input
stringlengths 3.68k
4.11k
| output
listlengths 1
1
| id
stringlengths 40
40
|
---|---|---|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the days records of all rows , most of them are equal to 99 .
Output:
|
[
"most_eq { all_rows ; days ; 99 }"
] |
task210-72a55ebc1dac4f55b30fb731e1136165
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose tournament record fuzzily matches to netherlands . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_eq { all_rows ; tournament ; netherlands } } ; 2 }"
] |
task210-166905c437ca40f4a23cf7cd9abce2e0
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the manner of departure records of all rows , most of them fuzzily match to sacked .
Output:
|
[
"most_eq { all_rows ; manner of departure ; sacked }"
] |
task210-96ad84897f8a4611a99fd13dec9937c4
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose title record fuzzily matches to cry turmoil . take the originalairdate record of this row . select the rows whose title record fuzzily matches to the deadly pyramid . take the originalairdate record of this row . the first record is less than the second record . the originalairdate record of the first row is november 5 , 1994 . the originalairdate record of the second row is november 12 , 1994 .
Output:
|
[
"and { less { hop { filter_eq { all_rows ; title ; cry turmoil } ; originalairdate } ; hop { filter_eq { all_rows ; title ; the deadly pyramid } ; originalairdate } } ; and { eq { hop { filter_eq { all_rows ; title ; cry turmoil } ; originalairdate } ; november 5 , 1994 } ; eq { hop { filter_eq { all_rows ; title ; the deadly pyramid } ; originalairdate } ; november 12 , 1994 } } }"
] |
task210-b5033aa900644c4c8c84bc185287df55
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose year aired record fuzzily matches to 2007 . the maximum top prize record of these rows is 250000 .
Output:
|
[
"eq { max { filter_eq { all_rows ; year aired ; 2007 } ; top prize } ; 250000 }"
] |
task210-7ffffdef436544ce8e1e66930ccdead4
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose venue record fuzzily matches to aberdeen . there is only one such row in the table . the date record of this unqiue row is 5 december 1978 .
Output:
|
[
"and { only { filter_eq { all_rows ; venue ; aberdeen } } ; eq { hop { filter_eq { all_rows ; venue ; aberdeen } ; date } ; 5 december 1978 } }"
] |
task210-43be018afc8e466192d199d0e990f982
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose founded record is greater than 1884 . the sum of the enrollment record of these rows is 7,500 .
Output:
|
[
"round_eq { sum { filter_greater { all_rows ; founded ; 1884 } ; enrollment } ; 7,500 }"
] |
task210-f7e23a2d2f2a4f0e80ad44caa389e894
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose crowd record of all rows is maximum . the venue record of this row is kardinia park .
Output:
|
[
"eq { hop { argmax { all_rows ; crowd } ; venue } ; kardinia park }"
] |
task210-44e4da6ac53441a5a47217591195d67e
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose fsb record fuzzily matches to 100 mt/s . for the mult records of these rows , all of them are greater than 4 .
Output:
|
[
"all_greater { filter_eq { all_rows ; fsb ; 100 mt/s } ; mult ; 4 }"
] |
task210-c4985f3d9bc942deb1149e0a149aeb9b
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose company record fuzzily matches to royal dutch shell . take the market value ( billion ) record of this row . select the rows whose company record fuzzily matches to american international group . take the market value ( billion ) record of this row . the first record is greater than the second record .
Output:
|
[
"greater { hop { filter_eq { all_rows ; company ; royal dutch shell } ; market value ( billion ) } ; hop { filter_eq { all_rows ; company ; american international group } ; market value ( billion ) } }"
] |
task210-7199e34ae78f47e5affcbaf054893d7f
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose number of electorates ( 2003 ) record of all rows is 2nd maximum . the constituency number record of this row is 49 .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; number of electorates ( 2003 ) ; 2 } ; constituency number } ; 49 }"
] |
task210-136552870a76467796ff2e6b208a99ef
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose constructor record fuzzily matches to maserati . among these rows , select the rows whose laps record is less than 92 . there is only one such row in the table . the driver record of this unqiue row is luigi piotti .
Output:
|
[
"and { only { filter_less { filter_eq { all_rows ; constructor ; maserati } ; laps ; 92 } } ; eq { hop { filter_less { filter_eq { all_rows ; constructor ; maserati } ; laps ; 92 } ; driver } ; luigi piotti } }"
] |
task210-a35b72f696aa40158432a07773748293
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose player record fuzzily matches to bob jones . take the team record of this row . select the rows whose player record fuzzily matches to larry hutton . take the team record of this row . the first record does not match to the second record . the team record of the first row is minnesota twins . the team record of the second row is los angeles dodgers .
Output:
|
[
"and { not_eq { hop { filter_eq { all_rows ; player ; bob jones } ; team } ; hop { filter_eq { all_rows ; player ; larry hutton } ; team } } ; and { eq { hop { filter_eq { all_rows ; player ; bob jones } ; team } ; minnesota twins } ; eq { hop { filter_eq { all_rows ; player ; larry hutton } ; team } ; los angeles dodgers } } }"
] |
task210-d6f4f5bd7093457f9dd23086cd0dfbe6
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose winning constructor record fuzzily matches to bugatti . the number of such rows is 4 .
Output:
|
[
"eq { count { filter_eq { all_rows ; winning constructor ; bugatti } } ; 4 }"
] |
task210-2205e290c3394950891ab290c3fcb3cb
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose attendance record of all rows is 3rd minimum . the date record of this row is april 23 .
Output:
|
[
"eq { hop { nth_argmin { all_rows ; attendance ; 3 } ; date } ; april 23 }"
] |
task210-1371928cbfec49dd99ff90b902fa0d2f
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose candidates record does not match to unopposed . the average of the candidates record of these rows is 72 .
Output:
|
[
"round_eq { avg { filter_not_eq { all_rows ; candidates ; unopposed } ; candidates } ; 72 }"
] |
task210-2fdb6413004c4ed8a020f466f4d6856b
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose socialist labor ticket record fuzzily matches to ( none ) . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_eq { all_rows ; socialist labor ticket ; ( none ) } } ; 2 }"
] |
task210-705ba6454933444eb5ca95e91b5774bf
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose site record fuzzily matches to cedar rapids . there is only one such row in the table . the date record of this unqiue row is september 4 , 2007 .
Output:
|
[
"and { only { filter_eq { all_rows ; site ; cedar rapids } } ; eq { hop { filter_eq { all_rows ; site ; cedar rapids } ; date } ; september 4 , 2007 } }"
] |
task210-82b0d6b9cff948fd803780e6148451d0
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose nationality record fuzzily matches to united states . there is only one such row in the table . the athlete record of this unqiue row is shawn crawford .
Output:
|
[
"and { only { filter_eq { all_rows ; nationality ; united states } } ; eq { hop { filter_eq { all_rows ; nationality ; united states } ; athlete } ; shawn crawford } }"
] |
task210-949930796edc45e79bdf2519d3b56cae
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the crowd record of all rows is 21500 .
Output:
|
[
"round_eq { avg { all_rows ; crowd } ; 21500 }"
] |
task210-6aa807afeee74e23ab2b6a12ce8fb96f
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose home team score record is less than 10.0 . among these rows , select the rows whose crowd record is greater than 16000 . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_greater { filter_less { all_rows ; home team score ; 10.0 } ; crowd ; 16000 } } ; 2 }"
] |
task210-65fc7e95f1d94ea5b5d5fbf26cffdb27
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose position record fuzzily matches to 8th . there is only one such row in the table . the season record of this unqiue row is 1946 - 47 .
Output:
|
[
"and { only { filter_eq { all_rows ; position ; 8th } } ; eq { hop { filter_eq { all_rows ; position ; 8th } ; season } ; 1946 - 47 } }"
] |
task210-d9d77261c9d44175a5c0748ec955e69e
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the rank record of all rows is 4.89 .
Output:
|
[
"round_eq { avg { all_rows ; rank } ; 4.89 }"
] |
task210-c0b64259239842b38c44ad2b7b005938
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the became consort records of all rows , most of them fuzzily match to husband 's ascession .
Output:
|
[
"most_eq { all_rows ; became consort ; husband 's ascession }"
] |
task210-6cf49e1c878e4807bcc56f397385b642
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose to par record is less than or equal to -1 . the average of the score record of these rows is 284.2 .
Output:
|
[
"round_eq { avg { filter_less_eq { all_rows ; to par ; -1 } ; score } ; 284.2 }"
] |
task210-fc5cebcab2814b59945402e789ea96e9
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose winnings record of all rows is 2nd maximum . the year record of this row is 2003 .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; winnings ; 2 } ; year } ; 2003 }"
] |
task210-ce711f1c5aff41c69d15d2f38cbe052e
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose tied record of all rows is maximum . the season record of this row is 1968 - 69 .
Output:
|
[
"eq { hop { argmax { all_rows ; tied } ; season } ; 1968 - 69 }"
] |
task210-56295e3bd0bb4f87bff51ae9e7adc88d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the to par record of all rows is -4.64 .
Output:
|
[
"round_eq { avg { all_rows ; to par } ; -4.64 }"
] |
task210-993b418359404b669aca3519a5446c36
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose category record fuzzily matches to best overseas new artist . take the year record of this row . select the rows whose category record fuzzily matches to songs of the year . take the year record of this row . the first record is less than the second record .
Output:
|
[
"less { hop { filter_eq { all_rows ; category ; best overseas new artist } ; year } ; hop { filter_eq { all_rows ; category ; songs of the year } ; year } }"
] |
task210-e397c6f71f984892a6296f0a85cb99e7
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose attendance record of all rows is maximum . the opponent record of this row is college all - stars at chicago .
Output:
|
[
"eq { hop { argmax { all_rows ; attendance } ; opponent } ; college all - stars at chicago }"
] |
task210-4b0df3a0af1a4a3b9c4a26e728a4e1db
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the team records of all rows , most of them fuzzily match to iowa .
Output:
|
[
"most_eq { all_rows ; team ; iowa }"
] |
task210-c39f5d487da24ba6a51b831312b89582
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose attendance record of all rows is maximum . the opponent record of this row is cleveland browns .
Output:
|
[
"eq { hop { argmax { all_rows ; attendance } ; opponent } ; cleveland browns }"
] |
task210-fd98613216a74cb1820b2a1197800c70
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the origin records of all rows , most of them fuzzily match to pune railway station .
Output:
|
[
"most_eq { all_rows ; origin ; pune railway station }"
] |
task210-3b234b1d1ea843efbe3475f0728d4588
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the percentage of possible points records of all rows , most of them are less than 70 .
Output:
|
[
"most_less { all_rows ; percentage of possible points ; 70 }"
] |
task210-59e1e0d512b94f27b57328397486db44
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose role record fuzzily matches to guest . there is only one such row in the table .
Output:
|
[
"only { filter_eq { all_rows ; role ; guest } }"
] |
task210-15b4971d1dd04784b0309841bcab8cb8
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose international tourist arrivals ( 2012 ) record is greater than 40 million . select the row whose change ( 2011 to 2012 ) record of these rows is 1st maximum . the country record of this row is spain .
Output:
|
[
"eq { hop { nth_argmax { filter_greater { all_rows ; international tourist arrivals ( 2012 ) ; 40 million } ; change ( 2011 to 2012 ) ; 1 } ; country } ; spain }"
] |
task210-d85963e206dc41d09026dfa311033d30
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the wins records of all rows , most of them are equal to 0 .
Output:
|
[
"most_eq { all_rows ; wins ; 0 }"
] |
task210-1fcb654a1dbb41eba3a959752cc79249
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose date record fuzzily matches to florida . there is only one such row in the table .
Output:
|
[
"only { filter_eq { all_rows ; date ; florida } }"
] |
task210-dd1718834d8e4aada2f063318dbd90c5
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose date record fuzzily matches to october . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_eq { all_rows ; date ; october } } ; 2 }"
] |
task210-b683c0dfae0a4b51b96978591166e9b1
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose population record of all rows is maximum . the official name record of this row is saint george .
Output:
|
[
"eq { hop { argmax { all_rows ; population } ; official name } ; saint george }"
] |
task210-e0cbe387c7a142b3b948e22a1056b189
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose exited record fuzzily matches to day 16 . the maximum finished record of these rows is 3rd .
Output:
|
[
"eq { max { filter_eq { all_rows ; exited ; day 16 } ; finished } ; 3rd }"
] |
task210-56c63d96ac184bd39f255b47f727ae90
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose laps record is greater than 312 . there is only one such row in the table .
Output:
|
[
"only { filter_greater { all_rows ; laps ; 312 } }"
] |
task210-6e6ce327c1bb4906a028702bf81e49e9
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the area ( km square ) record of all rows is 198.448 .
Output:
|
[
"round_eq { avg { all_rows ; area ( km square ) } ; 198.448 }"
] |
task210-e52098de364840eaae8ccd3e7eeded71
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose city record fuzzily matches to atlanta , ga . take the passengers record of this row . select the rows whose city record fuzzily matches to orlando , fl . take the passengers record of this row . the first record is greater than the second record .
Output:
|
[
"greater { hop { filter_eq { all_rows ; city ; atlanta , ga } ; passengers } ; hop { filter_eq { all_rows ; city ; orlando , fl } ; passengers } }"
] |
task210-5a653d10396a46db986e9ad515083875
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose institution record fuzzily matches to university of dayton . take the founded record of this row . select the rows whose institution record fuzzily matches to university of memphis . take the founded record of this row . the first record is less than the second record .
Output:
|
[
"less { hop { filter_eq { all_rows ; institution ; university of dayton } ; founded } ; hop { filter_eq { all_rows ; institution ; university of memphis } ; founded } }"
] |
task210-d3137ba1cc8f4c278c33081d3073099b
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose location attendance record fuzzily matches to rose garden . the number of such rows is 3 .
Output:
|
[
"eq { count { filter_eq { all_rows ; location attendance ; rose garden } } ; 3 }"
] |
task210-f02e9273401948fd836f08fc1ba2d064
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the quantity record of all rows is 25.14 .
Output:
|
[
"round_eq { avg { all_rows ; quantity } ; 25.14 }"
] |
task210-9b813eb8faf941d9aa4beaec1237aeee
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the number of powiats record of all rows is 2.5 .
Output:
|
[
"round_eq { avg { all_rows ; number of powiats } ; 2.5 }"
] |
task210-3616915d500e44d68a932f028200301c
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose director record fuzzily matches to j clark mathis . there is only one such row in the table .
Output:
|
[
"only { filter_eq { all_rows ; director ; j clark mathis } }"
] |
task210-9efba851f2d74a3baac43356c381ca21
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose launched record fuzzily matches to november 21 , 1964 . take the ceased operation record of this row . select the rows whose launched record fuzzily matches to december 12 , 1962 . take the ceased operation record of this row . the first record is less than the second record .
Output:
|
[
"less { hop { filter_eq { all_rows ; launched ; november 21 , 1964 } ; ceased operation } ; hop { filter_eq { all_rows ; launched ; december 12 , 1962 } ; ceased operation } }"
] |
task210-46ec3209837b479e993caf06eae5d554
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose orbital period record of all rows is minimum . the planet record of this row is alpha centauri bb .
Output:
|
[
"eq { hop { argmin { all_rows ; orbital period } ; planet } ; alpha centauri bb }"
] |
task210-1457e5dbb304496ca0e20d41205e938d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the overall rank record of all rows is 72 .
Output:
|
[
"round_eq { avg { all_rows ; overall rank } ; 72 }"
] |
task210-b81ec87ed471441a9789136fdbb44ecf
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose performer 4 record fuzzily matches to tony slattery . the number of such rows is 7 .
Output:
|
[
"eq { count { filter_eq { all_rows ; performer 4 ; tony slattery } } ; 7 }"
] |
task210-8e790049598544928edf5244b0619ae4
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose international tourism expenditure ( 2012 ) record of all rows is 1st maximum . the country record of this row is china .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; international tourism expenditure ( 2012 ) ; 1 } ; country } ; china }"
] |
task210-15e56ddc6a3947eea5c609df2455f42f
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose census ranking record of all rows is 2nd minimum . the official name record of this row is dieppe .
Output:
|
[
"eq { hop { nth_argmin { all_rows ; census ranking ; 2 } ; official name } ; dieppe }"
] |
task210-ef72383daf6e403fac085d721fd1e698
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose college record fuzzily matches to north carolina . for the nba draft records of these rows , all of them fuzzily match to undrafted .
Output:
|
[
"all_eq { filter_eq { all_rows ; college ; north carolina } ; nba draft ; undrafted }"
] |
task210-a01ccaea2c2040ea816c59728ce30ffe
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose place record fuzzily matches to t2 . the number of such rows is 7 .
Output:
|
[
"eq { count { filter_eq { all_rows ; place ; t2 } } ; 7 }"
] |
task210-2536851927d8425e9826c38a0c16b08d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose year record fuzzily matches to 2011 . take the tournaments played record of this row . select the rows whose year record fuzzily matches to 2007 . take the tournaments played record of this row . the first record is greater than the second record .
Output:
|
[
"greater { hop { filter_eq { all_rows ; year ; 2011 } ; tournaments played } ; hop { filter_eq { all_rows ; year ; 2007 } ; tournaments played } }"
] |
task210-cca4e8dad1c44f62a966e151f50416ef
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the catches record of all rows is 19.5 .
Output:
|
[
"round_eq { avg { all_rows ; catches } ; 19.5 }"
] |
task210-0cc523ccc0d34b5c9255173f4b5d1a2e
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose tournament record fuzzily matches to 2009 african youth championship ( qualifiers ) . among these rows , select the rows whose home team record fuzzily matches to zambia . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_eq { filter_eq { all_rows ; tournament ; 2009 african youth championship ( qualifiers ) } ; home team ; zambia } } ; 2 }"
] |
task210-4e2b3310c34d47e78d06e7e9884b7e5b
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose name record fuzzily matches to graham rahal . take the points record of this row . select the rows whose name record fuzzily matches to dan clarke . take the points record of this row . the first record is less than the second record . the points record of the first row is 25 . the points record of the second row is 27 .
Output:
|
[
"and { less { hop { filter_eq { all_rows ; name ; graham rahal } ; points } ; hop { filter_eq { all_rows ; name ; dan clarke } ; points } } ; and { eq { hop { filter_eq { all_rows ; name ; graham rahal } ; points } ; 25 } ; eq { hop { filter_eq { all_rows ; name ; dan clarke } ; points } ; 27 } } }"
] |
task210-f5b90254299248d983eb0e23d5f05d33
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose artist record fuzzily matches to demos beke . take the points record of this row . select the rows whose artist record fuzzily matches to lucas christodolou . take the points record of this row . the first record is greater than the second record .
Output:
|
[
"greater { hop { filter_eq { all_rows ; artist ; demos beke } ; points } ; hop { filter_eq { all_rows ; artist ; lucas christodolou } ; points } }"
] |
task210-c74d34e3ee484f31ae5794a35f3bd9dd
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose departure pune record of all rows is 2nd minimum . the train number record of this row is 99806 .
Output:
|
[
"eq { hop { nth_argmin { all_rows ; departure pune ; 2 } ; train number } ; 99806 }"
] |
task210-efeea39fa43044c689d259bbdd3c8450
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose weeks record of all rows is 2nd maximum . the title record of this row is evolution .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; weeks ; 2 } ; title } ; evolution }"
] |
task210-a28f28f90f6c42c3ab8284e0884e9b0a
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose government financial liabilities as % of gdp ( end 2003 ) record fuzzily matches to 157.5 % . there is only one such row in the table . the currency record of this unqiue row is yen . the country record of this unqiue row is japan .
Output:
|
[
"and { only { filter_eq { all_rows ; government financial liabilities as % of gdp ( end 2003 ) ; 157.5 % } } ; and { eq { hop { filter_eq { all_rows ; government financial liabilities as % of gdp ( end 2003 ) ; 157.5 % } ; currency } ; yen } ; eq { hop { filter_eq { all_rows ; government financial liabilities as % of gdp ( end 2003 ) ; 157.5 % } ; country } ; japan } } }"
] |
task210-b55c2dcaf2c741819b6bb3a0e1cc1aa0
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the population records of all rows , most of them are less than 1000 .
Output:
|
[
"most_less { all_rows ; population ; 1000 }"
] |
task210-672f5c78dc234acb927bd9d70e0c3f50
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose event record fuzzily matches to ept barcelona open . take the date record of this row . select the rows whose event record fuzzily matches to 2008 european poker championships . take the date record of this row . the first record is less than the second record .
Output:
|
[
"less { hop { filter_eq { all_rows ; event ; ept barcelona open } ; date } ; hop { filter_eq { all_rows ; event ; 2008 european poker championships } ; date } }"
] |
task210-d49c9ece230645ac9bedcdbb5407bcce
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose crowd record is less than 10000 . among these rows , select the rows whose home team score record is greater than 10 . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_greater { filter_less { all_rows ; crowd ; 10000 } ; home team score ; 10 } } ; 2 }"
] |
task210-916542a82b194d8d8656be3581e9f25d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose top - 5 record is greater than 0 . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_greater { all_rows ; top - 5 ; 0 } } ; 2 }"
] |
task210-a0563e84a4014ef7ad331183bf058ccb
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the sum of the championships record of all rows is 2 .
Output:
|
[
"round_eq { sum { all_rows ; championships } ; 2 }"
] |
task210-fa5b1a0ce3964a3db2df5046cf3ce77c
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose f bolt ( kgf ) record of all rows is maximum . the chambering record of this row is .50 bmg .
Output:
|
[
"eq { hop { argmax { all_rows ; f bolt ( kgf ) } ; chambering } ; .50 bmg }"
] |
task210-402e9dcba9324065875a70a1df2c0aa6
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose date record fuzzily matches to sept 15 . take the attendance record of this row . select the rows whose date record fuzzily matches to nov 3 . take the attendance record of this row . the first record is greater than the second record . the opponent record of the first row is green bay packers . the opponent record of the second row is chicago bears .
Output:
|
[
"and { greater { hop { filter_eq { all_rows ; date ; sept 15 } ; attendance } ; hop { filter_eq { all_rows ; date ; nov 3 } ; attendance } } ; and { eq { hop { filter_eq { all_rows ; date ; sept 15 } ; opponent } ; green bay packers } ; eq { hop { filter_eq { all_rows ; date ; nov 3 } ; opponent } ; chicago bears } } }"
] |
task210-d5db54f93484428494b1823da03ef579
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose date record fuzzily matches to 6 - 95 . take the date record of this row . select the rows whose date record fuzzily matches to 10 - 95 . take the date record of this row . the first record is less than the second record .
Output:
|
[
"less { hop { filter_eq { all_rows ; date ; 6 - 95 } ; date } ; hop { filter_eq { all_rows ; date ; 10 - 95 } ; date } }"
] |
task210-9021c6f568ba4bda81e83b1ecf7225ec
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the sum of the attendance record of all rows is 779652 .
Output:
|
[
"round_eq { sum { all_rows ; attendance } ; 779652 }"
] |
task210-af7bdeeea69e4216ad360cb5a5d80ab0
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose candidates record of all rows is 1st maximum . the incumbent record of this row is ralph a gamble .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; candidates ; 1 } ; incumbent } ; ralph a gamble }"
] |
task210-201999c9729c45c09b55f6c28a850455
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the wins records of all rows , most of them are less than 15 .
Output:
|
[
"most_less { all_rows ; wins ; 15 }"
] |
task210-e83f7f6cffe94355bae6bbfefb746f8e
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose name record fuzzily matches to john e wool . take the appointment date record of this row . select the rows whose name record fuzzily matches to david e twiggs . take the appointment date record of this row . the first record is less than the second record .
Output:
|
[
"less { hop { filter_eq { all_rows ; name ; john e wool } ; appointment date } ; hop { filter_eq { all_rows ; name ; david e twiggs } ; appointment date } }"
] |
task210-70642d54d2544f79861bf12cdd2d7bda
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the cores records of all rows , all of them are equal to 4 .
Output:
|
[
"all_eq { all_rows ; cores ; 4 }"
] |
task210-2d75c85ee1004e73ab4ce3f9f34af726
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose enrollment 08 - 09 record of all rows is 2nd maximum . the school record of this row is heritage .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; enrollment 08 - 09 ; 2 } ; school } ; heritage }"
] |
task210-c821213ef088444584b534d0b83bd680
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose population ( 2013 ) record is less than 2,000,000 . there is only one such row in the table . the province record of this unqiue row is northern cape .
Output:
|
[
"and { only { filter_less { all_rows ; population ( 2013 ) ; 2,000,000 } } ; eq { hop { filter_less { all_rows ; population ( 2013 ) ; 2,000,000 } ; province } ; northern cape } }"
] |
task210-b6525af78f25482bba540d724a423e9a
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose away team record fuzzily matches to melbourne . among these rows , select the rows whose venue record fuzzily matches to windy hill . there is only one such row in the table . the home team record of this unqiue row is essendon .
Output:
|
[
"and { only { filter_eq { filter_eq { all_rows ; away team ; melbourne } ; venue ; windy hill } } ; eq { hop { filter_eq { filter_eq { all_rows ; away team ; melbourne } ; venue ; windy hill } ; home team } ; essendon } }"
] |
task210-4df0d6fad7c7436aae16d2d05469b750
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the country records of all rows , most of them fuzzily match to belgium .
Output:
|
[
"most_eq { all_rows ; country ; belgium }"
] |
task210-81955c903315428f9f0fb7e51fe90301
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the apparent magnitude record of all rows is 12.9 .
Output:
|
[
"round_eq { avg { all_rows ; apparent magnitude } ; 12.9 }"
] |
task210-ce707d48fbc94b7eb61f29668186c392
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose academic ranking of world universities 2012 record fuzzily matches to not ranked . the number of such rows is 3 .
Output:
|
[
"eq { count { filter_eq { all_rows ; academic ranking of world universities 2012 ; not ranked } } ; 3 }"
] |
task210-b32f03e93a4749dfa72a635901eabae8
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose incumbent record fuzzily matches to frank t bow . take the first elected record of this row . select the rows whose incumbent record fuzzily matches to louis stokes . take the first elected record of this row . the second record is 18 years larger than the first record .
Output:
|
[
"eq { diff { hop { filter_eq { all_rows ; incumbent ; frank t bow } ; first elected } ; hop { filter_eq { all_rows ; incumbent ; louis stokes } ; first elected } } ; -18 years }"
] |
task210-3a3ddcf64d4b4e3aab3a01b669d632d2
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose silver record is greater than 0 . the number of such rows is 5 .
Output:
|
[
"eq { count { filter_greater { all_rows ; silver ; 0 } } ; 5 }"
] |
task210-8048e03093de45e298d82b20ef71443e
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the team records of all rows , most of them fuzzily match to rothmans honda .
Output:
|
[
"most_eq { all_rows ; team ; rothmans honda }"
] |
task210-af30d59e721046ca85fcdbd5c4e49c72
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose no record of all rows is 4th maximum . the player record of this row is corliss williamson .
Output:
|
[
"eq { hop { nth_argmax { all_rows ; no ; 4 } ; player } ; corliss williamson }"
] |
task210-4c8ae2bf495c40aca2d59747103a63b5
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the maximum frequency mhz record of all rows is 107.3 . the city of license record of the row with superlative frequency mhz record is hill city , kansas .
Output:
|
[
"and { eq { max { all_rows ; frequency mhz } ; 107.3 } ; eq { hop { argmax { all_rows ; frequency mhz } ; city of license } ; hill city , kansas } }"
] |
task210-ea6f1bf2881d434f89efcf691ed282f5
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the place records of all rows , most of them fuzzily match to t5 .
Output:
|
[
"most_eq { all_rows ; place ; t5 }"
] |
task210-8584e2baaea641068d34ecefde0486e2
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose population metro area in millions record fuzzily matches to 5.3 . take the population metro area in millions record of this row . select the rows whose population metro area in millions record fuzzily matches to 3.9 . take the population metro area in millions record of this row . the first record is greater than the second record .
Output:
|
[
"greater { hop { filter_eq { all_rows ; population metro area in millions ; 5.3 } ; population metro area in millions } ; hop { filter_eq { all_rows ; population metro area in millions ; 3.9 } ; population metro area in millions } }"
] |
task210-30ecc0ab9d384940aa845fa03f64ff4d
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the competition records of all rows , most of them fuzzily match to 2002 world cup qualifier .
Output:
|
[
"most_eq { all_rows ; competition ; 2002 world cup qualifier }"
] |
task210-4848fd2ac4ea48f9a5b2d234069c4255
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose 2nd run record of all rows is maximum . the name record of this row is artūrs matisons ( lat ) .
Output:
|
[
"eq { hop { argmax { all_rows ; 2nd run } ; name } ; artūrs matisons ( lat ) }"
] |
task210-d4c45ece1c7a40348269f1ff31ff9897
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: for the attendance records of all rows , most of them are greater than or equal to 40000 .
Output:
|
[
"most_greater_eq { all_rows ; attendance ; 40000 }"
] |
task210-77ad3351c4e043538f5b8574350ae2a0
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose traction type record fuzzily matches to petrol . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_eq { all_rows ; traction type ; petrol } } ; 2 }"
] |
task210-c36b6247acd44623b9989892516217a7
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: the average of the effective exhaust velocity ( m / s ) record of all rows is 33869 .
Output:
|
[
"round_eq { avg { all_rows ; effective exhaust velocity ( m / s ) } ; 33869 }"
] |
task210-c9fc18c07cda4647b16bbec2876a2b78
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose opponent record fuzzily matches to san francisco 49ers . among these rows , select the rows whose attendance record is equal to 39727 . there is only one such row in the table .
Output:
|
[
"only { filter_eq { filter_eq { all_rows ; opponent ; san francisco 49ers } ; attendance ; 39727 } }"
] |
task210-b96af9a1a74a4a0fa175b1f68cf45cbf
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose earnings record is greater than 4000000 . the number of such rows is 2 .
Output:
|
[
"eq { count { filter_greater { all_rows ; earnings ; 4000000 } } ; 2 }"
] |
task210-3663cf86e82747b19413755fd875d4c7
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the rows whose country record fuzzily matches to eng . the number of such rows is 11 .
Output:
|
[
"eq { count { filter_eq { all_rows ; country ; eng } } ; 11 }"
] |
task210-63f868c7be3f417db58d780910d65cc1
|
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command:
1. count: returns the number of rows in the view.
2. only: returns whether there is exactly one row in the view.
3. hop: returns the value under the header column of the row.
4. and: returns the boolean operation result of two arguments.
5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column.
6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column.
7. argmax/argmin: returns the row with the max/min value in header column.
8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column.
9. eq/not_eq: returns if the two arguments are equal.
10. round_eq: returns if the two arguments are roughly equal under certain tolerance.
11. greater/less: returns if the first argument is greater/less than the second argument.
12. diff: returns the difference between two arguments.
13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument.
14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument.
15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument.
16. filter_all: returns the view itself for the case of describing the whole table
17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument.
18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument.
19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument.
20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument.
21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument.
22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument.
Positive Example 1 -
Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06.
Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 }
Positive Example 2 -
Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard.
Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard }
Negative Example 1 -
Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united .
Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united }
Negative Example 2 -
Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india.
Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china }
Now complete the following example -
Input: select the row whose frequency mhz record of all rows is maximum . the call sign record of this row is w283au .
Output:
|
[
"eq { hop { argmax { all_rows ; frequency mhz } ; call sign } ; w283au }"
] |
task210-6bda65450ae44f2388526fa32ce57284
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.