contestId
int64
0
1.01k
index
stringclasses
57 values
name
stringlengths
2
58
type
stringclasses
2 values
rating
int64
0
3.5k
tags
sequencelengths
0
11
title
stringclasses
522 values
time-limit
stringclasses
8 values
memory-limit
stringclasses
8 values
problem-description
stringlengths
0
7.15k
input-specification
stringlengths
0
2.05k
output-specification
stringlengths
0
1.5k
demo-input
sequencelengths
0
7
demo-output
sequencelengths
0
7
note
stringlengths
0
5.24k
points
float64
0
425k
test_cases
listlengths
0
402
creationTimeSeconds
int64
1.37B
1.7B
relativeTimeSeconds
int64
8
2.15B
programmingLanguage
stringclasses
3 values
verdict
stringclasses
14 values
testset
stringclasses
12 values
passedTestCount
int64
0
1k
timeConsumedMillis
int64
0
15k
memoryConsumedBytes
int64
0
805M
code
stringlengths
3
65.5k
prompt
stringlengths
262
8.2k
response
stringlengths
17
65.5k
score
float64
-1
3.99
32
B
Borze
PROGRAMMING
800
[ "expression parsing", "implementation" ]
B. Borze
2
256
Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.
The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).
Output the decoded ternary number. It can have leading zeroes.
[ ".-.--\n", "--.\n", "-..-.--\n" ]
[ "012", "20", "1012" ]
none
1,000
[ { "input": ".-.--", "output": "012" }, { "input": "--.", "output": "20" }, { "input": "-..-.--", "output": "1012" }, { "input": "---..", "output": "210" }, { "input": "..--.---..", "output": "0020210" }, { "input": "-.....----.", "output": "10000220" }, { "input": ".", "output": "0" }, { "input": "-.", "output": "1" }, { "input": "--", "output": "2" }, { "input": "..", "output": "00" }, { "input": "--.", "output": "20" }, { "input": ".--.", "output": "020" }, { "input": ".-.-..", "output": "0110" }, { "input": "----.-.", "output": "2201" }, { "input": "-..--.-.", "output": "10201" }, { "input": "..--..--.", "output": "0020020" }, { "input": "-.-.---.--..-..-.-.-..-..-.--.", "output": "112120010111010120" }, { "input": "---.-.-.------..-..-..-..-.-..-.--.-.-..-.-.-----..-.-.", "output": "21112220010101011012011011221011" }, { "input": "-.-..--.-.-.-.-.-..-.-.-.---------.--.---..--...--.-----.-.-.-...--.-.-.---.------.--..-.--.-----.-...-..------", "output": "11020111110111222212021020002022111100201121222020012022110010222" }, { "input": "-.-..-.--.---..---.-..---.-...-.-.----..-.---.-.---..-.--.---.-.-------.---.--....----.-.---.---.---.----.-----..---.-.-.-.-----.--.-------.-..", "output": "110120210211021100112200121121012021122212120000220121212122022102111122120222110" }, { "input": ".-..-.-.---.-----.--.---...-.--.-.-....-..", "output": "01011212212021001201100010" }, { "input": ".------.-.---..--...-..-..-.-.-.--.--.-..-.--...-.-.---.-.-.------..--..-.---..----.-..-.--.---.-.----.-.---...-.-.-.-----.-.-.---.---.-.....-.-...-----.-...-.---.-..-.-----.--...---.-.-..-.--.-.---..", "output": "022201210200010101112020101200011211122200200121022010120211220121001112211121211000011002211001211012212000211101201210" }, { "input": ".-.--.---.-----.-.-----.-.-..-----..-..----..--.-.--.----..---.---..-.-.-----..-------.----..----.-..---...-----..-..-----...-..-.-.-----....---..---..-.-----...-.--...--.-.---.-.-.-.-.-...---..----.", "output": "01202122112211102210102200201202200212101122102221220022010210022101022100101122100021021012210012000201211111100210220" }, { "input": "..-.-.-.---.-.-.-..-.-..-.-.---.-------.---..-----.---....-.---.--.--.-.---.---------.-..---.-.-.--..---.---.-.---.-.-..-.-..-.-.-.----.--.-....--------.-.---..----.------.-.-.--.--.-----.-----.----", "output": "0011121111011011212221210221210001212020121222211021112002121121110110111220201000222201210220222011202022122122" }, { "input": "-..-------.------.-..--.-.-..--.-.-..-----..-.-.-..-..-..--.---..-----..---..-..--.-..-.-.---...-.....-------.---.-----.-...-.-...-.-.---.---.-----.--.--...-.--..-.-..-...-.-.-.-.---..---.-..-.-.-.-..", "output": "102221222010201102011022101110101020210221021010201011210010000222121221100110011212122120200012001101001111210211011110" }, { "input": ".-.----.-.--..-.-.-.-..----..-.-...--.-.---.---.-------..-.--..-......--.------.--.----.--...-.--.--..-----..-.....--.--.-.-.------..--------.----------..-.---.----.---.-..--..-.....-..------.--.", "output": "012201200111102200110020121212221012001000002022202022020001202002210100002020112220022220222220012122021102001000010222020" }, { "input": "------.-----.-....--.-.----.-.---.-.-..---.-.---.-----..-...-.-.---..-.-.-..-.-.-...-.-.-.----..--.------.----.-..-.--...-.-------...-.-..-.-.--.--.---..--..--------.--.-.-.---.-.-.-...----.--..-.--..", "output": "222022110002012201211102112122101001121011101110011122002022202201012000122210011011202021020022220201121111002202001200" }, { "input": "-.---...----...--.--...-.--.----", "output": "121002200020200012022" }, { "input": "--.--.--.---.--.-.---.-.-..-..--.-..---.-.....-..---.-----.--...-.-.-------.-.--.-.----.-..-.------.", "output": "202020212012111010201021100001021221200011222112012201012220" } ]
1,643,132,342
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
#include <iostream> #include<string> using namespace std; int main() { string str1,str2; cin>>str1; for(int j=0;j<str1.length();j++) { if(str1[j]=='.'){ str2+='0'; } if(str1[j]=='-'&&str1[j+1]=='.'){ str2+='1'; ++j; } if(str1[j]=='-'&&str1[j+1]=='-'){ str2+='2'; ++j; } } cout<<str2; }
Title: Borze Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as «.», 1 as «-.» and 2 as «--». You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet. Input Specification: The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes). Output Specification: Output the decoded ternary number. It can have leading zeroes. Demo Input: ['.-.--\n', '--.\n', '-..-.--\n'] Demo Output: ['012', '20', '1012'] Note: none
```python #include <iostream> #include<string> using namespace std; int main() { string str1,str2; cin>>str1; for(int j=0;j<str1.length();j++) { if(str1[j]=='.'){ str2+='0'; } if(str1[j]=='-'&&str1[j+1]=='.'){ str2+='1'; ++j; } if(str1[j]=='-'&&str1[j+1]=='-'){ str2+='2'; ++j; } } cout<<str2; } ```
-1
96
A
Football
PROGRAMMING
900
[ "implementation", "strings" ]
A. Football
2
256
Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not.
The first input line contains a non-empty string consisting of characters "0" and "1", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field.
Print "YES" if the situation is dangerous. Otherwise, print "NO".
[ "001001\n", "1000000001\n" ]
[ "NO\n", "YES\n" ]
none
500
[ { "input": "001001", "output": "NO" }, { "input": "1000000001", "output": "YES" }, { "input": "00100110111111101", "output": "YES" }, { "input": "11110111111111111", "output": "YES" }, { "input": "01", "output": "NO" }, { "input": "10100101", "output": "NO" }, { "input": "1010010100000000010", "output": "YES" }, { "input": "101010101", "output": "NO" }, { "input": "000000000100000000000110101100000", "output": "YES" }, { "input": "100001000000110101100000", "output": "NO" }, { "input": "100001000011010110000", "output": "NO" }, { "input": "010", "output": "NO" }, { "input": "10101011111111111111111111111100", "output": "YES" }, { "input": "1001101100", "output": "NO" }, { "input": "1001101010", "output": "NO" }, { "input": "1111100111", "output": "NO" }, { "input": "00110110001110001111", "output": "NO" }, { "input": "11110001001111110001", "output": "NO" }, { "input": "10001111001011111101", "output": "NO" }, { "input": "10000010100000001000110001010100001001001010011", "output": "YES" }, { "input": "01111011111010111100101100001011001010111110000010", "output": "NO" }, { "input": "00100000100100101110011001011011101110110110010100", "output": "NO" }, { "input": "10110100110001001011110101110010100010000000000100101010111110111110100011", "output": "YES" }, { "input": "00011101010101111001011011001101101011111101000010100000111000011100101011", "output": "NO" }, { "input": "01110000110100110101110100111000101101011101011110110100100111100001110111", "output": "NO" }, { "input": "11110110011000100111100111101101011111110100010101011011111101110110110111", "output": "YES" }, { "input": "100100010101110010001011001110100011100010011110100101100011010001001010001001101111001100", "output": "NO" }, { "input": "111110010001011010010011111100110110001111000010100011011100111101111101110010101111011110000001010", "output": "NO" }, { "input": "111110111100010100000100001010111011101011000111011011011010110010100010000101011111000011010011110", "output": "NO" }, { "input": "1011110110111010110111111010010010100011111011110000011000110010011110111010110100011010100010111000", "output": "NO" }, { "input": "0010100111100010110110000011100111110100111110001010000100111111111010111100101101010101001011010110", "output": "YES" }, { "input": "1111010100010100101011101100101101110011000010100010000001111100010011100101010001101111000001011000", "output": "NO" }, { "input": "0101100011001110001110100111100011010101011000000000110110010010111100101111010111100011101100100101", "output": "YES" }, { "input": "0001101110011101110000000010011111101001101111100001001010110000110001100000010001111011011110001101", "output": "YES" }, { "input": "1000010000100000100010000100001000010000100001000010000100001000010000100001000010000100001000010000", "output": "NO" }, { "input": "1000000000100000000010000000001000000000100000000010000000001000000000100000000010000000001000000000", "output": "YES" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001", "output": "YES" }, { "input": "1111111111111111111111111111111111111111011111111111111111111111111111111111111111111111111111111111", "output": "YES" }, { "input": "10100101000", "output": "NO" }, { "input": "11110111011101", "output": "NO" }, { "input": "10000000", "output": "YES" }, { "input": "00000001", "output": "YES" }, { "input": "01111111", "output": "YES" }, { "input": "11111110", "output": "YES" } ]
1,691,151,375
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
40
92
0
def Football(): playerPos = input() playerPosArray = list(playerPos) i = 1 no1Player = 0 no0Player = 0 answerFinal = False while (i < len(playerPosArray)): if(no1Player < 6 and no0Player < 6): if (playerPosArray[i - 1] == '0' and playerPosArray[i] == '0'): no0Player += 1 elif (playerPosArray[i - 1] == '1' and playerPosArray[i] == '1'): no1Player += 1 else: no1Player = 0 no0Player = 0 else: answerFinal = True break i += 1 if (answerFinal == True): print("YES") else: print("NO") Football()
Title: Football Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not. Input Specification: The first input line contains a non-empty string consisting of characters "0" and "1", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field. Output Specification: Print "YES" if the situation is dangerous. Otherwise, print "NO". Demo Input: ['001001\n', '1000000001\n'] Demo Output: ['NO\n', 'YES\n'] Note: none
```python def Football(): playerPos = input() playerPosArray = list(playerPos) i = 1 no1Player = 0 no0Player = 0 answerFinal = False while (i < len(playerPosArray)): if(no1Player < 6 and no0Player < 6): if (playerPosArray[i - 1] == '0' and playerPosArray[i] == '0'): no0Player += 1 elif (playerPosArray[i - 1] == '1' and playerPosArray[i] == '1'): no1Player += 1 else: no1Player = 0 no0Player = 0 else: answerFinal = True break i += 1 if (answerFinal == True): print("YES") else: print("NO") Football() ```
0
863
A
Quasi-palindrome
PROGRAMMING
900
[ "brute force", "implementation" ]
null
null
Let quasi-palindromic number be such number that adding some leading zeros (possible none) to it produces a palindromic string. String *t* is called a palindrome, if it reads the same from left to right and from right to left. For example, numbers 131 and 2010200 are quasi-palindromic, they can be transformed to strings "131" and "002010200", respectively, which are palindromes. You are given some integer number *x*. Check if it's a quasi-palindromic number.
The first line contains one integer number *x* (1<=≤<=*x*<=≤<=109). This number is given without any leading zeroes.
Print "YES" if number *x* is quasi-palindromic. Otherwise, print "NO" (without quotes).
[ "131\n", "320\n", "2010200\n" ]
[ "YES\n", "NO\n", "YES\n" ]
none
0
[ { "input": "131", "output": "YES" }, { "input": "320", "output": "NO" }, { "input": "2010200", "output": "YES" }, { "input": "1", "output": "YES" }, { "input": "1000000000", "output": "YES" }, { "input": "999999999", "output": "YES" }, { "input": "999999998", "output": "NO" }, { "input": "102000", "output": "NO" }, { "input": "210000000", "output": "NO" }, { "input": "213443120", "output": "YES" }, { "input": "99", "output": "YES" }, { "input": "22002", "output": "NO" }, { "input": "1010", "output": "YES" }, { "input": "1201", "output": "NO" }, { "input": "6460046", "output": "NO" }, { "input": "503435", "output": "NO" }, { "input": "21002", "output": "NO" }, { "input": "101001", "output": "NO" }, { "input": "200102", "output": "NO" }, { "input": "20010002", "output": "NO" }, { "input": "33003", "output": "NO" }, { "input": "100101", "output": "NO" }, { "input": "1021", "output": "NO" }, { "input": "1101", "output": "NO" }, { "input": "10101100", "output": "NO" }, { "input": "101", "output": "YES" }, { "input": "1011", "output": "NO" }, { "input": "11010", "output": "NO" }, { "input": "10110", "output": "NO" }, { "input": "110000", "output": "YES" }, { "input": "2011", "output": "NO" }, { "input": "10020001", "output": "NO" }, { "input": "12505021", "output": "NO" }, { "input": "12310", "output": "NO" }, { "input": "100501", "output": "NO" }, { "input": "11001", "output": "NO" }, { "input": "20020002", "output": "NO" }, { "input": "202002", "output": "NO" }, { "input": "1001", "output": "YES" }, { "input": "1020021", "output": "NO" }, { "input": "60660", "output": "NO" }, { "input": "98809", "output": "NO" }, { "input": "11000000", "output": "YES" }, { "input": "807008", "output": "NO" } ]
1,511,876,411
2,147,483,647
Python 3
OK
TESTS
44
62
6,348,800
s=input() a=[] b=[] t=0 m=0 for i in range(len(s)): if s[i]=='0': t+=1 else: break for j in range(len(s)-1,-1,-1): if s[j]=='0': m+=1 else: break if m>t: s=(m-t)*'0'+s elif m<t: s=s+'0'*(t-m) for i in range(len(s)): a.append(s[i]) b.append(s[len(s)-1-i]) if a==b: print("YES") else: print("NO")
Title: Quasi-palindrome Time Limit: None seconds Memory Limit: None megabytes Problem Description: Let quasi-palindromic number be such number that adding some leading zeros (possible none) to it produces a palindromic string. String *t* is called a palindrome, if it reads the same from left to right and from right to left. For example, numbers 131 and 2010200 are quasi-palindromic, they can be transformed to strings "131" and "002010200", respectively, which are palindromes. You are given some integer number *x*. Check if it's a quasi-palindromic number. Input Specification: The first line contains one integer number *x* (1<=≤<=*x*<=≤<=109). This number is given without any leading zeroes. Output Specification: Print "YES" if number *x* is quasi-palindromic. Otherwise, print "NO" (without quotes). Demo Input: ['131\n', '320\n', '2010200\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: none
```python s=input() a=[] b=[] t=0 m=0 for i in range(len(s)): if s[i]=='0': t+=1 else: break for j in range(len(s)-1,-1,-1): if s[j]=='0': m+=1 else: break if m>t: s=(m-t)*'0'+s elif m<t: s=s+'0'*(t-m) for i in range(len(s)): a.append(s[i]) b.append(s[len(s)-1-i]) if a==b: print("YES") else: print("NO") ```
3
723
A
The New Year: Meeting Friends
PROGRAMMING
800
[ "implementation", "math", "sortings" ]
null
null
There are three friend living on the straight line *Ox* in Lineland. The first friend lives at the point *x*1, the second friend lives at the point *x*2, and the third friend lives at the point *x*3. They plan to celebrate the New Year together, so they need to meet at one point. What is the minimum total distance they have to travel in order to meet at some point and celebrate the New Year? It's guaranteed that the optimal answer is always integer.
The first line of the input contains three distinct integers *x*1, *x*2 and *x*3 (1<=≤<=*x*1,<=*x*2,<=*x*3<=≤<=100) — the coordinates of the houses of the first, the second and the third friends respectively.
Print one integer — the minimum total distance the friends need to travel in order to meet together.
[ "7 1 4\n", "30 20 10\n" ]
[ "6\n", "20\n" ]
In the first sample, friends should meet at the point 4. Thus, the first friend has to travel the distance of 3 (from the point 7 to the point 4), the second friend also has to travel the distance of 3 (from the point 1 to the point 4), while the third friend should not go anywhere because he lives at the point 4.
500
[ { "input": "7 1 4", "output": "6" }, { "input": "30 20 10", "output": "20" }, { "input": "1 4 100", "output": "99" }, { "input": "100 1 91", "output": "99" }, { "input": "1 45 100", "output": "99" }, { "input": "1 2 3", "output": "2" }, { "input": "71 85 88", "output": "17" }, { "input": "30 38 99", "output": "69" }, { "input": "23 82 95", "output": "72" }, { "input": "22 41 47", "output": "25" }, { "input": "9 94 77", "output": "85" }, { "input": "1 53 51", "output": "52" }, { "input": "25 97 93", "output": "72" }, { "input": "42 53 51", "output": "11" }, { "input": "81 96 94", "output": "15" }, { "input": "21 5 93", "output": "88" }, { "input": "50 13 75", "output": "62" }, { "input": "41 28 98", "output": "70" }, { "input": "69 46 82", "output": "36" }, { "input": "87 28 89", "output": "61" }, { "input": "44 45 40", "output": "5" }, { "input": "86 97 68", "output": "29" }, { "input": "43 92 30", "output": "62" }, { "input": "16 70 1", "output": "69" }, { "input": "40 46 19", "output": "27" }, { "input": "71 38 56", "output": "33" }, { "input": "82 21 80", "output": "61" }, { "input": "75 8 35", "output": "67" }, { "input": "75 24 28", "output": "51" }, { "input": "78 23 56", "output": "55" }, { "input": "85 31 10", "output": "75" }, { "input": "76 50 9", "output": "67" }, { "input": "95 37 34", "output": "61" }, { "input": "84 61 35", "output": "49" }, { "input": "87 85 37", "output": "50" }, { "input": "1 3 2", "output": "2" }, { "input": "4 2 6", "output": "4" }, { "input": "6 9 3", "output": "6" }, { "input": "12 4 8", "output": "8" }, { "input": "15 10 5", "output": "10" }, { "input": "1 50 17", "output": "49" }, { "input": "10 5 15", "output": "10" }, { "input": "8 1 9", "output": "8" }, { "input": "3 5 4", "output": "2" }, { "input": "2 1 3", "output": "2" }, { "input": "1 8 2", "output": "7" }, { "input": "1 100 2", "output": "99" }, { "input": "1 4 6", "output": "5" } ]
1,679,508,569
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
31
0
# A. The New Year: Meeting Friends # Eles tem que se encontrar no ponto médio para os três lista = [int(x) for x in input().split(' ')] a = lista[0] b = lista[1] c = lista[2] print(int((a+b+c)/3))
Title: The New Year: Meeting Friends Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are three friend living on the straight line *Ox* in Lineland. The first friend lives at the point *x*1, the second friend lives at the point *x*2, and the third friend lives at the point *x*3. They plan to celebrate the New Year together, so they need to meet at one point. What is the minimum total distance they have to travel in order to meet at some point and celebrate the New Year? It's guaranteed that the optimal answer is always integer. Input Specification: The first line of the input contains three distinct integers *x*1, *x*2 and *x*3 (1<=≤<=*x*1,<=*x*2,<=*x*3<=≤<=100) — the coordinates of the houses of the first, the second and the third friends respectively. Output Specification: Print one integer — the minimum total distance the friends need to travel in order to meet together. Demo Input: ['7 1 4\n', '30 20 10\n'] Demo Output: ['6\n', '20\n'] Note: In the first sample, friends should meet at the point 4. Thus, the first friend has to travel the distance of 3 (from the point 7 to the point 4), the second friend also has to travel the distance of 3 (from the point 1 to the point 4), while the third friend should not go anywhere because he lives at the point 4.
```python # A. The New Year: Meeting Friends # Eles tem que se encontrar no ponto médio para os três lista = [int(x) for x in input().split(' ')] a = lista[0] b = lista[1] c = lista[2] print(int((a+b+c)/3)) ```
0
427
A
Police Recruits
PROGRAMMING
800
[ "implementation" ]
null
null
The police department of your city has just started its journey. Initially, they don’t have any manpower. So, they started hiring new recruits in groups. Meanwhile, crimes keeps occurring within the city. One member of the police force can investigate only one crime during his/her lifetime. If there is no police officer free (isn't busy with crime) during the occurrence of a crime, it will go untreated. Given the chronological order of crime occurrences and recruit hirings, find the number of crimes which will go untreated.
The first line of input will contain an integer *n* (1<=≤<=*n*<=≤<=105), the number of events. The next line will contain *n* space-separated integers. If the integer is -1 then it means a crime has occurred. Otherwise, the integer will be positive, the number of officers recruited together at that time. No more than 10 officers will be recruited at a time.
Print a single integer, the number of crimes which will go untreated.
[ "3\n-1 -1 1\n", "8\n1 -1 1 -1 -1 1 1 1\n", "11\n-1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1\n" ]
[ "2\n", "1\n", "8\n" ]
Lets consider the second example: 1. Firstly one person is hired. 1. Then crime appears, the last hired person will investigate this crime. 1. One more person is hired. 1. One more crime appears, the last hired person will investigate this crime. 1. Crime appears. There is no free policeman at the time, so this crime will go untreated. 1. One more person is hired. 1. One more person is hired. 1. One more person is hired. The answer is one, as one crime (on step 5) will go untreated.
500
[ { "input": "3\n-1 -1 1", "output": "2" }, { "input": "8\n1 -1 1 -1 -1 1 1 1", "output": "1" }, { "input": "11\n-1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1", "output": "8" }, { "input": "7\n-1 -1 1 1 -1 -1 1", "output": "2" }, { "input": "21\n-1 -1 -1 -1 -1 3 2 -1 6 -1 -1 2 1 -1 2 2 1 6 5 -1 5", "output": "5" }, { "input": "98\n-1 -1 1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 1 -1 1 1 1 1 1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 1 -1 1 -1 1 1 1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 1 1", "output": "13" }, { "input": "3\n-1 5 4", "output": "1" }, { "input": "146\n4 -1 -1 -1 -1 -1 -1 -1 -1 -1 4 -1 3 -1 3 -1 -1 1 4 -1 2 -1 -1 3 -1 -1 -1 4 1 -1 -1 -1 4 -1 -1 -1 -1 -1 -1 3 2 -1 3 2 4 5 2 4 1 5 -1 -1 2 -1 -1 1 -1 5 3 -1 1 2 2 3 5 3 -1 -1 3 -1 -1 3 5 5 -1 -1 5 -1 4 4 1 -1 -1 -1 2 1 -1 -1 -1 2 5 3 -1 -1 -1 3 -1 5 4 -1 1 -1 -1 3 -1 -1 3 1 1 2 -1 -1 -1 1 3 1 -1 2 -1 -1 5 5 -1 -1 3 4 5 1 -1 2 -1 -1 -1 3 -1 5 3 2 -1 2 -1 -1 5 -1 3 -1", "output": "5" }, { "input": "1\n2", "output": "0" }, { "input": "1\n-1", "output": "1" }, { "input": "2\n1 -1", "output": "0" }, { "input": "2\n-1 1", "output": "1" }, { "input": "2\n1 1", "output": "0" }, { "input": "2\n-1 -1", "output": "2" }, { "input": "4\n10 -1 -1 -1", "output": "0" }, { "input": "1\n1", "output": "0" }, { "input": "4\n-1 -1 1 1", "output": "2" } ]
1,687,211,870
2,147,483,647
Python 3
OK
TESTS
63
46
9,113,600
import math def main(): _, events = input(), [int(el) for el in input().split()] man_power = 0 crimes_untreated = 0 for e in events: if e > 0: man_power += e else: if man_power > 0: man_power -= 1 else: crimes_untreated += 1 print(crimes_untreated) if __name__ == '__main__': main()
Title: Police Recruits Time Limit: None seconds Memory Limit: None megabytes Problem Description: The police department of your city has just started its journey. Initially, they don’t have any manpower. So, they started hiring new recruits in groups. Meanwhile, crimes keeps occurring within the city. One member of the police force can investigate only one crime during his/her lifetime. If there is no police officer free (isn't busy with crime) during the occurrence of a crime, it will go untreated. Given the chronological order of crime occurrences and recruit hirings, find the number of crimes which will go untreated. Input Specification: The first line of input will contain an integer *n* (1<=≤<=*n*<=≤<=105), the number of events. The next line will contain *n* space-separated integers. If the integer is -1 then it means a crime has occurred. Otherwise, the integer will be positive, the number of officers recruited together at that time. No more than 10 officers will be recruited at a time. Output Specification: Print a single integer, the number of crimes which will go untreated. Demo Input: ['3\n-1 -1 1\n', '8\n1 -1 1 -1 -1 1 1 1\n', '11\n-1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1\n'] Demo Output: ['2\n', '1\n', '8\n'] Note: Lets consider the second example: 1. Firstly one person is hired. 1. Then crime appears, the last hired person will investigate this crime. 1. One more person is hired. 1. One more crime appears, the last hired person will investigate this crime. 1. Crime appears. There is no free policeman at the time, so this crime will go untreated. 1. One more person is hired. 1. One more person is hired. 1. One more person is hired. The answer is one, as one crime (on step 5) will go untreated.
```python import math def main(): _, events = input(), [int(el) for el in input().split()] man_power = 0 crimes_untreated = 0 for e in events: if e > 0: man_power += e else: if man_power > 0: man_power -= 1 else: crimes_untreated += 1 print(crimes_untreated) if __name__ == '__main__': main() ```
3
467
A
George and Accommodation
PROGRAMMING
800
[ "implementation" ]
null
null
George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory. George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms. The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity.
Print a single integer — the number of rooms where George and Alex can move in.
[ "3\n1 1\n2 2\n3 3\n", "3\n1 10\n0 10\n10 10\n" ]
[ "0\n", "2\n" ]
none
500
[ { "input": "3\n1 1\n2 2\n3 3", "output": "0" }, { "input": "3\n1 10\n0 10\n10 10", "output": "2" }, { "input": "2\n36 67\n61 69", "output": "2" }, { "input": "3\n21 71\n10 88\n43 62", "output": "3" }, { "input": "3\n1 2\n2 3\n3 4", "output": "0" }, { "input": "10\n0 10\n0 20\n0 30\n0 40\n0 50\n0 60\n0 70\n0 80\n0 90\n0 100", "output": "10" }, { "input": "13\n14 16\n30 31\n45 46\n19 20\n15 17\n66 67\n75 76\n95 97\n29 30\n37 38\n0 2\n36 37\n8 9", "output": "4" }, { "input": "19\n66 67\n97 98\n89 91\n67 69\n67 68\n18 20\n72 74\n28 30\n91 92\n27 28\n75 77\n17 18\n74 75\n28 30\n16 18\n90 92\n9 11\n22 24\n52 54", "output": "12" }, { "input": "15\n55 57\n95 97\n57 59\n34 36\n50 52\n96 98\n39 40\n13 15\n13 14\n74 76\n47 48\n56 58\n24 25\n11 13\n67 68", "output": "10" }, { "input": "17\n68 69\n47 48\n30 31\n52 54\n41 43\n33 35\n38 40\n56 58\n45 46\n92 93\n73 74\n61 63\n65 66\n37 39\n67 68\n77 78\n28 30", "output": "8" }, { "input": "14\n64 66\n43 44\n10 12\n76 77\n11 12\n25 27\n87 88\n62 64\n39 41\n58 60\n10 11\n28 29\n57 58\n12 14", "output": "7" }, { "input": "38\n74 76\n52 54\n78 80\n48 49\n40 41\n64 65\n28 30\n6 8\n49 51\n68 70\n44 45\n57 59\n24 25\n46 48\n49 51\n4 6\n63 64\n76 78\n57 59\n18 20\n63 64\n71 73\n88 90\n21 22\n89 90\n65 66\n89 91\n96 98\n42 44\n1 1\n74 76\n72 74\n39 40\n75 76\n29 30\n48 49\n87 89\n27 28", "output": "22" }, { "input": "100\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "26\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2\n1 2", "output": "0" }, { "input": "68\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2\n0 2", "output": "68" }, { "input": "7\n0 1\n1 5\n2 4\n3 5\n4 6\n5 6\n6 8", "output": "5" }, { "input": "1\n0 0", "output": "0" }, { "input": "1\n100 100", "output": "0" }, { "input": "44\n0 8\n1 11\n2 19\n3 5\n4 29\n5 45\n6 6\n7 40\n8 19\n9 22\n10 18\n11 26\n12 46\n13 13\n14 27\n15 48\n16 25\n17 20\n18 29\n19 27\n20 45\n21 39\n22 29\n23 39\n24 42\n25 37\n26 52\n27 36\n28 43\n29 35\n30 38\n31 70\n32 47\n33 38\n34 61\n35 71\n36 51\n37 71\n38 59\n39 77\n40 70\n41 80\n42 77\n43 73", "output": "42" }, { "input": "3\n1 3\n2 7\n8 9", "output": "2" }, { "input": "53\n0 1\n1 2\n2 3\n3 4\n4 5\n5 6\n6 7\n7 8\n8 9\n9 10\n10 11\n11 12\n12 13\n13 14\n14 15\n15 16\n16 17\n17 18\n18 19\n19 20\n20 21\n21 22\n22 23\n23 24\n24 25\n25 26\n26 27\n27 28\n28 29\n29 30\n30 31\n31 32\n32 33\n33 34\n34 35\n35 36\n36 37\n37 38\n38 39\n39 40\n40 41\n41 42\n42 43\n43 44\n44 45\n45 46\n46 47\n47 48\n48 49\n49 50\n50 51\n51 52\n52 53", "output": "0" }, { "input": "55\n0 0\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54", "output": "0" }, { "input": "51\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 62\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 82\n55 68\n55 70\n55 63\n55 55\n55 55\n55 55\n55 75\n55 75\n55 55\n55 55\n55 55\n55 55\n55 55\n55 55\n55 73\n55 55\n55 82\n55 99\n55 60", "output": "12" }, { "input": "14\n1 1\n1 1\n1 55\n1 16\n1 1\n1 1\n1 55\n1 62\n1 53\n1 26\n1 1\n1 36\n1 2\n1 3", "output": "8" } ]
1,689,151,756
2,147,483,647
Python 3
OK
TESTS
27
46
0
ans=0 for i in range(int(input())): a,b=map(int,input().split()) if b-a>=2: ans+=1 print(ans)
Title: George and Accommodation Time Limit: None seconds Memory Limit: None megabytes Problem Description: George has recently entered the BSUCP (Berland State University for Cool Programmers). George has a friend Alex who has also entered the university. Now they are moving into a dormitory. George and Alex want to live in the same room. The dormitory has *n* rooms in total. At the moment the *i*-th room has *p**i* people living in it and the room can accommodate *q**i* people in total (*p**i*<=≤<=*q**i*). Your task is to count how many rooms has free place for both George and Alex. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of rooms. The *i*-th of the next *n* lines contains two integers *p**i* and *q**i* (0<=≤<=*p**i*<=≤<=*q**i*<=≤<=100) — the number of people who already live in the *i*-th room and the room's capacity. Output Specification: Print a single integer — the number of rooms where George and Alex can move in. Demo Input: ['3\n1 1\n2 2\n3 3\n', '3\n1 10\n0 10\n10 10\n'] Demo Output: ['0\n', '2\n'] Note: none
```python ans=0 for i in range(int(input())): a,b=map(int,input().split()) if b-a>=2: ans+=1 print(ans) ```
3
0
none
none
none
0
[ "none" ]
null
null
You are given several queries. In the *i*-th query you are given a single positive integer *n**i*. You are to represent *n**i* as a sum of maximum possible number of composite summands and print this maximum number, or print -1, if there are no such splittings. An integer greater than 1 is composite, if it is not prime, i.e. if it has positive divisors not equal to 1 and the integer itself.
The first line contains single integer *q* (1<=≤<=*q*<=≤<=105) — the number of queries. *q* lines follow. The (*i*<=+<=1)-th line contains single integer *n**i* (1<=≤<=*n**i*<=≤<=109) — the *i*-th query.
For each query print the maximum possible number of summands in a valid splitting to composite summands, or -1, if there are no such splittings.
[ "1\n12\n", "2\n6\n8\n", "3\n1\n2\n3\n" ]
[ "3\n", "1\n2\n", "-1\n-1\n-1\n" ]
12 = 4 + 4 + 4 = 4 + 8 = 6 + 6 = 12, but the first splitting has the maximum possible number of summands. 8 = 4 + 4, 6 can't be split into several composite summands. 1, 2, 3 are less than any composite number, so they do not have valid splittings.
0
[ { "input": "1\n12", "output": "3" }, { "input": "2\n6\n8", "output": "1\n2" }, { "input": "3\n1\n2\n3", "output": "-1\n-1\n-1" }, { "input": "6\n1\n2\n3\n5\n7\n11", "output": "-1\n-1\n-1\n-1\n-1\n-1" }, { "input": "3\n4\n6\n9", "output": "1\n1\n1" }, { "input": "20\n8\n13\n20\n12\n9\n16\n4\n19\n7\n15\n10\n6\n14\n11\n3\n2\n5\n17\n18\n1", "output": "2\n2\n5\n3\n1\n4\n1\n3\n-1\n2\n2\n1\n3\n-1\n-1\n-1\n-1\n3\n4\n-1" }, { "input": "100\n611\n513\n544\n463\n38\n778\n347\n317\n848\n664\n382\n108\n718\n33\n334\n876\n234\n22\n944\n305\n159\n245\n513\n691\n639\n135\n308\n324\n813\n459\n304\n116\n331\n993\n184\n224\n853\n769\n121\n687\n93\n930\n751\n308\n485\n914\n400\n695\n95\n981\n175\n972\n121\n654\n242\n610\n617\n999\n237\n548\n742\n767\n613\n172\n223\n391\n102\n907\n673\n116\n230\n355\n189\n552\n399\n493\n903\n201\n985\n459\n776\n641\n693\n919\n253\n540\n427\n394\n655\n101\n461\n854\n417\n249\n66\n380\n213\n906\n212\n528", "output": "151\n127\n136\n114\n9\n194\n85\n78\n212\n166\n95\n27\n179\n7\n83\n219\n58\n5\n236\n75\n38\n60\n127\n171\n158\n32\n77\n81\n202\n113\n76\n29\n81\n247\n46\n56\n212\n191\n29\n170\n22\n232\n186\n77\n120\n228\n100\n172\n22\n244\n42\n243\n29\n163\n60\n152\n153\n248\n58\n137\n185\n190\n152\n43\n54\n96\n25\n225\n167\n29\n57\n87\n46\n138\n98\n122\n224\n49\n245\n113\n194\n159\n172\n228\n62\n135\n105\n98\n162\n24\n114\n213\n103\n61\n16\n95\n52\n226\n53\n132" }, { "input": "1\n10000001", "output": "2499999" } ]
1,595,086,385
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
def F(x): s = 0 if x % 4 == 2: s = 1 if x >= 4: print(x // 4 + s) if x < 4 print(-1) n = int(input()) f = [] for i in range(n) x = int(input()) f.append(P(x)) for j in f: print(j)
Title: none Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given several queries. In the *i*-th query you are given a single positive integer *n**i*. You are to represent *n**i* as a sum of maximum possible number of composite summands and print this maximum number, or print -1, if there are no such splittings. An integer greater than 1 is composite, if it is not prime, i.e. if it has positive divisors not equal to 1 and the integer itself. Input Specification: The first line contains single integer *q* (1<=≤<=*q*<=≤<=105) — the number of queries. *q* lines follow. The (*i*<=+<=1)-th line contains single integer *n**i* (1<=≤<=*n**i*<=≤<=109) — the *i*-th query. Output Specification: For each query print the maximum possible number of summands in a valid splitting to composite summands, or -1, if there are no such splittings. Demo Input: ['1\n12\n', '2\n6\n8\n', '3\n1\n2\n3\n'] Demo Output: ['3\n', '1\n2\n', '-1\n-1\n-1\n'] Note: 12 = 4 + 4 + 4 = 4 + 8 = 6 + 6 = 12, but the first splitting has the maximum possible number of summands. 8 = 4 + 4, 6 can't be split into several composite summands. 1, 2, 3 are less than any composite number, so they do not have valid splittings.
```python def F(x): s = 0 if x % 4 == 2: s = 1 if x >= 4: print(x // 4 + s) if x < 4 print(-1) n = int(input()) f = [] for i in range(n) x = int(input()) f.append(P(x)) for j in f: print(j) ```
-1
59
B
Fortune Telling
PROGRAMMING
1,200
[ "implementation", "number theory" ]
B. Fortune Telling
2
256
Marina loves Sasha. But she keeps wondering whether Sasha loves her. Of course, the best way to know it is fortune telling. There are many ways of telling fortune, but Marina has picked the easiest one. She takes in her hand one or several camomiles and tears off the petals one by one. After each petal she pronounces alternatively "Loves" and "Doesn't love", at that Marina always starts with "Loves". There are *n* camomiles growing in the field, possessing the numbers of petals equal to *a*1,<=*a*2,<=... *a**n*. Marina wants to pick a bouquet with the maximal possible total number of petals so that the result would still be "Loves". Help her do that; find the maximal number of petals possible in the bouquet.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100), which is the number of flowers growing in the field. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100) which represent the number of petals on a given *i*-th camomile.
Print a single number which is the maximal number of petals in the bouquet, the fortune telling on which would result in "Loves". If there are no such bouquet, print 0 instead. The bouquet may consist of a single flower.
[ "1\n1\n", "1\n2\n", "3\n5 6 7\n" ]
[ "1\n", "0\n", "13\n" ]
none
1,000
[ { "input": "1\n1", "output": "1" }, { "input": "1\n2", "output": "0" }, { "input": "3\n5 6 7", "output": "13" }, { "input": "2\n5 7", "output": "7" }, { "input": "3\n1 2 3", "output": "5" }, { "input": "4\n4 3 1 2", "output": "9" }, { "input": "10\n90 72 76 60 22 87 5 67 17 65", "output": "561" }, { "input": "10\n18 42 20 68 88 10 87 37 55 51", "output": "439" }, { "input": "100\n25 43 35 79 53 13 91 91 45 65 83 57 9 41 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75", "output": "5355" }, { "input": "100\n22 93 43 39 5 39 55 89 97 7 35 63 75 85 97 75 35 91 5 29 97 69 23 97 95 59 23 81 87 67 85 95 33 41 57 9 39 25 55 9 87 57 69 31 23 27 13 81 51 11 61 35 69 59 51 33 73 29 77 75 9 15 41 93 65 89 69 37 51 11 57 21 97 95 13 67 23 69 3 29 83 97 7 49 13 51 65 33 99 9 27 99 55 47 37 11 37 13 91 79", "output": "5193" }, { "input": "100\n82 6 42 34 4 32 12 50 16 58 48 92 44 94 36 94 96 50 68 38 78 10 18 88 38 66 60 72 76 24 60 62 86 8 16 14 74 54 38 100 88 28 44 78 90 42 20 24 90 21 81 29 53 95 75 5 57 31 37 69 55 65 1 67 61 71 17 99 15 15 67 77 19 95 79 87 29 97 13 95 61 91 45 77 91 79 55 81 37 81 15 89 67 61 19 25 97 53 7 95", "output": "5445" }, { "input": "100\n64 16 64 48 12 88 18 38 12 14 90 82 68 40 90 78 66 50 56 50 78 12 18 100 14 92 70 96 90 26 60 94 88 26 70 100 34 86 8 38 72 24 32 80 56 28 32 48 92 52 71 43 95 23 71 89 51 93 61 39 75 3 19 79 71 11 33 21 61 29 13 55 61 23 17 45 93 11 15 29 45 91 43 9 41 37 99 67 25 33 83 55 59 85 59 41 67 67 37 17", "output": "5217" }, { "input": "100\n12 84 30 14 36 18 4 82 26 22 10 88 96 84 50 100 88 40 70 94 94 58 16 50 80 38 94 100 34 20 22 54 34 58 92 18 6 8 22 92 82 28 42 54 96 8 18 40 64 90 58 63 97 89 17 11 21 55 71 91 47 93 55 95 39 81 51 7 77 13 25 65 51 47 47 49 19 35 67 5 7 65 65 65 79 33 71 15 17 91 13 43 81 31 7 17 17 93 9 25", "output": "4945" }, { "input": "100\n64 58 12 86 50 16 48 32 30 2 30 36 4 6 96 84 58 94 14 50 28 100 32 84 54 76 26 100 42 100 76 32 86 72 84 16 36 10 26 82 54 64 78 66 62 30 4 80 28 16 44 82 8 2 24 56 28 98 20 92 30 10 28 32 44 18 58 2 12 64 14 4 12 84 16 14 8 78 94 98 34 16 28 76 82 50 40 78 28 16 60 58 64 68 56 46 24 72 72 69", "output": "4725" }, { "input": "100\n92 46 50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24", "output": "0" }, { "input": "99\n49 37 55 57 97 79 53 25 89 13 15 77 91 51 73 39 29 83 13 43 79 15 89 97 67 25 23 77 71 41 15 83 39 13 43 1 51 49 1 11 95 57 65 7 79 43 51 33 33 71 97 73 3 65 73 55 21 7 37 75 39 9 21 47 31 97 33 11 61 79 67 63 81 21 77 57 73 19 21 47 55 11 37 31 71 5 15 73 23 93 83 25 37 17 23 75 77 97 93", "output": "4893" }, { "input": "99\n26 77 13 25 33 67 89 57 49 35 7 15 17 5 1 73 53 19 35 83 31 49 51 1 25 23 3 63 19 9 53 25 65 43 27 71 3 95 77 89 95 85 67 27 93 3 11 45 99 31 21 35 83 31 43 93 75 93 3 51 11 29 73 3 33 63 57 71 43 15 69 55 53 7 13 73 7 5 57 61 97 53 13 39 79 19 35 71 27 97 19 57 39 51 89 63 21 47 53", "output": "4451" }, { "input": "99\n50 22 22 94 100 18 74 2 98 16 66 54 14 90 38 26 12 30 32 66 26 54 44 36 52 30 54 56 36 16 16 34 22 40 64 94 18 2 40 42 76 56 24 18 36 64 14 96 50 69 53 9 27 61 81 37 29 1 21 79 17 81 41 23 89 29 47 65 17 11 95 21 19 71 1 73 45 25 19 83 93 27 21 31 25 3 91 89 59 35 35 7 9 1 97 55 25 65 93", "output": "4333" }, { "input": "99\n86 16 38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 49 73 69 93 1 93 23 65 67 45 21 29 5 9 63 31 87 13 97 99 63 57 49 17 49 49 7 37 7 15 53 1 59 53 61 83 91 97 3 71 65 25 13 87 99 15 9 5 87", "output": "4849" }, { "input": "99\n82 36 50 30 80 2 48 48 92 10 70 46 72 46 4 60 60 40 4 78 98 8 88 82 70 44 76 50 64 48 82 74 50 100 98 8 60 72 26 50 94 54 58 20 10 66 20 72 26 20 22 29 21 17 31 69 75 91 77 93 81 71 93 91 65 37 41 69 19 15 67 79 39 9 53 69 73 93 85 45 51 5 73 87 49 95 35 71 1 3 65 81 61 59 73 89 79 73 25", "output": "5439" }, { "input": "99\n28 50 100 90 56 60 54 16 54 62 48 6 2 14 40 48 28 48 58 68 90 74 82 2 98 4 74 64 34 98 94 24 44 74 50 18 40 100 80 96 10 42 66 46 26 26 84 34 68 84 74 48 8 90 2 36 40 32 18 76 90 64 38 92 86 84 56 84 74 90 4 2 50 34 18 28 30 2 18 80 52 34 10 86 96 76 30 64 88 76 74 4 50 22 20 96 90 12 42", "output": "0" }, { "input": "99\n58 100 2 54 80 84 74 46 92 74 90 4 92 92 18 88 100 80 42 34 80 62 92 94 8 48 98 44 4 74 48 22 26 90 98 44 14 54 80 24 60 50 58 62 94 18 20 4 56 58 52 80 88 82 10 40 36 46 14 22 54 10 36 10 20 76 48 98 2 68 26 96 16 92 50 78 28 8 80 84 82 26 62 20 60 84 2 80 70 98 50 30 64 6 92 58 16 88 27", "output": "5353" }, { "input": "42\n26 24 14 18 96 30 56 72 10 32 94 62 68 11 75 45 39 49 37 29 9 1 63 47 81 67 79 81 93 31 69 61 73 67 81 7 37 87 61 17 21 65", "output": "2085" }, { "input": "42\n62 46 24 100 68 48 6 4 16 60 48 52 26 56 52 20 100 14 72 80 72 52 76 15 17 23 1 91 71 39 93 5 93 47 59 77 37 17 33 51 39 85", "output": "2047" }, { "input": "50\n88 68 16 44 72 6 2 50 2 36 26 98 16 30 6 10 88 76 50 90 44 28 84 28 100 57 59 91 51 37 19 79 69 79 95 81 75 89 19 87 31 49 77 35 79 7 85 41 83 91", "output": "2723" }, { "input": "1\n31", "output": "31" }, { "input": "1\n44", "output": "0" }, { "input": "2\n21 63", "output": "63" }, { "input": "2\n90 95", "output": "185" }, { "input": "2\n54 28", "output": "0" }, { "input": "10\n68 96 32 50 55 67 27 93 81 77", "output": "619" }, { "input": "5\n36 56 38 6 28", "output": "0" }, { "input": "6\n34 72 80 5 47 9", "output": "247" }, { "input": "100\n99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99", "output": "9801" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "0" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "9999" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100", "output": "9899" }, { "input": "100\n100 100 100 100 100 100 100 100 100 1 100 100 100 100 100 100 100 100 100 100 100 1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100", "output": "9705" }, { "input": "5\n6 6 6 6 6", "output": "0" }, { "input": "4\n2 3 5 8", "output": "15" }, { "input": "4\n2 4 6 8", "output": "0" }, { "input": "4\n2 3 5 4", "output": "11" }, { "input": "3\n5 7 9", "output": "21" } ]
1,694,019,721
2,147,483,647
Python 3
OK
TESTS
43
92
0
n = int(input()) a = list(map(int, input().split())) odd_numbers_list = [] even_numbers_list = [] for petal in a: if petal % 2 == 0: even_numbers_list.append(petal) else: odd_numbers_list.append(petal) odd_numbers_list.sort(reverse=True) even_numbers_list.sort(reverse=True) s = sum(a) largest_odd = max(odd_numbers_list) if odd_numbers_list else 0 largest_even = max(even_numbers_list) if even_numbers_list else 0 len1 = len(even_numbers_list) len2 = len(odd_numbers_list) if n == 1: if largest_even > 0: print(0) else: print(largest_odd) else: if s % 2 == 1: print(s) else: if (len1 !=0 and s - min(even_numbers_list)) % 2 == 1: print(s - min(even_numbers_list)) elif (len1 == 0): print(s - min(odd_numbers_list)) else: if ( len2 !=0 and s - min(odd_numbers_list)) % 2 == 1: print(s - min(odd_numbers_list)) elif (len2 == 0): print(0)
Title: Fortune Telling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Marina loves Sasha. But she keeps wondering whether Sasha loves her. Of course, the best way to know it is fortune telling. There are many ways of telling fortune, but Marina has picked the easiest one. She takes in her hand one or several camomiles and tears off the petals one by one. After each petal she pronounces alternatively "Loves" and "Doesn't love", at that Marina always starts with "Loves". There are *n* camomiles growing in the field, possessing the numbers of petals equal to *a*1,<=*a*2,<=... *a**n*. Marina wants to pick a bouquet with the maximal possible total number of petals so that the result would still be "Loves". Help her do that; find the maximal number of petals possible in the bouquet. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100), which is the number of flowers growing in the field. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=100) which represent the number of petals on a given *i*-th camomile. Output Specification: Print a single number which is the maximal number of petals in the bouquet, the fortune telling on which would result in "Loves". If there are no such bouquet, print 0 instead. The bouquet may consist of a single flower. Demo Input: ['1\n1\n', '1\n2\n', '3\n5 6 7\n'] Demo Output: ['1\n', '0\n', '13\n'] Note: none
```python n = int(input()) a = list(map(int, input().split())) odd_numbers_list = [] even_numbers_list = [] for petal in a: if petal % 2 == 0: even_numbers_list.append(petal) else: odd_numbers_list.append(petal) odd_numbers_list.sort(reverse=True) even_numbers_list.sort(reverse=True) s = sum(a) largest_odd = max(odd_numbers_list) if odd_numbers_list else 0 largest_even = max(even_numbers_list) if even_numbers_list else 0 len1 = len(even_numbers_list) len2 = len(odd_numbers_list) if n == 1: if largest_even > 0: print(0) else: print(largest_odd) else: if s % 2 == 1: print(s) else: if (len1 !=0 and s - min(even_numbers_list)) % 2 == 1: print(s - min(even_numbers_list)) elif (len1 == 0): print(s - min(odd_numbers_list)) else: if ( len2 !=0 and s - min(odd_numbers_list)) % 2 == 1: print(s - min(odd_numbers_list)) elif (len2 == 0): print(0) ```
3.977
222
A
Shooshuns and Sequence
PROGRAMMING
1,200
[ "brute force", "implementation" ]
null
null
One day shooshuns found a sequence of *n* integers, written on a blackboard. The shooshuns can perform one operation with it, the operation consists of two steps: 1. Find the number that goes *k*-th in the current sequence and add the same number to the end of the sequence; 1. Delete the first number of the current sequence. The shooshuns wonder after how many operations all numbers on the board will be the same and whether all numbers will ever be the same.
The first line contains two space-separated integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=105). The second line contains *n* space-separated integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105) — the sequence that the shooshuns found.
Print the minimum number of operations, required for all numbers on the blackboard to become the same. If it is impossible to achieve, print -1.
[ "3 2\n3 1 1\n", "3 1\n3 1 1\n" ]
[ "1\n", "-1\n" ]
In the first test case after the first operation the blackboard will have sequence [1, 1, 1]. So, one operation is enough to make all numbers the same. Thus, the answer equals one. In the second test case the sequence will never consist of the same numbers. It will always contain at least two distinct numbers 3 and 1. Thus, the answer equals -1.
500
[ { "input": "3 2\n3 1 1", "output": "1" }, { "input": "3 1\n3 1 1", "output": "-1" }, { "input": "1 1\n1", "output": "0" }, { "input": "2 1\n1 1", "output": "0" }, { "input": "2 1\n2 1", "output": "-1" }, { "input": "4 4\n1 2 3 4", "output": "3" }, { "input": "4 3\n1 2 3 4", "output": "-1" }, { "input": "5 3\n2 1 1 1 1", "output": "1" }, { "input": "5 3\n1 1 1 1 1", "output": "0" }, { "input": "5 5\n1 1 1 1 1", "output": "0" }, { "input": "10 1\n1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "10 1\n1 2 1 1 1 1 1 1 1 1", "output": "-1" }, { "input": "10 1\n2 1 1 1 1 1 1 1 1 1", "output": "-1" }, { "input": "10 2\n2 1 1 1 1 1 1 1 1 1", "output": "1" }, { "input": "10 2\n1 2 1 1 1 1 1 1 1 1", "output": "-1" }, { "input": "10 3\n3 2 1 1 1 1 1 1 1 1", "output": "2" }, { "input": "10 1\n1 2 3 4 5 6 7 8 9 10", "output": "-1" }, { "input": "10 10\n1 2 3 4 5 6 7 8 9 10", "output": "9" }, { "input": "20 10\n1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1", "output": "-1" }, { "input": "20 11\n1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1", "output": "10" }, { "input": "20 9\n1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 1", "output": "-1" }, { "input": "20 10\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "0" }, { "input": "20 20\n20 1 19 2 18 3 17 4 16 5 15 6 14 7 13 8 12 9 11 10", "output": "19" } ]
1,693,772,104
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
60
0
line=input() n=int(line.split()[0]) k=int(line.split()[1]) out=0 num = list(map(int,input().split())) for i in range(n): num.append(num[k-1]) num.remove(num[0]) if len(set(num))== 1: out=i+1 break if not out: print(-1) else: print(out)
Title: Shooshuns and Sequence Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day shooshuns found a sequence of *n* integers, written on a blackboard. The shooshuns can perform one operation with it, the operation consists of two steps: 1. Find the number that goes *k*-th in the current sequence and add the same number to the end of the sequence; 1. Delete the first number of the current sequence. The shooshuns wonder after how many operations all numbers on the board will be the same and whether all numbers will ever be the same. Input Specification: The first line contains two space-separated integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=105). The second line contains *n* space-separated integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105) — the sequence that the shooshuns found. Output Specification: Print the minimum number of operations, required for all numbers on the blackboard to become the same. If it is impossible to achieve, print -1. Demo Input: ['3 2\n3 1 1\n', '3 1\n3 1 1\n'] Demo Output: ['1\n', '-1\n'] Note: In the first test case after the first operation the blackboard will have sequence [1, 1, 1]. So, one operation is enough to make all numbers the same. Thus, the answer equals one. In the second test case the sequence will never consist of the same numbers. It will always contain at least two distinct numbers 3 and 1. Thus, the answer equals -1.
```python line=input() n=int(line.split()[0]) k=int(line.split()[1]) out=0 num = list(map(int,input().split())) for i in range(n): num.append(num[k-1]) num.remove(num[0]) if len(set(num))== 1: out=i+1 break if not out: print(-1) else: print(out) ```
0
625
A
Guest From the Past
PROGRAMMING
1,700
[ "implementation", "math" ]
null
null
Kolya Gerasimov loves kefir very much. He lives in year 1984 and knows all the details of buying this delicious drink. One day, as you probably know, he found himself in year 2084, and buying kefir there is much more complicated. Kolya is hungry, so he went to the nearest milk shop. In 2084 you may buy kefir in a plastic liter bottle, that costs *a* rubles, or in glass liter bottle, that costs *b* rubles. Also, you may return empty glass bottle and get *c* (*c*<=&lt;<=*b*) rubles back, but you cannot return plastic bottles. Kolya has *n* rubles and he is really hungry, so he wants to drink as much kefir as possible. There were no plastic bottles in his 1984, so Kolya doesn't know how to act optimally and asks for your help.
First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1018) — the number of rubles Kolya has at the beginning. Then follow three lines containing integers *a*, *b* and *c* (1<=≤<=*a*<=≤<=1018, 1<=≤<=*c*<=&lt;<=*b*<=≤<=1018) — the cost of one plastic liter bottle, the cost of one glass liter bottle and the money one can get back by returning an empty glass bottle, respectively.
Print the only integer — maximum number of liters of kefir, that Kolya can drink.
[ "10\n11\n9\n8\n", "10\n5\n6\n1\n" ]
[ "2\n", "2\n" ]
In the first sample, Kolya can buy one glass bottle, then return it and buy one more glass bottle. Thus he will drink 2 liters of kefir. In the second sample, Kolya can buy two plastic bottle and get two liters of kefir, or he can buy one liter glass bottle, then return it and buy one plastic bottle. In both cases he will drink two liters of kefir.
750
[ { "input": "10\n11\n9\n8", "output": "2" }, { "input": "10\n5\n6\n1", "output": "2" }, { "input": "2\n2\n2\n1", "output": "1" }, { "input": "10\n3\n3\n1", "output": "4" }, { "input": "10\n1\n2\n1", "output": "10" }, { "input": "10\n2\n3\n1", "output": "5" }, { "input": "9\n2\n4\n1", "output": "4" }, { "input": "9\n2\n2\n1", "output": "8" }, { "input": "9\n10\n10\n1", "output": "0" }, { "input": "10\n2\n2\n1", "output": "9" }, { "input": "1000000000000000000\n2\n10\n9", "output": "999999999999999995" }, { "input": "501000000000000000\n300000000000000000\n301000000000000000\n100000000000000000", "output": "2" }, { "input": "10\n1\n9\n8", "output": "10" }, { "input": "10\n8\n8\n7", "output": "3" }, { "input": "10\n5\n5\n1", "output": "2" }, { "input": "29\n3\n3\n1", "output": "14" }, { "input": "45\n9\n9\n8", "output": "37" }, { "input": "45\n9\n9\n1", "output": "5" }, { "input": "100\n10\n10\n9", "output": "91" }, { "input": "179\n10\n9\n1", "output": "22" }, { "input": "179\n2\n2\n1", "output": "178" }, { "input": "179\n179\n179\n1", "output": "1" }, { "input": "179\n59\n59\n58", "output": "121" }, { "input": "500\n250\n250\n1", "output": "2" }, { "input": "500\n1\n250\n1", "output": "500" }, { "input": "501\n500\n500\n499", "output": "2" }, { "input": "501\n450\n52\n1", "output": "9" }, { "input": "501\n300\n301\n100", "output": "2" }, { "input": "500\n179\n10\n1", "output": "55" }, { "input": "1000\n500\n10\n9", "output": "991" }, { "input": "1000\n2\n10\n9", "output": "995" }, { "input": "1001\n1000\n1000\n999", "output": "2" }, { "input": "10000\n10000\n10000\n1", "output": "1" }, { "input": "10000\n10\n5000\n4999", "output": "5500" }, { "input": "1000000000\n999999998\n999999999\n999999998", "output": "3" }, { "input": "1000000000\n50\n50\n49", "output": "999999951" }, { "input": "1000000000\n500\n5000\n4999", "output": "999995010" }, { "input": "1000000000\n51\n100\n98", "output": "499999952" }, { "input": "1000000000\n100\n51\n50", "output": "999999950" }, { "input": "1000000000\n2\n5\n4", "output": "999999998" }, { "input": "1000000000000000000\n999999998000000000\n999999999000000000\n999999998000000000", "output": "3" }, { "input": "1000000000\n2\n2\n1", "output": "999999999" }, { "input": "999999999\n2\n999999998\n1", "output": "499999999" }, { "input": "999999999999999999\n2\n2\n1", "output": "999999999999999998" }, { "input": "999999999999999999\n10\n10\n9", "output": "999999999999999990" }, { "input": "999999999999999999\n999999999999999998\n999999999999999998\n999999999999999997", "output": "2" }, { "input": "999999999999999999\n501\n501\n1", "output": "1999999999999999" }, { "input": "999999999999999999\n2\n50000000000000000\n49999999999999999", "output": "974999999999999999" }, { "input": "999999999999999999\n180\n180\n1", "output": "5586592178770949" }, { "input": "1000000000000000000\n42\n41\n1", "output": "24999999999999999" }, { "input": "1000000000000000000\n41\n40\n1", "output": "25641025641025641" }, { "input": "100000000000000000\n79\n100\n25", "output": "1333333333333333" }, { "input": "1\n100\n5\n4", "output": "0" }, { "input": "1000000000000000000\n1000000000000000000\n10000000\n9999999", "output": "999999999990000001" }, { "input": "999999999999999999\n999999999000000000\n900000000000000000\n899999999999999999", "output": "100000000000000000" }, { "input": "13\n10\n15\n11", "output": "1" }, { "input": "1\n1000\n5\n4", "output": "0" }, { "input": "10\n100\n10\n1", "output": "1" }, { "input": "3\n2\n100000\n99999", "output": "1" }, { "input": "4\n2\n4\n2", "output": "2" }, { "input": "5\n3\n6\n4", "output": "1" }, { "input": "1\n7\n65\n49", "output": "0" }, { "input": "10\n20\n100\n99", "output": "0" }, { "input": "10000000000\n10000000000\n9000000000\n8999999999", "output": "1000000001" }, { "input": "90\n30\n101\n100", "output": "3" }, { "input": "999999999999999\n5\n500000000000000\n499999999999999", "output": "599999999999999" }, { "input": "1000000000000000000\n1000000000000000000\n1000000000\n999999999", "output": "999999999000000001" }, { "input": "1\n1000000000000000000\n1000000000\n999999999", "output": "0" }, { "input": "100000000000000000\n100000000000000000\n1000000000\n999999999", "output": "99999999000000001" }, { "input": "100000000000000009\n100\n1000000000000000\n999999999999999", "output": "99010000000000009" }, { "input": "10\n20\n10\n9", "output": "1" }, { "input": "10\n4\n14\n13", "output": "2" }, { "input": "11\n3\n9\n7", "output": "4" }, { "input": "1000000000\n5\n7\n4", "output": "333333332" }, { "input": "12155\n1943\n28717\n24074", "output": "6" }, { "input": "1000000000000000000\n10\n20\n5", "output": "100000000000000000" }, { "input": "98\n33\n440\n314", "output": "2" }, { "input": "1070252292\n57449678\n237309920\n221182550", "output": "56" }, { "input": "100\n3\n102\n101", "output": "33" }, { "input": "100000000000000000\n100000000000000001\n1000000000000000\n999999999999999", "output": "99000000000000001" }, { "input": "66249876257975628\n302307316\n406102416\n182373516", "output": "296116756" }, { "input": "10\n5\n10\n1", "output": "2" }, { "input": "1000000000000000000\n10\n1000000000\n999999998", "output": "499999999600000000" } ]
1,454,842,474
6,574
Python 3
WRONG_ANSWER
PRETESTS
10
61
0
n = int(input()) help = n a = int(input()) b = int(input()) c = int(input()) answer = 0 if b - c < a: answer = (n - b) // (b - c) + 1 else: answer = n // a print(answer)
Title: Guest From the Past Time Limit: None seconds Memory Limit: None megabytes Problem Description: Kolya Gerasimov loves kefir very much. He lives in year 1984 and knows all the details of buying this delicious drink. One day, as you probably know, he found himself in year 2084, and buying kefir there is much more complicated. Kolya is hungry, so he went to the nearest milk shop. In 2084 you may buy kefir in a plastic liter bottle, that costs *a* rubles, or in glass liter bottle, that costs *b* rubles. Also, you may return empty glass bottle and get *c* (*c*<=&lt;<=*b*) rubles back, but you cannot return plastic bottles. Kolya has *n* rubles and he is really hungry, so he wants to drink as much kefir as possible. There were no plastic bottles in his 1984, so Kolya doesn't know how to act optimally and asks for your help. Input Specification: First line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=1018) — the number of rubles Kolya has at the beginning. Then follow three lines containing integers *a*, *b* and *c* (1<=≤<=*a*<=≤<=1018, 1<=≤<=*c*<=&lt;<=*b*<=≤<=1018) — the cost of one plastic liter bottle, the cost of one glass liter bottle and the money one can get back by returning an empty glass bottle, respectively. Output Specification: Print the only integer — maximum number of liters of kefir, that Kolya can drink. Demo Input: ['10\n11\n9\n8\n', '10\n5\n6\n1\n'] Demo Output: ['2\n', '2\n'] Note: In the first sample, Kolya can buy one glass bottle, then return it and buy one more glass bottle. Thus he will drink 2 liters of kefir. In the second sample, Kolya can buy two plastic bottle and get two liters of kefir, or he can buy one liter glass bottle, then return it and buy one plastic bottle. In both cases he will drink two liters of kefir.
```python n = int(input()) help = n a = int(input()) b = int(input()) c = int(input()) answer = 0 if b - c < a: answer = (n - b) // (b - c) + 1 else: answer = n // a print(answer) ```
0
870
A
Search for Pretty Integers
PROGRAMMING
900
[ "brute force", "implementation" ]
null
null
You are given two lists of non-zero digits. Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer?
The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=9) — the lengths of the first and the second lists, respectively. The second line contains *n* distinct digits *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=9) — the elements of the first list. The third line contains *m* distinct digits *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=9) — the elements of the second list.
Print the smallest pretty integer.
[ "2 3\n4 2\n5 7 6\n", "8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1\n" ]
[ "25\n", "1\n" ]
In the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list. In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer.
500
[ { "input": "2 3\n4 2\n5 7 6", "output": "25" }, { "input": "8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1", "output": "1" }, { "input": "1 1\n9\n1", "output": "19" }, { "input": "9 1\n5 4 2 3 6 1 7 9 8\n9", "output": "9" }, { "input": "5 3\n7 2 5 8 6\n3 1 9", "output": "12" }, { "input": "4 5\n5 2 6 4\n8 9 1 3 7", "output": "12" }, { "input": "5 9\n4 2 1 6 7\n2 3 4 5 6 7 8 9 1", "output": "1" }, { "input": "9 9\n5 4 3 2 1 6 7 8 9\n3 2 1 5 4 7 8 9 6", "output": "1" }, { "input": "9 5\n2 3 4 5 6 7 8 9 1\n4 2 1 6 7", "output": "1" }, { "input": "9 9\n1 2 3 4 5 6 7 8 9\n1 2 3 4 5 6 7 8 9", "output": "1" }, { "input": "9 9\n1 2 3 4 5 6 7 8 9\n9 8 7 6 5 4 3 2 1", "output": "1" }, { "input": "9 9\n9 8 7 6 5 4 3 2 1\n1 2 3 4 5 6 7 8 9", "output": "1" }, { "input": "9 9\n9 8 7 6 5 4 3 2 1\n9 8 7 6 5 4 3 2 1", "output": "1" }, { "input": "1 1\n8\n9", "output": "89" }, { "input": "1 1\n9\n8", "output": "89" }, { "input": "1 1\n1\n2", "output": "12" }, { "input": "1 1\n2\n1", "output": "12" }, { "input": "1 1\n9\n9", "output": "9" }, { "input": "1 1\n1\n1", "output": "1" }, { "input": "4 5\n3 2 4 5\n1 6 5 9 8", "output": "5" }, { "input": "3 2\n4 5 6\n1 5", "output": "5" }, { "input": "5 4\n1 3 5 6 7\n2 4 3 9", "output": "3" }, { "input": "5 5\n1 3 5 7 9\n2 4 6 8 9", "output": "9" }, { "input": "2 2\n1 8\n2 8", "output": "8" }, { "input": "5 5\n5 6 7 8 9\n1 2 3 4 5", "output": "5" }, { "input": "5 5\n1 2 3 4 5\n1 2 3 4 5", "output": "1" }, { "input": "5 5\n1 2 3 4 5\n2 3 4 5 6", "output": "2" }, { "input": "2 2\n1 5\n2 5", "output": "5" }, { "input": "4 4\n1 3 5 8\n2 4 6 8", "output": "8" }, { "input": "3 3\n1 5 3\n2 5 7", "output": "5" }, { "input": "3 3\n3 6 8\n2 6 9", "output": "6" }, { "input": "2 2\n1 4\n2 4", "output": "4" }, { "input": "5 3\n3 4 5 6 7\n1 5 9", "output": "5" }, { "input": "4 4\n1 2 3 4\n2 5 6 7", "output": "2" }, { "input": "5 5\n1 2 3 4 5\n9 2 1 7 5", "output": "1" }, { "input": "2 2\n1 3\n2 3", "output": "3" }, { "input": "3 3\n3 2 1\n3 2 1", "output": "1" }, { "input": "3 3\n1 3 5\n2 3 6", "output": "3" }, { "input": "3 3\n5 6 7\n5 6 7", "output": "5" }, { "input": "1 2\n5\n2 5", "output": "5" }, { "input": "3 3\n2 4 9\n7 8 9", "output": "9" }, { "input": "3 3\n1 2 4\n3 4 5", "output": "4" }, { "input": "3 2\n1 4 9\n2 4", "output": "4" }, { "input": "3 3\n3 5 6\n1 5 9", "output": "5" }, { "input": "3 2\n1 2 4\n3 4", "output": "4" }, { "input": "2 4\n8 9\n1 2 3 9", "output": "9" }, { "input": "1 2\n9\n8 9", "output": "9" }, { "input": "3 2\n1 2 4\n4 2", "output": "2" }, { "input": "2 3\n4 5\n1 3 5", "output": "5" }, { "input": "3 2\n1 2 3\n2 3", "output": "2" }, { "input": "4 3\n1 3 5 9\n2 8 9", "output": "9" }, { "input": "2 2\n1 9\n9 2", "output": "9" } ]
1,522,780,521
2,147,483,647
Python 3
OK
TESTS
52
93
7,065,600
n, m = map(int, input().split()) N = list(map(int, input().split())) M = list(map(int, input().split())) U = set(N) & set(M) if (len(U)!=0): print(min(U)) else: q, w = min(N), min(M) if (q>w): q, w = w, q print (q, w, sep="")
Title: Search for Pretty Integers Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given two lists of non-zero digits. Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer? Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=9) — the lengths of the first and the second lists, respectively. The second line contains *n* distinct digits *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=9) — the elements of the first list. The third line contains *m* distinct digits *b*1,<=*b*2,<=...,<=*b**m* (1<=≤<=*b**i*<=≤<=9) — the elements of the second list. Output Specification: Print the smallest pretty integer. Demo Input: ['2 3\n4 2\n5 7 6\n', '8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1\n'] Demo Output: ['25\n', '1\n'] Note: In the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list. In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer.
```python n, m = map(int, input().split()) N = list(map(int, input().split())) M = list(map(int, input().split())) U = set(N) & set(M) if (len(U)!=0): print(min(U)) else: q, w = min(N), min(M) if (q>w): q, w = w, q print (q, w, sep="") ```
3
982
A
Row
PROGRAMMING
1,200
[ "brute force", "constructive algorithms" ]
null
null
You're given a row with $n$ chairs. We call a seating of people "maximal" if the two following conditions hold: 1. There are no neighbors adjacent to anyone seated. 1. It's impossible to seat one more person without violating the first rule. The seating is given as a string consisting of zeros and ones ($0$ means that the corresponding seat is empty, $1$ — occupied). The goal is to determine whether this seating is "maximal". Note that the first and last seats are not adjacent (if $n \ne 2$).
The first line contains a single integer $n$ ($1 \leq n \leq 1000$) — the number of chairs. The next line contains a string of $n$ characters, each of them is either zero or one, describing the seating.
Output "Yes" (without quotation marks) if the seating is "maximal". Otherwise print "No". You are allowed to print letters in whatever case you'd like (uppercase or lowercase).
[ "3\n101\n", "4\n1011\n", "5\n10001\n" ]
[ "Yes\n", "No\n", "No\n" ]
In sample case one the given seating is maximal. In sample case two the person at chair three has a neighbour to the right. In sample case three it is possible to seat yet another person into chair three.
500
[ { "input": "3\n101", "output": "Yes" }, { "input": "4\n1011", "output": "No" }, { "input": "5\n10001", "output": "No" }, { "input": "1\n0", "output": "No" }, { "input": "1\n1", "output": "Yes" }, { "input": "100\n0101001010101001010010010101001010100101001001001010010101010010101001001010101001001001010100101010", "output": "Yes" }, { "input": "4\n0100", "output": "No" }, { "input": "42\n011000100101001001101011011010100010011010", "output": "No" }, { "input": "3\n001", "output": "No" }, { "input": "64\n1001001010010010100101010010010100100101001001001001010100101001", "output": "Yes" }, { "input": "3\n111", "output": "No" }, { "input": "4\n0000", "output": "No" }, { "input": "4\n0001", "output": "No" }, { "input": "4\n0010", "output": "No" }, { "input": "4\n0011", "output": "No" }, { "input": "4\n0101", "output": "Yes" }, { "input": "4\n0110", "output": "No" }, { "input": "4\n0111", "output": "No" }, { "input": "4\n1000", "output": "No" }, { "input": "4\n1001", "output": "Yes" }, { "input": "4\n1010", "output": "Yes" }, { "input": "4\n1100", "output": "No" }, { "input": "4\n1101", "output": "No" }, { "input": "4\n1110", "output": "No" }, { "input": "4\n1111", "output": "No" }, { "input": "2\n00", "output": "No" }, { "input": "2\n01", "output": "Yes" }, { "input": "2\n10", "output": "Yes" }, { "input": "2\n11", "output": "No" }, { "input": "3\n000", "output": "No" }, { "input": "3\n010", "output": "Yes" }, { "input": "3\n011", "output": "No" }, { "input": "3\n100", "output": "No" }, { "input": "3\n110", "output": "No" }, { "input": "100\n0111001010101110001100000010011000100101110010001100111110101110001110101010111000010010011000000110", "output": "No" }, { "input": "357\n100101010010010010010100101001001010101010100100100100101001010101001010010100101001010100101001010010100100101001010101010101001001010100101010010100101001010100100100101010010010010100101010010010101001010010010101001001010010010101010100100101010010100100101001010100101001010100101001010010010010100101001010100100100100100100100101010101010010010100101", "output": "Yes" }, { "input": "459\n000111000101010000100001001010111110011011010001100101111010111011101110111101111101100101100011011001100110001001111001101000111001011100110100011111011111000010000110010011100110011011111110011100001101001111000100111011001000001011111100110100001001001100101011100001110110100101011011110100100111101011000101110000100110100100010000000100001001111111000011101010010011001111010111001100000100111001010111011010000011000011100101101011101000011011000110011", "output": "No" }, { "input": "3\n001", "output": "No" }, { "input": "4\n0010", "output": "No" }, { "input": "3\n111", "output": "No" }, { "input": "4\n0110", "output": "No" }, { "input": "2\n11", "output": "No" }, { "input": "2\n10", "output": "Yes" }, { "input": "2\n01", "output": "Yes" }, { "input": "4\n1101", "output": "No" }, { "input": "2\n00", "output": "No" }, { "input": "4\n1111", "output": "No" }, { "input": "15\n000010101010000", "output": "No" }, { "input": "8\n10010100", "output": "No" }, { "input": "5\n00100", "output": "No" }, { "input": "6\n100100", "output": "No" }, { "input": "7\n1000001", "output": "No" }, { "input": "98\n10101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010", "output": "Yes" } ]
1,606,716,209
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
77
0
val=input() s=input() if s[0]=='1' and s[-1]=='1': print('NO') elif '11' in s or '000' in s: print('NO') else: print('YES')
Title: Row Time Limit: None seconds Memory Limit: None megabytes Problem Description: You're given a row with $n$ chairs. We call a seating of people "maximal" if the two following conditions hold: 1. There are no neighbors adjacent to anyone seated. 1. It's impossible to seat one more person without violating the first rule. The seating is given as a string consisting of zeros and ones ($0$ means that the corresponding seat is empty, $1$ — occupied). The goal is to determine whether this seating is "maximal". Note that the first and last seats are not adjacent (if $n \ne 2$). Input Specification: The first line contains a single integer $n$ ($1 \leq n \leq 1000$) — the number of chairs. The next line contains a string of $n$ characters, each of them is either zero or one, describing the seating. Output Specification: Output "Yes" (without quotation marks) if the seating is "maximal". Otherwise print "No". You are allowed to print letters in whatever case you'd like (uppercase or lowercase). Demo Input: ['3\n101\n', '4\n1011\n', '5\n10001\n'] Demo Output: ['Yes\n', 'No\n', 'No\n'] Note: In sample case one the given seating is maximal. In sample case two the person at chair three has a neighbour to the right. In sample case three it is possible to seat yet another person into chair three.
```python val=input() s=input() if s[0]=='1' and s[-1]=='1': print('NO') elif '11' in s or '000' in s: print('NO') else: print('YES') ```
0
20
C
Dijkstra?
PROGRAMMING
1,900
[ "graphs", "shortest paths" ]
C. Dijkstra?
1
64
You are given a weighted undirected graph. The vertices are enumerated from 1 to *n*. Your task is to find the shortest path between the vertex 1 and the vertex *n*.
The first line contains two integers *n* and *m* (2<=≤<=*n*<=≤<=105,<=0<=≤<=*m*<=≤<=105), where *n* is the number of vertices and *m* is the number of edges. Following *m* lines contain one edge each in form *a**i*, *b**i* and *w**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=1<=≤<=*w**i*<=≤<=106), where *a**i*,<=*b**i* are edge endpoints and *w**i* is the length of the edge. It is possible that the graph has loops and multiple edges between pair of vertices.
Write the only integer -1 in case of no path. Write the shortest path in opposite case. If there are many solutions, print any of them.
[ "5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1\n", "5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1\n" ]
[ "1 4 3 5 ", "1 4 3 5 " ]
none
1,500
[ { "input": "5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1", "output": "1 4 3 5 " }, { "input": "5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1", "output": "1 4 3 5 " }, { "input": "2 1\n1 2 1", "output": "1 2 " }, { "input": "3 1\n1 2 1", "output": "-1" }, { "input": "3 3\n1 2 1\n1 3 2\n2 3 1", "output": "1 3 " }, { "input": "10 10\n1 5 12\n2 4 140\n2 10 149\n3 6 154\n3 7 9\n3 8 226\n3 10 132\n4 10 55\n5 8 33\n7 8 173", "output": "1 5 8 7 3 10 " }, { "input": "10 10\n1 5 178\n1 8 221\n2 7 92\n2 8 159\n3 5 55\n3 6 179\n3 10 237\n4 8 205\n5 6 191\n8 10 157", "output": "1 8 10 " }, { "input": "10 10\n1 4 200\n1 9 197\n3 4 79\n3 5 213\n3 6 149\n5 8 3\n5 9 189\n6 7 130\n6 9 51\n8 10 135", "output": "1 9 5 8 10 " }, { "input": "10 10\n1 4 201\n2 3 238\n3 4 40\n3 6 231\n3 8 45\n4 5 227\n4 6 58\n4 9 55\n5 7 14\n6 10 242", "output": "1 4 6 10 " } ]
1,644,086,301
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
2
46
512,000
n,m=map(int,input().split()) lis=[[] for ____ in range(n)] val=[0]+[10**9+5 for _____ in range(n-1)] si=[0 for __ in range(n)] """ lis stores the graph val stores the minimum value taken to reach the vertex i+1 si is the parent list retracing which you get the path heap is a list of current elements that we havent tried yet. """ for _ in range(m): a,b,w=map(int,input().split()) a-=1 b-=1 lis[a].append((w,b)) lis[b].append((w,a)) heap=[(0,0)] while heap: s,i=heap.pop(0) for j in lis[i]: x,y=j if val[y]>s+x: val[y]=s+x si[y]=i heap.append((s+x,y)) heap.sort() if not si[n-1]: print(-1) else: ans=[n] k=n-1 while k!=0: k=si[k] ans.append(k+1) ans.reverse() print(*ans)
Title: Dijkstra? Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: You are given a weighted undirected graph. The vertices are enumerated from 1 to *n*. Your task is to find the shortest path between the vertex 1 and the vertex *n*. Input Specification: The first line contains two integers *n* and *m* (2<=≤<=*n*<=≤<=105,<=0<=≤<=*m*<=≤<=105), where *n* is the number of vertices and *m* is the number of edges. Following *m* lines contain one edge each in form *a**i*, *b**i* and *w**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*,<=1<=≤<=*w**i*<=≤<=106), where *a**i*,<=*b**i* are edge endpoints and *w**i* is the length of the edge. It is possible that the graph has loops and multiple edges between pair of vertices. Output Specification: Write the only integer -1 in case of no path. Write the shortest path in opposite case. If there are many solutions, print any of them. Demo Input: ['5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1\n', '5 6\n1 2 2\n2 5 5\n2 3 4\n1 4 1\n4 3 3\n3 5 1\n'] Demo Output: ['1 4 3 5 ', '1 4 3 5 '] Note: none
```python n,m=map(int,input().split()) lis=[[] for ____ in range(n)] val=[0]+[10**9+5 for _____ in range(n-1)] si=[0 for __ in range(n)] """ lis stores the graph val stores the minimum value taken to reach the vertex i+1 si is the parent list retracing which you get the path heap is a list of current elements that we havent tried yet. """ for _ in range(m): a,b,w=map(int,input().split()) a-=1 b-=1 lis[a].append((w,b)) lis[b].append((w,a)) heap=[(0,0)] while heap: s,i=heap.pop(0) for j in lis[i]: x,y=j if val[y]>s+x: val[y]=s+x si[y]=i heap.append((s+x,y)) heap.sort() if not si[n-1]: print(-1) else: ans=[n] k=n-1 while k!=0: k=si[k] ans.append(k+1) ans.reverse() print(*ans) ```
0
471
A
MUH and Sticks
PROGRAMMING
1,100
[ "implementation" ]
null
null
Two polar bears Menshykov and Uslada from the St.Petersburg zoo and elephant Horace from the Kiev zoo got six sticks to play with and assess the animals' creativity. Menshykov, Uslada and Horace decided to make either an elephant or a bear from those sticks. They can make an animal from sticks in the following way: - Four sticks represent the animal's legs, these sticks should have the same length. - Two remaining sticks represent the animal's head and body. The bear's head stick must be shorter than the body stick. The elephant, however, has a long trunk, so his head stick must be as long as the body stick. Note that there are no limits on the relations between the leg sticks and the head and body sticks. Your task is to find out which animal can be made from the given stick set. The zoo keeper wants the sticks back after the game, so they must never be broken, even bears understand it.
The single line contains six space-separated integers *l**i* (1<=≤<=*l**i*<=≤<=9) — the lengths of the six sticks. It is guaranteed that the input is such that you cannot make both animals from the sticks.
If you can make a bear from the given set, print string "Bear" (without the quotes). If you can make an elephant, print string "Elephant" (wıthout the quotes). If you can make neither a bear nor an elephant, print string "Alien" (without the quotes).
[ "4 2 5 4 4 4\n", "4 4 5 4 4 5\n", "1 2 3 4 5 6\n" ]
[ "Bear", "Elephant", "Alien" ]
If you're out of creative ideas, see instructions below which show how to make a bear and an elephant in the first two samples. The stick of length 2 is in red, the sticks of length 4 are in green, the sticks of length 5 are in blue.
500
[ { "input": "4 2 5 4 4 4", "output": "Bear" }, { "input": "4 4 5 4 4 5", "output": "Elephant" }, { "input": "1 2 3 4 5 6", "output": "Alien" }, { "input": "5 5 5 5 5 5", "output": "Elephant" }, { "input": "1 1 1 2 3 5", "output": "Alien" }, { "input": "1 1 1 1 1 1", "output": "Elephant" }, { "input": "9 9 9 9 9 9", "output": "Elephant" }, { "input": "1 8 9 1 1 1", "output": "Bear" }, { "input": "9 9 9 1 9 9", "output": "Bear" }, { "input": "1 2 3 8 9 7", "output": "Alien" }, { "input": "5 5 5 6 6 6", "output": "Alien" }, { "input": "1 1 2 2 3 4", "output": "Alien" }, { "input": "4 4 4 4 4 2", "output": "Bear" }, { "input": "2 2 3 3 4 4", "output": "Alien" }, { "input": "4 4 4 4 4 5", "output": "Bear" }, { "input": "1 1 2 2 2 2", "output": "Elephant" }, { "input": "1 2 5 5 5 5", "output": "Bear" }, { "input": "4 4 2 2 2 2", "output": "Elephant" }, { "input": "1 1 1 1 1 2", "output": "Bear" }, { "input": "2 2 4 4 4 4", "output": "Elephant" }, { "input": "4 4 4 4 4 3", "output": "Bear" }, { "input": "4 4 5 6 7 8", "output": "Alien" }, { "input": "4 4 4 4 2 2", "output": "Elephant" }, { "input": "1 1 1 1 2 2", "output": "Elephant" }, { "input": "1 1 3 3 3 5", "output": "Alien" }, { "input": "1 2 2 3 3 3", "output": "Alien" }, { "input": "1 2 2 2 2 2", "output": "Bear" }, { "input": "1 3 3 3 4 5", "output": "Alien" }, { "input": "5 1 1 1 1 1", "output": "Bear" } ]
1,639,492,724
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
15
0
from collections import Counter l = list(map(int, input().split())) dict = Counter(l) if '4' in dict.values(): if len(dict) == 3: print("Bear") elif len(dict) == 2: print("Elephant") else: print("Alien") else: print("Alien")
Title: MUH and Sticks Time Limit: None seconds Memory Limit: None megabytes Problem Description: Two polar bears Menshykov and Uslada from the St.Petersburg zoo and elephant Horace from the Kiev zoo got six sticks to play with and assess the animals' creativity. Menshykov, Uslada and Horace decided to make either an elephant or a bear from those sticks. They can make an animal from sticks in the following way: - Four sticks represent the animal's legs, these sticks should have the same length. - Two remaining sticks represent the animal's head and body. The bear's head stick must be shorter than the body stick. The elephant, however, has a long trunk, so his head stick must be as long as the body stick. Note that there are no limits on the relations between the leg sticks and the head and body sticks. Your task is to find out which animal can be made from the given stick set. The zoo keeper wants the sticks back after the game, so they must never be broken, even bears understand it. Input Specification: The single line contains six space-separated integers *l**i* (1<=≤<=*l**i*<=≤<=9) — the lengths of the six sticks. It is guaranteed that the input is such that you cannot make both animals from the sticks. Output Specification: If you can make a bear from the given set, print string "Bear" (without the quotes). If you can make an elephant, print string "Elephant" (wıthout the quotes). If you can make neither a bear nor an elephant, print string "Alien" (without the quotes). Demo Input: ['4 2 5 4 4 4\n', '4 4 5 4 4 5\n', '1 2 3 4 5 6\n'] Demo Output: ['Bear', 'Elephant', 'Alien'] Note: If you're out of creative ideas, see instructions below which show how to make a bear and an elephant in the first two samples. The stick of length 2 is in red, the sticks of length 4 are in green, the sticks of length 5 are in blue.
```python from collections import Counter l = list(map(int, input().split())) dict = Counter(l) if '4' in dict.values(): if len(dict) == 3: print("Bear") elif len(dict) == 2: print("Elephant") else: print("Alien") else: print("Alien") ```
0
318
A
Even Odds
PROGRAMMING
900
[ "math" ]
null
null
Being a nonconformist, Volodya is displeased with the current state of things, particularly with the order of natural numbers (natural number is positive integer number). He is determined to rearrange them. But there are too many natural numbers, so Volodya decided to start with the first *n*. He writes down the following sequence of numbers: firstly all odd integers from 1 to *n* (in ascending order), then all even integers from 1 to *n* (also in ascending order). Help our hero to find out which number will stand at the position number *k*.
The only line of input contains integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=1012). Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
Print the number that will stand at the position number *k* after Volodya's manipulations.
[ "10 3\n", "7 7\n" ]
[ "5", "6" ]
In the first sample Volodya's sequence will look like this: {1, 3, 5, 7, 9, 2, 4, 6, 8, 10}. The third place in the sequence is therefore occupied by the number 5.
500
[ { "input": "10 3", "output": "5" }, { "input": "7 7", "output": "6" }, { "input": "7 1", "output": "1" }, { "input": "7 2", "output": "3" }, { "input": "8 5", "output": "2" }, { "input": "8 3", "output": "5" }, { "input": "8 4", "output": "7" }, { "input": "1000000000000 500000000001", "output": "2" }, { "input": "999999999997 499999999999", "output": "999999999997" }, { "input": "999999999999 999999999999", "output": "999999999998" }, { "input": "1000000000000 1", "output": "1" }, { "input": "999999999999 1", "output": "1" }, { "input": "1 1", "output": "1" }, { "input": "1000000000000 1000000000000", "output": "1000000000000" }, { "input": "1000000000000 500000000000", "output": "999999999999" }, { "input": "1000000000000 499999999999", "output": "999999999997" }, { "input": "999999999997 499999999998", "output": "999999999995" }, { "input": "619234238 556154835", "output": "493075432" }, { "input": "38151981 36650624", "output": "35149266" }, { "input": "680402465 442571217", "output": "204739968" }, { "input": "109135284 9408714", "output": "18817427" }, { "input": "603701841 56038951", "output": "112077901" }, { "input": "356764822 321510177", "output": "286255532" }, { "input": "284911189 142190783", "output": "284381565" }, { "input": "91028405 61435545", "output": "31842684" } ]
1,696,590,254
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
30
0
# -*- coding: utf-8 -*- """ Created on Fri Oct 6 16:29:33 2023 @author: risha """ n,k=map(int,input().split()) l=[] for i in range(k): if i%2==1: l.append(i) for i in range(k): if i%2==0: l.append(i) print(l[k-1])
Title: Even Odds Time Limit: None seconds Memory Limit: None megabytes Problem Description: Being a nonconformist, Volodya is displeased with the current state of things, particularly with the order of natural numbers (natural number is positive integer number). He is determined to rearrange them. But there are too many natural numbers, so Volodya decided to start with the first *n*. He writes down the following sequence of numbers: firstly all odd integers from 1 to *n* (in ascending order), then all even integers from 1 to *n* (also in ascending order). Help our hero to find out which number will stand at the position number *k*. Input Specification: The only line of input contains integers *n* and *k* (1<=≤<=*k*<=≤<=*n*<=≤<=1012). Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier. Output Specification: Print the number that will stand at the position number *k* after Volodya's manipulations. Demo Input: ['10 3\n', '7 7\n'] Demo Output: ['5', '6'] Note: In the first sample Volodya's sequence will look like this: {1, 3, 5, 7, 9, 2, 4, 6, 8, 10}. The third place in the sequence is therefore occupied by the number 5.
```python # -*- coding: utf-8 -*- """ Created on Fri Oct 6 16:29:33 2023 @author: risha """ n,k=map(int,input().split()) l=[] for i in range(k): if i%2==1: l.append(i) for i in range(k): if i%2==0: l.append(i) print(l[k-1]) ```
0
357
B
Flag Day
PROGRAMMING
1,400
[ "constructive algorithms", "implementation" ]
null
null
In Berland, there is the national holiday coming — the Flag Day. In the honor of this event the president of the country decided to make a big dance party and asked your agency to organize it. He has several conditions: - overall, there must be *m* dances;- exactly three people must take part in each dance;- each dance must have one dancer in white clothes, one dancer in red clothes and one dancer in blue clothes (these are the colors of the national flag of Berland). The agency has *n* dancers, and their number can be less than 3*m*. That is, some dancers will probably have to dance in more than one dance. All of your dancers must dance on the party. However, if some dance has two or more dancers from a previous dance, then the current dance stops being spectacular. Your agency cannot allow that to happen, so each dance has at most one dancer who has danced in some previous dance. You considered all the criteria and made the plan for the *m* dances: each dance had three dancers participating in it. Your task is to determine the clothes color for each of the *n* dancers so that the President's third condition fulfilled: each dance must have a dancer in white, a dancer in red and a dancer in blue. The dancers cannot change clothes between the dances.
The first line contains two space-separated integers *n* (3<=≤<=*n*<=≤<=105) and *m* (1<=≤<=*m*<=≤<=105) — the number of dancers and the number of dances, correspondingly. Then *m* lines follow, describing the dances in the order of dancing them. The *i*-th line contains three distinct integers — the numbers of the dancers that take part in the *i*-th dance. The dancers are numbered from 1 to *n*. Each dancer takes part in at least one dance.
Print *n* space-separated integers: the *i*-th number must represent the color of the *i*-th dancer's clothes (1 for white, 2 for red, 3 for blue). If there are multiple valid solutions, print any of them. It is guaranteed that at least one solution exists.
[ "7 3\n1 2 3\n1 4 5\n4 6 7\n", "9 3\n3 6 9\n2 5 8\n1 4 7\n", "5 2\n4 1 5\n3 1 2\n" ]
[ "1 2 3 3 2 2 1 \n", "1 1 1 2 2 2 3 3 3 \n", "2 3 1 1 3 \n" ]
none
1,000
[ { "input": "7 3\n1 2 3\n1 4 5\n4 6 7", "output": "1 2 3 3 2 2 1 " }, { "input": "9 3\n3 6 9\n2 5 8\n1 4 7", "output": "1 1 1 2 2 2 3 3 3 " }, { "input": "5 2\n4 1 5\n3 1 2", "output": "2 3 1 1 3 " }, { "input": "14 5\n1 5 3\n13 10 11\n6 3 8\n14 9 2\n7 4 12", "output": "1 3 3 2 2 2 1 1 2 2 3 3 1 1 " }, { "input": "14 6\n14 3 13\n10 14 5\n6 2 10\n7 13 9\n12 11 8\n1 4 9", "output": "2 2 2 3 2 1 2 3 1 3 2 1 3 1 " }, { "input": "14 6\n11 13 10\n3 10 14\n2 7 12\n13 1 9\n5 11 4\n8 6 5", "output": "1 1 2 2 3 2 2 1 3 3 1 3 2 1 " }, { "input": "13 5\n13 6 2\n13 3 8\n11 4 7\n10 9 5\n1 12 6", "output": "3 3 3 2 3 2 3 2 2 1 1 1 1 " }, { "input": "14 6\n5 4 8\n5 7 12\n3 6 12\n7 11 14\n10 13 2\n10 1 9", "output": "3 3 3 2 1 1 3 3 2 1 2 2 2 1 " }, { "input": "14 5\n4 13 2\n7 2 11\n6 1 5\n14 12 8\n10 3 9", "output": "2 3 2 1 3 1 2 3 3 1 1 2 2 1 " }, { "input": "14 6\n2 14 5\n3 4 5\n6 13 14\n7 13 12\n8 10 11\n9 6 1", "output": "1 1 1 2 3 3 3 1 2 2 3 2 1 2 " }, { "input": "14 6\n7 14 12\n6 1 12\n13 5 2\n2 3 9\n7 4 11\n5 8 10", "output": "2 3 2 3 2 1 1 1 1 3 2 3 1 2 " }, { "input": "13 6\n8 7 6\n11 7 3\n13 9 3\n12 1 13\n8 10 4\n2 7 5", "output": "3 1 3 2 3 3 2 1 2 3 1 2 1 " }, { "input": "13 5\n8 4 3\n1 9 5\n6 2 11\n12 10 4\n7 10 13", "output": "1 2 3 2 3 1 3 1 2 1 3 3 2 " }, { "input": "20 8\n16 19 12\n13 3 5\n1 5 17\n10 19 7\n8 18 2\n3 11 14\n9 20 12\n4 15 6", "output": "2 3 2 1 3 3 3 1 1 1 1 3 1 3 2 1 1 2 2 2 " }, { "input": "19 7\n10 18 14\n5 9 11\n9 17 7\n3 15 4\n6 8 12\n1 2 18\n13 16 19", "output": "3 1 1 3 1 1 3 2 2 1 3 3 1 3 2 2 1 2 3 " }, { "input": "18 7\n17 4 13\n7 1 6\n16 9 13\n9 2 5\n11 12 17\n14 8 10\n3 15 18", "output": "2 1 1 2 3 3 1 2 2 3 2 3 3 1 2 1 1 3 " }, { "input": "20 7\n8 5 11\n3 19 20\n16 1 17\n9 6 2\n7 18 13\n14 12 18\n10 4 15", "output": "2 3 1 2 2 2 1 1 1 1 3 1 3 3 3 1 3 2 2 3 " }, { "input": "20 7\n6 11 20\n19 5 2\n15 10 12\n3 7 8\n9 1 6\n13 17 18\n14 16 4", "output": "3 3 1 3 2 1 2 3 2 2 2 3 1 1 1 2 2 3 1 3 " }, { "input": "18 7\n15 5 1\n6 11 4\n14 8 17\n11 12 13\n3 8 16\n9 4 7\n2 18 10", "output": "3 1 1 3 2 1 1 2 2 3 2 1 3 1 1 3 3 2 " }, { "input": "19 7\n3 10 8\n17 7 4\n1 19 18\n2 9 5\n12 11 15\n11 14 6\n13 9 16", "output": "1 1 1 3 3 3 2 3 2 2 2 1 1 1 3 3 1 3 2 " }, { "input": "19 7\n18 14 4\n3 11 6\n8 10 7\n10 19 16\n17 13 15\n5 1 14\n12 9 2", "output": "1 3 1 3 3 3 3 1 2 2 2 1 2 2 3 3 1 1 1 " }, { "input": "20 7\n18 7 15\n17 5 20\n9 19 12\n16 13 10\n3 6 1\n3 8 11\n4 2 14", "output": "3 2 1 1 2 2 2 3 1 3 2 3 2 3 3 1 1 1 2 3 " }, { "input": "18 7\n8 4 6\n13 17 3\n9 8 12\n12 16 5\n18 2 7\n11 1 10\n5 15 14", "output": "2 2 3 2 3 3 3 1 3 3 1 2 1 1 2 1 2 1 " }, { "input": "99 37\n40 10 7\n10 3 5\n10 31 37\n87 48 24\n33 47 38\n34 87 2\n2 35 28\n99 28 76\n66 51 97\n72 77 9\n18 17 67\n23 69 98\n58 89 99\n42 44 52\n65 41 80\n70 92 74\n62 88 45\n68 27 61\n6 83 95\n39 85 49\n57 75 77\n59 54 81\n56 20 82\n96 4 53\n90 7 11\n16 43 84\n19 25 59\n68 8 93\n73 94 78\n15 71 79\n26 12 50\n30 32 4\n14 22 29\n46 21 36\n60 55 86\n91 8 63\n13 1 64", "output": "2 2 1 2 3 1 3 3 3 2 1 2 1 1 1 1 2 1 2 2 2 2 1 3 3 1 2 3 3 3 1 1 1 3 1 3 3 3 1 1 2 1 2 2 3 1 2 2 3 3 2 3 3 2 2 1 3 3 1 1 3 1 1 3 1 1 3 1 2 1 2 1 1 3 1 1 2 3 3 3 3 3 2 3 2 3 1 2 1 2 2 2 2 2 3 1 3 3 2 " }, { "input": "99 41\n11 70 20\n57 11 76\n52 11 64\n49 70 15\n19 61 17\n71 77 21\n77 59 39\n37 64 68\n17 84 36\n46 11 90\n35 11 14\n36 25 80\n12 43 48\n18 78 42\n82 94 15\n22 10 84\n63 86 4\n98 86 50\n92 60 9\n73 42 65\n21 5 27\n30 24 23\n7 88 49\n40 97 45\n81 56 17\n79 61 33\n13 3 77\n54 6 28\n99 58 8\n29 95 24\n89 74 32\n51 89 66\n87 91 96\n22 34 38\n1 53 72\n55 97 26\n41 16 44\n2 31 47\n83 67 91\n75 85 69\n93 47 62", "output": "1 1 1 3 2 2 2 3 3 1 1 1 3 2 3 2 3 1 1 3 3 3 3 2 3 3 1 3 3 1 2 3 3 2 3 1 1 1 3 1 1 3 2 3 3 3 3 3 1 3 3 3 2 1 1 2 3 2 1 2 2 1 1 2 1 2 1 3 3 2 1 3 2 2 1 2 2 2 1 2 1 1 3 2 2 2 1 3 1 2 2 1 2 2 1 3 2 1 1 " }, { "input": "99 38\n70 56 92\n61 70 68\n18 92 91\n82 43 55\n37 5 43\n47 27 26\n64 63 40\n20 61 57\n69 80 59\n60 89 50\n33 25 86\n38 15 73\n96 85 90\n3 12 64\n95 23 48\n66 30 9\n38 99 45\n67 88 71\n74 11 81\n28 51 79\n72 92 34\n16 77 31\n65 18 94\n3 41 2\n36 42 81\n22 77 83\n44 24 52\n10 75 97\n54 21 53\n4 29 32\n58 39 98\n46 62 16\n76 5 84\n8 87 13\n6 41 14\n19 21 78\n7 49 93\n17 1 35", "output": "2 3 2 1 1 3 1 1 3 1 2 3 3 2 2 1 1 2 1 2 2 1 2 2 2 3 2 1 2 2 3 3 1 1 3 1 3 1 2 3 1 2 2 1 2 2 1 3 2 3 2 3 3 1 3 2 1 1 3 1 3 3 2 1 1 1 1 2 1 1 3 2 3 1 2 3 2 3 3 2 3 1 3 2 2 3 2 2 2 3 1 3 3 3 1 1 3 3 3 " }, { "input": "98 38\n70 23 73\n73 29 86\n93 82 30\n6 29 10\n7 22 78\n55 61 87\n98 2 12\n11 5 54\n44 56 60\n89 76 50\n37 72 43\n47 41 61\n85 40 38\n48 93 20\n90 64 29\n31 68 25\n83 57 41\n51 90 3\n91 97 66\n96 95 1\n50 84 71\n53 19 5\n45 42 28\n16 17 89\n63 58 15\n26 47 39\n21 24 19\n80 74 38\n14 46 75\n88 65 36\n77 92 33\n17 59 34\n35 69 79\n13 94 39\n8 52 4\n67 27 9\n65 62 18\n81 32 49", "output": "3 2 1 3 2 1 1 1 3 3 1 3 2 1 3 2 3 3 1 2 2 2 2 3 3 2 2 3 2 3 1 2 3 1 1 3 1 3 1 2 1 2 3 1 1 2 3 3 3 3 2 2 3 3 1 2 3 2 2 3 2 1 1 1 2 3 1 2 2 1 1 2 3 2 3 2 1 3 3 1 1 2 2 2 1 1 3 1 1 3 1 2 1 3 2 1 2 1 " }, { "input": "99 42\n61 66 47\n10 47 96\n68 86 67\n21 29 10\n55 44 47\n12 82 4\n45 71 55\n86 3 95\n16 99 93\n14 92 82\n12 59 20\n73 24 8\n79 72 48\n44 87 39\n87 84 97\n47 70 37\n49 77 95\n39 75 28\n75 25 5\n44 41 36\n76 86 78\n73 6 90\n8 22 58\n9 72 63\n81 42 14\n1 21 35\n91 54 15\n30 13 39\n56 89 79\n11 2 76\n19 65 52\n23 85 74\n7 38 24\n57 94 81\n43 34 60\n62 82 27\n69 64 53\n18 32 17\n24 31 88\n51 50 33\n40 80 98\n83 46 26", "output": "2 3 1 3 3 3 3 3 1 2 2 1 2 3 3 1 3 1 1 2 3 2 1 2 1 3 3 1 1 1 1 2 3 2 1 3 1 1 3 1 1 2 1 2 2 2 3 3 1 2 1 3 3 2 1 2 2 1 3 3 1 1 3 2 2 2 3 1 1 2 3 2 1 3 2 1 2 3 1 2 1 2 1 3 2 2 1 3 3 2 1 1 3 3 3 1 2 3 2 " } ]
1,678,001,028
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
4
61
0
import sys from os import path from math import gcd,floor,sqrt,log,ceil from bisect import bisect_left, bisect_right import heapq ############ ---- Input Functions ---- #################### def inp(): return(int(input())) def inlt(): return(list(map(int,input().split()))) def insr(): s = input() return(list(s[:len(s) - 1])) def invr(): return(map(int,input().split())) def inmatrix(n,m): arr=[] for i in range(n): temp=inlt() arr.append(temp) return arr ############################################################ def cuberoot(x): if 0<=x: return x**(1./2.) return -(-x)**(1./2.) def is_anagram(str1, str2): return sorted(str1) == sorted(str2) ############################################################ mod=1000000007 ############################################################ if(path.exists('input.txt')): sys.stdin = open("input.txt","r") sys.stdout = open("output.txt","w") sys.stderr = open("error.txt", "w") else: input = sys.stdin.readline ############################################################ def solve(): n,m=invr() a=[] for i in range(m): t=inlt() a.append(t) p=[0 for i in range(n+1)] for i in range(m): ss=set() for j in range(3): if p[a[i][j]]==0: if 1 not in ss: ss.add(1) p[a[i][j]]=1 elif 2 not in ss: ss.add(2) p[a[i][j]]=2 elif 3 not in ss: ss.add(3) p[a[i][j]]=3 else: ss.add(p[a[i][j]]) for i in range(1,n+1): if p[i]: print(p[i],end=" ") p[i]=0 def main(): # T=inp() T=1 for i in range(1,T+1): #print("Case #{}:".format(i),end=" ") solve() main()
Title: Flag Day Time Limit: None seconds Memory Limit: None megabytes Problem Description: In Berland, there is the national holiday coming — the Flag Day. In the honor of this event the president of the country decided to make a big dance party and asked your agency to organize it. He has several conditions: - overall, there must be *m* dances;- exactly three people must take part in each dance;- each dance must have one dancer in white clothes, one dancer in red clothes and one dancer in blue clothes (these are the colors of the national flag of Berland). The agency has *n* dancers, and their number can be less than 3*m*. That is, some dancers will probably have to dance in more than one dance. All of your dancers must dance on the party. However, if some dance has two or more dancers from a previous dance, then the current dance stops being spectacular. Your agency cannot allow that to happen, so each dance has at most one dancer who has danced in some previous dance. You considered all the criteria and made the plan for the *m* dances: each dance had three dancers participating in it. Your task is to determine the clothes color for each of the *n* dancers so that the President's third condition fulfilled: each dance must have a dancer in white, a dancer in red and a dancer in blue. The dancers cannot change clothes between the dances. Input Specification: The first line contains two space-separated integers *n* (3<=≤<=*n*<=≤<=105) and *m* (1<=≤<=*m*<=≤<=105) — the number of dancers and the number of dances, correspondingly. Then *m* lines follow, describing the dances in the order of dancing them. The *i*-th line contains three distinct integers — the numbers of the dancers that take part in the *i*-th dance. The dancers are numbered from 1 to *n*. Each dancer takes part in at least one dance. Output Specification: Print *n* space-separated integers: the *i*-th number must represent the color of the *i*-th dancer's clothes (1 for white, 2 for red, 3 for blue). If there are multiple valid solutions, print any of them. It is guaranteed that at least one solution exists. Demo Input: ['7 3\n1 2 3\n1 4 5\n4 6 7\n', '9 3\n3 6 9\n2 5 8\n1 4 7\n', '5 2\n4 1 5\n3 1 2\n'] Demo Output: ['1 2 3 3 2 2 1 \n', '1 1 1 2 2 2 3 3 3 \n', '2 3 1 1 3 \n'] Note: none
```python import sys from os import path from math import gcd,floor,sqrt,log,ceil from bisect import bisect_left, bisect_right import heapq ############ ---- Input Functions ---- #################### def inp(): return(int(input())) def inlt(): return(list(map(int,input().split()))) def insr(): s = input() return(list(s[:len(s) - 1])) def invr(): return(map(int,input().split())) def inmatrix(n,m): arr=[] for i in range(n): temp=inlt() arr.append(temp) return arr ############################################################ def cuberoot(x): if 0<=x: return x**(1./2.) return -(-x)**(1./2.) def is_anagram(str1, str2): return sorted(str1) == sorted(str2) ############################################################ mod=1000000007 ############################################################ if(path.exists('input.txt')): sys.stdin = open("input.txt","r") sys.stdout = open("output.txt","w") sys.stderr = open("error.txt", "w") else: input = sys.stdin.readline ############################################################ def solve(): n,m=invr() a=[] for i in range(m): t=inlt() a.append(t) p=[0 for i in range(n+1)] for i in range(m): ss=set() for j in range(3): if p[a[i][j]]==0: if 1 not in ss: ss.add(1) p[a[i][j]]=1 elif 2 not in ss: ss.add(2) p[a[i][j]]=2 elif 3 not in ss: ss.add(3) p[a[i][j]]=3 else: ss.add(p[a[i][j]]) for i in range(1,n+1): if p[i]: print(p[i],end=" ") p[i]=0 def main(): # T=inp() T=1 for i in range(1,T+1): #print("Case #{}:".format(i),end=" ") solve() main() ```
0
4
A
Watermelon
PROGRAMMING
800
[ "brute force", "math" ]
A. Watermelon
1
64
One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed *w* kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem. Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight.
The first (and the only) input line contains integer number *w* (1<=≤<=*w*<=≤<=100) — the weight of the watermelon bought by the boys.
Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case.
[ "8\n" ]
[ "YES\n" ]
For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).
0
[ { "input": "8", "output": "YES" }, { "input": "5", "output": "NO" }, { "input": "4", "output": "YES" }, { "input": "3", "output": "NO" }, { "input": "2", "output": "NO" }, { "input": "1", "output": "NO" }, { "input": "7", "output": "NO" }, { "input": "6", "output": "YES" }, { "input": "10", "output": "YES" }, { "input": "9", "output": "NO" }, { "input": "53", "output": "NO" }, { "input": "77", "output": "NO" }, { "input": "32", "output": "YES" }, { "input": "44", "output": "YES" }, { "input": "98", "output": "YES" }, { "input": "99", "output": "NO" }, { "input": "90", "output": "YES" }, { "input": "67", "output": "NO" }, { "input": "100", "output": "YES" }, { "input": "88", "output": "YES" } ]
1,693,315,161
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
w = input(int()) if w %2 == 1 or w == 2: print('NO') else: print('YES')
Title: Watermelon Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed *w* kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem. Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight. Input Specification: The first (and the only) input line contains integer number *w* (1<=≤<=*w*<=≤<=100) — the weight of the watermelon bought by the boys. Output Specification: Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case. Demo Input: ['8\n'] Demo Output: ['YES\n'] Note: For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).
```python w = input(int()) if w %2 == 1 or w == 2: print('NO') else: print('YES') ```
-1
248
A
Cupboards
PROGRAMMING
800
[ "implementation" ]
null
null
One foggy Stockholm morning, Karlsson decided to snack on some jam in his friend Lillebror Svantenson's house. Fortunately for Karlsson, there wasn't anybody in his friend's house. Karlsson was not going to be hungry any longer, so he decided to get some food in the house. Karlsson's gaze immediately fell on *n* wooden cupboards, standing in the kitchen. He immediately realized that these cupboards have hidden jam stocks. Karlsson began to fly greedily around the kitchen, opening and closing the cupboards' doors, grab and empty all the jars of jam that he could find. And now all jars of jam are empty, Karlsson has had enough and does not want to leave traces of his stay, so as not to let down his friend. Each of the cupboards has two doors: the left one and the right one. Karlsson remembers that when he rushed to the kitchen, all the cupboards' left doors were in the same position (open or closed), similarly, all the cupboards' right doors were in the same position (open or closed). Karlsson wants the doors to meet this condition as well by the time the family returns. Karlsson does not remember the position of all the left doors, also, he cannot remember the position of all the right doors. Therefore, it does not matter to him in what position will be all left or right doors. It is important to leave all the left doors in the same position, and all the right doors in the same position. For example, all the left doors may be closed, and all the right ones may be open. Karlsson needs one second to open or close a door of a cupboard. He understands that he has very little time before the family returns, so he wants to know the minimum number of seconds *t*, in which he is able to bring all the cupboard doors in the required position. Your task is to write a program that will determine the required number of seconds *t*.
The first input line contains a single integer *n* — the number of cupboards in the kitchen (2<=≤<=*n*<=≤<=104). Then follow *n* lines, each containing two integers *l**i* and *r**i* (0<=≤<=*l**i*,<=*r**i*<=≤<=1). Number *l**i* equals one, if the left door of the *i*-th cupboard is opened, otherwise number *l**i* equals zero. Similarly, number *r**i* equals one, if the right door of the *i*-th cupboard is opened, otherwise number *r**i* equals zero. The numbers in the lines are separated by single spaces.
In the only output line print a single integer *t* — the minimum number of seconds Karlsson needs to change the doors of all cupboards to the position he needs.
[ "5\n0 1\n1 0\n0 1\n1 1\n0 1\n" ]
[ "3\n" ]
none
500
[ { "input": "5\n0 1\n1 0\n0 1\n1 1\n0 1", "output": "3" }, { "input": "2\n0 0\n0 0", "output": "0" }, { "input": "3\n0 1\n1 1\n1 1", "output": "1" }, { "input": "8\n0 1\n1 0\n0 1\n1 1\n0 1\n1 0\n0 1\n1 0", "output": "7" }, { "input": "8\n1 0\n1 0\n1 0\n0 1\n0 1\n1 1\n1 1\n0 1", "output": "6" }, { "input": "15\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "0" }, { "input": "5\n1 0\n1 0\n1 0\n0 1\n0 1", "output": "4" } ]
1,618,061,035
2,147,483,647
Python 3
OK
TESTS
57
154
0
n=int(input()) L=0 R=0 for i in range(n): l,r=map(int,input().split()) L+=l R+=r print(min(L,n-L)+min(R,n-R))
Title: Cupboards Time Limit: None seconds Memory Limit: None megabytes Problem Description: One foggy Stockholm morning, Karlsson decided to snack on some jam in his friend Lillebror Svantenson's house. Fortunately for Karlsson, there wasn't anybody in his friend's house. Karlsson was not going to be hungry any longer, so he decided to get some food in the house. Karlsson's gaze immediately fell on *n* wooden cupboards, standing in the kitchen. He immediately realized that these cupboards have hidden jam stocks. Karlsson began to fly greedily around the kitchen, opening and closing the cupboards' doors, grab and empty all the jars of jam that he could find. And now all jars of jam are empty, Karlsson has had enough and does not want to leave traces of his stay, so as not to let down his friend. Each of the cupboards has two doors: the left one and the right one. Karlsson remembers that when he rushed to the kitchen, all the cupboards' left doors were in the same position (open or closed), similarly, all the cupboards' right doors were in the same position (open or closed). Karlsson wants the doors to meet this condition as well by the time the family returns. Karlsson does not remember the position of all the left doors, also, he cannot remember the position of all the right doors. Therefore, it does not matter to him in what position will be all left or right doors. It is important to leave all the left doors in the same position, and all the right doors in the same position. For example, all the left doors may be closed, and all the right ones may be open. Karlsson needs one second to open or close a door of a cupboard. He understands that he has very little time before the family returns, so he wants to know the minimum number of seconds *t*, in which he is able to bring all the cupboard doors in the required position. Your task is to write a program that will determine the required number of seconds *t*. Input Specification: The first input line contains a single integer *n* — the number of cupboards in the kitchen (2<=≤<=*n*<=≤<=104). Then follow *n* lines, each containing two integers *l**i* and *r**i* (0<=≤<=*l**i*,<=*r**i*<=≤<=1). Number *l**i* equals one, if the left door of the *i*-th cupboard is opened, otherwise number *l**i* equals zero. Similarly, number *r**i* equals one, if the right door of the *i*-th cupboard is opened, otherwise number *r**i* equals zero. The numbers in the lines are separated by single spaces. Output Specification: In the only output line print a single integer *t* — the minimum number of seconds Karlsson needs to change the doors of all cupboards to the position he needs. Demo Input: ['5\n0 1\n1 0\n0 1\n1 1\n0 1\n'] Demo Output: ['3\n'] Note: none
```python n=int(input()) L=0 R=0 for i in range(n): l,r=map(int,input().split()) L+=l R+=r print(min(L,n-L)+min(R,n-R)) ```
3
992
A
Nastya and an Array
PROGRAMMING
800
[ "implementation", "sortings" ]
null
null
Nastya owns too many arrays now, so she wants to delete the least important of them. However, she discovered that this array is magic! Nastya now knows that the array has the following properties: - In one second we can add an arbitrary (possibly negative) integer to all elements of the array that are not equal to zero. - When all elements of the array become equal to zero, the array explodes. Nastya is always busy, so she wants to explode the array as fast as possible. Compute the minimum time in which the array can be exploded.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the size of the array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=105<=≤<=*a**i*<=≤<=105) — the elements of the array.
Print a single integer — the minimum number of seconds needed to make all elements of the array equal to zero.
[ "5\n1 1 1 1 1\n", "3\n2 0 -1\n", "4\n5 -6 -5 1\n" ]
[ "1\n", "2\n", "4\n" ]
In the first example you can add  - 1 to all non-zero elements in one second and make them equal to zero. In the second example you can add  - 2 on the first second, then the array becomes equal to [0, 0,  - 3]. On the second second you can add 3 to the third (the only non-zero) element.
500
[ { "input": "5\n1 1 1 1 1", "output": "1" }, { "input": "3\n2 0 -1", "output": "2" }, { "input": "4\n5 -6 -5 1", "output": "4" }, { "input": "1\n0", "output": "0" }, { "input": "2\n21794 -79194", "output": "2" }, { "input": "3\n-63526 95085 -5239", "output": "3" }, { "input": "3\n0 53372 -20572", "output": "2" }, { "input": "13\n-2075 -32242 27034 -37618 -96962 82203 64846 48249 -71761 28908 -21222 -61370 46899", "output": "13" }, { "input": "5\n806 0 1308 1954 683", "output": "4" }, { "input": "8\n-26 0 -249 -289 -126 -206 288 -11", "output": "7" }, { "input": "10\n2 2 2 1 2 -1 0 2 -1 1", "output": "3" }, { "input": "1\n8", "output": "1" }, { "input": "3\n0 0 0", "output": "0" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10", "output": "10" }, { "input": "5\n2 0 -1 0 0", "output": "2" }, { "input": "2\n0 0", "output": "0" }, { "input": "5\n0 0 0 0 0", "output": "0" }, { "input": "2\n1 0", "output": "1" }, { "input": "2\n-1 0", "output": "1" }, { "input": "4\n0 0 0 0", "output": "0" }, { "input": "8\n10 9 -1 0 0 3 2 3", "output": "5" }, { "input": "5\n5 0 1 2 3", "output": "4" }, { "input": "3\n1 1 0", "output": "1" }, { "input": "1\n-1", "output": "1" }, { "input": "5\n1 2 0 0 0", "output": "2" }, { "input": "5\n1 0 0 0 0", "output": "1" }, { "input": "5\n4 5 6 0 0", "output": "3" }, { "input": "4\n-1 0 0 1", "output": "2" }, { "input": "5\n3 0 0 4 5", "output": "3" }, { "input": "3\n0 0 2", "output": "1" }, { "input": "3\n1 0 0", "output": "1" }, { "input": "4\n0 0 0 4", "output": "1" }, { "input": "5\n-1 0 0 0 0", "output": "1" }, { "input": "2\n0 1", "output": "1" }, { "input": "3\n1 2 3", "output": "3" }, { "input": "1\n5", "output": "1" }, { "input": "10\n0 0 0 0 0 1 2 3 0 0", "output": "3" }, { "input": "4\n0 1 2 3", "output": "3" }, { "input": "3\n0 1 2", "output": "2" }, { "input": "4\n2 0 0 -1", "output": "2" } ]
1,640,939,273
2,147,483,647
PyPy 3-64
OK
TESTS
79
186
17,305,600
n=int(input()) l=list(map(int,input().split())) s=set(l) x=len(s) if 0 in s: print(x-1) else: print(x)
Title: Nastya and an Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: Nastya owns too many arrays now, so she wants to delete the least important of them. However, she discovered that this array is magic! Nastya now knows that the array has the following properties: - In one second we can add an arbitrary (possibly negative) integer to all elements of the array that are not equal to zero. - When all elements of the array become equal to zero, the array explodes. Nastya is always busy, so she wants to explode the array as fast as possible. Compute the minimum time in which the array can be exploded. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105) — the size of the array. The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (<=-<=105<=≤<=*a**i*<=≤<=105) — the elements of the array. Output Specification: Print a single integer — the minimum number of seconds needed to make all elements of the array equal to zero. Demo Input: ['5\n1 1 1 1 1\n', '3\n2 0 -1\n', '4\n5 -6 -5 1\n'] Demo Output: ['1\n', '2\n', '4\n'] Note: In the first example you can add  - 1 to all non-zero elements in one second and make them equal to zero. In the second example you can add  - 2 on the first second, then the array becomes equal to [0, 0,  - 3]. On the second second you can add 3 to the third (the only non-zero) element.
```python n=int(input()) l=list(map(int,input().split())) s=set(l) x=len(s) if 0 in s: print(x-1) else: print(x) ```
3
519
B
A and B and Compilation Errors
PROGRAMMING
1,100
[ "data structures", "implementation", "sortings" ]
null
null
A and B are preparing themselves for programming contests. B loves to debug his code. But before he runs the solution and starts debugging, he has to first compile the code. Initially, the compiler displayed *n* compilation errors, each of them is represented as a positive integer. After some effort, B managed to fix some mistake and then another one mistake. However, despite the fact that B is sure that he corrected the two errors, he can not understand exactly what compilation errors disappeared — the compiler of the language which B uses shows errors in the new order every time! B is sure that unlike many other programming languages, compilation errors for his programming language do not depend on each other, that is, if you correct one error, the set of other error does not change. Can you help B find out exactly what two errors he corrected?
The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=105) — the initial number of compilation errors. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the errors the compiler displayed for the first time. The third line contains *n*<=-<=1 space-separated integers *b*1,<=*b*2,<=...,<=*b**n*<=-<=1 — the errors displayed at the second compilation. It is guaranteed that the sequence in the third line contains all numbers of the second string except for exactly one. The fourth line contains *n*<=-<=2 space-separated integers *с*1,<=*с*2,<=...,<=*с**n*<=-<=2 — the errors displayed at the third compilation. It is guaranteed that the sequence in the fourth line contains all numbers of the third line except for exactly one.
Print two numbers on a single line: the numbers of the compilation errors that disappeared after B made the first and the second correction, respectively.
[ "5\n1 5 8 123 7\n123 7 5 1\n5 1 7\n", "6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5\n" ]
[ "8\n123\n", "1\n3\n" ]
In the first test sample B first corrects the error number 8, then the error number 123. In the second test sample B first corrects the error number 1, then the error number 3. Note that if there are multiple errors with the same number, B can correct only one of them in one step.
1,000
[ { "input": "5\n1 5 8 123 7\n123 7 5 1\n5 1 7", "output": "8\n123" }, { "input": "6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5", "output": "1\n3" }, { "input": "3\n1 2 3\n3 2\n2", "output": "1\n3" }, { "input": "10\n460626451 802090732 277246428 661369649 388684428 784303821 376287098 656422756 9301599 25720377\n277246428 388684428 661369649 460626451 656422756 802090732 9301599 784303821 376287098\n376287098 802090732 388684428 9301599 656422756 784303821 460626451 277246428", "output": "25720377\n661369649" }, { "input": "3\n796067435 964699482 819602309\n964699482 796067435\n964699482", "output": "819602309\n796067435" }, { "input": "3\n374054998 726316780 902899520\n902899520 726316780\n726316780", "output": "374054998\n902899520" }, { "input": "3\n168638990 939116221 323703261\n168638990 323703261\n168638990", "output": "939116221\n323703261" }, { "input": "3\n77 77 77\n77 77\n77", "output": "77\n77" }, { "input": "3\n84 30 9\n9 84\n9", "output": "30\n84" }, { "input": "6\n5 4 3 3 5 5\n3 5 5 4 3\n3 5 4 3", "output": "5\n5" }, { "input": "4\n1 5 7 8\n1 5 7\n1 5", "output": "8\n7" } ]
1,640,709,733
2,147,483,647
Python 3
OK
TESTS
33
265
13,926,400
n = int(input()) a = [int(x)for x in input().split()][:n] a.sort() a1 = [int(x)for x in input().split()][:n-1] a1.sort() a2 = [int(x)for x in input().split()][:n-2] a2.sort() for i in range(n-1): if a[i]!= a1[i]: print(a[i]) break else: print(a[-1]) for i in range(n-2): if a1[i]!= a2[i]: print(a1[i]) break else: print(a1[-1])
Title: A and B and Compilation Errors Time Limit: None seconds Memory Limit: None megabytes Problem Description: A and B are preparing themselves for programming contests. B loves to debug his code. But before he runs the solution and starts debugging, he has to first compile the code. Initially, the compiler displayed *n* compilation errors, each of them is represented as a positive integer. After some effort, B managed to fix some mistake and then another one mistake. However, despite the fact that B is sure that he corrected the two errors, he can not understand exactly what compilation errors disappeared — the compiler of the language which B uses shows errors in the new order every time! B is sure that unlike many other programming languages, compilation errors for his programming language do not depend on each other, that is, if you correct one error, the set of other error does not change. Can you help B find out exactly what two errors he corrected? Input Specification: The first line of the input contains integer *n* (3<=≤<=*n*<=≤<=105) — the initial number of compilation errors. The second line contains *n* space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the errors the compiler displayed for the first time. The third line contains *n*<=-<=1 space-separated integers *b*1,<=*b*2,<=...,<=*b**n*<=-<=1 — the errors displayed at the second compilation. It is guaranteed that the sequence in the third line contains all numbers of the second string except for exactly one. The fourth line contains *n*<=-<=2 space-separated integers *с*1,<=*с*2,<=...,<=*с**n*<=-<=2 — the errors displayed at the third compilation. It is guaranteed that the sequence in the fourth line contains all numbers of the third line except for exactly one. Output Specification: Print two numbers on a single line: the numbers of the compilation errors that disappeared after B made the first and the second correction, respectively. Demo Input: ['5\n1 5 8 123 7\n123 7 5 1\n5 1 7\n', '6\n1 4 3 3 5 7\n3 7 5 4 3\n4 3 7 5\n'] Demo Output: ['8\n123\n', '1\n3\n'] Note: In the first test sample B first corrects the error number 8, then the error number 123. In the second test sample B first corrects the error number 1, then the error number 3. Note that if there are multiple errors with the same number, B can correct only one of them in one step.
```python n = int(input()) a = [int(x)for x in input().split()][:n] a.sort() a1 = [int(x)for x in input().split()][:n-1] a1.sort() a2 = [int(x)for x in input().split()][:n-2] a2.sort() for i in range(n-1): if a[i]!= a1[i]: print(a[i]) break else: print(a[-1]) for i in range(n-2): if a1[i]!= a2[i]: print(a1[i]) break else: print(a1[-1]) ```
3
939
A
Love Triangle
PROGRAMMING
800
[ "graphs" ]
null
null
As you could know there are no male planes nor female planes. However, each plane on Earth likes some other plane. There are *n* planes on Earth, numbered from 1 to *n*, and the plane with number *i* likes the plane with number *f**i*, where 1<=≤<=*f**i*<=≤<=*n* and *f**i*<=≠<=*i*. We call a love triangle a situation in which plane *A* likes plane *B*, plane *B* likes plane *C* and plane *C* likes plane *A*. Find out if there is any love triangle on Earth.
The first line contains a single integer *n* (2<=≤<=*n*<=≤<=5000) — the number of planes. The second line contains *n* integers *f*1,<=*f*2,<=...,<=*f**n* (1<=≤<=*f**i*<=≤<=*n*, *f**i*<=≠<=*i*), meaning that the *i*-th plane likes the *f**i*-th.
Output «YES» if there is a love triangle consisting of planes on Earth. Otherwise, output «NO». You can output any letter in lower case or in upper case.
[ "5\n2 4 5 1 3\n", "5\n5 5 5 5 1\n" ]
[ "YES\n", "NO\n" ]
In first example plane 2 likes plane 4, plane 4 likes plane 1, plane 1 likes plane 2 and that is a love triangle. In second example there are no love triangles.
500
[ { "input": "5\n2 4 5 1 3", "output": "YES" }, { "input": "5\n5 5 5 5 1", "output": "NO" }, { "input": "3\n3 1 2", "output": "YES" }, { "input": "10\n4 10 9 5 3 1 5 10 6 4", "output": "NO" }, { "input": "10\n5 5 4 9 10 9 9 5 3 1", "output": "YES" }, { "input": "100\n50 40 60 87 39 58 44 84 46 68 16 57 77 87 92 95 42 31 74 15 36 84 30 3 47 15 87 90 76 66 6 63 74 19 40 49 6 84 41 9 77 34 7 12 11 73 58 24 81 14 81 29 65 100 1 85 64 32 38 4 54 67 32 81 80 7 100 71 29 80 4 52 47 7 78 56 52 75 81 37 16 41 27 28 58 60 62 47 29 40 37 14 59 91 12 54 25 58 12 43", "output": "NO" }, { "input": "100\n25 6 46 37 87 99 70 31 46 12 94 40 87 56 28 8 94 39 13 12 67 13 71 39 83 48 40 14 62 41 16 71 20 41 83 41 68 98 23 82 62 83 62 35 49 22 31 21 66 98 54 39 34 52 11 28 47 89 25 44 68 36 91 46 82 86 88 48 27 93 7 9 53 36 16 100 84 84 44 25 58 66 16 46 72 21 91 78 4 17 44 17 47 67 93 89 75 44 56 50", "output": "YES" }, { "input": "2\n2 1", "output": "NO" }, { "input": "3\n2 3 1", "output": "YES" }, { "input": "5\n2 1 4 5 3", "output": "YES" }, { "input": "5\n5 4 5 5 2", "output": "YES" } ]
1,613,341,941
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
1
62
307,200
#collaborated with Bhumi Patel n=int(input()) string_input=input() string_input=string_input.split() array=[] for i in range(n): if int(string_input[i])==n: continue array.append(int(string_input[i])) if(len(array)<3): print("n") counter=0 for i in range(len(array)): temp1=array[i] temp2=array[i+1] temp3=array[i+2] if temp3-1 == i: print("YES") counter=1 break if counter==0: print("NO")
Title: Love Triangle Time Limit: None seconds Memory Limit: None megabytes Problem Description: As you could know there are no male planes nor female planes. However, each plane on Earth likes some other plane. There are *n* planes on Earth, numbered from 1 to *n*, and the plane with number *i* likes the plane with number *f**i*, where 1<=≤<=*f**i*<=≤<=*n* and *f**i*<=≠<=*i*. We call a love triangle a situation in which plane *A* likes plane *B*, plane *B* likes plane *C* and plane *C* likes plane *A*. Find out if there is any love triangle on Earth. Input Specification: The first line contains a single integer *n* (2<=≤<=*n*<=≤<=5000) — the number of planes. The second line contains *n* integers *f*1,<=*f*2,<=...,<=*f**n* (1<=≤<=*f**i*<=≤<=*n*, *f**i*<=≠<=*i*), meaning that the *i*-th plane likes the *f**i*-th. Output Specification: Output «YES» if there is a love triangle consisting of planes on Earth. Otherwise, output «NO». You can output any letter in lower case or in upper case. Demo Input: ['5\n2 4 5 1 3\n', '5\n5 5 5 5 1\n'] Demo Output: ['YES\n', 'NO\n'] Note: In first example plane 2 likes plane 4, plane 4 likes plane 1, plane 1 likes plane 2 and that is a love triangle. In second example there are no love triangles.
```python #collaborated with Bhumi Patel n=int(input()) string_input=input() string_input=string_input.split() array=[] for i in range(n): if int(string_input[i])==n: continue array.append(int(string_input[i])) if(len(array)<3): print("n") counter=0 for i in range(len(array)): temp1=array[i] temp2=array[i+1] temp3=array[i+2] if temp3-1 == i: print("YES") counter=1 break if counter==0: print("NO") ```
-1
370
B
Berland Bingo
PROGRAMMING
1,300
[ "implementation" ]
null
null
Lately, a national version of a bingo game has become very popular in Berland. There are *n* players playing the game, each player has a card with numbers. The numbers on each card are distinct, but distinct cards can have equal numbers. The card of the *i*-th player contains *m**i* numbers. During the game the host takes numbered balls one by one from a bag. He reads the number aloud in a high and clear voice and then puts the ball away. All participants cross out the number if it occurs on their cards. The person who crosses out all numbers from his card first, wins. If multiple people cross out all numbers from their cards at the same time, there are no winners in the game. At the beginning of the game the bag contains 100 balls numbered 1 through 100, the numbers of all balls are distinct. You are given the cards for each player. Write a program that determines whether a player can win the game at the most favorable for him scenario or not.
The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of the players. Then follow *n* lines, each line describes a player's card. The line that describes a card starts from integer *m**i* (1<=≤<=*m**i*<=≤<=100) that shows how many numbers the *i*-th player's card has. Then follows a sequence of integers *a**i*,<=1,<=*a**i*,<=2,<=...,<=*a**i*,<=*m**i* (1<=≤<=*a**i*,<=*k*<=≤<=100) — the numbers on the *i*-th player's card. The numbers in the lines are separated by single spaces. It is guaranteed that all the numbers on each card are distinct.
Print *n* lines, the *i*-th line must contain word "YES" (without the quotes), if the *i*-th player can win, and "NO" (without the quotes) otherwise.
[ "3\n1 1\n3 2 4 1\n2 10 11\n", "2\n1 1\n1 1\n" ]
[ "YES\nNO\nYES\n", "NO\nNO\n" ]
none
500
[ { "input": "3\n1 1\n3 2 4 1\n2 10 11", "output": "YES\nNO\nYES" }, { "input": "2\n1 1\n1 1", "output": "NO\nNO" }, { "input": "1\n1 1", "output": "YES" }, { "input": "2\n1 2\n1 3", "output": "YES\nYES" }, { "input": "2\n1 1\n2 1 2", "output": "YES\nNO" }, { "input": "2\n2 1 2\n1 1", "output": "NO\nYES" }, { "input": "2\n3 5 21 7\n6 15 5 100 21 7 17", "output": "YES\nNO" }, { "input": "2\n6 15 5 100 21 7 17\n3 5 21 7", "output": "NO\nYES" }, { "input": "10\n1 4\n1 2\n1 3\n1 5\n1 1\n1 4\n1 3\n1 5\n1 2\n1 1", "output": "NO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO" }, { "input": "3\n1 1\n1 2\n1 1", "output": "NO\nYES\nNO" }, { "input": "10\n3 2 3 4\n1 1\n1 1\n1 2\n1 3\n1 4\n1 1\n1 3\n2 4 5\n2 1 2", "output": "NO\nNO\nNO\nYES\nNO\nYES\nNO\nNO\nNO\nNO" }, { "input": "10\n1 4\n4 3 2 4 1\n1 4\n2 4 5\n4 4 3 5 1\n1 4\n1 2\n2 3 5\n2 5 3\n3 5 2 4", "output": "NO\nNO\nNO\nNO\nNO\nNO\nYES\nNO\nNO\nNO" }, { "input": "20\n2 9 16\n3 1 15 2\n1 9\n3 7 12 3\n1 18\n1 14\n4 11 13 4 6\n4 7 19 9 3\n3 9 16 5\n1 9\n1 18\n4 4 15 7 19\n2 16 2\n3 7 3 15\n2 2 20\n1 1\n1 15\n5 5 2 13 4 1\n2 9 14\n2 17 8", "output": "NO\nNO\nNO\nYES\nNO\nYES\nYES\nNO\nNO\nNO\nNO\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nYES" }, { "input": "40\n2 12 19\n4 10 7 1 3\n2 15 17\n1 6\n3 17 8 20\n4 8 16 11 18\n2 2 7\n4 12 13 8 7\n3 6 1 15\n3 19 11 13\n1 2\n2 16 14\n5 1 17 8 9 5\n1 2\n3 15 17 12\n4 20 4 19 18\n1 10\n4 12 1 17 16\n4 5 10 8 11\n1 10\n1 13\n1 17\n2 19 18\n1 3\n2 6 20\n1 8\n2 3 14\n3 17 3 1\n2 4 3\n1 12\n1 15\n1 2\n2 13 9\n2 1 14\n1 1\n5 14 9 3 1 7\n2 20 16\n2 19 17\n2 4 20\n1 7", "output": "NO\nNO\nNO\nYES\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nYES\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nNO\nYES\nYES" } ]
1,386,439,393
2,147,483,647
Python 3
OK
TESTS
24
78
307,200
def contiene(l, s, n, m): j=0 for i in range(n): x = l[i] while j<m and not l[i]==s[j]: j+=1 if j==m and not i==n: return False return True if __name__=='__main__': n = int(input()) l = [] m = [] for i in range(n): s = [int(x) for x in input().split()] m.append( s[0] ) l.append( s[1:] ) l[i].sort() for i in range(n): canWin = True for j in range(n): if not j==i: if m[i]<m[j]: continue if contiene( l[j], l[i], m[j], m[i] ): canWin = False break if canWin: print('YES') else: print('NO')
Title: Berland Bingo Time Limit: None seconds Memory Limit: None megabytes Problem Description: Lately, a national version of a bingo game has become very popular in Berland. There are *n* players playing the game, each player has a card with numbers. The numbers on each card are distinct, but distinct cards can have equal numbers. The card of the *i*-th player contains *m**i* numbers. During the game the host takes numbered balls one by one from a bag. He reads the number aloud in a high and clear voice and then puts the ball away. All participants cross out the number if it occurs on their cards. The person who crosses out all numbers from his card first, wins. If multiple people cross out all numbers from their cards at the same time, there are no winners in the game. At the beginning of the game the bag contains 100 balls numbered 1 through 100, the numbers of all balls are distinct. You are given the cards for each player. Write a program that determines whether a player can win the game at the most favorable for him scenario or not. Input Specification: The first line of the input contains integer *n* (1<=≤<=*n*<=≤<=100) — the number of the players. Then follow *n* lines, each line describes a player's card. The line that describes a card starts from integer *m**i* (1<=≤<=*m**i*<=≤<=100) that shows how many numbers the *i*-th player's card has. Then follows a sequence of integers *a**i*,<=1,<=*a**i*,<=2,<=...,<=*a**i*,<=*m**i* (1<=≤<=*a**i*,<=*k*<=≤<=100) — the numbers on the *i*-th player's card. The numbers in the lines are separated by single spaces. It is guaranteed that all the numbers on each card are distinct. Output Specification: Print *n* lines, the *i*-th line must contain word "YES" (without the quotes), if the *i*-th player can win, and "NO" (without the quotes) otherwise. Demo Input: ['3\n1 1\n3 2 4 1\n2 10 11\n', '2\n1 1\n1 1\n'] Demo Output: ['YES\nNO\nYES\n', 'NO\nNO\n'] Note: none
```python def contiene(l, s, n, m): j=0 for i in range(n): x = l[i] while j<m and not l[i]==s[j]: j+=1 if j==m and not i==n: return False return True if __name__=='__main__': n = int(input()) l = [] m = [] for i in range(n): s = [int(x) for x in input().split()] m.append( s[0] ) l.append( s[1:] ) l[i].sort() for i in range(n): canWin = True for j in range(n): if not j==i: if m[i]<m[j]: continue if contiene( l[j], l[i], m[j], m[i] ): canWin = False break if canWin: print('YES') else: print('NO') ```
3
854
A
Fraction
PROGRAMMING
800
[ "brute force", "constructive algorithms", "math" ]
null
null
Petya is a big fan of mathematics, especially its part related to fractions. Recently he learned that a fraction is called proper iff its numerator is smaller than its denominator (*a*<=&lt;<=*b*) and that the fraction is called irreducible if its numerator and its denominator are coprime (they do not have positive common divisors except 1). During his free time, Petya thinks about proper irreducible fractions and converts them to decimals using the calculator. One day he mistakenly pressed addition button (<=+<=) instead of division button (÷) and got sum of numerator and denominator that was equal to *n* instead of the expected decimal notation. Petya wanted to restore the original fraction, but soon he realized that it might not be done uniquely. That's why he decided to determine maximum possible proper irreducible fraction such that sum of its numerator and denominator equals *n*. Help Petya deal with this problem.
In the only line of input there is an integer *n* (3<=≤<=*n*<=≤<=1000), the sum of numerator and denominator of the fraction.
Output two space-separated positive integers *a* and *b*, numerator and denominator of the maximum possible proper irreducible fraction satisfying the given sum.
[ "3\n", "4\n", "12\n" ]
[ "1 2\n", "1 3\n", "5 7\n" ]
none
500
[ { "input": "3", "output": "1 2" }, { "input": "4", "output": "1 3" }, { "input": "12", "output": "5 7" }, { "input": "34", "output": "15 19" }, { "input": "13", "output": "6 7" }, { "input": "11", "output": "5 6" }, { "input": "24", "output": "11 13" }, { "input": "17", "output": "8 9" }, { "input": "10", "output": "3 7" }, { "input": "69", "output": "34 35" }, { "input": "100", "output": "49 51" }, { "input": "57", "output": "28 29" }, { "input": "1000", "output": "499 501" }, { "input": "999", "output": "499 500" }, { "input": "998", "output": "497 501" }, { "input": "997", "output": "498 499" }, { "input": "996", "output": "497 499" }, { "input": "995", "output": "497 498" }, { "input": "994", "output": "495 499" }, { "input": "5", "output": "2 3" }, { "input": "6", "output": "1 5" }, { "input": "8", "output": "3 5" }, { "input": "9", "output": "4 5" }, { "input": "423", "output": "211 212" }, { "input": "876", "output": "437 439" }, { "input": "29", "output": "14 15" } ]
1,540,473,660
2,147,483,647
Python 3
OK
TESTS
26
124
0
from math import gcd def inp(): return int(input()) def linp(): return list(map(int, input().split(' '))) def minp(): return map(int, input().split(' ')) ls = [] n = inp() for i in range(n//2+1): k = n-i if gcd(k,i)==1 : ls.append(max(k,i)) ls = sorted(ls) print((n-ls[0]), end=" ") print(ls[0])
Title: Fraction Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya is a big fan of mathematics, especially its part related to fractions. Recently he learned that a fraction is called proper iff its numerator is smaller than its denominator (*a*<=&lt;<=*b*) and that the fraction is called irreducible if its numerator and its denominator are coprime (they do not have positive common divisors except 1). During his free time, Petya thinks about proper irreducible fractions and converts them to decimals using the calculator. One day he mistakenly pressed addition button (<=+<=) instead of division button (÷) and got sum of numerator and denominator that was equal to *n* instead of the expected decimal notation. Petya wanted to restore the original fraction, but soon he realized that it might not be done uniquely. That's why he decided to determine maximum possible proper irreducible fraction such that sum of its numerator and denominator equals *n*. Help Petya deal with this problem. Input Specification: In the only line of input there is an integer *n* (3<=≤<=*n*<=≤<=1000), the sum of numerator and denominator of the fraction. Output Specification: Output two space-separated positive integers *a* and *b*, numerator and denominator of the maximum possible proper irreducible fraction satisfying the given sum. Demo Input: ['3\n', '4\n', '12\n'] Demo Output: ['1 2\n', '1 3\n', '5 7\n'] Note: none
```python from math import gcd def inp(): return int(input()) def linp(): return list(map(int, input().split(' '))) def minp(): return map(int, input().split(' ')) ls = [] n = inp() for i in range(n//2+1): k = n-i if gcd(k,i)==1 : ls.append(max(k,i)) ls = sorted(ls) print((n-ls[0]), end=" ") print(ls[0]) ```
3
217
A
Ice Skating
PROGRAMMING
1,200
[ "brute force", "dfs and similar", "dsu", "graphs" ]
null
null
Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created. We assume that Bajtek can only heap up snow drifts at integer coordinates.
The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift. Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct.
Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one.
[ "2\n2 1\n1 2\n", "2\n2 1\n4 1\n" ]
[ "1\n", "0\n" ]
none
500
[ { "input": "2\n2 1\n1 2", "output": "1" }, { "input": "2\n2 1\n4 1", "output": "0" }, { "input": "24\n171 35\n261 20\n4 206\n501 446\n961 912\n581 748\n946 978\n463 514\n841 889\n341 466\n842 967\n54 102\n235 261\n925 889\n682 672\n623 636\n268 94\n635 710\n474 510\n697 794\n586 663\n182 184\n806 663\n468 459", "output": "21" }, { "input": "17\n660 646\n440 442\n689 618\n441 415\n922 865\n950 972\n312 366\n203 229\n873 860\n219 199\n344 308\n169 176\n961 992\n153 84\n201 230\n987 938\n834 815", "output": "16" }, { "input": "11\n798 845\n722 911\n374 270\n629 537\n748 856\n831 885\n486 641\n751 829\n609 492\n98 27\n654 663", "output": "10" }, { "input": "1\n321 88", "output": "0" }, { "input": "9\n811 859\n656 676\n76 141\n945 951\n497 455\n18 55\n335 294\n267 275\n656 689", "output": "7" }, { "input": "7\n948 946\n130 130\n761 758\n941 938\n971 971\n387 385\n509 510", "output": "6" }, { "input": "6\n535 699\n217 337\n508 780\n180 292\n393 112\n732 888", "output": "5" }, { "input": "14\n25 23\n499 406\n193 266\n823 751\n219 227\n101 138\n978 992\n43 74\n997 932\n237 189\n634 538\n774 740\n842 767\n742 802", "output": "13" }, { "input": "12\n548 506\n151 198\n370 380\n655 694\n654 690\n407 370\n518 497\n819 827\n765 751\n802 771\n741 752\n653 662", "output": "11" }, { "input": "40\n685 711\n433 403\n703 710\n491 485\n616 619\n288 282\n884 871\n367 352\n500 511\n977 982\n51 31\n576 564\n508 519\n755 762\n22 20\n368 353\n232 225\n953 955\n452 436\n311 330\n967 988\n369 364\n791 803\n150 149\n651 661\n118 93\n398 387\n748 766\n852 852\n230 228\n555 545\n515 519\n667 678\n867 862\n134 146\n859 863\n96 99\n486 469\n303 296\n780 786", "output": "38" }, { "input": "3\n175 201\n907 909\n388 360", "output": "2" }, { "input": "7\n312 298\n86 78\n73 97\n619 594\n403 451\n538 528\n71 86", "output": "6" }, { "input": "19\n802 820\n368 248\n758 794\n455 378\n876 888\n771 814\n245 177\n586 555\n844 842\n364 360\n820 856\n731 624\n982 975\n825 856\n122 121\n862 896\n42 4\n792 841\n828 820", "output": "16" }, { "input": "32\n643 877\n842 614\n387 176\n99 338\n894 798\n652 728\n611 648\n622 694\n579 781\n243 46\n322 305\n198 438\n708 579\n246 325\n536 459\n874 593\n120 277\n989 907\n223 110\n35 130\n761 692\n690 661\n518 766\n226 93\n678 597\n725 617\n661 574\n775 496\n56 416\n14 189\n358 359\n898 901", "output": "31" }, { "input": "32\n325 327\n20 22\n72 74\n935 933\n664 663\n726 729\n785 784\n170 171\n315 314\n577 580\n984 987\n313 317\n434 435\n962 961\n55 54\n46 44\n743 742\n434 433\n617 612\n332 332\n883 886\n940 936\n793 792\n645 644\n611 607\n418 418\n465 465\n219 218\n167 164\n56 54\n403 405\n210 210", "output": "29" }, { "input": "32\n652 712\n260 241\n27 154\n188 16\n521 351\n518 356\n452 540\n790 827\n339 396\n336 551\n897 930\n828 627\n27 168\n180 113\n134 67\n794 671\n812 711\n100 241\n686 813\n138 289\n384 506\n884 932\n913 959\n470 508\n730 734\n373 478\n788 862\n392 426\n148 68\n113 49\n713 852\n924 894", "output": "29" }, { "input": "14\n685 808\n542 677\n712 747\n832 852\n187 410\n399 338\n626 556\n530 635\n267 145\n215 209\n559 684\n944 949\n753 596\n601 823", "output": "13" }, { "input": "5\n175 158\n16 2\n397 381\n668 686\n957 945", "output": "4" }, { "input": "5\n312 284\n490 509\n730 747\n504 497\n782 793", "output": "4" }, { "input": "2\n802 903\n476 348", "output": "1" }, { "input": "4\n325 343\n425 442\n785 798\n275 270", "output": "3" }, { "input": "28\n462 483\n411 401\n118 94\n111 127\n5 6\n70 52\n893 910\n73 63\n818 818\n182 201\n642 633\n900 886\n893 886\n684 700\n157 173\n953 953\n671 660\n224 225\n832 801\n152 157\n601 585\n115 101\n739 722\n611 606\n659 642\n461 469\n702 689\n649 653", "output": "25" }, { "input": "36\n952 981\n885 900\n803 790\n107 129\n670 654\n143 132\n66 58\n813 819\n849 837\n165 198\n247 228\n15 39\n619 618\n105 138\n868 855\n965 957\n293 298\n613 599\n227 212\n745 754\n723 704\n877 858\n503 487\n678 697\n592 595\n155 135\n962 982\n93 89\n660 673\n225 212\n967 987\n690 680\n804 813\n489 518\n240 221\n111 124", "output": "34" }, { "input": "30\n89 3\n167 156\n784 849\n943 937\n144 95\n24 159\n80 120\n657 683\n585 596\n43 147\n909 964\n131 84\n345 389\n333 321\n91 126\n274 325\n859 723\n866 922\n622 595\n690 752\n902 944\n127 170\n426 383\n905 925\n172 284\n793 810\n414 510\n890 884\n123 24\n267 255", "output": "29" }, { "input": "5\n664 666\n951 941\n739 742\n844 842\n2 2", "output": "4" }, { "input": "3\n939 867\n411 427\n757 708", "output": "2" }, { "input": "36\n429 424\n885 972\n442 386\n512 511\n751 759\n4 115\n461 497\n496 408\n8 23\n542 562\n296 331\n448 492\n412 395\n109 166\n622 640\n379 355\n251 262\n564 586\n66 115\n275 291\n666 611\n629 534\n510 567\n635 666\n738 803\n420 369\n92 17\n101 144\n141 92\n258 258\n184 235\n492 456\n311 210\n394 357\n531 512\n634 636", "output": "34" }, { "input": "29\n462 519\n871 825\n127 335\n156 93\n576 612\n885 830\n634 779\n340 105\n744 795\n716 474\n93 139\n563 805\n137 276\n177 101\n333 14\n391 437\n873 588\n817 518\n460 597\n572 670\n140 303\n392 441\n273 120\n862 578\n670 639\n410 161\n544 577\n193 116\n252 195", "output": "28" }, { "input": "23\n952 907\n345 356\n812 807\n344 328\n242 268\n254 280\n1000 990\n80 78\n424 396\n595 608\n755 813\n383 380\n55 56\n598 633\n203 211\n508 476\n600 593\n206 192\n855 882\n517 462\n967 994\n642 657\n493 488", "output": "22" }, { "input": "10\n579 816\n806 590\n830 787\n120 278\n677 800\n16 67\n188 251\n559 560\n87 67\n104 235", "output": "8" }, { "input": "23\n420 424\n280 303\n515 511\n956 948\n799 803\n441 455\n362 369\n299 289\n823 813\n982 967\n876 878\n185 157\n529 551\n964 989\n655 656\n1 21\n114 112\n45 56\n935 937\n1000 997\n934 942\n360 366\n648 621", "output": "22" }, { "input": "23\n102 84\n562 608\n200 127\n952 999\n465 496\n322 367\n728 690\n143 147\n855 867\n861 866\n26 59\n300 273\n255 351\n192 246\n70 111\n365 277\n32 104\n298 319\n330 354\n241 141\n56 125\n315 298\n412 461", "output": "22" }, { "input": "7\n429 506\n346 307\n99 171\n853 916\n322 263\n115 157\n906 924", "output": "6" }, { "input": "3\n1 1\n2 1\n2 2", "output": "0" }, { "input": "4\n1 1\n1 2\n2 1\n2 2", "output": "0" }, { "input": "5\n1 1\n1 2\n2 2\n3 1\n3 3", "output": "0" }, { "input": "6\n1 1\n1 2\n2 2\n3 1\n3 2\n3 3", "output": "0" }, { "input": "20\n1 1\n2 2\n3 3\n3 9\n4 4\n5 2\n5 5\n5 7\n5 8\n6 2\n6 6\n6 9\n7 7\n8 8\n9 4\n9 7\n9 9\n10 2\n10 9\n10 10", "output": "1" }, { "input": "21\n1 1\n1 9\n2 1\n2 2\n2 5\n2 6\n2 9\n3 3\n3 8\n4 1\n4 4\n5 5\n5 8\n6 6\n7 7\n8 8\n9 9\n10 4\n10 10\n11 5\n11 11", "output": "1" }, { "input": "22\n1 1\n1 3\n1 4\n1 8\n1 9\n1 11\n2 2\n3 3\n4 4\n4 5\n5 5\n6 6\n6 8\n7 7\n8 3\n8 4\n8 8\n9 9\n10 10\n11 4\n11 9\n11 11", "output": "3" }, { "input": "50\n1 1\n2 2\n2 9\n3 3\n4 4\n4 9\n4 16\n4 24\n5 5\n6 6\n7 7\n8 8\n8 9\n8 20\n9 9\n10 10\n11 11\n12 12\n13 13\n14 7\n14 14\n14 16\n14 25\n15 4\n15 6\n15 15\n15 22\n16 6\n16 16\n17 17\n18 18\n19 6\n19 19\n20 20\n21 21\n22 6\n22 22\n23 23\n24 6\n24 7\n24 8\n24 9\n24 24\n25 1\n25 3\n25 5\n25 7\n25 23\n25 24\n25 25", "output": "7" }, { "input": "55\n1 1\n1 14\n2 2\n2 19\n3 1\n3 3\n3 8\n3 14\n3 23\n4 1\n4 4\n5 5\n5 8\n5 15\n6 2\n6 3\n6 4\n6 6\n7 7\n8 8\n8 21\n9 9\n10 1\n10 10\n11 9\n11 11\n12 12\n13 13\n14 14\n15 15\n15 24\n16 5\n16 16\n17 5\n17 10\n17 17\n17 18\n17 22\n17 27\n18 18\n19 19\n20 20\n21 20\n21 21\n22 22\n23 23\n24 14\n24 24\n25 25\n26 8\n26 11\n26 26\n27 3\n27 27\n28 28", "output": "5" }, { "input": "3\n1 2\n2 1\n2 2", "output": "0" }, { "input": "6\n4 4\n3 4\n5 4\n4 5\n4 3\n3 1", "output": "0" }, { "input": "4\n1 1\n1 2\n2 1\n2 2", "output": "0" }, { "input": "3\n1 1\n2 2\n1 2", "output": "0" }, { "input": "8\n1 3\n1 1\n4 1\n2 2\n2 5\n5 9\n5 1\n5 4", "output": "1" }, { "input": "10\n1 1\n1 2\n1 3\n1 4\n5 5\n6 6\n7 7\n8 8\n9 9\n100 100", "output": "6" }, { "input": "7\n1 1\n2 2\n3 3\n4 4\n1 2\n2 3\n3 4", "output": "0" }, { "input": "6\n1 1\n2 1\n2 2\n2 4\n4 3\n2 3", "output": "0" }, { "input": "4\n3 1\n2 1\n2 2\n1 2", "output": "0" }, { "input": "6\n1 1\n2 2\n2 1\n2 4\n4 3\n2 3", "output": "0" }, { "input": "3\n1 2\n1 3\n1 4", "output": "0" }, { "input": "4\n1 1\n2 2\n1 2\n2 1", "output": "0" }, { "input": "4\n1 3\n2 1\n3 2\n3 1", "output": "1" }, { "input": "7\n1 1\n1 2\n2 2\n3 3\n3 4\n4 4\n1 4", "output": "0" }, { "input": "21\n12 12\n13 12\n12 11\n13 13\n10 10\n11 10\n11 11\n501 500\n501 501\n503 502\n500 500\n503 503\n502 501\n502 502\n700 700\n702 702\n703 702\n701 701\n702 701\n703 703\n701 700", "output": "2" }, { "input": "6\n1 11\n6 8\n11 10\n1 10\n11 11\n6 9", "output": "1" }, { "input": "4\n1 1\n2 2\n3 2\n3 1", "output": "0" }, { "input": "3\n1 2\n3 4\n3 2", "output": "0" }, { "input": "3\n1 1\n1 2\n2 2", "output": "0" }, { "input": "4\n5 5\n5 4\n6 3\n6 4", "output": "0" }, { "input": "3\n1 1\n2 2\n2 1", "output": "0" } ]
1,694,151,039
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
import java.awt.*; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class Main { static int mod = (int) 1e9 + 7; static boolean[] vis; public static void main(String[] args) throws Exception { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); Point[] p=new Point[n]; for(int i=0;i<n;i++)p[i]=new Point(sc.nextInt(),sc.nextInt()); vis=new boolean[n]; int count=0; for(int i=0;i<n;i++){ if(!vis[i]){ dfs(i,n,p); count++; } } System.out.println(count-1); } static void dfs(int i,int n,Point[] p){ vis[i]=true; for(int j=0;j<n;j++){ if(!vis[j]){ if(p[i].x==p[j].x || p[i].y==p[j].y){ dfs(j,n,p); } } } } }
Title: Ice Skating Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created. We assume that Bajtek can only heap up snow drifts at integer coordinates. Input Specification: The first line of input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of snow drifts. Each of the following *n* lines contains two integers *x**i* and *y**i* (1<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the coordinates of the *i*-th snow drift. Note that the north direction coinсides with the direction of *Oy* axis, so the east direction coinсides with the direction of the *Ox* axis. All snow drift's locations are distinct. Output Specification: Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one. Demo Input: ['2\n2 1\n1 2\n', '2\n2 1\n4 1\n'] Demo Output: ['1\n', '0\n'] Note: none
```python import java.awt.*; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class Main { static int mod = (int) 1e9 + 7; static boolean[] vis; public static void main(String[] args) throws Exception { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); Point[] p=new Point[n]; for(int i=0;i<n;i++)p[i]=new Point(sc.nextInt(),sc.nextInt()); vis=new boolean[n]; int count=0; for(int i=0;i<n;i++){ if(!vis[i]){ dfs(i,n,p); count++; } } System.out.println(count-1); } static void dfs(int i,int n,Point[] p){ vis[i]=true; for(int j=0;j<n;j++){ if(!vis[j]){ if(p[i].x==p[j].x || p[i].y==p[j].y){ dfs(j,n,p); } } } } } ```
-1
1
A
Theatre Square
PROGRAMMING
1,000
[ "math" ]
A. Theatre Square
1
256
Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.
The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109).
Write the needed number of flagstones.
[ "6 6 4\n" ]
[ "4\n" ]
none
0
[ { "input": "6 6 4", "output": "4" }, { "input": "1 1 1", "output": "1" }, { "input": "2 1 1", "output": "2" }, { "input": "1 2 1", "output": "2" }, { "input": "2 2 1", "output": "4" }, { "input": "2 1 2", "output": "1" }, { "input": "1 1 3", "output": "1" }, { "input": "2 3 4", "output": "1" }, { "input": "1000000000 1000000000 1", "output": "1000000000000000000" }, { "input": "12 13 4", "output": "12" }, { "input": "222 332 5", "output": "3015" }, { "input": "1000 1000 10", "output": "10000" }, { "input": "1001 1000 10", "output": "10100" }, { "input": "100 10001 1000000000", "output": "1" }, { "input": "1000000000 1000000000 1000000000", "output": "1" }, { "input": "1000000000 1000000000 999999999", "output": "4" }, { "input": "1000000000 1000000000 192", "output": "27126743055556" }, { "input": "1000000000 987654321 1", "output": "987654321000000000" }, { "input": "456784567 1000000000 51", "output": "175618850864484" }, { "input": "39916800 134217728 40320", "output": "3295710" } ]
1,658,078,374
2,147,483,647
Python 3
OK
TESTS
20
46
0
import math n,m,a=list(map(int,input().split(" "))) area=n*m print(math.ceil(m/a)*math.ceil(n/a))
Title: Theatre Square Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Theatre Square in the capital city of Berland has a rectangular shape with the size *n*<=×<=*m* meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size *a*<=×<=*a*. What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square. Input Specification: The input contains three positive integer numbers in the first line: *n*,<=<=*m* and *a* (1<=≤<=<=*n*,<=*m*,<=*a*<=≤<=109). Output Specification: Write the needed number of flagstones. Demo Input: ['6 6 4\n'] Demo Output: ['4\n'] Note: none
```python import math n,m,a=list(map(int,input().split(" "))) area=n*m print(math.ceil(m/a)*math.ceil(n/a)) ```
3.977
9
A
Die Roll
PROGRAMMING
800
[ "math", "probabilities" ]
A. Die Roll
1
64
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls.
Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1».
[ "4 2\n" ]
[ "1/2\n" ]
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
0
[ { "input": "4 2", "output": "1/2" }, { "input": "1 1", "output": "1/1" }, { "input": "1 2", "output": "5/6" }, { "input": "1 3", "output": "2/3" }, { "input": "1 4", "output": "1/2" }, { "input": "1 5", "output": "1/3" }, { "input": "1 6", "output": "1/6" }, { "input": "2 1", "output": "5/6" }, { "input": "2 2", "output": "5/6" }, { "input": "2 3", "output": "2/3" }, { "input": "2 4", "output": "1/2" }, { "input": "2 5", "output": "1/3" }, { "input": "2 6", "output": "1/6" }, { "input": "3 1", "output": "2/3" }, { "input": "3 2", "output": "2/3" }, { "input": "3 3", "output": "2/3" }, { "input": "3 4", "output": "1/2" }, { "input": "3 5", "output": "1/3" }, { "input": "3 6", "output": "1/6" }, { "input": "4 1", "output": "1/2" }, { "input": "4 3", "output": "1/2" }, { "input": "4 4", "output": "1/2" }, { "input": "4 5", "output": "1/3" }, { "input": "4 6", "output": "1/6" }, { "input": "5 1", "output": "1/3" }, { "input": "5 2", "output": "1/3" }, { "input": "5 3", "output": "1/3" }, { "input": "5 4", "output": "1/3" }, { "input": "5 5", "output": "1/3" }, { "input": "5 6", "output": "1/6" }, { "input": "6 1", "output": "1/6" }, { "input": "6 2", "output": "1/6" }, { "input": "6 3", "output": "1/6" }, { "input": "6 4", "output": "1/6" }, { "input": "6 5", "output": "1/6" }, { "input": "6 6", "output": "1/6" } ]
1,627,115,801
2,147,483,647
Python 3
OK
TESTS
36
124
6,758,400
def gcd(a, b): while b != 0: a, b = b, a % b return a a, b = map(int, input().split()) ans = 6 - max(a, b) + 1 g = gcd(ans, 6) print(ans // g, '/', 6 // g, sep='') # Sat Jul 24 2021 11:36:40 GMT+0300 (Москва, стандартное время)
Title: Die Roll Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win. Input Specification: The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls. Output Specification: Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1». Demo Input: ['4 2\n'] Demo Output: ['1/2\n'] Note: Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
```python def gcd(a, b): while b != 0: a, b = b, a % b return a a, b = map(int, input().split()) ans = 6 - max(a, b) + 1 g = gcd(ans, 6) print(ans // g, '/', 6 // g, sep='') # Sat Jul 24 2021 11:36:40 GMT+0300 (Москва, стандартное время) ```
3.887646
777
C
Alyona and Spreadsheet
PROGRAMMING
1,600
[ "binary search", "data structures", "dp", "greedy", "implementation", "two pointers" ]
null
null
During the lesson small girl Alyona works with one famous spreadsheet computer program and learns how to edit tables. Now she has a table filled with integers. The table consists of *n* rows and *m* columns. By *a**i*,<=*j* we will denote the integer located at the *i*-th row and the *j*-th column. We say that the table is sorted in non-decreasing order in the column *j* if *a**i*,<=*j*<=≤<=*a**i*<=+<=1,<=*j* for all *i* from 1 to *n*<=-<=1. Teacher gave Alyona *k* tasks. For each of the tasks two integers *l* and *r* are given and Alyona has to answer the following question: if one keeps the rows from *l* to *r* inclusive and deletes all others, will the table be sorted in non-decreasing order in at least one column? Formally, does there exist such *j* that *a**i*,<=*j*<=≤<=*a**i*<=+<=1,<=*j* for all *i* from *l* to *r*<=-<=1 inclusive. Alyona is too small to deal with this task and asks you to help!
The first line of the input contains two positive integers *n* and *m* (1<=≤<=*n*·*m*<=≤<=100<=000) — the number of rows and the number of columns in the table respectively. Note that your are given a constraint that bound the product of these two integers, i.e. the number of elements in the table. Each of the following *n* lines contains *m* integers. The *j*-th integers in the *i* of these lines stands for *a**i*,<=*j* (1<=≤<=*a**i*,<=*j*<=≤<=109). The next line of the input contains an integer *k* (1<=≤<=*k*<=≤<=100<=000) — the number of task that teacher gave to Alyona. The *i*-th of the next *k* lines contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*).
Print "Yes" to the *i*-th line of the output if the table consisting of rows from *l**i* to *r**i* inclusive is sorted in non-decreasing order in at least one column. Otherwise, print "No".
[ "5 4\n1 2 3 5\n3 1 3 2\n4 5 2 3\n5 5 3 2\n4 4 3 4\n6\n1 1\n2 5\n4 5\n3 5\n1 3\n1 5\n" ]
[ "Yes\nNo\nYes\nYes\nYes\nNo\n" ]
In the sample, the whole table is not sorted in any column. However, rows 1–3 are sorted in column 1, while rows 4–5 are sorted in column 3.
1,500
[ { "input": "5 4\n1 2 3 5\n3 1 3 2\n4 5 2 3\n5 5 3 2\n4 4 3 4\n6\n1 1\n2 5\n4 5\n3 5\n1 3\n1 5", "output": "Yes\nNo\nYes\nYes\nYes\nNo" }, { "input": "1 1\n1\n1\n1 1", "output": "Yes" }, { "input": "10 1\n523130301\n127101624\n15573616\n703140639\n628818570\n957494759\n161270109\n386865653\n67832626\n53360557\n17\n4 5\n4 7\n8 8\n9 9\n3 9\n8 10\n8 9\n7 9\n4 5\n2 9\n4 6\n2 4\n2 6\n4 6\n7 9\n2 4\n8 10", "output": "No\nNo\nYes\nYes\nNo\nNo\nNo\nNo\nNo\nNo\nNo\nNo\nNo\nNo\nNo\nNo\nNo" }, { "input": "15 1\n556231456\n573340933\n626155933\n397229387\n10255952\n376567394\n906742013\n269437009\n31298788\n712285290\n620239975\n379221898\n229140718\n95080095\n997123854\n18\n5 15\n1 12\n4 10\n2 15\n12 15\n15 15\n2 2\n15 15\n15 15\n13 13\n10 14\n3 6\n14 15\n3 6\n4 4\n14 15\n12 14\n1 9", "output": "No\nNo\nNo\nNo\nNo\nYes\nYes\nYes\nYes\nYes\nNo\nNo\nYes\nNo\nYes\nYes\nNo\nNo" }, { "input": "11 1\n501465490\n366941771\n415080944\n385243536\n445132523\n697044413\n894369800\n812743722\n23684788\n466526046\n953916313\n45\n2 4\n8 9\n7 7\n4 9\n2 9\n2 11\n4 4\n5 7\n1 2\n5 10\n4 6\n1 7\n4 4\n1 6\n4 7\n10 11\n1 8\n6 11\n8 8\n8 10\n1 1\n5 10\n9 10\n6 9\n6 11\n1 1\n9 9\n5 11\n1 2\n9 11\n2 6\n3 7\n11 11\n6 7\n11 11\n7 8\n5 8\n11 11\n5 6\n4 5\n2 6\n5 10\n9 9\n1 1\n1 1", "output": "No\nNo\nYes\nNo\nNo\nNo\nYes\nYes\nNo\nNo\nYes\nNo\nYes\nNo\nYes\nYes\nNo\nNo\nYes\nNo\nYes\nNo\nYes\nNo\nNo\nYes\nYes\nNo\nNo\nYes\nNo\nNo\nYes\nYes\nYes\nNo\nNo\nYes\nYes\nYes\nNo\nNo\nYes\nYes\nYes" } ]
1,599,924,454
6,154
Python 3
WRONG_ANSWER
TESTS
0
93
307,200
n,m=map(int,input().split()) t=[] a=[] b=0 c=0 for i in range(n): t.append(list(map(int,input().split()))) t.append([0 for i in range(m)]) k=int(input()) for i in range(k): l,r=map(int,input().split()) for j in range(m): for y in range(l+1,r+1): if t[y][j]<t[y-1][j]: b=1 break if b==0: a.append("Yes") a.append('\n') c=1 break b=0 if c==0: a.append("No") a.append('\n') c=0 print(*a)
Title: Alyona and Spreadsheet Time Limit: None seconds Memory Limit: None megabytes Problem Description: During the lesson small girl Alyona works with one famous spreadsheet computer program and learns how to edit tables. Now she has a table filled with integers. The table consists of *n* rows and *m* columns. By *a**i*,<=*j* we will denote the integer located at the *i*-th row and the *j*-th column. We say that the table is sorted in non-decreasing order in the column *j* if *a**i*,<=*j*<=≤<=*a**i*<=+<=1,<=*j* for all *i* from 1 to *n*<=-<=1. Teacher gave Alyona *k* tasks. For each of the tasks two integers *l* and *r* are given and Alyona has to answer the following question: if one keeps the rows from *l* to *r* inclusive and deletes all others, will the table be sorted in non-decreasing order in at least one column? Formally, does there exist such *j* that *a**i*,<=*j*<=≤<=*a**i*<=+<=1,<=*j* for all *i* from *l* to *r*<=-<=1 inclusive. Alyona is too small to deal with this task and asks you to help! Input Specification: The first line of the input contains two positive integers *n* and *m* (1<=≤<=*n*·*m*<=≤<=100<=000) — the number of rows and the number of columns in the table respectively. Note that your are given a constraint that bound the product of these two integers, i.e. the number of elements in the table. Each of the following *n* lines contains *m* integers. The *j*-th integers in the *i* of these lines stands for *a**i*,<=*j* (1<=≤<=*a**i*,<=*j*<=≤<=109). The next line of the input contains an integer *k* (1<=≤<=*k*<=≤<=100<=000) — the number of task that teacher gave to Alyona. The *i*-th of the next *k* lines contains two integers *l**i* and *r**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*). Output Specification: Print "Yes" to the *i*-th line of the output if the table consisting of rows from *l**i* to *r**i* inclusive is sorted in non-decreasing order in at least one column. Otherwise, print "No". Demo Input: ['5 4\n1 2 3 5\n3 1 3 2\n4 5 2 3\n5 5 3 2\n4 4 3 4\n6\n1 1\n2 5\n4 5\n3 5\n1 3\n1 5\n'] Demo Output: ['Yes\nNo\nYes\nYes\nYes\nNo\n'] Note: In the sample, the whole table is not sorted in any column. However, rows 1–3 are sorted in column 1, while rows 4–5 are sorted in column 3.
```python n,m=map(int,input().split()) t=[] a=[] b=0 c=0 for i in range(n): t.append(list(map(int,input().split()))) t.append([0 for i in range(m)]) k=int(input()) for i in range(k): l,r=map(int,input().split()) for j in range(m): for y in range(l+1,r+1): if t[y][j]<t[y-1][j]: b=1 break if b==0: a.append("Yes") a.append('\n') c=1 break b=0 if c==0: a.append("No") a.append('\n') c=0 print(*a) ```
0
501
A
Contest
PROGRAMMING
900
[ "implementation" ]
null
null
Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs *a* points and Vasya solved the problem that costs *b* points. Besides, Misha submitted the problem *c* minutes after the contest started and Vasya submitted the problem *d* minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs *p* points *t* minutes after the contest started, you get points. Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth.
The first line contains four integers *a*, *b*, *c*, *d* (250<=≤<=*a*,<=*b*<=≤<=3500, 0<=≤<=*c*,<=*d*<=≤<=180). It is guaranteed that numbers *a* and *b* are divisible by 250 (just like on any real Codeforces round).
Output on a single line: "Misha" (without the quotes), if Misha got more points than Vasya. "Vasya" (without the quotes), if Vasya got more points than Misha. "Tie" (without the quotes), if both of them got the same number of points.
[ "500 1000 20 30\n", "1000 1000 1 1\n", "1500 1000 176 177\n" ]
[ "Vasya\n", "Tie\n", "Misha\n" ]
none
500
[ { "input": "500 1000 20 30", "output": "Vasya" }, { "input": "1000 1000 1 1", "output": "Tie" }, { "input": "1500 1000 176 177", "output": "Misha" }, { "input": "1500 1000 74 177", "output": "Misha" }, { "input": "750 2500 175 178", "output": "Vasya" }, { "input": "750 1000 54 103", "output": "Tie" }, { "input": "2000 1250 176 130", "output": "Tie" }, { "input": "1250 1750 145 179", "output": "Tie" }, { "input": "2000 2000 176 179", "output": "Tie" }, { "input": "1500 1500 148 148", "output": "Tie" }, { "input": "2750 1750 134 147", "output": "Misha" }, { "input": "3250 250 175 173", "output": "Misha" }, { "input": "500 500 170 176", "output": "Misha" }, { "input": "250 1000 179 178", "output": "Vasya" }, { "input": "3250 1000 160 138", "output": "Misha" }, { "input": "3000 2000 162 118", "output": "Tie" }, { "input": "1500 1250 180 160", "output": "Tie" }, { "input": "1250 2500 100 176", "output": "Tie" }, { "input": "3500 3500 177 178", "output": "Tie" }, { "input": "3000 3250 16 34", "output": "Tie" }, { "input": "1750 3000 137 49", "output": "Vasya" }, { "input": "500 1500 179 71", "output": "Vasya" }, { "input": "1250 2000 101 180", "output": "Misha" }, { "input": "250 750 180 176", "output": "Vasya" }, { "input": "2250 2250 163 145", "output": "Vasya" }, { "input": "3000 3000 176 78", "output": "Vasya" }, { "input": "250 3500 8 178", "output": "Vasya" }, { "input": "1750 1250 179 180", "output": "Misha" }, { "input": "2750 1750 13 164", "output": "Misha" }, { "input": "1750 2250 178 53", "output": "Vasya" }, { "input": "2500 2750 73 179", "output": "Misha" }, { "input": "1000 3500 178 175", "output": "Vasya" }, { "input": "1000 500 7 162", "output": "Misha" }, { "input": "1000 250 175 48", "output": "Misha" }, { "input": "1750 500 166 177", "output": "Misha" }, { "input": "250 250 0 0", "output": "Tie" }, { "input": "250 3500 0 0", "output": "Vasya" }, { "input": "250 3500 0 180", "output": "Vasya" }, { "input": "3500 3500 180 180", "output": "Tie" }, { "input": "3500 250 0 180", "output": "Misha" } ]
1,655,313,067
2,147,483,647
Python 3
OK
TESTS
40
46
0
l1= list(map(int, input().split())) a=l1[0] b=l1[1] c=l1[2] d=l1[3] m=max((3*a/10),a-(a*c/250)) n=max((3*b/10),b-(b*d/250)) if n>m: print("Vasya") elif m>n: print("Misha") else: print("Tie")
Title: Contest Time Limit: None seconds Memory Limit: None megabytes Problem Description: Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs *a* points and Vasya solved the problem that costs *b* points. Besides, Misha submitted the problem *c* minutes after the contest started and Vasya submitted the problem *d* minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs *p* points *t* minutes after the contest started, you get points. Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth. Input Specification: The first line contains four integers *a*, *b*, *c*, *d* (250<=≤<=*a*,<=*b*<=≤<=3500, 0<=≤<=*c*,<=*d*<=≤<=180). It is guaranteed that numbers *a* and *b* are divisible by 250 (just like on any real Codeforces round). Output Specification: Output on a single line: "Misha" (without the quotes), if Misha got more points than Vasya. "Vasya" (without the quotes), if Vasya got more points than Misha. "Tie" (without the quotes), if both of them got the same number of points. Demo Input: ['500 1000 20 30\n', '1000 1000 1 1\n', '1500 1000 176 177\n'] Demo Output: ['Vasya\n', 'Tie\n', 'Misha\n'] Note: none
```python l1= list(map(int, input().split())) a=l1[0] b=l1[1] c=l1[2] d=l1[3] m=max((3*a/10),a-(a*c/250)) n=max((3*b/10),b-(b*d/250)) if n>m: print("Vasya") elif m>n: print("Misha") else: print("Tie") ```
3
279
B
Books
PROGRAMMING
1,400
[ "binary search", "brute force", "implementation", "two pointers" ]
null
null
When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book. Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it. Print the maximum number of books Valera can read.
The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*t*<=≤<=109) — the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book.
Print a single integer — the maximum number of books Valera can read.
[ "4 5\n3 1 2 1\n", "3 3\n2 2 3\n" ]
[ "3\n", "1\n" ]
none
1,000
[ { "input": "4 5\n3 1 2 1", "output": "3" }, { "input": "3 3\n2 2 3", "output": "1" }, { "input": "1 3\n5", "output": "0" }, { "input": "1 10\n4", "output": "1" }, { "input": "2 10\n6 4", "output": "2" }, { "input": "6 10\n2 3 4 2 1 1", "output": "4" }, { "input": "7 13\n6 8 14 9 4 11 10", "output": "2" }, { "input": "10 15\n10 9 1 1 5 10 5 3 7 2", "output": "3" }, { "input": "20 30\n8 1 2 6 9 4 1 9 9 10 4 7 8 9 5 7 1 8 7 4", "output": "6" }, { "input": "30 60\n16 13 22 38 13 35 17 17 20 38 12 19 9 22 20 3 35 34 34 21 35 40 22 3 27 19 12 4 8 19", "output": "4" }, { "input": "100 100\n75 92 18 6 81 67 7 92 100 65 82 32 50 67 85 31 80 91 84 63 39 52 92 81 1 98 24 12 43 48 17 86 51 72 48 95 45 50 12 66 19 79 49 89 34 1 97 75 20 33 96 27 42 23 73 71 93 1 85 19 66 14 17 61 20 39 36 33 42 61 56 64 23 91 80 99 40 74 13 18 98 85 74 39 62 84 46 74 50 23 38 11 79 14 9 25 66 100 25 52", "output": "3" }, { "input": "10 1\n4418 7528 8170 1736 1317 3205 8183 4995 8039 4708", "output": "0" }, { "input": "50 2\n124 214 63 73 996 760 38 571 451 300 970 1 706 937 837 494 619 88 851 411 957 990 842 613 821 649 627 34 693 678 734 116 816 985 705 940 499 493 922 967 854 439 112 644 961 438 189 572 655 550", "output": "1" } ]
1,686,926,866
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
92
0
n,i = map(int, input().split()) numbers = list(map(int, input().split())) sffix_sum = [0] c=[] co=1 for x in range(n-1,-1,-1): if numbers[x]>i: co=1 sffix_sum.insert(0, 0) continue sffix_sum.insert(0,sffix_sum[0] + numbers[x]) c.insert(0,co) co+=1 print(sffix_sum,c) for x in range(n): if sffix_sum[x]<=i: print(c[x]) break
Title: Books Time Limit: None seconds Memory Limit: None megabytes Problem Description: When Valera has got some free time, he goes to the library to read some books. Today he's got *t* free minutes to read. That's why Valera took *n* books in the library and for each book he estimated the time he is going to need to read it. Let's number the books by integers from 1 to *n*. Valera needs *a**i* minutes to read the *i*-th book. Valera decided to choose an arbitrary book with number *i* and read the books one by one, starting from this book. In other words, he will first read book number *i*, then book number *i*<=+<=1, then book number *i*<=+<=2 and so on. He continues the process until he either runs out of the free time or finishes reading the *n*-th book. Valera reads each book up to the end, that is, he doesn't start reading the book if he doesn't have enough free time to finish reading it. Print the maximum number of books Valera can read. Input Specification: The first line contains two integers *n* and *t* (1<=≤<=*n*<=≤<=105; 1<=≤<=*t*<=≤<=109) — the number of books and the number of free minutes Valera's got. The second line contains a sequence of *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=104), where number *a**i* shows the number of minutes that the boy needs to read the *i*-th book. Output Specification: Print a single integer — the maximum number of books Valera can read. Demo Input: ['4 5\n3 1 2 1\n', '3 3\n2 2 3\n'] Demo Output: ['3\n', '1\n'] Note: none
```python n,i = map(int, input().split()) numbers = list(map(int, input().split())) sffix_sum = [0] c=[] co=1 for x in range(n-1,-1,-1): if numbers[x]>i: co=1 sffix_sum.insert(0, 0) continue sffix_sum.insert(0,sffix_sum[0] + numbers[x]) c.insert(0,co) co+=1 print(sffix_sum,c) for x in range(n): if sffix_sum[x]<=i: print(c[x]) break ```
0
868
D
Huge Strings
PROGRAMMING
2,200
[ "bitmasks", "brute force", "dp", "implementation", "strings" ]
null
null
You are given *n* strings *s*1,<=*s*2,<=...,<=*s**n* consisting of characters 0 and 1. *m* operations are performed, on each of them you concatenate two existing strings into a new one. On the *i*-th operation the concatenation *s**a**i**s**b**i* is saved into a new string *s**n*<=+<=*i* (the operations are numbered starting from 1). After each operation you need to find the maximum positive integer *k* such that all possible strings consisting of 0 and 1 of length *k* (there are 2*k* such strings) are substrings of the new string. If there is no such *k*, print 0.
The first line contains single integer *n* (1<=≤<=*n*<=≤<=100) — the number of strings. The next *n* lines contain strings *s*1,<=*s*2,<=...,<=*s**n* (1<=≤<=|*s**i*|<=≤<=100), one per line. The total length of strings is not greater than 100. The next line contains single integer *m* (1<=≤<=*m*<=≤<=100) — the number of operations. *m* lines follow, each of them contains two integers *a**i* abd *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*<=+<=*i*<=-<=1) — the number of strings that are concatenated to form *s**n*<=+<=*i*.
Print *m* lines, each should contain one integer — the answer to the question after the corresponding operation.
[ "5\n01\n10\n101\n11111\n0\n3\n1 2\n6 5\n4 4\n" ]
[ "1\n2\n0\n" ]
On the first operation, a new string "0110" is created. For *k* = 1 the two possible binary strings of length *k* are "0" and "1", they are substrings of the new string. For *k* = 2 and greater there exist strings of length *k* that do not appear in this string (for *k* = 2 such string is "00"). So the answer is 1. On the second operation the string "01100" is created. Now all strings of length *k* = 2 are present. On the third operation the string "1111111111" is created. There is no zero, so the answer is 0.
1,500
[ { "input": "5\n01\n10\n101\n11111\n0\n3\n1 2\n6 5\n4 4", "output": "1\n2\n0" }, { "input": "5\n01\n1\n0011\n0\n01\n6\n5 5\n3 2\n4 2\n6 7\n5 1\n9 7", "output": "1\n1\n1\n2\n1\n2" }, { "input": "5\n111101000111100011100110000100\n000111001\n01101000\n0000110100100010011001000000010100100111110110\n0110001\n10\n5 5\n2 2\n5 6\n1 1\n1 7\n10 6\n6 2\n11 1\n3 6\n8 2", "output": "2\n2\n2\n3\n3\n4\n3\n4\n2\n3" }, { "input": "1\n1\n1\n1 1", "output": "0" }, { "input": "5\n110101010101010110000011011\n111111\n1000100011100111100101101010011111100000001001\n00\n1111101100001110000\n10\n4 3\n6 6\n7 5\n8 8\n8 7\n10 8\n11 9\n10 12\n13 13\n12 13", "output": "4\n4\n4\n4\n4\n4\n4\n4\n4\n4" }, { "input": "5\n100010010\n0\n1001100110010111\n0001000011000111000011011000110000010010010001110001000011011\n0100000100100\n10\n5 5\n6 6\n6 7\n7 8\n8 9\n10 8\n11 9\n10 9\n12 13\n12 13", "output": "1\n1\n1\n1\n1\n1\n1\n1\n1\n1" }, { "input": "5\n0\n1\n11\n110000010001100101001\n1101011011111\n10\n5 3\n6 4\n7 6\n8 7\n9 8\n10 9\n11 10\n12 11\n13 12\n14 13", "output": "1\n4\n5\n5\n5\n5\n5\n5\n5\n5" }, { "input": "10\n0\n1\n1111100000\n0\n1\n0000\n11000\n1010001110010010110\n01101001111\n010101110110111111\n20\n10 3\n11 4\n12 5\n13 6\n14 7\n15 8\n16 9\n17 16\n18 17\n19 18\n20 19\n21 20\n22 21\n23 22\n24 23\n25 24\n26 25\n27 26\n28 27\n29 28", "output": "2\n2\n3\n3\n3\n4\n5\n6\n6\n6\n6\n6\n6\n6\n6\n6\n6\n6\n6\n6" }, { "input": "10\n0\n1\n1111\n110000000\n100000\n1\n1\n000010100001110001\n00100010110001101000111100100110010101001011\n100110110011101\n50\n10 3\n11 4\n12 5\n13 6\n14 7\n15 8\n16 9\n17 1\n18 1\n19 2\n20 2\n21 2\n22 2\n23 2\n24 1\n25 2\n26 1\n27 2\n28 1\n29 2\n30 2\n31 1\n32 2\n33 1\n34 2\n35 2\n36 2\n37 2\n38 1\n39 2\n40 2\n41 1\n42 2\n43 2\n44 2\n45 1\n46 2\n47 2\n48 2\n49 2\n50 2\n51 2\n52 2\n53 52\n54 53\n55 54\n56 55\n57 56\n58 57\n59 58", "output": "2\n2\n3\n3\n3\n4\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n5\n6\n6\n6\n6\n6\n6\n6\n6\n6\n6\n6\n6\n6\n6\n6" }, { "input": "2\n001010011100101110111\n001100110011001100110011001100110011001100110011001100111001\n14\n1 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15", "output": "2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2\n2" }, { "input": "2\n1\n0\n40\n1 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n33 33\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41", "output": "1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1" }, { "input": "2\n011\n100\n63\n1 1\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25\n26 26\n27 27\n28 28\n29 29\n30 30\n31 31\n32 32\n2 2\n34 34\n35 35\n36 36\n37 37\n38 38\n39 39\n40 40\n41 41\n42 42\n43 43\n44 44\n45 45\n46 46\n47 47\n48 48\n49 49\n50 50\n51 51\n52 52\n53 53\n54 54\n55 55\n56 56\n57 57\n58 58\n59 59\n60 60\n61 61\n62 62\n63 63\n33 64", "output": "1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n1\n2" }, { "input": "1\n0000000000000000000000000000000000000000000000000000000000000000\n25\n1 1\n2 2\n3 3\n4 4\n5 5\n6 6\n7 7\n8 8\n9 9\n10 10\n11 11\n12 12\n13 13\n14 14\n15 15\n16 16\n17 17\n18 18\n19 19\n20 20\n21 21\n22 22\n23 23\n24 24\n25 25", "output": "0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0" } ]
1,510,843,810
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
93
819,200
# -*- coding: utf-8 -*- import math import collections import bisect import heapq import time import random """ created by shhuan at 2017/10/5 15:00 """ N = int(input()) S = [''] head = [""] tail = [""] for i in range(N): S.append(input()) head.append(S[i][:10]) tail.append(S[i][:-10]) M = int(input()) A = [[set() for _ in range(10)] for _ in range(M+N+1)] C = collections.defaultdict(tuple) D = collections.defaultdict(int) for i in range(1, N+1): for j in range(1, 10): s = S[i] if j > len(s): break for k in range(len(s)-j+1): A[i][j].add(int(s[k:k+j], 2)) if all(v in A[i][j] for v in range(2**j)): D[i] = j for i in range(M): a, b = map(int, input().split()) s = S[a] + S[b] S.append(s) head.append(s[:10]) tail.append(s[:-10]) ai = i+N+1 C[ai] = (a, b) d = max(D[a], D[b]) + 1 for dv in range(d, 10): if len(S[i]) + len(S[b]) < dv: break A[ai][dv] = {int(S[a][-i:] + S[b][:dv-i], 2) for i in range(1, dv+1)} q = [(ai)] oz = set() while q: x = q.pop() if x in C: q.append(C[x][0]) q.append(C[x][1]) oz |= A[x][d] if all(v in oz for v in range(2**d)): print(d) D[ai] = d else: print(d-1) D[ai] = d-1
Title: Huge Strings Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given *n* strings *s*1,<=*s*2,<=...,<=*s**n* consisting of characters 0 and 1. *m* operations are performed, on each of them you concatenate two existing strings into a new one. On the *i*-th operation the concatenation *s**a**i**s**b**i* is saved into a new string *s**n*<=+<=*i* (the operations are numbered starting from 1). After each operation you need to find the maximum positive integer *k* such that all possible strings consisting of 0 and 1 of length *k* (there are 2*k* such strings) are substrings of the new string. If there is no such *k*, print 0. Input Specification: The first line contains single integer *n* (1<=≤<=*n*<=≤<=100) — the number of strings. The next *n* lines contain strings *s*1,<=*s*2,<=...,<=*s**n* (1<=≤<=|*s**i*|<=≤<=100), one per line. The total length of strings is not greater than 100. The next line contains single integer *m* (1<=≤<=*m*<=≤<=100) — the number of operations. *m* lines follow, each of them contains two integers *a**i* abd *b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*<=+<=*i*<=-<=1) — the number of strings that are concatenated to form *s**n*<=+<=*i*. Output Specification: Print *m* lines, each should contain one integer — the answer to the question after the corresponding operation. Demo Input: ['5\n01\n10\n101\n11111\n0\n3\n1 2\n6 5\n4 4\n'] Demo Output: ['1\n2\n0\n'] Note: On the first operation, a new string "0110" is created. For *k* = 1 the two possible binary strings of length *k* are "0" and "1", they are substrings of the new string. For *k* = 2 and greater there exist strings of length *k* that do not appear in this string (for *k* = 2 such string is "00"). So the answer is 1. On the second operation the string "01100" is created. Now all strings of length *k* = 2 are present. On the third operation the string "1111111111" is created. There is no zero, so the answer is 0.
```python # -*- coding: utf-8 -*- import math import collections import bisect import heapq import time import random """ created by shhuan at 2017/10/5 15:00 """ N = int(input()) S = [''] head = [""] tail = [""] for i in range(N): S.append(input()) head.append(S[i][:10]) tail.append(S[i][:-10]) M = int(input()) A = [[set() for _ in range(10)] for _ in range(M+N+1)] C = collections.defaultdict(tuple) D = collections.defaultdict(int) for i in range(1, N+1): for j in range(1, 10): s = S[i] if j > len(s): break for k in range(len(s)-j+1): A[i][j].add(int(s[k:k+j], 2)) if all(v in A[i][j] for v in range(2**j)): D[i] = j for i in range(M): a, b = map(int, input().split()) s = S[a] + S[b] S.append(s) head.append(s[:10]) tail.append(s[:-10]) ai = i+N+1 C[ai] = (a, b) d = max(D[a], D[b]) + 1 for dv in range(d, 10): if len(S[i]) + len(S[b]) < dv: break A[ai][dv] = {int(S[a][-i:] + S[b][:dv-i], 2) for i in range(1, dv+1)} q = [(ai)] oz = set() while q: x = q.pop() if x in C: q.append(C[x][0]) q.append(C[x][1]) oz |= A[x][d] if all(v in oz for v in range(2**d)): print(d) D[ai] = d else: print(d-1) D[ai] = d-1 ```
0
80
A
Panoramix's Prediction
PROGRAMMING
800
[ "brute force" ]
A. Panoramix's Prediction
2
256
A prime number is a number which has exactly two distinct divisors: one and itself. For example, numbers 2, 7, 3 are prime, and 1, 6, 4 are not. The next prime number after *x* is the smallest prime number greater than *x*. For example, the next prime number after 2 is 3, and the next prime number after 3 is 5. Note that there is exactly one next prime number after each number. So 5 is not the next prime number for 2. One cold April morning Panoramix predicted that soon Kakofonix will break free from his straitjacket, and this will be a black day for the residents of the Gallic countryside. Panoramix's prophecy tells that if some day Asterix and Obelix beat exactly *x* Roman soldiers, where *x* is a prime number, and next day they beat exactly *y* Roman soldiers, where *y* is the next prime number after *x*, then it's time to wait for Armageddon, for nothing can shut Kakofonix up while he sings his infernal song. Yesterday the Gauls beat *n* Roman soldiers and it turned out that the number *n* was prime! Today their victims were a troop of *m* Romans (*m*<=&gt;<=*n*). Determine whether the Gauls should wait for the black day after today's victory of Asterix and Obelix?
The first and only input line contains two positive integers — *n* and *m* (2<=≤<=*n*<=&lt;<=*m*<=≤<=50). It is guaranteed that *n* is prime. Pretests contain all the cases with restrictions 2<=≤<=*n*<=&lt;<=*m*<=≤<=4.
Print YES, if *m* is the next prime number after *n*, or NO otherwise.
[ "3 5\n", "7 11\n", "7 9\n" ]
[ "YES", "YES", "NO" ]
none
500
[ { "input": "3 5", "output": "YES" }, { "input": "7 11", "output": "YES" }, { "input": "7 9", "output": "NO" }, { "input": "2 3", "output": "YES" }, { "input": "2 4", "output": "NO" }, { "input": "3 4", "output": "NO" }, { "input": "3 5", "output": "YES" }, { "input": "5 7", "output": "YES" }, { "input": "7 11", "output": "YES" }, { "input": "11 13", "output": "YES" }, { "input": "13 17", "output": "YES" }, { "input": "17 19", "output": "YES" }, { "input": "19 23", "output": "YES" }, { "input": "23 29", "output": "YES" }, { "input": "29 31", "output": "YES" }, { "input": "31 37", "output": "YES" }, { "input": "37 41", "output": "YES" }, { "input": "41 43", "output": "YES" }, { "input": "43 47", "output": "YES" }, { "input": "2 5", "output": "NO" }, { "input": "2 7", "output": "NO" }, { "input": "2 6", "output": "NO" }, { "input": "2 11", "output": "NO" }, { "input": "3 6", "output": "NO" }, { "input": "3 7", "output": "NO" }, { "input": "3 9", "output": "NO" }, { "input": "5 6", "output": "NO" }, { "input": "5 9", "output": "NO" }, { "input": "5 11", "output": "NO" }, { "input": "5 13", "output": "NO" }, { "input": "5 15", "output": "NO" }, { "input": "7 8", "output": "NO" }, { "input": "7 13", "output": "NO" }, { "input": "13 15", "output": "NO" }, { "input": "13 17", "output": "YES" }, { "input": "19 21", "output": "NO" }, { "input": "13 20", "output": "NO" }, { "input": "41 49", "output": "NO" }, { "input": "43 49", "output": "NO" }, { "input": "47 50", "output": "NO" }, { "input": "47 49", "output": "NO" }, { "input": "47 48", "output": "NO" }, { "input": "23 25", "output": "NO" }, { "input": "2 50", "output": "NO" }, { "input": "31 33", "output": "NO" } ]
1,673,856,856
2,147,483,647
PyPy 3
RUNTIME_ERROR
TESTS
0
154
2,150,400
x,y=map(int,input().split()) t=y while(t>0): if(y%t==0): c=c+1 t=t-1 if(c>2): print("NO") else: print("YES")
Title: Panoramix's Prediction Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: A prime number is a number which has exactly two distinct divisors: one and itself. For example, numbers 2, 7, 3 are prime, and 1, 6, 4 are not. The next prime number after *x* is the smallest prime number greater than *x*. For example, the next prime number after 2 is 3, and the next prime number after 3 is 5. Note that there is exactly one next prime number after each number. So 5 is not the next prime number for 2. One cold April morning Panoramix predicted that soon Kakofonix will break free from his straitjacket, and this will be a black day for the residents of the Gallic countryside. Panoramix's prophecy tells that if some day Asterix and Obelix beat exactly *x* Roman soldiers, where *x* is a prime number, and next day they beat exactly *y* Roman soldiers, where *y* is the next prime number after *x*, then it's time to wait for Armageddon, for nothing can shut Kakofonix up while he sings his infernal song. Yesterday the Gauls beat *n* Roman soldiers and it turned out that the number *n* was prime! Today their victims were a troop of *m* Romans (*m*<=&gt;<=*n*). Determine whether the Gauls should wait for the black day after today's victory of Asterix and Obelix? Input Specification: The first and only input line contains two positive integers — *n* and *m* (2<=≤<=*n*<=&lt;<=*m*<=≤<=50). It is guaranteed that *n* is prime. Pretests contain all the cases with restrictions 2<=≤<=*n*<=&lt;<=*m*<=≤<=4. Output Specification: Print YES, if *m* is the next prime number after *n*, or NO otherwise. Demo Input: ['3 5\n', '7 11\n', '7 9\n'] Demo Output: ['YES', 'YES', 'NO'] Note: none
```python x,y=map(int,input().split()) t=y while(t>0): if(y%t==0): c=c+1 t=t-1 if(c>2): print("NO") else: print("YES") ```
-1
476
A
Dreamoon and Stairs
PROGRAMMING
1,000
[ "implementation", "math" ]
null
null
Dreamoon wants to climb up a stair of *n* steps. He can climb 1 or 2 steps at each move. Dreamoon wants the number of moves to be a multiple of an integer *m*. What is the minimal number of moves making him climb to the top of the stairs that satisfies his condition?
The single line contains two space separated integers *n*, *m* (0<=&lt;<=*n*<=≤<=10000,<=1<=&lt;<=*m*<=≤<=10).
Print a single integer — the minimal number of moves being a multiple of *m*. If there is no way he can climb satisfying condition print <=-<=1 instead.
[ "10 2\n", "3 5\n" ]
[ "6\n", "-1\n" ]
For the first sample, Dreamoon could climb in 6 moves with following sequence of steps: {2, 2, 2, 2, 1, 1}. For the second sample, there are only three valid sequence of steps {2, 1}, {1, 2}, {1, 1, 1} with 2, 2, and 3 steps respectively. All these numbers are not multiples of 5.
500
[ { "input": "10 2", "output": "6" }, { "input": "3 5", "output": "-1" }, { "input": "29 7", "output": "21" }, { "input": "2 2", "output": "2" }, { "input": "1 2", "output": "-1" }, { "input": "10000 2", "output": "5000" }, { "input": "10000 3", "output": "5001" }, { "input": "10000 10", "output": "5000" }, { "input": "9999 3", "output": "5001" }, { "input": "9999 2", "output": "5000" }, { "input": "9999 10", "output": "5000" }, { "input": "9999 9", "output": "5004" }, { "input": "18 10", "output": "10" }, { "input": "19 10", "output": "10" }, { "input": "20 10", "output": "10" }, { "input": "21 10", "output": "20" }, { "input": "7688 5", "output": "3845" }, { "input": "4608 5", "output": "2305" }, { "input": "3979 2", "output": "1990" }, { "input": "9985 6", "output": "4998" }, { "input": "3230 8", "output": "1616" }, { "input": "24 9", "output": "18" }, { "input": "3275 8", "output": "1640" }, { "input": "6240 7", "output": "3122" }, { "input": "5227 4", "output": "2616" }, { "input": "3832 6", "output": "1920" }, { "input": "4 2", "output": "2" }, { "input": "6 3", "output": "3" }, { "input": "10 5", "output": "5" }, { "input": "3 2", "output": "2" }, { "input": "6 4", "output": "4" }, { "input": "5 2", "output": "4" }, { "input": "8 2", "output": "4" }, { "input": "9 9", "output": "9" }, { "input": "4 5", "output": "-1" } ]
1,694,408,303
2,147,483,647
Python 3
OK
TESTS
35
46
0
def main(): n, m = [int(i) for i in input().split()] if n < m: print(-1) else: minsteps = n // 2 + n % 2 if minsteps % m == 0: print(minsteps) else: print(minsteps + m - (minsteps % m)) if __name__ == "__main__": main()
Title: Dreamoon and Stairs Time Limit: None seconds Memory Limit: None megabytes Problem Description: Dreamoon wants to climb up a stair of *n* steps. He can climb 1 or 2 steps at each move. Dreamoon wants the number of moves to be a multiple of an integer *m*. What is the minimal number of moves making him climb to the top of the stairs that satisfies his condition? Input Specification: The single line contains two space separated integers *n*, *m* (0<=&lt;<=*n*<=≤<=10000,<=1<=&lt;<=*m*<=≤<=10). Output Specification: Print a single integer — the minimal number of moves being a multiple of *m*. If there is no way he can climb satisfying condition print <=-<=1 instead. Demo Input: ['10 2\n', '3 5\n'] Demo Output: ['6\n', '-1\n'] Note: For the first sample, Dreamoon could climb in 6 moves with following sequence of steps: {2, 2, 2, 2, 1, 1}. For the second sample, there are only three valid sequence of steps {2, 1}, {1, 2}, {1, 1, 1} with 2, 2, and 3 steps respectively. All these numbers are not multiples of 5.
```python def main(): n, m = [int(i) for i in input().split()] if n < m: print(-1) else: minsteps = n // 2 + n % 2 if minsteps % m == 0: print(minsteps) else: print(minsteps + m - (minsteps % m)) if __name__ == "__main__": main() ```
3
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,577,017,842
2,147,483,647
Python 3
OK
TESTS
30
218
307,200
s=input() l=0 u=0 for i in s: if(i==i.lower()): l+=1 elif(i==i.upper()): u+=1 if(l>=u): print(s.lower()) elif(u>l): print(s.upper())
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python s=input() l=0 u=0 for i in s: if(i==i.lower()): l+=1 elif(i==i.upper()): u+=1 if(l>=u): print(s.lower()) elif(u>l): print(s.upper()) ```
3.944928
817
B
Makes And The Product
PROGRAMMING
1,500
[ "combinatorics", "implementation", "math", "sortings" ]
null
null
After returning from the army Makes received a gift — an array *a* consisting of *n* positive integer numbers. He hadn't been solving problems for a long time, so he became interested to answer a particular question: how many triples of indices (*i*,<= *j*,<= *k*) (*i*<=&lt;<=*j*<=&lt;<=*k*), such that *a**i*·*a**j*·*a**k* is minimum possible, are there in the array? Help him with it!
The first line of input contains a positive integer number *n* (3<=≤<=*n*<=≤<=105) — the number of elements in array *a*. The second line contains *n* positive integer numbers *a**i* (1<=≤<=*a**i*<=≤<=109) — the elements of a given array.
Print one number — the quantity of triples (*i*,<= *j*,<= *k*) such that *i*,<= *j* and *k* are pairwise distinct and *a**i*·*a**j*·*a**k* is minimum possible.
[ "4\n1 1 1 1\n", "5\n1 3 2 3 4\n", "6\n1 3 3 1 3 2\n" ]
[ "4\n", "2\n", "1\n" ]
In the first example Makes always chooses three ones out of four, and the number of ways to choose them is 4. In the second example a triple of numbers (1, 2, 3) is chosen (numbers, not indices). Since there are two ways to choose an element 3, then the answer is 2. In the third example a triple of numbers (1, 1, 2) is chosen, and there's only one way to choose indices.
0
[ { "input": "4\n1 1 1 1", "output": "4" }, { "input": "5\n1 3 2 3 4", "output": "2" }, { "input": "6\n1 3 3 1 3 2", "output": "1" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "1" }, { "input": "4\n1 1 2 2", "output": "2" }, { "input": "3\n1 3 1", "output": "1" }, { "input": "11\n1 2 2 2 2 2 2 2 2 2 2", "output": "45" }, { "input": "5\n1 2 2 2 2", "output": "6" }, { "input": "6\n1 2 2 3 3 4", "output": "1" }, { "input": "8\n1 1 2 2 2 3 3 3", "output": "3" }, { "input": "6\n1 2 2 2 2 3", "output": "6" }, { "input": "3\n1 2 2", "output": "1" }, { "input": "6\n1 2 2 2 3 3", "output": "3" }, { "input": "6\n1 2 2 2 2 2", "output": "10" }, { "input": "4\n1 2 2 2", "output": "3" }, { "input": "5\n1 2 3 2 3", "output": "1" }, { "input": "6\n2 2 3 3 3 3", "output": "4" }, { "input": "6\n1 2 2 2 5 6", "output": "3" }, { "input": "10\n1 2 2 2 2 2 2 2 2 2", "output": "36" }, { "input": "3\n2 1 2", "output": "1" }, { "input": "5\n1 2 3 3 3", "output": "3" }, { "input": "6\n1 2 2 2 4 5", "output": "3" }, { "input": "4\n1 2 2 3", "output": "1" }, { "input": "10\n2 2 2 2 2 1 2 2 2 2", "output": "36" }, { "input": "7\n2 2 2 3 3 3 1", "output": "3" }, { "input": "3\n1 1 2", "output": "1" }, { "input": "5\n1 1 2 2 2", "output": "3" }, { "input": "3\n1 2 3", "output": "1" }, { "input": "9\n2 2 3 3 3 3 3 3 3", "output": "7" }, { "input": "5\n1 1 2 2 3", "output": "2" }, { "input": "4\n1 1 3 3", "output": "2" }, { "input": "4\n33554432 33554432 67108864 33554432", "output": "1" }, { "input": "6\n2 2 2 1 2 2", "output": "10" }, { "input": "10\n1 2 1 2 3 2 3 2 2 2", "output": "6" }, { "input": "10\n9 6 4 7 1 8 9 5 9 4", "output": "1" }, { "input": "4\n5 7 2 7", "output": "2" }, { "input": "3\n7 6 7", "output": "1" }, { "input": "6\n3 2 8 2 5 3", "output": "2" }, { "input": "3\n5 9 5", "output": "1" }, { "input": "5\n6 3 7 6 3", "output": "2" }, { "input": "9\n10 10 4 10 7 9 6 7 3", "output": "1" }, { "input": "5\n9 10 10 3 8", "output": "1" }, { "input": "5\n2 9 5 10 5", "output": "1" }, { "input": "9\n7 1 9 6 6 8 3 1 3", "output": "2" }, { "input": "5\n3 4 4 4 5", "output": "3" }, { "input": "3\n3 1 3", "output": "1" }, { "input": "8\n3 2 2 5 2 2 1 2", "output": "10" } ]
1,604,841,435
2,147,483,647
PyPy 3
OK
TESTS
80
265
10,956,800
def ncr(n, r): res = 1 for i in range(1, r + 1): res = (res * (n + 1 - i) // i) return res n = int(input()) arr = [*map(int, input().split())] a, b, c = sorted(arr)[:3] ca, cb, cc = arr.count(a), arr.count(b), arr.count(c) if a == b == c: print(ncr(ca, 3)) elif a == b: print(ncr(ca, 2) * cc) elif b == c: print(ncr(cb, 2) * ca) else: print(ca * cb * cc)
Title: Makes And The Product Time Limit: None seconds Memory Limit: None megabytes Problem Description: After returning from the army Makes received a gift — an array *a* consisting of *n* positive integer numbers. He hadn't been solving problems for a long time, so he became interested to answer a particular question: how many triples of indices (*i*,<= *j*,<= *k*) (*i*<=&lt;<=*j*<=&lt;<=*k*), such that *a**i*·*a**j*·*a**k* is minimum possible, are there in the array? Help him with it! Input Specification: The first line of input contains a positive integer number *n* (3<=≤<=*n*<=≤<=105) — the number of elements in array *a*. The second line contains *n* positive integer numbers *a**i* (1<=≤<=*a**i*<=≤<=109) — the elements of a given array. Output Specification: Print one number — the quantity of triples (*i*,<= *j*,<= *k*) such that *i*,<= *j* and *k* are pairwise distinct and *a**i*·*a**j*·*a**k* is minimum possible. Demo Input: ['4\n1 1 1 1\n', '5\n1 3 2 3 4\n', '6\n1 3 3 1 3 2\n'] Demo Output: ['4\n', '2\n', '1\n'] Note: In the first example Makes always chooses three ones out of four, and the number of ways to choose them is 4. In the second example a triple of numbers (1, 2, 3) is chosen (numbers, not indices). Since there are two ways to choose an element 3, then the answer is 2. In the third example a triple of numbers (1, 1, 2) is chosen, and there's only one way to choose indices.
```python def ncr(n, r): res = 1 for i in range(1, r + 1): res = (res * (n + 1 - i) // i) return res n = int(input()) arr = [*map(int, input().split())] a, b, c = sorted(arr)[:3] ca, cb, cc = arr.count(a), arr.count(b), arr.count(c) if a == b == c: print(ncr(ca, 3)) elif a == b: print(ncr(ca, 2) * cc) elif b == c: print(ncr(cb, 2) * ca) else: print(ca * cb * cc) ```
3
560
A
Currency System in Geraldion
PROGRAMMING
1,000
[ "implementation", "sortings" ]
null
null
A magic island Geraldion, where Gerald lives, has its own currency system. It uses banknotes of several values. But the problem is, the system is not perfect and sometimes it happens that Geraldionians cannot express a certain sum of money with any set of banknotes. Of course, they can use any number of banknotes of each value. Such sum is called unfortunate. Gerald wondered: what is the minimum unfortunate sum?
The first line contains number *n* (1<=≤<=*n*<=≤<=1000) — the number of values of the banknotes that used in Geraldion. The second line contains *n* distinct space-separated numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=106) — the values of the banknotes.
Print a single line — the minimum unfortunate sum. If there are no unfortunate sums, print <=-<=1.
[ "5\n1 2 3 4 5\n" ]
[ "-1\n" ]
none
500
[ { "input": "5\n1 2 3 4 5", "output": "-1" }, { "input": "1\n2", "output": "1" }, { "input": "10\n371054 506438 397130 1 766759 208409 769264 549213 641270 771837", "output": "-1" }, { "input": "10\n635370 154890 909382 220996 276501 716105 538714 140162 171960 271264", "output": "1" }, { "input": "50\n110876 835020 859879 999908 712969 788264 287153 921820 330355 499311 209594 484829 296329 940051 174081 931503 1 780512 390075 97866 124255 950067 697612 244256 782385 789882 37608 82153 399889 598867 416717 377988 535636 511221 792568 683271 131077 290194 496712 330720 587436 563481 645817 942562 654093 980561 382937 48293 582608 116156", "output": "-1" }, { "input": "50\n474421 421097 217233 156339 27075 733996 281778 863492 184707 956857 288561 70997 393786 337382 663642 131184 637 273801 799870 295017 392338 842567 161819 297705 102013 930684 375703 838048 154915 138503 629056 256591 893619 19263 787927 684541 320265 841090 421423 490879 394582 493952 619247 633202 612928 50907 276653 407819 489945 153173", "output": "1" }, { "input": "1\n1", "output": "-1" }, { "input": "1\n1000000", "output": "1" }, { "input": "2\n3 2", "output": "1" }, { "input": "2\n2 3", "output": "1" } ]
1,655,971,017
2,147,483,647
PyPy 3-64
OK
TESTS
16
62
0
n = int(input()) a = input().split() if str(1) in a: print(-1) else:print(1)
Title: Currency System in Geraldion Time Limit: None seconds Memory Limit: None megabytes Problem Description: A magic island Geraldion, where Gerald lives, has its own currency system. It uses banknotes of several values. But the problem is, the system is not perfect and sometimes it happens that Geraldionians cannot express a certain sum of money with any set of banknotes. Of course, they can use any number of banknotes of each value. Such sum is called unfortunate. Gerald wondered: what is the minimum unfortunate sum? Input Specification: The first line contains number *n* (1<=≤<=*n*<=≤<=1000) — the number of values of the banknotes that used in Geraldion. The second line contains *n* distinct space-separated numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=106) — the values of the banknotes. Output Specification: Print a single line — the minimum unfortunate sum. If there are no unfortunate sums, print <=-<=1. Demo Input: ['5\n1 2 3 4 5\n'] Demo Output: ['-1\n'] Note: none
```python n = int(input()) a = input().split() if str(1) in a: print(-1) else:print(1) ```
3
192
A
Funky Numbers
PROGRAMMING
1,300
[ "binary search", "brute force", "implementation" ]
null
null
As you very well know, this year's funkiest numbers are so called triangular numbers (that is, integers that are representable as , where *k* is some positive integer), and the coolest numbers are those that are representable as a sum of two triangular numbers. A well-known hipster Andrew adores everything funky and cool but unfortunately, he isn't good at maths. Given number *n*, help him define whether this number can be represented by a sum of two triangular numbers (not necessarily different)!
The first input line contains an integer *n* (1<=≤<=*n*<=≤<=109).
Print "YES" (without the quotes), if *n* can be represented as a sum of two triangular numbers, otherwise print "NO" (without the quotes).
[ "256\n", "512\n" ]
[ "YES\n", "NO\n" ]
In the first sample number <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/92095692c6ea93e9e3b837a0408ba7543549d5b2.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second sample number 512 can not be represented as a sum of two triangular numbers.
500
[ { "input": "256", "output": "YES" }, { "input": "512", "output": "NO" }, { "input": "80", "output": "NO" }, { "input": "828", "output": "YES" }, { "input": "6035", "output": "NO" }, { "input": "39210", "output": "YES" }, { "input": "79712", "output": "NO" }, { "input": "190492", "output": "YES" }, { "input": "5722367", "output": "NO" }, { "input": "816761542", "output": "YES" }, { "input": "1", "output": "NO" }, { "input": "2", "output": "YES" }, { "input": "3", "output": "NO" }, { "input": "4", "output": "YES" }, { "input": "5", "output": "NO" }, { "input": "6", "output": "YES" }, { "input": "7", "output": "YES" }, { "input": "8", "output": "NO" }, { "input": "9", "output": "YES" }, { "input": "10", "output": "NO" }, { "input": "12", "output": "YES" }, { "input": "13", "output": "YES" }, { "input": "14", "output": "NO" }, { "input": "15", "output": "NO" }, { "input": "16", "output": "YES" }, { "input": "17", "output": "NO" }, { "input": "18", "output": "YES" }, { "input": "19", "output": "NO" }, { "input": "20", "output": "YES" }, { "input": "41", "output": "NO" }, { "input": "11", "output": "YES" }, { "input": "69", "output": "YES" }, { "input": "82", "output": "NO" }, { "input": "85", "output": "NO" }, { "input": "736", "output": "NO" }, { "input": "895", "output": "YES" }, { "input": "934", "output": "YES" }, { "input": "6213", "output": "YES" }, { "input": "7405", "output": "NO" }, { "input": "9919", "output": "NO" }, { "input": "40942", "output": "YES" }, { "input": "41992", "output": "NO" }, { "input": "68535", "output": "NO" }, { "input": "405718", "output": "NO" }, { "input": "1046146", "output": "YES" }, { "input": "3761248", "output": "YES" }, { "input": "6195181", "output": "YES" }, { "input": "35354345", "output": "NO" }, { "input": "81282830", "output": "NO" }, { "input": "187719774", "output": "NO" }, { "input": "296798673", "output": "NO" }, { "input": "938938476", "output": "NO" }, { "input": "1000000000", "output": "NO" }, { "input": "999887464", "output": "YES" }, { "input": "999111944", "output": "NO" }, { "input": "999966520", "output": "YES" }, { "input": "999912080", "output": "NO" }, { "input": "999992017", "output": "YES" }, { "input": "999990474", "output": "NO" }, { "input": "999999190", "output": "YES" }, { "input": "999999125", "output": "NO" }, { "input": "999999940", "output": "YES" }, { "input": "999999995", "output": "NO" }, { "input": "1000000000", "output": "NO" }, { "input": "1", "output": "NO" }, { "input": "999999999", "output": "YES" }, { "input": "83495494", "output": "NO" }, { "input": "968022000", "output": "YES" }, { "input": "399980000", "output": "YES" }, { "input": "4", "output": "YES" }, { "input": "999999998", "output": "NO" } ]
1,572,654,476
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
9
372
307,200
import sys import math "Con esta función tarda mucho más que con binary" def checkSum(array, x): flag = False for i in range(0, len(array)): for j in range(0, len(array)): if(lista[i]+lista[j] == x): flag = True break return flag def binarySearch(array, x): low = 0 high = len(array)-1 mid = low + (high+low)/2 while(low <= high): mid = low + math.floor((high-low)/2) if x > lista[mid]: low = mid+1 elif x < lista[mid]: high = mid-1 else: return True return False x = int(input()) if x == 1: print("NO") sys.exit() lista = [] lista.append(1) m = 2 for i in range(1, 10010): lista.append(lista[i-1] + m) m = m + 1 flag = False for i in range(1, 10010): if binarySearch(lista,x-lista[i]): print("YES") sys.exit() if flag == False: print("NO")
Title: Funky Numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: As you very well know, this year's funkiest numbers are so called triangular numbers (that is, integers that are representable as , where *k* is some positive integer), and the coolest numbers are those that are representable as a sum of two triangular numbers. A well-known hipster Andrew adores everything funky and cool but unfortunately, he isn't good at maths. Given number *n*, help him define whether this number can be represented by a sum of two triangular numbers (not necessarily different)! Input Specification: The first input line contains an integer *n* (1<=≤<=*n*<=≤<=109). Output Specification: Print "YES" (without the quotes), if *n* can be represented as a sum of two triangular numbers, otherwise print "NO" (without the quotes). Demo Input: ['256\n', '512\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first sample number <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/92095692c6ea93e9e3b837a0408ba7543549d5b2.png" style="max-width: 100.0%;max-height: 100.0%;"/>. In the second sample number 512 can not be represented as a sum of two triangular numbers.
```python import sys import math "Con esta función tarda mucho más que con binary" def checkSum(array, x): flag = False for i in range(0, len(array)): for j in range(0, len(array)): if(lista[i]+lista[j] == x): flag = True break return flag def binarySearch(array, x): low = 0 high = len(array)-1 mid = low + (high+low)/2 while(low <= high): mid = low + math.floor((high-low)/2) if x > lista[mid]: low = mid+1 elif x < lista[mid]: high = mid-1 else: return True return False x = int(input()) if x == 1: print("NO") sys.exit() lista = [] lista.append(1) m = 2 for i in range(1, 10010): lista.append(lista[i-1] + m) m = m + 1 flag = False for i in range(1, 10010): if binarySearch(lista,x-lista[i]): print("YES") sys.exit() if flag == False: print("NO") ```
0
656
A
Da Vinci Powers
PROGRAMMING
1,900
[ "*special" ]
null
null
The input contains a single integer *a* (0<=≤<=*a*<=≤<=35). Output a single integer.
The input contains a single integer *a* (0<=≤<=*a*<=≤<=35).
Output a single integer.
[ "3\n", "10\n" ]
[ "8\n", "1024\n" ]
none
0
[ { "input": "3", "output": "8" }, { "input": "10", "output": "1024" }, { "input": "35", "output": "33940307968" }, { "input": "0", "output": "1" }, { "input": "1", "output": "2" }, { "input": "2", "output": "4" }, { "input": "4", "output": "16" }, { "input": "5", "output": "32" }, { "input": "6", "output": "64" }, { "input": "7", "output": "128" }, { "input": "8", "output": "256" }, { "input": "9", "output": "512" }, { "input": "11", "output": "2048" }, { "input": "12", "output": "4096" }, { "input": "13", "output": "8092" }, { "input": "14", "output": "16184" }, { "input": "15", "output": "32368" }, { "input": "16", "output": "64736" }, { "input": "17", "output": "129472" }, { "input": "18", "output": "258944" }, { "input": "19", "output": "517888" }, { "input": "20", "output": "1035776" }, { "input": "21", "output": "2071552" }, { "input": "22", "output": "4143104" }, { "input": "23", "output": "8286208" }, { "input": "24", "output": "16572416" }, { "input": "25", "output": "33144832" }, { "input": "26", "output": "66289664" }, { "input": "27", "output": "132579328" }, { "input": "28", "output": "265158656" }, { "input": "29", "output": "530317312" }, { "input": "30", "output": "1060634624" }, { "input": "31", "output": "2121269248" }, { "input": "32", "output": "4242538496" }, { "input": "33", "output": "8485076992" }, { "input": "34", "output": "16970153984" } ]
1,463,943,871
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
62
4,608,000
n=input(n) n=long(n) stepen=long(2**n) print(stepen)
Title: Da Vinci Powers Time Limit: None seconds Memory Limit: None megabytes Problem Description: The input contains a single integer *a* (0<=≤<=*a*<=≤<=35). Output a single integer. Input Specification: The input contains a single integer *a* (0<=≤<=*a*<=≤<=35). Output Specification: Output a single integer. Demo Input: ['3\n', '10\n'] Demo Output: ['8\n', '1024\n'] Note: none
```python n=input(n) n=long(n) stepen=long(2**n) print(stepen) ```
-1
987
C
Three displays
PROGRAMMING
1,400
[ "brute force", "dp", "implementation" ]
null
null
It is the middle of 2018 and Maria Stepanovna, who lives outside Krasnokamensk (a town in Zabaikalsky region), wants to rent three displays to highlight an important problem. There are $n$ displays placed along a road, and the $i$-th of them can display a text with font size $s_i$ only. Maria Stepanovna wants to rent such three displays with indices $i &lt; j &lt; k$ that the font size increases if you move along the road in a particular direction. Namely, the condition $s_i &lt; s_j &lt; s_k$ should be held. The rent cost is for the $i$-th display is $c_i$. Please determine the smallest cost Maria Stepanovna should pay.
The first line contains a single integer $n$ ($3 \le n \le 3\,000$) — the number of displays. The second line contains $n$ integers $s_1, s_2, \ldots, s_n$ ($1 \le s_i \le 10^9$) — the font sizes on the displays in the order they stand along the road. The third line contains $n$ integers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le 10^8$) — the rent costs for each display.
If there are no three displays that satisfy the criteria, print -1. Otherwise print a single integer — the minimum total rent cost of three displays with indices $i &lt; j &lt; k$ such that $s_i &lt; s_j &lt; s_k$.
[ "5\n2 4 5 4 10\n40 30 20 10 40\n", "3\n100 101 100\n2 4 5\n", "10\n1 2 3 4 5 6 7 8 9 10\n10 13 11 14 15 12 13 13 18 13\n" ]
[ "90\n", "-1\n", "33\n" ]
In the first example you can, for example, choose displays $1$, $4$ and $5$, because $s_1 &lt; s_4 &lt; s_5$ ($2 &lt; 4 &lt; 10$), and the rent cost is $40 + 10 + 40 = 90$. In the second example you can't select a valid triple of indices, so the answer is -1.
1,250
[ { "input": "5\n2 4 5 4 10\n40 30 20 10 40", "output": "90" }, { "input": "3\n100 101 100\n2 4 5", "output": "-1" }, { "input": "10\n1 2 3 4 5 6 7 8 9 10\n10 13 11 14 15 12 13 13 18 13", "output": "33" }, { "input": "3\n1 2 3\n100000000 100000000 100000000", "output": "300000000" }, { "input": "3\n999999998 999999999 1000000000\n100000000 100000000 99999999", "output": "299999999" }, { "input": "10\n802030518 598196518 640274071 983359971 71550121 96204862 799843967 446173607 796619138 402690754\n23219513 68171337 12183499 5549873 73542337 66661387 79397647 34495917 31413076 50918417", "output": "85904709" }, { "input": "20\n452405440 586588704 509061481 552472140 16115810 148658854 66743034 628305150 677780684 519361360 208050516 401554301 954478790 346543678 387546138 832279893 641889899 80960260 717802881 588066499\n61699500 83254572 59454419 27833657 55743179 99661234 94729965 75591136 62937826 3626886 73906880 3664913 39990362 94385934 33153747 23840219 64514676 14746017 13062847 65187713", "output": "72432912" }, { "input": "3\n1 2 3\n1 1 1", "output": "3" } ]
1,687,783,829
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
5
62
0
if __name__ == '__main__': n = int(input()) s = list(map(int, input().strip().split())) c = list(map(int, input().strip().split())) INF = float("inf") dp = [[INF] * 3 for _ in range(n)]; dp[0][0] = c[0] res = INF for i in range(1, n): for j in range(i): if s[j] >= s[i]: continue for k in range(1, 3): dp[i][k] = min(dp[i][k], dp[j][k - 1] + c[i]) res = min(res, dp[i][2]) res = -1 if res == INF else res print(res)
Title: Three displays Time Limit: None seconds Memory Limit: None megabytes Problem Description: It is the middle of 2018 and Maria Stepanovna, who lives outside Krasnokamensk (a town in Zabaikalsky region), wants to rent three displays to highlight an important problem. There are $n$ displays placed along a road, and the $i$-th of them can display a text with font size $s_i$ only. Maria Stepanovna wants to rent such three displays with indices $i &lt; j &lt; k$ that the font size increases if you move along the road in a particular direction. Namely, the condition $s_i &lt; s_j &lt; s_k$ should be held. The rent cost is for the $i$-th display is $c_i$. Please determine the smallest cost Maria Stepanovna should pay. Input Specification: The first line contains a single integer $n$ ($3 \le n \le 3\,000$) — the number of displays. The second line contains $n$ integers $s_1, s_2, \ldots, s_n$ ($1 \le s_i \le 10^9$) — the font sizes on the displays in the order they stand along the road. The third line contains $n$ integers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le 10^8$) — the rent costs for each display. Output Specification: If there are no three displays that satisfy the criteria, print -1. Otherwise print a single integer — the minimum total rent cost of three displays with indices $i &lt; j &lt; k$ such that $s_i &lt; s_j &lt; s_k$. Demo Input: ['5\n2 4 5 4 10\n40 30 20 10 40\n', '3\n100 101 100\n2 4 5\n', '10\n1 2 3 4 5 6 7 8 9 10\n10 13 11 14 15 12 13 13 18 13\n'] Demo Output: ['90\n', '-1\n', '33\n'] Note: In the first example you can, for example, choose displays $1$, $4$ and $5$, because $s_1 &lt; s_4 &lt; s_5$ ($2 &lt; 4 &lt; 10$), and the rent cost is $40 + 10 + 40 = 90$. In the second example you can't select a valid triple of indices, so the answer is -1.
```python if __name__ == '__main__': n = int(input()) s = list(map(int, input().strip().split())) c = list(map(int, input().strip().split())) INF = float("inf") dp = [[INF] * 3 for _ in range(n)]; dp[0][0] = c[0] res = INF for i in range(1, n): for j in range(i): if s[j] >= s[i]: continue for k in range(1, 3): dp[i][k] = min(dp[i][k], dp[j][k - 1] + c[i]) res = min(res, dp[i][2]) res = -1 if res == INF else res print(res) ```
0
246
D
Colorful Graph
PROGRAMMING
1,600
[ "brute force", "dfs and similar", "graphs" ]
null
null
You've got an undirected graph, consisting of *n* vertices and *m* edges. We will consider the graph's vertices numbered with integers from 1 to *n*. Each vertex of the graph has a color. The color of the *i*-th vertex is an integer *c**i*. Let's consider all vertices of the graph, that are painted some color *k*. Let's denote a set of such as *V*(*k*). Let's denote the value of the neighbouring color diversity for color *k* as the cardinality of the set *Q*(*k*)<==<={*c**u* :<= *c**u*<=≠<=*k* and there is vertex *v* belonging to set *V*(*k*) such that nodes *v* and *u* are connected by an edge of the graph}. Your task is to find such color *k*, which makes the cardinality of set *Q*(*k*) maximum. In other words, you want to find the color that has the most diverse neighbours. Please note, that you want to find such color *k*, that the graph has at least one vertex with such color.
The first line contains two space-separated integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=105) — the number of vertices end edges of the graph, correspondingly. The second line contains a sequence of integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105) — the colors of the graph vertices. The numbers on the line are separated by spaces. Next *m* lines contain the description of the edges: the *i*-th line contains two space-separated integers *a**i*,<=*b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*; *a**i*<=≠<=*b**i*) — the numbers of the vertices, connected by the *i*-th edge. It is guaranteed that the given graph has no self-loops or multiple edges.
Print the number of the color which has the set of neighbours with the maximum cardinality. It there are multiple optimal colors, print the color with the minimum number. Please note, that you want to find such color, that the graph has at least one vertex with such color.
[ "6 6\n1 1 2 3 5 8\n1 2\n3 2\n1 4\n4 3\n4 5\n4 6\n", "5 6\n4 2 5 2 4\n1 2\n2 3\n3 1\n5 3\n5 4\n3 4\n" ]
[ "3\n", "2\n" ]
none
2,000
[ { "input": "6 6\n1 1 2 3 5 8\n1 2\n3 2\n1 4\n4 3\n4 5\n4 6", "output": "3" }, { "input": "5 6\n4 2 5 2 4\n1 2\n2 3\n3 1\n5 3\n5 4\n3 4", "output": "2" }, { "input": "3 1\n13 13 4\n1 2", "output": "4" }, { "input": "2 1\n500 300\n1 2", "output": "300" }, { "input": "6 5\n2 2 2 1 2 2\n4 5\n4 2\n5 2\n4 1\n2 3", "output": "1" }, { "input": "8 8\n3 3 2 3 3 3 1 3\n8 2\n6 3\n2 3\n2 6\n5 6\n4 2\n7 5\n1 6", "output": "3" }, { "input": "10 27\n1 1 3 2 4 1 3 2 4 1\n9 3\n7 8\n9 7\n6 5\n7 6\n7 4\n6 9\n3 8\n6 10\n8 5\n3 1\n4 6\n8 1\n10 8\n9 5\n10 1\n5 10\n3 6\n4 3\n8 2\n10 7\n10 9\n10 3\n8 4\n3 2\n2 4\n6 1", "output": "1" }, { "input": "50 47\n21 17 47 15 50 47 47 41 28 18 27 47 29 28 32 26 16 26 8 22 27 10 45 21 17 30 31 38 14 8 9 40 29 35 41 24 22 14 40 46 44 34 40 31 48 40 8 50 1 28\n7 5\n50 2\n42 5\n36 28\n8 44\n36 3\n40 15\n33 18\n5 50\n1 6\n25 20\n39 24\n45 35\n14 27\n14 39\n17 47\n19 49\n28 7\n7 13\n34 3\n22 26\n5 6\n8 17\n32 18\n40 31\n4 40\n17 21\n37 18\n30 41\n2 47\n4 48\n36 32\n45 20\n39 28\n39 43\n7 33\n44 48\n21 47\n14 26\n15 47\n16 14\n23 18\n50 12\n28 8\n10 6\n12 46\n41 5", "output": "47" }, { "input": "5 4\n300 300 300 300 300\n1 2\n2 3\n3 4\n4 5", "output": "300" }, { "input": "5 2\n4 4 10 3 3\n1 2\n4 5", "output": "3" }, { "input": "6 1\n10 1 1 2 3 4\n2 3", "output": "1" }, { "input": "10 9\n1 1 1 1 1 1 1 1 1 1\n5 8\n8 6\n1 8\n8 4\n3 7\n1 10\n1 9\n2 5\n6 9", "output": "1" }, { "input": "10 15\n1 1 1 1 2 2 2 2 1 2\n8 5\n9 1\n8 6\n3 5\n2 7\n2 9\n10 3\n3 2\n3 6\n4 2\n5 9\n7 3\n6 7\n5 10\n4 7", "output": "1" }, { "input": "7 6\n1 2 3 4 3 3 3\n5 1\n6 1\n7 1\n1 2\n2 3\n2 4", "output": "2" }, { "input": "2 1\n100000 100000\n1 2", "output": "100000" } ]
1,682,686,950
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
60
0
n, m = list(map(int, input().split())) color = list(map(int, input().split())) graph = [[] for i in range(n)] for i in range(m): a, b = list(map(int, input().split())) graph[a - 1].append(b - 1) graph[b - 1].append(a - 1) ans = [color[0], 0] for vertex in range(n): count = set() for adjvertex in graph[vertex]: count.add(color[adjvertex]) if ans[1] < len(count): ans = [color[vertex], len(count)] elif ans[1] == len(count): ans = [min(color[vertex], ans[0]), len(count)] print(ans[0])
Title: Colorful Graph Time Limit: None seconds Memory Limit: None megabytes Problem Description: You've got an undirected graph, consisting of *n* vertices and *m* edges. We will consider the graph's vertices numbered with integers from 1 to *n*. Each vertex of the graph has a color. The color of the *i*-th vertex is an integer *c**i*. Let's consider all vertices of the graph, that are painted some color *k*. Let's denote a set of such as *V*(*k*). Let's denote the value of the neighbouring color diversity for color *k* as the cardinality of the set *Q*(*k*)<==<={*c**u* :<= *c**u*<=≠<=*k* and there is vertex *v* belonging to set *V*(*k*) such that nodes *v* and *u* are connected by an edge of the graph}. Your task is to find such color *k*, which makes the cardinality of set *Q*(*k*) maximum. In other words, you want to find the color that has the most diverse neighbours. Please note, that you want to find such color *k*, that the graph has at least one vertex with such color. Input Specification: The first line contains two space-separated integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=105) — the number of vertices end edges of the graph, correspondingly. The second line contains a sequence of integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105) — the colors of the graph vertices. The numbers on the line are separated by spaces. Next *m* lines contain the description of the edges: the *i*-th line contains two space-separated integers *a**i*,<=*b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*; *a**i*<=≠<=*b**i*) — the numbers of the vertices, connected by the *i*-th edge. It is guaranteed that the given graph has no self-loops or multiple edges. Output Specification: Print the number of the color which has the set of neighbours with the maximum cardinality. It there are multiple optimal colors, print the color with the minimum number. Please note, that you want to find such color, that the graph has at least one vertex with such color. Demo Input: ['6 6\n1 1 2 3 5 8\n1 2\n3 2\n1 4\n4 3\n4 5\n4 6\n', '5 6\n4 2 5 2 4\n1 2\n2 3\n3 1\n5 3\n5 4\n3 4\n'] Demo Output: ['3\n', '2\n'] Note: none
```python n, m = list(map(int, input().split())) color = list(map(int, input().split())) graph = [[] for i in range(n)] for i in range(m): a, b = list(map(int, input().split())) graph[a - 1].append(b - 1) graph[b - 1].append(a - 1) ans = [color[0], 0] for vertex in range(n): count = set() for adjvertex in graph[vertex]: count.add(color[adjvertex]) if ans[1] < len(count): ans = [color[vertex], len(count)] elif ans[1] == len(count): ans = [min(color[vertex], ans[0]), len(count)] print(ans[0]) ```
0
957
A
Tritonic Iridescence
PROGRAMMING
1,300
[ "implementation" ]
null
null
Overlooking the captivating blend of myriads of vernal hues, Arkady the painter lays out a long, long canvas. Arkady has a sufficiently large amount of paint of three colours: cyan, magenta, and yellow. On the one-dimensional canvas split into *n* consecutive segments, each segment needs to be painted in one of the colours. Arkady has already painted some (possibly none or all) segments and passes the paintbrush to you. You are to determine whether there are at least two ways of colouring all the unpainted segments so that no two adjacent segments are of the same colour. Two ways are considered different if and only if a segment is painted in different colours in them.
The first line contains a single positive integer *n* (1<=≤<=*n*<=≤<=100) — the length of the canvas. The second line contains a string *s* of *n* characters, the *i*-th of which is either 'C' (denoting a segment painted in cyan), 'M' (denoting one painted in magenta), 'Y' (one painted in yellow), or '?' (an unpainted one).
If there are at least two different ways of painting, output "Yes"; otherwise output "No" (both without quotes). You can print each character in any case (upper or lower).
[ "5\nCY??Y\n", "5\nC?C?Y\n", "5\n?CYC?\n", "5\nC??MM\n", "3\nMMY\n" ]
[ "Yes\n", "Yes\n", "Yes\n", "No\n", "No\n" ]
For the first example, there are exactly two different ways of colouring: CYCMY and CYMCY. For the second example, there are also exactly two different ways of colouring: CMCMY and CYCMY. For the third example, there are four ways of colouring: MCYCM, MCYCY, YCYCM, and YCYCY. For the fourth example, no matter how the unpainted segments are coloured, the existing magenta segments will prevent the painting from satisfying the requirements. The similar is true for the fifth example.
500
[ { "input": "5\nCY??Y", "output": "Yes" }, { "input": "5\nC?C?Y", "output": "Yes" }, { "input": "5\n?CYC?", "output": "Yes" }, { "input": "5\nC??MM", "output": "No" }, { "input": "3\nMMY", "output": "No" }, { "input": "15\n??YYYYYY??YYYY?", "output": "No" }, { "input": "100\nYCY?CMCMCYMYMYC?YMYMYMY?CMC?MCMYCMYMYCM?CMCM?CMYMYCYCMCMCMCMCMYM?CYCYCMCM?CY?MYCYCMYM?CYCYCYMY?CYCYC", "output": "No" }, { "input": "1\nC", "output": "No" }, { "input": "1\n?", "output": "Yes" }, { "input": "2\nMY", "output": "No" }, { "input": "2\n?M", "output": "Yes" }, { "input": "2\nY?", "output": "Yes" }, { "input": "2\n??", "output": "Yes" }, { "input": "3\n??C", "output": "Yes" }, { "input": "3\nM??", "output": "Yes" }, { "input": "3\nYCM", "output": "No" }, { "input": "3\n?C?", "output": "Yes" }, { "input": "3\nMC?", "output": "Yes" }, { "input": "4\nCYCM", "output": "No" }, { "input": "4\nM?CM", "output": "No" }, { "input": "4\n??YM", "output": "Yes" }, { "input": "4\nC???", "output": "Yes" }, { "input": "10\nMCYM?MYM?C", "output": "Yes" }, { "input": "50\nCMCMCYM?MY?C?MC??YM?CY?YM??M?MCMCYCYMCYCMCM?MCM?MC", "output": "Yes" }, { "input": "97\nMCM?YCMYM?YMY?MY?MYCY?CMCMCYC?YMY?MYCMC?M?YCMC?YM?C?MCMCMYMCMY?MCM?YC?YMYMY?MYCYCM?YC?YCY?MYMYMYC", "output": "No" }, { "input": "100\nC?M?M?M?YM??YMYC?MCYMYM??Y??YC?CYC???YM?YM??MYMY?CYCYMYC?YC?C?CYCMY??CMC?YMCMYCYCYMYM?CYM?M?MCMCMY?Y", "output": "Yes" }, { "input": "100\n?YYYYYYYYYYYYYYYYYYYYYYYYYYYYY??YYY?YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY?", "output": "No" }, { "input": "100\n????????????????????????????????????????????????????????????????????????????????????????????????????", "output": "Yes" }, { "input": "100\nY?CYMYMYMYCYMY?CMCYMYMC?MYCY?CMCYCYMCM?YCMCYMYCYCY?MYMYCYCYCM?CYMYMY?CY?MYCYCY?M?YMYCY?CMCMCY?CY?M?C", "output": "No" }, { "input": "4\nM??C", "output": "Yes" }, { "input": "6\nY?C??C", "output": "Yes" }, { "input": "5\nC???Y", "output": "Yes" }, { "input": "5\nC??MY", "output": "Yes" }, { "input": "5\nCY??M", "output": "Yes" }, { "input": "4\nC??Y", "output": "Yes" }, { "input": "52\n??????????????????????????????????????????????????YY", "output": "No" }, { "input": "3\nYY?", "output": "No" }, { "input": "5\nCC??Y", "output": "No" }, { "input": "8\nCMC??MCM", "output": "Yes" }, { "input": "7\nM?YCM??", "output": "Yes" }, { "input": "6\n?CC???", "output": "No" }, { "input": "100\n??????????????????????????????????????????????????????????????????????????????????????????????????MM", "output": "No" }, { "input": "4\nC??M", "output": "Yes" }, { "input": "4\n?C?M", "output": "Yes" }, { "input": "6\nMC??MC", "output": "Yes" } ]
1,541,671,735
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
6
109
0
n = int (input ()) a = list (input ()) b = 0; t = 1 for I in range(n-1): if a[I]==a[I+1] and a [I]!="?": t = 0; break if a.count("?") > 1 and t: print ("Yes") else : print ("No")
Title: Tritonic Iridescence Time Limit: None seconds Memory Limit: None megabytes Problem Description: Overlooking the captivating blend of myriads of vernal hues, Arkady the painter lays out a long, long canvas. Arkady has a sufficiently large amount of paint of three colours: cyan, magenta, and yellow. On the one-dimensional canvas split into *n* consecutive segments, each segment needs to be painted in one of the colours. Arkady has already painted some (possibly none or all) segments and passes the paintbrush to you. You are to determine whether there are at least two ways of colouring all the unpainted segments so that no two adjacent segments are of the same colour. Two ways are considered different if and only if a segment is painted in different colours in them. Input Specification: The first line contains a single positive integer *n* (1<=≤<=*n*<=≤<=100) — the length of the canvas. The second line contains a string *s* of *n* characters, the *i*-th of which is either 'C' (denoting a segment painted in cyan), 'M' (denoting one painted in magenta), 'Y' (one painted in yellow), or '?' (an unpainted one). Output Specification: If there are at least two different ways of painting, output "Yes"; otherwise output "No" (both without quotes). You can print each character in any case (upper or lower). Demo Input: ['5\nCY??Y\n', '5\nC?C?Y\n', '5\n?CYC?\n', '5\nC??MM\n', '3\nMMY\n'] Demo Output: ['Yes\n', 'Yes\n', 'Yes\n', 'No\n', 'No\n'] Note: For the first example, there are exactly two different ways of colouring: CYCMY and CYMCY. For the second example, there are also exactly two different ways of colouring: CMCMY and CYCMY. For the third example, there are four ways of colouring: MCYCM, MCYCY, YCYCM, and YCYCY. For the fourth example, no matter how the unpainted segments are coloured, the existing magenta segments will prevent the painting from satisfying the requirements. The similar is true for the fifth example.
```python n = int (input ()) a = list (input ()) b = 0; t = 1 for I in range(n-1): if a[I]==a[I+1] and a [I]!="?": t = 0; break if a.count("?") > 1 and t: print ("Yes") else : print ("No") ```
0
569
B
Inventory
PROGRAMMING
1,200
[ "greedy", "math" ]
null
null
Companies always have a lot of equipment, furniture and other things. All of them should be tracked. To do this, there is an inventory number assigned with each item. It is much easier to create a database by using those numbers and keep the track of everything. During an audit, you were surprised to find out that the items are not numbered sequentially, and some items even share the same inventory number! There is an urgent need to fix it. You have chosen to make the numbers of the items sequential, starting with 1. Changing a number is quite a time-consuming process, and you would like to make maximum use of the current numbering. You have been given information on current inventory numbers for *n* items in the company. Renumber items so that their inventory numbers form a permutation of numbers from 1 to *n* by changing the number of as few items as possible. Let us remind you that a set of *n* numbers forms a permutation if all the numbers are in the range from 1 to *n*, and no two numbers are equal.
The first line contains a single integer *n* — the number of items (1<=≤<=*n*<=≤<=105). The second line contains *n* numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105) — the initial inventory numbers of the items.
Print *n* numbers — the final inventory numbers of the items in the order they occur in the input. If there are multiple possible answers, you may print any of them.
[ "3\n1 3 2\n", "4\n2 2 3 3\n", "1\n2\n" ]
[ "1 3 2 \n", "2 1 3 4 \n", "1 \n" ]
In the first test the numeration is already a permutation, so there is no need to change anything. In the second test there are two pairs of equal numbers, in each pair you need to replace one number. In the third test you need to replace 2 by 1, as the numbering should start from one.
1,000
[ { "input": "3\n1 3 2", "output": "1 3 2 " }, { "input": "4\n2 2 3 3", "output": "2 1 3 4 " }, { "input": "1\n2", "output": "1 " }, { "input": "3\n3 3 1", "output": "3 2 1 " }, { "input": "5\n1 1 1 1 1", "output": "1 2 3 4 5 " }, { "input": "5\n5 3 4 4 2", "output": "5 3 4 1 2 " }, { "input": "5\n19 11 8 8 10", "output": "1 2 3 4 5 " }, { "input": "15\n2 2 1 2 1 2 3 3 1 3 2 1 2 3 2", "output": "2 4 1 5 6 7 3 8 9 10 11 12 13 14 15 " }, { "input": "18\n3 11 5 9 5 4 6 4 5 7 5 1 8 11 11 2 1 9", "output": "3 11 5 9 10 4 6 12 13 7 14 1 8 15 16 2 17 18 " }, { "input": "42\n999 863 440 1036 1186 908 330 265 382 417 858 286 834 922 42 569 79 158 312 1175 1069 188 21 1207 985 375 59 417 256 595 732 742 629 737 25 699 484 517 37 1134 472 720", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 42 15 16 17 18 19 20 22 21 23 24 26 27 28 29 30 31 32 33 34 25 35 36 38 37 39 40 41 " }, { "input": "111\n15 45 14 65 49 25 102 86 14 80 54 73 43 78 42 32 47 60 55 66 84 69 49 22 26 72 89 52 26 80 71 35 56 2 88 23 23 53 65 92 46 73 29 65 88 99 19 99 87 10 47 96 109 20 60 89 63 105 29 92 109 20 95 65 31 89 107 3 3 50 58 9 28 39 104 42 41 36 70 49 59 96 16 9 3 108 38 42 2 67 32 86 20 6 101 70 101 91 38 10 74 3 27 15 103 63 51 60 62 10 70", "output": "15 45 14 65 49 25 102 86 1 80 54 73 43 78 42 32 47 60 55 66 84 69 4 22 26 72 89 52 5 7 71 35 56 2 88 23 8 53 11 92 46 12 29 13 17 99 19 18 87 10 21 96 109 20 24 30 63 105 33 34 37 40 95 44 31 48 107 3 57 50 58 9 28 39 104 61 41 36 70 64 59 68 16 75 76 108 38 77 79 67 81 82 83 6 101 85 90 91 93 94 74 97 27 98 103 100 51 106 62 110 111 " }, { "input": "7\n45301 14370 61599 42695 46301 24556 26812", "output": "1 2 3 4 5 6 7 " }, { "input": "22\n70150 17718 11731 6488 72633 41249 12141 71465 88562 6167 71659 34151 60508 24942 77343 35882 80424 67225 92746 55412 79 53642", "output": "1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 " }, { "input": "2\n1 4", "output": "1 2 " } ]
1,439,226,691
2,491
Python 3
OK
TESTS
29
467
7,168,000
n = int(input()) a = [int(i) for i in input().split()] c = [0] * (n+1) for e in a: if e <= n: c[e] = 1 l = [e for e in range(1,n+1) if c[e] == 0] s = 0 c = [0] * (n+1) for i in range(n): if a[i] <= n and c[a[i]] < 1: c[a[i]] = 1 else: a[i] = l[s] s += 1 for e in a: print(e, end = ' ')
Title: Inventory Time Limit: None seconds Memory Limit: None megabytes Problem Description: Companies always have a lot of equipment, furniture and other things. All of them should be tracked. To do this, there is an inventory number assigned with each item. It is much easier to create a database by using those numbers and keep the track of everything. During an audit, you were surprised to find out that the items are not numbered sequentially, and some items even share the same inventory number! There is an urgent need to fix it. You have chosen to make the numbers of the items sequential, starting with 1. Changing a number is quite a time-consuming process, and you would like to make maximum use of the current numbering. You have been given information on current inventory numbers for *n* items in the company. Renumber items so that their inventory numbers form a permutation of numbers from 1 to *n* by changing the number of as few items as possible. Let us remind you that a set of *n* numbers forms a permutation if all the numbers are in the range from 1 to *n*, and no two numbers are equal. Input Specification: The first line contains a single integer *n* — the number of items (1<=≤<=*n*<=≤<=105). The second line contains *n* numbers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=105) — the initial inventory numbers of the items. Output Specification: Print *n* numbers — the final inventory numbers of the items in the order they occur in the input. If there are multiple possible answers, you may print any of them. Demo Input: ['3\n1 3 2\n', '4\n2 2 3 3\n', '1\n2\n'] Demo Output: ['1 3 2 \n', '2 1 3 4 \n', '1 \n'] Note: In the first test the numeration is already a permutation, so there is no need to change anything. In the second test there are two pairs of equal numbers, in each pair you need to replace one number. In the third test you need to replace 2 by 1, as the numbering should start from one.
```python n = int(input()) a = [int(i) for i in input().split()] c = [0] * (n+1) for e in a: if e <= n: c[e] = 1 l = [e for e in range(1,n+1) if c[e] == 0] s = 0 c = [0] * (n+1) for i in range(n): if a[i] <= n and c[a[i]] < 1: c[a[i]] = 1 else: a[i] = l[s] s += 1 for e in a: print(e, end = ' ') ```
3
38
A
Army
PROGRAMMING
800
[ "implementation" ]
A. Army
2
256
The Berland Armed Forces System consists of *n* ranks that are numbered using natural numbers from 1 to *n*, where 1 is the lowest rank and *n* is the highest rank. One needs exactly *d**i* years to rise from rank *i* to rank *i*<=+<=1. Reaching a certain rank *i* having not reached all the previous *i*<=-<=1 ranks is impossible. Vasya has just reached a new rank of *a*, but he dreams of holding the rank of *b*. Find for how many more years Vasya should serve in the army until he can finally realize his dream.
The first input line contains an integer *n* (2<=≤<=*n*<=≤<=100). The second line contains *n*<=-<=1 integers *d**i* (1<=≤<=*d**i*<=≤<=100). The third input line contains two integers *a* and *b* (1<=≤<=*a*<=&lt;<=*b*<=≤<=*n*). The numbers on the lines are space-separated.
Print the single number which is the number of years that Vasya needs to rise from rank *a* to rank *b*.
[ "3\n5 6\n1 2\n", "3\n5 6\n1 3\n" ]
[ "5\n", "11\n" ]
none
0
[ { "input": "3\n5 6\n1 2", "output": "5" }, { "input": "3\n5 6\n1 3", "output": "11" }, { "input": "2\n55\n1 2", "output": "55" }, { "input": "3\n85 78\n1 3", "output": "163" }, { "input": "4\n63 4 49\n2 3", "output": "4" }, { "input": "5\n93 83 42 56\n2 5", "output": "181" }, { "input": "6\n22 9 87 89 57\n1 6", "output": "264" }, { "input": "7\n52 36 31 23 74 78\n2 7", "output": "242" }, { "input": "8\n82 14 24 5 91 49 94\n3 8", "output": "263" }, { "input": "9\n12 40 69 39 59 21 59 5\n4 6", "output": "98" }, { "input": "10\n95 81 32 59 71 30 50 61 100\n1 6", "output": "338" }, { "input": "15\n89 55 94 4 15 69 19 60 91 77 3 94 91 62\n3 14", "output": "617" }, { "input": "20\n91 1 41 51 95 67 92 35 23 70 44 91 57 50 21 8 9 71 40\n8 17", "output": "399" }, { "input": "25\n70 95 21 84 97 39 12 98 53 24 78 29 84 65 70 22 100 17 69 27 62 48 35 80\n8 23", "output": "846" }, { "input": "30\n35 69 50 44 19 56 86 56 98 24 21 2 61 24 85 30 2 22 57 35 59 84 12 77 92 53 50 92 9\n1 16", "output": "730" }, { "input": "35\n2 34 47 15 27 61 6 88 67 20 53 65 29 68 77 5 78 86 44 98 32 81 91 79 54 84 95 23 65 97 22 33 42 87\n8 35", "output": "1663" }, { "input": "40\n32 88 59 36 95 45 28 78 73 30 97 13 13 47 48 100 43 21 22 45 88 25 15 13 63 25 72 92 29 5 25 11 50 5 54 51 48 84 23\n7 26", "output": "862" }, { "input": "45\n83 74 73 95 10 31 100 26 29 15 80 100 22 70 31 88 9 56 19 70 2 62 48 30 27 47 52 50 94 44 21 94 23 85 15 3 95 72 43 62 94 89 68 88\n17 40", "output": "1061" }, { "input": "50\n28 8 16 29 19 82 70 51 96 84 74 72 17 69 12 21 37 21 39 3 18 66 19 49 86 96 94 93 2 90 96 84 59 88 58 15 61 33 55 22 35 54 51 29 64 68 29 38 40\n23 28", "output": "344" }, { "input": "60\n24 28 25 21 43 71 64 73 71 90 51 83 69 43 75 43 78 72 56 61 99 7 23 86 9 16 16 94 23 74 18 56 20 72 13 31 75 34 35 86 61 49 4 72 84 7 65 70 66 52 21 38 6 43 69 40 73 46 5\n28 60", "output": "1502" }, { "input": "70\n69 95 34 14 67 61 6 95 94 44 28 94 73 66 39 13 19 71 73 71 28 48 26 22 32 88 38 95 43 59 88 77 80 55 17 95 40 83 67 1 38 95 58 63 56 98 49 2 41 4 73 8 78 41 64 71 60 71 41 61 67 4 4 19 97 14 39 20 27\n9 41", "output": "1767" }, { "input": "80\n65 15 43 6 43 98 100 16 69 98 4 54 25 40 2 35 12 23 38 29 10 89 30 6 4 8 7 96 64 43 11 49 89 38 20 59 54 85 46 16 16 89 60 54 28 37 32 34 67 9 78 30 50 87 58 53 99 48 77 3 5 6 19 99 16 20 31 10 80 76 82 56 56 83 72 81 84 60 28\n18 24", "output": "219" }, { "input": "90\n61 35 100 99 67 87 42 90 44 4 81 65 29 63 66 56 53 22 55 87 39 30 34 42 27 80 29 97 85 28 81 22 50 22 24 75 67 86 78 79 94 35 13 97 48 76 68 66 94 13 82 1 22 85 5 36 86 73 65 97 43 56 35 26 87 25 74 47 81 67 73 75 99 75 53 38 70 21 66 78 38 17 57 40 93 57 68 55 1\n12 44", "output": "1713" }, { "input": "95\n37 74 53 96 65 84 65 72 95 45 6 77 91 35 58 50 51 51 97 30 51 20 79 81 92 10 89 34 40 76 71 54 26 34 73 72 72 28 53 19 95 64 97 10 44 15 12 38 5 63 96 95 86 8 36 96 45 53 81 5 18 18 47 97 65 9 33 53 41 86 37 53 5 40 15 76 83 45 33 18 26 5 19 90 46 40 100 42 10 90 13 81 40 53\n6 15", "output": "570" }, { "input": "96\n51 32 95 75 23 54 70 89 67 3 1 51 4 100 97 30 9 35 56 38 54 77 56 98 43 17 60 43 72 46 87 61 100 65 81 22 74 38 16 96 5 10 54 22 23 22 10 91 9 54 49 82 29 73 33 98 75 8 4 26 24 90 71 42 90 24 94 74 94 10 41 98 56 63 18 43 56 21 26 64 74 33 22 38 67 66 38 60 64 76 53 10 4 65 76\n21 26", "output": "328" }, { "input": "97\n18 90 84 7 33 24 75 55 86 10 96 72 16 64 37 9 19 71 62 97 5 34 85 15 46 72 82 51 52 16 55 68 27 97 42 72 76 97 32 73 14 56 11 86 2 81 59 95 60 93 1 22 71 37 77 100 6 16 78 47 78 62 94 86 16 91 56 46 47 35 93 44 7 86 70 10 29 45 67 62 71 61 74 39 36 92 24 26 65 14 93 92 15 28 79 59\n6 68", "output": "3385" }, { "input": "98\n32 47 26 86 43 42 79 72 6 68 40 46 29 80 24 89 29 7 21 56 8 92 13 33 50 79 5 7 84 85 24 23 1 80 51 21 26 55 96 51 24 2 68 98 81 88 57 100 64 84 54 10 14 2 74 1 89 71 1 20 84 85 17 31 42 58 69 67 48 60 97 90 58 10 21 29 2 21 60 61 68 89 77 39 57 18 61 44 67 100 33 74 27 40 83 29 6\n8 77", "output": "3319" }, { "input": "99\n46 5 16 66 53 12 84 89 26 27 35 68 41 44 63 17 88 43 80 15 59 1 42 50 53 34 75 16 16 55 92 30 28 11 12 71 27 65 11 28 86 47 24 10 60 47 7 53 16 75 6 49 56 66 70 3 20 78 75 41 38 57 89 23 16 74 30 39 1 32 49 84 9 33 25 95 75 45 54 59 17 17 29 40 79 96 47 11 69 86 73 56 91 4 87 47 31 24\n23 36", "output": "514" }, { "input": "100\n63 65 21 41 95 23 3 4 12 23 95 50 75 63 58 34 71 27 75 31 23 94 96 74 69 34 43 25 25 55 44 19 43 86 68 17 52 65 36 29 72 96 84 25 84 23 71 54 6 7 71 7 21 100 99 58 93 35 62 47 36 70 68 9 75 13 35 70 76 36 62 22 52 51 2 87 66 41 54 35 78 62 30 35 65 44 74 93 78 37 96 70 26 32 71 27 85 85 63\n43 92", "output": "2599" }, { "input": "51\n85 38 22 38 42 36 55 24 36 80 49 15 66 91 88 61 46 82 1 61 89 92 6 56 28 8 46 80 56 90 91 38 38 17 69 64 57 68 13 44 45 38 8 72 61 39 87 2 73 88\n15 27", "output": "618" }, { "input": "2\n3\n1 2", "output": "3" }, { "input": "5\n6 8 22 22\n2 3", "output": "8" }, { "input": "6\n3 12 27 28 28\n3 4", "output": "27" }, { "input": "9\n1 2 2 2 2 3 3 5\n3 7", "output": "9" }, { "input": "10\n1 1 1 1 1 1 1 1 1\n6 8", "output": "2" }, { "input": "20\n1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3\n5 17", "output": "23" }, { "input": "25\n1 1 1 4 5 6 8 11 11 11 11 12 13 14 14 14 15 16 16 17 17 17 19 19\n4 8", "output": "23" }, { "input": "35\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2\n30 31", "output": "2" }, { "input": "45\n1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 4 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 8 8 8 9 9 9 9 9 10 10 10\n42 45", "output": "30" }, { "input": "50\n1 8 8 13 14 15 15 16 19 21 22 24 26 31 32 37 45 47 47 47 50 50 51 54 55 56 58 61 61 61 63 63 64 66 66 67 67 70 71 80 83 84 85 92 92 94 95 95 100\n4 17", "output": "285" }, { "input": "60\n1 2 4 4 4 6 6 8 9 10 10 13 14 18 20 20 21 22 23 23 26 29 30 32 33 34 35 38 40 42 44 44 46 48 52 54 56 56 60 60 66 67 68 68 69 73 73 74 80 80 81 81 82 84 86 86 87 89 89\n56 58", "output": "173" }, { "input": "70\n1 2 3 3 4 5 5 7 7 7 8 8 8 8 9 9 10 12 12 12 12 13 16 16 16 16 16 16 17 17 18 18 20 20 21 23 24 25 25 26 29 29 29 29 31 32 32 34 35 36 36 37 37 38 39 39 40 40 40 40 41 41 42 43 44 44 44 45 45\n62 65", "output": "126" }, { "input": "80\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5 6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12\n17 65", "output": "326" }, { "input": "90\n1 1 3 5 8 9 10 11 11 11 11 12 13 14 15 15 15 16 16 19 19 20 22 23 24 25 25 28 29 29 30 31 33 34 35 37 37 38 41 43 43 44 45 47 51 54 55 56 58 58 59 59 60 62 66 67 67 67 68 68 69 70 71 72 73 73 76 77 77 78 78 78 79 79 79 82 83 84 85 85 87 87 89 93 93 93 95 99 99\n28 48", "output": "784" }, { "input": "95\n2 2 3 3 4 6 6 7 7 7 9 10 12 12 12 12 13 14 15 16 17 18 20 20 20 20 21 21 21 21 22 22 22 22 22 23 23 23 25 26 26 27 27 27 28 29 29 30 30 31 32 33 34 36 37 37 38 39 39 39 42 43 43 43 45 47 48 50 50 51 52 53 54 54 54 55 55 55 58 59 60 61 61 61 61 62 62 63 64 65 66 67 67 67\n64 93", "output": "1636" }, { "input": "96\n1 1 2 3 3 5 8 9 9 10 10 10 11 11 11 11 11 12 13 13 13 14 15 15 16 16 17 17 17 17 18 18 20 20 20 21 21 21 23 24 24 25 25 26 27 27 27 27 29 29 29 30 30 30 32 32 32 32 32 32 33 33 34 34 34 35 35 35 36 36 37 37 37 38 39 40 41 41 41 41 42 42 43 43 45 45 45 46 46 47 47 49 50 52 52\n76 96", "output": "898" }, { "input": "98\n2 3 4 4 5 7 8 10 10 10 11 11 12 12 12 12 13 14 15 15 16 16 18 19 19 20 21 21 21 21 22 23 24 25 26 26 27 27 27 27 29 29 30 30 31 31 37 40 40 40 41 41 41 42 43 44 44 44 46 46 47 49 49 50 50 50 51 53 55 55 56 56 56 56 56 57 57 58 59 60 60 60 62 62 63 64 64 64 65 66 66 67 68 70 70 71 71\n8 90", "output": "3016" }, { "input": "99\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n66 95", "output": "29" }, { "input": "100\n1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 17 17\n39 52", "output": "82" }, { "input": "51\n5 7 9 16 19 25 26 29 29 30 31 32 32 41 43 44 47 49 50 50 51 52 54 55 56 63 64 66 67 70 74 74 77 78 79 80 80 85 86 87 89 89 90 92 93 94 94 95 95 97\n3 44", "output": "2268" } ]
1,389,877,526
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
92
307,200
n=int(input()) d=[] for i in range(n-1): d.append(0) d[i]=int(input()) a=int(input()) b=int(input()) c=0 y=0 while a!=b: a=a+1 y=y+d[c] c=c+1 print(y)
Title: Army Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: The Berland Armed Forces System consists of *n* ranks that are numbered using natural numbers from 1 to *n*, where 1 is the lowest rank and *n* is the highest rank. One needs exactly *d**i* years to rise from rank *i* to rank *i*<=+<=1. Reaching a certain rank *i* having not reached all the previous *i*<=-<=1 ranks is impossible. Vasya has just reached a new rank of *a*, but he dreams of holding the rank of *b*. Find for how many more years Vasya should serve in the army until he can finally realize his dream. Input Specification: The first input line contains an integer *n* (2<=≤<=*n*<=≤<=100). The second line contains *n*<=-<=1 integers *d**i* (1<=≤<=*d**i*<=≤<=100). The third input line contains two integers *a* and *b* (1<=≤<=*a*<=&lt;<=*b*<=≤<=*n*). The numbers on the lines are space-separated. Output Specification: Print the single number which is the number of years that Vasya needs to rise from rank *a* to rank *b*. Demo Input: ['3\n5 6\n1 2\n', '3\n5 6\n1 3\n'] Demo Output: ['5\n', '11\n'] Note: none
```python n=int(input()) d=[] for i in range(n-1): d.append(0) d[i]=int(input()) a=int(input()) b=int(input()) c=0 y=0 while a!=b: a=a+1 y=y+d[c] c=c+1 print(y) ```
-1
873
B
Balanced Substring
PROGRAMMING
1,500
[ "dp", "implementation" ]
null
null
You are given a string *s* consisting only of characters 0 and 1. A substring [*l*,<=*r*] of *s* is a string *s**l**s**l*<=+<=1*s**l*<=+<=2... *s**r*, and its length equals to *r*<=-<=*l*<=+<=1. A substring is called balanced if the number of zeroes (0) equals to the number of ones in this substring. You have to determine the length of the longest balanced substring of *s*.
The first line contains *n* (1<=≤<=*n*<=≤<=100000) — the number of characters in *s*. The second line contains a string *s* consisting of exactly *n* characters. Only characters 0 and 1 can appear in *s*.
If there is no non-empty balanced substring in *s*, print 0. Otherwise, print the length of the longest balanced substring.
[ "8\n11010111\n", "3\n111\n" ]
[ "4\n", "0\n" ]
In the first example you can choose the substring [3, 6]. It is balanced, and its length is 4. Choosing the substring [2, 5] is also possible. In the second example it's impossible to find a non-empty balanced substring.
0
[ { "input": "8\n11010111", "output": "4" }, { "input": "3\n111", "output": "0" }, { "input": "11\n00001000100", "output": "2" }, { "input": "10\n0100000000", "output": "2" }, { "input": "13\n0001000011010", "output": "6" }, { "input": "14\n00000100101011", "output": "10" }, { "input": "14\n01111101111111", "output": "2" }, { "input": "18\n110010101101111111", "output": "10" }, { "input": "11\n00010000011", "output": "4" }, { "input": "10\n1000010110", "output": "6" }, { "input": "15\n100000100000011", "output": "4" }, { "input": "18\n011010101110111101", "output": "8" }, { "input": "10\n0011011111", "output": "6" }, { "input": "3\n011", "output": "2" }, { "input": "14\n11111111111111", "output": "0" }, { "input": "65\n11001000110001001011011110111100000000101001001010101111000100010", "output": "48" }, { "input": "10\n0011111000", "output": "10" }, { "input": "13\n1110000001110", "output": "12" }, { "input": "3\n110", "output": "2" }, { "input": "4\n1110", "output": "2" }, { "input": "9\n001011001", "output": "8" }, { "input": "2\n10", "output": "2" }, { "input": "2\n01", "output": "2" }, { "input": "12\n110000110000", "output": "8" }, { "input": "3\n001", "output": "2" }, { "input": "14\n11000011000000", "output": "8" }, { "input": "19\n0000011111111100000", "output": "18" }, { "input": "45\n011010001100001111110001011100000001101100111", "output": "44" }, { "input": "18\n000001111111100000", "output": "16" }, { "input": "4\n0101", "output": "4" }, { "input": "12\n000101011001", "output": "10" } ]
1,694,006,215
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
15
0
n = int(input()) string = input() pref_balanced = [0] * (n + 1) for i, _ in enumerate(string): pref_balanced[i + 1] = pref_balanced[i] + (1 if (string[i] == '1') else -1) indexes = {} max_lenght = 0 for i, _ in enumerate(pref_balanced): if pref_balanced[i] in indexes: lenght = i - pref_balanced[i] max_lenght = max(lenght, max_lenght) else: indexes[pref_balanced[i]] = i
Title: Balanced Substring Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a string *s* consisting only of characters 0 and 1. A substring [*l*,<=*r*] of *s* is a string *s**l**s**l*<=+<=1*s**l*<=+<=2... *s**r*, and its length equals to *r*<=-<=*l*<=+<=1. A substring is called balanced if the number of zeroes (0) equals to the number of ones in this substring. You have to determine the length of the longest balanced substring of *s*. Input Specification: The first line contains *n* (1<=≤<=*n*<=≤<=100000) — the number of characters in *s*. The second line contains a string *s* consisting of exactly *n* characters. Only characters 0 and 1 can appear in *s*. Output Specification: If there is no non-empty balanced substring in *s*, print 0. Otherwise, print the length of the longest balanced substring. Demo Input: ['8\n11010111\n', '3\n111\n'] Demo Output: ['4\n', '0\n'] Note: In the first example you can choose the substring [3, 6]. It is balanced, and its length is 4. Choosing the substring [2, 5] is also possible. In the second example it's impossible to find a non-empty balanced substring.
```python n = int(input()) string = input() pref_balanced = [0] * (n + 1) for i, _ in enumerate(string): pref_balanced[i + 1] = pref_balanced[i] + (1 if (string[i] == '1') else -1) indexes = {} max_lenght = 0 for i, _ in enumerate(pref_balanced): if pref_balanced[i] in indexes: lenght = i - pref_balanced[i] max_lenght = max(lenght, max_lenght) else: indexes[pref_balanced[i]] = i ```
0
340
B
Maximal Area Quadrilateral
PROGRAMMING
2,100
[ "brute force", "geometry" ]
null
null
Iahub has drawn a set of *n* points in the cartesian plane which he calls "special points". A quadrilateral is a simple polygon without self-intersections with four sides (also called edges) and four vertices (also called corners). Please note that a quadrilateral doesn't have to be convex. A special quadrilateral is one which has all four vertices in the set of special points. Given the set of special points, please calculate the maximal area of a special quadrilateral.
The first line contains integer *n* (4<=≤<=*n*<=≤<=300). Each of the next *n* lines contains two integers: *x**i*, *y**i* (<=-<=1000<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the cartesian coordinates of *i*th special point. It is guaranteed that no three points are on the same line. It is guaranteed that no two points coincide.
Output a single real number — the maximal area of a special quadrilateral. The answer will be considered correct if its absolute or relative error does't exceed 10<=-<=9.
[ "5\n0 0\n0 4\n4 0\n4 4\n2 3\n" ]
[ "16.000000" ]
In the test example we can choose first 4 points to be the vertices of the quadrilateral. They form a square by side 4, so the area is 4·4 = 16.
3,000
[ { "input": "5\n0 0\n0 4\n4 0\n4 4\n2 3", "output": "16.000000" }, { "input": "10\n-6 -4\n-7 5\n-7 -7\n5 -7\n4 -9\n-6 7\n2 9\n-4 -6\n2 10\n-10 -4", "output": "166.000000" }, { "input": "4\n-3 3\n0 3\n-2 -1\n2 2", "output": "11.000000" }, { "input": "5\n-4 -3\n-3 -2\n3 3\n-1 2\n3 -3", "output": "29.500000" }, { "input": "6\n-4 -3\n-1 3\n0 0\n2 2\n2 1\n-3 1", "output": "15.000000" }, { "input": "7\n-2 -1\n4 3\n2 2\n-4 0\n-2 4\n0 0\n1 -3", "output": "32.500000" }, { "input": "4\n-874 606\n-996 -207\n897 847\n775 191", "output": "1261820.500000" }, { "input": "10\n156 -415\n879 198\n-250 -676\n-594 -433\n-207 368\n296 -641\n-387 -795\n143 -304\n-468 390\n-873 226", "output": "1129219.500000" }, { "input": "50\n-768 -243\n-741 -984\n-370 213\n-808 571\n-726 442\n234 452\n-105 -990\n-876 -278\n987 473\n-968 -531\n-274 -842\n259 -655\n-59 -555\n976 -396\n878 -85\n551 213\n675 599\n-990 -507\n1 48\n-147 919\n-218 798\n-191 928\n916 263\n-975 169\n567 -967\n394 16\n-224 915\n280 -613\n804 -877\n988 -576\n-256 -708\n757 546\n777 99\n-579 -608\n-102 1\n-309 636\n-24 -718\n644 -84\n111 -822\n-722 544\n78 595\n-194 716\n-409 -845\n-291 441\n388 379\n-950 277\n-718 359\n881 198\n198 670\n828 -820", "output": "2425414.000000" }, { "input": "4\n0 0\n0 5\n5 0\n1 1", "output": "10.000000" } ]
1,389,723,775
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
92
307,200
c, n = 0, int(input()) t = tuple(complex(map(int, input().split())) for i in range(n)) for x, i in enumerate(t, 1): for j in t[x: ]: a = b = 0 for k in t: d = (i.real - k.real) * (j.imag - k.imag) - (i.imag - k.imag) * (j.real - k.real) a, b = min(d, a), max(d, b) c = max(c, b - a) print(c / 2)
Title: Maximal Area Quadrilateral Time Limit: None seconds Memory Limit: None megabytes Problem Description: Iahub has drawn a set of *n* points in the cartesian plane which he calls "special points". A quadrilateral is a simple polygon without self-intersections with four sides (also called edges) and four vertices (also called corners). Please note that a quadrilateral doesn't have to be convex. A special quadrilateral is one which has all four vertices in the set of special points. Given the set of special points, please calculate the maximal area of a special quadrilateral. Input Specification: The first line contains integer *n* (4<=≤<=*n*<=≤<=300). Each of the next *n* lines contains two integers: *x**i*, *y**i* (<=-<=1000<=≤<=*x**i*,<=*y**i*<=≤<=1000) — the cartesian coordinates of *i*th special point. It is guaranteed that no three points are on the same line. It is guaranteed that no two points coincide. Output Specification: Output a single real number — the maximal area of a special quadrilateral. The answer will be considered correct if its absolute or relative error does't exceed 10<=-<=9. Demo Input: ['5\n0 0\n0 4\n4 0\n4 4\n2 3\n'] Demo Output: ['16.000000'] Note: In the test example we can choose first 4 points to be the vertices of the quadrilateral. They form a square by side 4, so the area is 4·4 = 16.
```python c, n = 0, int(input()) t = tuple(complex(map(int, input().split())) for i in range(n)) for x, i in enumerate(t, 1): for j in t[x: ]: a = b = 0 for k in t: d = (i.real - k.real) * (j.imag - k.imag) - (i.imag - k.imag) * (j.real - k.real) a, b = min(d, a), max(d, b) c = max(c, b - a) print(c / 2) ```
-1
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,596,643,760
2,147,483,647
Python 3
OK
TESTS
30
218
6,758,400
s = input() count_Up = 0 count_Lower = 0 for i in s: if i.islower(): count_Lower += 1 elif i.isupper(): count_Up += 1 if count_Lower > count_Up: s = s.lower() elif count_Lower < count_Up: s = s.upper() else: s = s.lower() print(s)
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python s = input() count_Up = 0 count_Lower = 0 for i in s: if i.islower(): count_Lower += 1 elif i.isupper(): count_Up += 1 if count_Lower > count_Up: s = s.lower() elif count_Lower < count_Up: s = s.upper() else: s = s.lower() print(s) ```
3.932911
479
A
Expression
PROGRAMMING
1,000
[ "brute force", "math" ]
null
null
Petya studies in a school and he adores Maths. His class has been studying arithmetic expressions. On the last class the teacher wrote three positive integers *a*, *b*, *c* on the blackboard. The task was to insert signs of operations '+' and '*', and probably brackets between the numbers so that the value of the resulting expression is as large as possible. Let's consider an example: assume that the teacher wrote numbers 1, 2 and 3 on the blackboard. Here are some ways of placing signs and brackets: - 1+2*3=7 - 1*(2+3)=5 - 1*2*3=6 - (1+2)*3=9 Note that you can insert operation signs only between *a* and *b*, and between *b* and *c*, that is, you cannot swap integers. For instance, in the given sample you cannot get expression (1+3)*2. It's easy to see that the maximum value that you can obtain is 9. Your task is: given *a*, *b* and *c* print the maximum value that you can get.
The input contains three integers *a*, *b* and *c*, each on a single line (1<=≤<=*a*,<=*b*,<=*c*<=≤<=10).
Print the maximum value of the expression that you can obtain.
[ "1\n2\n3\n", "2\n10\n3\n" ]
[ "9\n", "60\n" ]
none
500
[ { "input": "1\n2\n3", "output": "9" }, { "input": "2\n10\n3", "output": "60" }, { "input": "1\n1\n1", "output": "3" }, { "input": "1\n2\n1", "output": "4" }, { "input": "10\n10\n10", "output": "1000" }, { "input": "5\n1\n3", "output": "20" }, { "input": "3\n1\n5", "output": "20" }, { "input": "6\n7\n1", "output": "48" }, { "input": "1\n8\n3", "output": "27" }, { "input": "9\n7\n2", "output": "126" }, { "input": "1\n1\n10", "output": "20" }, { "input": "9\n1\n1", "output": "18" }, { "input": "10\n5\n6", "output": "300" }, { "input": "8\n9\n7", "output": "504" }, { "input": "4\n2\n10", "output": "80" }, { "input": "2\n8\n3", "output": "48" }, { "input": "3\n5\n7", "output": "105" }, { "input": "1\n10\n1", "output": "12" }, { "input": "2\n2\n2", "output": "8" }, { "input": "5\n6\n1", "output": "35" }, { "input": "10\n1\n1", "output": "20" }, { "input": "1\n6\n1", "output": "8" }, { "input": "1\n9\n1", "output": "11" }, { "input": "2\n1\n2", "output": "6" }, { "input": "2\n6\n1", "output": "14" }, { "input": "9\n2\n1", "output": "27" }, { "input": "1\n9\n2", "output": "20" }, { "input": "1\n3\n1", "output": "5" }, { "input": "2\n1\n1", "output": "4" } ]
1,691,685,247
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
5
46
0
import sys input = sys.stdin.readline ############ ---- Input Functions ---- ############ def inp(): return int(input()) def inlt(): return list(map(int, input().split())) def insr(): s = input() return list(s[:len(s) - 1]) def invr(): return map(int, input().split()) n1 = inp() n2 = inp() n3 = inp() maxy = 0 if n1 == 1 and n3 == 1: maxy = n1 + n2 + n3 # Here, the sum of all three numbers is used elif n1 == 1: maxy = (n1 + n2) * n3 elif n3 == 1: maxy = max(n1 * (n2 + n3), (n1 + n2) * n3) else: maxy = n1 * n2 * n3 print(maxy)
Title: Expression Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petya studies in a school and he adores Maths. His class has been studying arithmetic expressions. On the last class the teacher wrote three positive integers *a*, *b*, *c* on the blackboard. The task was to insert signs of operations '+' and '*', and probably brackets between the numbers so that the value of the resulting expression is as large as possible. Let's consider an example: assume that the teacher wrote numbers 1, 2 and 3 on the blackboard. Here are some ways of placing signs and brackets: - 1+2*3=7 - 1*(2+3)=5 - 1*2*3=6 - (1+2)*3=9 Note that you can insert operation signs only between *a* and *b*, and between *b* and *c*, that is, you cannot swap integers. For instance, in the given sample you cannot get expression (1+3)*2. It's easy to see that the maximum value that you can obtain is 9. Your task is: given *a*, *b* and *c* print the maximum value that you can get. Input Specification: The input contains three integers *a*, *b* and *c*, each on a single line (1<=≤<=*a*,<=*b*,<=*c*<=≤<=10). Output Specification: Print the maximum value of the expression that you can obtain. Demo Input: ['1\n2\n3\n', '2\n10\n3\n'] Demo Output: ['9\n', '60\n'] Note: none
```python import sys input = sys.stdin.readline ############ ---- Input Functions ---- ############ def inp(): return int(input()) def inlt(): return list(map(int, input().split())) def insr(): s = input() return list(s[:len(s) - 1]) def invr(): return map(int, input().split()) n1 = inp() n2 = inp() n3 = inp() maxy = 0 if n1 == 1 and n3 == 1: maxy = n1 + n2 + n3 # Here, the sum of all three numbers is used elif n1 == 1: maxy = (n1 + n2) * n3 elif n3 == 1: maxy = max(n1 * (n2 + n3), (n1 + n2) * n3) else: maxy = n1 * n2 * n3 print(maxy) ```
0
538
B
Quasi Binary
PROGRAMMING
1,400
[ "constructive algorithms", "dp", "greedy", "implementation" ]
null
null
A number is called quasibinary if its decimal representation contains only digits 0 or 1. For example, numbers 0, 1, 101, 110011 — are quasibinary and numbers 2, 12, 900 are not. You are given a positive integer *n*. Represent it as a sum of minimum number of quasibinary numbers.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=106).
In the first line print a single integer *k* — the minimum number of numbers in the representation of number *n* as a sum of quasibinary numbers. In the second line print *k* numbers — the elements of the sum. All these numbers should be quasibinary according to the definition above, their sum should equal *n*. Do not have to print the leading zeroes in the numbers. The order of numbers doesn't matter. If there are multiple possible representations, you are allowed to print any of them.
[ "9\n", "32\n" ]
[ "9\n1 1 1 1 1 1 1 1 1 \n", "3\n10 11 11 \n" ]
none
1,000
[ { "input": "9", "output": "9\n1 1 1 1 1 1 1 1 1 " }, { "input": "32", "output": "3\n10 11 11 " }, { "input": "1", "output": "1\n1 " }, { "input": "415", "output": "5\n1 101 101 101 111 " }, { "input": "10011", "output": "1\n10011 " }, { "input": "10201", "output": "2\n100 10101 " }, { "input": "314159", "output": "9\n1 1 1 1 11 1011 101011 101011 111111 " }, { "input": "999999", "output": "9\n111111 111111 111111 111111 111111 111111 111111 111111 111111 " }, { "input": "2", "output": "2\n1 1 " }, { "input": "10", "output": "1\n10 " }, { "input": "21", "output": "2\n10 11 " }, { "input": "98", "output": "9\n10 11 11 11 11 11 11 11 11 " }, { "input": "102030", "output": "3\n10 1010 101010 " }, { "input": "909090", "output": "9\n101010 101010 101010 101010 101010 101010 101010 101010 101010 " }, { "input": "909823", "output": "9\n101000 101100 101100 101100 101100 101100 101101 101111 101111 " }, { "input": "1000000", "output": "1\n1000000 " }, { "input": "111111", "output": "1\n111111 " }, { "input": "123456", "output": "6\n1 11 111 1111 11111 111111 " }, { "input": "987654", "output": "9\n100000 110000 111000 111100 111110 111111 111111 111111 111111 " }, { "input": "908172", "output": "9\n100000 101000 101010 101010 101010 101010 101010 101011 101111 " }, { "input": "8", "output": "8\n1 1 1 1 1 1 1 1 " }, { "input": "100009", "output": "9\n1 1 1 1 1 1 1 1 100001 " }, { "input": "900000", "output": "9\n100000 100000 100000 100000 100000 100000 100000 100000 100000 " }, { "input": "1435", "output": "5\n1 101 111 111 1111 " }, { "input": "1453", "output": "5\n10 110 111 111 1111 " } ]
1,473,289,429
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
61
0
d=set() def f(n): if n>10**6:return d.add(n);f(n*10);f(n*10+1) f(1) r=[] n=int(input()) for i in sorted(d)[::-1]: while n>=i:n-=i;r+=[i] print(len(r),'\n'+' '.join(map(str,r)))
Title: Quasi Binary Time Limit: None seconds Memory Limit: None megabytes Problem Description: A number is called quasibinary if its decimal representation contains only digits 0 or 1. For example, numbers 0, 1, 101, 110011 — are quasibinary and numbers 2, 12, 900 are not. You are given a positive integer *n*. Represent it as a sum of minimum number of quasibinary numbers. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=106). Output Specification: In the first line print a single integer *k* — the minimum number of numbers in the representation of number *n* as a sum of quasibinary numbers. In the second line print *k* numbers — the elements of the sum. All these numbers should be quasibinary according to the definition above, their sum should equal *n*. Do not have to print the leading zeroes in the numbers. The order of numbers doesn't matter. If there are multiple possible representations, you are allowed to print any of them. Demo Input: ['9\n', '32\n'] Demo Output: ['9\n1 1 1 1 1 1 1 1 1 \n', '3\n10 11 11 \n'] Note: none
```python d=set() def f(n): if n>10**6:return d.add(n);f(n*10);f(n*10+1) f(1) r=[] n=int(input()) for i in sorted(d)[::-1]: while n>=i:n-=i;r+=[i] print(len(r),'\n'+' '.join(map(str,r))) ```
0
492
B
Vanya and Lanterns
PROGRAMMING
1,200
[ "binary search", "implementation", "math", "sortings" ]
null
null
Vanya walks late at night along a straight street of length *l*, lit by *n* lanterns. Consider the coordinate system with the beginning of the street corresponding to the point 0, and its end corresponding to the point *l*. Then the *i*-th lantern is at the point *a**i*. The lantern lights all points of the street that are at the distance of at most *d* from it, where *d* is some positive number, common for all lanterns. Vanya wonders: what is the minimum light radius *d* should the lanterns have to light the whole street?
The first line contains two integers *n*, *l* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*l*<=≤<=109) — the number of lanterns and the length of the street respectively. The next line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=*l*). Multiple lanterns can be located at the same point. The lanterns may be located at the ends of the street.
Print the minimum light radius *d*, needed to light the whole street. The answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=9.
[ "7 15\n15 5 3 7 9 14 0\n", "2 5\n2 5\n" ]
[ "2.5000000000\n", "2.0000000000\n" ]
Consider the second sample. At *d* = 2 the first lantern will light the segment [0, 4] of the street, and the second lantern will light segment [3, 5]. Thus, the whole street will be lit.
1,000
[ { "input": "7 15\n15 5 3 7 9 14 0", "output": "2.5000000000" }, { "input": "2 5\n2 5", "output": "2.0000000000" }, { "input": "46 615683844\n431749087 271781274 274974690 324606253 480870261 401650581 13285442 478090364 266585394 425024433 588791449 492057200 391293435 563090494 317950 173675329 473068378 356306865 311731938 192959832 321180686 141984626 578985584 512026637 175885185 590844074 47103801 212211134 330150 509886963 565955809 315640375 612907074 500474373 524310737 568681652 315339618 478782781 518873818 271322031 74600969 539099112 85129347 222068995 106014720 77282307", "output": "22258199.5000000000" }, { "input": "2 1000000000\n0 1000000000", "output": "500000000.0000000000" }, { "input": "2 555\n200 300", "output": "255.0000000000" }, { "input": "1 1\n1", "output": "1.0000000000" }, { "input": "1 1\n0", "output": "1.0000000000" }, { "input": "1 1000000000\n0", "output": "1000000000.0000000000" }, { "input": "1 1000000000\n1000000000", "output": "1000000000.0000000000" }, { "input": "1 999999999\n499999999", "output": "500000000.0000000000" }, { "input": "4 700\n0 250 475 700", "output": "125.0000000000" }, { "input": "4 700\n0 225 450 700", "output": "125.0000000000" }, { "input": "5 1000\n0 250 500 750 1000", "output": "125.0000000000" }, { "input": "5 2000\n1001 1001 1001 1001 1001", "output": "1001.0000000000" }, { "input": "1 999\n501", "output": "501.0000000000" }, { "input": "2 1000\n400 600", "output": "400.0000000000" }, { "input": "4 15\n1 3 9 11", "output": "4.0000000000" }, { "input": "1 5\n2", "output": "3.0000000000" } ]
1,695,109,484
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
31
0
a=input().split() l=list(map(int,input().split())) l.sort() L=[0] for x in range(len(l)-1): L.append(l[x+1]-l[x]) L.append(a[1]) print(0.5*max(L))
Title: Vanya and Lanterns Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vanya walks late at night along a straight street of length *l*, lit by *n* lanterns. Consider the coordinate system with the beginning of the street corresponding to the point 0, and its end corresponding to the point *l*. Then the *i*-th lantern is at the point *a**i*. The lantern lights all points of the street that are at the distance of at most *d* from it, where *d* is some positive number, common for all lanterns. Vanya wonders: what is the minimum light radius *d* should the lanterns have to light the whole street? Input Specification: The first line contains two integers *n*, *l* (1<=≤<=*n*<=≤<=1000, 1<=≤<=*l*<=≤<=109) — the number of lanterns and the length of the street respectively. The next line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=*l*). Multiple lanterns can be located at the same point. The lanterns may be located at the ends of the street. Output Specification: Print the minimum light radius *d*, needed to light the whole street. The answer will be considered correct if its absolute or relative error doesn't exceed 10<=-<=9. Demo Input: ['7 15\n15 5 3 7 9 14 0\n', '2 5\n2 5\n'] Demo Output: ['2.5000000000\n', '2.0000000000\n'] Note: Consider the second sample. At *d* = 2 the first lantern will light the segment [0, 4] of the street, and the second lantern will light segment [3, 5]. Thus, the whole street will be lit.
```python a=input().split() l=list(map(int,input().split())) l.sort() L=[0] for x in range(len(l)-1): L.append(l[x+1]-l[x]) L.append(a[1]) print(0.5*max(L)) ```
-1
228
D
Zigzag
PROGRAMMING
2,100
[ "data structures" ]
null
null
The court wizard Zigzag wants to become a famous mathematician. For that, he needs his own theorem, like the Cauchy theorem, or his sum, like the Minkowski sum. But most of all he wants to have his sequence, like the Fibonacci sequence, and his function, like the Euler's totient function. The Zigag's sequence with the zigzag factor z is an infinite sequence *S**i**z* (*i*<=≥<=1; *z*<=≥<=2), that is determined as follows: - *S**i**z*<==<=2, when ; - , when ; - , when . Operation means taking the remainder from dividing number *x* by number *y*. For example, the beginning of sequence *S**i*3 (zigzag factor 3) looks as follows: 1, 2, 3, 2, 1, 2, 3, 2, 1. Let's assume that we are given an array *a*, consisting of *n* integers. Let's define element number *i* (1<=≤<=*i*<=≤<=*n*) of the array as *a**i*. The Zigzag function is function , where *l*,<=*r*,<=*z* satisfy the inequalities 1<=≤<=*l*<=≤<=*r*<=≤<=*n*, *z*<=≥<=2. To become better acquainted with the Zigzag sequence and the Zigzag function, the wizard offers you to implement the following operations on the given array *a*. 1. The assignment operation. The operation parameters are (*p*,<=*v*). The operation denotes assigning value *v* to the *p*-th array element. After the operation is applied, the value of the array element *a**p* equals *v*. 1. The Zigzag operation. The operation parameters are (*l*,<=*r*,<=*z*). The operation denotes calculating the Zigzag function *Z*(*l*,<=*r*,<=*z*). Explore the magical powers of zigzags, implement the described operations.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — The number of elements in array *a*. The second line contains *n* space-separated integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the elements of the array. The third line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of operations. Next *m* lines contain the operations' descriptions. An operation's description starts with integer *t**i* (1<=≤<=*t**i*<=≤<=2) — the operation type. - If *t**i*<==<=1 (assignment operation), then on the line follow two space-separated integers: *p**i*,<=*v**i* (1<=≤<=*p**i*<=≤<=*n*; 1<=≤<=*v**i*<=≤<=109) — the parameters of the assigning operation. - If *t**i*<==<=2 (Zigzag operation), then on the line follow three space-separated integers: *l**i*,<=*r**i*,<=*z**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*; 2<=≤<=*z**i*<=≤<=6) — the parameters of the Zigzag operation. You should execute the operations in the order, in which they are given in the input.
For each Zigzag operation print the calculated value of the Zigzag function on a single line. Print the values for Zigzag functions in the order, in which they are given in the input. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier.
[ "5\n2 3 1 5 5\n4\n2 2 3 2\n2 1 5 3\n1 3 5\n2 1 5 3\n" ]
[ "5\n26\n38\n" ]
Explanation of the sample test: - Result of the first operation is *Z*(2, 3, 2) = 3·1 + 1·2 = 5. - Result of the second operation is *Z*(1, 5, 3) = 2·1 + 3·2 + 1·3 + 5·2 + 5·1 = 26. - After the third operation array *a* is equal to 2, 3, 5, 5, 5. - Result of the forth operation is *Z*(1, 5, 3) = 2·1 + 3·2 + 5·3 + 5·2 + 5·1 = 38.
2,000
[]
1,691,442,542
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
62
0
print("_RANDOM_GUESS_1691442542.3355112")# 1691442542.3355286
Title: Zigzag Time Limit: None seconds Memory Limit: None megabytes Problem Description: The court wizard Zigzag wants to become a famous mathematician. For that, he needs his own theorem, like the Cauchy theorem, or his sum, like the Minkowski sum. But most of all he wants to have his sequence, like the Fibonacci sequence, and his function, like the Euler's totient function. The Zigag's sequence with the zigzag factor z is an infinite sequence *S**i**z* (*i*<=≥<=1; *z*<=≥<=2), that is determined as follows: - *S**i**z*<==<=2, when ; - , when ; - , when . Operation means taking the remainder from dividing number *x* by number *y*. For example, the beginning of sequence *S**i*3 (zigzag factor 3) looks as follows: 1, 2, 3, 2, 1, 2, 3, 2, 1. Let's assume that we are given an array *a*, consisting of *n* integers. Let's define element number *i* (1<=≤<=*i*<=≤<=*n*) of the array as *a**i*. The Zigzag function is function , where *l*,<=*r*,<=*z* satisfy the inequalities 1<=≤<=*l*<=≤<=*r*<=≤<=*n*, *z*<=≥<=2. To become better acquainted with the Zigzag sequence and the Zigzag function, the wizard offers you to implement the following operations on the given array *a*. 1. The assignment operation. The operation parameters are (*p*,<=*v*). The operation denotes assigning value *v* to the *p*-th array element. After the operation is applied, the value of the array element *a**p* equals *v*. 1. The Zigzag operation. The operation parameters are (*l*,<=*r*,<=*z*). The operation denotes calculating the Zigzag function *Z*(*l*,<=*r*,<=*z*). Explore the magical powers of zigzags, implement the described operations. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105) — The number of elements in array *a*. The second line contains *n* space-separated integers: *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109) — the elements of the array. The third line contains integer *m* (1<=≤<=*m*<=≤<=105) — the number of operations. Next *m* lines contain the operations' descriptions. An operation's description starts with integer *t**i* (1<=≤<=*t**i*<=≤<=2) — the operation type. - If *t**i*<==<=1 (assignment operation), then on the line follow two space-separated integers: *p**i*,<=*v**i* (1<=≤<=*p**i*<=≤<=*n*; 1<=≤<=*v**i*<=≤<=109) — the parameters of the assigning operation. - If *t**i*<==<=2 (Zigzag operation), then on the line follow three space-separated integers: *l**i*,<=*r**i*,<=*z**i* (1<=≤<=*l**i*<=≤<=*r**i*<=≤<=*n*; 2<=≤<=*z**i*<=≤<=6) — the parameters of the Zigzag operation. You should execute the operations in the order, in which they are given in the input. Output Specification: For each Zigzag operation print the calculated value of the Zigzag function on a single line. Print the values for Zigzag functions in the order, in which they are given in the input. Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specifier. Demo Input: ['5\n2 3 1 5 5\n4\n2 2 3 2\n2 1 5 3\n1 3 5\n2 1 5 3\n'] Demo Output: ['5\n26\n38\n'] Note: Explanation of the sample test: - Result of the first operation is *Z*(2, 3, 2) = 3·1 + 1·2 = 5. - Result of the second operation is *Z*(1, 5, 3) = 2·1 + 3·2 + 1·3 + 5·2 + 5·1 = 26. - After the third operation array *a* is equal to 2, 3, 5, 5, 5. - Result of the forth operation is *Z*(1, 5, 3) = 2·1 + 3·2 + 5·3 + 5·2 + 5·1 = 38.
```python print("_RANDOM_GUESS_1691442542.3355112")# 1691442542.3355286 ```
0
821
B
Okabe and Banana Trees
PROGRAMMING
1,300
[ "brute force", "math" ]
null
null
Okabe needs bananas for one of his experiments for some strange reason. So he decides to go to the forest and cut banana trees. Consider the point (*x*,<=*y*) in the 2D plane such that *x* and *y* are integers and 0<=≤<=*x*,<=*y*. There is a tree in such a point, and it has *x*<=+<=*y* bananas. There are no trees nor bananas in other points. Now, Okabe draws a line with equation . Okabe can select a single rectangle with axis aligned sides with all points on or under the line and cut all the trees in all points that are inside or on the border of this rectangle and take their bananas. Okabe's rectangle can be degenerate; that is, it can be a line segment or even a point. Help Okabe and find the maximum number of bananas he can get if he chooses the rectangle wisely. Okabe is sure that the answer does not exceed 1018. You can trust him.
The first line of input contains two space-separated integers *m* and *b* (1<=≤<=*m*<=≤<=1000, 1<=≤<=*b*<=≤<=10000).
Print the maximum number of bananas Okabe can get from the trees he cuts.
[ "1 5\n", "2 3\n" ]
[ "30\n", "25\n" ]
The graph above corresponds to sample test 1. The optimal rectangle is shown in red and has 30 bananas.
1,000
[ { "input": "1 5", "output": "30" }, { "input": "2 3", "output": "25" }, { "input": "4 6", "output": "459" }, { "input": "6 3", "output": "171" }, { "input": "1 1", "output": "1" }, { "input": "10 1", "output": "55" }, { "input": "20 10", "output": "40326" }, { "input": "1000 10000", "output": "74133360011484445" }, { "input": "139 9252", "output": "1137907933561080" }, { "input": "859 8096", "output": "29032056230649780" }, { "input": "987 4237", "output": "5495451829240878" }, { "input": "411 3081", "output": "366755153481948" }, { "input": "539 9221", "output": "16893595018603386" }, { "input": "259 770", "output": "2281741798549" }, { "input": "387 5422", "output": "1771610559998400" }, { "input": "515 1563", "output": "75233740231341" }, { "input": "939 407", "output": "4438222781916" }, { "input": "518 6518", "output": "5511730799718825" }, { "input": "646 1171", "output": "49802404050106" }, { "input": "70 7311", "output": "142915220249910" }, { "input": "494 6155", "output": "4221391613846823" }, { "input": "918 7704", "output": "28569727339126165" }, { "input": "46 3844", "output": "9007500020760" }, { "input": "174 2688", "output": "43730657099581" }, { "input": "894 4637", "output": "5909849585253250" }, { "input": "22 3481", "output": "1548544125646" }, { "input": "446 5030", "output": "1878390629993745" }, { "input": "440 8704", "output": "9470470760118060" }, { "input": "569 7548", "output": "10326205017481606" }, { "input": "289 6393", "output": "1620061541812350" }, { "input": "417 1045", "output": "14758909519725" }, { "input": "841 7185", "output": "19452619774222875" }, { "input": "969 6030", "output": "15265318959845745" }, { "input": "393 4874", "output": "1327174123029975" }, { "input": "817 3719", "output": "2546859449982016" }, { "input": "945 2563", "output": "1115613396515835" }, { "input": "369 4511", "output": "927715710215505" }, { "input": "555 3594", "output": "1061060598862891" } ]
1,515,657,751
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
30
5,632,000
m,b= map(int, input().split(" ")) mx=0 for j in range(0,b): x=(b-j)*m s =int(((j+x)*(x+1)*(j+1))) mx = max(mx, s) print(int(mx)) print((mx//2))
Title: Okabe and Banana Trees Time Limit: None seconds Memory Limit: None megabytes Problem Description: Okabe needs bananas for one of his experiments for some strange reason. So he decides to go to the forest and cut banana trees. Consider the point (*x*,<=*y*) in the 2D plane such that *x* and *y* are integers and 0<=≤<=*x*,<=*y*. There is a tree in such a point, and it has *x*<=+<=*y* bananas. There are no trees nor bananas in other points. Now, Okabe draws a line with equation . Okabe can select a single rectangle with axis aligned sides with all points on or under the line and cut all the trees in all points that are inside or on the border of this rectangle and take their bananas. Okabe's rectangle can be degenerate; that is, it can be a line segment or even a point. Help Okabe and find the maximum number of bananas he can get if he chooses the rectangle wisely. Okabe is sure that the answer does not exceed 1018. You can trust him. Input Specification: The first line of input contains two space-separated integers *m* and *b* (1<=≤<=*m*<=≤<=1000, 1<=≤<=*b*<=≤<=10000). Output Specification: Print the maximum number of bananas Okabe can get from the trees he cuts. Demo Input: ['1 5\n', '2 3\n'] Demo Output: ['30\n', '25\n'] Note: The graph above corresponds to sample test 1. The optimal rectangle is shown in red and has 30 bananas.
```python m,b= map(int, input().split(" ")) mx=0 for j in range(0,b): x=(b-j)*m s =int(((j+x)*(x+1)*(j+1))) mx = max(mx, s) print(int(mx)) print((mx//2)) ```
0
985
C
Liebig's Barrels
PROGRAMMING
1,500
[ "greedy" ]
null
null
You have *m*<==<=*n*·*k* wooden staves. The *i*-th stave has length *a**i*. You have to assemble *n* barrels consisting of *k* staves each, you can use any *k* staves to construct a barrel. Each stave must belong to exactly one barrel. Let volume *v**j* of barrel *j* be equal to the length of the minimal stave in it. You want to assemble exactly *n* barrels with the maximal total sum of volumes. But you have to make them equal enough, so a difference between volumes of any pair of the resulting barrels must not exceed *l*, i.e. |*v**x*<=-<=*v**y*|<=≤<=*l* for any 1<=≤<=*x*<=≤<=*n* and 1<=≤<=*y*<=≤<=*n*. Print maximal total sum of volumes of equal enough barrels or 0 if it's impossible to satisfy the condition above.
The first line contains three space-separated integers *n*, *k* and *l* (1<=≤<=*n*,<=*k*<=≤<=105, 1<=≤<=*n*·*k*<=≤<=105, 0<=≤<=*l*<=≤<=109). The second line contains *m*<==<=*n*·*k* space-separated integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=109) — lengths of staves.
Print single integer — maximal total sum of the volumes of barrels or 0 if it's impossible to construct exactly *n* barrels satisfying the condition |*v**x*<=-<=*v**y*|<=≤<=*l* for any 1<=≤<=*x*<=≤<=*n* and 1<=≤<=*y*<=≤<=*n*.
[ "4 2 1\n2 2 1 2 3 2 2 3\n", "2 1 0\n10 10\n", "1 2 1\n5 2\n", "3 2 1\n1 2 3 4 5 6\n" ]
[ "7\n", "20\n", "2\n", "0\n" ]
In the first example you can form the following barrels: [1, 2], [2, 2], [2, 3], [2, 3]. In the second example you can form the following barrels: [10], [10]. In the third example you can form the following barrels: [2, 5]. In the fourth example difference between volumes of barrels in any partition is at least 2 so it is impossible to make barrels equal enough.
0
[ { "input": "4 2 1\n2 2 1 2 3 2 2 3", "output": "7" }, { "input": "2 1 0\n10 10", "output": "20" }, { "input": "1 2 1\n5 2", "output": "2" }, { "input": "3 2 1\n1 2 3 4 5 6", "output": "0" }, { "input": "10 3 189\n267 697 667 4 52 128 85 616 142 344 413 660 962 194 618 329 266 593 558 447 89 983 964 716 32 890 267 164 654 71", "output": "0" }, { "input": "10 3 453\n277 706 727 812 692 686 196 507 911 40 498 704 573 381 463 759 704 381 693 640 326 405 47 834 962 521 463 740 520 494", "output": "2979" }, { "input": "10 3 795\n398 962 417 307 760 534 536 450 421 280 608 111 687 726 941 903 630 900 555 403 795 122 814 188 234 976 679 539 525 104", "output": "5045" }, { "input": "6 2 29\n1 2 3 3 4 5 5 6 7 7 8 9", "output": "28" }, { "input": "2 1 2\n1 2", "output": "3" } ]
1,527,517,199
2,147,483,647
Python 3
RUNTIME_ERROR
TESTS
0
61
0
#-*- coding:utf-8 -*- tmpstr = input().strip() tmpvec = tmpstr.split(' ') n = int(tmpvec[0]) k = int(tmpvec[1]) l = int(tmpvec[2]) tmpstr = input().strip() tmpvec = tmpstr.split(' ') vec_len = len(tmpvec) data = map(int, tmpvec) dlist = list(data) minivalue = min(dlist) dlist.sort() volume = 0 index = 0 for i in range(n): if dlist[index] > dlist[0] + l: print(0) exit(0) volunme = volume + dlist[index] index = index +4 print(volunme)
Title: Liebig's Barrels Time Limit: None seconds Memory Limit: None megabytes Problem Description: You have *m*<==<=*n*·*k* wooden staves. The *i*-th stave has length *a**i*. You have to assemble *n* barrels consisting of *k* staves each, you can use any *k* staves to construct a barrel. Each stave must belong to exactly one barrel. Let volume *v**j* of barrel *j* be equal to the length of the minimal stave in it. You want to assemble exactly *n* barrels with the maximal total sum of volumes. But you have to make them equal enough, so a difference between volumes of any pair of the resulting barrels must not exceed *l*, i.e. |*v**x*<=-<=*v**y*|<=≤<=*l* for any 1<=≤<=*x*<=≤<=*n* and 1<=≤<=*y*<=≤<=*n*. Print maximal total sum of volumes of equal enough barrels or 0 if it's impossible to satisfy the condition above. Input Specification: The first line contains three space-separated integers *n*, *k* and *l* (1<=≤<=*n*,<=*k*<=≤<=105, 1<=≤<=*n*·*k*<=≤<=105, 0<=≤<=*l*<=≤<=109). The second line contains *m*<==<=*n*·*k* space-separated integers *a*1,<=*a*2,<=...,<=*a**m* (1<=≤<=*a**i*<=≤<=109) — lengths of staves. Output Specification: Print single integer — maximal total sum of the volumes of barrels or 0 if it's impossible to construct exactly *n* barrels satisfying the condition |*v**x*<=-<=*v**y*|<=≤<=*l* for any 1<=≤<=*x*<=≤<=*n* and 1<=≤<=*y*<=≤<=*n*. Demo Input: ['4 2 1\n2 2 1 2 3 2 2 3\n', '2 1 0\n10 10\n', '1 2 1\n5 2\n', '3 2 1\n1 2 3 4 5 6\n'] Demo Output: ['7\n', '20\n', '2\n', '0\n'] Note: In the first example you can form the following barrels: [1, 2], [2, 2], [2, 3], [2, 3]. In the second example you can form the following barrels: [10], [10]. In the third example you can form the following barrels: [2, 5]. In the fourth example difference between volumes of barrels in any partition is at least 2 so it is impossible to make barrels equal enough.
```python #-*- coding:utf-8 -*- tmpstr = input().strip() tmpvec = tmpstr.split(' ') n = int(tmpvec[0]) k = int(tmpvec[1]) l = int(tmpvec[2]) tmpstr = input().strip() tmpvec = tmpstr.split(' ') vec_len = len(tmpvec) data = map(int, tmpvec) dlist = list(data) minivalue = min(dlist) dlist.sort() volume = 0 index = 0 for i in range(n): if dlist[index] > dlist[0] + l: print(0) exit(0) volunme = volume + dlist[index] index = index +4 print(volunme) ```
-1
723
D
Lakes in Berland
PROGRAMMING
1,600
[ "dfs and similar", "dsu", "graphs", "greedy", "implementation" ]
null
null
The map of Berland is a rectangle of the size *n*<=×<=*m*, which consists of cells of size 1<=×<=1. Each cell is either land or water. The map is surrounded by the ocean. Lakes are the maximal regions of water cells, connected by sides, which are not connected with the ocean. Formally, lake is a set of water cells, such that it's possible to get from any cell of the set to any other without leaving the set and moving only to cells adjacent by the side, none of them is located on the border of the rectangle, and it's impossible to add one more water cell to the set such that it will be connected with any other cell. You task is to fill up with the earth the minimum number of water cells so that there will be exactly *k* lakes in Berland. Note that the initial number of lakes on the map is not less than *k*.
The first line of the input contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*m*<=≤<=50, 0<=≤<=*k*<=≤<=50) — the sizes of the map and the number of lakes which should be left on the map. The next *n* lines contain *m* characters each — the description of the map. Each of the characters is either '.' (it means that the corresponding cell is water) or '*' (it means that the corresponding cell is land). It is guaranteed that the map contain at least *k* lakes.
In the first line print the minimum number of cells which should be transformed from water to land. In the next *n* lines print *m* symbols — the map after the changes. The format must strictly follow the format of the map in the input data (there is no need to print the size of the map). If there are several answers, print any of them. It is guaranteed that the answer exists on the given data.
[ "5 4 1\n****\n*..*\n****\n**.*\n..**\n", "3 3 0\n***\n*.*\n***\n" ]
[ "1\n****\n*..*\n****\n****\n..**\n", "1\n***\n***\n***\n" ]
In the first example there are only two lakes — the first consists of the cells (2, 2) and (2, 3), the second consists of the cell (4, 3). It is profitable to cover the second lake because it is smaller. Pay attention that the area of water in the lower left corner is not a lake because this area share a border with the ocean.
2,000
[ { "input": "5 4 1\n****\n*..*\n****\n**.*\n..**", "output": "1\n****\n*..*\n****\n****\n..**" }, { "input": "3 3 0\n***\n*.*\n***", "output": "1\n***\n***\n***" }, { "input": "3 5 1\n.**.*\n*.*.*\n***..", "output": "0\n.**.*\n*.*.*\n***.." }, { "input": "3 5 0\n.**.*\n*.*.*\n***..", "output": "1\n.**.*\n***.*\n***.." }, { "input": "3 50 7\n***.********.*********************.**********.****\n*...**..*.**.*.*.*.*.*.*.*..*.*.*.*.*.*.*.*.*.*..*\n****************.*.********.**********************", "output": "8\n***.********.*********************.**********.****\n*...**..****.***.*.*******..*******.*.*.*.*.*.*..*\n****************.*.********.**********************" }, { "input": "50 3 4\n***\n*.*\n*.*\n*.*\n***\n***\n*.*\n***\n.**\n***\n..*\n***\n***\n*.*\n***\n*.*\n***\n***\n*.*\n***\n*.*\n*.*\n*.*\n*.*\n***\n*.*\n*.*\n*.*\n*.*\n***\n***\n*.*\n*.*\n*.*\n*.*\n*.*\n***\n***\n***\n*.*\n***\n***\n***\n*.*\n*.*\n*.*\n***\n***\n***\n***", "output": "8\n***\n***\n***\n***\n***\n***\n***\n***\n.**\n***\n..*\n***\n***\n***\n***\n***\n***\n***\n***\n***\n*.*\n*.*\n*.*\n*.*\n***\n*.*\n*.*\n*.*\n*.*\n***\n***\n*.*\n*.*\n*.*\n*.*\n*.*\n***\n***\n***\n***\n***\n***\n***\n*.*\n*.*\n*.*\n***\n***\n***\n***" }, { "input": "1 1 0\n.", "output": "0\n." }, { "input": "1 1 0\n*", "output": "0\n*" } ]
1,674,064,623
2,147,483,647
Python 3
OK
TESTS
26
46
0
n,m,k=map(int,input().split()) visited=[[False]*(52) for _ in range(54)] l=[] matrix=[] for _ in range(n): matrix.append(list(el for el in input())) def dfs(i,j): visited[i][j]=True q=[(i,j)] t=[] f=False while q: x,y=q.pop() t.append((x,y)) if x==0 or x==n-1 or y==0 or y==m-1: f=True for dx,dy in [(1,0),(0,1),(-1,0),(0,-1)]: nx,ny=dx+x,dy+y if 0<=nx<n and 0<=ny<m and matrix[nx][ny]=="." and visited[nx][ny]==False: q.append((nx,ny)) visited[nx][ny]=True if not f: l.append(t) for i in range(n): for j in range(m): if visited[i][j]==False and matrix[i][j]==".": dfs(i,j) l.sort(key=lambda x:(len(x))) ans=0 for i in range(len(l)-k): ans+=len(l[i]) for x,y in l[i]: matrix[x][y]="*" print(ans) for el in matrix: print("".join(el))
Title: Lakes in Berland Time Limit: None seconds Memory Limit: None megabytes Problem Description: The map of Berland is a rectangle of the size *n*<=×<=*m*, which consists of cells of size 1<=×<=1. Each cell is either land or water. The map is surrounded by the ocean. Lakes are the maximal regions of water cells, connected by sides, which are not connected with the ocean. Formally, lake is a set of water cells, such that it's possible to get from any cell of the set to any other without leaving the set and moving only to cells adjacent by the side, none of them is located on the border of the rectangle, and it's impossible to add one more water cell to the set such that it will be connected with any other cell. You task is to fill up with the earth the minimum number of water cells so that there will be exactly *k* lakes in Berland. Note that the initial number of lakes on the map is not less than *k*. Input Specification: The first line of the input contains three integers *n*, *m* and *k* (1<=≤<=*n*,<=*m*<=≤<=50, 0<=≤<=*k*<=≤<=50) — the sizes of the map and the number of lakes which should be left on the map. The next *n* lines contain *m* characters each — the description of the map. Each of the characters is either '.' (it means that the corresponding cell is water) or '*' (it means that the corresponding cell is land). It is guaranteed that the map contain at least *k* lakes. Output Specification: In the first line print the minimum number of cells which should be transformed from water to land. In the next *n* lines print *m* symbols — the map after the changes. The format must strictly follow the format of the map in the input data (there is no need to print the size of the map). If there are several answers, print any of them. It is guaranteed that the answer exists on the given data. Demo Input: ['5 4 1\n****\n*..*\n****\n**.*\n..**\n', '3 3 0\n***\n*.*\n***\n'] Demo Output: ['1\n****\n*..*\n****\n****\n..**\n', '1\n***\n***\n***\n'] Note: In the first example there are only two lakes — the first consists of the cells (2, 2) and (2, 3), the second consists of the cell (4, 3). It is profitable to cover the second lake because it is smaller. Pay attention that the area of water in the lower left corner is not a lake because this area share a border with the ocean.
```python n,m,k=map(int,input().split()) visited=[[False]*(52) for _ in range(54)] l=[] matrix=[] for _ in range(n): matrix.append(list(el for el in input())) def dfs(i,j): visited[i][j]=True q=[(i,j)] t=[] f=False while q: x,y=q.pop() t.append((x,y)) if x==0 or x==n-1 or y==0 or y==m-1: f=True for dx,dy in [(1,0),(0,1),(-1,0),(0,-1)]: nx,ny=dx+x,dy+y if 0<=nx<n and 0<=ny<m and matrix[nx][ny]=="." and visited[nx][ny]==False: q.append((nx,ny)) visited[nx][ny]=True if not f: l.append(t) for i in range(n): for j in range(m): if visited[i][j]==False and matrix[i][j]==".": dfs(i,j) l.sort(key=lambda x:(len(x))) ans=0 for i in range(len(l)-k): ans+=len(l[i]) for x,y in l[i]: matrix[x][y]="*" print(ans) for el in matrix: print("".join(el)) ```
3
96
A
Football
PROGRAMMING
900
[ "implementation", "strings" ]
A. Football
2
256
Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not.
The first input line contains a non-empty string consisting of characters "0" and "1", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field.
Print "YES" if the situation is dangerous. Otherwise, print "NO".
[ "001001\n", "1000000001\n" ]
[ "NO\n", "YES\n" ]
none
500
[ { "input": "001001", "output": "NO" }, { "input": "1000000001", "output": "YES" }, { "input": "00100110111111101", "output": "YES" }, { "input": "11110111111111111", "output": "YES" }, { "input": "01", "output": "NO" }, { "input": "10100101", "output": "NO" }, { "input": "1010010100000000010", "output": "YES" }, { "input": "101010101", "output": "NO" }, { "input": "000000000100000000000110101100000", "output": "YES" }, { "input": "100001000000110101100000", "output": "NO" }, { "input": "100001000011010110000", "output": "NO" }, { "input": "010", "output": "NO" }, { "input": "10101011111111111111111111111100", "output": "YES" }, { "input": "1001101100", "output": "NO" }, { "input": "1001101010", "output": "NO" }, { "input": "1111100111", "output": "NO" }, { "input": "00110110001110001111", "output": "NO" }, { "input": "11110001001111110001", "output": "NO" }, { "input": "10001111001011111101", "output": "NO" }, { "input": "10000010100000001000110001010100001001001010011", "output": "YES" }, { "input": "01111011111010111100101100001011001010111110000010", "output": "NO" }, { "input": "00100000100100101110011001011011101110110110010100", "output": "NO" }, { "input": "10110100110001001011110101110010100010000000000100101010111110111110100011", "output": "YES" }, { "input": "00011101010101111001011011001101101011111101000010100000111000011100101011", "output": "NO" }, { "input": "01110000110100110101110100111000101101011101011110110100100111100001110111", "output": "NO" }, { "input": "11110110011000100111100111101101011111110100010101011011111101110110110111", "output": "YES" }, { "input": "100100010101110010001011001110100011100010011110100101100011010001001010001001101111001100", "output": "NO" }, { "input": "111110010001011010010011111100110110001111000010100011011100111101111101110010101111011110000001010", "output": "NO" }, { "input": "111110111100010100000100001010111011101011000111011011011010110010100010000101011111000011010011110", "output": "NO" }, { "input": "1011110110111010110111111010010010100011111011110000011000110010011110111010110100011010100010111000", "output": "NO" }, { "input": "0010100111100010110110000011100111110100111110001010000100111111111010111100101101010101001011010110", "output": "YES" }, { "input": "1111010100010100101011101100101101110011000010100010000001111100010011100101010001101111000001011000", "output": "NO" }, { "input": "0101100011001110001110100111100011010101011000000000110110010010111100101111010111100011101100100101", "output": "YES" }, { "input": "0001101110011101110000000010011111101001101111100001001010110000110001100000010001111011011110001101", "output": "YES" }, { "input": "1000010000100000100010000100001000010000100001000010000100001000010000100001000010000100001000010000", "output": "NO" }, { "input": "1000000000100000000010000000001000000000100000000010000000001000000000100000000010000000001000000000", "output": "YES" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001", "output": "YES" }, { "input": "1111111111111111111111111111111111111111011111111111111111111111111111111111111111111111111111111111", "output": "YES" }, { "input": "10100101000", "output": "NO" }, { "input": "11110111011101", "output": "NO" }, { "input": "10000000", "output": "YES" }, { "input": "00000001", "output": "YES" }, { "input": "01111111", "output": "YES" }, { "input": "11111110", "output": "YES" } ]
1,686,373,204
2,147,483,647
Python 3
OK
TESTS
44
62
0
g = input() if '0' * 7 in g or '1' * 7 in g: print('YES') else: print('NO')
Title: Football Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not. Input Specification: The first input line contains a non-empty string consisting of characters "0" and "1", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field. Output Specification: Print "YES" if the situation is dangerous. Otherwise, print "NO". Demo Input: ['001001\n', '1000000001\n'] Demo Output: ['NO\n', 'YES\n'] Note: none
```python g = input() if '0' * 7 in g or '1' * 7 in g: print('YES') else: print('NO') ```
3.9845
520
A
Pangram
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
A word or a sentence in some language is called a pangram if all the characters of the alphabet of this language appear in it at least once. Pangrams are often used to demonstrate fonts in printing or test the output devices. You are given a string consisting of lowercase and uppercase Latin letters. Check whether this string is a pangram. We say that the string contains a letter of the Latin alphabet if this letter occurs in the string in uppercase or lowercase.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of characters in the string. The second line contains the string. The string consists only of uppercase and lowercase Latin letters.
Output "YES", if the string is a pangram and "NO" otherwise.
[ "12\ntoosmallword\n", "35\nTheQuickBrownFoxJumpsOverTheLazyDog\n" ]
[ "NO\n", "YES\n" ]
none
500
[ { "input": "12\ntoosmallword", "output": "NO" }, { "input": "35\nTheQuickBrownFoxJumpsOverTheLazyDog", "output": "YES" }, { "input": "1\na", "output": "NO" }, { "input": "26\nqwertyuiopasdfghjklzxcvbnm", "output": "YES" }, { "input": "26\nABCDEFGHIJKLMNOPQRSTUVWXYZ", "output": "YES" }, { "input": "48\nthereisasyetinsufficientdataforameaningfulanswer", "output": "NO" }, { "input": "30\nToBeOrNotToBeThatIsTheQuestion", "output": "NO" }, { "input": "30\njackdawslovemybigsphinxofquarz", "output": "NO" }, { "input": "31\nTHEFIVEBOXINGWIZARDSJUMPQUICKLY", "output": "YES" }, { "input": "26\naaaaaaaaaaaaaaaaaaaaaaaaaa", "output": "NO" }, { "input": "26\nMGJYIZDKsbhpVeNFlquRTcWoAx", "output": "YES" }, { "input": "26\nfWMOhAPsbIVtyUEZrGNQXDklCJ", "output": "YES" }, { "input": "26\nngPMVFSThiRCwLEuyOAbKxQzDJ", "output": "YES" }, { "input": "25\nnxYTzLFwzNolAumjgcAboyxAj", "output": "NO" }, { "input": "26\npRWdodGdxUESvcScPGbUoooZsC", "output": "NO" }, { "input": "66\nBovdMlDzTaqKllZILFVfxbLGsRnzmtVVTmqiIDTYrossLEPlmsPrkUYtWEsGHVOnFj", "output": "NO" }, { "input": "100\nmKtsiDRJypUieHIkvJaMFkwaKxcCIbBszZQLIyPpCDCjhNpAnYFngLjRpnKWpKWtGnwoSteeZXuFHWQxxxOpFlNeYTwKocsXuCoa", "output": "YES" }, { "input": "26\nEoqxUbsLjPytUHMiFnvcGWZdRK", "output": "NO" }, { "input": "26\nvCUFRKElZOnjmXGylWQaHDiPst", "output": "NO" }, { "input": "26\nWtrPuaHdXLKJMsnvQfgOiJZBEY", "output": "NO" }, { "input": "26\npGiFluRteQwkaVoPszJyNBChxM", "output": "NO" }, { "input": "26\ncTUpqjPmANrdbzSFhlWIoKxgVY", "output": "NO" }, { "input": "26\nLndjgvAEuICHKxPwqYztosrmBN", "output": "NO" }, { "input": "26\nMdaXJrCipnOZLykfqHWEStevbU", "output": "NO" }, { "input": "26\nEjDWsVxfKTqGXRnUMOLYcIzPba", "output": "NO" }, { "input": "26\nxKwzRMpunYaqsdfaBgJcVElTHo", "output": "NO" }, { "input": "26\nnRYUQsTwCPLZkgshfEXvBdoiMa", "output": "NO" }, { "input": "26\nHNCQPfJutyAlDGsvRxZWMEbIdO", "output": "NO" }, { "input": "26\nDaHJIpvKznQcmUyWsTGObXRFDe", "output": "NO" }, { "input": "26\nkqvAnFAiRhzlJbtyuWedXSPcOG", "output": "NO" }, { "input": "26\nhlrvgdwsIOyjcmUZXtAKEqoBpF", "output": "NO" }, { "input": "26\njLfXXiMhBTcAwQVReGnpKzdsYu", "output": "NO" }, { "input": "26\nlNMcVuwItjxRBGAekjhyDsQOzf", "output": "NO" }, { "input": "26\nRkSwbNoYldUGtAZvpFMcxhIJFE", "output": "NO" }, { "input": "26\nDqspXZJTuONYieKgaHLMBwfVSC", "output": "NO" }, { "input": "26\necOyUkqNljFHRVXtIpWabGMLDz", "output": "NO" }, { "input": "26\nEKAvqZhBnPmVCDRlgWJfOusxYI", "output": "NO" }, { "input": "26\naLbgqeYchKdMrsZxIPFvTOWNjA", "output": "NO" }, { "input": "26\nxfpBLsndiqtacOCHGmeWUjRkYz", "output": "NO" }, { "input": "26\nXsbRKtqleZPNIVCdfUhyagAomJ", "output": "NO" }, { "input": "26\nAmVtbrwquEthZcjKPLiyDgSoNF", "output": "NO" }, { "input": "26\nOhvXDcwqAUmSEPRZGnjFLiKtNB", "output": "NO" }, { "input": "26\nEKWJqCFLRmstxVBdYuinpbhaOg", "output": "NO" }, { "input": "26\nmnbvcxxlkjhgfdsapoiuytrewq", "output": "NO" }, { "input": "26\naAbcdefghijklmnopqrstuvwxy", "output": "NO" }, { "input": "30\nABCDEFGHTYRIOPLabcdefghtyriopl", "output": "NO" }, { "input": "25\nabcdefghijklmnopqrstuvwxy", "output": "NO" }, { "input": "26\nabcdefhijklmnopqrstVxyzABC", "output": "NO" }, { "input": "25\nqwertyuiopasdfghjklxcvbnm", "output": "NO" }, { "input": "34\nTheQuickBrownFoxJumpsOverTheLayDog", "output": "NO" }, { "input": "26\nabcdefghigklmnopqrstuvwxyz", "output": "NO" }, { "input": "26\nabcdefghijklmnopqrstuvwxyA", "output": "NO" }, { "input": "50\nqazwsxedcrfvtgbyhnujmikolQWERTYUIOASDFGHJKLZXCVBNM", "output": "NO" }, { "input": "35\nTheQuickBrownFoxJumpsOverTheLasyDog", "output": "NO" }, { "input": "25\nbcdefghijklmnopqrstuvwxyz", "output": "NO" }, { "input": "38\nAbCdEfGhIjKlMnOpQrStVwXyZzzzzzzaaaaaaa", "output": "NO" }, { "input": "26\nabcdefghiklmnopqrstvxyzABC", "output": "NO" }, { "input": "26\nabcdefghijklmnopqrstuvwxzZ", "output": "NO" }, { "input": "50\nabcdefghijklmnopqrstuvwxyABCDEFGHIJKLMNOPQRSTUVWXY", "output": "NO" } ]
1,694,189,699
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
31
921,600
import re inp = input() reg = r'([a-zA-Z]).*?\1' if re.search(reg, inp): print("No") else: print("Yes")
Title: Pangram Time Limit: None seconds Memory Limit: None megabytes Problem Description: A word or a sentence in some language is called a pangram if all the characters of the alphabet of this language appear in it at least once. Pangrams are often used to demonstrate fonts in printing or test the output devices. You are given a string consisting of lowercase and uppercase Latin letters. Check whether this string is a pangram. We say that the string contains a letter of the Latin alphabet if this letter occurs in the string in uppercase or lowercase. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the number of characters in the string. The second line contains the string. The string consists only of uppercase and lowercase Latin letters. Output Specification: Output "YES", if the string is a pangram and "NO" otherwise. Demo Input: ['12\ntoosmallword\n', '35\nTheQuickBrownFoxJumpsOverTheLazyDog\n'] Demo Output: ['NO\n', 'YES\n'] Note: none
```python import re inp = input() reg = r'([a-zA-Z]).*?\1' if re.search(reg, inp): print("No") else: print("Yes") ```
0
961
A
Tetris
PROGRAMMING
900
[ "implementation" ]
null
null
You are given a following process. There is a platform with $n$ columns. $1 \times 1$ squares are appearing one after another in some columns on this platform. If there are no squares in the column, a square will occupy the bottom row. Otherwise a square will appear at the top of the highest square of this column. When all of the $n$ columns have at least one square in them, the bottom row is being removed. You will receive $1$ point for this, and all the squares left will fall down one row. You task is to calculate the amount of points you will receive.
The first line of input contain 2 integer numbers $n$ and $m$ ($1 \le n, m \le 1000$) — the length of the platform and the number of the squares. The next line contain $m$ integer numbers $c_1, c_2, \dots, c_m$ ($1 \le c_i \le n$) — column in which $i$-th square will appear.
Print one integer — the amount of points you will receive.
[ "3 9\n1 1 2 2 2 3 1 2 3\n" ]
[ "2\n" ]
In the sample case the answer will be equal to $2$ because after the appearing of $6$-th square will be removed one row (counts of the squares on the platform will look like $[2~ 3~ 1]$, and after removing one row will be $[1~ 2~ 0]$). After the appearing of $9$-th square counts will be $[2~ 3~ 1]$, and after removing one row it will look like $[1~ 2~ 0]$. So the answer will be equal to $2$.
0
[ { "input": "3 9\n1 1 2 2 2 3 1 2 3", "output": "2" }, { "input": "1 7\n1 1 1 1 1 1 1", "output": "7" }, { "input": "1 1\n1", "output": "1" }, { "input": "3 5\n1 1 1 2 3", "output": "1" }, { "input": "4 6\n4 4 4 4 4 4", "output": "0" }, { "input": "4 6\n2 3 4 4 4 4", "output": "0" }, { "input": "3 12\n1 1 1 1 2 2 2 2 3 3 3 3", "output": "4" }, { "input": "8 8\n2 2 3 4 5 6 7 8", "output": "0" }, { "input": "100 1\n50", "output": "0" }, { "input": "2 1\n2", "output": "0" }, { "input": "2 1\n1", "output": "0" }, { "input": "2 4\n1 2 1 1", "output": "1" }, { "input": "3 4\n3 2 2 2", "output": "0" }, { "input": "2 2\n2 2", "output": "0" }, { "input": "2 5\n2 1 1 2 1", "output": "2" }, { "input": "15 3\n13 14 15", "output": "0" }, { "input": "4 9\n1 2 3 1 2 3 1 2 3", "output": "0" }, { "input": "100 3\n1 2 3", "output": "0" }, { "input": "1000 10\n999 999 998 34 454 546 343 35 34 1000", "output": "0" }, { "input": "4 2\n1 2", "output": "0" } ]
1,544,713,051
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
93
0
a,b=map(int,input().split()) c=list(map(int,input().split())) d=0 e=0 for i in range(1,len(c)): if c[i]==c[i-1]: if i==1: d+=2 else: d+=1 elif c[i]!=c[i-1]: if d>=2: e+=(a//2) d=0 print(e)
Title: Tetris Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given a following process. There is a platform with $n$ columns. $1 \times 1$ squares are appearing one after another in some columns on this platform. If there are no squares in the column, a square will occupy the bottom row. Otherwise a square will appear at the top of the highest square of this column. When all of the $n$ columns have at least one square in them, the bottom row is being removed. You will receive $1$ point for this, and all the squares left will fall down one row. You task is to calculate the amount of points you will receive. Input Specification: The first line of input contain 2 integer numbers $n$ and $m$ ($1 \le n, m \le 1000$) — the length of the platform and the number of the squares. The next line contain $m$ integer numbers $c_1, c_2, \dots, c_m$ ($1 \le c_i \le n$) — column in which $i$-th square will appear. Output Specification: Print one integer — the amount of points you will receive. Demo Input: ['3 9\n1 1 2 2 2 3 1 2 3\n'] Demo Output: ['2\n'] Note: In the sample case the answer will be equal to $2$ because after the appearing of $6$-th square will be removed one row (counts of the squares on the platform will look like $[2~ 3~ 1]$, and after removing one row will be $[1~ 2~ 0]$). After the appearing of $9$-th square counts will be $[2~ 3~ 1]$, and after removing one row it will look like $[1~ 2~ 0]$. So the answer will be equal to $2$.
```python a,b=map(int,input().split()) c=list(map(int,input().split())) d=0 e=0 for i in range(1,len(c)): if c[i]==c[i-1]: if i==1: d+=2 else: d+=1 elif c[i]!=c[i-1]: if d>=2: e+=(a//2) d=0 print(e) ```
0
4
A
Watermelon
PROGRAMMING
800
[ "brute force", "math" ]
A. Watermelon
1
64
One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed *w* kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem. Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight.
The first (and the only) input line contains integer number *w* (1<=≤<=*w*<=≤<=100) — the weight of the watermelon bought by the boys.
Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case.
[ "8\n" ]
[ "YES\n" ]
For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).
0
[ { "input": "8", "output": "YES" }, { "input": "5", "output": "NO" }, { "input": "4", "output": "YES" }, { "input": "3", "output": "NO" }, { "input": "2", "output": "NO" }, { "input": "1", "output": "NO" }, { "input": "7", "output": "NO" }, { "input": "6", "output": "YES" }, { "input": "10", "output": "YES" }, { "input": "9", "output": "NO" }, { "input": "53", "output": "NO" }, { "input": "77", "output": "NO" }, { "input": "32", "output": "YES" }, { "input": "44", "output": "YES" }, { "input": "98", "output": "YES" }, { "input": "99", "output": "NO" }, { "input": "90", "output": "YES" }, { "input": "67", "output": "NO" }, { "input": "100", "output": "YES" }, { "input": "88", "output": "YES" } ]
1,694,824,432
2,147,483,647
Python 3
OK
TESTS
20
92
0
x = int(input()) print("NO" if x % 2 == 1 or x == 2 else "YES")
Title: Watermelon Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed *w* kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem. Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight. Input Specification: The first (and the only) input line contains integer number *w* (1<=≤<=*w*<=≤<=100) — the weight of the watermelon bought by the boys. Output Specification: Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case. Demo Input: ['8\n'] Demo Output: ['YES\n'] Note: For example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant — two parts of 4 and 4 kilos).
```python x = int(input()) print("NO" if x % 2 == 1 or x == 2 else "YES") ```
3.954
749
A
Bachgold Problem
PROGRAMMING
800
[ "greedy", "implementation", "math", "number theory" ]
null
null
Bachgold problem is very easy to formulate. Given a positive integer *n* represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1. Recall that integer *k* is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and *k*.
The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000).
The first line of the output contains a single integer *k* — maximum possible number of primes in representation. The second line should contain *k* primes with their sum equal to *n*. You can print them in any order. If there are several optimal solution, print any of them.
[ "5\n", "6\n" ]
[ "2\n2 3\n", "3\n2 2 2\n" ]
none
500
[ { "input": "5", "output": "2\n2 3" }, { "input": "6", "output": "3\n2 2 2" }, { "input": "2", "output": "1\n2" }, { "input": "3", "output": "1\n3" }, { "input": "99999", "output": "49999\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "100000", "output": "50000\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "7", "output": "3\n2 2 3" }, { "input": "4", "output": "2\n2 2" }, { "input": "8", "output": "4\n2 2 2 2" }, { "input": "9", "output": "4\n2 2 2 3" }, { "input": "99995", "output": "49997\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99996", "output": "49998\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "10", "output": "5\n2 2 2 2 2" }, { "input": "11", "output": "5\n2 2 2 2 3" }, { "input": "99997", "output": "49998\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99998", "output": "49999\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "12", "output": "6\n2 2 2 2 2 2" }, { "input": "13", "output": "6\n2 2 2 2 2 3" }, { "input": "99993", "output": "49996\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99994", "output": "49997\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "14", "output": "7\n2 2 2 2 2 2 2" }, { "input": "15", "output": "7\n2 2 2 2 2 2 3" }, { "input": "53", "output": "26\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "57", "output": "28\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "61", "output": "30\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "774", "output": "387\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "202", "output": "101\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2" }, { "input": "530", "output": "265\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "7166", "output": "3583\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "9294", "output": "4647\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "2422", "output": "1211\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "15326", "output": "7663\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "11454", "output": "5727\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "14878", "output": "7439\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." }, { "input": "90672", "output": "45336\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "99544", "output": "49772\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "90472", "output": "45236\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ..." }, { "input": "23", "output": "11\n2 2 2 2 2 2 2 2 2 2 3" }, { "input": "93", "output": "46\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3" }, { "input": "19", "output": "9\n2 2 2 2 2 2 2 2 3" }, { "input": "11110", "output": "5555\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2..." } ]
1,652,070,114
2,147,483,647
Python 3
OK
TESTS
41
77
2,048,000
n=int(input()) count=0 list0=[] while(1): if n==2 or n==3: print(count+1) list0.append(n) print(" ".join(str(x) for x in list0)) break else: n-=2 count+=1 list0.append(2)
Title: Bachgold Problem Time Limit: None seconds Memory Limit: None megabytes Problem Description: Bachgold problem is very easy to formulate. Given a positive integer *n* represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1. Recall that integer *k* is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and *k*. Input Specification: The only line of the input contains a single integer *n* (2<=≤<=*n*<=≤<=100<=000). Output Specification: The first line of the output contains a single integer *k* — maximum possible number of primes in representation. The second line should contain *k* primes with their sum equal to *n*. You can print them in any order. If there are several optimal solution, print any of them. Demo Input: ['5\n', '6\n'] Demo Output: ['2\n2 3\n', '3\n2 2 2\n'] Note: none
```python n=int(input()) count=0 list0=[] while(1): if n==2 or n==3: print(count+1) list0.append(n) print(" ".join(str(x) for x in list0)) break else: n-=2 count+=1 list0.append(2) ```
3
1,008
A
Romaji
PROGRAMMING
900
[ "implementation", "strings" ]
null
null
Vitya has just started learning Berlanese language. It is known that Berlanese uses the Latin alphabet. Vowel letters are "a", "o", "u", "i", and "e". Other letters are consonant. In Berlanese, there has to be a vowel after every consonant, but there can be any letter after any vowel. The only exception is a consonant "n"; after this letter, there can be any letter (not only a vowel) or there can be no letter at all. For example, the words "harakiri", "yupie", "man", and "nbo" are Berlanese while the words "horse", "king", "my", and "nz" are not. Help Vitya find out if a word $s$ is Berlanese.
The first line of the input contains the string $s$ consisting of $|s|$ ($1\leq |s|\leq 100$) lowercase Latin letters.
Print "YES" (without quotes) if there is a vowel after every consonant except "n", otherwise print "NO". You can print each letter in any case (upper or lower).
[ "sumimasen\n", "ninja\n", "codeforces\n" ]
[ "YES\n", "YES\n", "NO\n" ]
In the first and second samples, a vowel goes after each consonant except "n", so the word is Berlanese. In the third sample, the consonant "c" goes after the consonant "r", and the consonant "s" stands on the end, so the word is not Berlanese.
500
[ { "input": "sumimasen", "output": "YES" }, { "input": "ninja", "output": "YES" }, { "input": "codeforces", "output": "NO" }, { "input": "auuaoonntanonnuewannnnpuuinniwoonennyolonnnvienonpoujinndinunnenannmuveoiuuhikucuziuhunnnmunzancenen", "output": "YES" }, { "input": "n", "output": "YES" }, { "input": "necnei", "output": "NO" }, { "input": "nternn", "output": "NO" }, { "input": "aucunuohja", "output": "NO" }, { "input": "a", "output": "YES" }, { "input": "b", "output": "NO" }, { "input": "nn", "output": "YES" }, { "input": "nnnzaaa", "output": "YES" }, { "input": "zn", "output": "NO" }, { "input": "ab", "output": "NO" }, { "input": "aaaaaaaaaa", "output": "YES" }, { "input": "aaaaaaaaab", "output": "NO" }, { "input": "aaaaaaaaan", "output": "YES" }, { "input": "baaaaaaaaa", "output": "YES" }, { "input": "naaaaaaaaa", "output": "YES" }, { "input": "nbaaaaaaaa", "output": "YES" }, { "input": "bbaaaaaaaa", "output": "NO" }, { "input": "bnaaaaaaaa", "output": "NO" }, { "input": "eonwonojannonnufimiiniewuqaienokacevecinfuqihatenhunliquuyebayiaenifuexuanenuaounnboancaeowonu", "output": "YES" }, { "input": "uixinnepnlinqaingieianndeakuniooudidonnnqeaituioeneiroionxuowudiooonayenfeonuino", "output": "NO" }, { "input": "nnnnnyigaveteononnnnxaalenxuiiwannntoxonyoqonlejuoxuoconnnentoinnul", "output": "NO" }, { "input": "ndonneasoiunhomuunnhuitonnntunntoanerekonoupunanuauenu", "output": "YES" }, { "input": "anujemogawautiedoneobninnibonuunaoennnyoorufonxionntinimiboonununnnnnleenqunminzayoutanlalo", "output": "NO" }, { "input": "y", "output": "NO" }, { "input": "by", "output": "NO" }, { "input": "yy", "output": "NO" }, { "input": "nbn", "output": "NO" }, { "input": "nz", "output": "NO" }, { "input": "king", "output": "NO" }, { "input": "g", "output": "NO" }, { "input": "az", "output": "NO" }, { "input": "x", "output": "NO" }, { "input": "z", "output": "NO" }, { "input": "yn", "output": "NO" }, { "input": "aeo", "output": "YES" }, { "input": "nb", "output": "NO" }, { "input": "npn", "output": "NO" }, { "input": "kini", "output": "YES" }, { "input": "pya", "output": "NO" }, { "input": "m", "output": "NO" }, { "input": "p", "output": "NO" }, { "input": "aaaaaaaak", "output": "NO" }, { "input": "aab", "output": "NO" }, { "input": "d", "output": "NO" }, { "input": "at", "output": "NO" }, { "input": "aaaaaak", "output": "NO" }, { "input": "aaz", "output": "NO" }, { "input": "aaab", "output": "NO" }, { "input": "s", "output": "NO" }, { "input": "nzzen", "output": "NO" }, { "input": "aeionnhhhn", "output": "NO" }, { "input": "h", "output": "NO" }, { "input": "ny", "output": "NO" } ]
1,640,796,403
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
15
0
str1=input() n=len(str1) str2='aeioun' if str1[n-1] not in str2: re1='NO' else: re1='YES' for i in range(0,n-1): print(i) #if str1[i] not in str2 and str1[i+1] not in str2: if str1[i] not in str2: re2='NO' if str1[i+1] in str2: re2='YES' if re1!=re2: print('NO') else: print('YES')
Title: Romaji Time Limit: None seconds Memory Limit: None megabytes Problem Description: Vitya has just started learning Berlanese language. It is known that Berlanese uses the Latin alphabet. Vowel letters are "a", "o", "u", "i", and "e". Other letters are consonant. In Berlanese, there has to be a vowel after every consonant, but there can be any letter after any vowel. The only exception is a consonant "n"; after this letter, there can be any letter (not only a vowel) or there can be no letter at all. For example, the words "harakiri", "yupie", "man", and "nbo" are Berlanese while the words "horse", "king", "my", and "nz" are not. Help Vitya find out if a word $s$ is Berlanese. Input Specification: The first line of the input contains the string $s$ consisting of $|s|$ ($1\leq |s|\leq 100$) lowercase Latin letters. Output Specification: Print "YES" (without quotes) if there is a vowel after every consonant except "n", otherwise print "NO". You can print each letter in any case (upper or lower). Demo Input: ['sumimasen\n', 'ninja\n', 'codeforces\n'] Demo Output: ['YES\n', 'YES\n', 'NO\n'] Note: In the first and second samples, a vowel goes after each consonant except "n", so the word is Berlanese. In the third sample, the consonant "c" goes after the consonant "r", and the consonant "s" stands on the end, so the word is not Berlanese.
```python str1=input() n=len(str1) str2='aeioun' if str1[n-1] not in str2: re1='NO' else: re1='YES' for i in range(0,n-1): print(i) #if str1[i] not in str2 and str1[i+1] not in str2: if str1[i] not in str2: re2='NO' if str1[i+1] in str2: re2='YES' if re1!=re2: print('NO') else: print('YES') ```
0
912
A
Tricky Alchemy
PROGRAMMING
800
[ "implementation" ]
null
null
During the winter holidays, the demand for Christmas balls is exceptionally high. Since it's already 2018, the advances in alchemy allow easy and efficient ball creation by utilizing magic crystals. Grisha needs to obtain some yellow, green and blue balls. It's known that to produce a yellow ball one needs two yellow crystals, green — one yellow and one blue, and for a blue ball, three blue crystals are enough. Right now there are *A* yellow and *B* blue crystals in Grisha's disposal. Find out how many additional crystals he should acquire in order to produce the required number of balls.
The first line features two integers *A* and *B* (0<=≤<=*A*,<=*B*<=≤<=109), denoting the number of yellow and blue crystals respectively at Grisha's disposal. The next line contains three integers *x*, *y* and *z* (0<=≤<=*x*,<=*y*,<=*z*<=≤<=109) — the respective amounts of yellow, green and blue balls to be obtained.
Print a single integer — the minimum number of crystals that Grisha should acquire in addition.
[ "4 3\n2 1 1\n", "3 9\n1 1 3\n", "12345678 87654321\n43043751 1000000000 53798715\n" ]
[ "2\n", "1\n", "2147483648\n" ]
In the first sample case, Grisha needs five yellow and four blue crystals to create two yellow balls, one green ball, and one blue ball. To do that, Grisha needs to obtain two additional crystals: one yellow and one blue.
500
[ { "input": "4 3\n2 1 1", "output": "2" }, { "input": "3 9\n1 1 3", "output": "1" }, { "input": "12345678 87654321\n43043751 1000000000 53798715", "output": "2147483648" }, { "input": "12 12\n3 5 2", "output": "0" }, { "input": "770 1390\n170 442 311", "output": "12" }, { "input": "3555165 6693472\n1499112 556941 3075290", "output": "3089339" }, { "input": "0 0\n1000000000 1000000000 1000000000", "output": "7000000000" }, { "input": "1 1\n0 1 0", "output": "0" }, { "input": "117708228 562858833\n118004008 360437130 154015822", "output": "738362681" }, { "input": "999998118 700178721\n822106746 82987112 547955384", "output": "1753877029" }, { "input": "566568710 765371101\n60614022 80126928 809950465", "output": "1744607222" }, { "input": "448858599 829062060\n764716760 97644201 203890025", "output": "1178219122" }, { "input": "626115781 966381948\n395190569 820194184 229233367", "output": "1525971878" }, { "input": "803372962 103701834\n394260597 837711458 623172928", "output": "3426388098" }, { "input": "980630143 241021722\n24734406 928857659 312079781", "output": "1624075280" }, { "input": "862920032 378341609\n360240924 241342224 337423122", "output": "974174021" }, { "input": "40177212 515661496\n64343660 963892207 731362684", "output": "3694721078" }, { "input": "217434393 579352456\n694817470 981409480 756706026", "output": "4825785129" }, { "input": "394691574 716672343\n398920207 72555681 150645586", "output": "475704521" }, { "input": "276981463 853992230\n29394015 90072954 839552440", "output": "1754738044" }, { "input": "843552056 919184611\n341530221 423649259 101547519", "output": "263157645" }, { "input": "20809236 56504497\n972004030 441166533 495487081", "output": "4235488636" }, { "input": "198066417 825228166\n602477839 532312735 520830423", "output": "2808777834" }, { "input": "80356306 962548053\n601547868 549830008 914769984", "output": "4004161345" }, { "input": "257613487 394835231\n642087093 567347282 308709545", "output": "2692548667" }, { "input": "139903376 532155119\n641157122 289897263 629020178", "output": "3077110809" }, { "input": "612127849 669475006\n271630930 676010757 22959739", "output": "682559736" }, { "input": "0 0\n0 0 0", "output": "0" }, { "input": "1000000000 1000000000\n499999998 4 333333332", "output": "0" }, { "input": "1000000000 1000000000\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4 3\n1 0 1", "output": "0" }, { "input": "4 12\n1 2 3", "output": "0" }, { "input": "4 20\n1 2 1", "output": "0" }, { "input": "100 10\n2 3 4", "output": "5" }, { "input": "6 0\n1 1 1", "output": "4" }, { "input": "25 5\n3 3 3", "output": "7" }, { "input": "48 27\n22 39 20", "output": "107" }, { "input": "4 0\n1 1 1", "output": "4" } ]
1,620,193,764
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
62
0
a, b = map(int, input().split()) x, y, z = map(int, input().split()) blue = z * 3 + y yellow = x * 2 + y x = blue + yellow if x >= a + b: print(x - a - b) else: print(0)
Title: Tricky Alchemy Time Limit: None seconds Memory Limit: None megabytes Problem Description: During the winter holidays, the demand for Christmas balls is exceptionally high. Since it's already 2018, the advances in alchemy allow easy and efficient ball creation by utilizing magic crystals. Grisha needs to obtain some yellow, green and blue balls. It's known that to produce a yellow ball one needs two yellow crystals, green — one yellow and one blue, and for a blue ball, three blue crystals are enough. Right now there are *A* yellow and *B* blue crystals in Grisha's disposal. Find out how many additional crystals he should acquire in order to produce the required number of balls. Input Specification: The first line features two integers *A* and *B* (0<=≤<=*A*,<=*B*<=≤<=109), denoting the number of yellow and blue crystals respectively at Grisha's disposal. The next line contains three integers *x*, *y* and *z* (0<=≤<=*x*,<=*y*,<=*z*<=≤<=109) — the respective amounts of yellow, green and blue balls to be obtained. Output Specification: Print a single integer — the minimum number of crystals that Grisha should acquire in addition. Demo Input: ['4 3\n2 1 1\n', '3 9\n1 1 3\n', '12345678 87654321\n43043751 1000000000 53798715\n'] Demo Output: ['2\n', '1\n', '2147483648\n'] Note: In the first sample case, Grisha needs five yellow and four blue crystals to create two yellow balls, one green ball, and one blue ball. To do that, Grisha needs to obtain two additional crystals: one yellow and one blue.
```python a, b = map(int, input().split()) x, y, z = map(int, input().split()) blue = z * 3 + y yellow = x * 2 + y x = blue + yellow if x >= a + b: print(x - a - b) else: print(0) ```
0
25
A
IQ test
PROGRAMMING
1,300
[ "brute force" ]
A. IQ test
2
256
Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness.
The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness.
Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order.
[ "5\n2 4 7 8 10\n", "4\n1 2 1 1\n" ]
[ "3\n", "2\n" ]
none
0
[ { "input": "5\n2 4 7 8 10", "output": "3" }, { "input": "4\n1 2 1 1", "output": "2" }, { "input": "3\n1 2 2", "output": "1" }, { "input": "3\n100 99 100", "output": "2" }, { "input": "3\n5 3 2", "output": "3" }, { "input": "4\n43 28 1 91", "output": "2" }, { "input": "4\n75 13 94 77", "output": "3" }, { "input": "4\n97 8 27 3", "output": "2" }, { "input": "10\n95 51 12 91 85 3 1 31 25 7", "output": "3" }, { "input": "20\n88 96 66 51 14 88 2 92 18 72 18 88 20 30 4 82 90 100 24 46", "output": "4" }, { "input": "30\n20 94 56 50 10 98 52 32 14 22 24 60 4 8 98 46 34 68 82 82 98 90 50 20 78 49 52 94 64 36", "output": "26" }, { "input": "50\n79 27 77 57 37 45 27 49 65 33 57 21 71 19 75 85 65 61 23 97 85 9 23 1 9 3 99 77 77 21 79 69 15 37 15 7 93 81 13 89 91 31 45 93 15 97 55 80 85 83", "output": "48" }, { "input": "60\n46 11 73 65 3 69 3 53 43 53 97 47 55 93 31 75 35 3 9 73 23 31 3 81 91 79 61 21 15 11 11 11 81 7 83 75 39 87 83 59 89 55 93 27 49 67 67 29 1 93 11 17 9 19 35 21 63 31 31 25", "output": "1" }, { "input": "70\n28 42 42 92 64 54 22 38 38 78 62 38 4 38 14 66 4 92 66 58 94 26 4 44 41 88 48 82 44 26 74 44 48 4 16 92 34 38 26 64 94 4 30 78 50 54 12 90 8 16 80 98 28 100 74 50 36 42 92 18 76 98 8 22 2 50 58 50 64 46", "output": "25" }, { "input": "100\n43 35 79 53 13 91 91 45 65 83 57 9 42 39 85 45 71 51 61 59 31 13 63 39 25 21 79 39 91 67 21 61 97 75 93 83 29 79 59 97 11 37 63 51 39 55 91 23 21 17 47 23 35 75 49 5 69 99 5 7 41 17 25 89 15 79 21 63 53 81 43 91 59 91 69 99 85 15 91 51 49 37 65 7 89 81 21 93 61 63 97 93 45 17 13 69 57 25 75 73", "output": "13" }, { "input": "100\n50 24 68 60 70 30 52 22 18 74 68 98 20 82 4 46 26 68 100 78 84 58 74 98 38 88 68 86 64 80 82 100 20 22 98 98 52 6 94 10 48 68 2 18 38 22 22 82 44 20 66 72 36 58 64 6 36 60 4 96 76 64 12 90 10 58 64 60 74 28 90 26 24 60 40 58 2 16 76 48 58 36 82 60 24 44 4 78 28 38 8 12 40 16 38 6 66 24 31 76", "output": "99" }, { "input": "100\n47 48 94 48 14 18 94 36 96 22 12 30 94 20 48 98 40 58 2 94 8 36 98 18 98 68 2 60 76 38 18 100 8 72 100 68 2 86 92 72 58 16 48 14 6 58 72 76 6 88 80 66 20 28 74 62 86 68 90 86 2 56 34 38 56 90 4 8 76 44 32 86 12 98 38 34 54 92 70 94 10 24 82 66 90 58 62 2 32 58 100 22 58 72 2 22 68 72 42 14", "output": "1" }, { "input": "99\n38 20 68 60 84 16 28 88 60 48 80 28 4 92 70 60 46 46 20 34 12 100 76 2 40 10 8 86 6 80 50 66 12 34 14 28 26 70 46 64 34 96 10 90 98 96 56 88 50 74 70 94 2 94 24 66 68 46 22 30 6 10 64 32 88 14 98 100 64 58 50 18 50 50 8 38 8 16 54 2 60 54 62 84 92 98 4 72 66 26 14 88 99 16 10 6 88 56 22", "output": "93" }, { "input": "99\n50 83 43 89 53 47 69 1 5 37 63 87 95 15 55 95 75 89 33 53 89 75 93 75 11 85 49 29 11 97 49 67 87 11 25 37 97 73 67 49 87 43 53 97 43 29 53 33 45 91 37 73 39 49 59 5 21 43 87 35 5 63 89 57 63 47 29 99 19 85 13 13 3 13 43 19 5 9 61 51 51 57 15 89 13 97 41 13 99 79 13 27 97 95 73 33 99 27 23", "output": "1" }, { "input": "98\n61 56 44 30 58 14 20 24 88 28 46 56 96 52 58 42 94 50 46 30 46 80 72 88 68 16 6 60 26 90 10 98 76 20 56 40 30 16 96 20 88 32 62 30 74 58 36 76 60 4 24 36 42 54 24 92 28 14 2 74 86 90 14 52 34 82 40 76 8 64 2 56 10 8 78 16 70 86 70 42 70 74 22 18 76 98 88 28 62 70 36 72 20 68 34 48 80 98", "output": "1" }, { "input": "98\n66 26 46 42 78 32 76 42 26 82 8 12 4 10 24 26 64 44 100 46 94 64 30 18 88 28 8 66 30 82 82 28 74 52 62 80 80 60 94 86 64 32 44 88 92 20 12 74 94 28 34 58 4 22 16 10 94 76 82 58 40 66 22 6 30 32 92 54 16 76 74 98 18 48 48 30 92 2 16 42 84 74 30 60 64 52 50 26 16 86 58 96 79 60 20 62 82 94", "output": "93" }, { "input": "95\n9 31 27 93 17 77 75 9 9 53 89 39 51 99 5 1 11 39 27 49 91 17 27 79 81 71 37 75 35 13 93 4 99 55 85 11 23 57 5 43 5 61 15 35 23 91 3 81 99 85 43 37 39 27 5 67 7 33 75 59 13 71 51 27 15 93 51 63 91 53 43 99 25 47 17 71 81 15 53 31 59 83 41 23 73 25 91 91 13 17 25 13 55 57 29", "output": "32" }, { "input": "100\n91 89 81 45 53 1 41 3 77 93 55 97 55 97 87 27 69 95 73 41 93 21 75 35 53 56 5 51 87 59 91 67 33 3 99 45 83 17 97 47 75 97 7 89 17 99 23 23 81 25 55 97 27 35 69 5 77 35 93 19 55 59 37 21 31 37 49 41 91 53 73 69 7 37 37 39 17 71 7 97 55 17 47 23 15 73 31 39 57 37 9 5 61 41 65 57 77 79 35 47", "output": "26" }, { "input": "99\n38 56 58 98 80 54 26 90 14 16 78 92 52 74 40 30 84 14 44 80 16 90 98 68 26 24 78 72 42 16 84 40 14 44 2 52 50 2 12 96 58 66 8 80 44 52 34 34 72 98 74 4 66 74 56 21 8 38 76 40 10 22 48 32 98 34 12 62 80 68 64 82 22 78 58 74 20 22 48 56 12 38 32 72 6 16 74 24 94 84 26 38 18 24 76 78 98 94 72", "output": "56" }, { "input": "100\n44 40 6 40 56 90 98 8 36 64 76 86 98 76 36 92 6 30 98 70 24 98 96 60 24 82 88 68 86 96 34 42 58 10 40 26 56 10 88 58 70 32 24 28 14 82 52 12 62 36 70 60 52 34 74 30 78 76 10 16 42 94 66 90 70 38 52 12 58 22 98 96 14 68 24 70 4 30 84 98 8 50 14 52 66 34 100 10 28 100 56 48 38 12 38 14 91 80 70 86", "output": "97" }, { "input": "100\n96 62 64 20 90 46 56 90 68 36 30 56 70 28 16 64 94 34 6 32 34 50 94 22 90 32 40 2 72 10 88 38 28 92 20 26 56 80 4 100 100 90 16 74 74 84 8 2 30 20 80 32 16 46 92 56 42 12 96 64 64 42 64 58 50 42 74 28 2 4 36 32 70 50 54 92 70 16 45 76 28 16 18 50 48 2 62 94 4 12 52 52 4 100 70 60 82 62 98 42", "output": "79" }, { "input": "99\n14 26 34 68 90 58 50 36 8 16 18 6 2 74 54 20 36 84 32 50 52 2 26 24 3 64 20 10 54 26 66 44 28 72 4 96 78 90 96 86 68 28 94 4 12 46 100 32 22 36 84 32 44 94 76 94 4 52 12 30 74 4 34 64 58 72 44 16 70 56 54 8 14 74 8 6 58 62 98 54 14 40 80 20 36 72 28 98 20 58 40 52 90 64 22 48 54 70 52", "output": "25" }, { "input": "95\n82 86 30 78 6 46 80 66 74 72 16 24 18 52 52 38 60 36 86 26 62 28 22 46 96 26 94 84 20 46 66 88 76 32 12 86 74 18 34 88 4 48 94 6 58 6 100 82 4 24 88 32 54 98 34 48 6 76 42 88 42 28 100 4 22 2 10 66 82 54 98 20 60 66 38 98 32 47 86 58 6 100 12 46 2 42 8 84 78 28 24 70 34 28 86", "output": "78" }, { "input": "90\n40 50 8 42 76 24 58 42 26 68 20 48 54 12 34 84 14 36 32 88 6 50 96 56 20 92 48 16 40 34 96 46 20 84 30 50 20 98 8 44 96 42 8 76 70 38 84 30 40 88 84 72 2 22 52 58 16 62 100 66 80 40 50 32 14 62 88 72 22 99 76 50 84 82 8 82 98 46 26 40 2 98 18 78 30 72 70 18 34 68", "output": "70" }, { "input": "80\n81 43 87 1 55 43 53 61 27 19 43 13 89 9 33 83 75 55 97 71 91 37 95 5 21 69 81 93 95 69 31 83 55 7 97 7 79 57 8 61 27 85 49 1 15 97 63 79 29 73 41 85 5 41 31 93 67 11 63 59 15 99 91 77 43 69 23 23 81 73 19 1 67 51 1 75 99 67 3 81", "output": "39" }, { "input": "98\n13 83 61 27 35 1 85 95 97 73 95 65 73 45 5 43 27 83 91 19 11 3 85 59 9 39 69 23 45 7 51 85 5 71 5 95 1 51 75 3 43 57 3 11 33 71 21 99 47 41 87 39 71 87 31 85 91 49 83 5 49 85 47 91 55 99 33 23 31 23 23 73 29 77 55 31 25 5 81 49 91 15 15 39 87 5 9 40 69 47 29 33 11 21 49 79 51 83", "output": "88" }, { "input": "3\n100 100 1", "output": "3" } ]
1,593,540,321
2,147,483,647
Python 3
OK
TESTS
32
218
0
n = int(input()) a = list(map(int,input().split())) a = list(map(lambda x : x % 2, a)) ev = a.count(0) od = a.count(1) if ev > od: print(a.index(1)+1) else: print(a.index(0)+1)
Title: IQ test Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Bob is preparing to pass IQ test. The most frequent task in this test is to find out which one of the given *n* numbers differs from the others. Bob observed that one number usually differs from the others in evenness. Help Bob — to check his answers, he needs a program that among the given *n* numbers finds one that is different in evenness. Input Specification: The first line contains integer *n* (3<=≤<=*n*<=≤<=100) — amount of numbers in the task. The second line contains *n* space-separated natural numbers, not exceeding 100. It is guaranteed, that exactly one of these numbers differs from the others in evenness. Output Specification: Output index of number that differs from the others in evenness. Numbers are numbered from 1 in the input order. Demo Input: ['5\n2 4 7 8 10\n', '4\n1 2 1 1\n'] Demo Output: ['3\n', '2\n'] Note: none
```python n = int(input()) a = list(map(int,input().split())) a = list(map(lambda x : x % 2, a)) ev = a.count(0) od = a.count(1) if ev > od: print(a.index(1)+1) else: print(a.index(0)+1) ```
3.9455
687
B
Remainders Game
PROGRAMMING
1,800
[ "chinese remainder theorem", "math", "number theory" ]
null
null
Today Pari and Arya are playing a game called Remainders. Pari chooses two positive integer *x* and *k*, and tells Arya *k* but not *x*. Arya have to find the value . There are *n* ancient numbers *c*1,<=*c*2,<=...,<=*c**n* and Pari has to tell Arya if Arya wants. Given *k* and the ancient values, tell us if Arya has a winning strategy independent of value of *x* or not. Formally, is it true that Arya can understand the value for any positive integer *x*? Note, that means the remainder of *x* after dividing it by *y*.
The first line of the input contains two integers *n* and *k* (1<=≤<=*n*,<= *k*<=≤<=1<=000<=000) — the number of ancient integers and value *k* that is chosen by Pari. The second line contains *n* integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=1<=000<=000).
Print "Yes" (without quotes) if Arya has a winning strategy independent of value of *x*, or "No" (without quotes) otherwise.
[ "4 5\n2 3 5 12\n", "2 7\n2 3\n" ]
[ "Yes\n", "No\n" ]
In the first sample, Arya can understand <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/d170efffcde0907ee6bcf32de21051bce0677a2c.png" style="max-width: 100.0%;max-height: 100.0%;"/> because 5 is one of the ancient numbers. In the second sample, Arya can't be sure what <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/57b5f6a96f5db073270dd3ed4266c69299ec701d.png" style="max-width: 100.0%;max-height: 100.0%;"/> is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.
1,000
[ { "input": "4 5\n2 3 5 12", "output": "Yes" }, { "input": "2 7\n2 3", "output": "No" }, { "input": "1 6\n8", "output": "No" }, { "input": "2 3\n9 4", "output": "Yes" }, { "input": "4 16\n19 16 13 9", "output": "Yes" }, { "input": "5 10\n5 16 19 9 17", "output": "Yes" }, { "input": "11 95\n31 49 8 139 169 121 71 17 43 29 125", "output": "No" }, { "input": "17 71\n173 43 139 73 169 199 49 81 11 89 131 107 23 29 125 152 17", "output": "No" }, { "input": "13 86\n41 64 17 31 13 97 19 25 81 47 61 37 71", "output": "No" }, { "input": "15 91\n49 121 83 67 128 125 27 113 41 169 149 19 37 29 71", "output": "Yes" }, { "input": "2 4\n2 2", "output": "No" }, { "input": "14 87\n1619 1619 1619 1619 1619 1619 1619 1619 1619 1619 1619 1619 1619 1619", "output": "No" }, { "input": "12 100\n1766 1766 1766 1766 1766 1766 1766 1766 1766 1766 1766 1766", "output": "No" }, { "input": "1 994619\n216000", "output": "No" }, { "input": "1 651040\n911250", "output": "No" }, { "input": "1 620622\n60060", "output": "No" }, { "input": "1 1\n559872", "output": "Yes" }, { "input": "88 935089\n967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967 967", "output": "No" }, { "input": "93 181476\n426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426 426", "output": "No" }, { "input": "91 4900\n630 630 70 630 910 630 630 630 770 70 770 630 630 770 70 630 70 630 70 630 70 630 630 70 910 630 630 630 770 630 630 630 70 910 70 630 70 630 770 630 630 70 630 770 70 630 70 70 630 630 70 70 70 70 630 70 70 770 910 630 70 630 770 70 910 70 630 910 630 70 770 70 70 630 770 630 70 630 70 70 630 70 630 770 630 70 630 630 70 910 630", "output": "No" }, { "input": "61 531012\n698043 698043 698043 963349 698043 698043 698043 963349 698043 698043 698043 963349 698043 698043 698043 698043 966694 698043 698043 698043 698043 698043 698043 636247 698043 963349 698043 698043 698043 698043 697838 698043 963349 698043 698043 966694 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 698043 963349 698043 698043 698043 698043 963349 698043", "output": "No" }, { "input": "1 216000\n648000", "output": "Yes" }, { "input": "2 8\n4 4", "output": "No" }, { "input": "3 8\n4 4 4", "output": "No" }, { "input": "2 8\n2 4", "output": "No" }, { "input": "3 12\n2 2 3", "output": "No" }, { "input": "10 4\n2 2 2 2 2 2 2 2 2 2", "output": "No" }, { "input": "10 1024\n1 2 4 8 16 32 64 128 256 512", "output": "No" }, { "input": "3 24\n2 2 3", "output": "No" }, { "input": "1 8\n2", "output": "No" }, { "input": "2 9\n3 3", "output": "No" }, { "input": "3 4\n2 2 2", "output": "No" }, { "input": "3 4\n1 2 2", "output": "No" }, { "input": "1 4\n2", "output": "No" }, { "input": "1 100003\n2", "output": "No" }, { "input": "1 2\n12", "output": "Yes" }, { "input": "2 988027\n989018 995006", "output": "Yes" }, { "input": "3 9\n3 3 3", "output": "No" }, { "input": "1 49\n7", "output": "No" }, { "input": "2 600000\n200000 300000", "output": "Yes" }, { "input": "3 8\n2 2 2", "output": "No" }, { "input": "7 510510\n524288 531441 390625 823543 161051 371293 83521", "output": "Yes" }, { "input": "2 30\n6 10", "output": "Yes" }, { "input": "2 27000\n5400 4500", "output": "Yes" }, { "input": "3 8\n1 2 4", "output": "No" }, { "input": "4 16\n2 2 2 2", "output": "No" }, { "input": "2 16\n4 8", "output": "No" }, { "input": "2 8\n4 2", "output": "No" }, { "input": "3 4\n2 2 3", "output": "No" }, { "input": "1 8\n4", "output": "No" }, { "input": "1 999983\n2", "output": "No" }, { "input": "3 16\n2 4 8", "output": "No" }, { "input": "2 216\n12 18", "output": "No" }, { "input": "2 16\n8 8", "output": "No" }, { "input": "2 36\n18 12", "output": "Yes" }, { "input": "2 36\n12 18", "output": "Yes" }, { "input": "2 1000000\n1000000 1000000", "output": "Yes" }, { "input": "3 20\n2 2 5", "output": "No" }, { "input": "1 2\n6", "output": "Yes" }, { "input": "4 4\n2 3 6 5", "output": "No" }, { "input": "1 2\n1", "output": "No" }, { "input": "1 6\n6", "output": "Yes" }, { "input": "2 16\n4 4", "output": "No" }, { "input": "2 3779\n1 2", "output": "No" }, { "input": "2 8\n4 12", "output": "No" }, { "input": "2 24\n4 6", "output": "No" }, { "input": "1 1\n5", "output": "Yes" }, { "input": "10 255255\n1000000 700000 300000 110000 130000 170000 190000 230000 290000 310000", "output": "Yes" }, { "input": "2 1000\n500 2", "output": "No" }, { "input": "4 8\n2 2 2 2", "output": "No" }, { "input": "1 666013\n1", "output": "No" }, { "input": "1 999983\n1", "output": "No" }, { "input": "1 125\n5", "output": "No" }, { "input": "2 32\n4 8", "output": "No" }, { "input": "3 32\n2 4 8", "output": "No" }, { "input": "3 8\n2 4 11", "output": "No" }, { "input": "1 32\n2", "output": "No" }, { "input": "4 4\n2 2 2 2", "output": "No" }, { "input": "8 32\n2 2 2 2 2 2 2 2", "output": "No" }, { "input": "3 24\n2 4 3", "output": "No" }, { "input": "2 4\n2 6", "output": "No" }, { "input": "2 24\n6 4", "output": "No" }, { "input": "1 20998\n2", "output": "No" }, { "input": "1 1\n1", "output": "Yes" }, { "input": "2 20998\n2 10499", "output": "Yes" }, { "input": "1 5\n1", "output": "No" }, { "input": "2 25\n5 5", "output": "No" }, { "input": "5 2\n2 2 2 2 2", "output": "Yes" }, { "input": "3 12\n2 3 6", "output": "No" }, { "input": "1 1\n3", "output": "Yes" }, { "input": "2 16\n8 4", "output": "No" }, { "input": "40 10\n2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2", "output": "No" } ]
1,589,288,686
2,147,483,647
PyPy 3
COMPILATION_ERROR
TESTS
0
0
0
def gcd(a,b): if b==0: return a return gcd(b,a%b) def lcm(a,b): return (a*b)/gcd(a,b) n,k=map(int,raw_input().split()) l=1 a=map(int,raw_input().split()) for i in a: g=gcd(i,k) l=lcm(l,g) if l==k: print "Yes" else: print "No"
Title: Remainders Game Time Limit: None seconds Memory Limit: None megabytes Problem Description: Today Pari and Arya are playing a game called Remainders. Pari chooses two positive integer *x* and *k*, and tells Arya *k* but not *x*. Arya have to find the value . There are *n* ancient numbers *c*1,<=*c*2,<=...,<=*c**n* and Pari has to tell Arya if Arya wants. Given *k* and the ancient values, tell us if Arya has a winning strategy independent of value of *x* or not. Formally, is it true that Arya can understand the value for any positive integer *x*? Note, that means the remainder of *x* after dividing it by *y*. Input Specification: The first line of the input contains two integers *n* and *k* (1<=≤<=*n*,<= *k*<=≤<=1<=000<=000) — the number of ancient integers and value *k* that is chosen by Pari. The second line contains *n* integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=1<=000<=000). Output Specification: Print "Yes" (without quotes) if Arya has a winning strategy independent of value of *x*, or "No" (without quotes) otherwise. Demo Input: ['4 5\n2 3 5 12\n', '2 7\n2 3\n'] Demo Output: ['Yes\n', 'No\n'] Note: In the first sample, Arya can understand <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/d170efffcde0907ee6bcf32de21051bce0677a2c.png" style="max-width: 100.0%;max-height: 100.0%;"/> because 5 is one of the ancient numbers. In the second sample, Arya can't be sure what <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/57b5f6a96f5db073270dd3ed4266c69299ec701d.png" style="max-width: 100.0%;max-height: 100.0%;"/> is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.
```python def gcd(a,b): if b==0: return a return gcd(b,a%b) def lcm(a,b): return (a*b)/gcd(a,b) n,k=map(int,raw_input().split()) l=1 a=map(int,raw_input().split()) for i in a: g=gcd(i,k) l=lcm(l,g) if l==k: print "Yes" else: print "No" ```
-1
721
A
One-dimensional Japanese Crossword
PROGRAMMING
800
[ "implementation" ]
null
null
Recently Adaltik discovered japanese crosswords. Japanese crossword is a picture, represented as a table sized *a*<=×<=*b* squares, and each square is colored white or black. There are integers to the left of the rows and to the top of the columns, encrypting the corresponding row or column. The number of integers represents how many groups of black squares there are in corresponding row or column, and the integers themselves represents the number of consecutive black squares in corresponding group (you can find more detailed explanation in Wikipedia [https://en.wikipedia.org/wiki/Japanese_crossword](https://en.wikipedia.org/wiki/Japanese_crossword)). Adaltik decided that the general case of japanese crossword is too complicated and drew a row consisting of *n* squares (e.g. japanese crossword sized 1<=×<=*n*), which he wants to encrypt in the same way as in japanese crossword. Help Adaltik find the numbers encrypting the row he drew.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the row. The second line of the input contains a single string consisting of *n* characters 'B' or 'W', ('B' corresponds to black square, 'W' — to white square in the row that Adaltik drew).
The first line should contain a single integer *k* — the number of integers encrypting the row, e.g. the number of groups of black squares in the row. The second line should contain *k* integers, encrypting the row, e.g. corresponding to sizes of groups of consecutive black squares in the order from left to right.
[ "3\nBBW\n", "5\nBWBWB\n", "4\nWWWW\n", "4\nBBBB\n", "13\nWBBBBWWBWBBBW\n" ]
[ "1\n2 ", "3\n1 1 1 ", "0\n", "1\n4 ", "3\n4 1 3 " ]
The last sample case correspond to the picture in the statement.
500
[ { "input": "3\nBBW", "output": "1\n2 " }, { "input": "5\nBWBWB", "output": "3\n1 1 1 " }, { "input": "4\nWWWW", "output": "0" }, { "input": "4\nBBBB", "output": "1\n4 " }, { "input": "13\nWBBBBWWBWBBBW", "output": "3\n4 1 3 " }, { "input": "1\nB", "output": "1\n1 " }, { "input": "2\nBB", "output": "1\n2 " }, { "input": "100\nWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWBWB", "output": "50\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 " }, { "input": "1\nW", "output": "0" }, { "input": "2\nWW", "output": "0" }, { "input": "2\nWB", "output": "1\n1 " }, { "input": "2\nBW", "output": "1\n1 " }, { "input": "3\nBBB", "output": "1\n3 " }, { "input": "3\nBWB", "output": "2\n1 1 " }, { "input": "3\nWBB", "output": "1\n2 " }, { "input": "3\nWWB", "output": "1\n1 " }, { "input": "3\nWBW", "output": "1\n1 " }, { "input": "3\nBWW", "output": "1\n1 " }, { "input": "3\nWWW", "output": "0" }, { "input": "100\nBBBWWWWWWBBWWBBWWWBBWBBBBBBBBBBBWBBBWBBWWWBBWWBBBWBWWBBBWWBBBWBBBBBWWWBWWBBWWWWWWBWBBWWBWWWBWBWWWWWB", "output": "21\n3 2 2 2 11 3 2 2 3 1 3 3 5 1 2 1 2 1 1 1 1 " }, { "input": "5\nBBBWB", "output": "2\n3 1 " }, { "input": "5\nBWWWB", "output": "2\n1 1 " }, { "input": "5\nWWWWB", "output": "1\n1 " }, { "input": "5\nBWWWW", "output": "1\n1 " }, { "input": "5\nBBBWW", "output": "1\n3 " }, { "input": "5\nWWBBB", "output": "1\n3 " }, { "input": "10\nBBBBBWWBBB", "output": "2\n5 3 " }, { "input": "10\nBBBBWBBWBB", "output": "3\n4 2 2 " }, { "input": "20\nBBBBBWWBWBBWBWWBWBBB", "output": "6\n5 1 2 1 1 3 " }, { "input": "20\nBBBWWWWBBWWWBWBWWBBB", "output": "5\n3 2 1 1 3 " }, { "input": "20\nBBBBBBBBWBBBWBWBWBBB", "output": "5\n8 3 1 1 3 " }, { "input": "20\nBBBWBWBWWWBBWWWWBWBB", "output": "6\n3 1 1 2 1 2 " }, { "input": "40\nBBBBBBWWWWBWBWWWBWWWWWWWWWWWBBBBBBBBBBBB", "output": "5\n6 1 1 1 12 " }, { "input": "40\nBBBBBWBWWWBBWWWBWBWWBBBBWWWWBWBWBBBBBBBB", "output": "9\n5 1 2 1 1 4 1 1 8 " }, { "input": "50\nBBBBBBBBBBBWWWWBWBWWWWBBBBBBBBWWWWWWWBWWWWBWBBBBBB", "output": "7\n11 1 1 8 1 1 6 " }, { "input": "50\nWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW", "output": "0" }, { "input": "50\nBBBBBWWWWWBWWWBWWWWWBWWWBWWWWWWBBWBBWWWWBWWWWWWWBW", "output": "9\n5 1 1 1 1 2 2 1 1 " }, { "input": "50\nWWWWBWWBWWWWWWWWWWWWWWWWWWWWWWWWWBWBWBWWWWWWWBBBBB", "output": "6\n1 1 1 1 1 5 " }, { "input": "50\nBBBBBWBWBWWBWBWWWWWWBWBWBWWWWWWWWWWWWWBWBWWWWBWWWB", "output": "12\n5 1 1 1 1 1 1 1 1 1 1 1 " }, { "input": "50\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB", "output": "1\n50 " }, { "input": "100\nBBBBBBBBBBBWBWWWWBWWBBWBBWWWWWWWWWWBWBWWBWWWWWWWWWWWBBBWWBBWWWWWBWBWWWWBWWWWWWWWWWWBWWWWWBBBBBBBBBBB", "output": "15\n11 1 1 2 2 1 1 1 3 2 1 1 1 1 11 " }, { "input": "100\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB", "output": "1\n100 " }, { "input": "100\nBBBBBBBBBBBBBBBBBBBBWBWBWWWWWBWWWWWWWWWWWWWWBBWWWBWWWWBWWBWWWWWWBWWWWWWWWWWWWWBWBBBBBBBBBBBBBBBBBBBB", "output": "11\n20 1 1 1 2 1 1 1 1 1 20 " }, { "input": "100\nBBBBWWWWWWWWWWWWWWWWWWWWWWWWWBWBWWWWWBWBWWWWWWBBWWWWWWWWWWWWBWWWWBWWWWWWWWWWWWBWWWWWWWBWWWWWWWBBBBBB", "output": "11\n4 1 1 1 1 2 1 1 1 1 6 " }, { "input": "5\nBWBWB", "output": "3\n1 1 1 " }, { "input": "10\nWWBWWWBWBB", "output": "3\n1 1 2 " }, { "input": "50\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB", "output": "1\n50 " }, { "input": "50\nBBBBBBBBBBBBBBBBBWWBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB", "output": "2\n17 31 " }, { "input": "100\nBBBBBBBBBBBBBBBBBBBBBBBBWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB", "output": "2\n24 42 " }, { "input": "90\nWWBWWBWBBWBBWWBWBWBBBWBWBBBWBWBWBWBWBWBWBWBBBBBWBBWWWWBWBBWBWWBBBWBWBWWBWBWBWBWWWWWWBWBBBB", "output": "30\n1 1 2 2 1 1 3 1 3 1 1 1 1 1 1 1 5 2 1 2 1 3 1 1 1 1 1 1 1 4 " }, { "input": "100\nBWWWBWBWBBBBBWBWWBWBWWWBWBWBWWBBWWBBBWBBBWWBWBWWBBBBWBWBBBWBWBBWWWWWWBWWBBBBWBWBWWBWBWWWBWBWWBWBWWWB", "output": "31\n1 1 1 5 1 1 1 1 1 1 2 3 3 1 1 4 1 3 1 2 1 4 1 1 1 1 1 1 1 1 1 " }, { "input": "90\nWBWBBBBBBWWWBBWWBWWWBBWWBWWWBWBBWBWBBWWWWBWBWBBWBBWBWWWBBWBBWWWWBWBBWWWBBBWBBWBWBBBBWWBWWB", "output": "25\n1 6 2 1 2 1 1 2 1 2 1 1 2 2 1 2 2 1 2 3 2 1 4 1 1 " }, { "input": "80\nBBWWBBBWBBWWWWBBWBWBBWWWWWBWBBWWBWBWBWBWBWWBWWBWWWBWBBWBBWBBWBBBWWBBBBBBBWBBBWBB", "output": "23\n2 3 2 2 1 2 1 2 1 1 1 1 1 1 1 1 2 2 2 3 7 3 2 " }, { "input": "65\nWWWWBWWWBBBBBWWWWWWBBBWWBBBBWWWWWWWWBBBWWWWBWBWWBBWWWWBWWWBBWBBBB", "output": "11\n1 5 3 4 3 1 1 2 1 2 4 " } ]
1,586,512,026
2,147,483,647
Python 3
OK
TESTS
54
109
307,200
n = int(input()) s = input() count = 0 i = 0 enc = [] while (i < n): temp = 0 if (s[i] == 'B'): count += 1 while(i < n and s[i] == 'B'): i += 1 temp += 1 if (temp > 0): enc.append(temp) i -= 1 i += 1 print(count) for i in enc: print(i, end = ' ')
Title: One-dimensional Japanese Crossword Time Limit: None seconds Memory Limit: None megabytes Problem Description: Recently Adaltik discovered japanese crosswords. Japanese crossword is a picture, represented as a table sized *a*<=×<=*b* squares, and each square is colored white or black. There are integers to the left of the rows and to the top of the columns, encrypting the corresponding row or column. The number of integers represents how many groups of black squares there are in corresponding row or column, and the integers themselves represents the number of consecutive black squares in corresponding group (you can find more detailed explanation in Wikipedia [https://en.wikipedia.org/wiki/Japanese_crossword](https://en.wikipedia.org/wiki/Japanese_crossword)). Adaltik decided that the general case of japanese crossword is too complicated and drew a row consisting of *n* squares (e.g. japanese crossword sized 1<=×<=*n*), which he wants to encrypt in the same way as in japanese crossword. Help Adaltik find the numbers encrypting the row he drew. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=100) — the length of the row. The second line of the input contains a single string consisting of *n* characters 'B' or 'W', ('B' corresponds to black square, 'W' — to white square in the row that Adaltik drew). Output Specification: The first line should contain a single integer *k* — the number of integers encrypting the row, e.g. the number of groups of black squares in the row. The second line should contain *k* integers, encrypting the row, e.g. corresponding to sizes of groups of consecutive black squares in the order from left to right. Demo Input: ['3\nBBW\n', '5\nBWBWB\n', '4\nWWWW\n', '4\nBBBB\n', '13\nWBBBBWWBWBBBW\n'] Demo Output: ['1\n2 ', '3\n1 1 1 ', '0\n', '1\n4 ', '3\n4 1 3 '] Note: The last sample case correspond to the picture in the statement.
```python n = int(input()) s = input() count = 0 i = 0 enc = [] while (i < n): temp = 0 if (s[i] == 'B'): count += 1 while(i < n and s[i] == 'B'): i += 1 temp += 1 if (temp > 0): enc.append(temp) i -= 1 i += 1 print(count) for i in enc: print(i, end = ' ') ```
3
246
D
Colorful Graph
PROGRAMMING
1,600
[ "brute force", "dfs and similar", "graphs" ]
null
null
You've got an undirected graph, consisting of *n* vertices and *m* edges. We will consider the graph's vertices numbered with integers from 1 to *n*. Each vertex of the graph has a color. The color of the *i*-th vertex is an integer *c**i*. Let's consider all vertices of the graph, that are painted some color *k*. Let's denote a set of such as *V*(*k*). Let's denote the value of the neighbouring color diversity for color *k* as the cardinality of the set *Q*(*k*)<==<={*c**u* :<= *c**u*<=≠<=*k* and there is vertex *v* belonging to set *V*(*k*) such that nodes *v* and *u* are connected by an edge of the graph}. Your task is to find such color *k*, which makes the cardinality of set *Q*(*k*) maximum. In other words, you want to find the color that has the most diverse neighbours. Please note, that you want to find such color *k*, that the graph has at least one vertex with such color.
The first line contains two space-separated integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=105) — the number of vertices end edges of the graph, correspondingly. The second line contains a sequence of integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105) — the colors of the graph vertices. The numbers on the line are separated by spaces. Next *m* lines contain the description of the edges: the *i*-th line contains two space-separated integers *a**i*,<=*b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*; *a**i*<=≠<=*b**i*) — the numbers of the vertices, connected by the *i*-th edge. It is guaranteed that the given graph has no self-loops or multiple edges.
Print the number of the color which has the set of neighbours with the maximum cardinality. It there are multiple optimal colors, print the color with the minimum number. Please note, that you want to find such color, that the graph has at least one vertex with such color.
[ "6 6\n1 1 2 3 5 8\n1 2\n3 2\n1 4\n4 3\n4 5\n4 6\n", "5 6\n4 2 5 2 4\n1 2\n2 3\n3 1\n5 3\n5 4\n3 4\n" ]
[ "3\n", "2\n" ]
none
2,000
[ { "input": "6 6\n1 1 2 3 5 8\n1 2\n3 2\n1 4\n4 3\n4 5\n4 6", "output": "3" }, { "input": "5 6\n4 2 5 2 4\n1 2\n2 3\n3 1\n5 3\n5 4\n3 4", "output": "2" }, { "input": "3 1\n13 13 4\n1 2", "output": "4" }, { "input": "2 1\n500 300\n1 2", "output": "300" }, { "input": "6 5\n2 2 2 1 2 2\n4 5\n4 2\n5 2\n4 1\n2 3", "output": "1" }, { "input": "8 8\n3 3 2 3 3 3 1 3\n8 2\n6 3\n2 3\n2 6\n5 6\n4 2\n7 5\n1 6", "output": "3" }, { "input": "10 27\n1 1 3 2 4 1 3 2 4 1\n9 3\n7 8\n9 7\n6 5\n7 6\n7 4\n6 9\n3 8\n6 10\n8 5\n3 1\n4 6\n8 1\n10 8\n9 5\n10 1\n5 10\n3 6\n4 3\n8 2\n10 7\n10 9\n10 3\n8 4\n3 2\n2 4\n6 1", "output": "1" }, { "input": "50 47\n21 17 47 15 50 47 47 41 28 18 27 47 29 28 32 26 16 26 8 22 27 10 45 21 17 30 31 38 14 8 9 40 29 35 41 24 22 14 40 46 44 34 40 31 48 40 8 50 1 28\n7 5\n50 2\n42 5\n36 28\n8 44\n36 3\n40 15\n33 18\n5 50\n1 6\n25 20\n39 24\n45 35\n14 27\n14 39\n17 47\n19 49\n28 7\n7 13\n34 3\n22 26\n5 6\n8 17\n32 18\n40 31\n4 40\n17 21\n37 18\n30 41\n2 47\n4 48\n36 32\n45 20\n39 28\n39 43\n7 33\n44 48\n21 47\n14 26\n15 47\n16 14\n23 18\n50 12\n28 8\n10 6\n12 46\n41 5", "output": "47" }, { "input": "5 4\n300 300 300 300 300\n1 2\n2 3\n3 4\n4 5", "output": "300" }, { "input": "5 2\n4 4 10 3 3\n1 2\n4 5", "output": "3" }, { "input": "6 1\n10 1 1 2 3 4\n2 3", "output": "1" }, { "input": "10 9\n1 1 1 1 1 1 1 1 1 1\n5 8\n8 6\n1 8\n8 4\n3 7\n1 10\n1 9\n2 5\n6 9", "output": "1" }, { "input": "10 15\n1 1 1 1 2 2 2 2 1 2\n8 5\n9 1\n8 6\n3 5\n2 7\n2 9\n10 3\n3 2\n3 6\n4 2\n5 9\n7 3\n6 7\n5 10\n4 7", "output": "1" }, { "input": "7 6\n1 2 3 4 3 3 3\n5 1\n6 1\n7 1\n1 2\n2 3\n2 4", "output": "2" }, { "input": "2 1\n100000 100000\n1 2", "output": "100000" } ]
1,590,386,065
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
10
716
1,228,800
from collections import defaultdict n,m = map(int,input().split()) g = defaultdict(list) c = list(map(int,input().split())) for _ in range(m): x,y = map(int,input().split()) if(c[x-1]!=c[y-1]):g[c[x-1]].append(c[y-1]) if(c[y-1]!=c[x-1]):g[c[y-1]].append(c[x-1]) ma = 0 co = 10**5 + 1 f = 0 for i in g: ma = max(ma,len(g[i])) for i in g: if(len(g[i])==ma): f+=1 co = min(co,i) if(f==0): co = min(c) print(co)
Title: Colorful Graph Time Limit: None seconds Memory Limit: None megabytes Problem Description: You've got an undirected graph, consisting of *n* vertices and *m* edges. We will consider the graph's vertices numbered with integers from 1 to *n*. Each vertex of the graph has a color. The color of the *i*-th vertex is an integer *c**i*. Let's consider all vertices of the graph, that are painted some color *k*. Let's denote a set of such as *V*(*k*). Let's denote the value of the neighbouring color diversity for color *k* as the cardinality of the set *Q*(*k*)<==<={*c**u* :<= *c**u*<=≠<=*k* and there is vertex *v* belonging to set *V*(*k*) such that nodes *v* and *u* are connected by an edge of the graph}. Your task is to find such color *k*, which makes the cardinality of set *Q*(*k*) maximum. In other words, you want to find the color that has the most diverse neighbours. Please note, that you want to find such color *k*, that the graph has at least one vertex with such color. Input Specification: The first line contains two space-separated integers *n*,<=*m* (1<=≤<=*n*,<=*m*<=≤<=105) — the number of vertices end edges of the graph, correspondingly. The second line contains a sequence of integers *c*1,<=*c*2,<=...,<=*c**n* (1<=≤<=*c**i*<=≤<=105) — the colors of the graph vertices. The numbers on the line are separated by spaces. Next *m* lines contain the description of the edges: the *i*-th line contains two space-separated integers *a**i*,<=*b**i* (1<=≤<=*a**i*,<=*b**i*<=≤<=*n*; *a**i*<=≠<=*b**i*) — the numbers of the vertices, connected by the *i*-th edge. It is guaranteed that the given graph has no self-loops or multiple edges. Output Specification: Print the number of the color which has the set of neighbours with the maximum cardinality. It there are multiple optimal colors, print the color with the minimum number. Please note, that you want to find such color, that the graph has at least one vertex with such color. Demo Input: ['6 6\n1 1 2 3 5 8\n1 2\n3 2\n1 4\n4 3\n4 5\n4 6\n', '5 6\n4 2 5 2 4\n1 2\n2 3\n3 1\n5 3\n5 4\n3 4\n'] Demo Output: ['3\n', '2\n'] Note: none
```python from collections import defaultdict n,m = map(int,input().split()) g = defaultdict(list) c = list(map(int,input().split())) for _ in range(m): x,y = map(int,input().split()) if(c[x-1]!=c[y-1]):g[c[x-1]].append(c[y-1]) if(c[y-1]!=c[x-1]):g[c[y-1]].append(c[x-1]) ma = 0 co = 10**5 + 1 f = 0 for i in g: ma = max(ma,len(g[i])) for i in g: if(len(g[i])==ma): f+=1 co = min(co,i) if(f==0): co = min(c) print(co) ```
0
678
D
Iterated Linear Function
PROGRAMMING
1,700
[ "math", "number theory" ]
null
null
Consider a linear function *f*(*x*)<==<=*Ax*<=+<=*B*. Let's define *g*(0)(*x*)<==<=*x* and *g*(*n*)(*x*)<==<=*f*(*g*(*n*<=-<=1)(*x*)) for *n*<=&gt;<=0. For the given integer values *A*, *B*, *n* and *x* find the value of *g*(*n*)(*x*) modulo 109<=+<=7.
The only line contains four integers *A*, *B*, *n* and *x* (1<=≤<=*A*,<=*B*,<=*x*<=≤<=109,<=1<=≤<=*n*<=≤<=1018) — the parameters from the problem statement. Note that the given value *n* can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
Print the only integer *s* — the value *g*(*n*)(*x*) modulo 109<=+<=7.
[ "3 4 1 1\n", "3 4 2 1\n", "3 4 3 1\n" ]
[ "7\n", "25\n", "79\n" ]
none
0
[ { "input": "3 4 1 1", "output": "7" }, { "input": "3 4 2 1", "output": "25" }, { "input": "3 4 3 1", "output": "79" }, { "input": "1 1 1 1", "output": "2" }, { "input": "3 10 723 6", "output": "443623217" }, { "input": "14 81 51 82", "output": "908370438" }, { "input": "826504481 101791432 76 486624528", "output": "621999403" }, { "input": "475965351 844435993 96338 972382431", "output": "83709654" }, { "input": "528774798 650132512 6406119 36569714", "output": "505858307" }, { "input": "632656975 851906850 1 310973933", "output": "230360736" }, { "input": "1 1 352875518515340737 1", "output": "45212126" }, { "input": "978837295 606974665 846646545585165081 745145208", "output": "154788991" }, { "input": "277677243 142088706 8846851 253942280", "output": "221036825" }, { "input": "1 192783664 1000000000000000000 596438713", "output": "42838179" }, { "input": "1 1000000000 1000000000000000000 1", "output": "999999665" }, { "input": "1 1000000000 1000000000000000000 1000000000", "output": "999999657" }, { "input": "1 100000000 10000000000000 1000000000", "output": "48993" }, { "input": "1 1171281 1000000000000000000 100", "output": "57392869" }, { "input": "1 1000000000 100000000000000000 1000000000", "output": "899999965" }, { "input": "1 100000000 100000000000000000 10000", "output": "490010000" }, { "input": "1 100000456 10000000000000000 54165", "output": "129054389" }, { "input": "1 1000000000 10000000000000 1", "output": "490001" }, { "input": "1 100000000 10000000000000000 10000", "output": "49010000" }, { "input": "1 1000000000 10000000000 12", "output": "502" }, { "input": "1 999999999 999999999999999999 12345678", "output": "12345294" }, { "input": "1 1000000 1000000000000000000 100000", "output": "49100000" }, { "input": "1 1000000000 1000000000000 12", "output": "49012" }, { "input": "1 10000 1000000000000000000 5", "output": "490005" }, { "input": "1 10000 1000000000000000000 10000", "output": "500000" }, { "input": "1 1000000000 10000000000000 12", "output": "490012" }, { "input": "1 1000000000 1000000000000000 12", "output": "49000012" }, { "input": "1 1000000000 1000000000000000000 12", "output": "999999676" }, { "input": "1 10000000 100000000000000000 100000", "output": "49100000" }, { "input": "114514 114514 114514 114514", "output": "623380685" }, { "input": "2 1 1000000006 1", "output": "1" }, { "input": "1 1234 10 9", "output": "12349" } ]
1,610,811,679
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
62
307,200
# -*- coding: utf-8 -*- if __name__ == "__main__": A, B, n, X = list(map(int, input().strip().split())) mod_tmp = 10 ** 9 + 7 if n >= mod_tmp: n = n % mod_tmp cache_B = -1 if A == 1: cache_B = n else: cache_B = int(1 * (1 - pow(A, n, mod_tmp))/(1-A)) # print(cache_B) item_B = (B % mod_tmp * (cache_B % mod_tmp)) % mod_tmp # result = ((A ** n) % mod_tmp) * (X % mod_tmp) + (item_B) % mod_tmp result = pow(A, n, mod_tmp) * (X % mod_tmp) + (item_B) % mod_tmp result = result % mod_tmp print(int(result))
Title: Iterated Linear Function Time Limit: None seconds Memory Limit: None megabytes Problem Description: Consider a linear function *f*(*x*)<==<=*Ax*<=+<=*B*. Let's define *g*(0)(*x*)<==<=*x* and *g*(*n*)(*x*)<==<=*f*(*g*(*n*<=-<=1)(*x*)) for *n*<=&gt;<=0. For the given integer values *A*, *B*, *n* and *x* find the value of *g*(*n*)(*x*) modulo 109<=+<=7. Input Specification: The only line contains four integers *A*, *B*, *n* and *x* (1<=≤<=*A*,<=*B*,<=*x*<=≤<=109,<=1<=≤<=*n*<=≤<=1018) — the parameters from the problem statement. Note that the given value *n* can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type. Output Specification: Print the only integer *s* — the value *g*(*n*)(*x*) modulo 109<=+<=7. Demo Input: ['3 4 1 1\n', '3 4 2 1\n', '3 4 3 1\n'] Demo Output: ['7\n', '25\n', '79\n'] Note: none
```python # -*- coding: utf-8 -*- if __name__ == "__main__": A, B, n, X = list(map(int, input().strip().split())) mod_tmp = 10 ** 9 + 7 if n >= mod_tmp: n = n % mod_tmp cache_B = -1 if A == 1: cache_B = n else: cache_B = int(1 * (1 - pow(A, n, mod_tmp))/(1-A)) # print(cache_B) item_B = (B % mod_tmp * (cache_B % mod_tmp)) % mod_tmp # result = ((A ** n) % mod_tmp) * (X % mod_tmp) + (item_B) % mod_tmp result = pow(A, n, mod_tmp) * (X % mod_tmp) + (item_B) % mod_tmp result = result % mod_tmp print(int(result)) ```
0
10
A
Power Consumption Calculation
PROGRAMMING
900
[ "implementation" ]
A. Power Consumption Calculation
1
256
Tom is interested in power consumption of his favourite laptop. His laptop has three modes. In normal mode laptop consumes *P*1 watt per minute. *T*1 minutes after Tom moved the mouse or touched the keyboard for the last time, a screensaver starts and power consumption changes to *P*2 watt per minute. Finally, after *T*2 minutes from the start of the screensaver, laptop switches to the "sleep" mode and consumes *P*3 watt per minute. If Tom moves the mouse or touches the keyboard when the laptop is in the second or in the third mode, it switches to the first (normal) mode. Tom's work with the laptop can be divided into *n* time periods [*l*1,<=*r*1],<=[*l*2,<=*r*2],<=...,<=[*l**n*,<=*r**n*]. During each interval Tom continuously moves the mouse and presses buttons on the keyboard. Between the periods Tom stays away from the laptop. Find out the total amount of power consumed by the laptop during the period [*l*1,<=*r**n*].
The first line contains 6 integer numbers *n*, *P*1, *P*2, *P*3, *T*1, *T*2 (1<=≤<=*n*<=≤<=100,<=0<=≤<=*P*1,<=*P*2,<=*P*3<=≤<=100,<=1<=≤<=*T*1,<=*T*2<=≤<=60). The following *n* lines contain description of Tom's work. Each *i*-th of these lines contains two space-separated integers *l**i* and *r**i* (0<=≤<=*l**i*<=&lt;<=*r**i*<=≤<=1440, *r**i*<=&lt;<=*l**i*<=+<=1 for *i*<=&lt;<=*n*), which stand for the start and the end of the *i*-th period of work.
Output the answer to the problem.
[ "1 3 2 1 5 10\n0 10\n", "2 8 4 2 5 10\n20 30\n50 100\n" ]
[ "30", "570" ]
none
0
[ { "input": "1 3 2 1 5 10\n0 10", "output": "30" }, { "input": "2 8 4 2 5 10\n20 30\n50 100", "output": "570" }, { "input": "3 15 9 95 39 19\n873 989\n1003 1137\n1172 1436", "output": "8445" }, { "input": "4 73 2 53 58 16\n51 52\n209 242\n281 407\n904 945", "output": "52870" }, { "input": "5 41 20 33 43 4\n46 465\n598 875\n967 980\n1135 1151\n1194 1245", "output": "46995" }, { "input": "6 88 28 100 53 36\n440 445\n525 614\n644 844\n1238 1261\n1305 1307\n1425 1434", "output": "85540" }, { "input": "7 46 61 55 28 59\n24 26\n31 61\n66 133\n161 612\n741 746\n771 849\n1345 1357", "output": "67147" }, { "input": "8 83 18 30 28 5\n196 249\n313 544\n585 630\n718 843\n1040 1194\n1207 1246\n1268 1370\n1414 1422", "output": "85876" }, { "input": "9 31 65 27 53 54\n164 176\n194 210\n485 538\n617 690\n875 886\n888 902\n955 957\n1020 1200\n1205 1282", "output": "38570" }, { "input": "30 3 1 58 44 7\n11 13\n14 32\n37 50\n70 74\n101 106\n113 129\n184 195\n197 205\n213 228\n370 394\n443 446\n457 460\n461 492\n499 585\n602 627\n709 776\n812 818\n859 864\n910 913\n918 964\n1000 1010\n1051 1056\n1063 1075\n1106 1145\n1152 1189\n1211 1212\n1251 1259\n1272 1375\n1412 1417\n1430 1431", "output": "11134" }, { "input": "30 42 3 76 28 26\n38 44\n55 66\n80 81\n84 283\n298 314\n331 345\n491 531\n569 579\n597 606\n612 617\n623 701\n723 740\n747 752\n766 791\n801 827\n842 846\n853 891\n915 934\n945 949\n955 964\n991 1026\n1051 1059\n1067 1179\n1181 1191\n1214 1226\n1228 1233\n1294 1306\n1321 1340\n1371 1374\n1375 1424", "output": "59043" }, { "input": "30 46 5 93 20 46\n12 34\n40 41\n54 58\n100 121\n162 182\n220 349\n358 383\n390 398\n401 403\n408 409\n431 444\n466 470\n471 535\n556 568\n641 671\n699 709\n767 777\n786 859\n862 885\n912 978\n985 997\n1013 1017\n1032 1038\n1047 1048\n1062 1080\n1094 1097\n1102 1113\n1122 1181\n1239 1280\n1320 1369", "output": "53608" }, { "input": "30 50 74 77 4 57\n17 23\n24 61\n67 68\n79 87\n93 101\n104 123\n150 192\n375 377\n398 414\n461 566\n600 633\n642 646\n657 701\n771 808\n812 819\n823 826\n827 833\n862 875\n880 891\n919 920\n928 959\n970 1038\n1057 1072\n1074 1130\n1165 1169\n1171 1230\n1265 1276\n1279 1302\n1313 1353\n1354 1438", "output": "84067" }, { "input": "30 54 76 95 48 16\n9 11\n23 97\n112 116\n126 185\n214 223\n224 271\n278 282\n283 348\n359 368\n373 376\n452 463\n488 512\n532 552\n646 665\n681 685\n699 718\n735 736\n750 777\n791 810\n828 838\n841 858\n874 1079\n1136 1171\n1197 1203\n1210 1219\n1230 1248\n1280 1292\n1324 1374\n1397 1435\n1438 1439", "output": "79844" }, { "input": "30 58 78 12 41 28\n20 26\n27 31\n35 36\n38 99\n103 104\n106 112\n133 143\n181 246\n248 251\n265 323\n350 357\n378 426\n430 443\n466 476\n510 515\n517 540\n542 554\n562 603\n664 810\n819 823\n826 845\n869 895\n921 973\n1002 1023\n1102 1136\n1143 1148\n1155 1288\n1316 1388\n1394 1403\n1434 1437", "output": "82686" }, { "input": "30 62 80 97 25 47\n19 20\n43 75\n185 188\n199 242\n252 258\n277 310\n316 322\n336 357\n398 399\n404 436\n443 520\n549 617\n637 649\n679 694\n705 715\n725 730\n731 756\n768 793\n806 833\n834 967\n1003 1079\n1088 1097\n1100 1104\n1108 1121\n1127 1164\n1240 1263\n1274 1307\n1367 1407\n1419 1425\n1433 1437", "output": "92356" }, { "input": "30 100 48 14 9 7\n26 55\n75 107\n145 146\n158 167\n197 199\n201 213\n222 238\n257 265\n271 338\n357 439\n454 462\n463 562\n633 660\n670 691\n696 829\n844 864\n880 888\n891 894\n895 900\n950 973\n1004 1007\n1018 1021\n1045 1049\n1062 1073\n1138 1184\n1240 1272\n1278 1315\n1403 1410\n1412 1418\n1426 1434", "output": "107490" }, { "input": "30 3 50 32 1 18\n46 60\n66 94\n99 141\n162 239\n309 334\n400 550\n594 630\n659 663\n664 701\n735 736\n741 755\n756 801\n823 854\n865 915\n937 964\n984 986\n990 1007\n1008 1031\n1052 1064\n1073 1080\n1190 1191\n1192 1254\n1265 1266\n1272 1273\n1274 1277\n1284 1302\n1308 1312\n1358 1383\n1388 1389\n1390 1401", "output": "25258" }, { "input": "30 7 52 49 46 37\n2 73\n129 130\n131 140\n143 150\n187 190\n217 238\n248 271\n375 426\n465 470\n475 503\n506 541\n569 571\n578 585\n680 683\n690 738\n742 761\n868 877\n890 892\n904 915\n935 961\n1076 1100\n1103 1114\n1232 1244\n1246 1247\n1257 1261\n1271 1276\n1280 1298\n1346 1360\n1373 1382\n1407 1419", "output": "23992" } ]
1,688,482,949
2,147,483,647
Python 3
OK
TESTS
30
92
0
n, p1, p2, p3, t1, t2 = map(int, input().split()) times = [list(map(int, input().split())) for _ in range(n)] power = 0 end = times[0][0] for i in times: start = i[0] for j in range(start - end): if j < t1: power += p1 elif j < t2 + t1: power += p2 else: power += p3 end = i[1] power += (end - start) * p1 print(power)
Title: Power Consumption Calculation Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Tom is interested in power consumption of his favourite laptop. His laptop has three modes. In normal mode laptop consumes *P*1 watt per minute. *T*1 minutes after Tom moved the mouse or touched the keyboard for the last time, a screensaver starts and power consumption changes to *P*2 watt per minute. Finally, after *T*2 minutes from the start of the screensaver, laptop switches to the "sleep" mode and consumes *P*3 watt per minute. If Tom moves the mouse or touches the keyboard when the laptop is in the second or in the third mode, it switches to the first (normal) mode. Tom's work with the laptop can be divided into *n* time periods [*l*1,<=*r*1],<=[*l*2,<=*r*2],<=...,<=[*l**n*,<=*r**n*]. During each interval Tom continuously moves the mouse and presses buttons on the keyboard. Between the periods Tom stays away from the laptop. Find out the total amount of power consumed by the laptop during the period [*l*1,<=*r**n*]. Input Specification: The first line contains 6 integer numbers *n*, *P*1, *P*2, *P*3, *T*1, *T*2 (1<=≤<=*n*<=≤<=100,<=0<=≤<=*P*1,<=*P*2,<=*P*3<=≤<=100,<=1<=≤<=*T*1,<=*T*2<=≤<=60). The following *n* lines contain description of Tom's work. Each *i*-th of these lines contains two space-separated integers *l**i* and *r**i* (0<=≤<=*l**i*<=&lt;<=*r**i*<=≤<=1440, *r**i*<=&lt;<=*l**i*<=+<=1 for *i*<=&lt;<=*n*), which stand for the start and the end of the *i*-th period of work. Output Specification: Output the answer to the problem. Demo Input: ['1 3 2 1 5 10\n0 10\n', '2 8 4 2 5 10\n20 30\n50 100\n'] Demo Output: ['30', '570'] Note: none
```python n, p1, p2, p3, t1, t2 = map(int, input().split()) times = [list(map(int, input().split())) for _ in range(n)] power = 0 end = times[0][0] for i in times: start = i[0] for j in range(start - end): if j < t1: power += p1 elif j < t2 + t1: power += p2 else: power += p3 end = i[1] power += (end - start) * p1 print(power) ```
3.954
505
B
Mr. Kitayuta's Colorful Graph
PROGRAMMING
1,400
[ "dfs and similar", "dp", "dsu", "graphs" ]
null
null
Mr. Kitayuta has just bought an undirected graph consisting of *n* vertices and *m* edges. The vertices of the graph are numbered from 1 to *n*. Each edge, namely edge *i*, has a color *c**i*, connecting vertex *a**i* and *b**i*. Mr. Kitayuta wants you to process the following *q* queries. In the *i*-th query, he gives you two integers — *u**i* and *v**i*. Find the number of the colors that satisfy the following condition: the edges of that color connect vertex *u**i* and vertex *v**i* directly or indirectly.
The first line of the input contains space-separated two integers — *n* and *m* (2<=≤<=*n*<=≤<=100,<=1<=≤<=*m*<=≤<=100), denoting the number of the vertices and the number of the edges, respectively. The next *m* lines contain space-separated three integers — *a**i*, *b**i* (1<=≤<=*a**i*<=&lt;<=*b**i*<=≤<=*n*) and *c**i* (1<=≤<=*c**i*<=≤<=*m*). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if *i*<=≠<=*j*, (*a**i*,<=*b**i*,<=*c**i*)<=≠<=(*a**j*,<=*b**j*,<=*c**j*). The next line contains a integer — *q* (1<=≤<=*q*<=≤<=100), denoting the number of the queries. Then follows *q* lines, containing space-separated two integers — *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*). It is guaranteed that *u**i*<=≠<=*v**i*.
For each query, print the answer in a separate line.
[ "4 5\n1 2 1\n1 2 2\n2 3 1\n2 3 3\n2 4 3\n3\n1 2\n3 4\n1 4\n", "5 7\n1 5 1\n2 5 1\n3 5 1\n4 5 1\n1 2 2\n2 3 2\n3 4 2\n5\n1 5\n5 1\n2 5\n1 5\n1 4\n" ]
[ "2\n1\n0\n", "1\n1\n1\n1\n2\n" ]
Let's consider the first sample. - Vertex 1 and vertex 2 are connected by color 1 and 2. - Vertex 3 and vertex 4 are connected by color 3. - Vertex 1 and vertex 4 are not connected by any single color.
1,000
[ { "input": "4 5\n1 2 1\n1 2 2\n2 3 1\n2 3 3\n2 4 3\n3\n1 2\n3 4\n1 4", "output": "2\n1\n0" }, { "input": "5 7\n1 5 1\n2 5 1\n3 5 1\n4 5 1\n1 2 2\n2 3 2\n3 4 2\n5\n1 5\n5 1\n2 5\n1 5\n1 4", "output": "1\n1\n1\n1\n2" }, { "input": "2 1\n1 2 1\n1\n1 2", "output": "1" }, { "input": "2 3\n1 2 3\n1 2 2\n1 2 1\n1\n1 2", "output": "3" }, { "input": "2 5\n1 2 1\n1 2 2\n1 2 3\n1 2 4\n1 2 5\n1\n1 2", "output": "5" } ]
1,585,485,666
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
2
124
409,600
from collections import defaultdict class Graph: def __init__(self,n,m): self.colors = defaultdict(list) self.vertices = n self.maxColor = m for i in range(1,m+1): self.colors[i] = [-1]*(n+1) def addColor(self,e1,e2,col): x = self.colors[col][e1] y = self.colors[col][e2] if(x==-1 and y == -1): #Both are Fresh self.colors[col][e1] = e2 elif(x==-1 and y!=-1): self.colors[col][e1] = self.colors[col][e2] else: self.colors[col][e2] = self.colors[col][e1] def findParent(self,e,i): if(self.colors[i][e]==-1): return e else: return self.findParent(self.colors[i][e],i) def solve(self,e1,e2): count = 0 for i in range(1,self.maxColor+1): if(self.findParent(e1,i)==self.findParent(e2,i)): count+=1 return count n,m = [int(x) for x in input().split()] G = Graph(n,m) for _ in range(m): e1,e2,col = [int(x) for x in input().split()] G.addColor(e1,e2,col) Q = int(input()) for __ in range(Q): e1,e2 = map(int,input().split()) print(G.solve(e1,e2))
Title: Mr. Kitayuta's Colorful Graph Time Limit: None seconds Memory Limit: None megabytes Problem Description: Mr. Kitayuta has just bought an undirected graph consisting of *n* vertices and *m* edges. The vertices of the graph are numbered from 1 to *n*. Each edge, namely edge *i*, has a color *c**i*, connecting vertex *a**i* and *b**i*. Mr. Kitayuta wants you to process the following *q* queries. In the *i*-th query, he gives you two integers — *u**i* and *v**i*. Find the number of the colors that satisfy the following condition: the edges of that color connect vertex *u**i* and vertex *v**i* directly or indirectly. Input Specification: The first line of the input contains space-separated two integers — *n* and *m* (2<=≤<=*n*<=≤<=100,<=1<=≤<=*m*<=≤<=100), denoting the number of the vertices and the number of the edges, respectively. The next *m* lines contain space-separated three integers — *a**i*, *b**i* (1<=≤<=*a**i*<=&lt;<=*b**i*<=≤<=*n*) and *c**i* (1<=≤<=*c**i*<=≤<=*m*). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if *i*<=≠<=*j*, (*a**i*,<=*b**i*,<=*c**i*)<=≠<=(*a**j*,<=*b**j*,<=*c**j*). The next line contains a integer — *q* (1<=≤<=*q*<=≤<=100), denoting the number of the queries. Then follows *q* lines, containing space-separated two integers — *u**i* and *v**i* (1<=≤<=*u**i*,<=*v**i*<=≤<=*n*). It is guaranteed that *u**i*<=≠<=*v**i*. Output Specification: For each query, print the answer in a separate line. Demo Input: ['4 5\n1 2 1\n1 2 2\n2 3 1\n2 3 3\n2 4 3\n3\n1 2\n3 4\n1 4\n', '5 7\n1 5 1\n2 5 1\n3 5 1\n4 5 1\n1 2 2\n2 3 2\n3 4 2\n5\n1 5\n5 1\n2 5\n1 5\n1 4\n'] Demo Output: ['2\n1\n0\n', '1\n1\n1\n1\n2\n'] Note: Let's consider the first sample. - Vertex 1 and vertex 2 are connected by color 1 and 2. - Vertex 3 and vertex 4 are connected by color 3. - Vertex 1 and vertex 4 are not connected by any single color.
```python from collections import defaultdict class Graph: def __init__(self,n,m): self.colors = defaultdict(list) self.vertices = n self.maxColor = m for i in range(1,m+1): self.colors[i] = [-1]*(n+1) def addColor(self,e1,e2,col): x = self.colors[col][e1] y = self.colors[col][e2] if(x==-1 and y == -1): #Both are Fresh self.colors[col][e1] = e2 elif(x==-1 and y!=-1): self.colors[col][e1] = self.colors[col][e2] else: self.colors[col][e2] = self.colors[col][e1] def findParent(self,e,i): if(self.colors[i][e]==-1): return e else: return self.findParent(self.colors[i][e],i) def solve(self,e1,e2): count = 0 for i in range(1,self.maxColor+1): if(self.findParent(e1,i)==self.findParent(e2,i)): count+=1 return count n,m = [int(x) for x in input().split()] G = Graph(n,m) for _ in range(m): e1,e2,col = [int(x) for x in input().split()] G.addColor(e1,e2,col) Q = int(input()) for __ in range(Q): e1,e2 = map(int,input().split()) print(G.solve(e1,e2)) ```
0
180
C
Letter
PROGRAMMING
1,400
[ "dp" ]
null
null
Patrick has just finished writing a message to his sweetheart Stacey when he noticed that the message didn't look fancy. Patrick was nervous while writing the message, so some of the letters there were lowercase and some of them were uppercase. Patrick believes that a message is fancy if any uppercase letter stands to the left of any lowercase one. In other words, this rule describes the strings where first go zero or more uppercase letters, and then — zero or more lowercase letters. To make the message fancy, Patrick can erase some letter and add the same letter in the same place in the opposite case (that is, he can replace an uppercase letter with the lowercase one and vice versa). Patrick got interested in the following question: what minimum number of actions do we need to make a message fancy? Changing a letter's case in the message counts as one action. Patrick cannot perform any other actions.
The only line of the input contains a non-empty string consisting of uppercase and lowercase letters. The string's length does not exceed 105.
Print a single number — the least number of actions needed to make the message fancy.
[ "PRuvetSTAaYA\n", "OYPROSTIYAOPECHATALSYAPRIVETSTASYA\n", "helloworld\n" ]
[ "5\n", "0\n", "0\n" ]
none
0
[ { "input": "PRuvetSTAaYA", "output": "5" }, { "input": "OYPROSTIYAOPECHATALSYAPRIVETSTASYA", "output": "0" }, { "input": "helloworld", "output": "0" }, { "input": "P", "output": "0" }, { "input": "t", "output": "0" }, { "input": "XdJ", "output": "1" }, { "input": "FSFlNEelYY", "output": "3" }, { "input": "lgtyasficu", "output": "0" }, { "input": "WYKUDTDDBT", "output": "0" }, { "input": "yysxwlyqboatikfnpxczmpijziiojbvadlfozjqldssffcxdegyxfrvohoxvgsrvlzjlkcuffoeisrpvagxtbkapkpzcafadzzjd", "output": "0" }, { "input": "mnAkOBuKxaiJwXhKnlcCvjxYXGXDoIqfUYkiLrdSYWhMemgWFzsgpoKOtHqooxbLYFuABWQSXuHdbyPVWyrkeEfqOsnEBikiqhfu", "output": "43" }, { "input": "MMVESdOCALHJCTBTUWWQRGUUVTTTABKKAAdIINAdKLRLLVLODHDXDPMcQfUhPNHFBJSDRGsHZNORSCPNvKOOIuZnZAmTPUCoPNlR", "output": "13" }, { "input": "MMbJIBhgFXPVpdQHLkWJkAHFIfJSpITTCRzRCzvRPRYECCheOknfINZWuKATDBOrEVKTcWXiYPjtzQMGUSGPNTMCUrvYCSWQHqAi", "output": "27" }, { "input": "ZnqXEBOABXVbHRFFqDLWpWBBLqZIagmbRAYMDKJAYyFQXnPYwvDyRXKHLQnMLHGEOnRKmXtGqyQkoBCSmgKPcEIEugwJyxDOtTVn", "output": "31" } ]
1,650,482,878
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
10
92
0
s=input() v=[] t=[] for i in range(len(s)): if s[i].isupper()==True: v.append(i) else: t.append(i) if len(v)==0: print(0) else: j=max(v) c=0 for i in range(len(t)): if t[i]<j: c+=1 print(c)
Title: Letter Time Limit: None seconds Memory Limit: None megabytes Problem Description: Patrick has just finished writing a message to his sweetheart Stacey when he noticed that the message didn't look fancy. Patrick was nervous while writing the message, so some of the letters there were lowercase and some of them were uppercase. Patrick believes that a message is fancy if any uppercase letter stands to the left of any lowercase one. In other words, this rule describes the strings where first go zero or more uppercase letters, and then — zero or more lowercase letters. To make the message fancy, Patrick can erase some letter and add the same letter in the same place in the opposite case (that is, he can replace an uppercase letter with the lowercase one and vice versa). Patrick got interested in the following question: what minimum number of actions do we need to make a message fancy? Changing a letter's case in the message counts as one action. Patrick cannot perform any other actions. Input Specification: The only line of the input contains a non-empty string consisting of uppercase and lowercase letters. The string's length does not exceed 105. Output Specification: Print a single number — the least number of actions needed to make the message fancy. Demo Input: ['PRuvetSTAaYA\n', 'OYPROSTIYAOPECHATALSYAPRIVETSTASYA\n', 'helloworld\n'] Demo Output: ['5\n', '0\n', '0\n'] Note: none
```python s=input() v=[] t=[] for i in range(len(s)): if s[i].isupper()==True: v.append(i) else: t.append(i) if len(v)==0: print(0) else: j=max(v) c=0 for i in range(len(t)): if t[i]<j: c+=1 print(c) ```
0
178
D3
Magic Squares
PROGRAMMING
2,100
[]
null
null
The Smart Beaver from ABBYY loves puzzles. One of his favorite puzzles is the magic square. He has recently had an idea to automate the solution of this puzzle. The Beaver decided to offer this challenge to the ABBYY Cup contestants. The magic square is a matrix of size *n*<=×<=*n*. The elements of this matrix are integers. The sum of numbers in each row of the matrix is equal to some number *s*. The sum of numbers in each column of the matrix is also equal to *s*. In addition, the sum of the elements on the main diagonal is equal to *s* and the sum of elements on the secondary diagonal is equal to *s*. Examples of magic squares are given in the following figure: You are given a set of *n*2 integers *a**i*. It is required to place these numbers into a square matrix of size *n*<=×<=*n* so that they form a magic square. Note that each number must occur in the matrix exactly the same number of times as it occurs in the original set. It is guaranteed that a solution exists!
The first input line contains a single integer *n*. The next line contains *n*2 integers *a**i* (<=-<=108<=≤<=*a**i*<=≤<=108), separated by single spaces. The input limitations for getting 20 points are: - 1<=≤<=*n*<=≤<=3 The input limitations for getting 50 points are: - 1<=≤<=*n*<=≤<=4 - It is guaranteed that there are no more than 9 distinct numbers among *a**i*. The input limitations for getting 100 points are: - 1<=≤<=*n*<=≤<=4
The first line of the output should contain a single integer *s*. In each of the following *n* lines print *n* integers, separated by spaces and describing the resulting magic square. In the resulting magic square the sums in the rows, columns and diagonals must be equal to *s*. If there are multiple solutions, you are allowed to print any of them.
[ "3\n1 2 3 4 5 6 7 8 9\n", "3\n1 0 -1 0 2 -1 -2 0 1\n", "2\n5 5 5 5\n" ]
[ "15\n2 7 6\n9 5 1\n4 3 8\n", "0\n1 0 -1\n-2 0 2\n1 0 -1\n", "10\n5 5\n5 5\n" ]
none
50
[ { "input": "3\n1 2 3 4 5 6 7 8 9", "output": "15\n2 7 6\n9 5 1\n4 3 8" }, { "input": "3\n1 0 -1 0 2 -1 -2 0 1", "output": "0\n1 0 -1\n-2 0 2\n1 0 -1" }, { "input": "2\n5 5 5 5", "output": "10\n5 5\n5 5" }, { "input": "2\n-1 -1 -1 -1", "output": "-2\n-1 -1\n-1 -1" }, { "input": "3\n58 -83 72 65 -90 -2 -9 -16 -76", "output": "-27\n-83 58 -2\n72 -9 -90\n-16 -76 65" }, { "input": "3\n399 -1025 -129 -497 927 -577 479 31 -49", "output": "-147\n399 -1025 479\n31 -49 -129\n-577 927 -497" }, { "input": "3\n2 4 6 8 10 12 14 16 18", "output": "30\n4 14 12\n18 10 2\n8 6 16" }, { "input": "3\n36 31 -25 3 -20 -30 8 -2 26", "output": "9\n31 -20 -2\n-30 3 36\n8 26 -25" }, { "input": "3\n175 -1047 -731 -141 38 -594 -415 -278 491", "output": "-834\n175 -1047 38\n-415 -278 -141\n-594 491 -731" }, { "input": "3\n-1256 74 -770 -284 -105 381 -591 1046 560", "output": "-315\n-770 74 381\n1046 -105 -1256\n-591 -284 560" }, { "input": "1\n-98765432", "output": "-98765432\n-98765432" }, { "input": "3\n99981234 99981234 99981234 99981234 99981234 99981234 99981234 99981234 99981234", "output": "299943702\n99981234 99981234 99981234\n99981234 99981234 99981234\n99981234 99981234 99981234" }, { "input": "3\n-67774718 52574834 -7599942 52574834 52574834 -67774718 -67774718 -7599942 -7599942", "output": "-22799826\n-67774718 52574834 -7599942\n52574834 -7599942 -67774718\n-7599942 -67774718 52574834" }, { "input": "3\n12458317 12458317 -27658201 -7599942 -27658201 32516576 -67774719 -47716460 52574835", "output": "-22799826\n12458317 12458317 -47716460\n-67774719 -7599942 52574835\n32516576 -27658201 -27658201" }, { "input": "3\n-33389130 52574830 -16196338 -41985526 996454 26785642 -7599942 18189246 -67774714", "output": "-22799826\n-33389130 52574830 -41985526\n-16196338 -7599942 996454\n26785642 -67774714 18189246" }, { "input": "4\n4815960 32237520 2073804 -668352 -22605600 -668352 15784584 4815960 10300272 -6152664 10300272 15784584 -6152664 7558116 2073804 7558116", "output": "19263840\n2073804 4815960 10300272 2073804\n-668352 -6152664 -6152664 32237520\n10300272 15784584 15784584 -22605600\n7558116 4815960 -668352 7558116" }, { "input": "4\n1936924 6264932 1936924 -4555088 -8883096 -19703116 -8883096 1936924 12756944 -8883096 -8883096 -8883096 6264932 1936924 6264932 -8883096", "output": "-9564336\n-8883096 -4555088 12756944 -8883096\n1936924 -8883096 -8883096 6264932\n-8883096 1936924 6264932 -8883096\n6264932 1936924 -19703116 1936924" }, { "input": "4\n-27386716 27186128 27186128 -13743505 -100294 -100294 13542917 -100294 13542917 68115761 27186128 -100294 -13743505 -27386716 -81959560 -13743505", "output": "-401176\n-13743505 -100294 13542917 -100294\n-13743505 -27386716 -27386716 68115761\n27186128 27186128 27186128 -81959560\n-100294 -100294 -13743505 13542917" }, { "input": "4\n-25056193 -6486895 -6486895 -25056193 -6486895 -6486895 12082403 -6486895 -25056193 12082403 -6486895 12082403 -6486895 -6486895 -6486895 -6486895", "output": "-25947580\n-6486895 -6486895 -6486895 -6486895\n-6486895 -25056193 -6486895 12082403\n-6486895 -6486895 12082403 -25056193\n-6486895 12082403 -25056193 -6486895" }, { "input": "4\n24978426 4704454 -5432532 -364039 -10501025 30046919 19909933 -15569518 -30774997 -5432532 19909933 4704454 -364039 19909933 19909933 -364039", "output": "18817816\n4704454 19909933 -5432532 -364039\n-364039 -10501025 -364039 30046919\n19909933 24978426 4704454 -30774997\n-5432532 -15569518 19909933 19909933" }, { "input": "4\n-71868244 -24941524 -24941524 -24941524 -24941524 -24941524 -24941524 -6170836 21985196 21985196 21985196 21985196 40755884 40755884 40755884 68911916", "output": "12858032\n-24941524 -6170836 68911916 -24941524\n21985196 -24941524 -24941524 40755884\n-24941524 21985196 40755884 -24941524\n40755884 21985196 -71868244 21985196" }, { "input": "4\n11368 -623328 -1892720 -623328 -1892720 -4431504 -1258024 -1892720 1280760 646064 646064 2550152 4454240 646064 1280760 1280760", "output": "45472\n-1258024 646064 1280760 -623328\n-623328 -1892720 -1892720 4454240\n646064 1280760 2550152 -4431504\n1280760 11368 -1892720 646064" }, { "input": "4\n2413742 -1336682 -8837530 28666710 2413742 -16338378 2413742 6164166 -8837530 13665014 9914590 6164166 -12587954 6164166 -1336682 9914590", "output": "9654968\n-1336682 6164166 2413742 2413742\n28666710 -12587954 2413742 -8837530\n-16338378 6164166 13665014 6164166\n-1336682 9914590 -8837530 9914590" }, { "input": "4\n-14473327 44823703 17455843 -23595947 -9912017 17455843 -789397 -14473327 -5350707 -28157257 -5350707 -9912017 -9912017 -789397 17455843 12894533", "output": "-3157588\n-14473327 12894533 -789397 -789397\n44823703 -23595947 -14473327 -9912017\n-28157257 17455843 17455843 -9912017\n-5350707 -9912017 -5350707 17455843" }, { "input": "4\n3284309 -2011475 3284309 -23194611 -12603043 -7307259 -2011475 -12603043 8580093 -12603043 -12603043 -17898827 3284309 -23194611 -39081963 29763229", "output": "-29229036\n-7307259 -12603043 3284309 -12603043\n29763229 -23194611 -12603043 -23194611\n-39081963 8580093 -2011475 3284309\n-12603043 -2011475 -17898827 3284309" }, { "input": "4\n13371337 13371337 13371337 13371337 13371337 13371337 13371337 13371337 13371337 13371337 13371337 13371337 13371337 13371337 13371337 13371337", "output": "53485348\n13371337 13371337 13371337 13371337\n13371337 13371337 13371337 13371337\n13371337 13371337 13371337 13371337\n13371337 13371337 13371337 13371337" }, { "input": "4\n3773926 -6772298 2016222 2016222 -1499186 -6772298 -1499186 2016222 -1499186 -1499186 2016222 10804742 -1499186 -1499186 2016222 2016222", "output": "1034072\n-1499186 -1499186 2016222 2016222\n10804742 -1499186 -1499186 -6772298\n-6772298 2016222 2016222 3773926\n-1499186 2016222 -1499186 2016222" }, { "input": "4\n-4287644 29340128 -4287644 -46322359 -37915416 -4287644 29340128 -4287644 -4287644 20933185 -29508473 37747071 29340128 20933185 -29508473 62967900", "output": "16477196\n-4287644 62967900 -37915416 -4287644\n29340128 -29508473 -4287644 20933185\n-4287644 29340128 20933185 -29508473\n-4287644 -46322359 37747071 29340128" }, { "input": "4\n-5 -4 3 -4 4 -2 4 -3 -2 4 -2 5 2 4 2 -6", "output": "0\n-2 4 2 -4\n3 -6 -2 5\n-3 4 4 -5\n2 -2 -4 4" }, { "input": "4\n8 -7 8 3 -5 -5 2 3 -5 7 -13 -1 2 4 4 -5", "output": "0\n-5 8 -7 4\n3 -5 -5 7\n3 2 8 -13\n-1 -5 4 2" }, { "input": "4\n-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16", "output": "-34\n-11 -5 -8 -10\n-2 -16 -13 -3\n-14 -4 -1 -15\n-7 -9 -12 -6" }, { "input": "4\n18 2 24 9 -4 5 7 -9 -1 3 5 -3 10 -1 -23 -2", "output": "10\n-3 -9 24 -2\n9 -4 2 3\n-1 5 7 -1\n5 18 -23 10" }, { "input": "4\n-11107327 -16312908 -21518489 -26724070 -31929651 -37135232 -52751975 -78779880 -696165 4509416 9714997 14920578 20126159 25331740 40948483 66976388", "output": "-23606984\n-16312908 9714997 14920578 -31929651\n-696165 -52751975 -37135232 66976388\n-11107327 40948483 25331740 -78779880\n4509416 -21518489 -26724070 20126159" }, { "input": "4\n-12529096 -16064890 -19600684 -23136478 -26672272 -33743860 -44351242 -58494418 -5457508 -1921714 1614080 5149874 8685668 15757256 26364638 40507814", "output": "-35973208\n-5457508 -23136478 8685668 -16064890\n1614080 -44351242 -33743860 40507814\n-19600684 26364638 15757256 -58494418\n-12529096 5149874 -26672272 -1921714" }, { "input": "4\n-80196146 -51775286 -34722770 -29038598 -17670254 -11986082 -6301910 -617738 10750606 16434778 22118950 27803122 39171466 44855638 61908154 90329014", "output": "20265736\n22118950 -617738 27803122 -29038598\n-51775286 -34722770 16434778 90329014\n61908154 44855638 -6301910 -80196146\n-11986082 10750606 -17670254 39171466" }, { "input": "4\n-53765840 41030320 -11107568 -1627952 -20587184 7851664 -82204688 69469168 3111856 12591472 31550704 22071088 -15847376 -25326992 -44286224 -34806608", "output": "-25471040\n12591472 -11107568 7851664 -34806608\n-53765840 -44286224 3111856 69469168\n41030320 31550704 -15847376 -82204688\n-25326992 -1627952 -20587184 22071088" }, { "input": "4\n-3881001 -6742541 -9604081 -12465621 -18188701 -21050241 -26773321 -49665641 1842079 4703619 7565159 10426699 13288239 24734399 33319019 36180559", "output": "-4077844\n-9604081 4703619 13288239 -12465621\n10426699 -26773321 -21050241 33319019\n1842079 36180559 7565159 -49665641\n-6742541 -18188701 -3881001 24734399" }, { "input": "4\n-1362991 -4200802 -7038613 -9876424 -15552046 -18389857 -24065479 -32578912 4312631 7150442 9988253 12826064 15663875 21339497 24177308 41204174", "output": "5899280\n7150442 -15552046 15663875 -1362991\n41204174 -24065479 -4200802 -7038613\n-32578912 21339497 12826064 4312631\n-9876424 24177308 -18389857 9988253" }, { "input": "4\n18047153 23317234 28587315 33857396 39127477 44397558 49667639 60207801 -3033171 -8303252 -13573333 -18843414 -24113495 -29383576 -55733981 -45193819", "output": "24757883\n33857396 -3033171 18047153 -24113495\n-18843414 -45193819 28587315 60207801\n39127477 49667639 -8303252 -55733981\n-29383576 23317234 -13573333 44397558" }, { "input": "4\n-4396182 740352 5876886 11013420 16149954 21286488 26423022 41832624 -14669250 -19805784 -24942318 -30078852 -35215386 -40351920 -45488454 -60898056", "output": "-38130864\n740352 -14669250 11013420 -35215386\n21286488 -60898056 -24942318 26423022\n-40351920 41832624 5876886 -45488454\n-19805784 -4396182 -30078852 16149954" }, { "input": "4\n-36858210 -25967360 -4185660 -19432850 -82599780 -60818080 -39036380 -17254680 26308720 48090420 69872120 91653820 28486890 13239700 35021400 45912250", "output": "18108080\n48090420 -4185660 35021400 -60818080\n28486890 -82599780 26308720 45912250\n-19432850 91653820 -17254680 -36858210\n-39036380 13239700 -25967360 69872120" }, { "input": "4\n32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2", "output": "68\n12 24 18 14\n30 2 8 28\n6 26 32 4\n20 16 10 22" }, { "input": "4\n3918060 12506682 8825844 6371952 10052790 2691114 11279736 5145006 17414466 13733628 1464168 -23688225 40112967 38886021 -2216670 -24915171", "output": "30395592\n10052790 -23688225 40112967 3918060\n1464168 2691114 8825844 17414466\n13733628 12506682 6371952 -2216670\n5145006 38886021 -24915171 11279736" }, { "input": "4\n-6080284 20608576 -60792447 75320739 -63461333 77989625 -14086942 28615234 9933032 12601918 17939690 15270804 4595260 1926374 -3411398 -742512", "output": "29056584\n12601918 -60792447 77989625 -742512\n-6080284 -3411398 9933032 28615234\n20608576 17939690 4595260 -14086942\n1926374 75320739 -63461333 15270804" }, { "input": "4\n-62314327 -58329965 -50361241 -38408155 -30439431 -22470707 -14501983 -6533259 9404189 17372913 25341637 33310361 41279085 53232171 61200895 65185257", "output": "5741860\n17372913 -50361241 61200895 -22470707\n-38408155 -30439431 9404189 65185257\n41279085 33310361 -6533259 -62314327\n-14501983 53232171 -58329965 25341637" }, { "input": "4\n-64322865 -60701256 -53458038 -42593211 -38971602 -31728384 -24485166 -17241948 -2755512 4487706 11730924 18974142 22595751 33460578 40703796 44325405", "output": "-39994920\n-17241948 -42593211 22595751 -2755512\n40703796 -60701256 -31728384 11730924\n-38971602 18974142 33460578 -53458038\n-24485166 44325405 -64322865 4487706" }, { "input": "4\n-36945036 -34162270 -28596738 -20248440 -14682908 -9117376 -3551844 2013688 13144752 18710284 24275816 29841348 35406880 43755178 49320710 52103476", "output": "30316880\n18710284 -28596738 49320710 -9117376\n-20248440 -14682908 13144752 52103476\n35406880 29841348 2013688 -36945036\n-3551844 43755178 -34162270 24275816" }, { "input": "4\n-37078222 -31168530 -75491220 -57762144 -16394300 -10484608 -4574916 1334776 13154160 19063852 24973544 30883236 72251080 89980156 45657466 51567158", "output": "28977872\n19063852 -31168530 51567158 -10484608\n-57762144 -16394300 13154160 89980156\n72251080 30883236 1334776 -75491220\n-4574916 45657466 -37078222 24973544" }, { "input": "4\n-37806582 -35128208 -31110647 -23075525 -20397151 -17718777 -15040403 -12362029 -7005281 -4326907 -1648533 1029841 3708215 11743337 15760898 18439272", "output": "-38734620\n-4326907 -35128208 18439272 -17718777\n-23075525 -20397151 -7005281 11743337\n3708215 1029841 -12362029 -31110647\n-15040403 15760898 -37806582 -1648533" }, { "input": "4\n5835697 1689800 -2456097 -6601994 -10747891 -14893788 -19039685 -56352758 14127491 18273388 22419285 26565182 30711079 39002873 43148770 68024152", "output": "39926376\n-2456097 43148770 -6601994 5835697\n1689800 -19039685 -10747891 68024152\n26565182 30711079 39002873 -56352758\n14127491 -14893788 18273388 22419285" }, { "input": "4\n-7727968 -8509407 -9290846 -10072285 -10853724 -12416602 -13198041 -18668114 -6165090 -5383651 -4602212 -3820773 -3039334 -1476456 867861 3212178", "output": "-27786116\n-9290846 867861 -10853724 -8509407\n-7727968 -13198041 -10072285 3212178\n-4602212 -3039334 -1476456 -18668114\n-6165090 -12416602 -5383651 -3820773" }, { "input": "4\n-6491809 -9108966 -11726123 -14343280 -19577594 -22194751 -30046222 -50983478 -1257495 1359662 3976819 6593976 9211133 19679761 27531232 35382703", "output": "-15498608\n-19577594 19679761 -9108966 -6491809\n1359662 -30046222 -22194751 35382703\n-1257495 9211133 27531232 -50983478\n3976819 -14343280 -11726123 6593976" }, { "input": "4\n-4 4 8 5 0 0 3 9 -9 -3 -8 12 5 16 2 -4", "output": "9\n5 0 4 0\n12 -9 -3 9\n-4 16 5 -8\n-4 2 3 8" }, { "input": "4\n-57534563 49115757 -9541919 1123113 -20206951 11788145 -89529659 81110853 6455629 17120661 38450725 27785693 -14874435 -25539467 -46869531 -36204499", "output": "-16837612\n17120661 -9541919 11788145 -36204499\n-57534563 -46869531 6455629 81110853\n49115757 38450725 -14874435 -89529659\n-25539467 1123113 -20206951 27785693" }, { "input": "4\n-15093469 7725691 -4824847 -2542931 -7106763 -261015 -21939217 14571439 -1401973 879943 5443775 3161859 -5965805 -8247721 -12811553 -10529637", "output": "-14735556\n879943 -4824847 -261015 -10529637\n-15093469 -12811553 -1401973 14571439\n7725691 5443775 -5965805 -21939217\n-8247721 -2542931 -7106763 3161859" }, { "input": "4\n3044768 2506774 3582762 4120756 6272732 6810726 5734738 5196744 8962702 354798 5465741 3851759 4927747 4389753 7348720 1968780", "output": "18635000\n5734738 4389753 5465741 3044768\n1968780 2506774 5196744 8962702\n7348720 6810726 4120756 354798\n3582762 4927747 3851759 6272732" }, { "input": "4\n-163 -80 -39 -98 -79 16 -14 40 -177 -88 35 105 -94 159 39 -10", "output": "-112\n-10 -79 16 -39\n159 -177 -80 -14\n-163 105 40 -94\n-98 39 -88 35" }, { "input": "4\n123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123", "output": "492\n123 123 123 123\n123 123 123 123\n123 123 123 123\n123 123 123 123" }, { "input": "4\n5786 -9126 -3280 -22002 1279 -15995 -4452 10537 -6067 10345 -2255 2496 -3395 25777 9365 2727", "output": "435\n1279 10537 -2255 -9126\n-6067 -15995 -3280 25777\n2727 10345 9365 -22002\n2496 -4452 -3395 5786" }, { "input": "4\n802562 804422 404431 -158995 -288560 613974 -477148 849626 847766 -31953 -558986 1346847 385290 1137304 97612 467128", "output": "1560330\n-158995 1137304 613974 -31953\n847766 -477148 385290 804422\n467128 802562 849626 -558986\n404431 97612 -288560 1346847" }, { "input": "4\n5551158 -15510547 -8904889 -5322102 -1433430 -9265805 -4902811 7215904 9544229 5542151 1653479 5285634 601239 11578898 7206897 1292563", "output": "2533142\n-5322102 11578898 -9265805 5542151\n5551158 -8904889 601239 5285634\n7206897 1292563 9544229 -15510547\n-4902811 -1433430 1653479 7215904" }, { "input": "4\n-163 -80 -39 -98 -79 16 -14 40 -177 -88 35 105 -94 159 39 -10", "output": "-112\n-10 -79 16 -39\n159 -177 -80 -14\n-163 105 40 -94\n-98 39 -88 35" } ]
1,617,454,169
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS3
15
2,000
14,540,800
import sys, random def f(a): if len(a) == 4: rez = 0 s = [0] * 6 s[0] = a[0] + a[1] s[1] = a[2] + a[3] s[2] = a[0] + a[2] s[3] = a[1] + a[3] s[4] = a[0] + a[3] s[5] = a[2] + a[1] for i in s: rez += abs(su - i) return rez elif len(a) == 9: s = [0] * 8 rez = 0 s[0] = a[0] + a[1] + a[2] s[1] = a[3] + a[4] + a[5] s[2] = a[6] + a[7] + a[8] s[3] = a[0] + a[3] + a[6] s[4] = a[1] + a[4] + a[7] s[5] = a[2] + a[5] + a[8] s[6] = a[0] + a[4] + a[8] s[7] = a[2] + a[4] + a[6] for i in s: rez += abs(su - i) return rez elif len(a) == 16: s = [0] * 10 rez = 0 s[0] = a[0] + a[1] + a[2] + a[3] s[1] = a[4] + a[5] + a[6] + a[7] s[2] = a[8] + a[9] + a[10] + a[11] s[3] = a[12] + a[13] + a[14] + a[15] s[4] = a[0] + a[1] + a[2] + a[3] s[5] = a[4] + a[5] + a[6] + a[7] s[6] = a[8] + a[9] + a[10] + a[11] s[7] = a[12] + a[13] + a[14] + a[15] s[8] = a[0] + a[5] + a[10] + a[15] s[9] = a[3] + a[6] + a[9] + a[12] for i in s: rez += abs(su - i) return rez # sys.stdin = open("input.txt", 'r') input = sys.stdin.readline n = int(input()) d = list(map(int, input().split())) su = sum(d) // n if len(d) == 1: print(*d) print(*d) exit(0) p = f(d) while p: random.shuffle(d) for k in range(500): p = f(d) i = random.randint(0, n) j = random.randint(0, n) while i == j: j = random.randint(0, n) d[i], d[j] = d[j], d[i] q = f(d) if q < p: p = q else: d[i], d[j] = d[j], d[i] if p == 0: print(su) b = 0 c = len(d) // n for i in range(len(d) // n): print(*d[b:c]) b += n c += n exit(0) if p == 0: print(su) b = 0 c = len(d) // n print(su) for i in range(len(d) // n): print(*d[b:c]) b += n c += n exit(0)
Title: Magic Squares Time Limit: None seconds Memory Limit: None megabytes Problem Description: The Smart Beaver from ABBYY loves puzzles. One of his favorite puzzles is the magic square. He has recently had an idea to automate the solution of this puzzle. The Beaver decided to offer this challenge to the ABBYY Cup contestants. The magic square is a matrix of size *n*<=×<=*n*. The elements of this matrix are integers. The sum of numbers in each row of the matrix is equal to some number *s*. The sum of numbers in each column of the matrix is also equal to *s*. In addition, the sum of the elements on the main diagonal is equal to *s* and the sum of elements on the secondary diagonal is equal to *s*. Examples of magic squares are given in the following figure: You are given a set of *n*2 integers *a**i*. It is required to place these numbers into a square matrix of size *n*<=×<=*n* so that they form a magic square. Note that each number must occur in the matrix exactly the same number of times as it occurs in the original set. It is guaranteed that a solution exists! Input Specification: The first input line contains a single integer *n*. The next line contains *n*2 integers *a**i* (<=-<=108<=≤<=*a**i*<=≤<=108), separated by single spaces. The input limitations for getting 20 points are: - 1<=≤<=*n*<=≤<=3 The input limitations for getting 50 points are: - 1<=≤<=*n*<=≤<=4 - It is guaranteed that there are no more than 9 distinct numbers among *a**i*. The input limitations for getting 100 points are: - 1<=≤<=*n*<=≤<=4 Output Specification: The first line of the output should contain a single integer *s*. In each of the following *n* lines print *n* integers, separated by spaces and describing the resulting magic square. In the resulting magic square the sums in the rows, columns and diagonals must be equal to *s*. If there are multiple solutions, you are allowed to print any of them. Demo Input: ['3\n1 2 3 4 5 6 7 8 9\n', '3\n1 0 -1 0 2 -1 -2 0 1\n', '2\n5 5 5 5\n'] Demo Output: ['15\n2 7 6\n9 5 1\n4 3 8\n', '0\n1 0 -1\n-2 0 2\n1 0 -1\n', '10\n5 5\n5 5\n'] Note: none
```python import sys, random def f(a): if len(a) == 4: rez = 0 s = [0] * 6 s[0] = a[0] + a[1] s[1] = a[2] + a[3] s[2] = a[0] + a[2] s[3] = a[1] + a[3] s[4] = a[0] + a[3] s[5] = a[2] + a[1] for i in s: rez += abs(su - i) return rez elif len(a) == 9: s = [0] * 8 rez = 0 s[0] = a[0] + a[1] + a[2] s[1] = a[3] + a[4] + a[5] s[2] = a[6] + a[7] + a[8] s[3] = a[0] + a[3] + a[6] s[4] = a[1] + a[4] + a[7] s[5] = a[2] + a[5] + a[8] s[6] = a[0] + a[4] + a[8] s[7] = a[2] + a[4] + a[6] for i in s: rez += abs(su - i) return rez elif len(a) == 16: s = [0] * 10 rez = 0 s[0] = a[0] + a[1] + a[2] + a[3] s[1] = a[4] + a[5] + a[6] + a[7] s[2] = a[8] + a[9] + a[10] + a[11] s[3] = a[12] + a[13] + a[14] + a[15] s[4] = a[0] + a[1] + a[2] + a[3] s[5] = a[4] + a[5] + a[6] + a[7] s[6] = a[8] + a[9] + a[10] + a[11] s[7] = a[12] + a[13] + a[14] + a[15] s[8] = a[0] + a[5] + a[10] + a[15] s[9] = a[3] + a[6] + a[9] + a[12] for i in s: rez += abs(su - i) return rez # sys.stdin = open("input.txt", 'r') input = sys.stdin.readline n = int(input()) d = list(map(int, input().split())) su = sum(d) // n if len(d) == 1: print(*d) print(*d) exit(0) p = f(d) while p: random.shuffle(d) for k in range(500): p = f(d) i = random.randint(0, n) j = random.randint(0, n) while i == j: j = random.randint(0, n) d[i], d[j] = d[j], d[i] q = f(d) if q < p: p = q else: d[i], d[j] = d[j], d[i] if p == 0: print(su) b = 0 c = len(d) // n for i in range(len(d) // n): print(*d[b:c]) b += n c += n exit(0) if p == 0: print(su) b = 0 c = len(d) // n print(su) for i in range(len(d) // n): print(*d[b:c]) b += n c += n exit(0) ```
0
535
B
Tavas and SaDDas
PROGRAMMING
1,100
[ "bitmasks", "brute force", "combinatorics", "implementation" ]
null
null
Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: "If you solve the following problem, I'll return it to you." The problem is: You are given a lucky number *n*. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. If we sort all lucky numbers in increasing order, what's the 1-based index of *n*? Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back.
The first and only line of input contains a lucky number *n* (1<=≤<=*n*<=≤<=109).
Print the index of *n* among all lucky numbers.
[ "4\n", "7\n", "77\n" ]
[ "1\n", "2\n", "6\n" ]
none
1,000
[ { "input": "4", "output": "1" }, { "input": "7", "output": "2" }, { "input": "77", "output": "6" }, { "input": "4", "output": "1" }, { "input": "474744", "output": "83" }, { "input": "777774", "output": "125" }, { "input": "447", "output": "8" }, { "input": "774", "output": "13" }, { "input": "4", "output": "1" }, { "input": "4447747", "output": "140" }, { "input": "7747474", "output": "233" }, { "input": "4444", "output": "15" }, { "input": "4447", "output": "16" }, { "input": "7", "output": "2" }, { "input": "4", "output": "1" }, { "input": "4447744", "output": "139" }, { "input": "77474", "output": "57" }, { "input": "7747", "output": "28" }, { "input": "444", "output": "7" }, { "input": "7", "output": "2" }, { "input": "7774477", "output": "242" }, { "input": "4477774", "output": "157" }, { "input": "7444", "output": "23" }, { "input": "7474747", "output": "212" }, { "input": "77", "output": "6" }, { "input": "774477", "output": "114" }, { "input": "7", "output": "2" }, { "input": "47", "output": "4" }, { "input": "747777", "output": "110" }, { "input": "444444444", "output": "511" }, { "input": "777777777", "output": "1022" }, { "input": "477477447", "output": "728" }, { "input": "777744747", "output": "996" } ]
1,699,582,728
2,147,483,647
Python 3
OK
TESTS
33
46
307,200
from collections import deque n = input() q = deque([""]) res = 0 while True: cur = q.pop() if cur == n: break q.appendleft(cur + "4") q.appendleft(cur + "7") res += 1 print(res)
Title: Tavas and SaDDas Time Limit: None seconds Memory Limit: None megabytes Problem Description: Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: "If you solve the following problem, I'll return it to you." The problem is: You are given a lucky number *n*. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not. If we sort all lucky numbers in increasing order, what's the 1-based index of *n*? Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back. Input Specification: The first and only line of input contains a lucky number *n* (1<=≤<=*n*<=≤<=109). Output Specification: Print the index of *n* among all lucky numbers. Demo Input: ['4\n', '7\n', '77\n'] Demo Output: ['1\n', '2\n', '6\n'] Note: none
```python from collections import deque n = input() q = deque([""]) res = 0 while True: cur = q.pop() if cur == n: break q.appendleft(cur + "4") q.appendleft(cur + "7") res += 1 print(res) ```
3
9
A
Die Roll
PROGRAMMING
800
[ "math", "probabilities" ]
A. Die Roll
1
64
Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.
The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls.
Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1».
[ "4 2\n" ]
[ "1/2\n" ]
Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
0
[ { "input": "4 2", "output": "1/2" }, { "input": "1 1", "output": "1/1" }, { "input": "1 2", "output": "5/6" }, { "input": "1 3", "output": "2/3" }, { "input": "1 4", "output": "1/2" }, { "input": "1 5", "output": "1/3" }, { "input": "1 6", "output": "1/6" }, { "input": "2 1", "output": "5/6" }, { "input": "2 2", "output": "5/6" }, { "input": "2 3", "output": "2/3" }, { "input": "2 4", "output": "1/2" }, { "input": "2 5", "output": "1/3" }, { "input": "2 6", "output": "1/6" }, { "input": "3 1", "output": "2/3" }, { "input": "3 2", "output": "2/3" }, { "input": "3 3", "output": "2/3" }, { "input": "3 4", "output": "1/2" }, { "input": "3 5", "output": "1/3" }, { "input": "3 6", "output": "1/6" }, { "input": "4 1", "output": "1/2" }, { "input": "4 3", "output": "1/2" }, { "input": "4 4", "output": "1/2" }, { "input": "4 5", "output": "1/3" }, { "input": "4 6", "output": "1/6" }, { "input": "5 1", "output": "1/3" }, { "input": "5 2", "output": "1/3" }, { "input": "5 3", "output": "1/3" }, { "input": "5 4", "output": "1/3" }, { "input": "5 5", "output": "1/3" }, { "input": "5 6", "output": "1/6" }, { "input": "6 1", "output": "1/6" }, { "input": "6 2", "output": "1/6" }, { "input": "6 3", "output": "1/6" }, { "input": "6 4", "output": "1/6" }, { "input": "6 5", "output": "1/6" }, { "input": "6 6", "output": "1/6" } ]
1,693,979,482
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
0
62
0
import sys numb = sys.stdin.readline().strip().split() need = 6 - max(int(numb[0]), int(numb[1])) + 1 if need == 6: print('1/1') else: print(str(need) +'/' + '6')
Title: Die Roll Time Limit: 1 seconds Memory Limit: 64 megabytes Problem Description: Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place. But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams. Yakko thrown a die and got Y points, Wakko — W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania. It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win. Input Specification: The only line of the input file contains two natural numbers Y and W — the results of Yakko's and Wakko's die rolls. Output Specification: Output the required probability in the form of irreducible fraction in format «A/B», where A — the numerator, and B — the denominator. If the required probability equals to zero, output «0/1». If the required probability equals to 1, output «1/1». Demo Input: ['4 2\n'] Demo Output: ['1/2\n'] Note: Dot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points.
```python import sys numb = sys.stdin.readline().strip().split() need = 6 - max(int(numb[0]), int(numb[1])) + 1 if need == 6: print('1/1') else: print(str(need) +'/' + '6') ```
0
61
A
Ultra-Fast Mathematician
PROGRAMMING
800
[ "implementation" ]
A. Ultra-Fast Mathematician
2
256
Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate.
There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.
Write one line — the corresponding answer. Do not omit the leading 0s.
[ "1010100\n0100101\n", "000\n111\n", "1110\n1010\n", "01110\n01100\n" ]
[ "1110001\n", "111\n", "0100\n", "00010\n" ]
none
500
[ { "input": "1010100\n0100101", "output": "1110001" }, { "input": "000\n111", "output": "111" }, { "input": "1110\n1010", "output": "0100" }, { "input": "01110\n01100", "output": "00010" }, { "input": "011101\n000001", "output": "011100" }, { "input": "10\n01", "output": "11" }, { "input": "00111111\n11011101", "output": "11100010" }, { "input": "011001100\n101001010", "output": "110000110" }, { "input": "1100100001\n0110101100", "output": "1010001101" }, { "input": "00011101010\n10010100101", "output": "10001001111" }, { "input": "100000101101\n111010100011", "output": "011010001110" }, { "input": "1000001111010\n1101100110001", "output": "0101101001011" }, { "input": "01011111010111\n10001110111010", "output": "11010001101101" }, { "input": "110010000111100\n001100101011010", "output": "111110101100110" }, { "input": "0010010111110000\n0000000011010110", "output": "0010010100100110" }, { "input": "00111110111110000\n01111100001100000", "output": "01000010110010000" }, { "input": "101010101111010001\n001001111101111101", "output": "100011010010101100" }, { "input": "0110010101111100000\n0011000101000000110", "output": "0101010000111100110" }, { "input": "11110100011101010111\n00001000011011000000", "output": "11111100000110010111" }, { "input": "101010101111101101001\n111010010010000011111", "output": "010000111101101110110" }, { "input": "0000111111100011000010\n1110110110110000001010", "output": "1110001001010011001000" }, { "input": "10010010101000110111000\n00101110100110111000111", "output": "10111100001110001111111" }, { "input": "010010010010111100000111\n100100111111100011001110", "output": "110110101101011111001001" }, { "input": "0101110100100111011010010\n0101100011010111001010001", "output": "0000010111110000010000011" }, { "input": "10010010100011110111111011\n10000110101100000001000100", "output": "00010100001111110110111111" }, { "input": "000001111000000100001000000\n011100111101111001110110001", "output": "011101000101111101111110001" }, { "input": "0011110010001001011001011100\n0000101101000011101011001010", "output": "0011011111001010110010010110" }, { "input": "11111000000000010011001101111\n11101110011001010100010000000", "output": "00010110011001000111011101111" }, { "input": "011001110000110100001100101100\n001010000011110000001000101001", "output": "010011110011000100000100000101" }, { "input": "1011111010001100011010110101111\n1011001110010000000101100010101", "output": "0000110100011100011111010111010" }, { "input": "10111000100001000001010110000001\n10111000001100101011011001011000", "output": "00000000101101101010001111011001" }, { "input": "000001010000100001000000011011100\n111111111001010100100001100000111", "output": "111110101001110101100001111011011" }, { "input": "1101000000000010011011101100000110\n1110000001100010011010000011011110", "output": "0011000001100000000001101111011000" }, { "input": "01011011000010100001100100011110001\n01011010111000001010010100001110000", "output": "00000001111010101011110000010000001" }, { "input": "000011111000011001000110111100000100\n011011000110000111101011100111000111", "output": "011000111110011110101101011011000011" }, { "input": "1001000010101110001000000011111110010\n0010001011010111000011101001010110000", "output": "1011001001111001001011101010101000010" }, { "input": "00011101011001100101111111000000010101\n10010011011011001011111000000011101011", "output": "10001110000010101110000111000011111110" }, { "input": "111011100110001001101111110010111001010\n111111101101111001110010000101101000100", "output": "000100001011110000011101110111010001110" }, { "input": "1111001001101000001000000010010101001010\n0010111100111110001011000010111110111001", "output": "1101110101010110000011000000101011110011" }, { "input": "00100101111000000101011111110010100011010\n11101110001010010101001000111110101010100", "output": "11001011110010010000010111001100001001110" }, { "input": "101011001110110100101001000111010101101111\n100111100110101011010100111100111111010110", "output": "001100101000011111111101111011101010111001" }, { "input": "1111100001100101000111101001001010011100001\n1000110011000011110010001011001110001000001", "output": "0111010010100110110101100010000100010100000" }, { "input": "01100111011111010101000001101110000001110101\n10011001011111110000000101011001001101101100", "output": "11111110000000100101000100110111001100011001" }, { "input": "110010100111000100100101100000011100000011001\n011001111011100110000110111001110110100111011", "output": "101011011100100010100011011001101010100100010" }, { "input": "0001100111111011010110100100111000000111000110\n1100101011000000000001010010010111001100110001", "output": "1101001100111011010111110110101111001011110111" }, { "input": "00000101110110110001110010100001110100000100000\n10010000110011110001101000111111101010011010001", "output": "10010101000101000000011010011110011110011110001" }, { "input": "110000100101011100100011001111110011111110010001\n101011111001011100110110111101110011010110101100", "output": "011011011100000000010101110010000000101000111101" }, { "input": "0101111101011111010101011101000011101100000000111\n0000101010110110001110101011011110111001010100100", "output": "0101010111101001011011110110011101010101010100011" }, { "input": "11000100010101110011101000011111001010110111111100\n00001111000111001011111110000010101110111001000011", "output": "11001011010010111000010110011101100100001110111111" }, { "input": "101000001101111101101111111000001110110010101101010\n010011100111100001100000010001100101000000111011011", "output": "111011101010011100001111101001101011110010010110001" }, { "input": "0011111110010001010100010110111000110011001101010100\n0111000000100010101010000100101000000100101000111001", "output": "0100111110110011111110010010010000110111100101101101" }, { "input": "11101010000110000011011010000001111101000111011111100\n10110011110001010100010110010010101001010111100100100", "output": "01011001110111010111001100010011010100010000111011000" }, { "input": "011000100001000001101000010110100110011110100111111011\n111011001000001001110011001111011110111110110011011111", "output": "100011101001001000011011011001111000100000010100100100" }, { "input": "0111010110010100000110111011010110100000000111110110000\n1011100100010001101100000100111111101001110010000100110", "output": "1100110010000101101010111111101001001001110101110010110" }, { "input": "10101000100111000111010001011011011011110100110101100011\n11101111000000001100100011111000100100000110011001101110", "output": "01000111100111001011110010100011111111110010101100001101" }, { "input": "000000111001010001000000110001001011100010011101010011011\n110001101000010010000101000100001111101001100100001010010", "output": "110001010001000011000101110101000100001011111001011001001" }, { "input": "0101011100111010000111110010101101111111000000111100011100\n1011111110000010101110111001000011100000100111111111000111", "output": "1110100010111000101001001011101110011111100111000011011011" }, { "input": "11001000001100100111100111100100101011000101001111001001101\n10111110100010000011010100110100100011101001100000001110110", "output": "01110110101110100100110011010000001000101100101111000111011" }, { "input": "010111011011101000000110000110100110001110100001110110111011\n101011110011101011101101011111010100100001100111100100111011", "output": "111100101000000011101011011001110010101111000110010010000000" }, { "input": "1001011110110110000100011001010110000100011010010111010101110\n1101111100001000010111110011010101111010010100000001000010111", "output": "0100100010111110010011101010000011111110001110010110010111001" }, { "input": "10000010101111100111110101111000010100110111101101111111111010\n10110110101100101010011001011010100110111011101100011001100111", "output": "00110100000011001101101100100010110010001100000001100110011101" }, { "input": "011111010011111000001010101001101001000010100010111110010100001\n011111001011000011111001000001111001010110001010111101000010011", "output": "000000011000111011110011101000010000010100101000000011010110010" }, { "input": "1111000000110001011101000100100100001111011100001111001100011111\n1101100110000101100001100000001001011011111011010101000101001010", "output": "0010100110110100111100100100101101010100100111011010001001010101" }, { "input": "01100000101010010011001110100110110010000110010011011001100100011\n10110110010110111100100111000111000110010000000101101110000010111", "output": "11010110111100101111101001100001110100010110010110110111100110100" }, { "input": "001111111010000100001100001010011001111110011110010111110001100111\n110000101001011000100010101100100110000111100000001101001110010111", "output": "111111010011011100101110100110111111111001111110011010111111110000" }, { "input": "1011101011101101011110101101011101011000010011100101010101000100110\n0001000001001111010111100100111101100000000001110001000110000000110", "output": "1010101010100010001001001001100000111000010010010100010011000100000" }, { "input": "01000001011001010011011100010000100100110101111011011011110000001110\n01011110000110011011000000000011000111100001010000000011111001110000", "output": "00011111011111001000011100010011100011010100101011011000001001111110" }, { "input": "110101010100110101000001111110110100010010000100111110010100110011100\n111010010111111011100110101011001011001110110111110100000110110100111", "output": "001111000011001110100111010101111111011100110011001010010010000111011" }, { "input": "1001101011000001011111100110010010000011010001001111011100010100110001\n1111100111110101001111010001010000011001001001010110001111000000100101", "output": "0110001100110100010000110111000010011010011000011001010011010100010100" }, { "input": "00000111110010110001110110001010010101000111011001111111100110011110010\n00010111110100000100110101000010010001100001100011100000001100010100010", "output": "00010000000110110101000011001000000100100110111010011111101010001010000" }, { "input": "100101011100101101000011010001011001101110101110001100010001010111001110\n100001111100101011011111110000001111000111001011111110000010101110111001", "output": "000100100000000110011100100001010110101001100101110010010011111001110111" }, { "input": "1101100001000111001101001011101000111000011110000001001101101001111011010\n0101011101010100011011010110101000010010110010011110101100000110110001000", "output": "1000111100010011010110011101000000101010101100011111100001101111001010010" }, { "input": "01101101010011110101100001110101111011100010000010001101111000011110111111\n00101111001101001100111010000101110000100101101111100111101110010100011011", "output": "01000010011110111001011011110000001011000111101101101010010110001010100100" }, { "input": "101100101100011001101111110110110010100110110010100001110010110011001101011\n000001011010101011110011111101001110000111000010001101000010010000010001101", "output": "101101110110110010011100001011111100100001110000101100110000100011011100110" }, { "input": "0010001011001010001100000010010011110110011000100000000100110000101111001110\n1100110100111000110100001110111001011101001100001010100001010011100110110001", "output": "1110111111110010111000001100101010101011010100101010100101100011001001111111" }, { "input": "00101101010000000101011001101011001100010001100000101011101110000001111001000\n10010110010111000000101101000011101011001010000011011101101011010000000011111", "output": "10111011000111000101110100101000100111011011100011110110000101010001111010111" }, { "input": "111100000100100000101001100001001111001010001000001000000111010000010101101011\n001000100010100101111011111011010110101100001111011000010011011011100010010110", "output": "110100100110000101010010011010011001100110000111010000010100001011110111111101" }, { "input": "0110001101100100001111110101101000100101010010101010011001101001001101110000000\n0111011000000010010111011110010000000001000110001000011001101000000001110100111", "output": "0001010101100110011000101011111000100100010100100010000000000001001100000100111" }, { "input": "10001111111001000101001011110101111010100001011010101100111001010001010010001000\n10000111010010011110111000111010101100000011110001101111001000111010100000000001", "output": "00001000101011011011110011001111010110100010101011000011110001101011110010001001" }, { "input": "100110001110110000100101001110000011110110000110000000100011110100110110011001101\n110001110101110000000100101001101011111100100100001001000110000001111100011110110", "output": "010111111011000000100001100111101000001010100010001001100101110101001010000111011" }, { "input": "0000010100100000010110111100011111111010011101000000100000011001001101101100111010\n0100111110011101010110101011110110010111001111000110101100101110111100101000111111", "output": "0100101010111101000000010111101001101101010010000110001100110111110001000100000101" }, { "input": "11000111001010100001110000001001011010010010110000001110100101000001010101100110111\n11001100100100100001101010110100000111100011101110011010110100001001000011011011010", "output": "00001011101110000000011010111101011101110001011110010100010001001000010110111101101" }, { "input": "010110100010001000100010101001101010011010111110100001000100101000111011100010100001\n110000011111101101010011111000101010111010100001001100001001100101000000111000000000", "output": "100110111101100101110001010001000000100000011111101101001101001101111011011010100001" }, { "input": "0000011110101110010101110110110101100001011001101010101001000010000010000000101001101\n1100111111011100000110000111101110011111100111110001011001000010011111100001001100011", "output": "1100100001110010010011110001011011111110111110011011110000000000011101100001100101110" }, { "input": "10100000101101110001100010010010100101100011010010101000110011100000101010110010000000\n10001110011011010010111011011101101111000111110000111000011010010101001100000001010011", "output": "00101110110110100011011001001111001010100100100010010000101001110101100110110011010011" }, { "input": "001110000011111101101010011111000101010111010100001001100001001100101000000111000000000\n111010000000000000101001110011001000111011001100101010011001000011101001001011110000011", "output": "110100000011111101000011101100001101101100011000100011111000001111000001001100110000011" }, { "input": "1110111100111011010101011011001110001010010010110011110010011111000010011111010101100001\n1001010101011001001010100010101100000110111101011000100010101111111010111100001110010010", "output": "0111101001100010011111111001100010001100101111101011010000110000111000100011011011110011" }, { "input": "11100010001100010011001100001100010011010001101110011110100101110010101101011101000111111\n01110000000110111010110100001010000101011110100101010011000110101110101101110111011110001", "output": "10010010001010101001111000000110010110001111001011001101100011011100000000101010011001110" }, { "input": "001101011001100101101100110000111000101011001001100100000100101000100000110100010111111101\n101001111110000010111101111110001001111001111101111010000110111000100100110010010001011111", "output": "100100100111100111010001001110110001010010110100011110000010010000000100000110000110100010" }, { "input": "1010110110010101000110010010110101011101010100011001101011000110000000100011100100011000000\n0011011111100010001111101101000111001011101110100000110111100100101111010110101111011100011", "output": "1001101001110111001001111111110010010110111010111001011100100010101111110101001011000100011" }, { "input": "10010010000111010111011111110010100101100000001100011100111011100010000010010001011100001100\n00111010100010110010000100010111010001111110100100100011101000101111111111001101101100100100", "output": "10101000100101100101011011100101110100011110101000111111010011001101111101011100110000101000" }, { "input": "010101110001010101100000010111010000000111110011001101100011001000000011001111110000000010100\n010010111011100101010101111110110000000111000100001101101001001000001100101110001010000100001", "output": "000111001010110000110101101001100000000000110111000000001010000000001111100001111010000110101" }, { "input": "1100111110011001000111101001001011000110011010111111100010111111001100111111011101100111101011\n1100000011001000110100110111000001011001010111101000010010100011000001100100111101101000010110", "output": "0000111101010001110011011110001010011111001101010111110000011100001101011011100000001111111101" }, { "input": "00011000100100110111100101100100000000010011110111110010101110110011100001010111010011110100101\n00011011111011111011100101100111100101001110010111000010000111000100100100000001110101111011011", "output": "00000011011111001100000000000011100101011101100000110000101001110111000101010110100110001111110" }, { "input": "000101011001001100000111100010110101111011110101111101000110001101011010111110110011100100000001\n011000101010011111011000111000100000000011011000000001111110001000001111101010110000011100001111", "output": "011101110011010011011111011010010101111000101101111100111000000101010101010100000011111000001110" }, { "input": "1000101001011010000100100100010010011101011001110101111011101111111110010101001101010001010101001\n0110110010011100011111011111110111000000010001110100001010111110101011010011111011111110000110000", "output": "1110011011000110011011111011100101011101001000000001110001010001010101000110110110101111010011001" }, { "input": "01111010010101100111110111111011011010100001011101010000111100101101101110111011001100101011100111\n00001100110110100001111011000010001001001100000010111101000001111011100000010111010010000011000010", "output": "01110110100011000110001100111001010011101101011111101101111101010110001110101100011110101000100101" }, { "input": "111101011101111000001011001101111010110111001101110100100011111011011101001101010101011010111000110\n101111100101101101001100110011000001111010011101110111110110101110011011110011111100001001110101101", "output": "010010111000010101000111111110111011001101010000000011010101010101000110111110101001010011001101011" }, { "input": "1010000011010110011101001101110001110010000111011101110010110110111111001001110100101100010101010001\n0111101000111100101100000101111010100100001000011101010100110011100011010011010101000100101011100011", "output": "1101101011101010110001001000001011010110001111000000100110000101011100011010100001101000111110110010" }, { "input": "0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001\n1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111010", "output": "1111111010111111101011111110101111111010111111101011111110101111111010111111101011111110101111111011" }, { "input": "0\n0", "output": "0" }, { "input": "0\n1", "output": "1" } ]
1,617,911,181
2,147,483,647
Python 3
OK
TESTS
102
77
0
a = input() b = input() def maths(a,b): r = '' for n in range(len(a)): if a[n] == b[n]: r += '0' else: r += '1' return r print(maths(a,b))
Title: Ultra-Fast Mathematician Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second. One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part. In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The *i*-th digit of the answer is 1 if and only if the *i*-th digit of the two given numbers differ. In the other case the *i*-th digit of the answer is 0. Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length ∞ (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length. Now you are going to take part in Shapur's contest. See if you are faster and more accurate. Input Specification: There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100. Output Specification: Write one line — the corresponding answer. Do not omit the leading 0s. Demo Input: ['1010100\n0100101\n', '000\n111\n', '1110\n1010\n', '01110\n01100\n'] Demo Output: ['1110001\n', '111\n', '0100\n', '00010\n'] Note: none
```python a = input() b = input() def maths(a,b): r = '' for n in range(len(a)): if a[n] == b[n]: r += '0' else: r += '1' return r print(maths(a,b)) ```
3.98075
115
A
Party
PROGRAMMING
900
[ "dfs and similar", "graphs", "trees" ]
null
null
A company has *n* employees numbered from 1 to *n*. Each employee either has no immediate manager or exactly one immediate manager, who is another employee with a different number. An employee *A* is said to be the superior of another employee *B* if at least one of the following is true: - Employee *A* is the immediate manager of employee *B* - Employee *B* has an immediate manager employee *C* such that employee *A* is the superior of employee *C*. The company will not have a managerial cycle. That is, there will not exist an employee who is the superior of his/her own immediate manager. Today the company is going to arrange a party. This involves dividing all *n* employees into several groups: every employee must belong to exactly one group. Furthermore, within any single group, there must not be two employees *A* and *B* such that *A* is the superior of *B*. What is the minimum number of groups that must be formed?
The first line contains integer *n* (1<=≤<=*n*<=≤<=2000) — the number of employees. The next *n* lines contain the integers *p**i* (1<=≤<=*p**i*<=≤<=*n* or *p**i*<==<=-1). Every *p**i* denotes the immediate manager for the *i*-th employee. If *p**i* is -1, that means that the *i*-th employee does not have an immediate manager. It is guaranteed, that no employee will be the immediate manager of him/herself (*p**i*<=≠<=*i*). Also, there will be no managerial cycles.
Print a single integer denoting the minimum number of groups that will be formed in the party.
[ "5\n-1\n1\n2\n1\n-1\n" ]
[ "3\n" ]
For the first example, three groups are sufficient, for example: - Employee 1 - Employees 2 and 4 - Employees 3 and 5
500
[ { "input": "5\n-1\n1\n2\n1\n-1", "output": "3" }, { "input": "4\n-1\n1\n2\n3", "output": "4" }, { "input": "12\n-1\n1\n2\n3\n-1\n5\n6\n7\n-1\n9\n10\n11", "output": "4" }, { "input": "6\n-1\n-1\n2\n3\n1\n1", "output": "3" }, { "input": "3\n-1\n1\n1", "output": "2" }, { "input": "1\n-1", "output": "1" }, { "input": "2\n2\n-1", "output": "2" }, { "input": "2\n-1\n-1", "output": "1" }, { "input": "3\n2\n-1\n1", "output": "3" }, { "input": "3\n-1\n-1\n-1", "output": "1" }, { "input": "5\n4\n5\n1\n-1\n4", "output": "3" }, { "input": "12\n-1\n1\n1\n1\n1\n1\n3\n4\n3\n3\n4\n7", "output": "4" }, { "input": "12\n-1\n-1\n1\n-1\n1\n1\n5\n11\n8\n6\n6\n4", "output": "5" }, { "input": "12\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n2\n-1\n-1\n-1", "output": "2" }, { "input": "12\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1", "output": "1" }, { "input": "12\n3\n4\n2\n8\n7\n1\n10\n12\n5\n-1\n9\n11", "output": "12" }, { "input": "12\n5\n6\n7\n1\n-1\n9\n12\n4\n8\n-1\n3\n2", "output": "11" }, { "input": "12\n-1\n9\n11\n6\n6\n-1\n6\n3\n8\n6\n1\n6", "output": "6" }, { "input": "12\n7\n8\n4\n12\n7\n9\n-1\n-1\n-1\n8\n6\n-1", "output": "3" }, { "input": "12\n-1\n10\n-1\n1\n-1\n5\n9\n12\n-1\n-1\n3\n-1", "output": "2" }, { "input": "12\n-1\n7\n9\n12\n1\n7\n-1\n-1\n8\n5\n4\n-1", "output": "3" }, { "input": "12\n11\n11\n8\n9\n1\n1\n2\n-1\n10\n3\n-1\n8", "output": "5" }, { "input": "12\n-1\n8\n9\n-1\n4\n2\n11\n1\n-1\n6\n-1\n10", "output": "6" }, { "input": "12\n7\n4\n4\n-1\n6\n7\n9\n7\n-1\n7\n4\n1", "output": "4" }, { "input": "12\n-1\n6\n10\n6\n1\n11\n5\n9\n11\n5\n1\n9", "output": "4" }, { "input": "12\n8\n6\n6\n8\n6\n-1\n6\n6\n8\n6\n8\n8", "output": "3" }, { "input": "12\n3\n8\n9\n12\n2\n8\n11\n12\n2\n9\n-1\n11", "output": "7" }, { "input": "7\n7\n6\n-1\n-1\n4\n4\n-1", "output": "3" }, { "input": "77\n53\n-1\n48\n-1\n51\n-1\n54\n43\n70\n19\n64\n31\n45\n58\n6\n61\n41\n56\n34\n-1\n54\n-1\n66\n65\n74\n16\n38\n1\n2\n61\n-1\n34\n-1\n-1\n7\n19\n57\n13\n61\n42\n-1\n34\n65\n16\n31\n61\n6\n5\n34\n15\n-1\n13\n4\n22\n74\n7\n-1\n70\n38\n61\n45\n53\n46\n22\n-1\n65\n34\n19\n43\n48\n33\n58\n36\n-1\n47\n24\n34", "output": "6" }, { "input": "5\n2\n3\n4\n5\n-1", "output": "5" } ]
1,681,242,401
2,147,483,647
Python 3
OK
TESTS
106
872
0
#22mces08 n=int(input()) l=[-10] for i in range(n): r=int(input()) l.append(r) ma=0 for j in range(1,n+1): p=0 while l[j]!=-1: p+=1 j=l[j] ma=max(p,ma) print(ma+1)
Title: Party Time Limit: None seconds Memory Limit: None megabytes Problem Description: A company has *n* employees numbered from 1 to *n*. Each employee either has no immediate manager or exactly one immediate manager, who is another employee with a different number. An employee *A* is said to be the superior of another employee *B* if at least one of the following is true: - Employee *A* is the immediate manager of employee *B* - Employee *B* has an immediate manager employee *C* such that employee *A* is the superior of employee *C*. The company will not have a managerial cycle. That is, there will not exist an employee who is the superior of his/her own immediate manager. Today the company is going to arrange a party. This involves dividing all *n* employees into several groups: every employee must belong to exactly one group. Furthermore, within any single group, there must not be two employees *A* and *B* such that *A* is the superior of *B*. What is the minimum number of groups that must be formed? Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=2000) — the number of employees. The next *n* lines contain the integers *p**i* (1<=≤<=*p**i*<=≤<=*n* or *p**i*<==<=-1). Every *p**i* denotes the immediate manager for the *i*-th employee. If *p**i* is -1, that means that the *i*-th employee does not have an immediate manager. It is guaranteed, that no employee will be the immediate manager of him/herself (*p**i*<=≠<=*i*). Also, there will be no managerial cycles. Output Specification: Print a single integer denoting the minimum number of groups that will be formed in the party. Demo Input: ['5\n-1\n1\n2\n1\n-1\n'] Demo Output: ['3\n'] Note: For the first example, three groups are sufficient, for example: - Employee 1 - Employees 2 and 4 - Employees 3 and 5
```python #22mces08 n=int(input()) l=[-10] for i in range(n): r=int(input()) l.append(r) ma=0 for j in range(1,n+1): p=0 while l[j]!=-1: p+=1 j=l[j] ma=max(p,ma) print(ma+1) ```
3
103
B
Cthulhu
PROGRAMMING
1,500
[ "dfs and similar", "dsu", "graphs" ]
B. Cthulhu
2
256
...Once upon a time a man came to the sea. The sea was stormy and dark. The man started to call for the little mermaid to appear but alas, he only woke up Cthulhu... Whereas on the other end of the world Pentagon is actively collecting information trying to predict the monster's behavior and preparing the secret super weapon. Due to high seismic activity and poor weather conditions the satellites haven't yet been able to make clear shots of the monster. The analysis of the first shot resulted in an undirected graph with *n* vertices and *m* edges. Now the world's best minds are about to determine whether this graph can be regarded as Cthulhu or not. To add simplicity, let's suppose that Cthulhu looks from the space like some spherical body with tentacles attached to it. Formally, we shall regard as Cthulhu such an undirected graph that can be represented as a set of three or more rooted trees, whose roots are connected by a simple cycle. It is guaranteed that the graph contains no multiple edges and self-loops.
The first line contains two integers — the number of vertices *n* and the number of edges *m* of the graph (1<=≤<=*n*<=≤<=100, 0<=≤<=*m*<=≤<=). Each of the following *m* lines contains a pair of integers *x* and *y*, that show that an edge exists between vertices *x* and *y* (1<=≤<=*x*,<=*y*<=≤<=*n*,<=*x*<=≠<=*y*). For each pair of vertices there will be at most one edge between them, no edge connects a vertex to itself.
Print "NO", if the graph is not Cthulhu and "FHTAGN!" if it is.
[ "6 6\n6 3\n6 4\n5 1\n2 5\n1 4\n5 4\n", "6 5\n5 6\n4 6\n3 1\n5 1\n1 2\n" ]
[ "FHTAGN!", "NO" ]
Let us denote as a simple cycle a set of *v* vertices that can be numbered so that the edges will only exist between vertices number 1 and 2, 2 and 3, ..., *v* - 1 and *v*, *v* and 1. A tree is a connected undirected graph consisting of *n* vertices and *n* - 1 edges (*n* &gt; 0). A rooted tree is a tree where one vertex is selected to be the root.
1,000
[ { "input": "6 6\n6 3\n6 4\n5 1\n2 5\n1 4\n5 4", "output": "FHTAGN!" }, { "input": "6 5\n5 6\n4 6\n3 1\n5 1\n1 2", "output": "NO" }, { "input": "10 10\n4 10\n8 5\n2 8\n4 9\n9 3\n2 7\n10 6\n10 2\n9 8\n1 8", "output": "FHTAGN!" }, { "input": "5 4\n1 5\n1 3\n1 4\n3 2", "output": "NO" }, { "input": "12 12\n4 12\n4 7\n4 9\n7 2\n5 12\n2 1\n5 9\n8 6\n10 12\n2 5\n10 9\n12 3", "output": "NO" }, { "input": "12 15\n3 2\n11 12\n1 9\n2 1\n1 8\n9 6\n11 5\n9 5\n9 10\n11 3\n7 11\n5 6\n11 10\n4 6\n4 2", "output": "NO" }, { "input": "12 10\n1 11\n3 6\n5 7\n4 7\n6 8\n11 7\n3 12\n11 12\n7 9\n12 2", "output": "NO" }, { "input": "1 0", "output": "NO" }, { "input": "2 1\n1 2", "output": "NO" }, { "input": "3 1\n1 3", "output": "NO" }, { "input": "3 2\n1 2\n2 3", "output": "NO" }, { "input": "3 3\n1 2\n2 3\n3 1", "output": "FHTAGN!" }, { "input": "4 4\n1 2\n3 4\n4 1\n2 4", "output": "FHTAGN!" }, { "input": "6 6\n1 2\n2 3\n3 1\n4 5\n5 6\n6 4", "output": "NO" }, { "input": "2 0", "output": "NO" }, { "input": "3 0", "output": "NO" }, { "input": "100 0", "output": "NO" }, { "input": "100 1\n11 23", "output": "NO" }, { "input": "10 10\n5 7\n8 1\n10 3\n6 4\n10 6\n5 3\n5 6\n2 6\n4 3\n2 10", "output": "NO" }, { "input": "20 20\n9 10\n4 19\n9 20\n12 20\n1 15\n2 12\n19 10\n19 15\n4 10\n4 8\n8 9\n20 8\n6 2\n2 15\n7 19\n20 4\n3 16\n1 20\n9 1\n20 10", "output": "NO" }, { "input": "30 30\n17 6\n16 29\n16 13\n16 20\n29 26\n17 5\n27 28\n24 16\n7 18\n24 10\n1 27\n12 17\n27 30\n6 1\n3 30\n5 19\n18 13\n16 2\n30 1\n5 8\n14 16\n26 18\n7 19\n5 6\n23 14\n6 8\n23 8\n18 8\n18 3\n5 21", "output": "NO" }, { "input": "100 66\n41 14\n19 13\n70 43\n79 62\n9 62\n71 40\n53 86\n80 4\n34 33\n72 68\n40 96\n84 59\n36 77\n55 50\n40 3\n79 81\n3 43\n33 47\n22 98\n33 90\n56 49\n69 28\n73 30\n65 22\n98 20\n9 52\n54 20\n32 70\n51 80\n63 12\n21 48\n35 17\n48 87\n25 43\n65 80\n42 3\n86 35\n95 98\n43 59\n51 46\n66 37\n88 34\n32 47\n24 42\n21 44\n92 59\n81 6\n100 82\n85 6\n58 25\n66 6\n14 32\n59 85\n3 98\n44 4\n85 51\n69 41\n80 70\n81 24\n75 71\n93 9\n82 55\n70 46\n66 32\n77 58\n11 46", "output": "NO" }, { "input": "4 4\n1 2\n4 3\n2 3\n3 1", "output": "FHTAGN!" }, { "input": "5 5\n2 3\n2 4\n5 4\n4 1\n1 2", "output": "FHTAGN!" }, { "input": "10 10\n1 10\n5 9\n6 2\n8 9\n9 1\n5 4\n2 8\n1 3\n6 3\n4 1", "output": "NO" }, { "input": "6 6\n1 2\n2 3\n3 1\n4 5\n5 6\n6 4", "output": "NO" }, { "input": "4 3\n1 2\n2 3\n3 1", "output": "NO" }, { "input": "6 5\n1 2\n2 3\n3 1\n1 4\n1 5", "output": "NO" } ]
1,649,941,057
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
0
92
512,000
class Graph: def __init__(self, edges, a): # Adjacency list representation self.adjacencyList = [[] for _ in range(a)] for (source, destination) in edges: print(source,destination) self.adjacencyList[source].append(destination) self.adjacencyList[destination].append(source) # Function for DFS_Traversal traversal def DFS_Traversal(graph, v, visited, parent_node=-1): # assign current node as visited[v] = True # loop for every edge (v, u) for u in graph.adjacencyList[v]: # if `u` is not visited if not visited[u]: if DFS_Traversal(graph, u, visited, v): return True # if `u` is visited, and `u` is not a parent_node elif u != parent_node: # found a back-edge return True # No back-edges were found return False n,m=map(int,input().split()) """ n = 6 m = 6 data = [ "6 3", "6 4", "5 1", "2 5", "1 4", "5 4", ] """ edges = [] for i in range(m): a,b=map(int,input().split()) #a,b=map(int,data[i].split(' ')) #g.addEdge(a, b) edges.append((a-1,b-1)) constructed_graph = Graph(edges, n) # note the visited and unvisited nodes visited = [False] * n if DFS_Traversal(constructed_graph, 0, visited): print("FHTAGN!") else: print("NO")
Title: Cthulhu Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: ...Once upon a time a man came to the sea. The sea was stormy and dark. The man started to call for the little mermaid to appear but alas, he only woke up Cthulhu... Whereas on the other end of the world Pentagon is actively collecting information trying to predict the monster's behavior and preparing the secret super weapon. Due to high seismic activity and poor weather conditions the satellites haven't yet been able to make clear shots of the monster. The analysis of the first shot resulted in an undirected graph with *n* vertices and *m* edges. Now the world's best minds are about to determine whether this graph can be regarded as Cthulhu or not. To add simplicity, let's suppose that Cthulhu looks from the space like some spherical body with tentacles attached to it. Formally, we shall regard as Cthulhu such an undirected graph that can be represented as a set of three or more rooted trees, whose roots are connected by a simple cycle. It is guaranteed that the graph contains no multiple edges and self-loops. Input Specification: The first line contains two integers — the number of vertices *n* and the number of edges *m* of the graph (1<=≤<=*n*<=≤<=100, 0<=≤<=*m*<=≤<=). Each of the following *m* lines contains a pair of integers *x* and *y*, that show that an edge exists between vertices *x* and *y* (1<=≤<=*x*,<=*y*<=≤<=*n*,<=*x*<=≠<=*y*). For each pair of vertices there will be at most one edge between them, no edge connects a vertex to itself. Output Specification: Print "NO", if the graph is not Cthulhu and "FHTAGN!" if it is. Demo Input: ['6 6\n6 3\n6 4\n5 1\n2 5\n1 4\n5 4\n', '6 5\n5 6\n4 6\n3 1\n5 1\n1 2\n'] Demo Output: ['FHTAGN!', 'NO'] Note: Let us denote as a simple cycle a set of *v* vertices that can be numbered so that the edges will only exist between vertices number 1 and 2, 2 and 3, ..., *v* - 1 and *v*, *v* and 1. A tree is a connected undirected graph consisting of *n* vertices and *n* - 1 edges (*n* &gt; 0). A rooted tree is a tree where one vertex is selected to be the root.
```python class Graph: def __init__(self, edges, a): # Adjacency list representation self.adjacencyList = [[] for _ in range(a)] for (source, destination) in edges: print(source,destination) self.adjacencyList[source].append(destination) self.adjacencyList[destination].append(source) # Function for DFS_Traversal traversal def DFS_Traversal(graph, v, visited, parent_node=-1): # assign current node as visited[v] = True # loop for every edge (v, u) for u in graph.adjacencyList[v]: # if `u` is not visited if not visited[u]: if DFS_Traversal(graph, u, visited, v): return True # if `u` is visited, and `u` is not a parent_node elif u != parent_node: # found a back-edge return True # No back-edges were found return False n,m=map(int,input().split()) """ n = 6 m = 6 data = [ "6 3", "6 4", "5 1", "2 5", "1 4", "5 4", ] """ edges = [] for i in range(m): a,b=map(int,input().split()) #a,b=map(int,data[i].split(' ')) #g.addEdge(a, b) edges.append((a-1,b-1)) constructed_graph = Graph(edges, n) # note the visited and unvisited nodes visited = [False] * n if DFS_Traversal(constructed_graph, 0, visited): print("FHTAGN!") else: print("NO") ```
0
490
A
Team Olympiad
PROGRAMMING
800
[ "greedy", "implementation", "sortings" ]
null
null
The School №0 of the capital of Berland has *n* children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value *t**i*: - *t**i*<==<=1, if the *i*-th child is good at programming, - *t**i*<==<=2, if the *i*-th child is good at maths, - *t**i*<==<=3, if the *i*-th child is good at PE Each child happens to be good at exactly one of these three subjects. The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team. What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that?
The first line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of children in the school. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=3), where *t**i* describes the skill of the *i*-th child.
In the first line output integer *w* — the largest possible number of teams. Then print *w* lines, containing three numbers in each line. Each triple represents the indexes of the children forming the team. You can print both the teams, and the numbers in the triplets in any order. The children are numbered from 1 to *n* in the order of their appearance in the input. Each child must participate in no more than one team. If there are several solutions, print any of them. If no teams can be compiled, print the only line with value *w* equal to 0.
[ "7\n1 3 1 3 2 1 2\n", "4\n2 1 1 2\n" ]
[ "2\n3 5 2\n6 7 4\n", "0\n" ]
none
500
[ { "input": "7\n1 3 1 3 2 1 2", "output": "2\n3 5 2\n6 7 4" }, { "input": "4\n2 1 1 2", "output": "0" }, { "input": "1\n2", "output": "0" }, { "input": "2\n3 1", "output": "0" }, { "input": "3\n2 1 2", "output": "0" }, { "input": "3\n1 2 3", "output": "1\n1 2 3" }, { "input": "12\n3 3 3 3 3 3 3 3 1 3 3 2", "output": "1\n9 12 2" }, { "input": "60\n3 3 1 2 2 1 3 1 1 1 3 2 2 2 3 3 1 3 2 3 2 2 1 3 3 2 3 1 2 2 2 1 3 2 1 1 3 3 1 1 1 3 1 2 1 1 3 3 3 2 3 2 3 2 2 2 1 1 1 2", "output": "20\n6 60 1\n17 44 20\n3 5 33\n36 21 42\n59 14 2\n58 26 49\n9 29 48\n23 19 24\n10 30 37\n41 54 15\n45 31 27\n57 55 38\n39 12 25\n35 34 11\n32 52 7\n8 50 18\n43 4 53\n46 56 51\n40 22 16\n28 13 47" }, { "input": "12\n3 1 1 1 1 1 1 2 1 1 1 1", "output": "1\n3 8 1" }, { "input": "22\n2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 1 2 2 2 2", "output": "1\n18 2 11" }, { "input": "138\n2 3 2 2 2 2 2 2 2 2 1 2 1 2 2 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2 3 2 2 2 1 2 3 2 2 2 3 1 3 2 3 2 3 2 2 2 2 3 2 2 2 2 2 1 2 2 3 2 2 3 2 1 2 2 2 2 2 3 1 2 2 2 2 2 3 2 2 3 2 2 2 2 2 1 1 2 3 2 2 2 2 3 2 2 2 2 2 1 2 1 2 2 2 2 2 1 2 3 2 3 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 3", "output": "18\n13 91 84\n34 90 48\n11 39 77\n78 129 50\n137 68 119\n132 122 138\n19 12 96\n40 7 2\n22 88 69\n107 73 46\n115 15 52\n127 106 87\n93 92 66\n71 112 117\n63 124 42\n17 70 101\n109 121 57\n123 25 36" }, { "input": "203\n2 2 1 2 1 2 2 2 1 2 2 1 1 3 1 2 1 2 1 1 2 3 1 1 2 3 3 2 2 2 1 2 1 1 1 1 1 3 1 1 2 1 1 2 2 2 1 2 2 2 1 2 3 2 1 1 2 2 1 2 1 2 2 1 1 2 2 2 1 1 2 2 1 2 1 2 2 3 2 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 1 2 2 1 3 2 1 1 1 2 1 1 2 1 1 2 2 2 1 1 2 2 2 1 2 1 3 2 1 2 2 2 1 1 1 2 2 2 1 2 1 1 2 2 2 2 2 1 1 2 1 2 2 1 1 1 1 1 1 2 2 3 1 1 2 3 1 1 1 1 1 1 2 2 1 1 1 2 2 3 2 1 3 1 1 1", "output": "13\n188 72 14\n137 4 197\n158 76 122\n152 142 26\n104 119 179\n40 63 38\n12 1 78\n17 30 27\n189 60 53\n166 190 144\n129 7 183\n83 41 22\n121 81 200" }, { "input": "220\n1 1 3 1 3 1 1 3 1 3 3 3 3 1 3 3 1 3 3 3 3 3 1 1 1 3 1 1 1 3 2 3 3 3 1 1 3 3 1 1 3 3 3 3 1 3 3 1 1 1 2 3 1 1 1 2 3 3 3 2 3 1 1 3 1 1 1 3 2 1 3 2 3 1 1 3 3 3 1 3 1 1 1 3 3 2 1 3 2 1 1 3 3 1 1 1 2 1 1 3 2 1 2 1 1 1 3 1 3 3 1 2 3 3 3 3 1 3 1 1 1 1 2 3 1 1 1 1 1 1 3 2 3 1 3 1 3 1 1 3 1 3 1 3 1 3 1 3 3 2 3 1 3 3 1 3 3 3 3 1 1 3 3 3 3 1 1 3 3 3 2 1 1 1 3 3 1 3 3 3 1 1 1 3 1 3 3 1 1 1 2 3 1 1 3 1 1 1 1 2 3 1 1 2 3 3 1 3 1 3 3 3 3 1 3 2 3 1 1 3", "output": "20\n198 89 20\n141 56 131\n166 204 19\n160 132 142\n111 112 195\n45 216 92\n6 31 109\n14 150 170\n199 60 18\n173 123 140\n134 69 156\n82 191 85\n126 200 80\n24 97 46\n62 86 149\n214 101 26\n79 171 78\n125 72 118\n172 103 162\n219 51 64" }, { "input": "61\n2 3 1 3 2 2 2 3 1 3 2 3 1 2 1 1 2 2 2 2 3 2 3 1 2 1 3 1 3 2 1 1 3 2 1 3 3 3 1 3 3 1 1 3 1 3 2 2 1 2 2 2 1 3 2 3 1 3 3 1 1", "output": "20\n9 55 2\n24 34 27\n3 5 37\n35 17 41\n61 11 4\n60 19 54\n15 20 59\n26 14 29\n16 22 38\n43 50 12\n49 25 36\n57 51 40\n39 6 33\n32 30 10\n31 48 8\n13 47 23\n45 1 58\n53 52 56\n42 18 21\n28 7 44" }, { "input": "5\n1 2 2 3 3", "output": "1\n1 3 4" } ]
1,682,175,089
2,147,483,647
Python 3
OK
TESTS
41
77
0
n = int(input()) t = list(map(int, input().split())) p = [] m = [] s = [] for i in range(n): if t[i] == 1: p.append(i+1) elif t[i] == 2: m.append(i+1) else: s.append(i+1) num_teams = min(len(p), len(m), len(s)) print(num_teams) if num_teams > 0: for i in range(num_teams): print(p[i], m[i], s[i])
Title: Team Olympiad Time Limit: None seconds Memory Limit: None megabytes Problem Description: The School №0 of the capital of Berland has *n* children studying in it. All the children in this school are gifted: some of them are good at programming, some are good at maths, others are good at PE (Physical Education). Hence, for each child we know value *t**i*: - *t**i*<==<=1, if the *i*-th child is good at programming, - *t**i*<==<=2, if the *i*-th child is good at maths, - *t**i*<==<=3, if the *i*-th child is good at PE Each child happens to be good at exactly one of these three subjects. The Team Scientific Decathlon Olympias requires teams of three students. The school teachers decided that the teams will be composed of three children that are good at different subjects. That is, each team must have one mathematician, one programmer and one sportsman. Of course, each child can be a member of no more than one team. What is the maximum number of teams that the school will be able to present at the Olympiad? How should the teams be formed for that? Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=5000) — the number of children in the school. The second line contains *n* integers *t*1,<=*t*2,<=...,<=*t**n* (1<=≤<=*t**i*<=≤<=3), where *t**i* describes the skill of the *i*-th child. Output Specification: In the first line output integer *w* — the largest possible number of teams. Then print *w* lines, containing three numbers in each line. Each triple represents the indexes of the children forming the team. You can print both the teams, and the numbers in the triplets in any order. The children are numbered from 1 to *n* in the order of their appearance in the input. Each child must participate in no more than one team. If there are several solutions, print any of them. If no teams can be compiled, print the only line with value *w* equal to 0. Demo Input: ['7\n1 3 1 3 2 1 2\n', '4\n2 1 1 2\n'] Demo Output: ['2\n3 5 2\n6 7 4\n', '0\n'] Note: none
```python n = int(input()) t = list(map(int, input().split())) p = [] m = [] s = [] for i in range(n): if t[i] == 1: p.append(i+1) elif t[i] == 2: m.append(i+1) else: s.append(i+1) num_teams = min(len(p), len(m), len(s)) print(num_teams) if num_teams > 0: for i in range(num_teams): print(p[i], m[i], s[i]) ```
3
572
A
Arrays
PROGRAMMING
900
[ "sortings" ]
null
null
You are given two arrays *A* and *B* consisting of integers, sorted in non-decreasing order. Check whether it is possible to choose *k* numbers in array *A* and choose *m* numbers in array *B* so that any number chosen in the first array is strictly less than any number chosen in the second array.
The first line contains two integers *n**A*,<=*n**B* (1<=≤<=*n**A*,<=*n**B*<=≤<=105), separated by a space — the sizes of arrays *A* and *B*, correspondingly. The second line contains two integers *k* and *m* (1<=≤<=*k*<=≤<=*n**A*,<=1<=≤<=*m*<=≤<=*n**B*), separated by a space. The third line contains *n**A* numbers *a*1,<=*a*2,<=... *a**n**A* (<=-<=109<=≤<=*a*1<=≤<=*a*2<=≤<=...<=≤<=*a**n**A*<=≤<=109), separated by spaces — elements of array *A*. The fourth line contains *n**B* integers *b*1,<=*b*2,<=... *b**n**B* (<=-<=109<=≤<=*b*1<=≤<=*b*2<=≤<=...<=≤<=*b**n**B*<=≤<=109), separated by spaces — elements of array *B*.
Print "YES" (without the quotes), if you can choose *k* numbers in array *A* and *m* numbers in array *B* so that any number chosen in array *A* was strictly less than any number chosen in array *B*. Otherwise, print "NO" (without the quotes).
[ "3 3\n2 1\n1 2 3\n3 4 5\n", "3 3\n3 3\n1 2 3\n3 4 5\n", "5 2\n3 1\n1 1 1 1 1\n2 2\n" ]
[ "YES\n", "NO\n", "YES\n" ]
In the first sample test you can, for example, choose numbers 1 and 2 from array *A* and number 3 from array *B* (1 &lt; 3 and 2 &lt; 3). In the second sample test the only way to choose *k* elements in the first array and *m* elements in the second one is to choose all numbers in both arrays, but then not all the numbers chosen in *A* will be less than all the numbers chosen in *B*: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7280148ed5eab0a7d418d4f92b32061243a8ca58.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
500
[ { "input": "3 3\n2 1\n1 2 3\n3 4 5", "output": "YES" }, { "input": "3 3\n3 3\n1 2 3\n3 4 5", "output": "NO" }, { "input": "5 2\n3 1\n1 1 1 1 1\n2 2", "output": "YES" }, { "input": "3 5\n1 1\n5 5 5\n5 5 5 5 5", "output": "NO" }, { "input": "1 1\n1 1\n1\n1", "output": "NO" }, { "input": "3 3\n1 1\n1 2 3\n1 2 3", "output": "YES" }, { "input": "3 3\n1 2\n1 2 3\n1 2 3", "output": "YES" }, { "input": "3 3\n2 2\n1 2 3\n1 2 3", "output": "NO" }, { "input": "10 15\n10 1\n1 1 5 17 22 29 32 36 39 48\n9 10 20 23 26 26 32 32 33 39 43 45 47 49 49", "output": "YES" }, { "input": "10 15\n1 15\n91 91 91 92 92 94 94 95 98 100\n92 92 93 93 93 94 95 96 97 98 98 99 99 100 100", "output": "YES" }, { "input": "15 10\n12 5\n9 25 25 32 32 38 40 41 46 46 48 51 64 64 73\n5 14 30 35 50 52 67 79 89 99", "output": "YES" }, { "input": "15 10\n4 10\n22 32 35 45 45 50 51 55 79 80 83 88 90 92 93\n46 48 52 55 60 60 68 75 80 81", "output": "YES" }, { "input": "20 30\n2 8\n6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 10\n1 1 2 2 2 2 2 2 2 3 3 4 5 5 5 5 6 6 6 6 6 6 7 7 7 8 8 9 10 10", "output": "NO" }, { "input": "20 30\n19 29\n1 1 2 2 2 3 4 4 7 7 7 8 8 8 8 8 9 9 9 9\n6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10", "output": "NO" }, { "input": "1 1\n1 1\n-1000000000\n30", "output": "YES" }, { "input": "3 3\n1 3\n1 3 3\n3 3 3", "output": "YES" }, { "input": "3 3\n1 1\n3 3 3\n2 2 2", "output": "NO" }, { "input": "5 5\n3 3\n1 5 6 7 8\n1 2 5 6 7", "output": "NO" }, { "input": "3 4\n2 2\n5 6 7\n1 2 3 4", "output": "NO" }, { "input": "3 3\n3 3\n1 2 3\n4 5 6", "output": "YES" }, { "input": "5 5\n4 5\n2 2 3 4 5\n5 6 7 8 9", "output": "YES" } ]
1,664,390,063
2,147,483,647
PyPy 3
TIME_LIMIT_EXCEEDED
TESTS
8
2,000
12,800,000
x,y=map(int,input().split()) n,m=map(int,input().split()) l1=list(map(int,input().split())) l2=list(map(int,input().split())) l=[] k=[] for i in range(n): l.append(min(l1)) l1.remove(min(l1)) for j in range(m): k.append(max(l2)) l2.remove(max(l2)) if max(l)<min(k): print('YES') else: print('NO')
Title: Arrays Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given two arrays *A* and *B* consisting of integers, sorted in non-decreasing order. Check whether it is possible to choose *k* numbers in array *A* and choose *m* numbers in array *B* so that any number chosen in the first array is strictly less than any number chosen in the second array. Input Specification: The first line contains two integers *n**A*,<=*n**B* (1<=≤<=*n**A*,<=*n**B*<=≤<=105), separated by a space — the sizes of arrays *A* and *B*, correspondingly. The second line contains two integers *k* and *m* (1<=≤<=*k*<=≤<=*n**A*,<=1<=≤<=*m*<=≤<=*n**B*), separated by a space. The third line contains *n**A* numbers *a*1,<=*a*2,<=... *a**n**A* (<=-<=109<=≤<=*a*1<=≤<=*a*2<=≤<=...<=≤<=*a**n**A*<=≤<=109), separated by spaces — elements of array *A*. The fourth line contains *n**B* integers *b*1,<=*b*2,<=... *b**n**B* (<=-<=109<=≤<=*b*1<=≤<=*b*2<=≤<=...<=≤<=*b**n**B*<=≤<=109), separated by spaces — elements of array *B*. Output Specification: Print "YES" (without the quotes), if you can choose *k* numbers in array *A* and *m* numbers in array *B* so that any number chosen in array *A* was strictly less than any number chosen in array *B*. Otherwise, print "NO" (without the quotes). Demo Input: ['3 3\n2 1\n1 2 3\n3 4 5\n', '3 3\n3 3\n1 2 3\n3 4 5\n', '5 2\n3 1\n1 1 1 1 1\n2 2\n'] Demo Output: ['YES\n', 'NO\n', 'YES\n'] Note: In the first sample test you can, for example, choose numbers 1 and 2 from array *A* and number 3 from array *B* (1 &lt; 3 and 2 &lt; 3). In the second sample test the only way to choose *k* elements in the first array and *m* elements in the second one is to choose all numbers in both arrays, but then not all the numbers chosen in *A* will be less than all the numbers chosen in *B*: <img align="middle" class="tex-formula" src="https://espresso.codeforces.com/7280148ed5eab0a7d418d4f92b32061243a8ca58.png" style="max-width: 100.0%;max-height: 100.0%;"/>.
```python x,y=map(int,input().split()) n,m=map(int,input().split()) l1=list(map(int,input().split())) l2=list(map(int,input().split())) l=[] k=[] for i in range(n): l.append(min(l1)) l1.remove(min(l1)) for j in range(m): k.append(max(l2)) l2.remove(max(l2)) if max(l)<min(k): print('YES') else: print('NO') ```
0
501
A
Contest
PROGRAMMING
900
[ "implementation" ]
null
null
Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs *a* points and Vasya solved the problem that costs *b* points. Besides, Misha submitted the problem *c* minutes after the contest started and Vasya submitted the problem *d* minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs *p* points *t* minutes after the contest started, you get points. Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth.
The first line contains four integers *a*, *b*, *c*, *d* (250<=≤<=*a*,<=*b*<=≤<=3500, 0<=≤<=*c*,<=*d*<=≤<=180). It is guaranteed that numbers *a* and *b* are divisible by 250 (just like on any real Codeforces round).
Output on a single line: "Misha" (without the quotes), if Misha got more points than Vasya. "Vasya" (without the quotes), if Vasya got more points than Misha. "Tie" (without the quotes), if both of them got the same number of points.
[ "500 1000 20 30\n", "1000 1000 1 1\n", "1500 1000 176 177\n" ]
[ "Vasya\n", "Tie\n", "Misha\n" ]
none
500
[ { "input": "500 1000 20 30", "output": "Vasya" }, { "input": "1000 1000 1 1", "output": "Tie" }, { "input": "1500 1000 176 177", "output": "Misha" }, { "input": "1500 1000 74 177", "output": "Misha" }, { "input": "750 2500 175 178", "output": "Vasya" }, { "input": "750 1000 54 103", "output": "Tie" }, { "input": "2000 1250 176 130", "output": "Tie" }, { "input": "1250 1750 145 179", "output": "Tie" }, { "input": "2000 2000 176 179", "output": "Tie" }, { "input": "1500 1500 148 148", "output": "Tie" }, { "input": "2750 1750 134 147", "output": "Misha" }, { "input": "3250 250 175 173", "output": "Misha" }, { "input": "500 500 170 176", "output": "Misha" }, { "input": "250 1000 179 178", "output": "Vasya" }, { "input": "3250 1000 160 138", "output": "Misha" }, { "input": "3000 2000 162 118", "output": "Tie" }, { "input": "1500 1250 180 160", "output": "Tie" }, { "input": "1250 2500 100 176", "output": "Tie" }, { "input": "3500 3500 177 178", "output": "Tie" }, { "input": "3000 3250 16 34", "output": "Tie" }, { "input": "1750 3000 137 49", "output": "Vasya" }, { "input": "500 1500 179 71", "output": "Vasya" }, { "input": "1250 2000 101 180", "output": "Misha" }, { "input": "250 750 180 176", "output": "Vasya" }, { "input": "2250 2250 163 145", "output": "Vasya" }, { "input": "3000 3000 176 78", "output": "Vasya" }, { "input": "250 3500 8 178", "output": "Vasya" }, { "input": "1750 1250 179 180", "output": "Misha" }, { "input": "2750 1750 13 164", "output": "Misha" }, { "input": "1750 2250 178 53", "output": "Vasya" }, { "input": "2500 2750 73 179", "output": "Misha" }, { "input": "1000 3500 178 175", "output": "Vasya" }, { "input": "1000 500 7 162", "output": "Misha" }, { "input": "1000 250 175 48", "output": "Misha" }, { "input": "1750 500 166 177", "output": "Misha" }, { "input": "250 250 0 0", "output": "Tie" }, { "input": "250 3500 0 0", "output": "Vasya" }, { "input": "250 3500 0 180", "output": "Vasya" }, { "input": "3500 3500 180 180", "output": "Tie" }, { "input": "3500 250 0 180", "output": "Misha" } ]
1,603,780,173
2,147,483,647
Python 3
OK
TESTS
40
108
0
a,b,c,d=map(int,input().split()) s1=max(3*a//10,a-a*c//250) s2=max(3*b//10,b-b*d//250) if s1>s2: print('Misha') elif s2>s1: print('Vasya') else: print('Tie')
Title: Contest Time Limit: None seconds Memory Limit: None megabytes Problem Description: Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs *a* points and Vasya solved the problem that costs *b* points. Besides, Misha submitted the problem *c* minutes after the contest started and Vasya submitted the problem *d* minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs *p* points *t* minutes after the contest started, you get points. Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth. Input Specification: The first line contains four integers *a*, *b*, *c*, *d* (250<=≤<=*a*,<=*b*<=≤<=3500, 0<=≤<=*c*,<=*d*<=≤<=180). It is guaranteed that numbers *a* and *b* are divisible by 250 (just like on any real Codeforces round). Output Specification: Output on a single line: "Misha" (without the quotes), if Misha got more points than Vasya. "Vasya" (without the quotes), if Vasya got more points than Misha. "Tie" (without the quotes), if both of them got the same number of points. Demo Input: ['500 1000 20 30\n', '1000 1000 1 1\n', '1500 1000 176 177\n'] Demo Output: ['Vasya\n', 'Tie\n', 'Misha\n'] Note: none
```python a,b,c,d=map(int,input().split()) s1=max(3*a//10,a-a*c//250) s2=max(3*b//10,b-b*d//250) if s1>s2: print('Misha') elif s2>s1: print('Vasya') else: print('Tie') ```
3
275
A
Lights Out
PROGRAMMING
900
[ "implementation" ]
null
null
Lenny is playing a game on a 3<=×<=3 grid of lights. In the beginning of the game all lights are switched on. Pressing any of the lights will toggle it and all side-adjacent lights. The goal of the game is to switch all the lights off. We consider the toggling as follows: if the light was switched on then it will be switched off, if it was switched off then it will be switched on. Lenny has spent some time playing with the grid and by now he has pressed each light a certain number of times. Given the number of times each light is pressed, you have to print the current state of each light.
The input consists of three rows. Each row contains three integers each between 0 to 100 inclusive. The *j*-th number in the *i*-th row is the number of times the *j*-th light of the *i*-th row of the grid is pressed.
Print three lines, each containing three characters. The *j*-th character of the *i*-th line is "1" if and only if the corresponding light is switched on, otherwise it's "0".
[ "1 0 0\n0 0 0\n0 0 1\n", "1 0 1\n8 8 8\n2 0 3\n" ]
[ "001\n010\n100\n", "010\n011\n100\n" ]
none
500
[ { "input": "1 0 0\n0 0 0\n0 0 1", "output": "001\n010\n100" }, { "input": "1 0 1\n8 8 8\n2 0 3", "output": "010\n011\n100" }, { "input": "13 85 77\n25 50 45\n65 79 9", "output": "000\n010\n000" }, { "input": "96 95 5\n8 84 74\n67 31 61", "output": "011\n011\n101" }, { "input": "24 54 37\n60 63 6\n1 84 26", "output": "110\n101\n011" }, { "input": "23 10 40\n15 6 40\n92 80 77", "output": "101\n100\n000" }, { "input": "62 74 80\n95 74 93\n2 47 95", "output": "010\n001\n110" }, { "input": "80 83 48\n26 0 66\n47 76 37", "output": "000\n000\n010" }, { "input": "32 15 65\n7 54 36\n5 51 3", "output": "111\n101\n001" }, { "input": "22 97 12\n71 8 24\n100 21 64", "output": "100\n001\n100" }, { "input": "46 37 13\n87 0 50\n90 8 55", "output": "111\n011\n000" }, { "input": "57 43 58\n20 82 83\n66 16 52", "output": "111\n010\n110" }, { "input": "45 56 93\n47 51 59\n18 51 63", "output": "101\n011\n100" }, { "input": "47 66 67\n14 1 37\n27 81 69", "output": "001\n001\n110" }, { "input": "26 69 69\n85 18 23\n14 22 74", "output": "110\n001\n010" }, { "input": "10 70 65\n94 27 25\n74 66 30", "output": "111\n010\n100" }, { "input": "97 1 74\n15 99 1\n88 68 86", "output": "001\n011\n000" }, { "input": "36 48 42\n45 41 66\n26 64 1", "output": "001\n111\n010" }, { "input": "52 81 97\n29 77 71\n66 11 2", "output": "100\n100\n111" }, { "input": "18 66 33\n19 49 49\n48 46 26", "output": "011\n100\n000" }, { "input": "68 79 52\n51 39 100\n29 14 26", "output": "110\n000\n111" }, { "input": "91 69 77\n91 26 64\n91 88 57", "output": "001\n011\n110" }, { "input": "16 69 64\n48 21 80\n81 51 51", "output": "010\n101\n111" }, { "input": "96 14 2\n100 18 12\n65 34 89", "output": "111\n010\n010" }, { "input": "93 95 90\n8 59 42\n53 13 19", "output": "100\n001\n111" }, { "input": "71 84 18\n100 19 67\n9 76 15", "output": "010\n010\n001" }, { "input": "38 93 85\n21 88 64\n4 96 25", "output": "111\n011\n000" }, { "input": "75 20 20\n60 5 78\n77 4 69", "output": "011\n001\n000" }, { "input": "65 70 96\n19 6 83\n33 37 82", "output": "100\n000\n011" }, { "input": "11 13 60\n17 13 46\n42 21 39", "output": "000\n011\n101" }, { "input": "0 0 0\n0 0 0\n0 0 0", "output": "111\n111\n111" }, { "input": "0 0 0\n0 1 0\n0 0 0", "output": "101\n000\n101" }, { "input": "0 0 0\n0 0 0\n0 0 1", "output": "111\n110\n100" } ]
1,642,098,607
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
0
140
10,342,400
for t in range(int(input())): n = int(input()) a = list(map(int, input().split())) s=a[0] c=0 for i in range(1,n): s += a[i] if s < i*(i+1)//2: c=1 print("no") break if c==0: print("yes")
Title: Lights Out Time Limit: None seconds Memory Limit: None megabytes Problem Description: Lenny is playing a game on a 3<=×<=3 grid of lights. In the beginning of the game all lights are switched on. Pressing any of the lights will toggle it and all side-adjacent lights. The goal of the game is to switch all the lights off. We consider the toggling as follows: if the light was switched on then it will be switched off, if it was switched off then it will be switched on. Lenny has spent some time playing with the grid and by now he has pressed each light a certain number of times. Given the number of times each light is pressed, you have to print the current state of each light. Input Specification: The input consists of three rows. Each row contains three integers each between 0 to 100 inclusive. The *j*-th number in the *i*-th row is the number of times the *j*-th light of the *i*-th row of the grid is pressed. Output Specification: Print three lines, each containing three characters. The *j*-th character of the *i*-th line is "1" if and only if the corresponding light is switched on, otherwise it's "0". Demo Input: ['1 0 0\n0 0 0\n0 0 1\n', '1 0 1\n8 8 8\n2 0 3\n'] Demo Output: ['001\n010\n100\n', '010\n011\n100\n'] Note: none
```python for t in range(int(input())): n = int(input()) a = list(map(int, input().split())) s=a[0] c=0 for i in range(1,n): s += a[i] if s < i*(i+1)//2: c=1 print("no") break if c==0: print("yes") ```
-1
92
A
Chips
PROGRAMMING
800
[ "implementation", "math" ]
A. Chips
2
256
There are *n* walruses sitting in a circle. All of them are numbered in the clockwise order: the walrus number 2 sits to the left of the walrus number 1, the walrus number 3 sits to the left of the walrus number 2, ..., the walrus number 1 sits to the left of the walrus number *n*. The presenter has *m* chips. The presenter stands in the middle of the circle and starts giving the chips to the walruses starting from walrus number 1 and moving clockwise. The walrus number *i* gets *i* chips. If the presenter can't give the current walrus the required number of chips, then the presenter takes the remaining chips and the process ends. Determine by the given *n* and *m* how many chips the presenter will get in the end.
The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=50, 1<=≤<=*m*<=≤<=104) — the number of walruses and the number of chips correspondingly.
Print the number of chips the presenter ended up with.
[ "4 11\n", "17 107\n", "3 8\n" ]
[ "0\n", "2\n", "1\n" ]
In the first sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, four chips to the walrus number 4, then again one chip to the walrus number 1. After that the presenter runs out of chips. He can't give anything to the walrus number 2 and the process finishes. In the third sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, then again one chip to the walrus number 1. The presenter has one chip left and he can't give two chips to the walrus number 2, that's why the presenter takes the last chip.
500
[ { "input": "4 11", "output": "0" }, { "input": "17 107", "output": "2" }, { "input": "3 8", "output": "1" }, { "input": "46 7262", "output": "35" }, { "input": "32 6864", "output": "0" }, { "input": "36 6218", "output": "14" }, { "input": "25 9712", "output": "11" }, { "input": "9 7601", "output": "5" }, { "input": "1 9058", "output": "0" }, { "input": "29 7772", "output": "26" }, { "input": "45 9465", "output": "14" }, { "input": "46 866", "output": "5" }, { "input": "29 1241", "output": "20" }, { "input": "17 4248", "output": "12" }, { "input": "20 8082", "output": "11" }, { "input": "50 9555", "output": "0" }, { "input": "4 7455", "output": "2" }, { "input": "36 880", "output": "4" }, { "input": "24 7440", "output": "9" }, { "input": "44 7888", "output": "12" }, { "input": "1 1", "output": "0" }, { "input": "50 10000", "output": "40" }, { "input": "1 10000", "output": "0" }, { "input": "50 1", "output": "0" }, { "input": "50 50", "output": "5" } ]
1,600,692,710
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
280
0
import math target, chip = [int(x) for x in input().split()] n = ((-1 + math.sqrt(1 + 8 * chip)) / 2) while n >= target: n = math.floor(n) summation = int((n ** 2 + n) / 2) chip -= summation n = ((-1 + math.sqrt(1 + 8 * chip)) / 2) n = math.floor(n) summation = int((n ** 2 + n) / 2) print(chip - summation)
Title: Chips Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: There are *n* walruses sitting in a circle. All of them are numbered in the clockwise order: the walrus number 2 sits to the left of the walrus number 1, the walrus number 3 sits to the left of the walrus number 2, ..., the walrus number 1 sits to the left of the walrus number *n*. The presenter has *m* chips. The presenter stands in the middle of the circle and starts giving the chips to the walruses starting from walrus number 1 and moving clockwise. The walrus number *i* gets *i* chips. If the presenter can't give the current walrus the required number of chips, then the presenter takes the remaining chips and the process ends. Determine by the given *n* and *m* how many chips the presenter will get in the end. Input Specification: The first line contains two integers *n* and *m* (1<=≤<=*n*<=≤<=50, 1<=≤<=*m*<=≤<=104) — the number of walruses and the number of chips correspondingly. Output Specification: Print the number of chips the presenter ended up with. Demo Input: ['4 11\n', '17 107\n', '3 8\n'] Demo Output: ['0\n', '2\n', '1\n'] Note: In the first sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, four chips to the walrus number 4, then again one chip to the walrus number 1. After that the presenter runs out of chips. He can't give anything to the walrus number 2 and the process finishes. In the third sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, then again one chip to the walrus number 1. The presenter has one chip left and he can't give two chips to the walrus number 2, that's why the presenter takes the last chip.
```python import math target, chip = [int(x) for x in input().split()] n = ((-1 + math.sqrt(1 + 8 * chip)) / 2) while n >= target: n = math.floor(n) summation = int((n ** 2 + n) / 2) chip -= summation n = ((-1 + math.sqrt(1 + 8 * chip)) / 2) n = math.floor(n) summation = int((n ** 2 + n) / 2) print(chip - summation) ```
0
450
A
Jzzhu and Children
PROGRAMMING
1,000
[ "implementation" ]
null
null
There are *n* children in Jzzhu's school. Jzzhu is going to give some candies to them. Let's number all the children from 1 to *n*. The *i*-th child wants to get at least *a**i* candies. Jzzhu asks children to line up. Initially, the *i*-th child stands at the *i*-th place of the line. Then Jzzhu start distribution of the candies. He follows the algorithm: 1. Give *m* candies to the first child of the line. 1. If this child still haven't got enough candies, then the child goes to the end of the line, else the child go home. 1. Repeat the first two steps while the line is not empty. Consider all the children in the order they go home. Jzzhu wants to know, which child will be the last in this order?
The first line contains two integers *n*,<=*m* (1<=≤<=*n*<=≤<=100; 1<=≤<=*m*<=≤<=100). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100).
Output a single integer, representing the number of the last child.
[ "5 2\n1 3 1 4 2\n", "6 4\n1 1 2 2 3 3\n" ]
[ "4\n", "6\n" ]
Let's consider the first sample. Firstly child 1 gets 2 candies and go home. Then child 2 gets 2 candies and go to the end of the line. Currently the line looks like [3, 4, 5, 2] (indices of the children in order of the line). Then child 3 gets 2 candies and go home, and then child 4 gets 2 candies and goes to the end of the line. Currently the line looks like [5, 2, 4]. Then child 5 gets 2 candies and goes home. Then child 2 gets two candies and goes home, and finally child 4 gets 2 candies and goes home. Child 4 is the last one who goes home.
500
[ { "input": "5 2\n1 3 1 4 2", "output": "4" }, { "input": "6 4\n1 1 2 2 3 3", "output": "6" }, { "input": "7 3\n6 1 5 4 2 3 1", "output": "4" }, { "input": "10 5\n2 7 3 6 2 5 1 3 4 5", "output": "4" }, { "input": "100 1\n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100", "output": "100" }, { "input": "9 3\n9 5 2 3 7 1 8 4 6", "output": "7" }, { "input": "20 10\n58 4 32 10 73 7 30 39 47 6 59 21 24 66 79 79 46 13 29 58", "output": "16" }, { "input": "50 5\n89 56 3 2 40 37 56 52 83 59 43 83 43 59 29 74 22 58 53 41 53 67 78 30 57 32 58 29 95 46 45 85 60 49 41 82 8 71 52 40 45 26 6 71 84 91 4 93 40 54", "output": "48" }, { "input": "50 1\n4 3 9 7 6 8 3 7 10 9 8 8 10 2 9 3 2 4 4 10 4 6 8 10 9 9 4 2 8 9 4 4 9 5 1 5 2 4 4 9 10 2 5 10 7 2 8 6 8 1", "output": "44" }, { "input": "50 5\n3 9 10 8 3 3 4 6 8 2 9 9 3 1 2 10 6 8 7 2 7 4 2 7 5 10 2 2 2 5 10 5 6 6 8 7 10 4 3 2 10 8 6 6 8 6 4 4 1 3", "output": "46" }, { "input": "50 2\n56 69 72 15 95 92 51 1 74 87 100 29 46 54 18 81 84 72 84 83 20 63 71 27 45 74 50 89 48 8 21 15 47 3 39 73 80 84 6 99 17 25 56 3 74 64 71 39 89 78", "output": "40" }, { "input": "50 3\n31 39 64 16 86 3 1 9 25 54 98 42 20 3 49 41 73 37 55 62 33 77 64 22 33 82 26 13 10 13 7 40 48 18 46 79 94 72 19 12 11 61 16 37 10 49 14 94 48 69", "output": "11" }, { "input": "50 100\n67 67 61 68 42 29 70 77 12 61 71 27 4 73 87 52 59 38 93 90 31 27 87 47 26 57 76 6 28 72 81 68 50 84 69 79 39 93 52 6 88 12 46 13 90 68 71 38 90 95", "output": "50" }, { "input": "100 3\n4 14 20 11 19 11 14 20 5 7 6 12 11 17 5 11 7 6 2 10 13 5 12 8 5 17 20 18 7 19 11 7 7 20 20 8 10 17 17 19 20 5 15 16 19 7 11 16 4 17 2 10 1 20 20 16 19 9 9 11 5 7 12 9 9 6 20 18 13 19 8 4 8 1 2 4 10 11 15 14 1 7 17 12 13 19 12 2 3 14 15 15 5 17 14 12 17 14 16 9", "output": "86" }, { "input": "100 5\n16 8 14 16 12 11 17 19 19 2 8 9 5 6 19 9 11 18 6 9 14 16 14 18 17 17 17 5 15 20 19 7 7 10 10 5 14 20 5 19 11 16 16 19 17 9 7 12 14 10 2 11 14 5 20 8 10 11 19 2 14 14 19 17 5 10 8 8 4 2 1 10 20 12 14 11 7 6 6 15 1 5 9 15 3 17 16 17 5 14 11 9 16 15 1 11 10 6 15 7", "output": "93" }, { "input": "100 1\n58 94 18 50 17 14 96 62 83 80 75 5 9 22 25 41 3 96 74 45 66 37 2 37 13 85 68 54 77 11 85 19 25 21 52 59 90 61 72 89 82 22 10 16 3 68 61 29 55 76 28 85 65 76 27 3 14 10 56 37 86 18 35 38 56 68 23 88 33 38 52 87 55 83 94 34 100 41 83 56 91 77 32 74 97 13 67 31 57 81 53 39 5 88 46 1 79 4 49 42", "output": "77" }, { "input": "100 2\n1 51 76 62 34 93 90 43 57 59 52 78 3 48 11 60 57 48 5 54 28 81 87 23 44 77 67 61 14 73 29 53 21 89 67 41 47 9 63 37 1 71 40 85 4 14 77 40 78 75 89 74 4 70 32 65 81 95 49 90 72 41 76 55 69 83 73 84 85 93 46 6 74 90 62 37 97 7 7 37 83 30 37 88 34 16 11 59 85 19 57 63 85 20 63 97 97 65 61 48", "output": "97" }, { "input": "100 3\n30 83 14 55 61 66 34 98 90 62 89 74 45 93 33 31 75 35 82 100 63 69 48 18 99 2 36 71 14 30 70 76 96 85 97 90 49 36 6 76 37 94 70 3 63 73 75 48 39 29 13 2 46 26 9 56 1 18 54 53 85 34 2 12 1 93 75 67 77 77 14 26 33 25 55 9 57 70 75 6 87 66 18 3 41 69 73 24 49 2 20 72 39 58 91 54 74 56 66 78", "output": "20" }, { "input": "100 4\n69 92 76 3 32 50 15 38 21 22 14 3 67 41 95 12 10 62 83 52 78 1 18 58 94 35 62 71 58 75 13 73 60 34 50 97 50 70 19 96 53 10 100 26 20 39 62 59 88 26 24 83 70 68 66 8 6 38 16 93 2 91 81 89 78 74 21 8 31 56 28 53 77 5 81 5 94 42 77 75 92 15 59 36 61 18 55 45 69 68 81 51 12 42 85 74 98 31 17 41", "output": "97" }, { "input": "100 5\n2 72 10 60 6 50 72 34 97 77 35 43 80 64 40 53 46 6 90 22 29 70 26 68 52 19 72 88 83 18 55 32 99 81 11 21 39 42 41 63 60 97 30 23 55 78 89 35 24 50 99 52 27 76 24 8 20 27 51 37 17 82 69 18 46 19 26 77 52 83 76 65 43 66 84 84 13 30 66 88 84 23 37 1 17 26 11 50 73 56 54 37 40 29 35 8 1 39 50 82", "output": "51" }, { "input": "100 7\n6 73 7 54 92 33 66 65 80 47 2 53 28 59 61 16 54 89 37 48 77 40 49 59 27 52 17 22 78 80 81 80 8 93 50 7 87 57 29 16 89 55 20 7 51 54 30 98 44 96 27 70 1 1 32 61 22 92 84 98 31 89 91 90 28 56 49 25 86 49 55 16 19 1 18 8 88 47 16 18 73 86 2 96 16 91 74 49 38 98 94 25 34 85 29 27 99 31 31 58", "output": "97" }, { "input": "100 9\n36 4 45 16 19 6 10 87 44 82 71 49 70 35 83 19 40 76 45 94 44 96 10 54 82 77 86 63 11 37 21 3 15 89 80 88 89 16 72 23 25 9 51 25 10 45 96 5 6 18 51 31 42 57 41 51 42 15 89 61 45 82 16 48 61 67 19 40 9 33 90 36 78 36 79 79 16 10 83 87 9 22 84 12 23 76 36 14 2 81 56 33 56 23 57 84 76 55 35 88", "output": "47" }, { "input": "100 10\n75 81 39 64 90 58 92 28 75 9 96 78 92 83 77 68 76 71 14 46 58 60 80 25 78 11 13 63 22 82 65 68 47 6 33 63 90 50 85 43 73 94 80 48 67 11 83 17 22 15 94 80 66 99 66 4 46 35 52 1 62 39 96 57 37 47 97 49 64 12 36 63 90 16 4 75 85 82 85 56 13 4 92 45 44 93 17 35 22 46 18 44 29 7 52 4 100 98 87 51", "output": "98" }, { "input": "100 20\n21 19 61 70 54 97 98 14 61 72 25 94 24 56 55 25 12 80 76 11 35 17 80 26 11 94 52 47 84 61 10 2 74 25 10 21 2 79 55 50 30 75 10 64 44 5 60 96 52 16 74 41 20 77 20 44 8 86 74 36 49 61 99 13 54 64 19 99 50 43 12 73 48 48 83 55 72 73 63 81 30 27 95 9 97 82 24 3 89 90 33 14 47 88 22 78 12 75 58 67", "output": "94" }, { "input": "100 30\n56 79 59 23 11 23 67 82 81 80 99 79 8 58 93 36 98 81 46 39 34 67 3 50 4 68 70 71 2 21 52 30 75 23 33 21 16 100 56 43 8 27 40 8 56 24 17 40 94 10 67 49 61 36 95 87 17 41 7 94 33 19 17 50 26 11 94 54 38 46 77 9 53 35 98 42 50 20 43 6 78 6 38 24 100 45 43 16 1 50 16 46 14 91 95 88 10 1 50 19", "output": "95" }, { "input": "100 40\n86 11 97 17 38 95 11 5 13 83 67 75 50 2 46 39 84 68 22 85 70 23 64 46 59 93 39 80 35 78 93 21 83 19 64 1 49 59 99 83 44 81 70 58 15 82 83 47 55 65 91 10 2 92 4 77 37 32 12 57 78 11 42 8 59 21 96 69 61 30 44 29 12 70 91 14 10 83 11 75 14 10 19 39 8 98 5 81 66 66 79 55 36 29 22 45 19 24 55 49", "output": "88" }, { "input": "100 50\n22 39 95 69 94 53 80 73 33 90 40 60 2 4 84 50 70 38 92 12 36 74 87 70 51 36 57 5 54 6 35 81 52 17 55 100 95 81 32 76 21 1 100 1 95 1 40 91 98 59 84 19 11 51 79 19 47 86 45 15 62 2 59 77 31 68 71 92 17 33 10 33 85 57 5 2 88 97 91 99 63 20 63 54 79 93 24 62 46 27 30 87 3 64 95 88 16 50 79 1", "output": "99" }, { "input": "100 70\n61 48 89 17 97 6 93 13 64 50 66 88 24 52 46 99 6 65 93 64 82 37 57 41 47 1 84 5 97 83 79 46 16 35 40 7 64 15 44 96 37 17 30 92 51 67 26 3 14 56 27 68 66 93 36 39 51 6 40 55 79 26 71 54 8 48 18 2 71 12 55 60 29 37 31 97 26 37 25 68 67 70 3 87 100 41 5 82 65 92 24 66 76 48 89 8 40 93 31 95", "output": "100" }, { "input": "100 90\n87 32 30 15 10 52 93 63 84 1 82 41 27 51 75 32 42 94 39 53 70 13 4 22 99 35 44 38 5 23 18 100 61 80 9 12 42 93 9 77 3 7 60 95 66 78 95 42 69 8 1 88 93 66 96 20 76 63 15 36 92 52 2 72 36 57 48 63 29 20 74 88 49 47 81 61 94 74 70 93 47 3 19 52 59 41 5 40 22 3 76 97 91 37 95 88 91 99 76 15", "output": "98" }, { "input": "100 100\n79 75 7 28 6 96 38 35 57 95 41 74 24 96 32 78 81 13 63 84 24 95 3 23 66 1 60 6 96 49 41 5 14 18 31 97 66 19 49 89 49 70 51 28 20 99 18 1 28 77 24 46 69 21 40 32 31 66 28 6 66 97 9 16 70 90 91 30 34 82 93 41 65 11 39 52 1 88 63 43 80 50 60 49 28 56 18 76 24 57 74 1 28 99 36 35 79 54 18 16", "output": "100" }, { "input": "1 3\n5", "output": "1" }, { "input": "1 1\n100", "output": "1" }, { "input": "2 3\n4 2", "output": "1" }, { "input": "2 5\n99 97", "output": "2" }, { "input": "3 4\n7 5 2", "output": "2" }, { "input": "3 50\n47 86 51", "output": "3" }, { "input": "5 100\n82 100 85 1 37", "output": "5" }, { "input": "5 20\n40 39 21 5 20", "output": "3" }, { "input": "1 27\n81", "output": "1" }, { "input": "20 13\n7 8 29 83 74 28 93 85 7 8 3 9 8 70 49 50 39 41 57 1", "output": "7" }, { "input": "2 1\n100 2", "output": "1" }, { "input": "2 2\n6 4", "output": "1" }, { "input": "5 2\n6 4 4 1 1", "output": "1" }, { "input": "1 4\n3", "output": "1" }, { "input": "3 2\n1 5 3", "output": "2" }, { "input": "3 1\n3 2 2", "output": "1" }, { "input": "3 1\n2 3 2", "output": "2" }, { "input": "5 1\n5 1 1 1 1", "output": "1" }, { "input": "2 3\n7 4", "output": "1" } ]
1,647,866,767
2,147,483,647
PyPy 3-64
OK
TESTS
49
62
2,048,000
x = input().split() temp = input().split() list1 = [] for i in temp: list1.append(int(i)) n = int(x[0]) m = int(x[1]) b1 = False start = 0 list2 = [] for i in range(1,n+1): list2.append(i) while b1==False: if m >= list1[0]: if len(list1) == 1: break list1.pop(0) list2.pop(0) continue if list1[0] > m: if len(list1) == 1: break list1[0] = list1[0] - m temp1 = list1[0] temp2 = list2[0] list1.pop(0) list1.append(temp1) list2.pop(0) list2.append(temp2) continue print(list2[-1])
Title: Jzzhu and Children Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* children in Jzzhu's school. Jzzhu is going to give some candies to them. Let's number all the children from 1 to *n*. The *i*-th child wants to get at least *a**i* candies. Jzzhu asks children to line up. Initially, the *i*-th child stands at the *i*-th place of the line. Then Jzzhu start distribution of the candies. He follows the algorithm: 1. Give *m* candies to the first child of the line. 1. If this child still haven't got enough candies, then the child goes to the end of the line, else the child go home. 1. Repeat the first two steps while the line is not empty. Consider all the children in the order they go home. Jzzhu wants to know, which child will be the last in this order? Input Specification: The first line contains two integers *n*,<=*m* (1<=≤<=*n*<=≤<=100; 1<=≤<=*m*<=≤<=100). The second line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=100). Output Specification: Output a single integer, representing the number of the last child. Demo Input: ['5 2\n1 3 1 4 2\n', '6 4\n1 1 2 2 3 3\n'] Demo Output: ['4\n', '6\n'] Note: Let's consider the first sample. Firstly child 1 gets 2 candies and go home. Then child 2 gets 2 candies and go to the end of the line. Currently the line looks like [3, 4, 5, 2] (indices of the children in order of the line). Then child 3 gets 2 candies and go home, and then child 4 gets 2 candies and goes to the end of the line. Currently the line looks like [5, 2, 4]. Then child 5 gets 2 candies and goes home. Then child 2 gets two candies and goes home, and finally child 4 gets 2 candies and goes home. Child 4 is the last one who goes home.
```python x = input().split() temp = input().split() list1 = [] for i in temp: list1.append(int(i)) n = int(x[0]) m = int(x[1]) b1 = False start = 0 list2 = [] for i in range(1,n+1): list2.append(i) while b1==False: if m >= list1[0]: if len(list1) == 1: break list1.pop(0) list2.pop(0) continue if list1[0] > m: if len(list1) == 1: break list1[0] = list1[0] - m temp1 = list1[0] temp2 = list2[0] list1.pop(0) list1.append(temp1) list2.pop(0) list2.append(temp2) continue print(list2[-1]) ```
3
446
A
DZY Loves Sequences
PROGRAMMING
1,600
[ "dp", "implementation", "two pointers" ]
null
null
DZY has a sequence *a*, consisting of *n* integers. We'll call a sequence *a**i*,<=*a**i*<=+<=1,<=...,<=*a**j* (1<=≤<=*i*<=≤<=*j*<=≤<=*n*) a subsegment of the sequence *a*. The value (*j*<=-<=*i*<=+<=1) denotes the length of the subsegment. Your task is to find the longest subsegment of *a*, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing. You only need to output the length of the subsegment you find.
The first line contains integer *n* (1<=≤<=*n*<=≤<=105). The next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109).
In a single line print the answer to the problem — the maximum length of the required subsegment.
[ "6\n7 2 3 1 5 6\n" ]
[ "5\n" ]
You can choose subsegment *a*<sub class="lower-index">2</sub>, *a*<sub class="lower-index">3</sub>, *a*<sub class="lower-index">4</sub>, *a*<sub class="lower-index">5</sub>, *a*<sub class="lower-index">6</sub> and change its 3rd element (that is *a*<sub class="lower-index">4</sub>) to 4.
500
[ { "input": "6\n7 2 3 1 5 6", "output": "5" }, { "input": "10\n424238336 649760493 681692778 714636916 719885387 804289384 846930887 957747794 596516650 189641422", "output": "9" }, { "input": "50\n804289384 846930887 681692778 714636916 957747794 424238336 719885387 649760493 596516650 189641422 25202363 350490028 783368691 102520060 44897764 967513927 365180541 540383427 304089173 303455737 35005212 521595369 294702568 726956430 336465783 861021531 59961394 89018457 101513930 125898168 131176230 145174068 233665124 278722863 315634023 369133070 468703136 628175012 635723059 653377374 656478043 801979803 859484422 914544920 608413785 756898538 734575199 973594325 149798316 38664371", "output": "19" }, { "input": "1\n1", "output": "1" }, { "input": "2\n1000000000 1000000000", "output": "2" }, { "input": "5\n1 2 3 4 1", "output": "5" }, { "input": "10\n1 2 3 4 5 5 6 7 8 9", "output": "6" }, { "input": "5\n1 1 1 1 1", "output": "2" }, { "input": "5\n1 1 2 3 4", "output": "5" }, { "input": "5\n1 2 3 1 6", "output": "5" }, { "input": "1\n42", "output": "1" }, { "input": "5\n1 2 42 3 4", "output": "4" }, { "input": "5\n1 5 9 6 10", "output": "4" }, { "input": "5\n5 2 3 4 5", "output": "5" }, { "input": "3\n2 1 3", "output": "3" }, { "input": "5\n1 2 3 3 4", "output": "4" }, { "input": "8\n1 2 3 4 1 5 6 7", "output": "5" }, { "input": "1\n3", "output": "1" }, { "input": "3\n5 1 2", "output": "3" }, { "input": "4\n1 4 3 4", "output": "4" }, { "input": "6\n7 2 12 4 5 6", "output": "5" }, { "input": "6\n7 2 3 1 4 5", "output": "4" }, { "input": "6\n2 3 5 5 6 7", "output": "6" }, { "input": "5\n2 4 7 6 8", "output": "5" }, { "input": "3\n3 1 2", "output": "3" }, { "input": "3\n1 1 2", "output": "3" }, { "input": "2\n1 2", "output": "2" }, { "input": "5\n4 1 2 3 4", "output": "5" }, { "input": "20\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6", "output": "7" }, { "input": "4\n1 2 1 3", "output": "3" }, { "input": "4\n4 3 1 2", "output": "3" }, { "input": "6\n1 2 2 3 4 5", "output": "5" }, { "input": "4\n1 1 1 2", "output": "3" }, { "input": "4\n5 1 2 3", "output": "4" }, { "input": "5\n9 1 2 3 4", "output": "5" }, { "input": "2\n1 1", "output": "2" }, { "input": "5\n1 3 2 4 5", "output": "4" }, { "input": "6\n1 2 1 2 4 5", "output": "5" }, { "input": "10\n1 1 5 3 2 9 9 7 7 6", "output": "3" }, { "input": "6\n1 2 3 100000 100 101", "output": "6" }, { "input": "4\n3 3 3 4", "output": "3" }, { "input": "3\n4 3 5", "output": "3" }, { "input": "5\n1 3 2 3 4", "output": "4" }, { "input": "10\n1 2 3 4 5 10 10 11 12 13", "output": "10" }, { "input": "7\n11 2 1 2 13 4 14", "output": "5" }, { "input": "3\n5 1 3", "output": "3" }, { "input": "4\n1 5 3 4", "output": "4" }, { "input": "10\n1 2 3 4 100 6 7 8 9 10", "output": "10" }, { "input": "3\n5 3 5", "output": "3" }, { "input": "5\n100 100 7 8 9", "output": "4" }, { "input": "5\n1 2 3 4 5", "output": "5" }, { "input": "5\n1 2 4 4 5", "output": "5" }, { "input": "6\n7 4 5 6 7 8", "output": "6" }, { "input": "9\n3 4 1 6 3 4 5 6 7", "output": "7" }, { "input": "3\n1000 1 2", "output": "3" }, { "input": "3\n20 1 9", "output": "3" }, { "input": "6\n7 2 3 1 4 6", "output": "4" }, { "input": "3\n100 5 10", "output": "3" }, { "input": "4\n2 2 2 3", "output": "3" }, { "input": "6\n4 2 8 1 2 5", "output": "4" }, { "input": "3\n25 1 6", "output": "3" }, { "input": "10\n17 99 23 72 78 36 5 43 95 9", "output": "5" }, { "input": "7\n21 16 22 21 11 13 19", "output": "4" }, { "input": "5\n1 2 5 3 4", "output": "4" }, { "input": "6\n2 2 2 3 4 5", "output": "5" }, { "input": "5\n1 3 1 2 3", "output": "4" }, { "input": "3\n81 33 64", "output": "3" }, { "input": "7\n14 3 3 19 13 19 15", "output": "4" }, { "input": "9\n1 2 3 4 5 42 7 8 9", "output": "9" }, { "input": "5\n2 3 7 5 6", "output": "5" }, { "input": "5\n1 3 3 4 5", "output": "5" }, { "input": "6\n1 5 4 3 4 5", "output": "4" } ]
1,600,670,659
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
1
108
0
from sys import stdin input = stdin.readline n = int(input()) a = [-100] + [*map(int, input().split())] + [10**9 + 100] c = 0 ans = [] for i, j in enumerate(a): if 1 <= i <= n: if a[i - 1] < a[i]: c += 1 else: ans.append(c) c = 1 if a[i+1] - a[i-1] > 1 or a[i] - a[i-2] > 1: ans.append(True) else: ans.append(False) if i == n + 1: ans.append(c) k = 0 for i, j in enumerate(ans): if type(j) == bool: if j: k = max(k, ans[i-1] + ans[i+1]) else: k = max(k, ans[i-1], ans[i+1]) else: k = max(k, j) print(k)
Title: DZY Loves Sequences Time Limit: None seconds Memory Limit: None megabytes Problem Description: DZY has a sequence *a*, consisting of *n* integers. We'll call a sequence *a**i*,<=*a**i*<=+<=1,<=...,<=*a**j* (1<=≤<=*i*<=≤<=*j*<=≤<=*n*) a subsegment of the sequence *a*. The value (*j*<=-<=*i*<=+<=1) denotes the length of the subsegment. Your task is to find the longest subsegment of *a*, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing. You only need to output the length of the subsegment you find. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=105). The next line contains *n* integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109). Output Specification: In a single line print the answer to the problem — the maximum length of the required subsegment. Demo Input: ['6\n7 2 3 1 5 6\n'] Demo Output: ['5\n'] Note: You can choose subsegment *a*<sub class="lower-index">2</sub>, *a*<sub class="lower-index">3</sub>, *a*<sub class="lower-index">4</sub>, *a*<sub class="lower-index">5</sub>, *a*<sub class="lower-index">6</sub> and change its 3rd element (that is *a*<sub class="lower-index">4</sub>) to 4.
```python from sys import stdin input = stdin.readline n = int(input()) a = [-100] + [*map(int, input().split())] + [10**9 + 100] c = 0 ans = [] for i, j in enumerate(a): if 1 <= i <= n: if a[i - 1] < a[i]: c += 1 else: ans.append(c) c = 1 if a[i+1] - a[i-1] > 1 or a[i] - a[i-2] > 1: ans.append(True) else: ans.append(False) if i == n + 1: ans.append(c) k = 0 for i, j in enumerate(ans): if type(j) == bool: if j: k = max(k, ans[i-1] + ans[i+1]) else: k = max(k, ans[i-1], ans[i+1]) else: k = max(k, j) print(k) ```
0
967
B
Watering System
PROGRAMMING
1,000
[ "math", "sortings" ]
null
null
Arkady wants to water his only flower. Unfortunately, he has a very poor watering system that was designed for $n$ flowers and so it looks like a pipe with $n$ holes. Arkady can only use the water that flows from the first hole. Arkady can block some of the holes, and then pour $A$ liters of water into the pipe. After that, the water will flow out from the non-blocked holes proportionally to their sizes $s_1, s_2, \ldots, s_n$. In other words, if the sum of sizes of non-blocked holes is $S$, and the $i$-th hole is not blocked, $\frac{s_i \cdot A}{S}$ liters of water will flow out of it. What is the minimum number of holes Arkady should block to make at least $B$ liters of water flow out of the first hole?
The first line contains three integers $n$, $A$, $B$ ($1 \le n \le 100\,000$, $1 \le B \le A \le 10^4$) — the number of holes, the volume of water Arkady will pour into the system, and the volume he wants to get out of the first hole. The second line contains $n$ integers $s_1, s_2, \ldots, s_n$ ($1 \le s_i \le 10^4$) — the sizes of the holes.
Print a single integer — the number of holes Arkady should block.
[ "4 10 3\n2 2 2 2\n", "4 80 20\n3 2 1 4\n", "5 10 10\n1000 1 1 1 1\n" ]
[ "1\n", "0\n", "4\n" ]
In the first example Arkady should block at least one hole. After that, $\frac{10 \cdot 2}{6} \approx 3.333$ liters of water will flow out of the first hole, and that suits Arkady. In the second example even without blocking any hole, $\frac{80 \cdot 3}{10} = 24$ liters will flow out of the first hole, that is not less than $20$. In the third example Arkady has to block all holes except the first to make all water flow out of the first hole.
1,000
[ { "input": "4 10 3\n2 2 2 2", "output": "1" }, { "input": "4 80 20\n3 2 1 4", "output": "0" }, { "input": "5 10 10\n1000 1 1 1 1", "output": "4" }, { "input": "10 300 100\n20 1 3 10 8 5 3 6 4 3", "output": "1" }, { "input": "10 300 100\n20 25 68 40 60 37 44 85 23 96", "output": "8" }, { "input": "1 1 1\n1", "output": "0" }, { "input": "1 2 1\n1", "output": "0" }, { "input": "2 2 2\n1 10000", "output": "1" }, { "input": "2 10000 1\n1 9999", "output": "0" } ]
1,587,582,518
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
3
140
0
n,a,b=list(map(int,input().split())) t=list(map(int,input().split())) t.sort() s= (t[n-1]*a)/sum(t) if s>=b: print(0) else: h=0 for k in range(n-1): p = (t[n-1]*a)/(sum(t)-t[k]) if p>= b: print(k+1) h+=1 break if h==0: print(n-1)
Title: Watering System Time Limit: None seconds Memory Limit: None megabytes Problem Description: Arkady wants to water his only flower. Unfortunately, he has a very poor watering system that was designed for $n$ flowers and so it looks like a pipe with $n$ holes. Arkady can only use the water that flows from the first hole. Arkady can block some of the holes, and then pour $A$ liters of water into the pipe. After that, the water will flow out from the non-blocked holes proportionally to their sizes $s_1, s_2, \ldots, s_n$. In other words, if the sum of sizes of non-blocked holes is $S$, and the $i$-th hole is not blocked, $\frac{s_i \cdot A}{S}$ liters of water will flow out of it. What is the minimum number of holes Arkady should block to make at least $B$ liters of water flow out of the first hole? Input Specification: The first line contains three integers $n$, $A$, $B$ ($1 \le n \le 100\,000$, $1 \le B \le A \le 10^4$) — the number of holes, the volume of water Arkady will pour into the system, and the volume he wants to get out of the first hole. The second line contains $n$ integers $s_1, s_2, \ldots, s_n$ ($1 \le s_i \le 10^4$) — the sizes of the holes. Output Specification: Print a single integer — the number of holes Arkady should block. Demo Input: ['4 10 3\n2 2 2 2\n', '4 80 20\n3 2 1 4\n', '5 10 10\n1000 1 1 1 1\n'] Demo Output: ['1\n', '0\n', '4\n'] Note: In the first example Arkady should block at least one hole. After that, $\frac{10 \cdot 2}{6} \approx 3.333$ liters of water will flow out of the first hole, and that suits Arkady. In the second example even without blocking any hole, $\frac{80 \cdot 3}{10} = 24$ liters will flow out of the first hole, that is not less than $20$. In the third example Arkady has to block all holes except the first to make all water flow out of the first hole.
```python n,a,b=list(map(int,input().split())) t=list(map(int,input().split())) t.sort() s= (t[n-1]*a)/sum(t) if s>=b: print(0) else: h=0 for k in range(n-1): p = (t[n-1]*a)/(sum(t)-t[k]) if p>= b: print(k+1) h+=1 break if h==0: print(n-1) ```
0
287
A
IQ Test
PROGRAMMING
1,100
[ "brute force", "implementation" ]
null
null
In the city of Ultima Thule job applicants are often offered an IQ test. The test is as follows: the person gets a piece of squared paper with a 4<=×<=4 square painted on it. Some of the square's cells are painted black and others are painted white. Your task is to repaint at most one cell the other color so that the picture has a 2<=×<=2 square, completely consisting of cells of the same color. If the initial picture already has such a square, the person should just say so and the test will be completed. Your task is to write a program that determines whether it is possible to pass the test. You cannot pass the test if either repainting any cell or no action doesn't result in a 2<=×<=2 square, consisting of cells of the same color.
Four lines contain four characters each: the *j*-th character of the *i*-th line equals "." if the cell in the *i*-th row and the *j*-th column of the square is painted white, and "#", if the cell is black.
Print "YES" (without the quotes), if the test can be passed and "NO" (without the quotes) otherwise.
[ "####\n.#..\n####\n....\n", "####\n....\n####\n....\n" ]
[ "YES\n", "NO\n" ]
In the first test sample it is enough to repaint the first cell in the second row. After such repainting the required 2 × 2 square is on the intersection of the 1-st and 2-nd row with the 1-st and 2-nd column.
500
[ { "input": "###.\n...#\n###.\n...#", "output": "NO" }, { "input": ".##.\n#..#\n.##.\n#..#", "output": "NO" }, { "input": ".#.#\n#.#.\n.#.#\n#.#.", "output": "NO" }, { "input": "##..\n..##\n##..\n..##", "output": "NO" }, { "input": "#.#.\n#.#.\n.#.#\n.#.#", "output": "NO" }, { "input": ".#.#\n#.#.\n#.#.\n#.#.", "output": "NO" }, { "input": ".#.#\n#.#.\n#.#.\n.#.#", "output": "NO" }, { "input": "#.#.\n#.#.\n#.#.\n#.#.", "output": "NO" }, { "input": ".#.#\n.#.#\n.#.#\n.#.#", "output": "NO" }, { "input": "#..#\n.##.\n####\n####", "output": "YES" }, { "input": "#.#.\n.###\n#.#.\n.###", "output": "YES" }, { "input": "#..#\n.##.\n.##.\n#..#", "output": "YES" }, { "input": ".##.\n.#..\n##.#\n#..#", "output": "YES" }, { "input": ".##.\n##..\n#..#\n..##", "output": "YES" }, { "input": "##..\n##..\n..##\n..##", "output": "YES" }, { "input": ".#..\n###.\n.#.#\n..#.", "output": "YES" }, { "input": "###.\n###.\n...#\n...#", "output": "YES" }, { "input": "#.##\n##.#\n#.##\n##.#", "output": "YES" }, { "input": ".#.#\n#.#.\n.#.#\n#.##", "output": "YES" }, { "input": "##..\n..##\n##..\n...#", "output": "YES" }, { "input": ".#..\n..##\n##..\n..##", "output": "YES" }, { "input": "##..\n...#\n##..\n...#", "output": "YES" }, { "input": ".#..\n..#.\n.#..\n..#.", "output": "YES" }, { "input": "....\n....\n....\n.#.#", "output": "YES" }, { "input": "....\n....\n....\n...#", "output": "YES" } ]
1,659,096,055
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
0
61
2,764,800
square = [] for i in range(5): square.append(input()) dot = '.' hashtag = '#' hash_count = 0 dot_count = 0 movement = 0 for i in square: dot_nums = i.count(dot) hash_nums = i.count(hashtag) if dot_nums == 0 and hash_nums == 4: hash_count += 1 elif dot_nums == 4 and hash_nums == 0: dot_count += 1 elif dot_nums == 3 or hash_nums == 3: movement += 1 if hash_count == dot_count: print("NO") elif movement >= 1: print("YES")
Title: IQ Test Time Limit: None seconds Memory Limit: None megabytes Problem Description: In the city of Ultima Thule job applicants are often offered an IQ test. The test is as follows: the person gets a piece of squared paper with a 4<=×<=4 square painted on it. Some of the square's cells are painted black and others are painted white. Your task is to repaint at most one cell the other color so that the picture has a 2<=×<=2 square, completely consisting of cells of the same color. If the initial picture already has such a square, the person should just say so and the test will be completed. Your task is to write a program that determines whether it is possible to pass the test. You cannot pass the test if either repainting any cell or no action doesn't result in a 2<=×<=2 square, consisting of cells of the same color. Input Specification: Four lines contain four characters each: the *j*-th character of the *i*-th line equals "." if the cell in the *i*-th row and the *j*-th column of the square is painted white, and "#", if the cell is black. Output Specification: Print "YES" (without the quotes), if the test can be passed and "NO" (without the quotes) otherwise. Demo Input: ['####\n.#..\n####\n....\n', '####\n....\n####\n....\n'] Demo Output: ['YES\n', 'NO\n'] Note: In the first test sample it is enough to repaint the first cell in the second row. After such repainting the required 2 × 2 square is on the intersection of the 1-st and 2-nd row with the 1-st and 2-nd column.
```python square = [] for i in range(5): square.append(input()) dot = '.' hashtag = '#' hash_count = 0 dot_count = 0 movement = 0 for i in square: dot_nums = i.count(dot) hash_nums = i.count(hashtag) if dot_nums == 0 and hash_nums == 4: hash_count += 1 elif dot_nums == 4 and hash_nums == 0: dot_count += 1 elif dot_nums == 3 or hash_nums == 3: movement += 1 if hash_count == dot_count: print("NO") elif movement >= 1: print("YES") ```
-1
912
A
Tricky Alchemy
PROGRAMMING
800
[ "implementation" ]
null
null
During the winter holidays, the demand for Christmas balls is exceptionally high. Since it's already 2018, the advances in alchemy allow easy and efficient ball creation by utilizing magic crystals. Grisha needs to obtain some yellow, green and blue balls. It's known that to produce a yellow ball one needs two yellow crystals, green — one yellow and one blue, and for a blue ball, three blue crystals are enough. Right now there are *A* yellow and *B* blue crystals in Grisha's disposal. Find out how many additional crystals he should acquire in order to produce the required number of balls.
The first line features two integers *A* and *B* (0<=≤<=*A*,<=*B*<=≤<=109), denoting the number of yellow and blue crystals respectively at Grisha's disposal. The next line contains three integers *x*, *y* and *z* (0<=≤<=*x*,<=*y*,<=*z*<=≤<=109) — the respective amounts of yellow, green and blue balls to be obtained.
Print a single integer — the minimum number of crystals that Grisha should acquire in addition.
[ "4 3\n2 1 1\n", "3 9\n1 1 3\n", "12345678 87654321\n43043751 1000000000 53798715\n" ]
[ "2\n", "1\n", "2147483648\n" ]
In the first sample case, Grisha needs five yellow and four blue crystals to create two yellow balls, one green ball, and one blue ball. To do that, Grisha needs to obtain two additional crystals: one yellow and one blue.
500
[ { "input": "4 3\n2 1 1", "output": "2" }, { "input": "3 9\n1 1 3", "output": "1" }, { "input": "12345678 87654321\n43043751 1000000000 53798715", "output": "2147483648" }, { "input": "12 12\n3 5 2", "output": "0" }, { "input": "770 1390\n170 442 311", "output": "12" }, { "input": "3555165 6693472\n1499112 556941 3075290", "output": "3089339" }, { "input": "0 0\n1000000000 1000000000 1000000000", "output": "7000000000" }, { "input": "1 1\n0 1 0", "output": "0" }, { "input": "117708228 562858833\n118004008 360437130 154015822", "output": "738362681" }, { "input": "999998118 700178721\n822106746 82987112 547955384", "output": "1753877029" }, { "input": "566568710 765371101\n60614022 80126928 809950465", "output": "1744607222" }, { "input": "448858599 829062060\n764716760 97644201 203890025", "output": "1178219122" }, { "input": "626115781 966381948\n395190569 820194184 229233367", "output": "1525971878" }, { "input": "803372962 103701834\n394260597 837711458 623172928", "output": "3426388098" }, { "input": "980630143 241021722\n24734406 928857659 312079781", "output": "1624075280" }, { "input": "862920032 378341609\n360240924 241342224 337423122", "output": "974174021" }, { "input": "40177212 515661496\n64343660 963892207 731362684", "output": "3694721078" }, { "input": "217434393 579352456\n694817470 981409480 756706026", "output": "4825785129" }, { "input": "394691574 716672343\n398920207 72555681 150645586", "output": "475704521" }, { "input": "276981463 853992230\n29394015 90072954 839552440", "output": "1754738044" }, { "input": "843552056 919184611\n341530221 423649259 101547519", "output": "263157645" }, { "input": "20809236 56504497\n972004030 441166533 495487081", "output": "4235488636" }, { "input": "198066417 825228166\n602477839 532312735 520830423", "output": "2808777834" }, { "input": "80356306 962548053\n601547868 549830008 914769984", "output": "4004161345" }, { "input": "257613487 394835231\n642087093 567347282 308709545", "output": "2692548667" }, { "input": "139903376 532155119\n641157122 289897263 629020178", "output": "3077110809" }, { "input": "612127849 669475006\n271630930 676010757 22959739", "output": "682559736" }, { "input": "0 0\n0 0 0", "output": "0" }, { "input": "1000000000 1000000000\n499999998 4 333333332", "output": "0" }, { "input": "1000000000 1000000000\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4 3\n1 0 1", "output": "0" }, { "input": "4 12\n1 2 3", "output": "0" }, { "input": "4 20\n1 2 1", "output": "0" }, { "input": "100 10\n2 3 4", "output": "5" }, { "input": "6 0\n1 1 1", "output": "4" }, { "input": "25 5\n3 3 3", "output": "7" }, { "input": "48 27\n22 39 20", "output": "107" }, { "input": "4 0\n1 1 1", "output": "4" } ]
1,517,645,299
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
3
61
5,632,000
y,b=input().split() y=int(y) b=int(b) oy,og,ob=input().split() oy=int(oy) og=int(og) ob=int(ob) min=(oy*2 + og*2 + ob*3) - (y+b) print(min)
Title: Tricky Alchemy Time Limit: None seconds Memory Limit: None megabytes Problem Description: During the winter holidays, the demand for Christmas balls is exceptionally high. Since it's already 2018, the advances in alchemy allow easy and efficient ball creation by utilizing magic crystals. Grisha needs to obtain some yellow, green and blue balls. It's known that to produce a yellow ball one needs two yellow crystals, green — one yellow and one blue, and for a blue ball, three blue crystals are enough. Right now there are *A* yellow and *B* blue crystals in Grisha's disposal. Find out how many additional crystals he should acquire in order to produce the required number of balls. Input Specification: The first line features two integers *A* and *B* (0<=≤<=*A*,<=*B*<=≤<=109), denoting the number of yellow and blue crystals respectively at Grisha's disposal. The next line contains three integers *x*, *y* and *z* (0<=≤<=*x*,<=*y*,<=*z*<=≤<=109) — the respective amounts of yellow, green and blue balls to be obtained. Output Specification: Print a single integer — the minimum number of crystals that Grisha should acquire in addition. Demo Input: ['4 3\n2 1 1\n', '3 9\n1 1 3\n', '12345678 87654321\n43043751 1000000000 53798715\n'] Demo Output: ['2\n', '1\n', '2147483648\n'] Note: In the first sample case, Grisha needs five yellow and four blue crystals to create two yellow balls, one green ball, and one blue ball. To do that, Grisha needs to obtain two additional crystals: one yellow and one blue.
```python y,b=input().split() y=int(y) b=int(b) oy,og,ob=input().split() oy=int(oy) og=int(og) ob=int(ob) min=(oy*2 + og*2 + ob*3) - (y+b) print(min) ```
0
71
A
Way Too Long Words
PROGRAMMING
800
[ "strings" ]
A. Way Too Long Words
1
256
Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters.
Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data.
[ "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n" ]
[ "word\nl10n\ni18n\np43s\n" ]
none
500
[ { "input": "4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis", "output": "word\nl10n\ni18n\np43s" }, { "input": "5\nabcdefgh\nabcdefghi\nabcdefghij\nabcdefghijk\nabcdefghijklm", "output": "abcdefgh\nabcdefghi\nabcdefghij\na9k\na11m" }, { "input": "3\nnjfngnrurunrgunrunvurn\njfvnjfdnvjdbfvsbdubruvbubvkdb\nksdnvidnviudbvibd", "output": "n20n\nj27b\nk15d" }, { "input": "1\ntcyctkktcctrcyvbyiuhihhhgyvyvyvyvjvytchjckt", "output": "t41t" }, { "input": "24\nyou\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nunofficially\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings", "output": "you\nare\nregistered\nfor\npractice\nyou\ncan\nsolve\nproblems\nu10y\nresults\ncan\nbe\nfound\nin\nthe\ncontest\nstatus\nand\nin\nthe\nbottom\nof\nstandings" }, { "input": "1\na", "output": "a" }, { "input": "26\na\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz", "output": "a\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nq\nr\ns\nt\nu\nv\nw\nx\ny\nz" }, { "input": "1\nabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghijabcdefghij", "output": "a98j" }, { "input": "10\ngyartjdxxlcl\nfzsck\nuidwu\nxbymclornemdmtj\nilppyoapitawgje\ncibzc\ndrgbeu\nhezplmsdekhhbo\nfeuzlrimbqbytdu\nkgdco", "output": "g10l\nfzsck\nuidwu\nx13j\ni13e\ncibzc\ndrgbeu\nh12o\nf13u\nkgdco" }, { "input": "20\nlkpmx\nkovxmxorlgwaomlswjxlpnbvltfv\nhykasjxqyjrmybejnmeumzha\ntuevlumpqbbhbww\nqgqsphvrmupxxc\ntrissbaf\nqfgrlinkzvzqdryckaizutd\nzzqtoaxkvwoscyx\noswytrlnhpjvvnwookx\nlpuzqgec\ngyzqfwxggtvpjhzmzmdw\nrlxjgmvdftvrmvbdwudra\nvsntnjpepnvdaxiporggmglhagv\nxlvcqkqgcrbgtgglj\nlyxwxbiszyhlsrgzeedzprbmcpduvq\nyrmqqvrkqskqukzqrwukpsifgtdc\nxpuohcsjhhuhvr\nvvlfrlxpvqejngwrbfbpmqeirxlw\nsvmasocxdvadmaxtrpakysmeaympy\nyuflqboqfdt", "output": "lkpmx\nk26v\nh22a\nt13w\nq12c\ntrissbaf\nq21d\nz13x\no17x\nlpuzqgec\ng18w\nr19a\nv25v\nx15j\nl28q\ny26c\nx12r\nv26w\ns27y\ny9t" }, { "input": "100\nm\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr", "output": "m\nz\ns\nv\nd\nr\nv\ny\ny\ne\np\nt\nc\na\nn\nm\np\ng\ni\nj\nc\na\nb\nq\ne\nn\nv\no\nk\nx\nf\ni\nl\na\nq\nr\nu\nb\ns\nl\nc\nl\ne\nv\nj\nm\nx\nb\na\nq\nb\na\nf\nj\nv\nm\nq\nc\nt\nt\nn\nx\no\ny\nr\nu\nh\nm\nj\np\nj\nq\nz\ns\nj\no\ng\nc\nm\nn\no\nm\nr\no\ns\nt\nh\nr\np\nk\nb\nz\ng\no\nc\nc\nz\nz\ng\nr" } ]
1,683,276,455
2,147,483,647
Python 3
COMPILATION_ERROR
TESTS
0
0
0
ip = int(raw_input()) for i in range(ip): ll = raw_input() if len(ll) > 10: print ll[0] + str(len(ll) - 2) + ll[len(ll) - 1] else: print ll
Title: Way Too Long Words Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: Sometimes some words like "localization" or "internationalization" are so long that writing them many times in one text is quite tiresome. Let's consider a word too long, if its length is strictly more than 10 characters. All too long words should be replaced with a special abbreviation. This abbreviation is made like this: we write down the first and the last letter of a word and between them we write the number of letters between the first and the last letters. That number is in decimal system and doesn't contain any leading zeroes. Thus, "localization" will be spelt as "l10n", and "internationalization» will be spelt as "i18n". You are suggested to automatize the process of changing the words with abbreviations. At that all too long words should be replaced by the abbreviation and the words that are not too long should not undergo any changes. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=100). Each of the following *n* lines contains one word. All the words consist of lowercase Latin letters and possess the lengths of from 1 to 100 characters. Output Specification: Print *n* lines. The *i*-th line should contain the result of replacing of the *i*-th word from the input data. Demo Input: ['4\nword\nlocalization\ninternationalization\npneumonoultramicroscopicsilicovolcanoconiosis\n'] Demo Output: ['word\nl10n\ni18n\np43s\n'] Note: none
```python ip = int(raw_input()) for i in range(ip): ll = raw_input() if len(ll) > 10: print ll[0] + str(len(ll) - 2) + ll[len(ll) - 1] else: print ll ```
-1
719
A
Vitya in the Countryside
PROGRAMMING
1,100
[ "implementation" ]
null
null
Every summer Vitya comes to visit his grandmother in the countryside. This summer, he got a huge wart. Every grandma knows that one should treat warts when the moon goes down. Thus, Vitya has to catch the moment when the moon is down. Moon cycle lasts 30 days. The size of the visible part of the moon (in Vitya's units) for each day is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, and then cycle repeats, thus after the second 1 again goes 0. As there is no internet in the countryside, Vitya has been watching the moon for *n* consecutive days and for each of these days he wrote down the size of the visible part of the moon. Help him find out whether the moon will be up or down next day, or this cannot be determined by the data he has.
The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=92) — the number of consecutive days Vitya was watching the size of the visible part of the moon. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=15) — Vitya's records. It's guaranteed that the input data is consistent.
If Vitya can be sure that the size of visible part of the moon on day *n*<=+<=1 will be less than the size of the visible part on day *n*, then print "DOWN" at the only line of the output. If he might be sure that the size of the visible part will increase, then print "UP". If it's impossible to determine what exactly will happen with the moon, print -1.
[ "5\n3 4 5 6 7\n", "7\n12 13 14 15 14 13 12\n", "1\n8\n" ]
[ "UP\n", "DOWN\n", "-1\n" ]
In the first sample, the size of the moon on the next day will be equal to 8, thus the answer is "UP". In the second sample, the size of the moon on the next day will be 11, thus the answer is "DOWN". In the third sample, there is no way to determine whether the size of the moon on the next day will be 7 or 9, thus the answer is -1.
500
[ { "input": "5\n3 4 5 6 7", "output": "UP" }, { "input": "7\n12 13 14 15 14 13 12", "output": "DOWN" }, { "input": "1\n8", "output": "-1" }, { "input": "44\n7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10", "output": "DOWN" }, { "input": "92\n3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4", "output": "UP" }, { "input": "6\n10 11 12 13 14 15", "output": "DOWN" }, { "input": "27\n11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15", "output": "DOWN" }, { "input": "6\n8 7 6 5 4 3", "output": "DOWN" }, { "input": "27\n14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10", "output": "UP" }, { "input": "79\n7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5", "output": "DOWN" }, { "input": "25\n1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7", "output": "DOWN" }, { "input": "21\n3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7", "output": "DOWN" }, { "input": "56\n1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6", "output": "DOWN" }, { "input": "19\n4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14", "output": "UP" }, { "input": "79\n5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13", "output": "UP" }, { "input": "87\n14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10", "output": "UP" }, { "input": "13\n10 9 8 7 6 5 4 3 2 1 0 1 2", "output": "UP" }, { "input": "2\n8 9", "output": "UP" }, { "input": "3\n10 11 12", "output": "UP" }, { "input": "1\n1", "output": "-1" }, { "input": "1\n2", "output": "-1" }, { "input": "1\n3", "output": "-1" }, { "input": "1\n4", "output": "-1" }, { "input": "1\n5", "output": "-1" }, { "input": "1\n6", "output": "-1" }, { "input": "1\n7", "output": "-1" }, { "input": "1\n9", "output": "-1" }, { "input": "1\n10", "output": "-1" }, { "input": "1\n11", "output": "-1" }, { "input": "1\n12", "output": "-1" }, { "input": "1\n13", "output": "-1" }, { "input": "1\n14", "output": "-1" }, { "input": "1\n15", "output": "DOWN" }, { "input": "1\n0", "output": "UP" }, { "input": "3\n11 12 13", "output": "UP" }, { "input": "2\n10 9", "output": "DOWN" }, { "input": "92\n10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11", "output": "UP" }, { "input": "92\n7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6", "output": "DOWN" }, { "input": "2\n14 15", "output": "DOWN" }, { "input": "2\n1 0", "output": "UP" }, { "input": "2\n15 14", "output": "DOWN" }, { "input": "92\n7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8", "output": "UP" }, { "input": "92\n13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12", "output": "DOWN" }, { "input": "92\n4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3", "output": "DOWN" }, { "input": "92\n14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15", "output": "DOWN" }, { "input": "92\n1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0", "output": "UP" }, { "input": "2\n2 1", "output": "DOWN" }, { "input": "3\n2 1 0", "output": "UP" }, { "input": "5\n4 3 2 1 0", "output": "UP" }, { "input": "2\n5 4", "output": "DOWN" }, { "input": "4\n3 2 1 0", "output": "UP" }, { "input": "3\n13 12 11", "output": "DOWN" }, { "input": "2\n1 2", "output": "UP" }, { "input": "2\n0 1", "output": "UP" }, { "input": "2\n13 14", "output": "UP" }, { "input": "14\n13 12 11 10 9 8 7 6 5 4 3 2 1 0", "output": "UP" } ]
1,645,167,400
2,147,483,647
PyPy 3-64
WRONG_ANSWER
TESTS
4
46
512,000
def main(): n = int(input()) arr = list(map(int, input().split())) if n == 1: print(-1) else: is_decreasing = True for i in range(n - 1): if arr[i] < arr[i + 1]: is_decreasing = False break is_increasing = True for i in range(n - 1): if arr[i] > arr[i + 1]: is_increasing = False break if is_decreasing: if arr[-1] == 0: print("UP") else: print("DOWN") elif is_increasing: if arr[-1] == 15: print("DOWN") else: print("UP") else: print("DOWN") if __name__ == "__main__": main()
Title: Vitya in the Countryside Time Limit: None seconds Memory Limit: None megabytes Problem Description: Every summer Vitya comes to visit his grandmother in the countryside. This summer, he got a huge wart. Every grandma knows that one should treat warts when the moon goes down. Thus, Vitya has to catch the moment when the moon is down. Moon cycle lasts 30 days. The size of the visible part of the moon (in Vitya's units) for each day is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, and then cycle repeats, thus after the second 1 again goes 0. As there is no internet in the countryside, Vitya has been watching the moon for *n* consecutive days and for each of these days he wrote down the size of the visible part of the moon. Help him find out whether the moon will be up or down next day, or this cannot be determined by the data he has. Input Specification: The first line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=92) — the number of consecutive days Vitya was watching the size of the visible part of the moon. The second line contains *n* integers *a**i* (0<=≤<=*a**i*<=≤<=15) — Vitya's records. It's guaranteed that the input data is consistent. Output Specification: If Vitya can be sure that the size of visible part of the moon on day *n*<=+<=1 will be less than the size of the visible part on day *n*, then print "DOWN" at the only line of the output. If he might be sure that the size of the visible part will increase, then print "UP". If it's impossible to determine what exactly will happen with the moon, print -1. Demo Input: ['5\n3 4 5 6 7\n', '7\n12 13 14 15 14 13 12\n', '1\n8\n'] Demo Output: ['UP\n', 'DOWN\n', '-1\n'] Note: In the first sample, the size of the moon on the next day will be equal to 8, thus the answer is "UP". In the second sample, the size of the moon on the next day will be 11, thus the answer is "DOWN". In the third sample, there is no way to determine whether the size of the moon on the next day will be 7 or 9, thus the answer is -1.
```python def main(): n = int(input()) arr = list(map(int, input().split())) if n == 1: print(-1) else: is_decreasing = True for i in range(n - 1): if arr[i] < arr[i + 1]: is_decreasing = False break is_increasing = True for i in range(n - 1): if arr[i] > arr[i + 1]: is_increasing = False break if is_decreasing: if arr[-1] == 0: print("UP") else: print("DOWN") elif is_increasing: if arr[-1] == 15: print("DOWN") else: print("UP") else: print("DOWN") if __name__ == "__main__": main() ```
0
59
A
Word
PROGRAMMING
800
[ "implementation", "strings" ]
A. Word
2
256
Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.
The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.
Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.
[ "HoUse\n", "ViP\n", "maTRIx\n" ]
[ "house\n", "VIP\n", "matrix\n" ]
none
500
[ { "input": "HoUse", "output": "house" }, { "input": "ViP", "output": "VIP" }, { "input": "maTRIx", "output": "matrix" }, { "input": "BNHWpnpawg", "output": "bnhwpnpawg" }, { "input": "VTYGP", "output": "VTYGP" }, { "input": "CHNenu", "output": "chnenu" }, { "input": "ERPZGrodyu", "output": "erpzgrodyu" }, { "input": "KSXBXWpebh", "output": "KSXBXWPEBH" }, { "input": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv", "output": "qvxpqullmcbegsdskddortcvxyqlbvxmmkhevovnezubvpvnrcajpxraeaxizgaowtfkzywvhnbgzsxbhkaipcmoumtikkiyyaiv" }, { "input": "Amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd", "output": "amnhaxtaopjzrkqlbroiyipitndczpunwygstmzevgyjdzyanxkdqnvgkikfabwouwkkbzuiuvgvxgpizsvqsbwepktpdrgdkmfd" }, { "input": "ISAGFJFARYFBLOPQDSHWGMCNKMFTLVFUGNJEWGWNBLXUIATXEkqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv", "output": "isagfjfaryfblopqdshwgmcnkmftlvfugnjewgwnblxuiatxekqiettmmjgydwcpafqrppdsrrrtguinqbgmzzfqwonkpgpcwenv" }, { "input": "XHRPXZEGHSOCJPICUIXSKFUZUPYTSGJSDIYBCMNMNBPNDBXLXBzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg", "output": "xhrpxzeghsocjpicuixskfuzupytsgjsdiybcmnmnbpndbxlxbzhbfnqvwcffvrdhtickyqhupmcehlsyvncqmfhautvxudqdhgg" }, { "input": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGAdkcetqjljtmttlonpekcovdzebzdkzggwfsxhapmjkdbuceak", "output": "RJIQZMJCIMSNDBOHBRAWIENODSALETAKGKPYUFGVEFGCBRENZGADKCETQJLJTMTTLONPEKCOVDZEBZDKZGGWFSXHAPMJKDBUCEAK" }, { "input": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFw", "output": "DWLWOBHNMMGTFOLFAECKBRNNGLYLYDXTGTVRLMEESZOIUATZZZXUFUZDLSJXMEVRTESSFBWLNZZCLCQWEVNNUCXYVHNGNXHCBDFW" }, { "input": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB", "output": "NYCNHJWGBOCOTSPETKKHVWFGAQYNHOVJWJHCIEFOUQZXOYUIEQDZALFKTEHTVDBVJMEUBJUBCMNVPWGDPNCHQHZJRCHYRFPVIGUB" }, { "input": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge", "output": "igxoixiecetohtgjgbqzvlaobkhstejxdklghowtvwunnnvauriohuspsdmpzckprwajyxldoyckgjivjpmbfqtszmtocovxwge" }, { "input": "Ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw", "output": "ykkekrsqolzryiwsmdlnbmfautxxxauoojrddvwklgnlyrfcvhorrzbmtcrvpaypqhcffdqhwziipyyskcmztjprjqvmzzqhqnw" }, { "input": "YQOMLKYAORUQQUCQZCDYMIVDHGWZFFRMUVTAWCHERFPMNRYRIkgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks", "output": "yqomlkyaoruqqucqzcdymivdhgwzffrmuvtawcherfpmnryrikgqrciokgajamehmcxgerpudvsqyonjonsxgbnefftzmygncks" }, { "input": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJcuusigdqfkumewjtdyitveeiaybwrhomrwmpdipjwiuxfnwuz", "output": "CDOZDPBVVVHNBJVBYHEOXWFLJKRWJCAJMIFCOZWWYFKVWOGTVJCUUSIGDQFKUMEWJTDYITVEEIAYBWRHOMRWMPDIPJWIUXFNWUZ" }, { "input": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWuckzcpxosodcjaaakvlxpbiigsiauviilylnnqlyucziihqg", "output": "WHIUVEXHVOOIJIDVJVPQUBJMEVPMPDKQWJKFBZSGSKUXMIPPMJWUCKZCPXOSODCJAAAKVLXPBIIGSIAUVIILYLNNQLYUCZIIHQG" }, { "input": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO", "output": "VGHUNFOXKETUYMZDJNGTAOIOANYXSGYNFOGOFFLDAWEUKYFOZXCJTCAFXZYLQZERYZLRSQXYQGAPCSUDPMEYTNCTTTMFAGVDWBO" }, { "input": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDd", "output": "EDUANHCQDOCJHFONTTSWBUJSTTIXBIXMAIUFSGFLXWAYIURTVAVZPYQDLAWIGCLMPHXCEFCJPFAAHXVNGQUFNHADAIUAZIDMHDD" }, { "input": "EBWOVSNLYTWWXrnovgugogtjahnmatomubebyxakas", "output": "ebwovsnlytwwxrnovgugogtjahnmatomubebyxakas" }, { "input": "AORNNDKTRLRVGDPXJKXFTPFpopuzrlqumrxssskvbm", "output": "AORNNDKTRLRVGDPXJKXFTPFPOPUZRLQUMRXSSSKVBM" }, { "input": "DBBZJCWQEVGYHEEUHJAWRHBDPsnplijbwtdibqrrheebfxqcvn", "output": "dbbzjcwqevgyheeuhjawrhbdpsnplijbwtdibqrrheebfxqcvn" }, { "input": "t", "output": "t" }, { "input": "N", "output": "N" }, { "input": "kv", "output": "kv" }, { "input": "Ur", "output": "ur" }, { "input": "CN", "output": "CN" } ]
1,672,425,452
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
0
154
3,276,800
a=input() count=0 for i in a: if i.isupper(): count+=1 if count>len(a)//2: print(a.upper()) else: print(a.l0wer())
Title: Word Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP — with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word. Input Specification: The first line contains a word *s* — it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100. Output Specification: Print the corrected word *s*. If the given word *s* has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one. Demo Input: ['HoUse\n', 'ViP\n', 'maTRIx\n'] Demo Output: ['house\n', 'VIP\n', 'matrix\n'] Note: none
```python a=input() count=0 for i in a: if i.isupper(): count+=1 if count>len(a)//2: print(a.upper()) else: print(a.l0wer()) ```
-1
372
A
Counting Kangaroos is Fun
PROGRAMMING
1,600
[ "binary search", "greedy", "sortings", "two pointers" ]
null
null
There are *n* kangaroos with pockets. Each kangaroo has a size (integer number). A kangaroo can go into another kangaroo's pocket if and only if the size of kangaroo who hold the kangaroo is at least twice as large as the size of kangaroo who is held. Each kangaroo can hold at most one kangaroo, and the kangaroo who is held by another kangaroo cannot hold any kangaroos. The kangaroo who is held by another kangaroo cannot be visible from outside. Please, find a plan of holding kangaroos with the minimal number of kangaroos who is visible.
The first line contains a single integer — *n* (1<=≤<=*n*<=≤<=5·105). Each of the next *n* lines contains an integer *s**i* — the size of the *i*-th kangaroo (1<=≤<=*s**i*<=≤<=105).
Output a single integer — the optimal number of visible kangaroos.
[ "8\n2\n5\n7\n6\n9\n8\n4\n2\n", "8\n9\n1\n6\n2\n6\n5\n8\n3\n" ]
[ "5\n", "5\n" ]
none
500
[ { "input": "8\n2\n5\n7\n6\n9\n8\n4\n2", "output": "5" }, { "input": "8\n9\n1\n6\n2\n6\n5\n8\n3", "output": "5" }, { "input": "12\n3\n99\n24\n46\n75\n63\n57\n55\n10\n62\n34\n52", "output": "7" }, { "input": "12\n55\n75\n1\n98\n63\n64\n9\n39\n82\n18\n47\n9", "output": "6" }, { "input": "100\n678\n771\n96\n282\n135\n749\n168\n668\n17\n658\n979\n446\n998\n331\n606\n756\n37\n515\n538\n205\n647\n547\n904\n842\n647\n286\n774\n414\n267\n791\n595\n465\n8\n327\n855\n174\n339\n946\n184\n250\n807\n422\n679\n980\n64\n530\n312\n351\n676\n911\n803\n991\n669\n50\n293\n841\n545\n598\n737\n894\n231\n754\n588\n83\n873\n767\n833\n482\n905\n903\n970\n571\n715\n59\n777\n697\n537\n861\n339\n212\n149\n889\n905\n70\n970\n307\n830\n465\n968\n291\n430\n317\n942\n944\n330\n235\n814\n880\n415\n76", "output": "58" }, { "input": "100\n154\n60\n97\n638\n139\n150\n570\n579\n601\n647\n804\n237\n245\n549\n288\n347\n778\n282\n916\n441\n974\n145\n957\n886\n655\n702\n930\n618\n132\n520\n972\n48\n94\n54\n682\n433\n896\n134\n845\n636\n242\n842\n125\n141\n240\n130\n409\n666\n948\n938\n604\n110\n474\n484\n364\n40\n807\n271\n438\n288\n201\n814\n754\n589\n341\n576\n146\n952\n819\n923\n222\n535\n336\n83\n314\n911\n303\n911\n384\n601\n249\n330\n735\n271\n142\n204\n405\n783\n775\n449\n590\n139\n109\n276\n45\n205\n454\n836\n82\n841", "output": "50" }, { "input": "1\n1", "output": "1" }, { "input": "4\n1\n1\n1\n2", "output": "3" }, { "input": "5\n1\n2\n4\n8\n16", "output": "3" }, { "input": "7\n1\n2\n4\n8\n16\n32\n64", "output": "4" }, { "input": "3\n1\n2\n4", "output": "2" } ]
1,614,413,803
2,147,483,647
PyPy 3
WRONG_ANSWER
TESTS
5
77
1,228,800
n = int(input()) l=[] for i in range(n):l.append(int(input())) l.sort() j=n-2 i=n-1 ans = -1 for i in range(n): for j in range(i+1,n): if l[i]*2<=l[j]: ans = max(ans,i+1) break print(n-ans)
Title: Counting Kangaroos is Fun Time Limit: None seconds Memory Limit: None megabytes Problem Description: There are *n* kangaroos with pockets. Each kangaroo has a size (integer number). A kangaroo can go into another kangaroo's pocket if and only if the size of kangaroo who hold the kangaroo is at least twice as large as the size of kangaroo who is held. Each kangaroo can hold at most one kangaroo, and the kangaroo who is held by another kangaroo cannot hold any kangaroos. The kangaroo who is held by another kangaroo cannot be visible from outside. Please, find a plan of holding kangaroos with the minimal number of kangaroos who is visible. Input Specification: The first line contains a single integer — *n* (1<=≤<=*n*<=≤<=5·105). Each of the next *n* lines contains an integer *s**i* — the size of the *i*-th kangaroo (1<=≤<=*s**i*<=≤<=105). Output Specification: Output a single integer — the optimal number of visible kangaroos. Demo Input: ['8\n2\n5\n7\n6\n9\n8\n4\n2\n', '8\n9\n1\n6\n2\n6\n5\n8\n3\n'] Demo Output: ['5\n', '5\n'] Note: none
```python n = int(input()) l=[] for i in range(n):l.append(int(input())) l.sort() j=n-2 i=n-1 ans = -1 for i in range(n): for j in range(i+1,n): if l[i]*2<=l[j]: ans = max(ans,i+1) break print(n-ans) ```
0
78
A
Haiku
PROGRAMMING
800
[ "implementation", "strings" ]
A. Haiku
2
256
Haiku is a genre of Japanese traditional poetry. A haiku poem consists of 17 syllables split into three phrases, containing 5, 7 and 5 syllables correspondingly (the first phrase should contain exactly 5 syllables, the second phrase should contain exactly 7 syllables, and the third phrase should contain exactly 5 syllables). A haiku masterpiece contains a description of a moment in those three phrases. Every word is important in a small poem, which is why haiku are rich with symbols. Each word has a special meaning, a special role. The main principle of haiku is to say much using a few words. To simplify the matter, in the given problem we will consider that the number of syllable in the phrase is equal to the number of vowel letters there. Only the following letters are regarded as vowel letters: "a", "e", "i", "o" and "u". Three phases from a certain poem are given. Determine whether it is haiku or not.
The input data consists of three lines. The length of each line is between 1 and 100, inclusive. The *i*-th line contains the *i*-th phrase of the poem. Each phrase consists of one or more words, which are separated by one or more spaces. A word is a non-empty sequence of lowercase Latin letters. Leading and/or trailing spaces in phrases are allowed. Every phrase has at least one non-space character. See the example for clarification.
Print "YES" (without the quotes) if the poem is a haiku. Otherwise, print "NO" (also without the quotes).
[ "on codeforces \nbeta round is running\n a rustling of keys \n", "how many gallons\nof edo s rain did you drink\n cuckoo\n" ]
[ "YES", "NO" ]
none
500
[ { "input": "on codeforces \nbeta round is running\n a rustling of keys ", "output": "YES" }, { "input": "how many gallons\nof edo s rain did you drink\n cuckoo", "output": "NO" }, { "input": " hatsu shigure\n saru mo komino wo\nhoshige nari", "output": "YES" }, { "input": "o vetus stagnum\n rana de ripa salit\n ac sonant aquae", "output": "NO" }, { "input": " furuike ya\nkawazu tobikomu\nmizu no oto ", "output": "YES" }, { "input": " noch da leich\na stamperl zum aufwaerma\n da pfarrer kimmt a ", "output": "NO" }, { "input": " sommerfuglene \n hvorfor bruge mange ord\n et kan gore det", "output": "YES" }, { "input": " ab der mittagszeit\n ist es etwas schattiger\n ein wolkenhimmel", "output": "NO" }, { "input": "tornando a vederli\ni fiori di ciliegio la sera\nson divenuti frutti", "output": "NO" }, { "input": "kutaburete\nyado karu koro ya\nfuji no hana", "output": "YES" }, { "input": " beginnings of poetry\n the rice planting songs \n of the interior", "output": "NO" }, { "input": " door zomerregens\n zijn de kraanvogelpoten\n korter geworden", "output": "NO" }, { "input": " derevo na srub\na ptitsi bezzabotno\n gnezdishko tam vyut", "output": "YES" }, { "input": "writing in the dark\nunaware that my pen\nhas run out of ink", "output": "NO" }, { "input": "kusaaiu\nuieueua\nuo efaa", "output": "YES" }, { "input": "v\nh\np", "output": "NO" }, { "input": "i\ni\nu", "output": "NO" }, { "input": "awmio eoj\nabdoolceegood\nwaadeuoy", "output": "YES" }, { "input": "xzpnhhnqsjpxdboqojixmofawhdjcfbscq\nfoparnxnbzbveycoltwdrfbwwsuobyoz hfbrszy\nimtqryscsahrxpic agfjh wvpmczjjdrnwj mcggxcdo", "output": "YES" }, { "input": "wxjcvccp cppwsjpzbd dhizbcnnllckybrnfyamhgkvkjtxxfzzzuyczmhedhztugpbgpvgh\nmdewztdoycbpxtp bsiw hknggnggykdkrlihvsaykzfiiw\ndewdztnngpsnn lfwfbvnwwmxoojknygqb hfe ibsrxsxr", "output": "YES" }, { "input": "nbmtgyyfuxdvrhuhuhpcfywzrbclp znvxw synxmzymyxcntmhrjriqgdjh xkjckydbzjbvtjurnf\nhhnhxdknvamywhsrkprofnyzlcgtdyzzjdsfxyddvilnzjziz qmwfdvzckgcbrrxplxnxf mpxwxyrpesnewjrx ajxlfj\nvcczq hddzd cvefmhxwxxyqcwkr fdsndckmesqeq zyjbwbnbyhybd cta nsxzidl jpcvtzkldwd", "output": "YES" }, { "input": "rvwdsgdsrutgjwscxz pkd qtpmfbqsmctuevxdj kjzknzghdvxzlaljcntg jxhvzn yciktbsbyscfypx x xhkxnfpdp\nwdfhvqgxbcts mnrwbr iqttsvigwdgvlxwhsmnyxnttedonxcfrtmdjjmacvqtkbmsnwwvvrlxwvtggeowtgsqld qj\nvsxcdhbzktrxbywpdvstr meykarwtkbm pkkbhvwvelclfmpngzxdmblhcvf qmabmweldplmczgbqgzbqnhvcdpnpjtch ", "output": "YES" }, { "input": "brydyfsmtzzkpdsqvvztmprhqzbzqvgsblnz naait tdtiprjsttwusdykndwcccxfmzmrmfmzjywkpgbfnjpypgcbcfpsyfj k\nucwdfkfyxxxht lxvnovqnnsqutjsyagrplb jhvtwdptrwcqrovncdvqljjlrpxcfbxqgsfylbgmcjpvpl ccbcybmigpmjrxpu\nfgwtpcjeywgnxgbttgx htntpbk tkkpwbgxwtbxvcpkqbzetjdkcwad tftnjdxxjdvbpfibvxuglvx llyhgjvggtw jtjyphs", "output": "YES" }, { "input": "nyc aqgqzjjlj mswgmjfcxlqdscheskchlzljlsbhyn iobxymwzykrsnljj\nnnebeaoiraga\nqpjximoqzswhyyszhzzrhfwhf iyxysdtcpmikkwpugwlxlhqfkn", "output": "NO" }, { "input": "lzrkztgfe mlcnq ay ydmdzxh cdgcghxnkdgmgfzgahdjjmqkpdbskreswpnblnrc fmkwziiqrbskp\np oukeaz gvvy kghtrjlczyl qeqhgfgfej\nwfolhkmktvsjnrpzfxcxzqmfidtlzmuhxac wsncjgmkckrywvxmnjdpjpfydhk qlmdwphcvyngansqhl", "output": "NO" }, { "input": "yxcboqmpwoevrdhvpxfzqmammak\njmhphkxppkqkszhqqtkvflarsxzla pbxlnnnafqbsnmznfj qmhoktgzix qpmrgzxqvmjxhskkksrtryehfnmrt dtzcvnvwp\nscwymuecjxhw rdgsffqywwhjpjbfcvcrnisfqllnbplpadfklayjguyvtrzhwblftclfmsr", "output": "NO" }, { "input": "qfdwsr jsbrpfmn znplcx nhlselflytndzmgxqpgwhpi ghvbbxrkjdirfghcybhkkqdzmyacvrrcgsneyjlgzfvdmxyjmph\nylxlyrzs drbktzsniwcbahjkgohcghoaczsmtzhuwdryjwdijmxkmbmxv yyfrokdnsx\nyw xtwyzqlfxwxghugoyscqlx pljtz aldfskvxlsxqgbihzndhxkswkxqpwnfcxzfyvncstfpqf", "output": "NO" }, { "input": "g rguhqhcrzmuqthtmwzhfyhpmqzzosa\nmhjimzvchkhejh irvzejhtjgaujkqfxhpdqjnxr dvqallgssktqvsxi\npcwbliftjcvuzrsqiswohi", "output": "NO" }, { "input": " ngxtlq iehiise vgffqcpnmsoqzyseuqqtggokymol zn\nvjdjljazeujwoubkcvtsbepooxqzrueaauokhepiquuopfild\ngoabauauaeotoieufueeknudiilupouaiaexcoapapu", "output": "NO" }, { "input": "ycnvnnqk mhrmhctpkfbc qbyvtjznmndqjzgbcxmvrpkfcll zwspfptmbxgrdv dsgkk nfytsqjrnfbhh pzdldzymvkdxxwh\nvnhjfwgdnyjptsmblyxmpzylsbjlmtkkwjcbqwjctqvrlqqkdsrktxlnslspvnn mdgsmzblhbnvpczmqkcffwhwljqkzmk hxcm\nrghnjvzcpprrgmtgytpkzyc mrdnnhpkwypwqbtzjyfwvrdwyjltbzxtbstzs xdjzdmx yjsqtzlrnvyssvglsdjrmsrfrcdpqt", "output": "NO" }, { "input": "ioeeaioeiuoeaeieuuieooaouiuouiioaueeaiaiuoaoiioeeaauooiuuieeuaeeoauieeaiuoieiaieuoauaaoioooieueueuai\nuooaoeeaoiuuoeioaoouaououoeioiaeueoioaiouaeaoioiuuaueeuaiuoiueoiuaoeeieeouaeeaeeieioeoiiieuuueuuieuo\naeeouieeieoueaioeoioooiouaeeeiaaioueauaueiouuuaieuuioiaeiueauueaoieauauoeueuaiueuuaueeoueauaeaoieeoo", "output": "NO" }, { "input": "mkgycgmrqtmlwj vddlbsgdptyfrcj nmrddjchydvbsyhgzytfzvwbhqmmhkpsyrcnknpsqrr wcnf wfvgskrnsmnrcqgcnc q\npn cclcyjjdp rqkpgyrvyyd hhynrochfa pthyffqvskazfshvzcmvhmsrxvquzkdvivlbfypwbgltfbjmhzljvgzmxjlrjdjq\nauuouieuaaauoooeoiuoaueuueauiuuuiaeuwuoiaeoeaieauieouoaeiiieiioiuuuiuauioiiuoeauueieaueiaioeuaoaaau", "output": "NO" }, { "input": "ab\na\na", "output": "NO" }, { "input": "on codeforcs\nbeta round is runnineg\na rustling of keys", "output": "NO" }, { "input": "coooooooooooooooood\nd\nd", "output": "NO" }, { "input": "on codeforces \nbeta round is runninog\n a rustling of keys", "output": "NO" }, { "input": "aaaaaaaaaaaaaaa\na\na", "output": "NO" }, { "input": "aaaaaccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\naaaaaaaccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\naaaaaccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc", "output": "YES" }, { "input": "cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\ncccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\ncccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc", "output": "NO" }, { "input": "aaaaaa\naaaaaa\naaaaa", "output": "NO" } ]
1,610,564,724
2,147,483,647
Python 3
OK
TESTS
40
124
307,200
# Codeforces A. Haiku # Created by Abdulrahman Elsayed on 13/01/2021 l1 = input() l2 = input() l3 = input() w1 = 0 w2 = 0 w3 = 0 for c in l1: if ((c == 'a') or (c == 'e') or (c == 'i') or (c == 'o') or (c == 'u')): w1 += 1 for c in l2: if ((c == 'a') or (c == 'e') or (c == 'i') or (c == 'o') or (c == 'u')): w2 += 1 for c in l3: if ((c == 'a') or (c == 'e') or (c == 'i') or (c == 'o') or (c == 'u')): w3 += 1 if ((w1 == 5) and (w2 == 7) and (w3 == 5)): print('YES') else: print('NO')
Title: Haiku Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: Haiku is a genre of Japanese traditional poetry. A haiku poem consists of 17 syllables split into three phrases, containing 5, 7 and 5 syllables correspondingly (the first phrase should contain exactly 5 syllables, the second phrase should contain exactly 7 syllables, and the third phrase should contain exactly 5 syllables). A haiku masterpiece contains a description of a moment in those three phrases. Every word is important in a small poem, which is why haiku are rich with symbols. Each word has a special meaning, a special role. The main principle of haiku is to say much using a few words. To simplify the matter, in the given problem we will consider that the number of syllable in the phrase is equal to the number of vowel letters there. Only the following letters are regarded as vowel letters: "a", "e", "i", "o" and "u". Three phases from a certain poem are given. Determine whether it is haiku or not. Input Specification: The input data consists of three lines. The length of each line is between 1 and 100, inclusive. The *i*-th line contains the *i*-th phrase of the poem. Each phrase consists of one or more words, which are separated by one or more spaces. A word is a non-empty sequence of lowercase Latin letters. Leading and/or trailing spaces in phrases are allowed. Every phrase has at least one non-space character. See the example for clarification. Output Specification: Print "YES" (without the quotes) if the poem is a haiku. Otherwise, print "NO" (also without the quotes). Demo Input: ['on codeforces \nbeta round is running\n a rustling of keys \n', 'how many gallons\nof edo s rain did you drink\n cuckoo\n'] Demo Output: ['YES', 'NO'] Note: none
```python # Codeforces A. Haiku # Created by Abdulrahman Elsayed on 13/01/2021 l1 = input() l2 = input() l3 = input() w1 = 0 w2 = 0 w3 = 0 for c in l1: if ((c == 'a') or (c == 'e') or (c == 'i') or (c == 'o') or (c == 'u')): w1 += 1 for c in l2: if ((c == 'a') or (c == 'e') or (c == 'i') or (c == 'o') or (c == 'u')): w2 += 1 for c in l3: if ((c == 'a') or (c == 'e') or (c == 'i') or (c == 'o') or (c == 'u')): w3 += 1 if ((w1 == 5) and (w2 == 7) and (w3 == 5)): print('YES') else: print('NO') ```
3.968428
48
D
Permutations
PROGRAMMING
1,500
[ "greedy" ]
D. Permutations
1
256
A permutation is a sequence of integers from 1 to *n* of length *n* containing each number exactly once. For example, (1), (4,<=3,<=5,<=1,<=2), (3,<=2,<=1) are permutations, and (1,<=1), (4,<=3,<=1), (2,<=3,<=4) are not. There are many tasks on permutations. Today you are going to solve one of them. Let’s imagine that somebody took several permutations (perhaps, with a different number of elements), wrote them down consecutively as one array and then shuffled the resulting array. The task is to restore the initial permutations if it is possible.
The first line contains an integer *n* (1<=≤<=*n*<=≤<=105). The next line contains the mixed array of *n* integers, divided with a single space. The numbers in the array are from 1 to 105.
If this array can be split into several permutations so that every element of the array belongs to exactly one permutation, print in the first line the number of permutations. The second line should contain *n* numbers, corresponding to the elements of the given array. If the *i*-th element belongs to the first permutation, the *i*-th number should be 1, if it belongs to the second one, then its number should be 2 and so on. The order of the permutations’ numbering is free. If several solutions are possible, print any one of them. If there’s no solution, print in the first line <=-<=1.
[ "9\n1 2 3 1 2 1 4 2 5\n", "4\n4 3 2 1\n", "4\n1 2 2 3\n" ]
[ "3\n3 1 2 1 2 2 2 3 2\n", "1\n1 1 1 1 ", "-1\n" ]
In the first sample test the array is split into three permutations: (2, 1), (3, 2, 1, 4, 5), (1, 2). The first permutation is formed by the second and the fourth elements of the array, the second one — by the third, the fifth, the sixth, the seventh and the ninth elements, the third one — by the first and the eigth elements. Clearly, there are other splitting variants possible.
0
[ { "input": "9\n1 2 3 1 2 1 4 2 5", "output": "3\n1 1 1 2 2 3 1 3 1 " }, { "input": "4\n4 3 2 1", "output": "1\n1 1 1 1 " }, { "input": "4\n1 2 2 3", "output": "-1" }, { "input": "1\n1", "output": "1\n1 " }, { "input": "1\n2", "output": "-1" }, { "input": "5\n1 1 1 1 1", "output": "5\n1 2 3 4 5 " }, { "input": "3\n2 1 1", "output": "2\n1 1 2 " }, { "input": "6\n3 3 2 2 1 1", "output": "2\n1 2 1 2 1 2 " }, { "input": "2\n1000 1", "output": "-1" }, { "input": "5\n2 2 1 1 3", "output": "2\n1 2 1 2 1 " }, { "input": "10\n2 1 2 4 6 1 5 3 7 1", "output": "3\n1 1 2 1 1 2 1 1 1 3 " }, { "input": "10\n4 1 2 1 3 3 1 2 2 1", "output": "4\n1 1 1 2 1 2 3 2 3 4 " }, { "input": "10\n1 2 5 1 1 1 4 1 3 2", "output": "5\n1 1 1 2 3 4 1 5 1 2 " }, { "input": "20\n2 7 3 8 4 6 3 7 6 4 13 5 1 12 1 10 2 11 5 9", "output": "2\n1 1 1 1 1 1 2 2 2 2 1 1 1 1 2 1 2 1 2 1 " }, { "input": "20\n1 1 1 2 3 1 5 9 5 8 4 6 7 3 1 2 2 1 3 4", "output": "6\n1 2 3 1 1 4 1 1 2 1 1 1 1 2 5 2 3 6 3 2 " }, { "input": "20\n2 10 3 3 2 1 14 13 2 15 1 4 5 12 7 11 9 1 6 8", "output": "3\n1 1 1 2 2 1 1 1 3 1 2 1 1 1 1 1 1 3 1 1 " }, { "input": "20\n1 7 2 3 1 1 8 1 6 1 9 11 5 10 1 4 2 3 1 2", "output": "7\n1 1 1 1 2 3 1 4 1 5 1 1 1 1 6 1 2 2 7 3 " }, { "input": "30\n6 1 2 3 6 4 1 8 1 2 2 5 5 1 1 3 9 1 5 8 1 2 7 7 4 3 1 3 4 2", "output": "8\n1 1 1 1 2 1 2 1 3 2 3 1 2 4 5 2 1 6 3 2 7 4 1 2 2 3 8 4 3 5 " }, { "input": "30\n2 6 2 3 3 1 4 2 1 3 3 2 1 2 1 8 1 2 4 1 1 1 5 1 4 7 1 9 1 1", "output": "12\n1 1 2 1 2 1 1 3 2 3 4 4 3 5 4 1 5 6 2 6 7 8 1 9 3 1 10 1 11 12 " }, { "input": "30\n1 3 2 5 9 4 16 14 2 2 4 11 7 17 1 15 13 3 6 12 6 19 8 1 20 5 18 4 10 3", "output": "3\n1 1 1 1 1 1 1 1 2 3 2 1 1 1 2 1 1 2 1 1 2 1 1 3 1 2 1 3 1 3 " }, { "input": "10\n2 2 6 3 1 4 5 3 7 7", "output": "-1" }, { "input": "20\n4 6 6 4 5 4 3 2 5 7 3 2 4 1 3 1 1 4 1 7", "output": "-1" }, { "input": "30\n2 8 3 3 7 4 2 9 4 3 5 6 1 5 3 5 8 1 9 6 6 7 2 7 1 1 1 10 2 1", "output": "-1" }, { "input": "30\n8 7 9 6 2 3 7 1 1 5 7 2 3 1 7 4 5 6 3 9 4 9 4 2 3 1 1 2 2 10", "output": "-1" }, { "input": "50\n7 1 6 5 15 3 13 7 1 1 4 2 4 3 2 1 11 9 4 2 3 7 1 1 1 14 3 14 5 2 5 4 1 8 2 2 2 2 1 1 4 1 2 3 6 12 1 1 5 1", "output": "-1" }, { "input": "50\n1 1 4 1 1 1 1 1 1 3 1 1 3 2 1 1 1 1 5 2 1 1 1 1 1 3 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1", "output": "41\n1 2 1 3 4 5 6 7 8 1 9 10 2 1 11 12 13 14 1 2 15 16 17 18 19 3 20 21 22 23 24 25 3 26 27 4 28 29 30 31 32 33 34 35 36 37 38 39 40 41 " }, { "input": "100\n2 13 10 4 13 8 22 11 5 3 4 6 19 4 8 8 6 1 16 4 11 17 5 18 7 7 4 5 3 7 2 16 5 6 10 1 6 12 14 6 8 7 9 7 1 2 1 8 5 5 9 21 7 11 6 1 12 10 6 23 10 9 8 4 1 2 3 13 2 14 15 1 1 12 3 9 12 3 13 9 8 1 12 5 2 3 11 7 11 9 3 14 1 2 15 2 10 4 14 20", "output": "10\n1 1 1 1 2 1 1 1 1 1 2 1 1 3 2 3 2 1 1 4 2 1 2 1 1 2 5 3 2 3 2 2 4 3 2 2 4 1 1 5 4 4 1 5 3 3 4 5 5 6 2 1 6 3 6 5 2 3 7 1 4 3 6 6 6 4 3 3 5 2 1 7 8 3 4 4 4 5 4 5 7 9 5 7 6 6 4 7 5 6 7 3 10 7 2 8 5 7 4 1 " }, { "input": "100\n9 6 3 28 10 2 2 11 2 1 25 3 13 5 14 13 4 14 2 16 12 27 8 1 7 9 8 19 33 23 4 1 15 6 7 12 2 8 30 4 1 31 6 1 15 5 18 3 2 24 7 3 1 20 10 8 26 22 3 3 9 6 1 10 1 5 1 3 7 6 11 10 1 16 19 5 9 4 4 4 2 18 12 21 11 5 2 32 17 29 2 4 8 1 7 5 3 2 17 1", "output": "12\n1 1 1 1 1 1 2 1 3 1 1 2 1 1 1 2 1 2 4 1 1 1 1 2 1 2 2 1 1 1 2 3 1 2 2 2 5 3 1 3 4 1 3 5 2 2 1 3 6 1 3 4 6 1 2 4 1 1 5 6 3 4 7 3 8 3 9 7 4 5 2 4 10 2 2 4 4 4 5 6 7 2 3 1 3 5 8 1 1 1 9 7 5 11 5 6 8 10 2 12 " }, { "input": "100\n12 18 1 1 14 23 1 1 22 5 7 9 7 1 1 1 3 8 4 2 1 6 9 1 3 2 11 1 11 2 3 2 1 4 2 7 1 16 3 4 2 13 3 1 5 11 2 10 20 24 3 21 5 2 6 2 1 10 10 5 17 1 1 4 19 8 5 5 3 9 4 2 7 8 10 4 9 1 3 3 9 7 6 4 4 3 6 8 12 1 3 6 2 1 8 4 1 15 2 5", "output": "20\n1 1 1 2 1 1 3 4 1 1 1 1 2 5 6 7 1 1 1 1 8 1 2 9 2 2 1 10 2 3 3 4 11 2 5 3 12 1 4 3 6 1 5 13 2 3 7 1 1 1 6 1 3 8 2 9 14 2 3 4 1 15 16 4 1 2 5 6 7 3 5 10 4 3 4 6 4 17 8 9 5 5 3 7 8 10 4 4 2 18 11 5 11 19 5 9 20 1 12 7 " }, { "input": "100\n10 1 13 1 5 2 5 5 9 10 3 8 4 1 3 5 6 4 1 4 9 8 1 1 1 1 8 2 3 1 1 2 5 1 1 12 6 4 5 3 1 3 18 10 1 2 3 2 6 2 3 15 1 3 5 3 9 7 1 6 11 7 7 8 6 17 11 7 6 1 4 4 1 1 3 1 2 6 7 14 4 4 5 1 11 1 4 2 8 4 2 7 16 12 1 1 2 2 1 2", "output": "25\n1 1 1 2 1 1 2 3 1 2 1 1 1 3 2 4 1 2 4 3 2 2 5 6 7 8 3 2 3 9 10 3 5 11 12 1 2 4 6 4 13 5 1 3 14 4 6 5 3 6 7 1 15 8 7 9 3 1 16 4 1 2 3 4 5 1 2 4 6 17 5 6 18 19 10 20 7 7 5 1 7 8 8 21 3 22 9 8 5 10 9 6 1 2 23 24 10 11 25 12 " } ]
1,584,789,965
2,147,483,647
Python 3
OK
TESTS
60
343
7,680,000
import sys n=int(sys.stdin.readline()) a=list(map(int,sys.stdin.readline().split())) l=[0]*(10**5) for i in range(n): l[a[i]-1]+=1 flag=True for i in range(1,len(l)): if l[i]>l[i-1]: print(-1) flag=False break if flag: arr=[0]*(10**5+1) ans=[0]*n for i in range(n): ans[i]=arr[a[i]]+1 arr[a[i]]+=1 print(max(ans)) print(*ans)
Title: Permutations Time Limit: 1 seconds Memory Limit: 256 megabytes Problem Description: A permutation is a sequence of integers from 1 to *n* of length *n* containing each number exactly once. For example, (1), (4,<=3,<=5,<=1,<=2), (3,<=2,<=1) are permutations, and (1,<=1), (4,<=3,<=1), (2,<=3,<=4) are not. There are many tasks on permutations. Today you are going to solve one of them. Let’s imagine that somebody took several permutations (perhaps, with a different number of elements), wrote them down consecutively as one array and then shuffled the resulting array. The task is to restore the initial permutations if it is possible. Input Specification: The first line contains an integer *n* (1<=≤<=*n*<=≤<=105). The next line contains the mixed array of *n* integers, divided with a single space. The numbers in the array are from 1 to 105. Output Specification: If this array can be split into several permutations so that every element of the array belongs to exactly one permutation, print in the first line the number of permutations. The second line should contain *n* numbers, corresponding to the elements of the given array. If the *i*-th element belongs to the first permutation, the *i*-th number should be 1, if it belongs to the second one, then its number should be 2 and so on. The order of the permutations’ numbering is free. If several solutions are possible, print any one of them. If there’s no solution, print in the first line <=-<=1. Demo Input: ['9\n1 2 3 1 2 1 4 2 5\n', '4\n4 3 2 1\n', '4\n1 2 2 3\n'] Demo Output: ['3\n3 1 2 1 2 2 2 3 2\n', '1\n1 1 1 1 ', '-1\n'] Note: In the first sample test the array is split into three permutations: (2, 1), (3, 2, 1, 4, 5), (1, 2). The first permutation is formed by the second and the fourth elements of the array, the second one — by the third, the fifth, the sixth, the seventh and the ninth elements, the third one — by the first and the eigth elements. Clearly, there are other splitting variants possible.
```python import sys n=int(sys.stdin.readline()) a=list(map(int,sys.stdin.readline().split())) l=[0]*(10**5) for i in range(n): l[a[i]-1]+=1 flag=True for i in range(1,len(l)): if l[i]>l[i-1]: print(-1) flag=False break if flag: arr=[0]*(10**5+1) ans=[0]*n for i in range(n): ans[i]=arr[a[i]]+1 arr[a[i]]+=1 print(max(ans)) print(*ans) ```
3.814195
237
A
Free Cash
PROGRAMMING
1,000
[ "implementation" ]
null
null
Valera runs a 24/7 fast food cafe. He magically learned that next day *n* people will visit his cafe. For each person we know the arrival time: the *i*-th person comes exactly at *h**i* hours *m**i* minutes. The cafe spends less than a minute to serve each client, but if a client comes in and sees that there is no free cash, than he doesn't want to wait and leaves the cafe immediately. Valera is very greedy, so he wants to serve all *n* customers next day (and get more profit). However, for that he needs to ensure that at each moment of time the number of working cashes is no less than the number of clients in the cafe. Help Valera count the minimum number of cashes to work at his cafe next day, so that they can serve all visitors.
The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105), that is the number of cafe visitors. Each of the following *n* lines has two space-separated integers *h**i* and *m**i* (0<=≤<=*h**i*<=≤<=23; 0<=≤<=*m**i*<=≤<=59), representing the time when the *i*-th person comes into the cafe. Note that the time is given in the chronological order. All time is given within one 24-hour period.
Print a single integer — the minimum number of cashes, needed to serve all clients next day.
[ "4\n8 0\n8 10\n8 10\n8 45\n", "3\n0 12\n10 11\n22 22\n" ]
[ "2\n", "1\n" ]
In the first sample it is not enough one cash to serve all clients, because two visitors will come into cafe in 8:10. Therefore, if there will be one cash in cafe, then one customer will be served by it, and another one will not wait and will go away. In the second sample all visitors will come in different times, so it will be enough one cash.
500
[ { "input": "4\n8 0\n8 10\n8 10\n8 45", "output": "2" }, { "input": "3\n0 12\n10 11\n22 22", "output": "1" }, { "input": "5\n12 8\n15 27\n15 27\n16 2\n19 52", "output": "2" }, { "input": "7\n5 6\n7 34\n7 34\n7 34\n12 29\n15 19\n20 23", "output": "3" }, { "input": "8\n0 36\n4 7\n4 7\n4 7\n11 46\n12 4\n15 39\n18 6", "output": "3" }, { "input": "20\n4 12\n4 21\n4 27\n4 56\n5 55\n7 56\n11 28\n11 36\n14 58\n15 59\n16 8\n17 12\n17 23\n17 23\n17 23\n17 23\n17 23\n17 23\n20 50\n22 32", "output": "6" }, { "input": "10\n1 30\n1 30\n1 30\n1 30\n1 30\n1 30\n1 30\n1 30\n1 30\n1 30", "output": "10" }, { "input": "50\n0 23\n1 21\n2 8\n2 45\n3 1\n4 19\n4 37\n7 7\n7 40\n8 43\n9 51\n10 13\n11 2\n11 19\n11 30\n12 37\n12 37\n12 37\n12 37\n12 37\n12 37\n12 37\n12 37\n12 54\n13 32\n13 42\n14 29\n14 34\n14 48\n15 0\n15 27\n16 22\n16 31\n17 25\n17 26\n17 33\n18 14\n18 16\n18 20\n19 0\n19 5\n19 56\n20 22\n21 26\n22 0\n22 10\n22 11\n22 36\n23 17\n23 20", "output": "8" }, { "input": "10\n0 39\n1 35\n1 49\n1 51\n5 24\n7 40\n7 56\n16 42\n23 33\n23 49", "output": "1" }, { "input": "15\n0 16\n6 15\n8 2\n8 6\n8 7\n10 1\n10 1\n10 3\n10 12\n13 5\n14 16\n14 16\n14 16\n14 16\n14 16", "output": "5" }, { "input": "2\n0 24\n1 0", "output": "1" }, { "input": "1\n0 0", "output": "1" }, { "input": "1\n1 5", "output": "1" }, { "input": "1\n1 1", "output": "1" }, { "input": "3\n0 0\n0 0\n0 0", "output": "3" }, { "input": "1\n5 0", "output": "1" }, { "input": "5\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "5" }, { "input": "1\n10 10", "output": "1" }, { "input": "1\n8 0", "output": "1" }, { "input": "10\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0", "output": "10" }, { "input": "2\n0 0\n0 1", "output": "1" }, { "input": "2\n8 5\n8 5", "output": "2" } ]
1,679,567,370
2,147,483,647
PyPy 3-64
RUNTIME_ERROR
TESTS
10
1,184
13,209,600
n=int(input()) i=0 list1=[] list2=[] while i<n: hi,mi=(map(int,input().split())) list1.append(hi) list2.append(mi) i+=1 list_3=[] count1=1 j=0 while j<n-1: if (list1[j]==list1[j+1]) and (list2[j]==list2[j+1]): count1+=1 else: list_3.append(count1) count1=1 j+=1 print(max(list_3))
Title: Free Cash Time Limit: None seconds Memory Limit: None megabytes Problem Description: Valera runs a 24/7 fast food cafe. He magically learned that next day *n* people will visit his cafe. For each person we know the arrival time: the *i*-th person comes exactly at *h**i* hours *m**i* minutes. The cafe spends less than a minute to serve each client, but if a client comes in and sees that there is no free cash, than he doesn't want to wait and leaves the cafe immediately. Valera is very greedy, so he wants to serve all *n* customers next day (and get more profit). However, for that he needs to ensure that at each moment of time the number of working cashes is no less than the number of clients in the cafe. Help Valera count the minimum number of cashes to work at his cafe next day, so that they can serve all visitors. Input Specification: The first line contains a single integer *n* (1<=≤<=*n*<=≤<=105), that is the number of cafe visitors. Each of the following *n* lines has two space-separated integers *h**i* and *m**i* (0<=≤<=*h**i*<=≤<=23; 0<=≤<=*m**i*<=≤<=59), representing the time when the *i*-th person comes into the cafe. Note that the time is given in the chronological order. All time is given within one 24-hour period. Output Specification: Print a single integer — the minimum number of cashes, needed to serve all clients next day. Demo Input: ['4\n8 0\n8 10\n8 10\n8 45\n', '3\n0 12\n10 11\n22 22\n'] Demo Output: ['2\n', '1\n'] Note: In the first sample it is not enough one cash to serve all clients, because two visitors will come into cafe in 8:10. Therefore, if there will be one cash in cafe, then one customer will be served by it, and another one will not wait and will go away. In the second sample all visitors will come in different times, so it will be enough one cash.
```python n=int(input()) i=0 list1=[] list2=[] while i<n: hi,mi=(map(int,input().split())) list1.append(hi) list2.append(mi) i+=1 list_3=[] count1=1 j=0 while j<n-1: if (list1[j]==list1[j+1]) and (list2[j]==list2[j+1]): count1+=1 else: list_3.append(count1) count1=1 j+=1 print(max(list_3)) ```
-1
50
A
Domino piling
PROGRAMMING
800
[ "greedy", "math" ]
A. Domino piling
2
256
You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions.
In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16).
Output one number — the maximal number of dominoes, which can be placed.
[ "2 4\n", "3 3\n" ]
[ "4\n", "4\n" ]
none
500
[ { "input": "2 4", "output": "4" }, { "input": "3 3", "output": "4" }, { "input": "1 5", "output": "2" }, { "input": "1 6", "output": "3" }, { "input": "1 15", "output": "7" }, { "input": "1 16", "output": "8" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "6" }, { "input": "2 7", "output": "7" }, { "input": "2 14", "output": "14" }, { "input": "2 15", "output": "15" }, { "input": "1 4", "output": "2" }, { "input": "2 16", "output": "16" }, { "input": "3 5", "output": "7" }, { "input": "3 6", "output": "9" }, { "input": "3 10", "output": "15" }, { "input": "3 14", "output": "21" }, { "input": "3 15", "output": "22" }, { "input": "3 16", "output": "24" }, { "input": "5 7", "output": "17" }, { "input": "16 16", "output": "128" }, { "input": "15 16", "output": "120" }, { "input": "2 3", "output": "3" }, { "input": "15 15", "output": "112" }, { "input": "14 16", "output": "112" }, { "input": "11 13", "output": "71" }, { "input": "5 16", "output": "40" }, { "input": "8 15", "output": "60" }, { "input": "2 2", "output": "2" }, { "input": "3 4", "output": "6" }, { "input": "4 4", "output": "8" }, { "input": "1 1", "output": "0" }, { "input": "1 2", "output": "1" }, { "input": "1 3", "output": "1" }, { "input": "14 15", "output": "105" } ]
1,685,551,637
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
19
92
0
m,n=map(int,input().split()) if(m>1 and m%2==0): print(n*(m//2)) elif(m>1 and m%2==1): print(n+(n//2)) elif(m==1): print(n//2)
Title: Domino piling Time Limit: 2 seconds Memory Limit: 256 megabytes Problem Description: You are given a rectangular board of *M*<=×<=*N* squares. Also you are given an unlimited number of standard domino pieces of 2<=×<=1 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions: 1. Each domino completely covers two squares. 2. No two dominoes overlap. 3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board. Find the maximum number of dominoes, which can be placed under these restrictions. Input Specification: In a single line you are given two integers *M* and *N* — board sizes in squares (1<=≤<=*M*<=≤<=*N*<=≤<=16). Output Specification: Output one number — the maximal number of dominoes, which can be placed. Demo Input: ['2 4\n', '3 3\n'] Demo Output: ['4\n', '4\n'] Note: none
```python m,n=map(int,input().split()) if(m>1 and m%2==0): print(n*(m//2)) elif(m>1 and m%2==1): print(n+(n//2)) elif(m==1): print(n//2) ```
0
660
A
Co-prime Array
PROGRAMMING
1,200
[ "greedy", "implementation", "math", "number theory" ]
null
null
You are given an array of *n* elements, you must make it a co-prime array in as few moves as possible. In each move you can insert any positive integral number you want not greater than 109 in any place in the array. An array is co-prime if any two adjacent numbers of it are co-prime. In the number theory, two integers *a* and *b* are said to be co-prime if the only positive integer that divides both of them is 1.
The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of elements in the given array. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=109) — the elements of the array *a*.
Print integer *k* on the first line — the least number of elements needed to add to the array *a* to make it co-prime. The second line should contain *n*<=+<=*k* integers *a**j* — the elements of the array *a* after adding *k* elements to it. Note that the new array should be co-prime, so any two adjacent values should be co-prime. Also the new array should be got from the original array *a* by adding *k* elements to it. If there are multiple answers you can print any one of them.
[ "3\n2 7 28\n" ]
[ "1\n2 7 9 28\n" ]
none
0
[ { "input": "3\n2 7 28", "output": "1\n2 7 1 28" }, { "input": "1\n1", "output": "0\n1" }, { "input": "1\n548", "output": "0\n548" }, { "input": "1\n963837006", "output": "0\n963837006" }, { "input": "10\n1 1 1 1 1 1 1 1 1 1", "output": "0\n1 1 1 1 1 1 1 1 1 1" }, { "input": "10\n26 723 970 13 422 968 875 329 234 983", "output": "2\n26 723 970 13 422 1 968 875 1 329 234 983" }, { "input": "10\n319645572 758298525 812547177 459359946 355467212 304450522 807957797 916787906 239781206 242840396", "output": "7\n319645572 1 758298525 1 812547177 1 459359946 1 355467212 1 304450522 807957797 916787906 1 239781206 1 242840396" }, { "input": "100\n1 1 1 1 2 1 1 1 1 1 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 1 2 2 2 1 1 2 1 1 1 2 2 2 1 1 1 2 1 2 2 1 2 1 1 2 2 1 2 1 2 1 2 2 1 1 1 2 1 1 2 1 2 1 2 2 2 1 2 1 2 2 2 1 2 2 1 1 1 1 2 2 2 2 2 2 2 1 1 1 2 1 2 1", "output": "19\n1 1 1 1 2 1 1 1 1 1 2 1 2 1 1 2 1 2 1 1 1 2 1 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 1 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1" }, { "input": "100\n591 417 888 251 792 847 685 3 182 461 102 348 555 956 771 901 712 878 580 631 342 333 285 899 525 725 537 718 929 653 84 788 104 355 624 803 253 853 201 995 536 184 65 205 540 652 549 777 248 405 677 950 431 580 600 846 328 429 134 983 526 103 500 963 400 23 276 704 570 757 410 658 507 620 984 244 486 454 802 411 985 303 635 283 96 597 855 775 139 839 839 61 219 986 776 72 729 69 20 917", "output": "38\n591 1 417 1 888 251 792 1 847 685 3 182 461 102 1 348 1 555 956 771 901 712 1 878 1 580 631 342 1 333 1 285 899 525 1 725 537 718 929 653 84 1 788 1 104 355 624 803 1 253 853 201 995 536 1 184 65 1 205 1 540 1 652 549 1 777 248 405 677 950 431 580 1 600 1 846 1 328 429 134 983 526 103 500 963 400 23 1 276 1 704 1 570 757 410 1 658 507 620 1 984 1 244 1 486 1 454 1 802 411 985 303 635 283 96 1 597 1 855 1 775 139 839 1 839 61 219 986 1 776 1 72 1 729 1 69 20 917" }, { "input": "5\n472882027 472882027 472882027 472882027 472882027", "output": "4\n472882027 1 472882027 1 472882027 1 472882027 1 472882027" }, { "input": "2\n1000000000 1000000000", "output": "1\n1000000000 1 1000000000" }, { "input": "2\n8 6", "output": "1\n8 1 6" }, { "input": "3\n100000000 1000000000 1000000000", "output": "2\n100000000 1 1000000000 1 1000000000" }, { "input": "5\n1 2 3 4 5", "output": "0\n1 2 3 4 5" }, { "input": "20\n2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000 2 1000000000", "output": "19\n2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000 1 2 1 1000000000" }, { "input": "2\n223092870 23", "output": "1\n223092870 1 23" }, { "input": "2\n100000003 100000003", "output": "1\n100000003 1 100000003" }, { "input": "2\n999999937 999999937", "output": "1\n999999937 1 999999937" }, { "input": "4\n999 999999937 999999937 999", "output": "1\n999 999999937 1 999999937 999" }, { "input": "2\n999999929 999999929", "output": "1\n999999929 1 999999929" }, { "input": "2\n1049459 2098918", "output": "1\n1049459 1 2098918" }, { "input": "2\n352229 704458", "output": "1\n352229 1 704458" }, { "input": "2\n7293 4011", "output": "1\n7293 1 4011" }, { "input": "2\n5565651 3999930", "output": "1\n5565651 1 3999930" }, { "input": "2\n997 997", "output": "1\n997 1 997" }, { "input": "3\n9994223 9994223 9994223", "output": "2\n9994223 1 9994223 1 9994223" }, { "input": "2\n99999998 1000000000", "output": "1\n99999998 1 1000000000" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "2\n1000000000 1 1000000000 1 1000000000" }, { "input": "2\n130471 130471", "output": "1\n130471 1 130471" }, { "input": "3\n1000000000 2 2", "output": "2\n1000000000 1 2 1 2" }, { "input": "2\n223092870 66526", "output": "1\n223092870 1 66526" }, { "input": "14\n1000000000 1000000000 223092870 223092870 6 105 2 2 510510 510510 999999491 999999491 436077930 570018449", "output": "10\n1000000000 1 1000000000 1 223092870 1 223092870 1 6 1 105 2 1 2 1 510510 1 510510 999999491 1 999999491 436077930 1 570018449" }, { "input": "2\n3996017 3996017", "output": "1\n3996017 1 3996017" }, { "input": "2\n999983 999983", "output": "1\n999983 1 999983" }, { "input": "2\n618575685 773990454", "output": "1\n618575685 1 773990454" }, { "input": "3\n9699690 3 7", "output": "1\n9699690 1 3 7" }, { "input": "2\n999999999 999999996", "output": "1\n999999999 1 999999996" }, { "input": "2\n99999910 99999910", "output": "1\n99999910 1 99999910" }, { "input": "12\n1000000000 1000000000 223092870 223092870 6 105 2 2 510510 510510 999999491 999999491", "output": "9\n1000000000 1 1000000000 1 223092870 1 223092870 1 6 1 105 2 1 2 1 510510 1 510510 999999491 1 999999491" }, { "input": "3\n999999937 999999937 999999937", "output": "2\n999999937 1 999999937 1 999999937" }, { "input": "2\n99839 99839", "output": "1\n99839 1 99839" }, { "input": "3\n19999909 19999909 19999909", "output": "2\n19999909 1 19999909 1 19999909" }, { "input": "4\n1 1000000000 1 1000000000", "output": "0\n1 1000000000 1 1000000000" }, { "input": "2\n64006 64006", "output": "1\n64006 1 64006" }, { "input": "2\n1956955 1956955", "output": "1\n1956955 1 1956955" }, { "input": "3\n1 1000000000 1000000000", "output": "1\n1 1000000000 1 1000000000" }, { "input": "2\n982451707 982451707", "output": "1\n982451707 1 982451707" }, { "input": "2\n999999733 999999733", "output": "1\n999999733 1 999999733" }, { "input": "3\n999999733 999999733 999999733", "output": "2\n999999733 1 999999733 1 999999733" }, { "input": "2\n3257 3257", "output": "1\n3257 1 3257" }, { "input": "2\n223092870 181598", "output": "1\n223092870 1 181598" }, { "input": "3\n959919409 105935 105935", "output": "2\n959919409 1 105935 1 105935" }, { "input": "2\n510510 510510", "output": "1\n510510 1 510510" }, { "input": "3\n223092870 1000000000 1000000000", "output": "2\n223092870 1 1000000000 1 1000000000" }, { "input": "14\n1000000000 2 1000000000 3 1000000000 6 1000000000 1000000000 15 1000000000 1000000000 1000000000 100000000 1000", "output": "11\n1000000000 1 2 1 1000000000 3 1000000000 1 6 1 1000000000 1 1000000000 1 15 1 1000000000 1 1000000000 1 1000000000 1 100000000 1 1000" }, { "input": "7\n1 982451653 982451653 1 982451653 982451653 982451653", "output": "3\n1 982451653 1 982451653 1 982451653 1 982451653 1 982451653" }, { "input": "2\n100000007 100000007", "output": "1\n100000007 1 100000007" }, { "input": "3\n999999757 999999757 999999757", "output": "2\n999999757 1 999999757 1 999999757" }, { "input": "3\n99999989 99999989 99999989", "output": "2\n99999989 1 99999989 1 99999989" }, { "input": "5\n2 4 982451707 982451707 3", "output": "2\n2 1 4 982451707 1 982451707 3" }, { "input": "2\n20000014 20000014", "output": "1\n20000014 1 20000014" }, { "input": "2\n99999989 99999989", "output": "1\n99999989 1 99999989" }, { "input": "2\n111546435 111546435", "output": "1\n111546435 1 111546435" }, { "input": "2\n55288874 33538046", "output": "1\n55288874 1 33538046" }, { "input": "5\n179424673 179424673 179424673 179424673 179424673", "output": "4\n179424673 1 179424673 1 179424673 1 179424673 1 179424673" }, { "input": "2\n199999978 199999978", "output": "1\n199999978 1 199999978" }, { "input": "2\n1000000000 2", "output": "1\n1000000000 1 2" }, { "input": "3\n19999897 19999897 19999897", "output": "2\n19999897 1 19999897 1 19999897" }, { "input": "2\n19999982 19999982", "output": "1\n19999982 1 19999982" }, { "input": "2\n10000007 10000007", "output": "1\n10000007 1 10000007" }, { "input": "3\n999999937 999999937 2", "output": "1\n999999937 1 999999937 2" }, { "input": "5\n2017 2017 2017 2017 2017", "output": "4\n2017 1 2017 1 2017 1 2017 1 2017" }, { "input": "2\n19999909 39999818", "output": "1\n19999909 1 39999818" }, { "input": "2\n62615533 7919", "output": "1\n62615533 1 7919" }, { "input": "5\n39989 39989 33 31 29", "output": "1\n39989 1 39989 33 31 29" }, { "input": "2\n1000000000 100000", "output": "1\n1000000000 1 100000" }, { "input": "2\n1938 10010", "output": "1\n1938 1 10010" }, { "input": "2\n199999 199999", "output": "1\n199999 1 199999" }, { "input": "2\n107273 107273", "output": "1\n107273 1 107273" }, { "input": "3\n49999 49999 49999", "output": "2\n49999 1 49999 1 49999" }, { "input": "2\n1999966 1999958", "output": "1\n1999966 1 1999958" }, { "input": "2\n86020 300846", "output": "1\n86020 1 300846" }, { "input": "2\n999999997 213", "output": "1\n999999997 1 213" }, { "input": "2\n200000014 200000434", "output": "1\n200000014 1 200000434" } ]
1,669,224,093
2,147,483,647
Python 3
OK
TESTS
93
46
0
def gcd(a, b): if (b == 0): return a return gcd(b, a%b) n = int(input().strip()) arr = list(map(int, input().strip().split())) i, count = 0, 0 for i in range(n-1): if gcd(arr[i], arr[i+1]) != 1: count += 1 print(count) print(arr[0], end=" ") for i in range(1, n): if gcd(arr[i], arr[i-1]) != 1: print(1, end=" ") print(arr[i], end=" ")
Title: Co-prime Array Time Limit: None seconds Memory Limit: None megabytes Problem Description: You are given an array of *n* elements, you must make it a co-prime array in as few moves as possible. In each move you can insert any positive integral number you want not greater than 109 in any place in the array. An array is co-prime if any two adjacent numbers of it are co-prime. In the number theory, two integers *a* and *b* are said to be co-prime if the only positive integer that divides both of them is 1. Input Specification: The first line contains integer *n* (1<=≤<=*n*<=≤<=1000) — the number of elements in the given array. The second line contains *n* integers *a**i* (1<=≤<=*a**i*<=≤<=109) — the elements of the array *a*. Output Specification: Print integer *k* on the first line — the least number of elements needed to add to the array *a* to make it co-prime. The second line should contain *n*<=+<=*k* integers *a**j* — the elements of the array *a* after adding *k* elements to it. Note that the new array should be co-prime, so any two adjacent values should be co-prime. Also the new array should be got from the original array *a* by adding *k* elements to it. If there are multiple answers you can print any one of them. Demo Input: ['3\n2 7 28\n'] Demo Output: ['1\n2 7 9 28\n'] Note: none
```python def gcd(a, b): if (b == 0): return a return gcd(b, a%b) n = int(input().strip()) arr = list(map(int, input().strip().split())) i, count = 0, 0 for i in range(n-1): if gcd(arr[i], arr[i+1]) != 1: count += 1 print(count) print(arr[0], end=" ") for i in range(1, n): if gcd(arr[i], arr[i-1]) != 1: print(1, end=" ") print(arr[i], end=" ") ```
3
669
A
Little Artem and Presents
PROGRAMMING
800
[ "math" ]
null
null
Little Artem got *n* stones on his birthday and now wants to give some of them to Masha. He knows that Masha cares more about the fact of receiving the present, rather than the value of that present, so he wants to give her stones as many times as possible. However, Masha remembers the last present she received, so Artem can't give her the same number of stones twice in a row. For example, he can give her 3 stones, then 1 stone, then again 3 stones, but he can't give her 3 stones and then again 3 stones right after that. How many times can Artem give presents to Masha?
The only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=109) — number of stones Artem received on his birthday.
Print the maximum possible number of times Artem can give presents to Masha.
[ "1\n", "2\n", "3\n", "4\n" ]
[ "1\n", "1\n", "2\n", "3\n" ]
In the first sample, Artem can only give 1 stone to Masha. In the second sample, Atrem can give Masha 1 or 2 stones, though he can't give her 1 stone two times. In the third sample, Atrem can first give Masha 2 stones, a then 1 more stone. In the fourth sample, Atrem can first give Masha 1 stone, then 2 stones, and finally 1 stone again.
500
[ { "input": "1", "output": "1" }, { "input": "2", "output": "1" }, { "input": "3", "output": "2" }, { "input": "4", "output": "3" }, { "input": "100", "output": "67" }, { "input": "101", "output": "67" }, { "input": "102", "output": "68" }, { "input": "1000000000", "output": "666666667" }, { "input": "5", "output": "3" }, { "input": "6", "output": "4" }, { "input": "999999999", "output": "666666666" }, { "input": "999999998", "output": "666666665" }, { "input": "999999997", "output": "666666665" }, { "input": "999999996", "output": "666666664" }, { "input": "999999995", "output": "666666663" }, { "input": "999999994", "output": "666666663" }, { "input": "999999993", "output": "666666662" }, { "input": "999999992", "output": "666666661" }, { "input": "999999991", "output": "666666661" }, { "input": "1000", "output": "667" }, { "input": "10000", "output": "6667" }, { "input": "100000", "output": "66667" }, { "input": "1000000", "output": "666667" }, { "input": "10000000", "output": "6666667" }, { "input": "100000000", "output": "66666667" }, { "input": "7", "output": "5" } ]
1,648,307,772
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
31
0
n=int(input()) print(n-1 if n!=1 else 1)
Title: Little Artem and Presents Time Limit: None seconds Memory Limit: None megabytes Problem Description: Little Artem got *n* stones on his birthday and now wants to give some of them to Masha. He knows that Masha cares more about the fact of receiving the present, rather than the value of that present, so he wants to give her stones as many times as possible. However, Masha remembers the last present she received, so Artem can't give her the same number of stones twice in a row. For example, he can give her 3 stones, then 1 stone, then again 3 stones, but he can't give her 3 stones and then again 3 stones right after that. How many times can Artem give presents to Masha? Input Specification: The only line of the input contains a single integer *n* (1<=≤<=*n*<=≤<=109) — number of stones Artem received on his birthday. Output Specification: Print the maximum possible number of times Artem can give presents to Masha. Demo Input: ['1\n', '2\n', '3\n', '4\n'] Demo Output: ['1\n', '1\n', '2\n', '3\n'] Note: In the first sample, Artem can only give 1 stone to Masha. In the second sample, Atrem can give Masha 1 or 2 stones, though he can't give her 1 stone two times. In the third sample, Atrem can first give Masha 2 stones, a then 1 more stone. In the fourth sample, Atrem can first give Masha 1 stone, then 2 stones, and finally 1 stone again.
```python n=int(input()) print(n-1 if n!=1 else 1) ```
0
408
B
Garland
PROGRAMMING
1,200
[ "implementation" ]
null
null
Once little Vasya read an article in a magazine on how to make beautiful handmade garland from colored paper. Vasya immediately went to the store and bought *n* colored sheets of paper, the area of each sheet is 1 square meter. The garland must consist of exactly *m* pieces of colored paper of arbitrary area, each piece should be of a certain color. To make the garland, Vasya can arbitrarily cut his existing colored sheets into pieces. Vasya is not obliged to use all the sheets to make the garland. Vasya wants the garland to be as attractive as possible, so he wants to maximize the total area of ​​*m* pieces of paper in the garland. Calculate what the maximum total area of ​​the pieces of paper in the garland Vasya can get.
The first line contains a non-empty sequence of *n* (1<=≤<=*n*<=≤<=1000) small English letters ("a"..."z"). Each letter means that Vasya has a sheet of paper of the corresponding color. The second line contains a non-empty sequence of *m* (1<=≤<=*m*<=≤<=1000) small English letters that correspond to the colors of the pieces of paper in the garland that Vasya wants to make.
Print an integer that is the maximum possible total area of the pieces of paper in the garland Vasya wants to get or -1, if it is impossible to make the garland from the sheets he's got. It is guaranteed that the answer is always an integer.
[ "aaabbac\naabbccac\n", "a\nz\n" ]
[ "6\n", "-1" ]
In the first test sample Vasya can make an garland of area 6: he can use both sheets of color *b*, three (but not four) sheets of color *a* and cut a single sheet of color *c* in three, for example, equal pieces. Vasya can use the resulting pieces to make a garland of area 6. In the second test sample Vasya cannot make a garland at all — he doesn't have a sheet of color *z*.
1,000
[ { "input": "aaabbac\naabbccac", "output": "6" }, { "input": "a\nz", "output": "-1" }, { "input": "r\nr", "output": "1" }, { "input": "stnsdn\nndnndsn", "output": "4" }, { "input": "yqfqfp\ntttwtqq", "output": "-1" }, { "input": "zzbbrrtrtzr\ntbbtrrrzr", "output": "9" }, { "input": "ivvfisvsvii\npaihjinno", "output": "-1" }, { "input": "zbvwnlgkshqerxptyod\nz", "output": "1" }, { "input": "xlktwjymocqrahnbesf\nfoo", "output": "2" }, { "input": "bbzmzqazmbambnmzaabznmbabzqnaabmabmnnabbmnzaanzzezebzabqaabzqaemeqqammmbazmmz\naznnbbmeebmanbeemzmemqbaeebnqenqzzbanebmnzqqebqmmnmqqzmmeqqqaaezemmazqqmqaqnnqqzbzeeazammmenbbamzbmnaenemenaaaebnmanebqmqnznqbenmqqnnnaeaebqmamennmqqeaaqqbammnzqmnmqnqbbezmemznqmanzmmqzzzzembqnzqbanamezqaqbazenenqqznqaebzaeezbqqbmeeaqnmmbnqbbnmaqqemaeaezaabmbnbzzaae", "output": "77" }, { "input": "lccfdfnfflncddlksndcwnfcllnnaswcdnldafcalssfcdnkkaklwnnacsncfwanwnwfadawcsdcfwflnnlfsfclkfknlaldna\nuaaldlllhedgugugueahddhedbuddaedhaaeugdubaealbgbagedldbl", "output": "-1" }, { "input": "hvewdvwdwudrwarwmddwnazmwauzatrmwptwwevavpmwrtruwnpwantewrnwmepdwvtmnveanunrvrtwpvhhnuhnmpptdttzmmndtvudmzhhannmmnahdpzamuvhzaavnhtnumwrwvttdetvuewaaennddwuvzvaptdzrzhtetwwzmzedrwuvrwznprhdvnavrruvvhzuwpdtmpwmzrwvermrhdamv\nuvzhwtpuputnahwwarduzddhpnwwvettprwavdmnztdnrddmarmvuevtdezndnezvarhmppwwnmvnrtddzhhnzrwuhvpwmezuurundarwdazwptrpeurrnwautddnhdmhtwhwvvtavdzezumetzezpazndhuentmrhamutrtttpevtuutemdnvwnwnmnvmznatneweuaahdavmaddhnrdenwwztrwh", "output": "199" }, { "input": "aaccddff\nabcdf", "output": "-1" } ]
1,560,520,781
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
4
109
0
n = list(input()) m = list(input()) c = 0 for x in m: if x in n: n.remove(x) c += 1 if not c: print(-1) else: print(c)
Title: Garland Time Limit: None seconds Memory Limit: None megabytes Problem Description: Once little Vasya read an article in a magazine on how to make beautiful handmade garland from colored paper. Vasya immediately went to the store and bought *n* colored sheets of paper, the area of each sheet is 1 square meter. The garland must consist of exactly *m* pieces of colored paper of arbitrary area, each piece should be of a certain color. To make the garland, Vasya can arbitrarily cut his existing colored sheets into pieces. Vasya is not obliged to use all the sheets to make the garland. Vasya wants the garland to be as attractive as possible, so he wants to maximize the total area of ​​*m* pieces of paper in the garland. Calculate what the maximum total area of ​​the pieces of paper in the garland Vasya can get. Input Specification: The first line contains a non-empty sequence of *n* (1<=≤<=*n*<=≤<=1000) small English letters ("a"..."z"). Each letter means that Vasya has a sheet of paper of the corresponding color. The second line contains a non-empty sequence of *m* (1<=≤<=*m*<=≤<=1000) small English letters that correspond to the colors of the pieces of paper in the garland that Vasya wants to make. Output Specification: Print an integer that is the maximum possible total area of the pieces of paper in the garland Vasya wants to get or -1, if it is impossible to make the garland from the sheets he's got. It is guaranteed that the answer is always an integer. Demo Input: ['aaabbac\naabbccac\n', 'a\nz\n'] Demo Output: ['6\n', '-1'] Note: In the first test sample Vasya can make an garland of area 6: he can use both sheets of color *b*, three (but not four) sheets of color *a* and cut a single sheet of color *c* in three, for example, equal pieces. Vasya can use the resulting pieces to make a garland of area 6. In the second test sample Vasya cannot make a garland at all — he doesn't have a sheet of color *z*.
```python n = list(input()) m = list(input()) c = 0 for x in m: if x in n: n.remove(x) c += 1 if not c: print(-1) else: print(c) ```
0
149
A
Business trip
PROGRAMMING
900
[ "greedy", "implementation", "sortings" ]
null
null
What joy! Petya's parents went on a business trip for the whole year and the playful kid is left all by himself. Petya got absolutely happy. He jumped on the bed and threw pillows all day long, until... Today Petya opened the cupboard and found a scary note there. His parents had left him with duties: he should water their favourite flower all year, each day, in the morning, in the afternoon and in the evening. "Wait a second!" — thought Petya. He know for a fact that if he fulfills the parents' task in the *i*-th (1<=≤<=*i*<=≤<=12) month of the year, then the flower will grow by *a**i* centimeters, and if he doesn't water the flower in the *i*-th month, then the flower won't grow this month. Petya also knows that try as he might, his parents won't believe that he has been watering the flower if it grows strictly less than by *k* centimeters. Help Petya choose the minimum number of months when he will water the flower, given that the flower should grow no less than by *k* centimeters.
The first line contains exactly one integer *k* (0<=≤<=*k*<=≤<=100). The next line contains twelve space-separated integers: the *i*-th (1<=≤<=*i*<=≤<=12) number in the line represents *a**i* (0<=≤<=*a**i*<=≤<=100).
Print the only integer — the minimum number of months when Petya has to water the flower so that the flower grows no less than by *k* centimeters. If the flower can't grow by *k* centimeters in a year, print -1.
[ "5\n1 1 1 1 2 2 3 2 2 1 1 1\n", "0\n0 0 0 0 0 0 0 1 1 2 3 0\n", "11\n1 1 4 1 1 5 1 1 4 1 1 1\n" ]
[ "2\n", "0\n", "3\n" ]
Let's consider the first sample test. There it is enough to water the flower during the seventh and the ninth month. Then the flower grows by exactly five centimeters. In the second sample Petya's parents will believe him even if the flower doesn't grow at all (*k* = 0). So, it is possible for Petya not to water the flower at all.
500
[ { "input": "5\n1 1 1 1 2 2 3 2 2 1 1 1", "output": "2" }, { "input": "0\n0 0 0 0 0 0 0 1 1 2 3 0", "output": "0" }, { "input": "11\n1 1 4 1 1 5 1 1 4 1 1 1", "output": "3" }, { "input": "15\n20 1 1 1 1 2 2 1 2 2 1 1", "output": "1" }, { "input": "7\n8 9 100 12 14 17 21 10 11 100 23 10", "output": "1" }, { "input": "52\n1 12 3 11 4 5 10 6 9 7 8 2", "output": "6" }, { "input": "50\n2 2 3 4 5 4 4 5 7 3 2 7", "output": "-1" }, { "input": "0\n55 81 28 48 99 20 67 95 6 19 10 93", "output": "0" }, { "input": "93\n85 40 93 66 92 43 61 3 64 51 90 21", "output": "1" }, { "input": "99\n36 34 22 0 0 0 52 12 0 0 33 47", "output": "2" }, { "input": "99\n28 32 31 0 10 35 11 18 0 0 32 28", "output": "3" }, { "input": "99\n19 17 0 1 18 11 29 9 29 22 0 8", "output": "4" }, { "input": "76\n2 16 11 10 12 0 20 4 4 14 11 14", "output": "5" }, { "input": "41\n2 1 7 7 4 2 4 4 9 3 10 0", "output": "6" }, { "input": "47\n8 2 2 4 3 1 9 4 2 7 7 8", "output": "7" }, { "input": "58\n6 11 7 0 5 6 3 9 4 9 5 1", "output": "8" }, { "input": "32\n5 2 4 1 5 0 5 1 4 3 0 3", "output": "9" }, { "input": "31\n6 1 0 4 4 5 1 0 5 3 2 0", "output": "9" }, { "input": "35\n2 3 0 0 6 3 3 4 3 5 0 6", "output": "9" }, { "input": "41\n3 1 3 4 3 6 6 1 4 4 0 6", "output": "11" }, { "input": "97\n0 5 3 12 10 16 22 8 21 17 21 10", "output": "5" }, { "input": "100\n21 21 0 0 4 13 0 26 0 0 0 15", "output": "6" }, { "input": "100\n0 0 16 5 22 0 5 0 25 0 14 13", "output": "7" }, { "input": "97\n17 0 10 0 0 0 18 0 14 23 15 0", "output": "6" }, { "input": "100\n0 9 0 18 7 0 0 14 33 3 0 16", "output": "7" }, { "input": "95\n5 2 13 0 15 18 17 0 6 11 0 8", "output": "9" }, { "input": "94\n11 13 0 9 15 8 8 16 3 7 1 3", "output": "11" }, { "input": "96\n8 4 12 15 8 0 4 10 6 6 12 11", "output": "11" }, { "input": "100\n5 5 3 8 6 5 0 3 3 8 1 3", "output": "-1" }, { "input": "100\n1 0 0 1 1 0 1 1 1 1 2 1", "output": "-1" }, { "input": "100\n6 3 2 0 4 1 2 2 2 2 1 1", "output": "-1" }, { "input": "0\n0 0 0 0 0 0 0 0 0 0 0 0", "output": "0" }, { "input": "100\n0 0 0 0 0 0 0 0 0 0 0 0", "output": "-1" }, { "input": "0\n100 100 100 100 100 100 100 100 100 100 100 100", "output": "0" }, { "input": "100\n100 100 100 100 100 100 100 100 100 100 100 100", "output": "1" }, { "input": "12\n1 1 1 1 1 1 1 1 1 1 1 1", "output": "12" }, { "input": "13\n1 1 1 1 1 1 1 1 1 1 1 2", "output": "12" }, { "input": "15\n10 1 1 1 1 1 1 1 1 1 1 1", "output": "6" }, { "input": "1\n0 0 0 0 0 0 0 0 0 0 0 0", "output": "-1" } ]
1,646,222,915
2,147,483,647
Python 3
OK
TESTS
39
92
0
k=int(input()) waters=[int(i) for i in input().split()] waters=sorted(waters) height=0;i=0 while(height<k and i<12): height+=waters[11-i] i+=1 if(height<k): print(-1) else: print(i)
Title: Business trip Time Limit: None seconds Memory Limit: None megabytes Problem Description: What joy! Petya's parents went on a business trip for the whole year and the playful kid is left all by himself. Petya got absolutely happy. He jumped on the bed and threw pillows all day long, until... Today Petya opened the cupboard and found a scary note there. His parents had left him with duties: he should water their favourite flower all year, each day, in the morning, in the afternoon and in the evening. "Wait a second!" — thought Petya. He know for a fact that if he fulfills the parents' task in the *i*-th (1<=≤<=*i*<=≤<=12) month of the year, then the flower will grow by *a**i* centimeters, and if he doesn't water the flower in the *i*-th month, then the flower won't grow this month. Petya also knows that try as he might, his parents won't believe that he has been watering the flower if it grows strictly less than by *k* centimeters. Help Petya choose the minimum number of months when he will water the flower, given that the flower should grow no less than by *k* centimeters. Input Specification: The first line contains exactly one integer *k* (0<=≤<=*k*<=≤<=100). The next line contains twelve space-separated integers: the *i*-th (1<=≤<=*i*<=≤<=12) number in the line represents *a**i* (0<=≤<=*a**i*<=≤<=100). Output Specification: Print the only integer — the minimum number of months when Petya has to water the flower so that the flower grows no less than by *k* centimeters. If the flower can't grow by *k* centimeters in a year, print -1. Demo Input: ['5\n1 1 1 1 2 2 3 2 2 1 1 1\n', '0\n0 0 0 0 0 0 0 1 1 2 3 0\n', '11\n1 1 4 1 1 5 1 1 4 1 1 1\n'] Demo Output: ['2\n', '0\n', '3\n'] Note: Let's consider the first sample test. There it is enough to water the flower during the seventh and the ninth month. Then the flower grows by exactly five centimeters. In the second sample Petya's parents will believe him even if the flower doesn't grow at all (*k* = 0). So, it is possible for Petya not to water the flower at all.
```python k=int(input()) waters=[int(i) for i in input().split()] waters=sorted(waters) height=0;i=0 while(height<k and i<12): height+=waters[11-i] i+=1 if(height<k): print(-1) else: print(i) ```
3
707
A
Brain's Photos
PROGRAMMING
800
[ "implementation" ]
null
null
Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead. As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such). Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour! As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white. Photo can be represented as a matrix sized *n*<=×<=*m*, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors: - 'C' (cyan)- 'M' (magenta)- 'Y' (yellow)- 'W' (white)- 'G' (grey)- 'B' (black) The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored.
The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of photo pixel matrix rows and columns respectively. Then *n* lines describing matrix rows follow. Each of them contains *m* space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'.
Print the "#Black&amp;White" (without quotes), if the photo is black-and-white and "#Color" (without quotes), if it is colored, in the only line.
[ "2 2\nC M\nY Y\n", "3 2\nW W\nW W\nB B\n", "1 1\nW\n" ]
[ "#Color", "#Black&amp;White", "#Black&amp;White" ]
none
500
[ { "input": "2 2\nC M\nY Y", "output": "#Color" }, { "input": "3 2\nW W\nW W\nB B", "output": "#Black&White" }, { "input": "1 1\nW", "output": "#Black&White" }, { "input": "2 3\nW W W\nB G Y", "output": "#Color" }, { "input": "1 1\nW", "output": "#Black&White" }, { "input": "5 5\nW G B Y M\nG B Y M C\nB Y M C W\nY M C W G\nM C W G B", "output": "#Color" }, { "input": "1 6\nC M Y W G B", "output": "#Color" }, { "input": "1 3\nW G B", "output": "#Black&White" }, { "input": "1 1\nW", "output": "#Black&White" }, { "input": "5 5\nW G B W G\nG B W G B\nB W G B W\nW G B W G\nG B W G B", "output": "#Black&White" }, { "input": "2 3\nW W W\nB G C", "output": "#Color" }, { "input": "2 3\nW W W\nB G M", "output": "#Color" }, { "input": "3 3\nC B W\nB Y M\nB B W", "output": "#Color" }, { "input": "1 3\nW C W", "output": "#Color" }, { "input": "3 3\nB W B\nB C W\nB W W", "output": "#Color" }, { "input": "1 2\nW Y", "output": "#Color" }, { "input": "1 1\nG", "output": "#Black&White" }, { "input": "1 3\nB G W", "output": "#Black&White" }, { "input": "2 2\nW W\nB C", "output": "#Color" }, { "input": "1 1\nM", "output": "#Color" }, { "input": "1 2\nW C", "output": "#Color" }, { "input": "2 3\nW W M\nW W M", "output": "#Color" }, { "input": "3 2\nW W\nW W\nB C", "output": "#Color" }, { "input": "2 3\nW W C\nW W W", "output": "#Color" }, { "input": "1 3\nG G G", "output": "#Black&White" }, { "input": "1 1\nC", "output": "#Color" }, { "input": "1 2\nC W", "output": "#Color" }, { "input": "1 3\nW W C", "output": "#Color" }, { "input": "2 2\nW B\nB G", "output": "#Black&White" }, { "input": "2 2\nB B\nY Y", "output": "#Color" }, { "input": "2 2\nG G\nC C", "output": "#Color" }, { "input": "1 2\nB C", "output": "#Color" }, { "input": "1 4\nG G G C", "output": "#Color" }, { "input": "1 1\nB", "output": "#Black&White" }, { "input": "2 1\nY\nB", "output": "#Color" } ]
1,697,512,281
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
15
0
def is_black_and_white(grid): for row in grid: for c in row: if c != 'W' and c != 'B': return False return True def main(): n, m = map(int, input().split()) grid = [input() for _ in range(n)] if is_black_and_white(grid): print("#Black&White") else: print("#Color") if __name__ == "__main__": main()
Title: Brain's Photos Time Limit: None seconds Memory Limit: None megabytes Problem Description: Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead. As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such). Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour! As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white. Photo can be represented as a matrix sized *n*<=×<=*m*, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors: - 'C' (cyan)- 'M' (magenta)- 'Y' (yellow)- 'W' (white)- 'G' (grey)- 'B' (black) The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored. Input Specification: The first line of the input contains two integers *n* and *m* (1<=≤<=*n*,<=*m*<=≤<=100) — the number of photo pixel matrix rows and columns respectively. Then *n* lines describing matrix rows follow. Each of them contains *m* space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'. Output Specification: Print the "#Black&amp;White" (without quotes), if the photo is black-and-white and "#Color" (without quotes), if it is colored, in the only line. Demo Input: ['2 2\nC M\nY Y\n', '3 2\nW W\nW W\nB B\n', '1 1\nW\n'] Demo Output: ['#Color', '#Black&amp;White', '#Black&amp;White'] Note: none
```python def is_black_and_white(grid): for row in grid: for c in row: if c != 'W' and c != 'B': return False return True def main(): n, m = map(int, input().split()) grid = [input() for _ in range(n)] if is_black_and_white(grid): print("#Black&White") else: print("#Color") if __name__ == "__main__": main() ```
0
760
A
Petr and a calendar
PROGRAMMING
800
[ "implementation", "math" ]
null
null
Petr wants to make a calendar for current month. For this purpose he draws a table in which columns correspond to weeks (a week is seven consequent days from Monday to Sunday), rows correspond to weekdays, and cells contain dates. For example, a calendar for January 2017 should look like on the picture: Petr wants to know how many columns his table should have given the month and the weekday of the first date of that month? Assume that the year is non-leap.
The only line contain two integers *m* and *d* (1<=≤<=*m*<=≤<=12, 1<=≤<=*d*<=≤<=7) — the number of month (January is the first month, December is the twelfth) and the weekday of the first date of this month (1 is Monday, 7 is Sunday).
Print single integer: the number of columns the table should have.
[ "1 7\n", "1 1\n", "11 6\n" ]
[ "6\n", "5\n", "5\n" ]
The first example corresponds to the January 2017 shown on the picture in the statements. In the second example 1-st January is Monday, so the whole month fits into 5 columns. In the third example 1-st November is Saturday and 5 columns is enough.
500
[ { "input": "1 7", "output": "6" }, { "input": "1 1", "output": "5" }, { "input": "11 6", "output": "5" }, { "input": "2 7", "output": "5" }, { "input": "2 1", "output": "4" }, { "input": "8 6", "output": "6" }, { "input": "1 1", "output": "5" }, { "input": "1 2", "output": "5" }, { "input": "1 3", "output": "5" }, { "input": "1 4", "output": "5" }, { "input": "1 5", "output": "5" }, { "input": "1 6", "output": "6" }, { "input": "1 7", "output": "6" }, { "input": "2 1", "output": "4" }, { "input": "2 2", "output": "5" }, { "input": "2 3", "output": "5" }, { "input": "2 4", "output": "5" }, { "input": "2 5", "output": "5" }, { "input": "2 6", "output": "5" }, { "input": "2 7", "output": "5" }, { "input": "3 1", "output": "5" }, { "input": "3 2", "output": "5" }, { "input": "3 3", "output": "5" }, { "input": "3 4", "output": "5" }, { "input": "3 5", "output": "5" }, { "input": "3 6", "output": "6" }, { "input": "3 7", "output": "6" }, { "input": "4 1", "output": "5" }, { "input": "4 2", "output": "5" }, { "input": "4 3", "output": "5" }, { "input": "4 4", "output": "5" }, { "input": "4 5", "output": "5" }, { "input": "4 6", "output": "5" }, { "input": "4 7", "output": "6" }, { "input": "5 1", "output": "5" }, { "input": "5 2", "output": "5" }, { "input": "5 3", "output": "5" }, { "input": "5 4", "output": "5" }, { "input": "5 5", "output": "5" }, { "input": "5 6", "output": "6" }, { "input": "5 7", "output": "6" }, { "input": "6 1", "output": "5" }, { "input": "6 2", "output": "5" }, { "input": "6 3", "output": "5" }, { "input": "6 4", "output": "5" }, { "input": "6 5", "output": "5" }, { "input": "6 6", "output": "5" }, { "input": "6 7", "output": "6" }, { "input": "7 1", "output": "5" }, { "input": "7 2", "output": "5" }, { "input": "7 3", "output": "5" }, { "input": "7 4", "output": "5" }, { "input": "7 5", "output": "5" }, { "input": "7 6", "output": "6" }, { "input": "7 7", "output": "6" }, { "input": "8 1", "output": "5" }, { "input": "8 2", "output": "5" }, { "input": "8 3", "output": "5" }, { "input": "8 4", "output": "5" }, { "input": "8 5", "output": "5" }, { "input": "8 6", "output": "6" }, { "input": "8 7", "output": "6" }, { "input": "9 1", "output": "5" }, { "input": "9 2", "output": "5" }, { "input": "9 3", "output": "5" }, { "input": "9 4", "output": "5" }, { "input": "9 5", "output": "5" }, { "input": "9 6", "output": "5" }, { "input": "9 7", "output": "6" }, { "input": "10 1", "output": "5" }, { "input": "10 2", "output": "5" }, { "input": "10 3", "output": "5" }, { "input": "10 4", "output": "5" }, { "input": "10 5", "output": "5" }, { "input": "10 6", "output": "6" }, { "input": "10 7", "output": "6" }, { "input": "11 1", "output": "5" }, { "input": "11 2", "output": "5" }, { "input": "11 3", "output": "5" }, { "input": "11 4", "output": "5" }, { "input": "11 5", "output": "5" }, { "input": "11 6", "output": "5" }, { "input": "11 7", "output": "6" }, { "input": "12 1", "output": "5" }, { "input": "12 2", "output": "5" }, { "input": "12 3", "output": "5" }, { "input": "12 4", "output": "5" }, { "input": "12 5", "output": "5" }, { "input": "12 6", "output": "6" }, { "input": "12 7", "output": "6" }, { "input": "1 4", "output": "5" }, { "input": "1 5", "output": "5" }, { "input": "9 7", "output": "6" }, { "input": "2 6", "output": "5" }, { "input": "1 6", "output": "6" }, { "input": "2 2", "output": "5" }, { "input": "4 7", "output": "6" }, { "input": "12 6", "output": "6" }, { "input": "12 3", "output": "5" }, { "input": "3 6", "output": "6" }, { "input": "9 6", "output": "5" }, { "input": "7 6", "output": "6" }, { "input": "11 7", "output": "6" }, { "input": "6 6", "output": "5" } ]
1,485,111,328
2,428
Python 3
RUNTIME_ERROR
PRETESTS
0
31
4,608,000
import numpy as np m, d = [int(x) for x in input().split()] md = np.array ([31,28,31,30,31,30,31,31,30,31,30,31]) n = (md[(m - 1)] - (8-d) )// 7 if (md[(m - 1)] - (8-d) ) % 7 == 0: print (n+1) else: print (n+2)
Title: Petr and a calendar Time Limit: None seconds Memory Limit: None megabytes Problem Description: Petr wants to make a calendar for current month. For this purpose he draws a table in which columns correspond to weeks (a week is seven consequent days from Monday to Sunday), rows correspond to weekdays, and cells contain dates. For example, a calendar for January 2017 should look like on the picture: Petr wants to know how many columns his table should have given the month and the weekday of the first date of that month? Assume that the year is non-leap. Input Specification: The only line contain two integers *m* and *d* (1<=≤<=*m*<=≤<=12, 1<=≤<=*d*<=≤<=7) — the number of month (January is the first month, December is the twelfth) and the weekday of the first date of this month (1 is Monday, 7 is Sunday). Output Specification: Print single integer: the number of columns the table should have. Demo Input: ['1 7\n', '1 1\n', '11 6\n'] Demo Output: ['6\n', '5\n', '5\n'] Note: The first example corresponds to the January 2017 shown on the picture in the statements. In the second example 1-st January is Monday, so the whole month fits into 5 columns. In the third example 1-st November is Saturday and 5 columns is enough.
```python import numpy as np m, d = [int(x) for x in input().split()] md = np.array ([31,28,31,30,31,30,31,31,30,31,30,31]) n = (md[(m - 1)] - (8-d) )// 7 if (md[(m - 1)] - (8-d) ) % 7 == 0: print (n+1) else: print (n+2) ```
-1
414
A
Mashmokh and Numbers
PROGRAMMING
1,500
[ "constructive algorithms", "number theory" ]
null
null
It's holiday. Mashmokh and his boss, Bimokh, are playing a game invented by Mashmokh. In this game Mashmokh writes sequence of *n* distinct integers on the board. Then Bimokh makes several (possibly zero) moves. On the first move he removes the first and the second integer from from the board, on the second move he removes the first and the second integer of the remaining sequence from the board, and so on. Bimokh stops when the board contains less than two numbers. When Bimokh removes numbers *x* and *y* from the board, he gets *gcd*(*x*,<=*y*) points. At the beginning of the game Bimokh has zero points. Mashmokh wants to win in the game. For this reason he wants his boss to get exactly *k* points in total. But the guy doesn't know how choose the initial sequence in the right way. Please, help him. Find *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* such that his boss will score exactly *k* points. Also Mashmokh can't memorize too huge numbers. Therefore each of these integers must be at most 109.
The first line of input contains two space-separated integers *n*,<=*k* (1<=≤<=*n*<=≤<=105; 0<=≤<=*k*<=≤<=108).
If such sequence doesn't exist output -1 otherwise output *n* distinct space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109).
[ "5 2\n", "5 3", "7 2\n" ]
[ "1 2 3 4 5\n", "2 4 3 7 1", "-1\n" ]
*gcd*(*x*, *y*) is greatest common divisor of *x* and *y*.
500
[ { "input": "5 2", "output": "1 2 3 4 5" }, { "input": "5 3", "output": "2 4 5 6 7" }, { "input": "7 2", "output": "-1" }, { "input": "1 1", "output": "-1" }, { "input": "2 0", "output": "-1" }, { "input": "1 10", "output": "-1" }, { "input": "1 0", "output": "1" }, { "input": "7 3", "output": "1 2 3 4 5 6 7" }, { "input": "7 6", "output": "4 8 1 2 5 6 7" }, { "input": "7 7", "output": "5 10 1 2 3 4 6" }, { "input": "100000 100000000", "output": "99950001 199900002 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "3455 2792393", "output": "2790667 5581334 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151..." }, { "input": "74086 16504611", "output": "16467569 32935138 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "28515 44887064", "output": "44872808 89745616 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "21324 73830196", "output": "73819535 147639070 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "90212 5921828", "output": "5876723 11753446 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 15..." }, { "input": "25095 2372924", "output": "2360378 4720756 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151..." }, { "input": "92977 95851971", "output": "95805484 191610968 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "39095 77350428", "output": "77330882 154661764 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "785 70908164", "output": "70907773 141815546 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "28051 5506872", "output": "5492848 10985696 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 15..." }, { "input": "74077 37498088", "output": "37461051 74922102 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "58284 12998910", "output": "12969769 25939538 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "28768 33384329", "output": "33369946 66739892 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "6357 92661202", "output": "92658025 185316050 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "80996 61457012", "output": "61416515 122833030 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "60752 21494069", "output": "21463694 42927388 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "95065 81120597", "output": "81073066 162146132 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "77240 1683376", "output": "1644757 3289514 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151..." }, { "input": "35136 35044765", "output": "35027198 70054396 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "98218 71868966", "output": "71819858 143639716 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "45671 48503349", "output": "48480515 96961030 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "7081 26961063", "output": "26957524 53915048 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "69213 98333912", "output": "98299307 196598614 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "91055 20775941", "output": "20730415 41460830 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "14106 71280052", "output": "71273000 142546000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "17599 34327121", "output": "34318323 68636646 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "74244 96611492", "output": "96574371 193148742 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "77554 5672752", "output": "5633976 11267952 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 15..." }, { "input": "51040 32015531", "output": "31990012 63980024 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "95593 16086029", "output": "16038234 32076468 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "44405 95772109", "output": "95749908 191499816 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "46297 84634875", "output": "84611728 169223456 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "3842 99757561", "output": "99755641 199511282 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "90252 19406877", "output": "19361752 38723504 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "13321 67580511", "output": "67573852 135147704 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "19919 79287791", "output": "79277833 158555666 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "58499 59427255", "output": "59398007 118796014 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "34423 86770315", "output": "86753105 173506210 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "21460 11888516", "output": "11877787 23755574 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "57534 85681593", "output": "85652827 171305654 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "28652 18840000", "output": "18825675 37651350 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "18247 23541343", "output": "23532221 47064442 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "89529 95022203", "output": "94977440 189954880 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "42775 89315917", "output": "89294531 178589062 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "946 93333203", "output": "93332731 186665462 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "93595 48782905", "output": "48736109 97472218 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "87371 60145723", "output": "60102039 120204078 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "7695 94816808", "output": "94812962 189625924 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ..." }, { "input": "21846 16967905", "output": "16956983 33913966 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 1..." }, { "input": "10 3", "output": "-1" }, { "input": "6 1000003", "output": "1000001 2000002 1 2 3 4" }, { "input": "100000 549999", "output": "500000 1000000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 ..." }, { "input": "10 4", "output": "-1" }, { "input": "8 10", "output": "7 14 1 2 3 4 5 6" }, { "input": "6 10000003", "output": "10000001 20000002 1 2 3 4" }, { "input": "50 50000030", "output": "50000006 100000012 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48" }, { "input": "7 11", "output": "9 18 1 2 3 4 5" }, { "input": "2 96996900", "output": "96996900 193993800" }, { "input": "3 99999997", "output": "99999997 199999994 1" }, { "input": "10000 10", "output": "-1" }, { "input": "5 100000000", "output": "99999999 199999998 1 2 3" }, { "input": "20 15", "output": "6 12 1 2 3 4 7 8 9 10 13 14 15 16 17 18 19 20 21 22" }, { "input": "10 50000006", "output": "50000002 100000004 1 2 3 4 5 6 7 8" }, { "input": "4 1257", "output": "1256 2512 1 2" }, { "input": "100 1", "output": "-1" }, { "input": "6 1", "output": "-1" }, { "input": "10 1000004", "output": "1000000 2000000 1 2 3 4 5 6 7 8" }, { "input": "100000 100000", "output": "50001 100002 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 15..." }, { "input": "10 3000004", "output": "3000000 6000000 1 2 3 4 5 6 7 8" }, { "input": "99999 149998", "output": "100000 200000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 1..." }, { "input": "11 1434567", "output": "1434563 2869126 1 2 3 4 5 6 7 8 9" }, { "input": "205 110", "output": "9 18 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155..." }, { "input": "11 14342267", "output": "14342263 28684526 1 2 3 4 5 6 7 8 9" } ]
1,652,545,219
2,147,483,647
Python 3
OK
TESTS
84
78
8,396,800
# 2022-05-15T00:50:46.010Z def proc(n, k): if n == 1: return [1] if k == 0 else [-1] if n // 2 > k: return [-1] num_of_pairs = n // 2 k -= (num_of_pairs - 1) ans = [k, 2 * k] base = 2 * k + 1 for i in range(n - 2): ans.append(base) base += 1 return ans n, k = map(int, input().split()) ans = proc(n, k) print(' '.join(map(str, ans)))
Title: Mashmokh and Numbers Time Limit: None seconds Memory Limit: None megabytes Problem Description: It's holiday. Mashmokh and his boss, Bimokh, are playing a game invented by Mashmokh. In this game Mashmokh writes sequence of *n* distinct integers on the board. Then Bimokh makes several (possibly zero) moves. On the first move he removes the first and the second integer from from the board, on the second move he removes the first and the second integer of the remaining sequence from the board, and so on. Bimokh stops when the board contains less than two numbers. When Bimokh removes numbers *x* and *y* from the board, he gets *gcd*(*x*,<=*y*) points. At the beginning of the game Bimokh has zero points. Mashmokh wants to win in the game. For this reason he wants his boss to get exactly *k* points in total. But the guy doesn't know how choose the initial sequence in the right way. Please, help him. Find *n* distinct integers *a*1,<=*a*2,<=...,<=*a**n* such that his boss will score exactly *k* points. Also Mashmokh can't memorize too huge numbers. Therefore each of these integers must be at most 109. Input Specification: The first line of input contains two space-separated integers *n*,<=*k* (1<=≤<=*n*<=≤<=105; 0<=≤<=*k*<=≤<=108). Output Specification: If such sequence doesn't exist output -1 otherwise output *n* distinct space-separated integers *a*1,<=*a*2,<=...,<=*a**n* (1<=≤<=*a**i*<=≤<=109). Demo Input: ['5 2\n', '5 3', '7 2\n'] Demo Output: ['1 2 3 4 5\n', '2 4 3 7 1', '-1\n'] Note: *gcd*(*x*, *y*) is greatest common divisor of *x* and *y*.
```python # 2022-05-15T00:50:46.010Z def proc(n, k): if n == 1: return [1] if k == 0 else [-1] if n // 2 > k: return [-1] num_of_pairs = n // 2 k -= (num_of_pairs - 1) ans = [k, 2 * k] base = 2 * k + 1 for i in range(n - 2): ans.append(base) base += 1 return ans n, k = map(int, input().split()) ans = proc(n, k) print(' '.join(map(str, ans))) ```
3
802
G
Fake News (easy)
PROGRAMMING
800
[ "implementation", "strings" ]
null
null
As it's the first of April, Heidi is suspecting that the news she reads today are fake, and she does not want to look silly in front of all the contestants. She knows that a newspiece is fake if it contains heidi as a subsequence. Help Heidi assess whether the given piece is true, but please be discreet about it...
The first and only line of input contains a single nonempty string *s* of length at most 1000 composed of lowercase letters (a-z).
Output YES if the string *s* contains heidi as a subsequence and NO otherwise.
[ "abcheaibcdi\n", "hiedi\n" ]
[ "YES", "NO" ]
A string *s* contains another string *p* as a subsequence if it is possible to delete some characters from *s* and obtain *p*.
0
[ { "input": "abcheaibcdi", "output": "YES" }, { "input": "hiedi", "output": "NO" }, { "input": "ihied", "output": "NO" }, { "input": "diehi", "output": "NO" }, { "input": "deiih", "output": "NO" }, { "input": "iheid", "output": "NO" }, { "input": "eihdi", "output": "NO" }, { "input": "ehdii", "output": "NO" }, { "input": "edhii", "output": "NO" }, { "input": "deiih", "output": "NO" }, { "input": "ehdii", "output": "NO" }, { "input": "eufyajkssayhjhqcwxmctecaeepjwmfoscqprpcxsqfwnlgzsmmuwuoruantipholrauvxydfvftwfzhnckxswussvlidcojiciflpvkcxkkcmmvtfvxrkwcpeelwsuzqgamamdtdgzscmikvojfvqehblmjczkvtdeymgertgkwfwfukafqlfdhtedcctixhyetdypswgagrpyto", "output": "YES" }, { "input": "arfbvxgdvqzuloojjrwoyqqbxamxybaqltfimofulusfebodjkwwrgwcppkwiodtpjaraglyplgerrpqjkpoggjmfxhwtqrijpijrcyxnoodvwpyjfpvqaoazllbrpzananbrvvybboedidtuvqquklkpeflfaltukjhzjgiofombhbmqbihgtapswykfvlgdoapjqntvqsaohmbvnphvyyhvhavslamczuqifxnwknkaenqmlvetrqogqxmlptgrmqvxzdxdmwobjesmgxckpmawtioavwdngyiwkzypfnxcovwzdohshwlavwsthdssiadhiwmhpvgkrbezm", "output": "YES" }, { "input": "zcectngbqnejjjtsfrluummmqabzqbyccshjqbrjthzhlbmzjfxugvjouwhumsgrnopiyakfadjnbsesamhynsbfbfunupwbxvohfmpwlcpxhovwpfpciclatgmiufwdvtsqrsdcymvkldpnhfeisrzhyhhlkwdzthgprvkpyldeysvbmcibqkpudyrraqdlxpjecvwcvuiklcrsbgvqasmxmtxqzmawcjtozioqlfflinnxpeexbzloaeqjvglbdeufultpjqexvjjjkzemtzuzmxvawilcqdrcjzpqyhtwfphuonzwkotthsaxrmwtnlmcdylxqcfffyndqeouztluqwlhnkkvzwcfiscikv", "output": "YES" }, { "input": "plqaykgovxkvsiahdbglktdlhcqwelxxmtlyymrsyubxdskvyjkrowvcbpdofpjqspsrgpakdczletxujzlsegepzleipiyycpinzxgwjsgslnxsotouddgfcybozfpjhhocpybfjbaywsehbcfrayvancbrumdfngqytnhihyxnlvilrqyhnxeckprqafofelospffhtwguzjbbjlzbqrtiielbvzutzgpqxosiaqznndgobcluuqlhmffiowkjdlkokehtjdyjvmxsiyxureflmdomerfekxdvtitvwzmdsdzplkpbtafxqfpudnhfqpoiwvjnylanunmagoweobdvfjgepbsymfutrjarlxclhgavpytiiqwvojrptofuvlohzeguxdsrihsbucelhhuedltnnjgzxwyblbqvnoliiydfinzlogbvucwykryzcyibnniggbkdkdcdgcsbvvnavtyhtkanrblpvomvjs", "output": "YES" }, { "input": "fbldqzggeunkpwcfirxanmntbfrudijltoertsdvcvcmbwodbibsrxendzebvxwydpasaqnisrijctsuatihxxygbeovhxjdptdcppkvfytdpjspvrannxavmkmisqtygntxkdlousdypyfkrpzapysfpdbyprufwzhunlsfugojddkmxzinatiwfxdqmgyrnjnxvrclhxyuwxtshoqdjptmeecvgmrlvuwqtmnfnfeeiwcavwnqmyustawbjodzwsqmnjxhpqmgpysierlwbbdzcwprpsexyvreewcmlbvaiytjlxdqdaqftefdlmtmmjcwvfejshymhnouoshdzqcwzxpzupkbcievodzqkqvyjuuxxwepxjalvkzufnveji", "output": "YES" }, { "input": "htsyljgoelbbuipivuzrhmfpkgderqpoprlxdpasxhpmxvaztccldtmujjzjmcpdvsdghzpretlsyyiljhjznseaacruriufswuvizwwuvdioazophhyytvbiogttnnouauxllbdn", "output": "YES" }, { "input": "ikmxzqdzxqlvgeojsnhqzciujslwjyzzexnregabdqztpplosdakimjxmuqccbnwvzbajoiqgdobccwnrwmixohrbdarhoeeelzbpigiybtesybwefpcfx", "output": "YES" }, { "input": "bpvbpjvbdfiodsmahxpcubjxdykesubnypalhypantshkjffmxjmelblqnjdmtaltneuyudyevkgedkqrdmrfeemgpghwrifcwincfixokfgurhqbcfzeajrgkgpwqwsepudxulywowwxzdxkumsicsvnzfxspmjpaixgejeaoyoibegosqoyoydmphfpbutrrewyjecowjckvpcceoamtfbitdneuwqfvnagswlskmsmkhmxyfsrpqwhxzocyffiumcy", "output": "YES" }, { "input": "vllsexwrazvlfvhvrtqeohvzzresjdiuhomfpgqcxpqdevplecuaepixhlijatxzegciizpvyvxuembiplwklahlqibykfideysjygagjbgqkbhdhkatddcwlxboinfuomnpc", "output": "YES" }, { "input": "pnjdwpxmvfoqkjtbhquqcuredrkwqzzfjmdvpnbqtypzdovemhhclkvigjvtprrpzbrbcbatkucaqteuciuozytsptvsskkeplaxdaqmjkmef", "output": "NO" }, { "input": "jpwfhvlxvsdhtuozvlmnfiotrgapgjxtcsgcjnodcztupysvvvmjpzqkpommadppdrykuqkcpzojcwvlogvkddedwbggkrhuvtsvdiokehlkdlnukcufjvqxnikcdawvexxwffxtriqbdmkahxdtygodzohwtdmmuvmatdkvweqvaehaxiefpevkvqpyxsrhtmgjsdfcwzqobibeduooldrmglbinrepmunizheqzvgqvpdskhxfidxfnbisyizhepwyrcykcmjxnkyfjgrqlkixcvysa", "output": "YES" }, { "input": "aftcrvuumeqbfvaqlltscnuhkpcifrrhnutjinxdhhdbzvizlrapzjdatuaynoplgjketupgaejciosofuhcgcjdcucarfvtsofgubtphijciswsvidnvpztlaarydkeqxzwdhfbmullkimerukusbrdnnujviydldrwhdfllsjtziwfeaiqotbiprespmxjulnyunkdtcghrzvhtcychkwatqqmladxpvmvlkzscthylbzkpgwlzfjqwarqvdeyngekqvrhrftpxnkfcibbowvnqdkulcdydspcubwlgoyinpnzgidbgunparnueddzwtzdiavbprbbg", "output": "YES" }, { "input": "oagjghsidigeh", "output": "NO" }, { "input": "chdhzpfzabupskiusjoefrwmjmqkbmdgboicnszkhdrlegeqjsldurmbshijadlwsycselhlnudndpdhcnhruhhvsgbthpruiqfirxkhpqhzhqdfpyozolbionodypfcqfeqbkcgmqkizgeyyelzeoothexcoaahedgrvoemqcwccbvoeqawqeuusyjxmgjkpfwcdttfmwunzuwvsihliexlzygqcgpbdiawfvqukikhbjerjkyhpcknlndaystrgsinghlmekbvhntcpypmchcwoglsmwwdulqneuabuuuvtyrnjxfcgoothalwkzzfxakneusezgnnepkpipzromqubraiggqndliz", "output": "YES" }, { "input": "lgirxqkrkgjcutpqitmffvbujcljkqardlalyigxorscczuzikoylcxenryhskoavymexysvmhbsvhtycjlmzhijpuvcjshyfeycvvcfyzytzoyvxajpqdjtfiatnvxnyeqtfcagfftafllhhjhplbdsrfpctkqpinpdfrtlzyjllfbeffputywcckupyslkbbzpgcnxgbmhtqeqqehpdaokkjtatrhyiuusjhwgiiiikxpzdueasemosmmccoakafgvxduwiuflovhhfhffgnnjhoperhhjtvocpqytjxkmrknnknqeglffhfuplopmktykxuvcmbwpoeisrlyyhdpxfvzseucofyhziuiikihpqheqdyzwigeaqzhxzvporgisxgvhyicqyejovqloibhbunsvsunpvmdckkbuokitdzleilfwutcvuuytpupizinfjrzhxudsmjcjyfcpfgthujjowdwtgbvi", "output": "YES" }, { "input": "uuehrvufgerqbzyzksmqnewacotuimawhlbycdbsmhshrsbqwybbkwjwsrkwptvlbbwjiivqugzrxxwgidrcrhrwsmwgeoleptfamzefgaeyxouxocrpvomjrazmxrnffdwrrmblgdiabdncvfougtmjgvvazasnygdrigbsrieoonirlivfyodvulouslxosswgpdexuldmkdbpdlgutiotvxjyecbrsvbmqxrlcpcipjjncduyqtohlzybvlemmfdeubihwlwqglkgjvnwrbgydcpwklmjeewqklmqdbajqgrpnynaxfvxjzgibqerxyhnxenrmcdqaaeksbzyrcaepozqpetaurlhjuxxhwppuhgoihxdxbmxeiahyaqkbknktlzkheaarjoqqrsyeducvoygwalgarldcdlqogfvsncejssmx", "output": "YES" }, { "input": "iiopulfjxoitgiusqrhgbkiyzinphjtclodbkkydetylvuimkhdkklmyoacmekdvjpuxcrvqnjhqhhbfenlpzpwijtykqziocilvtpqhxuyrphdlamawjuzgjwiebkqyrzyqgtkcrhntjxqmcgkrqcslogjegfrivzidfedeegwbbsopvxvdoididlpypjogxaodtueebbwuwilacunqpozczcgrpaxxrtogpxgfkudtxchoravrrdtimhenwmnafxaruuojduxxglefejycfcyxllfimkszmbrhcwpnwjqgwvzysmlaaifdxfjjpgjmcksiigpanappjdloiolojmcqbnpnjjzaufdpjaknylmyvolhwypygwepmqwpiglpcnpypnudhdzpdvgzosyjthzcwtytxq", "output": "YES" } ]
1,610,480,082
2,147,483,647
Python 3
WRONG_ANSWER
TESTS
1
62
0
string= input() if 'heidi' in string: print('NO') else: print('YES')
Title: Fake News (easy) Time Limit: None seconds Memory Limit: None megabytes Problem Description: As it's the first of April, Heidi is suspecting that the news she reads today are fake, and she does not want to look silly in front of all the contestants. She knows that a newspiece is fake if it contains heidi as a subsequence. Help Heidi assess whether the given piece is true, but please be discreet about it... Input Specification: The first and only line of input contains a single nonempty string *s* of length at most 1000 composed of lowercase letters (a-z). Output Specification: Output YES if the string *s* contains heidi as a subsequence and NO otherwise. Demo Input: ['abcheaibcdi\n', 'hiedi\n'] Demo Output: ['YES', 'NO'] Note: A string *s* contains another string *p* as a subsequence if it is possible to delete some characters from *s* and obtain *p*.
```python string= input() if 'heidi' in string: print('NO') else: print('YES') ```
0
244
A
Dividing Orange
PROGRAMMING
900
[ "implementation" ]
null
null
One day Ms Swan bought an orange in a shop. The orange consisted of *n*·*k* segments, numbered with integers from 1 to *n*·*k*. There were *k* children waiting for Ms Swan at home. The children have recently learned about the orange and they decided to divide it between them. For that each child took a piece of paper and wrote the number of the segment that he would like to get: the *i*-th (1<=≤<=*i*<=≤<=*k*) child wrote the number *a**i* (1<=≤<=*a**i*<=≤<=*n*·*k*). All numbers *a**i* accidentally turned out to be different. Now the children wonder, how to divide the orange so as to meet these conditions: - each child gets exactly *n* orange segments; - the *i*-th child gets the segment with number *a**i* for sure; - no segment goes to two children simultaneously. Help the children, divide the orange and fulfill the requirements, described above.
The first line contains two integers *n*, *k* (1<=≤<=*n*,<=*k*<=≤<=30). The second line contains *k* space-separated integers *a*1,<=*a*2,<=...,<=*a**k* (1<=≤<=*a**i*<=≤<=*n*·*k*), where *a**i* is the number of the orange segment that the *i*-th child would like to get. It is guaranteed that all numbers *a**i* are distinct.
Print exactly *n*·*k* distinct integers. The first *n* integers represent the indexes of the segments the first child will get, the second *n* integers represent the indexes of the segments the second child will get, and so on. Separate the printed numbers with whitespaces. You can print a child's segment indexes in any order. It is guaranteed that the answer always exists. If there are multiple correct answers, print any of them.
[ "2 2\n4 1\n", "3 1\n2\n" ]
[ "2 4 \n1 3 \n", "3 2 1 \n" ]
none
500
[ { "input": "2 2\n4 1", "output": "2 4 \n1 3 " }, { "input": "3 1\n2", "output": "3 2 1 " }, { "input": "5 5\n25 24 23 22 21", "output": "2 3 1 25 4 \n7 6 8 5 24 \n10 12 9 23 11 \n13 15 14 16 22 \n19 21 20 17 18 " }, { "input": "1 30\n8 22 13 25 10 30 12 27 6 4 7 2 20 16 26 14 15 17 23 3 24 9 5 11 29 1 19 28 21 18", "output": "8 \n22 \n13 \n25 \n10 \n30 \n12 \n27 \n6 \n4 \n7 \n2 \n20 \n16 \n26 \n14 \n15 \n17 \n23 \n3 \n24 \n9 \n5 \n11 \n29 \n1 \n19 \n28 \n21 \n18 " }, { "input": "30 1\n29", "output": "8 20 17 12 5 26 13 2 19 22 28 16 10 4 6 11 3 25 1 27 15 9 30 24 21 18 14 23 29 7 " }, { "input": "10 10\n13 39 6 75 84 94 96 21 85 71", "output": "9 3 1 13 5 7 4 2 10 8 \n17 12 19 11 39 14 15 18 16 20 \n22 27 6 24 25 30 26 28 23 29 \n36 33 75 34 38 31 35 40 37 32 \n43 44 49 42 46 48 47 45 84 41 \n51 94 52 56 57 54 50 55 53 58 \n64 60 62 61 66 59 63 96 67 65 \n72 69 76 77 70 78 73 21 74 68 \n81 85 87 88 80 83 89 86 79 82 \n93 91 100 99 98 71 90 95 92 97 " }, { "input": "10 15\n106 109 94 50 3 143 147 10 89 145 29 28 87 126 110", "output": "9 4 1 106 6 7 5 2 11 8 \n17 13 19 12 109 14 15 18 16 20 \n21 26 94 23 24 31 25 27 22 30 \n37 34 50 35 39 32 36 40 38 33 \n43 44 49 42 46 48 47 45 3 41 \n52 143 53 57 58 55 51 56 54 59 \n65 61 63 62 67 60 64 147 68 66 \n72 70 75 76 71 77 73 10 74 69 \n80 89 84 85 79 82 86 83 78 81 \n92 90 98 97 96 145 88 93 91 95 \n100 104 105 103 102 108 99 101 29 107 \n111 114 112 116 119 118 28 113 117 115 \n128 120 122 125 129 127 87 124 123 121 \n133 136 130 134 132 131 135 126 137 138 \n142 141 144 148 146 149 110 140..." }, { "input": "15 10\n126 111 12 6 28 47 51 116 53 35", "output": "9 13 1 14 5 16 15 2 10 8 126 3 11 4 7 \n111 22 21 26 20 30 17 23 18 19 24 31 27 25 29 \n43 40 41 39 42 12 45 44 34 37 32 36 38 33 46 \n59 6 57 56 58 49 62 54 50 52 63 61 48 55 60 \n70 67 71 75 69 77 72 65 68 73 76 74 28 64 66 \n80 89 86 79 87 91 81 78 88 83 85 82 90 84 47 \n95 93 51 99 104 98 103 101 100 102 97 96 94 92 105 \n120 115 113 118 109 119 110 116 114 106 121 117 108 107 112 \n135 133 128 125 123 131 129 122 124 53 134 132 130 127 136 \n148 139 141 143 146 144 147 138 137 145 142 149 140 150 35 \n..." }, { "input": "30 30\n455 723 796 90 7 881 40 736 147 718 560 619 468 363 161 767 282 19 111 369 443 850 871 242 713 789 208 435 135 411", "output": "9 22 18 13 5 28 14 2 21 24 30 17 11 4 6 12 3 27 1 29 16 10 31 26 23 20 15 25 455 8 \n723 52 49 60 45 48 34 59 58 44 32 57 61 56 51 33 42 37 41 38 47 53 36 50 54 55 46 39 43 35 \n89 71 796 74 78 70 88 67 84 85 63 83 82 62 72 79 81 80 73 91 69 66 65 87 77 75 64 68 86 76 \n115 90 102 121 104 106 109 98 112 120 119 105 103 97 113 93 100 118 107 96 117 92 94 116 95 101 110 108 114 99 \n136 133 148 123 144 139 149 142 7 140 138 127 150 129 122 130 143 126 134 152 132 145 131 146 125 151 137 128 124 141 \n154 177..." }, { "input": "1 1\n1", "output": "1 " }, { "input": "2 1\n1", "output": "2 1 " }, { "input": "1 2\n2 1", "output": "2 \n1 " }, { "input": "1 3\n2 3 1", "output": "2 \n3 \n1 " }, { "input": "2 3\n3 2 1", "output": "4 3 \n2 5 \n1 6 " }, { "input": "3 3\n6 7 8", "output": "2 6 1 \n7 4 3 \n5 9 8 " }, { "input": "3 1\n3", "output": "2 3 1 " }, { "input": "3 2\n5 4", "output": "2 5 1 \n4 6 3 " }, { "input": "12 13\n149 22 133 146 151 64 45 88 77 126 92 134 143", "output": "8 11 1 10 5 6 4 2 9 7 149 3 \n14 13 19 12 17 16 22 20 21 23 15 18 \n133 28 34 32 31 25 30 33 24 29 26 27 \n35 42 38 40 43 46 39 41 44 146 36 37 \n56 51 48 49 50 54 53 151 57 52 47 55 \n61 58 65 68 67 59 62 66 69 63 64 60 \n80 70 75 74 76 81 45 72 78 73 79 71 \n94 85 88 83 90 87 86 89 93 82 84 91 \n99 104 98 96 103 105 102 97 77 95 101 100 \n116 109 107 111 115 113 126 108 112 110 114 106 \n127 121 125 118 120 128 123 92 119 122 117 124 \n139 132 136 130 131 140 141 134 137 138 135 129 \n150 142 144 155 154..." }, { "input": "30 29\n427 740 444 787 193 268 19 767 46 276 245 468 661 348 402 62 665 425 398 503 89 455 200 772 355 442 863 416 164", "output": "8 21 17 12 5 27 13 2 20 23 29 16 10 4 6 11 3 26 1 28 15 9 30 25 22 18 14 24 427 7 \n740 51 48 59 43 47 33 58 57 42 31 56 60 55 50 32 40 36 39 37 45 52 35 49 53 54 44 38 41 34 \n90 71 444 74 78 70 88 67 84 85 63 83 82 61 72 79 81 80 73 91 69 66 65 87 77 75 64 68 86 76 \n114 787 102 120 104 106 109 98 111 119 118 105 103 97 112 93 100 117 107 96 116 92 94 115 95 101 110 108 113 99 \n134 132 145 122 142 137 146 140 193 138 136 126 147 128 121 129 141 125 133 149 131 143 130 144 124 148 135 127 123 139 \n151 1..." }, { "input": "29 30\n173 601 360 751 194 411 708 598 236 812 855 647 100 106 59 38 822 196 529 417 606 159 384 389 300 172 544 726 702 799", "output": "8 20 17 12 5 26 13 2 19 22 28 16 10 4 6 11 3 25 1 27 15 9 7 24 21 18 14 23 173 \n47 36 37 35 45 51 49 41 31 33 29 32 46 57 52 48 54 34 55 53 56 30 601 44 43 39 40 42 50 \n77 79 84 86 64 72 75 60 76 78 81 73 80 58 82 69 70 67 83 65 68 62 360 71 61 63 85 66 74 \n90 107 751 110 105 93 98 96 95 97 116 91 109 102 115 87 99 104 114 88 92 113 94 111 101 89 103 112 108 \n140 127 144 134 118 125 141 137 119 133 128 139 124 121 130 126 120 142 136 122 132 117 194 131 129 143 138 123 135 \n147 168 163 154 174 160 146..." }, { "input": "29 29\n669 371 637 18 176 724 137 757 407 420 658 737 188 408 185 416 425 293 178 557 8 104 139 819 268 403 255 63 793", "output": "9 22 19 13 5 28 14 2 21 24 30 17 11 4 6 12 3 27 1 29 16 10 7 26 23 20 15 25 669 \n48 38 39 37 46 52 50 42 33 35 31 34 47 58 53 49 55 36 56 54 57 32 371 45 44 40 41 43 51 \n78 80 85 87 65 73 76 60 77 79 82 74 81 59 83 70 71 68 84 66 69 62 637 72 61 64 86 67 75 \n91 107 18 110 106 94 99 97 96 98 116 92 109 102 115 88 100 105 114 89 93 113 95 111 101 90 103 112 108 \n142 127 146 134 118 125 143 138 119 133 128 141 124 121 130 126 120 144 136 122 132 117 176 131 129 145 140 123 135 \n149 169 164 156 173 161 14..." }, { "input": "28 29\n771 736 590 366 135 633 68 789 193 459 137 370 216 692 730 712 537 356 752 757 796 541 804 27 431 162 196 630 684", "output": "8 20 17 12 5 26 13 2 19 22 771 16 10 4 6 11 3 25 1 28 15 9 7 24 21 18 14 23 \n34 55 49 41 54 45 33 37 35 53 29 40 30 32 43 31 36 51 736 44 39 46 38 50 48 52 47 42 \n77 65 78 73 63 56 72 590 76 62 74 57 83 69 58 80 60 79 66 59 64 82 67 70 81 61 71 75 \n107 104 92 94 106 109 84 88 86 99 98 105 366 93 103 101 89 87 95 90 100 85 91 102 97 108 110 96 \n124 125 113 123 119 120 121 134 127 132 117 129 116 130 138 111 118 131 122 139 128 114 112 126 115 136 133 135 \n141 633 142 153 160 152 149 156 166 158 161 144..." }, { "input": "29 29\n669 371 637 18 176 724 137 757 407 420 658 737 188 408 185 416 425 293 178 557 8 104 139 819 268 403 255 63 793", "output": "9 22 19 13 5 28 14 2 21 24 30 17 11 4 6 12 3 27 1 29 16 10 7 26 23 20 15 25 669 \n48 38 39 37 46 52 50 42 33 35 31 34 47 58 53 49 55 36 56 54 57 32 371 45 44 40 41 43 51 \n78 80 85 87 65 73 76 60 77 79 82 74 81 59 83 70 71 68 84 66 69 62 637 72 61 64 86 67 75 \n91 107 18 110 106 94 99 97 96 98 116 92 109 102 115 88 100 105 114 89 93 113 95 111 101 90 103 112 108 \n142 127 146 134 118 125 143 138 119 133 128 141 124 121 130 126 120 144 136 122 132 117 176 131 129 145 140 123 135 \n149 169 164 156 173 161 14..." }, { "input": "27 3\n12 77 80", "output": "8 21 18 13 5 27 14 2 20 23 12 17 10 4 6 11 3 26 1 24 16 9 7 25 22 19 15 \n43 32 46 48 51 37 41 49 77 30 40 28 34 38 44 35 31 45 52 50 47 29 36 53 42 39 33 \n62 61 78 63 81 55 70 79 67 73 58 69 59 64 80 54 56 57 68 72 65 60 71 66 74 75 76 " }, { "input": "3 27\n77 9 32 56 7 65 58 24 64 19 49 62 47 44 28 79 76 71 21 4 18 23 51 53 12 6 20", "output": "2 77 1 \n9 5 3 \n8 10 32 \n13 56 11 \n15 7 14 \n65 17 16 \n22 58 25 \n24 26 27 \n29 64 30 \n31 33 19 \n35 34 49 \n62 37 36 \n47 38 39 \n44 40 41 \n42 43 28 \n46 45 79 \n48 50 76 \n71 54 52 \n57 21 55 \n60 4 59 \n61 18 63 \n66 23 67 \n68 51 69 \n72 70 53 \n12 73 74 \n75 6 78 \n81 20 80 " }, { "input": "10 30\n165 86 241 45 144 43 95 250 28 240 42 15 295 211 48 99 199 156 206 109 100 194 229 224 57 10 220 79 44 203", "output": "8 3 1 165 5 6 4 2 9 7 \n17 12 19 11 86 13 14 18 16 20 \n21 26 241 23 24 30 25 27 22 29 \n36 33 45 34 38 31 35 39 37 32 \n46 47 53 41 50 52 51 49 144 40 \n55 43 56 61 62 59 54 60 58 63 \n69 65 67 66 71 64 68 95 72 70 \n76 74 80 81 75 82 77 250 78 73 \n85 28 90 91 84 88 92 89 83 87 \n97 94 104 103 102 240 93 98 96 101 \n106 111 112 110 108 114 105 107 42 113 \n115 118 116 120 123 122 15 117 121 119 \n131 124 126 129 132 130 295 128 127 125 \n136 139 133 137 135 134 138 211 140 141 \n146 145 147 149 148 150 4..." }, { "input": "30 10\n71 146 274 157 190 85 32 152 25 278", "output": "8 20 17 12 5 27 13 2 19 22 29 16 10 4 6 11 3 26 1 28 15 9 30 24 21 18 14 23 71 7 \n146 51 48 59 44 47 34 58 57 43 31 56 60 55 50 33 41 37 40 38 46 52 36 49 53 54 45 39 42 35 \n90 70 274 74 78 69 89 66 84 86 62 83 82 61 72 79 81 80 73 91 68 65 64 88 77 75 63 67 87 76 \n114 157 102 120 104 106 109 98 111 119 118 105 103 97 112 93 100 117 107 96 116 92 94 115 95 101 110 108 113 99 \n134 132 145 122 142 137 147 140 190 138 136 126 148 128 121 129 141 125 133 150 131 143 130 144 124 149 135 127 123 139 \n153 17..." }, { "input": "7 1\n5", "output": "2 3 1 5 6 7 4 " }, { "input": "6 1\n5", "output": "2 3 1 5 6 4 " } ]
1,548,578,791
2,147,483,647
Python 3
OK
TESTS
29
248
102,400
n, k = [int(x) for x in input().split()] likes = [int(x) for x in input().split()] oranges = [ True ] * (n * k) for i in likes: oranges[i - 1] = False oranges_cnt = 0 for l in likes: print(l, end=" ") for _ in range(n - 1): while not oranges[oranges_cnt]: oranges_cnt += 1 print(oranges_cnt + 1, end=" ") oranges_cnt += 1 print()
Title: Dividing Orange Time Limit: None seconds Memory Limit: None megabytes Problem Description: One day Ms Swan bought an orange in a shop. The orange consisted of *n*·*k* segments, numbered with integers from 1 to *n*·*k*. There were *k* children waiting for Ms Swan at home. The children have recently learned about the orange and they decided to divide it between them. For that each child took a piece of paper and wrote the number of the segment that he would like to get: the *i*-th (1<=≤<=*i*<=≤<=*k*) child wrote the number *a**i* (1<=≤<=*a**i*<=≤<=*n*·*k*). All numbers *a**i* accidentally turned out to be different. Now the children wonder, how to divide the orange so as to meet these conditions: - each child gets exactly *n* orange segments; - the *i*-th child gets the segment with number *a**i* for sure; - no segment goes to two children simultaneously. Help the children, divide the orange and fulfill the requirements, described above. Input Specification: The first line contains two integers *n*, *k* (1<=≤<=*n*,<=*k*<=≤<=30). The second line contains *k* space-separated integers *a*1,<=*a*2,<=...,<=*a**k* (1<=≤<=*a**i*<=≤<=*n*·*k*), where *a**i* is the number of the orange segment that the *i*-th child would like to get. It is guaranteed that all numbers *a**i* are distinct. Output Specification: Print exactly *n*·*k* distinct integers. The first *n* integers represent the indexes of the segments the first child will get, the second *n* integers represent the indexes of the segments the second child will get, and so on. Separate the printed numbers with whitespaces. You can print a child's segment indexes in any order. It is guaranteed that the answer always exists. If there are multiple correct answers, print any of them. Demo Input: ['2 2\n4 1\n', '3 1\n2\n'] Demo Output: ['2 4 \n1 3 \n', '3 2 1 \n'] Note: none
```python n, k = [int(x) for x in input().split()] likes = [int(x) for x in input().split()] oranges = [ True ] * (n * k) for i in likes: oranges[i - 1] = False oranges_cnt = 0 for l in likes: print(l, end=" ") for _ in range(n - 1): while not oranges[oranges_cnt]: oranges_cnt += 1 print(oranges_cnt + 1, end=" ") oranges_cnt += 1 print() ```
3