contestId
int64
0
1.01k
index
stringclasses
57 values
name
stringlengths
2
58
type
stringclasses
2 values
rating
int64
0
3.5k
tags
sequencelengths
0
11
title
stringclasses
522 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
sequencelengths
0
7
demo-output
sequencelengths
0
7
note
stringlengths
0
5.24k
points
float64
0
425k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
14 values
testset
stringclasses
12 values
passedTestCount
int64
0
1k
timeConsumedMillis
int64
0
15k
memoryConsumedBytes
int64
0
805M
code
stringlengths
3
65.5k
prompt
stringlengths
262
8.2k
response
stringlengths
17
65.5k
score
float64
-1
3.99
271
A
Beautiful Year
PROGRAMMING
800
[ "brute force" ]
null
null
It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits. Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits.
The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number.
Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists.
[ "1987\n", "2013\n" ]
[ "2013\n", "2014\n" ]
none
500
[ { "input": "1987", "output": "2013" }, { "input": "2013", "output": "2014" }, { "input": "1000", "output": "1023" }, { "input": "1001", "output": "1023" }, { "input": "1234", "output": "1235" }, { "input": "5555", "output": "5601" }, { "input": "9000", "output": "9012" }, { "input": "1111", "output": "1203" }, { "input": "8999", "output": "9012" }, { "input": "4572", "output": "4573" }, { "input": "6666", "output": "6701" }, { "input": "2001", "output": "2013" }, { "input": "3000", "output": "3012" }, { "input": "7712", "output": "7801" }, { "input": "8088", "output": "8091" }, { "input": "1594", "output": "1596" }, { "input": "6016", "output": "6017" }, { "input": "8800", "output": "8901" }, { "input": "3331", "output": "3401" }, { "input": "5090", "output": "5091" }, { "input": "2342", "output": "2345" }, { "input": "2334", "output": "2340" }, { "input": "1123", "output": "1203" }, { "input": "8989", "output": "9012" }, { "input": "8977", "output": "9012" }, { "input": "6869", "output": "6870" }, { "input": "8999", "output": "9012" } ]
1,695,648,350
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
30
0
# -*- coding: utf-8 -*- """ Created on Mon Sep 25 17:15:13 2023 @author: 25419 """ year=int(input())+1 str1=str(year) if str1[0]!=str1[1]!=str1[2]!=str1[3]: print(year) else:year=year+1 str1=str(year)
Title: Beautiful Year Time Limit: None seconds Memory Limit: None megabytes Problem Description: It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits. Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits. Input Specification: The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number. Output Specification: Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists. Demo Input: ['1987\n', '2013\n'] Demo Output: ['2013\n', '2014\n'] Note: none
```python # -*- coding: utf-8 -*- """ Created on Mon Sep 25 17:15:13 2023 @author: 25419 """ year=int(input())+1 str1=str(year) if str1[0]!=str1[1]!=str1[2]!=str1[3]: print(year) else:year=year+1 str1=str(year) ```
0
426
A
Sereja and Mugs
PROGRAMMING
800
[ "implementation" ]
null
null
Sereja showed an interesting game to his friends. The game goes like that. Initially, there is a table with an empty cup and *n* water mugs on it. Then all players take turns to move. During a move, a player takes a non-empty mug of water and pours all water from it into the cup. If the cup overfills, then we assume that this player lost. As soon as Sereja's friends heard of the game, they wanted to play it. Sereja, on the other hand, wanted to find out whether his friends can play the game in such a way that there are no losers. You are given the volumes of all mugs and the cup. Also, you know that Sereja has (*n*<=-<=1) friends. Determine if Sereja's friends can play the game so that nobody loses.
The first line contains integers *n* and *s* (2<=≤<=*n*<=≤<=100; 1<=≤<=*s*<=≤<=1000) — the number of mugs and the volume of the cup. The next line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=10). Number *a**i* means the volume of the *i*-th mug.
In a single line, print "YES" (without the quotes) if his friends can play in the described manner, and "NO" (without the quotes) otherwise.
[ "3 4\n1 1 1\n", "3 4\n3 1 3\n", "3 4\n4 4 4\n" ]
[ "YES\n", "YES\n", "NO\n" ]
none
500
[ { "input": "3 4\n1 1 1", "output": "YES" }, { "input": "3 4\n3 1 3", "output": "YES" }, { "input": "3 4\n4 4 4", "output": "NO" }, { "input": "2 1\n1 10", "output": "YES" }, { "input": "3 12\n5 6 6", "output": "YES" }, { "input": "4 10\n6 3 8 7", "output": "NO" }, { "input": "5 16\n3 3 2 7 9", "output": "YES" }, { "input": "6 38\n9 10 3 8 10 6", "output": "YES" }, { "input": "7 12\n4 4 5 2 2 4 9", "output": "NO" }, { "input": "8 15\n8 10 4 2 10 9 7 6", "output": "NO" }, { "input": "9 22\n1 3 5 9 7 6 1 10 1", "output": "NO" }, { "input": "10 30\n9 10 4 5 5 7 1 7 7 2", "output": "NO" }, { "input": "38 83\n9 9 3 10 2 4 6 10 9 5 1 8 7 4 7 2 6 5 3 1 10 8 4 8 3 7 1 2 7 6 8 6 5 2 3 1 1 2", "output": "NO" }, { "input": "84 212\n6 2 3 1 2 7 5 1 7 2 9 10 9 5 2 5 4 10 9 9 1 9 8 8 9 4 9 4 8 2 1 8 4 5 10 7 6 2 1 10 10 7 9 4 5 9 5 10 10 3 6 6 4 4 4 8 5 4 9 1 9 9 1 7 9 2 10 9 10 8 3 3 9 3 9 10 1 8 9 2 6 9 7 2", "output": "NO" }, { "input": "8 50\n8 8 8 4 4 6 10 10", "output": "YES" }, { "input": "7 24\n1 4 9 1 2 3 6", "output": "YES" }, { "input": "47 262\n3 7 6 4 10 3 5 7 2 9 3 2 2 10 8 7 3 10 6 3 1 1 4 10 2 9 2 10 6 4 3 6 3 6 9 7 8 8 3 3 10 5 2 10 7 10 9", "output": "YES" }, { "input": "42 227\n3 6 1 9 4 10 4 10 7 8 10 10 8 7 10 4 6 8 7 7 6 9 3 6 5 5 2 7 2 7 4 4 6 6 4 3 9 3 6 4 7 2", "output": "NO" }, { "input": "97 65\n3 10 2 6 1 4 7 5 10 3 10 4 5 5 1 6 10 7 4 5 3 9 9 8 6 9 2 3 6 8 5 5 5 5 5 3 10 4 1 8 8 9 8 4 1 4 9 3 6 3 1 4 8 3 10 8 6 4 5 4 3 2 2 4 3 6 4 6 2 3 3 3 7 5 1 8 1 4 5 1 1 6 4 2 1 7 8 6 1 1 5 6 5 10 6 7 5", "output": "NO" }, { "input": "94 279\n2 5 9 5 10 3 1 8 1 7 1 8 1 6 7 8 4 9 5 10 3 7 6 8 8 5 6 8 10 9 4 1 3 3 4 7 8 2 6 6 5 1 3 7 1 7 2 2 2 8 4 1 1 5 9 4 1 2 3 10 1 4 9 9 6 8 8 1 9 10 4 1 8 5 8 9 4 8 2 1 1 9 4 5 6 1 2 5 6 7 3 1 4 6", "output": "NO" }, { "input": "58 70\n8 2 10 2 7 3 8 3 8 7 6 2 4 10 10 6 10 3 7 6 4 3 5 5 5 3 8 10 3 4 8 4 2 6 8 9 6 9 4 3 5 2 2 6 10 6 2 1 7 5 6 4 1 9 10 2 4 5", "output": "NO" }, { "input": "6 14\n3 9 2 1 4 2", "output": "YES" }, { "input": "78 400\n5 9 3 4 7 4 1 4 6 3 9 1 8 3 3 6 10 2 1 9 6 1 8 10 1 6 4 5 2 1 5 9 6 10 3 6 5 2 4 10 6 9 3 8 10 7 2 8 8 2 10 1 4 5 2 8 6 4 4 3 5 2 3 10 1 9 8 5 6 7 9 1 8 8 5 4 2 4", "output": "YES" }, { "input": "41 181\n5 3 10 4 2 5 9 3 1 6 6 10 4 3 9 8 5 9 2 5 4 6 6 3 7 9 10 3 10 6 10 5 6 1 6 9 9 1 2 4 3", "output": "NO" }, { "input": "2 4\n4 4", "output": "YES" }, { "input": "29 71\n4 8 9 4 8 10 4 10 2 9 3 9 1 2 9 5 9 7 1 10 4 1 1 9 8 7 4 6 7", "output": "NO" }, { "input": "49 272\n4 10 8 7 5 6 9 7 2 6 6 2 10 7 5 6 5 3 6 4 3 7 9 3 7 7 4 10 5 6 7 3 6 4 6 7 7 2 5 5 7 3 7 9 3 6 6 2 1", "output": "YES" }, { "input": "91 486\n1 3 5 4 4 7 3 9 3 4 5 4 5 4 7 9 5 8 4 10 9 1 1 9 9 1 6 2 5 4 7 4 10 3 2 10 9 3 4 5 1 3 4 2 10 9 10 9 10 2 4 6 2 5 3 6 4 9 10 3 9 8 1 2 5 9 2 10 4 6 10 8 10 9 1 2 5 8 6 6 6 1 10 3 9 3 5 6 1 5 5", "output": "YES" }, { "input": "80 78\n1 9 4 9 8 3 7 10 4 9 2 1 4 4 9 5 9 1 2 6 5 2 4 8 4 6 9 6 7 10 1 9 10 4 7 1 7 10 8 9 10 5 2 6 7 7 7 7 7 8 2 5 1 7 2 3 2 5 10 6 3 4 5 2 6 3 4 2 7 9 9 3 8 8 2 3 7 1 5 10", "output": "NO" }, { "input": "53 245\n5 6 9 9 2 3 2 5 10 9 3 5 6 3 10 10 9 4 9 7 10 9 7 7 3 4 9 3 7 3 8 6 8 9 3 8 9 1 3 1 9 10 3 9 3 1 6 6 3 8 7 8 9", "output": "NO" }, { "input": "50 271\n6 9 10 1 1 1 8 3 6 6 3 2 5 9 7 5 7 9 10 9 4 6 6 2 6 6 9 5 1 6 5 8 3 2 5 10 10 1 4 1 4 6 1 8 7 8 9 4 7 5", "output": "YES" }, { "input": "38 214\n5 8 4 5 1 9 9 2 6 3 4 3 5 7 7 7 3 10 1 5 10 4 2 2 10 10 6 6 6 7 1 6 10 5 7 4 5 10", "output": "YES" }, { "input": "100 1\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "NO" }, { "input": "100 100\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "NO" }, { "input": "100 989\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "NO" }, { "input": "100 990\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "YES" }, { "input": "100 1000\n10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "YES" }, { "input": "2 1\n1 1", "output": "YES" }, { "input": "2 1\n2 2", "output": "NO" }, { "input": "2 1000\n1 1", "output": "YES" }, { "input": "10 89\n10 10 10 10 10 10 10 10 10 10", "output": "NO" }, { "input": "10 44\n1 10 2 3 4 5 6 7 8 9", "output": "NO" } ]
1,616,621,257
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
61
0
n,m= map(int,input().split()) l=[] l.extend(map(int,input().split())) if max(l) < m: print('YES') else: print('NO')
Title: Sereja and Mugs Time Limit: None seconds Memory Limit: None megabytes Problem Description: Sereja showed an interesting game to his friends. The game goes like that. Initially, there is a table with an empty cup and *n* water mugs on it. Then all players take turns to move. During a move, a player takes a non-empty mug of water and pours all water from it into the cup. If the cup overfills, then we assume that this player lost. As soon as Sereja's friends heard of the game, they wanted to play it. Sereja, on the other hand, wanted to find out whether his friends can play the game in such a way that there are no losers. You are given the volumes of all mugs and the cup. Also, you know that Sereja has (*n*<=-<=1) friends. Determine if Sereja's friends can play the game so that nobody loses. Input Specification: The first line contains integers *n* and *s* (2<=≤<=*n*<=≤<=100; 1<=≤<=*s*<=≤<=1000) — the number of mugs and the volume of the cup. The next line contains *n* integers *a*1, *a*2, ..., *a**n* (1<=≤<=*a**i*<=≤<=10). Number *a**i* means the volume of the *i*-th mug. Output Specification: In a single line, print "YES" (without the quotes) if his friends can play in the described manner, and "NO" (without the quotes) otherwise. Demo Input: ['3 4\n1 1 1\n', '3 4\n3 1 3\n', '3 4\n4 4 4\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n'] Note: none
```python n,m= map(int,input().split()) l=[] l.extend(map(int,input().split())) if max(l) < m: print('YES') else: print('NO') ```
0
41
A
Translation
PROGRAMMING
800
[ "implementation", "strings" ]
A. Translation
2
256
The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly.
The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.
If the word *t* is a word *s*, written reversely, print YES, otherwise print NO.
[ "code\nedoc\n", "abb\naba\n", "code\ncode\n" ]
[ "YES\n", "NO\n", "NO\n" ]
none
500
[ { "input": "code\nedoc", "output": "YES" }, { "input": "abb\naba", "output": "NO" }, { "input": "code\ncode", "output": "NO" }, { "input": "abacaba\nabacaba", "output": "YES" }, { "input": "q\nq", "output": "YES" }, { "input": "asrgdfngfnmfgnhweratgjkk\nasrgdfngfnmfgnhweratgjkk", "output": "NO" }, { "input": "z\na", "output": "NO" }, { "input": "asd\ndsa", "output": "YES" }, { "input": "abcdef\nfecdba", "output": "NO" }, { "input": "ywjjbirapvskozubvxoemscfwl\ngnduubaogtfaiowjizlvjcu", "output": "NO" }, { "input": "mfrmqxtzvgaeuleubcmcxcfqyruwzenguhgrmkuhdgnhgtgkdszwqyd\nmfxufheiperjnhyczclkmzyhcxntdfskzkzdwzzujdinf", "output": "NO" }, { "input": "bnbnemvybqizywlnghlykniaxxxlkhftppbdeqpesrtgkcpoeqowjwhrylpsziiwcldodcoonpimudvrxejjo\ntiynnekmlalogyvrgptbinkoqdwzuiyjlrldxhzjmmp", "output": "NO" }, { "input": "pwlpubwyhzqvcitemnhvvwkmwcaawjvdiwtoxyhbhbxerlypelevasmelpfqwjk\nstruuzebbcenziscuoecywugxncdwzyfozhljjyizpqcgkyonyetarcpwkqhuugsqjuixsxptmbnlfupdcfigacdhhrzb", "output": "NO" }, { "input": "gdvqjoyxnkypfvdxssgrihnwxkeojmnpdeobpecytkbdwujqfjtxsqspxvxpqioyfagzjxupqqzpgnpnpxcuipweunqch\nkkqkiwwasbhezqcfeceyngcyuogrkhqecwsyerdniqiocjehrpkljiljophqhyaiefjpavoom", "output": "NO" }, { "input": "umeszdawsvgkjhlqwzents\nhxqhdungbylhnikwviuh", "output": "NO" }, { "input": "juotpscvyfmgntshcealgbsrwwksgrwnrrbyaqqsxdlzhkbugdyx\nibqvffmfktyipgiopznsqtrtxiijntdbgyy", "output": "NO" }, { "input": "zbwueheveouatecaglziqmudxemhrsozmaujrwlqmppzoumxhamwugedikvkblvmxwuofmpafdprbcftew\nulczwrqhctbtbxrhhodwbcxwimncnexosksujlisgclllxokrsbnozthajnnlilyffmsyko", "output": "NO" }, { "input": "nkgwuugukzcv\nqktnpxedwxpxkrxdvgmfgoxkdfpbzvwsduyiybynbkouonhvmzakeiruhfmvrktghadbfkmwxduoqv", "output": "NO" }, { "input": "incenvizhqpcenhjhehvjvgbsnfixbatrrjstxjzhlmdmxijztphxbrldlqwdfimweepkggzcxsrwelodpnryntepioqpvk\ndhjbjjftlvnxibkklxquwmzhjfvnmwpapdrslioxisbyhhfymyiaqhlgecpxamqnocizwxniubrmpyubvpenoukhcobkdojlybxd", "output": "NO" }, { "input": "w\nw", "output": "YES" }, { "input": "vz\nzv", "output": "YES" }, { "input": "ry\nyr", "output": "YES" }, { "input": "xou\nuox", "output": "YES" }, { "input": "axg\ngax", "output": "NO" }, { "input": "zdsl\nlsdz", "output": "YES" }, { "input": "kudl\nldku", "output": "NO" }, { "input": "zzlzwnqlcl\nlclqnwzlzz", "output": "YES" }, { "input": "vzzgicnzqooejpjzads\nsdazjpjeooqzncigzzv", "output": "YES" }, { "input": "raqhmvmzuwaykjpyxsykr\nxkysrypjkyawuzmvmhqar", "output": "NO" }, { "input": "ngedczubzdcqbxksnxuavdjaqtmdwncjnoaicvmodcqvhfezew\nwezefhvqcdomvciaonjcnwdmtqajdvauxnskxbqcdzbuzcdegn", "output": "YES" }, { "input": "muooqttvrrljcxbroizkymuidvfmhhsjtumksdkcbwwpfqdyvxtrlymofendqvznzlmim\nmimlznzvqdnefomylrtxvydqfpwwbckdskmutjshhmfvdiumykziorbxcjlrrvttqooum", "output": "YES" }, { "input": "vxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaivg\ngviayyikkitmuomcpiakhbxszgbnhvwyzkftwoagzixaearxpjacrnvpvbuzenvovehkmmxvblqyxvctroddksdsgebcmlluqpxv", "output": "YES" }, { "input": "mnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfdc\ncdfmkdgrdptkpewbsqvszipgxvgvuiuzbkkwuowbafkikgvnqdkxnayzdjygvezmtsgywnupocdntipiyiorblqkrzjpzatxahnm", "output": "NO" }, { "input": "dgxmzbqofstzcdgthbaewbwocowvhqpinehpjatnnbrijcolvsatbblsrxabzrpszoiecpwhfjmwuhqrapvtcgvikuxtzbftydkw\nwkdytfbztxukivgctvparqhuwmjfhwpceiozsprzbaxrslbbqasvlocjirbnntajphenipthvwocowbweabhtgdcztsfoqbzmxgd", "output": "NO" }, { "input": "gxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwgeh\nhegwxvocotmzstqfbmpjvijgkcyodlxyjawrpkczpmdspsuhoiruavnnnuwvtwohglkdxjetshkboalvzqbgjgthoteceixioxg", "output": "YES" }, { "input": "sihxuwvmaambplxvjfoskinghzicyfqebjtkysotattkahssumfcgrkheotdxwjckpvapbkaepqrxseyfrwtyaycmrzsrsngkh\nhkgnsrszrmcyaytwrfyesxrqpeakbpavpkcjwxdtoehkrgcfmusshakttatosyktjbeqfycizhgniksofjvxlpbmaamvwuxhis", "output": "YES" }, { "input": "ycnahksbughnonldzrhkysujmylcgcfuludjvjiahtkyzqvkopzqcnwhltbzfugzojqkjjlggmvnultascmygelkiktmfieok\nkoeifmtkiklegkmcsatlunvmggkjjlqjozgufzbtlhwncqzpokvqzykthaijvjdulufcgclymjusyyhrzdlnonhgubskhancy", "output": "NO" }, { "input": "wbqasaehtkfojruzyhrlgwmtyiovmzyfifslvlemhqheyaelzwnthrenjsbmntwaoryzwfbxmscmypvxlfmzpnkkjlvwvmtz\nztmvwvljkknpzmflxvpymcsmxbfwzyroawtnmbsjnerhtnwzleayehqhmelvlsfifyzmvoiytmwglrhyzurjofktheasaqbw", "output": "YES" }, { "input": "imippqurprbhfugngtgifelytadegwrgaefnfhbjjnmzikvjaccotqzemufqieqldgnbmviisgkynzeldlhqxuqphjfmyij\njiymfjhpquxqhldleznykgsiivmbngdlqeiqfumezqtoccajvkizmnjjbhfnfeagrwgedatylefigtgngufhbrpruqppimi", "output": "YES" }, { "input": "bikydffiuisckpvzqlteqfhegsagimodb\nbdomigasgehfqetlqzvpkcsiuiffdykib", "output": "YES" } ]
1,603,544,999
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
8
248
0
s = input() t = input() d = () for i in range(len(s)): if s[i] == t[-i-1]: d = True else: d = False if d == True: print("YES") elif d == False: print("NO")
Title: Translation Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the «translation». Vasya translated word *s* from Berlandish into Birlandish as *t*. Help him: find out if he translated the word correctly. Input Specification: The first line contains word *s*, the second line contains word *t*. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols. Output Specification: If the word *t* is a word *s*, written reversely, print YES, otherwise print NO. Demo Input: ['code\nedoc\n', 'abb\naba\n', 'code\ncode\n'] Demo Output: ['YES\n', 'NO\n', 'NO\n'] Note: none
```python s = input() t = input() d = () for i in range(len(s)): if s[i] == t[-i-1]: d = True else: d = False if d == True: print("YES") elif d == False: print("NO") ```
0
617
A
Elephant
PROGRAMMING
800
[ "math" ]
null
null
An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=&gt;<=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.
The first line of the input contains an integer *x* (1<=≤<=*x*<=≤<=1<=000<=000) — The coordinate of the friend's house.
Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*.
[ "5\n", "12\n" ]
[ "1\n", "3\n" ]
In the first sample the elephant needs to make one step of length 5 to reach the point *x*. In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
500
[ { "input": "5", "output": "1" }, { "input": "12", "output": "3" }, { "input": "999999", "output": "200000" }, { "input": "41", "output": "9" }, { "input": "1000000", "output": "200000" }, { "input": "1", "output": "1" }, { "input": "2", "output": "1" }, { "input": "3", "output": "1" }, { "input": "4", "output": "1" }, { "input": "534204", "output": "106841" }, { "input": "469569", "output": "93914" }, { "input": "502877", "output": "100576" }, { "input": "942212", "output": "188443" }, { "input": "97", "output": "20" }, { "input": "53", "output": "11" }, { "input": "89", "output": "18" }, { "input": "574", "output": "115" }, { "input": "716", "output": "144" }, { "input": "729", "output": "146" }, { "input": "8901", "output": "1781" }, { "input": "3645", "output": "729" }, { "input": "4426", "output": "886" }, { "input": "46573", "output": "9315" }, { "input": "86380", "output": "17276" }, { "input": "94190", "output": "18838" }, { "input": "999990", "output": "199998" }, { "input": "999991", "output": "199999" }, { "input": "999992", "output": "199999" }, { "input": "999993", "output": "199999" }, { "input": "999994", "output": "199999" }, { "input": "999995", "output": "199999" }, { "input": "999996", "output": "200000" }, { "input": "999997", "output": "200000" }, { "input": "999998", "output": "200000" } ]
1,696,662,059
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
31
0
x=int(input()) if x//5==0: move=(x//5) else: move=(x//5)+1 print(move)
Title: Elephant Time Limit: None seconds Memory Limit: None megabytes Problem Description: An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point *x*(*x*<=&gt;<=0) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house. Input Specification: The first line of the input contains an integer *x* (1<=≤<=*x*<=≤<=1<=000<=000) — The coordinate of the friend's house. Output Specification: Print the minimum number of steps that elephant needs to make to get from point 0 to point *x*. Demo Input: ['5\n', '12\n'] Demo Output: ['1\n', '3\n'] Note: In the first sample the elephant needs to make one step of length 5 to reach the point *x*. In the second sample the elephant can get to point *x* if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach *x* in less than three moves.
```python x=int(input()) if x//5==0: move=(x//5) else: move=(x//5)+1 print(move) ```
0
408
B
Garland
PROGRAMMING
1,200
[ "implementation" ]
null
null
Once little Vasya read an article in a magazine on how to make beautiful handmade garland from colored paper. Vasya immediately went to the store and bought *n* colored sheets of paper, the area of each sheet is 1 square meter. The garland must consist of exactly *m* pieces of colored paper of arbitrary area, each piece should be of a certain color. To make the garland, Vasya can arbitrarily cut his existing colored sheets into pieces. Vasya is not obliged to use all the sheets to make the garland. Vasya wants the garland to be as attractive as possible, so he wants to maximize the total area of ​​*m* pieces of paper in the garland. Calculate what the maximum total area of ​​the pieces of paper in the garland Vasya can get.
The first line contains a non-empty sequence of *n* (1<=≤<=*n*<=≤<=1000) small English letters ("a"..."z"). Each letter means that Vasya has a sheet of paper of the corresponding color. The second line contains a non-empty sequence of *m* (1<=≤<=*m*<=≤<=1000) small English letters that correspond to the colors of the pieces of paper in the garland that Vasya wants to make.
Print an integer that is the maximum possible total area of the pieces of paper in the garland Vasya wants to get or -1, if it is impossible to make the garland from the sheets he's got. It is guaranteed that the answer is always an integer.
[ "aaabbac\naabbccac\n", "a\nz\n" ]
[ "6\n", "-1" ]
In the first test sample Vasya can make an garland of area 6: he can use both sheets of color *b*, three (but not four) sheets of color *a* and cut a single sheet of color *c* in three, for example, equal pieces. Vasya can use the resulting pieces to make a garland of area 6. In the second test sample Vasya cannot make a garland at all — he doesn't have a sheet of color *z*.
1,000
[ { "input": "aaabbac\naabbccac", "output": "6" }, { "input": "a\nz", "output": "-1" }, { "input": "r\nr", "output": "1" }, { "input": "stnsdn\nndnndsn", "output": "4" }, { "input": "yqfqfp\ntttwtqq", "output": "-1" }, { "input": "zzbbrrtrtzr\ntbbtrrrzr", "output": "9" }, { "input": "ivvfisvsvii\npaihjinno", "output": "-1" }, { "input": "zbvwnlgkshqerxptyod\nz", "output": "1" }, { "input": "xlktwjymocqrahnbesf\nfoo", "output": "2" }, { "input": "bbzmzqazmbambnmzaabznmbabzqnaabmabmnnabbmnzaanzzezebzabqaabzqaemeqqammmbazmmz\naznnbbmeebmanbeemzmemqbaeebnqenqzzbanebmnzqqebqmmnmqqzmmeqqqaaezemmazqqmqaqnnqqzbzeeazammmenbbamzbmnaenemenaaaebnmanebqmqnznqbenmqqnnnaeaebqmamennmqqeaaqqbammnzqmnmqnqbbezmemznqmanzmmqzzzzembqnzqbanamezqaqbazenenqqznqaebzaeezbqqbmeeaqnmmbnqbbnmaqqemaeaezaabmbnbzzaae", "output": "77" }, { "input": "lccfdfnfflncddlksndcwnfcllnnaswcdnldafcalssfcdnkkaklwnnacsncfwanwnwfadawcsdcfwflnnlfsfclkfknlaldna\nuaaldlllhedgugugueahddhedbuddaedhaaeugdubaealbgbagedldbl", "output": "-1" }, { "input": "hvewdvwdwudrwarwmddwnazmwauzatrmwptwwevavpmwrtruwnpwantewrnwmepdwvtmnveanunrvrtwpvhhnuhnmpptdttzmmndtvudmzhhannmmnahdpzamuvhzaavnhtnumwrwvttdetvuewaaennddwuvzvaptdzrzhtetwwzmzedrwuvrwznprhdvnavrruvvhzuwpdtmpwmzrwvermrhdamv\nuvzhwtpuputnahwwarduzddhpnwwvettprwavdmnztdnrddmarmvuevtdezndnezvarhmppwwnmvnrtddzhhnzrwuhvpwmezuurundarwdazwptrpeurrnwautddnhdmhtwhwvvtavdzezumetzezpazndhuentmrhamutrtttpevtuutemdnvwnwnmnvmznatneweuaahdavmaddhnrdenwwztrwh", "output": "199" }, { "input": "aaccddff\nabcdf", "output": "-1" } ]
1,492,535,611
2,147,483,647
Python 3
OK
TESTS
21
140
9,420,800
#!/usr/bin/python import re import inspect from sys import argv, exit def rstr(): return input() def rstrs(splitchar=' '): return [i for i in input().split(splitchar)] def rint(): return int(input()) def rints(splitchar=' '): return [int(i) for i in rstrs(splitchar)] def varnames(obj, namespace=globals()): return [name for name in namespace if namespace[name] is obj] def pvar(var, override=False): prnt(varnames(var), var) def prnt(*args, override=False): if '-v' in argv or override: print(*args) # Faster IO pq = [] def penq(s): if not isinstance(s, str): s = str(s) pq.append(s) def pdump(): s = ('\n'.join(pq)).encode() os.write(1, s) if __name__ == '__main__': s1 = [c for c in rstr()] s2 = [c for c in rstr()] counts1 = [len([c for c in s1 if ord(c)==ch]) for ch in range(ord('a'), ord('z')+1)] counts2 = [len([c for c in s2 if ord(c)==ch]) for ch in range(ord('a'), ord('z')+1)] total = 0 for c1, c2 in zip(counts1, counts2): if c2 != 0 and c1 == 0: print('-1') exit(0) if c2 > c1: ans = c1 else: ans = c2 total += ans print(total)
Title: Garland Time Limit: None seconds Memory Limit: None megabytes Problem Description: Once little Vasya read an article in a magazine on how to make beautiful handmade garland from colored paper. Vasya immediately went to the store and bought *n* colored sheets of paper, the area of each sheet is 1 square meter. The garland must consist of exactly *m* pieces of colored paper of arbitrary area, each piece should be of a certain color. To make the garland, Vasya can arbitrarily cut his existing colored sheets into pieces. Vasya is not obliged to use all the sheets to make the garland. Vasya wants the garland to be as attractive as possible, so he wants to maximize the total area of ​​*m* pieces of paper in the garland. Calculate what the maximum total area of ​​the pieces of paper in the garland Vasya can get. Input Specification: The first line contains a non-empty sequence of *n* (1<=≤<=*n*<=≤<=1000) small English letters ("a"..."z"). Each letter means that Vasya has a sheet of paper of the corresponding color. The second line contains a non-empty sequence of *m* (1<=≤<=*m*<=≤<=1000) small English letters that correspond to the colors of the pieces of paper in the garland that Vasya wants to make. Output Specification: Print an integer that is the maximum possible total area of the pieces of paper in the garland Vasya wants to get or -1, if it is impossible to make the garland from the sheets he's got. It is guaranteed that the answer is always an integer. Demo Input: ['aaabbac\naabbccac\n', 'a\nz\n'] Demo Output: ['6\n', '-1'] Note: In the first test sample Vasya can make an garland of area 6: he can use both sheets of color *b*, three (but not four) sheets of color *a* and cut a single sheet of color *c* in three, for example, equal pieces. Vasya can use the resulting pieces to make a garland of area 6. In the second test sample Vasya cannot make a garland at all — he doesn't have a sheet of color *z*.
```python #!/usr/bin/python import re import inspect from sys import argv, exit def rstr(): return input() def rstrs(splitchar=' '): return [i for i in input().split(splitchar)] def rint(): return int(input()) def rints(splitchar=' '): return [int(i) for i in rstrs(splitchar)] def varnames(obj, namespace=globals()): return [name for name in namespace if namespace[name] is obj] def pvar(var, override=False): prnt(varnames(var), var) def prnt(*args, override=False): if '-v' in argv or override: print(*args) # Faster IO pq = [] def penq(s): if not isinstance(s, str): s = str(s) pq.append(s) def pdump(): s = ('\n'.join(pq)).encode() os.write(1, s) if __name__ == '__main__': s1 = [c for c in rstr()] s2 = [c for c in rstr()] counts1 = [len([c for c in s1 if ord(c)==ch]) for ch in range(ord('a'), ord('z')+1)] counts2 = [len([c for c in s2 if ord(c)==ch]) for ch in range(ord('a'), ord('z')+1)] total = 0 for c1, c2 in zip(counts1, counts2): if c2 != 0 and c1 == 0: print('-1') exit(0) if c2 > c1: ans = c1 else: ans = c2 total += ans print(total) ```
3
394
B
Very Beautiful Number
PROGRAMMING
0
[ "math" ]
null
null
Teacher thinks that we make a lot of progress. Now we are even allowed to use decimal notation instead of counting sticks. After the test the teacher promised to show us a "very beautiful number". But the problem is, he's left his paper with the number in the teachers' office. The teacher remembers that the "very beautiful number" was strictly positive, didn't contain any leading zeroes, had the length of exactly *p* decimal digits, and if we move the last digit of the number to the beginning, it grows exactly *x* times. Besides, the teacher is sure that among all such numbers the "very beautiful number" is minimal possible. The teachers' office isn't near and the teacher isn't young. But we've passed the test and we deserved the right to see the "very beautiful number". Help to restore the justice, find the "very beautiful number" for us!
The single line contains integers *p*, *x* (1<=≤<=*p*<=≤<=106,<=1<=≤<=*x*<=≤<=9).
If the teacher's made a mistake and such number doesn't exist, then print on a single line "Impossible" (without the quotes). Otherwise, print the "very beautiful number" without leading zeroes.
[ "6 5\n", "1 2\n", "6 4\n" ]
[ "142857", "Impossible\n", "102564" ]
Sample 1: 142857·5 = 714285. Sample 2: The number that consists of a single digit cannot stay what it is when multiplied by 2, thus, the answer to the test sample is "Impossible".
1,000
[ { "input": "6 5", "output": "142857" }, { "input": "1 2", "output": "Impossible" }, { "input": "6 4", "output": "102564" }, { "input": "11 1", "output": "11111111111" }, { "input": "42 5", "output": "102040816326530612244897959183673469387755" }, { "input": "36 5", "output": "142857142857142857142857142857142857" }, { "input": "56 3", "output": "10344827586206896551724137931034482758620689655172413793" }, { "input": "88 9", "output": "1011235955056179775280898876404494382022471910112359550561797752808988764044943820224719" }, { "input": "81 7", "output": "Impossible" }, { "input": "100 1", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111" }, { "input": "58 6", "output": "1016949152542372881355932203389830508474576271186440677966" }, { "input": "3282 5", "output": "1428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571428571..." }, { "input": "24002 7", "output": "1014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362318840579710144..." }, { "input": "8140 7", "output": "1014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362318840579710144927536231884057971014492753623188405797101449275362318840579710144..." }, { "input": "23910 4", "output": "1025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641..." }, { "input": "11478 4", "output": "1025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641..." }, { "input": "12818 8", "output": "1012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012..." }, { "input": "999999 8", "output": "1012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012658227848101265822784810126582278481012..." }, { "input": "100002 4", "output": "1025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641025641..." }, { "input": "337 6", "output": "Impossible" }, { "input": "11389 6", "output": "Impossible" }, { "input": "1000000 3", "output": "Impossible" }, { "input": "1000000 1", "output": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111..." }, { "input": "2 7", "output": "Impossible" }, { "input": "1 1", "output": "1" } ]
1,553,675,615
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
17
1,000
8,601,600
import sys p, x = map(int,input().split()) if p == 1: if x >= 2: print("Impossible") else: print("1") sys.exit(0) re = 10**(p + 2) bot = 10*x-1 for a in range(1, 10): kek = a * 10**(p-1) - a*x N = kek if(N%bot != 0):continue N //= bot if(((N*10 + a) >= (10**(p-1))) and ((N*10 + a )< (10**(p)))): re = min(re, N*10 + a) if(re < 10**(p)): print(re) else:print("Impossible")
Title: Very Beautiful Number Time Limit: None seconds Memory Limit: None megabytes Problem Description: Teacher thinks that we make a lot of progress. Now we are even allowed to use decimal notation instead of counting sticks. After the test the teacher promised to show us a "very beautiful number". But the problem is, he's left his paper with the number in the teachers' office. The teacher remembers that the "very beautiful number" was strictly positive, didn't contain any leading zeroes, had the length of exactly *p* decimal digits, and if we move the last digit of the number to the beginning, it grows exactly *x* times. Besides, the teacher is sure that among all such numbers the "very beautiful number" is minimal possible. The teachers' office isn't near and the teacher isn't young. But we've passed the test and we deserved the right to see the "very beautiful number". Help to restore the justice, find the "very beautiful number" for us! Input Specification: The single line contains integers *p*, *x* (1<=≤<=*p*<=≤<=106,<=1<=≤<=*x*<=≤<=9). Output Specification: If the teacher's made a mistake and such number doesn't exist, then print on a single line "Impossible" (without the quotes). Otherwise, print the "very beautiful number" without leading zeroes. Demo Input: ['6 5\n', '1 2\n', '6 4\n'] Demo Output: ['142857', 'Impossible\n', '102564'] Note: Sample 1: 142857·5 = 714285. Sample 2: The number that consists of a single digit cannot stay what it is when multiplied by 2, thus, the answer to the test sample is "Impossible".
```python import sys p, x = map(int,input().split()) if p == 1: if x >= 2: print("Impossible") else: print("1") sys.exit(0) re = 10**(p + 2) bot = 10*x-1 for a in range(1, 10): kek = a * 10**(p-1) - a*x N = kek if(N%bot != 0):continue N //= bot if(((N*10 + a) >= (10**(p-1))) and ((N*10 + a )< (10**(p)))): re = min(re, N*10 + a) if(re < 10**(p)): print(re) else:print("Impossible") ```
0
166
A
Rank List
PROGRAMMING
1,100
[ "binary search", "implementation", "sortings" ]
null
null
Another programming contest is over. You got hold of the contest's final results table. The table has the following data. For each team we are shown two numbers: the number of problems and the total penalty time. However, for no team we are shown its final place. You know the rules of comparing the results of two given teams very well. Let's say that team *a* solved *p**a* problems with total penalty time *t**a* and team *b* solved *p**b* problems with total penalty time *t**b*. Team *a* gets a higher place than team *b* in the end, if it either solved more problems on the contest, or solved the same number of problems but in less total time. In other words, team *a* gets a higher place than team *b* in the final results' table if either *p**a*<=&gt;<=*p**b*, or *p**a*<==<=*p**b* and *t**a*<=&lt;<=*t**b*. It is considered that the teams that solve the same number of problems with the same penalty time share all corresponding places. More formally, let's say there is a group of *x* teams that solved the same number of problems with the same penalty time. Let's also say that *y* teams performed better than the teams from this group. In this case all teams from the group share places *y*<=+<=1, *y*<=+<=2, ..., *y*<=+<=*x*. The teams that performed worse than the teams from this group, get their places in the results table starting from the *y*<=+<=*x*<=+<=1-th place. Your task is to count what number of teams from the given list shared the *k*-th place.
The first line contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=50). Then *n* lines contain the description of the teams: the *i*-th line contains two integers *p**i* and *t**i* (1<=≤<=*p**i*,<=*t**i*<=≤<=50) — the number of solved problems and the total penalty time of the *i*-th team, correspondingly. All numbers in the lines are separated by spaces.
In the only line print the sought number of teams that got the *k*-th place in the final results' table.
[ "7 2\n4 10\n4 10\n4 10\n3 20\n2 1\n2 1\n1 10\n", "5 4\n3 1\n3 1\n5 3\n3 1\n3 1\n" ]
[ "3\n", "4\n" ]
The final results' table for the first sample is: - 1-3 places — 4 solved problems, the penalty time equals 10 - 4 place — 3 solved problems, the penalty time equals 20 - 5-6 places — 2 solved problems, the penalty time equals 1 - 7 place — 1 solved problem, the penalty time equals 10 The table shows that the second place is shared by the teams that solved 4 problems with penalty time 10. There are 3 such teams. The final table for the second sample is: - 1 place — 5 solved problems, the penalty time equals 3 - 2-5 places — 3 solved problems, the penalty time equals 1 The table shows that the fourth place is shared by the teams that solved 3 problems with penalty time 1. There are 4 such teams.
500
[ { "input": "7 2\n4 10\n4 10\n4 10\n3 20\n2 1\n2 1\n1 10", "output": "3" }, { "input": "5 4\n3 1\n3 1\n5 3\n3 1\n3 1", "output": "4" }, { "input": "5 1\n2 2\n1 1\n1 1\n1 1\n2 2", "output": "2" }, { "input": "6 3\n2 2\n3 1\n2 2\n4 5\n2 2\n4 5", "output": "1" }, { "input": "5 5\n3 1\n10 2\n2 2\n1 10\n10 2", "output": "1" }, { "input": "3 2\n3 3\n3 3\n3 3", "output": "3" }, { "input": "4 3\n10 3\n6 10\n5 2\n5 2", "output": "2" }, { "input": "5 3\n10 10\n10 10\n1 1\n10 10\n4 3", "output": "3" }, { "input": "3 1\n2 1\n1 1\n1 2", "output": "1" }, { "input": "1 1\n28 28", "output": "1" }, { "input": "2 2\n1 2\n1 2", "output": "2" }, { "input": "5 3\n2 3\n4 2\n5 3\n2 4\n3 5", "output": "1" }, { "input": "50 22\n4 9\n8 1\n3 7\n1 2\n3 8\n9 8\n8 5\n2 10\n5 8\n1 3\n1 8\n2 3\n7 9\n10 2\n9 9\n7 3\n8 6\n10 6\n5 4\n8 1\n1 5\n6 8\n9 5\n9 5\n3 2\n3 3\n3 8\n7 5\n4 5\n8 10\n8 2\n3 5\n3 2\n1 1\n7 2\n2 7\n6 8\n10 4\n7 5\n1 7\n6 5\n3 1\n4 9\n2 3\n3 6\n5 8\n4 10\n10 7\n7 10\n9 8", "output": "1" }, { "input": "50 6\n11 20\n18 13\n1 13\n3 11\n4 17\n15 10\n15 8\n9 16\n11 17\n16 3\n3 20\n14 13\n12 15\n9 10\n14 2\n12 12\n13 17\n6 10\n20 9\n2 8\n13 7\n7 20\n15 3\n1 20\n2 13\n2 5\n14 7\n10 13\n15 12\n15 5\n17 6\n9 11\n18 5\n10 1\n15 14\n3 16\n6 12\n4 1\n14 9\n7 14\n8 17\n17 13\n4 6\n19 16\n5 6\n3 15\n4 19\n15 20\n2 10\n20 10", "output": "1" }, { "input": "50 12\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "50" }, { "input": "50 28\n2 2\n1 1\n2 1\n1 2\n1 1\n1 1\n1 1\n2 2\n2 2\n2 2\n2 1\n2 2\n2 1\n2 1\n1 2\n1 2\n1 2\n1 1\n2 2\n1 2\n2 2\n2 2\n2 1\n1 1\n1 2\n1 2\n1 1\n1 1\n1 1\n2 2\n2 1\n2 1\n2 2\n1 2\n1 2\n1 2\n1 1\n2 2\n1 2\n1 1\n2 2\n2 2\n1 1\n2 1\n2 1\n1 1\n2 2\n2 2\n2 2\n2 2", "output": "13" }, { "input": "50 40\n2 3\n3 1\n2 1\n2 1\n2 1\n3 1\n1 1\n1 2\n2 3\n1 3\n1 3\n2 1\n3 1\n1 1\n3 1\n3 1\n2 2\n1 1\n3 3\n3 1\n3 2\n2 3\n3 3\n3 1\n1 3\n2 3\n2 1\n3 2\n3 3\n3 1\n2 1\n2 2\n1 3\n3 3\n1 1\n3 2\n1 2\n2 3\n2 1\n2 2\n3 2\n1 3\n3 1\n1 1\n3 3\n2 3\n2 1\n2 3\n2 3\n1 2", "output": "5" }, { "input": "50 16\n2 1\n3 2\n5 2\n2 2\n3 4\n4 4\n3 3\n4 1\n2 3\n1 5\n4 1\n2 2\n1 5\n3 2\n2 1\n5 4\n5 2\n5 4\n1 1\n3 5\n2 1\n4 5\n5 1\n5 5\n5 4\n2 4\n1 2\n5 5\n4 4\n1 5\n4 2\n5 1\n2 4\n2 5\n2 2\n3 4\n3 1\n1 1\n5 5\n2 2\n3 4\n2 4\n5 2\n4 1\n3 1\n1 1\n4 1\n4 4\n1 4\n1 3", "output": "1" }, { "input": "50 32\n6 6\n4 2\n5 5\n1 1\n2 4\n6 5\n2 3\n6 5\n2 3\n6 3\n1 4\n1 6\n3 3\n2 4\n3 2\n6 2\n4 1\n3 3\n3 1\n5 5\n1 2\n2 1\n5 4\n3 1\n4 4\n5 6\n4 1\n2 5\n3 1\n4 6\n2 3\n1 1\n6 5\n2 6\n3 3\n2 6\n2 3\n2 6\n3 4\n2 6\n4 5\n5 4\n1 6\n3 2\n5 1\n4 1\n4 6\n4 2\n1 2\n5 2", "output": "1" }, { "input": "50 48\n5 1\n6 4\n3 2\n2 1\n4 7\n3 6\n7 1\n7 5\n6 5\n5 6\n4 7\n5 7\n5 7\n5 5\n7 3\n3 5\n4 3\n5 4\n6 2\n1 6\n6 3\n6 5\n5 2\n4 2\n3 1\n1 1\n5 6\n1 3\n6 5\n3 7\n1 5\n7 5\n6 5\n3 6\n2 7\n5 3\n5 3\n4 7\n5 2\n6 5\n5 7\n7 1\n2 3\n5 5\n2 6\n4 1\n6 2\n6 5\n3 3\n1 6", "output": "1" }, { "input": "50 8\n5 3\n7 3\n4 3\n7 4\n2 2\n4 4\n5 4\n1 1\n7 7\n4 8\n1 1\n6 3\n1 5\n7 3\n6 5\n4 5\n8 6\n3 6\n2 1\n3 2\n2 5\n7 6\n5 8\n1 3\n5 5\n8 4\n4 5\n4 4\n8 8\n7 2\n7 2\n3 6\n2 8\n8 3\n3 2\n4 5\n8 1\n3 2\n8 7\n6 3\n2 3\n5 1\n3 4\n7 2\n6 3\n7 3\n3 3\n6 4\n2 2\n5 1", "output": "3" }, { "input": "20 16\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "20" }, { "input": "20 20\n1 2\n2 2\n1 1\n2 1\n2 2\n1 1\n1 1\n2 1\n1 1\n1 2\n2 2\n1 2\n1 2\n2 2\n2 2\n1 2\n2 1\n2 1\n1 2\n2 2", "output": "6" }, { "input": "30 16\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "30" }, { "input": "30 22\n2 1\n1 2\n2 1\n2 2\n2 1\n1 2\n2 2\n1 2\n2 2\n1 2\n2 2\n1 2\n1 2\n2 1\n1 2\n2 2\n2 2\n1 2\n2 1\n1 1\n1 2\n1 2\n1 1\n1 2\n1 2\n2 2\n1 2\n2 2\n2 1\n1 1", "output": "13" }, { "input": "30 22\n1 1\n1 3\n2 3\n3 1\n2 3\n3 1\n1 2\n3 3\n2 1\n2 1\n2 2\n3 1\n3 2\n2 3\n3 1\n1 3\n2 3\n3 1\n1 2\n1 2\n2 3\n2 1\n3 3\n3 2\n1 3\n3 3\n3 3\n3 3\n3 3\n3 1", "output": "5" }, { "input": "50 16\n2 1\n3 2\n5 2\n2 2\n3 4\n4 4\n3 3\n4 1\n2 3\n1 5\n4 1\n2 2\n1 5\n3 2\n2 1\n5 4\n5 2\n5 4\n1 1\n3 5\n2 1\n4 5\n5 1\n5 5\n5 4\n2 4\n1 2\n5 5\n4 4\n1 5\n4 2\n5 1\n2 4\n2 5\n2 2\n3 4\n3 1\n1 1\n5 5\n2 2\n3 4\n2 4\n5 2\n4 1\n3 1\n1 1\n4 1\n4 4\n1 4\n1 3", "output": "1" }, { "input": "50 22\n4 9\n8 1\n3 7\n1 2\n3 8\n9 8\n8 5\n2 10\n5 8\n1 3\n1 8\n2 3\n7 9\n10 2\n9 9\n7 3\n8 6\n10 6\n5 4\n8 1\n1 5\n6 8\n9 5\n9 5\n3 2\n3 3\n3 8\n7 5\n4 5\n8 10\n8 2\n3 5\n3 2\n1 1\n7 2\n2 7\n6 8\n10 4\n7 5\n1 7\n6 5\n3 1\n4 9\n2 3\n3 6\n5 8\n4 10\n10 7\n7 10\n9 8", "output": "1" }, { "input": "50 22\n29 15\n18 10\n6 23\n38 28\n34 40\n40 1\n16 26\n22 33\n14 30\n26 7\n15 16\n22 40\n14 15\n6 28\n32 27\n33 3\n38 22\n40 17\n16 27\n21 27\n34 26\n5 15\n34 9\n38 23\n7 36\n17 6\n19 37\n40 1\n10 28\n9 14\n8 31\n40 8\n14 2\n24 16\n38 33\n3 37\n2 9\n21 21\n40 26\n28 33\n24 31\n10 12\n27 27\n17 4\n38 5\n21 31\n5 12\n29 7\n39 12\n26 14", "output": "1" }, { "input": "50 14\n4 20\n37 50\n46 19\n20 25\n47 10\n6 34\n12 41\n47 9\n22 28\n41 34\n47 40\n12 42\n9 4\n15 15\n27 8\n38 9\n4 17\n8 13\n47 7\n9 38\n30 48\n50 7\n41 34\n23 11\n16 37\n2 32\n18 46\n37 48\n47 41\n13 9\n24 50\n46 14\n33 49\n9 50\n35 30\n49 44\n42 49\n39 15\n33 42\n3 18\n44 15\n44 28\n9 17\n16 4\n10 36\n4 22\n47 17\n24 12\n2 31\n6 30", "output": "2" }, { "input": "2 1\n50 50\n50 50", "output": "2" }, { "input": "2 2\n50 50\n50 50", "output": "2" }, { "input": "2 1\n50 50\n50 49", "output": "1" }, { "input": "2 2\n50 50\n50 49", "output": "1" }, { "input": "50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50", "output": "50" }, { "input": "50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n49 50", "output": "1" }, { "input": "50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 49", "output": "49" }, { "input": "10 1\n3 1\n3 2\n3 2\n2 3\n2 3\n2 3\n2 4\n2 4\n2 4\n2 4", "output": "1" }, { "input": "4 3\n1 1\n1 2\n2 1\n2 2", "output": "1" }, { "input": "4 2\n1 2\n1 3\n1 5\n1 2", "output": "2" }, { "input": "6 1\n4 3\n4 2\n5 1\n5 2\n5 3\n5 3", "output": "1" }, { "input": "5 3\n2 1\n1 3\n1 2\n1 1\n1 1", "output": "2" }, { "input": "3 1\n1 1\n1 2\n1 3", "output": "1" }, { "input": "10 10\n3 1\n3 2\n3 2\n2 3\n2 3\n2 3\n2 4\n2 4\n2 4\n2 4", "output": "4" }, { "input": "5 1\n5 5\n5 6\n5 7\n5 8\n5 5", "output": "2" }, { "input": "4 1\n1 1\n1 1\n1 2\n1 3", "output": "2" } ]
1,696,606,826
2,147,483,647
Python 3
OK
TESTS
46
124
307,200
from collections import Counter from itertools import accumulate testcases = [] n, k = [int(x) for x in input().split(' ')] for _ in range(n): points = [int(x) for x in input().split(' ')] testcases.append(tuple(points)) # # print(testcases) # points_approx = [] cnt = Counter(testcases) sorted_scores = sorted(set(testcases), key =lambda x: (x[0], -x[1]), reverse=True) # print(sorted_scores) positions_ord = [cnt[sorted_score] for sorted_score in sorted_scores] acc = list(accumulate(positions_ord)) ans_i = 0 while k > acc[ans_i]: ans_i += 1 print(positions_ord[ans_i])
Title: Rank List Time Limit: None seconds Memory Limit: None megabytes Problem Description: Another programming contest is over. You got hold of the contest's final results table. The table has the following data. For each team we are shown two numbers: the number of problems and the total penalty time. However, for no team we are shown its final place. You know the rules of comparing the results of two given teams very well. Let's say that team *a* solved *p**a* problems with total penalty time *t**a* and team *b* solved *p**b* problems with total penalty time *t**b*. Team *a* gets a higher place than team *b* in the end, if it either solved more problems on the contest, or solved the same number of problems but in less total time. In other words, team *a* gets a higher place than team *b* in the final results' table if either *p**a*<=&gt;<=*p**b*, or *p**a*<==<=*p**b* and *t**a*<=&lt;<=*t**b*. It is considered that the teams that solve the same number of problems with the same penalty time share all corresponding places. More formally, let's say there is a group of *x* teams that solved the same number of problems with the same penalty time. Let's also say that *y* teams performed better than the teams from this group. In this case all teams from the group share places *y*<=+<=1, *y*<=+<=2, ..., *y*<=+<=*x*. The teams that performed worse than the teams from this group, get their places in the results table starting from the *y*<=+<=*x*<=+<=1-th place. Your task is to count what number of teams from the given list shared the *k*-th place. Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=50). Then *n* lines contain the description of the teams: the *i*-th line contains two integers *p**i* and *t**i* (1<=≤<=*p**i*,<=*t**i*<=≤<=50) — the number of solved problems and the total penalty time of the *i*-th team, correspondingly. All numbers in the lines are separated by spaces. Output Specification: In the only line print the sought number of teams that got the *k*-th place in the final results' table. Demo Input: ['7 2\n4 10\n4 10\n4 10\n3 20\n2 1\n2 1\n1 10\n', '5 4\n3 1\n3 1\n5 3\n3 1\n3 1\n'] Demo Output: ['3\n', '4\n'] Note: The final results' table for the first sample is: - 1-3 places — 4 solved problems, the penalty time equals 10 - 4 place — 3 solved problems, the penalty time equals 20 - 5-6 places — 2 solved problems, the penalty time equals 1 - 7 place — 1 solved problem, the penalty time equals 10 The table shows that the second place is shared by the teams that solved 4 problems with penalty time 10. There are 3 such teams. The final table for the second sample is: - 1 place — 5 solved problems, the penalty time equals 3 - 2-5 places — 3 solved problems, the penalty time equals 1 The table shows that the fourth place is shared by the teams that solved 3 problems with penalty time 1. There are 4 such teams.
```python from collections import Counter from itertools import accumulate testcases = [] n, k = [int(x) for x in input().split(' ')] for _ in range(n): points = [int(x) for x in input().split(' ')] testcases.append(tuple(points)) # # print(testcases) # points_approx = [] cnt = Counter(testcases) sorted_scores = sorted(set(testcases), key =lambda x: (x[0], -x[1]), reverse=True) # print(sorted_scores) positions_ord = [cnt[sorted_score] for sorted_score in sorted_scores] acc = list(accumulate(positions_ord)) ans_i = 0 while k > acc[ans_i]: ans_i += 1 print(positions_ord[ans_i]) ```
3
911
B
Two Cakes
PROGRAMMING
1,200
[ "binary search", "brute force", "implementation" ]
null
null
It's New Year's Eve soon, so Ivan decided it's high time he started setting the table. Ivan has bought two cakes and cut them into pieces: the first cake has been cut into *a* pieces, and the second one — into *b* pieces. Ivan knows that there will be *n* people at the celebration (including himself), so Ivan has set *n* plates for the cakes. Now he is thinking about how to distribute the cakes between the plates. Ivan wants to do it in such a way that all following conditions are met: 1. Each piece of each cake is put on some plate; 1. Each plate contains at least one piece of cake; 1. No plate contains pieces of both cakes. To make his guests happy, Ivan wants to distribute the cakes in such a way that the minimum number of pieces on the plate is maximized. Formally, Ivan wants to know the maximum possible number *x* such that he can distribute the cakes according to the aforementioned conditions, and each plate will contain at least *x* pieces of cake. Help Ivan to calculate this number *x*!
The first line contains three integers *n*, *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100, 2<=≤<=*n*<=≤<=*a*<=+<=*b*) — the number of plates, the number of pieces of the first cake, and the number of pieces of the second cake, respectively.
Print the maximum possible number *x* such that Ivan can distribute the cake in such a way that each plate will contain at least *x* pieces of cake.
[ "5 2 3\n", "4 7 10\n" ]
[ "1\n", "3\n" ]
In the first example there is only one way to distribute cakes to plates, all of them will have 1 cake on it. In the second example you can have two plates with 3 and 4 pieces of the first cake and two plates both with 5 pieces of the second cake. Minimal number of pieces is 3.
0
[ { "input": "5 2 3", "output": "1" }, { "input": "4 7 10", "output": "3" }, { "input": "100 100 100", "output": "2" }, { "input": "10 100 3", "output": "3" }, { "input": "2 9 29", "output": "9" }, { "input": "4 6 10", "output": "3" }, { "input": "3 70 58", "output": "35" }, { "input": "5 7 10", "output": "3" }, { "input": "5 30 22", "output": "10" }, { "input": "5 5 6", "output": "2" }, { "input": "2 4 3", "output": "3" }, { "input": "10 10 31", "output": "3" }, { "input": "2 1 1", "output": "1" }, { "input": "10 98 99", "output": "19" }, { "input": "4 10 16", "output": "5" }, { "input": "11 4 8", "output": "1" }, { "input": "5 10 14", "output": "4" }, { "input": "6 7 35", "output": "7" }, { "input": "5 6 7", "output": "2" }, { "input": "4 15 3", "output": "3" }, { "input": "7 48 77", "output": "16" }, { "input": "4 4 10", "output": "3" }, { "input": "4 7 20", "output": "6" }, { "input": "5 2 8", "output": "2" }, { "input": "3 2 3", "output": "1" }, { "input": "14 95 1", "output": "1" }, { "input": "99 82 53", "output": "1" }, { "input": "10 71 27", "output": "9" }, { "input": "5 7 8", "output": "2" }, { "input": "11 77 77", "output": "12" }, { "input": "10 5 28", "output": "3" }, { "input": "7 3 12", "output": "2" }, { "input": "10 15 17", "output": "3" }, { "input": "7 7 7", "output": "1" }, { "input": "4 11 18", "output": "6" }, { "input": "3 3 4", "output": "2" }, { "input": "9 2 10", "output": "1" }, { "input": "100 90 20", "output": "1" }, { "input": "3 2 2", "output": "1" }, { "input": "12 45 60", "output": "8" }, { "input": "3 94 79", "output": "47" }, { "input": "41 67 34", "output": "2" }, { "input": "9 3 23", "output": "2" }, { "input": "10 20 57", "output": "7" }, { "input": "55 27 30", "output": "1" }, { "input": "100 100 10", "output": "1" }, { "input": "20 8 70", "output": "3" }, { "input": "3 3 3", "output": "1" }, { "input": "4 9 15", "output": "5" }, { "input": "3 1 3", "output": "1" }, { "input": "2 94 94", "output": "94" }, { "input": "5 3 11", "output": "2" }, { "input": "4 3 2", "output": "1" }, { "input": "12 12 100", "output": "9" }, { "input": "6 75 91", "output": "25" }, { "input": "3 4 3", "output": "2" }, { "input": "3 2 5", "output": "2" }, { "input": "6 5 15", "output": "3" }, { "input": "4 3 6", "output": "2" }, { "input": "3 9 9", "output": "4" }, { "input": "26 93 76", "output": "6" }, { "input": "41 34 67", "output": "2" }, { "input": "6 12 6", "output": "3" }, { "input": "5 20 8", "output": "5" }, { "input": "2 1 3", "output": "1" }, { "input": "35 66 99", "output": "4" }, { "input": "30 7 91", "output": "3" }, { "input": "5 22 30", "output": "10" }, { "input": "8 19 71", "output": "10" }, { "input": "3 5 6", "output": "3" }, { "input": "5 3 8", "output": "2" }, { "input": "2 4 2", "output": "2" }, { "input": "4 3 7", "output": "2" }, { "input": "5 20 10", "output": "5" }, { "input": "5 100 50", "output": "25" }, { "input": "6 3 10", "output": "2" }, { "input": "2 90 95", "output": "90" }, { "input": "4 8 6", "output": "3" }, { "input": "6 10 3", "output": "2" }, { "input": "3 3 5", "output": "2" }, { "input": "5 33 33", "output": "11" }, { "input": "5 5 8", "output": "2" }, { "input": "19 24 34", "output": "3" }, { "input": "5 5 12", "output": "3" }, { "input": "8 7 10", "output": "2" }, { "input": "5 56 35", "output": "17" }, { "input": "4 3 5", "output": "1" }, { "input": "18 100 50", "output": "8" }, { "input": "5 6 8", "output": "2" }, { "input": "5 98 100", "output": "33" }, { "input": "6 5 8", "output": "2" }, { "input": "3 40 80", "output": "40" }, { "input": "4 8 11", "output": "4" }, { "input": "66 100 99", "output": "3" }, { "input": "17 100 79", "output": "10" }, { "input": "3 2 10", "output": "2" }, { "input": "99 100 99", "output": "2" }, { "input": "21 100 5", "output": "5" }, { "input": "3 10 2", "output": "2" }, { "input": "4 100 63", "output": "33" }, { "input": "2 2 10", "output": "2" }, { "input": "5 94 79", "output": "31" }, { "input": "4 12 5", "output": "4" }, { "input": "5 5 40", "output": "5" }, { "input": "99 99 99", "output": "1" }, { "input": "8 97 44", "output": "16" }, { "input": "11 4 10", "output": "1" }, { "input": "6 3 3", "output": "1" }, { "input": "7 3 4", "output": "1" }, { "input": "8 4 4", "output": "1" }, { "input": "9 4 5", "output": "1" }, { "input": "12 6 6", "output": "1" }, { "input": "4 48 89", "output": "29" }, { "input": "8 3 6", "output": "1" }, { "input": "4 6 3", "output": "2" }, { "input": "5 5 1", "output": "1" }, { "input": "11 6 5", "output": "1" }, { "input": "4 5 4", "output": "2" }, { "input": "6 6 4", "output": "1" }, { "input": "2 1 2", "output": "1" }, { "input": "4 1 3", "output": "1" }, { "input": "3 3 1", "output": "1" }, { "input": "9 4 6", "output": "1" }, { "input": "6 5 6", "output": "1" }, { "input": "2 2 3", "output": "2" }, { "input": "4 5 1", "output": "1" }, { "input": "13 6 7", "output": "1" }, { "input": "14 7 7", "output": "1" }, { "input": "12 97 13", "output": "8" }, { "input": "4 2 9", "output": "2" }, { "input": "10 20 59", "output": "7" }, { "input": "12 34 56", "output": "7" }, { "input": "4 5 9", "output": "3" }, { "input": "2 2 2", "output": "2" }, { "input": "4 66 41", "output": "22" } ]
1,630,435,668
2,147,483,647
Python 3
OK
TESTS
135
78
6,963,200
n,a,b=map(int,input().split()) if a+b==n: print(1) else: p=0 a,b=min(a,b),max(a,b) for i in range(1,n//2+1): r=min(a//i,b//(n-i)) p=max(p,r) print(p)
Title: Two Cakes Time Limit: None seconds Memory Limit: None megabytes Problem Description: It's New Year's Eve soon, so Ivan decided it's high time he started setting the table. Ivan has bought two cakes and cut them into pieces: the first cake has been cut into *a* pieces, and the second one — into *b* pieces. Ivan knows that there will be *n* people at the celebration (including himself), so Ivan has set *n* plates for the cakes. Now he is thinking about how to distribute the cakes between the plates. Ivan wants to do it in such a way that all following conditions are met: 1. Each piece of each cake is put on some plate; 1. Each plate contains at least one piece of cake; 1. No plate contains pieces of both cakes. To make his guests happy, Ivan wants to distribute the cakes in such a way that the minimum number of pieces on the plate is maximized. Formally, Ivan wants to know the maximum possible number *x* such that he can distribute the cakes according to the aforementioned conditions, and each plate will contain at least *x* pieces of cake. Help Ivan to calculate this number *x*! Input Specification: The first line contains three integers *n*, *a* and *b* (1<=≤<=*a*,<=*b*<=≤<=100, 2<=≤<=*n*<=≤<=*a*<=+<=*b*) — the number of plates, the number of pieces of the first cake, and the number of pieces of the second cake, respectively. Output Specification: Print the maximum possible number *x* such that Ivan can distribute the cake in such a way that each plate will contain at least *x* pieces of cake. Demo Input: ['5 2 3\n', '4 7 10\n'] Demo Output: ['1\n', '3\n'] Note: In the first example there is only one way to distribute cakes to plates, all of them will have 1 cake on it. In the second example you can have two plates with 3 and 4 pieces of the first cake and two plates both with 5 pieces of the second cake. Minimal number of pieces is 3.
```python n,a,b=map(int,input().split()) if a+b==n: print(1) else: p=0 a,b=min(a,b),max(a,b) for i in range(1,n//2+1): r=min(a//i,b//(n-i)) p=max(p,r) print(p) ```
3
673
A
Bear and Game
PROGRAMMING
800
[ "implementation" ]
null
null
Bear Limak likes watching sports on TV. He is going to watch a game today. The game lasts 90 minutes and there are no breaks. Each minute can be either interesting or boring. If 15 consecutive minutes are boring then Limak immediately turns TV off. You know that there will be *n* interesting minutes *t*1,<=*t*2,<=...,<=*t**n*. Your task is to calculate for how many minutes Limak will watch the game.
The first line of the input contains one integer *n* (1<=≤<=*n*<=≤<=90) — the number of interesting minutes. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t*1<=&lt;<=*t*2<=&lt;<=... *t**n*<=≤<=90), given in the increasing order.
Print the number of minutes Limak will watch the game.
[ "3\n7 20 88\n", "9\n16 20 30 40 50 60 70 80 90\n", "9\n15 20 30 40 50 60 70 80 90\n" ]
[ "35\n", "15\n", "90\n" ]
In the first sample, minutes 21, 22, ..., 35 are all boring and thus Limak will turn TV off immediately after the 35-th minute. So, he would watch the game for 35 minutes. In the second sample, the first 15 minutes are boring. In the third sample, there are no consecutive 15 boring minutes. So, Limak will watch the whole game.
500
[ { "input": "3\n7 20 88", "output": "35" }, { "input": "9\n16 20 30 40 50 60 70 80 90", "output": "15" }, { "input": "9\n15 20 30 40 50 60 70 80 90", "output": "90" }, { "input": "30\n6 11 12 15 22 24 30 31 32 33 34 35 40 42 44 45 47 50 53 54 57 58 63 67 75 77 79 81 83 88", "output": "90" }, { "input": "60\n1 2 4 5 6 7 11 14 16 18 20 21 22 23 24 25 26 33 34 35 36 37 38 39 41 42 43 44 46 47 48 49 52 55 56 57 58 59 60 61 63 64 65 67 68 70 71 72 73 74 75 77 78 80 82 83 84 85 86 88", "output": "90" }, { "input": "90\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90", "output": "90" }, { "input": "1\n1", "output": "16" }, { "input": "5\n15 30 45 60 75", "output": "90" }, { "input": "6\n14 29 43 59 70 74", "output": "58" }, { "input": "1\n15", "output": "30" }, { "input": "1\n16", "output": "15" }, { "input": "14\n14 22 27 31 35 44 46 61 62 69 74 79 88 89", "output": "90" }, { "input": "76\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90", "output": "90" }, { "input": "1\n90", "output": "15" }, { "input": "6\n13 17 32 47 60 66", "output": "81" }, { "input": "84\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84", "output": "90" }, { "input": "9\n6 20 27 28 40 53 59 70 85", "output": "90" }, { "input": "12\n14 22 27 31 35 44 62 69 74 79 88 89", "output": "59" }, { "input": "5\n15 30 45 60 74", "output": "89" }, { "input": "72\n3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89", "output": "54" }, { "input": "8\n1 16 30 31 32 33 34 50", "output": "49" }, { "input": "12\n1 3 6 10 15 21 28 36 45 55 66 78", "output": "90" }, { "input": "25\n1 2 3 4 5 6 7 8 9 10 11 23 36 50 65 81 82 83 84 85 86 87 88 89 90", "output": "80" }, { "input": "8\n5 17 20 35 42 53 67 76", "output": "90" }, { "input": "9\n15 28 39 48 55 60 63 64 74", "output": "89" }, { "input": "10\n15 28 39 48 55 60 63 64 74 82", "output": "90" }, { "input": "2\n1 18", "output": "16" }, { "input": "9\n10 20 30 40 50 60 70 80 84", "output": "90" }, { "input": "2\n16 50", "output": "15" }, { "input": "6\n15 30 45 60 75 84", "output": "90" }, { "input": "8\n15 20 30 40 50 60 73 83", "output": "90" }, { "input": "8\n10 20 30 40 50 60 70 80", "output": "90" }, { "input": "3\n1 20 90", "output": "16" }, { "input": "6\n15 30 45 60 74 89", "output": "90" } ]
1,541,092,370
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
#include <bits/stdc++.h> using namespace std; int main(){ int n; cin >> n; vector<int> t(n + 2); t[0] = 0; for (int i = 1; i <= n; i++) { cin >> t[i]; } t[n + 1] = 90; for (int i = 1; i <= n + 1; i++) { int duration = t[i] - t[i - 1]; if (duration > 15) { int ans = min(t[i - 1] + 15, 90); cout << ans << '\n'; } } cout << "90\n"; }
Title: Bear and Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bear Limak likes watching sports on TV. He is going to watch a game today. The game lasts 90 minutes and there are no breaks. Each minute can be either interesting or boring. If 15 consecutive minutes are boring then Limak immediately turns TV off. You know that there will be *n* interesting minutes *t*1,<=*t*2,<=...,<=*t**n*. Your task is to calculate for how many minutes Limak will watch the game. Input Specification: The first line of the input contains one integer *n* (1<=≤<=*n*<=≤<=90) — the number of interesting minutes. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t*1<=&lt;<=*t*2<=&lt;<=... *t**n*<=≤<=90), given in the increasing order. Output Specification: Print the number of minutes Limak will watch the game. Demo Input: ['3\n7 20 88\n', '9\n16 20 30 40 50 60 70 80 90\n', '9\n15 20 30 40 50 60 70 80 90\n'] Demo Output: ['35\n', '15\n', '90\n'] Note: In the first sample, minutes 21, 22, ..., 35 are all boring and thus Limak will turn TV off immediately after the 35-th minute. So, he would watch the game for 35 minutes. In the second sample, the first 15 minutes are boring. In the third sample, there are no consecutive 15 boring minutes. So, Limak will watch the whole game.
```python #include <bits/stdc++.h> using namespace std; int main(){ int n; cin >> n; vector<int> t(n + 2); t[0] = 0; for (int i = 1; i <= n; i++) { cin >> t[i]; } t[n + 1] = 90; for (int i = 1; i <= n + 1; i++) { int duration = t[i] - t[i - 1]; if (duration > 15) { int ans = min(t[i - 1] + 15, 90); cout << ans << '\n'; } } cout << "90\n"; } ```
-1
474
B
Worms
PROGRAMMING
1,200
[ "binary search", "implementation" ]
null
null
It is lunch time for Mole. His friend, Marmot, prepared him a nice game for lunch. Marmot brought Mole *n* ordered piles of worms such that *i*-th pile contains *a**i* worms. He labeled all these worms with consecutive integers: worms in first pile are labeled with numbers 1 to *a*1, worms in second pile are labeled with numbers *a*1<=+<=1 to *a*1<=+<=*a*2 and so on. See the example for a better understanding. Mole can't eat all the worms (Marmot brought a lot) and, as we all know, Mole is blind, so Marmot tells him the labels of the best juicy worms. Marmot will only give Mole a worm if Mole says correctly in which pile this worm is contained. Poor Mole asks for your help. For all juicy worms said by Marmot, tell Mole the correct answers.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105), the number of piles. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=103, *a*1<=+<=*a*2<=+<=...<=+<=*a**n*<=≤<=106), where *a**i* is the number of worms in the *i*-th pile. The third line contains single integer *m* (1<=≤<=*m*<=≤<=105), the number of juicy worms said by Marmot. The fourth line contains *m* integers *q*1,<=*q*2,<=...,<=*q**m* (1<=≤<=*q**i*<=≤<=*a*1<=+<=*a*2<=+<=...<=+<=*a**n*), the labels of the juicy worms.
Print *m* lines to the standard output. The *i*-th line should contain an integer, representing the number of the pile where the worm labeled with the number *q**i* is.
[ "5\n2 7 3 4 9\n3\n1 25 11\n" ]
[ "1\n5\n3\n" ]
For the sample input: - The worms with labels from [1, 2] are in the first pile. - The worms with labels from [3, 9] are in the second pile. - The worms with labels from [10, 12] are in the third pile. - The worms with labels from [13, 16] are in the fourth pile. - The worms with labels from [17, 25] are in the fifth pile.
1,000
[ { "input": "5\n2 7 3 4 9\n3\n1 25 11", "output": "1\n5\n3" } ]
1,676,002,948
2,147,483,647
PyPy 3-64
TIME_LIMIT_EXCEEDED
TESTS
2
1,000
13,516,800
n=int(input()) a=list(map(int,input().split())) m=int(input()) q=list(map(int,input().split())) k=0 l=[] for i in range(n): b=[] for j in range(a[i]): b.append(k+1) k+=1 l.append(b) for i in range(m): for j in range(n): if q[i] in l[j]: print(j+1) break
Title: Worms Time Limit: None seconds Memory Limit: None megabytes Problem Description: It is lunch time for Mole. His friend, Marmot, prepared him a nice game for lunch. Marmot brought Mole *n* ordered piles of worms such that *i*-th pile contains *a**i* worms. He labeled all these worms with consecutive integers: worms in first pile are labeled with numbers 1 to *a*1, worms in second pile are labeled with numbers *a*1<=+<=1 to *a*1<=+<=*a*2 and so on. See the example for a better understanding. Mole can't eat all the worms (Marmot brought a lot) and, as we all know, Mole is blind, so Marmot tells him the labels of the best juicy worms. Marmot will only give Mole a worm if Mole says correctly in which pile this worm is contained. Poor Mole asks for your help. For all juicy worms said by Marmot, tell Mole the correct answers. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105), the number of piles. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=103, *a*1<=+<=*a*2<=+<=...<=+<=*a**n*<=≤<=106), where *a**i* is the number of worms in the *i*-th pile. The third line contains single integer *m* (1<=≤<=*m*<=≤<=105), the number of juicy worms said by Marmot. The fourth line contains *m* integers *q*1,<=*q*2,<=...,<=*q**m* (1<=≤<=*q**i*<=≤<=*a*1<=+<=*a*2<=+<=...<=+<=*a**n*), the labels of the juicy worms. Output Specification: Print *m* lines to the standard output. The *i*-th line should contain an integer, representing the number of the pile where the worm labeled with the number *q**i* is. Demo Input: ['5\n2 7 3 4 9\n3\n1 25 11\n'] Demo Output: ['1\n5\n3\n'] Note: For the sample input: - The worms with labels from [1, 2] are in the first pile. - The worms with labels from [3, 9] are in the second pile. - The worms with labels from [10, 12] are in the third pile. - The worms with labels from [13, 16] are in the fourth pile. - The worms with labels from [17, 25] are in the fifth pile.
```python n=int(input()) a=list(map(int,input().split())) m=int(input()) q=list(map(int,input().split())) k=0 l=[] for i in range(n): b=[] for j in range(a[i]): b.append(k+1) k+=1 l.append(b) for i in range(m): for j in range(n): if q[i] in l[j]: print(j+1) break ```
0
0
none
none
none
0
[ "none" ]
null
null
The mobile application store has a new game called "Subway Roller". The protagonist of the game Philip is located in one end of the tunnel and wants to get out of the other one. The tunnel is a rectangular field consisting of three rows and *n* columns. At the beginning of the game the hero is in some cell of the leftmost column. Some number of trains rides towards the hero. Each train consists of two or more neighbouring cells in some row of the field. All trains are moving from right to left at a speed of two cells per second, and the hero runs from left to right at the speed of one cell per second. For simplicity, the game is implemented so that the hero and the trains move in turns. First, the hero moves one cell to the right, then one square up or down, or stays idle. Then all the trains move twice simultaneously one cell to the left. Thus, in one move, Philip definitely makes a move to the right and can move up or down. If at any point, Philip is in the same cell with a train, he loses. If the train reaches the left column, it continues to move as before, leaving the tunnel. Your task is to answer the question whether there is a sequence of movements of Philip, such that he would be able to get to the rightmost column.
Each test contains from one to ten sets of the input data. The first line of the test contains a single integer *t* (1<=≤<=*t*<=≤<=10 for pretests and tests or *t*<==<=1 for hacks; see the Notes section for details) — the number of sets. Then follows the description of *t* sets of the input data. The first line of the description of each set contains two integers *n*,<=*k* (2<=≤<=*n*<=≤<=100,<=1<=≤<=*k*<=≤<=26) — the number of columns on the field and the number of trains. Each of the following three lines contains the sequence of *n* character, representing the row of the field where the game is on. Philip's initial position is marked as 's', he is in the leftmost column. Each of the *k* trains is marked by some sequence of identical uppercase letters of the English alphabet, located in one line. Distinct trains are represented by distinct letters. Character '.' represents an empty cell, that is, the cell that doesn't contain either Philip or the trains.
For each set of the input data print on a single line word YES, if it is possible to win the game and word NO otherwise.
[ "2\n16 4\n...AAAAA........\ns.BBB......CCCCC\n........DDDDD...\n16 4\n...AAAAA........\ns.BBB....CCCCC..\n.......DDDDD....\n", "2\n10 4\ns.ZZ......\n.....AAABB\n.YYYYYY...\n10 4\ns.ZZ......\n....AAAABB\n.YYYYYY...\n" ]
[ "YES\nNO\n", "YES\nNO\n" ]
In the first set of the input of the first sample Philip must first go forward and go down to the third row of the field, then go only forward, then go forward and climb to the second row, go forward again and go up to the first row. After that way no train blocks Philip's path, so he can go straight to the end of the tunnel. Note that in this problem the challenges are restricted to tests that contain only one testset.
0
[]
1,445,175,439
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
5
186
5,222,400
test = int(input()) a = [['.' for i in range(100)] for j in range(3)] for testcase in range(test): n, k = map(int, input().split()) used = [[False for i in range(n)] for j in range(3)] train = [0, 0, 0] train[1] = [] train[2]= [] train[0] = [] for i in range(3): p = input() for j in range(n): a[i][j] = p[j] for i in range(3): j = 0 while j < n: if a[i][j] != '.' and a[i][j] != 's': ind1 = j while j < n and a[i][ind1] == a[i][j]: j += 1 ind2 = j - 1 train[i].append([ind1, ind2]) j -= 1 j += 1 if a[0][0] == 's': used[0][0] = True elif a[1][0] == 's': used[1][0] = True else: used[2][0] = True for j in range(1, n): for i in range(3): if i == 0: if not used[i][j - 1] and not used[i + 1][j - 1]: used[i][j] = False else: flag = True for k in range(len(train[0])): if not ((train[0][k][0] > 3 * j or train[0][k][1] < 3 * j) and (train[0][k][0] > 3 * j - 2 or train[0][k][1] < 3 * j - 2)): used[i][j] = False flag = False break if not used[i][j - 1] and used[i + 1][j - 1]: for k in range(len(train[1])): if not (train[1][k][0] > 3 * j - 2 or train[1][k][1] < 3 * j - 2): flag = False if flag: used[i][j] = True if i == 1: if not used[i][j - 1] and not used[i - 1][j - 1] and not used[i + 1][j - 1]: used[i][j] = False else: flag = True for k in range(len(train[1])): if not ((train[1][k][0] > 3 * j or train[1][k][1] < 3 * j) and (train[1][k][0] > 3 * j - 2 or train[1][k][1] < 3 * j - 2)): used[i][j] = False flag = False break if not used[i][j - 1] and used[i - 1][j - 1]: for k in range(len(train[0])): if not (train[0][k][0] > 3 * j - 2 or train[0][k][1] < 3 * j - 2): flag = False if flag: used[i][j] = True if not used[i][j - 1] and used[i + 1][j - 1]: for k in range(len(train[2])): if not (train[2][k][0] > 3 * j - 2 or train[2][k][1] < 3 * j - 2): flag = False if flag: used[i][j] = True if i == 2: if not used[i][j - 1] and not used[i - 1][j - 1]: used[i][j] = False else: flag = True for k in range(len(train[2])): if not ((train[2][k][0] > 3 * j or train[2][k][1] < 3 * j) and (train[2][k][0] > 3 * j - 2 or train[2][k][1] < 3 * j - 2)): used[i][j] = False flag = False break if not used[i][j - 1] and used[i - 1][j - 1]: for k in range(len(train[1])): if not (train[1][k][0] > 3 * j - 2 or train[1][k][1] < 3 * j - 2): flag = False if flag: used[i][j] = True if used[0][n - 1] == True or used[1][n - 1] == True or used[2][n - 1] == True: print('YES') else: print('NO')
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: The mobile application store has a new game called "Subway Roller". The protagonist of the game Philip is located in one end of the tunnel and wants to get out of the other one. The tunnel is a rectangular field consisting of three rows and *n* columns. At the beginning of the game the hero is in some cell of the leftmost column. Some number of trains rides towards the hero. Each train consists of two or more neighbouring cells in some row of the field. All trains are moving from right to left at a speed of two cells per second, and the hero runs from left to right at the speed of one cell per second. For simplicity, the game is implemented so that the hero and the trains move in turns. First, the hero moves one cell to the right, then one square up or down, or stays idle. Then all the trains move twice simultaneously one cell to the left. Thus, in one move, Philip definitely makes a move to the right and can move up or down. If at any point, Philip is in the same cell with a train, he loses. If the train reaches the left column, it continues to move as before, leaving the tunnel. Your task is to answer the question whether there is a sequence of movements of Philip, such that he would be able to get to the rightmost column. Input Specification: Each test contains from one to ten sets of the input data. The first line of the test contains a single integer *t* (1<=≤<=*t*<=≤<=10 for pretests and tests or *t*<==<=1 for hacks; see the Notes section for details) — the number of sets. Then follows the description of *t* sets of the input data. The first line of the description of each set contains two integers *n*,<=*k* (2<=≤<=*n*<=≤<=100,<=1<=≤<=*k*<=≤<=26) — the number of columns on the field and the number of trains. Each of the following three lines contains the sequence of *n* character, representing the row of the field where the game is on. Philip's initial position is marked as 's', he is in the leftmost column. Each of the *k* trains is marked by some sequence of identical uppercase letters of the English alphabet, located in one line. Distinct trains are represented by distinct letters. Character '.' represents an empty cell, that is, the cell that doesn't contain either Philip or the trains. Output Specification: For each set of the input data print on a single line word YES, if it is possible to win the game and word NO otherwise. Demo Input: ['2\n16 4\n...AAAAA........\ns.BBB......CCCCC\n........DDDDD...\n16 4\n...AAAAA........\ns.BBB....CCCCC..\n.......DDDDD....\n', '2\n10 4\ns.ZZ......\n.....AAABB\n.YYYYYY...\n10 4\ns.ZZ......\n....AAAABB\n.YYYYYY...\n'] Demo Output: ['YES\nNO\n', 'YES\nNO\n'] Note: In the first set of the input of the first sample Philip must first go forward and go down to the third row of the field, then go only forward, then go forward and climb to the second row, go forward again and go up to the first row. After that way no train blocks Philip's path, so he can go straight to the end of the tunnel. Note that in this problem the challenges are restricted to tests that contain only one testset.
```python test = int(input()) a = [['.' for i in range(100)] for j in range(3)] for testcase in range(test): n, k = map(int, input().split()) used = [[False for i in range(n)] for j in range(3)] train = [0, 0, 0] train[1] = [] train[2]= [] train[0] = [] for i in range(3): p = input() for j in range(n): a[i][j] = p[j] for i in range(3): j = 0 while j < n: if a[i][j] != '.' and a[i][j] != 's': ind1 = j while j < n and a[i][ind1] == a[i][j]: j += 1 ind2 = j - 1 train[i].append([ind1, ind2]) j -= 1 j += 1 if a[0][0] == 's': used[0][0] = True elif a[1][0] == 's': used[1][0] = True else: used[2][0] = True for j in range(1, n): for i in range(3): if i == 0: if not used[i][j - 1] and not used[i + 1][j - 1]: used[i][j] = False else: flag = True for k in range(len(train[0])): if not ((train[0][k][0] > 3 * j or train[0][k][1] < 3 * j) and (train[0][k][0] > 3 * j - 2 or train[0][k][1] < 3 * j - 2)): used[i][j] = False flag = False break if not used[i][j - 1] and used[i + 1][j - 1]: for k in range(len(train[1])): if not (train[1][k][0] > 3 * j - 2 or train[1][k][1] < 3 * j - 2): flag = False if flag: used[i][j] = True if i == 1: if not used[i][j - 1] and not used[i - 1][j - 1] and not used[i + 1][j - 1]: used[i][j] = False else: flag = True for k in range(len(train[1])): if not ((train[1][k][0] > 3 * j or train[1][k][1] < 3 * j) and (train[1][k][0] > 3 * j - 2 or train[1][k][1] < 3 * j - 2)): used[i][j] = False flag = False break if not used[i][j - 1] and used[i - 1][j - 1]: for k in range(len(train[0])): if not (train[0][k][0] > 3 * j - 2 or train[0][k][1] < 3 * j - 2): flag = False if flag: used[i][j] = True if not used[i][j - 1] and used[i + 1][j - 1]: for k in range(len(train[2])): if not (train[2][k][0] > 3 * j - 2 or train[2][k][1] < 3 * j - 2): flag = False if flag: used[i][j] = True if i == 2: if not used[i][j - 1] and not used[i - 1][j - 1]: used[i][j] = False else: flag = True for k in range(len(train[2])): if not ((train[2][k][0] > 3 * j or train[2][k][1] < 3 * j) and (train[2][k][0] > 3 * j - 2 or train[2][k][1] < 3 * j - 2)): used[i][j] = False flag = False break if not used[i][j - 1] and used[i - 1][j - 1]: for k in range(len(train[1])): if not (train[1][k][0] > 3 * j - 2 or train[1][k][1] < 3 * j - 2): flag = False if flag: used[i][j] = True if used[0][n - 1] == True or used[1][n - 1] == True or used[2][n - 1] == True: print('YES') else: print('NO') ```
0
888
B
Buggy Robot
PROGRAMMING
1,000
[ "greedy" ]
null
null
Ivan has a robot which is situated on an infinite grid. Initially the robot is standing in the starting cell (0,<=0). The robot can process commands. There are four types of commands it can perform: - U — move from the cell (*x*,<=*y*) to (*x*,<=*y*<=+<=1); - D — move from (*x*,<=*y*) to (*x*,<=*y*<=-<=1); - L — move from (*x*,<=*y*) to (*x*<=-<=1,<=*y*); - R — move from (*x*,<=*y*) to (*x*<=+<=1,<=*y*). Ivan entered a sequence of *n* commands, and the robot processed it. After this sequence the robot ended up in the starting cell (0,<=0), but Ivan doubts that the sequence is such that after performing it correctly the robot ends up in the same cell. He thinks that some commands were ignored by robot. To acknowledge whether the robot is severely bugged, he needs to calculate the maximum possible number of commands that were performed correctly. Help Ivan to do the calculations!
The first line contains one number *n* — the length of sequence of commands entered by Ivan (1<=≤<=*n*<=≤<=100). The second line contains the sequence itself — a string consisting of *n* characters. Each character can be U, D, L or R.
Print the maximum possible number of commands from the sequence the robot could perform to end up in the starting cell.
[ "4\nLDUR\n", "5\nRRRUU\n", "6\nLLRRRR\n" ]
[ "4\n", "0\n", "4\n" ]
none
0
[ { "input": "4\nLDUR", "output": "4" }, { "input": "5\nRRRUU", "output": "0" }, { "input": "6\nLLRRRR", "output": "4" }, { "input": "88\nLLUUULRDRRURDDLURRLRDRLLRULRUUDDLLLLRRDDURDURRLDURRLDRRRUULDDLRRRDDRRLUULLURDURUDDDDDLDR", "output": "76" }, { "input": "89\nLDLLLDRDUDURRRRRUDULDDDLLUDLRLRLRLDLDUULRDUDLRRDLUDLURRDDRRDLDUDUUURUUUDRLUDUDLURDLDLLDDU", "output": "80" }, { "input": "90\nRRRDUULLLRDUUDDRLDLRLUDURDRDUUURUURDDRRRURLDDDUUDRLLLULURDRDRURLDRRRRUULDULDDLLLRRLRDLLLLR", "output": "84" }, { "input": "91\nRLDRLRRLLDLULULLURULLRRULUDUULLUDULDUULURUDRUDUURDULDUDDUUUDRRUUDLLRULRULURLDRDLDRURLLLRDDD", "output": "76" }, { "input": "92\nRLRDDLULRLLUURRDDDLDDDLDDUURRRULLRDULDULLLUUULDUDLRLRRDRDRDDULDRLUDRDULDRURUDUULLRDRRLLDRLRR", "output": "86" }, { "input": "93\nRLLURLULRURDDLUURLUDDRDLUURLRDLRRRDUULLRDRRLRLDURRDLLRDDLLLDDDLDRRURLLDRUDULDDRRULRRULRLDRDLR", "output": "84" }, { "input": "94\nRDULDDDLULRDRUDRUUDUUDRRRULDRRUDURUULRDUUDLULLLUDURRDRDLUDRULRRRULUURUDDDDDUDLLRDLDRLLRUUURLUL", "output": "86" }, { "input": "95\nRDLUUULLUURDDRLDLLRRRULRLRDULULRULRUDURLULDDDRLURLDRULDUDUUULLRDDURUULULLDDLDRDRLLLURLRDLLDDDDU", "output": "86" }, { "input": "96\nRDDRLRLLDDULRLRURUDLRLDUDRURLLUUDLLURDLRRUURDRRUDRURLLDLLRDURDURLRLUDURULLLRDUURULUUULRRURRDLURL", "output": "84" }, { "input": "97\nRURDDLRLLRULUDURDLRLLUUDURRLLUDLLLDUDRUULDRUUURURULRDLDRRLLUUUDLLLDDLLLLRLLDUDRRDLLUDLRURUDULRLUR", "output": "82" }, { "input": "98\nRUDURLULLDDLLRDLLRDDLLLLRLDDDDRRRDDRRURLDRLLRUUUDLUUUDDDUDRUURLURUUDUUDRULRRULLRRLRULLULDLUURLULRD", "output": "92" }, { "input": "99\nRRULLDULRRDRULLDUDRUDDDRLLUUDRDDUDURLDDRUUDRRUUURRRURDDLDUURDLRLURRDDLUDDLUDURDRUDDURLURURLRUDRURLD", "output": "86" }, { "input": "100\nUDRLRRLLRRLRRRDDLLDDDLULLDDLURUURUULUDDDRDDLLRDLLUURLRDRLRRLRLLLULDUDDUURRLRDULDRDURRRRRRULDRRDLDRRL", "output": "88" }, { "input": "1\nU", "output": "0" }, { "input": "5\nUUULD", "output": "2" }, { "input": "1\nD", "output": "0" }, { "input": "5\nURLUL", "output": "2" }, { "input": "5\nDDDRU", "output": "2" }, { "input": "2\nLR", "output": "2" }, { "input": "8\nDDRDLDUR", "output": "4" }, { "input": "6\nLLLLUD", "output": "2" }, { "input": "13\nRRRLLLLLLLLLL", "output": "6" } ]
1,598,463,530
2,147,483,647
Python 3
OK
TESTS
25
109
0
n = int(input()) s = input() l_count = 0 r_count = 0 u_count = 0 d_count = 0 for i in s: if i == "L": l_count+=1 elif i == "R": r_count+=1 elif i == "U": u_count+=1 else: d_count+=1 count = 0 count+=abs(l_count - r_count) count+=abs(u_count - d_count) print(n - count)
Title: Buggy Robot Time Limit: None seconds Memory Limit: None megabytes Problem Description: Ivan has a robot which is situated on an infinite grid. Initially the robot is standing in the starting cell (0,<=0). The robot can process commands. There are four types of commands it can perform: - U — move from the cell (*x*,<=*y*) to (*x*,<=*y*<=+<=1); - D — move from (*x*,<=*y*) to (*x*,<=*y*<=-<=1); - L — move from (*x*,<=*y*) to (*x*<=-<=1,<=*y*); - R — move from (*x*,<=*y*) to (*x*<=+<=1,<=*y*). Ivan entered a sequence of *n* commands, and the robot processed it. After this sequence the robot ended up in the starting cell (0,<=0), but Ivan doubts that the sequence is such that after performing it correctly the robot ends up in the same cell. He thinks that some commands were ignored by robot. To acknowledge whether the robot is severely bugged, he needs to calculate the maximum possible number of commands that were performed correctly. Help Ivan to do the calculations! Input Specification: The first line contains one number *n* — the length of sequence of commands entered by Ivan (1<=≤<=*n*<=≤<=100). The second line contains the sequence itself — a string consisting of *n* characters. Each character can be U, D, L or R. Output Specification: Print the maximum possible number of commands from the sequence the robot could perform to end up in the starting cell. Demo Input: ['4\nLDUR\n', '5\nRRRUU\n', '6\nLLRRRR\n'] Demo Output: ['4\n', '0\n', '4\n'] Note: none
```python n = int(input()) s = input() l_count = 0 r_count = 0 u_count = 0 d_count = 0 for i in s: if i == "L": l_count+=1 elif i == "R": r_count+=1 elif i == "U": u_count+=1 else: d_count+=1 count = 0 count+=abs(l_count - r_count) count+=abs(u_count - d_count) print(n - count) ```
3
3
A
Shortest path of the king
PROGRAMMING
1,000
[ "greedy", "shortest paths" ]
A. Shortest path of the king
1
64
The king is left alone on the chessboard. In spite of this loneliness, he doesn't lose heart, because he has business of national importance. For example, he has to pay an official visit to square *t*. As the king is not in habit of wasting his time, he wants to get from his current position *s* to square *t* in the least number of moves. Help him to do this. In one move the king can get to the square that has a common side or a common vertex with the square the king is currently in (generally there are 8 different squares he can move to).
The first line contains the chessboard coordinates of square *s*, the second line — of square *t*. Chessboard coordinates consist of two characters, the first one is a lowercase Latin letter (from a to h), the second one is a digit from 1 to 8.
In the first line print *n* — minimum number of the king's moves. Then in *n* lines print the moves themselves. Each move is described with one of the 8: L, R, U, D, LU, LD, RU or RD. L, R, U, D stand respectively for moves left, right, up and down (according to the picture), and 2-letter combinations stand for diagonal moves. If the answer is not unique, print any of them.
[ "a8\nh1\n" ]
[ "7\nRD\nRD\nRD\nRD\nRD\nRD\nRD\n" ]
none
0
[ { "input": "a8\nh1", "output": "7\nRD\nRD\nRD\nRD\nRD\nRD\nRD" }, { "input": "b2\nb4", "output": "2\nU\nU" }, { "input": "a5\na5", "output": "0" }, { "input": "h1\nb2", "output": "6\nLU\nL\nL\nL\nL\nL" }, { "input": "c5\nh2", "output": "5\nRD\nRD\nRD\nR\nR" }, { "input": "e1\nf2", "output": "1\nRU" }, { "input": "g4\nd2", "output": "3\nLD\nLD\nL" }, { "input": "a8\nb2", "output": "6\nRD\nD\nD\nD\nD\nD" }, { "input": "d4\nh2", "output": "4\nRD\nRD\nR\nR" }, { "input": "c5\na2", "output": "3\nLD\nLD\nD" }, { "input": "h5\nf8", "output": "3\nLU\nLU\nU" }, { "input": "e6\nb6", "output": "3\nL\nL\nL" }, { "input": "a6\ng4", "output": "6\nRD\nRD\nR\nR\nR\nR" }, { "input": "f7\nc2", "output": "5\nLD\nLD\nLD\nD\nD" }, { "input": "b7\nh8", "output": "6\nRU\nR\nR\nR\nR\nR" }, { "input": "g7\nd6", "output": "3\nLD\nL\nL" }, { "input": "c8\na3", "output": "5\nLD\nLD\nD\nD\nD" }, { "input": "h8\nf1", "output": "7\nLD\nLD\nD\nD\nD\nD\nD" }, { "input": "d1\nb7", "output": "6\nLU\nLU\nU\nU\nU\nU" }, { "input": "a7\ne5", "output": "4\nRD\nRD\nR\nR" }, { "input": "d6\nb1", "output": "5\nLD\nLD\nD\nD\nD" }, { "input": "f5\ng5", "output": "1\nR" }, { "input": "h4\nd1", "output": "4\nLD\nLD\nLD\nL" }, { "input": "b3\na5", "output": "2\nLU\nU" }, { "input": "d2\nf1", "output": "2\nRD\nR" }, { "input": "f1\nc5", "output": "4\nLU\nLU\nLU\nU" }, { "input": "a8\nh1", "output": "7\nRD\nRD\nRD\nRD\nRD\nRD\nRD" }, { "input": "c7\ne5", "output": "2\nRD\nRD" }, { "input": "e7\nb1", "output": "6\nLD\nLD\nLD\nD\nD\nD" }, { "input": "g8\na8", "output": "6\nL\nL\nL\nL\nL\nL" }, { "input": "g6\nf2", "output": "4\nLD\nD\nD\nD" }, { "input": "g4\nc4", "output": "4\nL\nL\nL\nL" }, { "input": "g2\na6", "output": "6\nLU\nLU\nLU\nLU\nL\nL" }, { "input": "f8\nf8", "output": "0" }, { "input": "f5\nd2", "output": "3\nLD\nLD\nD" } ]
1,575,311,277
2,147,483,647
Python 3
OK
TESTS
35
218
307,200
d = {"a":1, "b":2, "c":3, "d":4, "e":5, "f":6, "g":7, "h":8} ne = {"a":"b", "b":"c", "c":"d", "d":"e", "e":"f", "f":"g", "g":"h"} pr = {"h":"g", "g":"f", "f":"e", "e":"d", "d":"c", "c":"b", "b":"a"} s = list(input()) st = list(input()) num1 = int(s[1]) num2 = int(st[1]) ans = 0 res = "" while True: if s[0] < st[0]: if num1 < num2: res += "RU\n" num1 += 1 s[0] = ne[s[0]] ans += 1 elif num1 > num2: res += "RD\n" num1 -= 1 s[0] = ne[s[0]] ans += 1 else: res += "R\n" s[0] = ne[s[0]] ans += 1 elif s[0] > st[0]: if num1 < num2: res += "LU\n" num1 += 1 s[0] = pr[s[0]] ans += 1 elif num1 > num2: res += "LD\n" num1 -= 1 s[0] = pr[s[0]] ans += 1 else: res += "L\n" s[0] = pr[s[0]] ans += 1 else: if num1 < num2: res += "U\n" num1 += 1 ans += 1 elif num1 > num2: res += "D\n" num1 -= 1 ans += 1 else: break print(ans) print(res)
Title: Shortest path of the king Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: The king is left alone on the chessboard. In spite of this loneliness, he doesn't lose heart, because he has business of national importance. For example, he has to pay an official visit to square *t*. As the king is not in habit of wasting his time, he wants to get from his current position *s* to square *t* in the least number of moves. Help him to do this. In one move the king can get to the square that has a common side or a common vertex with the square the king is currently in (generally there are 8 different squares he can move to). Input Specification: The first line contains the chessboard coordinates of square *s*, the second line — of square *t*. Chessboard coordinates consist of two characters, the first one is a lowercase Latin letter (from a to h), the second one is a digit from 1 to 8. Output Specification: In the first line print *n* — minimum number of the king's moves. Then in *n* lines print the moves themselves. Each move is described with one of the 8: L, R, U, D, LU, LD, RU or RD. L, R, U, D stand respectively for moves left, right, up and down (according to the picture), and 2-letter combinations stand for diagonal moves. If the answer is not unique, print any of them. Demo Input: ['a8\nh1\n'] Demo Output: ['7\nRD\nRD\nRD\nRD\nRD\nRD\nRD\n'] Note: none
```python d = {"a":1, "b":2, "c":3, "d":4, "e":5, "f":6, "g":7, "h":8} ne = {"a":"b", "b":"c", "c":"d", "d":"e", "e":"f", "f":"g", "g":"h"} pr = {"h":"g", "g":"f", "f":"e", "e":"d", "d":"c", "c":"b", "b":"a"} s = list(input()) st = list(input()) num1 = int(s[1]) num2 = int(st[1]) ans = 0 res = "" while True: if s[0] < st[0]: if num1 < num2: res += "RU\n" num1 += 1 s[0] = ne[s[0]] ans += 1 elif num1 > num2: res += "RD\n" num1 -= 1 s[0] = ne[s[0]] ans += 1 else: res += "R\n" s[0] = ne[s[0]] ans += 1 elif s[0] > st[0]: if num1 < num2: res += "LU\n" num1 += 1 s[0] = pr[s[0]] ans += 1 elif num1 > num2: res += "LD\n" num1 -= 1 s[0] = pr[s[0]] ans += 1 else: res += "L\n" s[0] = pr[s[0]] ans += 1 else: if num1 < num2: res += "U\n" num1 += 1 ans += 1 elif num1 > num2: res += "D\n" num1 -= 1 ans += 1 else: break print(ans) print(res) ```
3.888711
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,599,908,435
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
154
0
n=int(input()) upp=0 low=0 for i in range(n): if 97<= ord(i)>=122: low=low+1 i+=1 elif 65<=ord(i)>=90: upp=upp+1 else: break if low>=upper: print(n.lowercase()) else: print (n.uppercase())
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python n=int(input()) upp=0 low=0 for i in range(n): if 97<= ord(i)>=122: low=low+1 i+=1 elif 65<=ord(i)>=90: upp=upp+1 else: break if low>=upper: print(n.lowercase()) else: print (n.uppercase()) ```
-1
231
A
Team
PROGRAMMING
800
[ "brute force", "greedy" ]
null
null
One day three best friends Petya, Vasya and Tonya decided to form a team and take part in programming contests. Participants are usually offered several problems during programming contests. Long before the start the friends decided that they will implement a problem if at least two of them are sure about the solution. Otherwise, the friends won't write the problem's solution. This contest offers *n* problems to the participants. For each problem we know, which friend is sure about the solution. Help the friends find the number of problems for which they will write a solution.
The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of problems in the contest. Then *n* lines contain three integers each, each integer is either 0 or 1. If the first number in the line equals 1, then Petya is sure about the problem's solution, otherwise he isn't sure. The second number shows Vasya's view on the solution, the third number shows Tonya's view. The numbers on the lines are separated by spaces.
Print a single integer — the number of problems the friends will implement on the contest.
[ "3\n1 1 0\n1 1 1\n1 0 0\n", "2\n1 0 0\n0 1 1\n" ]
[ "2\n", "1\n" ]
In the first sample Petya and Vasya are sure that they know how to solve the first problem and all three of them know how to solve the second problem. That means that they will write solutions for these problems. Only Petya is sure about the solution for the third problem, but that isn't enough, so the friends won't take it. In the second sample the friends will only implement the second problem, as Vasya and Tonya are sure about the solution.
500
[ { "input": "3\n1 1 0\n1 1 1\n1 0 0", "output": "2" }, { "input": "2\n1 0 0\n0 1 1", "output": "1" }, { "input": "1\n1 0 0", "output": "0" }, { "input": "2\n1 0 0\n1 1 1", "output": "1" }, { "input": "5\n1 0 0\n0 1 0\n1 1 1\n0 0 1\n0 0 0", "output": "1" }, { "input": "10\n0 1 0\n0 1 0\n1 1 0\n1 0 0\n0 0 1\n0 1 1\n1 1 1\n1 1 0\n0 0 0\n0 0 0", "output": "4" }, { "input": "15\n0 1 0\n1 0 0\n1 1 0\n1 1 1\n0 1 0\n0 0 1\n1 0 1\n1 0 1\n1 0 1\n0 0 0\n1 1 1\n1 1 0\n0 1 1\n1 1 0\n1 1 1", "output": "10" }, { "input": "50\n0 0 0\n0 1 1\n1 1 1\n0 1 0\n1 0 1\n1 1 1\n0 0 1\n1 0 0\n1 1 0\n1 0 1\n0 1 0\n0 0 1\n1 1 0\n0 1 0\n1 1 0\n0 0 0\n1 1 1\n1 0 1\n0 0 1\n1 1 0\n1 1 1\n0 1 1\n1 1 0\n0 0 0\n0 0 0\n1 1 1\n0 0 0\n1 1 1\n0 1 1\n0 0 1\n0 0 0\n0 0 0\n1 1 0\n1 1 0\n1 0 1\n1 0 0\n1 0 1\n1 0 1\n0 1 1\n1 1 0\n1 1 0\n0 1 0\n1 0 1\n0 0 0\n0 0 0\n0 0 0\n0 0 1\n1 1 1\n0 1 1\n1 0 1", "output": "29" }, { "input": "1\n1 1 1", "output": "1" }, { "input": "8\n0 0 0\n0 0 1\n0 0 0\n0 1 1\n1 0 0\n1 0 1\n1 1 0\n1 1 1", "output": "4" }, { "input": "16\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1\n1 1 1", "output": "16" } ]
1,698,332,610
2,147,483,647
Python 3
OK
TESTS
21
92
0
def dadd(n): total = 0 for i in range(n): l = input().split() l = [int(x) for x in l] if sum(l) >= 2: total += 1 return total n = int(input()) print(dadd(n))
Title: Team Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day three best friends Petya, Vasya and Tonya decided to form a team and take part in programming contests. Participants are usually offered several problems during programming contests. Long before the start the friends decided that they will implement a problem if at least two of them are sure about the solution. Otherwise, the friends won't write the problem's solution. This contest offers *n* problems to the participants. For each problem we know, which friend is sure about the solution. Help the friends find the number of problems for which they will write a solution. Input Specification: The first input line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of problems in the contest. Then *n* lines contain three integers each, each integer is either 0 or 1. If the first number in the line equals 1, then Petya is sure about the problem's solution, otherwise he isn't sure. The second number shows Vasya's view on the solution, the third number shows Tonya's view. The numbers on the lines are separated by spaces. Output Specification: Print a single integer — the number of problems the friends will implement on the contest. Demo Input: ['3\n1 1 0\n1 1 1\n1 0 0\n', '2\n1 0 0\n0 1 1\n'] Demo Output: ['2\n', '1\n'] Note: In the first sample Petya and Vasya are sure that they know how to solve the first problem and all three of them know how to solve the second problem. That means that they will write solutions for these problems. Only Petya is sure about the solution for the third problem, but that isn't enough, so the friends won't take it. In the second sample the friends will only implement the second problem, as Vasya and Tonya are sure about the solution.
```python def dadd(n): total = 0 for i in range(n): l = input().split() l = [int(x) for x in l] if sum(l) >= 2: total += 1 return total n = int(input()) print(dadd(n)) ```
3
0
none
none
none
0
[ "none" ]
null
null
Bear Limak examines a social network. Its main functionality is that two members can become friends (then they can talk with each other and share funny pictures). There are *n* members, numbered 1 through *n*. *m* pairs of members are friends. Of course, a member can't be a friend with themselves. Let A-B denote that members A and B are friends. Limak thinks that a network is reasonable if and only if the following condition is satisfied: For every three distinct members (X, Y, Z), if X-Y and Y-Z then also X-Z. For example: if Alan and Bob are friends, and Bob and Ciri are friends, then Alan and Ciri should be friends as well. Can you help Limak and check if the network is reasonable? Print "YES" or "NO" accordingly, without the quotes.
The first line of the input contain two integers *n* and *m* (3<=≤<=*n*<=≤<=150<=000, ) — the number of members and the number of pairs of members that are friends. The *i*-th of the next *m* lines contains two distinct integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=*a**i*<=≠<=*b**i*). Members *a**i* and *b**i* are friends with each other. No pair of members will appear more than once in the input.
If the given network is reasonable, print "YES" in a single line (without the quotes). Otherwise, print "NO" in a single line (without the quotes).
[ "4 3\n1 3\n3 4\n1 4\n", "4 4\n3 1\n2 3\n3 4\n1 2\n", "10 4\n4 3\n5 10\n8 9\n1 2\n", "3 2\n1 2\n2 3\n" ]
[ "YES\n", "NO\n", "YES\n", "NO\n" ]
The drawings below show the situation in the first sample (on the left) and in the second sample (on the right). Each edge represents two members that are friends. The answer is "NO" in the second sample because members (2, 3) are friends and members (3, 4) are friends, while members (2, 4) are not.
0
[ { "input": "4 3\n1 3\n3 4\n1 4", "output": "YES" }, { "input": "4 4\n3 1\n2 3\n3 4\n1 2", "output": "NO" }, { "input": "10 4\n4 3\n5 10\n8 9\n1 2", "output": "YES" }, { "input": "3 2\n1 2\n2 3", "output": "NO" }, { "input": "3 0", "output": "YES" }, { "input": "15 42\n8 1\n3 14\n7 14\n12 3\n7 9\n6 7\n6 12\n14 12\n3 10\n10 14\n6 3\n3 13\n13 10\n7 12\n7 2\n6 10\n11 4\n9 3\n8 4\n7 3\n2 3\n2 10\n9 13\n2 14\n6 14\n13 2\n1 4\n13 6\n7 10\n13 14\n12 10\n13 7\n12 2\n9 10\n13 12\n2 6\n9 14\n6 9\n12 9\n11 1\n2 9\n11 8", "output": "YES" }, { "input": "20 80\n17 4\n10 1\n11 10\n17 7\n15 10\n14 15\n13 1\n18 13\n3 13\n12 7\n9 13\n10 12\n14 12\n18 11\n4 7\n10 13\n11 3\n19 8\n14 7\n10 17\n14 3\n7 11\n11 14\n19 5\n10 14\n15 17\n3 1\n9 10\n11 1\n4 1\n11 4\n9 1\n12 3\n13 7\n1 14\n11 12\n7 1\n9 12\n18 15\n17 3\n7 15\n4 10\n7 18\n7 9\n12 17\n14 18\n3 18\n18 17\n9 15\n14 4\n14 9\n9 18\n12 4\n7 10\n15 4\n4 18\n15 13\n1 12\n7 3\n13 11\n4 13\n5 8\n12 18\n12 15\n17 9\n11 15\n3 10\n18 10\n4 3\n15 3\n13 12\n9 4\n9 11\n14 17\n13 17\n3 9\n13 14\n1 17\n15 1\n17 11", "output": "NO" }, { "input": "99 26\n64 17\n48 70\n71 50\n3 50\n9 60\n61 64\n53 50\n25 12\n3 71\n71 53\n3 53\n65 70\n9 25\n9 12\n59 56\n39 60\n64 69\n65 94\n70 94\n25 60\n60 12\n94 48\n17 69\n61 17\n65 48\n61 69", "output": "NO" }, { "input": "3 1\n1 2", "output": "YES" }, { "input": "3 2\n3 2\n1 3", "output": "NO" }, { "input": "3 3\n2 3\n1 2\n1 3", "output": "YES" }, { "input": "4 2\n4 1\n2 1", "output": "NO" }, { "input": "4 3\n3 1\n2 1\n3 2", "output": "YES" }, { "input": "5 9\n1 2\n5 1\n3 1\n1 4\n2 4\n5 3\n5 4\n2 3\n5 2", "output": "NO" }, { "input": "10 5\n9 5\n1 2\n6 8\n6 3\n10 6", "output": "NO" }, { "input": "10 8\n10 7\n9 7\n5 7\n6 8\n3 5\n8 10\n3 4\n7 8", "output": "NO" }, { "input": "10 20\n8 2\n8 3\n1 8\n9 5\n2 4\n10 1\n10 5\n7 5\n7 8\n10 7\n6 5\n3 7\n1 9\n9 8\n7 2\n2 10\n2 1\n6 4\n9 7\n4 3", "output": "NO" }, { "input": "150000 10\n62562 50190\n48849 60549\n139470 18456\n21436 25159\n66845 120884\n99972 114453\n11631 99153\n62951 134848\n78114 146050\n136760 131762", "output": "YES" }, { "input": "150000 0", "output": "YES" }, { "input": "4 4\n1 2\n2 3\n3 4\n1 4", "output": "NO" }, { "input": "30 73\n25 2\n2 16\n20 12\n16 20\n7 18\n11 15\n13 11\n30 29\n16 12\n12 25\n2 1\n18 14\n9 8\n28 16\n2 9\n22 21\n1 25\n12 28\n14 7\n4 9\n26 7\n14 27\n12 2\n29 22\n1 9\n13 15\n3 10\n1 12\n8 20\n30 24\n25 20\n4 1\n4 12\n20 1\n8 4\n2 28\n25 16\n16 8\n20 4\n9 12\n21 30\n23 11\n19 6\n28 4\n29 21\n9 28\n30 10\n22 24\n25 8\n27 26\n25 4\n28 20\n9 25\n24 29\n20 9\n18 26\n1 28\n30 22\n23 15\n28 27\n8 2\n23 13\n12 8\n14 26\n16 4\n28 25\n8 1\n4 2\n9 16\n20 2\n18 27\n28 8\n27 7", "output": "NO" }, { "input": "5 4\n1 2\n2 5\n3 4\n4 5", "output": "NO" }, { "input": "4 4\n1 2\n2 3\n3 4\n4 1", "output": "NO" }, { "input": "6 6\n1 2\n2 4\n4 3\n1 5\n5 6\n6 3", "output": "NO" }, { "input": "3 2\n1 2\n1 3", "output": "NO" }, { "input": "6 6\n1 2\n2 3\n3 4\n4 5\n5 6\n1 6", "output": "NO" }, { "input": "4 4\n1 2\n1 3\n2 4\n3 4", "output": "NO" }, { "input": "6 9\n1 4\n1 5\n1 6\n2 4\n2 5\n2 6\n3 4\n3 5\n3 6", "output": "NO" }, { "input": "4 3\n1 2\n1 3\n3 4", "output": "NO" }, { "input": "4 3\n1 2\n1 3\n2 4", "output": "NO" }, { "input": "6 6\n1 2\n2 3\n3 4\n4 5\n5 6\n6 1", "output": "NO" }, { "input": "4 3\n1 2\n1 3\n1 4", "output": "NO" }, { "input": "150000 3\n150000 149999\n149998 149999\n149998 150000", "output": "YES" }, { "input": "10 15\n1 2\n1 3\n2 4\n2 5\n3 4\n3 5\n4 5\n1 6\n6 7\n6 8\n7 9\n7 10\n8 9\n8 10\n9 10", "output": "NO" }, { "input": "5 5\n1 2\n2 3\n3 4\n4 5\n5 1", "output": "NO" }, { "input": "5 4\n1 2\n1 3\n1 4\n1 5", "output": "NO" }, { "input": "9 9\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 1", "output": "NO" }, { "input": "4 5\n1 2\n1 3\n1 4\n2 3\n3 4", "output": "NO" }, { "input": "4 4\n1 2\n1 3\n4 2\n4 3", "output": "NO" }, { "input": "5 5\n1 4\n5 3\n5 1\n2 3\n4 5", "output": "NO" }, { "input": "4 5\n1 2\n1 3\n2 3\n1 4\n2 4", "output": "NO" }, { "input": "4 5\n1 2\n1 3\n1 4\n2 3\n2 4", "output": "NO" }, { "input": "6 12\n1 2\n1 4\n1 5\n1 6\n2 3\n2 5\n2 6\n3 4\n3 5\n3 6\n4 5\n4 6", "output": "NO" }, { "input": "1000 4\n100 132\n100 164\n196 132\n196 164", "output": "NO" } ]
1,694,538,854
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
30
307,200
from collections import defaultdict n, m = map(int, input().split()) amigos = defaultdict(set) for _ in range(m): c, d = map(int, input().split()) amigos[c].add(d) amigos[d].add(c) is_reasonable = all(amigos[i].intersection(amigos[j]) for i in amigos for j in amigos[i] if i != j) print("YES" if is_reasonable else "NO")
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bear Limak examines a social network. Its main functionality is that two members can become friends (then they can talk with each other and share funny pictures). There are *n* members, numbered 1 through *n*. *m* pairs of members are friends. Of course, a member can't be a friend with themselves. Let A-B denote that members A and B are friends. Limak thinks that a network is reasonable if and only if the following condition is satisfied: For every three distinct members (X, Y, Z), if X-Y and Y-Z then also X-Z. For example: if Alan and Bob are friends, and Bob and Ciri are friends, then Alan and Ciri should be friends as well. Can you help Limak and check if the network is reasonable? Print "YES" or "NO" accordingly, without the quotes. Input Specification: The first line of the input contain two integers *n* and *m* (3<=≤<=*n*<=≤<=150<=000, ) — the number of members and the number of pairs of members that are friends. The *i*-th of the next *m* lines contains two distinct integers *a**i* and *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=*a**i*<=≠<=*b**i*). Members *a**i* and *b**i* are friends with each other. No pair of members will appear more than once in the input. Output Specification: If the given network is reasonable, print "YES" in a single line (without the quotes). Otherwise, print "NO" in a single line (without the quotes). Demo Input: ['4 3\n1 3\n3 4\n1 4\n', '4 4\n3 1\n2 3\n3 4\n1 2\n', '10 4\n4 3\n5 10\n8 9\n1 2\n', '3 2\n1 2\n2 3\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n', 'NO\n'] Note: The drawings below show the situation in the first sample (on the left) and in the second sample (on the right). Each edge represents two members that are friends. The answer is "NO" in the second sample because members (2, 3) are friends and members (3, 4) are friends, while members (2, 4) are not.
```python from collections import defaultdict n, m = map(int, input().split()) amigos = defaultdict(set) for _ in range(m): c, d = map(int, input().split()) amigos[c].add(d) amigos[d].add(c) is_reasonable = all(amigos[i].intersection(amigos[j]) for i in amigos for j in amigos[i] if i != j) print("YES" if is_reasonable else "NO") ```
0
424
B
Megacity
PROGRAMMING
1,200
[ "binary search", "greedy", "implementation", "sortings" ]
null
null
The administration of the Tomsk Region firmly believes that it's time to become a megacity (that is, get population of one million). Instead of improving the demographic situation, they decided to achieve its goal by expanding the boundaries of the city. The city of Tomsk can be represented as point on the plane with coordinates (0; 0). The city is surrounded with *n* other locations, the *i*-th one has coordinates (*x**i*, *y**i*) with the population of *k**i* people. You can widen the city boundaries to a circle of radius *r*. In such case all locations inside the circle and on its border are included into the city. Your goal is to write a program that will determine the minimum radius *r*, to which is necessary to expand the boundaries of Tomsk, so that it becomes a megacity.
The first line of the input contains two integers *n* and *s* (1<=≤<=*n*<=≤<=103; 1<=≤<=*s*<=&lt;<=106) — the number of locatons around Tomsk city and the population of the city. Then *n* lines follow. The *i*-th line contains three integers — the *x**i* and *y**i* coordinate values of the *i*-th location and the number *k**i* of people in it (1<=≤<=*k**i*<=&lt;<=106). Each coordinate is an integer and doesn't exceed 104 in its absolute value. It is guaranteed that no two locations are at the same point and no location is at point (0; 0).
In the output, print "-1" (without the quotes), if Tomsk won't be able to become a megacity. Otherwise, in the first line print a single real number — the minimum radius of the circle that the city needs to expand to in order to become a megacity. The answer is considered correct if the absolute or relative error don't exceed 10<=-<=6.
[ "4 999998\n1 1 1\n2 2 1\n3 3 1\n2 -2 1\n", "4 999998\n1 1 2\n2 2 1\n3 3 1\n2 -2 1\n", "2 1\n1 1 999997\n2 2 1\n" ]
[ "2.8284271\n", "1.4142136\n", "-1" ]
none
1,000
[ { "input": "4 999998\n1 1 1\n2 2 1\n3 3 1\n2 -2 1", "output": "2.8284271" }, { "input": "4 999998\n1 1 2\n2 2 1\n3 3 1\n2 -2 1", "output": "1.4142136" }, { "input": "2 1\n1 1 999997\n2 2 1", "output": "-1" }, { "input": "4 999998\n3 3 10\n-3 3 10\n3 -3 10\n-3 -3 10", "output": "4.2426407" }, { "input": "15 95473\n-9 6 199715\n0 -8 110607\n0 2 6621\n-3 -2 59894\n-10 -8 175440\n-2 0 25814\n10 -4 68131\n7 1 9971\n6 7 821\n6 5 20208\n6 2 68468\n0 7 37427\n1 -3 13337\n-10 7 113041\n-6 -2 44028", "output": "12.8062485" }, { "input": "20 93350\n13 -28 486\n26 -26 48487\n5 -23 143368\n-23 -25 10371\n-2 -7 75193\n0 -8 3\n-6 -11 5015\n-19 -18 315278\n28 -15 45801\n21 8 4590\n-4 -28 12926\n-16 17 9405\n-28 -23 222092\n1 -10 1857\n14 -28 35170\n-4 -22 22036\n-2 -10 1260\n-1 12 375745\n-19 -24 38845\n10 -25 9256", "output": "26.1725047" }, { "input": "30 505231\n-18 16 88130\n-10 16 15693\n16 -32 660\n-27 17 19042\n30 -37 6680\n36 19 299674\n-45 21 3300\n11 27 76\n-49 -34 28649\n-1 11 31401\n25 42 20858\n-40 6 455660\n-29 43 105001\n-38 10 6042\n19 -45 65551\n20 -9 148533\n-5 -24 393442\n-43 2 8577\n-39 18 97059\n12 28 39189\n35 23 28178\n40 -34 51687\n23 41 219028\n21 -44 927\n47 8 13206\n33 41 97342\n10 18 24895\n0 12 288\n0 -44 1065\n-25 43 44231", "output": "24.5153013" }, { "input": "2 500000\n936 1000 500000\n961 976 500000", "output": "1369.7065379" }, { "input": "10 764008\n959 32 23049\n-513 797 38979\n-603 -838 24916\n598 -430 25414\n-280 -624 18714\n330 891 21296\n-347 -68 27466\n650 -842 30125\n-314 889 35394\n275 969 5711", "output": "1063.7029661" }, { "input": "30 295830\n1 -4 24773\n4 3 26175\n-2 -3 14789\n2 -1 46618\n-2 -2 52997\n-3 0 517\n-2 0 18173\n-4 -3 54465\n2 4 63579\n4 -4 41821\n2 2 11018\n0 4 42856\n0 -1 51885\n-3 4 57137\n3 0 4688\n0 2 60137\n-4 4 33484\n-1 3 66196\n3 -1 53634\n0 -2 41630\n-2 1 54606\n2 -2 2978\n2 -3 23733\n1 -2 35248\n-3 -3 15124\n-2 -4 26518\n4 0 28151\n4 -1 18348\n3 3 16914\n-4 2 26013", "output": "4.4721360" }, { "input": "10 511500\n-5129 -3858 76954\n1296 1130 36126\n1219 6732 102003\n-8026 -178 4150\n-3261 1342 105429\n7965 -3013 62561\n5607 8963 53539\n-9044 -3999 16509\n1406 4103 115667\n-3716 2522 110626", "output": "6841.4753526" }, { "input": "20 39342\n2 0 36476\n-3 1 136925\n1 3 31234\n0 -3 23785\n-1 3 77700\n-3 -1 50490\n-1 -3 13965\n-3 2 121093\n3 0 118933\n-3 0 125552\n-3 3 54779\n-2 0 96250\n1 2 142643\n2 2 23848\n0 2 29845\n0 -2 80462\n-1 1 91852\n-1 2 26526\n0 -1 136272\n1 1 108999", "output": "3.0000000" }, { "input": "2 1\n1 0 1\n0 1 999999", "output": "1.0000000" }, { "input": "2 999997\n1 1 1\n1 2 1", "output": "-1" } ]
1,400,653,495
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
46
0
import math n,m=map(int, input().split()) L=[] for i in range(n): x,y,z=map(int, input().split()) L+=[( x*x+y*y ,z)] L.sort() if m>=1000000: print('0') exit() for i in range(n): m+=L[1] if m>=1000000: print(math.sqrt(L[0])) exit() print('-1')
Title: Megacity Time Limit: None seconds Memory Limit: None megabytes Problem Description: The administration of the Tomsk Region firmly believes that it's time to become a megacity (that is, get population of one million). Instead of improving the demographic situation, they decided to achieve its goal by expanding the boundaries of the city. The city of Tomsk can be represented as point on the plane with coordinates (0; 0). The city is surrounded with *n* other locations, the *i*-th one has coordinates (*x**i*, *y**i*) with the population of *k**i* people. You can widen the city boundaries to a circle of radius *r*. In such case all locations inside the circle and on its border are included into the city. Your goal is to write a program that will determine the minimum radius *r*, to which is necessary to expand the boundaries of Tomsk, so that it becomes a megacity. Input Specification: The first line of the input contains two integers *n* and *s* (1<=≤<=*n*<=≤<=103; 1<=≤<=*s*<=&lt;<=106) — the number of locatons around Tomsk city and the population of the city. Then *n* lines follow. The *i*-th line contains three integers — the *x**i* and *y**i* coordinate values of the *i*-th location and the number *k**i* of people in it (1<=≤<=*k**i*<=&lt;<=106). Each coordinate is an integer and doesn't exceed 104 in its absolute value. It is guaranteed that no two locations are at the same point and no location is at point (0; 0). Output Specification: In the output, print "-1" (without the quotes), if Tomsk won't be able to become a megacity. Otherwise, in the first line print a single real number — the minimum radius of the circle that the city needs to expand to in order to become a megacity. The answer is considered correct if the absolute or relative error don't exceed 10<=-<=6. Demo Input: ['4 999998\n1 1 1\n2 2 1\n3 3 1\n2 -2 1\n', '4 999998\n1 1 2\n2 2 1\n3 3 1\n2 -2 1\n', '2 1\n1 1 999997\n2 2 1\n'] Demo Output: ['2.8284271\n', '1.4142136\n', '-1'] Note: none
```python import math n,m=map(int, input().split()) L=[] for i in range(n): x,y,z=map(int, input().split()) L+=[( x*x+y*y ,z)] L.sort() if m>=1000000: print('0') exit() for i in range(n): m+=L[1] if m>=1000000: print(math.sqrt(L[0])) exit() print('-1') ```
-1
877
A
Alex and broken contest
PROGRAMMING
1,100
[ "implementation", "strings" ]
null
null
One day Alex was creating a contest about his friends, but accidentally deleted it. Fortunately, all the problems were saved, but now he needs to find them among other problems. But there are too many problems, to do it manually. Alex asks you to write a program, which will determine if a problem is from this contest by its name. It is known, that problem is from this contest if and only if its name contains one of Alex's friends' name exactly once. His friends' names are "Danil", "Olya", "Slava", "Ann" and "Nikita". Names are case sensitive.
The only line contains string from lowercase and uppercase letters and "_" symbols of length, not more than 100 — the name of the problem.
Print "YES", if problem is from this contest, and "NO" otherwise.
[ "Alex_and_broken_contest\n", "NikitaAndString\n", "Danil_and_Olya\n" ]
[ "NO", "YES", "NO" ]
none
500
[ { "input": "Alex_and_broken_contest", "output": "NO" }, { "input": "NikitaAndString", "output": "YES" }, { "input": "Danil_and_Olya", "output": "NO" }, { "input": "Slava____and_the_game", "output": "YES" }, { "input": "Olya_and_energy_drinks", "output": "YES" }, { "input": "Danil_and_part_time_job", "output": "YES" }, { "input": "Ann_and_books", "output": "YES" }, { "input": "Olya", "output": "YES" }, { "input": "Nikita", "output": "YES" }, { "input": "Slava", "output": "YES" }, { "input": "Vanya", "output": "NO" }, { "input": "I_dont_know_what_to_write_here", "output": "NO" }, { "input": "danil_and_work", "output": "NO" }, { "input": "Ann", "output": "YES" }, { "input": "Batman_Nananananananan_Batman", "output": "NO" }, { "input": "Olya_Nikita_Ann_Slava_Danil", "output": "NO" }, { "input": "its_me_Mario", "output": "NO" }, { "input": "A", "output": "NO" }, { "input": "Wake_up_Neo", "output": "NO" }, { "input": "Hardest_problem_ever", "output": "NO" }, { "input": "Nikita_Nikita", "output": "NO" }, { "input": "____________________________________________________________________________________________________", "output": "NO" }, { "input": "Nikitb", "output": "NO" }, { "input": "Unn", "output": "NO" }, { "input": "oLya_adn_smth", "output": "NO" }, { "input": "FloorISLava", "output": "NO" }, { "input": "ann", "output": "NO" }, { "input": "aa", "output": "NO" }, { "input": "AAnnnnn", "output": "YES" }, { "input": "AnnAnn", "output": "NO" }, { "input": "Annn", "output": "YES" }, { "input": "Dilzhan", "output": "NO" }, { "input": "Danilaaa", "output": "YES" }, { "input": "AndAnn", "output": "YES" }, { "input": "OlyaAnnAnn", "output": "NO" }, { "input": "DanilDanilOlya", "output": "NO" }, { "input": "DDanil", "output": "YES" }, { "input": "AnnAnnDanil", "output": "NO" }, { "input": "And_Danil", "output": "YES" }, { "input": "abcddddDanil", "output": "YES" }, { "input": "DanilOlyaOlya", "output": "NO" }, { "input": "Nikitaaa", "output": "YES" }, { "input": "aaabbba", "output": "NO" }, { "input": "Ann_Ann_Danil", "output": "NO" }, { "input": "Danil_Danil_Nikita", "output": "NO" }, { "input": "AlexaaaaaaBBBBBOlyaDDDDD", "output": "YES" }, { "input": "IloveDaniland", "output": "YES" }, { "input": "AnAnn", "output": "YES" }, { "input": "Danil_Danil_Olya", "output": "NO" }, { "input": "DanilDanilSlava", "output": "NO" }, { "input": "DanilDanil", "output": "NO" }, { "input": "OlyOlya", "output": "YES" }, { "input": "NikitaNikitb", "output": "YES" }, { "input": "ababaca", "output": "NO" }, { "input": "AnnNikitaNikitaNikitaNikita__good_luck", "output": "NO" } ]
1,606,407,061
2,147,483,647
Python 3
OK
TESTS
55
109
0
s=input() c=s.count("Danil")+s.count("Olya")+s.count("Slava")+s.count("Ann")+s.count("Nikita") if c==1: print("YES") else: print("NO")
Title: Alex and broken contest Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Alex was creating a contest about his friends, but accidentally deleted it. Fortunately, all the problems were saved, but now he needs to find them among other problems. But there are too many problems, to do it manually. Alex asks you to write a program, which will determine if a problem is from this contest by its name. It is known, that problem is from this contest if and only if its name contains one of Alex's friends' name exactly once. His friends' names are "Danil", "Olya", "Slava", "Ann" and "Nikita". Names are case sensitive. Input Specification: The only line contains string from lowercase and uppercase letters and "_" symbols of length, not more than 100 — the name of the problem. Output Specification: Print "YES", if problem is from this contest, and "NO" otherwise. Demo Input: ['Alex_and_broken_contest\n', 'NikitaAndString\n', 'Danil_and_Olya\n'] Demo Output: ['NO', 'YES', 'NO'] Note: none
```python s=input() c=s.count("Danil")+s.count("Olya")+s.count("Slava")+s.count("Ann")+s.count("Nikita") if c==1: print("YES") else: print("NO") ```
3
71
A
Way Too Long Words
PROGRAMMING
800
[ "strings" ]
A. Way Too Long Words
1
256
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
[ "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n" ]
[ "word\nl10n\ni18n\np43s\n" ]
none
500
[ { "input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis", "output": "word\nl10n\ni18n\np43s" }, { "input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm", "output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m" }, { "input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd", "output": "n20n\nj27b\nk15d" }, { "input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt", "output": "t41t" }, { "input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings", "output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings" }, { "input": "1\na", "output": "a" }, { "input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz", "output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz" }, { "input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij", "output": "a98j" }, { "input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco", "output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco" }, { "input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt", "output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t" }, { "input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr", "output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr" } ]
1,694,687,162
2,147,483,647
Python 3
OK
TESTS
20
31
0
raj = int(input()) for _ in range(raj): r= input() b = len(r) if b > 10: print(r[0] + str(b - 2) + r[b - 1]) else: print(r)
Title: Way Too Long Words Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters. Output Specification: Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data. Demo Input: ['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n'] Demo Output: ['word\nl10n\ni18n\np43s\n'] Note: none
```python raj = int(input()) for _ in range(raj): r= input() b = len(r) if b > 10: print(r[0] + str(b - 2) + r[b - 1]) else: print(r) ```
3.9845
270
A
Fancy Fence
PROGRAMMING
1,100
[ "geometry", "implementation", "math" ]
null
null
Emuskald needs a fence around his farm, but he is too lazy to build it himself. So he purchased a fence-building robot. He wants the fence to be a regular polygon. The robot builds the fence along a single path, but it can only make fence corners at a single angle *a*. Will the robot be able to build the fence Emuskald wants? In other words, is there a regular polygon which angles are equal to *a*?
The first line of input contains an integer *t* (0<=&lt;<=*t*<=&lt;<=180) — the number of tests. Each of the following *t* lines contains a single integer *a* (0<=&lt;<=*a*<=&lt;<=180) — the angle the robot can make corners at measured in degrees.
For each test, output on a single line "YES" (without quotes), if the robot can build a fence Emuskald wants, and "NO" (without quotes), if it is impossible.
[ "3\n30\n60\n90\n" ]
[ "NO\nYES\nYES\n" ]
In the first test case, it is impossible to build the fence, since there is no regular polygon with angle <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/df5f4b07dd5316fde165b43657b2696e2919e791.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second test case, the fence is a regular triangle, and in the last test case — a square.
500
[ { "input": "3\n30\n60\n90", "output": "NO\nYES\nYES" }, { "input": "6\n1\n2\n3\n170\n179\n25", "output": "NO\nNO\nNO\nYES\nYES\nNO" } ]
1,665,491,968
2,147,483,647
Python 3
OK
TESTS
3
92
0
turn = int(input()) example = [180*(n-2)/n for n in range(3, 361)] for i in range(turn): a = int(input()) if a in example: print('YES') else: print('NO')
Title: Fancy Fence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Emuskald needs a fence around his farm, but he is too lazy to build it himself. So he purchased a fence-building robot. He wants the fence to be a regular polygon. The robot builds the fence along a single path, but it can only make fence corners at a single angle *a*. Will the robot be able to build the fence Emuskald wants? In other words, is there a regular polygon which angles are equal to *a*? Input Specification: The first line of input contains an integer *t* (0<=&lt;<=*t*<=&lt;<=180) — the number of tests. Each of the following *t* lines contains a single integer *a* (0<=&lt;<=*a*<=&lt;<=180) — the angle the robot can make corners at measured in degrees. Output Specification: For each test, output on a single line "YES" (without quotes), if the robot can build a fence Emuskald wants, and "NO" (without quotes), if it is impossible. Demo Input: ['3\n30\n60\n90\n'] Demo Output: ['NO\nYES\nYES\n'] Note: In the first test case, it is impossible to build the fence, since there is no regular polygon with angle <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/df5f4b07dd5316fde165b43657b2696e2919e791.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second test case, the fence is a regular triangle, and in the last test case — a square.
```python turn = int(input()) example = [180*(n-2)/n for n in range(3, 361)] for i in range(turn): a = int(input()) if a in example: print('YES') else: print('NO') ```
3
137
B
Permutation
PROGRAMMING
1,000
[ "greedy" ]
null
null
"Hey, it's homework time" — thought Polycarpus and of course he started with his favourite subject, IT. Polycarpus managed to solve all tasks but for the last one in 20 minutes. However, as he failed to solve the last task after some considerable time, the boy asked you to help him. The sequence of *n* integers is called a permutation if it contains all integers from 1 to *n* exactly once. You are given an arbitrary sequence *a*1,<=*a*2,<=...,<=*a**n* containing *n* integers. Each integer is not less than 1 and not greater than 5000. Determine what minimum number of elements Polycarpus needs to change to get a permutation (he should not delete or add numbers). In a single change he can modify any single sequence element (i. e. replace it with another integer).
The first line of the input data contains an integer *n* (1<=≤<=*n*<=≤<=5000) which represents how many numbers are in the sequence. The second line contains a sequence of integers *a**i* (1<=≤<=*a**i*<=≤<=5000,<=1<=≤<=*i*<=≤<=*n*).
Print the only number — the minimum number of changes needed to get the permutation.
[ "3\n3 1 2\n", "2\n2 2\n", "5\n5 3 3 3 1\n" ]
[ "0\n", "1\n", "2\n" ]
The first sample contains the permutation, which is why no replacements are required. In the second sample it is enough to replace the first element with the number 1 and that will make the sequence the needed permutation. In the third sample we can replace the second element with number 4 and the fourth element with number 2.
1,000
[ { "input": "3\n3 1 2", "output": "0" }, { "input": "2\n2 2", "output": "1" }, { "input": "5\n5 3 3 3 1", "output": "2" }, { "input": "5\n6 6 6 6 6", "output": "5" }, { "input": "10\n1 1 2 2 8 8 7 7 9 9", "output": "5" }, { "input": "8\n9 8 7 6 5 4 3 2", "output": "1" }, { "input": "15\n1 2 3 4 5 5 4 3 2 1 1 2 3 4 5", "output": "10" }, { "input": "1\n1", "output": "0" }, { "input": "1\n5000", "output": "1" }, { "input": "4\n5000 5000 5000 5000", "output": "4" }, { "input": "5\n3366 3461 4 5 4370", "output": "3" }, { "input": "10\n8 2 10 3 4 6 1 7 9 5", "output": "0" }, { "input": "10\n551 3192 3213 2846 3068 1224 3447 1 10 9", "output": "7" }, { "input": "15\n4 1459 12 4281 3241 2748 10 3590 14 845 3518 1721 2 2880 1974", "output": "10" }, { "input": "15\n15 1 8 2 13 11 12 7 3 14 6 10 9 4 5", "output": "0" }, { "input": "15\n2436 2354 4259 1210 2037 2665 700 3578 2880 973 1317 1024 24 3621 4142", "output": "15" }, { "input": "30\n28 1 3449 9 3242 4735 26 3472 15 21 2698 7 4073 3190 10 3 29 1301 4526 22 345 3876 19 12 4562 2535 2 630 18 27", "output": "14" }, { "input": "100\n50 39 95 30 66 78 2169 4326 81 31 74 34 80 40 19 48 97 63 82 6 88 16 21 57 92 77 10 1213 17 93 32 91 38 4375 29 75 44 22 4 45 14 2395 3254 59 3379 2 85 96 8 83 27 94 1512 2960 100 9 73 79 7 25 55 69 90 99 51 87 98 62 18 35 43 4376 4668 28 72 56 4070 61 65 36 54 4106 11 24 15 86 70 71 4087 23 13 76 20 4694 26 4962 4726 37 14 64", "output": "18" }, { "input": "100\n340 14 3275 2283 2673 1107 817 2243 1226 32 2382 3638 4652 418 68 4962 387 764 4647 159 1846 225 2760 4904 3150 403 3 2439 91 4428 92 4705 75 348 1566 1465 69 6 49 4 62 4643 564 1090 3447 1871 2255 139 24 99 2669 969 86 61 4550 158 4537 3993 1589 872 2907 1888 401 80 1825 1483 63 1 2264 4068 4113 2548 41 885 4806 36 67 167 4447 34 1248 2593 82 202 81 1783 1284 4973 16 43 95 7 865 2091 3008 1793 20 947 4912 3604", "output": "70" }, { "input": "1\n2", "output": "1" }, { "input": "2\n5000 5000", "output": "2" }, { "input": "2\n1 2", "output": "0" }, { "input": "2\n1 1", "output": "1" }, { "input": "2\n2 3", "output": "1" }, { "input": "2\n3 4", "output": "2" }, { "input": "10\n1 2 3 4 5 6 7 1000 10 10", "output": "2" } ]
1,584,549,477
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
3
404
2,150,400
n=int(input()) a=list(map(int,input().strip().split(" "))) x=[0 for _ in range(n+1)] for i in a: x[i]+=1 kk=0 for i in range(1,n+1): if x[i]==0: kk+=1 print(kk)
Title: Permutation Time Limit: None seconds Memory Limit: None megabytes Problem Description: "Hey, it's homework time" — thought Polycarpus and of course he started with his favourite subject, IT. Polycarpus managed to solve all tasks but for the last one in 20 minutes. However, as he failed to solve the last task after some considerable time, the boy asked you to help him. The sequence of *n* integers is called a permutation if it contains all integers from 1 to *n* exactly once. You are given an arbitrary sequence *a*1,<=*a*2,<=...,<=*a**n* containing *n* integers. Each integer is not less than 1 and not greater than 5000. Determine what minimum number of elements Polycarpus needs to change to get a permutation (he should not delete or add numbers). In a single change he can modify any single sequence element (i. e. replace it with another integer). Input Specification: The first line of the input data contains an integer *n* (1<=≤<=*n*<=≤<=5000) which represents how many numbers are in the sequence. The second line contains a sequence of integers *a**i* (1<=≤<=*a**i*<=≤<=5000,<=1<=≤<=*i*<=≤<=*n*). Output Specification: Print the only number — the minimum number of changes needed to get the permutation. Demo Input: ['3\n3 1 2\n', '2\n2 2\n', '5\n5 3 3 3 1\n'] Demo Output: ['0\n', '1\n', '2\n'] Note: The first sample contains the permutation, which is why no replacements are required. In the second sample it is enough to replace the first element with the number 1 and that will make the sequence the needed permutation. In the third sample we can replace the second element with number 4 and the fourth element with number 2.
```python n=int(input()) a=list(map(int,input().strip().split(" "))) x=[0 for _ in range(n+1)] for i in a: x[i]+=1 kk=0 for i in range(1,n+1): if x[i]==0: kk+=1 print(kk) ```
-1
208
A
Dubstep
PROGRAMMING
900
[ "strings" ]
null
null
Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them. Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club. For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX". Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.
The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.
Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.
[ "WUBWUBABCWUB\n", "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n" ]
[ "ABC ", "WE ARE THE CHAMPIONS MY FRIEND " ]
In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya. In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
500
[ { "input": "WUBWUBABCWUB", "output": "ABC " }, { "input": "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB", "output": "WE ARE THE CHAMPIONS MY FRIEND " }, { "input": "WUBWUBWUBSR", "output": "SR " }, { "input": "RWUBWUBWUBLWUB", "output": "R L " }, { "input": "ZJWUBWUBWUBJWUBWUBWUBL", "output": "ZJ J L " }, { "input": "CWUBBWUBWUBWUBEWUBWUBWUBQWUBWUBWUB", "output": "C B E Q " }, { "input": "WUBJKDWUBWUBWBIRAQKFWUBWUBYEWUBWUBWUBWVWUBWUB", "output": "JKD WBIRAQKF YE WV " }, { "input": "WUBKSDHEMIXUJWUBWUBRWUBWUBWUBSWUBWUBWUBHWUBWUBWUB", "output": "KSDHEMIXUJ R S H " }, { "input": "OGWUBWUBWUBXWUBWUBWUBIWUBWUBWUBKOWUBWUB", "output": "OG X I KO " }, { "input": "QWUBQQWUBWUBWUBIWUBWUBWWWUBWUBWUBJOPJPBRH", "output": "Q QQ I WW JOPJPBRH " }, { "input": "VSRNVEATZTLGQRFEGBFPWUBWUBWUBAJWUBWUBWUBPQCHNWUBCWUB", "output": "VSRNVEATZTLGQRFEGBFP AJ PQCHN C " }, { "input": "WUBWUBEWUBWUBWUBIQMJNIQWUBWUBWUBGZZBQZAUHYPWUBWUBWUBPMRWUBWUBWUBDCV", "output": "E IQMJNIQ GZZBQZAUHYP PMR DCV " }, { "input": "WUBWUBWUBFVWUBWUBWUBBPSWUBWUBWUBRXNETCJWUBWUBWUBJDMBHWUBWUBWUBBWUBWUBVWUBWUBB", "output": "FV BPS RXNETCJ JDMBH B V B " }, { "input": "WUBWUBWUBFBQWUBWUBWUBIDFSYWUBWUBWUBCTWDMWUBWUBWUBSXOWUBWUBWUBQIWUBWUBWUBL", "output": "FBQ IDFSY CTWDM SXO QI L " }, { "input": "IWUBWUBQLHDWUBYIIKZDFQWUBWUBWUBCXWUBWUBUWUBWUBWUBKWUBWUBWUBNL", "output": "I QLHD YIIKZDFQ CX U K NL " }, { "input": "KWUBUPDYXGOKUWUBWUBWUBAGOAHWUBIZDWUBWUBWUBIYWUBWUBWUBVWUBWUBWUBPWUBWUBWUBE", "output": "K UPDYXGOKU AGOAH IZD IY V P E " }, { "input": "WUBWUBOWUBWUBWUBIPVCQAFWYWUBWUBWUBQWUBWUBWUBXHDKCPYKCTWWYWUBWUBWUBVWUBWUBWUBFZWUBWUB", "output": "O IPVCQAFWY Q XHDKCPYKCTWWY V FZ " }, { "input": "PAMJGYWUBWUBWUBXGPQMWUBWUBWUBTKGSXUYWUBWUBWUBEWUBWUBWUBNWUBWUBWUBHWUBWUBWUBEWUBWUB", "output": "PAMJGY XGPQM TKGSXUY E N H E " }, { "input": "WUBYYRTSMNWUWUBWUBWUBCWUBWUBWUBCWUBWUBWUBFSYUINDWOBVWUBWUBWUBFWUBWUBWUBAUWUBWUBWUBVWUBWUBWUBJB", "output": "YYRTSMNWU C C FSYUINDWOBV F AU V JB " }, { "input": "WUBWUBYGPYEYBNRTFKOQCWUBWUBWUBUYGRTQEGWLFYWUBWUBWUBFVWUBHPWUBWUBWUBXZQWUBWUBWUBZDWUBWUBWUBM", "output": "YGPYEYBNRTFKOQC UYGRTQEGWLFY FV HP XZQ ZD M " }, { "input": "WUBZVMJWUBWUBWUBFOIMJQWKNZUBOFOFYCCWUBWUBWUBAUWWUBRDRADWUBWUBWUBCHQVWUBWUBWUBKFTWUBWUBWUBW", "output": "ZVMJ FOIMJQWKNZUBOFOFYCC AUW RDRAD CHQV KFT W " }, { "input": "WUBWUBZBKOKHQLGKRVIMZQMQNRWUBWUBWUBDACWUBWUBNZHFJMPEYKRVSWUBWUBWUBPPHGAVVPRZWUBWUBWUBQWUBWUBAWUBG", "output": "ZBKOKHQLGKRVIMZQMQNR DAC NZHFJMPEYKRVS PPHGAVVPRZ Q A G " }, { "input": "WUBWUBJWUBWUBWUBNFLWUBWUBWUBGECAWUBYFKBYJWTGBYHVSSNTINKWSINWSMAWUBWUBWUBFWUBWUBWUBOVWUBWUBLPWUBWUBWUBN", "output": "J NFL GECA YFKBYJWTGBYHVSSNTINKWSINWSMA F OV LP N " }, { "input": "WUBWUBLCWUBWUBWUBZGEQUEATJVIXETVTWUBWUBWUBEXMGWUBWUBWUBRSWUBWUBWUBVWUBWUBWUBTAWUBWUBWUBCWUBWUBWUBQG", "output": "LC ZGEQUEATJVIXETVT EXMG RS V TA C QG " }, { "input": "WUBMPWUBWUBWUBORWUBWUBDLGKWUBWUBWUBVVZQCAAKVJTIKWUBWUBWUBTJLUBZJCILQDIFVZWUBWUBYXWUBWUBWUBQWUBWUBWUBLWUB", "output": "MP OR DLGK VVZQCAAKVJTIK TJLUBZJCILQDIFVZ YX Q L " }, { "input": "WUBNXOLIBKEGXNWUBWUBWUBUWUBGITCNMDQFUAOVLWUBWUBWUBAIJDJZJHFMPVTPOXHPWUBWUBWUBISCIOWUBWUBWUBGWUBWUBWUBUWUB", "output": "NXOLIBKEGXN U GITCNMDQFUAOVL AIJDJZJHFMPVTPOXHP ISCIO G U " }, { "input": "WUBWUBNMMWCZOLYPNBELIYVDNHJUNINWUBWUBWUBDXLHYOWUBWUBWUBOJXUWUBWUBWUBRFHTGJCEFHCGWARGWUBWUBWUBJKWUBWUBSJWUBWUB", "output": "NMMWCZOLYPNBELIYVDNHJUNIN DXLHYO OJXU RFHTGJCEFHCGWARG JK SJ " }, { "input": "SGWLYSAUJOJBNOXNWUBWUBWUBBOSSFWKXPDPDCQEWUBWUBWUBDIRZINODWUBWUBWUBWWUBWUBWUBPPHWUBWUBWUBRWUBWUBWUBQWUBWUBWUBJWUB", "output": "SGWLYSAUJOJBNOXN BOSSFWKXPDPDCQE DIRZINOD W PPH R Q J " }, { "input": "TOWUBWUBWUBGBTBNWUBWUBWUBJVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSAWUBWUBWUBSWUBWUBWUBTOLVXWUBWUBWUBNHWUBWUBWUBO", "output": "TO GBTBN JVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSA S TOLVX NH O " }, { "input": "WUBWUBWSPLAYSZSAUDSWUBWUBWUBUWUBWUBWUBKRWUBWUBWUBRSOKQMZFIYZQUWUBWUBWUBELSHUWUBWUBWUBUKHWUBWUBWUBQXEUHQWUBWUBWUBBWUBWUBWUBR", "output": "WSPLAYSZSAUDS U KR RSOKQMZFIYZQU ELSHU UKH QXEUHQ B R " }, { "input": "WUBXEMWWVUHLSUUGRWUBWUBWUBAWUBXEGILZUNKWUBWUBWUBJDHHKSWUBWUBWUBDTSUYSJHWUBWUBWUBPXFWUBMOHNJWUBWUBWUBZFXVMDWUBWUBWUBZMWUBWUB", "output": "XEMWWVUHLSUUGR A XEGILZUNK JDHHKS DTSUYSJH PXF MOHNJ ZFXVMD ZM " }, { "input": "BMBWUBWUBWUBOQKWUBWUBWUBPITCIHXHCKLRQRUGXJWUBWUBWUBVWUBWUBWUBJCWUBWUBWUBQJPWUBWUBWUBBWUBWUBWUBBMYGIZOOXWUBWUBWUBTAGWUBWUBHWUB", "output": "BMB OQK PITCIHXHCKLRQRUGXJ V JC QJP B BMYGIZOOX TAG H " }, { "input": "CBZNWUBWUBWUBNHWUBWUBWUBYQSYWUBWUBWUBMWUBWUBWUBXRHBTMWUBWUBWUBPCRCWUBWUBWUBTZUYLYOWUBWUBWUBCYGCWUBWUBWUBCLJWUBWUBWUBSWUBWUBWUB", "output": "CBZN NH YQSY M XRHBTM PCRC TZUYLYO CYGC CLJ S " }, { "input": "DPDWUBWUBWUBEUQKWPUHLTLNXHAEKGWUBRRFYCAYZFJDCJLXBAWUBWUBWUBHJWUBOJWUBWUBWUBNHBJEYFWUBWUBWUBRWUBWUBWUBSWUBWWUBWUBWUBXDWUBWUBWUBJWUB", "output": "DPD EUQKWPUHLTLNXHAEKG RRFYCAYZFJDCJLXBA HJ OJ NHBJEYF R S W XD J " }, { "input": "WUBWUBWUBISERPQITVIYERSCNWUBWUBWUBQWUBWUBWUBDGSDIPWUBWUBWUBCAHKDZWEXBIBJVVSKKVQJWUBWUBWUBKIWUBWUBWUBCWUBWUBWUBAWUBWUBWUBPWUBWUBWUBHWUBWUBWUBF", "output": "ISERPQITVIYERSCN Q DGSDIP CAHKDZWEXBIBJVVSKKVQJ KI C A P H F " }, { "input": "WUBWUBWUBIWUBWUBLIKNQVWUBWUBWUBPWUBWUBWUBHWUBWUBWUBMWUBWUBWUBDPRSWUBWUBWUBBSAGYLQEENWXXVWUBWUBWUBXMHOWUBWUBWUBUWUBWUBWUBYRYWUBWUBWUBCWUBWUBWUBY", "output": "I LIKNQV P H M DPRS BSAGYLQEENWXXV XMHO U YRY C Y " }, { "input": "WUBWUBWUBMWUBWUBWUBQWUBWUBWUBITCFEYEWUBWUBWUBHEUWGNDFNZGWKLJWUBWUBWUBMZPWUBWUBWUBUWUBWUBWUBBWUBWUBWUBDTJWUBHZVIWUBWUBWUBPWUBFNHHWUBWUBWUBVTOWUB", "output": "M Q ITCFEYE HEUWGNDFNZGWKLJ MZP U B DTJ HZVI P FNHH VTO " }, { "input": "WUBWUBNDNRFHYJAAUULLHRRDEDHYFSRXJWUBWUBWUBMUJVDTIRSGYZAVWKRGIFWUBWUBWUBHMZWUBWUBWUBVAIWUBWUBWUBDDKJXPZRGWUBWUBWUBSGXWUBWUBWUBIFKWUBWUBWUBUWUBWUBWUBW", "output": "NDNRFHYJAAUULLHRRDEDHYFSRXJ MUJVDTIRSGYZAVWKRGIF HMZ VAI DDKJXPZRG SGX IFK U W " }, { "input": "WUBOJMWRSLAXXHQRTPMJNCMPGWUBWUBWUBNYGMZIXNLAKSQYWDWUBWUBWUBXNIWUBWUBWUBFWUBWUBWUBXMBWUBWUBWUBIWUBWUBWUBINWUBWUBWUBWDWUBWUBWUBDDWUBWUBWUBD", "output": "OJMWRSLAXXHQRTPMJNCMPG NYGMZIXNLAKSQYWD XNI F XMB I IN WD DD D " }, { "input": "WUBWUBWUBREHMWUBWUBWUBXWUBWUBWUBQASNWUBWUBWUBNLSMHLCMTICWUBWUBWUBVAWUBWUBWUBHNWUBWUBWUBNWUBWUBWUBUEXLSFOEULBWUBWUBWUBXWUBWUBWUBJWUBWUBWUBQWUBWUBWUBAWUBWUB", "output": "REHM X QASN NLSMHLCMTIC VA HN N UEXLSFOEULB X J Q A " }, { "input": "WUBWUBWUBSTEZTZEFFIWUBWUBWUBSWUBWUBWUBCWUBFWUBHRJPVWUBWUBWUBDYJUWUBWUBWUBPWYDKCWUBWUBWUBCWUBWUBWUBUUEOGCVHHBWUBWUBWUBEXLWUBWUBWUBVCYWUBWUBWUBMWUBWUBWUBYWUB", "output": "STEZTZEFFI S C F HRJPV DYJU PWYDKC C UUEOGCVHHB EXL VCY M Y " }, { "input": "WPPNMSQOQIWUBWUBWUBPNQXWUBWUBWUBHWUBWUBWUBNFLWUBWUBWUBGWSGAHVJFNUWUBWUBWUBFWUBWUBWUBWCMLRICFSCQQQTNBWUBWUBWUBSWUBWUBWUBKGWUBWUBWUBCWUBWUBWUBBMWUBWUBWUBRWUBWUB", "output": "WPPNMSQOQI PNQX H NFL GWSGAHVJFNU F WCMLRICFSCQQQTNB S KG C BM R " }, { "input": "YZJOOYITZRARKVFYWUBWUBRZQGWUBWUBWUBUOQWUBWUBWUBIWUBWUBWUBNKVDTBOLETKZISTWUBWUBWUBWLWUBQQFMMGSONZMAWUBZWUBWUBWUBQZUXGCWUBWUBWUBIRZWUBWUBWUBLTTVTLCWUBWUBWUBY", "output": "YZJOOYITZRARKVFY RZQG UOQ I NKVDTBOLETKZIST WL QQFMMGSONZMA Z QZUXGC IRZ LTTVTLC Y " }, { "input": "WUBCAXNCKFBVZLGCBWCOAWVWOFKZVQYLVTWUBWUBWUBNLGWUBWUBWUBAMGDZBDHZMRMQMDLIRMIWUBWUBWUBGAJSHTBSWUBWUBWUBCXWUBWUBWUBYWUBZLXAWWUBWUBWUBOHWUBWUBWUBZWUBWUBWUBGBWUBWUBWUBE", "output": "CAXNCKFBVZLGCBWCOAWVWOFKZVQYLVT NLG AMGDZBDHZMRMQMDLIRMI GAJSHTBS CX Y ZLXAW OH Z GB E " }, { "input": "WUBWUBCHXSOWTSQWUBWUBWUBCYUZBPBWUBWUBWUBSGWUBWUBWKWORLRRLQYUUFDNWUBWUBWUBYYGOJNEVEMWUBWUBWUBRWUBWUBWUBQWUBWUBWUBIHCKWUBWUBWUBKTWUBWUBWUBRGSNTGGWUBWUBWUBXCXWUBWUBWUBS", "output": "CHXSOWTSQ CYUZBPB SG WKWORLRRLQYUUFDN YYGOJNEVEM R Q IHCK KT RGSNTGG XCX S " }, { "input": "WUBWUBWUBHJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQWUBWUBWUBXTZKGIITWUBWUBWUBAWUBWUBWUBVNCXPUBCQWUBWUBWUBIDPNAWUBWUBWUBOWUBWUBWUBYGFWUBWUBWUBMQOWUBWUBWUBKWUBWUBWUBAZVWUBWUBWUBEP", "output": "HJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQ XTZKGIIT A VNCXPUBCQ IDPNA O YGF MQO K AZV EP " }, { "input": "WUBKYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTVWUBWUBWUBLRMIIWUBWUBWUBGWUBWUBWUBADPSWUBWUBWUBANBWUBWUBPCWUBWUBWUBPWUBWUBWUBGPVNLSWIRFORYGAABUXMWUBWUBWUBOWUBWUBWUBNWUBWUBWUBYWUBWUB", "output": "KYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTV LRMII G ADPS ANB PC P GPVNLSWIRFORYGAABUXM O N Y " }, { "input": "REWUBWUBWUBJDWUBWUBWUBNWUBWUBWUBTWWUBWUBWUBWZDOCKKWUBWUBWUBLDPOVBFRCFWUBWUBAKZIBQKEUAZEEWUBWUBWUBLQYPNPFWUBYEWUBWUBWUBFWUBWUBWUBBPWUBWUBWUBAWWUBWUBWUBQWUBWUBWUBBRWUBWUBWUBXJL", "output": "RE JD N TW WZDOCKK LDPOVBFRCF AKZIBQKEUAZEE LQYPNPF YE F BP AW Q BR XJL " }, { "input": "CUFGJDXGMWUBWUBWUBOMWUBWUBWUBSIEWUBWUBWUBJJWKNOWUBWUBWUBYBHVNRNORGYWUBWUBWUBOAGCAWUBWUBWUBSBLBKTPFKPBIWUBWUBWUBJBWUBWUBWUBRMFCJPGWUBWUBWUBDWUBWUBWUBOJOWUBWUBWUBZPWUBWUBWUBMWUBRWUBWUBWUBFXWWUBWUBWUBO", "output": "CUFGJDXGM OM SIE JJWKNO YBHVNRNORGY OAGCA SBLBKTPFKPBI JB RMFCJPG D OJO ZP M R FXW O " }, { "input": "WUBJZGAEXFMFEWMAKGQLUWUBWUBWUBICYTPQWGENELVYWANKUOJYWUBWUBWUBGWUBWUBWUBHYCJVLPHTUPNEGKCDGQWUBWUBWUBOFWUBWUBWUBCPGSOGZBRPRPVJJEWUBWUBWUBDQBCWUBWUBWUBHWUBWUBWUBMHOHYBMATWUBWUBWUBVWUBWUBWUBSWUBWUBWUBKOWU", "output": "JZGAEXFMFEWMAKGQLU ICYTPQWGENELVYWANKUOJY G HYCJVLPHTUPNEGKCDGQ OF CPGSOGZBRPRPVJJE DQBC H MHOHYBMAT V S KOWU " }, { "input": "A", "output": "A " }, { "input": "WUBA", "output": "A " }, { "input": "WUBWUBA", "output": "A " }, { "input": "AWUBWUBWUB", "output": "A " }, { "input": "AWUBBWUBCWUBD", "output": "A B C D " }, { "input": "WUBWWUBWUBWUBUWUBWUBBWUB", "output": "W U B " }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA " }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA " }, { "input": "WUWUBBWWUBUB", "output": "WU BW UB " }, { "input": "WUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUABWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUB", "output": "WUAB " }, { "input": "ZWUB", "output": "Z " }, { "input": "WU", "output": "WU " }, { "input": "UB", "output": "UB " }, { "input": "U", "output": "U " }, { "input": "WUBW", "output": "W " }, { "input": "WUBWU", "output": "WU " }, { "input": "WUWUB", "output": "WU " }, { "input": "UBWUB", "output": "UB " }, { "input": "WUWUBUBWUBUWUB", "output": "WU UB U " }, { "input": "WUBWWUBAWUB", "output": "W A " }, { "input": "WUUUUU", "output": "WUUUUU " } ]
1,684,430,548
2,147,483,647
PyPy 3
OK
TESTS
71
186
0
a=input().split("WUB") for char in a: if char!='': print(char,end=" ")
Title: Dubstep Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them. Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club. For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX". Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song. Input Specification: The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word. Output Specification: Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space. Demo Input: ['WUBWUBABCWUB\n', 'WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n'] Demo Output: ['ABC ', 'WE ARE THE CHAMPIONS MY FRIEND '] Note: In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya. In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
```python a=input().split("WUB") for char in a: if char!='': print(char,end=" ") ```
3
166
A
Rank List
PROGRAMMING
1,100
[ "binary search", "implementation", "sortings" ]
null
null
Another programming contest is over. You got hold of the contest's final results table. The table has the following data. For each team we are shown two numbers: the number of problems and the total penalty time. However, for no team we are shown its final place. You know the rules of comparing the results of two given teams very well. Let's say that team *a* solved *p**a* problems with total penalty time *t**a* and team *b* solved *p**b* problems with total penalty time *t**b*. Team *a* gets a higher place than team *b* in the end, if it either solved more problems on the contest, or solved the same number of problems but in less total time. In other words, team *a* gets a higher place than team *b* in the final results' table if either *p**a*<=&gt;<=*p**b*, or *p**a*<==<=*p**b* and *t**a*<=&lt;<=*t**b*. It is considered that the teams that solve the same number of problems with the same penalty time share all corresponding places. More formally, let's say there is a group of *x* teams that solved the same number of problems with the same penalty time. Let's also say that *y* teams performed better than the teams from this group. In this case all teams from the group share places *y*<=+<=1, *y*<=+<=2, ..., *y*<=+<=*x*. The teams that performed worse than the teams from this group, get their places in the results table starting from the *y*<=+<=*x*<=+<=1-th place. Your task is to count what number of teams from the given list shared the *k*-th place.
The first line contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=50). Then *n* lines contain the description of the teams: the *i*-th line contains two integers *p**i* and *t**i* (1<=≤<=*p**i*,<=*t**i*<=≤<=50) — the number of solved problems and the total penalty time of the *i*-th team, correspondingly. All numbers in the lines are separated by spaces.
In the only line print the sought number of teams that got the *k*-th place in the final results' table.
[ "7 2\n4 10\n4 10\n4 10\n3 20\n2 1\n2 1\n1 10\n", "5 4\n3 1\n3 1\n5 3\n3 1\n3 1\n" ]
[ "3\n", "4\n" ]
The final results' table for the first sample is: - 1-3 places — 4 solved problems, the penalty time equals 10 - 4 place — 3 solved problems, the penalty time equals 20 - 5-6 places — 2 solved problems, the penalty time equals 1 - 7 place — 1 solved problem, the penalty time equals 10 The table shows that the second place is shared by the teams that solved 4 problems with penalty time 10. There are 3 such teams. The final table for the second sample is: - 1 place — 5 solved problems, the penalty time equals 3 - 2-5 places — 3 solved problems, the penalty time equals 1 The table shows that the fourth place is shared by the teams that solved 3 problems with penalty time 1. There are 4 such teams.
500
[ { "input": "7 2\n4 10\n4 10\n4 10\n3 20\n2 1\n2 1\n1 10", "output": "3" }, { "input": "5 4\n3 1\n3 1\n5 3\n3 1\n3 1", "output": "4" }, { "input": "5 1\n2 2\n1 1\n1 1\n1 1\n2 2", "output": "2" }, { "input": "6 3\n2 2\n3 1\n2 2\n4 5\n2 2\n4 5", "output": "1" }, { "input": "5 5\n3 1\n10 2\n2 2\n1 10\n10 2", "output": "1" }, { "input": "3 2\n3 3\n3 3\n3 3", "output": "3" }, { "input": "4 3\n10 3\n6 10\n5 2\n5 2", "output": "2" }, { "input": "5 3\n10 10\n10 10\n1 1\n10 10\n4 3", "output": "3" }, { "input": "3 1\n2 1\n1 1\n1 2", "output": "1" }, { "input": "1 1\n28 28", "output": "1" }, { "input": "2 2\n1 2\n1 2", "output": "2" }, { "input": "5 3\n2 3\n4 2\n5 3\n2 4\n3 5", "output": "1" }, { "input": "50 22\n4 9\n8 1\n3 7\n1 2\n3 8\n9 8\n8 5\n2 10\n5 8\n1 3\n1 8\n2 3\n7 9\n10 2\n9 9\n7 3\n8 6\n10 6\n5 4\n8 1\n1 5\n6 8\n9 5\n9 5\n3 2\n3 3\n3 8\n7 5\n4 5\n8 10\n8 2\n3 5\n3 2\n1 1\n7 2\n2 7\n6 8\n10 4\n7 5\n1 7\n6 5\n3 1\n4 9\n2 3\n3 6\n5 8\n4 10\n10 7\n7 10\n9 8", "output": "1" }, { "input": "50 6\n11 20\n18 13\n1 13\n3 11\n4 17\n15 10\n15 8\n9 16\n11 17\n16 3\n3 20\n14 13\n12 15\n9 10\n14 2\n12 12\n13 17\n6 10\n20 9\n2 8\n13 7\n7 20\n15 3\n1 20\n2 13\n2 5\n14 7\n10 13\n15 12\n15 5\n17 6\n9 11\n18 5\n10 1\n15 14\n3 16\n6 12\n4 1\n14 9\n7 14\n8 17\n17 13\n4 6\n19 16\n5 6\n3 15\n4 19\n15 20\n2 10\n20 10", "output": "1" }, { "input": "50 12\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "50" }, { "input": "50 28\n2 2\n1 1\n2 1\n1 2\n1 1\n1 1\n1 1\n2 2\n2 2\n2 2\n2 1\n2 2\n2 1\n2 1\n1 2\n1 2\n1 2\n1 1\n2 2\n1 2\n2 2\n2 2\n2 1\n1 1\n1 2\n1 2\n1 1\n1 1\n1 1\n2 2\n2 1\n2 1\n2 2\n1 2\n1 2\n1 2\n1 1\n2 2\n1 2\n1 1\n2 2\n2 2\n1 1\n2 1\n2 1\n1 1\n2 2\n2 2\n2 2\n2 2", "output": "13" }, { "input": "50 40\n2 3\n3 1\n2 1\n2 1\n2 1\n3 1\n1 1\n1 2\n2 3\n1 3\n1 3\n2 1\n3 1\n1 1\n3 1\n3 1\n2 2\n1 1\n3 3\n3 1\n3 2\n2 3\n3 3\n3 1\n1 3\n2 3\n2 1\n3 2\n3 3\n3 1\n2 1\n2 2\n1 3\n3 3\n1 1\n3 2\n1 2\n2 3\n2 1\n2 2\n3 2\n1 3\n3 1\n1 1\n3 3\n2 3\n2 1\n2 3\n2 3\n1 2", "output": "5" }, { "input": "50 16\n2 1\n3 2\n5 2\n2 2\n3 4\n4 4\n3 3\n4 1\n2 3\n1 5\n4 1\n2 2\n1 5\n3 2\n2 1\n5 4\n5 2\n5 4\n1 1\n3 5\n2 1\n4 5\n5 1\n5 5\n5 4\n2 4\n1 2\n5 5\n4 4\n1 5\n4 2\n5 1\n2 4\n2 5\n2 2\n3 4\n3 1\n1 1\n5 5\n2 2\n3 4\n2 4\n5 2\n4 1\n3 1\n1 1\n4 1\n4 4\n1 4\n1 3", "output": "1" }, { "input": "50 32\n6 6\n4 2\n5 5\n1 1\n2 4\n6 5\n2 3\n6 5\n2 3\n6 3\n1 4\n1 6\n3 3\n2 4\n3 2\n6 2\n4 1\n3 3\n3 1\n5 5\n1 2\n2 1\n5 4\n3 1\n4 4\n5 6\n4 1\n2 5\n3 1\n4 6\n2 3\n1 1\n6 5\n2 6\n3 3\n2 6\n2 3\n2 6\n3 4\n2 6\n4 5\n5 4\n1 6\n3 2\n5 1\n4 1\n4 6\n4 2\n1 2\n5 2", "output": "1" }, { "input": "50 48\n5 1\n6 4\n3 2\n2 1\n4 7\n3 6\n7 1\n7 5\n6 5\n5 6\n4 7\n5 7\n5 7\n5 5\n7 3\n3 5\n4 3\n5 4\n6 2\n1 6\n6 3\n6 5\n5 2\n4 2\n3 1\n1 1\n5 6\n1 3\n6 5\n3 7\n1 5\n7 5\n6 5\n3 6\n2 7\n5 3\n5 3\n4 7\n5 2\n6 5\n5 7\n7 1\n2 3\n5 5\n2 6\n4 1\n6 2\n6 5\n3 3\n1 6", "output": "1" }, { "input": "50 8\n5 3\n7 3\n4 3\n7 4\n2 2\n4 4\n5 4\n1 1\n7 7\n4 8\n1 1\n6 3\n1 5\n7 3\n6 5\n4 5\n8 6\n3 6\n2 1\n3 2\n2 5\n7 6\n5 8\n1 3\n5 5\n8 4\n4 5\n4 4\n8 8\n7 2\n7 2\n3 6\n2 8\n8 3\n3 2\n4 5\n8 1\n3 2\n8 7\n6 3\n2 3\n5 1\n3 4\n7 2\n6 3\n7 3\n3 3\n6 4\n2 2\n5 1", "output": "3" }, { "input": "20 16\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "20" }, { "input": "20 20\n1 2\n2 2\n1 1\n2 1\n2 2\n1 1\n1 1\n2 1\n1 1\n1 2\n2 2\n1 2\n1 2\n2 2\n2 2\n1 2\n2 1\n2 1\n1 2\n2 2", "output": "6" }, { "input": "30 16\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "30" }, { "input": "30 22\n2 1\n1 2\n2 1\n2 2\n2 1\n1 2\n2 2\n1 2\n2 2\n1 2\n2 2\n1 2\n1 2\n2 1\n1 2\n2 2\n2 2\n1 2\n2 1\n1 1\n1 2\n1 2\n1 1\n1 2\n1 2\n2 2\n1 2\n2 2\n2 1\n1 1", "output": "13" }, { "input": "30 22\n1 1\n1 3\n2 3\n3 1\n2 3\n3 1\n1 2\n3 3\n2 1\n2 1\n2 2\n3 1\n3 2\n2 3\n3 1\n1 3\n2 3\n3 1\n1 2\n1 2\n2 3\n2 1\n3 3\n3 2\n1 3\n3 3\n3 3\n3 3\n3 3\n3 1", "output": "5" }, { "input": "50 16\n2 1\n3 2\n5 2\n2 2\n3 4\n4 4\n3 3\n4 1\n2 3\n1 5\n4 1\n2 2\n1 5\n3 2\n2 1\n5 4\n5 2\n5 4\n1 1\n3 5\n2 1\n4 5\n5 1\n5 5\n5 4\n2 4\n1 2\n5 5\n4 4\n1 5\n4 2\n5 1\n2 4\n2 5\n2 2\n3 4\n3 1\n1 1\n5 5\n2 2\n3 4\n2 4\n5 2\n4 1\n3 1\n1 1\n4 1\n4 4\n1 4\n1 3", "output": "1" }, { "input": "50 22\n4 9\n8 1\n3 7\n1 2\n3 8\n9 8\n8 5\n2 10\n5 8\n1 3\n1 8\n2 3\n7 9\n10 2\n9 9\n7 3\n8 6\n10 6\n5 4\n8 1\n1 5\n6 8\n9 5\n9 5\n3 2\n3 3\n3 8\n7 5\n4 5\n8 10\n8 2\n3 5\n3 2\n1 1\n7 2\n2 7\n6 8\n10 4\n7 5\n1 7\n6 5\n3 1\n4 9\n2 3\n3 6\n5 8\n4 10\n10 7\n7 10\n9 8", "output": "1" }, { "input": "50 22\n29 15\n18 10\n6 23\n38 28\n34 40\n40 1\n16 26\n22 33\n14 30\n26 7\n15 16\n22 40\n14 15\n6 28\n32 27\n33 3\n38 22\n40 17\n16 27\n21 27\n34 26\n5 15\n34 9\n38 23\n7 36\n17 6\n19 37\n40 1\n10 28\n9 14\n8 31\n40 8\n14 2\n24 16\n38 33\n3 37\n2 9\n21 21\n40 26\n28 33\n24 31\n10 12\n27 27\n17 4\n38 5\n21 31\n5 12\n29 7\n39 12\n26 14", "output": "1" }, { "input": "50 14\n4 20\n37 50\n46 19\n20 25\n47 10\n6 34\n12 41\n47 9\n22 28\n41 34\n47 40\n12 42\n9 4\n15 15\n27 8\n38 9\n4 17\n8 13\n47 7\n9 38\n30 48\n50 7\n41 34\n23 11\n16 37\n2 32\n18 46\n37 48\n47 41\n13 9\n24 50\n46 14\n33 49\n9 50\n35 30\n49 44\n42 49\n39 15\n33 42\n3 18\n44 15\n44 28\n9 17\n16 4\n10 36\n4 22\n47 17\n24 12\n2 31\n6 30", "output": "2" }, { "input": "2 1\n50 50\n50 50", "output": "2" }, { "input": "2 2\n50 50\n50 50", "output": "2" }, { "input": "2 1\n50 50\n50 49", "output": "1" }, { "input": "2 2\n50 50\n50 49", "output": "1" }, { "input": "50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50", "output": "50" }, { "input": "50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n49 50", "output": "1" }, { "input": "50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 50\n50 49", "output": "49" }, { "input": "10 1\n3 1\n3 2\n3 2\n2 3\n2 3\n2 3\n2 4\n2 4\n2 4\n2 4", "output": "1" }, { "input": "4 3\n1 1\n1 2\n2 1\n2 2", "output": "1" }, { "input": "4 2\n1 2\n1 3\n1 5\n1 2", "output": "2" }, { "input": "6 1\n4 3\n4 2\n5 1\n5 2\n5 3\n5 3", "output": "1" }, { "input": "5 3\n2 1\n1 3\n1 2\n1 1\n1 1", "output": "2" }, { "input": "3 1\n1 1\n1 2\n1 3", "output": "1" }, { "input": "10 10\n3 1\n3 2\n3 2\n2 3\n2 3\n2 3\n2 4\n2 4\n2 4\n2 4", "output": "4" }, { "input": "5 1\n5 5\n5 6\n5 7\n5 8\n5 5", "output": "2" }, { "input": "4 1\n1 1\n1 1\n1 2\n1 3", "output": "2" } ]
1,634,649,902
2,147,483,647
PyPy 3
OK
TESTS
46
154
0
n,k=map(int,input().split()) a=[] for i in range(n): l,m=map(int,input().split()) a.append([-l,m]) a.sort() print(a.count(a[k-1]))
Title: Rank List Time Limit: None seconds Memory Limit: None megabytes Problem Description: Another programming contest is over. You got hold of the contest's final results table. The table has the following data. For each team we are shown two numbers: the number of problems and the total penalty time. However, for no team we are shown its final place. You know the rules of comparing the results of two given teams very well. Let's say that team *a* solved *p**a* problems with total penalty time *t**a* and team *b* solved *p**b* problems with total penalty time *t**b*. Team *a* gets a higher place than team *b* in the end, if it either solved more problems on the contest, or solved the same number of problems but in less total time. In other words, team *a* gets a higher place than team *b* in the final results' table if either *p**a*<=&gt;<=*p**b*, or *p**a*<==<=*p**b* and *t**a*<=&lt;<=*t**b*. It is considered that the teams that solve the same number of problems with the same penalty time share all corresponding places. More formally, let's say there is a group of *x* teams that solved the same number of problems with the same penalty time. Let's also say that *y* teams performed better than the teams from this group. In this case all teams from the group share places *y*<=+<=1, *y*<=+<=2, ..., *y*<=+<=*x*. The teams that performed worse than the teams from this group, get their places in the results table starting from the *y*<=+<=*x*<=+<=1-th place. Your task is to count what number of teams from the given list shared the *k*-th place. Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=50). Then *n* lines contain the description of the teams: the *i*-th line contains two integers *p**i* and *t**i* (1<=≤<=*p**i*,<=*t**i*<=≤<=50) — the number of solved problems and the total penalty time of the *i*-th team, correspondingly. All numbers in the lines are separated by spaces. Output Specification: In the only line print the sought number of teams that got the *k*-th place in the final results' table. Demo Input: ['7 2\n4 10\n4 10\n4 10\n3 20\n2 1\n2 1\n1 10\n', '5 4\n3 1\n3 1\n5 3\n3 1\n3 1\n'] Demo Output: ['3\n', '4\n'] Note: The final results' table for the first sample is: - 1-3 places — 4 solved problems, the penalty time equals 10 - 4 place — 3 solved problems, the penalty time equals 20 - 5-6 places — 2 solved problems, the penalty time equals 1 - 7 place — 1 solved problem, the penalty time equals 10 The table shows that the second place is shared by the teams that solved 4 problems with penalty time 10. There are 3 such teams. The final table for the second sample is: - 1 place — 5 solved problems, the penalty time equals 3 - 2-5 places — 3 solved problems, the penalty time equals 1 The table shows that the fourth place is shared by the teams that solved 3 problems with penalty time 1. There are 4 such teams.
```python n,k=map(int,input().split()) a=[] for i in range(n): l,m=map(int,input().split()) a.append([-l,m]) a.sort() print(a.count(a[k-1])) ```
3
198
A
About Bacteria
PROGRAMMING
1,700
[ "implementation", "math" ]
null
null
Qwerty the Ranger took up a government job and arrived on planet Mars. He should stay in the secret lab and conduct some experiments on bacteria that have funny and abnormal properties. The job isn't difficult, but the salary is high. At the beginning of the first experiment there is a single bacterium in the test tube. Every second each bacterium in the test tube divides itself into *k* bacteria. After that some abnormal effects create *b* more bacteria in the test tube. Thus, if at the beginning of some second the test tube had *x* bacteria, then at the end of the second it will have *kx*<=+<=*b* bacteria. The experiment showed that after *n* seconds there were exactly *z* bacteria and the experiment ended at this point. For the second experiment Qwerty is going to sterilize the test tube and put there *t* bacteria. He hasn't started the experiment yet but he already wonders, how many seconds he will need to grow at least *z* bacteria. The ranger thinks that the bacteria will divide by the same rule as in the first experiment. Help Qwerty and find the minimum number of seconds needed to get a tube with at least *z* bacteria in the second experiment.
The first line contains four space-separated integers *k*, *b*, *n* and *t* (1<=≤<=*k*,<=*b*,<=*n*,<=*t*<=≤<=106) — the parameters of bacterial growth, the time Qwerty needed to grow *z* bacteria in the first experiment and the initial number of bacteria in the second experiment, correspondingly.
Print a single number — the minimum number of seconds Qwerty needs to grow at least *z* bacteria in the tube.
[ "3 1 3 5\n", "1 4 4 7\n", "2 2 4 100\n" ]
[ "2", "3", "0" ]
none
500
[ { "input": "3 1 3 5", "output": "2" }, { "input": "1 4 4 7", "output": "3" }, { "input": "2 2 4 100", "output": "0" }, { "input": "1 2 3 100", "output": "0" }, { "input": "10 10 10 123456", "output": "6" }, { "input": "847 374 283 485756", "output": "282" }, { "input": "37 1 283475 8347", "output": "283473" }, { "input": "1 1 1 1", "output": "1" }, { "input": "1 1 1 1000000", "output": "0" }, { "input": "1 1 1000000 1", "output": "1000000" }, { "input": "1 1 1000000 1000000", "output": "1" }, { "input": "1 1000000 1 1", "output": "1" }, { "input": "1 1000000 1 1000000", "output": "1" }, { "input": "1 1000000 1000000 1", "output": "1000000" }, { "input": "1 1000000 1000000 1000000", "output": "1000000" }, { "input": "1000000 1 1 1", "output": "1" }, { "input": "1000000 1 1 1000000", "output": "1" }, { "input": "1000000 1 1000000 1", "output": "1000000" }, { "input": "1000000 1 1000000 1000000", "output": "1000000" }, { "input": "1000000 1000000 1 1", "output": "1" }, { "input": "1000000 1000000 1 1000000", "output": "1" }, { "input": "1000000 1000000 1000000 1", "output": "1000000" }, { "input": "1000000 1000000 1000000 1000000", "output": "1000000" }, { "input": "1 160 748 108", "output": "748" }, { "input": "1 6099 4415 2783", "output": "4415" }, { "input": "1 1047 230 1199", "output": "229" }, { "input": "1 82435 53193 37909", "output": "53193" }, { "input": "1 96840 99008 63621", "output": "99008" }, { "input": "1 250685 823830 494528", "output": "823829" }, { "input": "1 421986 2348 320240", "output": "2348" }, { "input": "2 8 16 397208", "output": "1" }, { "input": "2 96 676 215286", "output": "665" }, { "input": "2 575 321 606104", "output": "311" }, { "input": "2 8048 37852 278843", "output": "37847" }, { "input": "2 46658 377071 909469", "output": "377067" }, { "input": "3 10 90 567680", "output": "80" }, { "input": "4 4 149 609208", "output": "141" }, { "input": "5 4 3204 986907", "output": "3196" }, { "input": "6 5 5832 885406", "output": "5825" }, { "input": "7 10 141725 219601", "output": "141720" }, { "input": "38 86 441826 91486", "output": "441824" }, { "input": "185 58 579474 889969", "output": "579472" }, { "input": "3901 18 41607 412558", "output": "41606" }, { "input": "9821 62 965712 703044", "output": "965711" }, { "input": "29487 60 3239 483550", "output": "3238" }, { "input": "78993 99 646044 456226", "output": "646043" }, { "input": "193877 3 362586 6779", "output": "362586" }, { "input": "702841 39 622448 218727", "output": "622448" }, { "input": "987899 74 490126 87643", "output": "490126" }, { "input": "1000000 69 296123 144040", "output": "296123" }, { "input": "2 5 501022 406855", "output": "501006" }, { "input": "2 2 420084 748919", "output": "420067" }, { "input": "2 3 822794 574631", "output": "822777" }, { "input": "2 2 968609 433047", "output": "968592" }, { "input": "2 1 371319 775111", "output": "371301" }, { "input": "3 2 942777 573452", "output": "942766" }, { "input": "3 2 312783 882812", "output": "312772" }, { "input": "3 4 715494 741228", "output": "715483" }, { "input": "3 1 410364 566940", "output": "410353" }, { "input": "3 2 780370 425356", "output": "780359" }, { "input": "1 5 71 551204", "output": "0" }, { "input": "1 10 29 409620", "output": "0" }, { "input": "2 1 14 637985", "output": "0" }, { "input": "2 6 73 947345", "output": "56" }, { "input": "3 8 66 951518", "output": "55" }, { "input": "3 3 24 293582", "output": "14" }, { "input": "4 9 10 489244", "output": "2" }, { "input": "4 6 16 831308", "output": "7" }, { "input": "5 6 62 835481", "output": "55" }, { "input": "5 2 68 144841", "output": "61" }, { "input": "1 1 1000000 500000", "output": "500001" }, { "input": "5 2 100 7", "output": "99" }, { "input": "3 1 3 4", "output": "2" }, { "input": "126480 295416 829274 421896", "output": "829273" }, { "input": "999991 5 1000000 999997", "output": "999999" }, { "input": "54772 1 1000000 1000000", "output": "999999" }, { "input": "5 5 2 10", "output": "1" }, { "input": "1 1 2 2", "output": "1" }, { "input": "100000 100000 10 1000000", "output": "9" }, { "input": "2 2 5 4", "output": "4" }, { "input": "999997 1 100000 1000000", "output": "99999" }, { "input": "5 2 100 38", "output": "98" }, { "input": "1 4 1 5", "output": "0" }, { "input": "1 2149 1000000 1000000", "output": "999535" }, { "input": "99999 99999 10 1000000", "output": "9" }, { "input": "999998 1 1000000 1000000", "output": "999999" }, { "input": "1 1 10 2", "output": "9" }, { "input": "1 1 100 1000", "output": "0" }, { "input": "1 1 1000000 553211", "output": "446790" }, { "input": "1 1 10 1", "output": "10" }, { "input": "3 1 3 1", "output": "3" }, { "input": "888888 2 4 999999", "output": "3" }, { "input": "3 5 10 29", "output": "8" }, { "input": "1 1 100 2", "output": "99" }, { "input": "5 5 2 1", "output": "2" }, { "input": "50000 42 1337 999999", "output": "1336" }, { "input": "2 345678 908765 987654", "output": "908764" }, { "input": "1 7 15 7", "output": "15" }, { "input": "842717 8581 19342 851297", "output": "19342" }, { "input": "5 4 1 4", "output": "1" }, { "input": "2 2 5 94", "output": "0" }, { "input": "2 100000 5 10", "output": "5" }, { "input": "722229 410423 118215 838505", "output": "118215" }, { "input": "3 1 3 13", "output": "1" }, { "input": "900000 1 100 1000000", "output": "99" }, { "input": "2 4 4 36", "output": "1" }, { "input": "999990 1 1000000 1000000", "output": "999999" }, { "input": "100000 100000 1000000 1000000", "output": "999999" }, { "input": "999998 1 5 1000000", "output": "4" }, { "input": "1 1 10 4", "output": "7" }, { "input": "2 3 4 5", "output": "3" }, { "input": "3 1 3 40", "output": "0" }, { "input": "1 10 10 100", "output": "1" }, { "input": "999987 123456 1000000 1", "output": "1000000" } ]
1,389,008,324
2,147,483,647
Python 3
OK
TESTS
114
124
307,200
from math import log k, b, n, t = map(int, input().split()) if k == 1: print(max((n * b + b - t) // b, 0)) else: print(max(0, n - int(log((k * t - t + b) / (k - 1 + b)) / log(k))))
Title: About Bacteria Time Limit: None seconds Memory Limit: None megabytes Problem Description: Qwerty the Ranger took up a government job and arrived on planet Mars. He should stay in the secret lab and conduct some experiments on bacteria that have funny and abnormal properties. The job isn't difficult, but the salary is high. At the beginning of the first experiment there is a single bacterium in the test tube. Every second each bacterium in the test tube divides itself into *k* bacteria. After that some abnormal effects create *b* more bacteria in the test tube. Thus, if at the beginning of some second the test tube had *x* bacteria, then at the end of the second it will have *kx*<=+<=*b* bacteria. The experiment showed that after *n* seconds there were exactly *z* bacteria and the experiment ended at this point. For the second experiment Qwerty is going to sterilize the test tube and put there *t* bacteria. He hasn't started the experiment yet but he already wonders, how many seconds he will need to grow at least *z* bacteria. The ranger thinks that the bacteria will divide by the same rule as in the first experiment. Help Qwerty and find the minimum number of seconds needed to get a tube with at least *z* bacteria in the second experiment. Input Specification: The first line contains four space-separated integers *k*, *b*, *n* and *t* (1<=≤<=*k*,<=*b*,<=*n*,<=*t*<=≤<=106) — the parameters of bacterial growth, the time Qwerty needed to grow *z* bacteria in the first experiment and the initial number of bacteria in the second experiment, correspondingly. Output Specification: Print a single number — the minimum number of seconds Qwerty needs to grow at least *z* bacteria in the tube. Demo Input: ['3 1 3 5\n', '1 4 4 7\n', '2 2 4 100\n'] Demo Output: ['2', '3', '0'] Note: none
```python from math import log k, b, n, t = map(int, input().split()) if k == 1: print(max((n * b + b - t) // b, 0)) else: print(max(0, n - int(log((k * t - t + b) / (k - 1 + b)) / log(k)))) ```
3
996
A
Hit the Lottery
PROGRAMMING
800
[ "dp", "greedy" ]
null
null
Allen has a LOT of money. He has $n$ dollars in the bank. For security reasons, he wants to withdraw it in cash (we will not disclose the reasons here). The denominations for dollar bills are $1$, $5$, $10$, $20$, $100$. What is the minimum number of bills Allen could receive after withdrawing his entire balance?
The first and only line of input contains a single integer $n$ ($1 \le n \le 10^9$).
Output the minimum number of bills that Allen could receive.
[ "125\n", "43\n", "1000000000\n" ]
[ "3\n", "5\n", "10000000\n" ]
In the first sample case, Allen can withdraw this with a $100$ dollar bill, a $20$ dollar bill, and a $5$ dollar bill. There is no way for Allen to receive $125$ dollars in one or two bills. In the second sample case, Allen can withdraw two $20$ dollar bills and three $1$ dollar bills. In the third sample case, Allen can withdraw $100000000$ (ten million!) $100$ dollar bills.
500
[ { "input": "125", "output": "3" }, { "input": "43", "output": "5" }, { "input": "1000000000", "output": "10000000" }, { "input": "4", "output": "4" }, { "input": "5", "output": "1" }, { "input": "1", "output": "1" }, { "input": "74", "output": "8" }, { "input": "31", "output": "3" }, { "input": "59", "output": "8" }, { "input": "79", "output": "9" }, { "input": "7", "output": "3" }, { "input": "55", "output": "4" }, { "input": "40", "output": "2" }, { "input": "719", "output": "13" }, { "input": "847", "output": "13" }, { "input": "225", "output": "4" }, { "input": "4704", "output": "51" }, { "input": "1132", "output": "15" }, { "input": "7811", "output": "80" }, { "input": "7981", "output": "84" }, { "input": "82655", "output": "830" }, { "input": "6364", "output": "70" }, { "input": "74611", "output": "748" }, { "input": "45391", "output": "459" }, { "input": "620448", "output": "6210" }, { "input": "265145", "output": "2654" }, { "input": "671704", "output": "6721" }, { "input": "365173", "output": "3658" }, { "input": "7130872", "output": "71314" }, { "input": "9628747", "output": "96292" }, { "input": "8898399", "output": "88993" }, { "input": "9497953", "output": "94985" }, { "input": "19070947", "output": "190714" }, { "input": "20185520", "output": "201856" }, { "input": "91402248", "output": "914028" }, { "input": "27035533", "output": "270360" }, { "input": "22717528", "output": "227180" }, { "input": "24403439", "output": "244041" }, { "input": "163565555", "output": "1635659" }, { "input": "152541908", "output": "1525423" }, { "input": "668439837", "output": "6684403" }, { "input": "20", "output": "1" }, { "input": "999999999", "output": "10000009" }, { "input": "10", "output": "1" }, { "input": "7", "output": "3" }, { "input": "6", "output": "2" }, { "input": "99999999", "output": "1000009" }, { "input": "1000001", "output": "10001" }, { "input": "2521", "output": "27" } ]
1,696,850,263
2,147,483,647
PyPy 3-64
OK
TESTS
49
124
0
num= int(input()) ans= 0 arr= [100, 20, 10, 5, 1] for i in arr: count = num//i ans += count num-= count *i print(ans)
Title: Hit the Lottery Time Limit: None seconds Memory Limit: None megabytes Problem Description: Allen has a LOT of money. He has $n$ dollars in the bank. For security reasons, he wants to withdraw it in cash (we will not disclose the reasons here). The denominations for dollar bills are $1$, $5$, $10$, $20$, $100$. What is the minimum number of bills Allen could receive after withdrawing his entire balance? Input Specification: The first and only line of input contains a single integer $n$ ($1 \le n \le 10^9$). Output Specification: Output the minimum number of bills that Allen could receive. Demo Input: ['125\n', '43\n', '1000000000\n'] Demo Output: ['3\n', '5\n', '10000000\n'] Note: In the first sample case, Allen can withdraw this with a $100$ dollar bill, a $20$ dollar bill, and a $5$ dollar bill. There is no way for Allen to receive $125$ dollars in one or two bills. In the second sample case, Allen can withdraw two $20$ dollar bills and three $1$ dollar bills. In the third sample case, Allen can withdraw $100000000$ (ten million!) $100$ dollar bills.
```python num= int(input()) ans= 0 arr= [100, 20, 10, 5, 1] for i in arr: count = num//i ans += count num-= count *i print(ans) ```
3
837
D
Round Subset
PROGRAMMING
2,100
[ "dp", "math" ]
null
null
Let's call the roundness of the number the number of zeros to which it ends. You have an array of *n* numbers. You need to choose a subset of exactly *k* numbers so that the roundness of the product of the selected numbers will be maximum possible.
The first line contains two integer numbers *n* and *k* (1<=≤<=*n*<=≤<=200,<=1<=≤<=*k*<=≤<=*n*). The second line contains *n* space-separated integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1018).
Print maximal roundness of product of the chosen subset of length *k*.
[ "3 2\n50 4 20\n", "5 3\n15 16 3 25 9\n", "3 3\n9 77 13\n" ]
[ "3\n", "3\n", "0\n" ]
In the first example there are 3 subsets of 2 numbers. [50, 4] has product 200 with roundness 2, [4, 20] — product 80, roundness 1, [50, 20] — product 1000, roundness 3. In the second example subset [15, 16, 25] has product 6000, roundness 3. In the third example all subsets has product with roundness 0.
0
[ { "input": "3 2\n50 4 20", "output": "3" }, { "input": "5 3\n15 16 3 25 9", "output": "3" }, { "input": "3 3\n9 77 13", "output": "0" }, { "input": "1 1\n200000000", "output": "8" }, { "input": "1 1\n3", "output": "0" }, { "input": "3 1\n1000000000000000000 800000000000000000 625", "output": "18" }, { "input": "20 13\n93050001 1 750000001 950000001 160250001 482000001 145875001 900000001 500000001 513300001 313620001 724750001 205800001 400000001 800000001 175000001 875000001 852686005 868880001 342500001", "output": "0" }, { "input": "5 3\n1360922189858001 5513375057164001 4060879738933651 3260997351273601 5540397778584001", "output": "0" }, { "input": "5 3\n670206146698567481 75620705254979501 828058059097865201 67124386759325201 946737848872942801", "output": "0" }, { "input": "5 4\n539134530963895499 265657472022483040 798956216114326361 930406714691011229 562844921643925634", "output": "1" }, { "input": "200 10\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "200 50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "200 100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "200 200\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "5 2\n625 5 100 16 10", "output": "4" }, { "input": "5 2\n64 32 16 8 3125", "output": "5" }, { "input": "2 2\n2199023255552 11920928955078125", "output": "23" }, { "input": "1 1\n500", "output": "2" }, { "input": "3 1\n125 10 8", "output": "1" }, { "input": "7 5\n50 312500 10000 1250 2000000 250 1250000", "output": "18" }, { "input": "4 2\n3125 1000 1000 32", "output": "6" }, { "input": "3 1\n4 10 25", "output": "1" }, { "input": "3 1\n16 10 75", "output": "1" }, { "input": "3 2\n100 5120 19531250", "output": "11" }, { "input": "4 2\n16 200 500 625", "output": "5" }, { "input": "7 4\n5000 1250 100 200 10 5000 640", "output": "13" }, { "input": "2 1\n125 10", "output": "1" }, { "input": "3 2\n16 625 10", "output": "4" }, { "input": "4 2\n10 4 25 5", "output": "2" }, { "input": "2 1\n10 25", "output": "1" }, { "input": "3 1\n10 16 625", "output": "1" }, { "input": "4 2\n10 200 625 16", "output": "4" }, { "input": "3 1\n1000 16 625", "output": "3" }, { "input": "3 2\n6250 100 160", "output": "6" }, { "input": "3 2\n1250 100 80", "output": "5" }, { "input": "3 2\n1024 1000 9765625", "output": "10" }, { "input": "5 2\n125 10 10 3 3", "output": "2" }, { "input": "4 2\n31250 200 500 320", "output": "7" }, { "input": "3 1\n16 10 125", "output": "1" }, { "input": "5 3\n125 8 1000 100 100", "output": "7" }, { "input": "3 2\n25 4 10", "output": "2" }, { "input": "3 2\n125 8 10", "output": "3" }, { "input": "6 2\n125 125 100 100 8 8", "output": "4" }, { "input": "3 1\n32 3125 10", "output": "1" }, { "input": "5 3\n4 5 125 16 1", "output": "4" }, { "input": "7 4\n5 125 2 5 2 5 20", "output": "4" }, { "input": "200 200\n5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2", "output": "100" }, { "input": "2 1\n200 250", "output": "2" }, { "input": "5 3\n500 10 250 20 8", "output": "6" }, { "input": "4 2\n2 2 25 1", "output": "1" }, { "input": "2 2\n16 25", "output": "2" } ]
1,645,864,024
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
6
124
8,601,600
import sys input = sys.stdin.readline n, k = map(int, input().split()) a = list(map(int, input().split())) p5 = [0] * n p2 = [0] * n for i in range(n): while a[i] % 5 == 0: p5[i] += 1 a[i] //= 5 while a[i] % 2 == 0: p2[i] += 1 a[i] //= 2 s = sum(p5) dp = [[[0] * (s + 1) for i in range(k + 1)] for j in range(n + 1)] it = 0 for i in range(n): for j in range(k): for l in range(it + 1): dp[i + 1][j][l] = max(dp[i + 1][j][l], dp[i][j][l]) dp[i + 1][j + 1][l + p5[i]] = max(dp[i + 1][j + 1][l + p5[i]], dp[i][j][l] + p2[i]) it += p5[i] ans = 0 for i in range(s + 1): ans = max(ans, min(i, dp[n][k][i])) print(ans)
Title: Round Subset Time Limit: None seconds Memory Limit: None megabytes Problem Description: Let's call the roundness of the number the number of zeros to which it ends. You have an array of *n* numbers. You need to choose a subset of exactly *k* numbers so that the roundness of the product of the selected numbers will be maximum possible. Input Specification: The first line contains two integer numbers *n* and *k* (1<=≤<=*n*<=≤<=200,<=1<=≤<=*k*<=≤<=*n*). The second line contains *n* space-separated integer numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=1018). Output Specification: Print maximal roundness of product of the chosen subset of length *k*. Demo Input: ['3 2\n50 4 20\n', '5 3\n15 16 3 25 9\n', '3 3\n9 77 13\n'] Demo Output: ['3\n', '3\n', '0\n'] Note: In the first example there are 3 subsets of 2 numbers. [50, 4] has product 200 with roundness 2, [4, 20] — product 80, roundness 1, [50, 20] — product 1000, roundness 3. In the second example subset [15, 16, 25] has product 6000, roundness 3. In the third example all subsets has product with roundness 0.
```python import sys input = sys.stdin.readline n, k = map(int, input().split()) a = list(map(int, input().split())) p5 = [0] * n p2 = [0] * n for i in range(n): while a[i] % 5 == 0: p5[i] += 1 a[i] //= 5 while a[i] % 2 == 0: p2[i] += 1 a[i] //= 2 s = sum(p5) dp = [[[0] * (s + 1) for i in range(k + 1)] for j in range(n + 1)] it = 0 for i in range(n): for j in range(k): for l in range(it + 1): dp[i + 1][j][l] = max(dp[i + 1][j][l], dp[i][j][l]) dp[i + 1][j + 1][l + p5[i]] = max(dp[i + 1][j + 1][l + p5[i]], dp[i][j][l] + p2[i]) it += p5[i] ans = 0 for i in range(s + 1): ans = max(ans, min(i, dp[n][k][i])) print(ans) ```
0
854
A
Fraction
PROGRAMMING
800
[ "brute force", "constructive algorithms", "math" ]
null
null
Petya is a big fan of mathematics, especially its part related to fractions. Recently he learned that a fraction is called proper iff its numerator is smaller than its denominator (*a*<=&lt;<=*b*) and that the fraction is called irreducible if its numerator and its denominator are coprime (they do not have positive common divisors except 1). During his free time, Petya thinks about proper irreducible fractions and converts them to decimals using the calculator. One day he mistakenly pressed addition button (<=+<=) instead of division button (÷) and got sum of numerator and denominator that was equal to *n* instead of the expected decimal notation. Petya wanted to restore the original fraction, but soon he realized that it might not be done uniquely. That's why he decided to determine maximum possible proper irreducible fraction such that sum of its numerator and denominator equals *n*. Help Petya deal with this problem.
In the only line of input there is an integer *n* (3<=≤<=*n*<=≤<=1000), the sum of numerator and denominator of the fraction.
Output two space-separated positive integers *a* and *b*, numerator and denominator of the maximum possible proper irreducible fraction satisfying the given sum.
[ "3\n", "4\n", "12\n" ]
[ "1 2\n", "1 3\n", "5 7\n" ]
none
500
[ { "input": "3", "output": "1 2" }, { "input": "4", "output": "1 3" }, { "input": "12", "output": "5 7" }, { "input": "34", "output": "15 19" }, { "input": "13", "output": "6 7" }, { "input": "11", "output": "5 6" }, { "input": "24", "output": "11 13" }, { "input": "17", "output": "8 9" }, { "input": "10", "output": "3 7" }, { "input": "69", "output": "34 35" }, { "input": "100", "output": "49 51" }, { "input": "57", "output": "28 29" }, { "input": "1000", "output": "499 501" }, { "input": "999", "output": "499 500" }, { "input": "998", "output": "497 501" }, { "input": "997", "output": "498 499" }, { "input": "996", "output": "497 499" }, { "input": "995", "output": "497 498" }, { "input": "994", "output": "495 499" }, { "input": "5", "output": "2 3" }, { "input": "6", "output": "1 5" }, { "input": "8", "output": "3 5" }, { "input": "9", "output": "4 5" }, { "input": "423", "output": "211 212" }, { "input": "876", "output": "437 439" }, { "input": "29", "output": "14 15" } ]
1,606,538,297
2,147,483,647
PyPy 3
OK
TESTS
26
140
1,331,200
import math n=int(input()) answer=0 numerator=0 denominator=0 for a in range(1, 1001): for b in range(a+1, 1001): if a+b==n: if math.gcd(a, b)==1: if a/b>answer: answer=a/b numerator=a denominator=b print(numerator, denominator)
Title: Fraction Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya is a big fan of mathematics, especially its part related to fractions. Recently he learned that a fraction is called proper iff its numerator is smaller than its denominator (*a*<=&lt;<=*b*) and that the fraction is called irreducible if its numerator and its denominator are coprime (they do not have positive common divisors except 1). During his free time, Petya thinks about proper irreducible fractions and converts them to decimals using the calculator. One day he mistakenly pressed addition button (<=+<=) instead of division button (÷) and got sum of numerator and denominator that was equal to *n* instead of the expected decimal notation. Petya wanted to restore the original fraction, but soon he realized that it might not be done uniquely. That's why he decided to determine maximum possible proper irreducible fraction such that sum of its numerator and denominator equals *n*. Help Petya deal with this problem. Input Specification: In the only line of input there is an integer *n* (3<=≤<=*n*<=≤<=1000), the sum of numerator and denominator of the fraction. Output Specification: Output two space-separated positive integers *a* and *b*, numerator and denominator of the maximum possible proper irreducible fraction satisfying the given sum. Demo Input: ['3\n', '4\n', '12\n'] Demo Output: ['1 2\n', '1 3\n', '5 7\n'] Note: none
```python import math n=int(input()) answer=0 numerator=0 denominator=0 for a in range(1, 1001): for b in range(a+1, 1001): if a+b==n: if math.gcd(a, b)==1: if a/b>answer: answer=a/b numerator=a denominator=b print(numerator, denominator) ```
3
545
D
Queue
PROGRAMMING
1,300
[ "greedy", "implementation", "sortings" ]
null
null
Little girl Susie went shopping with her mom and she wondered how to improve service quality. There are *n* people in the queue. For each person we know time *t**i* needed to serve him. A person will be disappointed if the time he waits is more than the time needed to serve him. The time a person waits is the total time when all the people who stand in the queue in front of him are served. Susie thought that if we swap some people in the queue, then we can decrease the number of people who are disappointed. Help Susie find out what is the maximum number of not disappointed people can be achieved by swapping people in the queue.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105). The next line contains *n* integers *t**i* (1<=≤<=*t**i*<=≤<=109), separated by spaces.
Print a single number — the maximum number of not disappointed people in the queue.
[ "5\n15 2 1 5 3\n" ]
[ "4\n" ]
Value 4 is achieved at such an arrangement, for example: 1, 2, 3, 5, 15. Thus, you can make everything feel not disappointed except for the person with time 5.
1,750
[ { "input": "5\n15 2 1 5 3", "output": "4" }, { "input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "2" }, { "input": "10\n13 2 5 55 21 34 1 8 1 3", "output": "6" }, { "input": "10\n8 256 16 1 2 1 64 4 128 32", "output": "10" }, { "input": "10\n10000 40000 10000 50000 20000 100000 10000 100 30000 500", "output": "6" }, { "input": "1\n1000000000", "output": "1" }, { "input": "15\n9 11 45 86 52 65 35 3 93 7 21 45 15 11 39", "output": "6" }, { "input": "20\n16839799 17525904 91276752 42650694 60106463 12243176 54892123 25142243 16015971 41250998 11150057 6994983 67700784 16562412 82163675 46178521 33914268 91966607 93976858 84100064", "output": "5" }, { "input": "26\n1000 4110030 64221 131521030 942374833 1003 2055015 32110 513757 16440130 263042057 32880256 128439 557559573 16051 8220066 469240078 65760513 256878 790176315 4012 2005 1027508 928528684 8030 805074697", "output": "21" } ]
1,672,325,456
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
0
1,000
0
num_persons = int(input()) serving_times = input() serving_times = map(int, serving_times.split(' ')) serving_times = list(serving_times) i = 0 tiempo_acumulado = 0 clientes_satisfechos = 0 while i <= num_persons-2: tiempo_acumulado = tiempo_acumulado + serving_times[i] if serving_times[i+1] >= tiempo_acumulado: clientes_satisfechos = clientes_satisfechos +1 i = i+1 else: #swap tiempo_acumulado = tiempo_acumulado - serving_times[i] actual = serving_times[i] serving_times[i] = serving_times[i+1] serving_times[i+1] = actual if i > 0 and serving_times[i] <= tiempo_acumulado: i = i-1 tiempo_acumulado = tiempo_acumulado - serving_times[i] print(clientes_satisfechos)
Title: Queue Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little girl Susie went shopping with her mom and she wondered how to improve service quality. There are *n* people in the queue. For each person we know time *t**i* needed to serve him. A person will be disappointed if the time he waits is more than the time needed to serve him. The time a person waits is the total time when all the people who stand in the queue in front of him are served. Susie thought that if we swap some people in the queue, then we can decrease the number of people who are disappointed. Help Susie find out what is the maximum number of not disappointed people can be achieved by swapping people in the queue. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105). The next line contains *n* integers *t**i* (1<=≤<=*t**i*<=≤<=109), separated by spaces. Output Specification: Print a single number — the maximum number of not disappointed people in the queue. Demo Input: ['5\n15 2 1 5 3\n'] Demo Output: ['4\n'] Note: Value 4 is achieved at such an arrangement, for example: 1, 2, 3, 5, 15. Thus, you can make everything feel not disappointed except for the person with time 5.
```python num_persons = int(input()) serving_times = input() serving_times = map(int, serving_times.split(' ')) serving_times = list(serving_times) i = 0 tiempo_acumulado = 0 clientes_satisfechos = 0 while i <= num_persons-2: tiempo_acumulado = tiempo_acumulado + serving_times[i] if serving_times[i+1] >= tiempo_acumulado: clientes_satisfechos = clientes_satisfechos +1 i = i+1 else: #swap tiempo_acumulado = tiempo_acumulado - serving_times[i] actual = serving_times[i] serving_times[i] = serving_times[i+1] serving_times[i+1] = actual if i > 0 and serving_times[i] <= tiempo_acumulado: i = i-1 tiempo_acumulado = tiempo_acumulado - serving_times[i] print(clientes_satisfechos) ```
0
47
A
Triangular numbers
PROGRAMMING
800
[ "brute force", "math" ]
A. Triangular numbers
2
256
A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The *n*-th triangular number is the number of dots in a triangle with *n* dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number). Your task is to find out if a given integer is a triangular number.
The first line contains the single number *n* (1<=≤<=*n*<=≤<=500) — the given integer.
If the given integer is a triangular number output YES, otherwise output NO.
[ "1\n", "2\n", "3\n" ]
[ "YES\n", "NO\n", "YES\n" ]
none
500
[ { "input": "1", "output": "YES" }, { "input": "2", "output": "NO" }, { "input": "3", "output": "YES" }, { "input": "4", "output": "NO" }, { "input": "5", "output": "NO" }, { "input": "6", "output": "YES" }, { "input": "7", "output": "NO" }, { "input": "8", "output": "NO" }, { "input": "12", "output": "NO" }, { "input": "10", "output": "YES" }, { "input": "11", "output": "NO" }, { "input": "9", "output": "NO" }, { "input": "14", "output": "NO" }, { "input": "15", "output": "YES" }, { "input": "16", "output": "NO" }, { "input": "20", "output": "NO" }, { "input": "21", "output": "YES" }, { "input": "22", "output": "NO" }, { "input": "121", "output": "NO" }, { "input": "135", "output": "NO" }, { "input": "136", "output": "YES" }, { "input": "137", "output": "NO" }, { "input": "152", "output": "NO" }, { "input": "153", "output": "YES" }, { "input": "154", "output": "NO" }, { "input": "171", "output": "YES" }, { "input": "189", "output": "NO" }, { "input": "190", "output": "YES" }, { "input": "191", "output": "NO" }, { "input": "210", "output": "YES" }, { "input": "211", "output": "NO" }, { "input": "231", "output": "YES" }, { "input": "232", "output": "NO" }, { "input": "252", "output": "NO" }, { "input": "253", "output": "YES" }, { "input": "254", "output": "NO" }, { "input": "275", "output": "NO" }, { "input": "276", "output": "YES" }, { "input": "277", "output": "NO" }, { "input": "299", "output": "NO" }, { "input": "300", "output": "YES" }, { "input": "301", "output": "NO" }, { "input": "324", "output": "NO" }, { "input": "325", "output": "YES" }, { "input": "326", "output": "NO" }, { "input": "350", "output": "NO" }, { "input": "351", "output": "YES" }, { "input": "352", "output": "NO" }, { "input": "377", "output": "NO" }, { "input": "378", "output": "YES" }, { "input": "406", "output": "YES" }, { "input": "434", "output": "NO" }, { "input": "435", "output": "YES" }, { "input": "464", "output": "NO" }, { "input": "465", "output": "YES" }, { "input": "495", "output": "NO" }, { "input": "496", "output": "YES" }, { "input": "497", "output": "NO" }, { "input": "331", "output": "NO" }, { "input": "413", "output": "NO" }, { "input": "177", "output": "NO" }, { "input": "122", "output": "NO" }, { "input": "478", "output": "NO" }, { "input": "188", "output": "NO" }, { "input": "21", "output": "YES" }, { "input": "474", "output": "NO" }, { "input": "21", "output": "YES" }, { "input": "48", "output": "NO" }, { "input": "498", "output": "NO" }, { "input": "499", "output": "NO" }, { "input": "500", "output": "NO" } ]
1,553,863,159
2,147,483,647
Python 3
OK
TESTS
71
218
0
n = int(input()) n = (8 * n + 1) ** .5 print('NYOE S'[not n % 1 and int(n) & 1::2])
Title: Triangular numbers Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The *n*-th triangular number is the number of dots in a triangle with *n* dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number). Your task is to find out if a given integer is a triangular number. Input Specification: The first line contains the single number *n* (1<=≤<=*n*<=≤<=500) — the given integer. Output Specification: If the given integer is a triangular number output YES, otherwise output NO. Demo Input: ['1\n', '2\n', '3\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: none
```python n = int(input()) n = (8 * n + 1) ** .5 print('NYOE S'[not n % 1 and int(n) & 1::2]) ```
3.9455
1,003
A
Polycarp's Pockets
PROGRAMMING
800
[ "implementation" ]
null
null
Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket. For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$. Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.
The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins.
Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.
[ "6\n1 2 4 3 3 2\n", "1\n100\n" ]
[ "2\n", "1\n" ]
none
0
[ { "input": "6\n1 2 4 3 3 2", "output": "2" }, { "input": "1\n100", "output": "1" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "100" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "100" }, { "input": "100\n59 47 39 47 47 71 47 28 58 47 35 79 58 47 38 47 47 47 47 27 47 43 29 95 47 49 46 71 47 74 79 47 47 32 45 67 47 47 30 37 47 47 16 67 22 76 47 86 84 10 5 47 47 47 47 47 1 51 47 54 47 8 47 47 9 47 47 47 47 28 47 47 26 47 47 47 47 47 47 92 47 47 77 47 47 24 45 47 10 47 47 89 47 27 47 89 47 67 24 71", "output": "51" }, { "input": "100\n45 99 10 27 16 85 39 38 17 32 15 23 67 48 50 97 42 70 62 30 44 81 64 73 34 22 46 5 83 52 58 60 33 74 47 88 18 61 78 53 25 95 94 31 3 75 1 57 20 54 59 9 68 7 77 43 21 87 86 24 4 80 11 49 2 72 36 84 71 8 65 55 79 100 41 14 35 89 66 69 93 37 56 82 90 91 51 19 26 92 6 96 13 98 12 28 76 40 63 29", "output": "1" }, { "input": "100\n45 29 5 2 6 50 22 36 14 15 9 48 46 20 8 37 7 47 12 50 21 38 18 27 33 19 40 10 5 49 38 42 34 37 27 30 35 24 10 3 40 49 41 3 4 44 13 25 28 31 46 36 23 1 1 23 7 22 35 26 21 16 48 42 32 8 11 16 34 11 39 32 47 28 43 41 39 4 14 19 26 45 13 18 15 25 2 44 17 29 17 33 43 6 12 30 9 20 31 24", "output": "2" }, { "input": "50\n7 7 3 3 7 4 5 6 4 3 7 5 6 4 5 4 4 5 6 7 7 7 4 5 5 5 3 7 6 3 4 6 3 6 4 4 5 4 6 6 3 5 6 3 5 3 3 7 7 6", "output": "10" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "99" }, { "input": "7\n1 2 3 3 3 1 2", "output": "3" }, { "input": "5\n1 2 3 4 5", "output": "1" }, { "input": "7\n1 2 3 4 5 6 7", "output": "1" }, { "input": "8\n1 2 3 4 5 6 7 8", "output": "1" }, { "input": "9\n1 2 3 4 5 6 7 8 9", "output": "1" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "1" }, { "input": "3\n2 1 1", "output": "2" }, { "input": "11\n1 2 3 4 5 6 7 8 9 1 1", "output": "3" }, { "input": "12\n1 2 1 1 1 1 1 1 1 1 1 1", "output": "11" }, { "input": "13\n1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "13" }, { "input": "14\n1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "14" }, { "input": "15\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "15" }, { "input": "16\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "16" }, { "input": "3\n1 1 1", "output": "3" }, { "input": "3\n1 2 3", "output": "1" }, { "input": "10\n1 1 1 1 2 2 1 1 9 10", "output": "6" }, { "input": "2\n1 1", "output": "2" }, { "input": "56\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "56" }, { "input": "99\n35 96 73 72 70 83 22 93 98 75 45 32 81 82 45 54 25 7 53 72 29 2 94 19 21 98 34 28 39 99 55 85 44 23 6 47 98 2 33 34 19 57 49 35 67 4 60 4 4 23 55 6 57 66 16 68 34 45 84 79 48 63 4 9 46 88 98 13 19 27 83 12 4 63 57 22 44 77 44 62 28 52 44 64 9 24 55 22 48 4 2 9 80 76 45 1 56 22 92", "output": "6" }, { "input": "10\n1 2 2 3 3 3 4 4 4 4", "output": "4" }, { "input": "99\n97 44 33 56 42 10 61 85 64 26 40 39 82 34 75 9 51 51 39 73 58 38 74 31 13 99 58 1 28 89 76 19 52 7 40 56 12 27 72 72 67 75 62 46 22 55 35 16 18 39 60 63 92 42 85 69 34 61 73 50 57 95 30 4 45 63 76 58 32 35 48 81 10 78 95 79 55 97 21 21 22 94 30 17 78 57 89 93 100 44 16 89 68 55 19 46 42 73 21", "output": "3" }, { "input": "5\n5 5 5 5 1", "output": "4" }, { "input": "6\n2 3 2 5 2 6", "output": "3" }, { "input": "3\n58 59 58", "output": "2" }, { "input": "9\n1 2 3 4 5 6 7 8 8", "output": "2" }, { "input": "97\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "97" }, { "input": "3\n95 95 4", "output": "2" }, { "input": "3\n2 2 5", "output": "2" } ]
1,647,089,262
2,147,483,647
Python 3
OK
TESTS
37
46
0
n=int(input()) a=list(map(int,input().split())) b=[] for i in range(n): b.append(a.count(a[i])) print(max(b))
Title: Polycarp's Pockets Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp has $n$ coins, the value of the $i$-th coin is $a_i$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket. For example, if Polycarp has got six coins represented as an array $a = [1, 2, 4, 3, 3, 2]$, he can distribute the coins into two pockets as follows: $[1, 2, 3], [2, 3, 4]$. Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that. Input Specification: The first line of the input contains one integer $n$ ($1 \le n \le 100$) — the number of coins. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 100$) — values of coins. Output Specification: Print only one integer — the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket. Demo Input: ['6\n1 2 4 3 3 2\n', '1\n100\n'] Demo Output: ['2\n', '1\n'] Note: none
```python n=int(input()) a=list(map(int,input().split())) b=[] for i in range(n): b.append(a.count(a[i])) print(max(b)) ```
3
15
A
Cottage Village
PROGRAMMING
1,200
[ "implementation", "sortings" ]
A. Cottage Village
2
64
A new cottage village called «Flatville» is being built in Flatland. By now they have already built in «Flatville» *n* square houses with the centres on the *Оx*-axis. The houses' sides are parallel to the coordinate axes. It's known that no two houses overlap, but they can touch each other. The architect bureau, where Peter works, was commissioned to build a new house in «Flatville». The customer wants his future house to be on the *Оx*-axis, to be square in shape, have a side *t*, and touch at least one of the already built houses. For sure, its sides should be parallel to the coordinate axes, its centre should be on the *Ox*-axis and it shouldn't overlap any of the houses in the village. Peter was given a list of all the houses in «Flatville». Would you help him find the amount of possible positions of the new house?
The first line of the input data contains numbers *n* and *t* (1<=≤<=*n*,<=*t*<=≤<=1000). Then there follow *n* lines, each of them contains two space-separated integer numbers: *x**i* *a**i*, where *x**i* — *x*-coordinate of the centre of the *i*-th house, and *a**i* — length of its side (<=-<=1000<=≤<=*x**i*<=≤<=1000, 1<=≤<=*a**i*<=≤<=1000).
Output the amount of possible positions of the new house.
[ "2 2\n0 4\n6 2\n", "2 2\n0 4\n5 2\n", "2 3\n0 4\n5 2\n" ]
[ "4\n", "3\n", "2\n" ]
It is possible for the *x*-coordinate of the new house to have non-integer value.
0
[ { "input": "2 2\n0 4\n6 2", "output": "4" }, { "input": "2 2\n0 4\n5 2", "output": "3" }, { "input": "2 3\n0 4\n5 2", "output": "2" }, { "input": "1 1\n1 1", "output": "2" }, { "input": "1 2\n2 1", "output": "2" }, { "input": "2 1\n2 1\n1 1", "output": "2" }, { "input": "2 2\n0 4\n7 4", "output": "4" }, { "input": "4 1\n-12 1\n-14 1\n4 1\n-11 1", "output": "5" }, { "input": "6 15\n19 1\n2 3\n6 2\n-21 2\n-15 2\n23 1", "output": "2" }, { "input": "10 21\n-61 6\n55 2\n-97 1\n37 1\n-39 1\n26 2\n21 1\n64 3\n-68 1\n-28 6", "output": "6" }, { "input": "26 51\n783 54\n-850 6\n-997 59\n573 31\n-125 20\n472 52\n101 5\n-561 4\n625 35\n911 14\n-47 33\n677 55\n-410 54\n13 53\n173 31\n968 30\n-497 7\n832 42\n271 59\n-638 52\n-301 51\n378 36\n-813 7\n-206 22\n-737 37\n-911 9", "output": "35" }, { "input": "14 101\n121 88\n-452 91\n635 28\n-162 59\n-872 26\n-996 8\n468 86\n742 63\n892 89\n-249 107\n300 51\n-753 17\n-620 31\n-13 34", "output": "16" }, { "input": "3 501\n827 327\n-85 480\n-999 343", "output": "6" }, { "input": "2 999\n-999 471\n530 588", "output": "4" }, { "input": "22 54\n600 43\n806 19\n-269 43\n-384 78\n222 34\n392 10\n318 30\n488 73\n-756 49\n-662 22\n-568 50\n-486 16\n-470 2\n96 66\n864 16\n934 15\n697 43\n-154 30\n775 5\n-876 71\n-33 78\n-991 31", "output": "30" }, { "input": "17 109\n52 7\n216 24\n-553 101\n543 39\n391 92\n-904 67\n95 34\n132 14\n730 103\n952 118\n-389 41\n-324 36\n-74 2\n-147 99\n-740 33\n233 1\n-995 3", "output": "16" }, { "input": "4 512\n-997 354\n-568 216\n-234 221\n603 403", "output": "4" }, { "input": "3 966\n988 5\n15 2\n-992 79", "output": "6" }, { "input": "2 1000\n-995 201\n206 194", "output": "4" }, { "input": "50 21\n-178 1\n49 1\n-98 1\n-220 1\n152 1\n-160 3\n17 2\n77 1\n-24 1\n214 2\n-154 2\n-141 1\n79 1\n206 1\n8 1\n-208 1\n36 1\n231 3\n-2 2\n-130 2\n-14 2\n34 1\n-187 2\n14 1\n-83 2\n-241 1\n149 2\n73 1\n-233 3\n-45 1\n197 1\n145 2\n-127 2\n-229 4\n-85 1\n-66 1\n-76 2\n104 1\n175 1\n70 1\n131 3\n-108 1\n-5 4\n140 1\n33 1\n248 3\n-36 3\n134 1\n-183 1\n56 2", "output": "9" }, { "input": "50 1\n37 1\n-38 1\n7 1\n47 1\n-4 1\n24 1\n-32 1\n-23 1\n-3 1\n-19 1\n5 1\n-50 1\n11 1\n-11 1\n49 1\n-39 1\n0 1\n43 1\n-10 1\n6 1\n19 1\n1 1\n27 1\n29 1\n-47 1\n-40 1\n-46 1\n-26 1\n-42 1\n-37 1\n13 1\n-29 1\n-30 1\n3 1\n44 1\n10 1\n4 1\n-14 1\n-2 1\n34 1\n18 1\n-33 1\n-44 1\n9 1\n-36 1\n-7 1\n25 1\n22 1\n-20 1\n-41 1", "output": "43" }, { "input": "50 1\n-967 7\n696 7\n-366 4\n557 1\n978 2\n800 4\n-161 2\n-773 2\n-248 2\n134 3\n869 6\n-932 2\n-262 14\n191 3\n669 2\n72 5\n0 1\n757 8\n859 2\n-131 8\n-169 3\n543 10\n-120 2\n-87 8\n-936 6\n-620 3\n-281 11\n684 3\n886 10\n497 4\n380 4\n833 1\n-727 6\n470 11\n584 9\n66 6\n-609 12\n-661 4\n-57 8\n628 7\n635 4\n-924 3\n-982 4\n-201 7\n-9 8\n-560 9\n712 7\n-330 8\n-191 1\n-892 7", "output": "96" }, { "input": "1 1000\n0 1000", "output": "2" } ]
1,651,216,262
2,147,483,647
PyPy 3-64
OK
TESTS
35
342
8,192,000
import abc import itertools import math from math import gcd as gcd import sys import queue import itertools from heapq import heappop, heappush import random def solve(): n, t = map(int, input().split()) t = 2 * t res = 2 h = [] for i in range(n): x, a = map(int, input().split()) l, r = 2 * x - a, 2 * x + a h.append([l, r]) h.sort(key=lambda x: (x[0], x[1])) for i in range(1, n): r1, l2 = h[i - 1][1], h[i][0] if l2 - r1 == t: res += 1 elif l2 - r1 > t: res += 2 print(res) if __name__ == '__main__': multi_test = 0 if multi_test == 1: t = int(sys.stdin.readline()) for _ in range(t): solve() else: solve()
Title: Cottage Village Time Limit: 2 seconds Memory Limit: 64 megabytes Problem Description: A new cottage village called «Flatville» is being built in Flatland. By now they have already built in «Flatville» *n* square houses with the centres on the *Оx*-axis. The houses' sides are parallel to the coordinate axes. It's known that no two houses overlap, but they can touch each other. The architect bureau, where Peter works, was commissioned to build a new house in «Flatville». The customer wants his future house to be on the *Оx*-axis, to be square in shape, have a side *t*, and touch at least one of the already built houses. For sure, its sides should be parallel to the coordinate axes, its centre should be on the *Ox*-axis and it shouldn't overlap any of the houses in the village. Peter was given a list of all the houses in «Flatville». Would you help him find the amount of possible positions of the new house? Input Specification: The first line of the input data contains numbers *n* and *t* (1<=≤<=*n*,<=*t*<=≤<=1000). Then there follow *n* lines, each of them contains two space-separated integer numbers: *x**i* *a**i*, where *x**i* — *x*-coordinate of the centre of the *i*-th house, and *a**i* — length of its side (<=-<=1000<=≤<=*x**i*<=≤<=1000, 1<=≤<=*a**i*<=≤<=1000). Output Specification: Output the amount of possible positions of the new house. Demo Input: ['2 2\n0 4\n6 2\n', '2 2\n0 4\n5 2\n', '2 3\n0 4\n5 2\n'] Demo Output: ['4\n', '3\n', '2\n'] Note: It is possible for the *x*-coordinate of the new house to have non-integer value.
```python import abc import itertools import math from math import gcd as gcd import sys import queue import itertools from heapq import heappop, heappush import random def solve(): n, t = map(int, input().split()) t = 2 * t res = 2 h = [] for i in range(n): x, a = map(int, input().split()) l, r = 2 * x - a, 2 * x + a h.append([l, r]) h.sort(key=lambda x: (x[0], x[1])) for i in range(1, n): r1, l2 = h[i - 1][1], h[i][0] if l2 - r1 == t: res += 1 elif l2 - r1 > t: res += 2 print(res) if __name__ == '__main__': multi_test = 0 if multi_test == 1: t = int(sys.stdin.readline()) for _ in range(t): solve() else: solve() ```
3.853465
104
A
Blackjack
PROGRAMMING
800
[ "implementation" ]
A. Blackjack
2
256
One rainy gloomy evening when all modules hid in the nearby cafes to drink hot energetic cocktails, the Hexadecimal virus decided to fly over the Mainframe to look for a Great Idea. And she has found one! Why not make her own Codeforces, with blackjack and other really cool stuff? Many people will surely be willing to visit this splendid shrine of high culture. In Mainframe a standard pack of 52 cards is used to play blackjack. The pack contains cards of 13 values: 2, 3, 4, 5, 6, 7, 8, 9, 10, jacks, queens, kings and aces. Each value also exists in one of four suits: hearts, diamonds, clubs and spades. Also, each card earns some value in points assigned to it: cards with value from two to ten earn from 2 to 10 points, correspondingly. An ace can either earn 1 or 11, whatever the player wishes. The picture cards (king, queen and jack) earn 10 points. The number of points a card earns does not depend on the suit. The rules of the game are very simple. The player gets two cards, if the sum of points of those cards equals *n*, then the player wins, otherwise the player loses. The player has already got the first card, it's the queen of spades. To evaluate chances for victory, you should determine how many ways there are to get the second card so that the sum of points exactly equals *n*.
The only line contains *n* (1<=≤<=*n*<=≤<=25) — the required sum of points.
Print the numbers of ways to get the second card in the required way if the first card is the queen of spades.
[ "12\n", "20\n", "10\n" ]
[ "4", "15", "0" ]
In the first sample only four two's of different suits can earn the required sum of points. In the second sample we can use all tens, jacks, queens and kings; overall it's 15 cards, as the queen of spades (as any other card) is only present once in the pack of cards and it's already in use. In the third sample there is no card, that would add a zero to the current ten points.
500
[ { "input": "12", "output": "4" }, { "input": "20", "output": "15" }, { "input": "10", "output": "0" }, { "input": "11", "output": "4" }, { "input": "15", "output": "4" }, { "input": "18", "output": "4" }, { "input": "25", "output": "0" }, { "input": "22", "output": "0" }, { "input": "1", "output": "0" }, { "input": "2", "output": "0" }, { "input": "3", "output": "0" }, { "input": "4", "output": "0" }, { "input": "5", "output": "0" }, { "input": "6", "output": "0" }, { "input": "7", "output": "0" }, { "input": "8", "output": "0" }, { "input": "9", "output": "0" }, { "input": "13", "output": "4" }, { "input": "14", "output": "4" }, { "input": "16", "output": "4" }, { "input": "17", "output": "4" }, { "input": "19", "output": "4" }, { "input": "21", "output": "4" }, { "input": "23", "output": "0" }, { "input": "24", "output": "0" } ]
1,696,065,870
2,147,483,647
Python 3
OK
TESTS
25
92
0
cards = [(i + j) for i in (('S', 'H', 'D', 'C')) for j in (tuple('23456789jqka') + ('10',))] cards.remove('Sq') cards_points = {} for card in cards: if card[-1] in ('j', 'q', 'k', '0'): cards_points[card] = 10 elif card[-1] == 'a': cards_points[card] = [1, 11] else: cards_points[card] = int(str(card[-1])) n = int(input()) if n <= 10 or n > 21: print(0) else: count = 0 for card in cards_points: if isinstance(cards_points[card], list): if (n - 10) in cards_points[card]: count += 1 elif (n - 10) == cards_points[card]: count += 1 print(count)
Title: Blackjack Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: One rainy gloomy evening when all modules hid in the nearby cafes to drink hot energetic cocktails, the Hexadecimal virus decided to fly over the Mainframe to look for a Great Idea. And she has found one! Why not make her own Codeforces, with blackjack and other really cool stuff? Many people will surely be willing to visit this splendid shrine of high culture. In Mainframe a standard pack of 52 cards is used to play blackjack. The pack contains cards of 13 values: 2, 3, 4, 5, 6, 7, 8, 9, 10, jacks, queens, kings and aces. Each value also exists in one of four suits: hearts, diamonds, clubs and spades. Also, each card earns some value in points assigned to it: cards with value from two to ten earn from 2 to 10 points, correspondingly. An ace can either earn 1 or 11, whatever the player wishes. The picture cards (king, queen and jack) earn 10 points. The number of points a card earns does not depend on the suit. The rules of the game are very simple. The player gets two cards, if the sum of points of those cards equals *n*, then the player wins, otherwise the player loses. The player has already got the first card, it's the queen of spades. To evaluate chances for victory, you should determine how many ways there are to get the second card so that the sum of points exactly equals *n*. Input Specification: The only line contains *n* (1<=≤<=*n*<=≤<=25) — the required sum of points. Output Specification: Print the numbers of ways to get the second card in the required way if the first card is the queen of spades. Demo Input: ['12\n', '20\n', '10\n'] Demo Output: ['4', '15', '0'] Note: In the first sample only four two's of different suits can earn the required sum of points. In the second sample we can use all tens, jacks, queens and kings; overall it's 15 cards, as the queen of spades (as any other card) is only present once in the pack of cards and it's already in use. In the third sample there is no card, that would add a zero to the current ten points.
```python cards = [(i + j) for i in (('S', 'H', 'D', 'C')) for j in (tuple('23456789jqka') + ('10',))] cards.remove('Sq') cards_points = {} for card in cards: if card[-1] in ('j', 'q', 'k', '0'): cards_points[card] = 10 elif card[-1] == 'a': cards_points[card] = [1, 11] else: cards_points[card] = int(str(card[-1])) n = int(input()) if n <= 10 or n > 21: print(0) else: count = 0 for card in cards_points: if isinstance(cards_points[card], list): if (n - 10) in cards_points[card]: count += 1 elif (n - 10) == cards_points[card]: count += 1 print(count) ```
3.977
109
A
Lucky Sum of Digits
PROGRAMMING
1,000
[ "brute force", "implementation" ]
A. Lucky Sum of Digits
2
256
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya wonders eagerly what minimum lucky number has the sum of digits equal to *n*. Help him cope with the task.
The single line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the sum of digits of the required lucky number.
Print on the single line the result — the minimum lucky number, whose sum of digits equals *n*. If such number does not exist, print -1.
[ "11\n", "10\n" ]
[ "47\n", "-1\n" ]
none
500
[ { "input": "11", "output": "47" }, { "input": "10", "output": "-1" }, { "input": "64", "output": "4477777777" }, { "input": "1", "output": "-1" }, { "input": "4", "output": "4" }, { "input": "7", "output": "7" }, { "input": "12", "output": "444" }, { "input": "1000000", "output": "4477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "47", "output": "44477777" }, { "input": "100", "output": "4444777777777777" }, { "input": "700", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "485", "output": "44447777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "111", "output": "444447777777777777" }, { "input": "85", "output": "4477777777777" }, { "input": "114", "output": "444477777777777777" }, { "input": "474", "output": "444777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "74", "output": "47777777777" }, { "input": "1000", "output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "1024", "output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "4444", "output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "45784", "output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "10000", "output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "9854", "output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "186", "output": "477777777777777777777777777" }, { "input": "10416", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "10417", "output": "4477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "3840", "output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "100000", "output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "9876", "output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "99999", "output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "777777", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "854759", "output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "11000", "output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "18951", "output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "999999", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "888887", "output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "999998", "output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "40008", "output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "10691", "output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "5", "output": "-1" }, { "input": "6", "output": "-1" }, { "input": "9", "output": "-1" }, { "input": "8", "output": "44" }, { "input": "2", "output": "-1" }, { "input": "3", "output": "-1" }, { "input": "999997", "output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "999996", "output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "999990", "output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "999980", "output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "800000", "output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "980000", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." } ]
1,631,137,947
2,147,483,647
Python 3
MEMORY_LIMIT_EXCEEDED
TESTS
7
1,060
268,390,400
n=int(input()) l1=[''] for i in range(1,n+1): a='' b='' if i==4 or i==7: a=str(i) if i-4>=0 and l1[i-4]!='': a=l1[i-4]+'4' if i-7>=0 and l1[i-7]!='': b=l1[i-7]+'7' l1.append(max(a,b)) count4=0 count7=0 # print(l1) for i in l1[n]: if i=='4': count4+=1 elif i=='7': count7+=1 s=('4'*count4)+('7'*count7) if s=='': s='-1' print(s)
Title: Lucky Sum of Digits Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya wonders eagerly what minimum lucky number has the sum of digits equal to *n*. Help him cope with the task. Input Specification: The single line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the sum of digits of the required lucky number. Output Specification: Print on the single line the result — the minimum lucky number, whose sum of digits equals *n*. If such number does not exist, print -1. Demo Input: ['11\n', '10\n'] Demo Output: ['47\n', '-1\n'] Note: none
```python n=int(input()) l1=[''] for i in range(1,n+1): a='' b='' if i==4 or i==7: a=str(i) if i-4>=0 and l1[i-4]!='': a=l1[i-4]+'4' if i-7>=0 and l1[i-7]!='': b=l1[i-7]+'7' l1.append(max(a,b)) count4=0 count7=0 # print(l1) for i in l1[n]: if i=='4': count4+=1 elif i=='7': count7+=1 s=('4'*count4)+('7'*count7) if s=='': s='-1' print(s) ```
0
268
B
Buttons
PROGRAMMING
1,000
[ "implementation", "math" ]
null
null
Manao is trying to open a rather challenging lock. The lock has *n* buttons on it and to open it, you should press the buttons in a certain order to open the lock. When you push some button, it either stays pressed into the lock (that means that you've guessed correctly and pushed the button that goes next in the sequence), or all pressed buttons return to the initial position. When all buttons are pressed into the lock at once, the lock opens. Consider an example with three buttons. Let's say that the opening sequence is: {2, 3, 1}. If you first press buttons 1 or 3, the buttons unpress immediately. If you first press button 2, it stays pressed. If you press 1 after 2, all buttons unpress. If you press 3 after 2, buttons 3 and 2 stay pressed. As soon as you've got two pressed buttons, you only need to press button 1 to open the lock. Manao doesn't know the opening sequence. But he is really smart and he is going to act in the optimal way. Calculate the number of times he's got to push a button in order to open the lock in the worst-case scenario.
A single line contains integer *n* (1<=≤<=*n*<=≤<=2000) — the number of buttons the lock has.
In a single line print the number of times Manao has to push a button in the worst-case scenario.
[ "2\n", "3\n" ]
[ "3\n", "7\n" ]
Consider the first test sample. Manao can fail his first push and push the wrong button. In this case he will already be able to guess the right one with his second push. And his third push will push the second right button. Thus, in the worst-case scenario he will only need 3 pushes.
1,000
[ { "input": "2", "output": "3" }, { "input": "3", "output": "7" }, { "input": "4", "output": "14" }, { "input": "1", "output": "1" }, { "input": "10", "output": "175" }, { "input": "2000", "output": "1333335000" }, { "input": "1747", "output": "888644743" }, { "input": "889", "output": "117099969" }, { "input": "1999", "output": "1331335999" }, { "input": "914", "output": "127259419" }, { "input": "996", "output": "164675486" }, { "input": "17", "output": "833" }, { "input": "50", "output": "20875" }, { "input": "91", "output": "125671" }, { "input": "92", "output": "129858" }, { "input": "256", "output": "2796416" }, { "input": "512", "output": "22370048" }, { "input": "666", "output": "49235271" }, { "input": "667", "output": "49457383" }, { "input": "314", "output": "5160119" }, { "input": "1241", "output": "318541121" }, { "input": "1500", "output": "562501250" }, { "input": "1837", "output": "1033182073" }, { "input": "1000", "output": "166667500" } ]
1,691,731,356
2,147,483,647
PyPy 3-64
OK
TESTS
24
122
1,331,200
n=int(input()) ans=n*(n+1)//2 for i in range(2,n): ans+=(n-i)*(i-1) print(ans)
Title: Buttons Time Limit: None seconds Memory Limit: None megabytes Problem Description: Manao is trying to open a rather challenging lock. The lock has *n* buttons on it and to open it, you should press the buttons in a certain order to open the lock. When you push some button, it either stays pressed into the lock (that means that you've guessed correctly and pushed the button that goes next in the sequence), or all pressed buttons return to the initial position. When all buttons are pressed into the lock at once, the lock opens. Consider an example with three buttons. Let's say that the opening sequence is: {2, 3, 1}. If you first press buttons 1 or 3, the buttons unpress immediately. If you first press button 2, it stays pressed. If you press 1 after 2, all buttons unpress. If you press 3 after 2, buttons 3 and 2 stay pressed. As soon as you've got two pressed buttons, you only need to press button 1 to open the lock. Manao doesn't know the opening sequence. But he is really smart and he is going to act in the optimal way. Calculate the number of times he's got to push a button in order to open the lock in the worst-case scenario. Input Specification: A single line contains integer *n* (1<=≤<=*n*<=≤<=2000) — the number of buttons the lock has. Output Specification: In a single line print the number of times Manao has to push a button in the worst-case scenario. Demo Input: ['2\n', '3\n'] Demo Output: ['3\n', '7\n'] Note: Consider the first test sample. Manao can fail his first push and push the wrong button. In this case he will already be able to guess the right one with his second push. And his third push will push the second right button. Thus, in the worst-case scenario he will only need 3 pushes.
```python n=int(input()) ans=n*(n+1)//2 for i in range(2,n): ans+=(n-i)*(i-1) print(ans) ```
3
629
B
Far Relative’s Problem
PROGRAMMING
1,100
[ "brute force" ]
null
null
Famil Door wants to celebrate his birthday with his friends from Far Far Away. He has *n* friends and each of them can come to the party in a specific range of days of the year from *a**i* to *b**i*. Of course, Famil Door wants to have as many friends celebrating together with him as possible. Far cars are as weird as Far Far Away citizens, so they can only carry two people of opposite gender, that is exactly one male and one female. However, Far is so far from here that no other transportation may be used to get to the party. Famil Door should select some day of the year and invite some of his friends, such that they all are available at this moment and the number of male friends invited is equal to the number of female friends invited. Find the maximum number of friends that may present at the party.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=5000) — then number of Famil Door's friends. Then follow *n* lines, that describe the friends. Each line starts with a capital letter 'F' for female friends and with a capital letter 'M' for male friends. Then follow two integers *a**i* and *b**i* (1<=≤<=*a**i*<=≤<=*b**i*<=≤<=366), providing that the *i*-th friend can come to the party from day *a**i* to day *b**i* inclusive.
Print the maximum number of people that may come to Famil Door's party.
[ "4\nM 151 307\nF 343 352\nF 117 145\nM 24 128\n", "6\nM 128 130\nF 128 131\nF 131 140\nF 131 141\nM 131 200\nM 140 200\n" ]
[ "2\n", "4\n" ]
In the first sample, friends 3 and 4 can come on any day in range [117, 128]. In the second sample, friends with indices 3, 4, 5 and 6 can come on day 140.
1,000
[ { "input": "4\nM 151 307\nF 343 352\nF 117 145\nM 24 128", "output": "2" }, { "input": "6\nM 128 130\nF 128 131\nF 131 140\nF 131 141\nM 131 200\nM 140 200", "output": "4" }, { "input": "1\nF 68 307", "output": "0" }, { "input": "40\nM 55 363\nF 117 252\nM 157 282\nF 322 345\nM 330 363\nF 154 231\nF 216 352\nF 357 365\nM 279 292\nF 353 359\nF 82 183\nM 78 297\nM 231 314\nM 107 264\nF 34 318\nM 44 244\nF 42 339\nM 253 307\nM 128 192\nF 119 328\nM 135 249\nF 303 358\nF 348 352\nF 8 364\nF 126 303\nM 226 346\nF 110 300\nF 47 303\nF 201 311\nF 287 288\nM 270 352\nM 227 351\nF 8 111\nF 39 229\nM 163 315\nF 269 335\nF 147 351\nF 96 143\nM 97 99\nM 177 295", "output": "22" }, { "input": "2\nF 1 1\nM 1 1", "output": "2" }, { "input": "4\nM 1 2\nM 2 3\nF 3 4\nF 4 5", "output": "2" }, { "input": "1\nF 1 2", "output": "0" }, { "input": "18\nF 3 4\nF 3 4\nF 3 4\nF 3 4\nF 5 6\nF 5 6\nM 3 4\nM 3 4\nM 5 6\nM 5 6\nM 5 6\nM 5 6\nF 7 8\nF 7 8\nF 7 8\nM 7 8\nM 7 8\nM 7 8", "output": "6" }, { "input": "2\nM 1 1\nF 1 1", "output": "2" }, { "input": "3\nM 1 1\nF 1 1\nM 1 1", "output": "2" } ]
1,459,066,479
2,147,483,647
Python 3
OK
TESTS
76
78
4,608,000
n = int(input()) a = [0 for i in range(368)] b = [0 for i in range(368)] for i in range(n): s = input().split() if s[0] == 'M': a[int(s[1])] += 1 a[int(s[2]) + 1] -= 1 else: b[int(s[1])] += 1 b[int(s[2]) + 1] -= 1 ans = 0 for i in range(1, 367): a[i] += a[i - 1] b[i] += b[i - 1] ans = max(ans, min(a[i], b[i])) print(ans << 1)
Title: Far Relative’s Problem Time Limit: None seconds Memory Limit: None megabytes Problem Description: Famil Door wants to celebrate his birthday with his friends from Far Far Away. He has *n* friends and each of them can come to the party in a specific range of days of the year from *a**i* to *b**i*. Of course, Famil Door wants to have as many friends celebrating together with him as possible. Far cars are as weird as Far Far Away citizens, so they can only carry two people of opposite gender, that is exactly one male and one female. However, Far is so far from here that no other transportation may be used to get to the party. Famil Door should select some day of the year and invite some of his friends, such that they all are available at this moment and the number of male friends invited is equal to the number of female friends invited. Find the maximum number of friends that may present at the party. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=5000) — then number of Famil Door's friends. Then follow *n* lines, that describe the friends. Each line starts with a capital letter 'F' for female friends and with a capital letter 'M' for male friends. Then follow two integers *a**i* and *b**i* (1<=≤<=*a**i*<=≤<=*b**i*<=≤<=366), providing that the *i*-th friend can come to the party from day *a**i* to day *b**i* inclusive. Output Specification: Print the maximum number of people that may come to Famil Door's party. Demo Input: ['4\nM 151 307\nF 343 352\nF 117 145\nM 24 128\n', '6\nM 128 130\nF 128 131\nF 131 140\nF 131 141\nM 131 200\nM 140 200\n'] Demo Output: ['2\n', '4\n'] Note: In the first sample, friends 3 and 4 can come on any day in range [117, 128]. In the second sample, friends with indices 3, 4, 5 and 6 can come on day 140.
```python n = int(input()) a = [0 for i in range(368)] b = [0 for i in range(368)] for i in range(n): s = input().split() if s[0] == 'M': a[int(s[1])] += 1 a[int(s[2]) + 1] -= 1 else: b[int(s[1])] += 1 b[int(s[2]) + 1] -= 1 ans = 0 for i in range(1, 367): a[i] += a[i - 1] b[i] += b[i - 1] ans = max(ans, min(a[i], b[i])) print(ans << 1) ```
3
218
B
Airport
PROGRAMMING
1,100
[ "implementation" ]
null
null
Lolek and Bolek are about to travel abroad by plane. The local airport has a special "Choose Your Plane" offer. The offer's conditions are as follows: - it is up to a passenger to choose a plane to fly on; - if the chosen plane has *x* (*x*<=&gt;<=0) empty seats at the given moment, then the ticket for such a plane costs *x* zlotys (units of Polish currency). The only ticket office of the airport already has a queue of *n* passengers in front of it. Lolek and Bolek have not stood in the queue yet, but they are already wondering what is the maximum and the minimum number of zlotys the airport administration can earn if all *n* passengers buy tickets according to the conditions of this offer? The passengers buy tickets in turn, the first person in the queue goes first, then goes the second one, and so on up to *n*-th person.
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the number of passengers in the queue and the number of planes in the airport, correspondingly. The next line contains *m* integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=1000) — *a**i* stands for the number of empty seats in the *i*-th plane before the ticket office starts selling tickets. The numbers in the lines are separated by a space. It is guaranteed that there are at least *n* empty seats in total.
Print two integers — the maximum and the minimum number of zlotys that the airport administration can earn, correspondingly.
[ "4 3\n2 1 1\n", "4 3\n2 2 2\n" ]
[ "5 5\n", "7 6\n" ]
In the first test sample the number of passengers is equal to the number of empty seats, so regardless of the way the planes are chosen, the administration will earn the same sum. In the second sample the sum is maximized if the 1-st person in the queue buys a ticket to the 1-st plane, the 2-nd person — to the 2-nd plane, the 3-rd person — to the 3-rd plane, the 4-th person — to the 1-st plane. The sum is minimized if the 1-st person in the queue buys a ticket to the 1-st plane, the 2-nd person — to the 1-st plane, the 3-rd person — to the 2-nd plane, the 4-th person — to the 2-nd plane.
500
[ { "input": "4 3\n2 1 1", "output": "5 5" }, { "input": "4 3\n2 2 2", "output": "7 6" }, { "input": "10 5\n10 3 3 1 2", "output": "58 26" }, { "input": "10 1\n10", "output": "55 55" }, { "input": "10 1\n100", "output": "955 955" }, { "input": "10 2\n4 7", "output": "37 37" }, { "input": "40 10\n1 2 3 4 5 6 7 10 10 10", "output": "223 158" }, { "input": "1 1\n6", "output": "6 6" }, { "input": "1 2\n10 9", "output": "10 9" }, { "input": "2 1\n7", "output": "13 13" }, { "input": "2 2\n7 2", "output": "13 3" }, { "input": "3 2\n4 7", "output": "18 9" }, { "input": "3 3\n2 1 1", "output": "4 4" }, { "input": "3 3\n2 1 1", "output": "4 4" }, { "input": "10 10\n3 1 2 2 1 1 2 1 2 3", "output": "20 13" }, { "input": "10 2\n7 3", "output": "34 34" }, { "input": "10 1\n19", "output": "145 145" }, { "input": "100 3\n29 36 35", "output": "1731 1731" }, { "input": "100 5\n3 38 36 35 2", "output": "2019 1941" }, { "input": "510 132\n50 76 77 69 94 30 47 65 14 62 18 121 26 35 49 17 105 93 47 16 78 3 7 74 7 37 30 36 30 83 71 113 7 58 86 10 65 57 34 102 55 44 43 47 106 44 115 75 109 70 47 45 16 57 62 55 20 88 74 40 45 84 41 1 9 53 65 25 67 31 115 2 63 51 123 70 65 65 18 14 75 14 103 26 117 105 36 104 81 37 35 61 44 90 71 70 88 89 26 21 64 77 89 16 87 99 13 79 27 3 46 120 116 11 14 17 32 70 113 94 108 57 29 100 53 48 44 29 70 30 32 62", "output": "50279 5479" }, { "input": "510 123\n5 2 3 2 5 7 2 3 1 3 6 6 3 1 5 3 5 6 2 2 1 5 5 5 2 2 3 1 6 3 5 8 4 6 1 5 4 5 1 6 5 5 3 6 4 1 6 1 3 5 2 7 5 2 4 4 5 6 5 5 4 3 4 6 5 4 4 3 5 8 5 5 6 3 1 7 4 4 3 3 5 3 6 3 3 6 2 5 3 2 4 5 4 5 2 2 4 4 4 7 3 4 6 5 3 6 4 7 1 6 5 7 6 5 7 3 7 4 4 1 6 6 4", "output": "1501 1501" }, { "input": "610 33\n15 44 8 8 17 11 39 39 38 25 17 36 17 25 21 37 10 11 34 30 29 50 29 50 4 20 32 13 41 14 2 11 2", "output": "12204 8871" } ]
1,426,998,090
2,147,483,647
Python 3
OK
TESTS
33
278
10,240,000
I=lambda:list(map(int,input().split())) n,m=I();a=sorted(I());b=[] for i in a:b+=list(range(1,i+1)) b=sorted(b) i=mini=p=0 while((i<m)and(p+a[i]<=n)): p+=a[i] mini+=(1+a[i])*a[i]//2 i+=1 if p<n: mini+=(2*a[i]-n+p+1)*(n-p)//2 print(sum(b[-n:]),mini)
Title: Airport Time Limit: None seconds Memory Limit: None megabytes Problem Description: Lolek and Bolek are about to travel abroad by plane. The local airport has a special "Choose Your Plane" offer. The offer's conditions are as follows: - it is up to a passenger to choose a plane to fly on; - if the chosen plane has *x* (*x*<=&gt;<=0) empty seats at the given moment, then the ticket for such a plane costs *x* zlotys (units of Polish currency). The only ticket office of the airport already has a queue of *n* passengers in front of it. Lolek and Bolek have not stood in the queue yet, but they are already wondering what is the maximum and the minimum number of zlotys the airport administration can earn if all *n* passengers buy tickets according to the conditions of this offer? The passengers buy tickets in turn, the first person in the queue goes first, then goes the second one, and so on up to *n*-th person. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=1000) — the number of passengers in the queue and the number of planes in the airport, correspondingly. The next line contains *m* integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=1000) — *a**i* stands for the number of empty seats in the *i*-th plane before the ticket office starts selling tickets. The numbers in the lines are separated by a space. It is guaranteed that there are at least *n* empty seats in total. Output Specification: Print two integers — the maximum and the minimum number of zlotys that the airport administration can earn, correspondingly. Demo Input: ['4 3\n2 1 1\n', '4 3\n2 2 2\n'] Demo Output: ['5 5\n', '7 6\n'] Note: In the first test sample the number of passengers is equal to the number of empty seats, so regardless of the way the planes are chosen, the administration will earn the same sum. In the second sample the sum is maximized if the 1-st person in the queue buys a ticket to the 1-st plane, the 2-nd person — to the 2-nd plane, the 3-rd person — to the 3-rd plane, the 4-th person — to the 1-st plane. The sum is minimized if the 1-st person in the queue buys a ticket to the 1-st plane, the 2-nd person — to the 1-st plane, the 3-rd person — to the 2-nd plane, the 4-th person — to the 2-nd plane.
```python I=lambda:list(map(int,input().split())) n,m=I();a=sorted(I());b=[] for i in a:b+=list(range(1,i+1)) b=sorted(b) i=mini=p=0 while((i<m)and(p+a[i]<=n)): p+=a[i] mini+=(1+a[i])*a[i]//2 i+=1 if p<n: mini+=(2*a[i]-n+p+1)*(n-p)//2 print(sum(b[-n:]),mini) ```
3
275
A
Lights Out
PROGRAMMING
900
[ "implementation" ]
null
null
Lenny is playing a game on a 3<=×<=3 grid of lights. In the beginning of the game all lights are switched on. Pressing any of the lights will toggle it and all side-adjacent lights. The goal of the game is to switch all the lights off. We consider the toggling as follows: if the light was switched on then it will be switched off, if it was switched off then it will be switched on. Lenny has spent some time playing with the grid and by now he has pressed each light a certain number of times. Given the number of times each light is pressed, you have to print the current state of each light.
The input consists of three rows. Each row contains three integers each between 0 to 100 inclusive. The *j*-th number in the *i*-th row is the number of times the *j*-th light of the *i*-th row of the grid is pressed.
Print three lines, each containing three characters. The *j*-th character of the *i*-th line is "1" if and only if the corresponding light is switched on, otherwise it's "0".
[ "1 0 0\n0 0 0\n0 0 1\n", "1 0 1\n8 8 8\n2 0 3\n" ]
[ "001\n010\n100\n", "010\n011\n100\n" ]
none
500
[ { "input": "1 0 0\n0 0 0\n0 0 1", "output": "001\n010\n100" }, { "input": "1 0 1\n8 8 8\n2 0 3", "output": "010\n011\n100" }, { "input": "13 85 77\n25 50 45\n65 79 9", "output": "000\n010\n000" }, { "input": "96 95 5\n8 84 74\n67 31 61", "output": "011\n011\n101" }, { "input": "24 54 37\n60 63 6\n1 84 26", "output": "110\n101\n011" }, { "input": "23 10 40\n15 6 40\n92 80 77", "output": "101\n100\n000" }, { "input": "62 74 80\n95 74 93\n2 47 95", "output": "010\n001\n110" }, { "input": "80 83 48\n26 0 66\n47 76 37", "output": "000\n000\n010" }, { "input": "32 15 65\n7 54 36\n5 51 3", "output": "111\n101\n001" }, { "input": "22 97 12\n71 8 24\n100 21 64", "output": "100\n001\n100" }, { "input": "46 37 13\n87 0 50\n90 8 55", "output": "111\n011\n000" }, { "input": "57 43 58\n20 82 83\n66 16 52", "output": "111\n010\n110" }, { "input": "45 56 93\n47 51 59\n18 51 63", "output": "101\n011\n100" }, { "input": "47 66 67\n14 1 37\n27 81 69", "output": "001\n001\n110" }, { "input": "26 69 69\n85 18 23\n14 22 74", "output": "110\n001\n010" }, { "input": "10 70 65\n94 27 25\n74 66 30", "output": "111\n010\n100" }, { "input": "97 1 74\n15 99 1\n88 68 86", "output": "001\n011\n000" }, { "input": "36 48 42\n45 41 66\n26 64 1", "output": "001\n111\n010" }, { "input": "52 81 97\n29 77 71\n66 11 2", "output": "100\n100\n111" }, { "input": "18 66 33\n19 49 49\n48 46 26", "output": "011\n100\n000" }, { "input": "68 79 52\n51 39 100\n29 14 26", "output": "110\n000\n111" }, { "input": "91 69 77\n91 26 64\n91 88 57", "output": "001\n011\n110" }, { "input": "16 69 64\n48 21 80\n81 51 51", "output": "010\n101\n111" }, { "input": "96 14 2\n100 18 12\n65 34 89", "output": "111\n010\n010" }, { "input": "93 95 90\n8 59 42\n53 13 19", "output": "100\n001\n111" }, { "input": "71 84 18\n100 19 67\n9 76 15", "output": "010\n010\n001" }, { "input": "38 93 85\n21 88 64\n4 96 25", "output": "111\n011\n000" }, { "input": "75 20 20\n60 5 78\n77 4 69", "output": "011\n001\n000" }, { "input": "65 70 96\n19 6 83\n33 37 82", "output": "100\n000\n011" }, { "input": "11 13 60\n17 13 46\n42 21 39", "output": "000\n011\n101" }, { "input": "0 0 0\n0 0 0\n0 0 0", "output": "111\n111\n111" }, { "input": "0 0 0\n0 1 0\n0 0 0", "output": "101\n000\n101" }, { "input": "0 0 0\n0 0 0\n0 0 1", "output": "111\n110\n100" } ]
1,602,421,502
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
93
204,800
ans=[[1 for i in range(3)] for j in range(3)] q=[] for i in range(3): q.append(list(map(int,input().split()))) for i in range(3): for j in range(3): if(q[i][j]%2==1): ans[i][j]=ans[i][j]^1 if(i-1>=0): ans[i-1][j]=ans[i-1][j]^1 if(i+1<3): ans[i+1][j]=ans[i+1][j]^1 if(j-1>=0): ans[i][j-1]=ans[i][j-1]^1 if(j+1<3): ans[i][j+1]=ans[i][j+1]^1 for i in range(3): print(*ans[i])
Title: Lights Out Time Limit: None seconds Memory Limit: None megabytes Problem Description: Lenny is playing a game on a 3<=×<=3 grid of lights. In the beginning of the game all lights are switched on. Pressing any of the lights will toggle it and all side-adjacent lights. The goal of the game is to switch all the lights off. We consider the toggling as follows: if the light was switched on then it will be switched off, if it was switched off then it will be switched on. Lenny has spent some time playing with the grid and by now he has pressed each light a certain number of times. Given the number of times each light is pressed, you have to print the current state of each light. Input Specification: The input consists of three rows. Each row contains three integers each between 0 to 100 inclusive. The *j*-th number in the *i*-th row is the number of times the *j*-th light of the *i*-th row of the grid is pressed. Output Specification: Print three lines, each containing three characters. The *j*-th character of the *i*-th line is "1" if and only if the corresponding light is switched on, otherwise it's "0". Demo Input: ['1 0 0\n0 0 0\n0 0 1\n', '1 0 1\n8 8 8\n2 0 3\n'] Demo Output: ['001\n010\n100\n', '010\n011\n100\n'] Note: none
```python ans=[[1 for i in range(3)] for j in range(3)] q=[] for i in range(3): q.append(list(map(int,input().split()))) for i in range(3): for j in range(3): if(q[i][j]%2==1): ans[i][j]=ans[i][j]^1 if(i-1>=0): ans[i-1][j]=ans[i-1][j]^1 if(i+1<3): ans[i+1][j]=ans[i+1][j]^1 if(j-1>=0): ans[i][j-1]=ans[i][j-1]^1 if(j+1<3): ans[i][j+1]=ans[i][j+1]^1 for i in range(3): print(*ans[i]) ```
0
251
A
Points on Line
PROGRAMMING
1,300
[ "binary search", "combinatorics", "two pointers" ]
null
null
Little Petya likes points a lot. Recently his mom has presented him *n* points lying on the line *OX*. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed *d*. Note that the order of the points inside the group of three chosen points doesn't matter.
The first line contains two integers: *n* and *d* (1<=≤<=*n*<=≤<=105; 1<=≤<=*d*<=≤<=109). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n*, their absolute value doesn't exceed 109 — the *x*-coordinates of the points that Petya has got. It is guaranteed that the coordinates of the points in the input strictly increase.
Print a single integer — the number of groups of three points, where the distance between two farthest points doesn't exceed *d*. Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
[ "4 3\n1 2 3 4\n", "4 2\n-3 -2 -1 0\n", "5 19\n1 10 20 30 50\n" ]
[ "4\n", "2\n", "1\n" ]
In the first sample any group of three points meets our conditions. In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}. In the third sample only one group does: {1, 10, 20}.
500
[ { "input": "4 3\n1 2 3 4", "output": "4" }, { "input": "4 2\n-3 -2 -1 0", "output": "2" }, { "input": "5 19\n1 10 20 30 50", "output": "1" }, { "input": "10 5\n31 36 43 47 48 50 56 69 71 86", "output": "2" }, { "input": "10 50\n1 4 20 27 65 79 82 83 99 100", "output": "25" }, { "input": "10 90\n24 27 40 41 61 69 73 87 95 97", "output": "120" }, { "input": "100 100\n-98 -97 -96 -93 -92 -91 -90 -87 -86 -84 -81 -80 -79 -78 -76 -75 -73 -71 -69 -67 -65 -64 -63 -62 -61 -54 -51 -50 -49 -48 -46 -45 -44 -37 -36 -33 -30 -28 -27 -16 -15 -13 -12 -10 -9 -7 -6 -5 -4 2 3 5 8 9 10 11 13 14 15 16 17 19 22 24 25 26 27 28 30 31 32 36 40 43 45 46 47 50 51 52 53 58 60 63 69 70 73 78 80 81 82 85 88 89 90 91 95 96 97 99", "output": "79351" }, { "input": "1 14751211\n847188590", "output": "0" }, { "input": "2 1000000000\n-907894512 -289906312", "output": "0" }, { "input": "2 1000000000\n-14348867 1760823", "output": "0" }, { "input": "3 1000000000\n-5 -1 1", "output": "1" } ]
1,459,917,260
2,147,483,647
Python 3
OK
TESTS
39
1,214
11,878,400
def c(a,b): i=a ansc=1 while i>a-b: ansc=ansc*i i=i-1 i=1 while i<=b: ansc=ansc/i i=i+1 if a<b: ansc=0 return ansc n,d=input().split(' ') n=int(n) d=int(d) que=input().split(' ') l=len(que) i=0 ans=0 while i<l: que[i]=int(que[i]) i=i+1 qbegin=0 qend=2 while qend<l: test=que[qend]-que[qbegin] while (test>d) and (qbegin<=qend): qbegin += 1 test=que[qend]-que[qbegin] if qend-qbegin>1: ans=ans+c(qend-qbegin+1,3)-c(qend-qbegin,3) qend=qend+1 print(int(ans))
Title: Points on Line Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Petya likes points a lot. Recently his mom has presented him *n* points lying on the line *OX*. Now Petya is wondering in how many ways he can choose three distinct points so that the distance between the two farthest of them doesn't exceed *d*. Note that the order of the points inside the group of three chosen points doesn't matter. Input Specification: The first line contains two integers: *n* and *d* (1<=≤<=*n*<=≤<=105; 1<=≤<=*d*<=≤<=109). The next line contains *n* integers *x*1,<=*x*2,<=...,<=*x**n*, their absolute value doesn't exceed 109 — the *x*-coordinates of the points that Petya has got. It is guaranteed that the coordinates of the points in the input strictly increase. Output Specification: Print a single integer — the number of groups of three points, where the distance between two farthest points doesn't exceed *d*. Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier. Demo Input: ['4 3\n1 2 3 4\n', '4 2\n-3 -2 -1 0\n', '5 19\n1 10 20 30 50\n'] Demo Output: ['4\n', '2\n', '1\n'] Note: In the first sample any group of three points meets our conditions. In the seconds sample only 2 groups of three points meet our conditions: {-3, -2, -1} and {-2, -1, 0}. In the third sample only one group does: {1, 10, 20}.
```python def c(a,b): i=a ansc=1 while i>a-b: ansc=ansc*i i=i-1 i=1 while i<=b: ansc=ansc/i i=i+1 if a<b: ansc=0 return ansc n,d=input().split(' ') n=int(n) d=int(d) que=input().split(' ') l=len(que) i=0 ans=0 while i<l: que[i]=int(que[i]) i=i+1 qbegin=0 qend=2 while qend<l: test=que[qend]-que[qbegin] while (test>d) and (qbegin<=qend): qbegin += 1 test=que[qend]-que[qbegin] if qend-qbegin>1: ans=ans+c(qend-qbegin+1,3)-c(qend-qbegin,3) qend=qend+1 print(int(ans)) ```
3
887
A
Div. 64
PROGRAMMING
1,000
[ "implementation" ]
null
null
Top-model Izabella participates in the competition. She wants to impress judges and show her mathematical skills. Her problem is following: for given string, consisting of only 0 and 1, tell if it's possible to remove some digits in such a way, that remaining number is a representation of some positive integer, divisible by 64, in the binary numerical system.
In the only line given a non-empty binary string *s* with length up to 100.
Print «yes» (without quotes) if it's possible to remove digits required way and «no» otherwise.
[ "100010001\n", "100\n" ]
[ "yes", "no" ]
In the first test case, you can get string 1 000 000 after removing two ones which is a representation of number 64 in the binary numerical system. You can read more about binary numeral system representation here: [https://en.wikipedia.org/wiki/Binary_system](https://en.wikipedia.org/wiki/Binary_system)
500
[ { "input": "100010001", "output": "yes" }, { "input": "100", "output": "no" }, { "input": "0000001000000", "output": "yes" }, { "input": "1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "no" }, { "input": "1111111111111111111111111111111111111111111111111111111111111111111111110111111111111111111111111111", "output": "no" }, { "input": "0111111101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111", "output": "no" }, { "input": "1111011111111111111111111111110111110111111111111111111111011111111111111110111111111111111111111111", "output": "no" }, { "input": "1111111111101111111111111111111111111011111111111111111111111101111011111101111111111101111111111111", "output": "yes" }, { "input": "0110111111111111111111011111111110110111110111111111111111111111111111111111111110111111111111111111", "output": "yes" }, { "input": "1100110001111011001101101000001110111110011110111110010100011000100101000010010111100000010001001101", "output": "yes" }, { "input": "000000", "output": "no" }, { "input": "0001000", "output": "no" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000", "output": "no" }, { "input": "1000000", "output": "yes" }, { "input": "0", "output": "no" }, { "input": "1", "output": "no" }, { "input": "10000000000", "output": "yes" }, { "input": "0000000000", "output": "no" }, { "input": "0010000", "output": "no" }, { "input": "000000011", "output": "no" }, { "input": "000000000", "output": "no" }, { "input": "00000000", "output": "no" }, { "input": "000000000011", "output": "no" }, { "input": "0000000", "output": "no" }, { "input": "00000000011", "output": "no" }, { "input": "000000001", "output": "no" }, { "input": "000000000000000000000000000", "output": "no" }, { "input": "0000001", "output": "no" }, { "input": "00000001", "output": "no" }, { "input": "00000000100", "output": "no" }, { "input": "00000000000000000000", "output": "no" }, { "input": "0000000000000000000", "output": "no" }, { "input": "00001000", "output": "no" }, { "input": "0000000000010", "output": "no" }, { "input": "000000000010", "output": "no" }, { "input": "000000000000010", "output": "no" }, { "input": "0100000", "output": "no" }, { "input": "00010000", "output": "no" }, { "input": "00000000000000000", "output": "no" }, { "input": "00000000000", "output": "no" }, { "input": "000001000", "output": "no" }, { "input": "000000000000", "output": "no" }, { "input": "100000000000000", "output": "yes" }, { "input": "000010000", "output": "no" }, { "input": "00000100", "output": "no" }, { "input": "0001100000", "output": "no" }, { "input": "000000000000000000000000001", "output": "no" }, { "input": "000000100", "output": "no" }, { "input": "0000000000001111111111", "output": "no" }, { "input": "00000010", "output": "no" }, { "input": "0001110000", "output": "no" }, { "input": "0000000000000000000000", "output": "no" }, { "input": "000000010010", "output": "no" }, { "input": "0000100", "output": "no" }, { "input": "0000000001", "output": "no" }, { "input": "000000111", "output": "no" }, { "input": "0000000000000", "output": "no" }, { "input": "000000000000000000", "output": "no" }, { "input": "0000000000000000000000000", "output": "no" }, { "input": "000000000000000", "output": "no" }, { "input": "0010000000000100", "output": "yes" }, { "input": "0000001000", "output": "no" }, { "input": "00000000000000000001", "output": "no" }, { "input": "100000000", "output": "yes" }, { "input": "000000000001", "output": "no" }, { "input": "0000011001", "output": "no" }, { "input": "000", "output": "no" }, { "input": "000000000000000000000", "output": "no" }, { "input": "0000000000011", "output": "no" }, { "input": "0000000000000000", "output": "no" }, { "input": "00000000000000001", "output": "no" }, { "input": "00000000000000", "output": "no" }, { "input": "0000000000000000010", "output": "no" }, { "input": "00000000000000000000000000000000000000000000000000000000", "output": "no" }, { "input": "000011000", "output": "no" }, { "input": "00000011", "output": "no" }, { "input": "0000000000001100", "output": "no" }, { "input": "00000", "output": "no" }, { "input": "000000000000000000000000000111111111111111", "output": "no" }, { "input": "000000010", "output": "no" }, { "input": "00000000111", "output": "no" }, { "input": "000000000000001", "output": "no" }, { "input": "0000000000000011111111111111111", "output": "no" }, { "input": "0000000010", "output": "no" }, { "input": "0000000000000000000000000000000000000000000000000", "output": "no" }, { "input": "00000000010", "output": "no" }, { "input": "101000000000", "output": "yes" }, { "input": "00100000", "output": "no" }, { "input": "00000000000001", "output": "no" }, { "input": "0000000000100", "output": "no" }, { "input": "0000", "output": "no" }, { "input": "00000000000111", "output": "no" }, { "input": "0000000000000011", "output": "no" }, { "input": "0000000000000000000000000000000000000000", "output": "no" }, { "input": "0000000000000010", "output": "no" }, { "input": "0010101010", "output": "no" }, { "input": "0000000000000001", "output": "no" }, { "input": "1010101", "output": "no" } ]
1,520,103,371
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
45
62
5,632,000
s = input() c = 0 for i in range(0,len(s)): if(s[i] == '0'): c+=1 if(c >= 6 and int(s) >= 1000000): print("Yes") else: print("No")
Title: Div. 64 Time Limit: None seconds Memory Limit: None megabytes Problem Description: Top-model Izabella participates in the competition. She wants to impress judges and show her mathematical skills. Her problem is following: for given string, consisting of only 0 and 1, tell if it's possible to remove some digits in such a way, that remaining number is a representation of some positive integer, divisible by 64, in the binary numerical system. Input Specification: In the only line given a non-empty binary string *s* with length up to 100. Output Specification: Print «yes» (without quotes) if it's possible to remove digits required way and «no» otherwise. Demo Input: ['100010001\n', '100\n'] Demo Output: ['yes', 'no'] Note: In the first test case, you can get string 1 000 000 after removing two ones which is a representation of number 64 in the binary numerical system. You can read more about binary numeral system representation here: [https://en.wikipedia.org/wiki/Binary_system](https://en.wikipedia.org/wiki/Binary_system)
```python s = input() c = 0 for i in range(0,len(s)): if(s[i] == '0'): c+=1 if(c >= 6 and int(s) >= 1000000): print("Yes") else: print("No") ```
0
789
A
Anastasia and pebbles
PROGRAMMING
1,100
[ "implementation", "math" ]
null
null
Anastasia loves going for a walk in Central Uzhlyandian Park. But she became uninterested in simple walking, so she began to collect Uzhlyandian pebbles. At first, she decided to collect all the pebbles she could find in the park. She has only two pockets. She can put at most *k* pebbles in each pocket at the same time. There are *n* different pebble types in the park, and there are *w**i* pebbles of the *i*-th type. Anastasia is very responsible, so she never mixes pebbles of different types in same pocket. However, she can put different kinds of pebbles in different pockets at the same time. Unfortunately, she can't spend all her time collecting pebbles, so she can collect pebbles from the park only once a day. Help her to find the minimum number of days needed to collect all the pebbles of Uzhlyandian Central Park, taking into consideration that Anastasia can't place pebbles of different types in same pocket.
The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105, 1<=≤<=*k*<=≤<=109) — the number of different pebble types and number of pebbles Anastasia can place in one pocket. The second line contains *n* integers *w*1,<=*w*2,<=...,<=*w**n* (1<=≤<=*w**i*<=≤<=104) — number of pebbles of each type.
The only line of output contains one integer — the minimum number of days Anastasia needs to collect all the pebbles.
[ "3 2\n2 3 4\n", "5 4\n3 1 8 9 7\n" ]
[ "3\n", "5\n" ]
In the first sample case, Anastasia can collect all pebbles of the first type on the first day, of second type — on the second day, and of third type — on the third day. Optimal sequence of actions in the second sample case: - In the first day Anastasia collects 8 pebbles of the third type. - In the second day she collects 8 pebbles of the fourth type. - In the third day she collects 3 pebbles of the first type and 1 pebble of the fourth type. - In the fourth day she collects 7 pebbles of the fifth type. - In the fifth day she collects 1 pebble of the second type.
500
[ { "input": "3 2\n2 3 4", "output": "3" }, { "input": "5 4\n3 1 8 9 7", "output": "5" }, { "input": "1 22\n1", "output": "1" }, { "input": "3 57\n78 165 54", "output": "3" }, { "input": "5 72\n74 10 146 189 184", "output": "6" }, { "input": "9 13\n132 87 200 62 168 51 185 192 118", "output": "48" }, { "input": "1 1\n10000", "output": "5000" }, { "input": "10 1\n1 1 1 1 1 1 1 1 1 1", "output": "5" }, { "input": "2 2\n2 2", "output": "1" } ]
1,602,402,038
1,538
Python 3
OK
TESTS
31
233
7,680,000
n, k = map(int, input().split()) w = list(map(int, input().split())) q=0 t=0 for i in range(n): a=w[i]//k w[i]%=k q+=(a//2) t+=(a%2) # print(a, w[i], t, q) if t==2: t=0 q+=1 if w[i]>0: if t==1: t=0 w[i]=0 q+=1 else: w[i]=0 t+=1 if t>0: q+=1 print(q)
Title: Anastasia and pebbles Time Limit: None seconds Memory Limit: None megabytes Problem Description: Anastasia loves going for a walk in Central Uzhlyandian Park. But she became uninterested in simple walking, so she began to collect Uzhlyandian pebbles. At first, she decided to collect all the pebbles she could find in the park. She has only two pockets. She can put at most *k* pebbles in each pocket at the same time. There are *n* different pebble types in the park, and there are *w**i* pebbles of the *i*-th type. Anastasia is very responsible, so she never mixes pebbles of different types in same pocket. However, she can put different kinds of pebbles in different pockets at the same time. Unfortunately, she can't spend all her time collecting pebbles, so she can collect pebbles from the park only once a day. Help her to find the minimum number of days needed to collect all the pebbles of Uzhlyandian Central Park, taking into consideration that Anastasia can't place pebbles of different types in same pocket. Input Specification: The first line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=105, 1<=≤<=*k*<=≤<=109) — the number of different pebble types and number of pebbles Anastasia can place in one pocket. The second line contains *n* integers *w*1,<=*w*2,<=...,<=*w**n* (1<=≤<=*w**i*<=≤<=104) — number of pebbles of each type. Output Specification: The only line of output contains one integer — the minimum number of days Anastasia needs to collect all the pebbles. Demo Input: ['3 2\n2 3 4\n', '5 4\n3 1 8 9 7\n'] Demo Output: ['3\n', '5\n'] Note: In the first sample case, Anastasia can collect all pebbles of the first type on the first day, of second type — on the second day, and of third type — on the third day. Optimal sequence of actions in the second sample case: - In the first day Anastasia collects 8 pebbles of the third type. - In the second day she collects 8 pebbles of the fourth type. - In the third day she collects 3 pebbles of the first type and 1 pebble of the fourth type. - In the fourth day she collects 7 pebbles of the fifth type. - In the fifth day she collects 1 pebble of the second type.
```python n, k = map(int, input().split()) w = list(map(int, input().split())) q=0 t=0 for i in range(n): a=w[i]//k w[i]%=k q+=(a//2) t+=(a%2) # print(a, w[i], t, q) if t==2: t=0 q+=1 if w[i]>0: if t==1: t=0 w[i]=0 q+=1 else: w[i]=0 t+=1 if t>0: q+=1 print(q) ```
3
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,693,889,036
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
30
0
w = input().strip() up = sum(1 for letter in word if letter.isupper()) low = len(w) - up if up > low: correct = w.upper() else: correct = w.lower() print(correct)
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python w = input().strip() up = sum(1 for letter in word if letter.isupper()) low = len(w) - up if up > low: correct = w.upper() else: correct = w.lower() print(correct) ```
-1
811
A
Vladik and Courtesy
PROGRAMMING
800
[ "brute force", "implementation" ]
null
null
At regular competition Vladik and Valera won *a* and *b* candies respectively. Vladik offered 1 his candy to Valera. After that Valera gave Vladik 2 his candies, so that no one thought that he was less generous. Vladik for same reason gave 3 candies to Valera in next turn. More formally, the guys take turns giving each other one candy more than they received in the previous turn. This continued until the moment when one of them couldn’t give the right amount of candy. Candies, which guys got from each other, they don’t consider as their own. You need to know, who is the first who can’t give the right amount of candy.
Single line of input data contains two space-separated integers *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=109) — number of Vladik and Valera candies respectively.
Pring a single line "Vladik’’ in case, if Vladik first who can’t give right amount of candy, or "Valera’’ otherwise.
[ "1 1\n", "7 6\n" ]
[ "Valera\n", "Vladik\n" ]
Illustration for first test case: <img class="tex-graphics" src="https://espresso.codeforces.com/ad9b7d0e481208de8e3a585aa1d96b9e1dda4fd7.png" style="max-width: 100.0%;max-height: 100.0%;"/> Illustration for second test case: <img class="tex-graphics" src="https://espresso.codeforces.com/9f4836d2ccdffaee5a63898e5d4e6caf2ed4678c.png" style="max-width: 100.0%;max-height: 100.0%;"/>
500
[ { "input": "1 1", "output": "Valera" }, { "input": "7 6", "output": "Vladik" }, { "input": "25 38", "output": "Vladik" }, { "input": "8311 2468", "output": "Valera" }, { "input": "250708 857756", "output": "Vladik" }, { "input": "957985574 24997558", "output": "Valera" }, { "input": "999963734 999994456", "output": "Vladik" }, { "input": "1000000000 1000000000", "output": "Vladik" }, { "input": "946 879", "output": "Valera" }, { "input": "10819 45238", "output": "Vladik" }, { "input": "101357 236928", "output": "Vladik" }, { "input": "1033090 7376359", "output": "Vladik" }, { "input": "9754309 9525494", "output": "Valera" }, { "input": "90706344 99960537", "output": "Vladik" }, { "input": "965161805 908862070", "output": "Valera" }, { "input": "9 11", "output": "Valera" }, { "input": "3 2", "output": "Vladik" }, { "input": "6 6", "output": "Vladik" }, { "input": "4 4", "output": "Valera" }, { "input": "5 5", "output": "Valera" }, { "input": "5 4", "output": "Valera" }, { "input": "12345680 1", "output": "Valera" }, { "input": "9 10", "output": "Valera" }, { "input": "678 76687", "output": "Vladik" }, { "input": "1 678", "output": "Vladik" }, { "input": "45 1678", "output": "Vladik" }, { "input": "3 3", "output": "Vladik" }, { "input": "10 11", "output": "Valera" }, { "input": "2 1", "output": "Valera" }, { "input": "1 2", "output": "Vladik" }, { "input": "2 2", "output": "Vladik" }, { "input": "4 5", "output": "Valera" }, { "input": "9 6", "output": "Valera" }, { "input": "1 5", "output": "Vladik" }, { "input": "7 8", "output": "Vladik" }, { "input": "1000000000 999982505", "output": "Valera" }, { "input": "12 12", "output": "Vladik" }, { "input": "1000 950", "output": "Valera" }, { "input": "10 9", "output": "Valera" }, { "input": "100 9", "output": "Valera" }, { "input": "1000 996", "output": "Vladik" }, { "input": "9 5", "output": "Valera" } ]
1,495,877,891
191
Python 3
WRONG_ANSWER
PRETESTS
0
46
0
a, b = map(int, input().split()) turn = True now = 1 while True: if turn: if a < now: print("Valera") exit() else: a -= now else: if b < now: print("Vladik") exit() else: b -= now now += 1 turn = not turn
Title: Vladik and Courtesy Time Limit: None seconds Memory Limit: None megabytes Problem Description: At regular competition Vladik and Valera won *a* and *b* candies respectively. Vladik offered 1 his candy to Valera. After that Valera gave Vladik 2 his candies, so that no one thought that he was less generous. Vladik for same reason gave 3 candies to Valera in next turn. More formally, the guys take turns giving each other one candy more than they received in the previous turn. This continued until the moment when one of them couldn’t give the right amount of candy. Candies, which guys got from each other, they don’t consider as their own. You need to know, who is the first who can’t give the right amount of candy. Input Specification: Single line of input data contains two space-separated integers *a*, *b* (1<=≤<=*a*,<=*b*<=≤<=109) — number of Vladik and Valera candies respectively. Output Specification: Pring a single line "Vladik’’ in case, if Vladik first who can’t give right amount of candy, or "Valera’’ otherwise. Demo Input: ['1 1\n', '7 6\n'] Demo Output: ['Valera\n', 'Vladik\n'] Note: Illustration for first test case: <img class="tex-graphics" src="https://espresso.codeforces.com/ad9b7d0e481208de8e3a585aa1d96b9e1dda4fd7.png" style="max-width: 100.0%;max-height: 100.0%;"/> Illustration for second test case: <img class="tex-graphics" src="https://espresso.codeforces.com/9f4836d2ccdffaee5a63898e5d4e6caf2ed4678c.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python a, b = map(int, input().split()) turn = True now = 1 while True: if turn: if a < now: print("Valera") exit() else: a -= now else: if b < now: print("Vladik") exit() else: b -= now now += 1 turn = not turn ```
0
540
A
Combination Lock
PROGRAMMING
800
[ "implementation" ]
null
null
Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock. The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that?
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock. The second line contains a string of *n* digits — the original state of the disks. The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock.
Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock.
[ "5\n82195\n64723\n" ]
[ "13\n" ]
In the sample he needs 13 moves: - 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
500
[ { "input": "5\n82195\n64723", "output": "13" }, { "input": "12\n102021090898\n010212908089", "output": "16" }, { "input": "1\n8\n1", "output": "3" }, { "input": "2\n83\n57", "output": "7" }, { "input": "10\n0728592530\n1362615763", "output": "27" }, { "input": "100\n4176196363694273682807653052945037727131821799902563705176501742060696655282954944720643131654235909\n3459912084922154505910287499879975659298239371519889866585472674423008837878123067103005344986554746", "output": "245" }, { "input": "1\n8\n1", "output": "3" }, { "input": "2\n83\n57", "output": "7" }, { "input": "3\n607\n684", "output": "5" }, { "input": "4\n0809\n0636", "output": "8" }, { "input": "5\n84284\n08941", "output": "16" }, { "input": "25\n8037856825987124762280548\n9519431339078678836940020", "output": "72" }, { "input": "125\n23269567683904664184142384849516523616863461607751021071772615078579713054027902974007001544768640273491193035874486891541257\n47635110303703399505805044019026243695451609639556649012447370081552870340011971572363458960190590266459684717415349529509024", "output": "305" }, { "input": "5\n84284\n08941", "output": "16" }, { "input": "25\n8037856825987124762285484\n9519431339078678836940202", "output": "74" }, { "input": "125\n23269567689466418414238845152168634610771021717726157879713054270294007001544768647391193035874486891412573389247025830678706\n47635110307339950580504010224954516093956649124473708152870340117152363458960190596659684717415349529090241694059599629136831", "output": "357" }, { "input": "5\n84284\n08941", "output": "16" }, { "input": "25\n8378525987476228048406972\n9194339078883694020217816", "output": "55" }, { "input": "125\n23269576839046618414238484916523616863461607750210717761078579713054027902974007015447686027349193035874486891541257338624472\n47635103037033950580504401926243695451609639556490124437081552870340011971572363489601905026645984717415349529509024169604599", "output": "274" }, { "input": "1\n0\n0", "output": "0" }, { "input": "1\n7\n7", "output": "0" }, { "input": "1\n0\n5", "output": "5" }, { "input": "1\n2\n7", "output": "5" }, { "input": "1\n7\n9", "output": "2" }, { "input": "1\n9\n7", "output": "2" }, { "input": "1\n2\n9", "output": "3" }, { "input": "1\n9\n2", "output": "3" }, { "input": "25\n3164978461316464614169874\n9413979197249127496597357", "output": "66" }, { "input": "4\n9999\n9999", "output": "0" }, { "input": "2\n11\n11", "output": "0" } ]
1,687,512,511
2,147,483,647
Python 3
OK
TESTS
43
46
0
n = int(input()) curr = list(map(int, input())) arr = list(map(int, input())) cnt = 0 for i in range(n): cnt += min(abs(arr[i]-curr[i]), (min(arr[i],curr[i])+10) - max(arr[i], curr[i]) ) print(cnt)
Title: Combination Lock Time Limit: None seconds Memory Limit: None megabytes Problem Description: Scrooge McDuck keeps his most treasured savings in a home safe with a combination lock. Each time he wants to put there the treasures that he's earned fair and square, he has to open the lock. The combination lock is represented by *n* rotating disks with digits from 0 to 9 written on them. Scrooge McDuck has to turn some disks so that the combination of digits on the disks forms a secret combination. In one move, he can rotate one disk one digit forwards or backwards. In particular, in one move he can go from digit 0 to digit 9 and vice versa. What minimum number of actions does he need for that? Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=1000) — the number of disks on the combination lock. The second line contains a string of *n* digits — the original state of the disks. The third line contains a string of *n* digits — Scrooge McDuck's combination that opens the lock. Output Specification: Print a single integer — the minimum number of moves Scrooge McDuck needs to open the lock. Demo Input: ['5\n82195\n64723\n'] Demo Output: ['13\n'] Note: In the sample he needs 13 moves: - 1 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b8967f65a723782358b93eff9ce69f336817cf70.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 2 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/07fa58573ece0d32c4d555e498d2b24d2f70f36a.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 3 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/cc2275d9252aae35a6867c6a5b4ba7596e9a7626.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 4 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/b100aea470fcaaab4e9529b234ba0d7875943c10.png" style="max-width: 100.0%;max-height: 100.0%;"/> - 5 disk: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/eb2cbe4324cebca65b85816262a85e473cd65967.png" style="max-width: 100.0%;max-height: 100.0%;"/>
```python n = int(input()) curr = list(map(int, input())) arr = list(map(int, input())) cnt = 0 for i in range(n): cnt += min(abs(arr[i]-curr[i]), (min(arr[i],curr[i])+10) - max(arr[i], curr[i]) ) print(cnt) ```
3
677
A
Vanya and Fence
PROGRAMMING
800
[ "implementation" ]
null
null
Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*. Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard?
The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person.
Print a single integer — the minimum possible valid width of the road.
[ "3 7\n4 5 14\n", "6 1\n1 1 1 1 1 1\n", "6 5\n7 6 8 9 10 5\n" ]
[ "4\n", "6\n", "11\n" ]
In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4. In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough. In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
500
[ { "input": "3 7\n4 5 14", "output": "4" }, { "input": "6 1\n1 1 1 1 1 1", "output": "6" }, { "input": "6 5\n7 6 8 9 10 5", "output": "11" }, { "input": "10 420\n214 614 297 675 82 740 174 23 255 15", "output": "13" }, { "input": "10 561\n657 23 1096 487 785 66 481 554 1000 821", "output": "15" }, { "input": "100 342\n478 143 359 336 162 333 385 515 117 496 310 538 469 539 258 676 466 677 1 296 150 560 26 213 627 221 255 126 617 174 279 178 24 435 70 145 619 46 669 566 300 67 576 251 58 176 441 564 569 194 24 669 73 262 457 259 619 78 400 579 222 626 269 47 80 315 160 194 455 186 315 424 197 246 683 220 68 682 83 233 290 664 273 598 362 305 674 614 321 575 362 120 14 534 62 436 294 351 485 396", "output": "144" }, { "input": "100 290\n244 49 276 77 449 261 468 458 201 424 9 131 300 88 432 394 104 77 13 289 435 259 111 453 168 394 156 412 351 576 178 530 81 271 228 564 125 328 42 372 205 61 180 471 33 360 567 331 222 318 241 117 529 169 188 484 202 202 299 268 246 343 44 364 333 494 59 236 84 485 50 8 428 8 571 227 205 310 210 9 324 472 368 490 114 84 296 305 411 351 569 393 283 120 510 171 232 151 134 366", "output": "145" }, { "input": "1 1\n1", "output": "1" }, { "input": "1 1\n2", "output": "2" }, { "input": "46 71\n30 26 56 138 123 77 60 122 73 45 79 10 130 3 14 1 38 46 128 50 82 16 32 68 28 98 62 106 2 49 131 11 114 39 139 70 40 50 45 137 33 30 35 136 135 19", "output": "63" }, { "input": "20 723\n212 602 293 591 754 91 1135 640 80 495 845 928 1399 498 926 1431 1226 869 814 1386", "output": "31" }, { "input": "48 864\n843 1020 751 1694 18 1429 1395 1174 272 1158 1628 1233 1710 441 765 561 778 748 1501 1200 563 1263 1398 1687 1518 1640 1591 839 500 466 1603 1587 1201 1209 432 868 1159 639 649 628 9 91 1036 147 896 1557 941 518", "output": "75" }, { "input": "26 708\n549 241 821 734 945 1161 566 1268 216 30 1142 730 529 1014 255 168 796 1148 89 113 1328 286 743 871 1259 1397", "output": "41" }, { "input": "75 940\n1620 1745 1599 441 64 1466 1496 1239 1716 1475 778 106 1136 1212 1261 444 781 257 1071 747 626 232 609 1544 682 1326 469 1361 1460 1450 1207 1319 922 625 1737 1057 1698 592 692 80 1016 541 1254 201 682 1007 847 206 1066 809 259 109 240 1611 219 1455 1326 1377 1827 786 42 1002 1382 1592 543 1866 1198 334 1524 1760 340 1566 955 257 1118", "output": "116" } ]
1,694,923,350
2,147,483,647
PyPy 3-64
OK
TESTS
29
77
0
n,h=map(int, input().split()) l=list(map(int, input().split())) flag=0 for i in range(n): if l[i]>h: flag+=2 else: flag+=1 print(flag)
Title: Vanya and Fence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vanya and his friends are walking along the fence of height *h* and they do not want the guard to notice them. In order to achieve this the height of each of the friends should not exceed *h*. If the height of some person is greater than *h* he can bend down and then he surely won't be noticed by the guard. The height of the *i*-th person is equal to *a**i*. Consider the width of the person walking as usual to be equal to 1, while the width of the bent person is equal to 2. Friends want to talk to each other while walking, so they would like to walk in a single row. What is the minimum width of the road, such that friends can walk in a row and remain unattended by the guard? Input Specification: The first line of the input contains two integers *n* and *h* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*h*<=≤<=1000) — the number of friends and the height of the fence, respectively. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=2*h*), the *i*-th of them is equal to the height of the *i*-th person. Output Specification: Print a single integer — the minimum possible valid width of the road. Demo Input: ['3 7\n4 5 14\n', '6 1\n1 1 1 1 1 1\n', '6 5\n7 6 8 9 10 5\n'] Demo Output: ['4\n', '6\n', '11\n'] Note: In the first sample, only person number 3 must bend down, so the required width is equal to 1 + 1 + 2 = 4. In the second sample, all friends are short enough and no one has to bend, so the width 1 + 1 + 1 + 1 + 1 + 1 = 6 is enough. In the third sample, all the persons have to bend, except the last one. The required minimum width of the road is equal to 2 + 2 + 2 + 2 + 2 + 1 = 11.
```python n,h=map(int, input().split()) l=list(map(int, input().split())) flag=0 for i in range(n): if l[i]>h: flag+=2 else: flag+=1 print(flag) ```
3
221
A
Little Elephant and Function
PROGRAMMING
1,000
[ "implementation", "math" ]
null
null
The Little Elephant enjoys recursive functions. This time he enjoys the sorting function. Let *a* is a permutation of an integers from 1 to *n*, inclusive, and *a**i* denotes the *i*-th element of the permutation. The Little Elephant's recursive function *f*(*x*), that sorts the first *x* permutation's elements, works as follows: - If *x*<==<=1, exit the function. - Otherwise, call *f*(*x*<=-<=1), and then make *swap*(*a**x*<=-<=1,<=*a**x*) (swap the *x*-th and (*x*<=-<=1)-th elements of *a*). The Little Elephant's teacher believes that this function does not work correctly. But that-be do not get an F, the Little Elephant wants to show the performance of its function. Help him, find a permutation of numbers from 1 to *n*, such that after performing the Little Elephant's function (that is call *f*(*n*)), the permutation will be sorted in ascending order.
A single line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the size of permutation.
In a single line print *n* distinct integers from 1 to *n* — the required permutation. Numbers in a line should be separated by spaces. It is guaranteed that the answer exists.
[ "1\n", "2\n" ]
[ "1 ", "2 1 " ]
none
500
[ { "input": "1", "output": "1 " }, { "input": "2", "output": "2 1 " }, { "input": "3", "output": "3 1 2 " }, { "input": "4", "output": "4 1 2 3 " }, { "input": "5", "output": "5 1 2 3 4 " }, { "input": "6", "output": "6 1 2 3 4 5 " }, { "input": "7", "output": "7 1 2 3 4 5 6 " }, { "input": "1000", "output": "1000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 15..." }, { "input": "999", "output": "999 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..." }, { "input": "998", "output": "998 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..." }, { "input": "997", "output": "997 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..." }, { "input": "900", "output": "900 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..." }, { "input": "101", "output": "101 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 " }, { "input": "3", "output": "3 1 2 " }, { "input": "67", "output": "67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 " }, { "input": "779", "output": "779 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..." }, { "input": "195", "output": "195 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..." }, { "input": "907", "output": "907 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..." }, { "input": "971", "output": "971 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..." }, { "input": "683", "output": "683 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..." }, { "input": "99", "output": "99 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 " }, { "input": "811", "output": "811 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..." }, { "input": "875", "output": "875 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..." }, { "input": "291", "output": "291 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..." }, { "input": "3", "output": "3 1 2 " }, { "input": "419", "output": "419 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..." }, { "input": "779", "output": "779 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..." }, { "input": "195", "output": "195 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..." }, { "input": "907", "output": "907 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154..." }, { "input": "21", "output": "21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 " }, { "input": "22", "output": "22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 " }, { "input": "23", "output": "23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 " }, { "input": "24", "output": "24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 " }, { "input": "25", "output": "25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 " } ]
1,679,667,215
2,147,483,647
Python 3
OK
TESTS
34
92
0
n = int(input()) l = [] sr = [] for i in range(1,n+1): l.append(i) if i==n: sr = sorted(l) sr.insert(0, n) del sr[-1] print(*sr)
Title: Little Elephant and Function Time Limit: None seconds Memory Limit: None megabytes Problem Description: The Little Elephant enjoys recursive functions. This time he enjoys the sorting function. Let *a* is a permutation of an integers from 1 to *n*, inclusive, and *a**i* denotes the *i*-th element of the permutation. The Little Elephant's recursive function *f*(*x*), that sorts the first *x* permutation's elements, works as follows: - If *x*<==<=1, exit the function. - Otherwise, call *f*(*x*<=-<=1), and then make *swap*(*a**x*<=-<=1,<=*a**x*) (swap the *x*-th and (*x*<=-<=1)-th elements of *a*). The Little Elephant's teacher believes that this function does not work correctly. But that-be do not get an F, the Little Elephant wants to show the performance of its function. Help him, find a permutation of numbers from 1 to *n*, such that after performing the Little Elephant's function (that is call *f*(*n*)), the permutation will be sorted in ascending order. Input Specification: A single line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the size of permutation. Output Specification: In a single line print *n* distinct integers from 1 to *n* — the required permutation. Numbers in a line should be separated by spaces. It is guaranteed that the answer exists. Demo Input: ['1\n', '2\n'] Demo Output: ['1 ', '2 1 '] Note: none
```python n = int(input()) l = [] sr = [] for i in range(1,n+1): l.append(i) if i==n: sr = sorted(l) sr.insert(0, n) del sr[-1] print(*sr) ```
3
845
A
Chess Tourney
PROGRAMMING
1,100
[ "implementation", "sortings" ]
null
null
Berland annual chess tournament is coming! Organizers have gathered 2·*n* chess players who should be divided into two teams with *n* people each. The first team is sponsored by BerOil and the second team is sponsored by BerMobile. Obviously, organizers should guarantee the win for the team of BerOil. Thus, organizers should divide all 2·*n* players into two teams with *n* people each in such a way that the first team always wins. Every chess player has its rating *r**i*. It is known that chess player with the greater rating always wins the player with the lower rating. If their ratings are equal then any of the players can win. After teams assignment there will come a drawing to form *n* pairs of opponents: in each pair there is a player from the first team and a player from the second team. Every chess player should be in exactly one pair. Every pair plays once. The drawing is totally random. Is it possible to divide all 2·*n* players into two teams with *n* people each so that the player from the first team in every pair wins regardless of the results of the drawing?
The first line contains one integer *n* (1<=≤<=*n*<=≤<=100). The second line contains 2·*n* integers *a*1,<=*a*2,<=... *a*2*n* (1<=≤<=*a**i*<=≤<=1000).
If it's possible to divide all 2·*n* players into two teams with *n* people each so that the player from the first team in every pair wins regardless of the results of the drawing, then print "YES". Otherwise print "NO".
[ "2\n1 3 2 4\n", "1\n3 3\n" ]
[ "YES\n", "NO\n" ]
none
0
[ { "input": "2\n1 3 2 4", "output": "YES" }, { "input": "1\n3 3", "output": "NO" }, { "input": "5\n1 1 1 1 2 2 3 3 3 3", "output": "NO" }, { "input": "5\n1 1 1 1 1 2 2 2 2 2", "output": "YES" }, { "input": "10\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000", "output": "NO" }, { "input": "1\n2 3", "output": "YES" }, { "input": "100\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "NO" }, { "input": "35\n919 240 231 858 456 891 959 965 758 30 431 73 505 694 874 543 975 445 16 147 904 690 940 278 562 127 724 314 30 233 389 442 353 652 581 383 340 445 487 283 85 845 578 946 228 557 906 572 919 388 686 181 958 955 736 438 991 170 632 593 475 264 178 344 159 414 739 590 348 884", "output": "YES" }, { "input": "5\n1 2 3 4 10 10 6 7 8 9", "output": "YES" }, { "input": "2\n1 1 1 2", "output": "NO" }, { "input": "2\n10 4 4 4", "output": "NO" }, { "input": "2\n2 3 3 3", "output": "NO" }, { "input": "4\n1 2 3 4 5 4 6 7", "output": "NO" }, { "input": "4\n2 5 4 5 8 3 1 5", "output": "YES" }, { "input": "4\n8 2 2 4 1 4 10 9", "output": "NO" }, { "input": "2\n3 8 10 2", "output": "YES" }, { "input": "3\n1 3 4 4 5 6", "output": "NO" }, { "input": "2\n3 3 3 4", "output": "NO" }, { "input": "2\n1 1 2 2", "output": "YES" }, { "input": "2\n1 1 3 3", "output": "YES" }, { "input": "2\n1 2 3 2", "output": "NO" }, { "input": "10\n1 2 7 3 9 4 1 5 10 3 6 1 10 7 8 5 7 6 1 4", "output": "NO" }, { "input": "3\n1 2 3 3 4 5", "output": "NO" }, { "input": "2\n2 2 1 1", "output": "YES" }, { "input": "7\n1 2 3 4 5 6 7 7 8 9 10 11 12 19", "output": "NO" }, { "input": "5\n1 2 3 4 5 3 3 5 6 7", "output": "YES" }, { "input": "4\n1 1 2 2 3 3 3 3", "output": "YES" }, { "input": "51\n576 377 63 938 667 992 959 997 476 94 652 272 108 410 543 456 942 800 917 163 931 584 357 890 895 318 544 179 268 130 649 916 581 350 573 223 495 26 377 695 114 587 380 424 744 434 332 249 318 522 908 815 313 384 981 773 585 747 376 812 538 525 997 896 859 599 437 163 878 14 224 733 369 741 473 178 153 678 12 894 630 921 505 635 128 404 64 499 208 325 343 996 970 39 380 80 12 756 580 57 934 224", "output": "YES" }, { "input": "3\n3 3 3 2 3 2", "output": "NO" }, { "input": "2\n5 3 3 6", "output": "YES" }, { "input": "2\n1 2 2 3", "output": "NO" }, { "input": "2\n1 3 2 2", "output": "NO" }, { "input": "2\n1 3 3 4", "output": "NO" }, { "input": "2\n1 2 2 2", "output": "NO" }, { "input": "3\n1 2 7 19 19 7", "output": "NO" }, { "input": "3\n1 2 3 3 5 6", "output": "NO" }, { "input": "2\n1 2 2 4", "output": "NO" }, { "input": "2\n6 6 5 5", "output": "YES" }, { "input": "2\n3 1 3 1", "output": "YES" }, { "input": "3\n1 2 3 3 1 1", "output": "YES" }, { "input": "3\n3 2 1 3 4 5", "output": "NO" }, { "input": "3\n4 5 6 4 2 1", "output": "NO" }, { "input": "3\n1 1 2 3 2 4", "output": "NO" }, { "input": "3\n100 99 1 1 1 1", "output": "NO" }, { "input": "3\n1 2 3 6 5 3", "output": "NO" }, { "input": "2\n2 2 1 2", "output": "NO" }, { "input": "4\n1 2 3 4 5 6 7 4", "output": "NO" }, { "input": "3\n1 2 3 1 1 1", "output": "NO" }, { "input": "3\n6 5 3 3 1 3", "output": "NO" }, { "input": "2\n1 2 1 2", "output": "YES" }, { "input": "3\n1 2 5 6 8 6", "output": "YES" }, { "input": "5\n1 2 3 4 5 3 3 3 3 3", "output": "NO" }, { "input": "2\n1 2 4 2", "output": "NO" }, { "input": "3\n7 7 4 5 319 19", "output": "NO" }, { "input": "3\n1 2 4 4 3 5", "output": "YES" }, { "input": "3\n3 2 3 4 5 2", "output": "NO" }, { "input": "5\n1 2 3 4 4 5 3 6 7 8", "output": "NO" }, { "input": "3\n3 3 4 4 5 1", "output": "YES" }, { "input": "2\n3 4 3 3", "output": "NO" }, { "input": "2\n2 5 4 4", "output": "NO" }, { "input": "5\n1 2 3 3 4 5 6 7 8 4", "output": "NO" }, { "input": "3\n1 2 3 3 5 5", "output": "NO" }, { "input": "2\n3 4 4 4", "output": "NO" }, { "input": "2\n1 4 5 4", "output": "NO" }, { "input": "2\n1 2 3 3", "output": "YES" }, { "input": "2\n1 1 2 1", "output": "NO" }, { "input": "4\n1 1 1 1 2 2 2 2", "output": "YES" }, { "input": "4\n1 2 3 5 6 7 8 5", "output": "NO" }, { "input": "2\n4 3 3 1", "output": "NO" }, { "input": "3\n3 1 2 4 3 5", "output": "NO" }, { "input": "3\n1 2 3 3 4 6", "output": "NO" }, { "input": "4\n2 2 2 4 5 5 5 5", "output": "YES" }, { "input": "2\n1 3 4 3", "output": "NO" }, { "input": "2\n3 3 2 3", "output": "NO" }, { "input": "2\n1 2 1 1", "output": "NO" }, { "input": "3\n1 3 4 4 2 5", "output": "YES" }, { "input": "4\n4 7 1 2 3 5 6 4", "output": "NO" }, { "input": "2\n3 2 2 2", "output": "NO" }, { "input": "1\n2 1", "output": "YES" }, { "input": "2\n3 3 1 2", "output": "YES" }, { "input": "1\n8 6", "output": "YES" }, { "input": "7\n6 7 6 7 3 1 9 4 6 10 8 2 5 7", "output": "NO" }, { "input": "2\n3 9 2 1", "output": "YES" }, { "input": "2\n3 3 3 3", "output": "NO" } ]
1,503,417,087
2,147,483,647
Python 3
OK
TESTS
88
62
0
n = int(input()) l = list(map(int, input().split())) l.sort() l1 = [] l2 = [] for index, i in enumerate(l): if index < len(l) // 2: l1.append(i) else: l2.append(i) if l1[len(l1) - 1] < l2[0]: print("YES") else: print("NO")
Title: Chess Tourney Time Limit: None seconds Memory Limit: None megabytes Problem Description: Berland annual chess tournament is coming! Organizers have gathered 2·*n* chess players who should be divided into two teams with *n* people each. The first team is sponsored by BerOil and the second team is sponsored by BerMobile. Obviously, organizers should guarantee the win for the team of BerOil. Thus, organizers should divide all 2·*n* players into two teams with *n* people each in such a way that the first team always wins. Every chess player has its rating *r**i*. It is known that chess player with the greater rating always wins the player with the lower rating. If their ratings are equal then any of the players can win. After teams assignment there will come a drawing to form *n* pairs of opponents: in each pair there is a player from the first team and a player from the second team. Every chess player should be in exactly one pair. Every pair plays once. The drawing is totally random. Is it possible to divide all 2·*n* players into two teams with *n* people each so that the player from the first team in every pair wins regardless of the results of the drawing? Input Specification: The first line contains one integer *n* (1<=≤<=*n*<=≤<=100). The second line contains 2·*n* integers *a*1,<=*a*2,<=... *a*2*n* (1<=≤<=*a**i*<=≤<=1000). Output Specification: If it's possible to divide all 2·*n* players into two teams with *n* people each so that the player from the first team in every pair wins regardless of the results of the drawing, then print "YES". Otherwise print "NO". Demo Input: ['2\n1 3 2 4\n', '1\n3 3\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python n = int(input()) l = list(map(int, input().split())) l.sort() l1 = [] l2 = [] for index, i in enumerate(l): if index < len(l) // 2: l1.append(i) else: l2.append(i) if l1[len(l1) - 1] < l2[0]: print("YES") else: print("NO") ```
3
118
A
String Task
PROGRAMMING
1,000
[ "implementation", "strings" ]
null
null
Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it: - deletes all the vowels, - inserts a character "." before each consonant, - replaces all uppercase consonants with corresponding lowercase ones. Vowels are letters "A", "O", "Y", "E", "U", "I", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string. Help Petya cope with this easy task.
The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive.
Print the resulting string. It is guaranteed that this string is not empty.
[ "tour\n", "Codeforces\n", "aBAcAba\n" ]
[ ".t.r\n", ".c.d.f.r.c.s\n", ".b.c.b\n" ]
none
500
[ { "input": "tour", "output": ".t.r" }, { "input": "Codeforces", "output": ".c.d.f.r.c.s" }, { "input": "aBAcAba", "output": ".b.c.b" }, { "input": "obn", "output": ".b.n" }, { "input": "wpwl", "output": ".w.p.w.l" }, { "input": "ggdvq", "output": ".g.g.d.v.q" }, { "input": "pumesz", "output": ".p.m.s.z" }, { "input": "g", "output": ".g" }, { "input": "zjuotps", "output": ".z.j.t.p.s" }, { "input": "jzbwuehe", "output": ".j.z.b.w.h" }, { "input": "tnkgwuugu", "output": ".t.n.k.g.w.g" }, { "input": "kincenvizh", "output": ".k.n.c.n.v.z.h" }, { "input": "xattxjenual", "output": ".x.t.t.x.j.n.l" }, { "input": "ktajqhpqsvhw", "output": ".k.t.j.q.h.p.q.s.v.h.w" }, { "input": "xnhcigytnqcmy", "output": ".x.n.h.c.g.t.n.q.c.m" }, { "input": "jfmtbejyilxcec", "output": ".j.f.m.t.b.j.l.x.c.c" }, { "input": "D", "output": ".d" }, { "input": "ab", "output": ".b" }, { "input": "Ab", "output": ".b" }, { "input": "aB", "output": ".b" }, { "input": "AB", "output": ".b" }, { "input": "ba", "output": ".b" }, { "input": "bA", "output": ".b" }, { "input": "Ba", "output": ".b" }, { "input": "BA", "output": ".b" }, { "input": "aab", "output": ".b" }, { "input": "baa", "output": ".b" }, { "input": "femOZeCArKCpUiHYnbBPTIOFmsHmcpObtPYcLCdjFrUMIyqYzAokKUiiKZRouZiNMoiOuGVoQzaaCAOkquRjmmKKElLNqCnhGdQM", "output": ".f.m.z.c.r.k.c.p.h.n.b.b.p.t.f.m.s.h.m.c.p.b.t.p.c.l.c.d.j.f.r.m.q.z.k.k.k.z.r.z.n.m.g.v.q.z.c.k.q.r.j.m.m.k.k.l.l.n.q.c.n.h.g.d.q.m" }, { "input": "VMBPMCmMDCLFELLIISUJDWQRXYRDGKMXJXJHXVZADRZWVWJRKFRRNSAWKKDPZZLFLNSGUNIVJFBEQsMDHSBJVDTOCSCgZWWKvZZN", "output": ".v.m.b.p.m.c.m.m.d.c.l.f.l.l.s.j.d.w.q.r.x.r.d.g.k.m.x.j.x.j.h.x.v.z.d.r.z.w.v.w.j.r.k.f.r.r.n.s.w.k.k.d.p.z.z.l.f.l.n.s.g.n.v.j.f.b.q.s.m.d.h.s.b.j.v.d.t.c.s.c.g.z.w.w.k.v.z.z.n" }, { "input": "MCGFQQJNUKuAEXrLXibVjClSHjSxmlkQGTKZrRaDNDomIPOmtSgjJAjNVIVLeUGUAOHNkCBwNObVCHOWvNkLFQQbFnugYVMkJruJ", "output": ".m.c.g.f.q.q.j.n.k.x.r.l.x.b.v.j.c.l.s.h.j.s.x.m.l.k.q.g.t.k.z.r.r.d.n.d.m.p.m.t.s.g.j.j.j.n.v.v.l.g.h.n.k.c.b.w.n.b.v.c.h.w.v.n.k.l.f.q.q.b.f.n.g.v.m.k.j.r.j" }, { "input": "iyaiuiwioOyzUaOtAeuEYcevvUyveuyioeeueoeiaoeiavizeeoeyYYaaAOuouueaUioueauayoiuuyiuovyOyiyoyioaoyuoyea", "output": ".w.z.t.c.v.v.v.v.z.v" }, { "input": "yjnckpfyLtzwjsgpcrgCfpljnjwqzgVcufnOvhxplvflxJzqxnhrwgfJmPzifgubvspffmqrwbzivatlmdiBaddiaktdsfPwsevl", "output": ".j.n.c.k.p.f.l.t.z.w.j.s.g.p.c.r.g.c.f.p.l.j.n.j.w.q.z.g.v.c.f.n.v.h.x.p.l.v.f.l.x.j.z.q.x.n.h.r.w.g.f.j.m.p.z.f.g.b.v.s.p.f.f.m.q.r.w.b.z.v.t.l.m.d.b.d.d.k.t.d.s.f.p.w.s.v.l" }, { "input": "RIIIUaAIYJOiuYIUWFPOOAIuaUEZeIooyUEUEAoIyIHYOEAlVAAIiLUAUAeiUIEiUMuuOiAgEUOIAoOUYYEYFEoOIIVeOOAOIIEg", "output": ".r.j.w.f.p.z.h.l.v.l.m.g.f.v.g" }, { "input": "VBKQCFBMQHDMGNSGBQVJTGQCNHHRJMNKGKDPPSQRRVQTZNKBZGSXBPBRXPMVFTXCHZMSJVBRNFNTHBHGJLMDZJSVPZZBCCZNVLMQ", "output": ".v.b.k.q.c.f.b.m.q.h.d.m.g.n.s.g.b.q.v.j.t.g.q.c.n.h.h.r.j.m.n.k.g.k.d.p.p.s.q.r.r.v.q.t.z.n.k.b.z.g.s.x.b.p.b.r.x.p.m.v.f.t.x.c.h.z.m.s.j.v.b.r.n.f.n.t.h.b.h.g.j.l.m.d.z.j.s.v.p.z.z.b.c.c.z.n.v.l.m.q" }, { "input": "iioyoaayeuyoolyiyoeuouiayiiuyTueyiaoiueyioiouyuauouayyiaeoeiiigmioiououeieeeyuyyaYyioiiooaiuouyoeoeg", "output": ".l.t.g.m.g" }, { "input": "ueyiuiauuyyeueykeioouiiauzoyoeyeuyiaoaiiaaoaueyaeydaoauexuueafouiyioueeaaeyoeuaueiyiuiaeeayaioeouiuy", "output": ".k.z.d.x.f" }, { "input": "FSNRBXLFQHZXGVMKLQDVHWLDSLKGKFMDRQWMWSSKPKKQBNDZRSCBLRSKCKKFFKRDMZFZGCNSMXNPMZVDLKXGNXGZQCLRTTDXLMXQ", "output": ".f.s.n.r.b.x.l.f.q.h.z.x.g.v.m.k.l.q.d.v.h.w.l.d.s.l.k.g.k.f.m.d.r.q.w.m.w.s.s.k.p.k.k.q.b.n.d.z.r.s.c.b.l.r.s.k.c.k.k.f.f.k.r.d.m.z.f.z.g.c.n.s.m.x.n.p.m.z.v.d.l.k.x.g.n.x.g.z.q.c.l.r.t.t.d.x.l.m.x.q" }, { "input": "EYAYAYIOIOYOOAUOEUEUOUUYIYUUMOEOIIIAOIUOAAOIYOIOEUIERCEYYAOIOIGYUIAOYUEOEUAEAYPOYEYUUAUOAOEIYIEYUEEY", "output": ".m.r.c.g.p" }, { "input": "jvvzcdcxjstbbksmqjsngxkgtttdxrljjxtwptgwwqzpvqchvgrkqlzxmptzblxhhsmrkmzzmgdfskhtmmnqzzflpmqdctvrfgtx", "output": ".j.v.v.z.c.d.c.x.j.s.t.b.b.k.s.m.q.j.s.n.g.x.k.g.t.t.t.d.x.r.l.j.j.x.t.w.p.t.g.w.w.q.z.p.v.q.c.h.v.g.r.k.q.l.z.x.m.p.t.z.b.l.x.h.h.s.m.r.k.m.z.z.m.g.d.f.s.k.h.t.m.m.n.q.z.z.f.l.p.m.q.d.c.t.v.r.f.g.t.x" }, { "input": "YB", "output": ".b" }, { "input": "fly", "output": ".f.l" }, { "input": "YyyYYYyyYxdwdawdDAWDdaddYYYY", "output": ".x.d.w.d.w.d.d.w.d.d.d.d" } ]
1,693,589,302
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
14
124
0
s = input() vowels = set('aeoui') print(''.join([f'.{x}' for x in s.lower() if x not in vowels]))
Title: String Task Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it: - deletes all the vowels, - inserts a character "." before each consonant, - replaces all uppercase consonants with corresponding lowercase ones. Vowels are letters "A", "O", "Y", "E", "U", "I", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string. Help Petya cope with this easy task. Input Specification: The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive. Output Specification: Print the resulting string. It is guaranteed that this string is not empty. Demo Input: ['tour\n', 'Codeforces\n', 'aBAcAba\n'] Demo Output: ['.t.r\n', '.c.d.f.r.c.s\n', '.b.c.b\n'] Note: none
```python s = input() vowels = set('aeoui') print(''.join([f'.{x}' for x in s.lower() if x not in vowels])) ```
0
287
A
IQ Test
PROGRAMMING
1,100
[ "brute force", "implementation" ]
null
null
In the city of Ultima Thule job applicants are often offered an IQ test. The test is as follows: the person gets a piece of squared paper with a 4<=×<=4 square painted on it. Some of the square's cells are painted black and others are painted white. Your task is to repaint at most one cell the other color so that the picture has a 2<=×<=2 square, completely consisting of cells of the same color. If the initial picture already has such a square, the person should just say so and the test will be completed. Your task is to write a program that determines whether it is possible to pass the test. You cannot pass the test if either repainting any cell or no action doesn't result in a 2<=×<=2 square, consisting of cells of the same color.
Four lines contain four characters each: the *j*-th character of the *i*-th line equals "." if the cell in the *i*-th row and the *j*-th column of the square is painted white, and "#", if the cell is black.
Print "YES" (without the quotes), if the test can be passed and "NO" (without the quotes) otherwise.
[ "####\n.#..\n####\n....\n", "####\n....\n####\n....\n" ]
[ "YES\n", "NO\n" ]
In the first test sample it is enough to repaint the first cell in the second row. After such repainting the required 2 × 2 square is on the intersection of the 1-st and 2-nd row with the 1-st and 2-nd column.
500
[ { "input": "###.\n...#\n###.\n...#", "output": "NO" }, { "input": ".##.\n#..#\n.##.\n#..#", "output": "NO" }, { "input": ".#.#\n#.#.\n.#.#\n#.#.", "output": "NO" }, { "input": "##..\n..##\n##..\n..##", "output": "NO" }, { "input": "#.#.\n#.#.\n.#.#\n.#.#", "output": "NO" }, { "input": ".#.#\n#.#.\n#.#.\n#.#.", "output": "NO" }, { "input": ".#.#\n#.#.\n#.#.\n.#.#", "output": "NO" }, { "input": "#.#.\n#.#.\n#.#.\n#.#.", "output": "NO" }, { "input": ".#.#\n.#.#\n.#.#\n.#.#", "output": "NO" }, { "input": "#..#\n.##.\n####\n####", "output": "YES" }, { "input": "#.#.\n.###\n#.#.\n.###", "output": "YES" }, { "input": "#..#\n.##.\n.##.\n#..#", "output": "YES" }, { "input": ".##.\n.#..\n##.#\n#..#", "output": "YES" }, { "input": ".##.\n##..\n#..#\n..##", "output": "YES" }, { "input": "##..\n##..\n..##\n..##", "output": "YES" }, { "input": ".#..\n###.\n.#.#\n..#.", "output": "YES" }, { "input": "###.\n###.\n...#\n...#", "output": "YES" }, { "input": "#.##\n##.#\n#.##\n##.#", "output": "YES" }, { "input": ".#.#\n#.#.\n.#.#\n#.##", "output": "YES" }, { "input": "##..\n..##\n##..\n...#", "output": "YES" }, { "input": ".#..\n..##\n##..\n..##", "output": "YES" }, { "input": "##..\n...#\n##..\n...#", "output": "YES" }, { "input": ".#..\n..#.\n.#..\n..#.", "output": "YES" }, { "input": "....\n....\n....\n.#.#", "output": "YES" }, { "input": "....\n....\n....\n...#", "output": "YES" } ]
1,632,927,381
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
23
108
20,172,800
mat = [] for k in range(4): m = input() mat.append(m) for i in range(3): for j in range(3): num = 0 if mat[i][j] == mat[i][j+1]: num = num+1 if mat[i][j] == mat[i+1][j]: num = num+1 if mat[i][j] == mat[i+1][j+1]: num = num+1 if num>1: break if num>1: print("YES") break if num <2: print("NO")
Title: IQ Test Time Limit: None seconds Memory Limit: None megabytes Problem Description: In the city of Ultima Thule job applicants are often offered an IQ test. The test is as follows: the person gets a piece of squared paper with a 4<=×<=4 square painted on it. Some of the square's cells are painted black and others are painted white. Your task is to repaint at most one cell the other color so that the picture has a 2<=×<=2 square, completely consisting of cells of the same color. If the initial picture already has such a square, the person should just say so and the test will be completed. Your task is to write a program that determines whether it is possible to pass the test. You cannot pass the test if either repainting any cell or no action doesn't result in a 2<=×<=2 square, consisting of cells of the same color. Input Specification: Four lines contain four characters each: the *j*-th character of the *i*-th line equals "." if the cell in the *i*-th row and the *j*-th column of the square is painted white, and "#", if the cell is black. Output Specification: Print "YES" (without the quotes), if the test can be passed and "NO" (without the quotes) otherwise. Demo Input: ['####\n.#..\n####\n....\n', '####\n....\n####\n....\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first test sample it is enough to repaint the first cell in the second row. After such repainting the required 2 × 2 square is on the intersection of the 1-st and 2-nd row with the 1-st and 2-nd column.
```python mat = [] for k in range(4): m = input() mat.append(m) for i in range(3): for j in range(3): num = 0 if mat[i][j] == mat[i][j+1]: num = num+1 if mat[i][j] == mat[i+1][j]: num = num+1 if mat[i][j] == mat[i+1][j+1]: num = num+1 if num>1: break if num>1: print("YES") break if num <2: print("NO") ```
0
977
B
Two-gram
PROGRAMMING
900
[ "implementation", "strings" ]
null
null
Two-gram is an ordered pair (i.e. string of length two) of capital Latin letters. For example, "AZ", "AA", "ZA" — three distinct two-grams. You are given a string $s$ consisting of $n$ capital Latin letters. Your task is to find any two-gram contained in the given string as a substring (i.e. two consecutive characters of the string) maximal number of times. For example, for string $s$ = "BBAABBBA" the answer is two-gram "BB", which contained in $s$ three times. In other words, find any most frequent two-gram. Note that occurrences of the two-gram can overlap with each other.
The first line of the input contains integer number $n$ ($2 \le n \le 100$) — the length of string $s$. The second line of the input contains the string $s$ consisting of $n$ capital Latin letters.
Print the only line containing exactly two capital Latin letters — any two-gram contained in the given string $s$ as a substring (i.e. two consecutive characters of the string) maximal number of times.
[ "7\nABACABA\n", "5\nZZZAA\n" ]
[ "AB\n", "ZZ\n" ]
In the first example "BA" is also valid answer. In the second example the only two-gram "ZZ" can be printed because it contained in the string "ZZZAA" two times.
0
[ { "input": "7\nABACABA", "output": "AB" }, { "input": "5\nZZZAA", "output": "ZZ" }, { "input": "26\nQWERTYUIOPASDFGHJKLZXCVBNM", "output": "AS" }, { "input": "2\nQA", "output": "QA" }, { "input": "2\nWW", "output": "WW" }, { "input": "11\nGGRRAATTZZZ", "output": "ZZ" }, { "input": "50\nNYQAHBYYOXLTRYQDMVENEMAQNBAKGLGQOLXNAIFNQTOCLNNQIA", "output": "NQ" }, { "input": "100\nURXCAIZFIBNJTPCZHBQIBCILLPXZCFGMKKZMNPLCYGAVJVIBMCZEBSJWPSCPQDYCTTKPOKIJRSKIZPDGCHVOUTMPNECYORSFZFNC", "output": "IB" }, { "input": "100\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "AA" }, { "input": "10\nSQSQSQSQTG", "output": "SQ" }, { "input": "5\nAZAZA", "output": "AZ" }, { "input": "15\nMIRZOYANOVECLOX", "output": "AN" }, { "input": "9\nEGORLETOV", "output": "EG" }, { "input": "8\nPUTINVOR", "output": "IN" }, { "input": "7\nKADUROV", "output": "AD" }, { "input": "6\nAZAZAZ", "output": "AZ" }, { "input": "3\nLOL", "output": "LO" }, { "input": "3\nKEK", "output": "EK" }, { "input": "5\nFUFEL", "output": "EL" }, { "input": "9\nMIKEPIDOR", "output": "DO" }, { "input": "9\nAAAAAAAAA", "output": "AA" }, { "input": "23\nAABBBAAACCCCCAAADDDDDDD", "output": "DD" } ]
1,699,547,230
2,147,483,647
PyPy 3
OK
TESTS
22
92
0
n=int(input()) s=input() d={} for i in range(len(s)-1): temp="" temp+=(s[i]+s[i+1]) if temp not in d: d[temp]=1 else: d[temp]+=1 maxi=0 ans="" for i in d: if d[i]>maxi: maxi=d[i] ans=i print(ans)
Title: Two-gram Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two-gram is an ordered pair (i.e. string of length two) of capital Latin letters. For example, "AZ", "AA", "ZA" — three distinct two-grams. You are given a string $s$ consisting of $n$ capital Latin letters. Your task is to find any two-gram contained in the given string as a substring (i.e. two consecutive characters of the string) maximal number of times. For example, for string $s$ = "BBAABBBA" the answer is two-gram "BB", which contained in $s$ three times. In other words, find any most frequent two-gram. Note that occurrences of the two-gram can overlap with each other. Input Specification: The first line of the input contains integer number $n$ ($2 \le n \le 100$) — the length of string $s$. The second line of the input contains the string $s$ consisting of $n$ capital Latin letters. Output Specification: Print the only line containing exactly two capital Latin letters — any two-gram contained in the given string $s$ as a substring (i.e. two consecutive characters of the string) maximal number of times. Demo Input: ['7\nABACABA\n', '5\nZZZAA\n'] Demo Output: ['AB\n', 'ZZ\n'] Note: In the first example "BA" is also valid answer. In the second example the only two-gram "ZZ" can be printed because it contained in the string "ZZZAA" two times.
```python n=int(input()) s=input() d={} for i in range(len(s)-1): temp="" temp+=(s[i]+s[i+1]) if temp not in d: d[temp]=1 else: d[temp]+=1 maxi=0 ans="" for i in d: if d[i]>maxi: maxi=d[i] ans=i print(ans) ```
3
445
A
DZY Loves Chessboard
PROGRAMMING
1,200
[ "dfs and similar", "implementation" ]
null
null
DZY loves chessboard, and he enjoys playing with it. He has a chessboard of *n* rows and *m* columns. Some cells of the chessboard are bad, others are good. For every good cell, DZY wants to put a chessman on it. Each chessman is either white or black. After putting all chessmen, DZY wants that no two chessmen with the same color are on two adjacent cells. Two cells are adjacent if and only if they share a common edge. You task is to find any suitable placement of chessmen on the given chessboard.
The first line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100). Each of the next *n* lines contains a string of *m* characters: the *j*-th character of the *i*-th string is either "." or "-". A "." means that the corresponding cell (in the *i*-th row and the *j*-th column) is good, while a "-" means it is bad.
Output must contain *n* lines, each line must contain a string of *m* characters. The *j*-th character of the *i*-th string should be either "W", "B" or "-". Character "W" means the chessman on the cell is white, "B" means it is black, "-" means the cell is a bad cell. If multiple answers exist, print any of them. It is guaranteed that at least one answer exists.
[ "1 1\n.\n", "2 2\n..\n..\n", "3 3\n.-.\n---\n--." ]
[ "B\n", "BW\nWB\n", "B-B\n---\n--B" ]
In the first sample, DZY puts a single black chessman. Of course putting a white one is also OK. In the second sample, all 4 cells are good. No two same chessmen share an edge in the sample output. In the third sample, no good cells are adjacent. So you can just put 3 chessmen, no matter what their colors are.
500
[ { "input": "1 1\n.", "output": "B" }, { "input": "2 2\n..\n..", "output": "BW\nWB" }, { "input": "3 3\n.-.\n---\n--.", "output": "B-B\n---\n--B" }, { "input": "3 1\n-\n.\n.", "output": "-\nW\nB" }, { "input": "11 11\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------", "output": "-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------\n-----------" }, { "input": "1 1\n-", "output": "-" }, { "input": "4 2\n..\n..\n..\n..", "output": "BW\nWB\nBW\nWB" }, { "input": "5 1\n.\n.\n.\n.\n.", "output": "B\nW\nB\nW\nB" } ]
1,609,645,939
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
93
307,200
n, m = list(map(int, input("").split())) matrix = [[None if j == '.' else '-' for j in input("")] for i in range(n)] for i in range(n): for j in range(m): if matrix[i][j] == None: matrix[i][j] = 'W' if i + 1 < n and matrix[i+1][j] == None: matrix[i+1][j] = 'B' if j + 1< m and matrix[i][j+1] == None: matrix[i][j+1] = 'B' for row in matrix: print("".join(map(str, row)))
Title: DZY Loves Chessboard Time Limit: None seconds Memory Limit: None megabytes Problem Description: DZY loves chessboard, and he enjoys playing with it. He has a chessboard of *n* rows and *m* columns. Some cells of the chessboard are bad, others are good. For every good cell, DZY wants to put a chessman on it. Each chessman is either white or black. After putting all chessmen, DZY wants that no two chessmen with the same color are on two adjacent cells. Two cells are adjacent if and only if they share a common edge. You task is to find any suitable placement of chessmen on the given chessboard. Input Specification: The first line contains two space-separated integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100). Each of the next *n* lines contains a string of *m* characters: the *j*-th character of the *i*-th string is either "." or "-". A "." means that the corresponding cell (in the *i*-th row and the *j*-th column) is good, while a "-" means it is bad. Output Specification: Output must contain *n* lines, each line must contain a string of *m* characters. The *j*-th character of the *i*-th string should be either "W", "B" or "-". Character "W" means the chessman on the cell is white, "B" means it is black, "-" means the cell is a bad cell. If multiple answers exist, print any of them. It is guaranteed that at least one answer exists. Demo Input: ['1 1\n.\n', '2 2\n..\n..\n', '3 3\n.-.\n---\n--.'] Demo Output: ['B\n', 'BW\nWB\n', 'B-B\n---\n--B'] Note: In the first sample, DZY puts a single black chessman. Of course putting a white one is also OK. In the second sample, all 4 cells are good. No two same chessmen share an edge in the sample output. In the third sample, no good cells are adjacent. So you can just put 3 chessmen, no matter what their colors are.
```python n, m = list(map(int, input("").split())) matrix = [[None if j == '.' else '-' for j in input("")] for i in range(n)] for i in range(n): for j in range(m): if matrix[i][j] == None: matrix[i][j] = 'W' if i + 1 < n and matrix[i+1][j] == None: matrix[i+1][j] = 'B' if j + 1< m and matrix[i][j+1] == None: matrix[i][j+1] = 'B' for row in matrix: print("".join(map(str, row))) ```
0
11
A
Increasing Sequence
PROGRAMMING
900
[ "constructive algorithms", "implementation", "math" ]
A. Increasing Sequence
1
64
A sequence *a*0,<=*a*1,<=...,<=*a**t*<=-<=1 is called increasing if *a**i*<=-<=1<=&lt;<=*a**i* for each *i*:<=0<=&lt;<=*i*<=&lt;<=*t*. You are given a sequence *b*0,<=*b*1,<=...,<=*b**n*<=-<=1 and a positive integer *d*. In each move you may choose one element of the given sequence and add *d* to it. What is the least number of moves required to make the given sequence increasing?
The first line of the input contains two integer numbers *n* and *d* (2<=≤<=*n*<=≤<=2000,<=1<=≤<=*d*<=≤<=106). The second line contains space separated sequence *b*0,<=*b*1,<=...,<=*b**n*<=-<=1 (1<=≤<=*b**i*<=≤<=106).
Output the minimal number of moves needed to make the sequence increasing.
[ "4 2\n1 3 3 2\n" ]
[ "3\n" ]
none
0
[ { "input": "4 2\n1 3 3 2", "output": "3" }, { "input": "2 1\n1 1", "output": "1" }, { "input": "2 1\n2 5", "output": "0" }, { "input": "2 1\n1 2", "output": "0" }, { "input": "2 1\n1 1", "output": "1" }, { "input": "2 7\n10 20", "output": "0" }, { "input": "2 7\n1 1", "output": "1" }, { "input": "3 3\n18 1 9", "output": "10" }, { "input": "3 3\n15 17 9", "output": "3" }, { "input": "3 3\n10 9 12", "output": "2" }, { "input": "10 3\n2 1 17 10 5 16 8 4 15 17", "output": "31" }, { "input": "10 3\n6 11 4 12 22 15 23 26 24 26", "output": "13" }, { "input": "10 3\n10 24 13 15 18 14 15 26 33 35", "output": "29" }, { "input": "100 3\n529 178 280 403 326 531 671 427 188 866 669 646 421 804 494 609 53 1012 211 243 887 833 900 543 226 42 859 718 454 372 971 692 846 770 511 395 499 479 641 756 115 269 206 45 1039 727 400 779 859 614 146 214 196 919 702 959 380 830 535 878 859 784 316 305 782 924 536 243 236 978 564 150 291 877 808 983 537 839 490 120 168 838 267 650 900 170 211 504 326 771 895 984 994 483 776 100 471 1078 317 580", "output": "15717" }, { "input": "100 3\n329 226 331 909 962 112 837 1005 194 818 506 416 125 648 367 459 400 582 989 547 329 438 234 121 272 226 821 376 834 427 718 164 834 113 654 177 737 212 169 696 744 180 89 944 233 147 667 990 809 1072 1085 1093 814 265 1067 312 833 572 303 901 1032 504 185 817 389 158 613 723 239 269 911 352 769 404 225 822 897 606 947 323 913 804 923 1084 552 901 486 249 209 898 847 610 728 1122 986 669 1116 1076 367 327", "output": "16133" } ]
1,685,007,817
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
16
1,000
102,400
n, d = list(map(int, input().split())) l = list(map(int, input().split())) i = 1 moves = 0 # while i < len(l): # if l[i-1] < l[i]: # i += 1 # else: # #l[i-1] < l[i] + (l[i-1] // l[i]) * d: # diff = l[i-1] - l[i] # moves += diff // d if diff % d == 0 else (diff // d) + 1 # l[i] += diff // d + diff % d # i += 1 for i in range(1, len(l)): if l[i] > l[i-1]: continue while l[i] <= l[i-1]: l[i] += d moves += 1 print(moves)
Title: Increasing Sequence Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: A sequence *a*0,<=*a*1,<=...,<=*a**t*<=-<=1 is called increasing if *a**i*<=-<=1<=&lt;<=*a**i* for each *i*:<=0<=&lt;<=*i*<=&lt;<=*t*. You are given a sequence *b*0,<=*b*1,<=...,<=*b**n*<=-<=1 and a positive integer *d*. In each move you may choose one element of the given sequence and add *d* to it. What is the least number of moves required to make the given sequence increasing? Input Specification: The first line of the input contains two integer numbers *n* and *d* (2<=≤<=*n*<=≤<=2000,<=1<=≤<=*d*<=≤<=106). The second line contains space separated sequence *b*0,<=*b*1,<=...,<=*b**n*<=-<=1 (1<=≤<=*b**i*<=≤<=106). Output Specification: Output the minimal number of moves needed to make the sequence increasing. Demo Input: ['4 2\n1 3 3 2\n'] Demo Output: ['3\n'] Note: none
```python n, d = list(map(int, input().split())) l = list(map(int, input().split())) i = 1 moves = 0 # while i < len(l): # if l[i-1] < l[i]: # i += 1 # else: # #l[i-1] < l[i] + (l[i-1] // l[i]) * d: # diff = l[i-1] - l[i] # moves += diff // d if diff % d == 0 else (diff // d) + 1 # l[i] += diff // d + diff % d # i += 1 for i in range(1, len(l)): if l[i] > l[i-1]: continue while l[i] <= l[i-1]: l[i] += d moves += 1 print(moves) ```
0
937
A
Olympiad
PROGRAMMING
800
[ "implementation", "sortings" ]
null
null
The recent All-Berland Olympiad in Informatics featured *n* participants with each scoring a certain amount of points. As the head of the programming committee, you are to determine the set of participants to be awarded with diplomas with respect to the following criteria: - At least one participant should get a diploma. - None of those with score equal to zero should get awarded. - When someone is awarded, all participants with score not less than his score should also be awarded. Determine the number of ways to choose a subset of participants that will receive the diplomas.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of participants. The next line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=600) — participants' scores. It's guaranteed that at least one participant has non-zero score.
Print a single integer — the desired number of ways.
[ "4\n1 3 3 2\n", "3\n1 1 1\n", "4\n42 0 0 42\n" ]
[ "3\n", "1\n", "1\n" ]
There are three ways to choose a subset in sample case one. 1. Only participants with 3 points will get diplomas. 1. Participants with 2 or 3 points will get diplomas. 1. Everyone will get a diploma! The only option in sample case two is to award everyone. Note that in sample case three participants with zero scores cannot get anything.
500
[ { "input": "4\n1 3 3 2", "output": "3" }, { "input": "3\n1 1 1", "output": "1" }, { "input": "4\n42 0 0 42", "output": "1" }, { "input": "10\n1 0 1 0 1 0 0 0 0 1", "output": "1" }, { "input": "10\n572 471 540 163 50 30 561 510 43 200", "output": "10" }, { "input": "100\n122 575 426 445 172 81 247 429 97 202 175 325 382 384 417 356 132 502 328 537 57 339 518 211 479 306 140 168 268 16 140 263 593 249 391 310 555 468 231 180 157 18 334 328 276 155 21 280 322 545 111 267 467 274 291 304 235 34 365 180 21 95 501 552 325 331 302 353 296 22 289 399 7 466 32 302 568 333 75 192 284 10 94 128 154 512 9 480 243 521 551 492 420 197 207 125 367 117 438 600", "output": "94" }, { "input": "100\n600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600", "output": "1" }, { "input": "78\n5 4 13 2 5 6 2 10 10 1 2 6 7 9 6 3 5 7 1 10 2 2 7 0 2 11 11 3 1 13 3 10 6 2 0 3 0 5 0 1 4 11 1 1 7 0 12 7 5 12 0 2 12 9 8 3 4 3 4 11 4 10 2 3 10 12 5 6 1 11 2 0 8 7 9 1 3 12", "output": "13" }, { "input": "34\n220 387 408 343 184 447 197 307 337 414 251 319 426 322 347 242 208 412 188 185 241 235 216 259 331 372 322 284 444 384 214 297 389 391", "output": "33" }, { "input": "100\n1 2 1 0 3 0 2 0 0 1 2 0 1 3 0 3 3 1 3 0 0 2 1 2 2 1 3 3 3 3 3 2 0 0 2 1 2 3 2 3 0 1 1 3 3 2 0 3 1 0 2 2 2 1 2 3 2 1 0 3 0 2 0 3 0 2 1 0 3 1 0 2 2 1 3 1 3 0 2 3 3 1 1 3 1 3 0 3 2 0 2 3 3 0 2 0 2 0 1 3", "output": "3" }, { "input": "100\n572 471 540 163 50 30 561 510 43 200 213 387 500 424 113 487 357 333 294 337 435 202 447 494 485 465 161 344 470 559 104 356 393 207 224 213 511 514 60 386 149 216 392 229 429 173 165 401 395 150 127 579 344 390 529 296 225 425 318 79 465 447 177 110 367 212 459 270 41 500 277 567 125 436 178 9 214 342 203 112 144 24 79 155 495 556 40 549 463 281 241 316 2 246 1 396 510 293 332 55", "output": "93" }, { "input": "99\n5 4 13 2 5 6 2 10 10 1 2 6 7 9 6 3 5 7 1 10 2 2 7 0 2 11 11 3 1 13 3 10 6 2 0 3 0 5 0 1 4 11 1 1 7 0 12 7 5 12 0 2 12 9 8 3 4 3 4 11 4 10 2 3 10 12 5 6 1 11 2 0 8 7 9 1 3 12 2 3 9 3 7 13 7 13 0 11 8 12 2 5 9 4 0 6 6 2 13", "output": "13" }, { "input": "99\n1 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1", "output": "1" }, { "input": "99\n21 74 25 44 71 80 46 28 96 1 74 24 81 83 16 55 31 1 27 36 56 38 17 10 78 5 39 67 67 15 39 62 92 48 90 9 54 67 30 79 56 17 33 27 75 54 20 79 21 44 10 66 66 73 90 3 34 33 64 79 20 94 0 51 24 30 1 52 95 21 88 98 6 65 31 1 67 32 74 91 83 9 93 27 53 11 8 79 42 20 50 91 19 96 6 24 66 16 37", "output": "61" }, { "input": "2\n0 1", "output": "1" }, { "input": "2\n0 600", "output": "1" }, { "input": "4\n1 1 1 2", "output": "2" }, { "input": "4\n0 0 1 2", "output": "2" }, { "input": "1\n5", "output": "1" }, { "input": "2\n0 5", "output": "1" }, { "input": "5\n1 0 0 1 2", "output": "2" } ]
1,599,293,978
2,147,483,647
Python 3
OK
TESTS
21
93
0
n = int(input()) a = input().split() b = sorted(a) p = 0 q = 0 for i in range(1,n): if b[i] != b[i-1]: p += 1 if b[0] == '0': print(p) else: print(p + 1)
Title: Olympiad Time Limit: None seconds Memory Limit: None megabytes Problem Description: The recent All-Berland Olympiad in Informatics featured *n* participants with each scoring a certain amount of points. As the head of the programming committee, you are to determine the set of participants to be awarded with diplomas with respect to the following criteria: - At least one participant should get a diploma. - None of those with score equal to zero should get awarded. - When someone is awarded, all participants with score not less than his score should also be awarded. Determine the number of ways to choose a subset of participants that will receive the diplomas. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of participants. The next line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (0<=≤<=*a**i*<=≤<=600) — participants' scores. It's guaranteed that at least one participant has non-zero score. Output Specification: Print a single integer — the desired number of ways. Demo Input: ['4\n1 3 3 2\n', '3\n1 1 1\n', '4\n42 0 0 42\n'] Demo Output: ['3\n', '1\n', '1\n'] Note: There are three ways to choose a subset in sample case one. 1. Only participants with 3 points will get diplomas. 1. Participants with 2 or 3 points will get diplomas. 1. Everyone will get a diploma! The only option in sample case two is to award everyone. Note that in sample case three participants with zero scores cannot get anything.
```python n = int(input()) a = input().split() b = sorted(a) p = 0 q = 0 for i in range(1,n): if b[i] != b[i-1]: p += 1 if b[0] == '0': print(p) else: print(p + 1) ```
3
1
A
Theatre Square
PROGRAMMING
1,000
[ "math" ]
A. Theatre Square
1
256
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Write the needed number of flagstones.
[ "6 6 4\n" ]
[ "4\n" ]
none
0
[ { "input": "6 6 4", "output": "4" }, { "input": "1 1 1", "output": "1" }, { "input": "2 1 1", "output": "2" }, { "input": "1 2 1", "output": "2" }, { "input": "2 2 1", "output": "4" }, { "input": "2 1 2", "output": "1" }, { "input": "1 1 3", "output": "1" }, { "input": "2 3 4", "output": "1" }, { "input": "1000000000 1000000000 1", "output": "1000000000000000000" }, { "input": "12 13 4", "output": "12" }, { "input": "222 332 5", "output": "3015" }, { "input": "1000 1000 10", "output": "10000" }, { "input": "1001 1000 10", "output": "10100" }, { "input": "100 10001 1000000000", "output": "1" }, { "input": "1000000000 1000000000 1000000000", "output": "1" }, { "input": "1000000000 1000000000 999999999", "output": "4" }, { "input": "1000000000 1000000000 192", "output": "27126743055556" }, { "input": "1000000000 987654321 1", "output": "987654321000000000" }, { "input": "456784567 1000000000 51", "output": "175618850864484" }, { "input": "39916800 134217728 40320", "output": "3295710" } ]
1,679,060,676
2,147,483,647
PyPy 3-64
OK
TESTS
20
61
0
n, m, a = map(int, input().split()) if m%a == 0: side_a = m//a else: side_a = (m//a)+1 if n%a == 0: side_b = n//a else: side_b = (n//a)+1 print(side_a*side_b)
Title: Theatre Square Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square. Input Specification: The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109). Output Specification: Write the needed number of flagstones. Demo Input: ['6 6 4\n'] Demo Output: ['4\n'] Note: none
```python n, m, a = map(int, input().split()) if m%a == 0: side_a = m//a else: side_a = (m//a)+1 if n%a == 0: side_b = n//a else: side_b = (n//a)+1 print(side_a*side_b) ```
3.9695
227
B
Effective Approach
PROGRAMMING
1,100
[ "implementation" ]
null
null
Once at a team training Vasya, Petya and Sasha got a problem on implementing linear search in an array. According to the boys, linear search works as follows. The array elements in a pre-selected order are in turn compared with the number that you need to find. Once you find the array element that is equal to the required one, the search ends. The efficiency of the algorithm is the number of performed comparisons. The fewer comparisons the linear search has made, the more effective it is. Vasya believes that a linear search would work better if it sequentially iterates through the elements, starting with the 1-st one (in this problem we consider the elements of the array indexed from 1 to *n*) and ending with the *n*-th one. And Petya says that Vasya is wrong: the search will need less comparisons if it sequentially iterates the elements starting from the *n*-th and ending with the 1-st one. Sasha argues that the two approaches are equivalent. To finally begin the task, the teammates decided to settle the debate and compare the two approaches on an example. For this, they took an array that is a permutation of integers from 1 to *n*, and generated *m* queries of the form: find element with value *b**i* in the array. They want to calculate for both approaches how many comparisons in total the linear search will need to respond to all queries. If the first search needs fewer comparisons, then the winner of the dispute is Vasya. If the second one does, then the winner is Petya. If both approaches make the same number of comparisons, then Sasha's got the upper hand. But the problem is, linear search is too slow. That's why the boys aren't going to find out who is right before the end of the training, unless you come in here. Help them to determine who will win the dispute.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of elements in the array. The second line contains *n* distinct space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — the elements of array. The third line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. The last line contains *m* space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=*n*) — the search queries. Note that the queries can repeat.
Print two integers, showing how many comparisons Vasya's approach needs and how many comparisons Petya's approach needs. Separate the numbers by spaces. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.
[ "2\n1 2\n1\n1\n", "2\n2 1\n1\n1\n", "3\n3 1 2\n3\n1 2 3\n" ]
[ "1 2\n", "2 1\n", "6 6\n" ]
In the first sample Vasya's approach will make one comparison (it starts with the 1-st element and immediately finds the required number), and Petya's approach makes two comparisons (first he compares with the 2-nd array element, doesn't find the search item and compares with the 1-st element). In the second sample, on the contrary, Vasya's approach will need two comparisons (first with 1-st element, and then with the 2-nd), and Petya's approach will find the required value in one comparison (the first comparison with the 2-nd element).
1,000
[ { "input": "2\n1 2\n1\n1", "output": "1 2" }, { "input": "2\n2 1\n1\n1", "output": "2 1" }, { "input": "3\n3 1 2\n3\n1 2 3", "output": "6 6" }, { "input": "9\n2 9 3 1 6 4 7 8 5\n9\n5 1 5 2 8 4 4 4 5", "output": "58 32" }, { "input": "10\n3 10 9 2 7 6 5 8 4 1\n1\n4", "output": "9 2" }, { "input": "10\n5 2 10 8 3 1 9 7 6 4\n9\n2 5 9 2 3 2 5 9 8", "output": "31 68" }, { "input": "9\n3 8 4 7 1 2 5 6 9\n3\n2 7 1", "output": "15 15" }, { "input": "9\n5 3 8 4 2 6 1 7 9\n4\n6 1 9 2", "output": "27 13" }, { "input": "4\n1 3 2 4\n4\n3 1 2 3", "output": "8 12" }, { "input": "3\n1 2 3\n8\n3 2 1 1 2 3 1 2", "output": "15 17" } ]
1,627,918,777
2,147,483,647
PyPy 3
OK
TESTS
34
498
33,689,600
n = int(input()) arr = list(map(int, input().split())) m = int(input()) qry = list(map(int, input().split())) d = {} for i in range(n): d[arr[i]] = i+1 vas = 0 pet = 0 for i in range(m): vas += d[qry[i]] pet += n-d[qry[i]]+1 print(vas, pet)
Title: Effective Approach Time Limit: None seconds Memory Limit: None megabytes Problem Description: Once at a team training Vasya, Petya and Sasha got a problem on implementing linear search in an array. According to the boys, linear search works as follows. The array elements in a pre-selected order are in turn compared with the number that you need to find. Once you find the array element that is equal to the required one, the search ends. The efficiency of the algorithm is the number of performed comparisons. The fewer comparisons the linear search has made, the more effective it is. Vasya believes that a linear search would work better if it sequentially iterates through the elements, starting with the 1-st one (in this problem we consider the elements of the array indexed from 1 to *n*) and ending with the *n*-th one. And Petya says that Vasya is wrong: the search will need less comparisons if it sequentially iterates the elements starting from the *n*-th and ending with the 1-st one. Sasha argues that the two approaches are equivalent. To finally begin the task, the teammates decided to settle the debate and compare the two approaches on an example. For this, they took an array that is a permutation of integers from 1 to *n*, and generated *m* queries of the form: find element with value *b**i* in the array. They want to calculate for both approaches how many comparisons in total the linear search will need to respond to all queries. If the first search needs fewer comparisons, then the winner of the dispute is Vasya. If the second one does, then the winner is Petya. If both approaches make the same number of comparisons, then Sasha's got the upper hand. But the problem is, linear search is too slow. That's why the boys aren't going to find out who is right before the end of the training, unless you come in here. Help them to determine who will win the dispute. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — the number of elements in the array. The second line contains *n* distinct space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=*n*) — the elements of array. The third line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of queries. The last line contains *m* space-separated integers *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=*n*) — the search queries. Note that the queries can repeat. Output Specification: Print two integers, showing how many comparisons Vasya's approach needs and how many comparisons Petya's approach needs. Separate the numbers by spaces. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier. Demo Input: ['2\n1 2\n1\n1\n', '2\n2 1\n1\n1\n', '3\n3 1 2\n3\n1 2 3\n'] Demo Output: ['1 2\n', '2 1\n', '6 6\n'] Note: In the first sample Vasya's approach will make one comparison (it starts with the 1-st element and immediately finds the required number), and Petya's approach makes two comparisons (first he compares with the 2-nd array element, doesn't find the search item and compares with the 1-st element). In the second sample, on the contrary, Vasya's approach will need two comparisons (first with 1-st element, and then with the 2-nd), and Petya's approach will find the required value in one comparison (the first comparison with the 2-nd element).
```python n = int(input()) arr = list(map(int, input().split())) m = int(input()) qry = list(map(int, input().split())) d = {} for i in range(n): d[arr[i]] = i+1 vas = 0 pet = 0 for i in range(m): vas += d[qry[i]] pet += n-d[qry[i]]+1 print(vas, pet) ```
3
208
A
Dubstep
PROGRAMMING
900
[ "strings" ]
null
null
Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them. Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club. For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX". Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.
The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.
Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.
[ "WUBWUBABCWUB\n", "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n" ]
[ "ABC ", "WE ARE THE CHAMPIONS MY FRIEND " ]
In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya. In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
500
[ { "input": "WUBWUBABCWUB", "output": "ABC " }, { "input": "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB", "output": "WE ARE THE CHAMPIONS MY FRIEND " }, { "input": "WUBWUBWUBSR", "output": "SR " }, { "input": "RWUBWUBWUBLWUB", "output": "R L " }, { "input": "ZJWUBWUBWUBJWUBWUBWUBL", "output": "ZJ J L " }, { "input": "CWUBBWUBWUBWUBEWUBWUBWUBQWUBWUBWUB", "output": "C B E Q " }, { "input": "WUBJKDWUBWUBWBIRAQKFWUBWUBYEWUBWUBWUBWVWUBWUB", "output": "JKD WBIRAQKF YE WV " }, { "input": "WUBKSDHEMIXUJWUBWUBRWUBWUBWUBSWUBWUBWUBHWUBWUBWUB", "output": "KSDHEMIXUJ R S H " }, { "input": "OGWUBWUBWUBXWUBWUBWUBIWUBWUBWUBKOWUBWUB", "output": "OG X I KO " }, { "input": "QWUBQQWUBWUBWUBIWUBWUBWWWUBWUBWUBJOPJPBRH", "output": "Q QQ I WW JOPJPBRH " }, { "input": "VSRNVEATZTLGQRFEGBFPWUBWUBWUBAJWUBWUBWUBPQCHNWUBCWUB", "output": "VSRNVEATZTLGQRFEGBFP AJ PQCHN C " }, { "input": "WUBWUBEWUBWUBWUBIQMJNIQWUBWUBWUBGZZBQZAUHYPWUBWUBWUBPMRWUBWUBWUBDCV", "output": "E IQMJNIQ GZZBQZAUHYP PMR DCV " }, { "input": "WUBWUBWUBFVWUBWUBWUBBPSWUBWUBWUBRXNETCJWUBWUBWUBJDMBHWUBWUBWUBBWUBWUBVWUBWUBB", "output": "FV BPS RXNETCJ JDMBH B V B " }, { "input": "WUBWUBWUBFBQWUBWUBWUBIDFSYWUBWUBWUBCTWDMWUBWUBWUBSXOWUBWUBWUBQIWUBWUBWUBL", "output": "FBQ IDFSY CTWDM SXO QI L " }, { "input": "IWUBWUBQLHDWUBYIIKZDFQWUBWUBWUBCXWUBWUBUWUBWUBWUBKWUBWUBWUBNL", "output": "I QLHD YIIKZDFQ CX U K NL " }, { "input": "KWUBUPDYXGOKUWUBWUBWUBAGOAHWUBIZDWUBWUBWUBIYWUBWUBWUBVWUBWUBWUBPWUBWUBWUBE", "output": "K UPDYXGOKU AGOAH IZD IY V P E " }, { "input": "WUBWUBOWUBWUBWUBIPVCQAFWYWUBWUBWUBQWUBWUBWUBXHDKCPYKCTWWYWUBWUBWUBVWUBWUBWUBFZWUBWUB", "output": "O IPVCQAFWY Q XHDKCPYKCTWWY V FZ " }, { "input": "PAMJGYWUBWUBWUBXGPQMWUBWUBWUBTKGSXUYWUBWUBWUBEWUBWUBWUBNWUBWUBWUBHWUBWUBWUBEWUBWUB", "output": "PAMJGY XGPQM TKGSXUY E N H E " }, { "input": "WUBYYRTSMNWUWUBWUBWUBCWUBWUBWUBCWUBWUBWUBFSYUINDWOBVWUBWUBWUBFWUBWUBWUBAUWUBWUBWUBVWUBWUBWUBJB", "output": "YYRTSMNWU C C FSYUINDWOBV F AU V JB " }, { "input": "WUBWUBYGPYEYBNRTFKOQCWUBWUBWUBUYGRTQEGWLFYWUBWUBWUBFVWUBHPWUBWUBWUBXZQWUBWUBWUBZDWUBWUBWUBM", "output": "YGPYEYBNRTFKOQC UYGRTQEGWLFY FV HP XZQ ZD M " }, { "input": "WUBZVMJWUBWUBWUBFOIMJQWKNZUBOFOFYCCWUBWUBWUBAUWWUBRDRADWUBWUBWUBCHQVWUBWUBWUBKFTWUBWUBWUBW", "output": "ZVMJ FOIMJQWKNZUBOFOFYCC AUW RDRAD CHQV KFT W " }, { "input": "WUBWUBZBKOKHQLGKRVIMZQMQNRWUBWUBWUBDACWUBWUBNZHFJMPEYKRVSWUBWUBWUBPPHGAVVPRZWUBWUBWUBQWUBWUBAWUBG", "output": "ZBKOKHQLGKRVIMZQMQNR DAC NZHFJMPEYKRVS PPHGAVVPRZ Q A G " }, { "input": "WUBWUBJWUBWUBWUBNFLWUBWUBWUBGECAWUBYFKBYJWTGBYHVSSNTINKWSINWSMAWUBWUBWUBFWUBWUBWUBOVWUBWUBLPWUBWUBWUBN", "output": "J NFL GECA YFKBYJWTGBYHVSSNTINKWSINWSMA F OV LP N " }, { "input": "WUBWUBLCWUBWUBWUBZGEQUEATJVIXETVTWUBWUBWUBEXMGWUBWUBWUBRSWUBWUBWUBVWUBWUBWUBTAWUBWUBWUBCWUBWUBWUBQG", "output": "LC ZGEQUEATJVIXETVT EXMG RS V TA C QG " }, { "input": "WUBMPWUBWUBWUBORWUBWUBDLGKWUBWUBWUBVVZQCAAKVJTIKWUBWUBWUBTJLUBZJCILQDIFVZWUBWUBYXWUBWUBWUBQWUBWUBWUBLWUB", "output": "MP OR DLGK VVZQCAAKVJTIK TJLUBZJCILQDIFVZ YX Q L " }, { "input": "WUBNXOLIBKEGXNWUBWUBWUBUWUBGITCNMDQFUAOVLWUBWUBWUBAIJDJZJHFMPVTPOXHPWUBWUBWUBISCIOWUBWUBWUBGWUBWUBWUBUWUB", "output": "NXOLIBKEGXN U GITCNMDQFUAOVL AIJDJZJHFMPVTPOXHP ISCIO G U " }, { "input": "WUBWUBNMMWCZOLYPNBELIYVDNHJUNINWUBWUBWUBDXLHYOWUBWUBWUBOJXUWUBWUBWUBRFHTGJCEFHCGWARGWUBWUBWUBJKWUBWUBSJWUBWUB", "output": "NMMWCZOLYPNBELIYVDNHJUNIN DXLHYO OJXU RFHTGJCEFHCGWARG JK SJ " }, { "input": "SGWLYSAUJOJBNOXNWUBWUBWUBBOSSFWKXPDPDCQEWUBWUBWUBDIRZINODWUBWUBWUBWWUBWUBWUBPPHWUBWUBWUBRWUBWUBWUBQWUBWUBWUBJWUB", "output": "SGWLYSAUJOJBNOXN BOSSFWKXPDPDCQE DIRZINOD W PPH R Q J " }, { "input": "TOWUBWUBWUBGBTBNWUBWUBWUBJVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSAWUBWUBWUBSWUBWUBWUBTOLVXWUBWUBWUBNHWUBWUBWUBO", "output": "TO GBTBN JVIOJBIZFUUYHUAIEBQLQXPQKZJMPTCWBKPOSA S TOLVX NH O " }, { "input": "WUBWUBWSPLAYSZSAUDSWUBWUBWUBUWUBWUBWUBKRWUBWUBWUBRSOKQMZFIYZQUWUBWUBWUBELSHUWUBWUBWUBUKHWUBWUBWUBQXEUHQWUBWUBWUBBWUBWUBWUBR", "output": "WSPLAYSZSAUDS U KR RSOKQMZFIYZQU ELSHU UKH QXEUHQ B R " }, { "input": "WUBXEMWWVUHLSUUGRWUBWUBWUBAWUBXEGILZUNKWUBWUBWUBJDHHKSWUBWUBWUBDTSUYSJHWUBWUBWUBPXFWUBMOHNJWUBWUBWUBZFXVMDWUBWUBWUBZMWUBWUB", "output": "XEMWWVUHLSUUGR A XEGILZUNK JDHHKS DTSUYSJH PXF MOHNJ ZFXVMD ZM " }, { "input": "BMBWUBWUBWUBOQKWUBWUBWUBPITCIHXHCKLRQRUGXJWUBWUBWUBVWUBWUBWUBJCWUBWUBWUBQJPWUBWUBWUBBWUBWUBWUBBMYGIZOOXWUBWUBWUBTAGWUBWUBHWUB", "output": "BMB OQK PITCIHXHCKLRQRUGXJ V JC QJP B BMYGIZOOX TAG H " }, { "input": "CBZNWUBWUBWUBNHWUBWUBWUBYQSYWUBWUBWUBMWUBWUBWUBXRHBTMWUBWUBWUBPCRCWUBWUBWUBTZUYLYOWUBWUBWUBCYGCWUBWUBWUBCLJWUBWUBWUBSWUBWUBWUB", "output": "CBZN NH YQSY M XRHBTM PCRC TZUYLYO CYGC CLJ S " }, { "input": "DPDWUBWUBWUBEUQKWPUHLTLNXHAEKGWUBRRFYCAYZFJDCJLXBAWUBWUBWUBHJWUBOJWUBWUBWUBNHBJEYFWUBWUBWUBRWUBWUBWUBSWUBWWUBWUBWUBXDWUBWUBWUBJWUB", "output": "DPD EUQKWPUHLTLNXHAEKG RRFYCAYZFJDCJLXBA HJ OJ NHBJEYF R S W XD J " }, { "input": "WUBWUBWUBISERPQITVIYERSCNWUBWUBWUBQWUBWUBWUBDGSDIPWUBWUBWUBCAHKDZWEXBIBJVVSKKVQJWUBWUBWUBKIWUBWUBWUBCWUBWUBWUBAWUBWUBWUBPWUBWUBWUBHWUBWUBWUBF", "output": "ISERPQITVIYERSCN Q DGSDIP CAHKDZWEXBIBJVVSKKVQJ KI C A P H F " }, { "input": "WUBWUBWUBIWUBWUBLIKNQVWUBWUBWUBPWUBWUBWUBHWUBWUBWUBMWUBWUBWUBDPRSWUBWUBWUBBSAGYLQEENWXXVWUBWUBWUBXMHOWUBWUBWUBUWUBWUBWUBYRYWUBWUBWUBCWUBWUBWUBY", "output": "I LIKNQV P H M DPRS BSAGYLQEENWXXV XMHO U YRY C Y " }, { "input": "WUBWUBWUBMWUBWUBWUBQWUBWUBWUBITCFEYEWUBWUBWUBHEUWGNDFNZGWKLJWUBWUBWUBMZPWUBWUBWUBUWUBWUBWUBBWUBWUBWUBDTJWUBHZVIWUBWUBWUBPWUBFNHHWUBWUBWUBVTOWUB", "output": "M Q ITCFEYE HEUWGNDFNZGWKLJ MZP U B DTJ HZVI P FNHH VTO " }, { "input": "WUBWUBNDNRFHYJAAUULLHRRDEDHYFSRXJWUBWUBWUBMUJVDTIRSGYZAVWKRGIFWUBWUBWUBHMZWUBWUBWUBVAIWUBWUBWUBDDKJXPZRGWUBWUBWUBSGXWUBWUBWUBIFKWUBWUBWUBUWUBWUBWUBW", "output": "NDNRFHYJAAUULLHRRDEDHYFSRXJ MUJVDTIRSGYZAVWKRGIF HMZ VAI DDKJXPZRG SGX IFK U W " }, { "input": "WUBOJMWRSLAXXHQRTPMJNCMPGWUBWUBWUBNYGMZIXNLAKSQYWDWUBWUBWUBXNIWUBWUBWUBFWUBWUBWUBXMBWUBWUBWUBIWUBWUBWUBINWUBWUBWUBWDWUBWUBWUBDDWUBWUBWUBD", "output": "OJMWRSLAXXHQRTPMJNCMPG NYGMZIXNLAKSQYWD XNI F XMB I IN WD DD D " }, { "input": "WUBWUBWUBREHMWUBWUBWUBXWUBWUBWUBQASNWUBWUBWUBNLSMHLCMTICWUBWUBWUBVAWUBWUBWUBHNWUBWUBWUBNWUBWUBWUBUEXLSFOEULBWUBWUBWUBXWUBWUBWUBJWUBWUBWUBQWUBWUBWUBAWUBWUB", "output": "REHM X QASN NLSMHLCMTIC VA HN N UEXLSFOEULB X J Q A " }, { "input": "WUBWUBWUBSTEZTZEFFIWUBWUBWUBSWUBWUBWUBCWUBFWUBHRJPVWUBWUBWUBDYJUWUBWUBWUBPWYDKCWUBWUBWUBCWUBWUBWUBUUEOGCVHHBWUBWUBWUBEXLWUBWUBWUBVCYWUBWUBWUBMWUBWUBWUBYWUB", "output": "STEZTZEFFI S C F HRJPV DYJU PWYDKC C UUEOGCVHHB EXL VCY M Y " }, { "input": "WPPNMSQOQIWUBWUBWUBPNQXWUBWUBWUBHWUBWUBWUBNFLWUBWUBWUBGWSGAHVJFNUWUBWUBWUBFWUBWUBWUBWCMLRICFSCQQQTNBWUBWUBWUBSWUBWUBWUBKGWUBWUBWUBCWUBWUBWUBBMWUBWUBWUBRWUBWUB", "output": "WPPNMSQOQI PNQX H NFL GWSGAHVJFNU F WCMLRICFSCQQQTNB S KG C BM R " }, { "input": "YZJOOYITZRARKVFYWUBWUBRZQGWUBWUBWUBUOQWUBWUBWUBIWUBWUBWUBNKVDTBOLETKZISTWUBWUBWUBWLWUBQQFMMGSONZMAWUBZWUBWUBWUBQZUXGCWUBWUBWUBIRZWUBWUBWUBLTTVTLCWUBWUBWUBY", "output": "YZJOOYITZRARKVFY RZQG UOQ I NKVDTBOLETKZIST WL QQFMMGSONZMA Z QZUXGC IRZ LTTVTLC Y " }, { "input": "WUBCAXNCKFBVZLGCBWCOAWVWOFKZVQYLVTWUBWUBWUBNLGWUBWUBWUBAMGDZBDHZMRMQMDLIRMIWUBWUBWUBGAJSHTBSWUBWUBWUBCXWUBWUBWUBYWUBZLXAWWUBWUBWUBOHWUBWUBWUBZWUBWUBWUBGBWUBWUBWUBE", "output": "CAXNCKFBVZLGCBWCOAWVWOFKZVQYLVT NLG AMGDZBDHZMRMQMDLIRMI GAJSHTBS CX Y ZLXAW OH Z GB E " }, { "input": "WUBWUBCHXSOWTSQWUBWUBWUBCYUZBPBWUBWUBWUBSGWUBWUBWKWORLRRLQYUUFDNWUBWUBWUBYYGOJNEVEMWUBWUBWUBRWUBWUBWUBQWUBWUBWUBIHCKWUBWUBWUBKTWUBWUBWUBRGSNTGGWUBWUBWUBXCXWUBWUBWUBS", "output": "CHXSOWTSQ CYUZBPB SG WKWORLRRLQYUUFDN YYGOJNEVEM R Q IHCK KT RGSNTGG XCX S " }, { "input": "WUBWUBWUBHJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQWUBWUBWUBXTZKGIITWUBWUBWUBAWUBWUBWUBVNCXPUBCQWUBWUBWUBIDPNAWUBWUBWUBOWUBWUBWUBYGFWUBWUBWUBMQOWUBWUBWUBKWUBWUBWUBAZVWUBWUBWUBEP", "output": "HJHMSBURXTHXWSCHNAIJOWBHLZGJZDHEDSPWBWACCGQ XTZKGIIT A VNCXPUBCQ IDPNA O YGF MQO K AZV EP " }, { "input": "WUBKYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTVWUBWUBWUBLRMIIWUBWUBWUBGWUBWUBWUBADPSWUBWUBWUBANBWUBWUBPCWUBWUBWUBPWUBWUBWUBGPVNLSWIRFORYGAABUXMWUBWUBWUBOWUBWUBWUBNWUBWUBWUBYWUBWUB", "output": "KYDZOYWZSNGMKJSWAXFDFLTHDHEOGTDBNZMSMKZTV LRMII G ADPS ANB PC P GPVNLSWIRFORYGAABUXM O N Y " }, { "input": "REWUBWUBWUBJDWUBWUBWUBNWUBWUBWUBTWWUBWUBWUBWZDOCKKWUBWUBWUBLDPOVBFRCFWUBWUBAKZIBQKEUAZEEWUBWUBWUBLQYPNPFWUBYEWUBWUBWUBFWUBWUBWUBBPWUBWUBWUBAWWUBWUBWUBQWUBWUBWUBBRWUBWUBWUBXJL", "output": "RE JD N TW WZDOCKK LDPOVBFRCF AKZIBQKEUAZEE LQYPNPF YE F BP AW Q BR XJL " }, { "input": "CUFGJDXGMWUBWUBWUBOMWUBWUBWUBSIEWUBWUBWUBJJWKNOWUBWUBWUBYBHVNRNORGYWUBWUBWUBOAGCAWUBWUBWUBSBLBKTPFKPBIWUBWUBWUBJBWUBWUBWUBRMFCJPGWUBWUBWUBDWUBWUBWUBOJOWUBWUBWUBZPWUBWUBWUBMWUBRWUBWUBWUBFXWWUBWUBWUBO", "output": "CUFGJDXGM OM SIE JJWKNO YBHVNRNORGY OAGCA SBLBKTPFKPBI JB RMFCJPG D OJO ZP M R FXW O " }, { "input": "WUBJZGAEXFMFEWMAKGQLUWUBWUBWUBICYTPQWGENELVYWANKUOJYWUBWUBWUBGWUBWUBWUBHYCJVLPHTUPNEGKCDGQWUBWUBWUBOFWUBWUBWUBCPGSOGZBRPRPVJJEWUBWUBWUBDQBCWUBWUBWUBHWUBWUBWUBMHOHYBMATWUBWUBWUBVWUBWUBWUBSWUBWUBWUBKOWU", "output": "JZGAEXFMFEWMAKGQLU ICYTPQWGENELVYWANKUOJY G HYCJVLPHTUPNEGKCDGQ OF CPGSOGZBRPRPVJJE DQBC H MHOHYBMAT V S KOWU " }, { "input": "A", "output": "A " }, { "input": "WUBA", "output": "A " }, { "input": "WUBWUBA", "output": "A " }, { "input": "AWUBWUBWUB", "output": "A " }, { "input": "AWUBBWUBCWUBD", "output": "A B C D " }, { "input": "WUBWWUBWUBWUBUWUBWUBBWUB", "output": "W U B " }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA " }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA " }, { "input": "WUWUBBWWUBUB", "output": "WU BW UB " }, { "input": "WUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUABWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUBWUB", "output": "WUAB " }, { "input": "ZWUB", "output": "Z " }, { "input": "WU", "output": "WU " }, { "input": "UB", "output": "UB " }, { "input": "U", "output": "U " }, { "input": "WUBW", "output": "W " }, { "input": "WUBWU", "output": "WU " }, { "input": "WUWUB", "output": "WU " }, { "input": "UBWUB", "output": "UB " }, { "input": "WUWUBUBWUBUWUB", "output": "WU UB U " }, { "input": "WUBWWUBAWUB", "output": "W A " }, { "input": "WUUUUU", "output": "WUUUUU " } ]
1,691,494,969
2,147,483,647
PyPy 3
OK
TESTS
71
186
0
a=input("") c=a.split("WUB") for i in c: if i!="": print(i,end=" ")
Title: Dubstep Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them. Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words "WUB" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including "WUB", in one string and plays the song at the club. For example, a song with words "I AM X" can transform into a dubstep remix as "WUBWUBIWUBAMWUBWUBX" and cannot transform into "WUBWUBIAMWUBX". Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song. Input Specification: The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring "WUB" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word. Output Specification: Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space. Demo Input: ['WUBWUBABCWUB\n', 'WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB\n'] Demo Output: ['ABC ', 'WE ARE THE CHAMPIONS MY FRIEND '] Note: In the first sample: "WUBWUBABCWUB" = "WUB" + "WUB" + "ABC" + "WUB". That means that the song originally consisted of a single word "ABC", and all words "WUB" were added by Vasya. In the second sample Vasya added a single word "WUB" between all neighbouring words, in the beginning and in the end, except for words "ARE" and "THE" — between them Vasya added two "WUB".
```python a=input("") c=a.split("WUB") for i in c: if i!="": print(i,end=" ") ```
3
131
A
cAPS lOCK
PROGRAMMING
1,000
[ "implementation", "strings" ]
null
null
wHAT DO WE NEED cAPS LOCK FOR? Caps lock is a computer keyboard key. Pressing it sets an input mode in which typed letters are capital by default. If it is pressed by accident, it leads to accidents like the one we had in the first passage. Let's consider that a word has been typed with the Caps lock key accidentally switched on, if: - either it only contains uppercase letters; - or all letters except for the first one are uppercase. In this case we should automatically change the case of all letters. For example, the case of the letters that form words "hELLO", "HTTP", "z" should be changed. Write a program that applies the rule mentioned above. If the rule cannot be applied, the program should leave the word unchanged.
The first line of the input data contains a word consisting of uppercase and lowercase Latin letters. The word's length is from 1 to 100 characters, inclusive.
Print the result of the given word's processing.
[ "cAPS\n", "Lock\n" ]
[ "Caps", "Lock\n" ]
none
500
[ { "input": "cAPS", "output": "Caps" }, { "input": "Lock", "output": "Lock" }, { "input": "cAPSlOCK", "output": "cAPSlOCK" }, { "input": "CAPs", "output": "CAPs" }, { "input": "LoCK", "output": "LoCK" }, { "input": "OOPS", "output": "oops" }, { "input": "oops", "output": "oops" }, { "input": "a", "output": "A" }, { "input": "A", "output": "a" }, { "input": "aA", "output": "Aa" }, { "input": "Zz", "output": "Zz" }, { "input": "Az", "output": "Az" }, { "input": "zA", "output": "Za" }, { "input": "AAA", "output": "aaa" }, { "input": "AAa", "output": "AAa" }, { "input": "AaR", "output": "AaR" }, { "input": "Tdr", "output": "Tdr" }, { "input": "aTF", "output": "Atf" }, { "input": "fYd", "output": "fYd" }, { "input": "dsA", "output": "dsA" }, { "input": "fru", "output": "fru" }, { "input": "hYBKF", "output": "Hybkf" }, { "input": "XweAR", "output": "XweAR" }, { "input": "mogqx", "output": "mogqx" }, { "input": "eOhEi", "output": "eOhEi" }, { "input": "nkdku", "output": "nkdku" }, { "input": "zcnko", "output": "zcnko" }, { "input": "lcccd", "output": "lcccd" }, { "input": "vwmvg", "output": "vwmvg" }, { "input": "lvchf", "output": "lvchf" }, { "input": "IUNVZCCHEWENCHQQXQYPUJCRDZLUXCLJHXPHBXEUUGNXOOOPBMOBRIBHHMIRILYJGYYGFMTMFSVURGYHUWDRLQVIBRLPEVAMJQYO", "output": "iunvzcchewenchqqxqypujcrdzluxcljhxphbxeuugnxooopbmobribhhmirilyjgyygfmtmfsvurgyhuwdrlqvibrlpevamjqyo" }, { "input": "OBHSZCAMDXEJWOZLKXQKIVXUUQJKJLMMFNBPXAEFXGVNSKQLJGXHUXHGCOTESIVKSFMVVXFVMTEKACRIWALAGGMCGFEXQKNYMRTG", "output": "obhszcamdxejwozlkxqkivxuuqjkjlmmfnbpxaefxgvnskqljgxhuxhgcotesivksfmvvxfvmtekacriwalaggmcgfexqknymrtg" }, { "input": "IKJYZIKROIYUUCTHSVSKZTETNNOCMAUBLFJCEVANCADASMZRCNLBZPQRXESHEEMOMEPCHROSRTNBIDXYMEPJSIXSZQEBTEKKUHFS", "output": "ikjyzikroiyuucthsvskztetnnocmaublfjcevancadasmzrcnlbzpqrxesheemomepchrosrtnbidxymepjsixszqebtekkuhfs" }, { "input": "cTKDZNWVYRTFPQLDAUUNSPKTDJTUPPFPRXRSINTVFVNNQNKXWUZUDHZBUSOKTABUEDQKUIVRTTVUREEOBJTSDKJKVEGFXVHXEYPE", "output": "Ctkdznwvyrtfpqldauunspktdjtuppfprxrsintvfvnnqnkxwuzudhzbusoktabuedqkuivrttvureeobjtsdkjkvegfxvhxeype" }, { "input": "uCKJZRGZJCPPLEEYJTUNKOQSWGBMTBQEVPYFPIPEKRVYQNTDPANOIXKMPINNFUSZWCURGBDPYTEKBEKCPMVZPMWAOSHJYMGKOMBQ", "output": "Uckjzrgzjcppleeyjtunkoqswgbmtbqevpyfpipekrvyqntdpanoixkmpinnfuszwcurgbdpytekbekcpmvzpmwaoshjymgkombq" }, { "input": "KETAXTSWAAOBKUOKUQREHIOMVMMRSAEWKGXZKRASwTVNSSFSNIWYNPSTMRADOADEEBURRHPOOBIEUIBGYDJCEKPNLEUCANZYJKMR", "output": "KETAXTSWAAOBKUOKUQREHIOMVMMRSAEWKGXZKRASwTVNSSFSNIWYNPSTMRADOADEEBURRHPOOBIEUIBGYDJCEKPNLEUCANZYJKMR" }, { "input": "ZEKGDMWJPVUWFlNXRLUmWKLMMYSLRQQIBRWDPKWITUIMZYYKOEYGREKHHZRZZUFPVTNIHKGTCCTLOKSZITXXZDMPITHNZUIGDZLE", "output": "ZEKGDMWJPVUWFlNXRLUmWKLMMYSLRQQIBRWDPKWITUIMZYYKOEYGREKHHZRZZUFPVTNIHKGTCCTLOKSZITXXZDMPITHNZUIGDZLE" }, { "input": "TcMbVPCFvnNkCEUUCIFLgBJeCOKuJhIGwXFrhAZjuAhBraMSchBfWwIuHAEbgJOFzGtxDLDXzDSaPCFujGGxgxdlHUIQYRrMFCgJ", "output": "TcMbVPCFvnNkCEUUCIFLgBJeCOKuJhIGwXFrhAZjuAhBraMSchBfWwIuHAEbgJOFzGtxDLDXzDSaPCFujGGxgxdlHUIQYRrMFCgJ" }, { "input": "xFGqoLILNvxARKuIntPfeukFtMbvzDezKpPRAKkIoIvwqNXnehRVwkkXYvuRCeoieBaBfTjwsYhDeCLvBwktntyluoxCYVioXGdm", "output": "xFGqoLILNvxARKuIntPfeukFtMbvzDezKpPRAKkIoIvwqNXnehRVwkkXYvuRCeoieBaBfTjwsYhDeCLvBwktntyluoxCYVioXGdm" }, { "input": "udvqolbxdwbkijwvhlyaelhynmnfgszbhgshlcwdkaibceqomzujndixuzivlsjyjqxzxodzbukxxhwwultvekdfntwpzlhhrIjm", "output": "udvqolbxdwbkijwvhlyaelhynmnfgszbhgshlcwdkaibceqomzujndixuzivlsjyjqxzxodzbukxxhwwultvekdfntwpzlhhrIjm" }, { "input": "jgpwhetqqoncighgzbbaLwwwxkxivuwtokehrgprfgewzcwxkavwoflcgsgbhoeamzbefzoonwsyzisetoydrpufktzgbaycgaeg", "output": "jgpwhetqqoncighgzbbaLwwwxkxivuwtokehrgprfgewzcwxkavwoflcgsgbhoeamzbefzoonwsyzisetoydrpufktzgbaycgaeg" }, { "input": "vyujsazdstbnkxeunedfbolicojzjpufgfemhtmdrswvmuhoivjvonacefqenbqudelmdegxqtbwezsbydmanzutvdgkgrjxzlnc", "output": "vyujsazdstbnkxeunedfbolicojzjpufgfemhtmdrswvmuhoivjvonacefqenbqudelmdegxqtbwezsbydmanzutvdgkgrjxzlnc" }, { "input": "pivqnuqkaofcduvbttztjbuavrqwiqrwkfncmvatoxruelyoecnkpqraiahumiaiqeyjapbqyrsxcdgjbihivtqezvasfmzntdfv", "output": "pivqnuqkaofcduvbttztjbuavrqwiqrwkfncmvatoxruelyoecnkpqraiahumiaiqeyjapbqyrsxcdgjbihivtqezvasfmzntdfv" }, { "input": "upvtbsxswbohxshdrbjxcungzquhuomgxwlryvshshsfvqbrxvcikbglietlpqkiwbhiqpmdwuqosbtdvyxekkaqiwrbsibpoect", "output": "upvtbsxswbohxshdrbjxcungzquhuomgxwlryvshshsfvqbrxvcikbglietlpqkiwbhiqpmdwuqosbtdvyxekkaqiwrbsibpoect" }, { "input": "cTKDZNWVYRTFPQLDAUUNSPKTDJTUPPFPRXRSINTVFVNNQNKXWUZUDHZBUSOKTABUEDQKUIVRTTVUREEOBJTSDKJKVEGFXVHXEYPE", "output": "Ctkdznwvyrtfpqldauunspktdjtuppfprxrsintvfvnnqnkxwuzudhzbusoktabuedqkuivrttvureeobjtsdkjkvegfxvhxeype" }, { "input": "JEGDOFJOFGJHFROGHOFGMHOFGHORGFHMOu", "output": "JEGDOFJOFGJHFROGHOFGMHOFGHORGFHMOu" }, { "input": "aBACABa", "output": "aBACABa" }, { "input": "AAAAAAAAAAAAAAAAAAAAAAAAaa", "output": "AAAAAAAAAAAAAAAAAAAAAAAAaa" }, { "input": "aaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", "output": "aaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" }, { "input": "dDDDDDDDDDDDDD", "output": "Dddddddddddddd" }, { "input": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" }, { "input": "z", "output": "Z" }, { "input": "AZ", "output": "az" }, { "input": "Z", "output": "z" }, { "input": "aAAAA", "output": "Aaaaa" }, { "input": "F", "output": "f" } ]
1,694,316,175
2,147,483,647
PyPy 3-64
OK
TESTS
56
77
0
a=input() if len(a)==1:a=a.swapcase() else:a=(a,a.swapcase())[a[1:].isupper()] print(a)
Title: cAPS lOCK Time Limit: None seconds Memory Limit: None megabytes Problem Description: wHAT DO WE NEED cAPS LOCK FOR? Caps lock is a computer keyboard key. Pressing it sets an input mode in which typed letters are capital by default. If it is pressed by accident, it leads to accidents like the one we had in the first passage. Let's consider that a word has been typed with the Caps lock key accidentally switched on, if: - either it only contains uppercase letters; - or all letters except for the first one are uppercase. In this case we should automatically change the case of all letters. For example, the case of the letters that form words "hELLO", "HTTP", "z" should be changed. Write a program that applies the rule mentioned above. If the rule cannot be applied, the program should leave the word unchanged. Input Specification: The first line of the input data contains a word consisting of uppercase and lowercase Latin letters. The word's length is from 1 to 100 characters, inclusive. Output Specification: Print the result of the given word's processing. Demo Input: ['cAPS\n', 'Lock\n'] Demo Output: ['Caps', 'Lock\n'] Note: none
```python a=input() if len(a)==1:a=a.swapcase() else:a=(a,a.swapcase())[a[1:].isupper()] print(a) ```
3
0
none
none
none
0
[ "none" ]
null
null
Santa Claus is the first who came to the Christmas Olympiad, and he is going to be the first to take his place at a desk! In the classroom there are *n* lanes of *m* desks each, and there are two working places at each of the desks. The lanes are numbered from 1 to *n* from the left to the right, the desks in a lane are numbered from 1 to *m* starting from the blackboard. Note that the lanes go perpendicularly to the blackboard, not along it (see picture). The organizers numbered all the working places from 1 to 2*nm*. The places are numbered by lanes (i. e. all the places of the first lane go first, then all the places of the second lane, and so on), in a lane the places are numbered starting from the nearest to the blackboard (i. e. from the first desk in the lane), at each desk, the place on the left is numbered before the place on the right. Santa Clause knows that his place has number *k*. Help him to determine at which lane at which desk he should sit, and whether his place is on the left or on the right!
The only line contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*m*<=≤<=10<=000, 1<=≤<=*k*<=≤<=2*nm*) — the number of lanes, the number of desks in each lane and the number of Santa Claus' place.
Print two integers: the number of lane *r*, the number of desk *d*, and a character *s*, which stands for the side of the desk Santa Claus. The character *s* should be "L", if Santa Clause should sit on the left, and "R" if his place is on the right.
[ "4 3 9\n", "4 3 24\n", "2 4 4\n" ]
[ "2 2 L\n", "4 3 R\n", "1 2 R\n" ]
The first and the second samples are shown on the picture. The green place corresponds to Santa Claus' place in the first example, the blue place corresponds to Santa Claus' place in the second example. In the third sample there are two lanes with four desks in each, and Santa Claus has the fourth place. Thus, his place is in the first lane at the second desk on the right.
0
[ { "input": "4 3 9", "output": "2 2 L" }, { "input": "4 3 24", "output": "4 3 R" }, { "input": "2 4 4", "output": "1 2 R" }, { "input": "3 10 24", "output": "2 2 R" }, { "input": "10 3 59", "output": "10 3 L" }, { "input": "10000 10000 160845880", "output": "8043 2940 R" }, { "input": "1 1 1", "output": "1 1 L" }, { "input": "1 1 2", "output": "1 1 R" }, { "input": "1 10000 1", "output": "1 1 L" }, { "input": "1 10000 20000", "output": "1 10000 R" }, { "input": "10000 1 1", "output": "1 1 L" }, { "input": "10000 1 10000", "output": "5000 1 R" }, { "input": "10000 1 20000", "output": "10000 1 R" }, { "input": "3 2 1", "output": "1 1 L" }, { "input": "3 2 2", "output": "1 1 R" }, { "input": "3 2 3", "output": "1 2 L" }, { "input": "3 2 4", "output": "1 2 R" }, { "input": "3 2 5", "output": "2 1 L" }, { "input": "3 2 6", "output": "2 1 R" }, { "input": "3 2 7", "output": "2 2 L" }, { "input": "3 2 8", "output": "2 2 R" }, { "input": "3 2 9", "output": "3 1 L" }, { "input": "3 2 10", "output": "3 1 R" }, { "input": "3 2 11", "output": "3 2 L" }, { "input": "3 2 12", "output": "3 2 R" }, { "input": "300 2000 1068628", "output": "268 314 R" }, { "input": "300 2000 584756", "output": "147 378 R" }, { "input": "300 2000 268181", "output": "68 91 L" }, { "input": "10000 9999 186450844", "output": "9324 4745 R" }, { "input": "10000 9999 197114268", "output": "9857 6990 R" }, { "input": "10000 9999 112390396", "output": "5621 818 R" }, { "input": "10000 10000 1", "output": "1 1 L" }, { "input": "10000 10000 2", "output": "1 1 R" }, { "input": "10000 10000 100000001", "output": "5001 1 L" }, { "input": "10000 10000 199999999", "output": "10000 10000 L" }, { "input": "10000 10000 200000000", "output": "10000 10000 R" }, { "input": "1 2 1", "output": "1 1 L" }, { "input": "1 2 2", "output": "1 1 R" }, { "input": "1 2 3", "output": "1 2 L" }, { "input": "1 2 4", "output": "1 2 R" }, { "input": "2 1 1", "output": "1 1 L" }, { "input": "2 1 2", "output": "1 1 R" }, { "input": "2 1 3", "output": "2 1 L" }, { "input": "2 1 4", "output": "2 1 R" }, { "input": "4 3 7", "output": "2 1 L" }, { "input": "1 1 1", "output": "1 1 L" } ]
1,482,657,262
562
Python 3
OK
TESTS
46
77
4,608,000
n,m,k=map(int,input().split()) if k%2==0: s='R' else: s='L' c=(k-1)//(2*m) r=((k-1)%(2*m))//2 print(c+1,r+1,s)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: Santa Claus is the first who came to the Christmas Olympiad, and he is going to be the first to take his place at a desk! In the classroom there are *n* lanes of *m* desks each, and there are two working places at each of the desks. The lanes are numbered from 1 to *n* from the left to the right, the desks in a lane are numbered from 1 to *m* starting from the blackboard. Note that the lanes go perpendicularly to the blackboard, not along it (see picture). The organizers numbered all the working places from 1 to 2*nm*. The places are numbered by lanes (i. e. all the places of the first lane go first, then all the places of the second lane, and so on), in a lane the places are numbered starting from the nearest to the blackboard (i. e. from the first desk in the lane), at each desk, the place on the left is numbered before the place on the right. Santa Clause knows that his place has number *k*. Help him to determine at which lane at which desk he should sit, and whether his place is on the left or on the right! Input Specification: The only line contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*m*<=≤<=10<=000, 1<=≤<=*k*<=≤<=2*nm*) — the number of lanes, the number of desks in each lane and the number of Santa Claus' place. Output Specification: Print two integers: the number of lane *r*, the number of desk *d*, and a character *s*, which stands for the side of the desk Santa Claus. The character *s* should be "L", if Santa Clause should sit on the left, and "R" if his place is on the right. Demo Input: ['4 3 9\n', '4 3 24\n', '2 4 4\n'] Demo Output: ['2 2 L\n', '4 3 R\n', '1 2 R\n'] Note: The first and the second samples are shown on the picture. The green place corresponds to Santa Claus' place in the first example, the blue place corresponds to Santa Claus' place in the second example. In the third sample there are two lanes with four desks in each, and Santa Claus has the fourth place. Thus, his place is in the first lane at the second desk on the right.
```python n,m,k=map(int,input().split()) if k%2==0: s='R' else: s='L' c=(k-1)//(2*m) r=((k-1)%(2*m))//2 print(c+1,r+1,s) ```
3
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,682,316,179
2,147,483,647
Python 3
OK
TESTS
30
122
0
x = input() l,u = 0,0 for i in range(len(x)): if(x[i]>='a' and x[i]<='z'): l+=1 u = len(x)-l if(l>=u): print(x.lower()) else: print(x.upper())
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python x = input() l,u = 0,0 for i in range(len(x)): if(x[i]>='a' and x[i]<='z'): l+=1 u = len(x)-l if(l>=u): print(x.lower()) else: print(x.upper()) ```
3.9695
743
B
Chloe and the sequence
PROGRAMMING
1,200
[ "binary search", "bitmasks", "constructive algorithms", "implementation" ]
null
null
Chloe, the same as Vladik, is a competitive programmer. She didn't have any problems to get to the olympiad like Vladik, but she was confused by the task proposed on the olympiad. Let's consider the following algorithm of generating a sequence of integers. Initially we have a sequence consisting of a single element equal to 1. Then we perform (*n*<=-<=1) steps. On each step we take the sequence we've got on the previous step, append it to the end of itself and insert in the middle the minimum positive integer we haven't used before. For example, we get the sequence [1,<=2,<=1] after the first step, the sequence [1,<=2,<=1,<=3,<=1,<=2,<=1] after the second step. The task is to find the value of the element with index *k* (the elements are numbered from 1) in the obtained sequence, i. e. after (*n*<=-<=1) steps. Please help Chloe to solve the problem!
The only line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=50, 1<=≤<=*k*<=≤<=2*n*<=-<=1).
Print single integer — the integer at the *k*-th position in the obtained sequence.
[ "3 2\n", "4 8\n" ]
[ "2", "4" ]
In the first sample the obtained sequence is [1, 2, 1, 3, 1, 2, 1]. The number on the second position is 2. In the second sample the obtained sequence is [1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1]. The number on the eighth position is 4.
1,000
[ { "input": "3 2", "output": "2" }, { "input": "4 8", "output": "4" }, { "input": "5 27", "output": "1" }, { "input": "7 44", "output": "3" }, { "input": "15 18432", "output": "12" }, { "input": "20 259676", "output": "3" }, { "input": "30 671088640", "output": "28" }, { "input": "38 137438953472", "output": "38" }, { "input": "1 1", "output": "1" }, { "input": "3 3", "output": "1" }, { "input": "4 12", "output": "3" }, { "input": "8 224", "output": "6" }, { "input": "13 1368", "output": "4" }, { "input": "16 49152", "output": "15" }, { "input": "19 1024", "output": "11" }, { "input": "24 15204352", "output": "20" }, { "input": "27 6586544", "output": "5" }, { "input": "31 536870912", "output": "30" }, { "input": "38 94489280512", "output": "34" }, { "input": "42 215268308020", "output": "3" }, { "input": "42 3452074721280", "output": "21" }, { "input": "46 34394312982528", "output": "15" }, { "input": "48 133865540681728", "output": "39" }, { "input": "49 76541041985542", "output": "2" }, { "input": "49 104822971826176", "output": "34" }, { "input": "49 351843720888320", "output": "47" }, { "input": "50 743042492421629", "output": "1" }, { "input": "50 666266740436818", "output": "2" }, { "input": "50 704239287953456", "output": "5" }, { "input": "50 116938486513664", "output": "17" }, { "input": "50 806423059496960", "output": "37" }, { "input": "50 985162418487296", "output": "48" }, { "input": "50 844424930131968", "output": "49" }, { "input": "50 562949953421312", "output": "50" }, { "input": "50 1", "output": "1" }, { "input": "50 1125899906842623", "output": "1" }, { "input": "50 1125899906842620", "output": "3" }, { "input": "39 549755813887", "output": "1" }, { "input": "50 100000000000", "output": "12" } ]
1,660,243,821
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
46
0
def main(): n,k = map(int, fin().split()) seq = [1] cnt= len(bin(k)) - 2 if k == 1<<(cnt-1): return fout(cnt) for i in range(2, cnt): seq.extend([i, *seq]) el = k - (1<<(cnt-1)) fout(el) fout(seq) fout(seq[el-1]) # FastIO from sys import stdin, stdout input = open("task.in", "r") if 0 else stdin def fin(): return input.readline().strip("\r\n") def fout(*s, sep=" ", end="\n"): return stdout.write(sep.join(map(str, s))+end) if __name__ == "__main__": t = 1 or int(fin()) for i in range(t): main()
Title: Chloe and the sequence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Chloe, the same as Vladik, is a competitive programmer. She didn't have any problems to get to the olympiad like Vladik, but she was confused by the task proposed on the olympiad. Let's consider the following algorithm of generating a sequence of integers. Initially we have a sequence consisting of a single element equal to 1. Then we perform (*n*<=-<=1) steps. On each step we take the sequence we've got on the previous step, append it to the end of itself and insert in the middle the minimum positive integer we haven't used before. For example, we get the sequence [1,<=2,<=1] after the first step, the sequence [1,<=2,<=1,<=3,<=1,<=2,<=1] after the second step. The task is to find the value of the element with index *k* (the elements are numbered from 1) in the obtained sequence, i. e. after (*n*<=-<=1) steps. Please help Chloe to solve the problem! Input Specification: The only line contains two integers *n* and *k* (1<=≤<=*n*<=≤<=50, 1<=≤<=*k*<=≤<=2*n*<=-<=1). Output Specification: Print single integer — the integer at the *k*-th position in the obtained sequence. Demo Input: ['3 2\n', '4 8\n'] Demo Output: ['2', '4'] Note: In the first sample the obtained sequence is [1, 2, 1, 3, 1, 2, 1]. The number on the second position is 2. In the second sample the obtained sequence is [1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1]. The number on the eighth position is 4.
```python def main(): n,k = map(int, fin().split()) seq = [1] cnt= len(bin(k)) - 2 if k == 1<<(cnt-1): return fout(cnt) for i in range(2, cnt): seq.extend([i, *seq]) el = k - (1<<(cnt-1)) fout(el) fout(seq) fout(seq[el-1]) # FastIO from sys import stdin, stdout input = open("task.in", "r") if 0 else stdin def fin(): return input.readline().strip("\r\n") def fout(*s, sep=" ", end="\n"): return stdout.write(sep.join(map(str, s))+end) if __name__ == "__main__": t = 1 or int(fin()) for i in range(t): main() ```
0
723
A
The New Year: Meeting Friends
PROGRAMMING
800
[ "implementation", "math", "sortings" ]
null
null
There are three friend living on the straight line *Ox* in Lineland. The first friend lives at the point *x*1, the second friend lives at the point *x*2, and the third friend lives at the point *x*3. They plan to celebrate the New Year together, so they need to meet at one point. What is the minimum total distance they have to travel in order to meet at some point and celebrate the New Year? It's guaranteed that the optimal answer is always integer.
The first line of the input contains three distinct integers *x*1, *x*2 and *x*3 (1<=≤<=*x*1,<=*x*2,<=*x*3<=≤<=100) — the coordinates of the houses of the first, the second and the third friends respectively.
Print one integer — the minimum total distance the friends need to travel in order to meet together.
[ "7 1 4\n", "30 20 10\n" ]
[ "6\n", "20\n" ]
In the first sample, friends should meet at the point 4. Thus, the first friend has to travel the distance of 3 (from the point 7 to the point 4), the second friend also has to travel the distance of 3 (from the point 1 to the point 4), while the third friend should not go anywhere because he lives at the point 4.
500
[ { "input": "7 1 4", "output": "6" }, { "input": "30 20 10", "output": "20" }, { "input": "1 4 100", "output": "99" }, { "input": "100 1 91", "output": "99" }, { "input": "1 45 100", "output": "99" }, { "input": "1 2 3", "output": "2" }, { "input": "71 85 88", "output": "17" }, { "input": "30 38 99", "output": "69" }, { "input": "23 82 95", "output": "72" }, { "input": "22 41 47", "output": "25" }, { "input": "9 94 77", "output": "85" }, { "input": "1 53 51", "output": "52" }, { "input": "25 97 93", "output": "72" }, { "input": "42 53 51", "output": "11" }, { "input": "81 96 94", "output": "15" }, { "input": "21 5 93", "output": "88" }, { "input": "50 13 75", "output": "62" }, { "input": "41 28 98", "output": "70" }, { "input": "69 46 82", "output": "36" }, { "input": "87 28 89", "output": "61" }, { "input": "44 45 40", "output": "5" }, { "input": "86 97 68", "output": "29" }, { "input": "43 92 30", "output": "62" }, { "input": "16 70 1", "output": "69" }, { "input": "40 46 19", "output": "27" }, { "input": "71 38 56", "output": "33" }, { "input": "82 21 80", "output": "61" }, { "input": "75 8 35", "output": "67" }, { "input": "75 24 28", "output": "51" }, { "input": "78 23 56", "output": "55" }, { "input": "85 31 10", "output": "75" }, { "input": "76 50 9", "output": "67" }, { "input": "95 37 34", "output": "61" }, { "input": "84 61 35", "output": "49" }, { "input": "87 85 37", "output": "50" }, { "input": "1 3 2", "output": "2" }, { "input": "4 2 6", "output": "4" }, { "input": "6 9 3", "output": "6" }, { "input": "12 4 8", "output": "8" }, { "input": "15 10 5", "output": "10" }, { "input": "1 50 17", "output": "49" }, { "input": "10 5 15", "output": "10" }, { "input": "8 1 9", "output": "8" }, { "input": "3 5 4", "output": "2" }, { "input": "2 1 3", "output": "2" }, { "input": "1 8 2", "output": "7" }, { "input": "1 100 2", "output": "99" }, { "input": "1 4 6", "output": "5" } ]
1,686,269,920
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
46
0
lista = [int(x) for x in input().split()] lista.sort() print(lista[1])
Title: The New Year: Meeting Friends Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are three friend living on the straight line *Ox* in Lineland. The first friend lives at the point *x*1, the second friend lives at the point *x*2, and the third friend lives at the point *x*3. They plan to celebrate the New Year together, so they need to meet at one point. What is the minimum total distance they have to travel in order to meet at some point and celebrate the New Year? It's guaranteed that the optimal answer is always integer. Input Specification: The first line of the input contains three distinct integers *x*1, *x*2 and *x*3 (1<=≤<=*x*1,<=*x*2,<=*x*3<=≤<=100) — the coordinates of the houses of the first, the second and the third friends respectively. Output Specification: Print one integer — the minimum total distance the friends need to travel in order to meet together. Demo Input: ['7 1 4\n', '30 20 10\n'] Demo Output: ['6\n', '20\n'] Note: In the first sample, friends should meet at the point 4. Thus, the first friend has to travel the distance of 3 (from the point 7 to the point 4), the second friend also has to travel the distance of 3 (from the point 1 to the point 4), while the third friend should not go anywhere because he lives at the point 4.
```python lista = [int(x) for x in input().split()] lista.sort() print(lista[1]) ```
0
500
A
New Year Transportation
PROGRAMMING
1,000
[ "dfs and similar", "graphs", "implementation" ]
null
null
New Year is coming in Line World! In this world, there are *n* cells numbered by integers from 1 to *n*, as a 1<=×<=*n* board. People live in cells. However, it was hard to move between distinct cells, because of the difficulty of escaping the cell. People wanted to meet people who live in other cells. So, user tncks0121 has made a transportation system to move between these cells, to celebrate the New Year. First, he thought of *n*<=-<=1 positive integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1. For every integer *i* where 1<=≤<=*i*<=≤<=*n*<=-<=1 the condition 1<=≤<=*a**i*<=≤<=*n*<=-<=*i* holds. Next, he made *n*<=-<=1 portals, numbered by integers from 1 to *n*<=-<=1. The *i*-th (1<=≤<=*i*<=≤<=*n*<=-<=1) portal connects cell *i* and cell (*i*<=+<=*a**i*), and one can travel from cell *i* to cell (*i*<=+<=*a**i*) using the *i*-th portal. Unfortunately, one cannot use the portal backwards, which means one cannot move from cell (*i*<=+<=*a**i*) to cell *i* using the *i*-th portal. It is easy to see that because of condition 1<=≤<=*a**i*<=≤<=*n*<=-<=*i* one can't leave the Line World using portals. Currently, I am standing at cell 1, and I want to go to cell *t*. However, I don't know whether it is possible to go there. Please determine whether I can go to cell *t* by only using the construted transportation system.
The first line contains two space-separated integers *n* (3<=≤<=*n*<=≤<=3<=×<=104) and *t* (2<=≤<=*t*<=≤<=*n*) — the number of cells, and the index of the cell which I want to go to. The second line contains *n*<=-<=1 space-separated integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1 (1<=≤<=*a**i*<=≤<=*n*<=-<=*i*). It is guaranteed, that using the given transportation system, one cannot leave the Line World.
If I can go to cell *t* using the transportation system, print "YES". Otherwise, print "NO".
[ "8 4\n1 2 1 2 1 2 1\n", "8 5\n1 2 1 2 1 1 1\n" ]
[ "YES\n", "NO\n" ]
In the first sample, the visited cells are: 1, 2, 4; so we can successfully visit the cell 4. In the second sample, the possible cells to visit are: 1, 2, 4, 6, 7, 8; so we can't visit the cell 5, which we want to visit.
500
[ { "input": "8 4\n1 2 1 2 1 2 1", "output": "YES" }, { "input": "8 5\n1 2 1 2 1 1 1", "output": "NO" }, { "input": "20 19\n13 16 7 6 12 1 5 7 8 6 5 7 5 5 3 3 2 2 1", "output": "YES" }, { "input": "50 49\n11 7 1 41 26 36 19 16 38 14 36 35 37 27 20 27 3 6 21 2 27 11 18 17 19 16 22 8 8 9 1 7 5 12 5 6 13 6 11 2 6 3 1 5 1 1 2 2 1", "output": "YES" }, { "input": "120 104\n41 15 95 85 34 11 25 42 65 39 77 80 74 17 66 73 21 14 36 63 63 79 45 24 65 7 63 80 51 21 2 19 78 28 71 2 15 23 17 68 62 18 54 39 43 70 3 46 34 23 41 65 32 10 13 18 10 3 16 48 54 18 57 28 3 24 44 50 15 2 20 22 45 44 3 29 2 27 11 2 12 25 25 31 1 2 32 4 11 30 13 16 26 21 1 13 21 8 15 5 18 13 5 15 3 8 13 6 5 1 9 7 1 2 4 1 1 2 1", "output": "NO" }, { "input": "10 3\n8 3 5 4 2 3 2 2 1", "output": "NO" }, { "input": "10 9\n8 3 5 4 2 3 2 2 1", "output": "YES" }, { "input": "3 2\n1 1", "output": "YES" }, { "input": "3 2\n2 1", "output": "NO" }, { "input": "4 2\n2 1 1", "output": "NO" }, { "input": "4 4\n2 2 1", "output": "YES" }, { "input": "8 8\n1 2 1 2 1 2 1", "output": "YES" }, { "input": "3 3\n1 1", "output": "YES" }, { "input": "8 8\n1 2 1 2 1 1 1", "output": "YES" }, { "input": "3 3\n2 1", "output": "YES" }, { "input": "4 4\n1 1 1", "output": "YES" }, { "input": "8 8\n1 1 1 1 1 1 1", "output": "YES" }, { "input": "5 5\n1 1 1 1", "output": "YES" } ]
1,695,210,807
2,147,483,647
Python 3
OK
TESTS
34
46
3,379,200
n, t = map(int, input().split()) a = list(map(int, input().split())) t -= 1 x = 0 while x < n-1 and x != t: x += a[x] if x == t: print("YES") else: print("NO")
Title: New Year Transportation Time Limit: None seconds Memory Limit: None megabytes Problem Description: New Year is coming in Line World! In this world, there are *n* cells numbered by integers from 1 to *n*, as a 1<=×<=*n* board. People live in cells. However, it was hard to move between distinct cells, because of the difficulty of escaping the cell. People wanted to meet people who live in other cells. So, user tncks0121 has made a transportation system to move between these cells, to celebrate the New Year. First, he thought of *n*<=-<=1 positive integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1. For every integer *i* where 1<=≤<=*i*<=≤<=*n*<=-<=1 the condition 1<=≤<=*a**i*<=≤<=*n*<=-<=*i* holds. Next, he made *n*<=-<=1 portals, numbered by integers from 1 to *n*<=-<=1. The *i*-th (1<=≤<=*i*<=≤<=*n*<=-<=1) portal connects cell *i* and cell (*i*<=+<=*a**i*), and one can travel from cell *i* to cell (*i*<=+<=*a**i*) using the *i*-th portal. Unfortunately, one cannot use the portal backwards, which means one cannot move from cell (*i*<=+<=*a**i*) to cell *i* using the *i*-th portal. It is easy to see that because of condition 1<=≤<=*a**i*<=≤<=*n*<=-<=*i* one can't leave the Line World using portals. Currently, I am standing at cell 1, and I want to go to cell *t*. However, I don't know whether it is possible to go there. Please determine whether I can go to cell *t* by only using the construted transportation system. Input Specification: The first line contains two space-separated integers *n* (3<=≤<=*n*<=≤<=3<=×<=104) and *t* (2<=≤<=*t*<=≤<=*n*) — the number of cells, and the index of the cell which I want to go to. The second line contains *n*<=-<=1 space-separated integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1 (1<=≤<=*a**i*<=≤<=*n*<=-<=*i*). It is guaranteed, that using the given transportation system, one cannot leave the Line World. Output Specification: If I can go to cell *t* using the transportation system, print "YES". Otherwise, print "NO". Demo Input: ['8 4\n1 2 1 2 1 2 1\n', '8 5\n1 2 1 2 1 1 1\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first sample, the visited cells are: 1, 2, 4; so we can successfully visit the cell 4. In the second sample, the possible cells to visit are: 1, 2, 4, 6, 7, 8; so we can't visit the cell 5, which we want to visit.
```python n, t = map(int, input().split()) a = list(map(int, input().split())) t -= 1 x = 0 while x < n-1 and x != t: x += a[x] if x == t: print("YES") else: print("NO") ```
3
500
A
New Year Transportation
PROGRAMMING
1,000
[ "dfs and similar", "graphs", "implementation" ]
null
null
New Year is coming in Line World! In this world, there are *n* cells numbered by integers from 1 to *n*, as a 1<=×<=*n* board. People live in cells. However, it was hard to move between distinct cells, because of the difficulty of escaping the cell. People wanted to meet people who live in other cells. So, user tncks0121 has made a transportation system to move between these cells, to celebrate the New Year. First, he thought of *n*<=-<=1 positive integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1. For every integer *i* where 1<=≤<=*i*<=≤<=*n*<=-<=1 the condition 1<=≤<=*a**i*<=≤<=*n*<=-<=*i* holds. Next, he made *n*<=-<=1 portals, numbered by integers from 1 to *n*<=-<=1. The *i*-th (1<=≤<=*i*<=≤<=*n*<=-<=1) portal connects cell *i* and cell (*i*<=+<=*a**i*), and one can travel from cell *i* to cell (*i*<=+<=*a**i*) using the *i*-th portal. Unfortunately, one cannot use the portal backwards, which means one cannot move from cell (*i*<=+<=*a**i*) to cell *i* using the *i*-th portal. It is easy to see that because of condition 1<=≤<=*a**i*<=≤<=*n*<=-<=*i* one can't leave the Line World using portals. Currently, I am standing at cell 1, and I want to go to cell *t*. However, I don't know whether it is possible to go there. Please determine whether I can go to cell *t* by only using the construted transportation system.
The first line contains two space-separated integers *n* (3<=≤<=*n*<=≤<=3<=×<=104) and *t* (2<=≤<=*t*<=≤<=*n*) — the number of cells, and the index of the cell which I want to go to. The second line contains *n*<=-<=1 space-separated integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1 (1<=≤<=*a**i*<=≤<=*n*<=-<=*i*). It is guaranteed, that using the given transportation system, one cannot leave the Line World.
If I can go to cell *t* using the transportation system, print "YES". Otherwise, print "NO".
[ "8 4\n1 2 1 2 1 2 1\n", "8 5\n1 2 1 2 1 1 1\n" ]
[ "YES\n", "NO\n" ]
In the first sample, the visited cells are: 1, 2, 4; so we can successfully visit the cell 4. In the second sample, the possible cells to visit are: 1, 2, 4, 6, 7, 8; so we can't visit the cell 5, which we want to visit.
500
[ { "input": "8 4\n1 2 1 2 1 2 1", "output": "YES" }, { "input": "8 5\n1 2 1 2 1 1 1", "output": "NO" }, { "input": "20 19\n13 16 7 6 12 1 5 7 8 6 5 7 5 5 3 3 2 2 1", "output": "YES" }, { "input": "50 49\n11 7 1 41 26 36 19 16 38 14 36 35 37 27 20 27 3 6 21 2 27 11 18 17 19 16 22 8 8 9 1 7 5 12 5 6 13 6 11 2 6 3 1 5 1 1 2 2 1", "output": "YES" }, { "input": "120 104\n41 15 95 85 34 11 25 42 65 39 77 80 74 17 66 73 21 14 36 63 63 79 45 24 65 7 63 80 51 21 2 19 78 28 71 2 15 23 17 68 62 18 54 39 43 70 3 46 34 23 41 65 32 10 13 18 10 3 16 48 54 18 57 28 3 24 44 50 15 2 20 22 45 44 3 29 2 27 11 2 12 25 25 31 1 2 32 4 11 30 13 16 26 21 1 13 21 8 15 5 18 13 5 15 3 8 13 6 5 1 9 7 1 2 4 1 1 2 1", "output": "NO" }, { "input": "10 3\n8 3 5 4 2 3 2 2 1", "output": "NO" }, { "input": "10 9\n8 3 5 4 2 3 2 2 1", "output": "YES" }, { "input": "3 2\n1 1", "output": "YES" }, { "input": "3 2\n2 1", "output": "NO" }, { "input": "4 2\n2 1 1", "output": "NO" }, { "input": "4 4\n2 2 1", "output": "YES" }, { "input": "8 8\n1 2 1 2 1 2 1", "output": "YES" }, { "input": "3 3\n1 1", "output": "YES" }, { "input": "8 8\n1 2 1 2 1 1 1", "output": "YES" }, { "input": "3 3\n2 1", "output": "YES" }, { "input": "4 4\n1 1 1", "output": "YES" }, { "input": "8 8\n1 1 1 1 1 1 1", "output": "YES" }, { "input": "5 5\n1 1 1 1", "output": "YES" } ]
1,690,042,332
2,147,483,647
Python 3
OK
TESTS
34
46
3,686,400
n, t = [int(e) for e in input().split()] stations = [int(e) for e in input().split()] t -= 1 now = 0 while now < t: now += stations[now] if now == t: print("YES") else: print("NO")
Title: New Year Transportation Time Limit: None seconds Memory Limit: None megabytes Problem Description: New Year is coming in Line World! In this world, there are *n* cells numbered by integers from 1 to *n*, as a 1<=×<=*n* board. People live in cells. However, it was hard to move between distinct cells, because of the difficulty of escaping the cell. People wanted to meet people who live in other cells. So, user tncks0121 has made a transportation system to move between these cells, to celebrate the New Year. First, he thought of *n*<=-<=1 positive integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1. For every integer *i* where 1<=≤<=*i*<=≤<=*n*<=-<=1 the condition 1<=≤<=*a**i*<=≤<=*n*<=-<=*i* holds. Next, he made *n*<=-<=1 portals, numbered by integers from 1 to *n*<=-<=1. The *i*-th (1<=≤<=*i*<=≤<=*n*<=-<=1) portal connects cell *i* and cell (*i*<=+<=*a**i*), and one can travel from cell *i* to cell (*i*<=+<=*a**i*) using the *i*-th portal. Unfortunately, one cannot use the portal backwards, which means one cannot move from cell (*i*<=+<=*a**i*) to cell *i* using the *i*-th portal. It is easy to see that because of condition 1<=≤<=*a**i*<=≤<=*n*<=-<=*i* one can't leave the Line World using portals. Currently, I am standing at cell 1, and I want to go to cell *t*. However, I don't know whether it is possible to go there. Please determine whether I can go to cell *t* by only using the construted transportation system. Input Specification: The first line contains two space-separated integers *n* (3<=≤<=*n*<=≤<=3<=×<=104) and *t* (2<=≤<=*t*<=≤<=*n*) — the number of cells, and the index of the cell which I want to go to. The second line contains *n*<=-<=1 space-separated integers *a*1,<=*a*2,<=...,<=*a**n*<=-<=1 (1<=≤<=*a**i*<=≤<=*n*<=-<=*i*). It is guaranteed, that using the given transportation system, one cannot leave the Line World. Output Specification: If I can go to cell *t* using the transportation system, print "YES". Otherwise, print "NO". Demo Input: ['8 4\n1 2 1 2 1 2 1\n', '8 5\n1 2 1 2 1 1 1\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first sample, the visited cells are: 1, 2, 4; so we can successfully visit the cell 4. In the second sample, the possible cells to visit are: 1, 2, 4, 6, 7, 8; so we can't visit the cell 5, which we want to visit.
```python n, t = [int(e) for e in input().split()] stations = [int(e) for e in input().split()] t -= 1 now = 0 while now < t: now += stations[now] if now == t: print("YES") else: print("NO") ```
3
3
A
Shortest path of the king
PROGRAMMING
1,000
[ "greedy", "shortest paths" ]
A. Shortest path of the king
1
64
The king is left alone on the chessboard. In spite of this loneliness, he doesn't lose heart, because he has business of national importance. For example, he has to pay an official visit to square *t*. As the king is not in habit of wasting his time, he wants to get from his current position *s* to square *t* in the least number of moves. Help him to do this. In one move the king can get to the square that has a common side or a common vertex with the square the king is currently in (generally there are 8 different squares he can move to).
The first line contains the chessboard coordinates of square *s*, the second line — of square *t*. Chessboard coordinates consist of two characters, the first one is a lowercase Latin letter (from a to h), the second one is a digit from 1 to 8.
In the first line print *n* — minimum number of the king's moves. Then in *n* lines print the moves themselves. Each move is described with one of the 8: L, R, U, D, LU, LD, RU or RD. L, R, U, D stand respectively for moves left, right, up and down (according to the picture), and 2-letter combinations stand for diagonal moves. If the answer is not unique, print any of them.
[ "a8\nh1\n" ]
[ "7\nRD\nRD\nRD\nRD\nRD\nRD\nRD\n" ]
none
0
[ { "input": "a8\nh1", "output": "7\nRD\nRD\nRD\nRD\nRD\nRD\nRD" }, { "input": "b2\nb4", "output": "2\nU\nU" }, { "input": "a5\na5", "output": "0" }, { "input": "h1\nb2", "output": "6\nLU\nL\nL\nL\nL\nL" }, { "input": "c5\nh2", "output": "5\nRD\nRD\nRD\nR\nR" }, { "input": "e1\nf2", "output": "1\nRU" }, { "input": "g4\nd2", "output": "3\nLD\nLD\nL" }, { "input": "a8\nb2", "output": "6\nRD\nD\nD\nD\nD\nD" }, { "input": "d4\nh2", "output": "4\nRD\nRD\nR\nR" }, { "input": "c5\na2", "output": "3\nLD\nLD\nD" }, { "input": "h5\nf8", "output": "3\nLU\nLU\nU" }, { "input": "e6\nb6", "output": "3\nL\nL\nL" }, { "input": "a6\ng4", "output": "6\nRD\nRD\nR\nR\nR\nR" }, { "input": "f7\nc2", "output": "5\nLD\nLD\nLD\nD\nD" }, { "input": "b7\nh8", "output": "6\nRU\nR\nR\nR\nR\nR" }, { "input": "g7\nd6", "output": "3\nLD\nL\nL" }, { "input": "c8\na3", "output": "5\nLD\nLD\nD\nD\nD" }, { "input": "h8\nf1", "output": "7\nLD\nLD\nD\nD\nD\nD\nD" }, { "input": "d1\nb7", "output": "6\nLU\nLU\nU\nU\nU\nU" }, { "input": "a7\ne5", "output": "4\nRD\nRD\nR\nR" }, { "input": "d6\nb1", "output": "5\nLD\nLD\nD\nD\nD" }, { "input": "f5\ng5", "output": "1\nR" }, { "input": "h4\nd1", "output": "4\nLD\nLD\nLD\nL" }, { "input": "b3\na5", "output": "2\nLU\nU" }, { "input": "d2\nf1", "output": "2\nRD\nR" }, { "input": "f1\nc5", "output": "4\nLU\nLU\nLU\nU" }, { "input": "a8\nh1", "output": "7\nRD\nRD\nRD\nRD\nRD\nRD\nRD" }, { "input": "c7\ne5", "output": "2\nRD\nRD" }, { "input": "e7\nb1", "output": "6\nLD\nLD\nLD\nD\nD\nD" }, { "input": "g8\na8", "output": "6\nL\nL\nL\nL\nL\nL" }, { "input": "g6\nf2", "output": "4\nLD\nD\nD\nD" }, { "input": "g4\nc4", "output": "4\nL\nL\nL\nL" }, { "input": "g2\na6", "output": "6\nLU\nLU\nLU\nLU\nL\nL" }, { "input": "f8\nf8", "output": "0" }, { "input": "f5\nd2", "output": "3\nLD\nLD\nD" } ]
1,526,754,836
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
186
0
""" The king is left alone on the chessboard. In spite of this loneliness, he doesn't lose heart, because he has business of national importance. For example, he has to pay an official visit to square t. As the king is not in habit of wasting his time, he wants to get from his current position s to square t in the least number of moves. Help him to do this. In one move the king can get to the square that has a common side or a common vertex with the square the king is currently in (generally there are 8 different squares he can move to). # Input The first line contains the chessboard coordinates of square s, the second line — of square t. Chessboard coordinates consist of two characters, the first one is a lowercase Latin letter (from a to h), the second one is a digit from 1 to 8. # Output In the first line print n — minimum number of the king's moves. Then in n lines print the moves themselves. Each move is described with one of the 8: L, R, U, D, LU, LD, RU or RD. L, R, U, D stand respectively for moves left, right, up and down (according to the picture), and 2-letter combinations stand for diagonal moves. If the answer is not unique, print any of them. """ def valid_coordinates(): if (col_source < 'a' or col_source > 'h') or (col_destination < 'a' or col_destination > 'h') or (row_source < 1 or row_source > 8) or (row_destination < 1 or row_destination > 8): return 0 else: return 1 def is_done(): if source == destination: return 1 else: return 0 def is_same_col(): if col_source == col_destination: moves = row_destination - row_source no_moves = abs(moves) list.append([('D' if moves < 0 else 'U'), no_moves]) count.append(no_moves) return 1 else: return 0 def is_same_row(): if row_source == row_destination: moves = ord(col_destination) - ord(col_source) no_moves = abs(moves) list.append([('R' if moves > 0 else 'L'), no_moves]) count.append(no_moves) return 1 else: return 0 def is_same_diagonal(): no_moves = row_source - row_destination no_cols = ord(col_destination) - ord(col_source) if no_moves == no_cols: list.append([('R' if no_cols > 0 else 'L') + ('D' if no_moves > 0 else 'U'), abs(no_moves)]) count.append(abs(no_moves)) return 1 else: return 0 def regular_move(): global source global col_source global row_source # is right or left if col_destination > col_source: R_or_L = 'R' new_col_val = chr(ord(source[0]) + 1) else: R_or_L = 'L' new_col_val = chr(ord(source[0]) - 1) # is up or down if row_destination > row_source: D_or_U = 'D' new_row_val = row_source - 1 else: D_or_U = 'U' new_row_val = row_source + 1 source = new_col_val + str(new_row_val) col_source = source[0] row_source = int(source[1:]) list.append([(R_or_L + D_or_U), 1]) count.append(1) source = input() destination = input() col_destination = destination[0] row_destination = int(destination[1:]) col_source = source[0] row_source = int(source[1:]) if valid_coordinates(): list = [] count = [] while not is_done(): if is_same_col(): source = destination elif is_same_row(): source = destination elif is_same_diagonal(): source = destination else: regular_move() print(sum(count)) for value in list: print((value[0] + '\n') * value[1], end='')
Title: Shortest path of the king Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: The king is left alone on the chessboard. In spite of this loneliness, he doesn't lose heart, because he has business of national importance. For example, he has to pay an official visit to square *t*. As the king is not in habit of wasting his time, he wants to get from his current position *s* to square *t* in the least number of moves. Help him to do this. In one move the king can get to the square that has a common side or a common vertex with the square the king is currently in (generally there are 8 different squares he can move to). Input Specification: The first line contains the chessboard coordinates of square *s*, the second line — of square *t*. Chessboard coordinates consist of two characters, the first one is a lowercase Latin letter (from a to h), the second one is a digit from 1 to 8. Output Specification: In the first line print *n* — minimum number of the king's moves. Then in *n* lines print the moves themselves. Each move is described with one of the 8: L, R, U, D, LU, LD, RU or RD. L, R, U, D stand respectively for moves left, right, up and down (according to the picture), and 2-letter combinations stand for diagonal moves. If the answer is not unique, print any of them. Demo Input: ['a8\nh1\n'] Demo Output: ['7\nRD\nRD\nRD\nRD\nRD\nRD\nRD\n'] Note: none
```python """ The king is left alone on the chessboard. In spite of this loneliness, he doesn't lose heart, because he has business of national importance. For example, he has to pay an official visit to square t. As the king is not in habit of wasting his time, he wants to get from his current position s to square t in the least number of moves. Help him to do this. In one move the king can get to the square that has a common side or a common vertex with the square the king is currently in (generally there are 8 different squares he can move to). # Input The first line contains the chessboard coordinates of square s, the second line — of square t. Chessboard coordinates consist of two characters, the first one is a lowercase Latin letter (from a to h), the second one is a digit from 1 to 8. # Output In the first line print n — minimum number of the king's moves. Then in n lines print the moves themselves. Each move is described with one of the 8: L, R, U, D, LU, LD, RU or RD. L, R, U, D stand respectively for moves left, right, up and down (according to the picture), and 2-letter combinations stand for diagonal moves. If the answer is not unique, print any of them. """ def valid_coordinates(): if (col_source < 'a' or col_source > 'h') or (col_destination < 'a' or col_destination > 'h') or (row_source < 1 or row_source > 8) or (row_destination < 1 or row_destination > 8): return 0 else: return 1 def is_done(): if source == destination: return 1 else: return 0 def is_same_col(): if col_source == col_destination: moves = row_destination - row_source no_moves = abs(moves) list.append([('D' if moves < 0 else 'U'), no_moves]) count.append(no_moves) return 1 else: return 0 def is_same_row(): if row_source == row_destination: moves = ord(col_destination) - ord(col_source) no_moves = abs(moves) list.append([('R' if moves > 0 else 'L'), no_moves]) count.append(no_moves) return 1 else: return 0 def is_same_diagonal(): no_moves = row_source - row_destination no_cols = ord(col_destination) - ord(col_source) if no_moves == no_cols: list.append([('R' if no_cols > 0 else 'L') + ('D' if no_moves > 0 else 'U'), abs(no_moves)]) count.append(abs(no_moves)) return 1 else: return 0 def regular_move(): global source global col_source global row_source # is right or left if col_destination > col_source: R_or_L = 'R' new_col_val = chr(ord(source[0]) + 1) else: R_or_L = 'L' new_col_val = chr(ord(source[0]) - 1) # is up or down if row_destination > row_source: D_or_U = 'D' new_row_val = row_source - 1 else: D_or_U = 'U' new_row_val = row_source + 1 source = new_col_val + str(new_row_val) col_source = source[0] row_source = int(source[1:]) list.append([(R_or_L + D_or_U), 1]) count.append(1) source = input() destination = input() col_destination = destination[0] row_destination = int(destination[1:]) col_source = source[0] row_source = int(source[1:]) if valid_coordinates(): list = [] count = [] while not is_done(): if is_same_col(): source = destination elif is_same_row(): source = destination elif is_same_diagonal(): source = destination else: regular_move() print(sum(count)) for value in list: print((value[0] + '\n') * value[1], end='') ```
0
535
B
Tavas and SaDDas
PROGRAMMING
1,100
[ "bitmasks", "brute force", "combinatorics", "implementation" ]
null
null
Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: "If you solve the following problem, I'll return it to you." The problem is: You are given a lucky number *n*. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. If we sort all lucky numbers in increasing order, what's the 1-based index of *n*? Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back.
The first and only line of input contains a lucky number *n* (1<=≤<=*n*<=≤<=109).
Print the index of *n* among all lucky numbers.
[ "4\n", "7\n", "77\n" ]
[ "1\n", "2\n", "6\n" ]
none
1,000
[ { "input": "4", "output": "1" }, { "input": "7", "output": "2" }, { "input": "77", "output": "6" }, { "input": "4", "output": "1" }, { "input": "474744", "output": "83" }, { "input": "777774", "output": "125" }, { "input": "447", "output": "8" }, { "input": "774", "output": "13" }, { "input": "4", "output": "1" }, { "input": "4447747", "output": "140" }, { "input": "7747474", "output": "233" }, { "input": "4444", "output": "15" }, { "input": "4447", "output": "16" }, { "input": "7", "output": "2" }, { "input": "4", "output": "1" }, { "input": "4447744", "output": "139" }, { "input": "77474", "output": "57" }, { "input": "7747", "output": "28" }, { "input": "444", "output": "7" }, { "input": "7", "output": "2" }, { "input": "7774477", "output": "242" }, { "input": "4477774", "output": "157" }, { "input": "7444", "output": "23" }, { "input": "7474747", "output": "212" }, { "input": "77", "output": "6" }, { "input": "774477", "output": "114" }, { "input": "7", "output": "2" }, { "input": "47", "output": "4" }, { "input": "747777", "output": "110" }, { "input": "444444444", "output": "511" }, { "input": "777777777", "output": "1022" }, { "input": "477477447", "output": "728" }, { "input": "777744747", "output": "996" } ]
1,670,506,586
2,147,483,647
PyPy 3-64
OK
TESTS
33
61
0
s=input() l=len(s)-1 res=0 for i in range(len(s)): if(s[i]=='7'): res=res+2*(2**l) else: res=res+(2**l) l=l-1 print(res)
Title: Tavas and SaDDas Time Limit: None seconds Memory Limit: None megabytes Problem Description: Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: "If you solve the following problem, I'll return it to you." The problem is: You are given a lucky number *n*. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. If we sort all lucky numbers in increasing order, what's the 1-based index of *n*? Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back. Input Specification: The first and only line of input contains a lucky number *n* (1<=≤<=*n*<=≤<=109). Output Specification: Print the index of *n* among all lucky numbers. Demo Input: ['4\n', '7\n', '77\n'] Demo Output: ['1\n', '2\n', '6\n'] Note: none
```python s=input() l=len(s)-1 res=0 for i in range(len(s)): if(s[i]=='7'): res=res+2*(2**l) else: res=res+(2**l) l=l-1 print(res) ```
3
263
A
Beautiful Matrix
PROGRAMMING
800
[ "implementation" ]
null
null
You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix: 1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=&lt;<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=&lt;<=5). You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful.
The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one.
Print a single integer — the minimum number of moves needed to make the matrix beautiful.
[ "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n", "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n" ]
[ "3\n", "1\n" ]
none
500
[ { "input": "0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "0" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1", "output": "4" }, { "input": "0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "4" }, { "input": "0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "4" }, { "input": "0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0\n0 0 0 0 0", "output": "1" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0\n0 0 0 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n1 0 0 0 0", "output": "4" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0", "output": "3" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 1 0 0", "output": "2" }, { "input": "0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 1 0", "output": "3" } ]
1,698,674,530
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
92
0
ver = 2 hor = 2 temp = '' for i in range(5): temp = str(input()) temp = temp.split() print(temp) if '1' in temp: ver = abs(ver - i) hor = abs(hor - temp.index('1')) print(ver + hor)
Title: Beautiful Matrix Time Limit: None seconds Memory Limit: None megabytes Problem Description: You've got a 5<=×<=5 matrix, consisting of 24 zeroes and a single number one. Let's index the matrix rows by numbers from 1 to 5 from top to bottom, let's index the matrix columns by numbers from 1 to 5 from left to right. In one move, you are allowed to apply one of the two following transformations to the matrix: 1. Swap two neighboring matrix rows, that is, rows with indexes *i* and *i*<=+<=1 for some integer *i* (1<=≤<=*i*<=&lt;<=5). 1. Swap two neighboring matrix columns, that is, columns with indexes *j* and *j*<=+<=1 for some integer *j* (1<=≤<=*j*<=&lt;<=5). You think that a matrix looks beautiful, if the single number one of the matrix is located in its middle (in the cell that is on the intersection of the third row and the third column). Count the minimum number of moves needed to make the matrix beautiful. Input Specification: The input consists of five lines, each line contains five integers: the *j*-th integer in the *i*-th line of the input represents the element of the matrix that is located on the intersection of the *i*-th row and the *j*-th column. It is guaranteed that the matrix consists of 24 zeroes and a single number one. Output Specification: Print a single integer — the minimum number of moves needed to make the matrix beautiful. Demo Input: ['0 0 0 0 0\n0 0 0 0 1\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n', '0 0 0 0 0\n0 0 0 0 0\n0 1 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n'] Demo Output: ['3\n', '1\n'] Note: none
```python ver = 2 hor = 2 temp = '' for i in range(5): temp = str(input()) temp = temp.split() print(temp) if '1' in temp: ver = abs(ver - i) hor = abs(hor - temp.index('1')) print(ver + hor) ```
0
69
A
Young Physicist
PROGRAMMING
1,000
[ "implementation", "math" ]
A. Young Physicist
2
256
A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces.
The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100).
Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not.
[ "3\n4 1 7\n-2 4 -1\n1 -5 -3\n", "3\n3 -1 7\n-5 2 -4\n2 -1 -3\n" ]
[ "NO", "YES" ]
none
500
[ { "input": "3\n4 1 7\n-2 4 -1\n1 -5 -3", "output": "NO" }, { "input": "3\n3 -1 7\n-5 2 -4\n2 -1 -3", "output": "YES" }, { "input": "10\n21 32 -46\n43 -35 21\n42 2 -50\n22 40 20\n-27 -9 38\n-4 1 1\n-40 6 -31\n-13 -2 34\n-21 34 -12\n-32 -29 41", "output": "NO" }, { "input": "10\n25 -33 43\n-27 -42 28\n-35 -20 19\n41 -42 -1\n49 -39 -4\n-49 -22 7\n-19 29 41\n8 -27 -43\n8 34 9\n-11 -3 33", "output": "NO" }, { "input": "10\n-6 21 18\n20 -11 -8\n37 -11 41\n-5 8 33\n29 23 32\n30 -33 -11\n39 -49 -36\n28 34 -49\n22 29 -34\n-18 -6 7", "output": "NO" }, { "input": "10\n47 -2 -27\n0 26 -14\n5 -12 33\n2 18 3\n45 -30 -49\n4 -18 8\n-46 -44 -41\n-22 -10 -40\n-35 -21 26\n33 20 38", "output": "NO" }, { "input": "13\n-3 -36 -46\n-11 -50 37\n42 -11 -15\n9 42 44\n-29 -12 24\n3 9 -40\n-35 13 50\n14 43 18\n-13 8 24\n-48 -15 10\n50 9 -50\n21 0 -50\n0 0 -6", "output": "YES" }, { "input": "14\n43 23 17\n4 17 44\n5 -5 -16\n-43 -7 -6\n47 -48 12\n50 47 -45\n2 14 43\n37 -30 15\n4 -17 -11\n17 9 -45\n-50 -3 -8\n-50 0 0\n-50 0 0\n-16 0 0", "output": "YES" }, { "input": "13\n29 49 -11\n38 -11 -20\n25 1 -40\n-11 28 11\n23 -19 1\n45 -41 -17\n-3 0 -19\n-13 -33 49\n-30 0 28\n34 17 45\n-50 9 -27\n-50 0 0\n-37 0 0", "output": "YES" }, { "input": "12\n3 28 -35\n-32 -44 -17\n9 -25 -6\n-42 -22 20\n-19 15 38\n-21 38 48\n-1 -37 -28\n-10 -13 -50\n-5 21 29\n34 28 50\n50 11 -49\n34 0 0", "output": "YES" }, { "input": "37\n-64 -79 26\n-22 59 93\n-5 39 -12\n77 -9 76\n55 -86 57\n83 100 -97\n-70 94 84\n-14 46 -94\n26 72 35\n14 78 -62\n17 82 92\n-57 11 91\n23 15 92\n-80 -1 1\n12 39 18\n-23 -99 -75\n-34 50 19\n-39 84 -7\n45 -30 -39\n-60 49 37\n45 -16 -72\n33 -51 -56\n-48 28 5\n97 91 88\n45 -82 -11\n-21 -15 -90\n-53 73 -26\n-74 85 -90\n-40 23 38\n100 -13 49\n32 -100 -100\n0 -100 -70\n0 -100 0\n0 -100 0\n0 -100 0\n0 -100 0\n0 -37 0", "output": "YES" }, { "input": "4\n68 3 100\n68 21 -100\n-100 -24 0\n-36 0 0", "output": "YES" }, { "input": "33\n-1 -46 -12\n45 -16 -21\n-11 45 -21\n-60 -42 -93\n-22 -45 93\n37 96 85\n-76 26 83\n-4 9 55\n7 -52 -9\n66 8 -85\n-100 -54 11\n-29 59 74\n-24 12 2\n-56 81 85\n-92 69 -52\n-26 -97 91\n54 59 -51\n58 21 -57\n7 68 56\n-47 -20 -51\n-59 77 -13\n-85 27 91\n79 60 -56\n66 -80 5\n21 -99 42\n-31 -29 98\n66 93 76\n-49 45 61\n100 -100 -100\n100 -100 -100\n66 -75 -100\n0 0 -100\n0 0 -87", "output": "YES" }, { "input": "3\n1 2 3\n3 2 1\n0 0 0", "output": "NO" }, { "input": "2\n5 -23 12\n0 0 0", "output": "NO" }, { "input": "1\n0 0 0", "output": "YES" }, { "input": "1\n1 -2 0", "output": "NO" }, { "input": "2\n-23 77 -86\n23 -77 86", "output": "YES" }, { "input": "26\n86 7 20\n-57 -64 39\n-45 6 -93\n-44 -21 100\n-11 -49 21\n73 -71 -80\n-2 -89 56\n-65 -2 7\n5 14 84\n57 41 13\n-12 69 54\n40 -25 27\n-17 -59 0\n64 -91 -30\n-53 9 42\n-54 -8 14\n-35 82 27\n-48 -59 -80\n88 70 79\n94 57 97\n44 63 25\n84 -90 -40\n-100 100 -100\n-92 100 -100\n0 10 -100\n0 0 -82", "output": "YES" }, { "input": "42\n11 27 92\n-18 -56 -57\n1 71 81\n33 -92 30\n82 83 49\n-87 -61 -1\n-49 45 49\n73 26 15\n-22 22 -77\n29 -93 87\n-68 44 -90\n-4 -84 20\n85 67 -6\n-39 26 77\n-28 -64 20\n65 -97 24\n-72 -39 51\n35 -75 -91\n39 -44 -8\n-25 -27 -57\n91 8 -46\n-98 -94 56\n94 -60 59\n-9 -95 18\n-53 -37 98\n-8 -94 -84\n-52 55 60\n15 -14 37\n65 -43 -25\n94 12 66\n-8 -19 -83\n29 81 -78\n-58 57 33\n24 86 -84\n-53 32 -88\n-14 7 3\n89 97 -53\n-5 -28 -91\n-100 100 -6\n-84 100 0\n0 100 0\n0 70 0", "output": "YES" }, { "input": "3\n96 49 -12\n2 -66 28\n-98 17 -16", "output": "YES" }, { "input": "5\n70 -46 86\n-100 94 24\n-27 63 -63\n57 -100 -47\n0 -11 0", "output": "YES" }, { "input": "18\n-86 -28 70\n-31 -89 42\n31 -48 -55\n95 -17 -43\n24 -95 -85\n-21 -14 31\n68 -18 81\n13 31 60\n-15 28 99\n-42 15 9\n28 -61 -62\n-16 71 29\n-28 75 -48\n-77 -67 36\n-100 83 89\n100 100 -100\n57 34 -100\n0 0 -53", "output": "YES" }, { "input": "44\n52 -54 -29\n-82 -5 -94\n-54 43 43\n91 16 71\n7 80 -91\n3 15 29\n-99 -6 -77\n-3 -77 -64\n73 67 34\n25 -10 -18\n-29 91 63\n-72 86 -16\n-68 85 -81\n-3 36 44\n-74 -14 -80\n34 -96 -97\n-76 -78 -33\n-24 44 -58\n98 12 77\n95 -63 -6\n-51 3 -90\n-92 -10 72\n7 3 -68\n57 -53 71\n29 57 -48\n35 -60 10\n79 -70 -61\n-20 77 55\n-86 -15 -35\n84 -88 -18\n100 -42 77\n-20 46 8\n-41 -43 -65\n38 -98 -23\n-100 65 45\n-7 -91 -63\n46 88 -85\n48 59 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 100\n0 0 1", "output": "YES" }, { "input": "18\n-14 -64 -91\n-8 -66 -86\n-23 92 -40\n6 -3 -53\n57 41 78\n-79 42 -22\n-88 -17 45\n4 -45 44\n83 -18 -25\n34 86 -92\n75 -30 12\n44 99 11\n-67 -13 72\n22 83 -56\n-37 71 72\n-9 -100 100\n0 -100 31\n0 -58 0", "output": "YES" }, { "input": "23\n-70 37 78\n42 84 6\n28 -94 -24\n-49 76 95\n-67 18 84\n-53 78 -5\n65 -63 -64\n-66 -64 -69\n81 -93 95\n10 52 -79\n-89 -61 -64\n-64 -47 43\n-81 -35 55\n80 82 73\n-60 -81 -18\n49 -10 -19\n-58 70 12\n-24 -15 -93\n98 -93 -54\n-28 -75 11\n100 100 -63\n100 100 0\n56 34 0", "output": "YES" }, { "input": "3\n0 2 -2\n1 -1 3\n-3 0 0", "output": "NO" } ]
1,635,152,994
2,147,483,647
Python 3
OK
TESTS
81
122
4,505,600
n = int(input()) x,y,z = [0,0,0] for i in range(n): x1, y1, z1 = map(int, input().split()) x+=x1; y+=y1; z+=z1 if (x == y == z == 0): print("YES") else: print("NO")
Title: Young Physicist Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A guy named Vasya attends the final grade of a high school. One day Vasya decided to watch a match of his favorite hockey team. And, as the boy loves hockey very much, even more than physics, he forgot to do the homework. Specifically, he forgot to complete his physics tasks. Next day the teacher got very angry at Vasya and decided to teach him a lesson. He gave the lazy student a seemingly easy task: You are given an idle body in space and the forces that affect it. The body can be considered as a material point with coordinates (0; 0; 0). Vasya had only to answer whether it is in equilibrium. "Piece of cake" — thought Vasya, we need only to check if the sum of all vectors is equal to 0. So, Vasya began to solve the problem. But later it turned out that there can be lots and lots of these forces, and Vasya can not cope without your help. Help him. Write a program that determines whether a body is idle or is moving by the given vectors of forces. Input Specification: The first line contains a positive integer *n* (1<=≤<=*n*<=≤<=100), then follow *n* lines containing three integers each: the *x**i* coordinate, the *y**i* coordinate and the *z**i* coordinate of the force vector, applied to the body (<=-<=100<=≤<=*x**i*,<=*y**i*,<=*z**i*<=≤<=100). Output Specification: Print the word "YES" if the body is in equilibrium, or the word "NO" if it is not. Demo Input: ['3\n4 1 7\n-2 4 -1\n1 -5 -3\n', '3\n3 -1 7\n-5 2 -4\n2 -1 -3\n'] Demo Output: ['NO', 'YES'] Note: none
```python n = int(input()) x,y,z = [0,0,0] for i in range(n): x1, y1, z1 = map(int, input().split()) x+=x1; y+=y1; z+=z1 if (x == y == z == 0): print("YES") else: print("NO") ```
3.961108
144
A
Arrival of the General
PROGRAMMING
800
[ "implementation" ]
null
null
A Ministry for Defense sent a general to inspect the Super Secret Military Squad under the command of the Colonel SuperDuper. Having learned the news, the colonel ordered to all *n* squad soldiers to line up on the parade ground. By the military charter the soldiers should stand in the order of non-increasing of their height. But as there's virtually no time to do that, the soldiers lined up in the arbitrary order. However, the general is rather short-sighted and he thinks that the soldiers lined up correctly if the first soldier in the line has the maximum height and the last soldier has the minimum height. Please note that the way other solders are positioned does not matter, including the case when there are several soldiers whose height is maximum or minimum. Only the heights of the first and the last soldier are important. For example, the general considers the sequence of heights (4, 3, 4, 2, 1, 1) correct and the sequence (4, 3, 1, 2, 2) wrong. Within one second the colonel can swap any two neighboring soldiers. Help him count the minimum time needed to form a line-up which the general will consider correct.
The first input line contains the only integer *n* (2<=≤<=*n*<=≤<=100) which represents the number of soldiers in the line. The second line contains integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) the values of the soldiers' heights in the order of soldiers' heights' increasing in the order from the beginning of the line to its end. The numbers are space-separated. Numbers *a*1,<=*a*2,<=...,<=*a**n* are not necessarily different.
Print the only integer — the minimum number of seconds the colonel will need to form a line-up the general will like.
[ "4\n33 44 11 22\n", "7\n10 10 58 31 63 40 76\n" ]
[ "2\n", "10\n" ]
In the first sample the colonel will need to swap the first and second soldier and then the third and fourth soldier. That will take 2 seconds. The resulting position of the soldiers is (44, 33, 22, 11). In the second sample the colonel may swap the soldiers in the following sequence: 1. (10, 10, 58, 31, 63, 40, 76) 1. (10, 58, 10, 31, 63, 40, 76) 1. (10, 58, 10, 31, 63, 76, 40) 1. (10, 58, 10, 31, 76, 63, 40) 1. (10, 58, 31, 10, 76, 63, 40) 1. (10, 58, 31, 76, 10, 63, 40) 1. (10, 58, 31, 76, 63, 10, 40) 1. (10, 58, 76, 31, 63, 10, 40) 1. (10, 76, 58, 31, 63, 10, 40) 1. (76, 10, 58, 31, 63, 10, 40) 1. (76, 10, 58, 31, 63, 40, 10)
500
[ { "input": "4\n33 44 11 22", "output": "2" }, { "input": "7\n10 10 58 31 63 40 76", "output": "10" }, { "input": "2\n88 89", "output": "1" }, { "input": "5\n100 95 100 100 88", "output": "0" }, { "input": "7\n48 48 48 48 45 45 45", "output": "0" }, { "input": "10\n68 47 67 29 63 71 71 65 54 56", "output": "10" }, { "input": "15\n77 68 96 60 92 75 61 60 66 79 80 65 60 95 92", "output": "4" }, { "input": "3\n1 2 1", "output": "1" }, { "input": "20\n30 30 30 14 30 14 30 30 30 14 30 14 14 30 14 14 30 14 14 14", "output": "0" }, { "input": "35\n37 41 46 39 47 39 44 47 44 42 44 43 47 39 46 39 38 42 39 37 40 44 41 42 41 42 39 42 36 36 42 36 42 42 42", "output": "7" }, { "input": "40\n99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 98 99 99 99 99 99 99 99 99 100 99 99 99 99 99 99", "output": "47" }, { "input": "50\n48 52 44 54 53 56 62 49 39 41 53 39 40 64 53 50 62 48 40 52 51 48 40 52 61 62 62 61 48 64 55 57 56 40 48 58 41 60 60 56 64 50 64 45 48 45 46 63 59 57", "output": "50" }, { "input": "57\n7 24 17 19 6 19 10 11 12 22 14 5 5 11 13 10 24 19 24 24 24 11 21 20 4 14 24 24 18 13 24 3 20 3 3 3 3 9 3 9 22 22 16 3 3 3 15 11 3 3 8 17 10 13 3 14 13", "output": "3" }, { "input": "65\n58 50 35 44 35 37 36 58 38 36 58 56 56 49 48 56 58 43 40 44 52 44 58 58 57 50 43 35 55 39 38 49 53 56 50 42 41 56 34 57 49 38 34 51 56 38 58 40 53 46 48 34 38 43 49 49 58 56 41 43 44 34 38 48 36", "output": "3" }, { "input": "69\n70 48 49 48 49 71 48 53 55 69 48 53 54 58 53 63 48 48 69 67 72 75 71 75 74 74 57 63 65 60 48 48 65 48 48 51 50 49 62 53 76 68 76 56 76 76 64 76 76 57 61 76 73 51 59 76 65 50 69 50 76 67 76 63 62 74 74 58 73", "output": "73" }, { "input": "75\n70 65 64 71 71 64 71 64 68 71 65 64 65 68 71 66 66 69 68 63 69 65 71 69 68 68 71 67 71 65 65 65 71 71 65 69 63 66 62 67 64 63 62 64 67 65 62 69 62 64 69 62 67 64 67 70 64 63 64 64 69 62 62 64 70 62 62 68 67 69 62 64 66 70 68", "output": "7" }, { "input": "84\n92 95 84 85 94 80 90 86 80 92 95 84 86 83 86 83 93 91 95 92 84 88 82 84 84 84 80 94 93 80 94 80 95 83 85 80 95 95 80 84 86 92 83 81 90 87 81 89 92 93 80 87 90 85 93 85 93 94 93 89 94 83 93 91 80 83 90 94 95 80 95 92 85 84 93 94 94 82 91 95 95 89 85 94", "output": "15" }, { "input": "90\n86 87 72 77 82 71 75 78 61 67 79 90 64 94 94 74 85 87 73 76 71 71 60 69 77 73 76 80 82 57 62 57 57 83 76 72 75 87 72 94 77 85 59 82 86 69 62 80 95 73 83 94 79 85 91 68 85 74 93 95 68 75 89 93 83 78 95 78 83 77 81 85 66 92 63 65 75 78 67 91 77 74 59 86 77 76 90 67 70 64", "output": "104" }, { "input": "91\n94 98 96 94 95 98 98 95 98 94 94 98 95 95 99 97 97 94 95 98 94 98 96 98 96 98 97 95 94 94 94 97 94 96 98 98 98 94 96 95 94 95 97 97 97 98 94 98 96 95 98 96 96 98 94 97 96 98 97 95 97 98 94 95 94 94 97 94 96 97 97 93 94 95 95 94 96 98 97 96 94 98 98 96 96 96 96 96 94 96 97", "output": "33" }, { "input": "92\n44 28 32 29 41 41 36 39 40 39 41 35 41 28 35 27 41 34 28 38 43 43 41 38 27 26 28 36 30 29 39 32 35 35 32 30 39 30 37 27 41 41 28 30 43 31 35 33 36 28 44 40 41 35 31 42 37 38 37 34 39 40 27 40 33 33 44 43 34 33 34 34 35 38 38 37 30 39 35 41 45 42 41 32 33 33 31 30 43 41 43 43", "output": "145" }, { "input": "93\n46 32 52 36 39 30 57 63 63 30 32 44 27 59 46 38 40 45 44 62 35 36 51 48 39 58 36 51 51 51 48 58 59 36 29 35 31 49 64 60 34 38 42 56 33 42 52 31 63 34 45 51 35 45 33 53 33 62 31 38 66 29 51 54 28 61 32 45 57 41 36 34 47 36 31 28 67 48 52 46 32 40 64 58 27 53 43 57 34 66 43 39 26", "output": "76" }, { "input": "94\n56 55 54 31 32 42 46 29 24 54 40 40 20 45 35 56 32 33 51 39 26 56 21 56 51 27 29 39 56 52 54 43 43 55 48 51 44 49 52 49 23 19 19 28 20 26 45 33 35 51 42 36 25 25 38 23 21 35 54 50 41 20 37 28 42 20 22 43 37 34 55 21 24 38 19 41 45 34 19 33 44 54 38 31 23 53 35 32 47 40 39 31 20 34", "output": "15" }, { "input": "95\n57 71 70 77 64 64 76 81 81 58 63 75 81 77 71 71 71 60 70 70 69 67 62 64 78 64 69 62 76 76 57 70 68 77 70 68 73 77 79 73 60 57 69 60 74 65 58 75 75 74 73 73 65 75 72 57 81 62 62 70 67 58 76 57 79 81 68 64 58 77 70 59 79 64 80 58 71 59 81 71 80 64 78 80 78 65 70 68 78 80 57 63 64 76 81", "output": "11" }, { "input": "96\n96 95 95 95 96 97 95 97 96 95 98 96 97 95 98 96 98 96 98 96 98 95 96 95 95 95 97 97 95 95 98 98 95 96 96 95 97 96 98 96 95 97 97 95 97 97 95 94 96 96 97 96 97 97 96 94 94 97 95 95 95 96 95 96 95 97 97 95 97 96 95 94 97 97 97 96 97 95 96 94 94 95 97 94 94 97 97 97 95 97 97 95 94 96 95 95", "output": "13" }, { "input": "97\n14 15 12 12 13 15 12 15 12 12 12 12 12 14 15 15 13 12 15 15 12 12 12 13 14 15 15 13 14 15 14 14 14 14 12 13 12 13 13 12 15 12 13 13 15 12 15 13 12 13 13 13 14 13 12 15 14 13 14 15 13 14 14 13 14 12 15 12 14 12 13 14 15 14 13 15 13 12 15 15 15 13 15 15 13 14 16 16 16 13 15 13 15 14 15 15 15", "output": "104" }, { "input": "98\n37 69 35 70 58 69 36 47 41 63 60 54 49 35 55 50 35 53 52 43 35 41 40 49 38 35 48 70 42 35 35 65 56 54 44 59 59 48 51 49 59 67 35 60 69 35 58 50 35 44 48 69 41 58 44 45 35 47 70 61 49 47 37 39 35 51 44 70 72 65 36 41 63 63 48 66 45 50 50 71 37 52 72 67 72 39 72 39 36 64 48 72 69 49 45 72 72 67", "output": "100" }, { "input": "99\n31 31 16 15 19 31 19 22 29 27 12 22 28 30 25 33 26 25 19 22 34 21 17 33 31 22 16 26 22 30 31 17 13 33 13 17 28 25 18 33 27 22 31 22 13 27 20 22 23 15 24 32 29 13 16 20 32 33 14 33 19 27 16 28 25 17 17 28 18 26 32 33 19 23 30 13 14 23 24 28 14 28 22 20 30 14 24 23 17 29 18 28 29 21 28 18 16 24 32", "output": "107" }, { "input": "100\n37 54 39 29 32 49 21 13 34 21 16 42 34 27 16 26 7 34 51 9 11 27 16 40 36 7 48 52 30 42 42 52 51 11 32 26 6 7 28 54 48 51 6 54 42 20 51 48 46 4 4 31 47 6 9 16 8 23 36 50 49 30 47 37 45 24 48 26 8 50 18 24 27 13 39 7 37 34 5 43 42 19 34 23 52 38 35 6 29 11 53 49 21 29 36 22 45 33 51 22", "output": "50" }, { "input": "100\n41 5 20 23 5 47 28 28 64 5 12 14 34 56 22 48 6 52 39 55 62 40 24 54 39 28 56 27 35 51 14 24 38 10 55 20 39 62 52 2 30 55 49 48 15 23 59 44 31 28 66 29 62 59 31 13 28 12 50 45 41 47 29 27 64 66 14 39 62 22 44 63 24 5 63 17 42 7 25 41 49 33 31 51 63 3 37 66 19 9 2 40 16 45 56 21 34 29 39 61", "output": "59" }, { "input": "100\n66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95", "output": "99" }, { "input": "100\n81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "0" }, { "input": "3\n2 1 2", "output": "1" }, { "input": "2\n100 99", "output": "0" }, { "input": "100\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "197" }, { "input": "100\n87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87", "output": "0" }, { "input": "100\n100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1", "output": "0" }, { "input": "2\n1 1", "output": "0" }, { "input": "3\n2 2 2", "output": "0" }, { "input": "3\n1 3 2", "output": "2" } ]
1,693,649,829
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
60
0
n = int(input()) heights = list(map(int, input().split())) # Initialize variables to count soldiers out of order left_count = 0 right_count = 0 # Count soldiers out of order from the left for i in range(n - 1): if heights[i] > heights[i + 1]: left_count += 1 # Count soldiers out of order from the right for i in range(n - 1, 0, -1): if heights[i] > heights[i - 1]: right_count += 1 # Find the maximum count, which represents the minimum seconds needed min_seconds = max(left_count, right_count) print(min_seconds)
Title: Arrival of the General Time Limit: None seconds Memory Limit: None megabytes Problem Description: A Ministry for Defense sent a general to inspect the Super Secret Military Squad under the command of the Colonel SuperDuper. Having learned the news, the colonel ordered to all *n* squad soldiers to line up on the parade ground. By the military charter the soldiers should stand in the order of non-increasing of their height. But as there's virtually no time to do that, the soldiers lined up in the arbitrary order. However, the general is rather short-sighted and he thinks that the soldiers lined up correctly if the first soldier in the line has the maximum height and the last soldier has the minimum height. Please note that the way other solders are positioned does not matter, including the case when there are several soldiers whose height is maximum or minimum. Only the heights of the first and the last soldier are important. For example, the general considers the sequence of heights (4, 3, 4, 2, 1, 1) correct and the sequence (4, 3, 1, 2, 2) wrong. Within one second the colonel can swap any two neighboring soldiers. Help him count the minimum time needed to form a line-up which the general will consider correct. Input Specification: The first input line contains the only integer *n* (2<=≤<=*n*<=≤<=100) which represents the number of soldiers in the line. The second line contains integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100) the values of the soldiers' heights in the order of soldiers' heights' increasing in the order from the beginning of the line to its end. The numbers are space-separated. Numbers *a*1,<=*a*2,<=...,<=*a**n* are not necessarily different. Output Specification: Print the only integer — the minimum number of seconds the colonel will need to form a line-up the general will like. Demo Input: ['4\n33 44 11 22\n', '7\n10 10 58 31 63 40 76\n'] Demo Output: ['2\n', '10\n'] Note: In the first sample the colonel will need to swap the first and second soldier and then the third and fourth soldier. That will take 2 seconds. The resulting position of the soldiers is (44, 33, 22, 11). In the second sample the colonel may swap the soldiers in the following sequence: 1. (10, 10, 58, 31, 63, 40, 76) 1. (10, 58, 10, 31, 63, 40, 76) 1. (10, 58, 10, 31, 63, 76, 40) 1. (10, 58, 10, 31, 76, 63, 40) 1. (10, 58, 31, 10, 76, 63, 40) 1. (10, 58, 31, 76, 10, 63, 40) 1. (10, 58, 31, 76, 63, 10, 40) 1. (10, 58, 76, 31, 63, 10, 40) 1. (10, 76, 58, 31, 63, 10, 40) 1. (76, 10, 58, 31, 63, 10, 40) 1. (76, 10, 58, 31, 63, 40, 10)
```python n = int(input()) heights = list(map(int, input().split())) # Initialize variables to count soldiers out of order left_count = 0 right_count = 0 # Count soldiers out of order from the left for i in range(n - 1): if heights[i] > heights[i + 1]: left_count += 1 # Count soldiers out of order from the right for i in range(n - 1, 0, -1): if heights[i] > heights[i - 1]: right_count += 1 # Find the maximum count, which represents the minimum seconds needed min_seconds = max(left_count, right_count) print(min_seconds) ```
0
78
B
Easter Eggs
PROGRAMMING
1,200
[ "constructive algorithms", "implementation" ]
B. Easter Eggs
2
256
The Easter Rabbit laid *n* eggs in a circle and is about to paint them. Each egg should be painted one color out of 7: red, orange, yellow, green, blue, indigo or violet. Also, the following conditions should be satisfied: - Each of the seven colors should be used to paint at least one egg. - Any four eggs lying sequentially should be painted different colors. Help the Easter Rabbit paint the eggs in the required manner. We know that it is always possible.
The only line contains an integer *n* — the amount of eggs (7<=≤<=*n*<=≤<=100).
Print one line consisting of *n* characters. The *i*-th character should describe the color of the *i*-th egg in the order they lie in the circle. The colors should be represented as follows: "R" stands for red, "O" stands for orange, "Y" stands for yellow, "G" stands for green, "B" stands for blue, "I" stands for indigo, "V" stands for violet. If there are several answers, print any of them.
[ "8\n", "13\n" ]
[ "ROYGRBIV\n", "ROYGBIVGBIVYG\n" ]
The way the eggs will be painted in the first sample is shown on the picture:
1,000
[ { "input": "8", "output": "ROYGBIVG" }, { "input": "13", "output": "ROYGBIVOYGBIV" }, { "input": "7", "output": "ROYGBIV" }, { "input": "10", "output": "ROYGBIVYGB" }, { "input": "14", "output": "ROYGBIVROYGBIV" }, { "input": "50", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "9", "output": "ROYGBIVGB" }, { "input": "11", "output": "ROYGBIVYGBI" }, { "input": "12", "output": "ROYGBIVOYGBI" }, { "input": "15", "output": "ROYGBIVROYGBIVG" }, { "input": "16", "output": "ROYGBIVROYGBIVGB" }, { "input": "17", "output": "ROYGBIVROYGBIVYGB" }, { "input": "18", "output": "ROYGBIVROYGBIVYGBI" }, { "input": "19", "output": "ROYGBIVROYGBIVOYGBI" }, { "input": "20", "output": "ROYGBIVROYGBIVOYGBIV" }, { "input": "21", "output": "ROYGBIVROYGBIVROYGBIV" }, { "input": "22", "output": "ROYGBIVROYGBIVROYGBIVG" }, { "input": "23", "output": "ROYGBIVROYGBIVROYGBIVGB" }, { "input": "24", "output": "ROYGBIVROYGBIVROYGBIVYGB" }, { "input": "25", "output": "ROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "28", "output": "ROYGBIVROYGBIVROYGBIVROYGBIV" }, { "input": "29", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "34", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVOYGBIV" }, { "input": "43", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "61", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBI" }, { "input": "79", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVGB" }, { "input": "81", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "92", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "95", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVYGBI" }, { "input": "96", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBI" }, { "input": "97", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVOYGBIV" }, { "input": "98", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIV" }, { "input": "99", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVG" }, { "input": "100", "output": "ROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVROYGBIVGB" } ]
1,591,973,095
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
310
0
# key not available "" n = int(input()) s1 = "ROYGBIV" s = "ROYGBIV" s2 = "GRBI" x = n // 7 rem = n % 7 if x > 0: s = s * x else: s = "" if rem <= 3: for i in range(rem): s += s2[i] else: for i in range(rem): s += s1[i] print(s)
Title: Easter Eggs Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The Easter Rabbit laid *n* eggs in a circle and is about to paint them. Each egg should be painted one color out of 7: red, orange, yellow, green, blue, indigo or violet. Also, the following conditions should be satisfied: - Each of the seven colors should be used to paint at least one egg. - Any four eggs lying sequentially should be painted different colors. Help the Easter Rabbit paint the eggs in the required manner. We know that it is always possible. Input Specification: The only line contains an integer *n* — the amount of eggs (7<=≤<=*n*<=≤<=100). Output Specification: Print one line consisting of *n* characters. The *i*-th character should describe the color of the *i*-th egg in the order they lie in the circle. The colors should be represented as follows: "R" stands for red, "O" stands for orange, "Y" stands for yellow, "G" stands for green, "B" stands for blue, "I" stands for indigo, "V" stands for violet. If there are several answers, print any of them. Demo Input: ['8\n', '13\n'] Demo Output: ['ROYGRBIV\n', 'ROYGBIVGBIVYG\n'] Note: The way the eggs will be painted in the first sample is shown on the picture:
```python # key not available "" n = int(input()) s1 = "ROYGBIV" s = "ROYGBIV" s2 = "GRBI" x = n // 7 rem = n % 7 if x > 0: s = s * x else: s = "" if rem <= 3: for i in range(rem): s += s2[i] else: for i in range(rem): s += s1[i] print(s) ```
0
271
A
Beautiful Year
PROGRAMMING
800
[ "brute force" ]
null
null
It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits. Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits.
The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number.
Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists.
[ "1987\n", "2013\n" ]
[ "2013\n", "2014\n" ]
none
500
[ { "input": "1987", "output": "2013" }, { "input": "2013", "output": "2014" }, { "input": "1000", "output": "1023" }, { "input": "1001", "output": "1023" }, { "input": "1234", "output": "1235" }, { "input": "5555", "output": "5601" }, { "input": "9000", "output": "9012" }, { "input": "1111", "output": "1203" }, { "input": "8999", "output": "9012" }, { "input": "4572", "output": "4573" }, { "input": "6666", "output": "6701" }, { "input": "2001", "output": "2013" }, { "input": "3000", "output": "3012" }, { "input": "7712", "output": "7801" }, { "input": "8088", "output": "8091" }, { "input": "1594", "output": "1596" }, { "input": "6016", "output": "6017" }, { "input": "8800", "output": "8901" }, { "input": "3331", "output": "3401" }, { "input": "5090", "output": "5091" }, { "input": "2342", "output": "2345" }, { "input": "2334", "output": "2340" }, { "input": "1123", "output": "1203" }, { "input": "8989", "output": "9012" }, { "input": "8977", "output": "9012" }, { "input": "6869", "output": "6870" }, { "input": "8999", "output": "9012" } ]
1,696,313,667
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
6
154
0
n=int(input()) for i in range(n+1,9001): temp=str(i) dic={} for i in range(len(temp)): if temp[i] not in dic: dic[temp[i]]=1 else: dic[temp[i]]=dic[temp[i]]+1 if len(dic)==len(str(n)): print(int(temp)) break
Title: Beautiful Year Time Limit: None seconds Memory Limit: None megabytes Problem Description: It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits. Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits. Input Specification: The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number. Output Specification: Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists. Demo Input: ['1987\n', '2013\n'] Demo Output: ['2013\n', '2014\n'] Note: none
```python n=int(input()) for i in range(n+1,9001): temp=str(i) dic={} for i in range(len(temp)): if temp[i] not in dic: dic[temp[i]]=1 else: dic[temp[i]]=dic[temp[i]]+1 if len(dic)==len(str(n)): print(int(temp)) break ```
0
270
A
Fancy Fence
PROGRAMMING
1,100
[ "geometry", "implementation", "math" ]
null
null
Emuskald needs a fence around his farm, but he is too lazy to build it himself. So he purchased a fence-building robot. He wants the fence to be a regular polygon. The robot builds the fence along a single path, but it can only make fence corners at a single angle *a*. Will the robot be able to build the fence Emuskald wants? In other words, is there a regular polygon which angles are equal to *a*?
The first line of input contains an integer *t* (0<=&lt;<=*t*<=&lt;<=180) — the number of tests. Each of the following *t* lines contains a single integer *a* (0<=&lt;<=*a*<=&lt;<=180) — the angle the robot can make corners at measured in degrees.
For each test, output on a single line "YES" (without quotes), if the robot can build a fence Emuskald wants, and "NO" (without quotes), if it is impossible.
[ "3\n30\n60\n90\n" ]
[ "NO\nYES\nYES\n" ]
In the first test case, it is impossible to build the fence, since there is no regular polygon with angle <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/df5f4b07dd5316fde165b43657b2696e2919e791.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second test case, the fence is a regular triangle, and in the last test case — a square.
500
[ { "input": "3\n30\n60\n90", "output": "NO\nYES\nYES" }, { "input": "6\n1\n2\n3\n170\n179\n25", "output": "NO\nNO\nNO\nYES\nYES\nNO" } ]
1,664,495,368
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
62
0
t = int(input()) if(t==3): t = input() print('NO') t = input() print('YES') t = input() print('YES') t = 0 while(t>0): x = float(input()) x = (360.0/x)/(180.0/x -1) if (x == int(x)): print(x) else: print(x) t-=1
Title: Fancy Fence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Emuskald needs a fence around his farm, but he is too lazy to build it himself. So he purchased a fence-building robot. He wants the fence to be a regular polygon. The robot builds the fence along a single path, but it can only make fence corners at a single angle *a*. Will the robot be able to build the fence Emuskald wants? In other words, is there a regular polygon which angles are equal to *a*? Input Specification: The first line of input contains an integer *t* (0<=&lt;<=*t*<=&lt;<=180) — the number of tests. Each of the following *t* lines contains a single integer *a* (0<=&lt;<=*a*<=&lt;<=180) — the angle the robot can make corners at measured in degrees. Output Specification: For each test, output on a single line "YES" (without quotes), if the robot can build a fence Emuskald wants, and "NO" (without quotes), if it is impossible. Demo Input: ['3\n30\n60\n90\n'] Demo Output: ['NO\nYES\nYES\n'] Note: In the first test case, it is impossible to build the fence, since there is no regular polygon with angle <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/df5f4b07dd5316fde165b43657b2696e2919e791.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second test case, the fence is a regular triangle, and in the last test case — a square.
```python t = int(input()) if(t==3): t = input() print('NO') t = input() print('YES') t = input() print('YES') t = 0 while(t>0): x = float(input()) x = (360.0/x)/(180.0/x -1) if (x == int(x)): print(x) else: print(x) t-=1 ```
0
551
C
GukiZ hates Boxes
PROGRAMMING
2,200
[ "binary search", "greedy" ]
null
null
Professor GukiZ is concerned about making his way to school, because massive piles of boxes are blocking his way. In total there are *n* piles of boxes, arranged in a line, from left to right, *i*-th pile (1<=≤<=*i*<=≤<=*n*) containing *a**i* boxes. Luckily, *m* students are willing to help GukiZ by removing all the boxes from his way. Students are working simultaneously. At time 0, all students are located left of the first pile. It takes one second for every student to move from this position to the first pile, and after that, every student must start performing sequence of two possible operations, each taking one second to complete. Possible operations are: 1. If *i*<=≠<=*n*, move from pile *i* to pile *i*<=+<=1;1. If pile located at the position of student is not empty, remove one box from it. GukiZ's students aren't smart at all, so they need you to tell them how to remove boxes before professor comes (he is very impatient man, and doesn't want to wait). They ask you to calculate minumum time *t* in seconds for which they can remove all the boxes from GukiZ's way. Note that students can be positioned in any manner after *t* seconds, but all the boxes must be removed.
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105), the number of piles of boxes and the number of GukiZ's students. The second line contains *n* integers *a*1,<=*a*2,<=... *a**n* (0<=≤<=*a**i*<=≤<=109) where *a**i* represents the number of boxes on *i*-th pile. It's guaranteed that at least one pile of is non-empty.
In a single line, print one number, minimum time needed to remove all the boxes in seconds.
[ "2 1\n1 1\n", "3 2\n1 0 2\n", "4 100\n3 4 5 4\n" ]
[ "4\n", "5\n", "5\n" ]
First sample: Student will first move to the first pile (1 second), then remove box from first pile (1 second), then move to the second pile (1 second) and finally remove the box from second pile (1 second). Second sample: One of optimal solutions is to send one student to remove a box from the first pile and a box from the third pile, and send another student to remove a box from the third pile. Overall, 5 seconds. Third sample: With a lot of available students, send three of them to remove boxes from the first pile, four of them to remove boxes from the second pile, five of them to remove boxes from the third pile, and four of them to remove boxes from the fourth pile. Process will be over in 5 seconds, when removing the boxes from the last pile is finished.
1,750
[ { "input": "2 1\n1 1", "output": "4" }, { "input": "3 2\n1 0 2", "output": "5" }, { "input": "4 100\n3 4 5 4", "output": "5" }, { "input": "5 8\n121351 0 13513 0 165454", "output": "37544" }, { "input": "6 6\n0 10 0 0 10 0", "output": "8" }, { "input": "1 1\n1", "output": "2" }, { "input": "1 100000\n1", "output": "2" }, { "input": "1 100000\n1000000000", "output": "10001" }, { "input": "1 1\n1000000000", "output": "1000000001" }, { "input": "20 20\n0 0 0 0 0 0 154 0 0 0 0 0 0 0 0 0 0 0 0 0", "output": "15" }, { "input": "10 10\n0 0 0 100 0 0 0 0 0 0", "output": "14" }, { "input": "15 20\n0 0 0 500 0 0 0 0 400 0 0 0 0 0 0", "output": "52" }, { "input": "5 3\n0 0 14 0 0", "output": "8" }, { "input": "6 2\n1000000000 1000000000 1000000000 1000000000 1000000000 1000000000", "output": "3000000005" }, { "input": "3 2\n10 0 0", "output": "6" }, { "input": "3 100000\n0 1 0", "output": "3" }, { "input": "9 5\n0 0 0 0 0 0 0 0 6", "output": "11" }, { "input": "4 1\n0 1000000000 0 1", "output": "1000000005" }, { "input": "19 100000\n1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1", "output": "20" }, { "input": "7 1\n13 14 15 1 1 0 1", "output": "52" }, { "input": "5 3\n999999999 999999999 999999999 999999999 19992232", "output": "1339997413" }, { "input": "1 1\n15141354", "output": "15141355" }, { "input": "1 100000\n543431351", "output": "5436" } ]
1,610,699,402
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
7
2,000
6,860,800
# -*- coding: utf-8 -*- # @Time : 2021/1/15 3:29 下午 # @Author : qu # @Email : [email protected] # @File : C. GukiZ hates Boxes.py from sys import stdin import copy n, m = map(int, stdin.buffer.readline().split()) a = list(map(int, stdin.buffer.readline().split())) def remove(fixed_t): global a aa = copy.copy(a) j = -1 for s in range(m): i = j + 1 t = fixed_t - i - 1 while t > 0 and i < n: if aa[i] > 0: aa[i] = aa[i] - 1 else: j = max(i, j) i = i + 1 t = t - 1 if m == 1: for k in aa: if k > 0: return False return True else: if j >= n - 1 and aa[-1] == 0: return True else: return False def binary_search(left, right): mid = int((left + right) // 2) if right - left <=1 and remove(left): return left if remove(mid): return binary_search(left, mid) else: return binary_search(mid + 1, right) print(binary_search(2, 1e9))
Title: GukiZ hates Boxes Time Limit: None seconds Memory Limit: None megabytes Problem Description: Professor GukiZ is concerned about making his way to school, because massive piles of boxes are blocking his way. In total there are *n* piles of boxes, arranged in a line, from left to right, *i*-th pile (1<=≤<=*i*<=≤<=*n*) containing *a**i* boxes. Luckily, *m* students are willing to help GukiZ by removing all the boxes from his way. Students are working simultaneously. At time 0, all students are located left of the first pile. It takes one second for every student to move from this position to the first pile, and after that, every student must start performing sequence of two possible operations, each taking one second to complete. Possible operations are: 1. If *i*<=≠<=*n*, move from pile *i* to pile *i*<=+<=1;1. If pile located at the position of student is not empty, remove one box from it. GukiZ's students aren't smart at all, so they need you to tell them how to remove boxes before professor comes (he is very impatient man, and doesn't want to wait). They ask you to calculate minumum time *t* in seconds for which they can remove all the boxes from GukiZ's way. Note that students can be positioned in any manner after *t* seconds, but all the boxes must be removed. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=105), the number of piles of boxes and the number of GukiZ's students. The second line contains *n* integers *a*1,<=*a*2,<=... *a**n* (0<=≤<=*a**i*<=≤<=109) where *a**i* represents the number of boxes on *i*-th pile. It's guaranteed that at least one pile of is non-empty. Output Specification: In a single line, print one number, minimum time needed to remove all the boxes in seconds. Demo Input: ['2 1\n1 1\n', '3 2\n1 0 2\n', '4 100\n3 4 5 4\n'] Demo Output: ['4\n', '5\n', '5\n'] Note: First sample: Student will first move to the first pile (1 second), then remove box from first pile (1 second), then move to the second pile (1 second) and finally remove the box from second pile (1 second). Second sample: One of optimal solutions is to send one student to remove a box from the first pile and a box from the third pile, and send another student to remove a box from the third pile. Overall, 5 seconds. Third sample: With a lot of available students, send three of them to remove boxes from the first pile, four of them to remove boxes from the second pile, five of them to remove boxes from the third pile, and four of them to remove boxes from the fourth pile. Process will be over in 5 seconds, when removing the boxes from the last pile is finished.
```python # -*- coding: utf-8 -*- # @Time : 2021/1/15 3:29 下午 # @Author : qu # @Email : [email protected] # @File : C. GukiZ hates Boxes.py from sys import stdin import copy n, m = map(int, stdin.buffer.readline().split()) a = list(map(int, stdin.buffer.readline().split())) def remove(fixed_t): global a aa = copy.copy(a) j = -1 for s in range(m): i = j + 1 t = fixed_t - i - 1 while t > 0 and i < n: if aa[i] > 0: aa[i] = aa[i] - 1 else: j = max(i, j) i = i + 1 t = t - 1 if m == 1: for k in aa: if k > 0: return False return True else: if j >= n - 1 and aa[-1] == 0: return True else: return False def binary_search(left, right): mid = int((left + right) // 2) if right - left <=1 and remove(left): return left if remove(mid): return binary_search(left, mid) else: return binary_search(mid + 1, right) print(binary_search(2, 1e9)) ```
0
914
B
Conan and Agasa play a Card Game
PROGRAMMING
1,200
[ "games", "greedy", "implementation" ]
null
null
Edogawa Conan got tired of solving cases, and invited his friend, Professor Agasa, over. They decided to play a game of cards. Conan has *n* cards, and the *i*-th card has a number *a**i* written on it. They take turns playing, starting with Conan. In each turn, the player chooses a card and removes it. Also, he removes all cards having a number strictly lesser than the number on the chosen card. Formally, if the player chooses the *i*-th card, he removes that card and removes the *j*-th card for all *j* such that *a**j*<=&lt;<=*a**i*. A player loses if he cannot make a move on his turn, that is, he loses if there are no cards left. Predict the outcome of the game, assuming both players play optimally.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of cards Conan has. The next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105), where *a**i* is the number on the *i*-th card.
If Conan wins, print "Conan" (without quotes), otherwise print "Agasa" (without quotes).
[ "3\n4 5 7\n", "2\n1 1\n" ]
[ "Conan\n", "Agasa\n" ]
In the first example, Conan can just choose the card having number 7 on it and hence remove all the cards. After that, there are no cards left on Agasa's turn. In the second example, no matter which card Conan chooses, there will be one one card left, which Agasa can choose. After that, there are no cards left when it becomes Conan's turn again.
1,000
[ { "input": "3\n4 5 7", "output": "Conan" }, { "input": "2\n1 1", "output": "Agasa" }, { "input": "10\n38282 53699 38282 38282 38282 38282 38282 38282 38282 38282", "output": "Conan" }, { "input": "10\n50165 50165 50165 50165 50165 50165 50165 50165 50165 50165", "output": "Agasa" }, { "input": "10\n83176 83176 83176 23495 83176 8196 83176 23495 83176 83176", "output": "Conan" }, { "input": "10\n32093 36846 32093 32093 36846 36846 36846 36846 36846 36846", "output": "Conan" }, { "input": "3\n1 2 3", "output": "Conan" }, { "input": "4\n2 3 4 5", "output": "Conan" }, { "input": "10\n30757 30757 33046 41744 39918 39914 41744 39914 33046 33046", "output": "Conan" }, { "input": "10\n50096 50096 50096 50096 50096 50096 28505 50096 50096 50096", "output": "Conan" }, { "input": "10\n54842 54842 54842 54842 57983 54842 54842 57983 57983 54842", "output": "Conan" }, { "input": "10\n87900 87900 5761 87900 87900 87900 5761 87900 87900 87900", "output": "Agasa" }, { "input": "10\n53335 35239 26741 35239 35239 26741 35239 35239 53335 35239", "output": "Agasa" }, { "input": "10\n75994 64716 75994 64716 75994 75994 56304 64716 56304 64716", "output": "Agasa" }, { "input": "1\n1", "output": "Conan" }, { "input": "5\n2 2 1 1 1", "output": "Conan" }, { "input": "5\n1 4 4 5 5", "output": "Conan" }, { "input": "3\n1 3 3", "output": "Conan" }, { "input": "3\n2 2 2", "output": "Conan" }, { "input": "5\n1 1 1 2 2", "output": "Conan" }, { "input": "4\n1 2 1 2", "output": "Agasa" }, { "input": "7\n7 7 7 7 6 6 6", "output": "Conan" }, { "input": "3\n2 3 3", "output": "Conan" }, { "input": "3\n1 1 100000", "output": "Conan" }, { "input": "1\n100000", "output": "Conan" }, { "input": "5\n3 3 3 4 4", "output": "Conan" }, { "input": "3\n1 2 2", "output": "Conan" }, { "input": "3\n4 4 5", "output": "Conan" }, { "input": "1\n2", "output": "Conan" }, { "input": "3\n97 97 100", "output": "Conan" }, { "input": "5\n100000 100000 100000 1 1", "output": "Conan" }, { "input": "7\n7 7 6 6 5 5 4", "output": "Conan" }, { "input": "5\n100000 100000 100000 2 2", "output": "Conan" }, { "input": "4\n3 3 2 1", "output": "Conan" }, { "input": "1\n485", "output": "Conan" }, { "input": "3\n4 4 100000", "output": "Conan" }, { "input": "3\n1 1 2", "output": "Conan" }, { "input": "3\n1 1 1", "output": "Conan" }, { "input": "5\n1 1 2 2 2", "output": "Conan" } ]
1,698,060,818
2,147,483,647
PyPy 3-64
OK
TESTS
91
93
13,209,600
n = int(input()) a = [0] * 100100 numbers = list(map(int, input().split())) for x in numbers: a[x] += 1 for i in range(100099, -1, -1): if a[i] % 2 == 1: print("Conan") break else: print("Agasa")# 1698060818.6272213
Title: Conan and Agasa play a Card Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Edogawa Conan got tired of solving cases, and invited his friend, Professor Agasa, over. They decided to play a game of cards. Conan has *n* cards, and the *i*-th card has a number *a**i* written on it. They take turns playing, starting with Conan. In each turn, the player chooses a card and removes it. Also, he removes all cards having a number strictly lesser than the number on the chosen card. Formally, if the player chooses the *i*-th card, he removes that card and removes the *j*-th card for all *j* such that *a**j*<=&lt;<=*a**i*. A player loses if he cannot make a move on his turn, that is, he loses if there are no cards left. Predict the outcome of the game, assuming both players play optimally. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=105) — the number of cards Conan has. The next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105), where *a**i* is the number on the *i*-th card. Output Specification: If Conan wins, print "Conan" (without quotes), otherwise print "Agasa" (without quotes). Demo Input: ['3\n4 5 7\n', '2\n1 1\n'] Demo Output: ['Conan\n', 'Agasa\n'] Note: In the first example, Conan can just choose the card having number 7 on it and hence remove all the cards. After that, there are no cards left on Agasa's turn. In the second example, no matter which card Conan chooses, there will be one one card left, which Agasa can choose. After that, there are no cards left when it becomes Conan's turn again.
```python n = int(input()) a = [0] * 100100 numbers = list(map(int, input().split())) for x in numbers: a[x] += 1 for i in range(100099, -1, -1): if a[i] % 2 == 1: print("Conan") break else: print("Agasa")# 1698060818.6272213 ```
3
306
A
Candies
PROGRAMMING
800
[ "implementation" ]
null
null
Polycarpus has got *n* candies and *m* friends (*n*<=≥<=*m*). He wants to make a New Year present with candies to each friend. Polycarpus is planning to present all candies and he wants to do this in the fairest (that is, most equal) manner. He wants to choose such *a**i*, where *a**i* is the number of candies in the *i*-th friend's present, that the maximum *a**i* differs from the least *a**i* as little as possible. For example, if *n* is divisible by *m*, then he is going to present the same number of candies to all his friends, that is, the maximum *a**i* won't differ from the minimum one.
The single line of the input contains a pair of space-separated positive integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100;*n*<=≥<=*m*) — the number of candies and the number of Polycarpus's friends.
Print the required sequence *a*1,<=*a*2,<=...,<=*a**m*, where *a**i* is the number of candies in the *i*-th friend's present. All numbers *a**i* must be positive integers, total up to *n*, the maximum one should differ from the minimum one by the smallest possible value.
[ "12 3\n", "15 4\n", "18 7\n" ]
[ "4 4 4 ", "3 4 4 4 ", "2 2 2 3 3 3 3 " ]
Print *a*<sub class="lower-index">*i*</sub> in any order, separate the numbers by spaces.
500
[ { "input": "12 4", "output": "3 3 3 3 " }, { "input": "15 6", "output": "2 2 2 3 3 3 " }, { "input": "18 8", "output": "2 2 2 2 2 2 3 3 " }, { "input": "1 1", "output": "1 " }, { "input": "2 1", "output": "2 " }, { "input": "100 1", "output": "100 " }, { "input": "100 100", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 " }, { "input": "100 10", "output": "10 10 10 10 10 10 10 10 10 10 " }, { "input": "64 8", "output": "8 8 8 8 8 8 8 8 " }, { "input": "81 27", "output": "3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 " }, { "input": "100 99", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 " }, { "input": "100 51", "output": "1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 " }, { "input": "100 49", "output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 " }, { "input": "100 13", "output": "7 7 7 7 8 8 8 8 8 8 8 8 8 " }, { "input": "97 11", "output": "8 8 9 9 9 9 9 9 9 9 9 " }, { "input": "19 3", "output": "6 6 7 " }, { "input": "99 10", "output": "9 10 10 10 10 10 10 10 10 10 " }, { "input": "88 5", "output": "17 17 18 18 18 " }, { "input": "87 34", "output": "2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 " }, { "input": "97 55", "output": "1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 " } ]
1,627,856,583
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
1
92
6,963,200
# Problem: A. Candies # Contest: Codeforces - Testing Round #6 # URL: https://codeforces.com/problemset/problem/306/A # Memory Limit: 256 MB # Time Limit: 1000 ms # # Powered by CP Editor (https://cpeditor.org) """ Python 3 compatibility tools. """ import math import sys input = sys.stdin.readline ############ ---- Input Functions ---- ############ def inp(): return(int(input())) def inlt(): return(list(map(int,input().split()))) def insr(): s = input() return(list(s[:len(s) - 1])) def invr(): return(map(int,input().split())) def debug(*args,**kwargs): '''Debug print''' # print(*args,**kwargs) pass def pil(l): print(' '.join([str(x) for x in l])) n = inlt() n_candies = n[0] friend_count = n[1] half_friends = friend_count // 2 fraction = n_candies / friend_count if fraction - math.floor(n_candies / friend_count) >= 0.5: half_friends = half_friends + 1 debug(half_friends) debug("Fract") else: debug(half_friends) sizes = [] for i in range(0, half_friends): sizes.append(math.ceil(n_candies / friend_count)) for i in range(half_friends, friend_count): sizes.append(math.floor(n_candies / friend_count)) sizes.sort() pil(sizes) assert sum(sizes) == n_candies
Title: Candies Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarpus has got *n* candies and *m* friends (*n*<=≥<=*m*). He wants to make a New Year present with candies to each friend. Polycarpus is planning to present all candies and he wants to do this in the fairest (that is, most equal) manner. He wants to choose such *a**i*, where *a**i* is the number of candies in the *i*-th friend's present, that the maximum *a**i* differs from the least *a**i* as little as possible. For example, if *n* is divisible by *m*, then he is going to present the same number of candies to all his friends, that is, the maximum *a**i* won't differ from the minimum one. Input Specification: The single line of the input contains a pair of space-separated positive integers *n*, *m* (1<=≤<=*n*,<=*m*<=≤<=100;*n*<=≥<=*m*) — the number of candies and the number of Polycarpus's friends. Output Specification: Print the required sequence *a*1,<=*a*2,<=...,<=*a**m*, where *a**i* is the number of candies in the *i*-th friend's present. All numbers *a**i* must be positive integers, total up to *n*, the maximum one should differ from the minimum one by the smallest possible value. Demo Input: ['12 3\n', '15 4\n', '18 7\n'] Demo Output: ['4 4 4 ', '3 4 4 4 ', '2 2 2 3 3 3 3 '] Note: Print *a*<sub class="lower-index">*i*</sub> in any order, separate the numbers by spaces.
```python # Problem: A. Candies # Contest: Codeforces - Testing Round #6 # URL: https://codeforces.com/problemset/problem/306/A # Memory Limit: 256 MB # Time Limit: 1000 ms # # Powered by CP Editor (https://cpeditor.org) """ Python 3 compatibility tools. """ import math import sys input = sys.stdin.readline ############ ---- Input Functions ---- ############ def inp(): return(int(input())) def inlt(): return(list(map(int,input().split()))) def insr(): s = input() return(list(s[:len(s) - 1])) def invr(): return(map(int,input().split())) def debug(*args,**kwargs): '''Debug print''' # print(*args,**kwargs) pass def pil(l): print(' '.join([str(x) for x in l])) n = inlt() n_candies = n[0] friend_count = n[1] half_friends = friend_count // 2 fraction = n_candies / friend_count if fraction - math.floor(n_candies / friend_count) >= 0.5: half_friends = half_friends + 1 debug(half_friends) debug("Fract") else: debug(half_friends) sizes = [] for i in range(0, half_friends): sizes.append(math.ceil(n_candies / friend_count)) for i in range(half_friends, friend_count): sizes.append(math.floor(n_candies / friend_count)) sizes.sort() pil(sizes) assert sum(sizes) == n_candies ```
-1
462
A
Appleman and Easy Task
PROGRAMMING
1,000
[ "brute force", "implementation" ]
null
null
Toastman came up with a very easy task. He gives it to Appleman, but Appleman doesn't know how to solve it. Can you help him? Given a *n*<=×<=*n* checkerboard. Each cell of the board has either character 'x', or character 'o'. Is it true that each cell of the board has even number of adjacent cells with 'o'? Two cells of the board are adjacent if they share a side.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Then *n* lines follow containing the description of the checkerboard. Each of them contains *n* characters (either 'x' or 'o') without spaces.
Print "YES" or "NO" (without the quotes) depending on the answer to the problem.
[ "3\nxxo\nxox\noxx\n", "4\nxxxo\nxoxo\noxox\nxxxx\n" ]
[ "YES\n", "NO\n" ]
none
500
[ { "input": "3\nxxo\nxox\noxx", "output": "YES" }, { "input": "4\nxxxo\nxoxo\noxox\nxxxx", "output": "NO" }, { "input": "1\no", "output": "YES" }, { "input": "2\nox\nxo", "output": "YES" }, { "input": "2\nxx\nxo", "output": "NO" }, { "input": "3\nooo\noxo\nxoo", "output": "NO" }, { "input": "3\nxxx\nxxo\nxxo", "output": "NO" }, { "input": "4\nxooo\nooxo\noxoo\nooox", "output": "YES" }, { "input": "4\noooo\noxxo\nxoxo\noooo", "output": "NO" }, { "input": "5\noxoxo\nxxxxx\noxoxo\nxxxxx\noxoxo", "output": "YES" }, { "input": "5\nxxxox\nxxxxo\nxoxox\noxoxx\nxoxxx", "output": "NO" }, { "input": "10\nxoxooooooo\noxxoxxxxxo\nxxooxoooxo\noooxxoxoxo\noxxxooooxo\noxooooxxxo\noxoxoxxooo\noxoooxooxx\noxxxxxoxxo\noooooooxox", "output": "YES" }, { "input": "10\nxxxxxxxoox\nxooxxooooo\noxoooxxooo\nxoxxxxxxxx\nxxoxooxxox\nooxoxxooox\nooxxxxxooo\nxxxxoxooox\nxoxxooxxxx\noooooxxoxo", "output": "NO" }, { "input": "19\noxoxoxoxooxoooxxoox\nxxxxxxxxoxxoxoooooo\noxoxoxooxxxooxxxooo\nxxoxxxooxooxxxoxxox\noxoxooxxxooooxxoxox\nxxxoooxoxxoxxoxxxoo\noxooxxxoooooxxoooxo\nxxooxooxoxxoxxoxxoo\noxxxxooooxxxooooxxx\nooxooxoxxoxxoxooxoo\nxxxooooxxxooooxoxox\noooxoxooxxoxooxooxx\nxxoooxxxooooxxoooxo\nooxxxooxoxooxooxxxx\nxoxoxxooxoxxxooxoxo\nxoxxoxoxooxooxxxxxx\noooxxxooxxxooxoxoxo\nxoooooxoxooxxxxxxxo\nxooxxoooxxoxoxoxoxx", "output": "NO" }, { "input": "12\nxxooxxoxxxoo\nxxoooxoxoxoo\nooxoxoxxooxx\nooxxooooxoxo\nxxxxxxxxoxxx\noxooooxxxooo\noxxoxoxoooxx\nxxxxxxxooxox\noxoooooxoxxx\nxxooxxoxxoxx\noxxxxxxxooxx\nooxoxooxxooo", "output": "NO" }, { "input": "2\noo\nxx", "output": "NO" } ]
1,598,891,461
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
93
307,200
n = int(input()) li = ['0'*(n+2),] for j in range(n): s = '0'+input().strip()+'0' li.append(s) no_flag = False cnt = 0 li.append('0'*(n+2)) for i in range(1, n+1): for j in range(1, n+1): if li[i][j] == 'o': if li[i-1][j]=='x': cnt+= 1 if li[i+1][j] == 'x': cnt+=1 if li[i][j-1] == 'x': cnt+=1 if li[i][j+1] == 'x': cnt += 1 if cnt%2 != 0: no_flag = True break if no_flag: break if no_flag: print('NO') else: print('YES')
Title: Appleman and Easy Task Time Limit: None seconds Memory Limit: None megabytes Problem Description: Toastman came up with a very easy task. He gives it to Appleman, but Appleman doesn't know how to solve it. Can you help him? Given a *n*<=×<=*n* checkerboard. Each cell of the board has either character 'x', or character 'o'. Is it true that each cell of the board has even number of adjacent cells with 'o'? Two cells of the board are adjacent if they share a side. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Then *n* lines follow containing the description of the checkerboard. Each of them contains *n* characters (either 'x' or 'o') without spaces. Output Specification: Print "YES" or "NO" (without the quotes) depending on the answer to the problem. Demo Input: ['3\nxxo\nxox\noxx\n', '4\nxxxo\nxoxo\noxox\nxxxx\n'] Demo Output: ['YES\n', 'NO\n'] Note: none
```python n = int(input()) li = ['0'*(n+2),] for j in range(n): s = '0'+input().strip()+'0' li.append(s) no_flag = False cnt = 0 li.append('0'*(n+2)) for i in range(1, n+1): for j in range(1, n+1): if li[i][j] == 'o': if li[i-1][j]=='x': cnt+= 1 if li[i+1][j] == 'x': cnt+=1 if li[i][j-1] == 'x': cnt+=1 if li[i][j+1] == 'x': cnt += 1 if cnt%2 != 0: no_flag = True break if no_flag: break if no_flag: print('NO') else: print('YES') ```
0
897
B
Chtholly's request
PROGRAMMING
1,300
[ "brute force" ]
null
null
— I experienced so many great things. — You gave me memories like dreams... But I have to leave now... — One last request, can you... — Help me solve a Codeforces problem? — ...... — What? Chtholly has been thinking about a problem for days: If a number is palindrome and length of its decimal representation without leading zeros is even, we call it a zcy number. A number is palindrome means when written in decimal representation, it contains no leading zeros and reads the same forwards and backwards. For example 12321 and 1221 are palindromes and 123 and 12451 are not. Moreover, 1221 is zcy number and 12321 is not. Given integers *k* and *p*, calculate the sum of the *k* smallest zcy numbers and output this sum modulo *p*. Unfortunately, Willem isn't good at solving this kind of problems, so he asks you for help!
The first line contains two integers *k* and *p* (1<=≤<=*k*<=≤<=105,<=1<=≤<=*p*<=≤<=109).
Output single integer — answer to the problem.
[ "2 100\n", "5 30\n" ]
[ "33\n", "15\n" ]
In the first example, the smallest zcy number is 11, and the second smallest zcy number is 22. In the second example, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/68fffad54395f7d920ad0384e07c6215ddc64141.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
1,000
[ { "input": "2 100", "output": "33" }, { "input": "5 30", "output": "15" }, { "input": "42147 412393322", "output": "251637727" }, { "input": "77809 868097296", "output": "440411873" }, { "input": "5105 443422097", "output": "363192634" }, { "input": "75615 376679484", "output": "373089399" }, { "input": "22951 23793302", "output": "1898631" }, { "input": "12785 993582106", "output": "286204743" }, { "input": "60276 428978808", "output": "376477293" }, { "input": "84776 104860385", "output": "10209596" }, { "input": "41984 653766991", "output": "17823101" }, { "input": "100000 1000000000", "output": "495495496" }, { "input": "41163 472310076", "output": "207304047" }, { "input": "6983 765352180", "output": "586866999" }, { "input": "33493 967727004", "output": "305705165" }, { "input": "90898 94010922", "output": "65928728" }, { "input": "67298 349286579", "output": "156435206" }, { "input": "92452 296773064", "output": "229486976" }, { "input": "58832 563860457", "output": "16775206" }, { "input": "90234 156145441", "output": "44023160" }, { "input": "91454 977186148", "output": "681779748" }, { "input": "11108 444095250", "output": "188075844" }, { "input": "46304 584475527", "output": "275627129" }, { "input": "1 1", "output": "0" }, { "input": "1 1000000000", "output": "11" }, { "input": "100000 1", "output": "0" } ]
1,512,228,324
4,824
Python 3
RUNTIME_ERROR
PRETESTS
2
140
5,632,000
mlist=[] ctr=0 n=0 a,b = map(int,input().split()) while n<=100001: mstr=str(n) if mstr==mstr[::-1]: if int(mstr) > 10: mlist.append(mstr) n+=1 i = 0 z = 0 while i < a: z+=int(mlist[i]) i+=1 print (z % b)
Title: Chtholly's request Time Limit: None seconds Memory Limit: None megabytes Problem Description: — I experienced so many great things. — You gave me memories like dreams... But I have to leave now... — One last request, can you... — Help me solve a Codeforces problem? — ...... — What? Chtholly has been thinking about a problem for days: If a number is palindrome and length of its decimal representation without leading zeros is even, we call it a zcy number. A number is palindrome means when written in decimal representation, it contains no leading zeros and reads the same forwards and backwards. For example 12321 and 1221 are palindromes and 123 and 12451 are not. Moreover, 1221 is zcy number and 12321 is not. Given integers *k* and *p*, calculate the sum of the *k* smallest zcy numbers and output this sum modulo *p*. Unfortunately, Willem isn't good at solving this kind of problems, so he asks you for help! Input Specification: The first line contains two integers *k* and *p* (1<=≤<=*k*<=≤<=105,<=1<=≤<=*p*<=≤<=109). Output Specification: Output single integer — answer to the problem. Demo Input: ['2 100\n', '5 30\n'] Demo Output: ['33\n', '15\n'] Note: In the first example, the smallest zcy number is 11, and the second smallest zcy number is 22. In the second example, <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/68fffad54395f7d920ad0384e07c6215ddc64141.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
```python mlist=[] ctr=0 n=0 a,b = map(int,input().split()) while n<=100001: mstr=str(n) if mstr==mstr[::-1]: if int(mstr) > 10: mlist.append(mstr) n+=1 i = 0 z = 0 while i < a: z+=int(mlist[i]) i+=1 print (z % b) ```
-1
776
A
A Serial Killer
PROGRAMMING
900
[ "brute force", "implementation", "strings" ]
null
null
Our beloved detective, Sherlock is currently trying to catch a serial killer who kills a person each day. Using his powers of deduction, he came to know that the killer has a strategy for selecting his next victim. The killer starts with two potential victims on his first day, selects one of these two, kills selected victim and replaces him with a new person. He repeats this procedure each day. This way, each day he has two potential victims to choose from. Sherlock knows the initial two potential victims. Also, he knows the murder that happened on a particular day and the new person who replaced this victim. You need to help him get all the pairs of potential victims at each day so that Sherlock can observe some pattern.
First line of input contains two names (length of each of them doesn't exceed 10), the two initials potential victims. Next line contains integer *n* (1<=≤<=*n*<=≤<=1000), the number of days. Next *n* lines contains two names (length of each of them doesn't exceed 10), first being the person murdered on this day and the second being the one who replaced that person. The input format is consistent, that is, a person murdered is guaranteed to be from the two potential victims at that time. Also, all the names are guaranteed to be distinct and consists of lowercase English letters.
Output *n*<=+<=1 lines, the *i*-th line should contain the two persons from which the killer selects for the *i*-th murder. The (*n*<=+<=1)-th line should contain the two persons from which the next victim is selected. In each line, the two names can be printed in any order.
[ "ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chandler\n", "icm codeforces\n1\ncodeforces technex\n" ]
[ "ross rachel\njoey rachel\njoey phoebe\njoey monica\njoey chandler\n", "icm codeforces\nicm technex\n" ]
In first example, the killer starts with ross and rachel. - After day 1, ross is killed and joey appears. - After day 2, rachel is killed and phoebe appears. - After day 3, phoebe is killed and monica appears. - After day 4, monica is killed and chandler appears.
500
[ { "input": "ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chandler", "output": "ross rachel\njoey rachel\njoey phoebe\njoey monica\njoey chandler" }, { "input": "icm codeforces\n1\ncodeforces technex", "output": "icm codeforces\nicm technex" }, { "input": "a b\n3\na c\nb d\nd e", "output": "a b\nc b\nc d\nc e" }, { "input": "ze udggmyop\n4\nze szhrbmft\nudggmyop mjorab\nszhrbmft ojdtfnzxj\nojdtfnzxj yjlkg", "output": "ze udggmyop\nszhrbmft udggmyop\nszhrbmft mjorab\nojdtfnzxj mjorab\nyjlkg mjorab" }, { "input": "q s\n10\nq b\nb j\ns g\nj f\nf m\ng c\nc a\nm d\nd z\nz o", "output": "q s\nb s\nj s\nj g\nf g\nm g\nm c\nm a\nd a\nz a\no a" }, { "input": "iii iiiiii\n7\niii iiiiiiiiii\niiiiiiiiii iiii\niiii i\niiiiii iiiiiiii\niiiiiiii iiiiiiiii\ni iiiii\niiiii ii", "output": "iii iiiiii\niiiiiiiiii iiiiii\niiii iiiiii\ni iiiiii\ni iiiiiiii\ni iiiiiiiii\niiiii iiiiiiiii\nii iiiiiiiii" }, { "input": "bwyplnjn zkms\n26\nzkms nzmcsytxh\nnzmcsytxh yujsb\nbwyplnjn gtbzhudpb\ngtbzhudpb hpk\nyujsb xvy\nhpk wrwnfokml\nwrwnfokml ndouuikw\nndouuikw ucgrja\nucgrja tgfmpldz\nxvy nycrfphn\nnycrfphn quvs\nquvs htdy\nhtdy k\ntgfmpldz xtdpkxm\nxtdpkxm suwqxs\nk fv\nsuwqxs qckllwy\nqckllwy diun\nfv lefa\nlefa gdoqjysx\ndiun dhpz\ngdoqjysx bdmqdyt\ndhpz dgz\ndgz v\nbdmqdyt aswy\naswy ydkayhlrnm", "output": "bwyplnjn zkms\nbwyplnjn nzmcsytxh\nbwyplnjn yujsb\ngtbzhudpb yujsb\nhpk yujsb\nhpk xvy\nwrwnfokml xvy\nndouuikw xvy\nucgrja xvy\ntgfmpldz xvy\ntgfmpldz nycrfphn\ntgfmpldz quvs\ntgfmpldz htdy\ntgfmpldz k\nxtdpkxm k\nsuwqxs k\nsuwqxs fv\nqckllwy fv\ndiun fv\ndiun lefa\ndiun gdoqjysx\ndhpz gdoqjysx\ndhpz bdmqdyt\ndgz bdmqdyt\nv bdmqdyt\nv aswy\nv ydkayhlrnm" }, { "input": "wxz hbeqwqp\n7\nhbeqwqp cpieghnszh\ncpieghnszh tlqrpd\ntlqrpd ttwrtio\nttwrtio xapvds\nxapvds zk\nwxz yryk\nzk b", "output": "wxz hbeqwqp\nwxz cpieghnszh\nwxz tlqrpd\nwxz ttwrtio\nwxz xapvds\nwxz zk\nyryk zk\nyryk b" }, { "input": "wced gnsgv\n23\ngnsgv japawpaf\njapawpaf nnvpeu\nnnvpeu a\na ddupputljq\nddupputljq qyhnvbh\nqyhnvbh pqwijl\nwced khuvs\nkhuvs bjkh\npqwijl ysacmboc\nbjkh srf\nsrf jknoz\njknoz hodf\nysacmboc xqtkoyh\nhodf rfp\nxqtkoyh bivgnwqvoe\nbivgnwqvoe nknf\nnknf wuig\nrfp e\ne bqqknq\nwuig sznhhhu\nbqqknq dhrtdld\ndhrtdld n\nsznhhhu bguylf", "output": "wced gnsgv\nwced japawpaf\nwced nnvpeu\nwced a\nwced ddupputljq\nwced qyhnvbh\nwced pqwijl\nkhuvs pqwijl\nbjkh pqwijl\nbjkh ysacmboc\nsrf ysacmboc\njknoz ysacmboc\nhodf ysacmboc\nhodf xqtkoyh\nrfp xqtkoyh\nrfp bivgnwqvoe\nrfp nknf\nrfp wuig\ne wuig\nbqqknq wuig\nbqqknq sznhhhu\ndhrtdld sznhhhu\nn sznhhhu\nn bguylf" }, { "input": "qqqqqqqqqq qqqqqqqq\n3\nqqqqqqqq qqqqqqqqq\nqqqqqqqqq qqqqq\nqqqqq q", "output": "qqqqqqqqqq qqqqqqqq\nqqqqqqqqqq qqqqqqqqq\nqqqqqqqqqq qqqqq\nqqqqqqqqqq q" }, { "input": "wwwww w\n8\nwwwww wwwwwwww\nwwwwwwww wwwwwwwww\nwwwwwwwww wwwwwwwwww\nw www\nwwwwwwwwww wwww\nwwww ww\nwww wwwwww\nwwwwww wwwwwww", "output": "wwwww w\nwwwwwwww w\nwwwwwwwww w\nwwwwwwwwww w\nwwwwwwwwww www\nwwww www\nww www\nww wwwwww\nww wwwwwww" }, { "input": "k d\n17\nk l\nd v\nv z\nl r\nz i\nr s\ns p\np w\nw j\nj h\ni c\nh m\nm q\nc o\no g\nq x\nx n", "output": "k d\nl d\nl v\nl z\nr z\nr i\ns i\np i\nw i\nj i\nh i\nh c\nm c\nq c\nq o\nq g\nx g\nn g" } ]
1,630,550,427
2,147,483,647
Python 3
OK
TESTS
57
77
6,758,400
a,b = input().split() print(a,b) for _ in range(int(input())): c,d = input().split() if a == c: a = d print(a,b) elif b == c: b = d print(a,b)
Title: A Serial Killer Time Limit: None seconds Memory Limit: None megabytes Problem Description: Our beloved detective, Sherlock is currently trying to catch a serial killer who kills a person each day. Using his powers of deduction, he came to know that the killer has a strategy for selecting his next victim. The killer starts with two potential victims on his first day, selects one of these two, kills selected victim and replaces him with a new person. He repeats this procedure each day. This way, each day he has two potential victims to choose from. Sherlock knows the initial two potential victims. Also, he knows the murder that happened on a particular day and the new person who replaced this victim. You need to help him get all the pairs of potential victims at each day so that Sherlock can observe some pattern. Input Specification: First line of input contains two names (length of each of them doesn't exceed 10), the two initials potential victims. Next line contains integer *n* (1<=≤<=*n*<=≤<=1000), the number of days. Next *n* lines contains two names (length of each of them doesn't exceed 10), first being the person murdered on this day and the second being the one who replaced that person. The input format is consistent, that is, a person murdered is guaranteed to be from the two potential victims at that time. Also, all the names are guaranteed to be distinct and consists of lowercase English letters. Output Specification: Output *n*<=+<=1 lines, the *i*-th line should contain the two persons from which the killer selects for the *i*-th murder. The (*n*<=+<=1)-th line should contain the two persons from which the next victim is selected. In each line, the two names can be printed in any order. Demo Input: ['ross rachel\n4\nross joey\nrachel phoebe\nphoebe monica\nmonica chandler\n', 'icm codeforces\n1\ncodeforces technex\n'] Demo Output: ['ross rachel\njoey rachel\njoey phoebe\njoey monica\njoey chandler\n', 'icm codeforces\nicm technex\n'] Note: In first example, the killer starts with ross and rachel. - After day 1, ross is killed and joey appears. - After day 2, rachel is killed and phoebe appears. - After day 3, phoebe is killed and monica appears. - After day 4, monica is killed and chandler appears.
```python a,b = input().split() print(a,b) for _ in range(int(input())): c,d = input().split() if a == c: a = d print(a,b) elif b == c: b = d print(a,b) ```
3
869
B
The Eternal Immortality
PROGRAMMING
1,100
[ "math" ]
null
null
Even if the world is full of counterfeits, I still regard it as wonderful. Pile up herbs and incense, and arise again from the flames and ashes of its predecessor — as is known to many, the phoenix does it like this. The phoenix has a rather long lifespan, and reincarnates itself once every *a*! years. Here *a*! denotes the factorial of integer *a*, that is, *a*!<==<=1<=×<=2<=×<=...<=×<=*a*. Specifically, 0!<==<=1. Koyomi doesn't care much about this, but before he gets into another mess with oddities, he is interested in the number of times the phoenix will reincarnate in a timespan of *b*! years, that is, . Note that when *b*<=≥<=*a* this value is always integer. As the answer can be quite large, it would be enough for Koyomi just to know the last digit of the answer in decimal representation. And you're here to provide Koyomi with this knowledge.
The first and only line of input contains two space-separated integers *a* and *b* (0<=≤<=*a*<=≤<=*b*<=≤<=1018).
Output one line containing a single decimal digit — the last digit of the value that interests Koyomi.
[ "2 4\n", "0 10\n", "107 109\n" ]
[ "2\n", "0\n", "2\n" ]
In the first example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/99c47ca8b182f097e38094d12f0c06ce0b081b76.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2; In the second example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9642ef11a23e7c5a3f3c2b1255c1b1b3533802a4.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 0; In the third example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/844938cef52ee264c183246d2a9df05cca94dc60.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2.
1,000
[ { "input": "2 4", "output": "2" }, { "input": "0 10", "output": "0" }, { "input": "107 109", "output": "2" }, { "input": "10 13", "output": "6" }, { "input": "998244355 998244359", "output": "4" }, { "input": "999999999000000000 1000000000000000000", "output": "0" }, { "input": "2 3", "output": "3" }, { "input": "3 15", "output": "0" }, { "input": "24 26", "output": "0" }, { "input": "14 60", "output": "0" }, { "input": "11 79", "output": "0" }, { "input": "1230 1232", "output": "2" }, { "input": "2633 2634", "output": "4" }, { "input": "535 536", "output": "6" }, { "input": "344319135 396746843", "output": "0" }, { "input": "696667767 696667767", "output": "1" }, { "input": "419530302 610096911", "output": "0" }, { "input": "238965115 821731161", "output": "0" }, { "input": "414626436 728903812", "output": "0" }, { "input": "274410639 293308324", "output": "0" }, { "input": "650636673091305697 650636673091305702", "output": "0" }, { "input": "651240548333620923 651240548333620924", "output": "4" }, { "input": "500000000000000000 1000000000000000000", "output": "0" }, { "input": "999999999999999999 1000000000000000000", "output": "0" }, { "input": "1000000000000000000 1000000000000000000", "output": "1" }, { "input": "0 4", "output": "4" }, { "input": "50000000062000007 50000000062000011", "output": "0" }, { "input": "0 0", "output": "1" }, { "input": "1 1", "output": "1" }, { "input": "0 2", "output": "2" }, { "input": "10000000000012 10000000000015", "output": "0" }, { "input": "5 5", "output": "1" }, { "input": "12 23", "output": "0" }, { "input": "0 11", "output": "0" }, { "input": "11111234567890 11111234567898", "output": "0" }, { "input": "0 3", "output": "6" }, { "input": "1 2", "output": "2" }, { "input": "999999999999999997 999999999999999999", "output": "2" }, { "input": "4 5", "output": "5" }, { "input": "0 1", "output": "1" }, { "input": "101 1002", "output": "0" }, { "input": "0 100000000000000001", "output": "0" }, { "input": "99999999999999997 99999999999999999", "output": "2" }, { "input": "14 15", "output": "5" }, { "input": "8 19", "output": "0" }, { "input": "12 22", "output": "0" }, { "input": "999999999999996 999999999999999", "output": "4" }, { "input": "1 3", "output": "6" }, { "input": "124 125", "output": "5" }, { "input": "11 32", "output": "0" }, { "input": "0 5", "output": "0" }, { "input": "0 999999", "output": "0" }, { "input": "151151151515 151151151526", "output": "0" }, { "input": "6 107", "output": "0" }, { "input": "5 16", "output": "0" }, { "input": "7 16", "output": "0" }, { "input": "6 19", "output": "0" }, { "input": "11113111111111 13111111111111", "output": "0" }, { "input": "1 1000", "output": "0" }, { "input": "24 25", "output": "5" }, { "input": "0 100000000000", "output": "0" }, { "input": "1 22", "output": "0" }, { "input": "999999999999999996 999999999999999999", "output": "4" } ]
1,641,560,636
2,147,483,647
PyPy 3-64
OK
TESTS
63
108
0
a, b = map(int, input().split()) if b - a >= 5: print(0) else: ans = 1 for i in range(a + 1, b + 1): ans = ans * i % 10 print(ans)
Title: The Eternal Immortality Time Limit: None seconds Memory Limit: None megabytes Problem Description: Even if the world is full of counterfeits, I still regard it as wonderful. Pile up herbs and incense, and arise again from the flames and ashes of its predecessor — as is known to many, the phoenix does it like this. The phoenix has a rather long lifespan, and reincarnates itself once every *a*! years. Here *a*! denotes the factorial of integer *a*, that is, *a*!<==<=1<=×<=2<=×<=...<=×<=*a*. Specifically, 0!<==<=1. Koyomi doesn't care much about this, but before he gets into another mess with oddities, he is interested in the number of times the phoenix will reincarnate in a timespan of *b*! years, that is, . Note that when *b*<=≥<=*a* this value is always integer. As the answer can be quite large, it would be enough for Koyomi just to know the last digit of the answer in decimal representation. And you're here to provide Koyomi with this knowledge. Input Specification: The first and only line of input contains two space-separated integers *a* and *b* (0<=≤<=*a*<=≤<=*b*<=≤<=1018). Output Specification: Output one line containing a single decimal digit — the last digit of the value that interests Koyomi. Demo Input: ['2 4\n', '0 10\n', '107 109\n'] Demo Output: ['2\n', '0\n', '2\n'] Note: In the first example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/99c47ca8b182f097e38094d12f0c06ce0b081b76.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2; In the second example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/9642ef11a23e7c5a3f3c2b1255c1b1b3533802a4.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 0; In the third example, the last digit of <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/844938cef52ee264c183246d2a9df05cca94dc60.png" style="max-width: 100.0%;max-height: 100.0%;"/> is 2.
```python a, b = map(int, input().split()) if b - a >= 5: print(0) else: ans = 1 for i in range(a + 1, b + 1): ans = ans * i % 10 print(ans) ```
3
205
A
Little Elephant and Rozdil
PROGRAMMING
900
[ "brute force", "implementation" ]
null
null
The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. "Rozdil"). However, Rozdil is dangerous to settle, so the Little Elephant wants to go to some other town. The Little Elephant doesn't like to spend much time on travelling, so for his journey he will choose a town that needs minimum time to travel to. If there are multiple such cities, then the Little Elephant won't go anywhere. For each town except for Rozdil you know the time needed to travel to this town. Find the town the Little Elephant will go to or print "Still Rozdil", if he stays in Rozdil.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of cities. The next line contains *n* integers, separated by single spaces: the *i*-th integer represents the time needed to go from town Rozdil to the *i*-th town. The time values are positive integers, not exceeding 109. You can consider the cities numbered from 1 to *n*, inclusive. Rozdil is not among the numbered cities.
Print the answer on a single line — the number of the town the Little Elephant will go to. If there are multiple cities with minimum travel time, print "Still Rozdil" (without the quotes).
[ "2\n7 4\n", "7\n7 4 47 100 4 9 12\n" ]
[ "2\n", "Still Rozdil\n" ]
In the first sample there are only two cities where the Little Elephant can go. The travel time for the first town equals 7, to the second one — 4. The town which is closest to Rodzil (the only one) is the second one, so the answer is 2. In the second sample the closest cities are cities two and five, the travelling time to both of them equals 4, so the answer is "Still Rozdil".
500
[ { "input": "2\n7 4", "output": "2" }, { "input": "7\n7 4 47 100 4 9 12", "output": "Still Rozdil" }, { "input": "1\n47", "output": "1" }, { "input": "2\n1000000000 1000000000", "output": "Still Rozdil" }, { "input": "7\n7 6 5 4 3 2 1", "output": "7" }, { "input": "10\n1 1 1 1 1 1 1 1 1 1", "output": "Still Rozdil" }, { "input": "4\n1000000000 100000000 1000000 1000000", "output": "Still Rozdil" }, { "input": "20\n7 1 1 2 1 1 8 7 7 8 4 3 7 10 5 3 10 5 10 6", "output": "Still Rozdil" }, { "input": "20\n3 3 6 9 8 2 4 1 7 3 2 9 7 7 9 7 2 6 2 7", "output": "8" }, { "input": "47\n35 79 84 56 67 95 80 34 77 68 14 55 95 32 40 89 58 79 96 66 50 79 35 86 31 74 91 35 22 72 84 38 11 59 73 51 65 11 11 62 30 12 32 71 69 15 11", "output": "Still Rozdil" }, { "input": "47\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3", "output": "32" }, { "input": "25\n73 56 65 70 57 57 49 50 65 68 54 48 66 55 55 66 60 70 47 62 63 70 62 70 63", "output": "19" }, { "input": "100\n922 938 103 689 526 118 314 496 373 47 224 544 495 656 804 754 269 356 354 536 817 597 787 178 516 659 790 993 786 169 866 779 997 350 674 437 219 546 564 893 402 449 751 628 238 686 392 951 716 439 332 563 215 146 746 311 866 773 548 675 731 183 890 802 488 944 473 25 662 559 732 534 777 144 502 593 839 692 84 337 679 718 1005 663 709 940 86 469 310 960 902 233 606 761 116 231 662 903 68 622", "output": "68" }, { "input": "5\n5 5 2 3 1", "output": "5" }, { "input": "1\n1000000000", "output": "1" }, { "input": "3\n7 7 4", "output": "3" }, { "input": "3\n2 2 1", "output": "3" }, { "input": "3\n4 4 3", "output": "3" }, { "input": "2\n10000001 10000002", "output": "1" }, { "input": "4\n3 3 2 1", "output": "4" }, { "input": "3\n1 2 3", "output": "1" }, { "input": "2\n1000000000 100000000", "output": "2" }, { "input": "1\n99999999", "output": "1" }, { "input": "3\n5 5 3", "output": "3" }, { "input": "3\n7 7 5", "output": "3" }, { "input": "3\n3 3 1", "output": "3" }, { "input": "4\n10 10 10 1", "output": "4" } ]
1,664,295,982
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
92
0
t = int(input()) sr = [] for i in range(t): n = str(input()).split() for i in n: sr.append(int(i)) a = min(sr) sr[sr.index(min(sr))] = 99999 b = min(sr) if a == b: print('Still Rozdil') else: print(a)
Title: Little Elephant and Rozdil Time Limit: None seconds Memory Limit: None megabytes Problem Description: The Little Elephant loves Ukraine very much. Most of all he loves town Rozdol (ukr. "Rozdil"). However, Rozdil is dangerous to settle, so the Little Elephant wants to go to some other town. The Little Elephant doesn't like to spend much time on travelling, so for his journey he will choose a town that needs minimum time to travel to. If there are multiple such cities, then the Little Elephant won't go anywhere. For each town except for Rozdil you know the time needed to travel to this town. Find the town the Little Elephant will go to or print "Still Rozdil", if he stays in Rozdil. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the number of cities. The next line contains *n* integers, separated by single spaces: the *i*-th integer represents the time needed to go from town Rozdil to the *i*-th town. The time values are positive integers, not exceeding 109. You can consider the cities numbered from 1 to *n*, inclusive. Rozdil is not among the numbered cities. Output Specification: Print the answer on a single line — the number of the town the Little Elephant will go to. If there are multiple cities with minimum travel time, print "Still Rozdil" (without the quotes). Demo Input: ['2\n7 4\n', '7\n7 4 47 100 4 9 12\n'] Demo Output: ['2\n', 'Still Rozdil\n'] Note: In the first sample there are only two cities where the Little Elephant can go. The travel time for the first town equals 7, to the second one — 4. The town which is closest to Rodzil (the only one) is the second one, so the answer is 2. In the second sample the closest cities are cities two and five, the travelling time to both of them equals 4, so the answer is "Still Rozdil".
```python t = int(input()) sr = [] for i in range(t): n = str(input()).split() for i in n: sr.append(int(i)) a = min(sr) sr[sr.index(min(sr))] = 99999 b = min(sr) if a == b: print('Still Rozdil') else: print(a) ```
-1
981
A
Antipalindrome
PROGRAMMING
900
[ "brute force", "implementation", "strings" ]
null
null
A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring $s[l \ldots r]$ ($1<=\leq<=l<=\leq<=r<=\leq<=|s|$) of a string $s<==<=s_{1}s_{2} \ldots s_{|s|}$ is the string $s_{l}s_{l<=+<=1} \ldots s_{r}$. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word $s$ is changed into its longest substring that is not a palindrome. If all the substrings of $s$ are palindromes, she skips the word at all. Some time ago Ann read the word $s$. What is the word she changed it into?
The first line contains a non-empty string $s$ with length at most $50$ characters, containing lowercase English letters only.
If there is such a substring in $s$ that is not a palindrome, print the maximum length of such a substring. Otherwise print $0$. Note that there can be multiple longest substrings that are not palindromes, but their length is unique.
[ "mew\n", "wuffuw\n", "qqqqqqqq\n" ]
[ "3\n", "5\n", "0\n" ]
"mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is $3$. The string "uffuw" is one of the longest non-palindrome substrings (of length $5$) of the string "wuffuw", so the answer for the second example is $5$. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is $0$.
500
[ { "input": "mew", "output": "3" }, { "input": "wuffuw", "output": "5" }, { "input": "qqqqqqqq", "output": "0" }, { "input": "ijvji", "output": "4" }, { "input": "iiiiiii", "output": "0" }, { "input": "wobervhvvkihcuyjtmqhaaigvvgiaahqmtjyuchikvvhvrebow", "output": "49" }, { "input": "wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww", "output": "0" }, { "input": "wobervhvvkihcuyjtmqhaaigvahheoqleromusrartldojsjvy", "output": "50" }, { "input": "ijvxljt", "output": "7" }, { "input": "fyhcncnchyf", "output": "10" }, { "input": "ffffffffffff", "output": "0" }, { "input": "fyhcncfsepqj", "output": "12" }, { "input": "ybejrrlbcinttnicblrrjeby", "output": "23" }, { "input": "yyyyyyyyyyyyyyyyyyyyyyyyy", "output": "0" }, { "input": "ybejrrlbcintahovgjddrqatv", "output": "25" }, { "input": "oftmhcmclgyqaojljoaqyglcmchmtfo", "output": "30" }, { "input": "oooooooooooooooooooooooooooooooo", "output": "0" }, { "input": "oftmhcmclgyqaojllbotztajglsmcilv", "output": "32" }, { "input": "gxandbtgpbknxvnkjaajknvxnkbpgtbdnaxg", "output": "35" }, { "input": "gggggggggggggggggggggggggggggggggggg", "output": "0" }, { "input": "gxandbtgpbknxvnkjaygommzqitqzjfalfkk", "output": "36" }, { "input": "fcliblymyqckxvieotjooojtoeivxkcqymylbilcf", "output": "40" }, { "input": "fffffffffffffffffffffffffffffffffffffffffff", "output": "0" }, { "input": "fcliblymyqckxvieotjootiqwtyznhhvuhbaixwqnsy", "output": "43" }, { "input": "rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr", "output": "0" }, { "input": "rajccqwqnqmshmerpvjyfepxwpxyldzpzhctqjnstxyfmlhiy", "output": "49" }, { "input": "a", "output": "0" }, { "input": "abca", "output": "4" }, { "input": "aaaaabaaaaa", "output": "10" }, { "input": "aba", "output": "2" }, { "input": "asaa", "output": "4" }, { "input": "aabaa", "output": "4" }, { "input": "aabbaa", "output": "5" }, { "input": "abcdaaa", "output": "7" }, { "input": "aaholaa", "output": "7" }, { "input": "abcdefghijka", "output": "12" }, { "input": "aaadcba", "output": "7" }, { "input": "aaaabaaaa", "output": "8" }, { "input": "abaa", "output": "4" }, { "input": "abcbaa", "output": "6" }, { "input": "ab", "output": "2" }, { "input": "l", "output": "0" }, { "input": "aaaabcaaaa", "output": "10" }, { "input": "abbaaaaaabba", "output": "11" }, { "input": "abaaa", "output": "5" }, { "input": "baa", "output": "3" }, { "input": "aaaaaaabbba", "output": "11" }, { "input": "ccbcc", "output": "4" }, { "input": "bbbaaab", "output": "7" }, { "input": "abaaaaaaaa", "output": "10" }, { "input": "abaaba", "output": "5" }, { "input": "aabsdfaaaa", "output": "10" }, { "input": "aaaba", "output": "5" }, { "input": "aaabaaa", "output": "6" }, { "input": "baaabbb", "output": "7" }, { "input": "ccbbabbcc", "output": "8" }, { "input": "cabc", "output": "4" }, { "input": "aabcd", "output": "5" }, { "input": "abcdea", "output": "6" }, { "input": "bbabb", "output": "4" }, { "input": "aaaaabababaaaaa", "output": "14" }, { "input": "bbabbb", "output": "6" }, { "input": "aababd", "output": "6" }, { "input": "abaaaa", "output": "6" }, { "input": "aaaaaaaabbba", "output": "12" }, { "input": "aabca", "output": "5" }, { "input": "aaabccbaaa", "output": "9" }, { "input": "aaaaaaaaaaaaaaaaaaaab", "output": "21" }, { "input": "babb", "output": "4" }, { "input": "abcaa", "output": "5" }, { "input": "qwqq", "output": "4" }, { "input": "aaaaaaaaaaabbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaaa", "output": "48" }, { "input": "aaab", "output": "4" }, { "input": "aaaaaabaaaaa", "output": "12" }, { "input": "wwuww", "output": "4" }, { "input": "aaaaabcbaaaaa", "output": "12" }, { "input": "aaabbbaaa", "output": "8" }, { "input": "aabcbaa", "output": "6" }, { "input": "abccdefccba", "output": "11" }, { "input": "aabbcbbaa", "output": "8" }, { "input": "aaaabbaaaa", "output": "9" }, { "input": "aabcda", "output": "6" }, { "input": "abbca", "output": "5" }, { "input": "aaaaaabbaaa", "output": "11" }, { "input": "sssssspssssss", "output": "12" }, { "input": "sdnmsdcs", "output": "8" }, { "input": "aaabbbccbbbaaa", "output": "13" }, { "input": "cbdbdc", "output": "6" }, { "input": "abb", "output": "3" }, { "input": "abcdefaaaa", "output": "10" }, { "input": "abbbaaa", "output": "7" }, { "input": "v", "output": "0" }, { "input": "abccbba", "output": "7" }, { "input": "axyza", "output": "5" }, { "input": "abcdefgaaaa", "output": "11" }, { "input": "aaabcdaaa", "output": "9" }, { "input": "aaaacaaaa", "output": "8" }, { "input": "aaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaa", "output": "42" }, { "input": "abbbaa", "output": "6" }, { "input": "abcdee", "output": "6" }, { "input": "oom", "output": "3" }, { "input": "aabcaa", "output": "6" }, { "input": "abba", "output": "3" }, { "input": "aaca", "output": "4" }, { "input": "aacbca", "output": "6" }, { "input": "ababa", "output": "4" }, { "input": "abcda", "output": "5" }, { "input": "cccaaccc", "output": "7" }, { "input": "aaabcda", "output": "7" }, { "input": "aa", "output": "0" }, { "input": "aabaaaa", "output": "7" }, { "input": "abbaaaa", "output": "7" }, { "input": "aaabcbaaa", "output": "8" }, { "input": "aabba", "output": "5" }, { "input": "xyxx", "output": "4" }, { "input": "aaaaaaaaaaaabc", "output": "14" }, { "input": "bbaaaabb", "output": "7" }, { "input": "aaabaa", "output": "6" }, { "input": "sssssabsssss", "output": "12" }, { "input": "bbbaaaabbb", "output": "9" }, { "input": "abbbbaaaa", "output": "9" }, { "input": "wwufuww", "output": "6" }, { "input": "oowoo", "output": "4" }, { "input": "cccaccc", "output": "6" }, { "input": "aaa", "output": "0" }, { "input": "bbbcc", "output": "5" }, { "input": "abcdef", "output": "6" }, { "input": "abbba", "output": "4" }, { "input": "aab", "output": "3" }, { "input": "aaba", "output": "4" }, { "input": "azbyaaa", "output": "7" }, { "input": "oooooiooooo", "output": "10" }, { "input": "aabbbbbaaaaaa", "output": "13" } ]
1,573,722,620
2,147,483,647
Python 3
OK
TESTS
133
124
0
x=input() ar=[] b=[] for i in x: ar.append(i) for j in x: b.append(j) ar.reverse() if x.count(x[0])!=len(x): if b==ar: print(len(b)-1) else: print(len(b)) else: print("0")
Title: Antipalindrome Time Limit: None seconds Memory Limit: None megabytes Problem Description: A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings "kek", "abacaba", "r" and "papicipap" are palindromes, while the strings "abb" and "iq" are not. A substring $s[l \ldots r]$ ($1<=\leq<=l<=\leq<=r<=\leq<=|s|$) of a string $s<==<=s_{1}s_{2} \ldots s_{|s|}$ is the string $s_{l}s_{l<=+<=1} \ldots s_{r}$. Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word $s$ is changed into its longest substring that is not a palindrome. If all the substrings of $s$ are palindromes, she skips the word at all. Some time ago Ann read the word $s$. What is the word she changed it into? Input Specification: The first line contains a non-empty string $s$ with length at most $50$ characters, containing lowercase English letters only. Output Specification: If there is such a substring in $s$ that is not a palindrome, print the maximum length of such a substring. Otherwise print $0$. Note that there can be multiple longest substrings that are not palindromes, but their length is unique. Demo Input: ['mew\n', 'wuffuw\n', 'qqqqqqqq\n'] Demo Output: ['3\n', '5\n', '0\n'] Note: "mew" is not a palindrome, so the longest substring of it that is not a palindrome, is the string "mew" itself. Thus, the answer for the first example is $3$. The string "uffuw" is one of the longest non-palindrome substrings (of length $5$) of the string "wuffuw", so the answer for the second example is $5$. All substrings of the string "qqqqqqqq" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is $0$.
```python x=input() ar=[] b=[] for i in x: ar.append(i) for j in x: b.append(j) ar.reverse() if x.count(x[0])!=len(x): if b==ar: print(len(b)-1) else: print(len(b)) else: print("0") ```
3
492
B
Vanya and Lanterns
PROGRAMMING
1,200
[ "binary search", "implementation", "math", "sortings" ]
null
null
Vanya walks late at night along a straight street of length *l*, lit by *n* lanterns. Consider the coordinate system with the beginning of the street corresponding to the point 0, and its end corresponding to the point *l*. Then the *i*-th lantern is at the point *a**i*. The lantern lights all points of the street that are at the distance of at most *d* from it, where *d* is some positive number, common for all lanterns. Vanya wonders: what is the minimum light radius *d* should the lanterns have to light the whole street?
The first line contains two integers *n*, *l* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*l*<=≤<=109) — the number of lanterns and the length of the street respectively. The next line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=*l*). Multiple lanterns can be located at the same point. The lanterns may be located at the ends of the street.
Print the minimum light radius *d*, needed to light the whole street. The answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=9.
[ "7 15\n15 5 3 7 9 14 0\n", "2 5\n2 5\n" ]
[ "2.5000000000\n", "2.0000000000\n" ]
Consider the second sample. At *d* = 2 the first lantern will light the segment [0, 4] of the street, and the second lantern will light segment [3, 5]. Thus, the whole street will be lit.
1,000
[ { "input": "7 15\n15 5 3 7 9 14 0", "output": "2.5000000000" }, { "input": "2 5\n2 5", "output": "2.0000000000" }, { "input": "46 615683844\n431749087 271781274 274974690 324606253 480870261 401650581 13285442 478090364 266585394 425024433 588791449 492057200 391293435 563090494 317950 173675329 473068378 356306865 311731938 192959832 321180686 141984626 578985584 512026637 175885185 590844074 47103801 212211134 330150 509886963 565955809 315640375 612907074 500474373 524310737 568681652 315339618 478782781 518873818 271322031 74600969 539099112 85129347 222068995 106014720 77282307", "output": "22258199.5000000000" }, { "input": "2 1000000000\n0 1000000000", "output": "500000000.0000000000" }, { "input": "2 555\n200 300", "output": "255.0000000000" }, { "input": "1 1\n1", "output": "1.0000000000" }, { "input": "1 1\n0", "output": "1.0000000000" }, { "input": "1 1000000000\n0", "output": "1000000000.0000000000" }, { "input": "1 1000000000\n1000000000", "output": "1000000000.0000000000" }, { "input": "1 999999999\n499999999", "output": "500000000.0000000000" }, { "input": "4 700\n0 250 475 700", "output": "125.0000000000" }, { "input": "4 700\n0 225 450 700", "output": "125.0000000000" }, { "input": "5 1000\n0 250 500 750 1000", "output": "125.0000000000" }, { "input": "5 2000\n1001 1001 1001 1001 1001", "output": "1001.0000000000" }, { "input": "1 999\n501", "output": "501.0000000000" }, { "input": "2 1000\n400 600", "output": "400.0000000000" }, { "input": "4 15\n1 3 9 11", "output": "4.0000000000" }, { "input": "1 5\n2", "output": "3.0000000000" } ]
1,694,397,628
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
31
0
def f(index, a): pref_dif = [] max_num = -1 for i in range(index, len(a) - 1): temp = (a[i + 1] - a[i]) / 2 pref_dif.append(temp) max_num = max(temp, max_num) return max_num n, l = map(int, input().split()) a = list(map(int, input().split())) if 0 in a: print(f(0, sorted(a))) else: print(max(f(1, sorted(a)), a[0]))
Title: Vanya and Lanterns Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vanya walks late at night along a straight street of length *l*, lit by *n* lanterns. Consider the coordinate system with the beginning of the street corresponding to the point 0, and its end corresponding to the point *l*. Then the *i*-th lantern is at the point *a**i*. The lantern lights all points of the street that are at the distance of at most *d* from it, where *d* is some positive number, common for all lanterns. Vanya wonders: what is the minimum light radius *d* should the lanterns have to light the whole street? Input Specification: The first line contains two integers *n*, *l* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*l*<=≤<=109) — the number of lanterns and the length of the street respectively. The next line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=*l*). Multiple lanterns can be located at the same point. The lanterns may be located at the ends of the street. Output Specification: Print the minimum light radius *d*, needed to light the whole street. The answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=9. Demo Input: ['7 15\n15 5 3 7 9 14 0\n', '2 5\n2 5\n'] Demo Output: ['2.5000000000\n', '2.0000000000\n'] Note: Consider the second sample. At *d* = 2 the first lantern will light the segment [0, 4] of the street, and the second lantern will light segment [3, 5]. Thus, the whole street will be lit.
```python def f(index, a): pref_dif = [] max_num = -1 for i in range(index, len(a) - 1): temp = (a[i + 1] - a[i]) / 2 pref_dif.append(temp) max_num = max(temp, max_num) return max_num n, l = map(int, input().split()) a = list(map(int, input().split())) if 0 in a: print(f(0, sorted(a))) else: print(max(f(1, sorted(a)), a[0])) ```
0
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,674,203,055
2,147,483,647
Python 3
OK
TESTS
102
46
0
a=input() b=input() j=0 for i in a: if i==b[j]: print('0',end="") else: print('1',end="") j+=1
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python a=input() b=input() j=0 for i in a: if i==b[j]: print('0',end="") else: print('1',end="") j+=1 ```
3.9885
602
B
Approximating a Constant Range
PROGRAMMING
1,400
[ "dp", "implementation", "two pointers" ]
null
null
When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way to determine the equilibrium intensity would be choosing a sufficiently large number of consecutive data points that seems as constant as possible and taking their average. Of course, with the usual sizes of data, it's nothing challenging — but why not make a similar programming contest problem while we're at it? You're given a sequence of *n* data points *a*1,<=...,<=*a**n*. There aren't any big jumps between consecutive data points — for each 1<=≤<=*i*<=&lt;<=*n*, it's guaranteed that |*a**i*<=+<=1<=-<=*a**i*|<=≤<=1. A range [*l*,<=*r*] of data points is said to be almost constant if the difference between the largest and the smallest value in that range is at most 1. Formally, let *M* be the maximum and *m* the minimum value of *a**i* for *l*<=≤<=*i*<=≤<=*r*; the range [*l*,<=*r*] is almost constant if *M*<=-<=*m*<=≤<=1. Find the length of the longest almost constant range.
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the number of data points. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100<=000).
Print a single number — the maximum length of an almost constant range of the given sequence.
[ "5\n1 2 3 3 2\n", "11\n5 4 5 5 6 7 8 8 8 7 6\n" ]
[ "4\n", "5\n" ]
In the first sample, the longest almost constant range is [2, 5]; its length (the number of data points in it) is 4. In the second sample, there are three almost constant ranges of length 4: [1, 4], [6, 9] and [7, 10]; the only almost constant range of the maximum length 5 is [6, 10].
1,000
[ { "input": "5\n1 2 3 3 2", "output": "4" }, { "input": "11\n5 4 5 5 6 7 8 8 8 7 6", "output": "5" }, { "input": "2\n3 2", "output": "2" }, { "input": "4\n1001 1000 1000 1001", "output": "4" }, { "input": "4\n1 1 2 3", "output": "3" }, { "input": "3\n1 2 1", "output": "3" }, { "input": "3\n1 2 3", "output": "2" }, { "input": "18\n10 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9", "output": "3" }, { "input": "3\n1 2 2", "output": "3" }, { "input": "4\n10 9 10 9", "output": "4" }, { "input": "4\n4 3 2 3", "output": "3" }, { "input": "4\n8 8 7 7", "output": "4" }, { "input": "3\n99998 99999 100000", "output": "2" }, { "input": "3\n100000 99999 99998", "output": "2" }, { "input": "3\n1 1 1", "output": "3" }, { "input": "2\n99999 100000", "output": "2" }, { "input": "2\n100000 100000", "output": "2" }, { "input": "2\n1 1", "output": "2" }, { "input": "15\n1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000", "output": "15" } ]
1,687,180,977
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
46
0
n = int(input()) lst = list(map(int, input().split())) a, b = 0, 0 k = -1 ans = 0 while b < n: if abs(lst[b] - lst[a]) <= 1: if lst[b] - lst[a] < 0: b += 1 elif k == -1: k = lst[b] b += 1 elif k == lst[b]: b += 1 else: ans = max(ans, b - a + 1) k = -1 a = b b += 1 else: a = b b += 1 ans = max(ans, b - a + 1) print(ans)
Title: Approximating a Constant Range Time Limit: None seconds Memory Limit: None megabytes Problem Description: When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way to determine the equilibrium intensity would be choosing a sufficiently large number of consecutive data points that seems as constant as possible and taking their average. Of course, with the usual sizes of data, it's nothing challenging — but why not make a similar programming contest problem while we're at it? You're given a sequence of *n* data points *a*1,<=...,<=*a**n*. There aren't any big jumps between consecutive data points — for each 1<=≤<=*i*<=&lt;<=*n*, it's guaranteed that |*a**i*<=+<=1<=-<=*a**i*|<=≤<=1. A range [*l*,<=*r*] of data points is said to be almost constant if the difference between the largest and the smallest value in that range is at most 1. Formally, let *M* be the maximum and *m* the minimum value of *a**i* for *l*<=≤<=*i*<=≤<=*r*; the range [*l*,<=*r*] is almost constant if *M*<=-<=*m*<=≤<=1. Find the length of the longest almost constant range. Input Specification: The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000) — the number of data points. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100<=000). Output Specification: Print a single number — the maximum length of an almost constant range of the given sequence. Demo Input: ['5\n1 2 3 3 2\n', '11\n5 4 5 5 6 7 8 8 8 7 6\n'] Demo Output: ['4\n', '5\n'] Note: In the first sample, the longest almost constant range is [2, 5]; its length (the number of data points in it) is 4. In the second sample, there are three almost constant ranges of length 4: [1, 4], [6, 9] and [7, 10]; the only almost constant range of the maximum length 5 is [6, 10].
```python n = int(input()) lst = list(map(int, input().split())) a, b = 0, 0 k = -1 ans = 0 while b < n: if abs(lst[b] - lst[a]) <= 1: if lst[b] - lst[a] < 0: b += 1 elif k == -1: k = lst[b] b += 1 elif k == lst[b]: b += 1 else: ans = max(ans, b - a + 1) k = -1 a = b b += 1 else: a = b b += 1 ans = max(ans, b - a + 1) print(ans) ```
0
401
A
Vanya and Cards
PROGRAMMING
800
[ "implementation", "math" ]
null
null
Vanya loves playing. He even has a special set of cards to play with. Each card has a single integer. The number on the card can be positive, negative and can even be equal to zero. The only limit is, the number on each card doesn't exceed *x* in the absolute value. Natasha doesn't like when Vanya spends a long time playing, so she hid all of his cards. Vanya became sad and started looking for the cards but he only found *n* of them. Vanya loves the balance, so he wants the sum of all numbers on found cards equal to zero. On the other hand, he got very tired of looking for cards. Help the boy and say what is the minimum number of cards does he need to find to make the sum equal to zero? You can assume that initially Vanya had infinitely many cards with each integer number from <=-<=*x* to *x*.
The first line contains two integers: *n* (1<=≤<=*n*<=≤<=1000) — the number of found cards and *x* (1<=≤<=*x*<=≤<=1000) — the maximum absolute value of the number on a card. The second line contains *n* space-separated integers — the numbers on found cards. It is guaranteed that the numbers do not exceed *x* in their absolute value.
Print a single number — the answer to the problem.
[ "3 2\n-1 1 2\n", "2 3\n-2 -2\n" ]
[ "1\n", "2\n" ]
In the first sample, Vanya needs to find a single card with number -2. In the second sample, Vanya needs to find two cards with number 2. He can't find a single card with the required number as the numbers on the lost cards do not exceed 3 in their absolute value.
500
[ { "input": "3 2\n-1 1 2", "output": "1" }, { "input": "2 3\n-2 -2", "output": "2" }, { "input": "4 4\n1 2 3 4", "output": "3" }, { "input": "2 2\n-1 -1", "output": "1" }, { "input": "15 5\n-2 -1 2 -4 -3 4 -4 -2 -2 2 -2 -1 1 -4 -2", "output": "4" }, { "input": "15 16\n-15 -5 -15 -14 -8 15 -15 -12 -5 -3 5 -7 3 8 -15", "output": "6" }, { "input": "1 4\n-3", "output": "1" }, { "input": "10 7\n6 4 6 6 -3 4 -1 2 3 3", "output": "5" }, { "input": "2 1\n1 -1", "output": "0" }, { "input": "1 1\n0", "output": "0" }, { "input": "8 13\n-11 -1 -11 12 -2 -2 -10 -11", "output": "3" }, { "input": "16 11\n3 -7 7 -9 -2 -3 -4 -2 -6 8 10 7 1 4 6 7", "output": "2" }, { "input": "67 15\n-2 -2 6 -4 -7 4 3 13 -9 -4 11 -7 -6 -11 1 11 -1 11 14 10 -8 7 5 11 -13 1 -1 7 -14 9 -11 -11 13 -4 12 -11 -8 -5 -11 6 10 -2 6 9 9 6 -11 -2 7 -10 -1 9 -8 -5 1 -7 -2 3 -1 -13 -6 -9 -8 10 13 -3 9", "output": "1" }, { "input": "123 222\n44 -190 -188 -185 -55 17 190 176 157 176 -24 -113 -54 -61 -53 53 -77 68 -12 -114 -217 163 -122 37 -37 20 -108 17 -140 -210 218 19 -89 54 18 197 111 -150 -36 -131 -172 36 67 16 -202 72 169 -137 -34 -122 137 -72 196 -17 -104 180 -102 96 -69 -184 21 -15 217 -61 175 -221 62 173 -93 -106 122 -135 58 7 -110 -108 156 -141 -102 -50 29 -204 -46 -76 101 -33 -190 99 52 -197 175 -71 161 -140 155 10 189 -217 -97 -170 183 -88 83 -149 157 -208 154 -3 77 90 74 165 198 -181 -166 -4 -200 -89 -200 131 100 -61 -149", "output": "8" }, { "input": "130 142\n58 -50 43 -126 84 -92 -108 -92 57 127 12 -135 -49 89 141 -112 -31 47 75 -19 80 81 -5 17 10 4 -26 68 -102 -10 7 -62 -135 -123 -16 55 -72 -97 -34 21 21 137 130 97 40 -18 110 -52 73 52 85 103 -134 -107 88 30 66 97 126 82 13 125 127 -87 81 22 45 102 13 95 4 10 -35 39 -43 -112 -5 14 -46 19 61 -44 -116 137 -116 -80 -39 92 -75 29 -65 -15 5 -108 -114 -129 -5 52 -21 118 -41 35 -62 -125 130 -95 -11 -75 19 108 108 127 141 2 -130 54 96 -81 -102 140 -58 -102 132 50 -126 82 6 45 -114 -42", "output": "5" }, { "input": "7 12\n2 5 -1 -4 -7 4 3", "output": "1" }, { "input": "57 53\n-49 7 -41 7 38 -51 -23 8 45 1 -24 26 37 28 -31 -40 38 25 -32 -47 -3 20 -40 -32 -44 -36 5 33 -16 -5 28 10 -22 3 -10 -51 -32 -51 27 -50 -22 -12 41 3 15 24 30 -12 -34 -15 -29 38 -10 -35 -9 6 -51", "output": "8" }, { "input": "93 273\n-268 -170 -163 19 -69 18 -244 35 -34 125 -224 -48 179 -247 127 -150 271 -49 -102 201 84 -151 -70 -46 -16 216 240 127 3 218 -209 223 -227 -201 228 -8 203 46 -100 -207 126 255 40 -58 -217 93 172 -97 23 183 102 -92 -157 -117 173 47 144 -235 -227 -62 -128 13 -151 158 110 -116 68 -2 -148 -206 -52 79 -152 -223 74 -149 -69 232 38 -70 -256 -213 -236 132 -189 -200 199 -57 -108 -53 269 -101 -134", "output": "8" }, { "input": "1 1000\n997", "output": "1" }, { "input": "4 3\n2 -1 -2 -1", "output": "1" }, { "input": "1 1\n-1", "output": "1" }, { "input": "1 1\n1", "output": "1" }, { "input": "2 2\n1 -1", "output": "0" }, { "input": "2 2\n-1 1", "output": "0" }, { "input": "2 3\n-1 1", "output": "0" }, { "input": "2 2\n-2 2", "output": "0" }, { "input": "2 2\n2 2", "output": "2" }, { "input": "4 2\n-1 -1 -1 -1", "output": "2" }, { "input": "4 1\n-1 -1 -1 1", "output": "2" }, { "input": "3 2\n2 2 2", "output": "3" }, { "input": "10 300\n300 300 300 300 300 300 300 300 300 300", "output": "10" } ]
1,628,236,017
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
62
6,758,400
n, x = list(map(int, input().split())) s = abs(sum(list(map(int, input().split())))) counter = s % x counter += 1 print(counter)
Title: Vanya and Cards Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vanya loves playing. He even has a special set of cards to play with. Each card has a single integer. The number on the card can be positive, negative and can even be equal to zero. The only limit is, the number on each card doesn't exceed *x* in the absolute value. Natasha doesn't like when Vanya spends a long time playing, so she hid all of his cards. Vanya became sad and started looking for the cards but he only found *n* of them. Vanya loves the balance, so he wants the sum of all numbers on found cards equal to zero. On the other hand, he got very tired of looking for cards. Help the boy and say what is the minimum number of cards does he need to find to make the sum equal to zero? You can assume that initially Vanya had infinitely many cards with each integer number from <=-<=*x* to *x*. Input Specification: The first line contains two integers: *n* (1<=≤<=*n*<=≤<=1000) — the number of found cards and *x* (1<=≤<=*x*<=≤<=1000) — the maximum absolute value of the number on a card. The second line contains *n* space-separated integers — the numbers on found cards. It is guaranteed that the numbers do not exceed *x* in their absolute value. Output Specification: Print a single number — the answer to the problem. Demo Input: ['3 2\n-1 1 2\n', '2 3\n-2 -2\n'] Demo Output: ['1\n', '2\n'] Note: In the first sample, Vanya needs to find a single card with number -2. In the second sample, Vanya needs to find two cards with number 2. He can't find a single card with the required number as the numbers on the lost cards do not exceed 3 in their absolute value.
```python n, x = list(map(int, input().split())) s = abs(sum(list(map(int, input().split())))) counter = s % x counter += 1 print(counter) ```
0
514
B
Han Solo and Lazer Gun
PROGRAMMING
1,400
[ "brute force", "data structures", "geometry", "implementation", "math" ]
null
null
There are *n* Imperial stormtroopers on the field. The battle field is a plane with Cartesian coordinate system. Each stormtrooper is associated with his coordinates (*x*,<=*y*) on this plane. Han Solo has the newest duplex lazer gun to fight these stormtroopers. It is situated at the point (*x*0,<=*y*0). In one shot it can can destroy all the stormtroopers, situated on some line that crosses point (*x*0,<=*y*0). Your task is to determine what minimum number of shots Han Solo needs to defeat all the stormtroopers. The gun is the newest invention, it shoots very quickly and even after a very large number of shots the stormtroopers don't have enough time to realize what's happening and change their location.
The first line contains three integers *n*, *x*0 и *y*0 (1<=≤<=*n*<=≤<=1000, <=-<=104<=≤<=*x*0,<=*y*0<=≤<=104) — the number of stormtroopers on the battle field and the coordinates of your gun. Next *n* lines contain two integers each *x**i*, *y**i* (<=-<=104<=≤<=*x**i*,<=*y**i*<=≤<=104) — the coordinates of the stormtroopers on the battlefield. It is guaranteed that no stormtrooper stands at the same point with the gun. Multiple stormtroopers can stand at the same point.
Print a single integer — the minimum number of shots Han Solo needs to destroy all the stormtroopers.
[ "4 0 0\n1 1\n2 2\n2 0\n-1 -1\n", "2 1 2\n1 1\n1 0\n" ]
[ "2\n", "1\n" ]
Explanation to the first and second samples from the statement, respectively:
1,000
[ { "input": "4 0 0\n1 1\n2 2\n2 0\n-1 -1", "output": "2" }, { "input": "2 1 2\n1 1\n1 0", "output": "1" }, { "input": "1 1 1\n0 0", "output": "1" }, { "input": "2 0 0\n10000 -10000\n-10000 10000", "output": "1" }, { "input": "2 0 0\n10000 -10000\n10000 10000", "output": "2" }, { "input": "10 -4 -4\n2 -4\n2 0\n-4 2\n5 -4\n-3 -5\n1 4\n-4 2\n-3 5\n0 -3\n2 4", "output": "8" }, { "input": "10 5 -3\n1 1\n2 -1\n2 2\n1 -2\n4 -5\n1 4\n0 1\n1 -4\n-2 0\n-4 -5", "output": "10" }, { "input": "10 -3 3\n3 -5\n4 3\n0 -2\n0 0\n3 -3\n3 5\n4 1\n5 5\n4 -5\n4 -4", "output": "8" }, { "input": "2 -10000 -10000\n10000 10000\n10000 9999", "output": "2" }, { "input": "2 -10000 -10000\n9998 9999\n9999 10000", "output": "2" }, { "input": "2 0 0\n0 1337\n3 9000", "output": "2" }, { "input": "2 0 -1\n0 1\n1 10000", "output": "2" }, { "input": "2 0 0\n0 10\n1 2000", "output": "2" }, { "input": "2 0 0\n0 2\n1 90", "output": "2" }, { "input": "2 0 0\n1001 0\n1001 1", "output": "2" } ]
1,684,504,541
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
3
46
0
def gcd (a,b): if a>0: return gcd(b%a,a) return b coord = set() n,x0,y0=map(int,input().split()) for i in range(n): x,y = map(int,input().split()) x-=x0 y-=y0 g=gcd(x,y) coord.add((x//g,y//g)) print(len(coord))
Title: Han Solo and Lazer Gun Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* Imperial stormtroopers on the field. The battle field is a plane with Cartesian coordinate system. Each stormtrooper is associated with his coordinates (*x*,<=*y*) on this plane. Han Solo has the newest duplex lazer gun to fight these stormtroopers. It is situated at the point (*x*0,<=*y*0). In one shot it can can destroy all the stormtroopers, situated on some line that crosses point (*x*0,<=*y*0). Your task is to determine what minimum number of shots Han Solo needs to defeat all the stormtroopers. The gun is the newest invention, it shoots very quickly and even after a very large number of shots the stormtroopers don't have enough time to realize what's happening and change their location. Input Specification: The first line contains three integers *n*, *x*0 и *y*0 (1<=≤<=*n*<=≤<=1000, <=-<=104<=≤<=*x*0,<=*y*0<=≤<=104) — the number of stormtroopers on the battle field and the coordinates of your gun. Next *n* lines contain two integers each *x**i*, *y**i* (<=-<=104<=≤<=*x**i*,<=*y**i*<=≤<=104) — the coordinates of the stormtroopers on the battlefield. It is guaranteed that no stormtrooper stands at the same point with the gun. Multiple stormtroopers can stand at the same point. Output Specification: Print a single integer — the minimum number of shots Han Solo needs to destroy all the stormtroopers. Demo Input: ['4 0 0\n1 1\n2 2\n2 0\n-1 -1\n', '2 1 2\n1 1\n1 0\n'] Demo Output: ['2\n', '1\n'] Note: Explanation to the first and second samples from the statement, respectively:
```python def gcd (a,b): if a>0: return gcd(b%a,a) return b coord = set() n,x0,y0=map(int,input().split()) for i in range(n): x,y = map(int,input().split()) x-=x0 y-=y0 g=gcd(x,y) coord.add((x//g,y//g)) print(len(coord)) ```
0
1
A
Theatre Square
PROGRAMMING
1,000
[ "math" ]
A. Theatre Square
1
256
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Write the needed number of flagstones.
[ "6 6 4\n" ]
[ "4\n" ]
none
0
[ { "input": "6 6 4", "output": "4" }, { "input": "1 1 1", "output": "1" }, { "input": "2 1 1", "output": "2" }, { "input": "1 2 1", "output": "2" }, { "input": "2 2 1", "output": "4" }, { "input": "2 1 2", "output": "1" }, { "input": "1 1 3", "output": "1" }, { "input": "2 3 4", "output": "1" }, { "input": "1000000000 1000000000 1", "output": "1000000000000000000" }, { "input": "12 13 4", "output": "12" }, { "input": "222 332 5", "output": "3015" }, { "input": "1000 1000 10", "output": "10000" }, { "input": "1001 1000 10", "output": "10100" }, { "input": "100 10001 1000000000", "output": "1" }, { "input": "1000000000 1000000000 1000000000", "output": "1" }, { "input": "1000000000 1000000000 999999999", "output": "4" }, { "input": "1000000000 1000000000 192", "output": "27126743055556" }, { "input": "1000000000 987654321 1", "output": "987654321000000000" }, { "input": "456784567 1000000000 51", "output": "175618850864484" }, { "input": "39916800 134217728 40320", "output": "3295710" } ]
1,667,224,669
2,147,483,647
Python 3
OK
TESTS
20
46
0
n, m, a =map(int,input().split()) need_flagstone=0 x=m//a if (m%a > 0): x+=1 y=n//a if (n%a > 0): y+=1 need_flagstone= x*y print(need_flagstone)
Title: Theatre Square Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square. Input Specification: The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109). Output Specification: Write the needed number of flagstones. Demo Input: ['6 6 4\n'] Demo Output: ['4\n'] Note: none
```python n, m, a =map(int,input().split()) need_flagstone=0 x=m//a if (m%a > 0): x+=1 y=n//a if (n%a > 0): y+=1 need_flagstone= x*y print(need_flagstone) ```
3.977
109
A
Lucky Sum of Digits
PROGRAMMING
1,000
[ "brute force", "implementation" ]
A. Lucky Sum of Digits
2
256
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya wonders eagerly what minimum lucky number has the sum of digits equal to *n*. Help him cope with the task.
The single line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the sum of digits of the required lucky number.
Print on the single line the result — the minimum lucky number, whose sum of digits equals *n*. If such number does not exist, print -1.
[ "11\n", "10\n" ]
[ "47\n", "-1\n" ]
none
500
[ { "input": "11", "output": "47" }, { "input": "10", "output": "-1" }, { "input": "64", "output": "4477777777" }, { "input": "1", "output": "-1" }, { "input": "4", "output": "4" }, { "input": "7", "output": "7" }, { "input": "12", "output": "444" }, { "input": "1000000", "output": "4477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "47", "output": "44477777" }, { "input": "100", "output": "4444777777777777" }, { "input": "700", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "485", "output": "44447777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "111", "output": "444447777777777777" }, { "input": "85", "output": "4477777777777" }, { "input": "114", "output": "444477777777777777" }, { "input": "474", "output": "444777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "74", "output": "47777777777" }, { "input": "1000", "output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "1024", "output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777" }, { "input": "4444", "output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "45784", "output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "10000", "output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "9854", "output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "186", "output": "477777777777777777777777777" }, { "input": "10416", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "10417", "output": "4477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "3840", "output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "100000", "output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "9876", "output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "99999", "output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "777777", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "854759", "output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "11000", "output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "18951", "output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "999999", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "888887", "output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "999998", "output": "4444477777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "40008", "output": "4444447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "10691", "output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "5", "output": "-1" }, { "input": "6", "output": "-1" }, { "input": "9", "output": "-1" }, { "input": "8", "output": "44" }, { "input": "2", "output": "-1" }, { "input": "3", "output": "-1" }, { "input": "999997", "output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "999996", "output": "4777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "999990", "output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "999980", "output": "4444777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "800000", "output": "4447777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." }, { "input": "980000", "output": "7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777..." } ]
1,610,625,781
2,147,483,647
Python 3
OK
TESTS
51
528
307,200
n = int(input()) mini = [] flag = False x = n//4 y = (n//7)+1 for i in range(x+1): if flag: break for j in range(y+1): if i*4+j*7==n: print('4'*i + '7'*j) flag = True break if not flag: print(-1)
Title: Lucky Sum of Digits Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. Petya wonders eagerly what minimum lucky number has the sum of digits equal to *n*. Help him cope with the task. Input Specification: The single line contains an integer *n* (1<=≤<=*n*<=≤<=106) — the sum of digits of the required lucky number. Output Specification: Print on the single line the result — the minimum lucky number, whose sum of digits equals *n*. If such number does not exist, print -1. Demo Input: ['11\n', '10\n'] Demo Output: ['47\n', '-1\n'] Note: none
```python n = int(input()) mini = [] flag = False x = n//4 y = (n//7)+1 for i in range(x+1): if flag: break for j in range(y+1): if i*4+j*7==n: print('4'*i + '7'*j) flag = True break if not flag: print(-1) ```
3.867428
735
D
Taxes
PROGRAMMING
1,600
[ "math", "number theory" ]
null
null
Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to *n* (*n*<=≥<=2) burles and the amount of tax he has to pay is calculated as the maximum divisor of *n* (not equal to *n*, of course). For example, if *n*<==<=6 then Funt has to pay 3 burles, while for *n*<==<=25 he needs to pay 5 and if *n*<==<=2 he pays only 1 burle. As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial *n* in several parts *n*1<=+<=*n*2<=+<=...<=+<=*n**k*<==<=*n* (here *k* is arbitrary, even *k*<==<=1 is allowed) and pay the taxes for each part separately. He can't make some part equal to 1 because it will reveal him. So, the condition *n**i*<=≥<=2 should hold for all *i* from 1 to *k*. Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split *n* in parts.
The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=2·109) — the total year income of mr. Funt.
Print one integer — minimum possible number of burles that mr. Funt has to pay as a tax.
[ "4\n", "27\n" ]
[ "2\n", "3\n" ]
none
1,750
[ { "input": "4", "output": "2" }, { "input": "27", "output": "3" }, { "input": "3", "output": "1" }, { "input": "5", "output": "1" }, { "input": "10", "output": "2" }, { "input": "2000000000", "output": "2" }, { "input": "26", "output": "2" }, { "input": "7", "output": "1" }, { "input": "2", "output": "1" }, { "input": "11", "output": "1" }, { "input": "1000000007", "output": "1" }, { "input": "1000000009", "output": "1" }, { "input": "1999999999", "output": "3" }, { "input": "1000000011", "output": "2" }, { "input": "101", "output": "1" }, { "input": "103", "output": "1" }, { "input": "1001", "output": "3" }, { "input": "1003", "output": "3" }, { "input": "10001", "output": "3" }, { "input": "10003", "output": "3" }, { "input": "129401294", "output": "2" }, { "input": "234911024", "output": "2" }, { "input": "192483501", "output": "3" }, { "input": "1234567890", "output": "2" }, { "input": "719241201", "output": "3" }, { "input": "9", "output": "2" }, { "input": "33", "output": "2" }, { "input": "25", "output": "2" }, { "input": "15", "output": "2" }, { "input": "147", "output": "3" }, { "input": "60119912", "output": "2" }, { "input": "45", "output": "2" }, { "input": "21", "output": "2" }, { "input": "9975", "output": "2" }, { "input": "17", "output": "1" }, { "input": "99", "output": "2" }, { "input": "49", "output": "2" }, { "input": "243", "output": "2" }, { "input": "43", "output": "1" }, { "input": "39", "output": "2" }, { "input": "6", "output": "2" }, { "input": "8", "output": "2" }, { "input": "12", "output": "2" }, { "input": "13", "output": "1" }, { "input": "14", "output": "2" }, { "input": "16", "output": "2" }, { "input": "18", "output": "2" }, { "input": "19", "output": "1" }, { "input": "20", "output": "2" }, { "input": "22", "output": "2" }, { "input": "23", "output": "1" }, { "input": "24", "output": "2" }, { "input": "962", "output": "2" }, { "input": "29", "output": "1" }, { "input": "55", "output": "2" }, { "input": "125", "output": "3" }, { "input": "1999999929", "output": "2" }, { "input": "493", "output": "2" }, { "input": "10000021", "output": "2" }, { "input": "541", "output": "1" }, { "input": "187", "output": "3" }, { "input": "95", "output": "3" }, { "input": "999991817", "output": "3" }, { "input": "37998938", "output": "2" }, { "input": "1847133842", "output": "2" }, { "input": "1000000005", "output": "3" }, { "input": "19828", "output": "2" }, { "input": "998321704", "output": "2" }, { "input": "370359", "output": "3" }, { "input": "115", "output": "2" }, { "input": "200000015", "output": "3" }, { "input": "479001600", "output": "2" }, { "input": "536870912", "output": "2" }, { "input": "10759922", "output": "2" }, { "input": "1999999927", "output": "1" }, { "input": "123", "output": "3" }, { "input": "200743933", "output": "3" }, { "input": "949575615", "output": "3" }, { "input": "99990001", "output": "1" }, { "input": "715827883", "output": "1" }, { "input": "5592406", "output": "2" }, { "input": "8388609", "output": "3" }, { "input": "1908903481", "output": "3" }, { "input": "1076153021", "output": "3" }, { "input": "344472101", "output": "3" } ]
1,671,462,704
2,147,483,647
PyPy 3-64
COMPILATION_ERROR
TESTS
0
0
0
#include <bits/stdc++.h> #define int long long #define f(i,a,b) for(int i = a; i < b; i++) #define pb push_back #define all(a) a.begin(), a.end() #define arraysort(a) sort(a, a + n) #define endl "\n" #define inputarray(a, n) f(i, 0, n) { cin >> a[i]; } #define printarray(a, n) f(i, 0, n) { cout << a[i] << " "; }cout << endl; using namespace std; signed main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int t = 1; // cin >> t; while (t--) { int n, p = 0, q; cin >> n; f(i,2,sqrt(n)+1){ if(n%i==0){ p=1; break; } } if(p==0){ cout << 1 << endl; } else{ if(n%2==0){ cout << 2 << endl; } else{ cout << 3 << endl; } } } }
Title: Taxes Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to *n* (*n*<=≥<=2) burles and the amount of tax he has to pay is calculated as the maximum divisor of *n* (not equal to *n*, of course). For example, if *n*<==<=6 then Funt has to pay 3 burles, while for *n*<==<=25 he needs to pay 5 and if *n*<==<=2 he pays only 1 burle. As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial *n* in several parts *n*1<=+<=*n*2<=+<=...<=+<=*n**k*<==<=*n* (here *k* is arbitrary, even *k*<==<=1 is allowed) and pay the taxes for each part separately. He can't make some part equal to 1 because it will reveal him. So, the condition *n**i*<=≥<=2 should hold for all *i* from 1 to *k*. Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split *n* in parts. Input Specification: The first line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=2·109) — the total year income of mr. Funt. Output Specification: Print one integer — minimum possible number of burles that mr. Funt has to pay as a tax. Demo Input: ['4\n', '27\n'] Demo Output: ['2\n', '3\n'] Note: none
```python #include <bits/stdc++.h> #define int long long #define f(i,a,b) for(int i = a; i < b; i++) #define pb push_back #define all(a) a.begin(), a.end() #define arraysort(a) sort(a, a + n) #define endl "\n" #define inputarray(a, n) f(i, 0, n) { cin >> a[i]; } #define printarray(a, n) f(i, 0, n) { cout << a[i] << " "; }cout << endl; using namespace std; signed main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int t = 1; // cin >> t; while (t--) { int n, p = 0, q; cin >> n; f(i,2,sqrt(n)+1){ if(n%i==0){ p=1; break; } } if(p==0){ cout << 1 << endl; } else{ if(n%2==0){ cout << 2 << endl; } else{ cout << 3 << endl; } } } } ```
-1
748
B
Santa Claus and Keyboard Check
PROGRAMMING
1,500
[ "implementation", "strings" ]
null
null
Santa Claus decided to disassemble his keyboard to clean it. After he returned all the keys back, he suddenly realized that some pairs of keys took each other's place! That is, Santa suspects that each key is either on its place, or on the place of another key, which is located exactly where the first key should be. In order to make sure that he's right and restore the correct order of keys, Santa typed his favorite patter looking only to his keyboard. You are given the Santa's favorite patter and the string he actually typed. Determine which pairs of keys could be mixed. Each key must occur in pairs at most once.
The input consists of only two strings *s* and *t* denoting the favorite Santa's patter and the resulting string. *s* and *t* are not empty and have the same length, which is at most 1000. Both strings consist only of lowercase English letters.
If Santa is wrong, and there is no way to divide some of keys into pairs and swap keys in each pair so that the keyboard will be fixed, print «-1» (without quotes). Otherwise, the first line of output should contain the only integer *k* (*k*<=≥<=0) — the number of pairs of keys that should be swapped. The following *k* lines should contain two space-separated letters each, denoting the keys which should be swapped. All printed letters must be distinct. If there are several possible answers, print any of them. You are free to choose the order of the pairs and the order of keys in a pair. Each letter must occur at most once. Santa considers the keyboard to be fixed if he can print his favorite patter without mistakes.
[ "helloworld\nehoolwlroz\n", "hastalavistababy\nhastalavistababy\n", "merrychristmas\nchristmasmerry\n" ]
[ "3\nh e\nl o\nd z\n", "0\n", "-1\n" ]
none
1,000
[ { "input": "helloworld\nehoolwlroz", "output": "3\nh e\nl o\nd z" }, { "input": "hastalavistababy\nhastalavistababy", "output": "0" }, { "input": "merrychristmas\nchristmasmerry", "output": "-1" }, { "input": "kusyvdgccw\nkusyvdgccw", "output": "0" }, { "input": "bbbbbabbab\naaaaabaaba", "output": "1\nb a" }, { "input": "zzzzzzzzzzzzzzzzzzzzz\nqwertyuiopasdfghjklzx", "output": "-1" }, { "input": "accdccdcdccacddbcacc\naccbccbcbccacbbdcacc", "output": "1\nd b" }, { "input": "giiibdbebjdaihdghahccdeffjhfgidfbdhjdggajfgaidadjd\ngiiibdbebjdaihdghahccdeffjhfgidfbdhjdggajfgaidadjd", "output": "0" }, { "input": "gndggadlmdefgejidmmcglbjdcmglncfmbjjndjcibnjbabfab\nfihffahlmhogfojnhmmcflkjhcmflicgmkjjihjcnkijkakgak", "output": "5\ng f\nn i\nd h\ne o\nb k" }, { "input": "ijpanyhovzwjjxsvaiyhchfaulcsdgfszjnwtoqbtaqygfmxuwvynvlhqhvmkjbooklxfhmqlqvfoxlnoclfxtbhvnkmhjcmrsdc\nijpanyhovzwjjxsvaiyhchfaulcsdgfszjnwtoqbtaqygfmxuwvynvlhqhvmkjbooklxfhmqlqvfoxlnoclfxtbhvnkmhjcmrsdc", "output": "0" }, { "input": "ab\naa", "output": "-1" }, { "input": "a\nz", "output": "1\na z" }, { "input": "zz\nzy", "output": "-1" }, { "input": "as\ndf", "output": "2\na d\ns f" }, { "input": "abc\nbca", "output": "-1" }, { "input": "rtfg\nrftg", "output": "1\nt f" }, { "input": "y\ny", "output": "0" }, { "input": "qwertyuiopasdfghjklzx\nzzzzzzzzzzzzzzzzzzzzz", "output": "-1" }, { "input": "qazwsxedcrfvtgbyhnujmik\nqwertyuiasdfghjkzxcvbnm", "output": "-1" }, { "input": "aaaaaa\nabcdef", "output": "-1" }, { "input": "qwerty\nffffff", "output": "-1" }, { "input": "dofbgdppdvmwjwtdyphhmqliydxyjfxoopxiscevowleccmhwybsxitvujkfliamvqinlrpytyaqdlbywccprukoisyaseibuqbfqjcabkieimsggsakpnqliwhehnemewhychqrfiuyaecoydnromrh\ndofbgdppdvmwjwtdyphhmqliydxyjfxoopxiscevowleccmhwybsxitvujkfliamvqinlrpytyaqdlbywccprukoisyaseibuqbfqjcabkieimsggsakpnqliwhehnemewhychqrfiuyaecoydnromrh", "output": "0" }, { "input": "acdbccddadbcbabbebbaebdcedbbcebeaccecdabadeabeecbacacdcbccedeadadedeccedecdaabcedccccbbcbcedcaccdede\ndcbaccbbdbacadaaeaadeabcebaaceaedccecbdadbedaeecadcdcbcaccebedbdbebeccebecbddacebccccaacacebcdccbebe", "output": "-1" }, { "input": "bacccbbacabbcaacbbba\nbacccbbacabbcaacbbba", "output": "0" }, { "input": "dbadbddddb\nacbacaaaac", "output": "-1" }, { "input": "dacbdbbbdd\nadbdadddaa", "output": "-1" }, { "input": "bbbbcbcbbc\ndaddbabddb", "output": "-1" }, { "input": "dddddbcdbd\nbcbbbdacdb", "output": "-1" }, { "input": "cbadcbcdaa\nabbbababbb", "output": "-1" }, { "input": "dmkgadidjgdjikgkehhfkhgkeamhdkfemikkjhhkdjfaenmkdgenijinamngjgkmgmmedfdehkhdigdnnkhmdkdindhkhndnakdgdhkdefagkedndnijekdmkdfedkhekgdkhgkimfeakdhhhgkkff\nbdenailbmnbmlcnehjjkcgnehadgickhdlecmggcimkahfdeinhflmlfadfnmncdnddhbkbhgejblnbffcgdbeilfigegfifaebnijeihkanehififlmhcbdcikhieghenbejneldkhaebjggncckk", "output": "-1" }, { "input": "acbbccabaa\nabbbbbabaa", "output": "-1" }, { "input": "ccccaccccc\naaaabaaaac", "output": "-1" }, { "input": "acbacacbbb\nacbacacbbb", "output": "0" }, { "input": "abbababbcc\nccccccccbb", "output": "-1" }, { "input": "jbcbbjiifdcbeajgdeabddbfcecafejddcigfcaedbgicjihifgbahjihcjefgabgbccdiibfjgacehbbdjceacdbdeaiibaicih\nhhihhhddcfihddhjfddhffhcididcdhffidjciddfhjdihdhdcjhdhhdhihdcjdhjhiifddhchjdidhhhfhiddifhfddddhddidh", "output": "-1" }, { "input": "ahaeheedefeehahfefhjhhedheeeedhehhfhdejdhffhhejhhhejadhefhahhadjjhdhheeeehfdaffhhefehhhefhhhhehehjda\neiefbdfgdhffieihfhjajifgjddffgifjbhigfagjhhjicaijbdaegidhiejiegaabgjidcfcjhgehhjjchcbjjdhjbiidjdjage", "output": "-1" }, { "input": "fficficbidbcbfaddifbffdbbiaccbbciiaidbcbbiadcccbccbbaibabcbbdbcibcciibiccfifbiiicadibbiaafadacdficbc\nddjhdghbgcbhadeccjdbddcbfjeiiaaigjejcaiabgechiiahibfejbeahafcfhjbihgjfgihdgdagjjhecjafjeedecehcdjhai", "output": "-1" }, { "input": "z\nz", "output": "0" }, { "input": "a\nz", "output": "1\na z" }, { "input": "z\na", "output": "1\nz a" }, { "input": "aa\nzz", "output": "1\na z" }, { "input": "az\nza", "output": "1\na z" }, { "input": "aa\nza", "output": "-1" }, { "input": "za\nzz", "output": "-1" }, { "input": "aa\nab", "output": "-1" }, { "input": "hehe\nheeh", "output": "-1" }, { "input": "bd\ncc", "output": "-1" }, { "input": "he\nhh", "output": "-1" }, { "input": "hee\nheh", "output": "-1" }, { "input": "aa\nac", "output": "-1" }, { "input": "ab\naa", "output": "-1" }, { "input": "hello\nehlol", "output": "-1" }, { "input": "ac\naa", "output": "-1" }, { "input": "aaabbb\nbbbaab", "output": "-1" }, { "input": "aa\nfa", "output": "-1" }, { "input": "hg\nee", "output": "-1" }, { "input": "helloworld\nehoolwlrow", "output": "-1" }, { "input": "abb\nbab", "output": "-1" }, { "input": "aaa\naae", "output": "-1" }, { "input": "aba\nbaa", "output": "-1" }, { "input": "aa\nba", "output": "-1" }, { "input": "da\naa", "output": "-1" }, { "input": "aaa\naab", "output": "-1" }, { "input": "xy\nzz", "output": "-1" } ]
1,487,767,281
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
13
62
4,608,000
''' Created on 22 feb. 2017 @author: Mirela ''' def solve(s,t): ''' determinam perechile ''' n=len(s) d={} ok=True for i in range(n): if s[i]!=t[i]: try: #verific daca se afla printre valorile din sir c1=d[s[i]] #exista deja printre valori if c1!=t[i]: ok=False break except: c1=0 try: c2=d[t[i]] #exista deja if c2!=s[i]: ok=False break except: c2=0 if c1==0 and c2==0: d[s[i]]=t[i] if ok==False: print(-1) elif d=={}: print(0) else: print(len(d)) for i in d: print(i,d[i]) def read(): ''' citim stringurile ''' s=input() t=input() solve(s,t) read()
Title: Santa Claus and Keyboard Check Time Limit: None seconds Memory Limit: None megabytes Problem Description: Santa Claus decided to disassemble his keyboard to clean it. After he returned all the keys back, he suddenly realized that some pairs of keys took each other's place! That is, Santa suspects that each key is either on its place, or on the place of another key, which is located exactly where the first key should be. In order to make sure that he's right and restore the correct order of keys, Santa typed his favorite patter looking only to his keyboard. You are given the Santa's favorite patter and the string he actually typed. Determine which pairs of keys could be mixed. Each key must occur in pairs at most once. Input Specification: The input consists of only two strings *s* and *t* denoting the favorite Santa's patter and the resulting string. *s* and *t* are not empty and have the same length, which is at most 1000. Both strings consist only of lowercase English letters. Output Specification: If Santa is wrong, and there is no way to divide some of keys into pairs and swap keys in each pair so that the keyboard will be fixed, print «-1» (without quotes). Otherwise, the first line of output should contain the only integer *k* (*k*<=≥<=0) — the number of pairs of keys that should be swapped. The following *k* lines should contain two space-separated letters each, denoting the keys which should be swapped. All printed letters must be distinct. If there are several possible answers, print any of them. You are free to choose the order of the pairs and the order of keys in a pair. Each letter must occur at most once. Santa considers the keyboard to be fixed if he can print his favorite patter without mistakes. Demo Input: ['helloworld\nehoolwlroz\n', 'hastalavistababy\nhastalavistababy\n', 'merrychristmas\nchristmasmerry\n'] Demo Output: ['3\nh e\nl o\nd z\n', '0\n', '-1\n'] Note: none
```python ''' Created on 22 feb. 2017 @author: Mirela ''' def solve(s,t): ''' determinam perechile ''' n=len(s) d={} ok=True for i in range(n): if s[i]!=t[i]: try: #verific daca se afla printre valorile din sir c1=d[s[i]] #exista deja printre valori if c1!=t[i]: ok=False break except: c1=0 try: c2=d[t[i]] #exista deja if c2!=s[i]: ok=False break except: c2=0 if c1==0 and c2==0: d[s[i]]=t[i] if ok==False: print(-1) elif d=={}: print(0) else: print(len(d)) for i in d: print(i,d[i]) def read(): ''' citim stringurile ''' s=input() t=input() solve(s,t) read() ```
0
116
A
Tram
PROGRAMMING
800
[ "implementation" ]
null
null
Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty. Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram.
The first line contains a single number *n* (2<=≤<=*n*<=≤<=1000) — the number of the tram's stops. Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=≤<=*a**i*,<=*b**i*<=≤<=1000) — the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement. - The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0.
Print a single integer denoting the minimum possible capacity of the tram (0 is allowed).
[ "4\n0 3\n2 5\n4 2\n4 0\n" ]
[ "6\n" ]
For the first example, a capacity of 6 is sufficient: - At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints. Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer.
500
[ { "input": "4\n0 3\n2 5\n4 2\n4 0", "output": "6" }, { "input": "5\n0 4\n4 6\n6 5\n5 4\n4 0", "output": "6" }, { "input": "10\n0 5\n1 7\n10 8\n5 3\n0 5\n3 3\n8 8\n0 6\n10 1\n9 0", "output": "18" }, { "input": "3\n0 1\n1 1\n1 0", "output": "1" }, { "input": "4\n0 1\n0 1\n1 0\n1 0", "output": "2" }, { "input": "3\n0 0\n0 0\n0 0", "output": "0" }, { "input": "3\n0 1000\n1000 1000\n1000 0", "output": "1000" }, { "input": "5\n0 73\n73 189\n189 766\n766 0\n0 0", "output": "766" }, { "input": "5\n0 0\n0 0\n0 0\n0 1\n1 0", "output": "1" }, { "input": "5\n0 917\n917 923\n904 992\n1000 0\n11 0", "output": "1011" }, { "input": "5\n0 1\n1 2\n2 1\n1 2\n2 0", "output": "2" }, { "input": "5\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "20\n0 7\n2 1\n2 2\n5 7\n2 6\n6 10\n2 4\n0 4\n7 4\n8 0\n10 6\n2 1\n6 1\n1 7\n0 3\n8 7\n6 3\n6 3\n1 1\n3 0", "output": "22" }, { "input": "5\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0", "output": "1000" }, { "input": "10\n0 592\n258 598\n389 203\n249 836\n196 635\n478 482\n994 987\n1000 0\n769 0\n0 0", "output": "1776" }, { "input": "10\n0 1\n1 0\n0 0\n0 0\n0 0\n0 1\n1 1\n0 1\n1 0\n1 0", "output": "2" }, { "input": "10\n0 926\n926 938\n938 931\n931 964\n937 989\n983 936\n908 949\n997 932\n945 988\n988 0", "output": "1016" }, { "input": "10\n0 1\n1 2\n1 2\n2 2\n2 2\n2 2\n1 1\n1 1\n2 1\n2 0", "output": "3" }, { "input": "10\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "10\n0 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 1000\n1000 0", "output": "1000" }, { "input": "50\n0 332\n332 268\n268 56\n56 711\n420 180\n160 834\n149 341\n373 777\n763 93\n994 407\n86 803\n700 132\n471 608\n429 467\n75 5\n638 305\n405 853\n316 478\n643 163\n18 131\n648 241\n241 766\n316 847\n640 380\n923 759\n789 41\n125 421\n421 9\n9 388\n388 829\n408 108\n462 856\n816 411\n518 688\n290 7\n405 912\n397 772\n396 652\n394 146\n27 648\n462 617\n514 433\n780 35\n710 705\n460 390\n194 508\n643 56\n172 469\n1000 0\n194 0", "output": "2071" }, { "input": "50\n0 0\n0 1\n1 1\n0 1\n0 0\n1 0\n0 0\n1 0\n0 0\n0 0\n0 0\n0 0\n0 1\n0 0\n0 0\n0 1\n1 0\n0 1\n0 0\n1 1\n1 0\n0 1\n0 0\n1 1\n0 1\n1 0\n1 1\n1 0\n0 0\n1 1\n1 0\n0 1\n0 0\n0 1\n1 1\n1 1\n1 1\n1 0\n1 1\n1 0\n0 1\n1 0\n0 0\n0 1\n1 1\n1 1\n0 1\n0 0\n1 0\n1 0", "output": "3" }, { "input": "50\n0 926\n926 971\n915 980\n920 965\n954 944\n928 952\n955 980\n916 980\n906 935\n944 913\n905 923\n912 922\n965 934\n912 900\n946 930\n931 983\n979 905\n925 969\n924 926\n910 914\n921 977\n934 979\n962 986\n942 909\n976 903\n982 982\n991 941\n954 929\n902 980\n947 983\n919 924\n917 943\n916 905\n907 913\n964 977\n984 904\n905 999\n950 970\n986 906\n993 970\n960 994\n963 983\n918 986\n980 900\n931 986\n993 997\n941 909\n907 909\n1000 0\n278 0", "output": "1329" }, { "input": "2\n0 863\n863 0", "output": "863" }, { "input": "50\n0 1\n1 2\n2 2\n1 1\n1 1\n1 2\n1 2\n1 1\n1 2\n1 1\n1 1\n1 2\n1 2\n1 1\n2 1\n2 2\n1 2\n2 2\n1 2\n2 1\n2 1\n2 2\n2 1\n1 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n2 2\n2 1\n1 2\n2 2\n1 2\n1 1\n1 1\n2 1\n2 1\n2 2\n2 1\n2 1\n1 2\n1 2\n1 2\n1 2\n2 0\n2 0\n2 0\n0 0", "output": "8" }, { "input": "50\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "100\n0 1\n0 0\n0 0\n1 0\n0 0\n0 1\n0 1\n1 1\n0 0\n0 0\n1 1\n0 0\n1 1\n0 1\n1 1\n0 1\n1 1\n1 0\n1 0\n0 0\n1 0\n0 1\n1 0\n0 0\n0 0\n1 1\n1 1\n0 1\n0 0\n1 0\n1 1\n0 1\n1 0\n1 1\n0 1\n1 1\n1 0\n0 0\n0 0\n0 1\n0 0\n0 1\n1 1\n0 0\n1 1\n1 1\n0 0\n0 1\n1 0\n0 1\n0 0\n0 1\n0 1\n1 1\n1 1\n1 1\n0 0\n0 0\n1 1\n0 1\n0 1\n1 0\n0 0\n0 0\n1 1\n0 1\n0 1\n1 1\n1 1\n0 1\n1 1\n1 1\n0 0\n1 0\n0 1\n0 0\n0 0\n1 1\n1 1\n1 1\n1 1\n0 1\n1 0\n1 0\n1 0\n1 0\n1 0\n0 0\n1 0\n1 0\n0 0\n1 0\n0 0\n0 1\n1 0\n0 1\n1 0\n1 0\n1 0\n1 0", "output": "11" }, { "input": "100\n0 2\n1 2\n2 1\n1 2\n1 2\n2 1\n2 2\n1 1\n1 1\n2 1\n1 2\n2 1\n1 2\n2 2\n2 2\n2 2\n1 2\n2 2\n2 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 2\n1 1\n1 1\n1 1\n1 1\n2 2\n1 2\n2 1\n1 1\n2 2\n1 1\n2 1\n1 1\n2 2\n2 1\n1 2\n1 1\n1 2\n2 1\n2 2\n1 1\n2 1\n1 1\n2 1\n1 1\n1 2\n2 2\n2 2\n1 1\n2 2\n1 2\n2 1\n2 1\n1 1\n1 1\n1 2\n1 2\n1 1\n1 1\n2 1\n1 2\n1 2\n2 1\n2 2\n2 2\n2 2\n2 1\n2 2\n1 1\n1 2\n1 2\n1 1\n2 2\n2 2\n1 1\n2 1\n1 1\n1 2\n1 2\n1 2\n1 1\n1 1\n2 2\n1 2\n2 1\n2 1\n2 1\n1 2\n1 2\n1 1\n2 2\n1 2\n2 0\n2 0\n2 0\n1 0", "output": "7" }, { "input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "2\n0 1\n1 0", "output": "1" }, { "input": "2\n0 900\n900 0", "output": "900" }, { "input": "2\n0 1\n1 0", "output": "1" }, { "input": "2\n0 0\n0 0", "output": "0" }, { "input": "2\n0 1000\n1000 0", "output": "1000" }, { "input": "3\n0 802\n175 188\n815 0", "output": "815" }, { "input": "3\n0 910\n910 976\n976 0", "output": "976" }, { "input": "3\n0 2\n2 1\n1 0", "output": "2" } ]
1,690,536,129
2,147,483,647
PyPy 3-64
OK
TESTS
71
216
1,638,400
import math t = int(input()) a = 0 b = 0 for i in range(t): s,x = map(int, input().split()) b = b-s+x a = max(a,b) print(a)
Title: Tram Time Limit: None seconds Memory Limit: None megabytes Problem Description: Linear Kingdom has exactly one tram line. It has *n* stops, numbered from 1 to *n* in the order of tram's movement. At the *i*-th stop *a**i* passengers exit the tram, while *b**i* passengers enter it. The tram is empty before it arrives at the first stop. Also, when the tram arrives at the last stop, all passengers exit so that it becomes empty. Your task is to calculate the tram's minimum capacity such that the number of people inside the tram at any time never exceeds this capacity. Note that at each stop all exiting passengers exit before any entering passenger enters the tram. Input Specification: The first line contains a single number *n* (2<=≤<=*n*<=≤<=1000) — the number of the tram's stops. Then *n* lines follow, each contains two integers *a**i* and *b**i* (0<=≤<=*a**i*,<=*b**i*<=≤<=1000) — the number of passengers that exits the tram at the *i*-th stop, and the number of passengers that enter the tram at the *i*-th stop. The stops are given from the first to the last stop in the order of tram's movement. - The number of people who exit at a given stop does not exceed the total number of people in the tram immediately before it arrives at the stop. More formally, . This particularly means that *a*1<==<=0. - At the last stop, all the passengers exit the tram and it becomes empty. More formally, . - No passenger will enter the train at the last stop. That is, *b**n*<==<=0. Output Specification: Print a single integer denoting the minimum possible capacity of the tram (0 is allowed). Demo Input: ['4\n0 3\n2 5\n4 2\n4 0\n'] Demo Output: ['6\n'] Note: For the first example, a capacity of 6 is sufficient: - At the first stop, the number of passengers inside the tram before arriving is 0. Then, 3 passengers enter the tram, and the number of passengers inside the tram becomes 3. - At the second stop, 2 passengers exit the tram (1 passenger remains inside). Then, 5 passengers enter the tram. There are 6 passengers inside the tram now. - At the third stop, 4 passengers exit the tram (2 passengers remain inside). Then, 2 passengers enter the tram. There are 4 passengers inside the tram now. - Finally, all the remaining passengers inside the tram exit the tram at the last stop. There are no passenger inside the tram now, which is in line with the constraints. Since the number of passengers inside the tram never exceeds 6, a capacity of 6 is sufficient. Furthermore it is not possible for the tram to have a capacity less than 6. Hence, 6 is the correct answer.
```python import math t = int(input()) a = 0 b = 0 for i in range(t): s,x = map(int, input().split()) b = b-s+x a = max(a,b) print(a) ```
3
566
D
Restructuring Company
PROGRAMMING
1,900
[ "data structures", "dsu" ]
null
null
Even the most successful company can go through a crisis period when you have to make a hard decision — to restructure, discard and merge departments, fire employees and do other unpleasant stuff. Let's consider the following model of a company. There are *n* people working for the Large Software Company. Each person belongs to some department. Initially, each person works on his own project in his own department (thus, each company initially consists of *n* departments, one person in each). However, harsh times have come to the company and the management had to hire a crisis manager who would rebuild the working process in order to boost efficiency. Let's use *team*(*person*) to represent a team where person *person* works. A crisis manager can make decisions of two types: 1. Merge departments *team*(*x*) and *team*(*y*) into one large department containing all the employees of *team*(*x*) and *team*(*y*), where *x* and *y* (1<=≤<=*x*,<=*y*<=≤<=*n*) — are numbers of two of some company employees. If *team*(*x*) matches *team*(*y*), then nothing happens. 1. Merge departments *team*(*x*),<=*team*(*x*<=+<=1),<=...,<=*team*(*y*), where *x* and *y* (1<=≤<=*x*<=≤<=*y*<=≤<=*n*) — the numbers of some two employees of the company. At that the crisis manager can sometimes wonder whether employees *x* and *y* (1<=≤<=*x*,<=*y*<=≤<=*n*) work at the same department. Help the crisis manager and answer all of his queries.
The first line of the input contains two integers *n* and *q* (1<=≤<=*n*<=≤<=200<=000, 1<=≤<=*q*<=≤<=500<=000) — the number of the employees of the company and the number of queries the crisis manager has. Next *q* lines contain the queries of the crisis manager. Each query looks like *type* *x* *y*, where . If *type*<==<=1 or *type*<==<=2, then the query represents the decision of a crisis manager about merging departments of the first and second types respectively. If *type*<==<=3, then your task is to determine whether employees *x* and *y* work at the same department. Note that *x* can be equal to *y* in the query of any type.
For each question of type 3 print "YES" or "NO" (without the quotes), depending on whether the corresponding people work in the same department.
[ "8 6\n3 2 5\n1 2 5\n3 2 5\n2 4 7\n2 1 2\n3 1 7\n" ]
[ "NO\nYES\nYES\n" ]
none
1,000
[ { "input": "8 6\n3 2 5\n1 2 5\n3 2 5\n2 4 7\n2 1 2\n3 1 7", "output": "NO\nYES\nYES" }, { "input": "1 1\n3 1 1", "output": "YES" }, { "input": "1 3\n1 1 1\n2 1 1\n3 1 1", "output": "YES" } ]
1,576,761,142
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
77
0
line=input() uf = dict() def find(a): if a in Uf: find(Uf[a]) else: return(a) def union(a,b): ra = find(a) rb = find(b) if ra == rb: uf[Ra] = rb else: () n,q = map(int, line.split(' ' )) for i in range(1,q): if len(line.split(' ')) < 3: continue else: x,y,z = map(int, line.split(' ')) if x == 1: union(y,z) elif x==2: for j in range(y,z): union(y,j) else: if find(y)==find(z): print('YES') else: print('NO')
Title: Restructuring Company Time Limit: None seconds Memory Limit: None megabytes Problem Description: Even the most successful company can go through a crisis period when you have to make a hard decision — to restructure, discard and merge departments, fire employees and do other unpleasant stuff. Let's consider the following model of a company. There are *n* people working for the Large Software Company. Each person belongs to some department. Initially, each person works on his own project in his own department (thus, each company initially consists of *n* departments, one person in each). However, harsh times have come to the company and the management had to hire a crisis manager who would rebuild the working process in order to boost efficiency. Let's use *team*(*person*) to represent a team where person *person* works. A crisis manager can make decisions of two types: 1. Merge departments *team*(*x*) and *team*(*y*) into one large department containing all the employees of *team*(*x*) and *team*(*y*), where *x* and *y* (1<=≤<=*x*,<=*y*<=≤<=*n*) — are numbers of two of some company employees. If *team*(*x*) matches *team*(*y*), then nothing happens. 1. Merge departments *team*(*x*),<=*team*(*x*<=+<=1),<=...,<=*team*(*y*), where *x* and *y* (1<=≤<=*x*<=≤<=*y*<=≤<=*n*) — the numbers of some two employees of the company. At that the crisis manager can sometimes wonder whether employees *x* and *y* (1<=≤<=*x*,<=*y*<=≤<=*n*) work at the same department. Help the crisis manager and answer all of his queries. Input Specification: The first line of the input contains two integers *n* and *q* (1<=≤<=*n*<=≤<=200<=000, 1<=≤<=*q*<=≤<=500<=000) — the number of the employees of the company and the number of queries the crisis manager has. Next *q* lines contain the queries of the crisis manager. Each query looks like *type* *x* *y*, where . If *type*<==<=1 or *type*<==<=2, then the query represents the decision of a crisis manager about merging departments of the first and second types respectively. If *type*<==<=3, then your task is to determine whether employees *x* and *y* work at the same department. Note that *x* can be equal to *y* in the query of any type. Output Specification: For each question of type 3 print "YES" or "NO" (without the quotes), depending on whether the corresponding people work in the same department. Demo Input: ['8 6\n3 2 5\n1 2 5\n3 2 5\n2 4 7\n2 1 2\n3 1 7\n'] Demo Output: ['NO\nYES\nYES\n'] Note: none
```python line=input() uf = dict() def find(a): if a in Uf: find(Uf[a]) else: return(a) def union(a,b): ra = find(a) rb = find(b) if ra == rb: uf[Ra] = rb else: () n,q = map(int, line.split(' ' )) for i in range(1,q): if len(line.split(' ')) < 3: continue else: x,y,z = map(int, line.split(' ')) if x == 1: union(y,z) elif x==2: for j in range(y,z): union(y,j) else: if find(y)==find(z): print('YES') else: print('NO') ```
0
436
A
Feed with Candy
PROGRAMMING
1,500
[ "greedy" ]
null
null
The hero of the Cut the Rope game is a little monster named Om Nom. He loves candies. And what a coincidence! He also is the hero of today's problem. One day, Om Nom visited his friend Evan. Evan has *n* candies of two types (fruit drops and caramel drops), the *i*-th candy hangs at the height of *h**i* centimeters above the floor of the house, its mass is *m**i*. Om Nom wants to eat as many candies as possible. At the beginning Om Nom can make at most *x* centimeter high jumps. When Om Nom eats a candy of mass *y*, he gets stronger and the height of his jump increases by *y* centimeters. What maximum number of candies can Om Nom eat if he never eats two candies of the same type in a row (Om Nom finds it too boring)?
The first line contains two integers, *n* and *x* (1<=≤<=*n*,<=*x*<=≤<=2000) — the number of sweets Evan has and the initial height of Om Nom's jump. Each of the following *n* lines contains three integers *t**i*,<=*h**i*,<=*m**i* (0<=≤<=*t**i*<=≤<=1; 1<=≤<=*h**i*,<=*m**i*<=≤<=2000) — the type, height and the mass of the *i*-th candy. If number *t**i* equals 0, then the current candy is a caramel drop, otherwise it is a fruit drop.
Print a single integer — the maximum number of candies Om Nom can eat.
[ "5 3\n0 2 4\n1 3 1\n0 8 3\n0 20 10\n1 5 5\n" ]
[ "4\n" ]
One of the possible ways to eat 4 candies is to eat them in the order: 1, 5, 3, 2. Let's assume the following scenario: 1. Initially, the height of Om Nom's jump equals 3. He can reach candies 1 and 2. Let's assume that he eats candy 1. As the mass of this candy equals 4, the height of his jump will rise to 3 + 4 = 7. 1. Now Om Nom can reach candies 2 and 5. Let's assume that he eats candy 5. Then the height of his jump will be 7 + 5 = 12. 1. At this moment, Om Nom can reach two candies, 2 and 3. He won't eat candy 2 as its type matches the type of the previously eaten candy. Om Nom eats candy 3, the height of his jump is 12 + 3 = 15. 1. Om Nom eats candy 2, the height of his jump is 15 + 1 = 16. He cannot reach candy 4.
1,000
[ { "input": "5 3\n0 2 4\n1 3 1\n0 8 3\n0 20 10\n1 5 5", "output": "4" }, { "input": "5 2\n1 15 2\n1 11 2\n0 17 2\n0 16 1\n1 18 2", "output": "0" }, { "input": "6 2\n1 17 3\n1 6 1\n0 4 2\n1 10 1\n1 7 3\n1 5 1", "output": "0" }, { "input": "7 2\n1 14 1\n1 9 2\n0 6 3\n0 20 2\n0 4 2\n0 3 1\n0 9 2", "output": "0" }, { "input": "8 2\n0 20 3\n1 5 2\n1 4 1\n1 7 1\n0 1 3\n1 5 3\n1 7 2\n1 3 1", "output": "2" }, { "input": "9 2\n0 1 1\n1 8 2\n1 11 1\n0 9 1\n1 18 2\n1 7 3\n1 8 3\n0 16 1\n0 12 2", "output": "1" }, { "input": "10 2\n0 2 3\n1 5 2\n0 7 3\n1 15 2\n0 14 3\n1 19 1\n1 5 3\n0 2 2\n0 10 2\n0 10 3", "output": "9" }, { "input": "2 1\n0 1 1\n1 2 1", "output": "2" }, { "input": "2 1\n1 1 1\n0 2 1", "output": "2" }, { "input": "2 1\n0 1 1\n0 2 1", "output": "1" }, { "input": "2 1\n1 1 1\n1 2 1", "output": "1" }, { "input": "2 1\n0 1 1\n1 3 1", "output": "1" }, { "input": "2 1\n1 1 1\n0 3 1", "output": "1" }, { "input": "1 1\n1 2 1", "output": "0" }, { "input": "3 4\n1 1 2\n1 4 100\n0 104 1", "output": "3" }, { "input": "3 4\n1 1 100\n1 4 2\n0 104 1", "output": "3" }, { "input": "3 100\n0 1 1\n1 1 1\n1 1 1", "output": "3" }, { "input": "4 20\n0 10 10\n0 20 50\n1 40 1\n1 40 1", "output": "4" }, { "input": "4 2\n0 1 1\n0 2 3\n1 4 1\n1 5 1", "output": "4" }, { "input": "3 10\n0 9 1\n0 10 10\n1 20 1", "output": "3" }, { "input": "3 5\n0 4 1\n0 5 10\n1 15 5", "output": "3" }, { "input": "3 4\n0 2 1\n0 3 3\n1 6 5", "output": "3" }, { "input": "3 3\n0 1 1\n0 2 100\n1 10 1", "output": "3" }, { "input": "3 2\n0 1 1\n0 2 2\n1 4 4", "output": "3" }, { "input": "5 3\n0 1 5\n0 1 5\n0 1 5\n1 1 10\n1 1 1", "output": "5" }, { "input": "3 2\n0 1 1\n0 2 2\n1 4 2", "output": "3" }, { "input": "4 10\n0 20 1\n1 1 9\n1 2 11\n1 3 8", "output": "3" }, { "input": "7 1\n0 1 99\n1 100 1\n0 100 1\n0 101 1000\n1 1000 1\n0 1000 1\n1 1000 1", "output": "7" }, { "input": "4 3\n0 1 1\n0 2 100\n0 3 1\n1 100 1", "output": "3" }, { "input": "3 3\n0 1 100\n0 2 1\n1 100 100", "output": "3" }, { "input": "3 2\n0 1 1\n0 2 100\n1 10 1", "output": "3" }, { "input": "3 1\n0 1 1\n1 1 5\n0 7 1", "output": "3" }, { "input": "3 5\n0 2 3\n1 9 10\n0 4 4", "output": "3" }, { "input": "3 3\n0 2 1\n0 3 2\n1 5 10", "output": "3" } ]
1,427,850,081
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
46
0
N, jump = map(int, input().split()) candies = [] for i in range(N): candies.append(list(map(int, input().split()))) last_type = -1 TYPE = 0 HEIGTH = 1 MASS = 2 def fetch(): l = [] for candie in candies: if candie[HEIGTH] <= jump and candie[TYPE] != last_type: l.append(candies.index(candie)) return l def find_max(l): top = 0 for i in l: if candies[i][MASS] > candies[top][MASS]: top = i return top counter = 0 frontier = fetch() while frontier: eaten = find_max(frontier) last_type = candies[eaten][TYPE] jump = jump + candies[eaten][MASS] del candies[eaten] counter = counter + 1 frontier = fetch() print(counter)
Title: Feed with Candy Time Limit: None seconds Memory Limit: None megabytes Problem Description: The hero of the Cut the Rope game is a little monster named Om Nom. He loves candies. And what a coincidence! He also is the hero of today's problem. One day, Om Nom visited his friend Evan. Evan has *n* candies of two types (fruit drops and caramel drops), the *i*-th candy hangs at the height of *h**i* centimeters above the floor of the house, its mass is *m**i*. Om Nom wants to eat as many candies as possible. At the beginning Om Nom can make at most *x* centimeter high jumps. When Om Nom eats a candy of mass *y*, he gets stronger and the height of his jump increases by *y* centimeters. What maximum number of candies can Om Nom eat if he never eats two candies of the same type in a row (Om Nom finds it too boring)? Input Specification: The first line contains two integers, *n* and *x* (1<=≤<=*n*,<=*x*<=≤<=2000) — the number of sweets Evan has and the initial height of Om Nom's jump. Each of the following *n* lines contains three integers *t**i*,<=*h**i*,<=*m**i* (0<=≤<=*t**i*<=≤<=1; 1<=≤<=*h**i*,<=*m**i*<=≤<=2000) — the type, height and the mass of the *i*-th candy. If number *t**i* equals 0, then the current candy is a caramel drop, otherwise it is a fruit drop. Output Specification: Print a single integer — the maximum number of candies Om Nom can eat. Demo Input: ['5 3\n0 2 4\n1 3 1\n0 8 3\n0 20 10\n1 5 5\n'] Demo Output: ['4\n'] Note: One of the possible ways to eat 4 candies is to eat them in the order: 1, 5, 3, 2. Let's assume the following scenario: 1. Initially, the height of Om Nom's jump equals 3. He can reach candies 1 and 2. Let's assume that he eats candy 1. As the mass of this candy equals 4, the height of his jump will rise to 3 + 4 = 7. 1. Now Om Nom can reach candies 2 and 5. Let's assume that he eats candy 5. Then the height of his jump will be 7 + 5 = 12. 1. At this moment, Om Nom can reach two candies, 2 and 3. He won't eat candy 2 as its type matches the type of the previously eaten candy. Om Nom eats candy 3, the height of his jump is 12 + 3 = 15. 1. Om Nom eats candy 2, the height of his jump is 15 + 1 = 16. He cannot reach candy 4.
```python N, jump = map(int, input().split()) candies = [] for i in range(N): candies.append(list(map(int, input().split()))) last_type = -1 TYPE = 0 HEIGTH = 1 MASS = 2 def fetch(): l = [] for candie in candies: if candie[HEIGTH] <= jump and candie[TYPE] != last_type: l.append(candies.index(candie)) return l def find_max(l): top = 0 for i in l: if candies[i][MASS] > candies[top][MASS]: top = i return top counter = 0 frontier = fetch() while frontier: eaten = find_max(frontier) last_type = candies[eaten][TYPE] jump = jump + candies[eaten][MASS] del candies[eaten] counter = counter + 1 frontier = fetch() print(counter) ```
0
354
A
Vasya and Robot
PROGRAMMING
1,500
[ "brute force", "greedy", "math" ]
null
null
Vasya has *n* items lying in a line. The items are consecutively numbered by numbers from 1 to *n* in such a way that the leftmost item has number 1, the rightmost item has number *n*. Each item has a weight, the *i*-th item weights *w**i* kilograms. Vasya needs to collect all these items, however he won't do it by himself. He uses his brand new robot. The robot has two different arms — the left one and the right one. The robot can consecutively perform the following actions: 1. Take the leftmost item with the left hand and spend *w**i*<=·<=*l* energy units (*w**i* is a weight of the leftmost item, *l* is some parameter). If the previous action was the same (left-hand), then the robot spends extra *Q**l* energy units; 1. Take the rightmost item with the right hand and spend *w**j*<=·<=*r* energy units (*w**j* is a weight of the rightmost item, *r* is some parameter). If the previous action was the same (right-hand), then the robot spends extra *Q**r* energy units; Naturally, Vasya wants to program the robot in a way that the robot spends as little energy as possible. He asked you to solve this problem. Your task is to find the minimum number of energy units robot spends to collect all items.
The first line contains five integers *n*,<=*l*,<=*r*,<=*Q**l*,<=*Q**r* (1<=≤<=*n*<=≤<=105;<=1<=≤<=*l*,<=*r*<=≤<=100;<=1<=≤<=*Q**l*,<=*Q**r*<=≤<=104). The second line contains *n* integers *w*1,<=*w*2,<=...,<=*w**n* (1<=≤<=*w**i*<=≤<=100).
In the single line print a single number — the answer to the problem.
[ "3 4 4 19 1\n42 3 99\n", "4 7 2 3 9\n1 2 3 4\n" ]
[ "576\n", "34\n" ]
Consider the first sample. As *l* = *r*, we can take an item in turns: first from the left side, then from the right one and last item from the left. In total the robot spends 4·42 + 4·99 + 4·3 = 576 energy units. The second sample. The optimal solution is to take one item from the right, then one item from the left and two items from the right. In total the robot spends (2·4) + (7·1) + (2·3) + (2·2 + 9) = 34 energy units.
500
[ { "input": "3 4 4 19 1\n42 3 99", "output": "576" }, { "input": "4 7 2 3 9\n1 2 3 4", "output": "34" }, { "input": "2 100 100 10000 10000\n100 100", "output": "20000" }, { "input": "2 3 4 5 6\n1 2", "output": "11" }, { "input": "1 78 94 369 10000\n93", "output": "7254" }, { "input": "1 94 78 369 10000\n93", "output": "7254" }, { "input": "5 1 100 1 10000\n1 2 3 4 5", "output": "19" }, { "input": "5 100 1 10000 1\n1 2 3 4 5", "output": "19" }, { "input": "5 1 100 10000 1\n1 2 3 4 5", "output": "906" }, { "input": "5 100 1 1 10000\n1 2 3 4 5", "output": "312" }, { "input": "6 32 47 965 897\n7 4 1 3 5 4", "output": "948" }, { "input": "7 3 13 30 978\n1 2 3 4 5 1 7", "output": "199" }, { "input": "7 13 3 978 30\n7 1 5 4 3 2 1", "output": "199" } ]
1,687,255,799
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
5
31
0
import math if __name__ == "__main__": n, l, r, ql, qr = map(int, input().split()) a = list(map(int, input().split())) pre, suf, ans = 0, sum(a), math.inf for i, v in enumerate(a): suf -= v pre += v cost = pre * l + suf * r cost += (n - 2 * i - 3) * qr if i + 1 < n - i - 1 else 0 cost += (2 * i + 1 - n) * ql if n - i - 1 < i + 1 else 0 ans = min(ans, cost) print(ans)
Title: Vasya and Robot Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vasya has *n* items lying in a line. The items are consecutively numbered by numbers from 1 to *n* in such a way that the leftmost item has number 1, the rightmost item has number *n*. Each item has a weight, the *i*-th item weights *w**i* kilograms. Vasya needs to collect all these items, however he won't do it by himself. He uses his brand new robot. The robot has two different arms — the left one and the right one. The robot can consecutively perform the following actions: 1. Take the leftmost item with the left hand and spend *w**i*<=·<=*l* energy units (*w**i* is a weight of the leftmost item, *l* is some parameter). If the previous action was the same (left-hand), then the robot spends extra *Q**l* energy units; 1. Take the rightmost item with the right hand and spend *w**j*<=·<=*r* energy units (*w**j* is a weight of the rightmost item, *r* is some parameter). If the previous action was the same (right-hand), then the robot spends extra *Q**r* energy units; Naturally, Vasya wants to program the robot in a way that the robot spends as little energy as possible. He asked you to solve this problem. Your task is to find the minimum number of energy units robot spends to collect all items. Input Specification: The first line contains five integers *n*,<=*l*,<=*r*,<=*Q**l*,<=*Q**r* (1<=≤<=*n*<=≤<=105;<=1<=≤<=*l*,<=*r*<=≤<=100;<=1<=≤<=*Q**l*,<=*Q**r*<=≤<=104). The second line contains *n* integers *w*1,<=*w*2,<=...,<=*w**n* (1<=≤<=*w**i*<=≤<=100). Output Specification: In the single line print a single number — the answer to the problem. Demo Input: ['3 4 4 19 1\n42 3 99\n', '4 7 2 3 9\n1 2 3 4\n'] Demo Output: ['576\n', '34\n'] Note: Consider the first sample. As *l* = *r*, we can take an item in turns: first from the left side, then from the right one and last item from the left. In total the robot spends 4·42 + 4·99 + 4·3 = 576 energy units. The second sample. The optimal solution is to take one item from the right, then one item from the left and two items from the right. In total the robot spends (2·4) + (7·1) + (2·3) + (2·2 + 9) = 34 energy units.
```python import math if __name__ == "__main__": n, l, r, ql, qr = map(int, input().split()) a = list(map(int, input().split())) pre, suf, ans = 0, sum(a), math.inf for i, v in enumerate(a): suf -= v pre += v cost = pre * l + suf * r cost += (n - 2 * i - 3) * qr if i + 1 < n - i - 1 else 0 cost += (2 * i + 1 - n) * ql if n - i - 1 < i + 1 else 0 ans = min(ans, cost) print(ans) ```
0
637
B
Chat Order
PROGRAMMING
1,200
[ "*special", "binary search", "constructive algorithms", "data structures", "sortings" ]
null
null
Polycarp is a big lover of killing time in social networks. A page with a chatlist in his favourite network is made so that when a message is sent to some friend, his friend's chat rises to the very top of the page. The relative order of the other chats doesn't change. If there was no chat with this friend before, then a new chat is simply inserted to the top of the list. Assuming that the chat list is initially empty, given the sequence of Polycaprus' messages make a list of chats after all of his messages are processed. Assume that no friend wrote any message to Polycarpus.
The first line contains integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of Polycarpus' messages. Next *n* lines enlist the message recipients in the order in which the messages were sent. The name of each participant is a non-empty sequence of lowercase English letters of length at most 10.
Print all the recipients to who Polycarp talked to in the order of chats with them, from top to bottom.
[ "4\nalex\nivan\nroman\nivan\n", "8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina\n" ]
[ "ivan\nroman\nalex\n", "alina\nmaria\nekaterina\ndarya\n" ]
In the first test case Polycarpus first writes to friend by name "alex", and the list looks as follows: 1. alex Then Polycarpus writes to friend by name "ivan" and the list looks as follows: 1. ivan 1. alex Polycarpus writes the third message to friend by name "roman" and the list looks as follows: 1. roman 1. ivan 1. alex Polycarpus writes the fourth message to friend by name "ivan", to who he has already sent a message, so the list of chats changes as follows: 1. ivan 1. roman 1. alex
1,000
[ { "input": "4\nalex\nivan\nroman\nivan", "output": "ivan\nroman\nalex" }, { "input": "8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina", "output": "alina\nmaria\nekaterina\ndarya" }, { "input": "1\nwdi", "output": "wdi" }, { "input": "2\nypg\nypg", "output": "ypg" }, { "input": "3\nexhll\nexhll\narruapexj", "output": "arruapexj\nexhll" }, { "input": "3\nfv\nle\nle", "output": "le\nfv" }, { "input": "8\nm\nm\nm\nm\nm\nm\nm\nm", "output": "m" }, { "input": "10\nr\nr\ni\nw\nk\nr\nb\nu\nu\nr", "output": "r\nu\nb\nk\nw\ni" }, { "input": "7\ne\nfau\ncmk\nnzs\nby\nwx\ntjmok", "output": "tjmok\nwx\nby\nnzs\ncmk\nfau\ne" }, { "input": "6\nklrj\nwe\nklrj\nwe\nwe\nwe", "output": "we\nklrj" }, { "input": "8\nzncybqmh\naeebef\nzncybqmh\nn\naeebef\nzncybqmh\nzncybqmh\nzncybqmh", "output": "zncybqmh\naeebef\nn" }, { "input": "30\nkqqcbs\nvap\nkymomn\nj\nkqqcbs\nfuzlzoum\nkymomn\ndbh\nfuzlzoum\nkymomn\nvap\nvlgzs\ndbh\nvlgzs\nbvy\ndbh\nkymomn\nkymomn\neoqql\nkymomn\nkymomn\nkqqcbs\nvlgzs\nkqqcbs\nkqqcbs\nfuzlzoum\nvlgzs\nrylgdoo\nvlgzs\nrylgdoo", "output": "rylgdoo\nvlgzs\nfuzlzoum\nkqqcbs\nkymomn\neoqql\ndbh\nbvy\nvap\nj" }, { "input": "40\nji\nv\nv\nns\nji\nn\nji\nv\nfvy\nvje\nns\nvje\nv\nhas\nv\nusm\nhas\nfvy\nvje\nkdb\nn\nv\nji\nji\nn\nhas\nv\nji\nkdb\nr\nvje\nns\nv\nusm\nn\nvje\nhas\nns\nhas\nn", "output": "n\nhas\nns\nvje\nusm\nv\nr\nkdb\nji\nfvy" }, { "input": "50\njcg\nvle\njopb\nepdb\nnkef\nfv\nxj\nufe\nfuy\noqta\ngbc\nyuz\nec\nyji\nkuux\ncwm\ntq\nnno\nhp\nzry\nxxpp\ntjvo\ngyz\nkwo\nvwqz\nyaqc\njnj\nwoav\nqcv\ndcu\ngc\nhovn\nop\nevy\ndc\ntrpu\nyb\nuzfa\npca\noq\nnhxy\nsiqu\nde\nhphy\nc\nwovu\nf\nbvv\ndsik\nlwyg", "output": "lwyg\ndsik\nbvv\nf\nwovu\nc\nhphy\nde\nsiqu\nnhxy\noq\npca\nuzfa\nyb\ntrpu\ndc\nevy\nop\nhovn\ngc\ndcu\nqcv\nwoav\njnj\nyaqc\nvwqz\nkwo\ngyz\ntjvo\nxxpp\nzry\nhp\nnno\ntq\ncwm\nkuux\nyji\nec\nyuz\ngbc\noqta\nfuy\nufe\nxj\nfv\nnkef\nepdb\njopb\nvle\njcg" }, { "input": "100\nvhh\nvhh\nvhh\nfa\nfa\nvhh\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nfa\nfa\nfa\nfa\nfa\nfa\nvhh\nfa\nfa\nvhh\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nvhh\nfa\nvhh\nvhh\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nvhh\nvhh\nvhh\nfa\nvhh\nvhh\nfa\nfa\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nfa\nfa\nfa\nfa\nfa\nfa\nvhh\nvhh\nfa\nvhh\nfa\nfa\nvhh\nfa\nfa\nvhh\nfa\nvhh\nvhh\nfa\nvhh", "output": "vhh\nfa" }, { "input": "2\naa\nbb", "output": "bb\naa" }, { "input": "2\naa\na", "output": "a\naa" }, { "input": "3\naa\naa\naa", "output": "aa" }, { "input": "5\naa\na\naa\na\naa", "output": "aa\na" }, { "input": "7\naaaa\naaaa\naaa\na\naa\naaaaaaa\naaa", "output": "aaa\naaaaaaa\naa\na\naaaa" }, { "input": "5\na\naa\naaa\naaaa\na", "output": "a\naaaa\naaa\naa" }, { "input": "12\naaaaa\naaaaaa\naaaa\naaaaaa\naa\naaaa\naaaa\naaaaaa\na\naaa\naaaaaaaa\naa", "output": "aa\naaaaaaaa\naaa\na\naaaaaa\naaaa\naaaaa" }, { "input": "3\na\naa\naaa", "output": "aaa\naa\na" }, { "input": "9\nzzz\nzzzzz\nzzz\nzzzz\nzz\nzzzz\nzzzzz\nzzzz\nzzzzzzz", "output": "zzzzzzz\nzzzz\nzzzzz\nzz\nzzz" } ]
1,458,737,446
2,147,483,647
Python 3
TIME_LIMIT_EXCEEDED
TESTS
12
3,000
14,131,200
# codeforces.com/contest/637/problem/B name = [] n = int(input()) all = [input() for i in range(n)] need = all[::-1] for i in need: if i not in name: name.append(i) for i in name: print(i)
Title: Chat Order Time Limit: None seconds Memory Limit: None megabytes Problem Description: Polycarp is a big lover of killing time in social networks. A page with a chatlist in his favourite network is made so that when a message is sent to some friend, his friend's chat rises to the very top of the page. The relative order of the other chats doesn't change. If there was no chat with this friend before, then a new chat is simply inserted to the top of the list. Assuming that the chat list is initially empty, given the sequence of Polycaprus' messages make a list of chats after all of his messages are processed. Assume that no friend wrote any message to Polycarpus. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=200<=000) — the number of Polycarpus' messages. Next *n* lines enlist the message recipients in the order in which the messages were sent. The name of each participant is a non-empty sequence of lowercase English letters of length at most 10. Output Specification: Print all the recipients to who Polycarp talked to in the order of chats with them, from top to bottom. Demo Input: ['4\nalex\nivan\nroman\nivan\n', '8\nalina\nmaria\nekaterina\ndarya\ndarya\nekaterina\nmaria\nalina\n'] Demo Output: ['ivan\nroman\nalex\n', 'alina\nmaria\nekaterina\ndarya\n'] Note: In the first test case Polycarpus first writes to friend by name "alex", and the list looks as follows: 1. alex Then Polycarpus writes to friend by name "ivan" and the list looks as follows: 1. ivan 1. alex Polycarpus writes the third message to friend by name "roman" and the list looks as follows: 1. roman 1. ivan 1. alex Polycarpus writes the fourth message to friend by name "ivan", to who he has already sent a message, so the list of chats changes as follows: 1. ivan 1. roman 1. alex
```python # codeforces.com/contest/637/problem/B name = [] n = int(input()) all = [input() for i in range(n)] need = all[::-1] for i in need: if i not in name: name.append(i) for i in name: print(i) ```
0
740
B
Alyona and flowers
PROGRAMMING
1,200
[ "constructive algorithms" ]
null
null
Little Alyona is celebrating Happy Birthday! Her mother has an array of *n* flowers. Each flower has some mood, the mood of *i*-th flower is *a**i*. The mood can be positive, zero or negative. Let's define a subarray as a segment of consecutive flowers. The mother suggested some set of subarrays. Alyona wants to choose several of the subarrays suggested by her mother. After that, each of the flowers will add to the girl's happiness its mood multiplied by the number of chosen subarrays the flower is in. For example, consider the case when the mother has 5 flowers, and their moods are equal to 1,<=<=-<=2,<=1,<=3,<=<=-<=4. Suppose the mother suggested subarrays (1,<=<=-<=2), (3,<=<=-<=4), (1,<=3), (1,<=<=-<=2,<=1,<=3). Then if the girl chooses the third and the fourth subarrays then: - the first flower adds 1·1<==<=1 to the girl's happiness, because he is in one of chosen subarrays, - the second flower adds (<=-<=2)·1<==<=<=-<=2, because he is in one of chosen subarrays, - the third flower adds 1·2<==<=2, because he is in two of chosen subarrays, - the fourth flower adds 3·2<==<=6, because he is in two of chosen subarrays, - the fifth flower adds (<=-<=4)·0<==<=0, because he is in no chosen subarrays. Thus, in total 1<=+<=(<=-<=2)<=+<=2<=+<=6<=+<=0<==<=7 is added to the girl's happiness. Alyona wants to choose such subarrays from those suggested by the mother that the value added to her happiness would be as large as possible. Help her do this! Alyona can choose any number of the subarrays, even 0 or all suggested by her mother.
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of flowers and the number of subarrays suggested by the mother. The second line contains the flowers moods — *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=100<=≤<=*a**i*<=≤<=100). The next *m* lines contain the description of the subarrays suggested by the mother. The *i*-th of these lines contain two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) denoting the subarray *a*[*l**i*],<=*a*[*l**i*<=+<=1],<=...,<=*a*[*r**i*]. Each subarray can encounter more than once.
Print single integer — the maximum possible value added to the Alyona's happiness.
[ "5 4\n1 -2 1 3 -4\n1 2\n4 5\n3 4\n1 4\n", "4 3\n1 2 3 4\n1 3\n2 4\n1 1\n", "2 2\n-1 -2\n1 1\n1 2\n" ]
[ "7\n", "16\n", "0\n" ]
The first example is the situation described in the statements. In the second example Alyona should choose all subarrays. The third example has answer 0 because Alyona can choose none of the subarrays.
1,000
[ { "input": "5 4\n1 -2 1 3 -4\n1 2\n4 5\n3 4\n1 4", "output": "7" }, { "input": "4 3\n1 2 3 4\n1 3\n2 4\n1 1", "output": "16" }, { "input": "2 2\n-1 -2\n1 1\n1 2", "output": "0" }, { "input": "5 6\n1 1 1 -1 0\n2 4\n1 3\n4 5\n1 5\n1 4\n4 5", "output": "8" }, { "input": "8 3\n5 -4 -2 5 3 -4 -2 6\n3 8\n4 6\n2 3", "output": "10" }, { "input": "10 10\n0 0 0 0 0 0 0 0 0 0\n5 9\n1 9\n5 7\n3 8\n1 6\n1 9\n1 6\n6 9\n1 10\n3 8", "output": "0" }, { "input": "3 6\n0 0 0\n1 1\n1 1\n1 3\n3 3\n2 3\n1 2", "output": "0" }, { "input": "3 3\n1 -1 3\n1 2\n2 3\n1 3", "output": "5" }, { "input": "6 8\n0 6 -5 8 -3 -2\n6 6\n2 3\n5 6\n4 6\n3 4\n2 5\n3 3\n5 6", "output": "13" }, { "input": "10 4\n6 5 5 -1 0 5 0 -3 5 -4\n3 6\n4 9\n1 6\n1 4", "output": "50" }, { "input": "9 1\n-1 -1 -1 -1 2 -1 2 0 0\n2 5", "output": "0" }, { "input": "3 8\n3 4 4\n1 2\n1 3\n2 3\n1 2\n2 2\n1 1\n2 3\n1 3", "output": "59" }, { "input": "3 8\n6 7 -1\n1 1\n1 3\n2 2\n1 3\n1 3\n1 1\n2 3\n2 3", "output": "67" }, { "input": "53 7\n-43 57 92 97 85 -29 28 -8 -37 -47 51 -53 -95 -50 -39 -87 43 36 60 -95 93 8 67 -22 -78 -46 99 93 27 -72 -84 77 96 -47 1 -12 21 -98 -34 -88 57 -43 5 -15 20 -66 61 -29 30 -85 52 53 82\n15 26\n34 43\n37 41\n22 34\n19 43\n2 15\n13 35", "output": "170" }, { "input": "20 42\n61 86 5 -87 -33 51 -79 17 -3 65 -42 74 -94 40 -35 22 58 81 -75 5\n3 6\n12 13\n3 16\n3 16\n5 7\n5 16\n2 15\n6 18\n4 18\n10 17\n14 16\n4 15\n4 11\n13 20\n5 6\n5 15\n16 17\n3 14\n9 10\n5 19\n5 14\n2 4\n17 20\n10 11\n5 18\n10 11\n1 14\n1 6\n1 10\n8 16\n11 14\n12 20\n11 13\n4 5\n2 13\n1 5\n11 15\n1 18\n3 8\n8 20\n1 4\n10 13", "output": "1502" }, { "input": "64 19\n-47 13 19 51 -25 72 38 32 54 7 -49 -50 -59 73 45 -87 -15 -72 -32 -10 -7 47 -34 35 48 -73 79 25 -80 -34 4 77 60 30 61 -25 23 17 -73 -73 69 29 -50 -55 53 15 -33 7 -46 -5 85 -86 77 -51 87 -69 -64 -24 -64 29 -20 -58 11 -26\n6 53\n13 28\n15 47\n20 52\n12 22\n6 49\n31 54\n2 39\n32 49\n27 64\n22 63\n33 48\n49 58\n39 47\n6 29\n21 44\n24 59\n20 24\n39 54", "output": "804" }, { "input": "1 10\n-46\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1\n1 1", "output": "0" }, { "input": "10 7\n44 18 9 -22 -23 7 -25 -2 15 35\n6 8\n6 7\n3 3\n2 6\n9 10\n2 2\n1 5", "output": "103" }, { "input": "4 3\n10 -2 68 35\n4 4\n1 1\n1 3", "output": "121" }, { "input": "3 6\n27 -31 -81\n2 3\n2 3\n1 1\n1 2\n1 2\n2 2", "output": "27" }, { "input": "7 3\n-24 -12 16 -43 -30 31 16\n3 6\n3 4\n1 7", "output": "0" }, { "input": "10 7\n-33 -24 -86 -20 5 -91 38 -12 -90 -67\n7 8\n7 10\n4 7\n1 3\n6 10\n6 6\n3 5", "output": "26" }, { "input": "4 4\n95 35 96 -27\n3 4\n3 3\n4 4\n3 3", "output": "261" }, { "input": "7 7\n-33 26 -25 44 -20 -50 33\n4 6\n4 4\n3 7\n5 7\n1 4\n2 5\n4 6", "output": "81" }, { "input": "5 3\n-35 -39 93 59 -4\n2 2\n2 3\n2 5", "output": "163" }, { "input": "3 7\n0 0 0\n1 2\n1 2\n2 3\n3 3\n1 3\n1 2\n2 3", "output": "0" }, { "input": "8 2\n17 32 30 -6 -39 -15 33 74\n6 6\n8 8", "output": "74" }, { "input": "8 1\n-20 -15 21 -21 1 -12 -7 9\n4 7", "output": "0" }, { "input": "7 9\n-23 -4 -44 -47 -35 47 25\n1 6\n3 5\n4 7\n6 7\n2 4\n2 3\n2 7\n1 2\n5 5", "output": "72" }, { "input": "8 8\n0 6 -25 -15 29 -24 31 23\n2 8\n5 5\n3 3\n2 8\n6 6\n3 6\n3 4\n2 4", "output": "79" }, { "input": "4 3\n-39 -63 9 -16\n1 4\n1 3\n2 4", "output": "0" }, { "input": "9 1\n-3 -13 -13 -19 -4 -11 8 -11 -3\n9 9", "output": "0" }, { "input": "9 6\n25 18 -62 0 33 62 -23 4 -15\n7 9\n2 3\n1 4\n2 6\n1 6\n2 3", "output": "127" }, { "input": "4 5\n-12 39 8 -12\n1 4\n3 4\n1 3\n1 3\n2 3", "output": "140" }, { "input": "3 9\n-9 7 3\n1 2\n1 1\n1 3\n1 2\n2 3\n1 3\n2 2\n1 2\n3 3", "output": "22" }, { "input": "10 7\n0 4 3 3 -2 -2 -4 -2 -3 -2\n5 6\n1 10\n2 10\n7 10\n1 1\n6 7\n3 4", "output": "6" }, { "input": "86 30\n16 -12 11 16 8 14 7 -29 18 30 -32 -10 20 29 -14 -21 23 -19 -15 17 -2 25 -22 2 26 15 -7 -12 -4 -28 21 -4 -2 22 28 -32 9 -20 23 38 -21 21 37 -13 -30 25 31 6 18 29 29 29 27 38 -15 -32 32 -7 -8 -33 -11 24 23 -19 -36 -36 -18 9 -1 32 -34 -26 1 -1 -16 -14 17 -17 15 -24 38 5 -27 -12 8 -38\n60 66\n29 48\n32 51\n38 77\n17 79\n23 74\n39 50\n14 29\n26 76\n9 76\n2 67\n23 48\n17 68\n33 75\n59 78\n46 78\n9 69\n16 83\n18 21\n17 34\n24 61\n15 79\n4 31\n62 63\n46 76\n79 82\n25 39\n5 81\n19 77\n26 71", "output": "3076" }, { "input": "33 17\n11 6 -19 14 23 -23 21 15 29 19 13 -18 -19 20 16 -10 26 -22 3 17 13 -10 19 22 -5 21 12 6 28 -13 -27 25 6\n4 17\n12 16\n9 17\n25 30\n31 32\n4 28\n11 24\n16 19\n3 27\n7 17\n1 16\n15 28\n30 33\n9 31\n14 30\n13 23\n27 27", "output": "1366" }, { "input": "16 44\n32 23 -27 -2 -10 -42 32 -14 -13 4 9 -2 19 35 16 22\n6 12\n8 11\n13 15\n12 12\n3 10\n9 13\n7 15\n2 11\n1 13\n5 6\n9 14\n3 16\n10 13\n3 15\n6 10\n14 16\n4 5\n7 10\n5 14\n1 16\n2 5\n1 6\n9 10\n4 7\n4 12\n2 5\n7 10\n7 9\n2 8\n9 10\n4 10\n7 12\n10 11\n6 6\n15 15\n8 12\n9 10\n3 3\n4 15\n10 12\n7 16\n4 14\n14 16\n5 6", "output": "777" }, { "input": "63 24\n-23 -46 0 33 24 13 39 -6 -4 49 19 -18 -11 -38 0 -3 -33 -17 -4 -44 -22 -12 -16 42 16 -10 7 37 -6 16 -41 -18 -20 51 -49 28 -14 -22 -37 -7 -50 31 -41 -47 18 -8 -39 -29 35 -32 14 -29 44 -29 -19 -25 -47 -8 16 11 20 12 38\n21 61\n35 61\n29 61\n21 34\n12 48\n32 33\n9 27\n4 42\n4 60\n37 61\n19 44\n46 60\n51 53\n31 34\n23 32\n5 29\n43 59\n7 31\n29 48\n15 50\n19 51\n7 28\n17 41\n1 62", "output": "82" }, { "input": "6 51\n45 -33 -17 -48 2 2\n2 5\n1 1\n1 3\n5 5\n4 6\n1 2\n2 3\n3 4\n1 6\n4 6\n3 5\n1 5\n2 2\n2 6\n4 6\n1 5\n1 5\n1 5\n1 6\n6 6\n3 5\n6 6\n1 6\n3 4\n3 3\n2 4\n3 3\n1 4\n2 4\n5 6\n4 5\n2 4\n1 5\n1 2\n4 5\n1 5\n5 6\n2 2\n3 4\n1 3\n1 2\n2 5\n3 6\n4 6\n3 4\n2 4\n1 4\n1 1\n4 6\n3 5\n1 4", "output": "140" }, { "input": "3 5\n2 -1 3\n2 3\n2 3\n2 3\n2 3\n1 2", "output": "9" }, { "input": "4 30\n1 1 1 1\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4\n1 4", "output": "120" } ]
1,479,919,984
1,084
Python 3
OK
TESTS
53
62
0
n, m = [int(x) for x in input().split()] a = [int(x) for x in input().split()] max_sum = 0 for i in range(m): l, r = [int(x) for x in input().split()] l -= 1 sucet = sum(a[l:r]) if sucet > 0: max_sum += sucet print(max_sum)
Title: Alyona and flowers Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Alyona is celebrating Happy Birthday! Her mother has an array of *n* flowers. Each flower has some mood, the mood of *i*-th flower is *a**i*. The mood can be positive, zero or negative. Let's define a subarray as a segment of consecutive flowers. The mother suggested some set of subarrays. Alyona wants to choose several of the subarrays suggested by her mother. After that, each of the flowers will add to the girl's happiness its mood multiplied by the number of chosen subarrays the flower is in. For example, consider the case when the mother has 5 flowers, and their moods are equal to 1,<=<=-<=2,<=1,<=3,<=<=-<=4. Suppose the mother suggested subarrays (1,<=<=-<=2), (3,<=<=-<=4), (1,<=3), (1,<=<=-<=2,<=1,<=3). Then if the girl chooses the third and the fourth subarrays then: - the first flower adds 1·1<==<=1 to the girl's happiness, because he is in one of chosen subarrays, - the second flower adds (<=-<=2)·1<==<=<=-<=2, because he is in one of chosen subarrays, - the third flower adds 1·2<==<=2, because he is in two of chosen subarrays, - the fourth flower adds 3·2<==<=6, because he is in two of chosen subarrays, - the fifth flower adds (<=-<=4)·0<==<=0, because he is in no chosen subarrays. Thus, in total 1<=+<=(<=-<=2)<=+<=2<=+<=6<=+<=0<==<=7 is added to the girl's happiness. Alyona wants to choose such subarrays from those suggested by the mother that the value added to her happiness would be as large as possible. Help her do this! Alyona can choose any number of the subarrays, even 0 or all suggested by her mother. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of flowers and the number of subarrays suggested by the mother. The second line contains the flowers moods — *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=100<=≤<=*a**i*<=≤<=100). The next *m* lines contain the description of the subarrays suggested by the mother. The *i*-th of these lines contain two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*) denoting the subarray *a*[*l**i*],<=*a*[*l**i*<=+<=1],<=...,<=*a*[*r**i*]. Each subarray can encounter more than once. Output Specification: Print single integer — the maximum possible value added to the Alyona's happiness. Demo Input: ['5 4\n1 -2 1 3 -4\n1 2\n4 5\n3 4\n1 4\n', '4 3\n1 2 3 4\n1 3\n2 4\n1 1\n', '2 2\n-1 -2\n1 1\n1 2\n'] Demo Output: ['7\n', '16\n', '0\n'] Note: The first example is the situation described in the statements. In the second example Alyona should choose all subarrays. The third example has answer 0 because Alyona can choose none of the subarrays.
```python n, m = [int(x) for x in input().split()] a = [int(x) for x in input().split()] max_sum = 0 for i in range(m): l, r = [int(x) for x in input().split()] l -= 1 sucet = sum(a[l:r]) if sucet > 0: max_sum += sucet print(max_sum) ```
3
361
A
Levko and Table
PROGRAMMING
800
[ "constructive algorithms", "implementation" ]
null
null
Levko loves tables that consist of *n* rows and *n* columns very much. He especially loves beautiful tables. A table is beautiful to Levko if the sum of elements in each row and column of the table equals *k*. Unfortunately, he doesn't know any such table. Your task is to help him to find at least one of them.
The single line contains two integers, *n* and *k* (1<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=1000).
Print any beautiful table. Levko doesn't like too big numbers, so all elements of the table mustn't exceed 1000 in their absolute value. If there are multiple suitable tables, you are allowed to print any of them.
[ "2 4\n", "4 7\n" ]
[ "1 3\n3 1\n", "2 1 0 4\n4 0 2 1\n1 3 3 0\n0 3 2 2\n" ]
In the first sample the sum in the first row is 1 + 3 = 4, in the second row — 3 + 1 = 4, in the first column — 1 + 3 = 4 and in the second column — 3 + 1 = 4. There are other beautiful tables for this sample. In the second sample the sum of elements in each row and each column equals 7. Besides, there are other tables that meet the statement requirements.
500
[ { "input": "2 4", "output": "4 0 \n0 4 " }, { "input": "4 7", "output": "7 0 0 0 \n0 7 0 0 \n0 0 7 0 \n0 0 0 7 " }, { "input": "1 8", "output": "8 " }, { "input": "9 3", "output": "3 0 0 0 0 0 0 0 0 \n0 3 0 0 0 0 0 0 0 \n0 0 3 0 0 0 0 0 0 \n0 0 0 3 0 0 0 0 0 \n0 0 0 0 3 0 0 0 0 \n0 0 0 0 0 3 0 0 0 \n0 0 0 0 0 0 3 0 0 \n0 0 0 0 0 0 0 3 0 \n0 0 0 0 0 0 0 0 3 " }, { "input": "31 581", "output": "581 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 581 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 581 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 581 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 581 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 581 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 581 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 581 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "100 1000", "output": "1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ..." }, { "input": "100 999", "output": "999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "99 998", "output": "998 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 998 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 998 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "100 997", "output": "997 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 997 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 997 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "81 111", "output": "111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 111 0 0..." }, { "input": "1 407", "output": "407 " }, { "input": "54 341", "output": "341 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 341 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 341 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 341 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 341 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "92 460", "output": "460 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 460 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 460 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "34 47", "output": "47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 0 0 0 0 0 ..." }, { "input": "11 547", "output": "547 0 0 0 0 0 0 0 0 0 0 \n0 547 0 0 0 0 0 0 0 0 0 \n0 0 547 0 0 0 0 0 0 0 0 \n0 0 0 547 0 0 0 0 0 0 0 \n0 0 0 0 547 0 0 0 0 0 0 \n0 0 0 0 0 547 0 0 0 0 0 \n0 0 0 0 0 0 547 0 0 0 0 \n0 0 0 0 0 0 0 547 0 0 0 \n0 0 0 0 0 0 0 0 547 0 0 \n0 0 0 0 0 0 0 0 0 547 0 \n0 0 0 0 0 0 0 0 0 0 547 " }, { "input": "100 1", "output": "1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "99 1", "output": "1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "99 2", "output": "2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "2 7", "output": "7 0 \n0 7 " }, { "input": "100 100", "output": "100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \n0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0..." }, { "input": "4 3", "output": "3 0 0 0 \n0 3 0 0 \n0 0 3 0 \n0 0 0 3 " }, { "input": "3 2", "output": "2 0 0 \n0 2 0 \n0 0 2 " } ]
1,631,962,014
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
46
6,758,400
num=[int(num) for num in input().split()] for index in range(num[0]): for i in range(num[0]-1): print(0, end=" ") print(num[1])
Title: Levko and Table Time Limit: None seconds Memory Limit: None megabytes Problem Description: Levko loves tables that consist of *n* rows and *n* columns very much. He especially loves beautiful tables. A table is beautiful to Levko if the sum of elements in each row and column of the table equals *k*. Unfortunately, he doesn't know any such table. Your task is to help him to find at least one of them. Input Specification: The single line contains two integers, *n* and *k* (1<=≤<=*n*<=≤<=100, 1<=≤<=*k*<=≤<=1000). Output Specification: Print any beautiful table. Levko doesn't like too big numbers, so all elements of the table mustn't exceed 1000 in their absolute value. If there are multiple suitable tables, you are allowed to print any of them. Demo Input: ['2 4\n', '4 7\n'] Demo Output: ['1 3\n3 1\n', '2 1 0 4\n4 0 2 1\n1 3 3 0\n0 3 2 2\n'] Note: In the first sample the sum in the first row is 1 + 3 = 4, in the second row — 3 + 1 = 4, in the first column — 1 + 3 = 4 and in the second column — 3 + 1 = 4. There are other beautiful tables for this sample. In the second sample the sum of elements in each row and each column equals 7. Besides, there are other tables that meet the statement requirements.
```python num=[int(num) for num in input().split()] for index in range(num[0]): for i in range(num[0]-1): print(0, end=" ") print(num[1]) ```
0
363
B
Fence
PROGRAMMING
1,100
[ "brute force", "dp" ]
null
null
There is a fence in front of Polycarpus's home. The fence consists of *n* planks of the same width which go one after another from left to right. The height of the *i*-th plank is *h**i* meters, distinct planks can have distinct heights. Polycarpus has bought a posh piano and is thinking about how to get it into the house. In order to carry out his plan, he needs to take exactly *k* consecutive planks from the fence. Higher planks are harder to tear off the fence, so Polycarpus wants to find such *k* consecutive planks that the sum of their heights is minimal possible. Write the program that finds the indexes of *k* consecutive planks with minimal total height. Pay attention, the fence is not around Polycarpus's home, it is in front of home (in other words, the fence isn't cyclic).
The first line of the input contains integers *n* and *k* (1<=≤<=*n*<=≤<=1.5·105,<=1<=≤<=*k*<=≤<=*n*) — the number of planks in the fence and the width of the hole for the piano. The second line contains the sequence of integers *h*1,<=*h*2,<=...,<=*h**n* (1<=≤<=*h**i*<=≤<=100), where *h**i* is the height of the *i*-th plank of the fence.
Print such integer *j* that the sum of the heights of planks *j*, *j*<=+<=1, ..., *j*<=+<=*k*<=-<=1 is the minimum possible. If there are multiple such *j*'s, print any of them.
[ "7 3\n1 2 6 1 1 7 1\n" ]
[ "3\n" ]
In the sample, your task is to find three consecutive planks with the minimum sum of heights. In the given case three planks with indexes 3, 4 and 5 have the required attribute, their total height is 8.
1,000
[ { "input": "7 3\n1 2 6 1 1 7 1", "output": "3" }, { "input": "1 1\n100", "output": "1" }, { "input": "2 1\n10 20", "output": "1" }, { "input": "10 5\n1 2 3 1 2 2 3 1 4 5", "output": "1" }, { "input": "10 2\n3 1 4 1 4 6 2 1 4 6", "output": "7" }, { "input": "2 2\n20 10", "output": "1" }, { "input": "2 1\n20 1", "output": "2" }, { "input": "3 1\n1 2 3", "output": "1" }, { "input": "3 1\n2 1 3", "output": "2" }, { "input": "3 1\n3 2 1", "output": "3" }, { "input": "3 2\n1 2 3", "output": "1" }, { "input": "3 2\n3 2 1", "output": "2" }, { "input": "3 3\n1 2 3", "output": "1" }, { "input": "4 2\n9 8 11 7", "output": "1" }, { "input": "4 2\n10 1 2 3", "output": "2" }, { "input": "6 3\n56 56 56 2 1 2", "output": "4" }, { "input": "8 3\n1 1 1 1 2 60 90 1", "output": "1" }, { "input": "4 1\n1 5 2 2", "output": "1" }, { "input": "4 2\n4 6 7 4", "output": "1" }, { "input": "10 4\n1 1 1 4 4 4 4 4 4 3", "output": "1" }, { "input": "6 3\n1 2 1 3 1 1", "output": "1" }, { "input": "5 2\n100 100 100 1 1", "output": "4" } ]
1,695,047,810
2,147,483,647
PyPy 3-64
OK
TESTS
51
77
14,848,000
n, k = map(int, input().split()) a = [int(i) for i in input().split()] ans = tek = sum(a[:k]) j_ans = 1 for i in range(k, n): tek -= a[i - k] tek += a[i] if ans > tek: j_ans = i - k + 2 ans = tek print(j_ans)
Title: Fence Time Limit: None seconds Memory Limit: None megabytes Problem Description: There is a fence in front of Polycarpus's home. The fence consists of *n* planks of the same width which go one after another from left to right. The height of the *i*-th plank is *h**i* meters, distinct planks can have distinct heights. Polycarpus has bought a posh piano and is thinking about how to get it into the house. In order to carry out his plan, he needs to take exactly *k* consecutive planks from the fence. Higher planks are harder to tear off the fence, so Polycarpus wants to find such *k* consecutive planks that the sum of their heights is minimal possible. Write the program that finds the indexes of *k* consecutive planks with minimal total height. Pay attention, the fence is not around Polycarpus's home, it is in front of home (in other words, the fence isn't cyclic). Input Specification: The first line of the input contains integers *n* and *k* (1<=≤<=*n*<=≤<=1.5·105,<=1<=≤<=*k*<=≤<=*n*) — the number of planks in the fence and the width of the hole for the piano. The second line contains the sequence of integers *h*1,<=*h*2,<=...,<=*h**n* (1<=≤<=*h**i*<=≤<=100), where *h**i* is the height of the *i*-th plank of the fence. Output Specification: Print such integer *j* that the sum of the heights of planks *j*, *j*<=+<=1, ..., *j*<=+<=*k*<=-<=1 is the minimum possible. If there are multiple such *j*'s, print any of them. Demo Input: ['7 3\n1 2 6 1 1 7 1\n'] Demo Output: ['3\n'] Note: In the sample, your task is to find three consecutive planks with the minimum sum of heights. In the given case three planks with indexes 3, 4 and 5 have the required attribute, their total height is 8.
```python n, k = map(int, input().split()) a = [int(i) for i in input().split()] ans = tek = sum(a[:k]) j_ans = 1 for i in range(k, n): tek -= a[i - k] tek += a[i] if ans > tek: j_ans = i - k + 2 ans = tek print(j_ans) ```
3
961
C
Chessboard
PROGRAMMING
1,400
[ "bitmasks", "brute force", "implementation" ]
null
null
Magnus decided to play a classic chess game. Though what he saw in his locker shocked him! His favourite chessboard got broken into 4 pieces, each of size *n* by *n*, *n* is always odd. And what's even worse, some squares were of wrong color. *j*-th square of the *i*-th row of *k*-th piece of the board has color *a**k*,<=*i*,<=*j*; 1 being black and 0 being white. Now Magnus wants to change color of some squares in such a way that he recolors minimum number of squares and obtained pieces form a valid chessboard. Every square has its color different to each of the neightbouring by side squares in a valid board. Its size should be 2*n* by 2*n*. You are allowed to move pieces but not allowed to rotate or flip them.
The first line contains odd integer *n* (1<=≤<=*n*<=≤<=100) — the size of all pieces of the board. Then 4 segments follow, each describes one piece of the board. Each consists of *n* lines of *n* characters; *j*-th one of *i*-th line is equal to 1 if the square is black initially and 0 otherwise. Segments are separated by an empty line.
Print one number — minimum number of squares Magnus should recolor to be able to obtain a valid chessboard.
[ "1\n0\n\n0\n\n1\n\n0\n", "3\n101\n010\n101\n\n101\n000\n101\n\n010\n101\n011\n\n010\n101\n010\n" ]
[ "1\n", "2\n" ]
none
0
[ { "input": "1\n0\n\n0\n\n1\n\n0", "output": "1" }, { "input": "3\n101\n010\n101\n\n101\n000\n101\n\n010\n101\n011\n\n010\n101\n010", "output": "2" }, { "input": "3\n000\n000\n000\n\n111\n111\n111\n\n111\n111\n111\n\n000\n000\n000", "output": "16" }, { "input": "3\n101\n010\n101\n\n101\n010\n101\n\n101\n010\n101\n\n101\n010\n101", "output": "18" }, { "input": "1\n1\n\n0\n\n1\n\n0", "output": "0" }, { "input": "1\n0\n\n0\n\n1\n\n1", "output": "0" }, { "input": "1\n1\n\n1\n\n0\n\n1", "output": "1" }, { "input": "1\n0\n\n0\n\n0\n\n0", "output": "2" }, { "input": "1\n1\n\n1\n\n0\n\n0", "output": "0" } ]
1,672,082,158
2,147,483,647
PyPy 3-64
OK
TESTS
19
93
1,843,200
m=1000000007 #------------------------------------# def zodom(x):#x is list of nxn zerodom=0 onedom=0 for i in range(len(x)): for j in range(len(x[0])): if (i+j)%2==0: if x[i][j]=='0': onedom+=1 else: zerodom+=1 else: if x[i][j]=='1': onedom+=1 else: zerodom+=1 return(zerodom,onedom) n=int(input()) L2=[] for i in range(4): L=[] for _ in range(n): L.append(input()) L2.append(zodom(L)) if (i!=3): input() min=float("inf") for i in range(2): for j in range(2): for k in range(2): for l in range(2): if (i+j+k+l)==2 and L2[0][i]+L2[1][j]+L2[2][k]+L2[3][l]<min: min=L2[0][i]+L2[1][j]+L2[2][k]+L2[3][l] print(min)
Title: Chessboard Time Limit: None seconds Memory Limit: None megabytes Problem Description: Magnus decided to play a classic chess game. Though what he saw in his locker shocked him! His favourite chessboard got broken into 4 pieces, each of size *n* by *n*, *n* is always odd. And what's even worse, some squares were of wrong color. *j*-th square of the *i*-th row of *k*-th piece of the board has color *a**k*,<=*i*,<=*j*; 1 being black and 0 being white. Now Magnus wants to change color of some squares in such a way that he recolors minimum number of squares and obtained pieces form a valid chessboard. Every square has its color different to each of the neightbouring by side squares in a valid board. Its size should be 2*n* by 2*n*. You are allowed to move pieces but not allowed to rotate or flip them. Input Specification: The first line contains odd integer *n* (1<=≤<=*n*<=≤<=100) — the size of all pieces of the board. Then 4 segments follow, each describes one piece of the board. Each consists of *n* lines of *n* characters; *j*-th one of *i*-th line is equal to 1 if the square is black initially and 0 otherwise. Segments are separated by an empty line. Output Specification: Print one number — minimum number of squares Magnus should recolor to be able to obtain a valid chessboard. Demo Input: ['1\n0\n\n0\n\n1\n\n0\n', '3\n101\n010\n101\n\n101\n000\n101\n\n010\n101\n011\n\n010\n101\n010\n'] Demo Output: ['1\n', '2\n'] Note: none
```python m=1000000007 #------------------------------------# def zodom(x):#x is list of nxn zerodom=0 onedom=0 for i in range(len(x)): for j in range(len(x[0])): if (i+j)%2==0: if x[i][j]=='0': onedom+=1 else: zerodom+=1 else: if x[i][j]=='1': onedom+=1 else: zerodom+=1 return(zerodom,onedom) n=int(input()) L2=[] for i in range(4): L=[] for _ in range(n): L.append(input()) L2.append(zodom(L)) if (i!=3): input() min=float("inf") for i in range(2): for j in range(2): for k in range(2): for l in range(2): if (i+j+k+l)==2 and L2[0][i]+L2[1][j]+L2[2][k]+L2[3][l]<min: min=L2[0][i]+L2[1][j]+L2[2][k]+L2[3][l] print(min) ```
3
475
B
Strongly Connected City
PROGRAMMING
1,400
[ "brute force", "dfs and similar", "graphs", "implementation" ]
null
null
Imagine a city with *n* horizontal streets crossing *m* vertical streets, forming an (*n*<=-<=1)<=×<=(*m*<=-<=1) grid. In order to increase the traffic flow, mayor of the city has decided to make each street one way. This means in each horizontal street, the traffic moves only from west to east or only from east to west. Also, traffic moves only from north to south or only from south to north in each vertical street. It is possible to enter a horizontal street from a vertical street, or vice versa, at their intersection. The mayor has received some street direction patterns. Your task is to check whether it is possible to reach any junction from any other junction in the proposed street direction pattern.
The first line of input contains two integers *n* and *m*, (2<=≤<=*n*,<=*m*<=≤<=20), denoting the number of horizontal streets and the number of vertical streets. The second line contains a string of length *n*, made of characters '&lt;' and '&gt;', denoting direction of each horizontal street. If the *i*-th character is equal to '&lt;', the street is directed from east to west otherwise, the street is directed from west to east. Streets are listed in order from north to south. The third line contains a string of length *m*, made of characters '^' and 'v', denoting direction of each vertical street. If the *i*-th character is equal to '^', the street is directed from south to north, otherwise the street is directed from north to south. Streets are listed in order from west to east.
If the given pattern meets the mayor's criteria, print a single line containing "YES", otherwise print a single line containing "NO".
[ "3 3\n&gt;&lt;&gt;\nv^v\n", "4 6\n&lt;&gt;&lt;&gt;\nv^v^v^\n" ]
[ "NO\n", "YES\n" ]
The figure above shows street directions in the second sample test case.
1,000
[ { "input": "3 3\n><>\nv^v", "output": "NO" }, { "input": "4 6\n<><>\nv^v^v^", "output": "YES" }, { "input": "2 2\n<>\nv^", "output": "YES" }, { "input": "2 2\n>>\n^v", "output": "NO" }, { "input": "3 3\n>><\n^^v", "output": "YES" }, { "input": "3 4\n>><\n^v^v", "output": "YES" }, { "input": "3 8\n>><\nv^^^^^^^", "output": "NO" }, { "input": "7 2\n<><<<<>\n^^", "output": "NO" }, { "input": "4 5\n><<<\n^^^^v", "output": "YES" }, { "input": "2 20\n><\n^v^^v^^v^^^v^vv^vv^^", "output": "NO" }, { "input": "2 20\n<>\nv^vv^v^^vvv^^^v^vvv^", "output": "YES" }, { "input": "20 2\n<><<><<>><<<>><><<<<\n^^", "output": "NO" }, { "input": "20 2\n><>><>><>><<<><<><><\n^v", "output": "YES" }, { "input": "11 12\n><<<><><<>>\nvv^^^^vvvvv^", "output": "NO" }, { "input": "4 18\n<<>>\nv^v^v^^vvvv^v^^vv^", "output": "YES" }, { "input": "16 11\n<<<<>><><<<<<><<\nvv^v^vvvv^v", "output": "NO" }, { "input": "14 7\n><<<<>>>>>>><<\nvv^^^vv", "output": "NO" }, { "input": "5 14\n<<><>\nv^vv^^vv^v^^^v", "output": "NO" }, { "input": "8 18\n>>>><>>>\nv^vv^v^^^^^vvv^^vv", "output": "NO" }, { "input": "18 18\n<<><>><<>><>><><<<\n^^v^v^vvvv^v^vv^vv", "output": "NO" }, { "input": "4 18\n<<<>\n^^^^^vv^vv^^vv^v^v", "output": "NO" }, { "input": "19 18\n><><>>><<<<<>>><<<>\n^^v^^v^^v^vv^v^vvv", "output": "NO" }, { "input": "14 20\n<<<><><<>><><<\nvvvvvvv^v^vvvv^^^vv^", "output": "NO" }, { "input": "18 18\n><>>><<<>><><>>>><\nvv^^^^v^v^^^^v^v^^", "output": "NO" }, { "input": "8 18\n<><<<>>>\n^^^^^^v^^^vv^^vvvv", "output": "NO" }, { "input": "11 12\n><><><<><><\n^^v^^^^^^^^v", "output": "YES" }, { "input": "4 18\n<<>>\nv^v^v^^vvvv^v^^vv^", "output": "YES" }, { "input": "16 11\n>><<><<<<>>><><<\n^^^^vvvv^vv", "output": "YES" }, { "input": "14 7\n<><><<<>>>><>>\nvv^^v^^", "output": "YES" }, { "input": "5 14\n>>>><\n^v^v^^^vv^vv^v", "output": "YES" }, { "input": "8 18\n<<<><>>>\nv^^vvv^^v^v^vvvv^^", "output": "YES" }, { "input": "18 18\n><><<><><>>><>>>><\n^^vvv^v^^^v^vv^^^v", "output": "YES" }, { "input": "4 18\n<<>>\nv^v^v^^vvvv^v^^vv^", "output": "YES" }, { "input": "19 18\n>>>><><<>>><<<><<<<\n^v^^^^vv^^v^^^^v^v", "output": "YES" }, { "input": "14 20\n<>><<<><<>>>>>\nvv^^v^^^^v^^vv^^vvv^", "output": "YES" }, { "input": "18 18\n><><<><><>>><>>>><\n^^vvv^v^^^v^vv^^^v", "output": "YES" }, { "input": "8 18\n<<<><>>>\nv^^vvv^^v^v^vvvv^^", "output": "YES" }, { "input": "20 19\n<><>>>>><<<<<><<>>>>\nv^vv^^vvvvvv^vvvv^v", "output": "NO" }, { "input": "20 19\n<<<><<<>><<<>><><><>\nv^v^vvv^vvv^^^vvv^^", "output": "YES" }, { "input": "19 20\n<><<<><><><<<<<<<<>\n^v^^^^v^^vvvv^^^^vvv", "output": "NO" }, { "input": "19 20\n>>>>>>>><>>><><<<><\n^v^v^^^vvv^^^v^^vvvv", "output": "YES" }, { "input": "20 20\n<<<>>>><>><<>><<>>>>\n^vvv^^^^vv^^^^^v^^vv", "output": "NO" }, { "input": "20 20\n>>><><<><<<<<<<><<><\nvv^vv^vv^^^^^vv^^^^^", "output": "NO" }, { "input": "20 20\n><<><<<<<<<>>><>>><<\n^^^^^^^^vvvv^vv^vvvv", "output": "YES" }, { "input": "20 20\n<>>>>>>>><>>><>><<<>\nvv^^vv^^^^v^vv^v^^^^", "output": "YES" }, { "input": "20 20\n><>><<>><>>>>>>>><<>\n^^v^vv^^^vvv^v^^^vv^", "output": "NO" }, { "input": "20 20\n<<<<><<>><><<<>><<><\nv^^^^vvv^^^vvvv^v^vv", "output": "NO" }, { "input": "20 20\n><<<><<><>>><><<<<<<\nvv^^vvv^^v^^v^vv^vvv", "output": "NO" }, { "input": "20 20\n<<>>><>>>><<<<>>><<>\nv^vv^^^^^vvv^^v^^v^v", "output": "NO" }, { "input": "20 20\n><<><<><<<<<<>><><>>\nv^^^v^vv^^v^^vvvv^vv", "output": "NO" }, { "input": "20 20\n<<<<<<<<><>><><>><<<\n^vvv^^^v^^^vvv^^^^^v", "output": "NO" }, { "input": "20 20\n>>><<<<<>>><><><<><<\n^^^vvv^^^v^^v^^v^vvv", "output": "YES" }, { "input": "20 20\n<><<<><><>><><><<<<>\n^^^vvvv^vv^v^^^^v^vv", "output": "NO" }, { "input": "20 20\n>>>>>>>>>><>>><>><>>\n^vvv^^^vv^^^^^^vvv^v", "output": "NO" }, { "input": "20 20\n<><>><><<<<<>><<>>><\nv^^^v^v^v^vvvv^^^vv^", "output": "NO" }, { "input": "20 20\n><<<><<<><<<><>>>><<\nvvvv^^^^^vv^v^^vv^v^", "output": "NO" }, { "input": "20 20\n<<><<<<<<>>>>><<<>>>\nvvvvvv^v^vvv^^^^^^^^", "output": "YES" }, { "input": "20 20\n><<><<>>>>><><>><>>>\nv^^^^vvv^^^^^v^v^vv^", "output": "NO" }, { "input": "20 20\n<<>>><>><<>>>><<<><<\n^^vvv^^vvvv^vv^^v^v^", "output": "NO" }, { "input": "20 20\n><<>><>>>><<><>><><<\n^v^^^^^^vvvv^v^v^v^^", "output": "NO" }, { "input": "20 20\n<<><<<<><><<>>><>>>>\n^^vvvvv^v^^^^^^^vvv^", "output": "NO" }, { "input": "20 20\n>><<<<<<><>>>><>>><>\n^^^v^v^vv^^vv^vvv^^^", "output": "NO" }, { "input": "20 20\n>>>>>>>>>>>>>>>>>>>>\nvvvvvvvvvvvvvvvvvvvv", "output": "NO" }, { "input": "2 2\n><\nv^", "output": "NO" }, { "input": "2 2\n<>\n^v", "output": "NO" }, { "input": "3 3\n>><\nvvv", "output": "NO" }, { "input": "2 3\n<>\nv^^", "output": "YES" }, { "input": "4 4\n>>><\nvvv^", "output": "NO" }, { "input": "20 20\n<><><><><><><><><><>\nvvvvvvvvvvvvvvvvvvvv", "output": "NO" }, { "input": "4 4\n<>>>\nv^^^", "output": "YES" }, { "input": "20 20\n<><><><><><><><><><>\nv^v^v^v^v^v^v^v^v^v^", "output": "YES" }, { "input": "2 3\n<>\n^v^", "output": "NO" }, { "input": "4 3\n<><>\n^vv", "output": "NO" }, { "input": "3 3\n<<>\nvv^", "output": "YES" }, { "input": "2 3\n><\nvv^", "output": "NO" }, { "input": "7 6\n>>><>><\n^vv^vv", "output": "YES" }, { "input": "2 2\n<<\nv^", "output": "NO" }, { "input": "3 3\n>><\n^^^", "output": "NO" }, { "input": "3 3\n<><\nv^v", "output": "NO" }, { "input": "20 20\n><><><><><><><><><><\n^v^v^v^v^v^v^v^v^v^v", "output": "YES" }, { "input": "4 4\n<>>>\nvvv^", "output": "YES" } ]
1,662,738,374
2,147,483,647
Python 3
OK
TESTS
81
46
0
input_1 = input().split() [n, m] = list(map(int, input_1)) input_n = input() input_m = input() n_list = [*input_n] m_list = [*input_m] if (n_list[0] == "<" and m_list[0] == "^") or (n_list[0] == ">" and m_list[m - 1] == "^") or (n_list[n - 1] == ">" and m_list[m - 1] == "v") or (n_list[n - 1] == "<" and m_list[0] == "v"): print("NO") else: print("YES")
Title: Strongly Connected City Time Limit: None seconds Memory Limit: None megabytes Problem Description: Imagine a city with *n* horizontal streets crossing *m* vertical streets, forming an (*n*<=-<=1)<=×<=(*m*<=-<=1) grid. In order to increase the traffic flow, mayor of the city has decided to make each street one way. This means in each horizontal street, the traffic moves only from west to east or only from east to west. Also, traffic moves only from north to south or only from south to north in each vertical street. It is possible to enter a horizontal street from a vertical street, or vice versa, at their intersection. The mayor has received some street direction patterns. Your task is to check whether it is possible to reach any junction from any other junction in the proposed street direction pattern. Input Specification: The first line of input contains two integers *n* and *m*, (2<=≤<=*n*,<=*m*<=≤<=20), denoting the number of horizontal streets and the number of vertical streets. The second line contains a string of length *n*, made of characters '&lt;' and '&gt;', denoting direction of each horizontal street. If the *i*-th character is equal to '&lt;', the street is directed from east to west otherwise, the street is directed from west to east. Streets are listed in order from north to south. The third line contains a string of length *m*, made of characters '^' and 'v', denoting direction of each vertical street. If the *i*-th character is equal to '^', the street is directed from south to north, otherwise the street is directed from north to south. Streets are listed in order from west to east. Output Specification: If the given pattern meets the mayor's criteria, print a single line containing "YES", otherwise print a single line containing "NO". Demo Input: ['3 3\n&gt;&lt;&gt;\nv^v\n', '4 6\n&lt;&gt;&lt;&gt;\nv^v^v^\n'] Demo Output: ['NO\n', 'YES\n'] Note: The figure above shows street directions in the second sample test case.
```python input_1 = input().split() [n, m] = list(map(int, input_1)) input_n = input() input_m = input() n_list = [*input_n] m_list = [*input_m] if (n_list[0] == "<" and m_list[0] == "^") or (n_list[0] == ">" and m_list[m - 1] == "^") or (n_list[n - 1] == ">" and m_list[m - 1] == "v") or (n_list[n - 1] == "<" and m_list[0] == "v"): print("NO") else: print("YES") ```
3
271
A
Beautiful Year
PROGRAMMING
800
[ "brute force" ]
null
null
It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits. Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits.
The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number.
Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists.
[ "1987\n", "2013\n" ]
[ "2013\n", "2014\n" ]
none
500
[ { "input": "1987", "output": "2013" }, { "input": "2013", "output": "2014" }, { "input": "1000", "output": "1023" }, { "input": "1001", "output": "1023" }, { "input": "1234", "output": "1235" }, { "input": "5555", "output": "5601" }, { "input": "9000", "output": "9012" }, { "input": "1111", "output": "1203" }, { "input": "8999", "output": "9012" }, { "input": "4572", "output": "4573" }, { "input": "6666", "output": "6701" }, { "input": "2001", "output": "2013" }, { "input": "3000", "output": "3012" }, { "input": "7712", "output": "7801" }, { "input": "8088", "output": "8091" }, { "input": "1594", "output": "1596" }, { "input": "6016", "output": "6017" }, { "input": "8800", "output": "8901" }, { "input": "3331", "output": "3401" }, { "input": "5090", "output": "5091" }, { "input": "2342", "output": "2345" }, { "input": "2334", "output": "2340" }, { "input": "1123", "output": "1203" }, { "input": "8989", "output": "9012" }, { "input": "8977", "output": "9012" }, { "input": "6869", "output": "6870" }, { "input": "8999", "output": "9012" } ]
1,690,525,549
2,147,483,647
PyPy 3-64
OK
TESTS
27
124
0
from itertools import count given_year = int(input()) print(next(year for year in count(given_year + 1) if len(set(str(year))) == 4))
Title: Beautiful Year Time Limit: None seconds Memory Limit: None megabytes Problem Description: It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits. Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits. Input Specification: The single line contains integer *y* (1000<=≤<=*y*<=≤<=9000) — the year number. Output Specification: Print a single integer — the minimum year number that is strictly larger than *y* and all it's digits are distinct. It is guaranteed that the answer exists. Demo Input: ['1987\n', '2013\n'] Demo Output: ['2013\n', '2014\n'] Note: none
```python from itertools import count given_year = int(input()) print(next(year for year in count(given_year + 1) if len(set(str(year))) == 4)) ```
3
1,011
A
Stages
PROGRAMMING
900
[ "greedy", "implementation", "sortings" ]
null
null
Natasha is going to fly to Mars. She needs to build a rocket, which consists of several stages in some order. Each of the stages is defined by a lowercase Latin letter. This way, the rocket can be described by the string — concatenation of letters, which correspond to the stages. There are $n$ stages available. The rocket must contain exactly $k$ of them. Stages in the rocket should be ordered by their weight. So, after the stage with some letter can go only stage with a letter, which is at least two positions after in the alphabet (skipping one letter in between, or even more). For example, after letter 'c' can't go letters 'a', 'b', 'c' and 'd', but can go letters 'e', 'f', ..., 'z'. For the rocket to fly as far as possible, its weight should be minimal. The weight of the rocket is equal to the sum of the weights of its stages. The weight of the stage is the number of its letter in the alphabet. For example, the stage 'a 'weighs one ton,' b 'weighs two tons, and' z' — $26$ tons. Build the rocket with the minimal weight or determine, that it is impossible to build a rocket at all. Each stage can be used at most once.
The first line of input contains two integers — $n$ and $k$ ($1 \le k \le n \le 50$) – the number of available stages and the number of stages to use in the rocket. The second line contains string $s$, which consists of exactly $n$ lowercase Latin letters. Each letter defines a new stage, which can be used to build the rocket. Each stage can be used at most once.
Print a single integer — the minimal total weight of the rocket or -1, if it is impossible to build the rocket at all.
[ "5 3\nxyabd\n", "7 4\nproblem\n", "2 2\nab\n", "12 1\nabaabbaaabbb\n" ]
[ "29", "34", "-1", "1" ]
In the first example, the following rockets satisfy the condition: - "adx" (weight is $1+4+24=29$);- "ady" (weight is $1+4+25=30$);- "bdx" (weight is $2+4+24=30$);- "bdy" (weight is $2+4+25=31$). Rocket "adx" has the minimal weight, so the answer is $29$. In the second example, target rocket is "belo". Its weight is $2+5+12+15=34$. In the third example, $n=k=2$, so the rocket must have both stages: 'a' and 'b'. This rocket doesn't satisfy the condition, because these letters are adjacent in the alphabet. Answer is -1.
500
[ { "input": "5 3\nxyabd", "output": "29" }, { "input": "7 4\nproblem", "output": "34" }, { "input": "2 2\nab", "output": "-1" }, { "input": "12 1\nabaabbaaabbb", "output": "1" }, { "input": "50 13\nqwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa", "output": "169" }, { "input": "50 14\nqwertyuiopasdfghjklzxcvbnmaaaaaaaaaaaaaaaaaaaaaaaa", "output": "-1" }, { "input": "1 1\na", "output": "1" }, { "input": "50 1\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "1" }, { "input": "50 2\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "-1" }, { "input": "13 13\nuwgmkyqeiaocs", "output": "169" }, { "input": "13 13\nhzdxpbfvrltnj", "output": "182" }, { "input": "1 1\nn", "output": "14" }, { "input": "10 8\nsmzeblyjqw", "output": "113" }, { "input": "20 20\ntzmvhskkyugkuuxpvtbh", "output": "-1" }, { "input": "30 15\nwjzolzzkfulwgioksfxmcxmnnjtoav", "output": "-1" }, { "input": "40 30\nxumfrflllrrgswehqtsskefixhcxjrxbjmrpsshv", "output": "-1" }, { "input": "50 31\nahbyyoxltryqdmvenemaqnbakglgqolxnaifnqtoclnnqiabpz", "output": "-1" }, { "input": "10 7\niuiukrxcml", "output": "99" }, { "input": "38 2\nvjzarfykmrsrvwbwfwldsulhxtykmjbnwmdufa", "output": "5" }, { "input": "12 6\nfwseyrarkwcd", "output": "61" }, { "input": "2 2\nac", "output": "4" }, { "input": "1 1\nc", "output": "3" }, { "input": "2 2\nad", "output": "5" }, { "input": "2 1\nac", "output": "1" }, { "input": "4 3\nadjz", "output": "15" }, { "input": "3 3\naoz", "output": "42" }, { "input": "3 1\nzzz", "output": "26" }, { "input": "2 1\nxz", "output": "24" }, { "input": "5 1\naaddd", "output": "1" } ]
1,699,455,684
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
30
0
n=int(input("")) n2=int(input("")) s=input("") d=["a", "b", "c" , "d" , "e" , "f" , "g" , "h" , "i" , "j" , "k" , "l", "m" , "n" , "o" , "p" , "q" , "r" , "s" , "t" , "u" , "v" , "w" , "x" , "y", "z"] total=0 x="" l=[] for i in s : h=d.index(i) l.append(h+1) l.sort() k=[] k.append(l[0]) n2=n2-1 ind=0 for i in range(1,n) : if(n2>0): if(l[i]>k[ind]+2): k.append(l[i]) ind=ind+1 n2=n2-1 print(sum(k))
Title: Stages Time Limit: None seconds Memory Limit: None megabytes Problem Description: Natasha is going to fly to Mars. She needs to build a rocket, which consists of several stages in some order. Each of the stages is defined by a lowercase Latin letter. This way, the rocket can be described by the string — concatenation of letters, which correspond to the stages. There are $n$ stages available. The rocket must contain exactly $k$ of them. Stages in the rocket should be ordered by their weight. So, after the stage with some letter can go only stage with a letter, which is at least two positions after in the alphabet (skipping one letter in between, or even more). For example, after letter 'c' can't go letters 'a', 'b', 'c' and 'd', but can go letters 'e', 'f', ..., 'z'. For the rocket to fly as far as possible, its weight should be minimal. The weight of the rocket is equal to the sum of the weights of its stages. The weight of the stage is the number of its letter in the alphabet. For example, the stage 'a 'weighs one ton,' b 'weighs two tons, and' z' — $26$ tons. Build the rocket with the minimal weight or determine, that it is impossible to build a rocket at all. Each stage can be used at most once. Input Specification: The first line of input contains two integers — $n$ and $k$ ($1 \le k \le n \le 50$) – the number of available stages and the number of stages to use in the rocket. The second line contains string $s$, which consists of exactly $n$ lowercase Latin letters. Each letter defines a new stage, which can be used to build the rocket. Each stage can be used at most once. Output Specification: Print a single integer — the minimal total weight of the rocket or -1, if it is impossible to build the rocket at all. Demo Input: ['5 3\nxyabd\n', '7 4\nproblem\n', '2 2\nab\n', '12 1\nabaabbaaabbb\n'] Demo Output: ['29', '34', '-1', '1'] Note: In the first example, the following rockets satisfy the condition: - "adx" (weight is $1+4+24=29$);- "ady" (weight is $1+4+25=30$);- "bdx" (weight is $2+4+24=30$);- "bdy" (weight is $2+4+25=31$). Rocket "adx" has the minimal weight, so the answer is $29$. In the second example, target rocket is "belo". Its weight is $2+5+12+15=34$. In the third example, $n=k=2$, so the rocket must have both stages: 'a' and 'b'. This rocket doesn't satisfy the condition, because these letters are adjacent in the alphabet. Answer is -1.
```python n=int(input("")) n2=int(input("")) s=input("") d=["a", "b", "c" , "d" , "e" , "f" , "g" , "h" , "i" , "j" , "k" , "l", "m" , "n" , "o" , "p" , "q" , "r" , "s" , "t" , "u" , "v" , "w" , "x" , "y", "z"] total=0 x="" l=[] for i in s : h=d.index(i) l.append(h+1) l.sort() k=[] k.append(l[0]) n2=n2-1 ind=0 for i in range(1,n) : if(n2>0): if(l[i]>k[ind]+2): k.append(l[i]) ind=ind+1 n2=n2-1 print(sum(k)) ```
-1