input
stringlengths
3.68k
4.11k
output
listlengths
1
1
id
stringlengths
40
40
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose date record fuzzily matches to 14 jun 2005 . take the margin of victory record of this row . select the rows whose date record fuzzily matches to 12 jul 2006 . take the margin of victory record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; date ; 14 jun 2005 } ; margin of victory } ; hop { filter_eq { all_rows ; date ; 12 jul 2006 } ; margin of victory } }" ]
task210-d2fda5b82dbe4c63b4fcd637017afe69
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose date record is greater than november 1 , 1955 . among these rows , select the rows whose result record fuzzily matches to l . there is only one such row in the table . Output:
[ "only { filter_eq { filter_greater { all_rows ; date ; november 1 , 1955 } ; result ; l } }" ]
task210-35d9920abead4bf6b2045a3fc1251e15
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose 1953 record fuzzily matches to nathan karp . take the total record of this row . select the rows whose 1953 record fuzzily matches to david l weiss . take the total record of this row . the first record is less than the second record . Output:
[ "less { hop { filter_eq { all_rows ; 1953 ; nathan karp } ; total } ; hop { filter_eq { all_rows ; 1953 ; david l weiss } ; total } }" ]
task210-4b1a6adb74e34c57b11dfba370c9b1d5
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose entrant record is arbitrary . the number of such rows is 6 . Output:
[ "eq { count { filter_all { all_rows ; entrant } } ; 6 }" ]
task210-43c2b94bd10a4309be02e2d7b0ac6fe6
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose race record fuzzily matches to indianapolis 500 . take the date record of this row . select the rows whose race record fuzzily matches to monaco grand prix . take the date record of this row . the first record is 1 day larger than the second record . Output:
[ "eq { diff { hop { filter_eq { all_rows ; race ; indianapolis 500 } ; date } ; hop { filter_eq { all_rows ; race ; monaco grand prix } ; date } } ; 1 day }" ]
task210-53a67b94cb724fc88b367f17c4da17f5
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the release date records of all rows , all of them fuzzily match to q1 , 2007 . Output:
[ "all_eq { all_rows ; release date ; q1 , 2007 }" ]
task210-4995cc0abe4a4b1697cfac01494b0fd2
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose 2014 2 record of all rows is maximum . the greek national account record of this row is public debt 8 ( billion ) . Output:
[ "eq { hop { argmax { all_rows ; 2014 2 } ; greek national account } ; public debt 8 ( billion ) }" ]
task210-1d8fb697255147d1b68019714ea416df
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose games played record is greater than 100 . there is only one such row in the table . the rival record of this unqiue row is georgia . Output:
[ "and { only { filter_greater { all_rows ; games played ; 100 } } ; eq { hop { filter_greater { all_rows ; games played ; 100 } ; rival } ; georgia } }" ]
task210-ca7e6a80fcd94a0aa2e535c1ac801a77
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose total tackles record of all rows is maximum . the team record of this row is baltimore . Output:
[ "eq { hop { argmax { all_rows ; total tackles } ; team } ; baltimore }" ]
task210-49c2be10336543b2b5fa5edc21a17c8e
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose champion record fuzzily matches to aktobe . for the season records of these rows , all of them are greater than 2004 . Output:
[ "all_greater { filter_eq { all_rows ; champion ; aktobe } ; season ; 2004 }" ]
task210-22fcfc0c06874c8e92841cb74f9427ce
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the pictorials records of all rows , most of them fuzzily match to girls . Output:
[ "most_eq { all_rows ; pictorials ; girls }" ]
task210-64a9cb05725c41339a5096fbd054033e
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose goals scored ( gf ) record of all rows is maximum . the team ( equipo ) record of this row is arabe unido . Output:
[ "eq { hop { argmax { all_rows ; goals scored ( gf ) } ; team ( equipo ) } ; arabe unido }" ]
task210-d1edec7e9b504be6af25e5afe42ed503
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose tournament record fuzzily matches to commonwealth games . take the result record of this row . select the rows whose tournament record fuzzily matches to african championships . take the result record of this row . the first record is less than the second record . the year record of the first row is 2006 . the year record of the second row is 2006 . Output:
[ "and { less { hop { filter_eq { all_rows ; tournament ; commonwealth games } ; result } ; hop { filter_eq { all_rows ; tournament ; african championships } ; result } } ; and { eq { hop { filter_eq { all_rows ; tournament ; commonwealth games } ; year } ; 2006 } ; eq { hop { filter_eq { all_rows ; tournament ; african championships } ; year } ; 2006 } } }" ]
task210-129557b35f6940f2b2980c25d7647251
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose tournament record fuzzily matches to united kingdom . select the row whose date record of these rows is 2nd minimum . the surface record of this row is hard . Output:
[ "eq { hop { nth_argmin { filter_eq { all_rows ; tournament ; united kingdom } ; date ; 2 } ; surface } ; hard }" ]
task210-d17c65ba86f449469f667464374ec27d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose enrolment record of all rows is maximum . the school record of this row is pembroke school . Output:
[ "eq { hop { argmax { all_rows ; enrolment } ; school } ; pembroke school }" ]
task210-6e08dc4dfed74a01bae6bdd834125bf0
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose club record fuzzily matches to real murcia . take the wins record of this row . select the rows whose club record fuzzily matches to jerez cd . take the wins record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; club ; real murcia } ; wins } ; hop { filter_eq { all_rows ; club ; jerez cd } ; wins } }" ]
task210-87bacc4fa56a409cb2723695c5acc084
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose result record fuzzily matches to - 0 . there is only one such row in the table . the opponent record of this unqiue row is san diego chargers . Output:
[ "and { only { filter_eq { all_rows ; result ; - 0 } } ; eq { hop { filter_eq { all_rows ; result ; - 0 } ; opponent } ; san diego chargers } }" ]
task210-81584cdfd0534c7d891cf5f927bd6907
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose focal plane in ft ( m ) record fuzzily matches to n / a . there is only one such row in the table . the lighthouse record of this unqiue row is basco . Output:
[ "and { only { filter_eq { all_rows ; focal plane in ft ( m ) ; n / a } } ; eq { hop { filter_eq { all_rows ; focal plane in ft ( m ) ; n / a } ; lighthouse } ; basco } }" ]
task210-f0769ffc397d483ba528f804b782c0af
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose 14 july 1998 record fuzzily matches to 28 august 2005 . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { all_rows ; 14 july 1998 ; 28 august 2005 } } ; 2 }" ]
task210-d1b4418e2e86479a8e751eb46e57731e
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the owgr points records of all rows , most of them are equal to 6 . Output:
[ "most_eq { all_rows ; owgr points ; 6 }" ]
task210-9cb5ce5d884843ab8ae3e7bb5320d795
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose directed by record fuzzily matches to steve buscemi . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { all_rows ; directed by ; steve buscemi } } ; 2 }" ]
task210-39a2c27a181f43c5998786d1b661b2b1
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose became duke record fuzzily matches to uncles death . there is only one such row in the table . the name record of this unqiue row is louis antoine de rohan - chabot . Output:
[ "and { only { filter_eq { all_rows ; became duke ; uncles death } } ; eq { hop { filter_eq { all_rows ; became duke ; uncles death } ; name } ; louis antoine de rohan - chabot } }" ]
task210-50470b3150c34c4ebb18a17a43bdd2af
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose runner - up record fuzzily matches to asc jeanne d'arc . the minimum season record of these rows is 1947 . Output:
[ "eq { min { filter_eq { all_rows ; runner - up ; asc jeanne d'arc } ; season } ; 1947 }" ]
task210-8479493cf99c464ea355c00d701d5a14
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the year records of all rows , most of them are less than 2000 . Output:
[ "most_less { all_rows ; year ; 2000 }" ]
task210-d9e9e2f3fc0c469c8b3efb57370a34cf
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose score record fuzzily matches to 2 . among these rows , select the rows whose opponent record fuzzily matches to minnesota north stars . there is only one such row in the table . the february record of this unqiue row is 1 . Output:
[ "and { only { filter_eq { filter_eq { all_rows ; score ; 2 } ; opponent ; minnesota north stars } } ; eq { hop { filter_eq { filter_eq { all_rows ; score ; 2 } ; opponent ; minnesota north stars } ; february } ; 1 } }" ]
task210-a74bf65049dd483fb6de54ac20f991da
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the population ( 2011 ) record of all rows is 2262 . Output:
[ "round_eq { avg { all_rows ; population ( 2011 ) } ; 2262 }" ]
task210-1609b82b4de34c72922f17c772bef8b7
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose artist record fuzzily matches to bun b . take the number of reviews record of this row . select the rows whose artist record fuzzily matches to black milk . take the number of reviews record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; artist ; bun b } ; number of reviews } ; hop { filter_eq { all_rows ; artist ; black milk } ; number of reviews } }" ]
task210-9ad1cc10e96340fbb9d64222f8c6062b
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose club record fuzzily matches to montauban . take the lost record of this row . select the rows whose club record fuzzily matches to biarritz . take the lost record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; club ; montauban } ; lost } ; hop { filter_eq { all_rows ; club ; biarritz } ; lost } }" ]
task210-a0029d92dbc44bde89b9eee5587f55bb
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose player record fuzzily matches to ben handlogten . take the years for jazz record of this row . select the rows whose player record fuzzily matches to bobby hansen . take the years for jazz record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; player ; ben handlogten } ; years for jazz } ; hop { filter_eq { all_rows ; player ; bobby hansen } ; years for jazz } }" ]
task210-68aef87a9147490584856beb18b2f5b2
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose season record fuzzily matches to 2010 . take the podium record of this row . select the rows whose season record fuzzily matches to 2011 . take the podium record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; season ; 2010 } ; podium } ; hop { filter_eq { all_rows ; season ; 2011 } ; podium } }" ]
task210-19640534825843839bd9d903efefc339
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose hometown record fuzzily matches to tx . there is only one such row in the table . the player record of this unqiue row is kerry wood . Output:
[ "and { only { filter_eq { all_rows ; hometown ; tx } } ; eq { hop { filter_eq { all_rows ; hometown ; tx } ; player } ; kerry wood } }" ]
task210-edd204a8246a45e6a5de9d1c7cf3ee6f
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose kickoff record fuzzily matches to 6:00 pm . there is only one such row in the table . the date record of this unqiue row is sunday , april 28 . Output:
[ "and { only { filter_eq { all_rows ; kickoff ; 6:00 pm } } ; eq { hop { filter_eq { all_rows ; kickoff ; 6:00 pm } ; date } ; sunday , april 28 } }" ]
task210-fa191c7fa37e4484bbf4034f66a3dc50
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose songwriter ( s ) record fuzzily matches to wallis willis . there is only one such row in the table . the title record of this unqiue row is swing low , sweet chariot . Output:
[ "and { only { filter_eq { all_rows ; songwriter ( s ) ; wallis willis } } ; eq { hop { filter_eq { all_rows ; songwriter ( s ) ; wallis willis } ; title } ; swing low , sweet chariot } }" ]
task210-718e49054558431390d1b5a636392bff
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose womens singles record fuzzily matches to zhang yining . the number of such rows is 4 . Output:
[ "eq { count { filter_eq { all_rows ; womens singles ; zhang yining } } ; 4 }" ]
task210-e79a819340ac44f494ac64e175fb9199
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose date of successors formal installation record of all rows is minimum . the successor record of this row is john parker hale ( r ) . Output:
[ "eq { hop { argmin { all_rows ; date of successors formal installation } ; successor } ; john parker hale ( r ) }" ]
task210-7414d3c1453d4da69686434868f32103
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the maximum final score record of all rows is w 41 - 31 . the opponent record of the row with superlative final score record is hamburg sea devils . Output:
[ "and { eq { max { all_rows ; final score } ; w 41 - 31 } ; eq { hop { argmax { all_rows ; final score } ; opponent } ; hamburg sea devils } }" ]
task210-2b11fbb07a324f0b97417239ebbd7343
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the played records of all rows , all of them are equal to 30 . Output:
[ "all_eq { all_rows ; played ; 30 }" ]
task210-90b5311466bb47ef8f6736ab41b54727
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose gain record is less than 100 . among these rows , select the rows whose long record is equal to 18 . there is only one such row in the table . the name record of this unqiue row is patton , chase . Output:
[ "and { only { filter_eq { filter_less { all_rows ; gain ; 100 } ; long ; 18 } } ; eq { hop { filter_eq { filter_less { all_rows ; gain ; 100 } ; long ; 18 } ; name } ; patton , chase } }" ]
task210-5553db3afc1a4bb199cfb6001077206b
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the chassis records of all rows , all of them fuzzily match to dallara . Output:
[ "all_eq { all_rows ; chassis ; dallara }" ]
task210-f318e2c1b8ed4dda92cf47fc9d21252e
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the sum of the attendance record of all rows is 741290 . Output:
[ "round_eq { sum { all_rows ; attendance } ; 741290 }" ]
task210-993c7bd4d8064170a6b33c0a6c616a7a
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the winner records of all rows , most of them fuzzily match to dick johnson . Output:
[ "most_eq { all_rows ; winner ; dick johnson }" ]
task210-9211bdf3e03f47a289f0b9a0c58c45ad
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose distance ( ly ) record of all rows is 1st minimum . the constellation record of this row is ursa major . Output:
[ "eq { hop { nth_argmin { all_rows ; distance ( ly ) ; 1 } ; constellation } ; ursa major }" ]
task210-b7d1c3d0bd1e4fa78226c7ccb58b28df
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose the championship record of all rows is maximum . the player record of this row is becchio . Output:
[ "eq { hop { argmax { all_rows ; the championship } ; player } ; becchio }" ]
task210-52635fa7d1144acb80f3d8ea04f1ebf3
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the surface records of all rows , all of them fuzzily match to clay . Output:
[ "all_eq { all_rows ; surface ; clay }" ]
task210-27684aaf7fac41f782b5be1a9156cf71
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the speed record of all rows is 92.14 . Output:
[ "round_eq { avg { all_rows ; speed } ; 92.14 }" ]
task210-9d8f2331a0844d638edd302f87eab7ac
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose opponent record fuzzily matches to mark kerr . take the round record of this row . select the rows whose opponent record fuzzily matches to dieusel berto . take the round record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; opponent ; mark kerr } ; round } ; hop { filter_eq { all_rows ; opponent ; dieusel berto } ; round } }" ]
task210-ebff02b8864e419a8cf8e911c83d1f56
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose attendance / g record of all rows is minimum . the season record of this row is 2007 . Output:
[ "eq { hop { argmin { all_rows ; attendance / g } ; season } ; 2007 }" ]
task210-880443df86ba4ec697f41950b4f834f3
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose test record fuzzily matches to math . among these rows , select the rows whose number of students record is greater than 100000 . there is only one such row in the table . Output:
[ "only { filter_greater { filter_eq { all_rows ; test ; math } ; number of students ; 100000 } }" ]
task210-bee55159c5454f76a1947cab7bcc5440
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose winning team record fuzzily matches to texas . among these rows , select the rows whose winning pitcher record fuzzily matches to chris young . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { filter_eq { all_rows ; winning team ; texas } ; winning pitcher ; chris young } } ; 2 }" ]
task210-82331fd0c7e74541aafe30c3e8c6b3d5
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the 1st maximum crowd record of all rows is 45848 . the venue record of the row with 1st maximum crowd record is mcg . Output:
[ "and { eq { nth_max { all_rows ; crowd ; 1 } ; 45848 } ; eq { hop { nth_argmax { all_rows ; crowd ; 1 } ; venue } ; mcg } }" ]
task210-5bd6778c164b4420a6e63b4ff206fa5e
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose surface record fuzzily matches to clay . there is only one such row in the table . the year record of this unqiue row is 1994 . the championship record of this unqiue row is rome . Output:
[ "and { only { filter_eq { all_rows ; surface ; clay } } ; and { eq { hop { filter_eq { all_rows ; surface ; clay } ; year } ; 1994 } ; eq { hop { filter_eq { all_rows ; surface ; clay } ; championship } ; rome } } }" ]
task210-fd2c6345636547df864a229fd785ebd3
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the televote / sms record of all rows is 8.33 . Output:
[ "round_eq { avg { all_rows ; televote / sms } ; 8.33 }" ]
task210-1ebd6266193f4bf2a155afb5dc550008
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose venue record fuzzily matches to municipal stadium , poznań . the 3rd minimum date record of these rows is 14 june 2012 . the date record of the row with 3rd minimum date record is 14 june 2012 . Output:
[ "and { eq { nth_min { filter_eq { all_rows ; venue ; municipal stadium , poznań } ; date ; 3 } ; 14 june 2012 } ; eq { hop { nth_argmin { filter_eq { all_rows ; venue ; municipal stadium , poznań } ; date ; 3 } ; date } ; 14 june 2012 } }" ]
task210-77ae07e10f944db186c20463623b51ae
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose gdp per capita ( us ) record of all rows is 2nd minimum . the member countries record of this row is poland . Output:
[ "eq { hop { nth_argmin { all_rows ; gdp per capita ( us ) ; 2 } ; member countries } ; poland }" ]
task210-5da17d0b0bc24a08b362ae4b129be692
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose result record fuzzily matches to draw . there is only one such row in the table . the opponent record of this unqiue row is cătălin zmărăndescu . Output:
[ "and { only { filter_eq { all_rows ; result ; draw } } ; eq { hop { filter_eq { all_rows ; result ; draw } ; opponent } ; cătălin zmărăndescu } }" ]
task210-8fa95aba177f442bac03018f6d85caeb
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose nation record fuzzily matches to canada . take the silver record of this row . select the rows whose nation record fuzzily matches to united states . take the silver record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; nation ; canada } ; silver } ; hop { filter_eq { all_rows ; nation ; united states } ; silver } }" ]
task210-8a040ea44d09420f9d769f5eb7881414
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose nation record fuzzily matches to japan . take the bronze record of this row . select the rows whose nation record fuzzily matches to indonesia . take the bronze record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; nation ; japan } ; bronze } ; hop { filter_eq { all_rows ; nation ; indonesia } ; bronze } }" ]
task210-6bf7dc1fb5064269812d4efa04d41443
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose segment a record fuzzily matches to metal detectors . take the episode record of this row . select the rows whose segment a record fuzzily matches to riding mowers . take the episode record of this row . the second record is 1 larger than the first record . the episode record of the first row is 151 . the episode record of the second row is 152 . Output:
[ "and { eq { diff { hop { filter_eq { all_rows ; segment a ; metal detectors } ; episode } ; hop { filter_eq { all_rows ; segment a ; riding mowers } ; episode } } ; -1 } ; and { eq { hop { filter_eq { all_rows ; segment a ; metal detectors } ; episode } ; 151 } ; eq { hop { filter_eq { all_rows ; segment a ; riding mowers } ; episode } ; 152 } } }" ]
task210-d9540c6eb5054f72894424705bfc6fb7
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the seed record of all rows is 13.16 . Output:
[ "round_eq { avg { all_rows ; seed } ; 13.16 }" ]
task210-e9227d93205c4d318ffffbd4462fa02a
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose height record of all rows is 2nd maximum . the player record of this row is argo meresaar ( c ) . Output:
[ "eq { hop { nth_argmax { all_rows ; height ; 2 } ; player } ; argo meresaar ( c ) }" ]
task210-07938783eef343fb949b187eab5815eb
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose name record fuzzily matches to amangul mollayeva . take the ties record of this row . select the rows whose name record fuzzily matches to ayna ereshova . take the ties record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; name ; amangul mollayeva } ; ties } ; hop { filter_eq { all_rows ; name ; ayna ereshova } ; ties } }" ]
task210-664b024ecdaa4f609cff7aca84b92787
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose sales ( billion ) record of all rows is maximum . the company record of this row is wal - mart stores . Output:
[ "eq { hop { argmax { all_rows ; sales ( billion ) } ; company } ; wal - mart stores }" ]
task210-58f319e274294e95b554e9cc1dae6825
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose rounds record of all rows is 1st maximum . the team record of this row is phil parsons racing . Output:
[ "eq { hop { nth_argmax { all_rows ; rounds ; 1 } ; team } ; phil parsons racing }" ]
task210-838cfa1f1dc148e3ab7c54a8f92260b2
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose champion record fuzzily matches to laura davies . select the row whose year record of these rows is 2nd minimum . the margin of victory record of this row is 4 strokes . Output:
[ "eq { hop { nth_argmin { filter_eq { all_rows ; champion ; laura davies } ; year ; 2 } ; margin of victory } ; 4 strokes }" ]
task210-f53a3b0728df4031974d59e544e9d0c8
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the silver records of all rows , most of them are greater than or equal to 1 . Output:
[ "most_greater_eq { all_rows ; silver ; 1 }" ]
task210-86c845328b894bb8a96ca22d2336408d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the minimum place record of all rows is 1 . the player record of the row with superlative place record is trevor immelman . Output:
[ "and { eq { min { all_rows ; place } ; 1 } ; eq { hop { argmin { all_rows ; place } ; player } ; trevor immelman } }" ]
task210-1c4347a32b824b4c9ff29f0b4047200d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose away team record fuzzily matches to richmond . take the away team score record of this row . select the rows whose away team record fuzzily matches to collingwood . take the away team score record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; away team ; richmond } ; away team score } ; hop { filter_eq { all_rows ; away team ; collingwood } ; away team score } }" ]
task210-a19dfb4079b34a96917f41c291ebc820
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose date record of all rows is 2nd maximum . the venue record of this row is vasil levski national stadium , sofia . Output:
[ "eq { hop { nth_argmax { all_rows ; date ; 2 } ; venue } ; vasil levski national stadium , sofia }" ]
task210-61dfe21a59fb453e8f312701d9eee3e2
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose pick record of all rows is 3rd minimum . the player record of this row is dale hackbart . Output:
[ "eq { hop { nth_argmin { all_rows ; pick ; 3 } ; player } ; dale hackbart }" ]
task210-dbcdde38ea4245baabc7ce4ff0700611
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose fuel propulsion record fuzzily matches to diesel - electric hybrid . there is only one such row in the table . the make and model record of this unqiue row is new flyer de35lf . Output:
[ "and { only { filter_eq { all_rows ; fuel propulsion ; diesel - electric hybrid } } ; eq { hop { filter_eq { all_rows ; fuel propulsion ; diesel - electric hybrid } ; make and model } ; new flyer de35lf } }" ]
task210-f7da2e26f11f41c0b27b2e9b38362585
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose attendance record of all rows is 2nd maximum . the date record of this row is november 22 . Output:
[ "eq { hop { nth_argmax { all_rows ; attendance ; 2 } ; date } ; november 22 }" ]
task210-82d3d1e846214da081d887e2ed5d11b4
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose event record fuzzily matches to 50 km . there is only one such row in the table . the year record of this unqiue row is 2011 . the competition record of this unqiue row is world championships . Output:
[ "and { only { filter_eq { all_rows ; event ; 50 km } } ; and { eq { hop { filter_eq { all_rows ; event ; 50 km } ; year } ; 2011 } ; eq { hop { filter_eq { all_rows ; event ; 50 km } ; competition } ; world championships } } }" ]
task210-7a50ee76bec74554914a9959149eb047
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose lost record is greater than 1 . among these rows , select the rows whose points record is equal to 14 . there is only one such row in the table . the team record of this unqiue row is skra warszawa . Output:
[ "and { only { filter_eq { filter_greater { all_rows ; lost ; 1 } ; points ; 14 } } ; eq { hop { filter_eq { filter_greater { all_rows ; lost ; 1 } ; points ; 14 } ; team } ; skra warszawa } }" ]
task210-7a437ed0510a41e68261557f918a2b78
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose county record is arbitrary . the number of such rows is 7 . Output:
[ "eq { count { filter_all { all_rows ; county } } ; 7 }" ]
task210-2962de2422794fd3b777f293c6979cec
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose year record is greater than 2000 . the number of such rows is 3 . Output:
[ "eq { count { filter_greater { all_rows ; year ; 2000 } } ; 3 }" ]
task210-b77210c430c94ebbbf06fe669c97c380
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose team record fuzzily matches to detroit . among these rows , select the rows whose high rebounds record fuzzily matches to shaquille o'neal . the number of such rows is 3 . Output:
[ "eq { count { filter_eq { filter_eq { all_rows ; team ; detroit } ; high rebounds ; shaquille o'neal } } ; 3 }" ]
task210-6fd0ae2581de44bb9b14871e94815d00
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose company record fuzzily matches to bp . take the profits ( billion ) record of this row . select the rows whose company record fuzzily matches to hsbc . take the profits ( billion ) record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; company ; bp } ; profits ( billion ) } ; hop { filter_eq { all_rows ; company ; hsbc } ; profits ( billion ) } }" ]
task210-66719194a3d3474a976eccad3753d848
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose goals record of all rows is maximum . the player record of this row is mile sterjovski . Output:
[ "eq { hop { argmax { all_rows ; goals } ; player } ; mile sterjovski }" ]
task210-77a5da41236e4616a799fe959ad0f9d4
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the batting style records of all rows , most of them fuzzily match to right-handed . Output:
[ "most_eq { all_rows ; batting style ; right-handed }" ]
task210-733ae90c87b446dea912b84c3e0b41fa
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose crowd record of all rows is 1st maximum . the venue record of this row is princes park . Output:
[ "eq { hop { nth_argmax { all_rows ; crowd ; 1 } ; venue } ; princes park }" ]
task210-1b585bc8ad5b4e459949b3085c92f77f
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose points record of all rows is maximum . the points record of this row is 227 . Output:
[ "eq { hop { argmax { all_rows ; points } ; points } ; 227 }" ]
task210-723d26e834a443308d3d53f6c347b95e
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the sum of the crowd record of all rows is 174 , 580 . Output:
[ "round_eq { sum { all_rows ; crowd } ; 174 , 580 }" ]
task210-25beae094feb405aa524cbec58aa846f
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: for the length records of all rows , most of them are less than 5:00 . Output:
[ "most_less { all_rows ; length ; 5:00 }" ]
task210-adaa813f28284c058d49e741d41093df
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose result record of all rows is maximum . the venue record of this row is adelaide oval . Output:
[ "eq { hop { argmax { all_rows ; result } ; venue } ; adelaide oval }" ]
task210-c10b7c4c1d69425f89aee726c6a15de4
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose ethnic group record fuzzily matches to tigrigna . take the christians record of this row . select the rows whose ethnic group record fuzzily matches to saho . take the christians record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; ethnic group ; tigrigna } ; christians } ; hop { filter_eq { all_rows ; ethnic group ; saho } ; christians } }" ]
task210-576cff4431374e919ae4e9e92eb88e5d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose year record fuzzily matches to 1964 . take the points record of this row . select the rows whose year record fuzzily matches to 1963 . take the points record of this row . the first record is greater than the second record . Output:
[ "greater { hop { filter_eq { all_rows ; year ; 1964 } ; points } ; hop { filter_eq { all_rows ; year ; 1963 } ; points } }" ]
task210-50c55d7915e04ac59b8639dce571d4dd
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose goals record is equal to 0 . the number of such rows is 2 . Output:
[ "eq { count { filter_eq { all_rows ; goals ; 0 } } ; 2 }" ]
task210-7e8b735d940747a58a80bdff940ea910
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose 1st run record of all rows is 2nd minimum . the name record of this row is donny robinson ( usa ) . Output:
[ "eq { hop { nth_argmin { all_rows ; 1st run ; 2 } ; name } ; donny robinson ( usa ) }" ]
task210-85baf800f65e480582c4bf8126bf9a56
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose date record fuzzily matches to may 27 . take the high rebounds record of this row . select the rows whose date record fuzzily matches to may 29 . take the high rebounds record of this row . the first record is 2 larger than the second record . the high rebounds record of the first row is duncan ( 17 ) . the high rebounds record of the second row is duncan ( 15 ) . Output:
[ "and { eq { diff { hop { filter_eq { all_rows ; date ; may 27 } ; high rebounds } ; hop { filter_eq { all_rows ; date ; may 29 } ; high rebounds } } ; 2 } ; and { eq { hop { filter_eq { all_rows ; date ; may 27 } ; high rebounds } ; duncan ( 17 ) } ; eq { hop { filter_eq { all_rows ; date ; may 29 } ; high rebounds } ; duncan ( 15 ) } } }" ]
task210-402c13db2a444aedb5e1f7323b02d528
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose district record of all rows is 2nd maximum . the incumbent record of this row is christopher shays . Output:
[ "eq { hop { nth_argmax { all_rows ; district ; 2 } ; incumbent } ; christopher shays }" ]
task210-67ad4737ac954e5fa4f640ccb14b11f6
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose nationality record fuzzily matches to jamaica . select the row whose reaction record of these rows is 2nd minimum . the name record of this row is brigitte foster - hylton . Output:
[ "eq { hop { nth_argmin { filter_eq { all_rows ; nationality ; jamaica } ; reaction ; 2 } ; name } ; brigitte foster - hylton }" ]
task210-d48bbab5b20a4c318b5f2481f2cb2246
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose hdtv record fuzzily matches to yes . there is only one such row in the table . the television service record of this unqiue row is satisfaction hd . Output:
[ "and { only { filter_eq { all_rows ; hdtv ; yes } } ; eq { hop { filter_eq { all_rows ; hdtv ; yes } ; television service } ; satisfaction hd } }" ]
task210-cdfdead0e162487c9b51a3ddca55247c
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose points record is equal to 0 . the number of such rows is 3 . Output:
[ "eq { count { filter_eq { all_rows ; points ; 0 } } ; 3 }" ]
task210-1715b893d7bd4bb0af36d495445836fa
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose first operated record of all rows is maximum . the name record of this row is jubilee line . Output:
[ "eq { hop { argmax { all_rows ; first operated } ; name } ; jubilee line }" ]
task210-c7ab5dadeef5463c8d9914a16663927d
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: the average of the total record of all rows is 154.3245 . Output:
[ "round_eq { avg { all_rows ; total } ; 154.3245 }" ]
task210-8ecb4df8281f4296ab9f757b1ba897fd
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose date record fuzzily matches to october . the sum of the attendance record of these rows is 142040 . Output:
[ "round_eq { sum { filter_eq { all_rows ; date ; october } ; attendance } ; 142040 }" ]
task210-2d524b2b38e7473bb5199d609c991d7b
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose laps record of all rows is 2nd minimum . the driver record of this row is dan gurney . Output:
[ "eq { hop { nth_argmin { all_rows ; laps ; 2 } ; driver } ; dan gurney }" ]
task210-1cf782ee7fc644d6a5ede7827052c857
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose venue record fuzzily matches to toowoomba . there is only one such row in the table . the date record of this unqiue row is 25 may 1988 . Output:
[ "and { only { filter_eq { all_rows ; venue ; toowoomba } } ; eq { hop { filter_eq { all_rows ; venue ; toowoomba } ; date } ; 25 may 1988 } }" ]
task210-2c9740f4476043c5bd5fda3f05213bb1
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the rows whose water park record fuzzily matches to water country usa . take the rank record of this row . select the rows whose water park record fuzzily matches to siam water park . take the rank record of this row . the first record is 2 larger than the second record . the rank record of the first row is 20 . the rank record of the second row is 18 . Output:
[ "and { eq { diff { hop { filter_eq { all_rows ; water park ; water country usa } ; rank } ; hop { filter_eq { all_rows ; water park ; siam water park } ; rank } } ; 2 } ; and { eq { hop { filter_eq { all_rows ; water park ; water country usa } ; rank } ; 20 } ; eq { hop { filter_eq { all_rows ; water park ; siam water park } ; rank } ; 18 } } }" ]
task210-a33ba77f24764755983efb9ed77408ce
Definition: In this task, you are given a natural language interpretation of commands (consist of logical operations) to select relevant rows from the given table. Your job is to generate command (in terms of logical operations) from given natural language interpretation. Define body (contains a collection of statements that define what the this logical operator does) of each logical operator between '{}' parenthesis. Here are the definitions of logical operators that you can use while generating command: 1. count: returns the number of rows in the view. 2. only: returns whether there is exactly one row in the view. 3. hop: returns the value under the header column of the row. 4. and: returns the boolean operation result of two arguments. 5. max/min/avg/sum: returns the max/min/average/sum of the values under the header column. 6. nth_max/nth_min: returns the n-th max/n-th min of the values under the header column. 7. argmax/argmin: returns the row with the max/min value in header column. 8. nth_argmax/nth_argmin: returns the row with the n-th max/min value in header column. 9. eq/not_eq: returns if the two arguments are equal. 10. round_eq: returns if the two arguments are roughly equal under certain tolerance. 11. greater/less: returns if the first argument is greater/less than the second argument. 12. diff: returns the difference between two arguments. 13. filter_eq/ filter_not_eq: returns the subview whose values under the header column is equal/not equal to the third argument. 14. filter_greater/filter_less: returns the subview whose values under the header column is greater/less than the third argument. 15. filter_greater_eq /filter_less_eq: returns the subview whose values under the header column is greater/less or equal than the third argument. 16. filter_all: returns the view itself for the case of describing the whole table 17. all_eq/not_eq: returns whether all the values under the header column are equal/not equal to the third argument. 18. all_greater/less: returns whether all the values under the header column are greater/less than the third argument. 19. all_greater_eq/less_eq: returns whether all the values under the header column are greater/less or equal to the third argument. 20. most_eq/not_eq: returns whether most of the values under the header column are equal/not equal to the third argument. 21. most_greater/less: returns whether most of the values under the header column are greater/less than the third argument. 22. most_greater_eq/less_eq: returns whether most of the values under the header column are greater/less or equal to the third argument. Positive Example 1 - Input: select the row whose attendance record of all rows is 3rd maximum. the competition record of this row is danish superliga 2005-06. Output: eq { hop { nth_argmax { all_rows ; attendance ; 3 } ; competition } ; danish superliga 2005 - 06 } Positive Example 2 - Input: select the row whose duration record of all rows is maximum. the actor record of this row is lesley saweard. Output: eq { hop { argmax { all_rows ; duration } ; actor } ; lesley saweard } Negative Example 1 - Input: select the row whose total record of all rows is 3rd maximum . the club record of this row is maidstone united . Output: eq { hop { nth_argmax { all_rows ; total ; 3 } } ; maidstone united } Negative Example 2 - Input: select the row whose goal gain record of all rows is 3rd maximum. the team record of this row is india. Output: eq { hop { nth_argmax { all_rows ; goal gain ; 3 } ; team } ; south china } Now complete the following example - Input: select the row whose result record of all rows is 3rd maximum . the opponent record of this row is arizona cardinals . Output:
[ "eq { hop { nth_argmax { all_rows ; result ; 3 } ; opponent } ; arizona cardinals }" ]
task210-06dd7065b1f34ea0a9abef7ab110a3af