(s) para o alistamento'.format(saldo)) ano = atual + saldo print('Seu alistamento será em {}.'.format(ano)) elif idade > 18: saldo = idade - 18 print('Você já deveria ter se alistado há {} ano(s).'.format(saldo)) ano = atual - saldo print('Seu alistamento foi em {}.'.format(ano))
c680f88f1ebcdd6fe33614387c41502786cb43ff
maliksh7/Data-Structure-and-Algorithms-in-Python
/Practice Codes/hashmaps.py
1,630
3.6875
4
class Hashmap: def __init__(self): self.size = 10 self.map = [None] * self.size def _get_hashed(self,key): if type(key) == int: return key % self.size if type(key) == str: return len(key) % self.size if type(key) == tuple: return len(key) % self.size def add(self,key,value): key_hash = self._get_hashed(key) key_value = [ key,value] if self.map[key_hash] is None: self.map[key_hash] = [key_value] return True else: #checkin for update ... for pair in self.map[key_hash]: if pair[0] = key: pair[1] = value return True self.map[key_hash].append(key_value) return True def get(self,key): key_hash = self._get_hashed(key) if self.map[key_hash] is not None: for pair in self.map[key_hash]: if pair[0] == key: return pair[1] raise keyError(str(key)) def delete(self,key): key_hash = self._get_hashed(key) if self.map[key_hash] is None: raise keyError(str(key)) for pair in range(0,len(self.map[key_hash])): if self.map[key_hash][i][0] == key: self.map[key_hash].pop(i) return True def __str__(self): ret = "" for i,item in enumerate(self.map): if item is not None: ret += str(i) + ":" + str(item) + "\n" return ret if __name__ == '__main__': h = Hashmap() h.add(1 , "one") h.add(2 , "two") h.add("blah" , "blah-blah") h.add("Hello" , "World") h.add(("saad","mak","been"), "bawa") print(h) h.delete(2) h.delete(("saad","mak","been")) print(h)
fb2b0ad06a5c75df8db6c92d6c79040797ade439
victorffernandes/Classes_Homework
/Swap_217031107.py
348
3.96875
4
try: x = int(input("Insira o primeiro valor: ")) y = int(input("Insira o segundo valor: ")) print("X: ", x, end="\n") print("Y: ", y) aux = x x = y y = aux print("\n") print("X: ", x, end="\n") print("Y: ", y) except ValueError: print("Valor não pode ser convertido para número! Tente novamente!")
a4a069a9c965f34ebdab52ed9dbe56bab514d450
Edward-Becerra/Cuemby-Backend-Test
/algorithm.py
1,472
3.984375
4
""" Escriba un programa para verificar si una matriz se puede dividir en una posición tal que la suma del lado izquierdo de la división sea igual a la suma del lado derecho. """ from random import randint print("Digite el tamaño del arreglo : ") t = int(input()) # list_1=[randint(1,10) for i in range(t)] list_1 = [] for i in range(t): valor = int(input("Ingrese un valor entero: ")) list_1.append(valor) print(f"Su arreglo es: {list_1}") list_1.sort() listLeft = list_1.copy() listRight = list_1.copy() def sumarLista(lista): suma = 0 for num in lista: suma += num return suma def canBeSplitted(lista: list): # ->int resultado = 0 sumLista = sumarLista(lista) if sumLista % 2 == 0: suma_izq = sumLista // 2 terminado = False while not terminado: if sumarLista(listLeft) != suma_izq: listLeft.pop() if sumarLista(listRight) != suma_izq: cont = 0 listRight.pop(cont) cont += 1 else: terminado = True print("************* izquierda ***********") print(listLeft) print("************* derecha *************") print(listRight) resultado = 1 return resultado else: print("No es posible....") return resultado print( f"El resultado de intentar dividir el arreglo en dos partes es: \n{canBeSplitted(list_1)}" )
36e939e2939b66c707719dc088b0e60ac2968f40
carljhn/Assignment-3-PLD-BSCOE-1-6
/moneyv2.py
594
3.984375
4
import math def _money(): money=int(input("You have an amount of: ")) return money def aplprc(): apl_price=int(input("An apple costs: ")) return apl_price def maxapls(): max_apls=int(money/apl_price) return max_apls def getTotal(): total=apl_price * max_apls return total def getChange(): change=money-total return change def display(max_apls, change): print(f"You can buy {max_apls} apples and your change is {change} pesos.") money=_money() apl_price=aplprc() max_apls=maxapls() total=getTotal() change=getChange() display(max_apls, change)
01a6f1d35b173fcfe7587537deb3b2771ed82955
mguomanila/programming_tests
/lesson11/count_semiprimes.py
3,828
4.03125
4
''' CountSemiprimes Count the semiprime numbers in the given range [a..b] A prime is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13. A semiprime is a natural number that is the product of two (not necessarily distinct) prime numbers. The first few semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26. You are given two non-empty arrays P and Q, each consisting of M integers. These arrays represent queries about the number of semiprimes within specified ranges. Query K requires you to find the number of semiprimes within the range (P[K], Q[K]), where 1 ≤ P[K] ≤ Q[K] ≤ N. For example, consider an integer N = 26 and arrays P, Q such that: P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20 The number of semiprimes within each of these ranges is as follows: (1, 26) is 10, (4, 10) is 4, (16, 20) is 0. Write a function: def solution(N, P, Q) that, given an integer N and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M elements specifying the consecutive answers to all the queries. For example, given an integer N = 26 and arrays P, Q such that: P[0] = 1 Q[0] = 26 P[1] = 4 Q[1] = 10 P[2] = 16 Q[2] = 20 the function should return the values [10, 4, 0], as explained above. Write an efficient algorithm for the following assumptions: N is an integer within the range [1..50,000]; M is an integer within the range [1..30,000]; each element of arrays P, Q is an integer within the range [1..N]; P[i] ≤ Q[i]. ''' from timeit import timeit from random import randrange as r def sieve(n): sieve = [1] * (n+1) sieve[0] = sieve[1] = 0 i = 2 while i*i <= n: if sieve[i]: k = i*i while k <= n: sieve[k] = 0 k += i i += 1 return sieve def array_factor(n): F = [0] * (n+1) i = 2 while i*i <= n: if F[i] == 0: k = i*i while k <= n: if F[k] == 0: F[k] = i k += i i += 1 return F def factorization(x,F): prime_factors = [] while F[x] > 0: prime_factors += [F[x]] _,x = divmod(x,F[x]) prime_factors += [x] return prime_factors def factorization2(): def semi_primes(n,x,y): primes = sieve(n) f = array_factor(n) a = set() print(primes) print(f) print(my_sieve4(n)) for i in range(len(primes)): if primes[i] and i >= x and i <= y: b = factorization(i,f) print(x,y,i,b) for num in b: a.add(num) return len(a) def my_sieve4(n): sievex = sieve(n) sievev = [a for a in range(n+1)] ar = [] for i in range(len(sievex)): if sievex[i]: ar.append(sievev[i]) else: ar.append(0) return ar def soln1(N, P, Q): # write your code in Python 3.6 m = len(P) mm = len(Q) if m != mm: raise AssertionError #m_min = 1 #m_max = 3*10**4 #if m != len(Q) or m < m_min or m > m_max: raise AssertionError #n_min = 1 #n_max = 5*10**4 #if N < n_min or N > n_max: raise AssertionError a = [] for i in range(m): if P[i] > Q[i]: raise AssertionError a.append(semi_primes(N,P[i],Q[i])) return a def soln2(N,P,Q): m = len(P) mm = len(Q) if m != mm: raise AssertionError for i in range(m): if __name__ == '__main__': n_min = 1 n_max = 5*10**4 m_max = 3*10**4 N = r(n_min,n_max) n_mid = N//2 P = [r(n_min,n_mid) for a in range(N)] Q = [r(n_mid,N) for a in range(N)] a = timeit('soln2(N, P, Q)',number=10**0,globals=locals()) b = soln2(26, [1, 4, 16], [26, 10, 20])
0f6ad330cc4cd190ad0604c48cfb106ec61051cd
NPettyjohn/Python
/Python_Fundamentals/multiples_sum_average.py
343
4.25
4
# Multiples example. # Print odd numbers 1 to 1000. for i in range(1,1000): if i % 2 != 0: print i # Print multiples of 5 from 5 to 1,000,000. for i in range(5,1000000): if i % 5 == 0: print i # Sum list example. a = [1, 2, 5, 10, 255, 3] for i in a: print i # Average list example. print sum(a)/float(len(a))
f8eae1a655787d1738f1ec1c0f2316e2d6fd414f
noahvendrig/imgclassifier1
/split_video.py
1,348
3.78125
4
''' Using OpenCV takes a mp4 video and produces a number of images. Requirements ---- You require OpenCV 3.2 to be installed. Run ---- Open the main.py and edit the path to the video. Then run: $ python main.py Which will produce a folder called data with the images. There will be 2000+ images for example.mp4. ''' import cv2 import numpy as np import os folder_list = ["data", "analysis_img", "proc_vid"] for folder in folder_list: try: if not os.path.exists(folder): os.makedirs(folder) except OSError: print ('Error: Creating directory of data: '+folder) # Playing video from file: cap = cv2.VideoCapture('example1.mp4') try: if not os.path.exists('data'): os.makedirs('data') except OSError as e: print ('Error: Creating directory of data') currentFrame = 0 while(True): # Capture frame-by-frame ret, frame = cap.read() if(ret == False): break # Saves image of the current frame in jpg file name = './data/frame' + str(currentFrame).zfill(5) + '.jpg' print ('Creating...' + name) cv2.imwrite(name, frame) # To stop duplicate images currentFrame += 1 # When everything done, release the capture cap.release() cv2.destroyAllWindows() #cap = cv2.VideoCapture('video.mp4')
fbd40f17ede701ed1ea8bc88edd2690d7bf22901
LeonOram/Files
/test_data_exercise.py
784
4.125
4
##def get_test_results(): ## test_results = [] ## for test in range(3): ## test_results.append(int(input("Please enter a score: "))) ## return test_results def average_test_result(results): total = 0 for test in results: test=int(test) total += test average = total/len(results) return average def display_average_result(average): print("your average test result is: {0}".format(average)) def main(): with open("test_data.txt",mode="r",encoding="utf-8") as test_file: #test_results = get_test_results() test_results=[] for line in test_file: test_results.append(line) average = average_test_result(test_results) display_average_result(average) if __name__ == "__main__": main()
8b2d65b6e37940aa8c5d8b3105ef96891e17f377
emirot/hackerrank
/algo/ChalengeExample/mergeSort/mergeSort.py
728
3.78125
4
__author__ = 'nolanemirot' def merge(leftA, rightB): result = [] ia = 0 ib = 0 while ia < len(leftA) and ib < len(rightB): if leftA[ia] <= rightB[ib] : result.append(leftA[ia]) ia+=1 else: result.append(rightB[ib]) ib+=1 if leftA: result.extend(leftA[ia:]) if rightB: result.extend(rightB[ib:]) return result def mergeSort(arr): if len(arr) <= 1: return arr middle = int(len(arr) / 2) left = arr[:middle] right = arr[middle:] left = mergeSort(left) right = mergeSort(right) return merge(left,right) if __name__ == '__main__': print(mergeSort([4,3,2,4,5,6,7,9,78,54,23,43]))
c7ef57c151c4cb58686607d1dd209a02a8db9a80
chaudharymanishkumar/Network-lab
/mono.py
1,048
4.09375
4
#Mono Alphabetic cipher Encryption and Decryption #MKChaudhary #26nov'19 monoalpha_cipher = { 'a': 'm', 'b': 'n', 'c': 'b', 'd': 'v', 'e': 'c', 'f': 'x', 'g': 'z', 'h': 'a', 'i': 's', 'j': 'd', 'k': 'f', 'l': 'g', 'm': 'h', 'n': 'j', 'o': 'k', 'p': 'l', 'q': 'p', 'r': 'o', 's': 'i', 't': 'u', 'u': 'y', 'v': 't', 'w': 'r', 'x': 'e', 'y': 'w', 'z': 'q', ' ': ' ', } def encryption(message): encrypted_message=[] for letter in message: encrypted_message.append(monoalpha_cipher.get(letter,letter)) return ''.join(encrypted_message) def decryption(message): decrypted_message=[] inverse_monoalpha_cipher={} for key,value in monoalpha_cipher.iteritems(): inverse_monoalpha_cipher[value]=key for letter in message: decrypted_message.append(inverse_monoalpha_cipher.get(letter,letter)) return ''.join(decrypted_message) message = raw_input("Enter the text:-") en_data=encryption(message) print en_data print decryption(en_data)
c200be9d452f550b8e6081834c1acc3370c8df3d
hsiangyi0614/X-Village-2018-Exercise
/Lesson03-Python-Basic-two/exercise4.py
204
3.9375
4
#Exercise1: N^X def number(n): def power(x): return n ** x return power n = int(input("input a number : ")) m = number(n) x=int(input("input a power : ")) print(n,"的",x,"次方 :",m(x))
9700cef64df665b88ed748eeaec645f501c0a0b5
KumarAmbuj/GEEKSFORGEEKS-DYNAMIC-PROGRAMING
/93.LARGEST SUM CONTIGUOUS ARRAY.py
352
3.78125
4
def findlargestsum(arr): maxendinghere=0 maxsumsofar=0 for i in range(len(arr)): maxendinghere+=arr[i] if maxendinghere>maxsumsofar: maxsumsofar=maxendinghere elif maxendinghere<0: maxendinghere=0 print(maxsumsofar) a = [-2, -3, 4, -1, -2, 1, 5, -3] findlargestsum(a)
9f68b66bc65ae53090f8f7ec2925f154cc73de6f
remintz/programacaoemcasa
/exercicios/lista_aula_2/exercicio_4.py
293
4.21875
4
""" (Exercício de while ou for) Faça um programa que leia 3 números usando input e mostre a soma e a média deles. """ soma = 0.0 for i in range(3): numero = float(input(f'Informe o número {i+1}: ')) soma = soma + numero print(f'A soma é {soma}') print(f'A média é {soma / 3}')
ab8a1c6802074aca2b185b57b8e08445bcf1f00d
ckallum/Daily-Coding-Problem
/solutions/#075.py
959
3.75
4
from collections import deque from copy import copy def get_len(x): return len(x) def longest_subsequence(numbers): subsequences = [[numbers[0]]] for num in numbers[1:]: additional_sequences = [] for index, subsequence in enumerate(subsequences): if num > max(subsequence): subsequences[index].append(num) else: temp = copy(subsequence) while num <= temp[len(temp) - 1]: temp.pop() temp.append(num) if temp not in (subsequences and additional_sequences): additional_sequences.append(temp) subsequences.extend(additional_sequences) subsequences = list(sorted(subsequences, key=get_len))[::-1] return len(subsequences[0]) def main(): assert longest_subsequence([0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]) == 6 if __name__ == '__main__': main()
50a4e105a56210a23276ae2244129cfb448cbb8b
andyyang777/PY_LC
/67_AddBinary.py
1,317
3.75
4
# Given two binary strings, return their sum (also a binary string). # # The input strings are both non-empty and contains only characters 1 or 0. # # Example 1: # # # Input: a = "11", b = "1" # Output: "100" # # Example 2: # # # Input: a = "1010", b = "1011" # Output: "10101" # # # Constraints: # # # Each string consists only of '0' or '1' characters. # 1 <= a.length, b.length <= 10^4 # Each string is either "0" or doesn't contain any leading zero. # # Related Topics Math String # 👍 2110 👎 291 # leetcode submit region begin(Prohibit modification and deletion) class Solution: def addBinary(self, a: str, b: str) -> str: M,N = len(a), len(b) if M < N: a = "0" * (N-M) + a else: b = "0" * (M-N) + b stack1 = list(a) stack2 = list(b) res = "" carry = 0 while stack1 and stack2: s1, s2 = stack1.pop(),stack2.pop() cursum = int(s1) + int(s2) + carry if cursum >= 2: cursum %= 2 carry = 1 else: carry = 0 res = str(cursum) + res if carry: res = "1" + res return res # leetcode submit region end(Prohibit modification and deletion)
a7180da0486bcd21c2984cbd2f3f33a8fbcfcd1d
aalicav/Exercicios_Python
/ex040.py
403
3.921875
4
n1 = float(input('Digite a sua primeira nota :')) n2 = float(input('Digite a sua segunda nota:')) media = (n1+n2)/2 if media < 5: print('A sua média é {:.1f} e você foi reprovado'.format(media)) elif 5.0 <= media <= 6.9: print('A sua média é {:.1f} e você está de recuperação'.format(media)) elif media >= 7: print('A sua média é {:.1f} e você está aprovado'.format(media))
c2a952c22f65a07cfdc0e6ae8d12452a3d443c6a
BerryHN/DJH-Python
/data structure/day3.py
1,350
3.796875
4
# coding:utf-8 from pythonds.basic.stack import Stack class StacToQueue(object): def __init__(self): self.stack_one = Stack() self.stack_two = Stack() def enqueue(self, item): self.stack_one.push(item) def dequeue(self): if self.stack_two.isEmpty(): while not self.stack_one.isEmpty(): self.stack_two.push(self.stack_one.pop()) return self.stack_two.pop() def size(self): return len(self.stack_one) + len(self.stack_two) def isEmpty(self): return self.size() == 0 class Dequeue(object): def __init__(self): self.items = [] def enqueueFront(self, item): self.items.insert(0, item) def dequeueRear(self): return self.items.pop() def enqueueRear(self, item): self.items.append(item) def dequeueFront(self): return self.items.pop(0) def size(self): return len(self.items) def isEMpty(self): return self.items == [] def palchecker(string): chardequeue = Dequeue() for ch in string: chardequeue.enqueueFront(ch) while not chardequeue.isEMpty(): front = chardequeue.dequeueFront() rear = chardequeue.dequeueRear() if front != rear: return False return True if __name__ == '__main__': queue = StacToQueue() for x in range(5): queue.enqueue(x) for x in range(5): print(queue.dequeue()) print("回文判断:") print(palchecker("123321")) print(palchecker("124561"))
fc80afeb2b951fd1c173d6500da211b7e650e791
niavivek/Python_programs
/all_files/HW4/HW4_extra_NiaVivek.py
946
3.546875
4
""" For extra credit, write an additional program to automatically generate the top 10 books catalog.txt from this web page (top 100 EBooks yesterday): <a href="http://www.gutenberg.org/browse/scores/top" target="_blank">http://www.gutenberg.org/browse/scores/top</a> """ """ http://docs.python-guide.org/en/latest/scenarios/scrape/ """ from lxml import html import requests page = requests.get('http://www.gutenberg.org/browse/scores/top') tree = html.fromstring(page.content) #This will create a list of buyers: top_list = tree.xpath('//*[text()="Top 100 EBooks yesterday"]/..//ol')[2].text_content() #This will create a list of prices #prices = tree.xpath('//span[@class="item-price"]/text()') #type(top_list) all_list = top_list.split("\n") with open('catalogtest.txt','w') as test_file: test_file.write(top_list) # for i in range(1,10): # test_file.write(all_list[i]) # print('Book : ', i, all_list[i]) #print('Prices: ', prices)
49221d5d6ff43301acd0f6dcc59932b68a7b4d40
Toyosie/Employee-attrition-prediction-files
/wrangling_datasets.py
1,071
3.796875
4
#Data wrangling #importing libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #importing datasets and saving them as a csv file dataset = pd.ExcelFile('study_problem.xlsx') sheet1 = dataset.parse('Existing employees') sheet1.to_csv('Existing_employees.csv', sep=',') print(sheet1.head()) sheet2 = dataset.parse('Employees who have left') sheet2.to_csv('Ex_employees.csv', sep=',') print(sheet2.head()) #adding a new column to the datasets in order to merge them and know which employees have left and which ones have not #sheet1['left_company'] = 0 #value '0' stands for not left #sheet1.info() #sheet2['left_company'] = 1 # value '1' stands for left #sheet2.info() #merge sheet1 and sheet 2 together for easy exploration #data = pd.concat([sheet2,sheet1],ignore_index=True) #data.to_csv('data.csv') #print(data.head(10)) #after tweaking the data dataset using excel emp_dataset = pd.read_csv('data.csv') print(emp_dataset.info())
257ddd700fe20f653b3da73f1e8757e099e8249d
PauloLima87/CEVP_Desafios
/Desafio 40 - Média.py
397
3.9375
4
n1 = float(input('1ª Nota: ')) n2 = float(input('2ª Nota: ')) if (n1+n2)/2 >= 7: print(f'\n{"PARABÈNS! VOCÊ FOI APROVADO":=^80}\n\nSua Média final foi: {(n1+n2)/2}') elif (n1+n2)/2 >= 5 and (n1+n2)/2 <= 6.9: print(f'\n{"VOCÊ ESTA DE RECUPERAÇÃO":=^80}\n\nSua Média final foi: {(n1+n2)/2}') else: print(f'\n{"VOCÊ ESTA REPROVADO":=^80}\n\nSua Média final foi: {(n1+n2)/2}')
78ff41e3d7ec171b967160fc6553cb9ed6df5099
dlingerfelt/DSC-510-Fall2019
/May_DSC510_Assignment3.py
2,086
4.28125
4
#May_DSC510_Assignment3.py #Name: Brandon May #Date: 9/8/19 #Course: DSC 510 - Introduction to Programming #Descr: Purpose is to quote pricing for feet of fiber optic cable for the May company using conditional statements and booleans. print('Welcome to the May Company') companyname = input('What is your company name?\n') print('Thank you for quoting your price with us', companyname) try: cablefeet = float((input('How many feet of fiber optic cable are you requesting to be installed?\n'))) #designating we want this as a float except: print('Please provide a numerical value.\n') cablefeet = float((input('How many feet of fiber optic cable are you requesting to be installed?\n'))) #exception statement if someone enters in a non-numerical value. #designating the different formulas for calculation as variables cablecost1=float((cablefeet)*0.87) #$0.87 per foot up to 250 feet cablecost2=float((cablefeet)*0.70) #$0.70 per foot up to 500 feet cablecost3=float((cablefeet)*0.50) #$0.50 per foot greater than 500 feet if float(cablefeet) <= 0: print('Error. Please try again.') #want the program to end if entering a negative or zero value. elif float(cablefeet) > 0 and float(cablefeet)<= 250.0: print('Attached is an invoice from the May company for', companyname, 'for', cablefeet, 'feet of fiber optic cable which will cost $',cablecost1,'\n') print('Thank you for your business!\n') #invoice printout for up to 250 feet but >0 elif float(cablefeet) > 250.0 and cablefeet <= 500.0: print('Attached is an invoice from the May company for', companyname, 'for', cablefeet, 'feet of fiber optic cable which will cost $',cablecost2,'\n') print('Thank you for your business!\n') #invoice printout for between 250 and 500 feet elif float(cablefeet) > 500.0: print('Attached is an invoice from the May company for', companyname, 'for', cablefeet, 'feet of fiber optic cable which will cost $',cablecost3,'\n') print('Thank you for your business!\n') #invoice printout for >500 feet
dba9a759594cf2cc9d1d40a4778c6c5c9e5d6b47
RaghuA06/CCC-Canadian-Computing-Contest-Problems
/Waterloo J1 2015.py
363
4.125
4
# Raghu Alluri # Special Day is February 18th month = int(input()) day = int(input()) year = [month, day] if year[0] > 2: print('After') elif year[0] < 2: print('Before') elif year[0] == 2 and year[1] == 18: print('Special') elif year[0] == 2 and year[1] > 18: print('After') elif year[0] == 2 and year[1] < 18: print('Before')
793036a5518d464b386d9119aeccb6174b963e76
Lum1naT/python
/practice/list_less_than_7.py
182
3.640625
4
import sys a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] result = [] for val in a: if(val < 7): if val not in result: result.append(val) print(*str(result))
0da5ec7be37f1bc134895b20bacb6d1acaa55d62
zaman13/Particle-Swarm-Optimization-PSO-using-Python
/Code/pso_2D_animation_v1.py
7,809
3.59375
4
# -*- coding: utf-8 -*- """ Created on Sat Apr 11 17:48:18 2020 @author: Mohammad Asif Zaman Particle swarm optimization code - General code, would work with fitness function of any dimensions (any no. of parameters) - Vectorized fast code. Only one for loop is used to go over the iterations. Calculations over all the dimensions and particles are done using matrix operations. - One function call per iteration. Tested in python 2.7. """ from __future__ import print_function import time import math import numpy as np import pylab as py from matplotlib import animation, rc from IPython.display import HTML from matplotlib import pyplot as plt plt.rcParams.update({'font.size': 14}) # Control parameters w = 0.5 # Intertial weight c1 = 2.0 # Weight of searching based on the optima found by a particle c2 = 2.0 # Weight of searching based on the optima found by the swarm v_fct = 0.02 Np = 60 # population size (number of particles) D = 2 # dimension (= no. of parameters in the fitness function) max_iter = 200 # maximum number of iterations xL = np.zeros(D) - 15 # lower bound (does not need to be homogeneous) xU = np.zeros(D) + 15 # upper bound (does not need to be homogeneous) delta = 0.025 xplt = yplt = np.arange(xL[0], xU[0], delta) X, Y = np.meshgrid(xplt, yplt) V1 = np.exp(-3*np.square(.3*Y-.9) - 3*np.square(.3*X-1.2)) V2 = np.exp(-4*np.square(.3*Y-2.1) - 4*np.square(.3*X+1.2)) V3 = np.exp(-2*np.square(.25*Y+1) - 2*np.square(.25*X+2)) V4 = np.exp(-2*np.square(.5*Y-1.2) - 2*np.square(.5*X-2.4)) V6 = np.exp(-2*np.square(.2*Y+1.4) - 4*np.square(.2*X-1.2)) V5 = np.sin(np.square(.1*X)) + np.sin(np.square(.15*Y)) F_plt = 1.4*V1 + 0.6*V2 + 0.9*V3 - V4 + 0.05*V5 + 0.8*V6 # Fitness function. The code maximizes the value of the fitness function def fitness(x): # x is a matrix of size D x Np # The position of the entire swarmp is inputted at once. # Thus, one function call evaluates the fitness value of the entire swarm # F is a vector of size Np. Each element represents the fitness value of each particle in the swarm V1 = np.exp(-3*np.square(.3*x[1,:]-.9) - 3*np.square(.3*x[0,:]-1.2)) V2 = np.exp(-4*np.square(.3*x[1,:]-2.1) - 4*np.square(.3*x[0,:]+1.2)) V3 = np.exp(-2*np.square(.25*x[1,:]+1) - 2*np.square(.25*x[0,:]+2)) V4 = np.exp(-2*np.square(.5*x[1,:]-1.2) - 2*np.square(.5*x[0,:]-2.4)) V5 = np.sin(np.square(.13*x[0,:])) + np.sin(np.square(.15*x[1,:])) V6 = np.exp(-2*np.square(.2*x[1,:]+1.4) - 4*np.square(.2*x[0,:]-1.2)) # multimodal test function F_mult = 1.4*V1 + 0.6*V2 + 0.9*V3 - V4 +0.05*V5 + 0.8*V6 return F_mult pbest_val = np.zeros(Np) # Personal best fintess value. One pbest value per particle. gbest_val = np.zeros(max_iter) # Global best fintess value. One gbest value per iteration (stored). pbest = np.zeros((D,Np)) # pbest solution gbest = np.zeros(D) # gbest solution gbest_store = np.zeros((D,max_iter)) # storing gbest solution at each iteration x = np.random.rand(D,Np) # Initial position of the particles v = np.zeros((D,Np)) # Initial velocity of the particles x_store = np.zeros((max_iter,D,Np)) # Setting the initial position of the particles over the given bounds [xL,xU] for m in range(D): x[m,:] = xL[m] + (xU[m]-xL[m])*x[m,:] # Function call. Evaluates the fitness of the initial swarms fit = fitness(x) # vector of size Np pbest_val = np.copy(fit) # initial personal best = initial fitness values. Vector of size Np pbest = np.copy(x) # initial pbest solution = initial position. Matrix of size D x Np # Calculating gbest_val and gbest. Note that gbest is the best solution within pbest ind = np.argmax(pbest_val) # index where pbest_val is maximum. gbest_val[0] = np.copy(pbest_val[ind]) # set initial gbest_val gbest = np.copy(pbest[:,ind]) print("Iter. =", 0, ". gbest_val = ", gbest_val[0]) print("gbest_val = ",gbest_val[0]) x_store[0,:,:] = x # Loop over the generations for iter in range(1,max_iter): r1 = np.random.rand(D,Np) # random numbers [0,1], matrix D x Np r2 = np.random.rand(D,Np) # random numbers [0,1], matrix D x Np v_global = np.multiply(((x.transpose()-gbest).transpose()),r2)*c2*(-1.0) # velocity towards global optima v_local = np.multiply((pbest- x),r1)*c1 # velocity towards local optima (pbest) v = w*v + v_local + v_global # velocity update x = x + v*v_fct # position update fit = fitness(x) # fitness function call (once per iteration). Vector Np # pbest and pbest_val update ind = np.argwhere(fit > pbest_val) # indices where current fitness value set is greater than pbset pbest_val[ind] = np.copy(fit[ind]) # update pbset_val at those particle indices where fit > pbest_val pbest[:,ind] = np.copy(x[:,ind]) # update pbest for those particle indices where fit > pbest_val # gbest and gbest_val update ind2 = np.argmax(pbest_val) # index where the fitness is maximum gbest_val[iter] = np.copy(pbest_val[ind2]) # store gbest value at each iteration gbest = np.copy(pbest[:,ind2]) # global best solution, gbest gbest_store[:,iter] = np.copy(gbest) # store gbest solution print("Iter. =", iter, ". gbest_val = ", gbest_val[iter]) # print iteration no. and best solution at each iteration x_store[iter,:,:] = x # Plotting py.close('all') py.figure(1) py.plot(gbest_val) py.xlabel('iterations') py.ylabel('fitness, gbest_val') py.figure(2) py.plot(gbest_store[1,:],'r') py.xlabel('iterations') py.ylabel('gbest[1,iter]') #py.figure() #py.plot(x_store[0,0,:],x_store[0,1,:],'o') #py.xlim(xL[0],xU[0]) #py.ylim(xL[1],xU[1]) # #py.figure() #py.plot(x_store[max_iter-1,0,:],x_store[max_iter-1,1,:],'o') #py.xlim(xL[0],xU[0]) #py.ylim(xL[1],xU[1]) fig = plt.figure() ax = plt.axes(xlim=(xL[0], xU[0]), ylim=(xL[1],xU[1]),xlabel = 'x', ylabel= 'y') #line, = ax.plot([], [], lw=2,,markersize = 9, markerfacecolor = "#FDB813",markeredgecolor ="#FD7813") line1, = ax.plot([], [], 'o',color = '#d2eeff',markersize = 3, markerfacecolor = '#d2eeff',lw=0.1, markeredgecolor = '#0077BE') # line for Earth time_template = 'Iteration = %i' time_string = ax.text(0.05, 0.9, '', transform=ax.transAxes,color='white') #ax.get_xaxis().set_ticks([]) # enable this to hide x axis ticks #ax.get_yaxis().set_ticks([]) # enable this to hide y axis ticks # initialization function: plot the background of each frame def init(): line1.set_data([], []) im2 = ax.contourf(X,Y,F_plt,40, cmap = 'plasma') # fig.colorbar(im2, ticks=[0, .3, .6, 1]) time_string.set_text('') return line1, time_string # animation function. This is called sequentially def animate(i): # Motion trail sizes. Defined in terms of indices. Length will vary with the time step, dt. E.g. 5 indices will span a lower distance if the time step is reduced. line1.set_data(x_store[i,0,:], x_store[i,1,:]) # marker + line of first weight # contourf(X,Y,F_plt) time_string.set_text(time_template % (i)) return line1, time_string v_fps = 20.0 anim = animation.FuncAnimation(fig, animate, init_func=init, frames=max_iter, interval=1000.0/v_fps, blit=True) anim.save('pso_slow_animation.mp4', fps=v_fps, extra_args=['-vcodec', 'libx264'])
295454baba1d84032add0b4f5e0f18388202c081
giridhararao/new
/string without repeated.py
145
3.515625
4
i=input() b=[] c=[] for j in range(0,len(i)): b.append(i[j]) e=[] for j in b: if j not in e: e.append(j) print("".join(e))
83a720ab2fb445e5036ff56220d91ed1423f0d35
glenonmateus/ppe
/secao7/counter.py
1,522
4.03125
4
""" Módulo Collections - Counter (contador) Collection -> High-performance Container Datetypes Counter -> Recebe um interável como parâmetro e cria um objeto do tipo collection counter que é parecido com um dicionário, contendo como chave o elemento da lista passada como parâmetro e como valor a quantidade de ocorrências desse elemento. # Exemplo 1 # Podemos utilizar qualquer iterável, aqui usamos uma lista lista = [1, 1, 1, 2, 2, 3, 3, 3, 1, 1, 2, 2, 4, 4, 5, 5, 5, 5, 3, 45, 45, 66, 66, 43, 34] # Utilizando o Counter res = Counter(lista) print(type(res)) print(res) # Veja que, para cada elemento da lista, o Counter criou um chave e colocou como valor a quantidade de ocorrências. # Exemplo 2 print(Counter('Geek University')) """ # Realizando o import from collections import Counter # Exemplo 3 texto = """A Wikipédia é um projeto de enciclopédia colaborativa, universal e multilíngue estabelecido na internet sob o princípio wiki. Tem como propósito fornecer um conteúdo livre, objetivo e verificável​​, que todos possam editar e melhorar. O projeto é definido pelos princípios fundadores. O conteúdo é disponibilizado sob a licença Creative Commons BY-SA e pode ser copiado e reutilizado sob a mesma licença — mesmo para fins comerciais — desde que respeitando os termos e condições de uso.""" palavras = texto.split() # print(palavras) res = Counter(palavras) print(res) # Encontrando as 5 palavras com mais ocorrência no texto print(res.most_common(5))
82ef0d5d2cb66dd44d213af05dea38e0b1991b62
robertggovias/robertgovia.github.io
/python/cs241/w10/list/list.py
3,000
4.59375
5
fish = ['barracuda','cod','devil ray','eel'] fish.append('flounder') print("append: ", fish) fish.insert(0,"anchovi") print("inserted achovi: ", fish) more_fish = ['goby','herring','ide','kissing gourami'] fish.extend(more_fish) print("extended a new list: ", fish) fish.remove('kissing gourami') print("removed kissing gourami: ",fish) print(fish.pop(3)) print("pop index 3 (devil ray): ", fish) print("take the index of an item of the list (herring): ",fish.index('herring')) copy_of_fish = fish.copy() print("copy of the list: ",copy_of_fish) fish.reverse() print("The list ordered backward: ",fish) fish.append("cod") how_many = fish.count("cod") print("The amount of times that 'cod' appear on the list: ",how_many) fish_ages = [1,2,4,3,2,1,1,2] print("How many times a fish with age one we have: ",fish_ages.count(1)) fish_ages.sort() print("Ordered list of fish's ages: ",fish_ages) fish.clear() print("There is no thing on the list: {}\nDid you see?".format(fish)) print("More about lists, the second part:\n---------------------------------------------------------------------------------------------\n Accessing Characters by Positive Index Number") ss = "Sammy Shark!" th5 = ss[4] print("The fifth letter of frase 'Sammy Shark': {}".format(th5)) print("\nAccessing Characters by Negative Index Number") th_4 = ss[-4] print("The fourth last letter of frase 'Sammy Shark': {}".format(th_4)) print("\nSlicing Strings") sliced = ss[6:11] print("Elements from the 7th to 11th, this is sliced: ", sliced) sliced_first = ss[:5] sliced_last = ss[7:] print("Taking everything from the end, {}\n and everything from the begining {}".format(sliced_first,sliced_last)) print("\nAlso with negative numbers") sliced_negative = ss[-6:-1] print("but takes from the last word, like from the right", sliced_negative) print("\nSpecifying Stride while Slicing Strings") each_second = ss[:11:2] print("Now, each pair indexed letter: ", each_second) inversed = ss[::-1] print("An interesting way to print backward with each negative number (in that order)",inversed) how_many_items = len(ss) print('\nHow long or how many letters the word "{}" has?\n {}'.format(ss,how_many_items)) print("\nYes, we have str.count para contar cuantas veces aparece una palabra") likes = "Sammy likes to swim in the ocean, likes to spin up servers, and likes to smile." print("how many likes the frase :{}".format(likes)) print(likes.count("likes")) print("\nReturn the index of a word, finding it") print("which number is the 'm' on Sammy",ss.find("m")) print('\nYes, again str. returns, now with finds') print("which number is the first 'likes' on the frase\n",likes.find("likes")) print("\nStarting to find at a especifinc index") secondLike = likes.find("likes",likes.find("likes")+len("likes")+1) print("which number is the second 'likes' on the frase\n",secondLike) print("find also works with rage (the third parameter( , ,x)) from backward if the parameter is negative") print(likes.find("likes", 40, -6))
b8caf72ce03c9851ac38d5d35bf63601af83e8d8
urstkj/Python
/math/pi.py
988
3.890625
4
#!/usr/local/bin/python #-*- coding: utf-8 -*- # PI = 4 * (1 / 1 - 1 / 3 + 1 / 5 - 1 / 7 + ...) def pi(n): i = 0 num = 1.0 sum = 0 while i < n: sum += (-1) ** i * (1.0 / num) i += 1 num += 2 return sum * 4 def pi_new(n): y = n * 2 list1 = [1 / x for x in range(1, y, 4)] list2 = [-1 / x for x in range(3, y, 4)] return (sum(list1) + sum(list2)) * 4 def pi_new2(n): list = [(-1) ** (x + 1) * (1.0 / (x * 2 - 1)) for x in range(1, n)] return sum(list) * 4 NUM = 1000000 i = NUM print("calculating...using pi") while i <= NUM + 10: print(("n: " + str(i) + " -> pi: " + str(pi(i)))) i += 1 print("done.") i = NUM print("calculating...using pi_new") while i <= NUM + 10: print(("n: " + str(i) + " -> pi: " + str(pi_new(i)))) i += 1 print("done.") i = NUM print("calculating...using pi_new2") while i <= NUM + 10: print(("n: " + str(i) + " -> pi: " + str(pi_new2(i)))) i += 1 print("done.")
2c4374b1aca3c59fe38134b9aa040fd668b3f70c
rcalix1/Deep-learning-ML-and-tensorflow
/TensorFlow2.0/general_examples/basics/activation_functions.py
3,578
3.5
4
## activation functions ############################################################# import numpy as np import tensorflow as tf ############################################################# X = np.array([1, 1.4, 2.5]) w = np.array([0.4, 0.3, 0.5]) ############################################################# def net_input(X, w): return np.dot(X, w) ############################################################ def logistic(z): return 1.0 / ( 1.0 + np.exp(-z) ) ############################################################# def logistic_activation(X, w): z = net_input(X, w) return logistic(z) ############################################################# print('P(y=1|x) = %.3f' % logistic_activation(X, w) ) ############################################################# ## now multi-class ## W: shape=(,) ## dot(X, W) = [1 x 4] * [4 x 3] = [1 x 3] W = np.array( [[ 1.1, 1.2, 0.8, 0.4], [ 0.2, 0.4, 1.0, 0.2], [ 0.6, 1.5, 1.2, 0.7]] ) A = np.array( [[1, 0.1, 0.4, 0.6]]) z = np.dot(W, A[0]) y_probas = logistic(z) print( 'Net input: \n', z ) print( 'Output units: \n', y_probas) ############################################################# ## or the correct way to do this print("***********************************************") print("or the correct way with transpose ...") W_transpose = np.transpose(W) z_tra = np.dot(A, W_transpose) y_probas_tra = logistic(z) print( 'Net input: \n', z_tra ) print( 'Output units: \n', y_probas_tra) ############################################################# ## pick the max val y_class = np.argmax(z, axis=0) ## selects index of max value print(y_class) y_class = np.argmax(z_tra[0], axis=0) ## selects index of max value print(y_class) ############################################################# ## the softmax ## softmax = (e**z) / sum(e**z) def softmax(z): return np.exp(z) / np.sum( np.exp(z) ) ############################################################# y_probas_softmax = softmax(z) print("softmax results") print(y_probas_softmax) print(np.sum(y_probas_softmax)) ############################################################# ## now in tensorflow print(z) z_tensor = tf.expand_dims(z, axis=0) print(z_tensor) ############################################################# ## softmax z_tensor_softmax = tf.keras.activations.softmax(z_tensor) print("softmax ") print(z_tensor_softmax) ############################################################# ## tanh z_tensor_tanh = tf.keras.activations.tanh(z_tensor) print("tanh [-1, +1]") print(z_tensor_tanh) ############################################################# ## sigmoid z_tensor_sigmoid = tf.keras.activations.sigmoid(z_tensor) print("sigmoid range [0, 1]") print(z_tensor_sigmoid) ############################################################# ## RELU ## RELU improves on the vanishing gradients problem ## weights are not learned efficiently ## relu --> theta(z) = max(0, z) ## RELU is still non-linear z_tensor_relu = tf.keras.activations.relu(z_tensor) print("relu range [0, +infinity]") print(z_tensor_relu) ############# other example print("***********************************************") other_z = np.array([1.76, -2.4, 1.46]) other_z_tensor = tf.expand_dims(other_z, axis=0) print(other_z_tensor) z_tensor_relu = tf.keras.activations.relu(other_z_tensor) print("relu range [0, +infinity]") print(z_tensor_relu) ############################################################# print("<<<<<<<<<<<<<<<<<DONE>>>>>>>>>>>>>>>>>>")
6fffbb8fa7bdb216cc4b9af704dda445d8039658
antweer/learningcode
/intro2python/plotting/playagain2.py
305
3.859375
4
#!/usr/bin/env python3 def playagain(): while True: answer = input("Do you want to play again(Y or N)?").lower() if answer == "y": return True break elif answer == "n": return False break else: print("Invalid input.") continue if __name__ == "__main__": print(playagain())
f6a11e69e348eac50c8dc2d0a498f20f9634ca05
osmansanteliz/Python
/bucleFor.py
379
3.859375
4
semana = ['lunes', 'martes', 'miercoles', 'jueves', 'viernes'] for dia in semana: print(dia) cantidad = int(input('Digite la Cantidad de Personas:\n')) nombre = [] salario = [] for x in range(cantidad): nom = str(input('Ingrese su Nombre:\n')) nombre.append(nom) sueldo = float(input('Ingrese su Salario:\n')) salario.append(sueldo) print(nombre)
17f05cbb35179a2373cc47591b7d325f8d798617
AnishHemmady/Data-Struct-Python
/quicksrt.py
758
3.640625
4
''' Quicksort ''' import pdb def partn(a,strt,end): #pdb.set_trace() pivt=a[end] k=strt for m in range(strt,end): if a[m]<=pivt: a[m],a[k]=a[k],a[m] k+=1 a[k],a[end]=a[end],a[k] return k def quicksort(inp,strty,endy): #pdb.set_trace() if strty<endy: indx=partn(inp,strty,endy) quicksort(inp,strty,indx-1) quicksort(inp,indx+1,endy) return inp arry=[2,1,0,8,9,4,3] print quicksort(arry,0,len(arry)-1) ''' O(N) ''' def k_smllst(arry,strty,endy,fnd): if fnd>0 and fnd<=endy-strty+1: indx=partn(arry,strty,endy) if indx-strty==fnd-1: return arry[indx] elif indx-strty>fnd-1: return k_smllst(arry,strty,indx-1,fnd) else: return k_smllst(arry,indx+1,endy,fnd-indx+strty-1) print k_smllst(arry,0,len(arry)-1,6)
9a5197e465ea046034438fb9c7ce74814b26be43
green-fox-academy/Komaxor
/week2/tue/tic_tac_toe.py
5,679
3.953125
4
p1 = " " p2 = " " p3 = " " p4 = " " p5 = " " p6 = " " p7 = " " p8 = " " p9 = " " mark = " " # draws map def draw_map(p1, p2, p3, p4, p5, p6, p7, p8, p9): for i in range (0, 9): if i == 1: print(" " + p1 + " | " + p2 + " | " + p3 + " ") elif i == 4: print(" " + p4 + " | " + p5 + " | " + p6 + " ") elif i == 7: print(" " + p7 + " | " + p8 + " | " + p9 + " ") elif i == 2 or i == 5: print("_____|_____|_____") else: print(" | | ") #player input def x_input(p1, p2, p3, p4, p5, p6, p7, p8, p9): while True: try: x = int(input("Which row do you want to place your figure: 1, 2 or 3? ")) except ValueError: print("That is definitely not 1, 2 or 3!") continue if x > 3: print("1, 2 or 3?") continue else: return x def x_validate(): x = x_input(p1, p2, p3, p4, p5, p6, p7, p8, p9) if x == 1: print("Great!") x = 3 elif x == 2: print("Awesome!") x = 9 elif x == 3: print("Cool!") x = 15 return x def y_input(p1, p2, p3, p4, p5, p6, p7, p8, p9): while True: try: y = int(input("Which column do you want to place your figure: 1, 2 or 3? ")) except ValueError: print("That is definitely not 1, 2 or 3!") continue if y > 3: print("1, 2 or 3?") continue else: return y def y_validate(): y = y_input(p1, p2, p3, p4, p5, p6, p7, p8, p9) if y == 1: print("Excellent!") y = 2 elif y == 2: print("You rock!") y = 5 elif y == 3: print("Superb!") y = 8 return y #switch players def change_turn(player1_turn): player1_turn = not player1_turn return player1_turn def change_mark(player1_turn): if player1_turn: mark = "X" else: mark = "O" return mark #place mark def place_mark(p1, p2, p3, p4, p5, p6, p7, p8, p9, mark): mark = change_mark(player1_turn) while True: x = x_validate() y = y_validate() if x == 3 and y == 2: if p1 != " ": print("That is already taken! Try again!") continue else: p1 = mark break elif x == 3 and y == 5: if p2 != " ": print("That is already taken! Try again!") continue else: p2 = mark break elif x == 3 and y == 8: if p3 != " ": print("That is already taken! Try again!") continue else: p3 = mark break elif x == 9 and y == 2: if p4 != " ": print("That is already taken! Try again!") continue else: p4 = mark break elif x == 9 and y == 5: if p5 != " ": print("That is already taken! Try again!") continue else: p5 = mark break elif x == 9 and y == 8: if p6 != " ": print("That is already taken! Try again!") continue else: p6 = mark break elif x == 15 and y == 2: if p7 != " ": print("That is already taken! Try again!") continue else: p7 = mark break elif x == 15 and y == 5: if p8 != " ": print("That is already taken! Try again!") continue else: p8 = mark break elif x == 15 and y == 8: if p9 != " ": print("That is already taken! Try again!") continue else: p9 = mark break return(p1, p2, p3, p4, p5, p6, p7, p8, p9) #check for win def win(p1, p2, p3, p4, p5, p6, p7, p8, p9, game_over): if p1 == p2 == p3 != " " or p4 == p5 == p6 != " " or p7 == p8 == p9 != " " or p1 == p4 == p7 != " " or p2 == p5 == p8 != " " or p3 == p6 == p9 != " " or p1 == p5 == p9 != " " or p3 == p5 == p7 != " ": if player1_turn: game_over = True print("Player 1 won! YAAAY") else: game_over = True print("Player 2 won! Congratulations!") return game_over #the game while True: print("Mark: Welcome to the Tic-Tac-Toe game! Let's play!") player1_turn = True game_over = False draw_map(p1, p2, p3, p4, p5, p6, p7, p8, p9) for i in range (0,9): if i % 2 == 0: print("Player 1's turn!") else: print("Player 2's turn!") (p1, p2, p3, p4, p5, p6, p7, p8, p9) = place_mark(p1, p2, p3, p4, p5, p6, p7, p8, p9, mark) draw_map(p1, p2, p3, p4, p5, p6, p7, p8, p9) game_over = win(p1, p2, p3, p4, p5, p6, p7, p8, p9, game_over) if game_over == True: break if i == 8: print("No more places! It is a tie!") break player1_turn = change_turn(player1_turn) restart = str(input("Play again? ")) if restart.lower().startswith("y"): p1 = " " p2 = " " p3 = " " p4 = " " p5 = " " p6 = " " p7 = " " p8 = " " p9 = " " mark = " " continue else: print("Bye") break
9774c03b170eb9e2c1ae8994db74758ed96c3eb1
Galyndo/MetodosNumericos
/numpyMatrices.py
1,716
4.25
4
import numpy as np # Python no posee un tipo incorporado de datos para manejar matrices # por lo que en general se utilizan listas de listas para el manejo # de matrices A = [[1, 4, 5, 12], [-5, 8, 9, 0], [-6, 7, 11, 19]] # NOTA: Se debe recordar que las listas en Python inician en el índice 0 # Imprimir la matriz print("A = ", A) # Imprimir la segunda fila print("A[1] = ", A[1]) # Tercer elemento de la segunda fila # Se maneja [fila][columna] print("A[1][2] = ", A[1][2]) # También hay que recordar que se puede utilizar índices negativos # Último elemento de la primera fila print("A[0][-1] = ", A[0][-1]) #%% # Asignar una columna de la matriz a una lista # Se genera una lista vacía columna = [] # Ahora se recorre sobre toda la lista for fila in A: # Añadir los valores a la lista generada columna.append(fila[2]) # Observar que sucede si se imprime la variable fila print(fila) print("3er columna = ", columna) #%% # Esto indica que se puede recorrer sobre toda la matriz o revisar elemento # por elemento for fila in A: for columna in fila: print(" * ", columna) #%% # Convertir a un arreglo numpy y del tipo flotante A2 = np.array(A, dtype = float) # Verificar type(A2) # Así ya se puede hacer operaciones A3 = A2 + A2 print(A3) print("") # Ahora mostrar una de las filas print(A3[0]) print("") # Mostrar una de las columnas print(A3[:,0]) print("") # Una forma de obtener una submatriz print(A3[1:3, 1:3]) print("") # Generar un vector B = np.array([0, 1, 2]) B2 = np.array([0, 1, 2, 3]) # Añadirlo como vector columna a la matriz A4 = np.c_[A2, B] # Mostrar print(A4)
e36eb18ba505173792da5770f1ef72a687b1e9cb
iamkissg/nowcoder
/algorithms/coding_interviews/09_frog_jump_1_recursively.py
490
3.78125
4
# -*- coding:utf-8 -*- """运行超时:您的程序未能在规定时间内运行结束,请检查是否循环有错或算法复杂度过大。""" class Solution: def jumpFloor(self, number): # write code here if number == 1: return 1 elif number == 2: return 2 elif number > 2: return self.jumpFloor(number-1)+self.jumpFloor(number-2) if __name__ == "__main__": sol = Solution() print(sol.jumpFloor(10))
355c8c71fa7dc56b3eaa13b14210abaffb51ee59
Hrushikesh-github/python_notes
/get_set_has_attr.py
442
4.375
4
class Person: age = 23 name = 'Adam' person = Person() print('Person has age?:', hasattr(person, 'age')) print('Person has salary?:', hasattr(person, 'salary')) #The hasattr() method returns true if an object has the given named attribute and false if it does not. #hasattr(object, name) print('Person age is', getattr(person,'age')) setattr(person,'gender','male') print("gender is ",getattr(person,'gender')) print(person.gender)
da5fde616d15e19edec3ee8a608491898f86511b
VictorCastao/Curso-em-Video-Python
/Desafio79.py
401
3.9375
4
print('=' * 12 + 'Desafio 79' + '=' * 12) resp = 'S' lista = [] while resp == 'S': a = int(input("Digite um valor: ")) if a in lista: print("Número não adicionado (já existente na lista)!") else: lista.append(a) print("Número adicionado!") resp = input("Deseja continuar[S/N]? ").strip().upper() lista.sort() print(f"Os números digitados foram:\n{lista}")
7696e7389a5128fb879f398c87c5adb2771e2fb6
vladcipariu91/DSA-Problems
/chapter_3/graphs/dfs_iterative.py
1,361
3.734375
4
class GraphNode(object): def __init__(self, val): self.value = val self.children = [] def add_child(self, new_node): self.children.append(new_node) def remove_child(self, del_node): if del_node in self.children: self.children.remove(del_node) class Graph(object): def __init__(self, node_list): self.nodes = node_list def add_edge(self, node1, node2): if (node1 in self.nodes and node2 in self.nodes): node1.add_child(node2) node2.add_child(node1) def remove_edge(self, node1, node2): if (node1 in self.nodes and node2 in self.nodes): node1.remove_child(node2) node2.remove_child(node1) node0 = GraphNode(0) node1 = GraphNode(1) node2 = GraphNode(2) node3 = GraphNode(3) graph = Graph([node0, node1, node2, node3]) graph.add_edge(node0, node1) graph.add_edge(node1, node2) graph.add_edge(node1, node3) graph.add_edge(node2, node3) def dfs_search(root_node, search_value): visited = [] stack = [root_node] while len(stack) > 0: current_node = stack.pop() visited.append(current_node) if current_node.value == search_value: return current_node for child in current_node.children: if child not in visited: stack.append(child)
cf29c017e640284c93c5e14c1aa46340d15b79ee
armandyam/euler_projects
/py/euler_24.py
685
3.65625
4
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = "Ajay Rangarajan, Jeyashree Krishnan" __email__ = "rangarajan, [email protected]" import numpy as np import math as math from decimal import * import itertools dig = 10 a = list(itertools.permutations(range(dig), dig)) print a[999999] """ A permutation is an ordered arrangement of objects. For example, 3124 is one possible permutation of the digits 1, 2, 3 and 4. If all of the permutations are listed numerically or alphabetically, we call it lexicographic order. The lexicographic permutations of 0, 1 and 2 are: 012 021 102 120 201 210 What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9? """
576fdece59690fceb8c5f0e93724f1809d7aead0
spuliz/Python
/test2/codeacademy.py
258
3.5625
4
my_list = [i**2 for i in range(1,11)] # Generates a list of squares of the numbers 1 - 10 f = open("output.txt", "w") for item in my_list: f.write(str(item) + "\n") f.close() # with with open("text.txt", "w") as my_file: my_file.write("Success!")
0dca16f2c1c7968c346377d1d886224d24110f36
cph-ms782/pythonSemProject
/utils/old/PDFutils.py
1,082
3.5
4
import PyPDF2 def read_pdf(address): """ convert data into text TODO lav open with ressources så den lukker ressourcen selv Done- merge to pageObjects til een med mergePage, https://pythonhosted.org/PyPDF2/PageObject.html#PyPDF2.pdf.PageObject """ # creating a pdf file object pdfFileObj = open(address, "rb") # creating a pdf reader object pdfReader = PyPDF2.PdfFileReader(pdfFileObj) if pdfReader==-1: print("Couldn't find file") return False # printing number of pages in pdf file print("pdfReader.numPages", pdfReader.numPages) # lav een eller flere page objects counter=2 if pdfReader.numPages==1: pageObj = pdfReader.getPage(0) else: pageObj = pdfReader.getPage(0) while counter <= pdfReader.numPages: pageObjTemp = pdfReader.getPage(counter-1) pageObj.mergePage(pageObjTemp) counter+=1 # extracting text from page data = pageObj.extractText() # closing the pdf file object pdfFileObj.close() return data
8875103ae20b8817f92ad8acfcdcfeed15dff846
erx00/modified-lsb
/lsb.py
1,912
3.828125
4
from utils import str_to_binary, binary_to_str from utils import int_to_binary, binary_to_int def encode_lsb(image, message): """ Converts the input message into binary and encodes it into the input image using the least significant bit algorithm. :param image: (ndarray) cover image (supports grayscale and RGB) :param message: (str) message :return: (ndarray) stego image """ message += '<EOS>' bits = str_to_binary(message) nbits = len(bits) if len(image.shape) == 2: image = image.reshape((image.shape[0], image.shape[1], 1)) nrows, ncols, nchannels = image.shape for i in range(nrows): for j in range(ncols): for c in range(nchannels): pos = ncols * nchannels * i + nchannels * j + c if pos < nbits: b = int_to_binary(int(image[i, j, c])) b.set(bits[pos], -1) image[i, j, c] = binary_to_int(b) else: return image return image def decode_lsb(image): """ Decodes message from input image using the least significant bit algorithm. :param image: (ndarray) stego image (supports grayscale and RGB) :return: (str) message """ if len(image.shape) == 2: image = image.reshape((image.shape[0], image.shape[1], 1)) nrows, ncols, nchannels = image.shape bits, message = [], "" for i in range(nrows): for j in range(ncols): for c in range(nchannels): bits.append(int_to_binary(int(image[i, j, c]))[-1]) pos = ncols * nchannels * i + nchannels * j + c if pos % 8 == 7: message += binary_to_str(bits) bits = [] if message[-5:] == '<EOS>': return message[:-5] return message
d325c9bbcc2408ee6012032326bb7fa34c5df072
ziadawn/codeguild-class
/Python Assignments/Week 1 Python/lab7-random-password.py
752
3.859375
4
''' lab 7, a code that generates a random password, of N length input by user, from a bucket of characters and special characters other variation to try: asking how many of each kind of things I need (capitals, numbers, special characters ''' import random #these are split so I could ask for each part separately, but is overkill as currently written alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYabcdefghijklmnopqrstuvwxyz0123456789' special_characters = '!@#$%&' bucket = alphabet + special_characters #combines above strings pw_need = input("How many characters do you need? ") pw_need = int(pw_need) #convert string to int i = 0 n = pw_need password = '' #empty variable while i < n: password += random.choice(bucket) i = i + 1 print(password)
6aaff990c7f8c7ae33248225d6937fd7cd45ba63
ncux/Python---2017-August
/List Comprehensions Example 3.py
122
3.75
4
letters = 'abcd' numbers = range(4) myList = [(letter,number) for letter in letters for number in numbers] print(myList)
81948d7d010e7b7bdbe91f9490dd14cdbdf2d500
mayur2402/python
/pattern.py
751
3.890625
4
''' accept input from user and display below pattern input : 4 4 output : * * * # 1,1 1,2 1,3 1,4 2 3 4 5 * * # * 2,1 2,2 2,3 2,4 3 4 5 6 * # * * 3,1 3,2 3,3 3,4 4 5 6 7 # * * * 4,1 4,2 4,3 4,4 5 6 7 8 ''' class Pattern: def __init__(self,Row,Col): self.Row = Row self.Col = Col def Display_Pattern(self): for i in range(self.Row): for j in range(self.Col): if(i+j != self.Col-1): print("*\t",end = "") else: print("#\t",end = "") print("\n") iRow = int(input("\nHow many rows\t")) iCol = int(input("\nHow many columns\t")) if(iRow != iCol or iRow == 0 or iCol ==0): print("Error : Invalid Argument") else: Pobj = Pattern(iRow,iCol) Pobj.Display_Pattern()
5ced3d1534c13dbefa2865702f940496c8019cb5
alexanderfranca/keggimporter
/keggimporter/AnendbFileSystem.py
6,681
3.734375
4
#!/usr/bin/python # -*- coding: utf-8 -*- import os import sys import shutil import pprint class AnendbFileSystem: def fileExists( self, file_path=None ): """ Test if the file path exists. Args: file_path(str): Path of the file. Returns: (boolean) """ try: if os.path.exists( file_path ): return True else: return False except: print( 'Could not test the file' ) def directoryExists( self, directory_path=None ): """ Test if the directory exists. Args: directory_path(str): Path of the directory. Returns: (boolean) """ try: if os.path.exists( directory_path ): return True else: return False except: print( 'Could not test the directory.' ) def isDirectory( self, directory_path ): """ Test if the path is a valid directory. Args: directory_path(str): Path of the directory. Returns: (boolean) """ try: if os.path.isdir( directory_path ): return True else: return False except: print( 'Coult not test if directory is valid.' ) def isFile( self, file_path=None ): """ Test if the path is actual a file. Args: file_path(str): File path. Returns: (boolean) """ try: if os.path.isfile( file_path ): return True else: return False except: print( "Could not test the file." ) def isValidFile( self, file_path=None ): """ Validates if the file exists and it's a valid file. Args: file_path(str): File path. Returns: (boolean) """ if self.isFile( file_path ) and self.fileExists( file_path ): return True else: raise IOError("File " + file_path + " doesn't exist, you don't have permission or not even it's a file.") def isValidDirectory( self, directory_path=None ): """ Validates if the directory exists and it's a valid directory. Args: directory_path(str): The directory path. Returns: (boolean) """ if self.isDirectory( directory_path ) and self.directoryExists( directory_path ): return True else: return False def openFile( self, file_path=None, mode='r'): """ Opens a file an return its handle. Args: file_path(str): File Path. mode(str): File mode ('r' = reading, 'a' = append, 'w' = writing ) Returns: (file): File handle of the opened file. """ try: f = open( file_path, mode ) return f except: print( 'Could not open the file: ' + file_path ) def openFileForReading( self, file_path=None ): """ Opens a file for reading. Args: file_path(str): File path. Returns: (file): File handle. """ if self.isValidFile( file_path ): return self.openFile( file_path, 'r' ) else: raise IOError( "File " + file_path + " couldn't be opened." ) def openFileForWriting( self, file_path=None ): """ Opens a file for writing. Args: file_path(str): File path. Returns: (file): File handle. """ return self.openFile( file_path, 'w' ) def openFileForAppend( self, file_path=None ): """ Opens a file for append. Args: file_path(str): File path. Returns: (file): File handle. """ return self.openFile( file_path, 'a' ) def closeFile( self, file_handle=None ): """ Simply closes a file handle. Args: file_handle(file): File handle to be closed. Returns: (boolean) """ # make sure the file is really closed. Is that really opened? That kind of stuff. try: file_handle.close() return True except: print( 'Could not close the file.' ) def removeFile( self, file_path=None ): """ Remove a file. Args: file_path(str): File path. Returns: (boolean) """ if self.isValidFile( file_path ): try: os.remove( file_path ) return True except: print( 'Could not remove the file.' ) else: print( 'Invalid file to be removed.' ) return False def purgeAndCreateFile( self, file_path=None ): """ Create a file but remove previous created (if exists). Args: file_path(str): File path. Returns: (file) """ if self.isValidFile( file_path ): self.removeFile( file_path ) f = self.openFileForAppend( file_path ) return f else: return False def removeDirectory( self, directory_path=None ): """ Remove a directory. Args: directory_path(str). The directory path. Returns: (boolean) """ if self.isValidDirectory( directory_path ): try: shutil.rmtree( directory_path ) return True except: print( 'Could not remove the directory: ' + directory_path ) else: return False def getDirectoryName( self, path=None ): """ Return the directory path of a file path. Args: path(str): Full path of some file. Returns: (str): The directory path without the file name. """ if self.isValidFile( path ): return os.path.dirname( path ) else: return None def getFileName( self, path=None ): """ Return the name of file from a full path. Args: path(str): Full path of some file. Returns: (str): The file name from the path. """ if self.isValidFile( path ): return os.path.basename( path ) else: return None
1ce086e01bd0d711bef2c1b5fa5a8d866c4a7955
huozhiwei/PyQt5_RapidDevolpment
/Chapter02/py202str.py
324
3.640625
4
# -*- coding: utf-8 -*- dss='hello pyqt5' print('dss',dss) #1 print('\n#1') s2=dss[1:];print('s2,',s2) s3=dss[1:3];print('s3,',s3) s4=dss[:3];print('s4,',s4) #2 print('\n#2') s2=dss[-1];print('s2,',s2) s3=dss[1:-2];print('s3,',s3) dn=len(dss);print('dn,',dn) #3 print('\n#3') print('s2+s3,',s2+s3) print('s3*2,',s3*2)
9b8f8f3d41e6da194338c052f94c286fc7cd4081
Pythonyte/python-oops
/advance_formattings.py
403
3.71875
4
# formatting numbers for i in range(9,11): print('Num is {:02}'.format(i)) print('Num is {:04}'.format(i)) # format decimal precisons pi = 3.1415667777 print('pi is {:.2f}'.format(pi)) # add commas in large numbers money_in_bank = 100000000000000 print('Total money: {:,}'.format(money_in_bank)) """ Num is 09 Num is 0009 Num is 10 Num is 0010 pi is 3.14 Total money: 100,000,000,000,000 """
ce7bc4cecf5a520b88057e42f4bccd82eb344b20
SalihTasdelen/Hackerrank_Python
/String_Formatting.py
319
4.125
4
def print_formatted(number): # your code goes here for i in range(number): #put i + 1 while right adjusting with the width of bin version print('{0:>{w}d} {0:>{w}o} {0:>{w}X} {0:>{w}b}'.format(i + 1, w=len(bin(number))-2)) if __name__ == '__main__': n = int(input()) print_formatted(n)
6c06a1055fcf093bc6a2e63cd3074cd98b055f2f
DIceEvYo/CECS274
/MaxStack.py
1,505
3.703125
4
from Interfaces import Stack import SLLStack class MaxStack(Stack) : def __init__(self): #O(1) self.stack = SLLStack.SLLStack() self.maximum = None def max(self) ->object: ''' Returns the max element O(1) ''' return self.maximum def push(self, x : object) : ''' push: Insert an element in the tail of the stack Inputs: x: Object type, i.e., any object O(1) ''' if(self.maximum == None) or (x > self.maximum): self.maximum = x self.stack.push(x) def pop(self) -> object: ''' pop: Remove the last element in the stack Returns: the object of the tail if it is no empty O(1) for Pop O(n) for finding new Max val ''' t = self.stack.pop() try: if(self.maximum == t): if(self.stack.size() != 0): self.maximum = 0 u = self.stack.head for i in range (0, self.stack.size()): if((self.maximum == None) or (u.x > self.maximum)): self.maximum = u.x u = u.next except: return t return t def size(self) -> int: #Returns size of stack, time should be O(1) return self.stack.size()
7033de535e7cda47ad485c8fd95a485373ebf219
dimitriacosta/python-examples
/automate_the_boring_stuff/try_catch.py
256
4.0625
4
#!/usr/bin/env python print('How many cats do you have?') cats = input() try: if int(cats) >= 4: print('That is a lot of cats.') else: print('That is not that many cats.') except ValueError: print('You did not enter a number.')
37c296e3c76ae1bde23d9731d91feb779ada7821
irving2/leetcode
/leetcode/976. Largest Perimeter Triangle.py
1,509
3.59375
4
#!/usr/bin/env python # coding=utf-8 # Project: leetcode # Author : [email protected] # Date : 2019/5/13 class Solution(object): def largestPerimeter(self, A): """ :type A: List[int] :rtype: int """ # def quick_sort(a): # right=[] # left=[] # if len(a)<2: # return a # for e in a[1:]: # if e>=a[0]: # right.append(e) # if e<a[0]: # left.append(e) # return quick_sort(left)+[a[0]]+quick_sort(right) # A = quick_sort(A) # # curr_d = [] # while True: # if len(curr_d)<3: # if len(A)==0: # break # curr_d.append(A.pop()) # continue # if curr_d[0]<curr_d[1]+curr_d[2]: # return sum(curr_d) # else: # curr_d.pop(0) # return 0 A=sorted(A,reverse=True) for i,x in enumerate(A[:-2]): if x<A[i]+A[i+1]: return sum(A[i:i+2]) return 0 if __name__ == '__main__': def quick_sort(a): right = [] left = [] if len(a)<2: return a for e in a[1:]: if e >= a[0]: right.append(e) if e < a[0]: left.append(e) return quick_sort(left) + [a[0]] + quick_sort(right) print(quick_sort([3,2,5,7,1]))
ab227a639994b342bae7fff18bf12e4a32f5f0e5
Navron4500/CoursesLearning
/Coding Ninjas/Classes_Files/OOPs/OOPS_1/Public_Private_Modifier_OOPS_1.py
947
3.640625
4
class Student: __passingPercentage = 40 def __init__(self,name,age=15,percentage=80): self.__name = name self.age = age self.percentage = percentage def studentDetails(self): print("Name = ", self.__name) print("Age =" , self.age) print("Percentage = ", self.percentage) def isPassed(self): if self.percentage > Student.passingPercentage: print("Student is passed") else: print("Student is not passed") @staticmethod def welcomeToSchool(): print("Hey! Welcome To School") s1 = Student("Parikh") #print(s1.__name) #print(s1.age) s1.age = 20 print(Student._Student__passingPercentage) s1.studentDetails() # s1.name = "Ankush" # s1.age = 20 # print(s1.name) # print(s1.age) #s1.studentDetails() # s1.isPassed() # s2 = Student("Varun",26,90) # s1.studentDetails() # s2.studentDetails() # s1.studentDetails() # Student.studentDetails(s1) # s1.isPassed() # s1.welcomeToSchool() #class_name.function(object_name)
09101436a73fd02820be56dffb8878e6ecd021f9
Zap123/REST-Lights-Out-Puzzle
/app/cellgame.py
623
3.515625
4
class Cellgame: def __init__(self): pass def move(self, cell, grid): cells_to_change = [cell] + cell.neighbours_cells(grid) self.invert_cells(cells_to_change) @classmethod def invert_cells(cls, cells): for cell in cells: cell.state = 1 - cell.state def is_game_over(self, grid): array = [] for i in range(grid.height): array.append([]) for j in range(grid.width): ijl = grid.get_cell(i, j) if ijl.state != 1: return False return True
315a592ea7ba9fcc4a8bf404c467430e62239143
bendevera/DS-Unit-3-Sprint-2-SQL-and-Databases
/module4-acid-and-database-scalability-tradeoffs/join_practice.py
975
3.890625
4
import sqlite3 conn = sqlite3.connect("chinook.db") curs = conn.cursor() num_tracks = "SELECT COUNT(*) FROM tracks;" print(f"Num tracks: {curs.execute(num_tracks).fetchone()[0]}") # what tracks are in the most playlists? (top 10) query = """ SELECT tracks.Name, albums.Title, COUNT(pt.TrackId) FROM playlist_track as pt LEFT JOIN tracks ON tracks.TrackId = pt.TrackId LEFT JOIN albums ON tracks.AlbumId = albums.AlbumId GROUP BY pt.TrackId ORDER BY 2 DESC LIMIT 10; """ print("--- MOST POPULAR TRACKS ---") track_popularity = curs.execute(query).fetchall() for track in track_popularity: print(track) # number of albums per artist query = """ SELECT artists.Name, COUNT(DISTINCT albums.AlbumId) FROM albums LEFT JOIN artists ON artists.ArtistId = albums.ArtistId GROUP BY albums.ArtistId ORDER BY 2 DESC LIMIT 10; """ print("--- MOST ALBUMS PER ARTIST ---") album_count = curs.execute(query).fetchall() for artist in album_count: print(artist) curs.close()
20801658f0d60d187416f4e2ec2e1e06ed5b3939
zeromtmu/practicaldatascience.github.io
/2016/tutorial_final/77/scraper.py
4,819
3.53125
4
# coding: utf-8 # # Web Scraper (45 pts) # In[2]: # setup library imports import io, time, json import requests from bs4 import BeautifulSoup def retrieve_html(url): """ Return the raw HTML at the specified URL. Args: url (string): Returns: status_code (integer): raw_html (string): the raw HTML content of the response, properly encoded according to the HTTP headers. """ # Write solution here r = requests.get(url) return (r.status_code, r.content) pass def authenticate(config_filepath): """ Create an authenticated yelp-python client. Args: config_filepath (string): relative path (from this file) to a file with your Yelp credentials Returns: client (yelp.client.Client): authenticated instance of a yelp.Client """ # Write solution here with io.open(config_filepath) as cred: creds = json.load(cred) auth = Oauth1Authenticator(**creds) client = Client(auth) return client pass # In[4]: def yelp_search(client, query): """ Make an authenticated request to the Yelp API. Args: query (string): Search term Returns: total (integer): total number of businesses on Yelp corresponding to the query businesses (list): list of yelp.obj.business.Business objects """ # Write solution here resp = client.search(query) return resp.total, resp.businesses pass def all_restaurants(client, query): """ Retrieve ALL the restaurants on Yelp for a given query. Args: query (string): Search term Returns: results (list): list of yelp.obj.business.Business objects """ # Write solution here params = { 'category_filter': 'restaurants', 'offset':0 } resp = client.search(query, **params) respObj = resp.businesses respTotal = resp.total offset = len(resp.businesses) params['offset'] = offset while offset < respTotal: resp = client.search(query, **params) respObj = respObj + resp.businesses offset = offset + len(resp.businesses) params['offset'] = offset time.sleep(2) return respObj pass def parse_api_response(data): """ Parse Yelp API results to extract restaurant URLs. Args: data (string): String of properly formatted JSON. Returns: (list): list of URLs as strings from the input JSON. """ # Write solution here pjson = json.loads(data) urls = [] for i in pjson['businesses']: urls.append(str(i['url'])) return urls pass def parse_page(html): """ Parse the reviews on a single page of a restaurant. Args: html (string): String of HTML corresponding to a Yelp restaurant Returns: tuple(list, string): a tuple of two elements first element: list of dictionaries corresponding to the extracted review information second element: URL for the next page of reviews (or None if it is the last page) """ # Write solution here reviews = [] soup = BeautifulSoup(html, 'html.parser') for r in soup.find_all("div", itemprop="review"): rev = {} #rev["review_id"] = r['data-review-id'] rev["user_id"] = r.find_next("meta", itemprop="author")['content'] rev["rating"] = float(r.find_next("meta", itemprop="ratingValue")['content']) rev["date"] = r.find_next("meta", itemprop="datePublished")['content'] rev["text"] = r.find_next("p", itemprop="description").get_text().encode('utf-8') reviews.append(rev) nextpage = None pagination = soup.find("div", {"class" : "arrange_unit page-option current"}) if pagination != None: nextpage = pagination.find_next("a", {"class" : "available-number pagination-links_anchor"}) if nextpage != None: nextpage = nextpage['href'] return (reviews, nextpage) pass def extract_reviews(url): """ Retrieve ALL of the reviews for a single restaurant on Yelp. Parameters: url (string): Yelp URL corresponding to the restaurant of interest. Returns: reviews (list): list of dictionaries containing extracted review information """ # Write solution here allreviews = [] parseurl = url while True: response = retrieve_html(parseurl) #print response[1] if response[0] == 200: root = parse_page (response[1]) allreviews = allreviews + root[0] if root[1] != None: parseurl = root[1] else: break else: break return allreviews pass
f843797d4f34a57af799317b1a61602340aa3436
LintangWisesa/ML_Sklearn_MultivariateRegression
/0_2varRegression.py
702
3.8125
4
# multivariate linear regression # linear regression with multiple variables # y = m1x1 + m2x2 + b import pandas as pd import numpy as np import matplotlib.pyplot as plt dataRumah = { 'luas': [2600, 3000, 3200, 3600, 4000], 'kamar': [3, 4, 1, 3, 5], 'harga': [550000, 565000, 610000, 595000, 760000] } df = pd.DataFrame(dataRumah) print(df) # ============================== from sklearn import linear_model model = linear_model.LinearRegression() # training model.fit(df[['luas', 'kamar']], df['harga']) # slope m1 & m2 print(model.coef_) # intercept b print(model.intercept_) # ============================== # prediction utk luas: 3200, kamar: 2 print(model.predict([[3600, 3]]))
cca42ac741b6699275a82ef6f10e2453cb5c75eb
n4rzzzls/textReadability
/Source/text_parser.py
597
3.71875
4
from nltk import sent_tokenize, word_tokenize, pos_tag def text_parsing(raw_text: str) -> dict: """ Transforms raw text into sentence and word tokens, tags them. :param raw_text: raw text from input file :return: a dictionary of raw text word, sentence tokens and tags. """ word_token = [] sent_token = sent_tokenize(raw_text) for x in sent_token: word_token += word_tokenize(x) tagged = pos_tag(word_token) return dict( raw_text=raw_text, word_tokens=word_token, sentence_tokens=sent_token, tagged=tagged )
36a1b1d5af43284d6a7e207381f18b36c4af5415
hassanbazari/python-practice-book
/anandology_chapter_2/2prb21_split_line.py
440
3.859375
4
#program to slice the line in a text file at a specific size import sys filename = sys.argv[1] Size=sys.argv[2] size=int(Size) lines = [] with open(filename) as f: lines = f.readlines() for line in lines: splitline = [line[i:i+size] for i in range(0, len(line), size)] #split line at specific size x=splitline[-1] # select the last piece of list splitline[-1]=x[:-1] #remove \n at the end for i in splitline: print (i)