id
stringlengths
3
8
content
stringlengths
100
981k
2338
import asyncio import unittest from .helpers import async_test class AsyncTestCase(unittest.TestCase): ''' AsyncTestCase allows to test asynchoronus function. The usage is the same as :code:`unittest.TestCase`. It works with other test frameworks and runners (eg. `pytest`, `nose`) as well. AsyncTestCase can run: - test of synchronous code (:code:`unittest.TestCase`) - test of asynchronous code, supports syntax with :code:`async`/:code:`await` (Python 3.5+) and :code:`asyncio.coroutine`/:code:`yield from` (Python 3.4) Code to test: .. code-block:: python import asyncio async def async_add(x, y, delay=0.1): await asyncio.sleep(delay) return x + y async def async_one(): await async_nested_exc() async def async_nested_exc(): await asyncio.sleep(0.1) raise Exception('Test') Tests: .. code-block:: python import aiounittest class MyTest(aiounittest.AsyncTestCase): async def test_await_async_add(self): ret = await async_add(1, 5) self.assertEqual(ret, 6) async def test_await_async_fail(self): with self.assertRaises(Exception) as e: await async_one() ''' def get_event_loop(self): ''' Method provides an event loop for the test It is called before each test, by default :code:`aiounittest.AsyncTestCase` creates the brand new event loop everytime. After completion, the loop is closed and then recreated, set as default, leaving asyncio clean. .. note:: In the most common cases you don't have to bother about this method, the default implementation is a receommended one. But if, for some reasons, you want to provide your own event loop just override it. Note that :code:`AsyncTestCase` won't close such a loop. .. code-block:: python class MyTest(aiounittest.AsyncTestCase): def get_event_loop(self): self.my_loop = asyncio.get_event_loop() return self.my_loop ''' return None def __getattribute__(self, name): attr = super().__getattribute__(name) if name.startswith('test_') and asyncio.iscoroutinefunction(attr): return async_test(attr, loop=self.get_event_loop()) else: return attr
2374
import numpy as np from util import * def naiveDistanceProfile(tsA, idx, m, tsB = None): """Return the distance profile of query against ts. Use the naive all pairs comparison algorithm. >>> np.round(naiveDistanceProfile(np.array([0.0, 1.0, -1.0, 0.0]), 0, 4, np.array([-1, 1, 0, 0, -1, 1])), 3) array([[ 2. , 2.828, 2. ], [ 0. , 0. , 0. ]]) """ selfJoin = False if tsB is None: selfJoin = True tsB = tsA query = tsA[idx : (idx + m)] distanceProfile = [] n = len(tsB) for i in range(n - m + 1): distanceProfile.append(zNormalizedEuclideanDistance(query, tsB[i : i + m])) if selfJoin: trivialMatchRange = (max(0, idxToProcess - m / 2), min(idxToProcess + m / 2 + 1, len(tsB))) distanceProfile[trivialMatchRange[0] : trivialMatchRange[1]] = np.inf return (distanceProfile, np.full(n - m + 1, idx, dtype = float)) def stampDistanceProfile(tsA, idx, m, tsB = None): """ >>> np.round(stampDistanceProfile(np.array([0.0, 1.0, -1.0, 0.0]), 0, 4, np.array([-1, 1, 0, 0, -1, 1])), 3) array([[ 2. , 2.828, 2. ], [ 0. , 0. , 0. ]]) """ selfJoin = False if tsB is None: selfJoin = True tsB = tsA query = tsA[idx : (idx + m)] n = len(tsB) distanceProfile = mass(query, tsB) if selfJoin: trivialMatchRange = (max(0, idxToProcess - m / 2), min(idxToProcess + m / 2 + 1, len(tsB))) distanceProfile[trivialMatchRange[0] : trivialMatchRange[1]] = np.inf return (distanceProfile, np.full(n - m + 1, idx, dtype = float)) if __name__ == "__main__": import doctest doctest.testmod()
2406
import functools from collections import OrderedDict from typing import Any, Callable, Dict, List, Mapping, Sequence, Tuple, Union, cast import torch from ignite.engine import Engine, EventEnum, Events from ignite.handlers.timing import Timer class BasicTimeProfiler: """ BasicTimeProfiler can be used to profile the handlers, events, data loading and data processing times. Examples: .. code-block:: python from ignite.handlers import BasicTimeProfiler trainer = Engine(train_updater) # Create an object of the profiler and attach an engine to it profiler = BasicTimeProfiler() profiler.attach(trainer) @trainer.on(Events.EPOCH_COMPLETED) def log_intermediate_results(): profiler.print_results(profiler.get_results()) trainer.run(dataloader, max_epochs=3) profiler.write_results('path_to_dir/time_profiling.csv') .. versionadded:: 0.4.6 """ events_to_ignore = [ Events.EXCEPTION_RAISED, Events.TERMINATE, Events.TERMINATE_SINGLE_EPOCH, Events.DATALOADER_STOP_ITERATION, ] def __init__(self) -> None: self._dataflow_timer = Timer() self._processing_timer = Timer() self._event_handlers_timer = Timer() self.dataflow_times = torch.zeros(1) self.processing_times = torch.zeros(1) self.event_handlers_times = {} # type: Dict[EventEnum, torch.Tensor] self._events = [ Events.EPOCH_STARTED, Events.EPOCH_COMPLETED, Events.ITERATION_STARTED, Events.ITERATION_COMPLETED, Events.GET_BATCH_STARTED, Events.GET_BATCH_COMPLETED, Events.COMPLETED, ] self._fmethods = [ self._as_first_epoch_started, self._as_first_epoch_completed, self._as_first_iter_started, self._as_first_iter_completed, self._as_first_get_batch_started, self._as_first_get_batch_completed, self._as_first_completed, ] self._lmethods = [ self._as_last_epoch_started, self._as_last_epoch_completed, self._as_last_iter_started, self._as_last_iter_completed, self._as_last_get_batch_started, self._as_last_get_batch_completed, self._as_last_completed, ] def _reset(self, num_epochs: int, total_num_iters: int) -> None: self.dataflow_times = torch.zeros(total_num_iters) self.processing_times = torch.zeros(total_num_iters) self.event_handlers_times = { Events.STARTED: torch.zeros(1), Events.COMPLETED: torch.zeros(1), Events.EPOCH_STARTED: torch.zeros(num_epochs), Events.EPOCH_COMPLETED: torch.zeros(num_epochs), Events.ITERATION_STARTED: torch.zeros(total_num_iters), Events.ITERATION_COMPLETED: torch.zeros(total_num_iters), Events.GET_BATCH_COMPLETED: torch.zeros(total_num_iters), Events.GET_BATCH_STARTED: torch.zeros(total_num_iters), } def _as_first_started(self, engine: Engine) -> None: if hasattr(engine.state.dataloader, "__len__"): num_iters_per_epoch = len(engine.state.dataloader) # type: ignore[arg-type] else: if engine.state.epoch_length is None: raise ValueError( "As epoch_length is not set, we can not use BasicTimeProfiler in this case." "Please, set trainer.run(..., epoch_length=epoch_length) in order to fix this." ) num_iters_per_epoch = engine.state.epoch_length self.max_epochs = cast(int, engine.state.max_epochs) self.total_num_iters = self.max_epochs * num_iters_per_epoch self._reset(self.max_epochs, self.total_num_iters) self.event_handlers_names = { e: [ h.__qualname__ if hasattr(h, "__qualname__") else h.__class__.__name__ for (h, _, _) in engine._event_handlers[e] if "BasicTimeProfiler." not in repr(h) # avoid adding internal handlers into output ] for e in Events if e not in self.events_to_ignore } # Setup all other handlers: engine._event_handlers[Events.STARTED].append((self._as_last_started, (engine,), {})) for e, m in zip(self._events, self._fmethods): engine._event_handlers[e].insert(0, (m, (engine,), {})) for e, m in zip(self._events, self._lmethods): engine._event_handlers[e].append((m, (engine,), {})) # Let's go self._event_handlers_timer.reset() def _as_last_started(self, engine: Engine) -> None: self.event_handlers_times[Events.STARTED][0] = self._event_handlers_timer.value() def _as_first_epoch_started(self, engine: Engine) -> None: self._event_handlers_timer.reset() def _as_last_epoch_started(self, engine: Engine) -> None: t = self._event_handlers_timer.value() e = engine.state.epoch - 1 self.event_handlers_times[Events.EPOCH_STARTED][e] = t def _as_first_get_batch_started(self, engine: Engine) -> None: self._event_handlers_timer.reset() self._dataflow_timer.reset() def _as_last_get_batch_started(self, engine: Engine) -> None: t = self._event_handlers_timer.value() i = engine.state.iteration - 1 self.event_handlers_times[Events.GET_BATCH_STARTED][i] = t def _as_first_get_batch_completed(self, engine: Engine) -> None: self._event_handlers_timer.reset() def _as_last_get_batch_completed(self, engine: Engine) -> None: t = self._event_handlers_timer.value() i = engine.state.iteration - 1 self.event_handlers_times[Events.GET_BATCH_COMPLETED][i] = t d = self._dataflow_timer.value() self.dataflow_times[i] = d self._dataflow_timer.reset() def _as_first_iter_started(self, engine: Engine) -> None: self._event_handlers_timer.reset() def _as_last_iter_started(self, engine: Engine) -> None: t = self._event_handlers_timer.value() i = engine.state.iteration - 1 self.event_handlers_times[Events.ITERATION_STARTED][i] = t self._processing_timer.reset() def _as_first_iter_completed(self, engine: Engine) -> None: t = self._processing_timer.value() i = engine.state.iteration - 1 self.processing_times[i] = t self._event_handlers_timer.reset() def _as_last_iter_completed(self, engine: Engine) -> None: t = self._event_handlers_timer.value() i = engine.state.iteration - 1 self.event_handlers_times[Events.ITERATION_COMPLETED][i] = t def _as_first_epoch_completed(self, engine: Engine) -> None: self._event_handlers_timer.reset() def _as_last_epoch_completed(self, engine: Engine) -> None: t = self._event_handlers_timer.value() e = engine.state.epoch - 1 self.event_handlers_times[Events.EPOCH_COMPLETED][e] = t def _as_first_completed(self, engine: Engine) -> None: self._event_handlers_timer.reset() def _as_last_completed(self, engine: Engine) -> None: self.event_handlers_times[Events.COMPLETED][0] = self._event_handlers_timer.value() # Remove added handlers: engine.remove_event_handler(self._as_last_started, Events.STARTED) for e, m in zip(self._events, self._fmethods): engine.remove_event_handler(m, e) for e, m in zip(self._events, self._lmethods): engine.remove_event_handler(m, e) def attach(self, engine: Engine) -> None: """Attach BasicTimeProfiler to the given engine. Args: engine: the instance of Engine to attach """ if not isinstance(engine, Engine): raise TypeError(f"Argument engine should be ignite.engine.Engine, but given {type(engine)}") if not engine.has_event_handler(self._as_first_started): engine._event_handlers[Events.STARTED].insert(0, (self._as_first_started, (engine,), {})) @staticmethod def _compute_basic_stats(data: torch.Tensor) -> Dict[str, Union[str, float, Tuple[Union[float], Union[float]]]]: # compute on non-zero data: data = data[data > 0] out = [ ("total", torch.sum(data).item() if len(data) > 0 else "not yet triggered") ] # type: List[Tuple[str, Union[str, float, Tuple[Union[float], Union[float]]]]] if len(data) > 1: out += [ ("min/index", (torch.min(data).item(), torch.argmin(data).item())), ("max/index", (torch.max(data).item(), torch.argmax(data).item())), ("mean", torch.mean(data).item()), ("std", torch.std(data).item()), ] return OrderedDict(out) def get_results(self) -> Dict[str, Dict[str, Any]]: """ Method to fetch the aggregated profiler results after the engine is run .. code-block:: python results = profiler.get_results() """ total_eh_time = sum( [(self.event_handlers_times[e]).sum() for e in Events if e not in self.events_to_ignore] ) # type: Union[int, torch.Tensor] event_handlers_stats = dict( [ (str(e.name).replace(".", "_"), self._compute_basic_stats(self.event_handlers_times[e])) for e in Events if e not in self.events_to_ignore ] + [("total_time", total_eh_time)] # type: ignore[list-item] ) return OrderedDict( [ ("processing_stats", self._compute_basic_stats(self.processing_times)), ("dataflow_stats", self._compute_basic_stats(self.dataflow_times)), ("event_handlers_stats", event_handlers_stats), ( "event_handlers_names", {str(e.name).replace(".", "_") + "_names": v for e, v in self.event_handlers_names.items()}, ), ] ) def write_results(self, output_path: str) -> None: """ Method to store the unaggregated profiling results to a csv file Args: output_path: file output path containing a filename .. code-block:: python profiler.write_results('path_to_dir/awesome_filename.csv') Examples: .. code-block:: text ----------------------------------------------------------------- epoch iteration processing_stats dataflow_stats Event_STARTED ... 1.0 1.0 0.00003 0.252387 0.125676 1.0 2.0 0.00029 0.252342 0.125123 """ try: import pandas as pd except ImportError: raise RuntimeError("Need pandas to write results as files") iters_per_epoch = self.total_num_iters // self.max_epochs epochs = torch.arange(self.max_epochs, dtype=torch.float32).repeat_interleave(iters_per_epoch) + 1 iterations = torch.arange(self.total_num_iters, dtype=torch.float32) + 1 processing_stats = self.processing_times dataflow_stats = self.dataflow_times event_started = self.event_handlers_times[Events.STARTED].repeat_interleave(self.total_num_iters) event_completed = self.event_handlers_times[Events.COMPLETED].repeat_interleave(self.total_num_iters) event_epoch_started = self.event_handlers_times[Events.EPOCH_STARTED].repeat_interleave(iters_per_epoch) event_epoch_completed = self.event_handlers_times[Events.EPOCH_COMPLETED].repeat_interleave(iters_per_epoch) event_iter_started = self.event_handlers_times[Events.ITERATION_STARTED] event_iter_completed = self.event_handlers_times[Events.ITERATION_COMPLETED] event_batch_started = self.event_handlers_times[Events.GET_BATCH_STARTED] event_batch_completed = self.event_handlers_times[Events.GET_BATCH_COMPLETED] results_dump = torch.stack( [ epochs, iterations, processing_stats, dataflow_stats, event_started, event_completed, event_epoch_started, event_epoch_completed, event_iter_started, event_iter_completed, event_batch_started, event_batch_completed, ], dim=1, ).numpy() results_df = pd.DataFrame( data=results_dump, columns=[ "epoch", "iteration", "processing_stats", "dataflow_stats", "Event_STARTED", "Event_COMPLETED", "Event_EPOCH_STARTED", "Event_EPOCH_COMPLETED", "Event_ITERATION_STARTED", "Event_ITERATION_COMPLETED", "Event_GET_BATCH_STARTED", "Event_GET_BATCH_COMPLETED", ], ) results_df.to_csv(output_path, index=False) @staticmethod def print_results(results: Dict) -> str: """ Method to print the aggregated results from the profiler Args: results: the aggregated results from the profiler .. code-block:: python profiler.print_results(results) Examples: .. code-block:: text ---------------------------------------------------- | Time profiling stats (in seconds): | ---------------------------------------------------- total | min/index | max/index | mean | std Processing function: 157.46292 | 0.01452/1501 | 0.26905/0 | 0.07730 | 0.01258 Dataflow: 6.11384 | 0.00008/1935 | 0.28461/1551 | 0.00300 | 0.02693 Event handlers: 2.82721 - Events.STARTED: [] 0.00000 - Events.EPOCH_STARTED: [] 0.00006 | 0.00000/0 | 0.00000/17 | 0.00000 | 0.00000 - Events.ITERATION_STARTED: ['PiecewiseLinear'] 0.03482 | 0.00001/188 | 0.00018/679 | 0.00002 | 0.00001 - Events.ITERATION_COMPLETED: ['TerminateOnNan'] 0.20037 | 0.00006/866 | 0.00089/1943 | 0.00010 | 0.00003 - Events.EPOCH_COMPLETED: ['empty_cuda_cache', 'training.<locals>.log_elapsed_time', ] 2.57860 | 0.11529/0 | 0.14977/13 | 0.12893 | 0.00790 - Events.COMPLETED: [] not yet triggered """ def to_str(v: Union[str, tuple]) -> str: if isinstance(v, str): return v elif isinstance(v, tuple): return f"{v[0]:.5f}/{v[1]}" return f"{v:.5f}" def odict_to_str(d: Mapping) -> str: out = " | ".join([to_str(v) for v in d.values()]) return out others = { k: odict_to_str(v) if isinstance(v, OrderedDict) else v for k, v in results["event_handlers_stats"].items() } others.update(results["event_handlers_names"]) output_message = """ ---------------------------------------------------- | Time profiling stats (in seconds): | ---------------------------------------------------- total | min/index | max/index | mean | std Processing function: {processing_stats} Dataflow: {dataflow_stats} Event handlers: {total_time:.5f} - Events.STARTED: {STARTED_names} {STARTED} - Events.EPOCH_STARTED: {EPOCH_STARTED_names} {EPOCH_STARTED} - Events.ITERATION_STARTED: {ITERATION_STARTED_names} {ITERATION_STARTED} - Events.ITERATION_COMPLETED: {ITERATION_COMPLETED_names} {ITERATION_COMPLETED} - Events.EPOCH_COMPLETED: {EPOCH_COMPLETED_names} {EPOCH_COMPLETED} - Events.COMPLETED: {COMPLETED_names} {COMPLETED} """.format( processing_stats=odict_to_str(results["processing_stats"]), dataflow_stats=odict_to_str(results["dataflow_stats"]), **others, ) print(output_message) return output_message class HandlersTimeProfiler: """ HandlersTimeProfiler can be used to profile the handlers, data loading and data processing times. Custom events are also profiled by this profiler Examples: .. code-block:: python from ignite.handlers import HandlersTimeProfiler trainer = Engine(train_updater) # Create an object of the profiler and attach an engine to it profiler = HandlersTimeProfiler() profiler.attach(trainer) @trainer.on(Events.EPOCH_COMPLETED) def log_intermediate_results(): profiler.print_results(profiler.get_results()) trainer.run(dataloader, max_epochs=3) profiler.write_results('path_to_dir/time_profiling.csv') .. versionadded:: 0.4.6 """ EVENT_FILTER_THESHOLD_TIME = 0.0001 def __init__(self) -> None: self._dataflow_timer = Timer() self._processing_timer = Timer() self._event_handlers_timer = Timer() self.dataflow_times = [] # type: List[float] self.processing_times = [] # type: List[float] self.event_handlers_times = {} # type: Dict[EventEnum, Dict[str, List[float]]] @staticmethod def _get_callable_name(handler: Callable) -> str: # get name of the callable handler return getattr(handler, "__qualname__", handler.__class__.__name__) def _create_wrapped_handler(self, handler: Callable, event: EventEnum) -> Callable: @functools.wraps(handler) def _timeit_handler(*args: Any, **kwargs: Any) -> None: self._event_handlers_timer.reset() handler(*args, **kwargs) t = self._event_handlers_timer.value() hname = self._get_callable_name(handler) # filter profiled time if the handler was attached to event with event filter if not hasattr(handler, "_parent") or t >= self.EVENT_FILTER_THESHOLD_TIME: self.event_handlers_times[event][hname].append(t) # required to revert back to original handler after profiling setattr(_timeit_handler, "_profiler_original", handler) return _timeit_handler def _timeit_processing(self) -> None: # handler used for profiling processing times t = self._processing_timer.value() self.processing_times.append(t) def _timeit_dataflow(self) -> None: # handler used for profiling dataflow times t = self._dataflow_timer.value() self.dataflow_times.append(t) def _reset(self, event_handlers_names: Mapping[EventEnum, List[str]]) -> None: # reset the variables used for profiling self.dataflow_times = [] self.processing_times = [] self.event_handlers_times = {e: {h: [] for h in event_handlers_names[e]} for e in event_handlers_names} @staticmethod def _is_internal_handler(handler: Callable) -> bool: # checks whether the handler is internal return any(n in repr(handler) for n in ["HandlersTimeProfiler.", "Timer."]) def _detach_profiler_handlers(self, engine: Engine) -> None: # reverts handlers to original handlers for e in engine._event_handlers: for i, (func, args, kwargs) in enumerate(engine._event_handlers[e]): if hasattr(func, "_profiler_original"): engine._event_handlers[e][i] = (func._profiler_original, args, kwargs) def _as_first_started(self, engine: Engine) -> None: # wraps original handlers for profiling self.event_handlers_names = { e: [ self._get_callable_name(h) for (h, _, _) in engine._event_handlers[e] if not self._is_internal_handler(h) ] for e in engine._allowed_events } self._reset(self.event_handlers_names) for e in engine._allowed_events: for i, (func, args, kwargs) in enumerate(engine._event_handlers[e]): if not self._is_internal_handler(func): engine._event_handlers[e][i] = (self._create_wrapped_handler(func, e), args, kwargs) # processing timer engine.add_event_handler(Events.ITERATION_STARTED, self._processing_timer.reset) engine._event_handlers[Events.ITERATION_COMPLETED].insert(0, (self._timeit_processing, (), {})) # dataflow timer engine.add_event_handler(Events.GET_BATCH_STARTED, self._dataflow_timer.reset) engine._event_handlers[Events.GET_BATCH_COMPLETED].insert(0, (self._timeit_dataflow, (), {})) # revert back the wrapped handlers with original handlers at the end engine.add_event_handler(Events.COMPLETED, self._detach_profiler_handlers) def attach(self, engine: Engine) -> None: """Attach HandlersTimeProfiler to the given engine. Args: engine: the instance of Engine to attach """ if not isinstance(engine, Engine): raise TypeError(f"Argument engine should be ignite.engine.Engine, but given {type(engine)}") if not engine.has_event_handler(self._as_first_started): engine._event_handlers[Events.STARTED].insert(0, (self._as_first_started, (engine,), {})) def get_results(self) -> List[List[Union[str, float]]]: """ Method to fetch the aggregated profiler results after the engine is run .. code-block:: python results = profiler.get_results() """ total_eh_time = sum( [ sum(self.event_handlers_times[e][h]) for e in self.event_handlers_times for h in self.event_handlers_times[e] ] ) total_eh_time = round(float(total_eh_time), 5) def compute_basic_stats( times: Union[Sequence, torch.Tensor] ) -> List[Union[str, float, Tuple[Union[str, float], Union[str, float]]]]: data = torch.as_tensor(times, dtype=torch.float32) # compute on non-zero data: data = data[data > 0] total = round(torch.sum(data).item(), 5) if len(data) > 0 else "not triggered" # type: Union[str, float] min_index = ("None", "None") # type: Tuple[Union[str, float], Union[str, float]] max_index = ("None", "None") # type: Tuple[Union[str, float], Union[str, float]] mean = "None" # type: Union[str, float] std = "None" # type: Union[str, float] if len(data) > 0: min_index = (round(torch.min(data).item(), 5), torch.argmin(data).item()) max_index = (round(torch.max(data).item(), 5), torch.argmax(data).item()) mean = round(torch.mean(data).item(), 5) if len(data) > 1: std = round(torch.std(data).item(), 5) return [total, min_index, max_index, mean, std] event_handler_stats = [ [ h, getattr(e, "name", str(e)), *compute_basic_stats(torch.tensor(self.event_handlers_times[e][h], dtype=torch.float32)), ] for e in self.event_handlers_times for h in self.event_handlers_times[e] ] event_handler_stats.append(["Total", "", total_eh_time, "", "", "", ""]) event_handler_stats.append(["Processing", "None", *compute_basic_stats(self.processing_times)]) event_handler_stats.append(["Dataflow", "None", *compute_basic_stats(self.dataflow_times)]) return event_handler_stats def write_results(self, output_path: str) -> None: """ Method to store the unaggregated profiling results to a csv file Args: output_path: file output path containing a filename .. code-block:: python profiler.write_results('path_to_dir/awesome_filename.csv') Examples: .. code-block:: text ----------------------------------------------------------------- # processing_stats dataflow_stats training.<locals>.log_elapsed_time (EPOCH_COMPLETED) ... 1 0.00003 0.252387 0.125676 2 0.00029 0.252342 0.125123 """ try: import pandas as pd except ImportError: raise RuntimeError("Need pandas to write results as files") processing_stats = torch.tensor(self.processing_times, dtype=torch.float32) dataflow_stats = torch.tensor(self.dataflow_times, dtype=torch.float32) cols = [processing_stats, dataflow_stats] headers = ["processing_stats", "dataflow_stats"] for e in self.event_handlers_times: for h in self.event_handlers_times[e]: headers.append(f"{h} ({getattr(e, 'name', str(e))})") cols.append(torch.tensor(self.event_handlers_times[e][h], dtype=torch.float32)) # Determine maximum length max_len = max([x.numel() for x in cols]) count_col = torch.arange(max_len, dtype=torch.float32) + 1 cols.insert(0, count_col) headers.insert(0, "#") # pad all tensors to have same length cols = [torch.nn.functional.pad(x, pad=(0, max_len - x.numel()), mode="constant", value=0) for x in cols] results_dump = torch.stack(cols, dim=1).numpy() results_df = pd.DataFrame(data=results_dump, columns=headers) results_df.to_csv(output_path, index=False) @staticmethod def print_results(results: List[List[Union[str, float]]]) -> None: """ Method to print the aggregated results from the profiler Args: results: the aggregated results from the profiler .. code-block:: python profiler.print_results(results) Examples: .. code-block:: text ----------------------------------------- ----------------------- -------------- ... Handler Event Name Total(s) ----------------------------------------- ----------------------- -------------- run.<locals>.log_training_results EPOCH_COMPLETED 19.43245 run.<locals>.log_validation_results EPOCH_COMPLETED 2.55271 run.<locals>.log_time EPOCH_COMPLETED 0.00049 run.<locals>.log_intermediate_results EPOCH_COMPLETED 0.00106 run.<locals>.log_training_loss ITERATION_COMPLETED 0.059 run.<locals>.log_time COMPLETED not triggered ----------------------------------------- ----------------------- -------------- Total 22.04571 ----------------------------------------- ----------------------- -------------- Processing took total 11.29543s [min/index: 0.00393s/1875, max/index: 0.00784s/0, mean: 0.00602s, std: 0.00034s] Dataflow took total 16.24365s [min/index: 0.00533s/1874, max/index: 0.01129s/937, mean: 0.00866s, std: 0.00113s] """ # adopted implementation of torch.autograd.profiler.build_table handler_column_width = max([len(item[0]) for item in results]) + 4 # type: ignore[arg-type] event_column_width = max([len(item[1]) for item in results]) + 4 # type: ignore[arg-type] DEFAULT_COLUMN_WIDTH = 14 headers = [ "Handler", "Event Name", "Total(s)", "Min(s)/IDX", "Max(s)/IDX", "Mean(s)", "Std(s)", ] # Have to use a list because nonlocal is Py3 only... SPACING_SIZE = 2 row_format_lst = [""] header_sep_lst = [""] line_length_lst = [-SPACING_SIZE] def add_column(padding: int, text_dir: str = ">") -> None: row_format_lst[0] += "{: " + text_dir + str(padding) + "}" + (" " * SPACING_SIZE) header_sep_lst[0] += "-" * padding + (" " * SPACING_SIZE) line_length_lst[0] += padding + SPACING_SIZE add_column(handler_column_width, text_dir="<") add_column(event_column_width, text_dir="<") for _ in headers[2:]: add_column(DEFAULT_COLUMN_WIDTH) row_format = row_format_lst[0] header_sep = header_sep_lst[0] result = [] def append(s: str) -> None: result.append(s) result.append("\n") result.append("\n") append(header_sep) append(row_format.format(*headers)) append(header_sep) for row in results[:-3]: # format min/idx and max/idx row[3] = "{}/{}".format(*row[3]) # type: ignore[misc] row[4] = "{}/{}".format(*row[4]) # type: ignore[misc] append(row_format.format(*row)) append(header_sep) # print total handlers time row append(row_format.format(*results[-3])) append(header_sep) summary_format = "{} took total {}s [min/index: {}, max/index: {}, mean: {}s, std: {}s]" for row in results[-2:]: row[3] = "{}s/{}".format(*row[3]) # type: ignore[misc] row[4] = "{}s/{}".format(*row[4]) # type: ignore[misc] del row[1] append(summary_format.format(*row)) print("".join(result))
2409
from __future__ import (division) from pomegranate import * from pomegranate.io import DataGenerator from pomegranate.io import DataFrameGenerator from nose.tools import with_setup from nose.tools import assert_almost_equal from nose.tools import assert_equal from nose.tools import assert_not_equal from nose.tools import assert_less_equal from nose.tools import assert_raises from nose.tools import assert_true from numpy.testing import assert_array_almost_equal import pandas import random import pickle import numpy as np nan = numpy.nan def setup_multivariate_gaussian(): mu, cov = [0, 0, 0], numpy.eye(3) d1 = MultivariateGaussianDistribution(mu, cov) mu, cov = [2, 2, 2], numpy.eye(3) d2 = MultivariateGaussianDistribution(mu, cov) global model model = BayesClassifier([d1, d2]) global X X = numpy.array([[ 0.3, 0.5, 0.1], [ 0.8, 1.4, 0.5], [ 1.4, 2.6, 1.8], [ 4.2, 3.3, 3.7], [ 2.6, 3.6, 3.3], [ 3.1, 2.2, 1.7], [ 1.8, 2.2, 1.8], [-1.2, -1.8, -1.5], [-1.8, 0.3, 0.5], [ 0.7, -1.3, -0.1]]) global y y = [0, 0, 0, 1, 1, 1, 1, 0, 0, 0] global X_nan X_nan = numpy.array([[ 0.3, nan, 0.1], [ nan, 1.4, nan], [ 1.4, 2.6, nan], [ nan, nan, nan], [ nan, 3.6, 3.3], [ 3.1, nan, 1.7], [ nan, nan, 1.8], [-1.2, -1.8, -1.5], [ nan, 0.3, 0.5], [ nan, -1.3, nan]]) def setup_multivariate_mixed(): mu, cov = [0, 0, 0], numpy.eye(3) d1 = MultivariateGaussianDistribution(mu, cov) d21 = ExponentialDistribution(5) d22 = LogNormalDistribution(0.2, 0.8) d23 = PoissonDistribution(3) d2 = IndependentComponentsDistribution([d21, d22, d23]) global model model = BayesClassifier([d1, d2]) global X X = numpy.array([[ 0.3, 0.5, 0.1], [ 0.8, 1.4, 0.5], [ 1.4, 2.6, 1.8], [ 4.2, 3.3, 3.7], [ 2.6, 3.6, 3.3], [ 3.1, 2.2, 1.7], [ 1.8, 2.2, 1.8], [ 1.2, 1.8, 1.5], [ 1.8, 0.3, 0.5], [ 0.7, 1.3, 0.1]]) global y y = [0, 0, 0, 1, 1, 1, 1, 0, 0, 0] global X_nan X_nan = numpy.array([[ 0.3, nan, 0.1], [ nan, 1.4, nan], [ 1.4, 2.6, nan], [ nan, nan, nan], [ nan, 3.6, 3.3], [ 3.1, nan, 1.7], [ nan, nan, 1.8], [ 1.2, 1.8, 1.5], [ nan, 0.3, 0.5], [ nan, 1.3, nan]]) def setup_hmm(): global model global hmm1 global hmm2 global hmm3 rigged = State( DiscreteDistribution({ 'H': 0.8, 'T': 0.2 }) ) unrigged = State( DiscreteDistribution({ 'H': 0.5, 'T':0.5 }) ) hmm1 = HiddenMarkovModel() hmm1.start = rigged hmm1.add_transition(rigged, rigged, 1) hmm1.bake() hmm2 = HiddenMarkovModel() hmm2.start = unrigged hmm2.add_transition(unrigged, unrigged, 1) hmm2.bake() hmm3 = HiddenMarkovModel() hmm3.add_transition(hmm3.start, unrigged, 0.5) hmm3.add_transition(hmm3.start, rigged, 0.5) hmm3.add_transition(rigged, rigged, 0.5) hmm3.add_transition(rigged, unrigged, 0.5) hmm3.add_transition(unrigged, rigged, 0.5) hmm3.add_transition(unrigged, unrigged, 0.5) hmm3.bake() model = BayesClassifier([hmm1, hmm2, hmm3]) def setup_multivariate(): pass def teardown(): pass @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_initialization(): assert_equal(model.d, 3) assert_equal(model.n, 2) assert_equal(model.is_vl_, False) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_initialization(): assert_equal(model.d, 3) assert_equal(model.n, 2) assert_equal(model.is_vl_, False) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict_log_proba(): y_hat = model.predict_log_proba(X) y = [[ -1.48842547e-02, -4.21488425e+00], [ -4.37487950e-01, -1.03748795e+00], [ -5.60369104e+00, -3.69104343e-03], [ -1.64000001e+01, -7.54345812e-08], [ -1.30000023e+01, -2.26032685e-06], [ -8.00033541e+00, -3.35406373e-04], [ -5.60369104e+00, -3.69104343e-03], [ -3.05902274e-07, -1.50000003e+01], [ -3.35406373e-04, -8.00033541e+00], [ -6.11066022e-04, -7.40061107e+00]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict_log_proba(): y_hat = model.predict_log_proba(X) y = [[ -5.03107596e-01, -9.27980626e-01], [ -1.86355320e-01, -1.77183117e+00], [ -5.58542088e-01, -8.48731256e-01], [ -7.67315597e-01, -6.24101927e-01], [ -2.32860808e+00, -1.02510436e-01], [ -3.06641866e-03, -5.78877778e+00], [ -9.85292840e-02, -2.36626165e+00], [ -2.61764180e-01, -1.46833995e+00], [ -2.01640009e-03, -6.20744952e+00], [ -1.47371167e-01, -1.98758175e+00]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_nan_predict_log_proba(): y_hat = model.predict_log_proba(X_nan) y = [[ -3.99533332e-02, -3.23995333e+00], [ -1.17110067e+00, -3.71100666e-01], [ -4.01814993e+00, -1.81499279e-02], [ -6.93147181e-01, -6.93147181e-01], [ -9.80005545e+00, -5.54500620e-05], [ -5.60369104e+00, -3.69104343e-03], [ -1.78390074e+00, -1.83900741e-01], [ -3.05902274e-07, -1.50000003e+01], [ -8.68361522e-02, -2.48683615e+00], [ -1.00016521e-02, -4.61000165e+00]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_nan_predict_log_proba(): y_hat = model.predict_log_proba(X_nan) y = [[ -3.57980882e-01, -1.20093223e+00], [ -1.20735130e+00, -3.55230506e-01], [ -2.43174286e-01, -1.53310132e+00], [ -6.93147181e-01, -6.93147181e-01], [ -9.31781101e+00, -8.98143220e-05], [ -6.29755079e-04, -7.37049444e+00], [ -1.31307006e+00, -3.13332194e-01], [ -2.61764180e-01, -1.46833995e+00], [ -2.29725479e-01, -1.58353505e+00], [ -1.17299253e+00, -3.70251760e-01]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict_log_proba_parallel(): y_hat = model.predict_log_proba(X, n_jobs=2) y = [[ -1.48842547e-02, -4.21488425e+00], [ -4.37487950e-01, -1.03748795e+00], [ -5.60369104e+00, -3.69104343e-03], [ -1.64000001e+01, -7.54345812e-08], [ -1.30000023e+01, -2.26032685e-06], [ -8.00033541e+00, -3.35406373e-04], [ -5.60369104e+00, -3.69104343e-03], [ -3.05902274e-07, -1.50000003e+01], [ -3.35406373e-04, -8.00033541e+00], [ -6.11066022e-04, -7.40061107e+00]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict_log_proba_parallel(): y_hat = model.predict_log_proba(X, n_jobs=2) y = [[ -5.03107596e-01, -9.27980626e-01], [ -1.86355320e-01, -1.77183117e+00], [ -5.58542088e-01, -8.48731256e-01], [ -7.67315597e-01, -6.24101927e-01], [ -2.32860808e+00, -1.02510436e-01], [ -3.06641866e-03, -5.78877778e+00], [ -9.85292840e-02, -2.36626165e+00], [ -2.61764180e-01, -1.46833995e+00], [ -2.01640009e-03, -6.20744952e+00], [ -1.47371167e-01, -1.98758175e+00]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict_proba(): y_hat = model.predict_proba(X) y = [[ 9.85225968e-01, 1.47740317e-02], [ 6.45656306e-01, 3.54343694e-01], [ 3.68423990e-03, 9.96315760e-01], [ 7.54345778e-08, 9.99999925e-01], [ 2.26032430e-06, 9.99997740e-01], [ 3.35350130e-04, 9.99664650e-01], [ 3.68423990e-03, 9.96315760e-01], [ 9.99999694e-01, 3.05902227e-07], [ 9.99664650e-01, 3.35350130e-04], [ 9.99389121e-01, 6.10879359e-04]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict_proba(): y_hat = model.predict_proba(X) y = [[ 0.60464873, 0.39535127], [ 0.82997863, 0.17002137], [ 0.57204244, 0.42795756], [ 0.46425765, 0.53574235], [ 0.09743127, 0.90256873], [ 0.99693828, 0.00306172], [ 0.90616916, 0.09383084], [ 0.76969251, 0.23030749], [ 0.99798563, 0.00201437], [ 0.86297361, 0.13702639]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_nan_predict_proba(): y_hat = model.predict_proba(X_nan) y = [[ 9.60834277e-01, 3.91657228e-02], [ 3.10025519e-01, 6.89974481e-01], [ 1.79862100e-02, 9.82013790e-01], [ 5.00000000e-01, 5.00000000e-01], [ 5.54485247e-05, 9.99944551e-01], [ 3.68423990e-03, 9.96315760e-01], [ 1.67981615e-01, 8.32018385e-01], [ 9.99999694e-01, 3.05902227e-07], [ 9.16827304e-01, 8.31726965e-02], [ 9.90048198e-01, 9.95180187e-03]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_nan_predict_proba(): y_hat = model.predict_proba(X_nan) y = [[ 6.99086440e-01, 3.00913560e-01], [ 2.98988163e-01, 7.01011837e-01], [ 7.84134838e-01, 2.15865162e-01], [ 5.00000000e-01, 5.00000000e-01], [ 8.98102888e-05, 9.99910190e-01], [ 9.99370443e-01, 6.29556825e-04], [ 2.68992964e-01, 7.31007036e-01], [ 7.69692511e-01, 2.30307489e-01], [ 7.94751748e-01, 2.05248252e-01], [ 3.09439547e-01, 6.90560453e-01]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict_proba_parallel(): y_hat = model.predict_proba(X, n_jobs=2) y = [[ 9.85225968e-01, 1.47740317e-02], [ 6.45656306e-01, 3.54343694e-01], [ 3.68423990e-03, 9.96315760e-01], [ 7.54345778e-08, 9.99999925e-01], [ 2.26032430e-06, 9.99997740e-01], [ 3.35350130e-04, 9.99664650e-01], [ 3.68423990e-03, 9.96315760e-01], [ 9.99999694e-01, 3.05902227e-07], [ 9.99664650e-01, 3.35350130e-04], [ 9.99389121e-01, 6.10879359e-04]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict_proba_parallel(): y_hat = model.predict_proba(X, n_jobs=2) y = [[ 0.60464873, 0.39535127], [ 0.82997863, 0.17002137], [ 0.57204244, 0.42795756], [ 0.46425765, 0.53574235], [ 0.09743127, 0.90256873], [ 0.99693828, 0.00306172], [ 0.90616916, 0.09383084], [ 0.76969251, 0.23030749], [ 0.99798563, 0.00201437], [ 0.86297361, 0.13702639]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict(): y_hat = model.predict(X) y = [0, 0, 1, 1, 1, 1, 1, 0, 0, 0] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict(): y_hat = model.predict(X) y = [0, 0, 0, 1, 1, 0, 0, 0, 0, 0] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_nan_predict(): y_hat = model.predict(X_nan) y = [0, 1, 1, 0, 1, 1, 1, 0, 0, 0] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_nan_predict(): y_hat = model.predict(X_nan) y = [0, 1, 0, 0, 1, 0, 1, 0, 0, 1] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict_parallel(): y_hat = model.predict(X, n_jobs=2) y = [0, 0, 1, 1, 1, 1, 1, 0, 0, 0] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict_parallel(): y_hat = model.predict(X, n_jobs=2) y = [0, 0, 0, 1, 1, 0, 0, 0, 0, 0] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_fit_parallel(): model.fit(X, y, n_jobs=2) mu1 = model.distributions[0].parameters[0] cov1 = model.distributions[0].parameters[1] mu1_t = [0.03333333, 0.28333333, 0.21666666] cov1_t = [[1.3088888, 0.9272222, 0.6227777], [0.9272222, 2.2513888, 1.3402777], [0.6227777, 1.3402777, 0.9547222]] mu2 = model.distributions[1].parameters[0] cov2 = model.distributions[1].parameters[1] mu2_t = [2.925, 2.825, 2.625] cov2_t = [[0.75687499, 0.23687499, 0.4793750], [0.23687499, 0.40187499, 0.5318749], [0.47937500, 0.53187499, 0.7868750]] assert_array_almost_equal(mu1, mu1_t) assert_array_almost_equal(cov1, cov1_t) assert_array_almost_equal(mu2, mu2_t) assert_array_almost_equal(cov2, cov2_t) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_fit_parallel(): model.fit(X, y, n_jobs=2) mu1 = model.distributions[0].parameters[0] cov1 = model.distributions[0].parameters[1] mu1_t = [1.033333, 1.3166667, 0.75] cov1_t = [[0.242222, 0.0594444, 0.178333], [0.059444, 0.5980555, 0.414166], [0.178333, 0.4141666, 0.439166]] d21 = model.distributions[1].distributions[0] d22 = model.distributions[1].distributions[1] d23 = model.distributions[1].distributions[2] assert_array_almost_equal(mu1, mu1_t) assert_array_almost_equal(cov1, cov1_t) assert_array_almost_equal(d21.parameters, [0.34188034]) assert_array_almost_equal(d22.parameters, [1.01294275, 0.22658346]) assert_array_almost_equal(d23.parameters, [2.625]) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_from_samples(): model = BayesClassifier.from_samples(MultivariateGaussianDistribution, X, y) mu1 = model.distributions[0].parameters[0] cov1 = model.distributions[0].parameters[1] mu1_t = [0.03333333, 0.2833333, 0.21666666] cov1_t = [[1.308888888, 0.9272222222, 0.6227777777], [0.927222222, 2.251388888, 1.340277777], [0.622777777, 1.340277777, 0.9547222222]] mu2 = model.distributions[1].parameters[0] cov2 = model.distributions[1].parameters[1] mu2_t = [2.925, 2.825, 2.625] cov2_t = [[0.75687500, 0.23687499, 0.47937500], [0.23687499, 0.40187499, 0.53187499], [0.47937500, 0.53187499, 0.78687500]] assert_array_almost_equal(mu1, mu1_t) assert_array_almost_equal(cov1, cov1_t) assert_array_almost_equal(mu2, mu2_t) assert_array_almost_equal(cov2, cov2_t) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_pickle(): model2 = pickle.loads(pickle.dumps(model)) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], MultivariateGaussianDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_pickle(): model2 = pickle.loads(pickle.dumps(model)) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], IndependentComponentsDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_to_json(): model2 = BayesClassifier.from_json(model.to_json()) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], MultivariateGaussianDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_to_json(): model2 = BayesClassifier.from_json(model.to_json()) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], IndependentComponentsDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_robust_from_json(): model2 = from_json(model.to_json()) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], MultivariateGaussianDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_robust_from_json(): model2 = from_json(model.to_json()) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], IndependentComponentsDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_hmm, teardown) def test_model(): assert_almost_equal(hmm1.log_probability(list('H')), -0.2231435513142097 ) assert_almost_equal(hmm1.log_probability(list('T')), -1.6094379124341003 ) assert_almost_equal(hmm1.log_probability(list('HHHH')), -0.8925742052568388 ) assert_almost_equal(hmm1.log_probability(list('THHH')), -2.2788685663767296 ) assert_almost_equal(hmm1.log_probability(list('TTTT')), -6.437751649736401 ) assert_almost_equal(hmm2.log_probability(list('H')), -0.6931471805599453 ) assert_almost_equal(hmm2.log_probability(list('T')), -0.6931471805599453 ) assert_almost_equal(hmm2.log_probability(list('HHHH')), -2.772588722239781 ) assert_almost_equal(hmm2.log_probability(list('THHH')), -2.772588722239781 ) assert_almost_equal(hmm2.log_probability(list('TTTT')), -2.772588722239781 ) assert_almost_equal(hmm3.log_probability(list('H')), -0.43078291609245417) assert_almost_equal(hmm3.log_probability(list('T')), -1.0498221244986776) assert_almost_equal(hmm3.log_probability(list('HHHH')), -1.7231316643698167) assert_almost_equal(hmm3.log_probability(list('THHH')), -2.3421708727760397) assert_almost_equal(hmm3.log_probability(list('TTTT')), -4.1992884979947105) assert_almost_equal(hmm3.log_probability(list('THTHTHTHTHTH')), -8.883630243546788) assert_almost_equal(hmm3.log_probability(list('THTHHHHHTHTH')), -7.645551826734343) assert_equal(model.d, 1) @with_setup(setup_hmm, teardown) def test_hmm_log_proba(): logs = model.predict_log_proba(np.array([list('H'), list('THHH'), list('TTTT'), list('THTHTHTHTHTH'), list('THTHHHHHTHTH')])) assert_almost_equal(logs[0][0], -0.89097292388986515) assert_almost_equal(logs[0][1], -1.3609765531356006) assert_almost_equal(logs[0][2], -1.0986122886681096) assert_almost_equal(logs[1][0], -0.93570553121744293) assert_almost_equal(logs[1][1], -1.429425687080494) assert_almost_equal(logs[1][2], -0.9990078376167526) assert_almost_equal(logs[2][0], -3.9007882563128864) assert_almost_equal(logs[2][1], -0.23562532881626597) assert_almost_equal(logs[2][2], -1.6623251045711958) assert_almost_equal(logs[3][0], -3.1703366478831185) assert_almost_equal(logs[3][1], -0.49261403211260379) assert_almost_equal(logs[3][2], -1.058478108940049) assert_almost_equal(logs[4][0], -1.3058441172130273) assert_almost_equal(logs[4][1], -1.4007102236822906) assert_almost_equal(logs[4][2], -0.7284958836972919) @with_setup(setup_hmm, teardown) def test_hmm_proba(): probs = model.predict_proba(np.array([list('H'), list('THHH'), list('TTTT'), list('THTHTHTHTHTH'), list('THTHHHHHTHTH')])) assert_almost_equal(probs[0][0], 0.41025641025641024) assert_almost_equal(probs[0][1], 0.25641025641025639) assert_almost_equal(probs[0][2], 0.33333333333333331) assert_almost_equal(probs[1][0], 0.39230898163446098) assert_almost_equal(probs[1][1], 0.23944639992337707) assert_almost_equal(probs[1][2], 0.36824461844216183) assert_almost_equal(probs[2][0], 0.020225961918306088) assert_almost_equal(probs[2][1], 0.79007663743383105) assert_almost_equal(probs[2][2], 0.18969740064786292) assert_almost_equal(probs[3][0], 0.041989459861032523) assert_almost_equal(probs[3][1], 0.61102706038265642) assert_almost_equal(probs[3][2], 0.346983479756311) assert_almost_equal(probs[4][0], 0.27094373022369794) assert_almost_equal(probs[4][1], 0.24642188711704707) assert_almost_equal(probs[4][2], 0.48263438265925512) @with_setup(setup_hmm, teardown) def test_hmm_prediction(): predicts = model.predict(np.array([list('H'), list('THHH'), list('TTTT'), list('THTHTHTHTHTH'), list('THTHHHHHTHTH')])) assert_equal(predicts[0], 0) assert_equal(predicts[1], 0) assert_equal(predicts[2], 1) assert_equal(predicts[3], 1) assert_equal(predicts[4], 2) @with_setup(setup_multivariate_gaussian, teardown) def test_io_log_probability(): X2 = DataGenerator(X) X3 = DataFrameGenerator(pandas.DataFrame(X)) logp1 = model.log_probability(X) logp2 = model.log_probability(X2) logp3 = model.log_probability(X3) assert_array_almost_equal(logp1, logp2) assert_array_almost_equal(logp1, logp3) @with_setup(setup_multivariate_gaussian, teardown) def test_io_predict(): X2 = DataGenerator(X) X3 = DataFrameGenerator(pandas.DataFrame(X)) y_hat1 = model.predict(X) y_hat2 = model.predict(X2) y_hat3 = model.predict(X3) assert_array_almost_equal(y_hat1, y_hat2) assert_array_almost_equal(y_hat1, y_hat3) @with_setup(setup_multivariate_gaussian, teardown) def test_io_predict_proba(): X2 = DataGenerator(X) X3 = DataFrameGenerator(pandas.DataFrame(X)) y_hat1 = model.predict_proba(X) y_hat2 = model.predict_proba(X2) y_hat3 = model.predict_proba(X3) assert_array_almost_equal(y_hat1, y_hat2) assert_array_almost_equal(y_hat1, y_hat3) @with_setup(setup_multivariate_gaussian, teardown) def test_io_predict_log_proba(): X2 = DataGenerator(X) X3 = DataFrameGenerator(pandas.DataFrame(X)) y_hat1 = model.predict_log_proba(X) y_hat2 = model.predict_log_proba(X2) y_hat3 = model.predict_log_proba(X3) assert_array_almost_equal(y_hat1, y_hat2) assert_array_almost_equal(y_hat1, y_hat3) def test_io_fit(): X = numpy.random.randn(100, 5) + 0.5 weights = numpy.abs(numpy.random.randn(100)) y = numpy.random.randint(2, size=100) data_generator = DataGenerator(X, weights, y) mu1 = numpy.array([0, 0, 0, 0, 0]) mu2 = numpy.array([1, 1, 1, 1, 1]) cov = numpy.eye(5) d1 = MultivariateGaussianDistribution(mu1, cov) d2 = MultivariateGaussianDistribution(mu2, cov) bc1 = BayesClassifier([d1, d2]) bc1.fit(X, y, weights) d1 = MultivariateGaussianDistribution(mu1, cov) d2 = MultivariateGaussianDistribution(mu2, cov) bc2 = BayesClassifier([d1, d2]) bc2.fit(data_generator) logp1 = bc1.log_probability(X) logp2 = bc2.log_probability(X) assert_array_almost_equal(logp1, logp2) def test_io_from_samples(): X = numpy.random.randn(100, 5) + 0.5 weights = numpy.abs(numpy.random.randn(100)) y = numpy.random.randint(2, size=100) data_generator = DataGenerator(X, weights, y) d = MultivariateGaussianDistribution bc1 = BayesClassifier.from_samples(d, X=X, y=y, weights=weights) bc2 = BayesClassifier.from_samples(d, X=data_generator) logp1 = bc1.log_probability(X) logp2 = bc2.log_probability(X) assert_array_almost_equal(logp1, logp2)
2416
from typing import Dict, List, cast from py_headless_daw.project.parameter import Parameter, ParameterValueType, ParameterRangeType class HavingParameters: def __init__(self): self._parameters: Dict[str, Parameter] = {} super().__init__() def has_parameter(self, name: str) -> bool: return name in self._parameters def add_parameter(self, name: str, value: ParameterValueType, param_type: str, value_range: ParameterRangeType): if name in self._parameters: raise Exception('parameter named ' + name + ' already added to this object') parameter = Parameter(name, value, param_type, value_range) self._parameters[name] = parameter def add_parameter_object(self, parameter: Parameter) -> None: self._parameters[parameter.name] = parameter def get_parameter(self, name: str) -> Parameter: for parameter in self.parameters: if parameter.name == name: return parameter list_of_names: List[str] = [p.name for p in self.parameters] # noinspection PyTypeChecker available_names: List[str] = cast(List[str], list_of_names) raise Exception('parameter named ' + name + ' not found. Available: ' + ', '.join(available_names)) def get_parameter_value(self, name: str) -> ParameterValueType: param = self.get_parameter(name) return param.value def get_float_parameter_value(self, name: str) -> float: param = self.get_parameter(name) if param.type != Parameter.TYPE_FLOAT: raise ValueError(f"parameter {name} was expected to be float (error: f009d0ef)") value = self.get_parameter_value(name) cast_value = cast(float, value) return cast_value def get_enum_parameter_value(self, name: str) -> str: param = self.get_parameter(name) if param.type != Parameter.TYPE_ENUM: raise ValueError(f"parameter {name} was expected to be enum (error: 80a1d180)") value = self.get_parameter_value(name) cast_value = cast(str, value) return cast_value def set_parameter_value(self, name: str, value: ParameterValueType): param = self.get_parameter(name) param.value = value @property def parameters(self) -> List[Parameter]: return list(self._parameters.values())
2426
import os, sys, cdms2, vcs, vcs.testing.regression as regression dataset = cdms2.open(os.path.join(vcs.sample_data,"clt.nc")) data = dataset("clt") canvas = regression.init() isoline = canvas.createisoline() isoline.label="y" texts=[] colors = [] for i in range(10): text = canvas.createtext() text.color = 50 + 12 * i text.height = 12 colors.append(100 + 12 * i) if i%2 == 0: texts.append(text.name) else: texts.append(text) isoline.text = texts # First test using isoline.text[...].color canvas.plot(data, isoline, bg=1) baseline = os.path.splitext(sys.argv[1]) baselineImage = "%s%s"%baseline ret = regression.run_wo_terminate(canvas, "test_vcs_isoline_labels.png", baselineImage) # Now set isoline.linecolors and test again. canvas.clear() isoline.linecolors = colors canvas.plot(data, isoline, bg=1) baselineImage = "%s%d%s"%(baseline[0], 2, baseline[1]) testImage = os.path.abspath("test_vcs_isoline_labels2.png") ret += regression.run_wo_terminate(canvas, testImage, baselineImage) # Now set isoline.textcolors and test again. canvas.clear() isoline.textcolors = colors canvas.plot(data, isoline, bg=1) baselineImage = "%s%d%s"%(baseline[0], 3, baseline[1]) testImage = os.path.abspath("test_vcs_isoline_labels3.png") ret += regression.run_wo_terminate(canvas, testImage, baselineImage) sys.exit(ret)
2476
import sqlite3 import subprocess, datetime from flask import Flask, request, session, g, redirect, url_for, \ abort, render_template, flash from contextlib import closing from tquery import get_latest_record from config import * app = Flask(__name__) app.config.from_object(__name__) # DB helper functions def connect_db(): return sqlite3.connect(app.config['DATABASE']) def init_db(): """Initializes the sqlite3 database. This function must be imported and executed from the Python interpreter before the application is first run.""" with closing(connect_db()) as db: with app.open_resource('schema.sql', mode='r') as f: db.cursor().executescript(f.read()) db.commit() # Auto-open and close DB when serving requests @app.before_request def before_request(): g.db = connect_db() @app.teardown_request def teardown_request(exception): db = getattr(g, 'db', None) if db is not None: db.close() @app.route('/', methods=['GET', 'POST']) def welcome_page(): if 'username' in session and session['username']: return redirect(url_for('submit_page')) error = None if request.method == 'POST': # someone's logging in if not request.form['username'] in app.config['USERNAMES']: error = 'username' elif request.form['password'] != app.config['PASSWORD']: error = 'password' else: # successful login session['username'] = request.form['username'] flash('Hi ' + session['username'] + '!') return redirect(url_for('submit_page')) return render_template('welcome_page.html', commands=command_history(), error=error, last_record=last_record()) @app.route('/submit', methods=['GET', 'POST']) def submit_page(): error = None if not session.get('username'): abort(401) if request.method == 'POST': # command is being issued to AC user_mode = request.form['mode'] user_temperature = request.form['temperature'] validation_codes = validate_AC_command(user_mode, user_temperature) if (validation_codes['mode_error'] or validation_codes['temperature_error']): error=validation_codes else: subprocess.call(['/usr/bin/irsend','SEND_ONCE', 'lgac', validation_codes['command']]) g.db.execute('insert into commands (command, ts, user) values (?, ?, ?)', [validation_codes['command'], datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), session['username']]) g.db.commit() flash('Command submitted') return render_template('submit_page.html', commands=command_history(), error=error, last_record=last_record()) @app.route('/logout') def logout(): session.pop('logged_in', None) flash('You were logged out') return redirect(url_for('welcome_page')) def validate_AC_command(user_mode, user_temperature): """Validates and sanitizes user-input command; translates command into irsend call.""" codes = dict() if user_mode not in app.config['ACMODES']: codes['mode_error'] = True else: codes['mode_error'] = False if user_mode is not 'off' and user_temperature not in app.config['ACTEMPERATURES']: codes['temperature_error'] = True else: codes['temperature_error'] = False if not codes['mode_error'] and not codes['temperature_error']: codes['mode'] = user_mode codes['temperature'] = user_temperature if codes['mode'] == 'off': command_postfix = 'off' elif codes['mode'] == 'heat': command_postfix = 'heat' + codes['temperature'] else: command_postfix = codes['temperature'] codes['command'] = command_postfix return codes def command_history(): """Returns a list of dictionaries, each containing a command issued to the AC previously. The list is ordered chronologically, from newest to oldest.""" cur = g.db.execute('select command, ts, user from commands order by id desc') command_history = [] for row in cur.fetchall(): if row[0][0] == 'h': cmd = 'heat to ' + row[0][4:] elif row[0] == 'off': cmd = 'off' else: cmd = 'cool to ' + row[0] command_history.append(dict(command=cmd, ts=row[1], user=row[2])) return command_history def last_record(): """Returns the last temperature and humidity record data. The returned object is a dict with keys ts, fahrenheit, celsius and humidity. """ db_record = get_latest_record() out_record = dict() out_record['date'] = db_record[0].strftime("%Y-%m-%d") out_record['time'] = db_record[0].strftime("%H:%M") out_record['celsius'] = db_record[1] out_record['fahrenheit'] = int(round(out_record['celsius']*9/5.0 + 32)) out_record['humidity'] = int(round(db_record[2])) return out_record if __name__ == '__main__': app.run(host='0.0.0.0')
2492
import unittest import tests.settings_mock as settings_mock from tests.activity.classes_mock import FakeLogger from workflow.workflow_IngestAcceptedSubmission import workflow_IngestAcceptedSubmission class TestWorkflowIngestAcceptedSubmission(unittest.TestCase): def setUp(self): self.workflow = workflow_IngestAcceptedSubmission( settings_mock, FakeLogger(), None, None, None, None ) def test_init(self): self.assertEqual(self.workflow.name, "IngestAcceptedSubmission")
2513
from dataset.baseset import BaseSet import random, cv2 import numpy as np class iNaturalist(BaseSet): def __init__(self, mode='train', cfg=None, transform=None): super(iNaturalist, self).__init__(mode, cfg, transform) random.seed(0) self.class_dict = self._get_class_dict() def __getitem__(self, index): if self.cfg.TRAIN.SAMPLER.TYPE == "weighted sampler" and self.mode == 'train': assert self.cfg.TRAIN.SAMPLER.WEIGHTED_SAMPLER.TYPE in ["balance", 'square', 'progressive'] if self.cfg.TRAIN.SAMPLER.WEIGHTED_SAMPLER.TYPE == "balance": sample_class = random.randint(0, self.num_classes - 1) elif self.cfg.TRAIN.SAMPLER.WEIGHTED_SAMPLER.TYPE == "square": sample_class = np.random.choice(np.arange(self.num_classes), p=self.square_p) else: sample_class = np.random.choice(np.arange(self.num_classes), p=self.progress_p) sample_indexes = self.class_dict[sample_class] index = random.choice(sample_indexes) now_info = self.data[index] img = self._get_image(now_info) image = self.transform(img) meta = dict() image_label = now_info['category_id'] # 0-index return image, image_label, meta
2620
from glue.core.data_factories.helpers import has_extension from glue.config import data_factory __all__ = ['tabular_data'] @data_factory(label="ASCII Table", identifier=has_extension('csv txt tsv tbl dat ' 'csv.gz txt.gz tbl.bz ' 'dat.gz'), priority=1) def tabular_data(path, **kwargs): from glue.core.data_factories.astropy_table import astropy_tabular_data from glue.core.data_factories.pandas import pandas_read_table for fac in [astropy_tabular_data, pandas_read_table]: try: return fac(path, **kwargs) except Exception: pass else: raise IOError("Could not parse file: %s" % path)
2623
import math import pytorch_lightning as pl class LearningRateDecayCallback(pl.Callback): def __init__(self, learning_rate, warmup_tokens=<PASSWORD>, final_tokens=<PASSWORD>, lr_decay=True): super().__init__() self.learning_rate = learning_rate self.tokens = 0 self.final_tokens = final_tokens self.lr_decay = lr_decay self.warmup_tokens = warmup_tokens def on_train_batch_end(self, trainer, pl_module, batch, batch_idx, dataloader_idx): optimizer = trainer.optimizers[0] _, y = batch if self.lr_decay: self.tokens += (y >= 0).sum() # number of tokens processed this step (i.e. label is not -100) if self.tokens < self.warmup_tokens: # linear warmup lr_mult = float(self.tokens) / float(max(1, self.warmup_tokens)) else: # cosine learning rate decay progress = float(self.tokens - self.warmup_tokens) / float( max(1, self.final_tokens - self.warmup_tokens)) lr_mult = max(0.1, 0.5 * (1.0 + math.cos(math.pi * progress))) lr = self.learning_rate * lr_mult for param_group in optimizer.param_groups: param_group['lr'] = lr
2626
from setuptools import setup setup( name="nmn-iwp", version="0.1", keywords="", packages=["vr", "vr.models"] )
2659
def test_xrange(judge_command): judge_command( "XRANGE somestream - +", {"command": "XRANGE", "key": "somestream", "stream_id": ["-", "+"]}, ) judge_command( "XRANGE somestream 1526985054069 1526985055069", { "command": "XRANGE", "key": "somestream", "stream_id": ["1526985054069", "1526985055069"], }, ) judge_command( "XRANGE somestream 1526985054069 1526985055069-10", { "command": "XRANGE", "key": "somestream", "stream_id": ["1526985054069", "1526985055069-10"], }, ) judge_command( "XRANGE somestream 1526985054069 1526985055069-10 count 10", { "command": "XRANGE", "key": "somestream", "stream_id": ["1526985054069", "1526985055069-10"], "count_const": "count", "count": "10", }, ) def test_xgroup_create(judge_command): judge_command( "XGROUP CREATE mykey mygroup 123", { "command": "XGROUP", "stream_create": "CREATE", "key": "mykey", "group": "mygroup", "stream_id": "123", }, ) judge_command( "XGROUP CREATE mykey mygroup $", { "command": "XGROUP", "stream_create": "CREATE", "key": "mykey", "group": "mygroup", "stream_id": "$", }, ) # short of a parameter judge_command("XGROUP CREATE mykey mygroup", None) judge_command("XGROUP CREATE mykey", None) def test_xgroup_setid(judge_command): judge_command( "XGROUP SETID mykey mygroup 123", { "command": "XGROUP", "stream_setid": "SETID", "key": "mykey", "group": "mygroup", "stream_id": "123", }, ) judge_command( "XGROUP SETID mykey mygroup $", { "command": "XGROUP", "stream_setid": "SETID", "key": "mykey", "group": "mygroup", "stream_id": "$", }, ) # two subcommand together shouldn't match judge_command("XGROUP CREATE mykey mygroup 123 SETID mykey mygroup $", None) def test_xgroup_destroy(judge_command): judge_command( "XGROUP destroy mykey mygroup", { "command": "XGROUP", "stream_destroy": "destroy", "key": "mykey", "group": "mygroup", }, ) judge_command("XGROUP destroy mykey", None) judge_command("XGROUP DESTROY mykey mygroup $", None) def test_xgroup_delconsumer(judge_command): judge_command( "XGROUP delconsumer mykey mygroup myconsumer", { "command": "XGROUP", "stream_delconsumer": "delconsumer", "key": "mykey", "group": "mygroup", "consumer": "myconsumer", }, ) judge_command( "XGROUP delconsumer mykey mygroup $", { "command": "XGROUP", "stream_delconsumer": "delconsumer", "key": "mykey", "group": "mygroup", "consumer": "$", }, ) judge_command("XGROUP delconsumer mykey mygroup", None) def test_xgroup_stream(judge_command): judge_command( "XACK mystream group1 123123", { "command": "XACK", "key": "mystream", "group": "group1", "stream_id": "123123", }, ) judge_command( "XACK mystream group1 123123 111", {"command": "XACK", "key": "mystream", "group": "group1", "stream_id": "111"}, ) def test_xinfo(judge_command): judge_command( "XINFO consumers mystream mygroup", { "command": "XINFO", "stream_consumers": "consumers", "key": "mystream", "group": "mygroup", }, ) judge_command( "XINFO GROUPS mystream", {"command": "XINFO", "stream_groups": "GROUPS", "key": "mystream"}, ) judge_command( "XINFO STREAM mystream", {"command": "XINFO", "stream": "STREAM", "key": "mystream"}, ) judge_command("XINFO HELP", {"command": "XINFO", "help": "HELP"}) judge_command("XINFO consumers mystream mygroup GROUPS mystream", None) judge_command("XINFO groups mystream mygroup", None) def test_xinfo_with_full(judge_command): judge_command( "XINFO STREAM mystream FULL", { "command": "XINFO", "stream": "STREAM", "key": "mystream", "full_const": "FULL", }, ) judge_command( "XINFO STREAM mystream FULL count 10", { "command": "XINFO", "stream": "STREAM", "key": "mystream", "full_const": "FULL", "count_const": "count", "count": "10", }, ) def test_xpending(judge_command): judge_command( "XPENDING mystream group55", {"command": "XPENDING", "key": "mystream", "group": "group55"}, ) judge_command( "XPENDING mystream group55 myconsumer", { "command": "XPENDING", "key": "mystream", "group": "group55", "consumer": "myconsumer", }, ) judge_command( "XPENDING mystream group55 - + 10", { "command": "XPENDING", "key": "mystream", "group": "group55", "stream_id": ["-", "+"], "count": "10", }, ) judge_command( "XPENDING mystream group55 - + 10 myconsumer", { "command": "XPENDING", "key": "mystream", "group": "group55", "stream_id": ["-", "+"], "count": "10", "consumer": "myconsumer", }, ) judge_command("XPENDING mystream group55 - + ", None) def test_xadd(judge_command): judge_command( "xadd mystream MAXLEN ~ 1000 * key value", { "command": "xadd", "key": "mystream", "maxlen": "MAXLEN", "approximately": "~", "count": "1000", "sfield": "key", "svalue": "value", "stream_id": "*", }, ) # test for MAXLEN option judge_command( "xadd mystream MAXLEN 1000 * key value", { "command": "xadd", "key": "mystream", "maxlen": "MAXLEN", "count": "1000", "sfield": "key", "svalue": "value", "stream_id": "*", }, ) judge_command( "xadd mystream * key value", { "command": "xadd", "key": "mystream", "sfield": "key", "svalue": "value", "stream_id": "*", }, ) # spcify stream id judge_command( "xadd mystream 123-123 key value", { "command": "xadd", "key": "mystream", "sfield": "key", "svalue": "value", "stream_id": "123-123", }, ) judge_command( "xadd mystream 123-123 key value foo bar hello world", { "command": "xadd", "key": "mystream", "sfield": "hello", "svalue": "world", "stream_id": "123-123", }, ) def test_xtrim(judge_command): judge_command( " XTRIM mystream MAXLEN 2", {"command": "XTRIM", "key": "mystream", "maxlen": "MAXLEN", "count": "2"}, ) judge_command( " XTRIM mystream MAXLEN ~ 2", { "command": "XTRIM", "key": "mystream", "maxlen": "MAXLEN", "count": "2", "approximately": "~", }, ) judge_command(" XTRIM mystream", None) def test_xdel(judge_command): judge_command( "XDEL mystream 1581165000000 1549611229000 1581060831000", {"command": "XDEL", "key": "mystream", "stream_id": "1581060831000"}, ) judge_command( "XDEL mystream 1581165000000", {"command": "XDEL", "key": "mystream", "stream_id": "1581165000000"}, ) def test_xclaim(judge_command): judge_command( "XCLAIM mystream mygroup Alice 3600000 1526569498055-0", { "command": "XCLAIM", "key": "mystream", "group": "mygroup", "consumer": "Alice", "millisecond": "3600000", "stream_id": "1526569498055-0", }, ) judge_command( "XCLAIM mystream mygroup Alice 3600000 1526569498055-0 123 456 789", { "command": "XCLAIM", "key": "mystream", "group": "mygroup", "consumer": "Alice", "millisecond": "3600000", "stream_id": "789", }, ) judge_command( "XCLAIM mystream mygroup Alice 3600000 1526569498055-0 IDEL 300", { "command": "XCLAIM", "key": "mystream", "group": "mygroup", "consumer": "Alice", "millisecond": ["3600000", "300"], "stream_id": "1526569498055-0", "idel": "IDEL", }, ) judge_command( "XCLAIM mystream mygroup Alice 3600000 1526569498055-0 retrycount 7", { "command": "XCLAIM", "key": "mystream", "group": "mygroup", "consumer": "Alice", "millisecond": "3600000", "stream_id": "1526569498055-0", "retrycount": "retrycount", "count": "7", }, ) judge_command( "XCLAIM mystream mygroup Alice 3600000 1526569498055-0 TIME 123456789", { "command": "XCLAIM", "key": "mystream", "group": "mygroup", "consumer": "Alice", "millisecond": "3600000", "stream_id": "1526569498055-0", "time": "TIME", "timestamp": "123456789", }, ) judge_command( "XCLAIM mystream mygroup Alice 3600000 1526569498055-0 FORCE", { "command": "XCLAIM", "key": "mystream", "group": "mygroup", "consumer": "Alice", "millisecond": "3600000", "stream_id": "1526569498055-0", "force": "FORCE", }, ) judge_command( "XCLAIM mystream mygroup Alice 3600000 1526569498055-0 JUSTID", { "command": "XCLAIM", "key": "mystream", "group": "mygroup", "consumer": "Alice", "millisecond": "3600000", "stream_id": "1526569498055-0", "justid": "JUSTID", }, ) def test_xread(judge_command): judge_command( "XREAD COUNT 2 STREAMS mystream writers 0-0 0-0", { "command": "XREAD", "count_const": "COUNT", "count": "2", "streams": "STREAMS", # FIXME current grammar can't support multiple tokens # so the ids will be recongized to keys. "keys": "mystream writers 0-0", "stream_id": "0-0", }, ) judge_command( "XREAD COUNT 2 BLOCK 1000 STREAMS mystream writers 0-0 0-0", { "command": "XREAD", "count_const": "COUNT", "count": "2", "streams": "STREAMS", "keys": "mystream writers 0-0", "block": "BLOCK", "millisecond": "1000", "stream_id": "0-0", }, ) def test_xreadgroup(judge_command): judge_command( "XREADGROUP GROUP mygroup1 Bob COUNT 1 BLOCK 100 NOACK STREAMS key1 1 key2 2", { "command": "XREADGROUP", "stream_group": "GROUP", "group": "mygroup1", "consumer": "Bob", "count_const": "COUNT", "count": "1", "block": "BLOCK", "millisecond": "100", "noack": "NOACK", "streams": "STREAMS", "keys": "key1 1 key2", "stream_id": "2", }, ) judge_command( "XREADGROUP GROUP mygroup1 Bob STREAMS key1 1 key2 2", { "command": "XREADGROUP", "stream_group": "GROUP", "group": "mygroup1", "consumer": "Bob", "streams": "STREAMS", "keys": "key1 1 key2", "stream_id": "2", }, ) judge_command("XREADGROUP GROUP group consumer", None)
2671
import logging import os import pickle import sys import threading import time from typing import List from Giveme5W1H.extractor.root import path from Giveme5W1H.extractor.tools.util import bytes_2_human_readable class KeyValueCache(object): def __init__(self, cache_path): """ :param cache_path: path to cache, must be relative to the root.py file """ self.log = logging.getLogger('GiveMe5W') # resolve path relative to the path file self._cache_path = path(cache_path) # ad a meaningful extension self._cache_path = self._cache_path + '.prickle' self._cache = {} if cache_path and os.path.isfile(self._cache_path) and os.path.getsize(self._cache_path) > 0: # reload cache object form disc, if any with open(self._cache_path, 'rb') as ff: self._cache = pickle.load(ff) self.log.debug('KeyValueCache: ' + self._cache_path + ' restored') self.log_stats() else: self._cache = {} self._lock = threading.Lock() def log_stats(self): # size is not considering child's self.log.info(self._cache_path + ' entries: ' + str(len(self._cache)) + ' size: ' + bytes_2_human_readable( sys.getsizeof(self._cache))) def persist(self): with open(self._cache_path, 'wb') as f: pickle.dump(self._cache, f, pickle.HIGHEST_PROTOCOL) def cache(self, key: str, value: object): """ None values are considered as invalid results (ToughRequest) is producing none for exceptions set -1 if you want to store "No distance" :param key: :param value: :return: """ self._lock.acquire() if value is not None: self._cache[key] = self._pack(value); self.log.debug(self._cache_path + ' CACHED: ' + str(key) + ': ' + str(value)) self.persist() self._lock.release() def get(self, key): """ Read cache entries :param key: :return: """ self._lock.acquire() result = None value = self._cache.get(key) if value is not None: self.log.debug(self._cache_path + ' LOADED: ' + str(key) + ': ' + str(value)) result = self._unpack(value) self._lock.release() return result def get_complex(self, list_of_keys: List[str]): """ Read complex cache entries """ return self.get(self._get_id(list_of_keys)) def cache_complex(self, list_of_keys: List[str], value): """ helper to cache multi (string)key values. They are sorted before concatenation, therefore an order is determined. """ self.cache(self._get_id(list_of_keys), value) def _get_id(self, list_of_keys: List[str]): """ sorts list_of_keys, concatenates with # for readability :param list_of_keys: :return: """ sorted(list_of_keys) return "#".join(list_of_keys) def _pack(self, value): """ cache tracks the age of an entry, may be helpful in the future :param value: :return: """ return [value, str(time.time())] def _unpack(self, value): """ removes the timestamp around the cached value, if any :param value: :return: """ # there are some old entries without timestamp if isinstance(value, str) or isinstance(value, int): return value return value[0]
2699
import os import sys import torch import yaml from functools import partial sys.path.append('../../../../') from trainers import trainer, frn_train from datasets import dataloaders from models.FRN import FRN args = trainer.train_parser() with open('../../../../config.yml', 'r') as f: temp = yaml.safe_load(f) data_path = os.path.abspath(temp['data_path']) fewshot_path = os.path.join(data_path,'CUB_fewshot_raw') pm = trainer.Path_Manager(fewshot_path=fewshot_path,args=args) train_way = args.train_way shots = [args.train_shot, args.train_query_shot] train_loader = dataloaders.meta_train_dataloader(data_path=pm.train, way=train_way, shots=shots, transform_type=args.train_transform_type) model = FRN(way=train_way, shots=[args.train_shot, args.train_query_shot], resnet=args.resnet) train_func = partial(frn_train.default_train,train_loader=train_loader) tm = trainer.Train_Manager(args,path_manager=pm,train_func=train_func) tm.train(model) tm.evaluate(model)
2797
import os, inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(os.path.dirname(currentdir)) os.sys.path.insert(0,parentdir) import math import gym from gym import spaces from gym.utils import seeding import numpy as np import time import pybullet as p from . import kuka import random import pybullet_data from pkg_resources import parse_version maxSteps = 1000 RENDER_HEIGHT = 720 RENDER_WIDTH = 960 class KukaCamGymEnv(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second' : 50 } def __init__(self, urdfRoot=pybullet_data.getDataPath(), actionRepeat=1, isEnableSelfCollision=True, renders=False, isDiscrete=False): self._timeStep = 1./240. self._urdfRoot = urdfRoot self._actionRepeat = actionRepeat self._isEnableSelfCollision = isEnableSelfCollision self._observation = [] self._envStepCounter = 0 self._renders = renders self._width = 341 self._height = 256 self._isDiscrete=isDiscrete self.terminated = 0 self._p = p if self._renders: cid = p.connect(p.SHARED_MEMORY) if (cid<0): p.connect(p.GUI) p.resetDebugVisualizerCamera(1.3,180,-41,[0.52,-0.2,-0.33]) else: p.connect(p.DIRECT) #timinglog = p.startStateLogging(p.STATE_LOGGING_PROFILE_TIMINGS, "kukaTimings.json") self._seed() self.reset() observationDim = len(self.getExtendedObservation()) #print("observationDim") #print(observationDim) observation_high = np.array([np.finfo(np.float32).max] * observationDim) if (self._isDiscrete): self.action_space = spaces.Discrete(7) else: action_dim = 3 self._action_bound = 1 action_high = np.array([self._action_bound] * action_dim) self.action_space = spaces.Box(-action_high, action_high) self.observation_space = spaces.Box(low=0, high=255, shape=(self._height, self._width, 4)) self.viewer = None def _reset(self): self.terminated = 0 p.resetSimulation() p.setPhysicsEngineParameter(numSolverIterations=150) p.setTimeStep(self._timeStep) p.loadURDF(os.path.join(self._urdfRoot,"plane.urdf"),[0,0,-1]) p.loadURDF(os.path.join(self._urdfRoot,"table/table.urdf"), 0.5000000,0.00000,-.820000,0.000000,0.000000,0.0,1.0) xpos = 0.5 +0.2*random.random() ypos = 0 +0.25*random.random() ang = 3.1415925438*random.random() orn = p.getQuaternionFromEuler([0,0,ang]) self.blockUid =p.loadURDF(os.path.join(self._urdfRoot,"block.urdf"), xpos,ypos,-0.1,orn[0],orn[1],orn[2],orn[3]) p.setGravity(0,0,-10) self._kuka = kuka.Kuka(urdfRootPath=self._urdfRoot, timeStep=self._timeStep) self._envStepCounter = 0 p.stepSimulation() self._observation = self.getExtendedObservation() return np.array(self._observation) def __del__(self): p.disconnect() def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def getExtendedObservation(self): #camEyePos = [0.03,0.236,0.54] #distance = 1.06 #pitch=-56 #yaw = 258 #roll=0 #upAxisIndex = 2 #camInfo = p.getDebugVisualizerCamera() #print("width,height") #print(camInfo[0]) #print(camInfo[1]) #print("viewMatrix") #print(camInfo[2]) #print("projectionMatrix") #print(camInfo[3]) #viewMat = camInfo[2] #viewMat = p.computeViewMatrixFromYawPitchRoll(camEyePos,distance,yaw, pitch,roll,upAxisIndex) viewMat = [-0.5120397806167603, 0.7171027660369873, -0.47284144163131714, 0.0, -0.8589617609977722, -0.42747554183006287, 0.28186774253845215, 0.0, 0.0, 0.5504802465438843, 0.8348482847213745, 0.0, 0.1925382763147354, -0.24935829639434814, -0.4401884973049164, 1.0] #projMatrix = camInfo[3]#[0.7499999403953552, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0000200271606445, -1.0, 0.0, 0.0, -0.02000020071864128, 0.0] projMatrix = [0.75, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0000200271606445, -1.0, 0.0, 0.0, -0.02000020071864128, 0.0] img_arr = p.getCameraImage(width=self._width,height=self._height,viewMatrix=viewMat,projectionMatrix=projMatrix) rgb=img_arr[2] np_img_arr = np.reshape(rgb, (self._height, self._width, 4)) self._observation = np_img_arr return self._observation def _step(self, action): if (self._isDiscrete): dv = 0.01 dx = [0,-dv,dv,0,0,0,0][action] dy = [0,0,0,-dv,dv,0,0][action] da = [0,0,0,0,0,-0.1,0.1][action] f = 0.3 realAction = [dx,dy,-0.002,da,f] else: dv = 0.01 dx = action[0] * dv dy = action[1] * dv da = action[2] * 0.1 f = 0.3 realAction = [dx,dy,-0.002,da,f] return self.step2( realAction) def step2(self, action): for i in range(self._actionRepeat): self._kuka.applyAction(action) p.stepSimulation() if self._termination(): break #self._observation = self.getExtendedObservation() self._envStepCounter += 1 self._observation = self.getExtendedObservation() if self._renders: time.sleep(self._timeStep) #print("self._envStepCounter") #print(self._envStepCounter) done = self._termination() reward = self._reward() #print("len=%r" % len(self._observation)) return np.array(self._observation), reward, done, {} def _render(self, mode='human', close=False): if mode != "rgb_array": return np.array([]) base_pos,orn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId) view_matrix = self._p.computeViewMatrixFromYawPitchRoll( cameraTargetPosition=base_pos, distance=self._cam_dist, yaw=self._cam_yaw, pitch=self._cam_pitch, roll=0, upAxisIndex=2) proj_matrix = self._p.computeProjectionMatrixFOV( fov=60, aspect=float(RENDER_WIDTH)/RENDER_HEIGHT, nearVal=0.1, farVal=100.0) (_, _, px, _, _) = self._p.getCameraImage( width=RENDER_WIDTH, height=RENDER_HEIGHT, viewMatrix=view_matrix, projectionMatrix=proj_matrix, renderer=pybullet.ER_BULLET_HARDWARE_OPENGL) rgb_array = np.array(px) rgb_array = rgb_array[:, :, :3] return rgb_array def _termination(self): #print (self._kuka.endEffectorPos[2]) state = p.getLinkState(self._kuka.kukaUid,self._kuka.kukaEndEffectorIndex) actualEndEffectorPos = state[0] #print("self._envStepCounter") #print(self._envStepCounter) if (self.terminated or self._envStepCounter>maxSteps): self._observation = self.getExtendedObservation() return True maxDist = 0.005 closestPoints = p.getClosestPoints(self._kuka.trayUid, self._kuka.kukaUid,maxDist) if (len(closestPoints)):#(actualEndEffectorPos[2] <= -0.43): self.terminated = 1 #print("closing gripper, attempting grasp") #start grasp and terminate fingerAngle = 0.3 for i in range (100): graspAction = [0,0,0.0001,0,fingerAngle] self._kuka.applyAction(graspAction) p.stepSimulation() fingerAngle = fingerAngle-(0.3/100.) if (fingerAngle<0): fingerAngle=0 for i in range (1000): graspAction = [0,0,0.001,0,fingerAngle] self._kuka.applyAction(graspAction) p.stepSimulation() blockPos,blockOrn=p.getBasePositionAndOrientation(self.blockUid) if (blockPos[2] > 0.23): #print("BLOCKPOS!") #print(blockPos[2]) break state = p.getLinkState(self._kuka.kukaUid,self._kuka.kukaEndEffectorIndex) actualEndEffectorPos = state[0] if (actualEndEffectorPos[2]>0.5): break self._observation = self.getExtendedObservation() return True return False def _reward(self): #rewards is height of target object blockPos,blockOrn=p.getBasePositionAndOrientation(self.blockUid) closestPoints = p.getClosestPoints(self.blockUid,self._kuka.kukaUid,1000, -1, self._kuka.kukaEndEffectorIndex) reward = -1000 numPt = len(closestPoints) #print(numPt) if (numPt>0): #print("reward:") reward = -closestPoints[0][8]*10 if (blockPos[2] >0.2): #print("grasped a block!!!") #print("self._envStepCounter") #print(self._envStepCounter) reward = reward+1000 #print("reward") #print(reward) return reward if parse_version(gym.__version__)>=parse_version('0.9.6'): render = _render reset = _reset seed = _seed step = _step
2820
from __future__ import division, print_function __author__ = 'saeedamen' # <NAME> / <EMAIL> # # Copyright 2017 Cuemacro Ltd. - http//www.cuemacro.com / @cuemacro # # See the License for the specific language governing permissions and limitations under the License. # ## Web server components import dash_core_components as dcc import dash_html_components as html import base64 import os ## Date/time components import pandas as pd import datetime from datetime import timedelta from collections import OrderedDict from pandas.tseries.offsets import * from tcapy.vis.layoutdash import LayoutDash ######################################################################################################################## class LayoutDashImplGen(LayoutDash): """This implements the LayoutDash abstract class, to create the web based GUI for the tcapy application. It creates two web pages - detailed_page - for doing detailed tcapy analysis for a specific currency pair - aggregated_page - for more aggregated style analysis across multiple currency pairs and over multiple time periods """ def __init__(self, app=None, constants=None, url_prefix=''): super(LayoutDashImplGen, self).__init__(app=app, constants=constants, url_prefix=url_prefix) available_dates = pd.date_range( datetime.datetime.today().date() - timedelta(days=self._constants.gui_lookback_window), datetime.datetime.today().date(), freq=BDay()) times = pd.date_range("0:00", "23:59", freq="15min") ### create the possible values for drop down boxes on both pages # Reverse date list (for both detailed and aggregated pages) self.available_dates = [x.date() for x in available_dates[::-1]] # For detailed page only self.available_times = [t.strftime("%H:%M") for t in times] self.available_tickers = self._constants.available_tickers_dictionary['All'] self.available_venues = self._constants.available_venues_dictionary['All'] self.available_brokers = self._constants.available_brokers_dictionary['All'] self.available_algos = self._constants.available_algos_dictionary['All'] self.available_market_data = self._constants.available_market_data self.available_order_plot_lines = ['candlestick', 'mid', 'bid', 'ask', 'arrival', 'twap', 'vwap', 'buy trade', 'sell trade'] self.available_execution_plot_lines = ['candlestick', 'mid', 'bid', 'ask', 'buy trade', 'sell trade'] self.available_slippage_bounds = ['0.25', '0.5', '1.0', '1.25', '1.5', '2.0', 'bid/ask'] # For aggregated page only self.available_grouped_tickers = self._flatten_dictionary(self._constants.available_tickers_dictionary) self.available_grouped_venues = self._flatten_dictionary(self._constants.available_venues_dictionary) self.available_grouped_brokers = self._flatten_dictionary(self._constants.available_brokers_dictionary) self.available_grouped_algos = self._flatten_dictionary(self._constants.available_algos_dictionary) self.available_event_types = self._constants.available_event_types self.available_metrics = self._constants.available_metrics self.available_reload = ['no', 'yes'] self.available_visualization = ['yes', 'no'] self.construct_layout() def _flatten_dictionary(self, dictionary): available = dictionary['All'] available_groups = self._util_func.dict_key_list(dictionary.keys()) return self.flatten_list_of_strings([available_groups, available]) def construct_layout(self): self.page_content = html.Div([ dcc.Location(id='url', refresh=False), html.Div(id='page-content') ]) link_bar_dict = {'Detailed' : 'detailed', 'Aggregated' : 'aggregated', 'Compliance' : 'compliance'} trade_outliers_cols = ['Date', 'ticker', 'side', 'notional cur', 'benchmark', 'exec not', 'exec not in rep cur', 'slippage'] broker_cols = ['Date', 'by broker notional (rep cur)'] # Main page for detailed analysing of (eg. over the course of a few days) self.pages['detailed'] = html.Div([ self._sc.header_bar('FX: Detailed - Trader Analysis', img='logo.png'), self._sc.link_bar(link_bar_dict), self._sc.width_row_cell(html.B("Status: ok", id='detailed-status'), margin_left=5), self._sc.horizontal_bar(), # Dropdown selection boxes html.Div([ self._sc.drop_down(caption='Start Date', id={'start-date-val' : self.available_dates, 'start-time-val' : self.available_times}, prefix_id='detailed'), self._sc.drop_down(caption='Finish Date', id=OrderedDict([('finish-date-val', self.available_dates), ('finish-time-val', self.available_times)]), prefix_id='detailed'), self._sc.drop_down(caption='Ticker', id='ticker-val', prefix_id='detailed', drop_down_values=self.available_tickers), self._sc.drop_down(caption='Broker', id='broker-val', prefix_id='detailed', drop_down_values=self.available_grouped_brokers), self._sc.drop_down(caption='Algo', id='algo-val', prefix_id='detailed', drop_down_values=self.available_grouped_algos), self._sc.drop_down(caption='Venue', id='venue-val', prefix_id='detailed', drop_down_values=self.available_grouped_venues), self._sc.drop_down(caption='Market Data', id='market-data-val', prefix_id='detailed', drop_down_values=self.available_market_data), self._sc.drop_down(caption='Metric', id='metric-val', prefix_id='detailed', drop_down_values=self.available_metrics) ]), self._sc.horizontal_bar(), self._sc.button(caption='Calculate', id='calculation-button', prefix_id='detailed'), # self.button(caption = 'Print PDF', id = 'detailed-print-pdf-button', className = 'no-print'), # Orders self._sc.horizontal_bar(), self._sc.plot(caption='Orders: Timeline', id='order-candle-timeline-plot', prefix_id='detailed', element_add=self._sc.timeline_dropdown('detailed-order-candle-timeline-plot', self.available_order_plot_lines), downloadplot_caption='Download CSV', downloadplot_tag='order-candle-timeline-download-link', download_file='download_order_candle_timeline', height=500), self._sc.plot(caption='Orders: Markout', id='order-markout-plot', prefix_id='detailed', height=500), self._sc.plot(caption='Orders: Histogram vs PDF fit', id='order-dist-plot', prefix_id='detailed', height=500), # Execution trades self._sc.horizontal_bar(), self._sc.plot(caption='Executions: Timeline', id='execution-candle-timeline-plot', prefix_id='detailed', element_add=self._sc.timeline_dropdown('detailed-execution-candle-timeline-plot', self.available_execution_plot_lines), downloadplot_caption='Download CSV', downloadplot_tag='execution-candle-timeline-download-link', download_file='download_execution_candle_timeline.csv', height=500), self._sc.plot(caption='Executions: Markout', id='execution-markout-plot', prefix_id='detailed', height=500), self._sc.plot(caption='Executions: Histogram vs PDF fit', id='execution-dist-plot', prefix_id='detailed', height=500), # Detailed tcapy markout table for executions html.Div([ html.H3('Executions: Markout Table'), html.Div(id='detailed-execution-table') ], style={'width': '1000px', 'display': 'inline-block', 'marginBottom': 5, 'marginTop': 5, 'marginLeft': 5, 'marginRight': 5}), ], style={'width': '1000px', 'marginRight': 'auto', 'marginLeft': 'auto'}) ################################################################################################################ # Secondary page for analysing aggregated statistics over long periods of time, eg. who is the best broker? self.pages['aggregated'] = html.Div([ self._sc.header_bar('FX: Aggregated - Trader Analysis', img='logo.png'), self._sc.link_bar(link_bar_dict), self._sc.width_row_cell(html.B("Status: ok", id='aggregated-status'), margin_left=5), self._sc.horizontal_bar(), # dropdown selection boxes html.Div([ self._sc.drop_down(caption='Start Date', id='start-date-val', prefix_id='aggregated', drop_down_values=self.available_dates), self._sc.drop_down(caption='Finish Date', id='finish-date-val', prefix_id='aggregated', drop_down_values=self.available_dates), self._sc.drop_down(caption='Ticker', id='ticker-val', prefix_id='aggregated', drop_down_values=self.available_grouped_tickers, multiselect=True), self._sc.drop_down(caption='Broker', id='broker-val', prefix_id='aggregated', drop_down_values=self.available_grouped_brokers, multiselect=True), self._sc.drop_down(caption='Algo', id='algo-val', prefix_id='aggregated', drop_down_values=self.available_grouped_algos, multiselect=True), self._sc.drop_down(caption='Venue', id='venue-val', prefix_id='aggregated', drop_down_values=self.available_grouped_venues, multiselect=True), self._sc.drop_down(caption='Reload', id='reload-val', prefix_id='aggregated', drop_down_values=self.available_reload), self._sc.drop_down(caption='Market Data', id='market-data-val', prefix_id='aggregated', drop_down_values=self.available_market_data), self._sc.drop_down(caption='Event Type', id='event-type-val', prefix_id='aggregated', drop_down_values=self.available_event_types), self._sc.drop_down(caption='Metric', id='metric-val', prefix_id='aggregated', drop_down_values=self.available_metrics), ]), self._sc.horizontal_bar(), self._sc.button(caption='Calculate', id='calculation-button', prefix_id='aggregated'), # , msg_id='aggregated-status'), self._sc.horizontal_bar(), # self.date_picker_range(caption='Start/Finish Dates', id='aggregated-date-val', offset=[-7,-1]), self._sc.plot(caption='Aggregated Trader: Summary', id=['execution-by-ticker-bar-plot', 'execution-by-venue-bar-plot'], prefix_id='aggregated', height=500), self._sc.horizontal_bar(), self._sc.plot(caption='Aggregated Trader: Timeline', id='execution-by-ticker-timeline-plot', prefix_id='aggregated', height=500), self._sc.horizontal_bar(), self._sc.plot(caption='Aggregated Trader: PDF fit (' + self._constants.reporting_currency + ' notional)', id=['execution-by-ticker-dist-plot', 'execution-by-venue-dist-plot'], prefix_id='aggregated', height=500), self._sc.horizontal_bar() ], style={'width': '1000px', 'marginRight': 'auto', 'marginLeft': 'auto'}) ################################################################################################################ self.pages['compliance'] = html.Div([ self._sc.header_bar('FX: Compliance Analysis', img='logo.png'), self._sc.link_bar(link_bar_dict), self._sc.width_row_cell(html.B("Status: ok", id='compliance-status'), margin_left=5), self._sc.horizontal_bar(), # Dropdown selection boxes html.Div([ self._sc.drop_down(caption='Start Date', id='start-date-val', prefix_id='compliance', drop_down_values=self.available_dates), self._sc.drop_down(caption='Finish Date', id='finish-date-val', prefix_id='compliance', drop_down_values=self.available_dates), self._sc.drop_down(caption='Ticker', id='ticker-val', prefix_id='compliance', drop_down_values=self.available_grouped_tickers, multiselect=True), self._sc.drop_down(caption='Broker', id='broker-val', prefix_id='compliance', drop_down_values=self.available_grouped_brokers, multiselect=True), self._sc.drop_down(caption='Algo', id='algo-val', prefix_id='compliance', drop_down_values=self.available_grouped_algos, multiselect=True), self._sc.drop_down(caption='Venue', id='venue-val', prefix_id='compliance', drop_down_values=self.available_grouped_venues, multiselect=True), self._sc.drop_down(caption='Reload', id='reload-val', prefix_id='compliance', drop_down_values=self.available_reload), self._sc.drop_down(caption='Market Data', id='market-data-val', prefix_id='compliance', drop_down_values=self.available_market_data), self._sc.drop_down(caption='Filter by Time', id='filter-time-of-day-val', prefix_id='compliance', drop_down_values=self.available_reload), self._sc.drop_down(caption='Start Time of Day', id='start-time-of-day-val', prefix_id='compliance', drop_down_values=self.available_times), self._sc.drop_down(caption='Finish Time of Day', id='finish-time-of-day-val', prefix_id='compliance', drop_down_values=self.available_times), self._sc.drop_down(caption='Slippage to Mid (bp)', id='slippage-bounds-val', prefix_id='compliance', drop_down_values=self.available_slippage_bounds), self._sc.drop_down(caption='Visualization', id='visualization-val', prefix_id='compliance', drop_down_values=self.available_visualization) ]), self._sc.horizontal_bar(), html.Div([ self._sc.button(caption='Calculate', id='calculation-button', prefix_id='compliance'), # self.date_picker(caption='Start Date', id='start-date-dtpicker', prefix_id='compliance'), # self.date_picker(caption='Finish Date', id='finish-date-dtpicker', prefix_id='compliance'), ]), self._sc.horizontal_bar(), self._sc.table(caption='Compliance: Trade Outliers', id='execution-by-anomalous-table', prefix_id='compliance', columns=trade_outliers_cols, downloadplot_caption='Trade outliers CSV', downloadplot_tag='execution-by-anomalous-download-link', download_file='download_execution_by_anomalous.csv'), self._sc.table(caption='Compliance: Totals by Broker', id='summary-by-broker-table', prefix_id='compliance', columns=broker_cols, downloadplot_caption='Download broker CSV', downloadplot_tag='summary-by-broker-download-link', download_file='download_broker.csv' ), self._sc.horizontal_bar() ], style={'width': '1000px', 'marginRight': 'auto', 'marginLeft': 'auto'}) # ID flags self.id_flags = { # Detailed trader page # 'timeline_trade_orders' : {'client-orders': 'order', 'executions': 'trade'}, # 'markout_trade_orders' : {'client-orders': 'order_df', 'executions': 'trade_df'}, 'detailed_candle_timeline_trade_order': {'execution': 'sparse_market_trade_df', 'order': 'sparse_market_order_df'}, 'detailed_markout_trade_order': {'execution': 'trade_df', 'order': 'order_df'}, 'detailed_table_trade_order': {'execution': 'table_trade_df_markout_by_all'}, 'detailed_dist_trade_order': {'execution': 'dist_trade_df_by/pdf/side', 'order': 'dist_order_df_by/pdf/side'}, 'detailed_download_link_trade_order': {'execution-candle-timeline': 'sparse_market_trade_df', 'order-candle-timeline': 'sparse_market_order_df'}, # Aggregated trader page 'aggregated_bar_trade_order': {'execution-by-ticker': 'bar_trade_df_by/mean/ticker', 'execution-by-venue': 'bar_trade_df_by/mean/venue'}, 'aggregated_timeline_trade_order': {'execution-by-ticker': 'timeline_trade_df_by/mean_date/ticker', 'execution-by-venue': 'timeline_trade_df_by/mean_date/venue'}, 'aggregated_dist_trade_order': {'execution-by-ticker': 'dist_trade_df_by/pdf/ticker', 'execution-by-venue': 'dist_trade_df_by/pdf/venue'}, # Compliance page 'compliance_metric_table_trade_order': {'execution-by-anomalous': 'table_trade_df_slippage_by_worst_all', 'summary-by-broker': 'bar_trade_df_executed_notional_in_reporting_currency_by_broker_id'}, 'compliance_download_link_trade_order': {'execution-by-anomalous': 'table_trade_df_slippage_by_worst_all', 'summary-by-broker': 'bar_trade_df_executed_notional_in_reporting_currency_by_broker_id'}, }
2821
import pytest import stk from ...case_data import CaseData @pytest.fixture( scope='session', params=( lambda name: CaseData( molecule=stk.ConstructedMolecule( topology_graph=stk.cof.PeriodicKagome( building_blocks=( stk.BuildingBlock( smiles='BrC1=C(Br)[C+]=N1', functional_groups=[stk.BromoFactory()], ), stk.BuildingBlock( smiles=( 'Br[C+]1C2(Br)[C+]=N[C+]2[C+](Br)[C+](' 'Br)[C+2]1' ), functional_groups=[stk.BromoFactory()], ), ), lattice_size=(2, 2, 1), ), ), smiles=( '[C+]1=NC2=C1[C+]1[C+]3[C+2][C+]4C5=C(N=[C+]5)C56[C+]=' 'N[C+]5[C+]5C7=C([C+]=N7)[C+]7[C+]8[C+2][C+]9C%10=C(N=' '[C+]%10)[C+]%10[C+2][C+]%11C%12=C([C+]=N%12)[C+]%12[C' '+]%13[C+2][C+]%14C%15=C(N=[C+]%15)C%15%16[C+]=N[C+]%1' '5[C+]%15C%17=C([C+]=N%17)[C+]%17[C+]%18[C+2][C+]%19C%' '20=C(N=[C+]%20)[C+]%20[C+2][C+]2[C+]2C%21=C([C+]=N%21' ')[C+]%21[C+]([C+2][C+](C%22=C(N=[C+]%22)[C+]%16[C+2][' 'C+]%15C%15=C([C+]=N%15)[C+]%15[C+]([C+2][C+](C%16=C(N' '=[C+]%16)C%10%16[C+]=N[C+]%16[C+]%11C%10=C([C+]=N%10)' '[C+]%10[C+]([C+2][C+](C%11=C(N=[C+]%11)[C+]6[C+2][C+]' '5C5=C([C+]=N5)[C+]5[C+]([C+2][C+](C6=C(N=[C+]6)C%206[' 'C+]=N[C+]26)C2([C+]=N[C+]52)C2=C%18N=[C+]2)C2=C(N=[C+' ']2)C92[C+]=N[C+]72)C2([C+]=N[C+]%102)C2=C%13[C+]=N2)C' '2=C([C+]=N2)C42[C+]=N[C+]12)C1([C+]=N[C+]%151)C1=C8N=' '[C+]1)C1=C(N=[C+]1)C%191[C+]=N[C+]%171)C1([C+]=N[C+]%' '211)C1=C3[C+]=N1)C1=C([C+]=N1)C%141[C+]=N[C+]%121' ), name=name, ), lambda name: CaseData( molecule=stk.ConstructedMolecule( topology_graph=stk.cof.PeriodicKagome( building_blocks=( stk.BuildingBlock( smiles='BrC1=C(Br)[C+]=N1', functional_groups=[stk.BromoFactory()], ), stk.BuildingBlock( smiles=( 'Br[C+]1C2(Br)[C+]=N[C+]2[C+](Br)[C+](' 'Br)[C+2]1' ), functional_groups=[stk.BromoFactory()], ), ), lattice_size=(2, 2, 1), optimizer=stk.PeriodicCollapser(), ), ), smiles=( '[C+]1=NC2=C1[C+]1[C+]3[C+2][C+]4C5=C(N=[C+]5)C56[C+]=' 'N[C+]5[C+]5C7=C([C+]=N7)[C+]7[C+]8[C+2][C+]9C%10=C(N=' '[C+]%10)[C+]%10[C+2][C+]%11C%12=C([C+]=N%12)[C+]%12[C' '+]%13[C+2][C+]%14C%15=C(N=[C+]%15)C%15%16[C+]=N[C+]%1' '5[C+]%15C%17=C([C+]=N%17)[C+]%17[C+]%18[C+2][C+]%19C%' '20=C(N=[C+]%20)[C+]%20[C+2][C+]2[C+]2C%21=C([C+]=N%21' ')[C+]%21[C+]([C+2][C+](C%22=C(N=[C+]%22)[C+]%16[C+2][' 'C+]%15C%15=C([C+]=N%15)[C+]%15[C+]([C+2][C+](C%16=C(N' '=[C+]%16)C%10%16[C+]=N[C+]%16[C+]%11C%10=C([C+]=N%10)' '[C+]%10[C+]([C+2][C+](C%11=C(N=[C+]%11)[C+]6[C+2][C+]' '5C5=C([C+]=N5)[C+]5[C+]([C+2][C+](C6=C(N=[C+]6)C%206[' 'C+]=N[C+]26)C2([C+]=N[C+]52)C2=C%18N=[C+]2)C2=C(N=[C+' ']2)C92[C+]=N[C+]72)C2([C+]=N[C+]%102)C2=C%13[C+]=N2)C' '2=C([C+]=N2)C42[C+]=N[C+]12)C1([C+]=N[C+]%151)C1=C8N=' '[C+]1)C1=C(N=[C+]1)C%191[C+]=N[C+]%171)C1([C+]=N[C+]%' '211)C1=C3[C+]=N1)C1=C([C+]=N1)C%141[C+]=N[C+]%121' ), name=name, ), ), ) def cof_periodic_kagome(request) -> CaseData: return request.param( f'{request.fixturename}{request.param_index}', )
2841
import torch.utils.data as data import numpy as np from imageio import imread from path import Path import pdb def crawl_folders(folders_list): imgs = [] depth = [] for folder in folders_list: current_imgs = sorted(folder.files('*.jpg')) current_depth = [] for img in current_imgs: d = img.dirname()/(img.name[:-4] + '.npy') assert(d.isfile()), "depth file {} not found".format(str(d)) depth.append(d) imgs.extend(current_imgs) depth.extend(current_depth) return imgs, depth def load_as_float(path): return imread(path).astype(np.float32) class ValidationSet(data.Dataset): """A sequence data loader where the files are arranged in this way: root/scene_1/0000000.jpg root/scene_1/0000000.npy root/scene_1/0000001.jpg root/scene_1/0000001.npy .. root/scene_2/0000000.jpg root/scene_2/0000000.npy . transform functions must take in a list a images and a numpy array which can be None """ def __init__(self, root, transform=None): self.root = Path(root) scene_list_path = self.root/'val.txt' self.scenes = [self.root/folder[:-1] for folder in open(scene_list_path)] self.imgs, self.depth = crawl_folders(self.scenes) self.transform = transform def __getitem__(self, index): img = load_as_float(self.imgs[index]) depth = np.load(self.depth[index]).astype(np.float32) #;pdb.set_trace() if self.transform is not None: img, _, _ = self.transform([img], depth, None); #this depth is just used to fill the compose transform that is shared(no need for the result) img = img[0] return img, depth def __len__(self): return len(self.imgs)
2848
from flask import Flask from flask_cors import CORS from flask_graphql import GraphQLView from schema import Schema def create_app(**kwargs): app = Flask(__name__) app.debug = True app.add_url_rule( '/graphql', view_func=GraphQLView.as_view('graphql', schema=Schema, **kwargs) ) return app if __name__ == '__main__': app = create_app(graphiql=True) CORS(app, resources={r'/graphql': {'origins': '*'}}) app.run()
2863
from __future__ import print_function try: from PyQt5.QtWidgets import * from PyQt5.QtGui import * from PyQt5.QtCore import * except ImportError: from PySide2.QtWidgets import * from PySide2.QtGui import * from PySide2.QtCore import * import hou from hammer_tools.utils import createAction def isRevertToDefaultEvent(event): return event.modifiers() == Qt.ControlModifier and event.button() == Qt.MiddleButton class Slider(QSlider): def __init__(self, orientation=Qt.Horizontal, parent=None): super(Slider, self).__init__(orientation, parent) self.defaultValue = 0 self.valueLadderMode = False def revertToDefault(self): self.setValue(self.defaultValue) def setDefaultValue(self, value, reset=True): self.defaultValue = value if reset: self.revertToDefault() def mousePressEvent(self, event): if False: # Type hint event = QMouseEvent if event.button() == Qt.MiddleButton: return elif event.button() == Qt.LeftButton: event = QMouseEvent(QEvent.MouseButtonPress, event.pos(), Qt.MiddleButton, Qt.MiddleButton, Qt.NoModifier) super(Slider, self).mousePressEvent(event) def mouseMoveEvent(self, event): if False: # Type hint event = QMouseEvent if not self.valueLadderMode and event.buttons() == Qt.MiddleButton: try: hou.ui.openValueLadder(self.value(), self.setValue, data_type=hou.valueLadderDataType.Int) except hou.OperationFailed: return else: self.valueLadderMode = True elif self.valueLadderMode: hou.ui.updateValueLadder(event.globalX(), event.globalY(), bool(event.modifiers() & Qt.AltModifier), bool(event.modifiers() & Qt.ShiftModifier)) else: super(Slider, self).mouseMoveEvent(event) def mouseReleaseEvent(self, event): if False: # Type hint event = QMouseEvent if self.valueLadderMode and event.button() == Qt.MiddleButton: hou.ui.closeValueLadder() self.valueLadderMode = False elif isRevertToDefaultEvent(event): self.revertToDefault() else: super(Slider, self).mouseReleaseEvent(event) class SearchField(QComboBox): def __init__(self, parent=None): super(SearchField, self).__init__(parent) self.setEditable(True) edit = self.lineEdit() edit.setPlaceholderText('Search...') edit.installEventFilter(self) edit.setFont(QFont('Segoe UI')) self.setFixedHeight(26) comp = self.completer() comp.setCompletionMode(QCompleter.PopupCompletion) comp.setFilterMode(Qt.MatchContains) comp.setModelSorting(QCompleter.CaseInsensitivelySortedModel) comp.setMaxVisibleItems(5) popup = comp.popup() popup.setStyleSheet(hou.qt.styleSheet()) def mouseReleaseEvent(self, event): if False: # Type hint event = QMouseEvent if isRevertToDefaultEvent(event): self.clearEditText() def eventFilter(self, watched, event): if False: # Type hint watched = QObject event = QEvent if watched == self.lineEdit(): if event.type() == QEvent.MouseButtonRelease and isRevertToDefaultEvent(event): self.clearEditText() event.accept() return True return False def keyPressEvent(self, event): if False: # Type hint event = QKeyEvent key = event.key() mod = event.modifiers() if mod == Qt.NoModifier and key == Qt.Key_Escape: self.clearEditText() else: super(SearchField, self).keyPressEvent(event) def hidePopup(self): super(SearchField, self).hidePopup() self.lineEdit().setFocus() link_or_state_icon = 'BUTTONS_link' embedded_icon = 'BUTTONS_pinned' class BrowserMode(QStandardItemModel): def __init__(self): super(BrowserMode, self).__init__() class BrowserTreeView(QTreeView): def __init__(self, parent=None): super(BrowserTreeView, self).__init__(parent) self.setAlternatingRowColors(True) class BrowserTableView(QListView): def __init__(self, parent=None): super(BrowserTableView, self).__init__(parent) self.setViewMode(QListView.IconMode) self.setResizeMode(QListView.Adjust) self.setSelectionMode(QAbstractItemView.ExtendedSelection) self.setVerticalScrollMode(QAbstractItemView.ScrollPerPixel) self.setIconSize(QSize(120, 90)) self.setUniformItemSizes(True) self.setContextMenuPolicy(Qt.CustomContextMenu) class ContentBrowser(QWidget): def __init__(self, parent=None): super(ContentBrowser, self).__init__(parent) self.setWindowTitle('Content Browser') self.setProperty('houdiniStyle', True) topLayout = QHBoxLayout() topLayout.setContentsMargins(4, 4, 4, 2) topLayout.setSpacing(2) self.refreshButton = QPushButton() self.refreshButton.setFixedSize(26, 26) self.refreshButton.setToolTip('Update\tF5') self.refreshButton.setIcon(hou.qt.Icon('BUTTONS_reload', 18, 18)) self.refreshButton.setIconSize(QSize(18, 18)) topLayout.addWidget(self.refreshButton) sep = hou.qt.Separator() if False: # Type hint sep = QFrame sep.setFixedWidth(2) sep.setFrameShape(QFrame.VLine) topLayout.addWidget(sep) viewModeButtonGroup = QButtonGroup(self) viewModeButtonGroup.setExclusive(True) self.treeViewButton = QPushButton() self.treeViewButton.setFixedSize(26, 26) self.treeViewButton.setToolTip('Tree View\t\tCtrl+1') self.treeViewButton.setIcon(hou.qt.Icon('BUTTONS_tree', 18, 18)) self.treeViewButton.setIconSize(QSize(18, 18)) self.treeViewButton.setCheckable(True) viewModeButtonGroup.addButton(self.treeViewButton) topLayout.addWidget(self.treeViewButton) self.tableViewButton = QPushButton() self.tableViewButton.setFixedSize(26, 26) self.tableViewButton.setToolTip('Table View\tCtrl+2') self.tableViewButton.setIcon(hou.qt.Icon('NETVIEW_shape_palette', 18, 18)) self.tableViewButton.setIconSize(QSize(18, 18)) self.tableViewButton.setCheckable(True) self.tableViewButton.toggle() viewModeButtonGroup.addButton(self.tableViewButton) topLayout.addWidget(self.tableViewButton) topLayout.addWidget(sep) self.searchField = SearchField() self.searchField.setToolTip('Search\tCtrl+F, F3') topLayout.addWidget(self.searchField) searchModeButtonGroup = QButtonGroup(self) searchModeButtonGroup.setExclusive(True) self.wholeSearchButton = QPushButton() self.wholeSearchButton.setFixedSize(26, 26) self.wholeSearchButton.setCheckable(True) self.wholeSearchButton.setToolTip('Whole word search') self.wholeSearchButton.setIcon(hou.qt.Icon('VOP_titlecase', 18, 18)) self.wholeSearchButton.setIconSize(QSize(18, 18)) searchModeButtonGroup.addButton(self.wholeSearchButton) topLayout.addWidget(self.wholeSearchButton) self.fuzzySearchButton = QPushButton() self.fuzzySearchButton.setFixedSize(26, 26) self.fuzzySearchButton.setCheckable(True) self.fuzzySearchButton.toggle() self.fuzzySearchButton.setToolTip('Fuzzy search') self.fuzzySearchButton.setIcon(hou.qt.Icon('VOP_endswith', 18, 18)) self.fuzzySearchButton.setIconSize(QSize(18, 18)) searchModeButtonGroup.addButton(self.fuzzySearchButton) topLayout.addWidget(self.fuzzySearchButton) self.patternSearchButton = QPushButton() self.patternSearchButton.setFixedSize(26, 26) self.patternSearchButton.setCheckable(True) self.patternSearchButton.setToolTip('Search by Pattern') self.patternSearchButton.setIcon(hou.qt.Icon('VOP_isalpha', 18, 18)) self.patternSearchButton.setIconSize(QSize(18, 18)) searchModeButtonGroup.addButton(self.patternSearchButton) topLayout.addWidget(self.patternSearchButton) self.regexSearchButton = QPushButton() self.regexSearchButton.setFixedSize(26, 26) self.regexSearchButton.setCheckable(True) self.regexSearchButton.setToolTip('Search by Regular Expression') self.regexSearchButton.setIcon(hou.qt.Icon('VOP_regex_match', 18, 18)) self.regexSearchButton.setIconSize(QSize(18, 18)) searchModeButtonGroup.addButton(self.regexSearchButton) topLayout.addWidget(self.regexSearchButton) topLayout.addWidget(sep) topLayout.addWidget(hou.qt.HelpButton('/hammer/content_browser', 'Show Help\tF1')) middleLayout = QHBoxLayout() middleLayout.setContentsMargins(4, 0, 0, 4) middleLayout.setSpacing(4) self.viewLayout = QStackedLayout(middleLayout) model = QFileSystemModel() model.setRootPath('C:/') treeView = BrowserTreeView() treeView.setModel(model) treeView.setRootIndex(model.index('C:/')) self.viewLayout.addWidget(treeView) tableView = BrowserTableView() tableView.setModel(model) tableView.setRootIndex(model.index('C:/')) tableView.setSelectionModel(treeView.selectionModel()) self.viewLayout.addWidget(tableView) self.viewLayout.setCurrentIndex(1) self.treeViewButton.clicked.connect(self.switchToTreeView) self.addAction(createAction(self, 'Tree View', self.switchToTreeView, shortcut='Ctrl+1')) self.tableViewButton.clicked.connect(self.switchToTableView) self.addAction(createAction(self, 'Table View', self.switchToTableView, shortcut='Ctrl+2')) bottomLayout = QHBoxLayout() bottomLayout.setContentsMargins(4, 0, 4, 4) bottomLayout.setSpacing(2) settingsButton = QPushButton() settingsButton.setFixedSize(26, 26) settingsButton.setToolTip('Settings') settingsButton.setIcon(hou.qt.Icon('BUTTONS_gear_mini', 18, 18)) settingsButton.setIconSize(QSize(18, 18)) bottomLayout.addWidget(settingsButton) spacer = QSpacerItem(0, 0, QSizePolicy.Expanding, QSizePolicy.Ignored) bottomLayout.addSpacerItem(spacer) self.scaleSlider = Slider() self.scaleSlider.setDefaultValue(50) self.scaleSlider.setFixedWidth(120) self.scaleSlider.valueChanged.connect(lambda v: tableView.setIconSize(QSize(120, 90) * v / 100)) bottomLayout.addWidget(self.scaleSlider) mainLayout = QVBoxLayout(self) mainLayout.setContentsMargins(0, 0, 0, 0) mainLayout.setSpacing(4) mainLayout.addLayout(topLayout) mainLayout.addLayout(middleLayout) mainLayout.addLayout(bottomLayout) def switchToTreeView(self): self.viewLayout.setCurrentIndex(0) self.scaleSlider.hide() self.treeViewButton.setChecked(True) def switchToTableView(self): self.viewLayout.setCurrentIndex(1) self.scaleSlider.show() self.tableViewButton.setChecked(True) def keyPressEvent(self, event): if False: # Type hint event = QKeyEvent key = event.key() mod = event.modifiers() if mod == Qt.NoModifier and key == Qt.Key_F5: pass elif mod == Qt.ControlModifier and key == Qt.Key_F: self.searchField.setFocus() elif mod == Qt.NoModifier and key == Qt.Key_F3: self.searchField.setFocus() elif mod == Qt.ControlModifier and key == Qt.Key_Equal: pass elif mod == Qt.ControlModifier and key == Qt.Key_Minus: pass elif mod == Qt.ControlModifier and key == Qt.Key_1: pass elif mod == Qt.ControlModifier and key == Qt.Key_2: pass elif mod == Qt.NoModifier and key == Qt.Key_F1: pass else: super(ContentBrowser, self).keyPressEvent(event) if __name__ == '__main__': app = QApplication([]) window = ContentBrowser() window.show() app.exec_()
2881
import json import multiprocessing as mp import re from argparse import ArgumentParser from enum import Enum, auto import javalang from functools import partial PRED_TOKEN = 'PRED' modifiers = ['public', 'private', 'protected', 'static'] class TargetType(Enum): seq = auto() tree = auto() @staticmethod def from_string(s): try: return TargetType[s] except KeyError: raise ValueError() target_type = TargetType.seq RE_WORDS = re.compile(r''' # Find words in a string. Order matters! [A-Z]+(?=[A-Z][a-z]) | # All upper case before a capitalized word [A-Z]?[a-z]+ | # Capitalized words / all lower case [A-Z]+ | # All upper case \d+ | # Numbers _ | \" | .+ ''', re.VERBOSE) TREE_SPLIT = re.compile(r'([(),])') def split_subtokens(str): return [subtok for subtok in RE_WORDS.findall(str) if not subtok == '_'] def subtokenize(s): failed = False try: tokens = list(javalang.tokenizer.tokenize(s)) except: try: tokens = list(javalang.tokenizer.tokenize(s + '()'))[:-2] except: try: tokens = list(javalang.tokenizer.tokenize('(' + s + ')'))[1:-1] except: tokens = s.split() failed = True if failed: return [' _ '.join(split_subtokens(i)) for i in tokens if not i in modifiers] else: return [' _ '.join(split_subtokens(i.value)) for i in tokens if not i.value in modifiers] def subtokenize_tree(s): return ' '.join([sub for sub in re.split(TREE_SPLIT, s) if len(sub) > 0]) def process_line(target_type, max_targets, max_nodes, line): obj = json.loads(line) left_context = obj['left_context'] right_context = obj['right_context'] target_seq = obj['target_seq'] num_targets = obj['num_targets'] num_nodes = obj['num_nodes'] if max_targets is not None and num_targets > max_targets: return None, None if max_nodes is not None and num_nodes > max_nodes: return None, None if target_type is TargetType.seq: target_pred = ' '.join(subtokenize(target_seq)).lower() elif target_type is TargetType.tree: target_pred = subtokenize_tree(obj['linearized_tree']) source = '{} {} {}'.format(' '.join(subtokenize(left_context)[-200:]).lower(), PRED_TOKEN, ' '.join(subtokenize(right_context)[:200]).lower()) return source, target_pred def process_file(file_path, data_file_role, dataset_name, target_type, max_targets, max_nodes): total_examples = 0 source_output_path = '{}.{}.{}.source.txt'.format(dataset_name, target_type, data_file_role) target_output_path = '{}.{}.{}.target.txt'.format(dataset_name, target_type, data_file_role) with open(source_output_path, 'w') as source_output_file: with open(target_output_path, 'w') as target_output_file: with open(file_path, 'r') as file: subtokenize_line = partial(process_line, target_type, max_targets, max_nodes) with mp.Pool(64) as pool: if data_file_role in ['test', 'val']: examples = [process_line(target_type, max_targets, max_nodes, line) for line in file] else: examples = pool.imap_unordered(subtokenize_line, file, chunksize=100) #examples = [process_line(target_type, max_targets, max_nodes, line) for line in file] for source_seq, target_seq in examples: if source_seq is None or target_seq is None: continue source_output_file.write(source_seq + '\n') target_output_file.write(target_seq + '\n') total_examples += 1 #print(source_seq, target_seq) print('File: ' + file_path) print('Total examples: ' + str(total_examples)) if __name__ == '__main__': parser = ArgumentParser() parser.add_argument("-trd", "--train_data", dest="train_data_path", help="path to training data file", required=True) parser.add_argument("-ted", "--test_data", dest="test_data_path", help="path to test data file", required=True) parser.add_argument("-vd", "--val_data", dest="val_data_path", help="path to validation data file", required=True) parser.add_argument("-o", "--output_name", dest="output_name", help="output name - the base name for the created dataset", metavar="FILE", required=True, default='data') parser.add_argument("--target_type", dest="target_type", type=TargetType.from_string, choices=list(TargetType), required=True) parser.add_argument("--max_targets", dest="max_targets", type=int, required=False, default=40) parser.add_argument("--max_nodes", dest="max_nodes", type=int, required=False, default=None) parser.add_argument('--local', action='store_true') args = parser.parse_args() train_data_path = args.train_data_path test_data_path = args.test_data_path val_data_path = args.val_data_path for data_file_path, data_role in zip([train_data_path, test_data_path, val_data_path], ['train', 'test', 'val']): process_file(file_path=data_file_path, data_file_role=data_role, dataset_name=args.output_name, target_type=args.target_type, max_targets=args.max_targets, max_nodes=args.max_nodes)
2887
import typing from bot.constants import BOT_REPO_URL from discord import Embed from discord.ext import commands from discord.ext.commands.cooldowns import BucketType from . import _issues, _profile, _source class Github(commands.Cog): """ Github Category cog, which contains commands related to github. Commands: ├ profile Fetches a user's GitHub information. ├ issue Command to retrieve issue(s) from a GitHub repository. └ source Displays information about the bot's source code. """ def __init__(self, bot: commands.Bot) -> None: self.bot = bot @commands.group(name="github", aliases=("gh",), invoke_without_command=True) async def github_group(self, ctx: commands.Context) -> None: """Commands for Github.""" await ctx.send_help(ctx.command) @github_group.command(name="profile") @commands.cooldown(1, 10, BucketType.user) async def profile(self, ctx: commands.Context, username: str) -> None: """ Fetches a user's GitHub information. Username is optional and sends the help command if not specified. """ github_profile = _profile.GithubInfo(self.bot.http_session) embed = await github_profile.get_github_info(username) await ctx.send(embed=embed) @github_group.command(name="issue", aliases=("pr",)) async def issue( self, ctx: commands.Context, numbers: commands.Greedy[int], repository: typing.Optional[str] = None, ) -> None: """Command to retrieve issue(s) from a GitHub repository.""" github_issue = _issues.Issues(self.bot.http_session) if not numbers: raise commands.MissingRequiredArgument(ctx.command.clean_params["numbers"]) if repository is None: user = "gurkult" else: user, _, repository = repository.rpartition("/") if user == "": user = "gurkult" embed = await github_issue.issue(ctx.message.channel, numbers, repository, user) await ctx.send(embed=embed) @github_group.command(name="source", aliases=("src", "inspect")) async def source_command( self, ctx: commands.Context, *, source_item: typing.Optional[str] = None ) -> None: """Displays information about the bot's source code.""" if source_item is None: embed = Embed(title="Gurkbot's GitHub Repository") embed.add_field(name="Repository", value=f"[Go to GitHub]({BOT_REPO_URL})") embed.set_thumbnail(url=self.bot.user.avatar_url) await ctx.send(embed=embed) return elif not ctx.bot.get_command(source_item): raise commands.BadArgument( f"Unable to convert `{source_item}` to valid command or Cog." ) github_source = _source.Source(self.bot.http_session, self.bot.user.avatar_url) embed = await github_source.inspect(cmd=ctx.bot.get_command(source_item)) await ctx.send(embed=embed) def setup(bot: commands.Bot) -> None: """Load the Github cog.""" bot.add_cog(Github(bot))
2889
from typing import Any, Dict, List, Tuple from pytezos.michelson.forge import forge_array, forge_base58, optimize_timestamp def bump_fitness(fitness: Tuple[str, str]) -> Tuple[str, str]: if len(fitness) == 0: major = 0 minor = 1 else: major = int.from_bytes(bytes.fromhex(fitness[0]), 'big') minor = int.from_bytes(bytes.fromhex(fitness[1]), 'big') + 1 return major.to_bytes(1, 'big').hex(), minor.to_bytes(8, 'big').hex() def forge_int_fixed(value: int, length: int) -> bytes: return value.to_bytes(length, 'big') def forge_command(command: str) -> bytes: if command == 'activate': return b'\x00' raise NotImplementedError(command) def forge_fitness(fitness: List[str]) -> bytes: return forge_array(b''.join(map(lambda x: forge_array(bytes.fromhex(x)), fitness))) def forge_priority(priority: int) -> bytes: return priority.to_bytes(2, 'big') def forge_content(content: Dict[str, Any]) -> bytes: res = b'' res += forge_command(content['command']) res += forge_base58(content['hash']) res += forge_fitness(content['fitness']) res += bytes.fromhex(content['protocol_parameters']) return res def forge_protocol_data(protocol_data: Dict[str, Any]) -> bytes: res = b'' if protocol_data.get('content'): res += forge_content(protocol_data['content']) else: res += forge_priority(protocol_data['priority']) res += bytes.fromhex(protocol_data['proof_of_work_nonce']) if protocol_data.get('seed_nonce_hash'): res += b'\xFF' res += forge_base58(protocol_data['seed_nonce_hash']) else: res += b'\x00' res += b'\xFF' if protocol_data['liquidity_baking_escape_vote'] else b'\x00' return res def forge_block_header(shell_header: Dict[str, Any]) -> bytes: res = forge_int_fixed(shell_header['level'], 4) res += forge_int_fixed(shell_header['proto'], 1) res += forge_base58(shell_header['predecessor']) res += forge_int_fixed(optimize_timestamp(shell_header['timestamp']), 8) res += forge_int_fixed(shell_header['validation_pass'], 1) res += forge_base58(shell_header['operations_hash']) res += forge_fitness(shell_header['fitness']) res += forge_base58(shell_header['context']) res += bytes.fromhex(shell_header['protocol_data']) return res
2919
from __future__ import absolute_import from redis import Redis from rq.decorators import job from kaneda.utils import get_backend backend = get_backend() @job(queue='kaneda', connection=Redis()) def report(name, metric, value, tags, id_): """ RQ job to report metrics to the configured backend in kanedasettings.py To run the worker execute this command: rqworker [queue] """ return backend.report(name, metric, value, tags, id_)
2939
dataset_type = 'STVQADATASET' data_root = '/home/datasets/mix_data/iMIX/' feature_path = 'data/datasets/stvqa/defaults/features/' ocr_feature_path = 'data/datasets/stvqa/defaults/ocr_features/' annotation_path = 'data/datasets/stvqa/defaults/annotations/' vocab_path = 'data/datasets/stvqa/defaults/extras/vocabs/' train_datasets = ['train'] test_datasets = ['val'] reader_train_cfg = dict( type='STVQAREADER', card='default', mix_features=dict( train=data_root + feature_path + 'detectron.lmdb', val=data_root + feature_path + 'detectron.lmdb', test=data_root + feature_path + 'detectron.lmdb', ), mix_ocr_features=dict( train=data_root + ocr_feature_path + 'ocr_en_frcn_features.lmdb', val=data_root + ocr_feature_path + 'ocr_en_frcn_features.lmdb', test=data_root + ocr_feature_path + 'ocr_en_frcn_features.lmdb', ), mix_annotations=dict( train=data_root + annotation_path + 'imdb_subtrain.npy', val=data_root + annotation_path + 'imdb_subval.npy', test=data_root + annotation_path + 'imdb_test_task3.npy', ), datasets=train_datasets) reader_test_cfg = dict( type='STVQAREADER', card='default', mix_features=dict( train=data_root + feature_path + 'detectron.lmdb', val=data_root + feature_path + 'detectron.lmdb', test=data_root + feature_path + 'detectron.lmdb', ), mix_ocr_features=dict( train=data_root + ocr_feature_path + 'ocr_en_frcn_features.lmdb', val=data_root + ocr_feature_path + 'ocr_en_frcn_features.lmdb', test=data_root + ocr_feature_path + 'ocr_en_frcn_features.lmdb', ), mix_annotations=dict( train=data_root + annotation_path + 'imdb_subtrain.npy', val=data_root + annotation_path + 'imdb_subval.npy', test=data_root + annotation_path + 'imdb_test_task3.npy', ), datasets=train_datasets) info_cpler_cfg = dict( type='STVQAInfoCpler', glove_weights=dict( glove6b50d=data_root + 'glove/glove.6B.50d.txt.pt', glove6b100d=data_root + 'glove/glove.6B.100d.txt.pt', glove6b200d=data_root + 'glove/glove.6B.200d.txt.pt', glove6b300d=data_root + 'glove/glove.6B.300d.txt.pt', ), fasttext_weights=dict( wiki300d1m=data_root + 'fasttext/wiki-news-300d-1M.vec', wiki300d1msub=data_root + 'fasttext/wiki-news-300d-1M-subword.vec', wiki_bin=data_root + 'fasttext/wiki.en.bin', ), tokenizer='/home/datasets/VQA/bert/' + 'bert-base-uncased-vocab.txt', mix_vocab=dict( answers_st_5k=data_root + vocab_path + 'fixed_answer_vocab_stvqa_5k.txt', vocabulary_100k=data_root + vocab_path + 'vocabulary_100k.txt', ), max_seg_lenth=20, max_ocr_lenth=10, word_mask_ratio=0.0, vocab_name='vocabulary_100k', vocab_answer_name='answers_st_5k', glove_name='glove6b300d', fasttext_name='wiki_bin', if_bert=True, ) train_data = dict( samples_per_gpu=16, workers_per_gpu=1, data=dict(type=dataset_type, reader=reader_train_cfg, info_cpler=info_cpler_cfg, limit_nums=800)) test_data = dict( samples_per_gpu=16, workers_per_gpu=1, data=dict(type=dataset_type, reader=reader_test_cfg, info_cpler=info_cpler_cfg), )
2943
import numpy as np import copy import combo.misc import cPickle as pickle from results import history from .. import utility from ...variable import variable from ..call_simulator import call_simulator from ... import predictor from ...gp import predictor as gp_predictor from ...blm import predictor as blm_predictor import combo.search.score MAX_SEACH = int(20000) class policy: def __init__(self, test_X, config=None): self.predictor = None self.training = variable() self.test = self._set_test(test_X) self.actions = np.arange(0, self.test.X.shape[0]) self.history = history() self.config = self._set_config(config) def set_seed(self, seed): self.seed = seed np.random.seed(self.seed) def delete_actions(self, index, actions=None): actions = self._set_unchosed_actions(actions) return np.delete(actions, index) def write(self, action, t, X=None): if X is None: X = self.test.X[action, :] Z = self.test.Z[action, :] if self.test.Z is not None else None else: Z = self.predictor.get_basis(X) \ if self.predictor is not None else None self.new_data = variable(X, t, Z) self.history.write(t, action) self.training.add(X=X, t=t, Z=Z) def random_search(self, max_num_probes, num_search_each_probe=1, simulator=None, is_disp=True): N = int(num_search_each_probe) if int(max_num_probes) * N > len(self.actions): raise ValueError('max_num_probes * num_search_each_probe must \ be smaller than the length of candidates') if is_disp: utility.show_interactive_mode(simulator, self.history) for n in xrange(0, max_num_probes): if is_disp and N > 1: utility.show_start_message_multi_search(self.history.num_runs) action = self.get_random_action(N) if simulator is None: return action t, X = call_simulator(simulator, action) self.write(action, t, X) if is_disp: utility.show_search_results(self.history, N) return copy.deepcopy(self.history) def bayes_search(self, training=None, max_num_probes=None, num_search_each_probe=1, predictor=None, is_disp=True, simulator=None, score='TS', interval=0, num_rand_basis=0): if max_num_probes is None: max_num_probes = 1 simulator = None is_rand_expans = False if num_rand_basis == 0 else True self.training = self._set_training(training) if predictor is None: self.predictor = self._init_predictor(is_rand_expans) else: self.predictor = predictor N = int(num_search_each_probe) for n in xrange(max_num_probes): if utility.is_learning(n, interval): self.predictor.fit(self.training, num_rand_basis) self.test.Z = self.predictor.get_basis(self.test.X) self.training.Z = self.predictor.get_basis(self.training.X) self.predictor.prepare(self.training) else: try: self.predictor.update(self.training, self.new_data) except: self.predictor.prepare(self.training) if num_search_each_probe != 1: utility.show_start_message_multi_search(self.history.num_runs, score) K = self.config.search.multi_probe_num_sampling alpha = self.config.search.alpha action = self.get_actions(score, N, K, alpha) if simulator is None: return action t, X = call_simulator(simulator, action) self.write(action, t, X) if is_disp: utility.show_search_results(self.history, N) return copy.deepcopy(self.history) def get_score(self, mode, predictor=None, training=None, alpha=1): self._set_training(training) self._set_predictor(predictor) actions = self.actions test = self.test.get_subset(actions) if mode == 'EI': f = combo.search.score.EI(predictor, training, test) elif mode == 'PI': f = combo.search.score.PI(predictor, training, test) elif mode == 'TS': f = combo.search.score.TS(predictor, training, test, alpha) else: raise NotImplementedError('mode must be EI, PI or TS.') return f def get_marginal_score(self, mode, chosed_actions, N, alpha): f = np.zeros((N, len(self.actions))) new_test = self.test.get_subset(chosed_actions) virtual_t \ = self.predictor.get_predict_samples(self.training, new_test, N) for n in xrange(N): predictor = copy.deepcopy(self.predictor) train = copy.deepcopy(self.training) virtual_train = new_test virtual_train.t = virtual_t[n, :] if virtual_train.Z is None: train.add(virtual_train.X, virtual_train.t) else: train.add(virtual_train.X, virtual_train.t, virtual_train.Z) try: predictor.update(train, virtual_train) except: predictor.prepare(train) f[n, :] = self.get_score(mode, predictor, train) return f def get_actions(self, mode, N, K, alpha): f = self.get_score(mode, self.predictor, self.training, alpha) temp = np.argmax(f) action = self.actions[temp] self.actions = self.delete_actions(temp) chosed_actions = np.zeros(N, dtype=int) chosed_actions[0] = action for n in xrange(1, N): f = self.get_marginal_score(mode, chosed_actions[0:n], K, alpha) temp = np.argmax(np.mean(f, 0)) chosed_actions[n] = self.actions[temp] self.actions = self.delete_actions(temp) return chosed_actions def get_random_action(self, N): random_index = np.random.permutation(xrange(self.actions.shape[0])) index = random_index[0:N] action = self.actions[index] self.actions = self.delete_actions(index) return action def load(self, file_history, file_training=None, file_predictor=None): self.history.load(file_history) if file_training is None: N = self.history.total_num_search X = self.test.X[self.history.chosed_actions[0:N], :] t = self.history.fx[0:N] self.training = variable(X=X, t=t) else: self.training = variable() self.training.load(file_training) if file_predictor is not None: with open(file_predictor) as f: self.predictor = pickle.load(f) def export_predictor(self): return self.predictor def export_training(self): return self.training def export_history(self): return self.history def _set_predictor(self, predictor=None): if predictor is None: predictor = self.predictor return predictor def _init_predictor(self, is_rand_expans, predictor=None): self.predictor = self._set_predictor(predictor) if self.predictor is None: if is_rand_expans: self.predictor = blm_predictor(self.config) else: self.predictor = gp_predictor(self.config) return self.predictor def _set_training(self, training=None): if training is None: training = self.training return training def _set_unchosed_actions(self, actions=None): if actions is None: actions = self.actions return actions def _set_test(self, test_X): if isinstance(test_X, np.ndarray): test = variable(X=test_X) elif isinstance(test_X, variable): test = test_X else: raise TypeError('The type of test_X must \ take ndarray or combo.variable') return test def _set_config(self, config=None): if config is None: config = combo.misc.set_config() return config
2949
from setuptools import setup, find_packages setup( name='Pokedex', version='0.1', zip_safe=False, packages=find_packages(), package_data={ 'pokedex': ['data/csv/*.csv'] }, install_requires=[ 'SQLAlchemy>=1.0,<2.0', 'whoosh>=2.5,<2.7', 'markdown==2.4.1', 'construct==2.5.3', 'six>=1.9.0', ], entry_points={ 'console_scripts': [ 'pokedex = pokedex.main:setuptools_entry', ], }, classifiers=[ "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.7", ] )
2956
import numpy as np import pickle from os.path import exists, realpath import sys import math from topple_data_loader import ToppleData, ToppleDataLoader import transforms3d class ToppleNormalizationInfo(): ''' Structure to hold all the normalization information for a dataset. ''' def __init__(self): # max element of any linear vel vector self.max_lin_vel = None # max element of any angular vel vector self.max_ang_vel = None # max distance between positions in two contiguous timesteps self.max_pos = None # max change in rotation around any axis between two contiguous timesteps (for euler rot) self.max_rot = None # max angle of rotation between two steps for axis-angle representation self.max_delta_rot = None # max 2-norm of applied impulse vector self.force_vec_max = None # max 2-norm of a point in an object point cloud (used for point cloud and force pos) self.pc_max = None # normalization values for shape-related stuff self.density_offset = None self.density_max = None self.mass_offset = None self.mass_max = None self.inertia_offset = None self.inertia_max = None self.friction_offset = None self.friction_max = None def print_out(self): print({'max_lin_vel' : self.max_lin_vel, 'max_ang_vel' : self.max_ang_vel, 'max_pos' : self.max_pos, \ 'max_rot' : self.max_rot, 'max_delta_rot' : self.max_delta_rot, 'force_vec_max' : self.force_vec_max, 'pc_max' : self.pc_max, \ 'density_off' : self.density_offset, 'density_max' : self.density_max, 'mass_off' : self.mass_offset, \ 'mass_max' : self.mass_max, 'inertia_off' : self.inertia_offset, 'inertia_max' : self.inertia_max, \ 'friction_off' : self.friction_offset, 'friction_max' : self.friction_max }) def save(self, pkl_file): ''' Saves normalization info object to a specified .pkl file. ''' with open(pkl_file, 'wb') as f: pickle.dump(self, f) def load_from(self, pkl_file): ''' Load normalization info into this object from a specified .pkl file. ''' with open(pkl_file, 'rb') as f: norm_info = pickle.load(f) self.copy_from(norm_info) def copy_from(self, norm_info): ''' Takes values from the given normalization info object and copies them to this one ''' self.max_lin_vel = norm_info.max_lin_vel self.max_ang_vel = norm_info.max_ang_vel self.max_pos = norm_info.max_pos self.max_rot = norm_info.max_rot try: self.max_delta_rot = norm_info.max_delta_rot except: # old versions of data doesn't have max delta rot pass self.force_vec_max = norm_info.force_vec_max self.pc_max = norm_info.pc_max self.density_offset = norm_info.density_offset self.density_max = norm_info.density_max self.mass_offset = norm_info.mass_offset self.mass_max = norm_info.mass_max self.inertia_offset = norm_info.inertia_offset self.inertia_max = norm_info.inertia_max try: self.friction_offset = norm_info.friction_offset self.friction_max = norm_info.friction_max except: # old version doesn't have this pass class ToppleBatch(object): ''' Structure to hold a single batch of data. ''' def __init__(self, size, seq_len, num_pts): self.size = size self.num_steps = seq_len self.num_pts = num_pts self.point_cloud = np.zeros((self.size, self.num_pts, 3)) self.lin_vel = np.zeros((self.size, self.num_steps, 3)) self.ang_vel = np.zeros((self.size, self.num_steps, 3)) self.pos = np.zeros((self.size, self.num_steps, 3)) # cummulative euler angles self.rot = np.zeros((self.size, self.num_steps, 3)) # change in rotation in quaternion rep (w, x, y, z) self.delta_quat = np.zeros((self.size, self.num_steps, 4)) # change in rotation between steps in axis-angle rep (scaled 3 vec) self.delta_rot = np.zeros((self.size, self.num_steps, 3)) # change in rotation between steps in split axis-angle rep (4-vec) self.delta_rot_split = np.zeros((self.size, self.num_steps, 4)) # 0 if before topple idx, 1 if after self.topple_label = np.zeros((self.size, self.num_steps), dtype=int) # other meta-data not directly used in network self.toppled = [] self.shape_name = [] self.body_friction = np.zeros((self.size)) self.mass = np.zeros((self.size)) self.scale = np.zeros((self.size, 3)) self.rot_euler = np.zeros((self.size, self.num_steps, 3)) class ToppleDataset(object): ''' Loads toppling data and provides batches for training and model evaluation. ''' def __init__(self, roots, norm_info_file, batch_size=32, num_steps=15, shuffle=False, num_pts=None, perturb_pts=0.0): ''' - roots : list of directories containing data to load for this dataset - norm_info_file : .pkl file containing normalization information - batch_size : number of sequences to return in each batch - num_steps : number of timesteps to return in each sequence - shuffle : randomly shuffles the returned sequence ordering - num_pts : the number of points to use in the returned point cloud. If None uses all points in the data. - perturb_pts : the stdev to randomly perturb point clouds with. If None no perturbation is performed. - ''' # settings self.batch_size = batch_size self.steps_per_seq = num_steps self.shuffle = shuffle self.perturb_std = perturb_pts self.num_pts = num_pts # load in data for root in roots: if not exists(root): print('Could not find dataset at ' + root) return data_loader = ToppleDataLoader() self.data = data_loader.load_data(roots) if num_pts is None: # use all the points in the point cloud self.num_pts = self.data.point_cloud.shape[1] # load in normalization info if not exists(norm_info_file): print('Could not find normalization info at ' + norm_info_file) return self.norm_info = ToppleNormalizationInfo() self.norm_info.load_from(norm_info_file) print('Loaded normalization info!') # see if we have axis-angle info (for backwards compat) self.use_aa = False self.use_aa_split = False self.use_topple_idx = False self.use_delta_quat = False if len(self.data.delta_rot) > 0: self.use_aa = True if len(self.data.delta_rot_split) > 0: self.use_aa_split = True if len(self.data.topple_idx) > 0: self.use_topple_idx = True if len(self.data.body_friction) > 0: self.use_body_friction = True if len(self.data.delta_quat) > 0: self.use_delta_quat = True # normalize the data print('Normalizing data...') self.normalize_data(self.data, self.norm_info) print('Finished normalizing!') # order to iterate through data when returning batches (in order by default) self.iter_inds = range(0, self.data.size) # prepare to iterate through self.reset() def normalize_data(self, data, norm_info): ''' Normalizes (in place) the given ToppleData using the ToppleNormalizationInfo. ''' # point clouds -> [-1, 1] data.point_cloud /= norm_info.pc_max # force pos -> [-1, 1] data.force_pos /= norm_info.pc_max # force vec -> [-1, 1] data.force_vec /= norm_info.force_vec_max # density -> [0, 1] data.density = (data.density - norm_info.density_offset) / norm_info.density_max # mass -> [0, 1] data.mass = (data.mass - norm_info.mass_offset) / norm_info.mass_max # inertia -> [0, 1] data.inertia = (data.inertia - norm_info.inertia_offset) / norm_info.inertia_max # friction -> [0, 1] if norm_info.friction_offset is not None: data.body_friction = (data.body_friction - norm_info.friction_offset) / norm_info.friction_max # now time sequence data # velocities -> [-1, 1] for i, lin_vel_steps in enumerate(data.lin_vel): data.lin_vel[i] = [(x / norm_info.max_lin_vel) for x in lin_vel_steps] for i, ang_vel_steps in enumerate(data.ang_vel): data.ang_vel[i] = [(x / norm_info.max_ang_vel) for x in ang_vel_steps] # delta position -> [-1, 1] for i, pos_steps in enumerate(data.pos): data.pos[i] = [(x / norm_info.max_pos) for x in pos_steps] # delta rotation -> [-1, 1] for i, rot_steps in enumerate(data.total_rot): data.total_rot[i] = [(x / norm_info.max_rot) for x in rot_steps] # delta rot axis-angle -> [-1, 1] norm if self.use_aa: for i, delta_rot_steps in enumerate(data.delta_rot): data.delta_rot[i] = [(x / norm_info.max_delta_rot) for x in delta_rot_steps] # make axes unit and and normalize angle -> [-1, 1] if self.use_aa_split: for i, delta_rot_split_steps in enumerate(data.delta_rot_split): data.delta_rot_split[i] = [np.append(x[:3] / np.linalg.norm(x[:3]), x[3] / norm_info.max_delta_rot) for x in delta_rot_split_steps] def reset(self): ''' Prepares to iterate through dataset. ''' if self.shuffle: np.random.shuffle(self.iter_inds) # we consider an epoch as returning one sequence from every single simulation # ( though if the sequence length is shorter than sim length the unique sequences contained # in the dataset will be much more than an epoch length ) self.num_batches = (self.data.size + self.batch_size - 1) // self.batch_size self.batch_idx = 0 def has_next_batch(self): ''' Returns false if done with the current "epoch" (seen each sim once). ''' return self.batch_idx < self.num_batches def next_batch(self, random_window=True, focus_toppling=False): ''' Returns the next batch of data. if random_window=True will get a random sequence of correct length (otherwise starts at 0). If focus_toppling=True, will make sure this sequence includes the part of the sequence where toppling occurs. ''' # size is either batch_size, or shorter if we're at the end of the data start_idx = self.batch_idx * self.batch_size end_idx = min((self.batch_idx + 1) * self.batch_size, self.data.size) batch_size = end_idx - start_idx # get batch data batch = ToppleBatch(self.batch_size, self.steps_per_seq, self.num_pts) for i in range(batch_size): pc, lin_vel, ang_vel, pos, rot, delta_quat, delta_rot, delta_rot_split, topple_label, meta_info = \ self.get_seq(self.iter_inds[start_idx + i], self.steps_per_seq, random_window, focus_toppling) batch.point_cloud[i] = pc batch.lin_vel[i] = lin_vel batch.ang_vel[i] = ang_vel batch.pos[i] = pos batch.rot[i] = rot if self.use_delta_quat: batch.delta_quat[i] = delta_quat if self.use_aa: batch.delta_rot[i] = delta_rot if self.use_aa_split: batch.delta_rot_split[i] = delta_rot_split if self.use_topple_idx: batch.topple_label[i] = topple_label batch.toppled.append(meta_info[0]) batch.shape_name.append(meta_info[1]) batch.scale[i] = meta_info[2] batch.rot_euler[i] = meta_info[3] if self.use_body_friction: batch.body_friction[i] = meta_info[4] batch.mass[i] = meta_info[5] if batch_size != self.batch_size: # need to pad the end with repeat of data for i in range(self.batch_size - batch_size): batch.point_cloud[batch_size + i] = batch.point_cloud[i] batch.lin_vel[batch_size + i] = batch.lin_vel[i] batch.ang_vel[batch_size + i] = batch.ang_vel[i] batch.pos[batch_size + i] = batch.pos[i] batch.rot[batch_size + i] = batch.rot[i] if self.use_delta_quat: batch.delta_quat[batch_size + i] = batch.delta_quat[i] batch.toppled.append(batch.toppled[i]) batch.shape_name.append(batch.shape_name[i]) batch.scale[batch_size + i] = batch.scale[i] batch.rot_euler[batch_size + i] = batch.rot_euler[i] batch.mass[batch_size + i] = batch.mass[i] if self.use_aa: batch.delta_rot[batch_size + i] = batch.delta_rot[i] if self.use_aa_split: batch.delta_rot_split[batch_size + i] = batch.delta_rot_split[i] if self.use_topple_idx: batch.topple_label[batch_size + i] = batch.topple_label[i] if self.use_body_friction: batch.body_friction[batch_size + i] = batch.body_friction[i] self.batch_idx += 1 return batch def get_seq(self, idx, num_steps, random_window=True, focus_toppling=False): ''' Returns a random contiguous sequence from the simulation at the given idx and length num_steps. If num_steps > sim_length the final (sim_length-num_steps) steps are padded with the value at sim[sim_length]. ''' # get the normalized canonical point cloud for this simulation pc = np.copy(self.data.point_cloud[self.data.shape_idx[idx]]) scale = self.data.scale[idx] # scale accordingly pc *= np.reshape(scale, (1, -1)) # randomly perturb point cloud pc += np.random.normal(0.0, self.perturb_std, pc.shape) # randomly draw a subset of points if desired if self.num_pts < pc.shape[0]: pc_inds = np.random.choice(pc.shape[0], self.num_pts, replace=False) pc = pc[pc_inds, :] # randomly choose a size num_steps sequence from the simulation to return time-series data total_steps = len(self.data.lin_vel[idx]) max_start_step = total_steps - num_steps start_step = 0 if max_start_step < 0: # simulation is shorter than desired sequence length pad_len = abs(max_start_step) lin_vel_list = self.data.lin_vel[idx] lin_vel_out = np.array(lin_vel_list + [lin_vel_list[-1]]*pad_len) ang_vel_list = self.data.ang_vel[idx] ang_vel_out = np.array(ang_vel_list + [ang_vel_list[-1]]*pad_len) pos_list = self.data.pos[idx] pos_out = np.array(pos_list + [pos_list[-1]]*pad_len) rot_list = self.data.total_rot[idx] rot_out = np.array(rot_list + [rot_list[-1]]*pad_len) if self.use_delta_quat: delta_quat_list = self.data.delta_quat[idx] delta_quat_out = np.array(delta_quat_list + [delta_quat_list[-1]]*pad_len) euler_rot_list = self.data.rot_euler[idx] euler_rot_out = np.array(euler_rot_list + [euler_rot_list[-1]]*pad_len) if self.use_aa: delta_rot_list = self.data.delta_rot[idx] delta_rot_out = np.array(delta_rot_list + [delta_rot_list[-1]]*pad_len) if self.use_aa_split: delta_rot_split_list = self.data.delta_rot_split[idx] delta_rot_split_out = np.array(delta_rot_split_list + [delta_rot_split_list[-1]]*pad_len) if self.use_topple_idx: topple_label_out = np.zeros((total_steps + pad_len), dtype=int) seq_topple_idx = self.data.topple_idx[idx] if seq_topple_idx > 0: topple_label_out[seq_topple_idx:] = 1 else: start_step = 0 if random_window: if focus_toppling and self.data.toppled[idx]: # choose window around the index where it topples topple_idx = self.data.topple_idx[idx] min_idx = max([topple_idx - num_steps + 1, 0]) if min_idx >= max_start_step: # just pick the max index start_step = max_start_step else: # our window is guaranteed to see some part of toppling start_step = np.random.randint(min_idx, max_start_step+1) else: start_step = np.random.randint(0, max_start_step+1) end_step = start_step + num_steps # print('Range: %d, %d' % (start_step, end_step)) lin_vel_out = np.array(self.data.lin_vel[idx][start_step:end_step]) ang_vel_out = np.array(self.data.ang_vel[idx][start_step:end_step]) pos_out = np.array(self.data.pos[idx][start_step:end_step]) rot_out = np.array(self.data.total_rot[idx][start_step:end_step]) if self.use_delta_quat: delta_quat_out = np.array(self.data.delta_quat[idx][start_step:end_step]) euler_rot_out = np.array(self.data.rot_euler[idx][start_step:end_step]) if self.use_aa: delta_rot_out = np.array(self.data.delta_rot[idx][start_step:end_step]) if self.use_aa_split: delta_rot_split_out = np.array(self.data.delta_rot_split[idx][start_step:end_step]) if self.use_topple_idx: topple_label_out = np.zeros((num_steps), dtype=int) seq_topple_idx = self.data.topple_idx[idx] if seq_topple_idx > 0: if seq_topple_idx <= start_step: topple_label_out[:] = 1 elif seq_topple_idx < end_step: topple_label_out[seq_topple_idx-start_step:] = 1 # rotate point cloud to align with first frame of sequence init_rot = self.data.rot_euler[idx][start_step] xrot, yrot, zrot = np.radians(init_rot) R = transforms3d.euler.euler2mat(zrot, xrot, yrot, axes='szxy') # unity applies euler angles in z, x, y ordering pc = np.dot(pc, R.T) toppled = self.data.toppled[idx] shape_name = self.data.shape_name[idx] mass = self.data.mass[idx] body_fric = -1.0 if self.use_body_friction: body_fric = self.data.body_friction[idx] meta_info = (toppled, shape_name, scale, euler_rot_out, body_fric, mass) if not self.use_aa: delta_rot_out = None if not self.use_aa_split: delta_rot_split_out = None if not self.use_topple_idx: topple_label_out = None if not self.use_delta_quat: delta_quat_out = None return pc, lin_vel_out, ang_vel_out, pos_out, rot_out, delta_quat_out, delta_rot_out, delta_rot_split_out, topple_label_out, meta_info def get_norm_info(self): return self.norm_info if __name__=='__main__': # norm_info = ToppleNormalizationInfo() # norm_info.load_from('../../data/sim/normalization_info/cube_train.pkl') # norm_info.print_out() topple_data = ToppleDataset(roots=['./data/sim/Cube/Cube30k_ObjSplit/Cube30kVal'], norm_info_file='./data/sim/normalization_info/cube_30k.pkl', \ batch_size=5, num_steps=10, shuffle=True, num_pts=None, perturb_pts=0.01) count = 0 while topple_data.has_next_batch(): batch = topple_data.next_batch(random_window=True, focus_toppling=False) count += 1 # print(batch.lin_vel[0]) # print(batch.toppled[0]) # print(batch.delta_rot_split[0]) # print(batch.delta_rot[0]) # print(batch.topple_label[0]) # print(batch.pos) # print(batch.body_friction) # print(batch.delta_quat[0]) # print(np.degrees(2*np.arccos(batch.delta_quat[0, :, 0]))) print('Total num batches: ' + str(count)) topple_data.reset() count = 0 while topple_data.has_next_batch(): batch = topple_data.next_batch() count += 1 print(batch.size) print('Total num batches: ' + str(count))
2968
from bc4py_extension import PyAddress import hashlib def is_address(ck: PyAddress, hrp, ver): """check bech32 format and version""" try: if ck.hrp != hrp: return False if ck.version != ver: return False except ValueError: return False return True def get_address(pk, hrp, ver) -> PyAddress: """get address from public key""" identifier = hashlib.new('ripemd160', hashlib.sha256(pk).digest()).digest() return PyAddress.from_param(hrp, ver, identifier) def convert_address(ck: PyAddress, hrp, ver) -> PyAddress: """convert address's version""" return PyAddress.from_param(hrp, ver, ck.identifier()) def dummy_address(dummy_identifier) -> PyAddress: assert len(dummy_identifier) == 20 return PyAddress.from_param('dummy', 0, dummy_identifier) __all__ = [ "is_address", "get_address", "convert_address", "dummy_address", ]
3000
import modutil mod, __getattr__ = modutil.lazy_import(__name__, ['tests.test_data.A', '.B', '.C as still_C']) def trigger_A(): return mod.A def trigger_B(): return mod.B def trigger_C(): return mod.still_C def trigger_failure(): return mod.does_not_exist
3019
from marshmallow import Schema, fields from marshmallow.validate import Range, Length from sqlalchemy import Column, Integer, Boolean, DateTime from ..db import Base from ..shared.models import StringTypes # ---- Error-report class ErrorReport(Base): __tablename__ = 'error_report' id = Column(Integer, primary_key=True) description = Column(StringTypes.LONG_STRING, nullable=False) time_stamp = Column(DateTime) status_code = Column(Integer) endpoint = Column(StringTypes.MEDIUM_STRING) solved = Column(Boolean, default=False) def __repr__(self): return f"<Error-report(id={self.id})>" class ErrorReportSchema(Schema): id = fields.Integer(dump_only=True, required=True, validate=Range(min=1)) description = fields.String(required=True, validate=Length(min=1)) time_stamp = fields.DateTime() status_code = fields.Integer() endpoint = fields.String() solved = fields.Boolean()
3052
from django.core.exceptions import ValidationError from django.core.validators import validate_email from django.template import Template, TemplateSyntaxError, TemplateDoesNotExist from django.utils.encoding import force_str def validate_email_with_name(value): """ Validate email address. Both "<NAME> <<EMAIL>>" and "<EMAIL>" are valid. """ value = force_str(value) recipient = value if '<' in value and '>' in value: start = value.find('<') + 1 end = value.find('>') if start < end: recipient = value[start:end] validate_email(recipient) def validate_comma_separated_emails(value): """ Validate every email address in a comma separated list of emails. """ if not isinstance(value, (tuple, list)): raise ValidationError('Email list must be a list/tuple.') for email in value: try: validate_email_with_name(email) except ValidationError: raise ValidationError('Invalid email: %s' % email, code='invalid') def validate_template_syntax(source): """ Basic Django Template syntax validation. This allows for robuster template authoring. """ try: Template(source) except (TemplateSyntaxError, TemplateDoesNotExist) as err: raise ValidationError(str(err))
3056
import os import sys import logging import time import argparse import numpy as np from collections import OrderedDict import scripts.options as option import utils.util as util from data.util import bgr2ycbcr from data import create_dataset, create_dataloader from models import create_model # options parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, required=True, help='Path to options JSON file.') opt = option.parse(parser.parse_args().opt, is_train=False) util.mkdirs((path for key, path in opt['path'].items() if not key == 'pretrain_model_G')) opt = option.dict_to_nonedict(opt) util.setup_logger(None, opt['path']['log'], 'test.log', level=logging.INFO, screen=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) # Create test dataset and dataloader test_loaders = [] for phase, dataset_opt in sorted(opt['datasets'].items()): test_set = create_dataset(dataset_opt) test_loader = create_dataloader(test_set, dataset_opt) logger.info('Number of test images in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set))) test_loaders.append(test_loader) # Create model model = create_model(opt) for test_loader in test_loaders: test_set_name = test_loader.dataset.opt['name'] logger.info('\nTesting [{:s}]...'.format(test_set_name)) test_start_time = time.time() dataset_dir = os.path.join(opt['path']['results_root'], test_set_name) util.mkdir(dataset_dir) test_results = OrderedDict() test_results['psnr'] = [] test_results['ssim'] = [] test_results['psnr_y'] = [] test_results['ssim_y'] = [] for data in test_loader: need_GT = False if test_loader.dataset.opt['dataroot_GT'] is None else True # need_GT = True model.feed_data_specular(data, need_GT=need_GT) if opt["image_type"] == "exr": y = data["x_offset"] x = data["y_offset"] img_path = data['NOISY_path'][0] img_name = os.path.splitext(os.path.basename(img_path))[0] start = time.time() model.test() # test end = time.time() print("Time elapsed... %f "%(end - start)) visuals = model.get_current_visuals(need_GT=need_GT) denoised_img = util.tensor2img(visuals['DENOISED']) # uint8 noisy_img = util.tensor2img(visuals['NOISY']) gt_img = util.tensor2img(visuals['GT']) # uint8 # save images suffix = opt['suffix'] if suffix ==None: suffix = "" save_DENOISED_img_path = os.path.join(dataset_dir, img_name + suffix + '_1denoised.png') save_NOISY_img_path = os.path.join(dataset_dir, img_name + suffix + '_0noisy.png') save_GT_img_path = os.path.join(dataset_dir, img_name + suffix + '_2gt.png') # calculate PSNR and SSIM if need_GT: # gt_img = util.tensor2img(visuals['GT']) gt_img = gt_img / 255. denoised_img = denoised_img / 255. crop_border = test_loader.dataset.opt['scale'] cropped_denoised_img = denoised_img#[crop_border:-crop_border, crop_border:-crop_border, :] cropped_gt_img = gt_img#[crop_border:-crop_border, crop_border:-crop_border, :] psnr = util.calculate_psnr(cropped_denoised_img * 255, cropped_gt_img * 255) ssim = util.calculate_ssim(cropped_denoised_img * 255, cropped_gt_img * 255) test_results['psnr'].append(psnr) test_results['ssim'].append(ssim) if gt_img.shape[2] == 3: # RGB image denoised_img_y = bgr2ycbcr(denoised_img, only_y=True) gt_img_y = bgr2ycbcr(gt_img, only_y=True) cropped_denoised_img_y = denoised_img_y[crop_border:-crop_border, crop_border:-crop_border] cropped_gt_img_y = gt_img_y[crop_border:-crop_border, crop_border:-crop_border] psnr_y = util.calculate_psnr(cropped_denoised_img_y * 255, cropped_gt_img_y * 255) ssim_y = util.calculate_ssim(cropped_denoised_img_y * 255, cropped_gt_img_y * 255) test_results['psnr_y'].append(psnr_y) test_results['ssim_y'].append(ssim_y) logger.info('{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}; PSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}.'\ .format(img_name, psnr, ssim, psnr_y, ssim_y)) else: logger.info('{:20s} - PSNR: {:.6f} dB; SSIM: {:.6f}.'.format(img_name, psnr, ssim)) else: logger.info(img_name) if opt["image_type"] == "exr": denoised_exr = util.tensor2exr(visuals['DENOISED']) # uint8 noisy_exr = util.tensor2exr(visuals['NOISY']) gt_exr = util.tensor2exr(visuals['GT']) # uint8 save_DENOISED_img_path = os.path.join(dataset_dir, img_name + suffix + '_1denoised.exr') save_NOISY_img_path = os.path.join(dataset_dir, img_name + suffix + '_0noisy.exr') save_GT_img_path = os.path.join(dataset_dir, img_name + suffix + '_2gt.exr') util.saveEXRfromMatrix(save_DENOISED_img_path, denoised_exr, (x, y)) util.saveEXRfromMatrix(save_NOISY_img_path, noisy_exr, (x, y)) util.saveEXRfromMatrix(save_GT_img_path, gt_exr, (x, y)) if need_GT: # metrics # Average PSNR/SSIM results ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) logger.info('----Average PSNR/SSIM results for {}----\n\tPSNR: {:.6f} dB; SSIM: {:.6f}\n'\ .format(test_set_name, ave_psnr, ave_ssim)) # if test_results['psnr_y'] and test_results['ssim_y']: # ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y']) # ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y']) # logger.info('----Y channel, average PSNR/SSIM----\n\tPSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}\n'\ # .format(ave_psnr_y, ave_ssim_y))
3065
from setuptools import setup setup( name="greek-utils", version="0.2", description="various utilities for processing Ancient Greek", license="MIT", url="http://github.com/jtauber/greek-utils", author="<NAME>", author_email="<EMAIL>", packages=["greekutils"], classifiers=[ "Development Status :: 3 - Alpha", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Topic :: Text Processing", "Topic :: Text Processing :: Linguistic", "Topic :: Utilities", ], )
3073
from pyLMS7002M import * print("Searching for QSpark...") try: QSpark = QSpark() except: print("QSpark not found") exit(1) print("\QSpark info:") QSpark.printInfo() # print the QSpark board info # QSpark.LMS7002_Reset() # reset the LMS7002M lms7002 = QSpark.getLMS7002() # get the LMS7002M object ver, rev, mask = lms7002.chipInfo # get the chip info print("\nLMS7002M info:") print("VER : "+str(ver)) print("REV : "+str(rev)) print("MASK : "+str(mask))
3074
from django.conf import settings from netaddr import mac_unix, mac_eui48 import importlib import warnings class mac_linux(mac_unix): """MAC format with zero-padded all upper-case hex and colon separated""" word_fmt = '%.2X' def default_dialect(eui_obj=None): # Check to see if a default dialect class has been specified in settings, # using 'module.dialect_cls' string and use importlib and getattr to retrieve dialect class. 'module' is the module and # 'dialect_cls' is the class name of the custom dialect. The dialect must either be defined or imported by the module's # __init__.py if the module is a package. from .fields import MACAddressField # Remove import at v1.4 if hasattr(settings, 'MACADDRESS_DEFAULT_DIALECT') and not MACAddressField.dialect: module, dialect_cls = settings.MACADDRESS_DEFAULT_DIALECT.split('.') dialect = getattr(importlib.import_module(module), dialect_cls, mac_linux) return dialect else: if MACAddressField.dialect: # Remove this "if" statement at v1.4 warnings.warn( "The set_dialect class method on MACAddressField has been deprecated, in favor of the default_dialect " "utility function and settings.MACADDRESS_DEFAULT_DIALECT. See macaddress.__init__.py source or the " "project README for more information.", DeprecationWarning, ) return MACAddressField.dialect if eui_obj: return eui_obj.dialect else: return mac_linux def format_mac(eui_obj, dialect): # Format a EUI instance as a string using the supplied dialect class, allowing custom string classes by # passing directly or as a string, a la 'module.dialect_cls', where 'module' is the module and 'dialect_cls' # is the class name of the custom dialect. The dialect must either be defined or imported by the module's __init__.py if # the module is a package. if not isinstance(dialect, mac_eui48): if isinstance(dialect, str): module, dialect_cls = dialect.split('.') dialect = getattr(importlib.import_module(module), dialect_cls) eui_obj.dialect = dialect return str(eui_obj) from pkg_resources import get_distribution, DistributionNotFound import os.path try: _dist = get_distribution('django-macaddress') except DistributionNotFound: __version__ = 'Please install this project with setup.py' else: __version__ = _dist.version VERSION = __version__ # synonym
3084
import contextlib import logging import typing from typing import Any, Dict, Tuple import attr from dbnd._core.configuration import get_dbnd_project_config from dbnd._core.constants import ( RESULT_PARAM, DbndTargetOperationStatus, DbndTargetOperationType, TaskRunState, ) from dbnd._core.current import ( current_task_run, get_databand_run, is_verbose, try_get_current_task, ) from dbnd._core.errors.errors_utils import log_exception from dbnd._core.log.external_exception_logging import log_exception_to_server from dbnd._core.parameter.parameter_definition import ParameterDefinition from dbnd._core.parameter.parameter_value import ParameterFilters from dbnd._core.settings import TrackingConfig from dbnd._core.task.tracking_task import TrackingTask from dbnd._core.task_build.task_context import try_get_current_task from dbnd._core.task_build.task_definition import TaskDefinition from dbnd._core.task_build.task_results import FuncResultParameter from dbnd._core.task_run.task_run import TaskRun from dbnd._core.task_run.task_run_error import TaskRunError from dbnd._core.utils.callable_spec import args_to_kwargs from dbnd._core.utils.timezone import utcnow from targets import InMemoryTarget, Target from targets.value_meta import ValueMetaConf from targets.values import get_value_type_of_obj if typing.TYPE_CHECKING: from dbnd._core.task_build.task_decorator import TaskDecorator logger = logging.getLogger(__name__) @attr.s class TrackedFuncCallWithResult(object): call_args = attr.ib() # type: Tuple[Any] call_kwargs = attr.ib() # type: Dict[str,Any] callable = attr.ib() result = attr.ib(default=None) def set_result(self, value): self.result = value return value def invoke(self): func = self.callable return func(*self.call_args, **self.call_kwargs) class CallableTrackingManager(object): def __init__(self, task_decorator): # type: (CallableTrackingManager, TaskDecorator) -> None self.task_decorator = task_decorator self._tracking_task_definition = None self._call_count = 0 self._call_as_func = False self._max_call_count = get_dbnd_project_config().max_calls_per_run @property def callable(self): return self.task_decorator.class_or_func def get_tracking_task_definition(self): if not self._tracking_task_definition: self._tracking_task_definition = self._build_tracking_task_definition() return self._tracking_task_definition def _build_tracking_task_definition(self): return TaskDefinition.from_task_decorator(task_decorator=self.task_decorator) def _call_count_limit_exceeded(self): if not self._call_as_func: self._call_count += 1 if self._call_count > self._max_call_count: logger.info( "Reached maximum tracking limit of {} tasks. Running function regularly.".format( self._max_call_count ) ) self._call_as_func = True return self._call_as_func @contextlib.contextmanager def tracking_context(self, call_args, call_kwargs): user_code_called = False # whether we got to executing of user code user_code_finished = False # whether we passed executing of user code func_call = None try: # 1. check that we don't have too many calls if self._call_count_limit_exceeded(): yield _do_nothing_decorator return # 2. Start or reuse existing "main tracking task" that is root for tracked tasks if not try_get_current_task(): """ try to get existing task, and if not exists - try to get/create inplace_task_run """ from dbnd._core.tracking.script_tracking_manager import ( try_get_inplace_tracking_task_run, ) inplace_tacking_task = try_get_inplace_tracking_task_run() if not inplace_tacking_task: # we didn't manage to start inplace tracking task run, we will not be able to track yield _do_nothing_decorator return tracking_task_definition = self.get_tracking_task_definition() callable_spec = tracking_task_definition.task_decorator.get_callable_spec() func_call = TrackedFuncCallWithResult( callable=self.callable, call_args=tuple(call_args), # prevent original call_args modification call_kwargs=dict(call_kwargs), # prevent original kwargs modification ) # replace any position argument with kwarg if it possible args, kwargs = args_to_kwargs( callable_spec.args, func_call.call_args, func_call.call_kwargs, ) # instantiate inline task task = TrackingTask.for_func(tracking_task_definition, args, kwargs) # update upstream/downstream relations - needed for correct tracking # we can have the task as upstream , as it was executed already parent_task = current_task_run().task if not parent_task.task_dag.has_upstream(task): parent_task.set_upstream(task) # checking if any of the inputs are the outputs of previous task. # we can add that task as upstream. dbnd_run = get_databand_run() call_kwargs_as_targets = dbnd_run.target_origin.get_for_map(kwargs) for value_origin in call_kwargs_as_targets.values(): up_task = value_origin.origin_target.task task.set_upstream(up_task) # creating task_run as a task we found mid-run task_run = dbnd_run.create_task_run_at_execution_time( task, task_engine=current_task_run().task_engine ) should_capture_log = TrackingConfig.current().capture_tracking_log with task_run.runner.task_run_execution_context( handle_sigterm=True, capture_log=should_capture_log ): task_run.set_task_run_state(state=TaskRunState.RUNNING) _log_inputs(task_run) # if we reached this line, then all tracking initialization is # finished successfully, and we're going to execute user code user_code_called = True try: # tracking_context is context manager - user code will run on yield yield func_call.set_result # if we reached this line, this means that user code finished # successfully without any exceptions user_code_finished = True except Exception as ex: task_run.finished_time = utcnow() error = TaskRunError.build_from_ex(ex, task_run) task_run.set_task_run_state(TaskRunState.FAILED, error=error) raise else: task_run.finished_time = utcnow() # func_call.result should contain result, log it _log_result(task_run, func_call.result) task_run.set_task_run_state(TaskRunState.SUCCESS) except Exception: if user_code_called and not user_code_finished: # if we started to call the user code and not got to user_code_finished # line - it means there was user code exception - so just re-raise it raise # else it's either we didn't reached calling user code, or already passed it # then it's some dbnd tracking error - just log it if func_call: _handle_tracking_error("tracking-init", func_call) else: log_exception_to_server() # if we didn't reached user_code_called=True line - there was an error during # dbnd tracking initialization, so nothing is done - user function wasn't called yet if not user_code_called: # tracking_context is context manager - user code will run on yield yield _do_nothing_decorator return def _handle_tracking_error(msg, func_call=None): log_exception_to_server() location = " for %s" % func_call.callable if func_call else "" msg = "Failed during dbnd %s for %s, ignoring, and continue without tracking" % ( msg, location, ) if is_verbose(): logger.warning( msg, exc_info=True, ) else: logger.info(msg) def _do_nothing_decorator(f): return f def _log_inputs(task_run): """ For tracking mode. Logs InMemoryTarget inputs. """ try: params = task_run.task._params for param_value in params.get_param_values(ParameterFilters.INPUTS): param, value = param_value.parameter, param_value.value if isinstance(param_value, InMemoryTarget): try: param = param.modify( value_meta_conf=ValueMetaConf( log_preview=True, log_schema=True, ) ) task_run.tracker.log_parameter_data( parameter=param, target=param_value, value=value, operation_type=DbndTargetOperationType.read, operation_status=DbndTargetOperationStatus.OK, ) except Exception as ex: log_exception( "Failed to log input param to tracking store.", ex=ex, non_critical=True, ) except Exception as ex: log_exception( "Failed to log input params to tracking store.", ex=ex, non_critical=True ) def _log_result(task_run, result): # type: (TaskRun, Any) -> None """ For tracking mode. Logs the task result and adds it to the target_origin map to support relationships between dynamic tasks. """ try: result_param = task_run.task.task_params.get_param_value(RESULT_PARAM) if not result_param: logger.debug( "No result params to log for task {}".format(task_run.task_af_id) ) return # we now the parameter value is a target because this is an output param # the target is created in the task creation result_param_def, result_target = result_param.parameter, result_param.value # spread result into relevant fields. if isinstance(result_param_def, FuncResultParameter): # assign all returned values to relevant band Outputs if result is None: return for result_name, value in result_param_def.named_results(result): # we now the parameter value is a target because this is an output param # the target is created in the task creation parameter_value = task_run.task.task_params.get_param_value(result_name) _log_parameter_value( task_run, parameter_definition=parameter_value.parameter, target=parameter_value.value, value=value, ) else: _log_parameter_value( task_run, parameter_definition=result_param_def, target=result_target, value=result, ) except Exception as ex: log_exception( "Failed to log result to tracking store.", ex=ex, non_critical=True ) def _log_parameter_value(task_run, parameter_definition, target, value): # type: (TaskRun, ParameterDefinition, Target, Any) -> None # make sure it will be logged correctly parameter_definition = parameter_definition.modify( value_meta_conf=ValueMetaConf(log_preview=True, log_schema=True) ) try: # case what if result is Proxy value_type = get_value_type_of_obj(value, parameter_definition.value_type) task_run.run.target_origin.add(target, value, value_type) except Exception as ex: log_exception( "Failed to register result to target tracking.", ex=ex, non_critical=True ) try: task_run.tracker.log_parameter_data( parameter=parameter_definition, # was: task_run.task.task_definition.task_class.result, target=target, value=value, operation_type=DbndTargetOperationType.write, # is it write? (or log?) operation_status=DbndTargetOperationStatus.OK, ) except Exception as ex: log_exception( "Failed to log result to tracking store.", ex=ex, non_critical=True )
3087
import nose import angr import logging l = logging.getLogger("angr.tests.test_bindiff") import os test_location = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', '..', 'binaries', 'tests') # todo make a better test def test_bindiff_x86_64(): binary_path_1 = os.path.join(test_location, 'x86_64', 'bindiff_a') binary_path_2 = os.path.join(test_location, 'x86_64', 'bindiff_b') b = angr.Project(binary_path_1, load_options={"auto_load_libs": False}) b2 = angr.Project(binary_path_2, load_options={"auto_load_libs": False}) bindiff = b.analyses.BinDiff(b2) identical_functions = bindiff.identical_functions differing_functions = bindiff.differing_functions unmatched_functions = bindiff.unmatched_functions # check identical functions nose.tools.assert_in((0x40064c, 0x40066a), identical_functions) # check differing functions nose.tools.assert_in((0x400616, 0x400616), differing_functions) # check unmatched functions nose.tools.assert_less_equal(len(unmatched_functions[0]), 1) nose.tools.assert_less_equal(len(unmatched_functions[1]), 2) # check for no major regressions nose.tools.assert_greater(len(identical_functions), len(differing_functions)) nose.tools.assert_less(len(differing_functions), 4) # check a function diff fdiff = bindiff.get_function_diff(0x400616, 0x400616) block_matches = { (a.addr, b.addr) for a, b in fdiff.block_matches } nose.tools.assert_in((0x40064a, 0x400668), block_matches) nose.tools.assert_in((0x400616, 0x400616), block_matches) nose.tools.assert_in((0x40061e, 0x40061e), block_matches) def run_all(): functions = globals() all_functions = dict(filter((lambda kv: kv[0].startswith('test_')), functions.items())) for f in sorted(all_functions.keys()): if hasattr(all_functions[f], '__call__'): all_functions[f]() if __name__ == "__main__": logging.getLogger("angr.analyses.bindiff").setLevel(logging.DEBUG) import sys if len(sys.argv) > 1: globals()['test_' + sys.argv[1]]() else: run_all()
3125
import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import ARDRegression, LinearRegression # Parameters of the example np.random.seed(0) n_samples, n_features = 100, 100 # Create Gaussian data X = np.random.randn(n_samples, n_features) # Create weights with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noise with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target< y = np.dot(X, w) + noise clf = ARDRegression(fit_intercept=False, n_iter=1000) clf.fit(X, y) ols = LinearRegression(fit_intercept=False) ols.fit(X, y) from copy import deepcopy from sds.distributions.lingauss import SingleOutputLinearGaussianWithKnownPrecision from sds.distributions.lingauss import SingleOutputLinearGaussianWithKnownMean from sds.distributions.gaussian import GaussianWithPrecision from sds.distributions.gaussian import GaussianWithKnownMeanAndDiagonalPrecision from sds.distributions.gamma import Gamma likelihood_precision_prior = Gamma(dim=1, alphas=np.ones((1, )), betas=1e-6 * np.ones((1, ))) parameter_precision_prior = Gamma(dim=n_features, alphas=np.ones((n_features, )), betas=1e-6 * np.ones((n_features, ))) likelihood_precision_posterior = deepcopy(likelihood_precision_prior) parameter_precision_posterior = deepcopy(parameter_precision_prior) parameter_posterior = None for i in range(100): # parameter posterior alphas = parameter_precision_posterior.mean() parameter_prior = GaussianWithPrecision(dim=n_features, mu=np.zeros((n_features, )), lmbda=np.diag(alphas)) parameter_posterior = deepcopy(parameter_prior) beta = likelihood_precision_posterior.mean() likelihood_known_precision = SingleOutputLinearGaussianWithKnownPrecision(column_dim=n_features, lmbda=beta, affine=False) stats = likelihood_known_precision.statistics(X, y) parameter_posterior.nat_param = parameter_prior.nat_param + stats # likelihood precision posterior param = parameter_posterior.mean() likelihood_known_mean = SingleOutputLinearGaussianWithKnownMean(column_dim=n_features, W=param, affine=False) stats = likelihood_known_mean.statistics(X, y) likelihood_precision_posterior.nat_param = likelihood_precision_prior.nat_param + stats # parameter precision posterior parameter_likelihood = GaussianWithKnownMeanAndDiagonalPrecision(dim=n_features) param = parameter_posterior.mean() stats = parameter_likelihood.statistics(param) parameter_precision_posterior.nat_param = parameter_precision_prior.nat_param + stats our_ard = parameter_posterior.mode() from sds.distributions.composite import MatrixNormalGamma from sds.distributions.lingauss import LinearGaussianWithDiagonalPrecision M = np.zeros((1, n_features)) K = 1e-16 * np.eye(n_features) alphas = 1e-16 * np.ones((1, )) betas = 1e-16 * np.ones((1, )) prior = MatrixNormalGamma(column_dim=n_features, row_dim=1, M=M, K=K, alphas=alphas, betas=betas) posterior = deepcopy(prior) likelihood = LinearGaussianWithDiagonalPrecision(column_dim=n_features, row_dim=1, affine=False) stats = likelihood.statistics(X, np.atleast_2d(y).T) posterior.nat_param = prior.nat_param + stats our_ols = posterior.mode()[0] plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(w, color='orange', linestyle='-', linewidth=2, label="Ground truth") plt.plot(clf.coef_, color='darkblue', linestyle='-', linewidth=2, label="Sklearn ARD") plt.plot(our_ard, color='red', linestyle='-', linewidth=2, label="Our ARD") # plt.plot(ols.coef_, color='yellowgreen', linestyle=':', linewidth=2, label="Sklearn OLS") # plt.plot(our_ols.flatten(), color='cyan', linestyle='-', linewidth=2, label="Our OLS") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc=1) plt.show()
3128
import datetime as dt import logging from babel import Locale, UnknownLocaleError from babel.dates import format_datetime, format_time, format_date import pytz from tzlocal import get_localzone from . import settings logger = logging.getLogger(__name__) class LocaleHelper: """Helpers for converting date & time according to current locale and timezone""" def __init__( self, my_locale: Locale = None, my_tz: pytz.BaseTzInfo = None, author_info: dict = None, ) -> None: """ Args: - my_locale: Primary locale to use - my_tz: Primary timezone to use - author_info: locale and timezone to use from this Slack response if my_locale and/or my_tz are not given """ self._locale = self._determine_locale(my_locale, author_info) self._timezone = self._determine_timezone(my_tz, author_info) @staticmethod def _determine_locale(my_locale: Locale = None, author_info: dict = None) -> Locale: if my_locale: if not isinstance(my_locale, Locale): raise TypeError("my_locale must be a babel Locale object") else: if author_info: try: my_locale = Locale.parse(author_info["locale"], sep="-") except UnknownLocaleError: logger.warning("Could not use locale info from Slack") my_locale = Locale.default() else: my_locale = Locale.default() if not my_locale: my_locale = Locale.parse(settings.FALLBACK_LOCALE) return my_locale @staticmethod def _determine_timezone( my_tz: pytz.BaseTzInfo = None, author_info: dict = None ) -> pytz.BaseTzInfo: if my_tz: if not isinstance(my_tz, pytz.BaseTzInfo): raise TypeError("my_tz must be of type pytz") else: if author_info: try: my_tz = pytz.timezone(author_info["tz"]) except pytz.exceptions.UnknownTimeZoneError: logger.warning("Could not use timezone info from Slack") my_tz = get_localzone() else: my_tz = get_localzone() if not my_tz: my_tz = pytz.UTC return my_tz @property def locale(self) -> Locale: return self._locale @property def timezone(self) -> pytz.BaseTzInfo: return self._timezone def format_date_full_str(self, my_datetime: dt.datetime) -> str: return format_date(my_datetime, format="full", locale=self.locale) def format_datetime_str(self, my_datetime: dt.datetime) -> str: """returns formated datetime string for given dt using locale""" return format_datetime(my_datetime, format="short", locale=self.locale) def get_datetime_formatted_str(self, ts: int) -> str: """return given timestamp as formated datetime string using locale""" my_datetime = self.get_datetime_from_ts(ts) return format_datetime(my_datetime, format="short", locale=self.locale) def get_time_formatted_str(self, ts: int) -> str: """return given timestamp as formated datetime string using locale""" my_datetime = self.get_datetime_from_ts(ts) return format_time(my_datetime, format="short", locale=self.locale) def get_datetime_from_ts(self, ts: int) -> dt.datetime: """returns datetime object of a unix timestamp with local timezone""" my_datetime = dt.datetime.fromtimestamp(float(ts), pytz.UTC) return my_datetime.astimezone(self.timezone)
3192
from ._ffi.base import string_types from ._ffi.object import register_object, Object from ._ffi.node import register_node, NodeBase from ._ffi.node import convert_to_node as _convert_to_node from ._ffi.node_generic import _scalar_type_inference from ._ffi.function import Function from ._ffi.function import _init_api, register_func, get_global_func, extract_ext_funcs from ._ffi.function import convert_to_tvm_func as _convert_tvm_func from ._ffi.runtime_ctypes import TVMType from . import _api_internal from . import make as _make from . import expr as _expr from . import tensor as _tensor from . import schedule as _schedule from . import container as _container from . import tag as _tag int8 = "int8" int32 = "int32" float32 = "float32" handle = "handle" def min_value(dtype): return _api_internal._min_value(dtype)
3202
import numpy as np from unittest import TestCase import numpy.testing as npt from distancematrix.util import diag_indices_of from distancematrix.consumer.distance_matrix import DistanceMatrix class TestContextualMatrixProfile(TestCase): def setUp(self): self.dist_matrix = np.array([ [8.67, 1.10, 1.77, 1.26, 1.91, 4.29, 6.32, 4.24, 4.64, 5.06, 6.41, 4.07, 4.67, 9.32, 5.09], [4.33, 4.99, 0.14, 2.79, 2.10, 6.26, 9.40, 4.14, 5.53, 4.26, 8.21, 5.91, 6.83, 9.26, 6.19], [0.16, 9.05, 1.35, 4.78, 7.01, 4.36, 5.24, 8.81, 7.90, 5.84, 8.90, 7.88, 3.37, 4.70, 6.94], [0.94, 8.70, 3.87, 6.29, 0.32, 1.79, 5.80, 2.61, 1.43, 6.32, 1.62, 0.20, 2.28, 7.11, 2.15], [9.90, 4.51, 2.11, 2.83, 5.52, 8.55, 6.90, 0.24, 1.58, 4.26, 8.75, 3.71, 9.93, 8.33, 0.38], [7.30, 5.84, 9.63, 1.95, 3.76, 3.61, 9.42, 5.56, 5.09, 7.07, 1.90, 4.78, 1.06, 0.69, 3.67], [2.17, 8.37, 3.99, 4.28, 4.37, 2.86, 8.61, 3.39, 8.37, 6.95, 6.57, 1.79, 7.40, 4.41, 7.64], [6.26, 0.29, 6.44, 8.84, 1.24, 2.52, 6.25, 3.07, 5.55, 3.19, 8.16, 5.32, 9.01, 0.39, 9.], [4.67, 8.88, 3.05, 3.06, 2.36, 8.34, 4.91, 5.46, 9.25, 9.78, 0.03, 5.64, 5.10, 3.58, 6.92], [1.01, 0.91, 6.28, 7.79, 0.68, 5.50, 6.72, 5.11, 0.80, 9.30, 9.77, 4.71, 3.26, 7.29, 6.26]]) def mock_initialise(self, dm): dm.initialise(1, self.dist_matrix.shape[0], self.dist_matrix.shape[1]) def test_process_diagonal(self): dm = DistanceMatrix() self.mock_initialise(dm) for diag in range(-self.dist_matrix.shape[0] + 1, self.dist_matrix.shape[1]): diag_ind = diag_indices_of(self.dist_matrix, diag) dm.process_diagonal(diag, np.atleast_2d(self.dist_matrix[diag_ind])) npt.assert_equal(dm.distance_matrix, self.dist_matrix) def test_process_diagonal_partial_calculation(self): dm = DistanceMatrix() self.mock_initialise(dm) correct = np.full_like(self.dist_matrix, np.nan, dtype=float) for diag in range(-8, self.dist_matrix.shape[1], 3): diag_ind = diag_indices_of(self.dist_matrix, diag) dm.process_diagonal(diag, np.atleast_2d(self.dist_matrix[diag_ind])) correct[diag_ind] = self.dist_matrix[diag_ind] npt.assert_equal(dm.distance_matrix, correct) def test_process_column(self): dm = DistanceMatrix() self.mock_initialise(dm) for column in range(0, self.dist_matrix.shape[1]): dm.process_column(column, np.atleast_2d(self.dist_matrix[:, column])) npt.assert_equal(dm.distance_matrix, self.dist_matrix) def test_process_column_partial_calculation(self): dm = DistanceMatrix() self.mock_initialise(dm) correct = np.full_like(self.dist_matrix, np.nan, dtype=float) for column in [2, 3, 4, 5, 10, 11, 12]: dm.process_column(column, np.atleast_2d(self.dist_matrix[:, column])) correct[:, column] = self.dist_matrix[:, column] npt.assert_equal(dm.distance_matrix, correct) def test_streaming_process_column(self): dm = DistanceMatrix() dm.initialise(1, 5, 5) dm.process_column(0, np.atleast_2d(self.dist_matrix[0, 0])) dm.process_column(1, np.atleast_2d(self.dist_matrix[:2, 1])) expected = np.full((5, 5), np.nan) expected[0, 0] = self.dist_matrix[0, 0] expected[:2, 1] = self.dist_matrix[:2, 1] npt.assert_equal(dm.distance_matrix, expected) for column in range(0, 5): dm.process_column(column, np.atleast_2d(self.dist_matrix[:5, :5][:, column])) npt.assert_equal(dm.distance_matrix, self.dist_matrix[:5, :5]) dm.shift_query(1) dm.shift_series(3) correct = np.full((5, 5), np.nan) correct[0:4, 0:2] = self.dist_matrix[1:5, 3:5] npt.assert_equal(dm.distance_matrix, correct) for column in range(0, 5): dm.process_column(column, np.atleast_2d(self.dist_matrix[1:6, 3:8][:, column])) npt.assert_equal(dm.distance_matrix, self.dist_matrix[1:6, 3:8]) dm.shift_query(2) dm.shift_series(1) dm.process_column(4, np.atleast_2d(self.dist_matrix[3:8, 8])) correct = np.full((5, 5), np.nan) correct[0:3, 0:4] = self.dist_matrix[3:6, 4:8] correct[:, 4] = self.dist_matrix[3:8, 8] npt.assert_equal(dm.distance_matrix, correct) def test_streaming_process_diagonal(self): dm = DistanceMatrix() dm.initialise(1, 5, 5) dm.process_diagonal(0, np.atleast_2d(self.dist_matrix[0, 0])) diag_ind = diag_indices_of(self.dist_matrix[:3, :3], 1) dm.process_diagonal(1, np.atleast_2d(np.atleast_2d(self.dist_matrix[diag_ind]))) expected = np.full((5, 5), np.nan) expected[0, 0] = self.dist_matrix[0, 0] expected[0, 1] = self.dist_matrix[0, 1] expected[1, 2] = self.dist_matrix[1, 2] npt.assert_equal(dm.distance_matrix, expected) for diag in range(-4,5): diag_ind = diag_indices_of(self.dist_matrix[:5, :5], diag) dm.process_diagonal(diag, np.atleast_2d(self.dist_matrix[diag_ind])) npt.assert_equal(dm.distance_matrix, self.dist_matrix[:5, :5]) dm.shift_query(2) dm.shift_series(1) expected = self.dist_matrix[2:7, 1:6].copy() expected[-2:, :] = np.nan expected[:, -1:] = np.nan npt.assert_equal(dm.distance_matrix, expected) for diag in range(-4,5): diag_ind = diag_indices_of(self.dist_matrix[:5, :5], diag) dm.process_diagonal(diag, np.atleast_2d(self.dist_matrix[diag_ind])) npt.assert_equal(dm.distance_matrix, self.dist_matrix[:5, :5])
3205
import torch import torch.nn as nn import os import torch.nn.functional as F class LDS(nn.Module): def __init__(self,): super(LDS, self).__init__() self.pool1 = nn.MaxPool2d(kernel_size=(2, 2), stride=2, padding=0) self.pool2 = nn.MaxPool2d(kernel_size=(2, 2), stride=2, padding=0) self.pool3 = nn.MaxPool2d(kernel_size=(2, 2), stride=2, padding=1) def forward(self, x): x_pool1 = self.pool1(x) x_pool2 = self.pool2(x_pool1) x_pool3 = self.pool3(x_pool2) return x_pool3 class ConvBlock(nn.Module): def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True, bias=False): super(ConvBlock, self).__init__() self.out_channels = out_planes self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None self.relu = nn.ReLU(inplace=False) if relu else None def forward(self, x): x = self.conv(x) if self.bn is not None: x = self.bn(x) if self.relu is not None: x = self.relu(x) return x class LSN_init(nn.Module): def __init__(self, in_planes, out_planes, stride=1): super(LSN_init, self).__init__() self.out_channels = out_planes inter_planes = out_planes // 4 self.part_a = nn.Sequential( ConvBlock(in_planes, inter_planes, kernel_size=(3, 3), stride=stride, padding=1), ConvBlock(inter_planes, inter_planes, kernel_size=1, stride=1), ConvBlock(inter_planes, inter_planes, kernel_size=(3, 3), stride=stride, padding=1) ) self.part_b = ConvBlock(inter_planes, out_planes, kernel_size=1, stride=1, relu=False) def forward(self, x): out1 = self.part_a(x) out2 = self.part_b(out1) return out1, out2 class LSN_later(nn.Module): def __init__(self, in_planes, out_planes, stride=1): super(LSN_later, self).__init__() self.out_channels = out_planes inter_planes = out_planes // 4 self.part_a = ConvBlock(in_planes, inter_planes, kernel_size=(3, 3), stride=stride, padding=1) self.part_b = ConvBlock(inter_planes, out_planes, kernel_size=1, stride=1, relu=False) def forward(self, x): out1 = self.part_a(x) out2 = self.part_b(out1) return out1, out2 class IBN(nn.Module): def __init__(self, out_planes, bn=True): super(IBN, self).__init__() self.out_channels = out_planes self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None def forward(self, x): if self.bn is not None: x = self.bn(x) return x class One_Three_Conv(nn.Module): def __init__(self, in_planes, out_planes, stride=1): super(One_Three_Conv, self).__init__() self.out_channels = out_planes inter_planes = in_planes // 4 self.single_branch = nn.Sequential( ConvBlock(in_planes, inter_planes, kernel_size=1, stride=1), ConvBlock(inter_planes, out_planes, kernel_size=(3, 3), stride=stride, padding=1, relu=False) ) def forward(self, x): out = self.single_branch(x) return out class Relu_Conv(nn.Module): def __init__(self, in_planes, out_planes, stride=1): super(Relu_Conv, self).__init__() self.out_channels = out_planes self.relu = nn.ReLU(inplace=False) self.single_branch = nn.Sequential( ConvBlock(in_planes, out_planes, kernel_size=(3, 3), stride=stride, padding=1) ) def forward(self, x): x = self.relu(x) out = self.single_branch(x) return out class Ds_Conv(nn.Module): def __init__(self, in_planes, out_planes, stride=1, padding=(1, 1)): super(Ds_Conv, self).__init__() self.out_channels = out_planes self.single_branch = nn.Sequential( ConvBlock(in_planes, out_planes, kernel_size=(3, 3), stride=stride, padding=padding, relu=False) ) def forward(self, x): out = self.single_branch(x) return out class LRFNet(nn.Module): """LRFNet for object detection The network is based on the SSD architecture. Each multibox layer branches into 1) conv2d for class conf scores 2) conv2d for localization predictions 3) associated priorbox layer to produce default bounding boxes specific to the layer's feature map size. Args: phase: (string) Can be "test" or "train" base: VGG16 layers for input, size of either 300 or 512 extras: extra layers that feed to multibox loc and conf layers head: "multibox head" consists of loc and conf conv layers """ def __init__(self, phase, size, base, extras, head, num_classes): super(LRFNet, self).__init__() self.phase = phase self.num_classes = num_classes self.size = size # vgg network self.base = nn.ModuleList(base) self.lds = LDS() # convs for merging the lsn and ssd features self.Norm1 = Relu_Conv(512, 512, stride=1) self.Norm2 = Relu_Conv(1024, 1024, stride=1) self.Norm3 = Relu_Conv(512, 512, stride=1) self.Norm4 = Relu_Conv(256, 256, stride=1) # convs for generate the lsn features self.icn1 = LSN_init(3, 512, stride=1) self.icn2 = LSN_later(128, 1024, stride=2) self.icn3 = LSN_later(256, 512, stride=2) # convs with s=2 to downsample the features self.dsc1 = Ds_Conv(512, 1024, stride=2, padding=(1, 1)) self.dsc2 = Ds_Conv(1024, 512, stride=2, padding=(1, 1)) self.dsc3 = Ds_Conv(512, 256, stride=2, padding=(1, 1)) # convs to reduce the feature dimensions of current level self.agent1 = ConvBlock(512, 256, kernel_size=1, stride=1) self.agent2 = ConvBlock(1024, 512, kernel_size=1, stride=1) self.agent3 = ConvBlock(512, 256, kernel_size=1, stride=1) # convs to reduce the feature dimensions of other levels self.proj1 = ConvBlock(1024, 128, kernel_size=1, stride=1) self.proj2 = ConvBlock(512, 128, kernel_size=1, stride=1) self.proj3 = ConvBlock(256, 128, kernel_size=1, stride=1) # convs to reduce the feature dimensions of other levels self.convert1 = ConvBlock(384, 256, kernel_size=1) self.convert2 = ConvBlock(256, 512, kernel_size=1) self.convert3 = ConvBlock(128, 256, kernel_size=1) # convs to merge the features of the current and higher level features self.merge1 = ConvBlock(512, 512, kernel_size=3, stride=1, padding=1) self.merge2 = ConvBlock(1024, 1024, kernel_size=3, stride=1, padding=1) self.merge3 = ConvBlock(512, 512, kernel_size=3, stride=1, padding=1) self.ibn1 = IBN(512, bn=True) self.ibn2 = IBN(1024, bn=True) self.relu = nn.ReLU(inplace=False) self.extras = nn.ModuleList(extras) self.loc = nn.ModuleList(head[0]) self.conf = nn.ModuleList(head[1]) if self.phase == 'test': self.softmax = nn.Softmax() def forward(self, x): """Applies network layers and ops on input image(s) x. Args: x: input image or batch of images. Shape: [batch,3,300,300]. Return: Depending on phase: test: list of concat outputs from: 1: softmax layers, Shape: [batch*num_priors,num_classes] 2: localization layers, Shape: [batch,num_priors*4] 3: priorbox layers, Shape: [2,num_priors*4] train: list of concat outputs from: 1: confidence layers, Shape: [batch*num_priors,num_classes] 2: localization layers, Shape: [batch,num_priors*4] 3: priorbox layers, Shape: [2,num_priors*4] """ sources = list() loc = list() conf = list() new_sources = list() # apply lds to the initial image x_pool = self.lds(x) # apply vgg up to conv4_3 for k in range(22): x = self.base[k](x) conv4_3_bn = self.ibn1(x) x_pool1_skip, x_pool1_icn = self.icn1(x_pool) s = self.Norm1(conv4_3_bn * x_pool1_icn) # apply vgg up to fc7 for k in range(22, 34): x = self.base[k](x) conv7_bn = self.ibn2(x) x_pool2_skip, x_pool2_icn = self.icn2(x_pool1_skip) p = self.Norm2(self.dsc1(s) + conv7_bn * x_pool2_icn) x = self.base[34](x) # apply extra layers and cache source layer outputs for k, v in enumerate(self.extras): x = v(x) if k == 0: x_pool3_skip, x_pool3_icn = self.icn3(x_pool2_skip) w = self.Norm3(self.dsc2(p) + x * x_pool3_icn) elif k == 2: q = self.Norm4(self.dsc3(w) + x) sources.append(q) elif k == 5 or k == 7: sources.append(x) else: pass # project the forward features into lower dimension. tmp1 = self.proj1(p) tmp2 = self.proj2(w) tmp3 = self.proj3(q) # The conv4_3 level proj1 = F.upsample(tmp1, size=(38, 38), mode='bilinear') proj2 = F.upsample(tmp2, size=(38, 38), mode='bilinear') proj3 = F.upsample(tmp3, size=(38, 38), mode='bilinear') proj = torch.cat([proj1, proj2, proj3], dim=1) agent1 = self.agent1(s) convert1 = self.convert1(proj) pred1 = torch.cat([agent1, convert1], dim=1) pred1 = self.merge1(pred1) new_sources.append(pred1) # The fc_7 level proj2 = F.upsample(tmp2, size=(19, 19), mode='bilinear') proj3 = F.upsample(tmp3, size=(19, 19), mode='bilinear') proj = torch.cat([proj2, proj3], dim=1) agent2 = self.agent2(p) convert2 = self.convert2(proj) pred2 = torch.cat([agent2, convert2], dim=1) pred2 = self.merge2(pred2) new_sources.append(pred2) # The conv8 level proj3 = F.upsample(tmp3, size=(10, 10), mode='bilinear') proj = proj3 agent3 = self.agent3(w) convert3 = self.convert3(proj) pred3 = torch.cat([agent3, convert3], dim=1) pred3 = self.merge3(pred3) new_sources.append(pred3) for prediction in sources: new_sources.append(prediction) # apply multibox head to source layers for (x, l, c) in zip(new_sources, self.loc, self.conf): loc.append(l(x).permute(0, 2, 3, 1).contiguous()) conf.append(c(x).permute(0, 2, 3, 1).contiguous()) loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1) conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1) if self.phase == "test": output = ( loc.view(loc.size(0), -1, 4), # loc preds self.softmax(conf.view(-1, self.num_classes)), # conf preds ) else: output = ( loc.view(loc.size(0), -1, 4), conf.view(conf.size(0), -1, self.num_classes), ) return output def load_weights(self, base_file): other, ext = os.path.splitext(base_file) if ext == '.pkl' or '.pth': print('Loading weights into state dict...') self.load_state_dict(torch.load(base_file)) print('Finished!') else: print('Sorry only .pth and .pkl files supported.') def vgg(cfg, i, batch_norm=False): layers = [] in_channels = i for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] elif v == 'C': layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=False)] else: layers += [conv2d, nn.ReLU(inplace=False)] in_channels = v pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6) conv7 = nn.Conv2d(1024, 1024, kernel_size=1) layers += [pool5, conv6, nn.ReLU(inplace=False), conv7, nn.ReLU(inplace=False)] return layers base = { '300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M', 512, 512, 512]} def add_extras(size, cfg, i, batch_norm=False): # Extra layers added to VGG for feature scaling layers = [] in_channels = i flag = False for k, v in enumerate(cfg): if in_channels != 'S': if v == 'S': if in_channels == 256 and size == 512: layers += [One_Three_Conv(in_channels, cfg[k+1], stride=2), nn.ReLU(inplace=False)] else: layers += [One_Three_Conv(in_channels, cfg[k+1], stride=2), nn.ReLU(inplace=False)] in_channels = v layers += [ConvBlock(256, 128, kernel_size=1,stride=1)] layers += [ConvBlock(128, 256, kernel_size=3,stride=1)] layers += [ConvBlock(256, 128, kernel_size=1,stride=1)] layers += [ConvBlock(128, 256, kernel_size=3,stride=1)] return layers extras = { '300': [1024, 'S', 512, 'S', 256]} def multibox(size, vgg, extra_layers, cfg, num_classes): loc_layers = [] conf_layers = [] vgg_source = [1, -2] for k, v in enumerate(vgg_source): if k == 0: loc_layers += [nn.Conv2d(512, cfg[k] * 4, kernel_size=3, padding=1)] conf_layers +=[nn.Conv2d(512, cfg[k] * num_classes, kernel_size=3, padding=1)] else: loc_layers += [nn.Conv2d(vgg[v].out_channels, cfg[k] * 4, kernel_size=3, padding=1)] conf_layers += [nn.Conv2d(vgg[v].out_channels, cfg[k] * num_classes, kernel_size=3, padding=1)] i = 2 indicator = 3 for k, v in enumerate(extra_layers): if (k < indicator+1 and k % 2 == 0) or (k > indicator+1 and k % 2 != 0): loc_layers += [nn.Conv2d(v.out_channels, cfg[i] * 4, kernel_size=3, padding=1)] conf_layers += [nn.Conv2d(v.out_channels, cfg[i] * num_classes, kernel_size=3, padding=1)] i += 1 return vgg, extra_layers, (loc_layers, conf_layers) mbox = { '300': [6, 6, 6, 6, 4, 4]} def build_net(phase, size=300, num_classes=81): if size != 300: print("Error: The input image size is not supported!") return return LRFNet(phase, size, *multibox(size, vgg(base[str(size)], 3), add_extras(size, extras[str(size)], 1024), mbox[str(size)], num_classes), num_classes)
3234
import os from conans import ConanFile, tools from conans.errors import ConanInvalidConfiguration class CxxOptsConan(ConanFile): name = "cxxopts" homepage = "https://github.com/jarro2783/cxxopts" url = "https://github.com/conan-io/conan-center-index" description = "Lightweight C++ option parser library, supporting the standard GNU style syntax for options." license = "MIT" topics = ("conan", "option-parser", "positional-arguments ", "header-only") settings = "compiler" options = { "unicode": [True, False] } default_options = { "unicode": False } no_copy_source = True @property def _source_subfolder(self): return "source_subfolder" @property def _minimum_cpp_standard(self): return 11 @property def _minimum_compilers_version(self): return { "Visual Studio": "14", "gcc": "5", "clang": "3.9", "apple-clang": "8", } def configure(self): if self.settings.compiler.get_safe("cppstd"): tools.check_min_cppstd(self, self._minimum_cpp_standard) min_version = self._minimum_compilers_version.get(str(self.settings.compiler)) if not min_version: self.output.warn("{} recipe lacks information about the {} compiler support.".format( self.name, self.settings.compiler)) else: if tools.Version(self.settings.compiler.version) < min_version: raise ConanInvalidConfiguration("{} requires C++{} support. The current compiler {} {} does not support it.".format( self.name, self._minimum_cpp_standard, self.settings.compiler, self.settings.compiler.version)) def requirements(self): if self.options.unicode: self.requires("icu/64.2") def source(self): tools.get(**self.conan_data["sources"][self.version]) os.rename("{}-{}".format(self.name, self.version), self._source_subfolder) def package(self): self.copy("LICENSE", dst="licenses", src=self._source_subfolder) self.copy("{}.hpp".format(self.name), dst="include", src=os.path.join(self._source_subfolder, "include")) def package_id(self): self.info.header_only() def package_info(self): if self.options.unicode: self.cpp_info.defines = ["CXXOPTS_USE_UNICODE"]
3273
from typing import * import attr from dlms_cosem.hdlc import validators @attr.s(auto_attribs=True) class HdlcAddress: """ A client address shall always be expressed on one byte. To enable addressing more than one logical device within a single physical device and to support the multi-drop configuration the server address may be divided in two parts– may be divided into two parts: The logical address to address a logical device (separate addressable entity within a physical device) makes up the upper HDLC address The logical address must always be present. The physical address is used to address a physical device ( a physical device on a multi-drop) The physical address can be omitted it not used. """ logical_address: int = attr.ib(validator=[validators.validate_hdlc_address]) physical_address: Optional[int] = attr.ib( default=None, validator=[validators.validate_hdlc_address] ) address_type: str = attr.ib( default="client", validator=[validators.validate_hdlc_address_type] ) @property def length(self): """ The number of bytes the address makes up. :return: """ return len(self.to_bytes()) def to_bytes(self): out: List[Optional[int]] = list() if self.address_type == "client": # shift left 1 bit and set the lsb to mark end of address. out.append(((self.logical_address << 1) | 0b00000001)) else: # server address type logical_higher, logical_lower = self._split_address(self.logical_address) if self.physical_address: physical_higher, physical_lower = self._split_address( self.physical_address ) # mark physical lower as end physical_lower = physical_lower | 0b00000001 out.extend( [logical_higher, logical_lower, physical_higher, physical_lower] ) else: # no physical address so mark the logial as end. logical_lower = logical_lower | 0b00000001 out.extend([logical_higher, logical_lower]) out_bytes = list() for address in out: if address: out_bytes.append(address.to_bytes(1, "big")) return b"".join(out_bytes) @staticmethod def _split_address(address: int) -> Tuple[Optional[int], int]: higher: Optional[int] lower: int if address > 0b01111111: lower = (address & 0b0000000001111111) << 1 higher = (address & 0b0011111110000000) >> 6 else: lower = address << 1 higher = None return higher, lower @staticmethod def _address_to_byte(address: int) -> bytes: return address.to_bytes(1, "big") @classmethod def destination_from_bytes(cls, frame_bytes: bytes, address_type: str): destination_address_data, _ = HdlcAddress.find_address_in_frame_bytes( frame_bytes ) ( destination_logical, destination_physical, destination_length, ) = destination_address_data return cls(destination_logical, destination_physical, address_type) @classmethod def source_from_bytes(cls, frame_bytes: bytes, address_type: str): _, source_address_data = HdlcAddress.find_address_in_frame_bytes(frame_bytes) source_logical, source_physical, source_length = source_address_data return cls(source_logical, source_physical, address_type) @staticmethod def find_address_in_frame_bytes( hdlc_frame_bytes: bytes, ) -> Tuple[Tuple[int, Optional[int], int], Tuple[int, Optional[int], int]]: """ address can be 1, 2 or 4 bytes long. the end byte is indicated by the of the last byte LSB being 1 The first address is the destination address and the seconds is the source address. :param frame_bytes: :return: """ # Find destination address. destination_length: int = 1 destination_logical: int = 0 destination_physical: Optional[int] = 0 destination_positions_list: List[Tuple[int, int]] = [(3, 1), (4, 2), (6, 4)] address_bytes: bytes for pos, _length in destination_positions_list: end_byte = hdlc_frame_bytes[pos] if bool(end_byte & 0b00000001): # Found end byte: destination_length = _length break continue if destination_length == 1: address_bytes = hdlc_frame_bytes[3].to_bytes(1, "big") destination_logical = address_bytes[0] >> 1 destination_physical = None elif destination_length == 2: address_bytes = hdlc_frame_bytes[3:5] destination_logical = address_bytes[0] >> 1 destination_physical = address_bytes[1] >> 1 elif destination_length == 4: address_bytes = hdlc_frame_bytes[3:7] destination_logical = HdlcAddress.parse_two_byte_address(address_bytes[:2]) destination_physical = HdlcAddress.parse_two_byte_address(address_bytes[3:]) # Find source address source_length: int = 1 source_logical: int = 0 source_physical: Optional[int] = 0 source_position_list: List[Tuple[int, int]] = [ (item[0] + destination_length, item[1]) for item in destination_positions_list ] for pos, _length in source_position_list: end_byte = hdlc_frame_bytes[pos] if bool(end_byte & 0b00000001): # Found end byte: source_length = _length break continue if source_length == 1: address_bytes = hdlc_frame_bytes[3 + destination_length].to_bytes(1, "big") source_logical = address_bytes[0] >> 1 source_physical = None elif source_length == 2: address_bytes = hdlc_frame_bytes[3 + destination_length : 5 + source_length] source_logical = address_bytes[0] >> 1 source_physical = address_bytes[1] >> 1 elif destination_length == 4: address_bytes = hdlc_frame_bytes[3 + destination_length : 7 + source_length] source_logical = HdlcAddress.parse_two_byte_address(address_bytes[:2]) source_physical = HdlcAddress.parse_two_byte_address(address_bytes[3:]) return ( (destination_logical, destination_physical, destination_length), (source_logical, source_physical, source_length), ) @staticmethod def parse_two_byte_address(address_bytes: bytes): if address_bytes != 2: raise ValueError(f"Can only parse 2 bytes for address") upper = address_bytes[0] >> 1 lower = address_bytes[1] >> 1 return lower + (upper << 7)
3321
from django.contrib import admin from django.contrib.auth.admin import UserAdmin from .models import CustomUser admin.site.register(CustomUser, UserAdmin)
3370
from grpc._channel import _InactiveRpcError, _MultiThreadedRendezvous from functools import wraps _COMPLEX_PLOTTING_ERROR_MSG = """ Complex fields cannot be plotted. Use operators to get the amplitude or the result at a defined sweeping phase before plotting. """ _FIELD_CONTAINER_PLOTTING_MSG = """" This fields_container contains multiple fields. Only one time-step result can be plotted at a time. Extract a field with ``fields_container[index]``. """ class DpfVersionNotSupported(RuntimeError): """Error raised when the dpf-core/grpc-dpf python features are not supported by the DPF gRPC server version.""" def __init__(self, version, msg=None): if msg is None: msg = "Feature not supported. Upgrade the server to " msg += str(version) msg += " version (or above)." RuntimeError.__init__(self, msg) class DpfValueError(ValueError): """Error raised when a specific DPF error value must be defined.""" def __init__( self, msg="A value that has been set leads to incorrect DPF behavior." ): ValueError.__init__(self, msg) class InvalidTypeError(ValueError): """Error raised when a parameter has the wrong type.""" def __init__(self, data_type, parameter_name): msg = ( "A " + data_type + " must be used for the following parameter: " + parameter_name + "." ) ValueError.__init__(self, msg) class LocationError(ValueError): """Error raised when using an invalid location.""" def __init__(self, msg="Invalid location"): ValueError.__init__(self, msg) class ComplexPlottingError(ValueError): """Error raised when attempting to plot a field with complex data.""" def __init__(self, msg=_COMPLEX_PLOTTING_ERROR_MSG): ValueError.__init__(self, msg) class FieldContainerPlottingError(ValueError): """Error raised when attempting to plot a fields_container containing multiple fields.""" def __init__(self, msg=_FIELD_CONTAINER_PLOTTING_MSG): ValueError.__init__(self, msg) class InvalidANSYSVersionError(RuntimeError): """Error raised when the Ansys verion is invalid.""" def __init__(self, msg=""): RuntimeError.__init__(self, msg) class DPFServerException(Exception): """Error raised when the DPF server has encountered an error.""" def __init__(self, msg=""): Exception.__init__(self, msg) class DPFServerNullObject(Exception): """Error raised when the DPF server cannot find an object.""" def __init__(self, msg=""): Exception.__init__(self, msg) class InvalidPortError(OSError): """Error raised when used an invalid port when starting DPF.""" def __init__(self, msg=""): OSError.__init__(self, msg) def protect_grpc(func): """Capture gRPC exceptions and return a more succinct error message.""" @wraps(func) def wrapper(*args, **kwargs): """Capture gRPC exceptions.""" # Capture gRPC exceptions try: out = func(*args, **kwargs) except (_InactiveRpcError, _MultiThreadedRendezvous) as error: details = error.details() if "object is null in the dataBase" in details: raise DPFServerNullObject(details) from None raise DPFServerException(details) from None return out return wrapper
3372
from dataclasses import dataclass from dataclasses import field from time import time from typing import Any from typing import Callable from typing import Dict from typing import List from typing import Optional from typing import Tuple @dataclass class NewUser: """Deals with the commands the user is currently sending""" user_id: int chat_id: int command: str def __repr__(self) -> str: return f"{self.user_id=} {self.command=}" @dataclass class UserCommand: """Stores the latest command sent by the user""" user_id: int command: str insert_time: int = int(time()) # for garbage collection def __repr__(self) -> str: return f"{self.user_id=} {self.command=} {self.insert_time=}" @dataclass class MessageInfo: """Important things in the message""" user_id: int chat_id: int message_id: int text: str def __repr__(self) -> str: return f"{self.user_id=} {self.chat_id=} {self.message_id=} {self.text=}" @dataclass class UserDBInfo: """Info about the user from the DB""" feed: bool # if false, the bot will not send any news feeds on a daily basis user_id: int db_id: int topics: List[str] = field(default_factory=lambda: []) def __repr__(self) -> str: return f"{self.user_id=} {self.feed=} {self.db_id=} {self.topics=}" @dataclass class StagedFunction: """For FunctionStagingArea""" fn: Callable[..., Any] args: Optional[Tuple[Any, ...]] = None kwargs: Optional[Dict[str, Any]] = None
3381
from __future__ import absolute_import import abc import os import json import glob import shutil from tensorflow.python.estimator import gc from tensorflow.python.estimator import util from tensorflow.python.estimator.canned import metric_keys from tensorflow.python.framework import errors_impl from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging from tensorflow.python.summary import summary_iterator from tensorflow.python.estimator.exporter import Exporter, _SavedModelExporter def _verify_compare_fn_args(compare_fn): """Verifies compare_fn arguments.""" args = set(util.fn_args(compare_fn)) if 'best_eval_result' not in args: raise ValueError( 'compare_fn (%s) must include best_eval_result argument.' % compare_fn) if 'current_eval_result' not in args: raise ValueError( 'compare_fn (%s) must include current_eval_result argument.' % compare_fn) non_valid_args = list(args - set(['best_eval_result', 'current_eval_result'])) if non_valid_args: raise ValueError('compare_fn (%s) has following not expected args: %s' % (compare_fn, non_valid_args)) def _loss_smaller(best_eval_result, current_eval_result): """Compares two evaluation results and returns true if the 2nd one is smaller. Both evaluation results should have the values for MetricKeys.LOSS, which are used for comparison. Args: best_eval_result: best eval metrics. current_eval_result: current eval metrics. Returns: True if the loss of current_eval_result is smaller; otherwise, False. Raises: ValueError: If input eval result is None or no loss is available. """ default_key = metric_keys.MetricKeys.LOSS if not best_eval_result or default_key not in best_eval_result: raise ValueError( 'best_eval_result cannot be empty or no loss is found in it.') if not current_eval_result or default_key not in current_eval_result: raise ValueError( 'current_eval_result cannot be empty or no loss is found in it.') return best_eval_result[default_key] > current_eval_result[default_key] class BestExporter(Exporter): """This class exports the serving graph and checkpoints of the best models. This class performs a model export everytime when the new model is better than any exsiting model. """ def __init__(self, name='best_exporter', serving_input_receiver_fn=None, event_file_pattern='eval/*.tfevents.*', compare_fn=_loss_smaller, assets_extra=None, as_text=False, exports_to_keep=5): """Create an `Exporter` to use with `tf.estimator.EvalSpec`. Example of creating a BestExporter for training and evluation: ```python def make_train_and_eval_fn(): # Set up feature columns. categorial_feature_a = ( tf.feature_column.categorical_column_with_hash_bucket(...)) categorial_feature_a_emb = embedding_column( categorical_column=categorial_feature_a, ...) ... # other feature columns estimator = tf.estimator.DNNClassifier( config=tf.estimator.RunConfig( model_dir='/my_model', save_summary_steps=100), feature_columns=[categorial_feature_a_emb, ...], hidden_units=[1024, 512, 256]) serving_feature_spec = tf.feature_column.make_parse_example_spec( categorial_feature_a_emb) serving_input_receiver_fn = ( tf.estimator.export.build_parsing_serving_input_receiver_fn( serving_feature_spec)) exporter = tf.estimator.BestExporter( name="best_exporter", serving_input_receiver_fn=serving_input_receiver_fn, exports_to_keep=5) train_spec = tf.estimator.TrainSpec(...) eval_spec = [tf.estimator.EvalSpec( input_fn=eval_input_fn, steps=100, exporters=exporter, start_delay_secs=0, throttle_secs=5)] return tf.estimator.DistributedTrainingSpec(estimator, train_spec, eval_spec) ``` Args: name: unique name of this `Exporter` that is going to be used in the export path. serving_input_receiver_fn: a function that takes no arguments and returns a `ServingInputReceiver`. event_file_pattern: event file name pattern relative to model_dir. If None, however, the exporter would not be preemption-safe. To bex preemption-safe, event_file_pattern should be specified. compare_fn: a function that compares two evaluation results and returns true if current evaluation result is better. Follows the signature: * Args: * `best_eval_result`: This is the evaluation result of the best model. * `current_eval_result`: This is the evaluation result of current candidate model. * Returns: True if current evaluation result is better; otherwise, False. assets_extra: An optional dict specifying how to populate the assets.extra directory within the exported SavedModel. Each key should give the destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`. as_text: whether to write the SavedModel proto in text format. Defaults to `False`. exports_to_keep: Number of exports to keep. Older exports will be garbage-collected. Defaults to 5. Set to `None` to disable garbage collection. Raises: ValueError: if any arguments is invalid. """ self._compare_fn = compare_fn if self._compare_fn is None: raise ValueError('`compare_fn` must not be None.') _verify_compare_fn_args(self._compare_fn) self._saved_model_exporter = _SavedModelExporter( name, serving_input_receiver_fn, assets_extra, as_text) self._event_file_pattern = event_file_pattern self._model_dir = None self._best_eval_result = None self._exports_to_keep = exports_to_keep self._log = {} if exports_to_keep is not None and exports_to_keep <= 0: raise ValueError( '`exports_to_keep`, if provided, must be positive number') @property def name(self): return self._saved_model_exporter.name def export(self, estimator, export_path, checkpoint_path, eval_result, is_the_final_export): export_result = None if self._model_dir != estimator.model_dir and self._event_file_pattern: # Loads best metric from event files. tf_logging.info('Loading best metric from event files.') self._model_dir = estimator.model_dir full_event_file_pattern = os.path.join(self._model_dir, self._event_file_pattern) self._best_eval_result = self._get_best_eval_result( full_event_file_pattern) if os.path.isfile(os.path.join(export_path, 'export.log')): self._log = {} try: self._log = json.load(open(os.path.join(export_path, 'export.log'), 'r')) except json.JSONDecodeError: pass if len(self._log) == 0: self._best_eval_result = None if self._best_eval_result is None or self._compare_fn( best_eval_result=self._best_eval_result, current_eval_result=eval_result): tf_logging.info('Performing best model export.') self._best_eval_result = eval_result export_result = self._saved_model_exporter.export( estimator, export_path, checkpoint_path, eval_result, is_the_final_export) export_result_path = export_result.decode("utf-8") self._log[export_result_path] = {k: float(v) for k, v in eval_result.items()} self._copy_checkpoint(checkpoint_path, export_result_path, eval_result["global_step"]) self._garbage_collect_exports(export_path) with open(os.path.join(export_path, 'export.log'), 'w') as fp: json.dump(self._log, fp) return export_result def _copy_checkpoint(self, checkpoint_pattern, dest_path, step): for file in glob.glob(checkpoint_pattern + '*'): shutil.copy(file, dest_path) with open(os.path.join(dest_path, 'checkpoint'), 'w') as fp: text = 'model_checkpoint_path: "model.ckpt-number"\n'.replace('number', str(step)) fp.write(text) fp.close() def _garbage_collect_exports(self, export_dir_base): """Deletes older exports, retaining only a given number of the most recent. Export subdirectories are assumed to be named with monotonically increasing integers; the most recent are taken to be those with the largest values. Args: export_dir_base: the base directory under which each export is in a versioned subdirectory. """ if self._exports_to_keep is None: return def _export_version_parser(path): # create a simple parser that pulls the export_version from the directory. filename = os.path.basename(path.path) if not (len(filename) == 10 and filename.isdigit()): return None return path._replace(export_version=int(filename)) # pylint: disable=protected-access keep_filter = gc._largest_export_versions(self._exports_to_keep) delete_filter = gc._negation(keep_filter) for p in delete_filter( gc._get_paths(export_dir_base, parser=_export_version_parser)): try: del self._log[p.path] gfile.DeleteRecursively(p.path) except errors_impl.NotFoundError as e: tf_logging.warn('Can not delete %s recursively: %s', p.path, e) # pylint: enable=protected-access def _get_best_eval_result(self, event_files): """Get the best eval result from event files. Args: event_files: Absolute pattern of event files. Returns: The best eval result. """ if not event_files: return None event_count = 0 best_eval_result = None for event_file in gfile.Glob(os.path.join(event_files)): for event in summary_iterator.summary_iterator(event_file): if event.HasField('summary'): event_eval_result = {} for value in event.summary.value: if value.HasField('simple_value'): event_eval_result[value.tag] = value.simple_value if event_eval_result: if best_eval_result is None or self._compare_fn( best_eval_result, event_eval_result): event_count += 1 best_eval_result = event_eval_result if event_count < 2: return None return best_eval_result
3386
from __future__ import annotations import typing from ctc import spec from . import timestamp_crud from . import metric_crud from . import analytics_spec async def async_create_payload( *, blocks: typing.Sequence[spec.BlockNumberReference] | None = None, timestamps: typing.Sequence[int] | None = None, timescale: analytics_spec.TimescaleSpec | None = None, end_time: analytics_spec.Timestamp | None = None, window_size: str | None = None, interval_size: str | None = None, provider: spec.ProviderSpec = None, ) -> analytics_spec.AnalyticsPayload: """create data payload from scratch""" time_data = await timestamp_crud.async_get_time_data( blocks=blocks, timestamps=timestamps, timescale=timescale, end_time=end_time, window_size=window_size, interval_size=interval_size, provider=provider, ) # get data data = await metric_crud.async_get_metrics( blocks=time_data['block_numbers'] ) return { 'version': '0.1.0', # # time data 'n_samples': time_data['n_samples'], 'window_size': time_data['window_size'], 'interval_size': time_data['interval_size'], 'timestamps': time_data['timestamps'], 'block_numbers': time_data['block_numbers'], 'created_at_timestamp': time_data['created_at_timestamp'], # # metric data 'data': data, } # def update_payload( # timescale: analytics_spec.Timescale, # old_payload: analytics_spec.AnalyticsPayload, # ) -> analytics_spec.AnalyticsPayload: # new_timestamps = get_new_timestamps( # timescale=timescale, # old_payload=old_payload, # ) # new_blocks = get_new_blocks( # new_timestamps=new_timestamps, # old_payload=old_payload, # ) # new_metrics = get_metrics(blocks=new_blocks) # return combine_new_data( # old_payload=old_payload, # new_metrics=new_metrics, # )
3426
import asyncio import uuid import pytest from aiomisc_pytest.pytest_plugin import TCPProxy import aiormq async def test_simple(amqp_channel: aiormq.Channel): await amqp_channel.basic_qos(prefetch_count=1) assert amqp_channel.number queue = asyncio.Queue() deaclare_ok = await amqp_channel.queue_declare(auto_delete=True) consume_ok = await amqp_channel.basic_consume(deaclare_ok.queue, queue.put) await amqp_channel.basic_publish( b"foo", routing_key=deaclare_ok.queue, properties=aiormq.spec.Basic.Properties(message_id="123"), ) message = await queue.get() # type: DeliveredMessage assert message.body == b"foo" cancel_ok = await amqp_channel.basic_cancel(consume_ok.consumer_tag) assert cancel_ok.consumer_tag == consume_ok.consumer_tag assert cancel_ok.consumer_tag not in amqp_channel.consumers await amqp_channel.queue_delete(deaclare_ok.queue) deaclare_ok = await amqp_channel.queue_declare(auto_delete=True) await amqp_channel.basic_publish(b"foo bar", routing_key=deaclare_ok.queue) message = await amqp_channel.basic_get(deaclare_ok.queue, no_ack=True) assert message.body == b"foo bar" async def test_blank_body(amqp_channel: aiormq.Channel): await amqp_channel.basic_qos(prefetch_count=1) assert amqp_channel.number queue = asyncio.Queue() deaclare_ok = await amqp_channel.queue_declare(auto_delete=True) consume_ok = await amqp_channel.basic_consume(deaclare_ok.queue, queue.put) await amqp_channel.basic_publish( b"", routing_key=deaclare_ok.queue, properties=aiormq.spec.Basic.Properties(message_id="123"), ) message = await queue.get() # type: DeliveredMessage assert message.body == b"" cancel_ok = await amqp_channel.basic_cancel(consume_ok.consumer_tag) assert cancel_ok.consumer_tag == consume_ok.consumer_tag assert cancel_ok.consumer_tag not in amqp_channel.consumers await amqp_channel.queue_delete(deaclare_ok.queue) deaclare_ok = await amqp_channel.queue_declare(auto_delete=True) await amqp_channel.basic_publish(b"foo bar", routing_key=deaclare_ok.queue) message = await amqp_channel.basic_get(deaclare_ok.queue, no_ack=True) assert message.body == b"foo bar" @pytest.mark.no_catch_loop_exceptions async def test_bad_consumer(amqp_channel: aiormq.Channel, loop): channel = amqp_channel # type: aiormq.Channel await channel.basic_qos(prefetch_count=1) declare_ok = await channel.queue_declare() future = loop.create_future() await channel.basic_publish(b"urgent", routing_key=declare_ok.queue) consumer_tag = loop.create_future() async def bad_consumer(message): await channel.basic_cancel(await consumer_tag) future.set_result(message) raise Exception consume_ok = await channel.basic_consume( declare_ok.queue, bad_consumer, no_ack=False, ) consumer_tag.set_result(consume_ok.consumer_tag) message = await future await channel.basic_reject(message.delivery.delivery_tag, requeue=True) assert message.body == b"urgent" future = loop.create_future() await channel.basic_consume( declare_ok.queue, future.set_result, no_ack=True, ) message = await future assert message.body == b"urgent" async def test_ack_nack_reject(amqp_channel: aiormq.Channel): channel = amqp_channel # type: aiormq.Channel await channel.basic_qos(prefetch_count=1) declare_ok = await channel.queue_declare(auto_delete=True) queue = asyncio.Queue() await channel.basic_consume(declare_ok.queue, queue.put, no_ack=False) await channel.basic_publish(b"rejected", routing_key=declare_ok.queue) message = await queue.get() assert message.body == b"rejected" await channel.basic_reject(message.delivery.delivery_tag, requeue=False) await channel.basic_publish(b"nacked", routing_key=declare_ok.queue) message = await queue.get() assert message.body == b"nacked" await channel.basic_nack(message.delivery.delivery_tag, requeue=False) await channel.basic_publish(b"acked", routing_key=declare_ok.queue) message = await queue.get() assert message.body == b"acked" await channel.basic_ack(message.delivery.delivery_tag) async def test_confirm_multiple(amqp_channel: aiormq.Channel): """ RabbitMQ has been observed to send confirmations in a strange pattern when publishing simultaneously where only some messages are delivered to a queue. It sends acks like this 1 2 4 5(multiple, confirming also 3). This test is probably inconsequential without publisher_confirms This is a regression for https://github.com/mosquito/aiormq/issues/10 """ channel = amqp_channel # type: aiormq.Channel exchange = uuid.uuid4().hex await channel.exchange_declare(exchange, exchange_type="topic") try: declare_ok = await channel.queue_declare(exclusive=True) await channel.queue_bind( declare_ok.queue, exchange, routing_key="test.5", ) for i in range(10): messages = [ asyncio.ensure_future(channel.basic_publish( b"test", exchange=exchange, routing_key="test.{}".format(i), )) for i in range(10) ] _, pending = await asyncio.wait(messages, timeout=0.2) assert not pending, "not all publishes were completed (confirmed)" await asyncio.sleep(0.05) finally: await channel.exchange_delete(exchange) async def test_exclusive_queue_locked(amqp_connection): channel0 = await amqp_connection.channel() channel1 = await amqp_connection.channel() qname = str(uuid.uuid4()) await channel0.queue_declare(qname, exclusive=True) try: await channel0.basic_consume(qname, print, exclusive=True) with pytest.raises(aiormq.exceptions.ChannelLockedResource): await channel1.queue_declare(qname) await channel1.basic_consume(qname, print, exclusive=True) finally: await channel0.queue_delete(qname) async def test_remove_writer_when_closed(amqp_channel: aiormq.Channel): with pytest.raises(aiormq.exceptions.ChannelClosed): await amqp_channel.queue_declare( "amq.forbidden_queue_name", auto_delete=True, ) with pytest.raises(aiormq.exceptions.ChannelInvalidStateError): await amqp_channel.queue_delete("amq.forbidden_queue_name") async def test_proxy_connection(proxy_connection, proxy: TCPProxy): channel = await proxy_connection.channel() # type: aiormq.Channel await channel.queue_declare(auto_delete=True) async def test_declare_queue_timeout(proxy_connection, proxy: TCPProxy): for _ in range(3): channel = await proxy_connection.channel() # type: aiormq.Channel qname = str(uuid.uuid4()) with proxy.slowdown(read_delay=5, write_delay=0): with pytest.raises(asyncio.TimeoutError): await channel.queue_declare( qname, auto_delete=True, timeout=0.5 )
3465
from prompt_toolkit.key_binding.bindings.named_commands import (accept_line, self_insert, backward_delete_char, beginning_of_line) from prompt_toolkit.key_binding.bindings.basic import if_no_repeat from prompt_toolkit.key_binding.bindings.basic import load_basic_bindings from prompt_toolkit.key_binding.bindings.emacs import load_emacs_bindings, load_emacs_search_bindings from prompt_toolkit.key_binding.bindings.mouse import load_mouse_bindings from prompt_toolkit.key_binding.bindings.cpr import load_cpr_bindings from prompt_toolkit.key_binding.bindings.page_navigation import load_emacs_page_navigation_bindings from prompt_toolkit.key_binding import KeyBindings, merge_key_bindings from prompt_toolkit.keys import Keys, ALL_KEYS from prompt_toolkit.filters import Condition, HasSelection, is_searching from prompt_toolkit.selection import SelectionState from prompt_toolkit.clipboard import ClipboardData from prompt_toolkit.input.vt100_parser import ANSI_SEQUENCES from prompt_toolkit.application.current import get_app from prompt_toolkit.application import run_in_terminal from prompt_toolkit import __version__ as prompt_toolkit_version from .multiline import (auto_newline, tab_should_insert_whitespace, document_is_multiline_python) from .tokenize import inside_string, matching_parens from .theme import emoji, emoji_pudb from .processors import get_pyflakes_warnings import re import subprocess import sys import textwrap import platform def get_key_bindings(): # Based on prompt_toolkit.key_binding.defaults.load_key_bindings() return merge_key_bindings([ load_basic_bindings(), load_emacs_bindings(), load_emacs_search_bindings(), load_emacs_page_navigation_bindings(), load_mouse_bindings(), load_cpr_bindings(), custom_key_bindings, ]) r = custom_key_bindings = KeyBindings() def warning_positions(event): document = event.current_buffer.document warnings = get_pyflakes_warnings(document.text, frozenset(event.current_buffer.session._locals)) positions = [] for (row, col, msg, m) in warnings: # Handle SyntaxErrorMessage which is the same warning for the whole # line. if m.col != col: continue pos = document.translate_row_col_to_index(row, col) positions.append(pos) return positions @r.add_binding(Keys.Escape, 'p') def previous_warning(event): positions = warning_positions(event) buffer = event.current_buffer buffer._show_syntax_warning = True if not positions or positions[0] >= buffer.cursor_position: return p = positions[0] for pos in positions: if pos >= buffer.cursor_position: break p = pos event.current_buffer._show_syntax_warning = True event.current_buffer.cursor_position = p @r.add_binding(Keys.Escape, 'n') def next_warning(event): positions = warning_positions(event) buffer = event.current_buffer buffer._show_syntax_warning = True if not positions or positions[-1] <= buffer.cursor_position: return p = positions[-1] for pos in reversed(positions): if pos <= buffer.cursor_position: break p = pos event.current_buffer.cursor_position = p # This can be removed once # https://github.com/prompt-toolkit/python-prompt-toolkit/pull/857 is in a # released version of prompt-toolkit. ANSI_SEQUENCES['\x1b[1;9A'] = (Keys.Escape, Keys.Up) ANSI_SEQUENCES['\x1b[1;9B'] = (Keys.Escape, Keys.Down) @r.add_binding(Keys.Escape, Keys.Up) def previous_history_search(event): event.key_sequence[-1].accept_next = True buffer = event.current_buffer buffer.history_backward(count=event.arg, history_search=True) @r.add_binding(Keys.Escape, 'P') @r.add_binding(Keys.Escape, Keys.Down) def forward_history_search(event): event.key_sequence[-1].accept_next = True buffer = event.current_buffer buffer.history_forward(count=event.arg, history_search=True) @r.add_binding(Keys.Escape, '<') def beginning(event): """ Move to the beginning """ event.current_buffer.cursor_position = 0 @r.add_binding(Keys.Escape, '>') def end(event): """ Move to the end """ event.current_buffer.cursor_position = len(event.current_buffer.text) # Document.start_of_paragraph/end_of_paragraph don't treat multiple blank # lines correctly. # Gives the positions right before one or more blank lines BLANK_LINES = re.compile(r'\S *(\n *\n)') @r.add_binding(Keys.Escape, '}') def forward_paragraph(event): """ Move forward one paragraph of text """ text = event.current_buffer.text cursor_position = event.current_buffer.cursor_position for m in BLANK_LINES.finditer(text): if m.start(0) > cursor_position: event.current_buffer.cursor_position = m.start(1)+1 return event.current_buffer.cursor_position = len(text) @r.add_binding(Keys.Escape, '{') def backward_paragraph(event): """ Move back one paragraph of text """ text = event.current_buffer.text cursor_position = event.current_buffer.cursor_position for m in BLANK_LINES.finditer(text[::-1]): if m.start(0) > len(text) - cursor_position: event.current_buffer.cursor_position = len(text) - m.end(1) + 1 return event.current_buffer.cursor_position = 0 WORD = re.compile(r'([a-z0-9]+|[A-Z]{2,}|[a-zA-Z0-9][a-z0-9]*)') @r.add_binding(Keys.Escape, 'f') @r.add_binding(Keys.Escape, Keys.Right) def forward_word(event): text = event.current_buffer.text cursor_position = event.current_buffer.cursor_position for m in WORD.finditer(text): if m.end(0) > cursor_position: event.current_buffer.cursor_position = m.end(0) return event.current_buffer.cursor_position = len(text) @r.add_binding(Keys.Escape, 'b') @r.add_binding(Keys.Escape, Keys.Left) def backward_word(event): """ Move back one paragraph of text """ text = event.current_buffer.text cursor_position = event.current_buffer.cursor_position for m in reversed(list(WORD.finditer(text))): if m.start(0) < cursor_position: event.current_buffer.cursor_position = m.start(0) return event.current_buffer.cursor_position = 0 @r.add_binding(Keys.Escape, 'd') def kill_word(event): buffer = event.current_buffer text = buffer.text cursor_position = buffer.cursor_position pos = None for m in WORD.finditer(text): if m.end(0) > cursor_position: pos = m.end(0) - cursor_position break if pos: deleted = buffer.delete(count=pos) event.app.clipboard.set_text(deleted) @r.add_binding(Keys.Escape, Keys.Backspace) def backward_kill_word(event): buffer = event.current_buffer text = buffer.text cursor_position = buffer.cursor_position for m in reversed(list(WORD.finditer(text))): if m.start(0) < cursor_position: pos = cursor_position - m.start(0) break else: pos = buffer.cursor_position if pos: deleted = buffer.delete_before_cursor(count=pos) event.app.clipboard.set_text(deleted) def insert_text_ovewrite(buffer, data, move_cursor=True): """ Insert characters at cursor position. :param fire_event: Fire `on_text_insert` event. This is mainly used to trigger autocompletion while typing. """ # Original text & cursor position. otext = buffer.text ocpos = buffer.cursor_position # Don't overwrite the newline itself. Just before the line ending, # it should act like insert mode. overwritten_text = otext[ocpos:ocpos + len(data)] buffer.text = otext[:ocpos] + data + otext[ocpos + len(overwritten_text):] if move_cursor: buffer.cursor_position += len(data) @r.add_binding(Keys.Escape, 'l') def downcase_word(event): buffer = event.current_buffer text = buffer.text cursor_position = event.current_buffer.cursor_position for m in WORD.finditer(text): pos = m.end(0) if pos > cursor_position: word = buffer.document.text[cursor_position:pos] insert_text_ovewrite(buffer, word.lower()) return event.current_buffer.cursor_position = len(text) @r.add_binding(Keys.Escape, 'u') def upcase_word(event): buffer = event.current_buffer text = buffer.text cursor_position = event.current_buffer.cursor_position for m in WORD.finditer(text): pos = m.end(0) if pos > cursor_position: word = buffer.document.text[cursor_position:pos] insert_text_ovewrite(buffer, word.upper()) return event.current_buffer.cursor_position = len(text) @r.add_binding(Keys.Escape, 'c') def capitalize_word(event): buffer = event.current_buffer text = buffer.text cursor_position = event.current_buffer.cursor_position for m in WORD.finditer(text): pos = m.end(0) if pos > cursor_position: word = buffer.document.text[cursor_position:pos] # Don't use word.capitalize() because the first character could be # - or _ for i, c in enumerate(word): if c.isalnum(): word = word[:i] + c.capitalize() + word[i+1:].lower() break insert_text_ovewrite(buffer, word) return event.current_buffer.cursor_position = len(text) @r.add_binding(Keys.Escape, Keys.ControlF) def forward_sexp(event): buffer = event.current_buffer document = buffer.document text = buffer.text row, col = document.translate_index_to_position(buffer.cursor_position) row += 1 matching, mismatching = matching_parens(text) for opening, closing in matching: if opening.start == (row, col): new_pos = document.translate_row_col_to_index(closing.end[0]-1, closing.end[1]) buffer.cursor_position = new_pos return event.app.output.bell() @r.add_binding(Keys.Escape, Keys.ControlB) def backward_sexp(event): buffer = event.current_buffer document = buffer.document text = buffer.text row, col = document.translate_index_to_position(buffer.cursor_position) row += 1 matching, mismatching = matching_parens(text) for opening, closing in matching: if closing.end == (row, col): new_pos = document.translate_row_col_to_index(opening.start[0]-1, opening.start[1]) buffer.cursor_position = new_pos return event.app.output.bell() @r.add_binding(Keys.Left) def left_multiline(event): """ Left that wraps around in multiline. """ if event.current_buffer.cursor_position - event.arg >= 0: event.current_buffer.cursor_position -= event.arg if getattr(event.current_buffer.selection_state, "shift_arrow", False): event.current_buffer.selection_state = None @r.add_binding(Keys.Right) def right_multiline(event): """ Right that wraps around in multiline. """ if event.current_buffer.cursor_position + event.arg <= len(event.current_buffer.text): event.current_buffer.cursor_position += event.arg if getattr(event.current_buffer.selection_state, "shift_arrow", False): event.current_buffer.selection_state = None @r.add_binding(Keys.ControlD) def exit(event): event.app.exit(exception=EOFError, style='class:exiting') @r.add_binding(Keys.ControlC, filter=~is_searching) def keyboard_interrupt(event): event.app.exit(exception=KeyboardInterrupt, style='class:aborting') is_returnable = Condition( lambda: get_app().current_buffer.is_returnable) @r.add_binding(Keys.Enter, filter=is_returnable) def multiline_enter(event): """ When not in multiline, execute. When in multiline, try to intelligently add a newline or execute. """ buffer = event.current_buffer document = buffer.document multiline = document_is_multiline_python(document) text_after_cursor = document.text_after_cursor text_before_cursor = document.text_before_cursor text = buffer.text # isspace doesn't respect vacuous truth if (not text_after_cursor or text_after_cursor.isspace()) and text_before_cursor.replace(' ', '').endswith('\n'): # If we are at the end of the buffer, accept unless we are in a # docstring row, col = document.translate_index_to_position(buffer.cursor_position) row += 1 if multiline and inside_string(text, row, col): # We are inside a docstring auto_newline(event.current_buffer) else: accept_line(event) elif not multiline: # Always accept a single valid line. Also occurs for unclosed single # quoted strings (which will give a syntax error) accept_line(event) else: auto_newline(event.current_buffer) # Always accept the line if the previous key was Up # Requires https://github.com/jonathanslenders/python-prompt-toolkit/pull/492. # We don't need a parallel for down because down is already at the end of the # prompt. @r.add_binding(Keys.Enter, filter=is_returnable) def accept_after_history_backward(event): pks = event.previous_key_sequence if pks and getattr(pks[-1], 'accept_next', False) and ((len(pks) == 1 and pks[0].key == "up") or (len(pks) == 2 and pks[0].key == "escape" and isinstance(pks[1].key, str) and pks[1].key in ['p', 'P', 'up', 'down'])): accept_line(event) else: multiline_enter(event) @r.add_binding(Keys.Escape, Keys.Enter) @r.add_binding(Keys.Escape, Keys.ControlJ) def insert_newline(event): auto_newline(event.current_buffer) @r.add_binding(Keys.ControlO) def open_line(event): event.current_buffer.newline(copy_margin=False) event.current_buffer.cursor_left() # M-[ a g is set to S-Enter in iTerm2 settings Keys.ShiftEnter = "<Shift-Enter>" ALL_KEYS.append('<Shift-Enter>') ANSI_SEQUENCES['\x1b[ag'] = Keys.ShiftEnter ANSI_SEQUENCES['\x1bOM'] = Keys.ShiftEnter if prompt_toolkit_version[0] != '3': r.add_binding(Keys.ShiftEnter)(accept_line) @r.add_binding(Keys.Tab, filter=tab_should_insert_whitespace) def indent(event): """ When tab should insert whitespace, do that instead of completion. """ # Text before cursor on the line must be whitespace because of the # TabShouldInsertWhitespaceFilter. before_cursor = event.app.current_buffer.document.current_line_before_cursor event.app.current_buffer.insert_text(' '*(4 - len(before_cursor)%4)) LEADING_WHITESPACE = re.compile(r'( *)[^ ]?') @r.add_binding(Keys.Escape, 'm') def back_to_indentation(event): """ Move back to the beginning of the line, ignoring whitespace. """ current_line = event.app.current_buffer.document.current_line before_cursor = event.app.current_buffer.document.current_line_before_cursor indent = LEADING_WHITESPACE.search(current_line) if indent: event.app.current_buffer.cursor_position -= len(before_cursor) - indent.end(1) @r.add_binding(Keys.Backspace, save_before=if_no_repeat) def delete_char_or_unindent(event): buffer = event.app.current_buffer if buffer.document.current_line_before_cursor.isspace(): spaces = len(buffer.document.current_line_before_cursor) # Delete up to the tab stop buffer.delete_before_cursor(count=4 + spaces%-4) else: backward_delete_char(event) # Reset the history search text buffer.history_search_text = None @r.add_binding(Keys.Escape, ' ') def cycle_spacing(event): """ Based on emacs's cycle-spacing On first call, remove all whitespace (if any) from around the cursor and replace it with a single space. On second call, remove all whitespace. On third call, restore the original whitespace and cursor position. """ buffer = event.app.current_buffer # Avoid issues when text grows or shrinks below, keeping the cursor # position out of sync cursor_position = buffer.cursor_position buffer.cursor_position = 0 buffer.text, buffer.cursor_position = do_cycle_spacing(buffer.text, cursor_position) def do_cycle_spacing(text, cursor_position, state=[]): rstripped = text[:cursor_position].rstrip() lstripped = text[cursor_position:].lstrip() text_before_cursor = text[:cursor_position] # The first element of state is the original text. The last element is the # buffer text and cursor position as we last left them. If either of those # have changed, reset. The state here is global, but that's fine, because # we consider any change to be enough clear the state. The worst that # happens here is that we resume when we shouldn't if things look exactly # as they did where we left off. # TODO: Use event.previous_key_sequence instead. if state and state[-1] != (text, cursor_position): state.clear() if len(state) == 0: # Replace all whitespace at the cursor (if any) with a single space. state.append((text, cursor_position)) cursor_position -= len(text_before_cursor) - len(rstripped) -1 text = rstripped + ' ' + lstripped state.append((text, cursor_position)) elif len(state) == 2: # Exactly one space at the cursor. Remove it. cursor_position -= 1 text = rstripped + lstripped state.append((text, cursor_position)) elif len(state) == 3: # Restore original text and cursor position text, cursor_position = state[0] state.clear() if cursor_position < 0: cursor_position = 0 if cursor_position > len(text): cursor_position = len(text) return text, cursor_position @r.add_binding(Keys.ControlX, Keys.ControlO) def delete_blank_lines(event): """ On blank line, delete all surrounding blank lines, leaving just one. On isolated blank line, delete that one. On nonblank line, delete any immediately following blank lines. """ buffer = event.app.current_buffer document = buffer.document lines_up_to_current = document.lines[:document.cursor_position_row+1] lines_after_current = document.lines[document.cursor_position_row+1:] blank_lines_before = 0 for line in lines_up_to_current[::-1]: if not line.strip(): blank_lines_before += 1 else: break blank_lines_after = 0 for line in lines_after_current: if not line.strip(): blank_lines_after += 1 else: break if not blank_lines_before: stripped_before = lines_up_to_current else: stripped_before = lines_up_to_current[:-blank_lines_before] stripped_after = lines_after_current[blank_lines_after:] # XXX: Emacs always keeps a newline at the end of the file, but I don't # think it matters here. if (not blank_lines_before and blank_lines_after) or blank_lines_before + blank_lines_after == 1: new_text = '\n'.join(stripped_before + stripped_after) elif blank_lines_before + blank_lines_after == 0: return else: buffer.cursor_up(max(blank_lines_before-1, 0)) new_text = '\n'.join(stripped_before + [''] + stripped_after) # Even though we do auto_up, it can be out of bounds from trailing # whitespace buffer.cursor_position = min(buffer.cursor_position, len(new_text)) buffer.text = new_text @r.add_binding(Keys.ControlX, Keys.ControlT) def transpose_lines(event): buffer = event.current_buffer document = buffer.document row = document.cursor_position_row new_lines = document.lines[:] if len(new_lines) == 1: new_lines.append('') if row == 0: buffer.cursor_down() row += 1 if row == len(new_lines) - 1: new_lines.append('') new_lines[row], new_lines[row-1] = new_lines[row-1], new_lines[row] buffer.text = '\n'.join(new_lines) buffer.cursor_down() beginning_of_line(event) # Selection stuff @r.add_binding(Keys.ShiftLeft) def select_left(event): buffer = event.current_buffer if buffer.document.text_before_cursor: if not buffer.selection_state: buffer.start_selection() buffer.selection_state.shift_arrow = True buffer.cursor_position -= event.arg @r.add_binding(Keys.ShiftRight) def select_right(event): buffer = event.current_buffer if buffer.document.text_after_cursor: if not buffer.selection_state: buffer.start_selection() buffer.selection_state.shift_arrow = True buffer.cursor_position += event.arg @r.add_binding(Keys.Up) def auto_up(event): buffer = event.current_buffer count = event.arg if buffer.document.cursor_position_row > 0: buffer.cursor_up(count=count) elif not buffer.selection_state: event.key_sequence[-1].accept_next = True buffer.history_backward(count=count) if getattr(buffer.selection_state, "shift_arrow", False): buffer.selection_state = None @r.add_binding(Keys.Down) def auto_down(event): buffer = event.current_buffer count = event.arg if buffer.document.cursor_position_row < buffer.document.line_count - 1: buffer.cursor_down(count=count) elif not buffer.selection_state: buffer.history_forward(count=count) if getattr(buffer.selection_state, "shift_arrow", False): buffer.selection_state = None @r.add_binding(Keys.ShiftUp) def select_line_up(event): buffer = event.current_buffer if buffer.document.text_before_cursor: if not buffer.selection_state: buffer.start_selection() buffer.selection_state.shift_arrow = True up_position = buffer.document.get_cursor_up_position() buffer.cursor_position += up_position if not up_position: buffer.cursor_position = 0 @r.add_binding(Keys.ShiftDown) def select_line_down(event): buffer = event.current_buffer if buffer.document.text_after_cursor: if not buffer.selection_state: buffer.start_selection() buffer.selection_state.shift_arrow = True down_position = buffer.document.get_cursor_down_position() buffer.cursor_position += down_position if not down_position: buffer.cursor_position = len(buffer.document.text) # The default doesn't toggle correctly @r.add_binding(Keys.ControlSpace) def toggle_selection(event): buffer = event.current_buffer if buffer.selection_state: buffer.selection_state = None else: buffer.start_selection() @r.add_binding(Keys.ControlX, 'h') def select_all(event): buffer = event.current_buffer buffer.selection_state = SelectionState(len(buffer.document.text)) buffer.cursor_position = 0 @r.add_binding(Keys.Delete, filter=HasSelection()) @r.add_binding(Keys.Backspace, filter=HasSelection()) def delete_selection(event): event.current_buffer.cut_selection() @r.add_binding(Keys.Any, filter=HasSelection()) def self_insert_and_clear_selection(event): event.current_buffer.cut_selection() self_insert(event) @r.add_binding(Keys.ControlK, filter=HasSelection()) @r.add_binding(Keys.ControlU, filter=HasSelection()) def kill_selection(event): data = event.current_buffer.cut_selection() event.app.clipboard.set_data(data) def system_copy(text): if "Linux" in platform.platform(): copy_command = ['xclip', '-selection', 'c'] else: copy_command = ['pbcopy'] try: # In Python 3.6 we can do this: # run(copy_command, input=text, encoding='utf-8', check=True) subprocess.run(copy_command, input=text.encode('utf-8'), check=True) except FileNotFoundError: print("Error: could not find", copy_command[0], file=sys.stderr) except subprocess.CalledProcessError as e: print(copy_command[0], "error:", e, file=sys.stderr) def system_paste(): if "Linux" in platform.platform(): paste_command = ['xsel', '-b'] else: paste_command = ['pbpaste'] try: # In Python 3.6 we can do this: # run(paste_command, input=text, encoding='utf-8') p = subprocess.run(paste_command, stdout=subprocess.PIPE, check=True) except FileNotFoundError: print("Error: could not find", paste_command[0], file=sys.stderr) except subprocess.CalledProcessError as e: print(paste_command[0], "error:", e, file=sys.stderr) return p.stdout.decode('utf-8') @r.add_binding(Keys.ControlX, Keys.ControlW) def copy_to_clipboard(event): if event.current_buffer.document.selection: from_, to = event.current_buffer.document.selection_range() run_in_terminal(lambda:system_copy(event.current_buffer.document.text[from_:to + 1])) @r.add_binding(Keys.ControlX, Keys.ControlY) def paste_from_clipboard(event): paste_text_future = run_in_terminal(system_paste) event.current_buffer.cut_selection() paste_text_future.add_done_callback(lambda future:\ event.current_buffer.paste_clipboard_data(ClipboardData(future.result()))) # M-[ a b is set to C-S-/ (C-?) in iTerm2 settings Keys.ControlQuestionmark = "<C-?>" ALL_KEYS.append("<C-?>") ANSI_SEQUENCES['\x1b[ab'] = Keys.ControlQuestionmark Keys.ControlSlash = "<C-/>" ALL_KEYS.append("<C-/>") ANSI_SEQUENCES['\x1b"5/'] = Keys.ControlSlash # This won't work until # https://github.com/jonathanslenders/python-prompt-toolkit/pull/484 is # merged. if prompt_toolkit_version[0] != '3': @r.add_binding(Keys.ControlQuestionmark, save_before=lambda e: False) def redo(event): event.current_buffer.redo() @r.add_binding(Keys.ControlSlash, save_before=lambda e: False) def undo(event): event.current_buffer.undo() # Need to escape all spaces here because of verbose (x) option below ps1_prompts = [r'>>>\ '] + [re.escape(i) + r'\[\d+\]:\ ' for i, j in emoji + [emoji_pudb]] + [r'In\ \[\d+\]:\ '] ps2_prompts = [r'\ *\.\.\.:\ ?', r'\.\.\.\ ?', '\N{CLAPPING HANDS SIGN}+\\ ?⎢\\ ?'] PS1_PROMPTS_RE = re.compile('|'.join(ps1_prompts)) PS2_PROMPTS_RE = re.compile('|'.join(ps2_prompts)) PROMPTED_TEXT_RE = re.compile(r'''(?x) # Multiline and verbose (?P<prompt> (?P<ps1prompt>{PS1_PROMPTS_RE.pattern}) # Match prompts at the front | (?P<ps2prompt>{PS2_PROMPTS_RE.pattern}))? # of the line. (?P<noprompt>(?(prompt)\r|))? # If the prompt is not # matched, this is a special # marker group that will match # the empty string. # Otherwise it will not # match (because all \r's # have been stripped from # the string). (?P<line>.*)\n # The actual line. '''.format(PS1_PROMPTS_RE=PS1_PROMPTS_RE, PS2_PROMPTS_RE=PS2_PROMPTS_RE)) def prompt_repl(match): r""" repl function for re.sub for clearing prompts Replaces PS1 prompts with \r and removes PS2 prompts. """ # TODO: Remove the lines with no prompt if match.group('ps1prompt') is not None: return '\r' + match.group('line') + '\n' elif match.group('ps2prompt') is not None: return match.group('line') + '\n' return '' def split_prompts(text, indent=''): r""" Takes text copied from mypython, Python, or IPython session and returns a list of inputs Outputs are stripped. If no prompts are found the text is left alone. The resulting text is indented by indent, except for the first line. It is assumed that the text contains no carriage returns (\r). Trailing whitespace and newlines is stripped from the outputs. Example: >>> split_prompts(''' ... In [1]: a = 1 ... ... In [2]: a ... Out[2]: 1 ... ... In [3]: def test(): ... ...: pass ... ...: ... ''') ['a = 1', 'a', 'def test():\n pass'] """ from .mypython import validate_text text = textwrap.dedent(text).strip() + '\n' text = textwrap.dedent(PROMPTED_TEXT_RE.sub(prompt_repl, text)).lstrip() lines = text.split('\r') # Make sure multilines end in two newlines for i, line in enumerate(lines): try: validate_text(line) except SyntaxError: # If there is a syntax error, we can't use the CMD_QUEUE (it # breaks things). lines = ['\n'.join(lines)] break if '\n' in line.rstrip(): lines[i] += '\n' lines[0] = textwrap.indent(lines[0], indent, # Don't indent the first line, it's already indented lambda line, _x=[]: bool(_x or _x.append(1))) for i in range(1, len(lines)): lines[i] = textwrap.indent(lines[i], indent) # Extraneous newlines at the end will be stripped by the prompt anyway. # This just makes this function easier to test. lines = [i.rstrip() for i in lines] return lines @r.add_binding(Keys.BracketedPaste) def bracketed_paste(event): from .mypython import CMD_QUEUE data = event.data buffer = event.current_buffer # Be sure to use \n as line ending. # This part is the same as the default binding # Some terminals (Like iTerm2) seem to paste \r\n line endings in a # bracketed paste. See: https://github.com/ipython/ipython/issues/9737 data = data.replace('\r\n', '\n') data = data.replace('\r', '\n') # Replace tabs with four spaces (C-x C-y will still paste the text exactly) data = data.replace('\t', ' ') # Strip prompts off pasted text document = buffer.document row, col = document.translate_index_to_position(buffer.cursor_position) row += 1 if not inside_string(event.current_buffer.text, row, col): indent = LEADING_WHITESPACE.match(document.current_line_before_cursor) current_line_indent = indent.group(1) if indent else '' if PS1_PROMPTS_RE.match(data.strip()) or PS2_PROMPTS_RE.match(data.strip()): lines = split_prompts(data, current_line_indent) else: lines = [textwrap.indent(data, current_line_indent, # Don't indent the first line, it's already indented lambda line, _x=[]: bool(_x or _x.append(1)))] else: lines = [data] event.current_buffer.insert_text(lines[0]) for text in lines[1:]: # TODO: Send last chunk as bracketed paste, so it can be edited CMD_QUEUE.append(text) if CMD_QUEUE: accept_line(event) @r.add_binding(Keys.Escape, ';') def comment(event): buffer = event.current_buffer document = buffer.document cursor_line, cursor_col = document.translate_index_to_position(document.cursor_position) if document.selection: from_, to = document.selection_range() start_line, start_col = document.translate_index_to_position(from_) end_line, end_col = document.translate_index_to_position(to - 1) end_line += 1 else: start_line = cursor_line end_line = start_line + 1 # Get the indentation for the comment delimiters min_indent = float('inf') for line in document.lines[start_line:end_line]: if not line.strip(): continue indent = LEADING_WHITESPACE.search(line) if indent: min_indent = min(min_indent, len(indent.group(1))) else: min_indent = 0 if min_indent == 0: break if min_indent == float('inf'): min_indent = 0 uncomment = (all(not line.strip() or line[min_indent] == '#' for line in document.lines[start_line:end_line]) and ''.join(document.lines[start_line:end_line]).strip()) lines = [] for i, line in enumerate(document.lines): if start_line <= i < end_line: if uncomment: lines.append(line[:min_indent] + line[min_indent+2:]) else: lines.append(line[:min_indent] + '# ' + line[min_indent:]) else: lines.append(line) new_text = '\n'.join(lines) # TODO: Set the cursor position correctly n_changed = 2*(cursor_line - start_line + 1) if cursor_line >= end_line - 1: n_changed -= 2 if uncomment: buffer.cursor_position -= n_changed buffer.text = new_text else: buffer.text = new_text buffer.cursor_position += n_changed @r.add_binding(Keys.ControlX, Keys.ControlE) def open_in_editor(event): event.current_buffer.open_in_editor(event.app) @r.add_binding(Keys.ControlX, Keys.ControlS) @r.add_binding(Keys.ControlX, Keys.ControlC) def noop(event): pass
3466
from biogeme import * from headers import * from loglikelihood import * from statistics import * from nested import * #import random cons_work= Beta('cons for work', 0,-10,10,0) cons_edu = Beta('cons for education',0,-50,10,0) cons_shopping = Beta('cons for shopping',0,-10,10,0) cons_other = Beta('cons for other',0,-10,10,0) cons_Q = Beta('cons for quit',0,-10,10,1) first_stop_inbound= Beta('dummy for first stop of inbound half tour', 0,-10,10,1) second_stop_inbound= Beta('dummy for second stop of inbound half tour',0,-10,10,0) threeplus_stop_inbound=Beta('dummy for 3+ stop of inbound half tour',0,-10,10,0) first_stop_outbound= Beta('dummy for first stop of outbound half tour', 0,-10,10,0) second_stop_outbound= Beta('dummy for second stop of outbound half tour',0,-10,10,0) threeplus_stop_outbound=Beta('dummy for 3+ stop of outbound half tour',0,-10,10,0) work_tour_dummy_Q=Beta('work tour dummy in quit',0,-10,10,1) edu_tour_dummy_Q=Beta('edu tour dummy in quit',0,-10,10,1) shopping_tour_dummy_Q=Beta('shopping tour dummy in quit',0,-10,10,1) other_tour_dummy_Q=Beta('other tour dummy in quit',0,-10,10,1) first_tour_dummy_Q=Beta('first tour dummy in quit',0,-10,10,0) sub_tour_dummy_Q=Beta('has subtour dummy in quit',0,-10,10,0) zero_tour_remain_Q=Beta('zero tour remain dummy',0,-10,10,1) one_tour_remain_Q=Beta('one tour remain dummy',0,-10,10,0) twoplus_tour_remain_Q=Beta('2+ tour remain dummy',0,-10,10,1) work_tour_dummy_W=Beta('work tour dummy in work',0,-10,10,1) edu_tour_dummy_W=Beta('edu tour dummy in work',0,-10,10,1) shopping_tour_dummy_W=Beta('shopping tour dummy in work',0,-10,10,1) other_tour_dummy_W=Beta('other tour dummy in work',0,-10,10,1) female_dummy_W=Beta('female dummy in work',0,-10,10,0) student_dummy_W=Beta('student dummy in work',0,-10,10,1) worker_dummy_W=Beta('worker dummy in work',0,-10,10,1) driver_dummy_W=Beta('driver dummy in work',0,-10,10,0) passenger_dummy_W=Beta('passenger dummy in work',0,-10,10,0) public_dummy_W=Beta('PT dummy in work',0,-10,10,0) work_tour_dummy_E=Beta('work tour dummy in edu',0,-10,10,1) edu_tour_dummy_E=Beta('edu tour dummy in edu',0,-10,10,1) shopping_tour_dummy_E=Beta('shopping tour dummy in edu',0,-10,10,1) other_tour_dummy_E=Beta('other tour dummy in edu',0,-10,10,1) female_dummy_E=Beta('female dummy in edu',0,-10,10,0) student_dummy_E=Beta('student dummy in edu',0,-10,10,1) worker_dummy_E=Beta('worker dummy in edu',0,-10,10,1) driver_dummy_E=Beta('driver dummy in edu',0,-10,10,0) passenger_dummy_E=Beta('passenger dummy in edu',0,-10,10,0) public_dummy_E=Beta('PT dummy in edu',0,-10,10,0) work_tour_dummy_S=Beta('work tour dummy in shopping',0,-10,10,1) edu_tour_dummy_S=Beta('edu tour dummy in shopping',0,-10,10,1) shopping_tour_dummy_S=Beta('shopping tour dummy in shopping',0,-10,10,1) other_tour_dummy_S=Beta('other tour dummy in shopping',0,-10,10,0) female_dummy_S=Beta('female dummy in shopping',0,-10,10,0) student_dummy_S=Beta('student dummy in shopping',0,-10,10,1) worker_dummy_S=Beta('worker dummy in shopping',0,-10,10,0) driver_dummy_S=Beta('driver dummy in shopping',0,-10,10,0) passenger_dummy_S=Beta('passenger dummy in shopping',0,-10,10,0) public_dummy_S=Beta('PT dummy in shopping',0,-10,10,0) work_tour_dummy_O=Beta('work tour dummy in other',0,-10,10,0) edu_tour_dummy_O=Beta('edu tour dummy in other',0,-10,10,0) shopping_tour_dummy_O=Beta('shopping tour dummy in other',0,-10,10,0) other_tour_dummy_O=Beta('other tour dummy in other',0,-10,10,1) female_dummy_O=Beta('female dummy in other',0,-10,10,0) student_dummy_O=Beta('student dummy in other',0,-10,10,0) worker_dummy_O=Beta('worker dummy in other',0,-10,10,0) driver_dummy_O=Beta('driver dummy in other',0,-10,10,0) passenger_dummy_O=Beta('passenger dummy in other',0,-10,10,0) public_dummy_O=Beta('PT dummy in other',0,-10,10,0) work_logsum=Beta('work logsum in work',0,-10,10,1) edu_logsum=Beta('edu logsum in edu',0,-10,10,1) shop_logsum=Beta('shop logsum in shop',0,-10,10,1) other_logsum=Beta('other logsum in other',0,-10,10,1) time_window_work=Beta('time available in work',0,-10,10,1) time_window_edu= Beta('time available in edu',0,-10,10,1) time_window_shopping= Beta('time available in shopping',0,-10,10,1) time_window_other= Beta('time available in other',0,-10,10,1) tour_distance_work= Beta('log tour distance in work',0,-10,10,0) tour_distance_edu= Beta('log tour distance in edu',0,-10,10,0) tour_distance_shopping= Beta('log tour distance in shopping',0,-10,10,0) tour_distance_other=Beta('log tour distance in other',0,-10,10,0) a700_a930_work= Beta('period 7am to 9:30am in work',0,-10,10,0) a930_a1200_work=Beta('period 9:30am to 12pm in work',0,-10,10,0) p300_p530_work=Beta('period 3pm to 5:30pm in work',0,-10,10,0) p530_p730_work=Beta('period 5:30pm to 7:30 pm in work',0,-10,10,0) p730_p1000_work=Beta('period 7:30pm to 10pm in work',0,-10,10,0) p1000_a700_work=Beta('period 10pm to 7am in work',0,-10,10,0) a700_a930_edu= Beta('period 7am to 9:30am in edu',0,-10,10,0) a930_a1200_edu=Beta('period 9:30am to 12pm in edu',0,-10,10,0) p300_p530_edu=Beta('period 3pm to 5:30pm in edu',0,-10,10,0) p530_p730_edu=Beta('period 5:30pm to 7:30 pm in edu',0,-10,10,0) p730_p1000_edu=Beta('period 7:30pm to 10pm in edu',0,-10,10,0) p1000_a700_edu=Beta('period 10pm to 7am in edu',0,-10,10,0) a700_a930_shopping= Beta('period 7am to 9:30am in shopping',0,-10,10,0) a930_a1200_shopping=Beta('period 9:30am to 12pm in shopping',0,-10,10,0) p300_p530_shopping=Beta('period 3pm to 5:30pm in shopping',0,-10,10,0) p530_p730_shopping=Beta('period 5:30pm to 7:30 pm in shopping',0,-10,10,0) p730_p1000_shopping=Beta('period 7:30pm to 10pm in shopping',0,-10,10,0) p1000_a700_shopping=Beta('period 10pm to 7am in shopping',0,-10,10,0) a700_a930_other= Beta('period 7am to 9:30am in other',0,-10,10,0) a930_a1200_other=Beta('period 9:30am to 12pm in other',0,-10,10,0) p300_p530_other=Beta('period 3pm to 5:30pm in other',0,-10,10,0) p530_p730_other=Beta('period 5:30pm to 7:30 pm in other',0,-10,10,0) p730_p1000_other=Beta('period 7:30pm to 10pm in other',0,-10,10,0) p1000_a700_other=Beta('period 10pm to 7am in other',0,-10,10,0) MU1 = Beta('MU for quit',1,0,100,1) MU2 = Beta('MU for non-quit', 1.0,0,100,1) #V for work V_work= cons_work+\ work_tour_dummy_W*1*(tour_type==1)+\ edu_tour_dummy_W*1*(tour_type==2)+\ shopping_tour_dummy_W*1*(tour_type==3)+\ other_tour_dummy_W*1*(tour_type==4)+\ female_dummy_W*female_dummy+\ student_dummy_W*student_dummy+\ worker_dummy_W*worker_dummy+\ driver_dummy_W*driver_dummy+\ passenger_dummy_W*passenger_dummy+\ public_dummy_W*public_dummy+\ work_logsum * worklogsum+\ time_window_work*time_window_h+\ tour_distance_work*log(1+distance)+\ a700_a930_work*p_700a_930a+\ a930_a1200_work*p_930a_1200a+\ p300_p530_work*p_300p_530p+\ p530_p730_work*p_530p_730p+\ p730_p1000_work*p_730p_1000p+\ p1000_a700_work*p_1000p_700a #V for education V_edu = cons_edu+\ work_tour_dummy_E*1*(tour_type==1)+\ edu_tour_dummy_E*1*(tour_type==2)+\ shopping_tour_dummy_E*1*(tour_type==3)+\ other_tour_dummy_E*1*(tour_type==4)+\ female_dummy_E*female_dummy+\ student_dummy_E*student_dummy+\ worker_dummy_E*worker_dummy+\ driver_dummy_E*driver_dummy+\ passenger_dummy_E*passenger_dummy+\ public_dummy_E*public_dummy+\ edu_logsum * edulogsum+\ time_window_edu*time_window_h+\ tour_distance_edu*log(1+distance)+\ a700_a930_edu*p_700a_930a+\ a930_a1200_edu*p_930a_1200a+\ p300_p530_edu*p_300p_530p+\ p530_p730_edu*p_530p_730p+\ p730_p1000_edu*p_730p_1000p+\ p1000_a700_edu*p_1000p_700a #V for shopping V_shopping = cons_shopping+\ work_tour_dummy_S*1*(tour_type==1)+\ edu_tour_dummy_S*1*(tour_type==2)+\ shopping_tour_dummy_S*1*(tour_type==3)+\ other_tour_dummy_S*1*(tour_type==4)+\ female_dummy_S*female_dummy+\ student_dummy_S*student_dummy+\ worker_dummy_S*worker_dummy+\ driver_dummy_S*driver_dummy+\ passenger_dummy_S*passenger_dummy+\ public_dummy_S*public_dummy+\ shop_logsum * shoplogsum+\ time_window_shopping*time_window_h+\ tour_distance_shopping*log(1+distance)+\ a700_a930_shopping*p_700a_930a+\ a930_a1200_shopping*p_930a_1200a+\ p300_p530_shopping*p_300p_530p+\ p530_p730_shopping*p_530p_730p+\ p730_p1000_shopping*p_730p_1000p+\ p1000_a700_shopping*p_1000p_700a #V for other V_other=cons_other+\ work_tour_dummy_O*1*(tour_type==1)+\ edu_tour_dummy_O*1*(tour_type==2)+\ shopping_tour_dummy_O*1*(tour_type==3)+\ other_tour_dummy_O*1*(tour_type==4)+\ female_dummy_O*female_dummy+\ student_dummy_O*student_dummy+\ worker_dummy_O*worker_dummy+\ driver_dummy_O*driver_dummy+\ passenger_dummy_O*passenger_dummy+\ public_dummy_O*public_dummy+\ other_logsum * otherlogsum+\ time_window_other*time_window_h+\ tour_distance_other*log(1+distance)+\ a700_a930_other*p_700a_930a+\ a930_a1200_other*p_930a_1200a+\ p300_p530_other*p_300p_530p+\ p530_p730_other*p_530p_730p+\ p730_p1000_other*p_730p_1000p+\ p1000_a700_other*p_1000p_700a #V for quit V_quit= cons_Q+first_stop_inbound*first_stop*first_bound+\ second_stop_inbound*second_stop*first_bound+\ threeplus_stop_inbound*three_plus_stop*first_bound+\ first_stop_outbound*first_stop*second_bound+\ second_stop_outbound*second_stop*second_bound+\ threeplus_stop_outbound*three_plus_stop*second_bound+\ work_tour_dummy_Q*1*(tour_type==1)+\ edu_tour_dummy_Q*1*(tour_type==2)+\ shopping_tour_dummy_Q*1*(tour_type==3)+\ other_tour_dummy_Q*1*(tour_type==4)+\ first_tour_dummy_Q*first_tour_dummy+\ sub_tour_dummy_Q*has_subtour+zero_tour_remain_Q*1*(tour_remain==0)+\ one_tour_remain_Q*1*(tour_remain==1)+twoplus_tour_remain_Q*1*(tour_remain>=2) V = {0:V_quit,1: V_work,2:V_edu,3:V_shopping,4:V_other} av= {0:avail_quit,1:avail_workstop,2:avail_edustop,3:avail_shopstop,4:avail_otherstop} nest_quit = MU1 , [0] nest_nonquit = MU2 , [1,2,3,4] nests=nest_quit,nest_nonquit prob = nested(V,av,nests,stop_type) #prob = bioLogit(V,av,stop_type) rowIterator('obsIter') BIOGEME_OBJECT.ESTIMATE = Sum(log(prob),'obsIter') exclude = ((avail_violation==1)+(origin_mtz==0)+(destination_mtz==0)+(time_window_h>=10)) > 0 BIOGEME_OBJECT.EXCLUDE = exclude nullLoglikelihood(av,'obsIter') choiceSet = [0,1,2,3,4] cteLoglikelihood(choiceSet,stop_type,'obsIter') availabilityStatistics(av,'obsIter') BIOGEME_OBJECT.PARAMETERS['optimizationAlgorithm'] = "CFSQP" BIOGEME_OBJECT.PARAMETERS['checkDerivatives'] = "1" BIOGEME_OBJECT.PARAMETERS['numberOfThreads'] = "6"
3473
from spherical_distortion.util import * sample_order = 9 # Input resolution to examine def ang_fov(s): print('Spherical Resolution:', s) for b in range(s): dim = tangent_image_dim(b, s) # Pixel dimension of tangent image corners = tangent_image_corners(b, s) # Corners of each tangent image fov_x, fov_y = compute_tangent_image_angular_resolution(corners) print(' At base level', b) print(' FOV (x) =', fov_x) print(' FOV (y) =', fov_y) print(' deg/pix (x) =', fov_x/dim) print(' deg/pix (y) =', fov_y/dim) ang_fov(sample_order)
3494
import mock import pytest import py_zipkin.storage @pytest.fixture(autouse=True, scope="module") def create_zipkin_attrs(): # The following tests all expect _thread_local.zipkin_attrs to exist: if it # doesn't, mock.patch will fail. py_zipkin.storage.ThreadLocalStack().get() def test_get_zipkin_attrs_returns_none_if_no_zipkin_attrs(): tracer = py_zipkin.storage.get_default_tracer() with mock.patch.object(tracer._context_stack, "_storage", []): assert not py_zipkin.storage.ThreadLocalStack().get() assert not py_zipkin.storage.ThreadLocalStack().get() def test_get_zipkin_attrs_with_context_returns_none_if_no_zipkin_attrs(): with mock.patch.object(py_zipkin.storage.log, "warning", autospec=True) as log: assert not py_zipkin.storage.Stack([]).get() assert log.call_count == 1 def test_storage_stack_still_works_if_you_dont_pass_in_storage(): # Let's make sure this still works if we don't pass in a custom storage. assert not py_zipkin.storage.Stack().get() def test_get_zipkin_attrs_returns_the_last_of_the_list(): tracer = py_zipkin.storage.get_default_tracer() with mock.patch.object(tracer._context_stack, "_storage", ["foo"]): assert "foo" == py_zipkin.storage.ThreadLocalStack().get() def test_get_zipkin_attrs_with_context_returns_the_last_of_the_list(): assert "foo" == py_zipkin.storage.Stack(["bar", "foo"]).get() def test_pop_zipkin_attrs_does_nothing_if_no_requests(): tracer = py_zipkin.storage.get_default_tracer() with mock.patch.object(tracer._context_stack, "_storage", []): assert not py_zipkin.storage.ThreadLocalStack().pop() def test_pop_zipkin_attrs_with_context_does_nothing_if_no_requests(): assert not py_zipkin.storage.Stack([]).pop() def test_pop_zipkin_attrs_removes_the_last_zipkin_attrs(): tracer = py_zipkin.storage.get_default_tracer() with mock.patch.object(tracer._context_stack, "_storage", ["foo", "bar"]): assert "bar" == py_zipkin.storage.ThreadLocalStack().pop() assert "foo" == py_zipkin.storage.ThreadLocalStack().get() def test_pop_zipkin_attrs_with_context_removes_the_last_zipkin_attrs(): context_stack = py_zipkin.storage.Stack(["foo", "bar"]) assert "bar" == context_stack.pop() assert "foo" == context_stack.get() def test_push_zipkin_attrs_adds_new_zipkin_attrs_to_list(): tracer = py_zipkin.storage.get_default_tracer() with mock.patch.object(tracer._context_stack, "_storage", ["foo"]): assert "foo" == py_zipkin.storage.ThreadLocalStack().get() py_zipkin.storage.ThreadLocalStack().push("bar") assert "bar" == py_zipkin.storage.ThreadLocalStack().get() def test_push_zipkin_attrs_with_context_adds_new_zipkin_attrs_to_list(): stack = py_zipkin.storage.Stack(["foo"]) assert "foo" == stack.get() stack.push("bar") assert "bar" == stack.get() def test_stack_copy(): stack = py_zipkin.storage.Stack() stack.push("a") stack.push("b") the_copy = stack.copy() the_copy.push("c") stack.push("d") assert ["a", "b", "c"] == the_copy._storage assert ["a", "b", "d"] == stack._storage
3518
import argparse import os import pickle import numpy as np import matplotlib.pyplot as plt plt.style.use('ggplot') parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--mnist', action='store_true', default=False, help='open mnist result') args = parser.parse_args() def subplot(subplot, data_first, data_second, title): plt.subplot(subplot) if args.mnist: x = np.arange(0,100) else: x = np.arange(0,500) y_first = np.mean(data_first, axis=0) y_second = np.mean(data_second, axis=0) y_first_err = np.std(data_first, axis=0) / 2. y_second_err = np.std(data_second, axis=0) / 2. plt.fill_between(x, y_first - y_first_err, y_first + y_first_err, color='m', alpha=0.3) plt.fill_between(x, y_second - y_second_err, y_second + y_second_err, color='c', alpha=0.3) plt.plot(x, y_first, color='r', label='Task A') plt.plot(x, y_second, color='g', label='Task B (transfer learning)') plt.legend(bbox_to_anchor=(0.8, 0.3), loc=2, ncol=1, fontsize=15) axes = plt.gca() if args.mnist: axes.set_xlim([0, 100]) axes.set_ylim([0, 1.2]) else: axes.set_xlim([0, 500]) axes.set_ylim([0, 0.6]) plt.title(title, fontsize=20, y = 0.9) plt.ylabel('Accuracy',fontsize=15) plt.xlabel('Generations',fontsize=15) plt.grid(True) try: if args.mnist: f = open(os.path.join('./result/result_mnist.pickle')) result = pickle.load(f) f.close() pathnet_first = [] pathnet_second = [] for res in result: pathnet_first.append(res[2]) pathnet_second.append(res[3]) subplot('111', pathnet_first, pathnet_second,'MNIST') plt.show() else: f = open(os.path.join('./result/result_cifar_svhn.pickle')) result = pickle.load(f) f.close() cifar_first = [] cifar_second = [] svhn_first = [] svhn_second = [] for res in result: if res[0] == 'pathnet_cifar_first': cifar_first.append(res[2]) svhn_second.append(res[3]) else: svhn_first.append(res[2]) cifar_second.append(res[3]) subplot('211', cifar_first, cifar_second,'CIFAR-10') subplot('212', svhn_first, svhn_second,'cSVHN') plt.show() except IOError: print("Result file does not exist")
3547
from controller.invoker import ( invoker_cmd_branch_checkout, invoker_cmd_branch_commit, invoker_cmd_branch_create, invoker_cmd_branch_delete, invoker_cmd_branch_list, invoker_cmd_evaluate, invoker_cmd_filter, invoker_cmd_gpu_info, invoker_cmd_inference, invoker_cmd_init, invoker_cmd_label_add, invoker_cmd_label_get, invoker_cmd_log, invoker_cmd_merge, invoker_cmd_pull_image, invoker_cmd_repo_check, invoker_cmd_repo_clear, invoker_cmd_sampling, invoker_cmd_terminate, invoker_cmd_user_create, invoker_task_factory, ) from proto import backend_pb2 RequestTypeToInvoker = { backend_pb2.CMD_BRANCH_CHECKOUT: invoker_cmd_branch_checkout.BranchCheckoutInvoker, backend_pb2.CMD_BRANCH_CREATE: invoker_cmd_branch_create.BranchCreateInvoker, backend_pb2.CMD_BRANCH_DEL: invoker_cmd_branch_delete.BranchDeleteInvoker, backend_pb2.CMD_BRANCH_LIST: invoker_cmd_branch_list.BranchListInvoker, backend_pb2.CMD_COMMIT: invoker_cmd_branch_commit.BranchCommitInvoker, backend_pb2.CMD_EVALUATE: invoker_cmd_evaluate.EvaluateInvoker, backend_pb2.CMD_FILTER: invoker_cmd_filter.FilterBranchInvoker, backend_pb2.CMD_GPU_INFO_GET: invoker_cmd_gpu_info.GPUInfoInvoker, backend_pb2.CMD_INFERENCE: invoker_cmd_inference.InferenceCMDInvoker, backend_pb2.CMD_INIT: invoker_cmd_init.InitInvoker, backend_pb2.CMD_LABEL_ADD: invoker_cmd_label_add.LabelAddInvoker, backend_pb2.CMD_LABEL_GET: invoker_cmd_label_get.LabelGetInvoker, backend_pb2.CMD_LOG: invoker_cmd_log.LogInvoker, backend_pb2.CMD_MERGE: invoker_cmd_merge.MergeInvoker, backend_pb2.CMD_PULL_IMAGE: invoker_cmd_pull_image.ImageHandler, backend_pb2.CMD_TERMINATE: invoker_cmd_terminate.CMDTerminateInvoker, backend_pb2.CMD_REPO_CHECK: invoker_cmd_repo_check.RepoCheckInvoker, backend_pb2.CMD_REPO_CLEAR: invoker_cmd_repo_clear.RepoClearInvoker, backend_pb2.REPO_CREATE: invoker_cmd_init.InitInvoker, backend_pb2.TASK_CREATE: invoker_task_factory.CreateTaskInvokerFactory, backend_pb2.USER_CREATE: invoker_cmd_user_create.UserCreateInvoker, backend_pb2.CMD_SAMPLING: invoker_cmd_sampling.SamplingInvoker, }
3564
from datetime import timedelta from dateutil.relativedelta import relativedelta from django.core.management.base import BaseCommand, CommandError from django.utils import timezone from ...models import Request DURATION_OPTIONS = { 'hours': lambda amount: timezone.now() - timedelta(hours=amount), 'days': lambda amount: timezone.now() - timedelta(days=amount), 'weeks': lambda amount: timezone.now() - timedelta(weeks=amount), 'months': lambda amount: timezone.now() + relativedelta(months=-amount), 'years': lambda amount: timezone.now() + relativedelta(years=-amount), } try: # to keep backward Python 2 compatibility input = raw_input except NameError: pass class Command(BaseCommand): help = 'Purge old requests.' def add_arguments(self, parser): parser.add_argument( 'amount', type=int, ) parser.add_argument('duration') parser.add_argument( '--noinput', action='store_false', dest='interactive', default=True, help='Tells Django to NOT prompt the user for input of any kind.' ) def handle(self, *args, **options): amount = options['amount'] duration = options['duration'] # Check we have the correct values if duration[-1] != 's': # If its not plural, make it plural duration_plural = '{0}s'.format(duration) else: duration_plural = duration if duration_plural not in DURATION_OPTIONS: raise CommandError('Amount must be {0}'.format(', '.join(DURATION_OPTIONS))) qs = Request.objects.filter(time__lte=DURATION_OPTIONS[duration_plural](amount)) count = qs.count() if count == 0: print('There are no requests to delete.') return if options.get('interactive'): confirm = input(''' You have requested a database reset. This will IRREVERSIBLY DESTROY any requests created before {0} {1} ago. That is a total of {2} requests. Are you sure you want to do this? Type 'yes' to continue, or 'no' to cancel:'''.format(amount, duration, count)) else: confirm = 'yes' if confirm == 'yes': qs.delete() else: print('Purge cancelled')
3567
from pathlib import Path from testaid.pathlist import PathList def test_testaid_unit_pathlist_roles_blacklist(testvars_roles_blacklist): assert testvars_roles_blacklist is not None def test_testaid_unit_pathlist_roles_whitelist(testvars_roles_whitelist): assert testvars_roles_whitelist is not None def test_testaid_unit_pathlist_get(tmp_path): msd = tmp_path / 'molecule_scenario_directory' dir1 = msd / 'dir1' dir1.mkdir(parents=True) dir2 = tmp_path / 'dir2' dir2.mkdir() file1 = dir1 / 'file1.yml' file1.touch() file2 = dir1 / 'file2.yml' file2.touch() file3 = dir2 / 'file3.yml' file3.touch() my_pathlist = [Path(file3), Path(file1), Path(file2)] my_pathstring = 'dir1:../dir2/file3.yml' pathlist = PathList(my_pathstring, msd) assert pathlist.get() == my_pathlist
3569
def getRoot(config): if not config.parent: return config return getRoot(config.parent) root = getRoot(config) # We only run a small set of tests on Windows for now. # Override the parent directory's "unsupported" decision until we can handle # all of its tests. if root.host_os in ['Windows']: config.unsupported = False else: config.unsupported = True
3607
import pyredner import numpy as np import torch cam = pyredner.Camera(position = torch.tensor([0.0, 0.0, -5.0]), look_at = torch.tensor([0.0, 0.0, 0.0]), up = torch.tensor([0.0, 1.0, 0.0]), fov = torch.tensor([45.0]), # in degree clip_near = 1e-2, # needs to > 0 resolution = (256, 256), fisheye = False) mat_grey = pyredner.Material(\ diffuse_reflectance = \ torch.tensor([0.5, 0.5, 0.5], device = pyredner.get_device())) materials = [mat_grey] shape_triangle = pyredner.Shape(\ vertices = torch.tensor([[-1.7, 1.0, 0.0], [1.0, 1.0, 0.0], [-0.5, -1.0, 0.0]], device = pyredner.get_device()), indices = torch.tensor([[0, 1, 2]], dtype = torch.int32, device = pyredner.get_device()), uvs = None, normals = None, material_id = 0) shape_light = pyredner.Shape(\ vertices = torch.tensor([[-1.0, -1.0, -7.0], [ 1.0, -1.0, -7.0], [-1.0, 1.0, -7.0], [ 1.0, 1.0, -7.0]], device = pyredner.get_device()), indices = torch.tensor([[0, 1, 2],[1, 3, 2]], dtype = torch.int32, device = pyredner.get_device()), uvs = None, normals = None, material_id = 0) shapes = [shape_triangle, shape_light] light = pyredner.AreaLight(shape_id = 1, intensity = torch.tensor([20.0,20.0,20.0])) area_lights = [light] scene = pyredner.Scene(cam, shapes, materials, area_lights) scene_state_dict = scene.state_dict() scene = pyredner.Scene.load_state_dict(scene_state_dict) scene_args = pyredner.RenderFunction.serialize_scene(\ scene = scene, num_samples = 16, max_bounces = 1) render = pyredner.RenderFunction.apply img = render(0, *scene_args) pyredner.imwrite(img.cpu(), 'results/test_serialize/img.exr')
3617
from goopylib.objects.GraphicsObject import GraphicsObject from goopylib.styles import * class BBox(GraphicsObject): # Internal base class for objects represented by bounding box # (opposite corners) Line segment is a degenerate case. resizing_objects = [] def __init__(self, p1, p2, bounds=None, fill=None, outline=None, outline_width=None, cursor="arrow", layer=0, tag=None): self.p1 = p1 self.p2 = p2 # These make sure that the p2 is 'after' p1, ie the x & y value of p2 is greater than that of p1 if self.p1[0] > self.p2[0]: # Checking if p1's x value is greater than p2's. If so, then swap the values self.p1[0], self.p2[0] = self.p2[0], self.p1[0] if self.p1[1] > self.p2[1]: # Checking if p1's y value is greater than p2's. If so, then swap the values self.p1[1], self.p2[1] = self.p2[1], self.p1[1] self.anchor = [(self.p1[0] + self.p2[0]) // 2, (self.p1[1] + self.p2[1]) // 2] GraphicsObject.__init__(self, options=(), cursor=cursor, layer=layer, bounds=bounds, tag=tag) # abs(p2[0] - p1[0]) is not required because the p2 value is always greater than or equal to the p1 value self.width = self.p2[0] - self.p1[0] self.height = self.p2[1] - self.p1[1] self.min_width = None self.min_height = None self.max_width = None self.max_height = None self.resizing_bounds = {} self.is_resizing = {} self.bounds_thickness = 0 if fill is None: self.fill = STYLES["default"]["fill"] elif isinstance(fill, Colour): # Checking if the option is a colour self.fill = fill else: # If not, raise an error raise GraphicsError(f"\n\nGraphicsError: The Rectangle fill must be a Colour object , not {fill}") if outline is None: self.outline = STYLES["default"]["outline"] elif isinstance(outline, Colour): # Checking if the option is a colour self.outline = outline else: # If not, raise an error raise GraphicsError(f"\n\nGraphicsError: The rectangle outline must be a Colour object , not {outline}") if outline_width is None: self.outline_width = STYLES["default"]["width"] elif isinstance(outline_width, int): # Checking if the option is an integer self.outline_width = outline_width else: # If not, raise an error raise GraphicsError(f"\n\nGraphicsError: The rectangle outline width must be an integer, not {outline_width}") def __repr__(self): return "_BBox" def _set_resizable(self, resizables, top_bounds=None, bottom_bounds=None, left_bounds=None, right_bounds=None, thickness=10): """Override in subclasses""" pass def _move(self, dx, dy): self.p1[0] += dx self.p1[1] += dy self.p2[0] += dx self.p2[1] += dy self.anchor[0] += dx self.anchor[1] += dy def is_clicked(self, mouse_pos): if self.bounds is None: if mouse_pos is None: return False else: if (self.p1[0] < mouse_pos[0] < self.p2[0] or self.p1[0] > mouse_pos[0] > self.p2[0]) and \ (self.p1[1] < mouse_pos[1] < self.p2[1] or self.p1[1] > mouse_pos[1] > self.p2[1]): return True else: return False else: return self.bounds.is_clicked(mouse_pos) def get_p1(self): return self.p1.copy() def get_p2(self): return self.p2.copy() def get_top_right(self): return self.p1.copy() def get_top_left(self): return [self.p2[0], self.p1[1]] def get_bottom_left(self): return [self.p1[0], self.p2[1]] def get_bottom_right(self): return self.p2.copy() def get_top(self): return [(self.p2[0] + self.p1[0]) / 2, self.p1[1]] def get_bottom(self): return [(self.p2[0] + self.p1[0]) / 2, self.p2[1]] def get_left(self): return [self.p1[0], (self.p1[1] + self.p2[1]) / 2] def get_right(self): return [self.p2[0], (self.p1[1] + self.p2[1]) / 2] def get_width(self): return self.width def get_height(self): return self.height def get_fill(self): return self.fill def get_outline(self): return self.outline def get_outline_width(self): return self.outline_width def get_anchor(self): return self.anchor def set_dimensions(self, width, height, horizontal_align="center", vertical_align="center"): self.set_width(width, horizontal_align) self.set_height(height, vertical_align) return self def set_resizable(self, top=False, left=False, bottom=False, right=False, min_width=40, min_height=40, bounds_width=10, top_bounds=None, bottom_bounds=None, left_bounds=None, right_bounds=None): if min_width < 1 or min_height < 1: raise GraphicsError(f"\n\nGraphicsError: Minimum height and width of resizable object must be greater than " f"or equal to 1. Right now, min_width={min_width} & min_height={min_height}") self.min_width = min_width self.min_height = min_height self.is_resizing = {"top": top, "left": left, "bottom": bottom, "right": right} self._set_resizable([top, bottom, left, right], top_bounds=top_bounds, bottom_bounds=bottom_bounds, left_bounds=left_bounds, right_bounds=right_bounds, thickness=bounds_width) if top is False and bottom is False and left is False and right is False: if self in GraphicsObject.resizing_objects: GraphicsObject.resizing_objects.remove(self) elif self not in GraphicsObject.resizing_objects: GraphicsObject.resizing_objects.add(self) self.bounds_thickness = bounds_width return self def set_coords(self, p1, p2): self.p1 = p1.copy() self.p2 = p2.copy() # These make sure that the p2 is 'after' p1, ie the x & y value of p2 is greater than that of p1 if self.p1[0] > self.p2[0]: # Checking if p1's x value is greater than p2's. If so, then swap the values self.p1[0], self.p2[0] = self.p2[0], self.p1[0] if self.p1[1] > self.p2[1]: # Checking if p1's y value is greater than p2's. If so, then swap the values self.p1[1], self.p2[1] = self.p2[1], self.p1[1] # abs(p2[0] - p1[0]) is not required because the p2 value is always greater than or equal to the p1 value self.width = self.p2[0] - self.p1[0] self.height = self.p2[1] - self.p1[1] width_scale = (p2[0] - p1[0]) / self.width height_scale = (p2[1] - p1[1]) / self.height # abs(p2[0] - p1[0]) is not required because the p2 value is always greater than or equal to the p1 value self.width = p2[0] - p1[0] self.height = p2[1] - p1[1] self.anchor = [(self.p1[0] + self.p2[0]) // 2, (self.p1[1] + self.p2[1]) // 2] self._update_layer() return self def set_width(self, width, center="center"): if center not in {"center", "right", "left"}: raise GraphicsError( "\n\nThe center argument for resizing the object (set_outline_width) needs to be one of " f'{["center", "right", "left"]}') if center == "left": self.set_coords(self.p1, self.p2.add_x(width - self.width)) elif center == "right": self.set_coords(self.p1.add_x(-(width - self.width)), self.p2) else: self.set_coords(self.p1.add_x(-(width / 2 - self.width)), self.p2.add_x(width / 2 - self.width)) return self def set_height(self, height, center="center"): if center not in {"center", "top", "bottom"}: raise GraphicsError( "\n\nThe center argument for resizing the object (set_height) needs to be one of " f'{["center", "top", "bottom"]}') if center == "top": self.set_coords(self.p1, self.p2.add_y(height - self.height)) elif center == "bottom": self.set_coords(self.p1.add_y(-(height - self.height)), self.p2) else: self.set_coords(self.p1.add_y(-(height / 2 - self.height)), self.p2.add_y(height / 2 - self.height)) return self def set_fill(self, fill): if fill is None: self.fill = STYLES["default"]["fill"] elif isinstance(fill, Colour): # Checking if the option is a colour self.fill = fill else: # If not, raise an error raise GraphicsError(f"\n\nGraphicsError: The Rectangle fill must be a Colour object , not {fill}") self._update_layer() return self def set_outline(self, outline): if outline is None: self.outline = STYLES["default"]["outline"] elif isinstance(outline, Colour): # Checking if the option is a colour self.outline = outline else: # If not, raise an error raise GraphicsError(f"\n\nGraphicsError: The rectangle outline must be a Colour object , not {outline}") self._update_layer() return self def set_outline_width(self, outline_width): if outline_width is None: self.outline_width = STYLES["default"]["width"] elif isinstance(outline_width, int): # Checking if the option is an integer self.outline_width = outline_width else: # If not, raise an error raise GraphicsError( f"\n\nGraphicsError: The rectangle outline width must be an integer, not {outline_width}") self._update_layer() return self
3630
from pylab import * from numpy import * from numpy.linalg import solve from scipy.integrate import odeint from scipy.stats import norm, uniform, beta from scipy.special import jacobi a = 0.0 b = 3.0 theta=1.0 sigma=sqrt(theta/(2*(a+b+2))) tscale = 0.05 invariant_distribution = poly1d( [-1 for x in range(int(a))], True)*poly1d( [1 for x in range(int(b))], True) def eigenvalue(n): return theta*n*(n+a+b+1)/(a+b+2) gaussian_var = norm() def dW(dt): return norm.rvs() / sqrt(dt) def random_walk(y0, tmax, dt, times = None): dt = dt * tscale def rhs(y,t): return -theta*(y-(a-b)/(a+b+2)) + sqrt(2*theta*(1-y*y)/(a+b+2))*dW(dt/tscale) if (times is None): times = arange(0,tmax,dt) y = zeros(shape=times.shape, dtype=float) y[0] = y0 for i in range(1,y.shape[0]): y[i] = y[i-1] + rhs(y[i-1], times[i])*dt if abs(y[i]) > 1: y[i] = y[i] / abs(y[i]) return (times, y) def beta_prior(s, f): return poly1d(ones(shape=(s,)), True)*poly1d(-1*ones(shape=(f,)), True) def poly_to_jacobi(x): """x is a poly1d object""" xc = x.coeffs N = x.order+1 matrix = zeros(shape=(N,N), dtype=float) for i in range(N): matrix[N-i-1:N, i] = jacobi(i,a,b).coeffs return solve(matrix, xc) def jacobi_to_poly(x): result = poly1d([0]) for i in range(x.shape[0]): result = result + (jacobi(i,a,b)*invariant_distribution)*x[i] return result def jacobi_to_poly_no_invariant(x): result = poly1d([0]) for i in range(x.shape[0]): result = result + jacobi(i,a,b)*x[i] return result def propagate_jacobi(pc, t): """Takes jacobi coefficients and propagates them""" n = arange(pc.shape[0], dtype=float) l = theta*n*(n+a+b+1.0)/(a+b+2.0)*tscale return exp(-l*t)*pc def truncate_unnecessary_jacobi(p): p_normalized = p / (abs(p).sum()) cs = cumsum(abs(p_normalized[::-1]))[::-1] return p_normalized[where(abs(cs) > 1e-4)] def pde_solve(prior, t): result = zeros(shape=(t.shape[0], prior.shape[0]), dtype=float) result[0,:] = prior for i in range(1,t.shape[0]): result[i,:] = propagate_jacobi(result[i-1,:], t[i]-t[i-1]) return result def transform_to_x(pdf, x): result = zeros(shape=(pdf.shape[0], x.shape[0]), dtype=float) for i in range(0, pdf.shape[0]): p = jacobi_to_poly(pdf[i,:]) result[i,:] = p(x) result[i,:] /= result[i,:].sum() return result tmax = 4 prior = beta_prior(40, 20) prior_in_jacobi = poly_to_jacobi(prior) dt = 0.1 times = arange(0,tmax,dt) x = arange(-1,1,0.01) rw_dt = 0.01 t, y = random_walk(0.35*2-1, tmax, rw_dt) solution_as_x = zeros(shape=(times.size, x.size), dtype=float) solution_as_jacobi = None empirical_ctr = zeros(shape=(4,), dtype=float) for i in range(0,4): nt = int(1.0/dt) prior = prior_in_jacobi rnd = uniform(0,1) if (i > 0): nsamples = 40 r = rnd.rvs(nsamples) ctr = (y[i/rw_dt]+1)/2.0 print "CTR: " + str(ctr) success = (r < ctr).sum() print "Empirical: " + str(success / float(nsamples)) evidence = beta_prior( nsamples - success, success) prior = None j = truncate_unnecessary_jacobi(solution_as_jacobi[int(1/dt)-1]) prior = poly_to_jacobi(evidence * jacobi_to_poly_no_invariant(j)) empirical_ctr[i] = success / float(nsamples) solution_as_jacobi = pde_solve(prior, times[i*nt:(i+1)*nt]) solution_as_x[i*nt:(i+1)*nt] = transform_to_x(solution_as_jacobi, x) plot(arange(0,4), empirical_ctr, 'go') plot(t, (y+1)/2.0, 'k') imshow(solution_as_x.transpose(), origin='lower', extent=[0,tmax,0,1]) xlabel("time") ylabel("CTR") title("Bayesian Estimate of CTR") colorbar() show()
3639
from abc import ABC, abstractmethod from contextlib import contextmanager from uuid import uuid4 import pytest from sqlalchemy import ( delete, select, UniqueConstraint, ) class AbstractBaseTest(ABC): @pytest.fixture def cls_(self): """ Return class under test. Assumptions: if the class under test is Foo, then the class grouping the tests should be a subclass of BaseTest, named TestFoo. """ prefix = len("Test") class_name = self.__class__.__name__[prefix:] return getattr(self.get_model(), class_name) @abstractmethod def get_model(self): pass def dbcleanup_wrapper(session, obj, where_clause=None): with dbcleanup(session, obj, where_clause): yield obj @contextmanager def dbcleanup(session, obj, where_clause=None): """ Use the session to store obj in database; delete from database on exit, bypassing the session. If obj does not have an id field, a SQLAlchemy WHERE clause should be provided to construct a custom select statement. """ return_id = where_clause is None try: obj_id = persist(session, obj, return_id) yield obj_id finally: table = obj.__table__ if where_clause is None: where_clause = _get_default_where_clause(type(obj), obj_id) stmt = delete(table).where(where_clause) session.execute(stmt) def persist(session, obj, return_id=True): """ Use the session to store obj in database, then remove obj from session, so that on a subsequent load from the database we get a clean instance. """ session.add(obj) session.flush() obj_id = obj.id if return_id else None # save this before obj is expunged session.expunge(obj) return obj_id def delete_from_database(session, objects): """ Delete each object in objects from database. May be called at the end of a test if use of a context manager is impractical. (Assume all objects have the id field as their primary key.) """ # Ensure we have a list of objects (check for list explicitly: a model can be iterable) if not isinstance(objects, list): objects = [objects] for obj in objects: table = obj.__table__ stmt = delete(table).where(table.c.id == obj.id) session.execute(stmt) def get_stored_obj(session, cls, obj_id=None, where_clause=None, unique=False): # Either obj_id or where_clause must be provided, but not both assert bool(obj_id) ^ (where_clause is not None) if where_clause is None: where_clause = _get_default_where_clause(cls, obj_id) stmt = select(cls).where(where_clause) result = session.execute(stmt) # unique() is required if result contains joint eager loads against collections # https://gerrit.sqlalchemy.org/c/sqlalchemy/sqlalchemy/+/2253 if unique: result = result.unique() return result.scalar_one() def has_unique_constraint(table, fields): for constraint in table.constraints: if isinstance(constraint, UniqueConstraint): col_names = {c.name for c in constraint.columns} if set(fields) == col_names: return True def has_index(table, fields): for index in table.indexes: col_names = {c.name for c in index.columns} if set(fields) == col_names: return True def collection_consists_of_objects(collection, *objects): """ Returns True iff list(collection) == list(objects), where object equality is determined by primary key equality: object1.id == object2.id. """ if len(collection) != len(objects): # False if lengths are different return False if not collection: # True if both are empty return True # Sort, then compare each member by its 'id' attribute, which must be its primary key. collection.sort(key=lambda item: item.id) objects_l = list(objects) objects_l.sort(key=lambda item: item.id) for item1, item2 in zip(collection, objects_l): if item1.id is None or item2.id is None or item1.id != item2.id: return False return True def get_unique_value(): """Generate unique values to accommodate unique constraints.""" return uuid4().hex def _get_default_where_clause(cls, obj_id): where_clause = cls.__table__.c.id == obj_id return where_clause
3663
import pytest from copy import deepcopy from gefest.core.structure.point import Point from gefest.core.structure.polygon import Polygon from gefest.core.structure.structure import Structure from gefest.core.algs.postproc.resolve_errors import * from gefest.core.algs.geom.validation import * # marking length and width for testing polygon poly_width = 10 poly_length = 20 # creating a testing polygons via corner points rectangle_points = [(-1, 40), (-1, poly_length+40), (-poly_width-10, poly_length+40), (-poly_width-10, 40)] out_bounds_rectangle_poly = Polygon('rectangle', points=[Point(*coords) for coords in rectangle_points]) triangle_points = [(1, 1), (poly_width, poly_length), (1, poly_length)] unclosed_triangle_poly = Polygon('triangle', points=[Point(*coords) for coords in triangle_points]) incorrect_points = [(5, 5), (5, poly_length), (8, poly_length), (5, 5), (5, 30)] incorrect_poly = Polygon('incorrect_poly', points=[Point(*coords) for coords in incorrect_points]) domain = Domain() def test_unclosed_poly(): input_structure = Structure([unclosed_triangle_poly]) observed_structure = postprocess(input_structure, domain) assert unclosed_poly(input_structure, domain) assert not unclosed_poly(observed_structure, domain) def test_self_intersection(): input_structure = Structure([incorrect_poly]) observed_structure = postprocess(input_structure, domain) assert self_intersection(input_structure) assert not self_intersection(observed_structure) def test_out_of_bound(): input_structure = Structure([out_bounds_rectangle_poly]) observed_structure = postprocess(input_structure, domain) assert out_of_bound(input_structure, domain) assert not out_of_bound(observed_structure, domain) def test_fixed_polys(): domain = Domain(fixed_points=[[[15, 30], [40, 30], [15, 40]]]) poly_like_fixed = Polygon('like_fixed', points=[Point(15, 30), Point(40, 30), Point(15, 40)]) input_structure = Structure([poly_like_fixed, unclosed_triangle_poly]) observed_structure = postprocess(input_structure, domain) assert all([np.isclose(len(observed_structure.polygons), 2), 'like_fixed' not in [poly.id for poly in observed_structure.polygons], 'fixed' in [poly.id for poly in observed_structure.polygons]]) def test_too_close(): same_poly = deepcopy(unclosed_triangle_poly) same_poly.id = 'same_triangle' input_structure = Structure([unclosed_triangle_poly, same_poly]) observed_structure = postprocess(input_structure, domain) print(observed_structure.polygons) assert np.isclose(len(observed_structure.polygons), 1)
3669
from typing import Tuple import torch from torch.autograd import Function import torch.nn as nn from metrics.pointops import pointops_cuda import numpy as np class FurthestSampling(Function): @staticmethod def forward(ctx, xyz, m): """ input: xyz: (b, n, 3) and n > m, m: int32 output: idx: (b, m) """ assert xyz.is_contiguous() b, n, _ = xyz.size() idx = torch.cuda.IntTensor(b, m) temp = torch.cuda.FloatTensor(b, n).fill_(1e10) pointops_cuda.furthestsampling_cuda(b, n, m, xyz, temp, idx) return idx @staticmethod def backward(xyz, a=None): return None, None furthestsampling = FurthestSampling.apply class Gathering(Function): @staticmethod def forward(ctx, features, idx): """ input: features: (b, c, n), idx : (b, m) tensor output: (b, c, m) """ assert features.is_contiguous() assert idx.is_contiguous() b, c, n = features.size() m = idx.size(1) output = torch.cuda.FloatTensor(b, c, m) pointops_cuda.gathering_forward_cuda(b, c, n, m, features, idx, output) ctx.for_backwards = (idx, c, n) return output @staticmethod def backward(ctx, grad_out): idx, c, n = ctx.for_backwards b, m = idx.size() grad_features = torch.cuda.FloatTensor(b, c, n).zero_() grad_out_data = grad_out.data.contiguous() pointops_cuda.gathering_backward_cuda(b, c, n, m, grad_out_data, idx, grad_features.data) return grad_features, None gathering = Gathering.apply class NearestNeighbor(Function): @staticmethod def forward(ctx, unknown: torch.Tensor, known: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Find the three nearest neighbors of unknown in known input: unknown: (b, n, 3), known: (b, m, 3) output: dist2: (b, n, 3) l2 distance to the three nearest neighbors idx: (b, n, 3) index of 3 nearest neighbors """ assert unknown.is_contiguous() assert known.is_contiguous() b, n, _ = unknown.size() m = known.size(1) dist2 = torch.cuda.FloatTensor(b, n, 3) idx = torch.cuda.IntTensor(b, n, 3) pointops_cuda.nearestneighbor_cuda(b, n, m, unknown, known, dist2, idx) return torch.sqrt(dist2), idx @staticmethod def backward(ctx, a=None, b=None): return None, None nearestneighbor = NearestNeighbor.apply class Interpolation(Function): @staticmethod def forward(ctx, features: torch.Tensor, idx: torch.Tensor, weight: torch.Tensor) -> torch.Tensor: """ Performs weight linear interpolation on 3 features input: features: (b, c, m) features descriptors to be interpolated from idx: (b, n, 3) three nearest neighbors of the target features in features weight: (b, n, 3) weights output: (b, c, n) tensor of the interpolated features """ assert features.is_contiguous() assert idx.is_contiguous() assert weight.is_contiguous() b, c, m = features.size() n = idx.size(1) ctx.interpolation_for_backward = (idx, weight, m) output = torch.cuda.FloatTensor(b, c, n) pointops_cuda.interpolation_forward_cuda(b, c, m, n, features, idx, weight, output) return output @staticmethod def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ input: grad_out: (b, c, n) output: grad_features: (b, c, m), None, None """ idx, weight, m = ctx.interpolation_for_backward b, c, n = grad_out.size() grad_features = torch.cuda.FloatTensor(b, c, m).zero_() grad_out_data = grad_out.data.contiguous() pointops_cuda.interpolation_backward_cuda(b, c, n, m, grad_out_data, idx, weight, grad_features.data) return grad_features, None, None interpolation = Interpolation.apply class Grouping(Function): @staticmethod def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor: """ input: features: (b, c, n), idx : (b, m, nsample) containing the indicies of features to group with output: (b, c, m, nsample) """ assert features.is_contiguous() assert idx.is_contiguous() b, c, n = features.size() _, m, nsample = idx.size() output = torch.cuda.FloatTensor(b, c, m, nsample) pointops_cuda.grouping_forward_cuda(b, c, n, m, nsample, features, idx, output) ctx.for_backwards = (idx, n) return output @staticmethod def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ input: grad_out: (b, c, m, nsample) output: (b, c, n), None """ idx, n = ctx.for_backwards b, c, m, nsample = grad_out.size() grad_features = torch.cuda.FloatTensor(b, c, n).zero_() grad_out_data = grad_out.data.contiguous() pointops_cuda.grouping_backward_cuda(b, c, n, m, nsample, grad_out_data, idx, grad_features.data) return grad_features, None grouping = Grouping.apply class GroupingInt(Function): @staticmethod def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor: """ input: features: (b, c, n), idx : (b, m, nsample) containing the indicies of features to group with output: (b, c, m, nsample) """ assert features.is_contiguous() assert idx.is_contiguous() b, c, n = features.size() _, m, nsample = idx.size() output = torch.cuda.LongTensor(b, c, m, nsample) pointops_cuda.grouping_int_forward_cuda(b, c, n, m, nsample, features, idx, output) return output @staticmethod def backward(ctx, a=None): return None, None grouping_int = GroupingInt.apply class BallQuery(Function): @staticmethod def forward(ctx, radius: float, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor) -> torch.Tensor: """ input: radius: float, radius of the balls nsample: int, maximum number of features in the balls xyz: torch.Tensor, (b, n, 3) xyz coordinates of the features new_xyz: torch.Tensor, (b, m, 3) centers of the ball query output: (b, m, nsample) tensor with the indicies of the features that form the query balls """ assert xyz.is_contiguous() assert new_xyz.is_contiguous() b, n, _ = xyz.size() m = new_xyz.size(1) idx = torch.cuda.IntTensor(b, m, nsample).zero_() pointops_cuda.ballquery_cuda(b, n, m, radius, nsample, new_xyz, xyz, idx) return idx @staticmethod def backward(ctx, a=None): return None, None, None, None ballquery = BallQuery.apply class FeatureDistribute(Function): @staticmethod def forward(ctx, max_xyz: torch.Tensor, xyz: torch.Tensor) -> torch.Tensor: """ :param ctx: :param max_xyz: (b, n, 3) :param xyz: (b, m, 3) :return: distribute_idx: (b, m) """ assert max_xyz.is_contiguous() assert xyz.is_contiguous() b, n, _ = max_xyz.size() m = xyz.size(1) distribute_idx = torch.cuda.IntTensor(b, m).zero_() pointops_cuda.featuredistribute_cuda(b, n, m, max_xyz, xyz, distribute_idx) return distribute_idx @staticmethod def backward(ctx, a=None): return None, None featuredistribute = FeatureDistribute.apply class FeatureGather(Function): @staticmethod def forward(ctx, max_feature: torch.Tensor, distribute_idx: torch.Tensor) -> torch.Tensor: ''' :param ctx: :param max_feature: (b, c, n) :param distribute_idx: (b, m) :return: distribute_feature: (b, c, m) ''' assert max_feature.is_contiguous() assert distribute_idx.is_contiguous() b, c, n = max_feature.size() m = distribute_idx.size(1) distribute_feature = torch.cuda.FloatTensor(b, c, m).zero_() pointops_cuda.featuregather_forward_cuda(b, n, m, c, max_feature, distribute_idx, distribute_feature) ctx.for_backwards = (distribute_idx, n) return distribute_feature @staticmethod def backward(ctx, grad_distribute_feature: torch.Tensor): ''' :param ctx: :param grad_distribute_feature: (b, c, m) :return: grad_max_feature: (b, c, n), None ''' distribute_idx, n = ctx.for_backwards b, c, m = grad_distribute_feature.size() grad_max_feature = torch.cuda.FloatTensor(b, c, n).zero_() grad_distribute_feature_data = grad_distribute_feature.data.contiguous() pointops_cuda.featuregather_backward_cuda(b, n, m, c, grad_distribute_feature_data, distribute_idx, grad_max_feature.data) return grad_max_feature, None featuregather = FeatureGather.apply class LabelStatBallRange(Function): @staticmethod def forward(ctx, radius: float, xyz: torch.Tensor, new_xyz: torch.Tensor, label_stat: torch.Tensor) -> torch.Tensor: ''' :param ctx: :param radius: :param xyz: (b, n, 3) :param new_xyz: (b, m, 3) :param label_stat: (b, n, nclass) :return: new_label_stat: (b, m, nclass) ''' assert xyz.is_contiguous() assert new_xyz.is_contiguous() assert label_stat.is_contiguous() b, n, nclass = label_stat.size() m = new_xyz.size(1) new_label_stat = torch.cuda.IntTensor(b, m, nclass).zero_() pointops_cuda.labelstat_ballrange_cuda(b, n, m, radius, nclass, new_xyz, xyz, label_stat, new_label_stat) return new_label_stat @staticmethod def backward(ctx, a=None): return None, None, None, None labelstat_ballrange = LabelStatBallRange.apply class LabelStatIdx(Function): @staticmethod def forward(ctx, nsample: int, label_stat: torch.Tensor, idx: torch.Tensor) -> torch.Tensor: ''' :param ctx: :param nsample: :param label_stat: (b, n, nclass) :param idx: (b, m, nsample) :return: new_label_stat: (b, m, nclass) ''' assert label_stat.is_contiguous() assert idx.is_contiguous() b, n, nclass = label_stat.size() m = idx.size(1) new_label_stat = torch.cuda.IntTensor(b, m, nclass).zero_() pointops_cuda.labelstat_idx_cuda(b, n, m, nsample, nclass, label_stat, idx, new_label_stat) return new_label_stat @staticmethod def backward(ctx, a=None): return None, None, None labelstat_idx = LabelStatIdx.apply class LabelStatAndBallQuery(Function): @staticmethod def forward(ctx, radius: float, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor, label_stat: torch.Tensor): ''' :param ctx: :param radius: :param nsample: :param xyz: (b, n, 3) :param new_xyz: (b, m, 3) :param label_stat: (b, n, nclass) :return: new_label_stat: (b, m, nclass) idx: (b, m, nsample) ''' assert xyz.is_contiguous() assert new_xyz.is_contiguous() assert label_stat.is_contiguous() b, n, nclass = label_stat.size() m = new_xyz.size(1) new_label_stat = torch.cuda.IntTensor(b, m, nclass).zero_() idx = torch.cuda.IntTensor(b, m, nsample).zero_() pointops_cuda.labelstat_and_ballquery_cuda(b, n, m, radius, nsample, nclass, new_xyz, xyz, label_stat, idx, new_label_stat) return new_label_stat, idx @staticmethod def backward(ctx, a=None, b=None): return None, None, None, None, None labelstat_and_ballquery = LabelStatAndBallQuery.apply def pairwise_distances(x, y=None): ''' Input: x is a Nxd matrix y is an optional Mxd matirx Output: dist is a NxM matrix where dist[i,j] is the square norm between x[i,:] and y[j,:] if y is not given then use 'y=x'. i.e. dist[i,j] = ||x[i,:]-y[j,:]||^2 ''' x_norm = (x ** 2).sum(1).view(-1, 1) if y is not None: y_t = torch.transpose(y, 0, 1) y_norm = (y ** 2).sum(1).view(1, -1) else: y_t = torch.transpose(x, 0, 1) y_norm = x_norm.view(1, -1) dist = x_norm + y_norm - 2.0 * torch.mm(x, y_t) import numpy as np return torch.clamp(dist, 0.0, np.inf) class KNNQueryNaive(Function): @staticmethod def forward(ctx, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor = None) -> Tuple[torch.Tensor]: """ KNN Indexing input: nsample: int32, Number of neighbor xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods output: idx: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz b, m, _ = new_xyz.size() n = xyz.size(1) ''' idx = torch.zeros(b, m, nsample).int().cuda() for i in range(b): dist = pairwise_distances(new_xyz[i, :, :], xyz[i, :, :]) [_, idxs] = torch.sort(dist, dim=1) idx[i, :, :] = idxs[:, 0:nsample] ''' # ''' # new_xyz_repeat = new_xyz.repeat(1, 1, n).view(b, m * n, 3) # xyz_repeat = xyz.repeat(1, m, 1).view(b, m * n, 3) # dist = (new_xyz_repeat - xyz_repeat).pow(2).sum(dim=2).view(b, m, n) dist = (new_xyz.repeat(1, 1, n).view(b, m * n, 3) - xyz.repeat(1, m, 1).view(b, m * n, 3)).pow(2).sum(dim=2).view(b, m, n) [_, idxs] = torch.sort(dist, dim=2) idx = idxs[:, :, 0:nsample].int() # ''' return idx @staticmethod def backward(ctx): return None, None, None knnquery_naive = KNNQueryNaive.apply class KNNQuery(Function): @staticmethod def forward(ctx, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor = None) -> Tuple[torch.Tensor]: """ KNN Indexing input: nsample: int32, Number of neighbor xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods output: idx: (b, m, nsample) ( dist2: (b, m, nsample) ) """ if new_xyz is None: new_xyz = xyz assert xyz.is_contiguous() assert new_xyz.is_contiguous() b, m, _ = new_xyz.size() n = xyz.size(1) idx = torch.cuda.IntTensor(b, m, nsample).zero_() dist2 = torch.cuda.FloatTensor(b, m, nsample).zero_() pointops_cuda.knnquery_cuda(b, n, m, nsample, xyz, new_xyz, idx, dist2) return idx @staticmethod def backward(ctx, a=None): return None, None, None knnquery = KNNQuery.apply class KNNQueryExclude(Function): @staticmethod def forward(ctx, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor = None) -> Tuple[torch.Tensor]: """ KNN Indexing input: nsample: int32, Number of neighbor xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods output: new_features: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz b, m, _ = new_xyz.size() n = xyz.size(1) ''' idx = torch.zeros(b, m, nsample).int().cuda() for i in range(b): dist = pairwise_distances(new_xyz[i, :, :], xyz[i, :, :]) [_, idxs] = torch.sort(dist, dim=1) idx[i, :, :] = idxs[:, 0:nsample] ''' # ''' # new_xyz_repeat = new_xyz.repeat(1, 1, n).view(b, m * n, 3) # xyz_repeat = xyz.repeat(1, m, 1).view(b, m * n, 3) # dist = (new_xyz_repeat - xyz_repeat).pow(2).sum(dim=2).view(b, m, n) dist = (new_xyz.repeat(1, 1, n).view(b, m * n, 3) - xyz.repeat(1, m, 1).view(b, m * n, 3)).pow(2).sum(dim=2).view(b, m, n) [_, idxs] = torch.sort(dist, dim=2) idx = idxs[:, :, 1:nsample+1].int() # ''' return idx @staticmethod def backward(ctx): return None, None, None knnquery_exclude = KNNQueryExclude.apply class Le_QueryAndGroup_SameSize(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(Le_QueryAndGroup_SameSize, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, n, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ assert xyz.size() == new_xyz.size() if new_xyz is None: new_xyz = xyz if idx is None: if self.radius is not None: idx = ballquery(self.radius, self.nsample, xyz, new_xyz) else: # idx = knnquery_naive(self.nsample, xyz, new_xyz) # (b, m, nsample) idx = knnquery(self.nsample, xyz, new_xyz) # (b, m, nsample) xyz_trans = xyz.transpose(1, 2).contiguous() grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) # grouped_idxs = grouping(idxs.unsqueeze(1).float(), idx).squeeze(1).int() # (b, m, nsample) grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if features is not None: grouped_features = grouping(features, idx) # (b, c, m, nsample) if self.use_xyz: #new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, m, nsample) # le new_features = grouped_features # (b, c, m, nsample) else: new_features = grouped_features else: assert self.use_xyz, "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return grouped_xyz, new_features class QueryAndGroup(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(QueryAndGroup, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz if idx is None: if self.radius is not None: idx = ballquery(self.radius, self.nsample, xyz, new_xyz) else: # idx = knnquery_naive(self.nsample, xyz, new_xyz) # (b, m, nsample) idx = knnquery(self.nsample, xyz, new_xyz) # (b, m, nsample) xyz_trans = xyz.transpose(1, 2).contiguous() grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) # grouped_idxs = grouping(idxs.unsqueeze(1).float(), idx).squeeze(1).int() # (b, m, nsample) grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if features is not None: grouped_features = grouping(features, idx) if self.use_xyz: new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, m, nsample) else: new_features = grouped_features else: assert self.use_xyz, "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return new_features class QueryAndGroup_Dilate(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(QueryAndGroup_Dilate, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz if idx is None: if self.radius is not None: idx = ballquery(self.radius, 2*self.nsample, xyz, new_xyz) else: # idx = knnquery_naive(self.nsample, xyz, new_xyz) # (b, m, nsample) idx = knnquery(2*self.nsample, xyz, new_xyz) # (b, m, nsample) idx2 = np.array([i for i in range(2*self.nsample)]) np.random.shuffle(idx2) idx2 = idx2[:self.nsample] idx = idx[:, :, idx2] xyz_trans = xyz.transpose(1, 2).contiguous() grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) # grouped_idxs = grouping(idxs.unsqueeze(1).float(), idx).squeeze(1).int() # (b, m, nsample) grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if features is not None: grouped_features = grouping(features, idx) if self.use_xyz: new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, m, nsample) else: new_features = grouped_features else: assert self.use_xyz, "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return new_features class Le_QueryAndGroup(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(Le_QueryAndGroup, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz if idx is None: if self.radius is not None: idx = ballquery(self.radius, self.nsample, xyz, new_xyz) else: # idx = knnquery_naive(self.nsample, xyz, new_xyz) # (b, m, nsample) idx = knnquery(self.nsample, xyz, new_xyz) # (b, m, nsample) xyz_trans = xyz.transpose(1, 2).contiguous() grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) # grouped_idxs = grouping(idxs.unsqueeze(1).float(), idx).squeeze(1).int() # (b, m, nsample) grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if features is not None: grouped_features = grouping(features, idx) # (b, c, m, nsample) if self.use_xyz: #new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, m, nsample) # le new_features = grouped_features # (b, c, m, nsample) else: new_features = grouped_features else: assert self.use_xyz, "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return grouped_xyz, new_features class Gen_QueryAndGroupXYZ(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(Gen_QueryAndGroupXYZ, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz #def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz #if idx is None: if self.radius is not None: idx = ballquery(self.radius, self.nsample, xyz, new_xyz) else: idx = knnquery(self.nsample, xyz, new_xyz) # (b, m, nsample) xyz_trans = xyz.transpose(1, 2).contiguous() # BxNx3 -> Bx3xN grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) return grouped_xyz class Le_QueryAndGroup_OnlyFeature(nn.Module): """ Groups with a ball query of radius parameters: radius: float32, Radius of ball nsample: int32, Maximum number of features to gather in the ball """ def __init__(self, radius=None, nsample=32, use_xyz=True): super(Le_QueryAndGroup_OnlyFeature, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor = None, features: torch.Tensor = None, idx: torch.Tensor = None) -> torch.Tensor: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: (b, m, 3) centriods features: (b, c, n) idx: idx of neighbors # idxs: (b, n) output: new_features: (b, c+3, m, nsample) # grouped_idxs: (b, m, nsample) """ if new_xyz is None: new_xyz = xyz if idx is None: if self.radius is not None: idx = ballquery(self.radius, self.nsample, xyz, new_xyz) else: # idx = knnquery_naive(self.nsample, xyz, new_xyz) # (b, m, nsample) idx = knnquery(self.nsample, xyz, new_xyz) # (b, m, nsample) #xyz_trans = xyz.transpose(1, 2).contiguous() #grouped_xyz = grouping(xyz_trans, idx) # (b, 3, m, nsample) # grouped_idxs = grouping(idxs.unsqueeze(1).float(), idx).squeeze(1).int() # (b, m, nsample) #grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if features is not None: grouped_features = grouping(features, idx) # (b, c, m, nsample) if self.use_xyz: #new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, m, nsample) # le new_features = grouped_features # (b, c, m, nsample) else: new_features = grouped_features else: assert self.use_xyz, "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return new_features class GroupAll(nn.Module): """ Groups all features """ def __init__(self, use_xyz: bool = True): super(GroupAll, self).__init__() self.use_xyz = use_xyz def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor, features: torch.Tensor = None) -> Tuple[torch.Tensor]: """ input: xyz: (b, n, 3) coordinates of the features new_xyz: ignored torch features: (b, c, n) descriptors of the features output: new_features: (b, c+3, 1, N) tensor """ grouped_xyz = xyz.transpose(1, 2).unsqueeze(2) if features is not None: grouped_features = features.unsqueeze(2) if self.use_xyz: new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (b, c+3, 1, n) else: new_features = grouped_features else: new_features = grouped_xyz return new_features
3701
from django import forms from .models import Application class ApplicationForm(forms.ModelForm): class Meta: model = Application fields = ('resume', 'cover_letter',)
3742
import sqlite3 con = sqlite3.connect(":memory:") # enable extension loading con.enable_load_extension(True) # Load the fulltext search extension con.execute("select load_extension('./fts3.so')") # alternatively you can load the extension using an API call: # con.load_extension("./fts3.so") # disable extension loading again con.enable_load_extension(False) # example from SQLite wiki con.execute("create virtual table recipe using fts3(name, ingredients)") con.executescript(""" insert into recipe (name, ingredients) values ('broccoli stew', 'broccoli peppers cheese tomatoes'); insert into recipe (name, ingredients) values ('pumpkin stew', 'pumpkin onions garlic celery'); insert into recipe (name, ingredients) values ('broccoli pie', 'broccoli cheese onions flour'); insert into recipe (name, ingredients) values ('pumpkin pie', 'pumpkin sugar flour butter'); """) for row in con.execute("select rowid, name, ingredients from recipe where name match 'pie'"): print(row)
3753
class Solution: """ @param s: a string @param t: a string @return: true if they are both one edit distance apart or false """ def isOneEditDistance(self, s, t): # write your code here if s == t: return False if abs(len(s) - len(t)) > 1: return False n, m = len(s), len(t) f = [[0] * (m + 1) for _ in range(2)] for j in range(m + 1): f[0][j] = j for i in range(1, n + 1): f[i % 2][0] = i for j in range(1, m + 1): if s[i - 1] == t[j - 1]: f[i % 2][j] = min(f[(i - 1) % 2][j - 1], f[(i - 1) % 2][j] + 1, f[i % 2][j - 1] + 1) else: f[i % 2][j] = min(f[(i - 1) % 2][j - 1] + 1, f[(i - 1) % 2][j] + 1, f[i % 2][j - 1] + 1) return f[n % 2][m] == 1
3806
import bpy import random as rnd from collections import Counter import itertools as iter feld_von, feld_bis = -4, 4 spielfeld_von, spielfeld_bis = feld_von-6, feld_bis+6 anz = int((feld_bis-feld_von)**3*.3) spielfeld = {(rnd.randint(feld_von, feld_bis), rnd.randint( feld_von, feld_bis), rnd.randint(feld_von, feld_bis)) for _ in range(anz)} animate_frame = 8 def nachbarn(pos): for x,y,z in iter.product(range(-1,2), repeat = 3): if z == y == x == 0: continue yield pos[0]+x, pos[1]+y, pos[2]+z def nächsteGeneration(spielfeld): nachb = Counter([p for pos in spielfeld for p in nachbarn(pos)]) return {pos for pos, anz in nachb.items() if anz == 6 or (anz in (5, 6, 7, 8) and pos in spielfeld)} def scale_rotate(ob, scale, rot, fr): ob.scale = (scale, scale, scale) ob.rotation_euler.rotate_axis("Z", rot) ob.keyframe_insert(data_path='rotation_euler', frame=fr) ob.keyframe_insert(data_path='scale', frame=fr) bpy.ops.mesh.primitive_cube_add(size=0.001, location=(0, 0, 0)) orig_cube = bpy.context.active_object n = "cube" m = orig_cube.data.copy() cubes = {} for x,y,z in iter.product(range(spielfeld_von,spielfeld_bis), repeat = 3): o = bpy.data.objects.new(n, m) o.location = (x, y, z) cubes[x, y, z] = o bpy.context.collection.objects.link(o) o.select_set(False) for i in range(200): print(f'Durchlauf No. {i}, Anz. Zellen = {len(spielfeld)}') spielfeld2 = nächsteGeneration(spielfeld) dead = spielfeld - spielfeld2 new = spielfeld2 - spielfeld spielfeld = spielfeld2 if not new and not dead: break for zelle in new | dead: if zelle not in cubes: continue ob = cubes[zelle] if zelle in new: scale_rotate(ob, 0.001, -3.141/2, (i-1)*animate_frame) scale_rotate(ob, 750, 3.141/2, i * animate_frame) else: scale_rotate(ob, 750, 3.141/2, (i-1) * animate_frame) scale_rotate(ob, 0.001, -3.141/2, i * animate_frame) if not spielfeld: break bpy.context.scene.frame_current = 1
3817
from torch import nn as nn from .base_model import BaseModel from ..nn.conv2d import DenseConv2d from ..nn.linear import DenseLinear __all__ = ["Conv2", "conv2", "Conv4", "conv4"] class Conv2(BaseModel): def __init__(self): super(Conv2, self).__init__() self.features = nn.Sequential(DenseConv2d(1, 32, kernel_size=5, padding=2), # 32x28x28 nn.ReLU(inplace=True), nn.MaxPool2d(2, stride=2), # 32x14x14 DenseConv2d(32, 64, kernel_size=5, padding=2), # 64x14x14 nn.ReLU(inplace=True), nn.MaxPool2d(2, stride=2)) # 64x7x7 self.classifier = nn.Sequential(DenseLinear(64 * 7 * 7, 2048), nn.ReLU(inplace=True), DenseLinear(2048, 62)) self.collect_prunable_layers() def forward(self, inp): out = self.features(inp) out = out.view(out.size(0), -1) out = self.classifier(out) return out class Conv4(BaseModel): def __init__(self): super(Conv4, self).__init__() self.features = nn.Sequential(DenseConv2d(3, 32, kernel_size=3, padding=1), nn.BatchNorm2d(32), nn.MaxPool2d(2), DenseConv2d(32, 32, kernel_size=3, padding=1), nn.BatchNorm2d(32), nn.MaxPool2d(2), DenseConv2d(32, 32, kernel_size=3, padding=2), nn.BatchNorm2d(32), nn.MaxPool2d(2), DenseConv2d(32, 32, kernel_size=3, padding=2), nn.BatchNorm2d(32), nn.MaxPool2d(2)) self.classifier = DenseLinear(in_features=32 * 6 * 6, out_features=2) def forward(self, inp): out = self.features(inp) out = out.view(out.size(0), -1) out = self.classifier(out) return out def conv2() -> Conv2: return Conv2() def conv4() -> Conv4: return Conv4() # TODO: define pretrain etc.
3820
import bpy from bpy.app.handlers import persistent bl_info = { "name": "Playback Once", "author": "<NAME>", "version": (1, 0, 0), "blender": (2, 67, 3), "location": "", "description": "Playback once.", "warning": "", "wiki_url": "", "tracker_url": "", "category": "Animation"} @persistent def stopPlaybackAtEnd(scene): if scene.frame_current >= scene.frame_end: bpy.ops.screen.animation_cancel() def register(): bpy.app.handlers.frame_change_pre.append(stopPlaybackAtEnd) def unregister(): bpy.app.handlers.frame_change_pre.remove(stopPlaybackAtEnd) if __name__ == "__main__": register()
3826
import json from washer.worker.actions import AppendStdout, AppendStderr from washer.worker.actions import CreateNamedLog, AppendToLog from washer.worker.actions import SetProperty from washer.worker.commands import washertask def pipenv_graph2deps(rawgraph): graph = json.loads(rawgraph) def build_entry(data): if 'required_version' in data: spec = data['key'] + data['required_version'] else: spec = data['key'] return {'installer': 'pipenv', 'spec': spec, 'source': 'pypi', 'name': data['package_name'], 'version': data['installed_version']} def extract_dependencies(entries): for entry in entries: if 'package' in entry: package = entry['package'] dependencies = entry.get('dependencies', []) yield build_entry(package) yield from extract_dependencies(dependencies) else: yield build_entry(entry) yield from extract_dependencies(graph) @washertask def pip_install(repopath, path=".", **kwargs): import invoke c = invoke.Context() with c.cd(repopath): with c.cd(path): res = c.run("pipenv install .") deps = c.run("pipenv graph --json") yield AppendStdout(res.stdout) yield AppendStderr(res.stderr) yield SetProperty("dependencies", list(pipenv_graph2deps(deps.stdout))) return True @washertask def requirement_file(repopath, requirement="requirements.txt", path=".", **kwargs): import invoke c = invoke.Context() with c.cd(repopath): with c.cd(path): res = c.run("pipenv install -r %s" % requirement) deps = c.run("pipenv graph --json") yield AppendStdout(res.stdout) yield AppendStderr(res.stderr) yield SetProperty("dependencies", list(pipenv_graph2deps(deps.stdout))) return True
3843
from bluesky.plans import scan from bluesky.simulators import (print_summary, print_summary_wrapper, summarize_plan, check_limits, plot_raster_path) import pytest from bluesky.plans import grid_scan def test_print_summary(hw): det = hw.det motor = hw.motor print_summary(scan([det], motor, -1, 1, 10)) # old name summarize_plan(scan([det], motor, -1, 1, 10)) # new name list(print_summary_wrapper(scan([det], motor, -1, 1, 10))) def test_old_module_name(hw): det = hw.det motor = hw.motor motor1 = hw.motor1 motor2 = hw.motor2 from bluesky.plan_tools import (print_summary, print_summary_wrapper, plot_raster_path) with pytest.warns(UserWarning): print_summary(scan([det], motor, -1, 1, 10)) with pytest.warns(UserWarning): list(print_summary_wrapper(scan([det], motor, -1, 1, 10))) with pytest.warns(UserWarning): plan = grid_scan([det], motor1, -5, 5, 10, motor2, -7, 7, 15, True) plot_raster_path(plan, 'motor1', 'motor2', probe_size=.3) def test_check_limits(RE, hw): det = hw.det motor = hw.motor # The motor object does not currently implement limits. # Use an assert to help us out if this changes in the future. assert not hasattr(motor, 'limits') # # check_limits should warn if it can't find check_value # TODO: Is there _any_ object to test? # with pytest.warns(UserWarning): # check_limits(scan([det], motor, -1, 1, 3)) # monkey-patch some limits motor.limits = (-2, 2) # check_limits should do nothing here check_limits(scan([det], motor, -1, 1, 3)) # check_limits should error if limits are exceeded only if object raises # this object does not raise check_limits(scan([det], motor, -3, 3, 3)) # check_limits should raise if limits are equal only if object raises # this object does not raise motor.limits = (2, 2) check_limits(scan([det], motor, -1, 1, 3)) def test_check_limits_needs_RE(): with pytest.raises(RuntimeError) as ctx: check_limits([]) assert str(ctx.value) == "Bluesky event loop not running" def test_plot_raster_path(hw): det = hw.det motor1 = hw.motor1 motor2 = hw.motor2 plan = grid_scan([det], motor1, -5, 5, 10, motor2, -7, 7, 15, True) plot_raster_path(plan, 'motor1', 'motor2', probe_size=.3)
3845
import warnings import pytest from leapp.libraries.actor.systemfacts import get_selinux_status from leapp.models import SELinuxFacts no_selinux = False try: import selinux except ImportError: no_selinux = True warnings.warn( 'Tests which uses `selinux` will be skipped' ' due to library unavailability.', ImportWarning) reason_to_skip_msg = "Selinux is not available" # FIXME: create valid tests... @pytest.mark.skipif(no_selinux, reason=reason_to_skip_msg) def test_selinux_enabled_enforcing(monkeypatch): """ Test case SELinux is enabled in enforcing mode """ monkeypatch.setattr(selinux, 'is_selinux_mls_enabled', lambda: 1) monkeypatch.setattr(selinux, 'security_getenforce', lambda: 1) monkeypatch.setattr(selinux, 'selinux_getenforcemode', lambda: [0, 1]) monkeypatch.setattr(selinux, 'is_selinux_enabled', lambda: 1) monkeypatch.setattr(selinux, 'selinux_getpolicytype', lambda: [0, 'targeted']) expected_data = {'policy': 'targeted', 'mls_enabled': True, 'enabled': True, 'runtime_mode': 'enforcing', 'static_mode': 'enforcing'} assert SELinuxFacts(**expected_data) == get_selinux_status() @pytest.mark.skipif(no_selinux, reason=reason_to_skip_msg) def test_selinux_enabled_permissive(monkeypatch): """ Test case SELinux is enabled in permissive mode """ monkeypatch.setattr(selinux, 'is_selinux_mls_enabled', lambda: 1) monkeypatch.setattr(selinux, 'security_getenforce', lambda: 0) monkeypatch.setattr(selinux, 'selinux_getenforcemode', lambda: [0, 0]) monkeypatch.setattr(selinux, 'is_selinux_enabled', lambda: 1) monkeypatch.setattr(selinux, 'selinux_getpolicytype', lambda: [0, 'targeted']) expected_data = {'policy': 'targeted', 'mls_enabled': True, 'enabled': True, 'runtime_mode': 'permissive', 'static_mode': 'permissive'} assert SELinuxFacts(**expected_data) == get_selinux_status() @pytest.mark.skipif(no_selinux, reason=reason_to_skip_msg) def test_selinux_disabled(monkeypatch): """ Test case SELinux is disabled """ monkeypatch.setattr(selinux, 'is_selinux_mls_enabled', lambda: 0) monkeypatch.setattr(selinux, 'security_getenforce', lambda: 0) monkeypatch.setattr(selinux, 'selinux_getenforcemode', lambda: [0, 0]) monkeypatch.setattr(selinux, 'is_selinux_enabled', lambda: 0) monkeypatch.setattr(selinux, 'selinux_getpolicytype', lambda: [0, 'targeted']) expected_data = {'policy': 'targeted', 'mls_enabled': False, 'enabled': False, 'runtime_mode': 'permissive', 'static_mode': 'permissive'} assert SELinuxFacts(**expected_data) == get_selinux_status() class MockNoConfigFileOSError(object): def __init__(self): raise OSError @pytest.mark.skipif(no_selinux, reason=reason_to_skip_msg) def test_selinux_disabled_no_config_file(monkeypatch): """ Test case SELinux is disabled """ monkeypatch.setattr(selinux, 'is_selinux_mls_enabled', lambda: 0) monkeypatch.setattr(selinux, 'security_getenforce', lambda: 0) monkeypatch.setattr(selinux, 'selinux_getenforcemode', MockNoConfigFileOSError) monkeypatch.setattr(selinux, 'is_selinux_enabled', lambda: 0) monkeypatch.setattr(selinux, 'selinux_getpolicytype', lambda: [0, 'targeted']) expected_data = {'policy': 'targeted', 'mls_enabled': False, 'enabled': False, 'runtime_mode': 'permissive', 'static_mode': 'disabled'} assert SELinuxFacts(**expected_data) == get_selinux_status()
3872
import re import discord from redbot.core import commands class Covfefe(commands.Cog): """ Convert almost any word into covfefe """ def __init__(self, bot): self.bot = bot async def covfefe(self, x, k="aeiouy])"): """ https://codegolf.stackexchange.com/a/123697 """ try: b, c, v = re.findall(f"(.*?[{k}([^{k}.*?([{k}", x)[0] return b + c + (("bcdfgkpstvz" + c)["pgtvkgbzdfs".find(c)] + v) * 2 except IndexError: return None async def red_delete_data_for_user(self, **kwargs): """ Nothing to delete """ return @commands.command() async def covefy(self, ctx, msg): """Convert almost any word into covfefe""" newword = await self.covfefe(msg) if newword is not None: await ctx.send(newword) else: await ctx.send("I cannot covfefeify that word")
3874
import os import numpy as np import tensorflow as tf from models_gqa.model import Model from models_gqa.config import build_cfg_from_argparse from util.gqa_train.data_reader import DataReader import json # Load config cfg = build_cfg_from_argparse() # Start session os.environ["CUDA_VISIBLE_DEVICES"] = str(cfg.GPU_ID) sess = tf.Session(config=tf.ConfigProto( gpu_options=tf.GPUOptions(allow_growth=cfg.GPU_MEM_GROWTH))) # Data files imdb_file = cfg.IMDB_FILE % cfg.TEST.SPLIT_VQA scene_graph_file = cfg.SCENE_GRAPH_FILE % \ cfg.TEST.SPLIT_VQA.replace('_balanced', '').replace('_all', '') data_reader = DataReader( imdb_file, shuffle=False, one_pass=True, batch_size=cfg.TEST.BATCH_SIZE, T_encoder=cfg.T_ENCODER, vocab_question_file=cfg.VOCAB_QUESTION_FILE, vocab_answer_file=cfg.VOCAB_ANSWER_FILE, feature_type=cfg.FEAT_TYPE, spatial_feature_dir=cfg.SPATIAL_FEATURE_DIR, objects_feature_dir=cfg.OBJECTS_FEATURE_DIR, objects_max_num=cfg.W_FEAT, scene_graph_file=scene_graph_file, vocab_name_file=cfg.VOCAB_NAME_FILE, vocab_attr_file=cfg.VOCAB_ATTR_FILE, spatial_pos_enc_dim=cfg.SPATIAL_POS_ENC_DIM, bbox_tile_num=cfg.BBOX_TILE_NUM) num_vocab = data_reader.batch_loader.vocab_dict.num_vocab num_choices = data_reader.batch_loader.answer_dict.num_vocab # Inputs and model input_seq_batch = tf.placeholder(tf.int32, [None, None]) seq_length_batch = tf.placeholder(tf.int32, [None]) image_feat_batch = tf.placeholder( tf.float32, [None, cfg.H_FEAT, cfg.W_FEAT, cfg.D_FEAT]) image_valid_batch = tf.placeholder( tf.float32, [None, cfg.H_FEAT, cfg.W_FEAT]) model = Model( input_seq_batch, seq_length_batch, image_feat_batch, image_valid_batch, num_vocab=num_vocab, num_choices=num_choices, is_training=False) # Load snapshot if cfg.TEST.USE_EMA: ema = tf.train.ExponentialMovingAverage(decay=0.9) # decay doesn't matter var_names = { (ema.average_name(v) if v in model.params else v.op.name): v for v in tf.global_variables()} else: var_names = {v.op.name: v for v in tf.global_variables()} snapshot_file = cfg.TEST.SNAPSHOT_FILE % (cfg.EXP_NAME, cfg.TEST.ITER) print('loading model snapshot from %s' % snapshot_file) snapshot_saver = tf.train.Saver(var_names) snapshot_saver.restore(sess, snapshot_file) print('Done') # Write results result_dir = cfg.TEST.RESULT_DIR % (cfg.EXP_NAME, cfg.TEST.ITER) os.makedirs(result_dir, exist_ok=True) # Run test answer_correct, num_questions = 0, 0 if cfg.TEST.OUTPUT_VQA_EVAL_PRED: output_predictions = [] answer_word_list = data_reader.batch_loader.answer_dict.word_list pred_file = os.path.join( result_dir, 'gqa_eval_preds_%s_%s_%08d.json' % ( cfg.TEST.SPLIT_VQA, cfg.EXP_NAME, cfg.TEST.ITER)) for n_batch, batch in enumerate(data_reader.batches()): if 'answer_label_batch' not in batch: batch['answer_label_batch'] = -np.ones( len(batch['qid_list']), np.int32) if num_questions == 0: print('imdb has no answer labels. Using dummy labels.\n\n' '**The final accuracy will be zero (no labels provided)**\n') vqa_scores_value = sess.run(model.vqa_scores, feed_dict={ input_seq_batch: batch['input_seq_batch'], seq_length_batch: batch['seq_length_batch'], image_feat_batch: batch['image_feat_batch'], image_valid_batch: batch['image_valid_batch']}) # compute accuracy vqa_labels = batch['answer_label_batch'] vqa_predictions = np.argmax(vqa_scores_value, axis=1) answer_correct += np.sum(vqa_predictions == vqa_labels) num_questions += len(vqa_labels) accuracy = answer_correct / num_questions if n_batch % 20 == 0: print('exp: %s, iter = %d, accumulated accuracy on %s = %f (%d / %d)' % (cfg.EXP_NAME, cfg.TEST.ITER, cfg.TEST.SPLIT_VQA, accuracy, answer_correct, num_questions)) if cfg.TEST.OUTPUT_VQA_EVAL_PRED: output_predictions.extend([ {"questionId": qId, "prediction": answer_word_list[p]} for qId, p in zip(batch['qid_list'], vqa_predictions)]) with open(os.path.join( result_dir, 'vqa_results_%s.txt' % cfg.TEST.SPLIT_VQA), 'w') as f: print('\nexp: %s, iter = %d, final accuracy on %s = %f (%d / %d)' % (cfg.EXP_NAME, cfg.TEST.ITER, cfg.TEST.SPLIT_VQA, accuracy, answer_correct, num_questions)) print('exp: %s, iter = %d, final accuracy on %s = %f (%d / %d)' % (cfg.EXP_NAME, cfg.TEST.ITER, cfg.TEST.SPLIT_VQA, accuracy, answer_correct, num_questions), file=f) if cfg.TEST.OUTPUT_VQA_EVAL_PRED: with open(pred_file, 'w') as f: json.dump(output_predictions, f, indent=2) print('prediction file written to %s' % pred_file)
3908
from cklib.args import get_arg_parser, ArgumentParser from cloudkeeper_plugin_cleanup_aws_loadbalancers import CleanupAWSLoadbalancersPlugin def test_args(): arg_parser = get_arg_parser() CleanupAWSLoadbalancersPlugin.add_args(arg_parser) arg_parser.parse_args() assert ArgumentParser.args.cleanup_aws_loadbalancers is False assert ArgumentParser.args.cleanup_aws_loadbalancers_age == "7 days"
3915
from __future__ import annotations import json import logging from contextlib import contextmanager, ExitStack from typing import List, Dict import pandas as pd from lithops.storage import Storage from lithops.storage.utils import CloudObject, StorageNoSuchKeyError from sm.engine.annotation_lithops.build_moldb import ( build_moldb, InputMolDb, DbFDRData, ) from sm.engine.annotation_lithops.calculate_centroids import ( calculate_centroids, validate_centroids, ) from sm.engine.annotation_lithops.executor import Executor from sm.engine.annotation_lithops.io import ( CObj, save_cobj, iter_cobjects_with_prefetch, deserialize, ) from sm.engine.annotation_lithops.utils import jsonhash from sm.engine.utils.db_mutex import DBMutex from sm.engine.ds_config import DSConfig from sm.engine.annotation.isocalc_wrapper import IsocalcWrapper logger = logging.getLogger('annotation-pipeline') class CentroidsCacheEntry: def __init__( self, executor: Executor, sm_storage: Dict, ds_config: DSConfig, moldbs: List[InputMolDb] ): ds_hash_params = ds_config.copy() self.ds_config = { **ds_hash_params, # type: ignore # https://github.com/python/mypy/issues/4122 # Include the `targeted` value of databases so that a new cache entry is made if # someone manually changes that field 'databases': [(moldb['id'], moldb['targeted']) for moldb in moldbs], } # Remove database_ids as it may be in a different order to moldbs del self.ds_config['database_ids'] self.ds_hash = jsonhash(self.ds_config) self.executor = executor self.storage = executor.storage self.bucket, raw_prefix = sm_storage['centroids'] self.prefix = f"{raw_prefix}/{self.ds_hash}" self.config_key = f'{self.prefix}/ds_config.json' self.meta_key = f'{self.prefix}/meta' @contextmanager def lock(self): with DBMutex().lock(self.ds_hash, timeout=3600): yield def load(self): try: db_data_cobjs, peaks_cobjs = deserialize( self.storage.get_object(self.bucket, self.meta_key) ) return db_data_cobjs, peaks_cobjs except StorageNoSuchKeyError: return None def save(self, db_data_cobjs: List[CObj[DbFDRData]], peaks_cobjs: List[CObj[pd.DataFrame]]): def batch_copy(src_cobjs: List[CloudObject], dest_prefix: str, *, storage: Storage): # If Lithops' storage supported Copy Object operations, this could be easily optimized. # Not sure if it's worth the effort yet result_cobjs = [] for i, data in enumerate(iter_cobjects_with_prefetch(storage, src_cobjs)): dest_key = f'{dest_prefix}/{i:06}' result_cobjs.append(storage.put_cloudobject(data, dest_bucket, dest_key)) return result_cobjs dest_bucket = self.bucket # Copy cobjs to the cache dir new_db_data_cobjs, new_peaks_cobjs = self.executor.map( batch_copy, [(db_data_cobjs, f'{self.prefix}/db_data'), (peaks_cobjs, f'{self.prefix}/peaks')], runtime_memory=1024, ) # Save config in case it's needed for debugging self.storage.put_cloudobject( json.dumps(self.ds_config, indent=4), self.bucket, self.config_key ) # Save list of cobjects. This list would be easy to reconstruct by listing keys, but # saving a separate object as the last step of the process is helpful to confirm that # the cache item is complete, and didn't partially fail to copy. save_cobj(self.storage, (new_db_data_cobjs, new_peaks_cobjs), self.bucket, self.meta_key) return new_db_data_cobjs, new_peaks_cobjs def clear(self): keys = self.storage.list_keys(self.bucket, self.prefix) if keys: logger.info(f'Clearing centroids cache {self.prefix}') self.storage.delete_objects(self.bucket, keys) def get_moldb_centroids( executor: Executor, sm_storage: Dict, ds_config: DSConfig, moldbs: List[InputMolDb], debug_validate=False, use_cache=True, use_db_mutex=True, ): moldb_cache = CentroidsCacheEntry(executor, sm_storage, ds_config, moldbs) with ExitStack() as stack: if use_db_mutex: stack.enter_context(moldb_cache.lock()) if use_cache: cached_val = moldb_cache.load() else: cached_val = None moldb_cache.clear() if cached_val: db_data_cobjs, peaks_cobjs = cached_val logger.info( f'Loaded {len(db_data_cobjs)} DBs, {len(peaks_cobjs)} peak segms from cache' ) else: formula_cobjs, db_data_cobjs = build_moldb(executor, ds_config, moldbs) isocalc_wrapper = IsocalcWrapper(ds_config) peaks_cobjs = calculate_centroids(executor, formula_cobjs, isocalc_wrapper) if debug_validate: validate_centroids(executor, peaks_cobjs) moldb_cache.save(db_data_cobjs, peaks_cobjs) logger.info(f'Saved {len(db_data_cobjs)} DBs, {len(peaks_cobjs)} peak segms to cache') return db_data_cobjs, peaks_cobjs
3920
def multiple_replace(text: str, chars_to_mapping: dict): """ This function is used to replace a dictionary of characters inside a text string :param text: :param chars_to_mapping: :return: """ import re pattern = "|".join(map(re.escape, chars_to_mapping.keys())) return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
3943
from .torch2onnx import torch2onnx from .onnx2trt import onnx2trt from .torch2trt import torch2trt from .base import load, save
3965
import pytest from pydantic import ValidationError from overhave.transport import OverhaveS3ManagerSettings class TestS3ManagerSettings: """ Unit tests for :class:`OverhaveS3ManagerSettings`. """ @pytest.mark.parametrize("test_s3_enabled", [False]) def test_disabled(self, test_s3_enabled: bool) -> None: settings = OverhaveS3ManagerSettings(enabled=test_s3_enabled) assert not settings.enabled assert not settings.url assert not settings.access_key assert not settings.secret_key @pytest.mark.parametrize("test_s3_enabled", [True]) def test_empty_enabled(self, test_s3_enabled: bool) -> None: with pytest.raises(ValidationError): OverhaveS3ManagerSettings(enabled=test_s3_enabled) @pytest.mark.parametrize("test_s3_autocreate_buckets", [False, True], indirect=True) @pytest.mark.parametrize("test_s3_enabled", [True], indirect=True) def test_correct_enabled( self, test_s3_enabled: bool, test_s3_autocreate_buckets: bool, test_s3_manager_settings: OverhaveS3ManagerSettings, ) -> None: assert test_s3_manager_settings.enabled == test_s3_enabled assert test_s3_manager_settings.url assert test_s3_manager_settings.access_key assert test_s3_manager_settings.secret_key assert test_s3_manager_settings.verify assert test_s3_manager_settings.autocreate_buckets == test_s3_autocreate_buckets
3969
import FWCore.ParameterSet.Config as cms process = cms.Process("LIKELIHOODPDFDBREADER") # process.load("MuonAnalysis.MomentumScaleCalibration.local_CSA08_Y_cff") process.source = cms.Source("EmptySource", numberEventsInRun = cms.untracked.uint32(1), firstRun = cms.untracked.uint32(1) ) process.load("Configuration.StandardSequences.MagneticField_cff") process.load("Geometry.CMSCommonData.cmsIdealGeometryXML_cfi") process.load("Geometry.CommonTopologies.globalTrackingGeometry_cfi") process.load("RecoMuon.DetLayers.muonDetLayerGeometry_cfi") process.load("Geometry.MuonNumbering.muonNumberingInitialization_cfi") process.load("RecoMuon.TrackingTools.MuonServiceProxy_cff") # process.source = cms.Source("PoolSource", # fileNames = cms.untracked.vstring() # ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.poolDBESSource = cms.ESSource("PoolDBESSource", BlobStreamerName = cms.untracked.string('TBufferBlobStreamingService'), DBParameters = cms.PSet( messageLevel = cms.untracked.int32(2), authenticationPath = cms.untracked.string('/afs/cern.ch/cms/DB/conddb') ), timetype = cms.untracked.string('runnumber'), connect = cms.string('sqlite_file:dummy2.db'), toGet = cms.VPSet(cms.PSet( record = cms.string('MuScleFitLikelihoodPdfRcd'), tag = cms.string('MuScleFitLikelihoodPdf_2_1_12') )) ) process.LikelihoodPdfDBReaderModule = cms.EDAnalyzer( "LikelihoodPdfDBReader" ) process.p1 = cms.Path(process.LikelihoodPdfDBReaderModule)
3978
import logging import random from datetime import timedelta from typing import TYPE_CHECKING from duration import to_iso8601 from pyramid.httpexceptions import HTTPBadRequest, HTTPCreated, HTTPNotFound, HTTPOk from weaver import sort from weaver.config import WEAVER_CONFIGURATION_ADES, WEAVER_CONFIGURATION_EMS, get_weaver_configuration from weaver.database import get_db from weaver.datatype import Bill, Quote from weaver.exceptions import ProcessNotFound, QuoteNotFound, log_unhandled_exceptions from weaver.formats import OUTPUT_FORMAT_JSON from weaver.processes.types import PROCESS_APPLICATION, PROCESS_WORKFLOW from weaver.processes.wps_package import get_package_workflow_steps, get_process_location from weaver.store.base import StoreBills, StoreQuotes from weaver.utils import get_settings, get_weaver_url from weaver.wps_restapi import swagger_definitions as sd from weaver.wps_restapi.processes.processes import submit_local_job if TYPE_CHECKING: from weaver.datatype import Process from weaver.typedefs import JSON LOGGER = logging.getLogger(__name__) def process_quote_estimator(process): # noqa: E811 # type: (Process) -> JSON """ Simulate quote parameters for the process execution. :param process: instance of :class:`weaver.datatype.Process` for which to evaluate the quote. :return: dict of {price, currency, estimatedTime} values for the process quote. """ # TODO: replace by some fancy ml technique or something? price = random.uniform(0, 10) # nosec currency = "CAD" estimated_time = to_iso8601(timedelta(minutes=random.uniform(5, 60))) # nosec return {"price": price, "currency": currency, "estimatedTime": estimated_time} @sd.process_quotes_service.post(tags=[sd.TAG_BILL_QUOTE, sd.TAG_PROCESSES], renderer=OUTPUT_FORMAT_JSON, schema=sd.PostProcessQuoteRequestEndpoint(), response_schemas=sd.post_quotes_responses) @log_unhandled_exceptions(logger=LOGGER, message=sd.InternalServerErrorResponseSchema.description) def request_quote(request): """ Request a quotation for a process. """ settings = get_settings(request) weaver_config = get_weaver_configuration(settings) if weaver_config not in [WEAVER_CONFIGURATION_ADES, WEAVER_CONFIGURATION_EMS]: raise HTTPBadRequest("Unsupported request for configuration '{}'.".format(weaver_config)) process_id = request.matchdict.get("process_id") process_store = get_db(request).get_store("processes") try: process = process_store.fetch_by_id(process_id) except ProcessNotFound: raise HTTPNotFound("Could not find process with specified 'process_id'.") store = get_db(request).get_store(StoreQuotes) process_url = get_process_location(process_id, data_source=get_weaver_url(settings)) process_type = process.type process_params = dict() for param in ["inputs", "outputs", "mode", "response"]: if param in request.json: process_params[param] = request.json.pop(param) process_quote_info = process_quote_estimator(process) process_quote_info.update({ "process": process_id, "processParameters": process_params, "location": process_url, "user": str(request.authenticated_userid) }) # loop workflow sub-process steps to get individual quotes if process_type == PROCESS_WORKFLOW and weaver_config == WEAVER_CONFIGURATION_EMS: workflow_quotes = list() for step in get_package_workflow_steps(process_url): # retrieve quote from provider ADES # TODO: data source mapping process_step_url = get_process_location(step["reference"]) process_quote_url = "{}/quotations".format(process_step_url) subreq = request.copy() subreq.path_info = process_quote_url resp_json = request.invoke_subrequest(subreq).json() quote_json = resp_json["quote"] quote = store.save_quote(Quote(**quote_json)) workflow_quotes.append(quote.id) process_quote_info.update({"steps": workflow_quotes}) quote = store.save_quote(Quote(**process_quote_info)) return HTTPCreated(json={"quote": quote.json()}) # single application quotes (ADES or EMS) elif process_type == PROCESS_APPLICATION: quote = store.save_quote(Quote(**process_quote_info)) quote_json = quote.json() quote_json.pop("steps", None) return HTTPCreated(json={"quote": quote_json}) # error if not handled up to this point raise HTTPBadRequest("Unsupported quoting process type '{0}' on '{1}'.".format(process_type, weaver_config)) @sd.process_quotes_service.get(tags=[sd.TAG_BILL_QUOTE, sd.TAG_PROCESSES], renderer=OUTPUT_FORMAT_JSON, schema=sd.ProcessQuotesEndpoint(), response_schemas=sd.get_quote_list_responses) @sd.quotes_service.get(tags=[sd.TAG_BILL_QUOTE], renderer=OUTPUT_FORMAT_JSON, schema=sd.QuotesEndpoint(), response_schemas=sd.get_quote_list_responses) @log_unhandled_exceptions(logger=LOGGER, message=sd.InternalServerErrorResponseSchema.description) def get_quote_list(request): """ Get list of quotes IDs. """ page = int(request.params.get("page", "0")) limit = int(request.params.get("limit", "10")) filters = { "process_id": request.params.get("process", None) or request.matchdict.get("process_id", None), "page": page, "limit": limit, "sort": request.params.get("sort", sort.SORT_CREATED), } store = get_db(request).get_store(StoreQuotes) items, count = store.find_quotes(**filters) return HTTPOk(json={ "count": count, "page": page, "limit": limit, "quotes": [quote.id for quote in items] }) @sd.process_quote_service.get(tags=[sd.TAG_BILL_QUOTE, sd.TAG_PROCESSES], renderer=OUTPUT_FORMAT_JSON, schema=sd.ProcessQuoteEndpoint(), response_schemas=sd.get_quote_responses) @sd.quote_service.get(tags=[sd.TAG_BILL_QUOTE], renderer=OUTPUT_FORMAT_JSON, schema=sd.QuoteEndpoint(), response_schemas=sd.get_quote_responses) @log_unhandled_exceptions(logger=LOGGER, message=sd.InternalServerErrorResponseSchema.description) def get_quote_info(request): """ Get quote information. """ quote_id = request.matchdict.get("quote_id") store = get_db(request).get_store(StoreQuotes) try: quote = store.fetch_by_id(quote_id) except QuoteNotFound: raise HTTPNotFound("Could not find quote with specified 'quote_id'.") return HTTPOk(json={"quote": quote.json()}) @sd.process_quote_service.post(tags=[sd.TAG_BILL_QUOTE, sd.TAG_EXECUTE, sd.TAG_PROCESSES], renderer=OUTPUT_FORMAT_JSON, schema=sd.PostProcessQuote(), response_schemas=sd.post_quote_responses) @sd.quote_service.post(tags=[sd.TAG_BILL_QUOTE, sd.TAG_EXECUTE], renderer=OUTPUT_FORMAT_JSON, schema=sd.PostQuote(), response_schemas=sd.post_quote_responses) @log_unhandled_exceptions(logger=LOGGER, message=sd.InternalServerErrorResponseSchema.description) def execute_quote(request): """ Execute a quoted process. """ quote_info = get_quote_info(request).json["quote"] quote_bill_info = { "quote": quote_info.get("id"), "price": quote_info.get("price"), "currency": quote_info.get("currency") } job_resp = submit_local_job(request) job_json = job_resp.json job_id = job_json.get("jobID") user_id = str(request.authenticated_userid) store = get_db(request).get_store(StoreBills) bill = store.save_bill(Bill(user=user_id, job=job_id, **quote_bill_info)) job_json.update({"bill": bill.id}) return HTTPCreated(json=job_json)
3988
import os def get_root_path(): current_path = os.path.abspath(os.path.dirname(__file__)) root_path = os.path.dirname( os.path.dirname(os.path.dirname(os.path.dirname(current_path))) ) return os.path.join(root_path, "xbot") def get_config_path(): config_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "../config")) return config_path def get_data_path(): data_path = os.path.abspath( os.path.join(os.path.dirname(__file__), "../../../data/") ) return data_path
3989
from django.utils.html import format_html from wagtail.wagtailcore import hooks @hooks.register('insert_editor_js') def enable_source(): return format_html( """ <script> registerHalloPlugin('hallohtml'); </script> """ )
3991
from buildbot.process.remotecommand import RemoteCommand from buildbot.interfaces import WorkerTooOldError import stat class FileExists(object): """I check a file existence on the worker. I return True if the file with the given name exists, False if the file does not exist or that is a directory. Use me with doStepIf to make a build step conditional to existence of some file. For example doStepIf=FileExists('build/configure') """ def __init__(self, filename): self.filename = filename def __call__(self, step): step.checkWorkerHasCommand('stat') cmd = RemoteCommand('stat', {'file': self.filename}) d = step.runCommand(cmd) d.addCallback(lambda res: self.commandComplete(cmd)) return d def commandComplete(self, cmd): if cmd.didFail(): return False s = cmd.updates["stat"][-1] filemode = s[stat.ST_MODE] if stat.S_ISREG(filemode) or stat.S_ISLNK(filemode): # True only if this is a file or a link and not any other file # system object. return True else: return False class FileDoesNotExist(object): """I check a file existence on the worker. I return False if the file with the given name exists or that is a directory, True if the file does not exist. Use me with doStepIf to make a build step conditional to nonexistence of some file. For example doStepIf=FileDoesNotExist('build/configure') """ def __init__(self, filename): self.filename = filename def __call__(self, step): step.checkWorkerHasCommand('stat') cmd = RemoteCommand('stat', {'file': self.filename}) d = step.runCommand(cmd) d.addCallback(lambda res: self.commandComplete(cmd)) return d def commandComplete(self, cmd): # False if any filesystem object with the given name exists. return cmd.didFail()
4001
import re from curtsies.formatstring import fmtstr, FmtStr from curtsies.termformatconstants import ( FG_COLORS, BG_COLORS, colors as CURTSIES_COLORS, ) from functools import partial from ..lazyre import LazyReCompile COLORS = CURTSIES_COLORS + ("default",) CNAMES = dict(zip("krgybmcwd", COLORS)) # hack for finding the "inverse" INVERSE_COLORS = { CURTSIES_COLORS[idx]: CURTSIES_COLORS[ (idx + (len(CURTSIES_COLORS) // 2)) % len(CURTSIES_COLORS) ] for idx in range(len(CURTSIES_COLORS)) } INVERSE_COLORS["default"] = INVERSE_COLORS[CURTSIES_COLORS[0]] def func_for_letter(letter_color_code: str, default: str = "k"): """Returns FmtStr constructor for a bpython-style color code""" if letter_color_code == "d": letter_color_code = default elif letter_color_code == "D": letter_color_code = default.upper() return partial( fmtstr, fg=CNAMES[letter_color_code.lower()], bold=letter_color_code.isupper(), ) def color_for_letter(letter_color_code: str, default: str = "k"): if letter_color_code == "d": letter_color_code = default return CNAMES[letter_color_code.lower()] def parse(s): """Returns a FmtStr object from a bpython-formatted colored string""" rest = s stuff = [] while True: if not rest: break start, rest = peel_off_string(rest) stuff.append(start) return ( sum((fs_from_match(d) for d in stuff[1:]), fs_from_match(stuff[0])) if len(stuff) > 0 else FmtStr() ) def fs_from_match(d): atts = {} if d["fg"]: # this isn't according to spec as I understand it if d["fg"].isupper(): d["bold"] = True # TODO figure out why boldness isn't based on presence of \x02 color = CNAMES[d["fg"].lower()] if color != "default": atts["fg"] = FG_COLORS[color] if d["bg"]: if d["bg"] == "I": # hack for finding the "inverse" color = INVERSE_COLORS[color] else: color = CNAMES[d["bg"].lower()] if color != "default": atts["bg"] = BG_COLORS[color] if d["bold"]: atts["bold"] = True return fmtstr(d["string"], **atts) peel_off_string_re = LazyReCompile( r"""(?P<colormarker>\x01 (?P<fg>[krgybmcwdKRGYBMCWD]?) (?P<bg>[krgybmcwdKRGYBMCWDI]?)?) (?P<bold>\x02?) \x03 (?P<string>[^\x04]*) \x04 (?P<rest>.*) """, re.VERBOSE | re.DOTALL, ) def peel_off_string(s): m = peel_off_string_re.match(s) assert m, repr(s) d = m.groupdict() rest = d["rest"] del d["rest"] return d, rest
4003
from ..imports import * from .. import utils as U from ..core import GenLearner class NodeClassLearner(GenLearner): """ ``` Main class used to tune and train Keras models for node classification Main parameters are: model (Model): A compiled instance of keras.engine.training.Model train_data (Iterator): a Iterator instance for training set val_data (Iterator): A Iterator instance for validation set ``` """ def __init__(self, model, train_data=None, val_data=None, batch_size=U.DEFAULT_BS, eval_batch_size=U.DEFAULT_BS, workers=1, use_multiprocessing=False): super().__init__(model, train_data=train_data, val_data=val_data, batch_size=batch_size, eval_batch_size=eval_batch_size, workers=workers, use_multiprocessing=use_multiprocessing) return def view_top_losses(self, n=4, preproc=None, val_data=None): """ ``` Views observations with top losses in validation set. Typically over-ridden by Learner subclasses. Args: n(int or tuple): a range to select in form of int or tuple e.g., n=8 is treated as n=(0,8) preproc (Preprocessor): A TextPreprocessor or ImagePreprocessor. For some data like text data, a preprocessor is required to undo the pre-processing to correctly view raw data. val_data: optional val_data to use instead of self.val_data Returns: list of n tuples where first element is either filepath or id of validation example and second element is loss. ``` """ val = self._check_val(val_data) # get top losses and associated data tups = self.top_losses(n=n, val_data=val, preproc=preproc) # get multilabel status and class names classes = preproc.get_classes() if preproc is not None else None # iterate through losses for tup in tups: # get data idx = tup[0] loss = tup[1] truth = tup[2] pred = tup[3] print('----------') print("id:%s | loss:%s | true:%s | pred:%s)\n" % (idx, round(loss,2), truth, pred)) #print(obs) return def layer_output(self, layer_id, example_id=0, batch_id=0, use_val=False): """ ``` Prints output of layer with index <layer_id> to help debug models. Uses first example (example_id=0) from training set, by default. ``` """ raise Exception('currently_unsupported: layer_output method is not yet supported for ' + 'graph neural networks in ktrain') class LinkPredLearner(GenLearner): """ ``` Main class used to tune and train Keras models for link prediction Main parameters are: model (Model): A compiled instance of keras.engine.training.Model train_data (Iterator): a Iterator instance for training set val_data (Iterator): A Iterator instance for validation set ``` """ def __init__(self, model, train_data=None, val_data=None, batch_size=U.DEFAULT_BS, eval_batch_size=U.DEFAULT_BS, workers=1, use_multiprocessing=False): super().__init__(model, train_data=train_data, val_data=val_data, batch_size=batch_size, eval_batch_size=eval_batch_size, workers=workers, use_multiprocessing=use_multiprocessing) return def view_top_losses(self, n=4, preproc=None, val_data=None): """ ``` Views observations with top losses in validation set. Typically over-ridden by Learner subclasses. Args: n(int or tuple): a range to select in form of int or tuple e.g., n=8 is treated as n=(0,8) preproc (Preprocessor): A TextPreprocessor or ImagePreprocessor. For some data like text data, a preprocessor is required to undo the pre-processing to correctly view raw data. val_data: optional val_data to use instead of self.val_data Returns: list of n tuples where first element is either filepath or id of validation example and second element is loss. ``` """ val = self._check_val(val_data) # get top losses and associated data tups = self.top_losses(n=n, val_data=val, preproc=preproc) # get multilabel status and class names classes = preproc.get_classes() if preproc is not None else None # iterate through losses for tup in tups: # get data idx = tup[0] loss = tup[1] truth = tup[2] pred = tup[3] print('----------') print("id:%s | loss:%s | true:%s | pred:%s)\n" % (idx, round(loss,2), truth, pred)) #print(obs) return def layer_output(self, layer_id, example_id=0, batch_id=0, use_val=False): """ ``` Prints output of layer with index <layer_id> to help debug models. Uses first example (example_id=0) from training set, by default. ``` """ raise Exception('currently_unsupported: layer_output method is not yet supported for ' + 'graph neural networks in ktrain')
4007
def _jpeg_compression(im): assert torch.is_tensor(im) im = ToPILImage()(im) savepath = BytesIO() im.save(savepath, 'JPEG', quality=75) im = Image.open(savepath) im = ToTensor()(im) return im
4013
import torch import torch.nn as nn import torch.nn.functional as f from prettytable import PrettyTable from c2nl.modules.char_embedding import CharEmbedding from c2nl.modules.embeddings import Embeddings from c2nl.modules.highway import Highway from c2nl.encoders.transformer import TransformerEncoder from c2nl.decoders.transformer import TransformerDecoder from c2nl.inputters import constants from c2nl.modules.global_attention import GlobalAttention from c2nl.modules.copy_generator import CopyGenerator, CopyGeneratorCriterion from c2nl.utils.misc import sequence_mask class Embedder(nn.Module): def __init__(self, args): super(Embedder, self).__init__() self.enc_input_size = 0 self.dec_input_size = 0 # at least one of word or char embedding options should be True assert args.use_src_word or args.use_src_char assert args.use_tgt_word or args.use_tgt_char self.use_src_word = args.use_src_word self.use_tgt_word = args.use_tgt_word if self.use_src_word: self.src_word_embeddings = Embeddings(args.emsize, args.src_vocab_size, constants.PAD) self.enc_input_size += args.emsize if self.use_tgt_word: self.tgt_word_embeddings = Embeddings(args.emsize, args.tgt_vocab_size, constants.PAD) self.dec_input_size += args.emsize self.use_src_char = args.use_src_char self.use_tgt_char = args.use_tgt_char if self.use_src_char: assert len(args.filter_size) == len(args.nfilters) self.src_char_embeddings = CharEmbedding(args.n_characters, args.char_emsize, args.filter_size, args.nfilters) self.enc_input_size += sum(list(map(int, args.nfilters))) self.src_highway_net = Highway(self.enc_input_size, num_layers=2) if self.use_tgt_char: assert len(args.filter_size) == len(args.nfilters) self.tgt_char_embeddings = CharEmbedding(args.n_characters, args.char_emsize, args.filter_size, args.nfilters) self.dec_input_size += sum(list(map(int, args.nfilters))) self.tgt_highway_net = Highway(self.dec_input_size, num_layers=2) self.use_type = args.use_code_type if self.use_type: self.type_embeddings = nn.Embedding(len(constants.TOKEN_TYPE_MAP), self.enc_input_size) self.src_pos_emb = args.src_pos_emb self.tgt_pos_emb = args.tgt_pos_emb self.no_relative_pos = all(v == 0 for v in args.max_relative_pos) if self.src_pos_emb and self.no_relative_pos: self.src_pos_embeddings = nn.Embedding(args.max_src_len, self.enc_input_size) if self.tgt_pos_emb: self.tgt_pos_embeddings = nn.Embedding(args.max_tgt_len + 2, self.dec_input_size) self.dropout = nn.Dropout(args.dropout_emb) def forward(self, sequence, sequence_char, sequence_type=None, mode='encoder', step=None): if mode == 'encoder': word_rep = None if self.use_src_word: word_rep = self.src_word_embeddings(sequence.unsqueeze(2)) # B x P x d if self.use_src_char: char_rep = self.src_char_embeddings(sequence_char) # B x P x f if word_rep is None: word_rep = char_rep else: word_rep = torch.cat((word_rep, char_rep), 2) # B x P x d+f word_rep = self.src_highway_net(word_rep) # B x P x d+f if self.use_type: type_rep = self.type_embeddings(sequence_type) word_rep = word_rep + type_rep if self.src_pos_emb and self.no_relative_pos: pos_enc = torch.arange(start=0, end=word_rep.size(1)).type(torch.LongTensor) pos_enc = pos_enc.expand(*word_rep.size()[:-1]) if word_rep.is_cuda: pos_enc = pos_enc.cuda() pos_rep = self.src_pos_embeddings(pos_enc) word_rep = word_rep + pos_rep elif mode == 'decoder': word_rep = None if self.use_tgt_word: word_rep = self.tgt_word_embeddings(sequence.unsqueeze(2)) # B x P x d if self.use_tgt_char: char_rep = self.tgt_char_embeddings(sequence_char) # B x P x f if word_rep is None: word_rep = char_rep else: word_rep = torch.cat((word_rep, char_rep), 2) # B x P x d+f word_rep = self.tgt_highway_net(word_rep) # B x P x d+f if self.tgt_pos_emb: if step is None: pos_enc = torch.arange(start=0, end=word_rep.size(1)).type(torch.LongTensor) else: pos_enc = torch.LongTensor([step]) # used in inference time pos_enc = pos_enc.expand(*word_rep.size()[:-1]) if word_rep.is_cuda: pos_enc = pos_enc.cuda() pos_rep = self.tgt_pos_embeddings(pos_enc) word_rep = word_rep + pos_rep else: raise ValueError('Unknown embedder mode!') word_rep = self.dropout(word_rep) return word_rep class Encoder(nn.Module): def __init__(self, args, input_size): super(Encoder, self).__init__() self.transformer = TransformerEncoder(num_layers=args.nlayers, d_model=input_size, heads=args.num_head, d_k=args.d_k, d_v=args.d_v, d_ff=args.d_ff, dropout=args.trans_drop, max_relative_positions=args.max_relative_pos, use_neg_dist=args.use_neg_dist) self.use_all_enc_layers = args.use_all_enc_layers if self.use_all_enc_layers: self.layer_weights = nn.Linear(input_size, 1, bias=False) def count_parameters(self): return self.transformer.count_parameters() def forward(self, input, input_len): layer_outputs, _ = self.transformer(input, input_len) # B x seq_len x h if self.use_all_enc_layers: output = torch.stack(layer_outputs, dim=2) # B x seq_len x nlayers x h layer_scores = self.layer_weights(output).squeeze(3) layer_scores = f.softmax(layer_scores, dim=-1) memory_bank = torch.matmul(output.transpose(2, 3), layer_scores.unsqueeze(3)).squeeze(3) else: memory_bank = layer_outputs[-1] return memory_bank, layer_outputs class Decoder(nn.Module): def __init__(self, args, input_size): super(Decoder, self).__init__() self.input_size = input_size self.split_decoder = args.split_decoder and args.copy_attn if self.split_decoder: # Following (https://arxiv.org/pdf/1808.07913.pdf), we split decoder self.transformer_c = TransformerDecoder( num_layers=args.nlayers, d_model=self.input_size, heads=args.num_head, d_k=args.d_k, d_v=args.d_v, d_ff=args.d_ff, coverage_attn=args.coverage_attn, dropout=args.trans_drop ) self.transformer_d = TransformerDecoder( num_layers=args.nlayers, d_model=self.input_size, heads=args.num_head, d_k=args.d_k, d_v=args.d_v, d_ff=args.d_ff, dropout=args.trans_drop ) # To accomplish eq. 19 - 21 from `https://arxiv.org/pdf/1808.07913.pdf` self.fusion_sigmoid = nn.Sequential( nn.Linear(self.input_size * 2, self.input_size), nn.Sigmoid() ) self.fusion_gate = nn.Sequential( nn.Linear(self.input_size * 2, self.input_size), nn.ReLU() ) else: self.transformer = TransformerDecoder( num_layers=args.nlayers, d_model=self.input_size, heads=args.num_head, d_k=args.d_k, d_v=args.d_v, d_ff=args.d_ff, coverage_attn=args.coverage_attn, dropout=args.trans_drop ) if args.reload_decoder_state: state_dict = torch.load( args.reload_decoder_state, map_location=lambda storage, loc: storage ) self.decoder.load_state_dict(state_dict) def count_parameters(self): if self.split_decoder: return self.transformer_c.count_parameters() + self.transformer_d.count_parameters() else: return self.transformer.count_parameters() def init_decoder(self, src_lens, max_src_len): if self.split_decoder: state_c = self.transformer_c.init_state(src_lens, max_src_len) state_d = self.transformer_d.init_state(src_lens, max_src_len) return state_c, state_d else: return self.transformer.init_state(src_lens, max_src_len) def decode(self, tgt_words, tgt_emb, memory_bank, state, step=None, layer_wise_coverage=None): if self.split_decoder: copier_out, attns = self.transformer_c(tgt_words, tgt_emb, memory_bank, state[0], step=step, layer_wise_coverage=layer_wise_coverage) dec_out, _ = self.transformer_d(tgt_words, tgt_emb, memory_bank, state[1], step=step) f_t = self.fusion_sigmoid(torch.cat([copier_out, dec_out], dim=-1)) gate_input = torch.cat([copier_out, torch.mul(f_t, dec_out)], dim=-1) decoder_outputs = self.fusion_gate(gate_input) else: decoder_outputs, attns = self.transformer(tgt_words, tgt_emb, memory_bank, state, step=step, layer_wise_coverage=layer_wise_coverage) return decoder_outputs, attns def forward(self, memory_bank, memory_len, tgt_pad_mask, tgt_emb): max_mem_len = memory_bank[0].shape[1] \ if isinstance(memory_bank, list) else memory_bank.shape[1] state = self.init_decoder(memory_len, max_mem_len) return self.decode(tgt_pad_mask, tgt_emb, memory_bank, state) class Transformer(nn.Module): """Module that writes an answer for the question given a passage.""" def __init__(self, args, tgt_dict): """"Constructor of the class.""" super(Transformer, self).__init__() self.name = 'Transformer' if len(args.max_relative_pos) != args.nlayers: assert len(args.max_relative_pos) == 1 args.max_relative_pos = args.max_relative_pos * args.nlayers self.embedder = Embedder(args) self.encoder = Encoder(args, self.embedder.enc_input_size) self.decoder = Decoder(args, self.embedder.dec_input_size) self.layer_wise_attn = args.layer_wise_attn self.generator = nn.Linear(self.decoder.input_size, args.tgt_vocab_size) if args.share_decoder_embeddings: if self.embedder.use_tgt_word: assert args.emsize == self.decoder.input_size self.generator.weight = self.embedder.tgt_word_embeddings.word_lut.weight self._copy = args.copy_attn if self._copy: self.copy_attn = GlobalAttention(dim=self.decoder.input_size, attn_type=args.attn_type) self.copy_generator = CopyGenerator(self.decoder.input_size, tgt_dict, self.generator) self.criterion = CopyGeneratorCriterion(vocab_size=len(tgt_dict), force_copy=args.force_copy) else: self.criterion = nn.CrossEntropyLoss(reduction='none') def _run_forward_ml(self, code_word_rep, code_char_rep, code_type_rep, code_len, summ_word_rep, summ_char_rep, summ_len, tgt_seq, src_map, alignment, **kwargs): batch_size = code_len.size(0) # embed and encode the source sequence code_rep = self.embedder(code_word_rep, code_char_rep, code_type_rep, mode='encoder') memory_bank, layer_wise_outputs = self.encoder(code_rep, code_len) # B x seq_len x h # embed and encode the target sequence summ_emb = self.embedder(summ_word_rep, summ_char_rep, mode='decoder') summ_pad_mask = ~sequence_mask(summ_len, max_len=summ_emb.size(1)) enc_outputs = layer_wise_outputs if self.layer_wise_attn else memory_bank layer_wise_dec_out, attns = self.decoder(enc_outputs, code_len, summ_pad_mask, summ_emb) decoder_outputs = layer_wise_dec_out[-1] loss = dict() target = tgt_seq[:, 1:].contiguous() if self._copy: # copy_score: batch_size, tgt_len, src_len _, copy_score, _ = self.copy_attn(decoder_outputs, memory_bank, memory_lengths=code_len, softmax_weights=False) # mask copy_attn weights here if needed if kwargs['code_mask_rep'] is not None: mask = kwargs['code_mask_rep'].byte().unsqueeze(1) # Make it broadcastable. copy_score.data.masked_fill_(mask, -float('inf')) attn_copy = f.softmax(copy_score, dim=-1) scores = self.copy_generator(decoder_outputs, attn_copy, src_map) scores = scores[:, :-1, :].contiguous() ml_loss = self.criterion(scores, alignment[:, 1:].contiguous(), target) else: scores = self.generator(decoder_outputs) # `batch x tgt_len x vocab_size` scores = scores[:, :-1, :].contiguous() # `batch x tgt_len - 1 x vocab_size` ml_loss = self.criterion(scores.view(-1, scores.size(2)), target.view(-1)) ml_loss = ml_loss.view(*scores.size()[:-1]) ml_loss = ml_loss.mul(target.ne(constants.PAD).float()) ml_loss = ml_loss.sum(1) * kwargs['example_weights'] loss['ml_loss'] = ml_loss.mean() loss['loss_per_token'] = ml_loss.div((summ_len - 1).float()).mean() return loss def forward(self, code_word_rep, code_char_rep, code_type_rep, code_len, summ_word_rep, summ_char_rep, summ_len, tgt_seq, src_map, alignment, **kwargs): """ Input: - code_word_rep: ``(batch_size, max_doc_len)`` - code_char_rep: ``(batch_size, max_doc_len, max_word_len)`` - code_len: ``(batch_size)`` - summ_word_rep: ``(batch_size, max_que_len)`` - summ_char_rep: ``(batch_size, max_que_len, max_word_len)`` - summ_len: ``(batch_size)`` - tgt_seq: ``(batch_size, max_len)`` Output: - ``(batch_size, P_LEN)``, ``(batch_size, P_LEN)`` """ if self.training: return self._run_forward_ml(code_word_rep, code_char_rep, code_type_rep, code_len, summ_word_rep, summ_char_rep, summ_len, tgt_seq, src_map, alignment, **kwargs) else: return self.decode(code_word_rep, code_char_rep, code_type_rep, code_len, src_map, alignment, **kwargs) def __tens2sent(self, t, tgt_dict, src_vocabs): words = [] for idx, w in enumerate(t): widx = w[0].item() if widx < len(tgt_dict): words.append(tgt_dict[widx]) else: widx = widx - len(tgt_dict) words.append(src_vocabs[idx][widx]) return words def __generate_sequence(self, params, choice='greedy', tgt_words=None): batch_size = params['memory_bank'].size(0) use_cuda = params['memory_bank'].is_cuda if tgt_words is None: tgt_words = torch.LongTensor([constants.BOS]) if use_cuda: tgt_words = tgt_words.cuda() tgt_words = tgt_words.expand(batch_size).unsqueeze(1) # B x 1 tgt_chars = None if self.embedder.use_tgt_char: tgt_chars = params['tgt_dict'].word_to_char_ids(constants.BOS_WORD) tgt_chars = torch.Tensor(tgt_chars.tolist()).unsqueeze(0) tgt_chars = tgt_chars.repeat(batch_size, 1) tgt_chars = tgt_chars.to(tgt_words).unsqueeze(1) dec_preds = [] copy_info = [] attentions = [] dec_log_probs = [] acc_dec_outs = [] max_mem_len = params['memory_bank'][0].shape[1] \ if isinstance(params['memory_bank'], list) else params['memory_bank'].shape[1] dec_states = self.decoder.init_decoder(params['src_len'], max_mem_len) attns = {"coverage": None} enc_outputs = params['layer_wise_outputs'] if self.layer_wise_attn \ else params['memory_bank'] # +1 for <EOS> token for idx in range(params['max_len'] + 1): tgt = self.embedder(tgt_words, tgt_chars, mode='decoder', step=idx) tgt_pad_mask = tgt_words.data.eq(constants.PAD) layer_wise_dec_out, attns = self.decoder.decode(tgt_pad_mask, tgt, enc_outputs, dec_states, step=idx, layer_wise_coverage=attns['coverage']) decoder_outputs = layer_wise_dec_out[-1] acc_dec_outs.append(decoder_outputs.squeeze(1)) if self._copy: _, copy_score, _ = self.copy_attn(decoder_outputs, params['memory_bank'], memory_lengths=params['src_len'], softmax_weights=False) # mask copy_attn weights here if needed if params['src_mask'] is not None: mask = params['src_mask'].byte().unsqueeze(1) # Make it broadcastable. copy_score.data.masked_fill_(mask, -float('inf')) attn_copy = f.softmax(copy_score, dim=-1) prediction = self.copy_generator(decoder_outputs, attn_copy, params['src_map']) prediction = prediction.squeeze(1) for b in range(prediction.size(0)): if params['blank'][b]: blank_b = torch.LongTensor(params['blank'][b]) fill_b = torch.LongTensor(params['fill'][b]) if use_cuda: blank_b = blank_b.cuda() fill_b = fill_b.cuda() prediction[b].index_add_(0, fill_b, prediction[b].index_select(0, blank_b)) prediction[b].index_fill_(0, blank_b, 1e-10) else: prediction = self.generator(decoder_outputs.squeeze(1)) prediction = f.softmax(prediction, dim=1) if choice == 'greedy': tgt_prob, tgt = torch.max(prediction, dim=1, keepdim=True) log_prob = torch.log(tgt_prob + 1e-20) elif choice == 'sample': tgt, log_prob = self.reinforce.sample(prediction.unsqueeze(1)) else: assert False dec_log_probs.append(log_prob.squeeze(1)) dec_preds.append(tgt.squeeze(1).clone()) if "std" in attns: # std_attn: batch_size x num_heads x 1 x src_len std_attn = torch.stack(attns["std"], dim=1) attentions.append(std_attn.squeeze(2)) if self._copy: mask = tgt.gt(len(params['tgt_dict']) - 1) copy_info.append(mask.float().squeeze(1)) words = self.__tens2sent(tgt, params['tgt_dict'], params['source_vocab']) tgt_chars = None if self.embedder.use_tgt_char: tgt_chars = [params['tgt_dict'].word_to_char_ids(w).tolist() for w in words] tgt_chars = torch.Tensor(tgt_chars).to(tgt).unsqueeze(1) words = [params['tgt_dict'][w] for w in words] words = torch.Tensor(words).type_as(tgt) tgt_words = words.unsqueeze(1) return dec_preds, attentions, copy_info, dec_log_probs def decode(self, code_word_rep, code_char_rep, code_type_rep, code_len, src_map, alignment, **kwargs): word_rep = self.embedder(code_word_rep, code_char_rep, code_type_rep, mode='encoder') memory_bank, layer_wise_outputs = self.encoder(word_rep, code_len) # B x seq_len x h params = dict() params['memory_bank'] = memory_bank params['layer_wise_outputs'] = layer_wise_outputs params['src_len'] = code_len params['source_vocab'] = kwargs['source_vocab'] params['src_map'] = src_map params['src_mask'] = kwargs['code_mask_rep'] params['fill'] = kwargs['fill'] params['blank'] = kwargs['blank'] params['src_dict'] = kwargs['src_dict'] params['tgt_dict'] = kwargs['tgt_dict'] params['max_len'] = kwargs['max_len'] params['src_words'] = code_word_rep dec_preds, attentions, copy_info, _ = self.__generate_sequence(params, choice='greedy') dec_preds = torch.stack(dec_preds, dim=1) copy_info = torch.stack(copy_info, dim=1) if copy_info else None # attentions: batch_size x tgt_len x num_heads x src_len attentions = torch.stack(attentions, dim=1) if attentions else None return { 'predictions': dec_preds, 'copy_info': copy_info, 'memory_bank': memory_bank, 'attentions': attentions } def count_parameters(self): return sum(p.numel() for p in self.parameters() if p.requires_grad) def count_encoder_parameters(self): return self.encoder.count_parameters() def count_decoder_parameters(self): return self.decoder.count_parameters() def layer_wise_parameters(self): table = PrettyTable() table.field_names = ["Layer Name", "Output Shape", "Param #"] table.align["Layer Name"] = "l" table.align["Output Shape"] = "r" table.align["Param #"] = "r" for name, parameters in self.named_parameters(): if parameters.requires_grad: table.add_row([name, str(list(parameters.shape)), parameters.numel()]) return table
4020
import csv import datetime import random import os from parsers.parser_base import ParserBase FILE_TIME_EPOCH = datetime.datetime(1601, 1, 1) FILE_TIME_MICROSECOND = 10 def filetime_to_epoch_datetime(file_time): if isinstance(file_time, int): microseconds_since_file_time_epoch = file_time / FILE_TIME_MICROSECOND else: microseconds_since_file_time_epoch = int(file_time) / FILE_TIME_MICROSECOND return FILE_TIME_EPOCH + datetime.timedelta(microseconds=microseconds_since_file_time_epoch) class SrumParser(ParserBase): CSV_FIELDS = { "Unknown1.csv": ["TimeStamp", "AppId", "UserId", "EndTime", "DurationMS"], "Unknown2.csv": [], "Unknown3.csv": [], "Unknown4.csv": ["TimeStamp", "AppId", "UserId"], "SruDbCheckpointTable.csv": [], "SruDbIdMapTable.csv": [], "Network Usage.csv": ["TimeStamp", "AppId", "UserId", "InterfaceLuid", "L2ProfileId", "BytesSent", "BytesRecvd"], "Network Connections.csv": [], "Energy Usage.csv": [], "Energy Usage(Long - Term).csv": [], "Application Resources.csv": ["TimeStamp", "AppId", "UserId"], "Application Resource Usage.csv": ["TimeStamp", "AppId", "UserId"] } PARSING_TOOL = r"Tools\ese-analyst-master\ese2csv.exe" PARSE_COMMAND = "{parser_path} -o {output_path} -p srudb_plugin {srum_db} --plugin-args {software_hive}" def __init__(self, temp, config): super().__init__(config) self.temp_result_path = temp def parse(self, args): srum_db, software_hive = args output = r"{}\srum_{}".format(self.temp_result_path, random.randint(1, 1000000)) os.mkdir(output) command = self.PARSE_COMMAND.format(parser_path=self.PARSING_TOOL, output_path=output, srum_db=srum_db, software_hive=software_hive) self._run_command(command) for csv_file in os.listdir(output): srum_records = [] full_path = os.path.join(output, csv_file) headers = self.CSV_FIELDS.get(csv_file) if not headers: continue if csv_file == "Unknown1.csv": with open(full_path, "r") as f: reader = csv.DictReader(f) for line in reader: cur_record = {} endTime = line.get("EndTime") duration = line.get("DurationMS") if endTime and duration: cur_record["time"] = filetime_to_epoch_datetime(int(endTime) - int(duration)).isoformat() cur_record["EndTime"] = filetime_to_epoch_datetime(endTime).isoformat() cur_record["DurationMS"] = duration else: cur_record["time"] = datetime.datetime(1970, 1, 1).isoformat() cur_record["AppId"] = line.get("AppId") cur_record["UserId"] = line.get("UserId") srum_records.append(cur_record) else: with open(full_path, "r") as f: reader = csv.DictReader(f) for line in reader: cur_record = {} for header in headers: if header == "TimeStamp": cur_record["time"] = line.get("TimeStamp").replace(" ", "T") line.pop("TimeStamp") value = line.get(header) if value: if isinstance(value, bytes): cur_record[header.lower().replace(" ", "_")] = value.decode() elif str.isdigit(value): cur_record[header.lower().replace(" ", "_")] = int(value) else: cur_record[header.lower().replace(" ", "_")] = value else: cur_record[header.lower().replace(" ", "_")] = "" srum_records.append(cur_record) self._write_results_list([("srum-{}".format(csv_file.split(".")[0].lower().replace(" ", "_")), srum_records)])
4038
from collections import defaultdict import json import re import time from urllib.parse import urlparse import uuid import boto3 import boto3.exceptions import botocore.exceptions import markus import redis.exceptions import requests import requests.exceptions from sqlalchemy import select import sqlalchemy.exc from ichnaea.data import _map_content_enabled from ichnaea.models import ( ApiKey, BlueObservation, BlueReport, BlueShard, CellObservation, CellReport, CellShard, DataMap, ExportConfig, Report, WifiObservation, WifiReport, WifiShard, ) from ichnaea.models.content import encode_datamap_grid from ichnaea import util WHITESPACE = re.compile(r"\s", flags=re.UNICODE) METRICS = markus.get_metrics() class IncomingQueue(object): """ The incoming queue contains the data collected in the web application. It is the single entrypoint from which all other data pipelines get their data. It distributes the data into the configured export queues, checks those queues and if they contain enough or old enough data schedules an async export task to process the data in each queue. """ def __init__(self, task): self.task = task def __call__(self, export_task): redis_client = self.task.redis_client data_queue = self.task.app.data_queues["update_incoming"] data = data_queue.dequeue() grouped = defaultdict(list) for item in data: grouped[(item["api_key"], item.get("source", "gnss"))].append( {"api_key": item["api_key"], "report": item["report"]} ) with self.task.db_session(commit=False) as session: export_configs = ExportConfig.all(session) with self.task.redis_pipeline() as pipe: for (api_key, source), items in grouped.items(): for config in export_configs: if config.allowed(api_key, source): queue_key = config.queue_key(api_key, source) queue = config.queue(queue_key, redis_client) queue.enqueue(items, pipe=pipe) for config in export_configs: # Check all queues if they now contain enough data or # old enough data to be ready for processing. for queue_key in config.partitions(redis_client): queue = config.queue(queue_key, redis_client) if queue.ready(): export_task.delay(config.name, queue_key) if data_queue.ready(): self.task.apply_countdown() class ReportExporter(object): _retriable = (IOError,) _retries = 3 _retry_wait = 1.0 def __init__(self, task, config, queue_key): self.task = task self.config = config self.queue_key = queue_key self.queue = config.queue(queue_key, task.redis_client) self.stats_tags = ["key:" + self.config.name] @staticmethod def export(task, name, queue_key): with task.db_session(commit=False) as session: config = ExportConfig.get(session, name) exporter_types = { "dummy": DummyExporter, "geosubmit": GeosubmitExporter, "internal": InternalExporter, "s3": S3Exporter, } exporter_type = exporter_types.get(config.schema) if exporter_type is not None: exporter_type(task, config, queue_key)() def __call__(self): queue_items = self.queue.dequeue() if not queue_items: return success = False for i in range(self._retries): try: with METRICS.timer("data.export.upload.timing", tags=self.stats_tags): self.send(queue_items) success = True except self._retriable: success = False time.sleep(self._retry_wait * (i ** 2 + 1)) if success: METRICS.incr("data.export.batch", tags=self.stats_tags) break if success and self.queue.ready(): self.task.apply_countdown(args=[self.config.name, self.queue_key]) def send(self, queue_items): raise NotImplementedError() class DummyExporter(ReportExporter): def send(self, queue_items): pass class GeosubmitExporter(ReportExporter): _retriable = (IOError, requests.exceptions.RequestException) def send(self, queue_items): # ignore metadata reports = [item["report"] for item in queue_items] headers = { "Content-Encoding": "gzip", "Content-Type": "application/json", "User-Agent": "ichnaea", } response = requests.post( self.config.url, data=util.encode_gzip( json.dumps({"items": reports}).encode(), compresslevel=5 ), headers=headers, timeout=60.0, ) # log upload_status and trigger exception for bad responses # this causes the task to be re-tried METRICS.incr( "data.export.upload", tags=self.stats_tags + ["status:%s" % response.status_code], ) response.raise_for_status() class S3Exporter(ReportExporter): _retriable = ( IOError, boto3.exceptions.Boto3Error, botocore.exceptions.BotoCoreError, ) def send(self, queue_items): # ignore metadata reports = [item["report"] for item in queue_items] _, bucketname, path = urlparse(self.config.url)[:3] # s3 key names start without a leading slash path = path.lstrip("/") if not path.endswith("/"): path += "/" year, month, day = util.utcnow().timetuple()[:3] # strip away queue prefix again parts = self.queue_key.split(":") source = parts[1] api_key = parts[2] obj_name = path.format( source=source, api_key=api_key, year=year, month=month, day=day ) obj_name += uuid.uuid1().hex + ".json.gz" try: data = util.encode_gzip( json.dumps({"items": reports}).encode(), compresslevel=7 ) s3 = boto3.resource("s3") bucket = s3.Bucket(bucketname) obj = bucket.Object(obj_name) obj.put(Body=data, ContentEncoding="gzip", ContentType="application/json") METRICS.incr( "data.export.upload", tags=self.stats_tags + ["status:success"] ) except Exception: METRICS.incr( "data.export.upload", tags=self.stats_tags + ["status:failure"] ) raise class InternalTransform(object): """ This maps the geosubmit v2 schema used in view code and external transfers (backup, forward to partners) to the internal submit v1 schema used in our own database models. """ # *_id maps a source section id to a target section id # *_map maps fields inside the section from source to target id # if the names are equal, a simple string can be specified instead # of a two-tuple position_id = ("position", None) position_map = [ ("latitude", "lat"), ("longitude", "lon"), "accuracy", "altitude", ("altitudeAccuracy", "altitude_accuracy"), "heading", "pressure", "speed", "source", ] blue_id = ("bluetoothBeacons", "blue") blue_map = [("macAddress", "mac"), "age", ("signalStrength", "signal")] cell_id = ("cellTowers", "cell") cell_map = [ ("radioType", "radio"), ("mobileCountryCode", "mcc"), ("mobileNetworkCode", "mnc"), ("locationAreaCode", "lac"), ("cellId", "cid"), "age", "asu", ("primaryScramblingCode", "psc"), "serving", ("signalStrength", "signal"), ("timingAdvance", "ta"), ] wifi_id = ("wifiAccessPoints", "wifi") wifi_map = [ ("macAddress", "mac"), "age", "channel", "frequency", ("radioType", "radio"), ("signalToNoiseRatio", "snr"), ("signalStrength", "signal"), ] def _map_dict(self, item_source, field_map): value = {} for spec in field_map: if isinstance(spec, tuple): source, target = spec else: source = spec target = spec source_value = item_source.get(source) if source_value is not None: value[target] = source_value return value def _parse_dict(self, item, report, key_map, field_map): value = {} item_source = item.get(key_map[0]) if item_source: value = self._map_dict(item_source, field_map) if value: if key_map[1] is None: report.update(value) else: report[key_map[1]] = value return value def _parse_list(self, item, report, key_map, field_map): values = [] for value_item in item.get(key_map[0], ()): value = self._map_dict(value_item, field_map) if value: values.append(value) if values: report[key_map[1]] = values return values def __call__(self, item): report = {} self._parse_dict(item, report, self.position_id, self.position_map) blues = self._parse_list(item, report, self.blue_id, self.blue_map) cells = self._parse_list(item, report, self.cell_id, self.cell_map) wifis = self._parse_list(item, report, self.wifi_id, self.wifi_map) position = item.get("position") or {} gps_age = position.get("age", 0) timestamp = item.get("timestamp") if timestamp: # turn timestamp into GPS timestamp report["timestamp"] = timestamp - gps_age if gps_age: # Normalize age fields to be relative to GPS time for type_ in ("blue", "cell", "wifi"): for record in report.get(type_, ()): record["age"] = record.get("age", 0) - gps_age if blues or cells or wifis: return report return {} class InternalExporter(ReportExporter): _retriable = (IOError, redis.exceptions.RedisError, sqlalchemy.exc.InternalError) transform = InternalTransform() def send(self, queue_items): api_keys = set() api_keys_known = set() metrics = {} items = [] for item in queue_items: # preprocess items and extract set of API keys item["report"] = self.transform(item["report"]) if item["report"]: items.append(item) api_keys.add(item["api_key"]) for api_key in api_keys: metrics[api_key] = {} for type_ in ("report", "blue", "cell", "wifi"): for action in ("drop", "upload"): metrics[api_key]["%s_%s" % (type_, action)] = 0 with self.task.db_session(commit=False) as session: # limit database session to get API keys keys = [key for key in api_keys if key] if keys: columns = ApiKey.__table__.c rows = session.execute( select([columns.valid_key]).where(columns.valid_key.in_(keys)) ).fetchall() for row in rows: api_keys_known.add(row.valid_key) positions = [] observations = {"blue": [], "cell": [], "wifi": []} for item in items: api_key = item["api_key"] report = item["report"] obs, malformed_obs = self.process_report(report) any_data = False for name in ("blue", "cell", "wifi"): if obs.get(name): observations[name].extend(obs[name]) metrics[api_key][name + "_upload"] += len(obs[name]) any_data = True metrics[api_key][name + "_drop"] += malformed_obs.get(name, 0) metrics[api_key]["report_upload"] += 1 if any_data: positions.append((report["lat"], report["lon"])) else: metrics[api_key]["report_drop"] += 1 with self.task.redis_pipeline() as pipe: self.queue_observations(pipe, observations) if _map_content_enabled and positions: self.process_datamap(pipe, positions) self.emit_metrics(api_keys_known, metrics) def queue_observations(self, pipe, observations): for datatype, shard_model, shard_key, queue_prefix in ( ("blue", BlueShard, "mac", "update_blue_"), ("cell", CellShard, "cellid", "update_cell_"), ("wifi", WifiShard, "mac", "update_wifi_"), ): queued_obs = defaultdict(list) for obs in observations[datatype]: # group by sharded queue shard_id = shard_model.shard_id(getattr(obs, shard_key)) queue_id = queue_prefix + shard_id queued_obs[queue_id].append(obs.to_json()) for queue_id, values in queued_obs.items(): # enqueue values for each queue queue = self.task.app.data_queues[queue_id] queue.enqueue(values, pipe=pipe) def emit_metrics(self, api_keys_known, metrics): for api_key, key_metrics in metrics.items(): api_tag = [] if api_key and api_key in api_keys_known: api_tag = ["key:%s" % api_key] for name, count in key_metrics.items(): if not count: continue type_, action = name.split("_") if type_ == "report": suffix = "report" tags = api_tag else: suffix = "observation" tags = ["type:%s" % type_] + api_tag METRICS.incr("data.%s.%s" % (suffix, action), count, tags=tags) def process_report(self, data): report = Report.create(**data) if report is None: return ({}, {}) malformed = {} observations = {} for name, report_cls, obs_cls in ( ("blue", BlueReport, BlueObservation), ("cell", CellReport, CellObservation), ("wifi", WifiReport, WifiObservation), ): malformed[name] = 0 observations[name] = {} if data.get(name): for item in data[name]: # validate the blue/cell/wifi specific fields item_report = report_cls.create(**item) if item_report is None: malformed[name] += 1 continue # combine general and specific report data into one item_obs = obs_cls.combine(report, item_report) item_key = item_obs.unique_key # if we have better data for the same key, ignore existing = observations[name].get(item_key) if existing is not None and existing.better(item_obs): continue observations[name][item_key] = item_obs obs = { "blue": observations["blue"].values(), "cell": observations["cell"].values(), "wifi": observations["wifi"].values(), } return (obs, malformed) def process_datamap(self, pipe, positions): grids = set() for lat, lon in positions: if lat is not None and lon is not None: grids.add(DataMap.scale(lat, lon)) shards = defaultdict(set) for lat, lon in grids: shards[DataMap.shard_id(lat, lon)].add(encode_datamap_grid(lat, lon)) for shard_id, values in shards.items(): queue = self.task.app.data_queues["update_datamap_" + shard_id] queue.enqueue(list(values), pipe=pipe)
4079
class resampler: def __init__(self): import pandas as pd from sklearn.preprocessing import LabelEncoder from collections import Counter import numpy as np self.bins = 3 self.pd = pd self.LabelEncoder = LabelEncoder self.Counter = Counter self.X = 0 self.Y_classes = 0 self.target = 0 self.np = np # This function adds classes to each sample and returns the class list as a dataframe/numpy array (as per input) # It also merges classes as and when required def fit(self, X, target, bins=3, min_n_samples=6, balanced_binning=False, verbose=2): self.bins = bins tmp = target # If data is numpy, then convert it into pandas if type(target) == int: if target < 0: target = X.shape[1]+target tmp = target self.X = self.pd.DataFrame() for i in range(X.shape[1]): if i!=target: self.X[str(i)] = X[:,i] self.X["target"] = X[:,target] target = "target" else: self.X = X.copy() # Use qcut if balanced binning is required if balanced_binning: self.Y_classes = self.pd.qcut(self.X[target], q=self.bins, precision=0) else: self.Y_classes = self.pd.cut(self.X[target], bins=self.bins) # Pandas outputs ranges after binning. Convert ranges to classes le = self.LabelEncoder() self.Y_classes = le.fit_transform(self.Y_classes) # Merge classes if number of neighbours is more than the number of samples classes_count = list(map(list, self.Counter(self.Y_classes).items())) classes_count = sorted(classes_count, key = lambda x: x[0]) mid_point = len(classes_count) # Logic for merging for i in range(len(classes_count)): if classes_count[i][1] < min_n_samples: self.Y_classes[self.np.where(self.Y_classes == classes_count[i][0])[0]] = classes_count[i-1][0] if verbose > 0: print("INFO: Class " + str(classes_count[i][0]) + " has been merged into Class " + str(classes_count[i-1][0]) + " due to low number of samples") classes_count[i][0] = classes_count[i-1][0] if verbose > 0: print() # Perform label-encoding once again # Avoids class skipping after merging le = self.LabelEncoder() self.Y_classes = le.fit_transform(self.Y_classes) # Pretty print if verbose > 1: print("Class Distribution:\n-------------------") classes_count = list(map(list, self.Counter(self.Y_classes).items())) classes_count = sorted(classes_count, key = lambda x: x[0]) for class_, count in classes_count: print(str(class_)+": "+str(count)) print() # Finally concatenate and return as dataframe or numpy # Based on what type of target was sent self.X["classes"] = self.Y_classes if type(tmp) == int: self.target = tmp else: self.target = target return self.Y_classes # This function performs the re-sampling def resample(self, sampler_obj, trainX, trainY): # If classes haven't yet been created, then run the "fit" function if type(self.Y_classes) == int: print("Error! Run fit method first!!") return None # Finally, perform the re-sampling resampled_data, _ = sampler_obj.fit_resample(trainX, trainY) if type(resampled_data).__module__ == 'numpy': resampled_data = self.pd.DataFrame(resampled_data, columns=self.X.drop("classes", axis=1).columns) # Return the correct X and Y if type(self.target) == int: return resampled_data.drop("target", axis=1).values, resampled_data["target"].values else: return resampled_data.drop(self.target, axis=1), resampled_data[self.target]
4082
import pytest from httmock import urlmatch, HTTMock from util.config import URLSchemeAndHostname from util.config.validator import ValidatorContext from util.config.validators import ConfigValidationException from util.config.validators.validate_bitbucket_trigger import BitbucketTriggerValidator from test.fixtures import * @pytest.mark.parametrize( "unvalidated_config", [ (ValidatorContext({})), (ValidatorContext({"BITBUCKET_TRIGGER_CONFIG": {}})), (ValidatorContext({"BITBUCKET_TRIGGER_CONFIG": {"CONSUMER_KEY": "foo"}})), (ValidatorContext({"BITBUCKET_TRIGGER_CONFIG": {"CONSUMER_SECRET": "foo"}})), ], ) def test_validate_invalid_bitbucket_trigger_config(unvalidated_config, app): validator = BitbucketTriggerValidator() with pytest.raises(ConfigValidationException): validator.validate(unvalidated_config) def test_validate_bitbucket_trigger(app): url_hit = [False] @urlmatch(netloc=r"bitbucket.org") def handler(url, request): url_hit[0] = True return { "status_code": 200, "content": "oauth_token=foo&oauth_token_secret=bar", } with HTTMock(handler): validator = BitbucketTriggerValidator() url_scheme_and_hostname = URLSchemeAndHostname("http", "localhost:5000") unvalidated_config = ValidatorContext( { "BITBUCKET_TRIGGER_CONFIG": { "CONSUMER_KEY": "foo", "CONSUMER_SECRET": "bar", }, }, url_scheme_and_hostname=url_scheme_and_hostname, ) validator.validate(unvalidated_config) assert url_hit[0]
4089
from typing import List, Tuple from omegaconf import DictConfig import torch import torch.nn as nn import torch.nn.functional as F from rlcycle.common.abstract.loss import Loss class DQNLoss(Loss): """Compute double DQN loss""" def __init__(self, hyper_params: DictConfig, use_cuda: bool): Loss.__init__(self, hyper_params, use_cuda) def __call__( self, networks: Tuple[nn.Module, ...], data: Tuple[torch.Tensor, ...] ) -> Tuple[torch.Tensor, ...]: network, target_network = networks states, actions, rewards, next_states, dones = data q_value = network.forward(states).gather(1, actions) with torch.no_grad(): next_q = torch.max(target_network.forward(next_states), 1)[0].unsqueeze(1) n_step_gamma = self.hyper_params.gamma ** self.hyper_params.n_step target_q = rewards + (1 - dones) * n_step_gamma * next_q element_wise_loss = F.smooth_l1_loss( q_value, target_q.detach(), reduction="none" ) return element_wise_loss class QRLoss(Loss): """Compute quantile regression loss""" def __init__(self, hyper_params: DictConfig, use_cuda: bool): Loss.__init__(self, hyper_params, use_cuda) def __call__( self, networks: Tuple[nn.Module, ...], data: Tuple[torch.Tensor, ...], ) -> Tuple[torch.Tensor, ...]: network, target_network = networks states, actions, rewards, next_states, dones = data z_dists = network.forward(states) z_dists = z_dists[list(range(states.size(0))), actions.view(-1)] with torch.no_grad(): next_z = target_network.forward(next_states) next_actions = torch.max(next_z.mean(2), dim=1)[1] next_z = next_z[list(range(states.size(0))), next_actions] n_step_gamma = self.hyper_params.gamma ** self.hyper_params.n_step target_z = rewards + (1 - dones) * n_step_gamma * next_z distance = target_z - z_dists quantile_huber_loss = ( network.tau - (distance.detach() < 0).float() ).abs() * self.huber_loss(distance) element_wise_loss = torch.mean(quantile_huber_loss, dim=1, keepdim=True) return element_wise_loss @staticmethod def huber_loss(x: List[torch.Tensor], k: float = 1.0): return torch.where(x.abs() <= k, 0.5 * x.pow(2), k * (x.abs() - 0.5 * k)) class CategoricalLoss(Loss): """Compute C51 loss""" def __init__(self, hyper_params: DictConfig, use_cuda: bool): Loss.__init__(self, hyper_params, use_cuda) def __call__( self, networks: Tuple[nn.Module, ...], data: Tuple[torch.Tensor, ...] ) -> Tuple[torch.Tensor, ...]: network, target_network = networks states, actions, rewards, next_states, dones = data batch_size = states.size(0) offset = ( torch.linspace(0, (batch_size - 1) * network.num_atoms, batch_size) .long() .unsqueeze(1) .expand(batch_size, network.num_atoms) ) if self.use_cuda: offset = offset.cuda() z_dists = network.forward(states) z_dists = z_dists[list(range(states.size(0))), actions.view(-1)] with torch.no_grad(): next_z = target_network.forward(next_states) next_actions = torch.max(next_z.mean(2), dim=1)[1] next_z = next_z[list(range(states.size(0))), next_actions] n_step_gamma = self.hyper_params.gamma ** self.hyper_params.n_step target_z = rewards + (1 - dones) * n_step_gamma * network.support target_z = torch.clamp(target_z, min=network.v_min, max=network.v_max) target_proj = self.dist_projection(network, next_z, target_z, offset) log_dist = torch.log(z_dists) element_wise_loss = -(target_proj * log_dist).sum(1) return element_wise_loss def dist_projection( self, network: nn.Module, next_z: torch.Tensor, target_z: torch.Tensor, offset: torch.Tensor, ) -> torch.Tensor: b = (target_z - network.v_min) / network.delta_z lb = b.floor().long() ub = b.ceil().long() proj_dist = torch.zeros(next_z.size()) if self.use_cuda: proj_dist = proj_dist.cuda() proj_dist.view(-1).index_add_( 0, (lb + offset).view(-1), (next_z * (ub.float() - b)).view(-1) ) proj_dist.view(-1).index_add_( 0, (ub + offset).view(-1), (next_z * (b - lb.float())).view(-1) ) return proj_dist
4111
from devito.ir import Call from devito.passes.iet.definitions import DataManager from devito.passes.iet.langbase import LangBB __all__ = ['CBB', 'CDataManager'] class CBB(LangBB): mapper = { 'aligned': lambda i: '__attribute__((aligned(%d)))' % i, 'host-alloc': lambda i, j, k: Call('posix_memalign', (i, j, k)), 'host-free': lambda i: Call('free', (i,)), } class CDataManager(DataManager): lang = CBB
4128
import os import random from flask import Flask, request, send_from_directory from werkzeug.utils import secure_filename from pianonet.core.pianoroll import Pianoroll from pianonet.model_inspection.performance_from_pianoroll import get_performance_from_pianoroll app = Flask(__name__) base_path = "/app/" # base_path = "/Users/angsten/PycharmProjects/pianonet" performances_path = os.path.join(base_path, 'data', 'performances') def get_random_midi_file_name(): """ Get a random midi file name that will not ever collide. """ return str(random.randint(0, 10000000000000000000)) + ".midi" def get_performance_path(midi_file_name): """ Returns full path to performaqnce midi file given a file name. """ return os.path.join(performances_path, midi_file_name) @app.route('/') def alive(): return 'OK' @app.route('/performances/', methods=['GET']) def get_performance(): """ Returns the requested performance as midi file. Expected query string is 'midi_file_name', such as 1234.midi """ performance_midi_file_name = request.args.get('midi_file_name') performance_midi_file_name = secure_filename(performance_midi_file_name) print(performance_midi_file_name) if performance_midi_file_name == None: return {"http_code": 400, "code": "BadRequest", "message": "midi_file_name not found in request."} midi_file_path = get_performance_path(performance_midi_file_name) if not os.path.exists(midi_file_path): return { "http_code": 404, "code": "Not Found", "message": "midi_file " + performance_midi_file_name + " not found." } with open(midi_file_path, 'rb') as midi_file: return send_from_directory(performances_path, performance_midi_file_name) @app.route('/create-performance', methods=['POST']) def performance(): """ Expects post form data as follows: seed_midi_file_data: Midi file that forms the seed for a performance as string encoding like "8,2,3,4,5..." seconds_to_generate: Number of seconds of new notes to generate model_complexity: Quality of model to use, one of ['low', 'medium', 'high', 'highest'] """ seed_midi_file_data = request.form.get('seed_midi_file_data') if seed_midi_file_data == None: return {"http_code": 400, "code": "BadRequest", "message": "seed_midi_file_data not found in request."} else: seed_midi_file_int_array = [int(x) for x in seed_midi_file_data.split(',')] frame = bytearray() for i in seed_midi_file_int_array: frame.append(i) saved_seed_midi_file_path = os.path.join(base_path, 'data', 'seeds', get_random_midi_file_name()) with open(saved_seed_midi_file_path, 'wb') as midi_file: midi_file.write(frame) seconds_to_generate = request.form.get('seconds_to_generate') if seconds_to_generate == None: return {"http_code": 400, "code": "BadRequest", "message": "seconds_to_generate not found in request."} else: seconds_to_generate = float(seconds_to_generate) model_complexity = request.form.get('model_complexity', 'low') if model_complexity == 'low': model_name = "micro_1" else: model_name = "r9p0_3500kparams_approx_9_blocks_model" model_path = os.path.join(base_path, 'models', model_name) input_pianoroll = Pianoroll(saved_seed_midi_file_path, use_custom_multitrack=True) input_pianoroll.trim_silence_off_ends() final_pianoroll = get_performance_from_pianoroll( pianoroll_seed=input_pianoroll, num_time_steps=int(48 * seconds_to_generate), model_path=model_path, ) midi_file_name = get_random_midi_file_name() midi_file_path = get_performance_path(midi_file_name) final_pianoroll.save_to_midi_file(midi_file_path) return {"http_code": 200, "code": "Success", "message": "", "midi_file_name": midi_file_name} if __name__ == '__main__': app.run(host='0.0.0.0')
4131
from robot import __version__ as ROBOT_VERSION import sys import tempfile import textwrap import unittest import shutil import subprocess class PabotOrderingGroupTest(unittest.TestCase): def setUp(self): self.tmpdir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tmpdir) def _run_tests_with(self, testfile, orderfile): robot_file = open("{}/test.robot".format(self.tmpdir), "w") robot_file.write(textwrap.dedent(testfile)) robot_file.close() with open("{}/order.dat".format(self.tmpdir), "w") as f: f.write(textwrap.dedent(orderfile)) process = subprocess.Popen( [ sys.executable, "-m" "pabot.pabot", "--testlevelsplit", "--ordering", "{}/order.dat".format(self.tmpdir), "{}/test.robot".format(self.tmpdir), ], cwd=self.tmpdir, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) return process.communicate() def test_orders(self): stdout, stderr = self._run_tests_with( """ *** Variables *** ${SCALAR} Hello, globe! *** Test Cases *** First Test Set Suite Variable ${SCALAR} Hello, world! Second Test Should Be Equal ${SCALAR} Hello, world! Third Test Should Be Equal ${SCALAR} Hello, globe! """, """ { --test Test.First Test --test Test.Second Test } --test Test.Third Test """, ) if sys.version_info < (3, 0): self.assertIn("PASSED", stdout, stderr) self.assertNotIn("FAILED", stdout, stderr) self.assertEqual(stdout.count("PASSED"), 2) else: self.assertIn(b"PASSED", stdout, stderr) self.assertNotIn(b"FAILED", stdout, stderr) self.assertEqual(stdout.count(b"PASSED"), 2) def test_two_orders(self): stdout, stderr = self._run_tests_with( """ *** Variables *** ${SCALAR} Hello, globe! *** Test Cases *** First Test Set Suite Variable ${SCALAR} Hello, world! Second Test Should Be Equal ${SCALAR} Hello, world! Second And Quarter Should Be Equal ${SCALAR} Hello, globe! Second And Half Should Be Equal ${SCALAR} Hello, globe! Third Test Should Be Equal ${SCALAR} Hello, globe! """, """ { --test Test.First Test --test Test.Second Test } { --test Test.Second And Quarter --test Test.Second And Half } --test Test.Third Test """, ) if sys.version_info < (3, 0): self.assertIn("PASSED", stdout, stderr) self.assertNotIn("FAILED", stdout, stderr) if ROBOT_VERSION < "4.0": expected_write = "5 critical tests, 5 passed, 0 failed" else: expected_write = "5 tests, 5 passed, 0 failed, 0 skipped." self.assertIn(expected_write, stdout, stderr) self.assertEqual(stdout.count("PASSED"), 3) else: self.assertIn(b"PASSED", stdout, stderr) self.assertNotIn(b"FAILED", stdout, stderr) if ROBOT_VERSION < "4.0": expected_write = b"5 critical tests, 5 passed, 0 failed" else: expected_write = b"5 tests, 5 passed, 0 failed, 0 skipped." self.assertIn(expected_write, stdout, stderr) self.assertEqual(stdout.count(b"PASSED"), 3) def test_too_big_testname(self): stdout, stderr = self._run_tests_with( """ *** Test Cases *** Test Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris eu velit nunc. Duis eget purus eget orci porta blandit sed ut tortor. Nunc vel nulla bibendum, auctor sem ac, molestie risus. Sed eu metus volutpat, hendrerit nibh in, auctor urna. Nunc a sodales. Log Test """, """ --test Invalid """, ) if sys.version_info < (3, 0): self.assertIn("PASSED", stdout, stderr) self.assertNotIn("FAILED", stdout, stderr) self.assertEqual(stdout.count("PASSED"), 1) else: self.assertIn(b"PASSED", stdout, stderr) self.assertNotIn(b"FAILED", stdout, stderr) self.assertEqual(stdout.count(b"PASSED"), 1) def test_longnames_in_tests(self): stdout, stderr = self._run_tests_with( """ *** Settings *** Test Template Test1 *** Test Cases *** The Somewhat Long Name Of The Test S1Test 01 1 The Somewhat Long Name Of The Test S1Test 02 1 The Somewhat Long Name Of The Test S1Test 03 1 The Somewhat Long Name Of The Test S1Test 04 1 The Somewhat Long Name Of The Test S1Test 05 1 The Somewhat Long Name Of The Test S1Test 06 1 The Somewhat Long Name Of The Test S1Test 07 1 The Somewhat Long Name Of The Test S1Test 08 1 The Somewhat Long Name Of The Test S1Test 09 1 The Somewhat Long Name Of The Test S1Test 10 1 The Somewhat Long Name Of The Test S1Test 11 1 The Somewhat Long Name Of The Test S1Test 12 1 *** Keywords *** Test1 [Arguments] ${arg} Log Test """, """ { --test Test.The Somewhat Long Name Of The Test S1Test 01 --test Test.The Somewhat Long Name Of The Test S1Test 02 --test Test.The Somewhat Long Name Of The Test S1Test 03 --test Test.The Somewhat Long Name Of The Test S1Test 04 --test Test.The Somewhat Long Name Of The Test S1Test 05 --test Test.The Somewhat Long Name Of The Test S1Test 06 } { --test Test.The Somewhat Long Name Of The Test S1Test 07 --test Test.The Somewhat Long Name Of The Test S1Test 08 --test Test.The Somewhat Long Name Of The Test S1Test 09 --test Test.The Somewhat Long Name Of The Test S1Test 10 --test Test.The Somewhat Long Name Of The Test S1Test 11 --test Test.The Somewhat Long Name Of The Test S1Test 12 } """, ) if sys.version_info < (3, 0): self.assertIn("PASSED", stdout, stderr) self.assertNotIn("FAILED", stdout, stderr) self.assertEqual(stdout.count("PASSED"), 2) else: self.assertIn(b"PASSED", stdout, stderr) self.assertNotIn(b"FAILED", stdout, stderr) self.assertEqual(stdout.count(b"PASSED"), 2)