id
stringlengths
3
8
content
stringlengths
100
981k
4137
import torch ckp_path = './checkpoints/fashion_PATN/latest_net_netG.pth' save_path = './checkpoints/fashion_PATN_v1.0/latest_net_netG.pth' states_dict = torch.load(ckp_path) states_dict_new = states_dict.copy() for key in states_dict.keys(): if "running_var" in key or "running_mean" in key: del states_dict_new[key] torch.save(states_dict_new, save_path)
4145
import ast from json_codegen.generators.python3_marshmallow.utils import Annotations, class_name class ObjectGenerator(object): @staticmethod def _get_property_name(node_assign): name = node_assign.targets[0] return name.id @staticmethod def _nesting_class(node_assign): for node in ast.walk(node_assign): if isinstance(node, ast.Call): if node.func.attr == "Nested": return class_name(node.args[0].id) @staticmethod def _non_primitive_nested_list(node_assign): if node_assign.value.func.attr == "List": return ( len(node_assign.value.args) > 0 and node_assign.value.args[0].func.attr == "Nested" ) else: return False @staticmethod def _init_non_primitive_nested_class(node_assign, object_, prop): """ If the nested list is non-primitive, initialise sub-classes in a list comp If the nest is primitive, we can simply get it Marshmallow will do the type marshalling """ return ast.ListComp( elt=ast.Call( func=ast.Name(id=ObjectGenerator._nesting_class(node_assign)), args=[ast.Name(id="el")], keywords=[], ), generators=[ ast.comprehension( target=ast.Name(id="el"), iter=ast.Call( func=ast.Attribute(value=ast.Name(id=object_), attr="get"), args=[ast.Str(s=prop), ast.Dict(keys=[], values=[])], keywords=[], ), ifs=[], is_async=0, ) ], ) @staticmethod def _get_key_from_object(object_, prop): return ast.Call( func=ast.Attribute(value=ast.Name(id=object_), attr="get"), args=[ast.Str(s=prop)], keywords=[], ) @staticmethod def _hint_required_property(node_assign, value, object_, prop): for node in ast.walk(node_assign): if isinstance(node, ast.keyword): if "required" in node.arg: value = ast.Subscript( value=ast.Name(id=object_), slice=ast.Index(value=ast.Str(s=prop)) ) return value @staticmethod def _get_default_for_property(node_assign, value, object_, prop): for node in ast.walk(node_assign): if isinstance(node, ast.keyword) and node.arg == "required": return value for node in ast.walk(node_assign): if isinstance(node, ast.keyword) and node.arg == "default": default_value = [ keyword.value for keyword in node_assign.value.keywords if keyword.arg == "default" ][0] value.args.append(default_value) return value else: return value @staticmethod def assign_property(node_assign, object_): """ Required property -> self.prop = parent_dict["prop"] Optional property -> self.prop = parent_dict.get("prop") Primative nested list -> self.prop = parent_dict.get("prop") Non-primative nested list -> self.props = [PropertyClass(el) for el in parent_dict.get('props', {})] """ prop = ObjectGenerator._get_property_name(node_assign) if ObjectGenerator._non_primitive_nested_list(node_assign): value = ObjectGenerator._init_non_primitive_nested_class(node_assign, object_, prop) else: # Assign the property as self.prop = table.get("prop") value = ObjectGenerator._get_key_from_object(object_, prop) # If the property is required, assign as self.prop = table["prop"] value = ObjectGenerator._hint_required_property(node_assign, value, object_, prop) value = ObjectGenerator._get_default_for_property(node_assign, value, object_, prop) return ast.AnnAssign( target=ast.Attribute(value=ast.Name(id="self"), attr=prop), value=value, simple=0, annotation=Annotations(node_assign).type, ) @staticmethod def construct_class(schema): name = class_name(schema.name) name_lower = name.lower() # Bundle function arguments and keywords fn_arguments = ast.arguments( args=[ ast.arg(arg="self", annotation=None), ast.arg(arg=name_lower, annotation=ast.Name(id="dict")), ], vararg=None, kwarg=None, kwonlyargs=[], kw_defaults=[], defaults=[], ) fn_body = [ ObjectGenerator.assign_property(node, name_lower) for node in schema.body if isinstance(node, ast.Assign) ] # pass if no Assign nodes if len(fn_body) == 0: fn_body = [ast.Pass()] # Generate class constructor class_body = [ ast.FunctionDef( name="__init__", args=fn_arguments, body=fn_body, decorator_list=[], returns=None ), ObjectGenerator._construct_to_("json")(schema), ObjectGenerator._construct_to_("dict")(schema), ObjectGenerator.construct_from_json(schema), ] return ast.ClassDef(name=name, bases=[], body=class_body, decorator_list=[], keywords=[]) @staticmethod def _construct_to_(output): if output == "json": method = "dumps" elif output == "dict": method = "dump" else: raise NotImplementedError("Only deserialisation to json or dict supported") def _construct_to_helper(schema): fn_args = ast.arguments( args=[ast.arg(arg="self", annotation=None)], vararg=None, kwonlyargs=[], kw_defaults=[], kwarg=None, defaults=[], ) fn_body = [ ast.Return( value=ast.Attribute( value=ast.Call( func=ast.Attribute( value=ast.Call( func=ast.Name(id=schema.name), args=[], keywords=[ ast.keyword( arg="strict", value=ast.NameConstant(value=True) ) ], ), attr=method, ), args=[ast.Name(id="self")], keywords=[], ), attr="data", ) ) ] return ast.FunctionDef( name=f"to_{output}", args=fn_args, body=fn_body, decorator_list=[], returns=None ) return _construct_to_helper @staticmethod def construct_from_json(schema): fn_args = ast.arguments( args=[ ast.arg(arg="json", annotation=ast.Name(id="str")), ast.arg(arg="only", annotation=None), ], vararg=None, kwonlyargs=[], kw_defaults=[], kwarg=None, defaults=[ast.NameConstant(value=None)], ) fn_body = [ ast.Return( ast.Attribute( value=ast.Call( func=ast.Attribute( value=ast.Call( func=ast.Name(id=schema.name), args=[], keywords=[ ast.keyword(arg="strict", value=ast.NameConstant(value=True)), ast.keyword(arg="only", value=ast.Name(id="only")), ], ), attr="loads", ), args=[ast.Name(id="json")], keywords=[], ), attr="data", ) ) ] return ast.FunctionDef( name="from_json", args=fn_args, body=fn_body, decorator_list=[ast.Name(id="staticmethod")], returns=None, )
4186
import json from wptserve.utils import isomorphic_decode def main(request, response): origin = request.GET.first(b"origin", request.headers.get(b'origin') or b'none') if b"check" in request.GET: token = request.GET.first(b"token") value = request.server.stash.take(token) if value is not None: if request.GET.first(b"check", None) == b"keep": request.server.stash.put(token, value) body = u"1" else: body = u"0" return [(b"Content-Type", b"text/plain")], body if origin != b'none': response.headers.set(b"Access-Control-Allow-Origin", origin) if b'origin2' in request.GET: response.headers.append(b"Access-Control-Allow-Origin", request.GET.first(b'origin2')) #Preflight if b'headers' in request.GET: response.headers.set(b"Access-Control-Allow-Headers", request.GET.first(b'headers')) if b'credentials' in request.GET: response.headers.set(b"Access-Control-Allow-Credentials", request.GET.first(b'credentials')) if b'methods' in request.GET: response.headers.set(b"Access-Control-Allow-Methods", request.GET.first(b'methods')) code_raw = request.GET.first(b'code', None) if code_raw: code = int(code_raw) else: code = None if request.method == u'OPTIONS': #Override the response code if we're in a preflight and it's asked if b'preflight' in request.GET: code = int(request.GET.first(b'preflight')) #Log that the preflight actually happened if we have an ident if b'token' in request.GET: request.server.stash.put(request.GET[b'token'], True) if b'location' in request.GET: if code is None: code = 302 if code >= 300 and code < 400: response.headers.set(b"Location", request.GET.first(b'location')) headers = {} for name, values in request.headers.items(): if len(values) == 1: headers[isomorphic_decode(name)] = isomorphic_decode(values[0]) else: #I have no idea, really headers[name] = values headers[u'get_value'] = isomorphic_decode(request.GET.first(b'get_value', b'')) body = json.dumps(headers) if code: return (code, b"StatusText"), [], body else: return body
4206
import pandas as pd from pandas import DataFrame df = pd.read_csv('sp500_ohlc.csv', index_col = 'Date', parse_dates=True) df['H-L'] = df.High - df.Low # Giving us count (rows), mean (avg), std (standard deviation for the entire # set), minimum for the set, maximum for the set, and some %s in that range. print( df.describe()) x = input('enter to cont') # gives us correlation data. Remember the 3d chart we plotted? # now you can see if correlation of H-L and Volume also is correlated # with price swings. Correlations for your correlations print( df.corr()) x = input('enter to cont') # covariance... now plenty of people know what correlation is, but what in the # heck is covariance. # Let's defined the two. # covariance is the measure of how two variables change together. # correlation is the measure of how two variables move in relation to eachother. # so covariance is a more direct assessment of the relationship between two variables. # Maybe a better way to put it is that covariance is the measure of the strength of correlation. print( df.cov()) x = input('enter to cont') print( df[['Volume','H-L']].corr()) x = input('enter to cont') # see how it makes a table? # so now, we can actually perform a service that some people actually pay for # I once had a short freelance gig doing this # so a popular form of analysis within especially forex is to compare correlations between # the currencies. The idea here is that you pace one currency with another. # import datetime import pandas.io.data C = pd.io.data.get_data_yahoo('C', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) AAPL = pd.io.data.get_data_yahoo('AAPL', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) MSFT = pd.io.data.get_data_yahoo('MSFT', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) TSLA = pd.io.data.get_data_yahoo('TSLA', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) print( C.head()) x = input('enter to cont') del C['Open'] # , 'high', 'low', 'close', 'volume' del C['High'] del C['Low'] del C['Close'] del C['Volume'] corComp = C corComp.rename(columns={'Adj Close': 'C'}, inplace=True) corComp['AAPL'] = AAPL['Adj Close'] corComp['MSFT'] = MSFT['Adj Close'] corComp['TSLA'] = TSLA['Adj Close'] print( corComp.head()) x = input('enter to cont') print( corComp.corr()) x = input('enter to cont') C = pd.io.data.get_data_yahoo('C', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) AAPL = pd.io.data.get_data_yahoo('AAPL', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) MSFT = pd.io.data.get_data_yahoo('MSFT', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) TSLA = pd.io.data.get_data_yahoo('TSLA', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) BAC = pd.io.data.get_data_yahoo('BAC', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) BBRY = pd.io.data.get_data_yahoo('BBRY', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) CMG = pd.io.data.get_data_yahoo('CMG', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) EBAY = pd.io.data.get_data_yahoo('EBAY', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) JPM = pd.io.data.get_data_yahoo('JPM', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) SBUX = pd.io.data.get_data_yahoo('SBUX', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) TGT = pd.io.data.get_data_yahoo('TGT', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) WFC = pd.io.data.get_data_yahoo('WFC', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) x = input('enter to cont') print( C.head()) del C['Open'] # , 'high', 'low', 'close', 'volume' del C['High'] del C['Low'] del C['Close'] del C['Volume'] corComp = C corComp.rename(columns={'Adj Close': 'C'}, inplace=True) corComp['BAC'] = BAC['Adj Close'] corComp['MSFT'] = MSFT['Adj Close'] corComp['TSLA'] = TSLA['Adj Close'] corComp['AAPL'] = AAPL['Adj Close'] corComp['BBRY'] = BBRY['Adj Close'] corComp['CMG'] = CMG['Adj Close'] corComp['EBAY'] = EBAY['Adj Close'] corComp['JPM'] = JPM['Adj Close'] corComp['SBUX'] = SBUX['Adj Close'] corComp['TGT'] = TGT['Adj Close'] corComp['WFC'] = WFC['Adj Close'] print( corComp.head()) x = input('enter to cont') print( corComp.corr()) x = input('enter to cont') fancy = corComp.corr() fancy.to_csv('bigmoney.csv')
4227
from django.apps import apps from django.test import override_settings from wagtail_live.signals import live_page_update def test_live_page_update_signal_receivers(): assert len(live_page_update.receivers) == 0 @override_settings( WAGTAIL_LIVE_PUBLISHER="tests.testapp.publishers.DummyWebsocketPublisher" ) def test_live_page_update_signal_receivers_websocket(): app_config = apps.get_app_config("wagtail_live") app_config.ready() try: # Receiver should be connected, no IndexError receiver = live_page_update.receivers[0] finally: live_page_update.disconnect(receiver)
4236
import numpy as np import pytest from pytest import approx from pymt.component.grid import GridMixIn class Port: def __init__(self, name, uses=None, provides=None): self._name = name self._uses = uses or [] self._provides = provides or [] def get_component_name(self): return self._name def get_input_item_count(self): return len(self._uses) def get_input_item_list(self): return self._uses def get_output_item_count(self): return len(self._provides) def get_output_item_list(self): return self._provides def test_exchange_items(): class Component(GridMixIn): def __init__(self): self._port = Port("test", uses=["invar"], provides=["outvar"]) super().__init__() c = Component() assert c.input_items == ["invar"] assert c.output_items == ["outvar"] def test_no_exchange_items(): class Component(GridMixIn): def __init__(self): self._port = Port("test") super().__init__() c = Component() assert c.input_items == [] assert c.output_items == [] def test_raster_1d(): class RasterPort(Port): def get_grid_shape(self, grid_id): return (3,) def get_grid_spacing(self, grid_id): return (2.0,) def get_grid_origin(self, grid_id): return (3.0,) class Component(GridMixIn): def __init__(self): self._port = RasterPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_x("invar") == approx(np.array([3.0, 5.0, 7.0])) def test_raster_2d(): class RasterPort(Port): def get_grid_shape(self, grid_id): return (2, 3) def get_grid_spacing(self, grid_id): return (2.0, 1.0) def get_grid_origin(self, grid_id): return (0.0, 0.0) class Component(GridMixIn): def __init__(self): self._port = RasterPort("test-2d", uses=["invar"], provides=["outvar"]) super().__init__() c = Component() assert c.name == "test-2d" assert c.get_grid_type(0) == "RASTER" assert c.get_x(0) == approx(np.array([[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]])) assert c.get_y(0) == approx(np.array([[0.0, 0.0, 0.0], [2.0, 2.0, 2.0]])) assert np.all(c.get_connectivity(0) == np.array([0, 1, 4, 3, 1, 2, 5, 4])) assert np.all(c.get_offset(0) == np.array([4, 8])) def test_raster_3d(): class RasterPort(Port): def get_grid_shape(self, grid_id): return (2, 2, 3) def get_grid_spacing(self, grid_id): return (1.0, 2.0, 1.0) def get_grid_origin(self, grid_id): return (0.0, 0.0, 0.0) class Component(GridMixIn): def __init__(self): self._port = RasterPort("test-3d", uses=["invar"]) super().__init__() c = Component() assert c.get_x(0) == approx( np.array( [[[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]], [[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]]] ) ) assert c.get_y(0) == approx( np.array( [[[0.0, 0.0, 0.0], [2.0, 2.0, 2.0]], [[0.0, 0.0, 0.0], [2.0, 2.0, 2.0]]] ) ) assert c.get_z(0) == approx( np.array( [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]] ) ) def test_rectilinear(): class RectilinearPort(Port): def get_grid_shape(self, grid_id): return (2, 3) def get_grid_x(self, grid_id): return (0.0, 3.0, 4) def get_grid_y(self, grid_id): return (2.0, 7.0) class Component(GridMixIn): def __init__(self): self._port = RectilinearPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "RECTILINEAR" assert c.get_x(0) == approx(np.array([[0.0, 3.0, 4.0], [0.0, 3.0, 4.0]])) assert c.get_y(0) == approx(np.array([[2.0, 2.0, 2.0], [7.0, 7.0, 7.0]])) def test_structured(): class StructuredPort(Port): def get_grid_shape(self, grid_id): return (2, 3) def get_grid_x(self, grid_id): return np.array([0.0, 1.0, 2.0, 0.0, 1.0, 2.0]) def get_grid_y(self, grid_id): return np.array([0.0, 1.0, 2.0, 1.0, 2.0, 3.0]) class Component(GridMixIn): def __init__(self): self._port = StructuredPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "STRUCTURED" assert c.get_x(0) == approx(np.array([0.0, 1.0, 2.0, 0.0, 1.0, 2.0])) assert c.get_y(0) == approx(np.array([0.0, 1.0, 2.0, 1.0, 2.0, 3.0])) def test_unstructured(): class UnstructuredPort(Port): def get_grid_x(self, grid_id): return np.array([0.0, 1.0, 0.0, 1.0, 2.0]) def get_grid_y(self, grid_id): return np.array([0.0, 0.0, 1.0, 1.0, 0.0]) def get_grid_connectivity(self, grid_id): return np.array([0, 1, 3, 2, 4, 3, 1]) def get_grid_offset(self, grid_id): return np.array([4, 7]) class Component(GridMixIn): def __init__(self): self._port = UnstructuredPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "UNSTRUCTURED" assert c.get_x(0) == approx(np.array([0.0, 1.0, 0.0, 1.0, 2.0])) assert c.get_y(0) == approx(np.array([0.0, 0.0, 1.0, 1.0, 0.0])) def test_get_grid_shape_is_none(): class UnstructuredPort(Port): def get_grid_shape(self, grid_id): return None def get_grid_x(self, grid_id): return np.array([0.0, 1.0, 2.0]) class Component(GridMixIn): def __init__(self): self._port = UnstructuredPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "UNSTRUCTURED" def test_get_grid_shape_raises(): class UnstructuredPort(Port): def get_grid_shape(self, grid_id): raise NotImplementedError("get_grid_shape") def get_grid_x(self, grid_id): return np.array([0.0, 1.0, 2.0]) class Component(GridMixIn): def __init__(self): self._port = UnstructuredPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "UNSTRUCTURED" def test_structured_1d(): class RectilinearPort(Port): def get_grid_shape(self, grid_id): return (2, 3) def get_grid_x(self, grid_id): return np.array([0.0, 1.0, 2.0]) def get_grid_y(self, grid_id): raise NotImplementedError("get_grid_y") def get_grid_z(self, grid_id): raise NotImplementedError("get_grid_z") class Component(GridMixIn): def __init__(self): self._port = RectilinearPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "RECTILINEAR" with pytest.raises(IndexError): c.get_z(0)
4265
import argparse import warnings warnings.simplefilter("ignore", UserWarning) import files from tensorboardX import SummaryWriter import os import numpy as np import time import torch import torch.optim import torch.nn as nn import torch.utils.data import torchvision import torchvision.transforms as tfs from data import DataSet,return_model_loader from util import weight_init, write_conv, setup_runtime, AverageMeter, MovingAverage def RotationDataLoader(image_dir, is_validation=False, batch_size=256, crop_size=224, num_workers=4,shuffle=True): normalize = tfs.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transforms = tfs.Compose([ tfs.RandomResizedCrop(crop_size), tfs.RandomGrayscale(p=0.2), tfs.ColorJitter(0.4, 0.4, 0.4, 0.4), tfs.RandomHorizontalFlip(), tfs.Lambda(lambda img: torch.stack([normalize(tfs.ToTensor()( tfs.functional.rotate(img, angle))) for angle in [0, 90, 180, 270]] )) ]) if is_validation: dataset = DataSet(torchvision.datasets.ImageFolder(image_dir + '/val', transforms)) else: dataset = DataSet(torchvision.datasets.ImageFolder(image_dir + '/train', transforms)) loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=True, drop_last=False ) return loader class Optimizer: def __init__(self): self.num_epochs = 30 self.lr = 0.05 self.lr_schedule = lambda epoch: (self.lr * (0.1 ** (epoch//args.lrdrop)))*(epoch<80) + (epoch>=80)*self.lr*(0.1**3) self.momentum = 0.9 self.weight_decay = 10**(-5) self.resume = True self.checkpoint_dir = None self.writer = None self.K = args.ncl self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.val_loader = RotationDataLoader(args.imagenet_path, is_validation=True, batch_size=args.batch_size, num_workers=args.workers,shuffle=True) def optimize_epoch(self, model, optimizer, loader, epoch, validation=False): print(f"Starting epoch {epoch}, validation: {validation} " + "="*30) loss_value = AverageMeter() rotacc_value = AverageMeter() # house keeping if not validation: model.train() lr = self.lr_schedule(epoch) for pg in optimizer.param_groups: pg['lr'] = lr else: model.eval() XE = torch.nn.CrossEntropyLoss().to(self.dev) l_dl = 0 # len(loader) now = time.time() batch_time = MovingAverage(intertia=0.9) for iter, (data, label, selected) in enumerate(loader): now = time.time() if not validation: niter = epoch * len(loader.dataset) + iter*args.batch_size data = data.to(self.dev) mass = data.size(0) where = np.arange(mass,dtype=int) * 4 data = data.view(mass * 4, 3, data.size(3), data.size(4)) rotlabel = torch.tensor(range(4)).view(-1, 1).repeat(mass, 1).view(-1).to(self.dev) #################### train CNN ########################################### if not validation: final = model(data) if args.onlyrot: loss = torch.Tensor([0]).to(self.dev) else: if args.hc == 1: loss = XE(final[0][where], self.L[selected]) else: loss = torch.mean(torch.stack([XE(final[k][where], self.L[k, selected]) for k in range(args.hc)])) rotloss = XE(final[-1], rotlabel) pred = torch.argmax(final[-1], 1) total_loss = loss + rotloss optimizer.zero_grad() total_loss.backward() optimizer.step() correct = (pred == rotlabel).to(torch.float) rotacc = correct.sum() / float(mass) else: final = model(data) pred = torch.argmax(final[-1], 1) correct = (pred == rotlabel.cuda()).to(torch.float) rotacc = correct.sum() / float(mass) total_loss = torch.Tensor([0]) loss = torch.Tensor([0]) rotloss = torch.Tensor([0]) rotacc_value.update(rotacc.item(), mass) loss_value.update(total_loss.item(), mass) batch_time.update(time.time() - now) now = time.time() print( f"Loss: {loss_value.avg:03.3f}, RotAcc: {rotacc_value.avg:03.3f} | {epoch: 3}/{iter:05}/{l_dl:05} Freq: {mass / batch_time.avg:04.1f}Hz:", end='\r', flush=True) # every few iter logging if (iter % args.logiter == 0): if not validation: print(niter, " Loss: {0:.3f}".format(loss.item()), flush=True) with torch.no_grad(): if not args.onlyrot: pred = torch.argmax(final[0][where], dim=1) pseudoloss = XE(final[0][where], pred) if not args.onlyrot: self.writer.add_scalar('Pseudoloss', pseudoloss.item(), niter) self.writer.add_scalar('lr', self.lr_schedule(epoch), niter) self.writer.add_scalar('Loss', loss.item(), niter) self.writer.add_scalar('RotLoss', rotloss.item(), niter) self.writer.add_scalar('RotAcc', rotacc.item(), niter) if iter > 0: self.writer.add_scalar('Freq(Hz)', mass/(time.time() - now), niter) # end of epoch logging if self.writer and (epoch % self.log_interval == 0): write_conv(self.writer, model, epoch) if validation: print('val Rot-Acc: ', rotacc_value.avg) self.writer.add_scalar('val Rot-Acc', rotacc_value.avg, epoch) files.save_checkpoint_all(self.checkpoint_dir, model, args.arch, optimizer, self.L, epoch,lowest=False) return {'loss': loss_value.avg} def optimize(self, model, train_loader): """Perform full optimization.""" first_epoch = 0 model = model.to(self.dev) self.optimize_times = [0] optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), weight_decay=self.weight_decay, momentum=self.momentum, lr=self.lr) if self.checkpoint_dir is not None and self.resume: self.L, first_epoch = files.load_checkpoint_all(self.checkpoint_dir, model=None, opt=None) print('loaded from: ', self.checkpoint_dir,flush=True) print('first five entries of L: ', self.L[:5], flush=True) print('found first epoch to be', first_epoch, flush=True) first_epoch = 0 self.optimize_times = [0] self.L = self.L.cuda() print("model.headcount ", model.headcount, flush=True) ##################################################################################### # Perform optmization ############################################################### lowest_loss = 1e9 epoch = first_epoch while epoch < (self.num_epochs+1): if not args.val_only: m = self.optimize_epoch(model, optimizer, train_loader, epoch, validation=False) if m['loss'] < lowest_loss: lowest_loss = m['loss'] files.save_checkpoint_all(self.checkpoint_dir, model, args.arch, optimizer, self.L, epoch, lowest=True) else: print('='*30 +' doing only validation ' + "="*30) epoch = self.num_epochs m = self.optimize_epoch(model, optimizer, self.val_loader, epoch, validation=True) epoch += 1 print(f"Model optimization completed. Saving final model to {os.path.join(self.checkpoint_dir, 'model_final.pth.tar')}") torch.save(model, os.path.join(self.checkpoint_dir, 'model_final.pth.tar')) return model def get_parser(): parser = argparse.ArgumentParser(description='Retrain with given labels combined with RotNet loss') # optimizer parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of epochs') parser.add_argument('--batch-size', default=64, type=int, metavar='BS', help='batch size') parser.add_argument('--lr', default=0.05, type=float, metavar='FLOAT', help='initial learning rate') parser.add_argument('--lrdrop', default=30, type=int, metavar='INT', help='multiply LR by 0.1 every') # architecture parser.add_argument('--arch', default='alexnet', type=str, help='alexnet or resnet') parser.add_argument('--archspec', default='big', type=str, help='big or small for alexnet ') parser.add_argument('--ncl', default=1000, type=int, metavar='INT', help='number of clusters') parser.add_argument('--hc', default=1, type=int, metavar='INT', help='number of heads') parser.add_argument('--init', default=False, action='store_true', help='initialization of network to PyTorch 0.4') # what we do in this code parser.add_argument('--val-only', default=False, action='store_true', help='if we run only validation set') parser.add_argument('--onlyrot', default=False, action='store_true', help='if train only RotNet') # housekeeping parser.add_argument('--data', default="Imagenet", type=str) parser.add_argument('--device', default="0", type=str, metavar='N', help='GPU device') parser.add_argument('--exp', default='./rot-retrain', metavar='DIR', help='path to result dirs') parser.add_argument('--workers', default=6, type=int, metavar='N', help='number workers (default: 6)') parser.add_argument('--imagenet-path', default='/home/ubuntu/data/imagenet', type=str, help='') parser.add_argument('--comment', default='rot-retrain', type=str, help='comment for tensorboardX') parser.add_argument('--log-interval', default=1, type=int, metavar='INT', help='save stuff every x epochs') parser.add_argument('--logiter', default=200, type=int, metavar='INT', help='log every x-th batch') return parser if __name__ == "__main__": args = get_parser().parse_args() name = "%s" % args.comment.replace('/', '_') try: args.device = [int(item) for item in args.device.split(',')] except AttributeError: args.device = [int(args.device)] setup_runtime(seed=42, cuda_dev_id=args.device) print(args, flush=True) print() print(name,flush=True) writer = SummaryWriter('./runs/%s/%s'%(args.data,name)) writer.add_text('args', " \n".join(['%s %s' % (arg, getattr(args, arg)) for arg in vars(args)])) # Setup model and train_loader print('Commencing!', flush=True) model, train_loader = return_model_loader(args) train_loader = RotationDataLoader(args.imagenet_path, is_validation=False, crop_size=224, batch_size=args.batch_size, num_workers=args.workers, shuffle=True) # add additional head to the network for RotNet loss. if args.arch == 'alexnet': if args.hc == 1: model.__setattr__("top_layer0", nn.Linear(4096, args.ncl)) model.top_layer = None model.headcount = args.hc+1 model.__setattr__("top_layer%s" % args.hc, nn.Linear(4096, 4)) else: if args.hc == 1: model.__setattr__("top_layer0", nn.Linear(2048*int(args.archspec), args.ncl)) model.top_layer = None model.headcount = args.hc+1 model.__setattr__("top_layer%s" % args.hc, nn.Linear(2048*int(args.archspec), 4)) if args.init: for mod in model.modules(): mod.apply(weight_init) # Setup optimizer o = Optimizer() o.writer = writer o.lr = args.lr o.num_epochs = args.epochs o.resume = True o.log_interval = args.log_interval o.checkpoint_dir = os.path.join(args.exp, 'checkpoints') # Optimize o.optimize(model, train_loader)
4273
from aiohttp_admin2.mappers import Mapper from aiohttp_admin2.mappers import fields class FloatMapper(Mapper): field = fields.FloatField() def test_correct_float_type(): """ In this test we check success convert to float type. """ mapper = FloatMapper({"field": 1}) mapper.is_valid() assert mapper.data["field"] == 1.0 mapper = FloatMapper({"field": 2}) mapper.is_valid() assert mapper.data["field"] == 2.0 mapper = FloatMapper({"field": -3}) mapper.is_valid() assert mapper.data["field"] == -3.0 mapper = FloatMapper({"field": 0}) mapper.is_valid() assert mapper.data["field"] == 0.0 def test_wrong_float_type(): """ In this test we check error when we received wrong float type. """ assert FloatMapper({"field": "string"}).is_valid() is False assert FloatMapper({"field": []}).is_valid() is False
4308
import pathlib import yaml documentations = {"Our Platform": "QuantConnect-Platform-2.0.0.yaml", "Alpha Streams": "QuantConnect-Alpha-0.8.yaml"} def RequestTable(api_call, params): writeUp = '<table class="table qc-table">\n<thead>\n<tr>\n' writeUp += f'<th colspan="2"><code>{api_call}</code> Method</th>\n</tr>\n</thead>' example = '<tr>\n<td width="20%">Example</td>\n<td>\n<div class="cli section-example-container"><pre>\n{\n' for item in params: example_ = "/" description_ = "Optional. " if "required" not in item or not item["required"] else "" description_ += item["description"] if description_[-1] != ".": description_ += "." if "type" in item["schema"]: type_ = item["schema"]["type"] else: type_ = item["schema"]["$ref"].split("/")[-1] if "minimum" in item["schema"]: description_ += f' Minimum: {item["schema"]["minimum"]}' example_ = item["schema"]["minimum"] elif "maximum" in item["schema"]: description_ += f' Maximum: {item["schema"]["maximum"]}' example_ = item["schema"]["maximum"] elif "default" in item["schema"]: description_ += f' Default: {item["schema"]["default"]}' example_ = item["schema"]["default"] if type_ == "array": array_obj = item["schema"]["items"] if "$ref" in array_obj: type_ = array_obj["$ref"].split("/")[-1] + " Array" ref = array_obj["$ref"].split("/")[1:] type_ = ref[-1] + " Array" request_object_ = doc for path in ref: request_object_ = request_object_[path] if "properties" in request_object_: request_object_properties_ = request_object_["properties"] example_, __, __ = ExampleWriting(request_object_properties_, [], 1) if "type" in array_obj: type_ = array_obj["type"] + " Array" if "enum" in array_obj: type_ = type_ + " Enum" description_ += f' Options: {str(array_obj["enum"])}' example_ = f'"{array_obj["enum"][0]}"' if "Enum" not in type_: if "string" in type_: example_ = '"string"' elif "number" in type_ or "integer" in type_: example_ = '0' elif "boolean" in type_: example_ = 'true' writeUp += f'\n<tr>\n<td width="20%">{item["name"]}</td> <td> <code>{type_}</code><br/>{description_}</td>\n</tr>' example += f' "{item["name"]}": {example_},\n' return writeUp + example + "\b}</pre>\n</div>\n</td>\n</tr>\n</table>" def ResponseTable(requestBody): writeUp = "" array = False order = 0 if "content" in requestBody: component = requestBody["content"]["application/json"]["schema"] if "$ref" in component: component = component["$ref"].split("/")[1:] elif "items" in component and "$ref" in component["items"]: component = component["items"]["$ref"].split("/")[1:] array = True order += 1 else: writeUp += '<table class="table qc-table">\n<thead>\n<tr>\n' writeUp += f'<th colspan="2">{requestBody["description"]}</th>\n' writeUp += '</tr>\n</thead>\n' writeUp += f'<tr>\n<td width="20%">value</td> <td> <code>{component["items"]["type"]}</code> <br/>/</td>\n</tr>\n' writeUp += '<tr>\n<td width="20%">Example</td>\n<td>\n<div class="cli section-example-container"><pre>\n' writeUp += f'[\n "{component["items"]["example"]}"\n]' writeUp += '</pre>\n</div>\n</td>\n</tr>\n</table>' return writeUp else: component = requestBody["$ref"].split("/")[1:] item_list = [component] i = 0 while i < len(item_list): request_object = doc for item in item_list[i]: request_object = request_object[item] if "items" in request_object and "oneOf" in request_object["items"]: prop = request_object["items"]["oneOf"] example = '<tr>\n<td width="20%">Example</td>\n<td>\n<div class="cli section-example-container"><pre>\n[\n [' writeUp += '<table class="table qc-table">\n<thead>\n<tr>\n' writeUp += f'<th colspan="2"><code>{item}</code> Model - {request_object["description"]}</th>\n' writeUp += '</tr>\n</thead>' for y in prop: path = y["$ref"].split("/")[1:] name = path[-1] enum = "" item_list.append(path) request_object = doc for item in path: request_object = request_object[item] if "enum" in request_object: enum = " Options: " + str(request_object["enum"]) description_ = request_object["description"] if description_[-1] != ".": description_ += "." writeUp += f'\n<tr>\n<td width="20%">{name}</td> <td> <code>{request_object["type"]}</code> <br/> {description_ + enum}</td>\n</tr>\n' if "example" in request_object: text = request_object["example"] elif "enum" in request_object: text = '"' + request_object["enum"][0] + '"' example += f'\n {text},' example += '\b\n ]\n]' writeUp += example writeUp += '</pre>\n</div>\n</td>\n</tr>\n</table>' i += 1 continue elif "oneOf" in request_object: for y in request_object["oneOf"]: item_list.append(y["$ref"].split("/")[1:]) i += 1 continue elif "properties" in request_object: request_object_properties = request_object["properties"] elif "content" in request_object: item_list.append(request_object["content"]["application/json"]["schema"]["$ref"].split("/")[1:]) i += 1 continue elif "type" in request_object and "properties" not in request_object: request_object_properties = {item: request_object} writeUp += '<table class="table qc-table">\n<thead>\n<tr>\n' if "description" in request_object: writeUp += f'<th colspan="2"><code>{item_list[i][-1]}</code> Model - {request_object["description"]}</th>\n' else: writeUp += f'<th colspan="2"><code>{item_list[i][-1]}</code> Model</th>\n' writeUp += '</tr>\n</thead>\n' example, html_property, item_list = ExampleWriting(request_object_properties, item_list, array, order) if array: array = False order -= 1 for line in html_property: writeUp += line writeUp += '<tr>\n<td width="20%">Example</td>\n<td>\n<div class="cli section-example-container"><pre>\n' writeUp += example writeUp += '</pre>\n</div>\n</td>\n</tr>\n</table>' i += 1 return writeUp def ExampleWriting(request_object_properties, item_list, array=False, order=0): tab = " " * order if array: example = "[\n {\n" else: example = "{\n" line = [] for name, properties in request_object_properties.items(): type_ = properties["type"] if "type" in properties else "object" description_ = properties["description"] if "description" in properties else "/" if (example != "{\n" and not array) or (example != "[\n {\n" and array): example += ",\n" example_ = tab + f' "{name}": ' if type_ == "array": example_ += '[\n' if "type" in properties["items"]: type_ = properties["items"]["type"] + " Array" example_ += tab + f' "{properties["items"]["type"]}"' elif "$ref" in properties["items"]: ref = properties["items"]["$ref"].split("/")[1:] type_ = ref[-1] + " Array" if ref not in item_list: item_list.append(ref) request_object_ = doc for item in ref: request_object_ = request_object_[item] if "properties" in request_object_: request_object_properties_ = request_object_["properties"] write_up, __, item_list = ExampleWriting(request_object_properties_, item_list, order=order+2) example_ += tab + " " * 2 + write_up elif type_ == "object": if "additionalProperties" in properties: add_prop = properties["additionalProperties"] if "type" in add_prop: prop_type = add_prop["type"] if "format" in prop_type: type_ = prop_type + f'$({prop_type["format"]})' + " object" if prop_type["format"] == "date-time": example_ += "2021-11-26T15:18:27.693Z" else: example_ += "0" else: type_ = prop_type + " object" example_ += f'"{prop_type}"' elif "$ref" in add_prop: ref = add_prop["$ref"].split("/")[1:] type_ = ref[-1] + " object" if ref not in item_list: item_list.append(ref) request_object_ = doc for item in ref: request_object_ = request_object_[item] if "properties" in request_object_: request_object_properties_ = request_object_["properties"] write_up, __, item_list = ExampleWriting(request_object_properties_, item_list, order=order+1) example_ += write_up elif "$ref" in properties: ref = properties["$ref"].split("/")[1:] type_ = ref[-1] + " object" if ref not in item_list: item_list.append(ref) request_object_ = doc for item in ref: request_object_ = request_object_[item] if "properties" in request_object_: request_object_properties_ = request_object_["properties"] description_ = request_object_["description"] if "description" in request_object_ else "/" write_up, __, item_list = ExampleWriting(request_object_properties_, item_list, order=order+1) example_ += write_up elif "type" in request_object_: properties = request_object_properties_ = request_object_ type_ = request_object_["type"] description_ = request_object_["description"] if "description" in request_object_ else "/" elif type_ == "integer" or type_ == "number": example_ += "0" elif type_ == "boolean": example_ += "true" elif type_ == "string": if "format" in properties: type_ += f'(${properties["format"]})' example_ += "2021-11-26T15:18:27.693Z" else: example_ += '"string"' if description_[-1] != ".": description_ += "." if "enum" in properties: type_ += " Enum" description_ += f' Options : {properties["enum"]}' if "string" in type_: example_ = tab + f' "{name}": "{properties["enum"][0]}"' else: example_ = tab + f' "{name}": {properties["enum"][0]}' if "example" in properties: eg = properties["example"] type_ += f'<br/><i><sub>example: {eg}</sub></i>' if isinstance(eg, str): eg = '"' + eg + '"' example_ = tab + f' "{name}": {eg}' if "Array" in type_: example_ += "\n" + tab + " ]" if order == 0 or array: line.append(f'<tr>\n<td width="20%">{name}</td> <td> <code>{type_}</code> <br/> {description_}</td>\n</tr>\n') example += example_ if not array: return example + "\n" + tab + "}", line, item_list return example + "\n" + tab + "}\n" + " " * (order-1) + "]", line, item_list for section, source in documentations.items(): yaml_file = open(source) doc = yaml.load(yaml_file, Loader=yaml.Loader) paths = doc["paths"] for api_call, result in paths.items(): j = 1 content = result["post"] if "post" in result else result["get"] # Create path if not exist destination_folder = pathlib.Path("/".join(content["tags"])) destination_folder.mkdir(parents=True, exist_ok=True) # Create Introduction part with open(destination_folder / f'{j:02} Introduction.html', "w") as html_file: html_file.write("<p>\n") html_file.write(f"{content['summary']}\n") html_file.write("</p>\n") j += 1 # Create Description part if having one if "description" in content: with open(destination_folder / f'{j:02} Description.html', "w") as html_file: html_file.write('<p>\n') html_file.write(f'{content["description"]}\n') html_file.write('</p>\n') j += 1 # Create Request part with open(destination_folder / f'{j:02} Request.html', "w") as html_file: description_ = "" if "parameters" in content: writeUp = RequestTable(api_call, content["parameters"]) elif "requestBody" in content: if "description" in content["requestBody"]: description_ = str(content["requestBody"]["description"]) if description_[-1] != ".": description_ += "." description_ += " " writeUp = ResponseTable(content["requestBody"]) else: writeUp = '<table class="table qc-table">\n<thead>\n<tr>\n' writeUp += f'<th colspan="1"><code>{api_call}</code> Method</th>\n</tr>\n</thead>\n' writeUp += f'</tr>\n<td><code>{api_call}</code> method takes no parameters.</td>\n</tr>\n</table>' description_ += f'The <code>{api_call}</code> API accepts requests in the following format:\n' html_file.write("<p>\n" + description_ + "</p>\n") html_file.write(writeUp) j += 1 # Create Response part with open(destination_folder / f'{j:02} Responses.html', "w") as html_file: html_file.write('<p>\n') html_file.write(f'The <code>{api_call}</code> API provides a response in the following format:\n') html_file.write('</p>\n') request_body = content["responses"] for code, properties in request_body.items(): if code == "200": html_file.write('<h4>200 Success</h4>\n') elif code == "401": html_file.write('<h4>401 Authentication Error</h4>\n<table class="table qc-table">\n<thead>\n<tr>\n') html_file.write('<th colspan="2"><code>UnauthorizedError</code> Model - Unauthorized response from the API. Key is missing, invalid, or timestamp is too old for hash.</th>\n') html_file.write('</tr>\n</thead>\n<tr>\n<td width="20%">www_authenticate</td> <td> <code>string</code> <br/> Header</td>\n</tr>\n</table>\n') continue elif code == "404": html_file.write('<h4>404 Not Found Error</h4>\n') html_file.write('<p>The requested item, index, page was not found.</p>\n') continue elif code == "default": html_file.write('<h4>Default Generic Error</h4>\n') writeUp = ResponseTable(properties) html_file.write(writeUp) print(f"Documentation of {section} is generated and inplace!")
4310
from django.conf.urls import url # from .views import BaseIndexView urlpatterns = [ # url(r'^$', BaseIndexView.as_view(), name="index"), ]
4312
import glob import logging import os import warnings import pytest from _pytest.outcomes import Failed from _pytest.reports import TestReport from .broker_pact import BrokerPact, BrokerPacts, PactBrokerConfig from .result import PytestResult, log def pytest_addoption(parser): group = parser.getgroup("pact specific options (pactman)") group.addoption( "--pact-files", default=None, help="pact JSON files to verify (wildcards allowed)" ) group.addoption("--pact-broker-url", default="", help="pact broker URL") group.addoption("--pact-broker-token", default="", help="pact broker bearer token") group.addoption( "--pact-provider-name", default=None, help="pact name of provider being verified" ) group.addoption( "--pact-consumer-name", default=None, help="consumer name to limit pact verification to - " "DEPRECATED, use --pact-verify-consumer instead", ) group.addoption( "--pact-verify-consumer", default=None, help="consumer name to limit pact verification to" ) group.addoption( "--pact-verify-consumer-tag", metavar="TAG", action="append", help="limit broker pacts verified to those matching the tag. May be " "specified multiple times in which case pacts matching any of these " "tags will be verified.", ) group.addoption( "--pact-publish-results", action="store_true", default=False, help="report pact verification results to pact broker", ) group.addoption( "--pact-provider-version", default=None, help="provider version to use when reporting pact results to pact broker", ) group.addoption( "--pact-allow-fail", default=False, action="store_true", help="do not fail the pytest run if any pacts fail verification", ) # Future options to be implemented. Listing them here so naming consistency can be a thing. # group.addoption("--pact-publish-pacts", action="store_true", default=False, # help="publish pacts to pact broker") # group.addoption("--pact-consumer-version", default=None, # help="consumer version to use when publishing pacts to the broker") # group.addoption("--pact-consumer-version-source", default=None, # help="generate consumer version from source 'git-tag' or 'git-hash'") # group.addoption("--pact-consumer-version-tag", metavar='TAG', action="append", # help="tag(s) that should be applied to the consumer version when pacts " # "are uploaded to the broker; multiple tags may be supplied") def get_broker_url(config): return config.getoption("pact_broker_url") or os.environ.get("PACT_BROKER_URL") def get_provider_name(config): return config.getoption("pact_provider_name") or os.environ.get("PACT_PROVIDER_NAME") # add the pact broker URL to the pytest output if running verbose def pytest_report_header(config): if config.getoption("verbose") > 0: location = get_broker_url(config) or config.getoption("pact_files") return [f"Loading pacts from {location}"] def pytest_configure(config): logging.getLogger("pactman").handlers = [] logging.basicConfig(format="%(message)s") verbosity = config.getoption("verbose") if verbosity > 0: log.setLevel(logging.DEBUG) class PytestPactVerifier: def __init__(self, publish_results, provider_version, interaction, consumer): self.publish_results = publish_results self.provider_version = provider_version self.interaction = interaction self.consumer = consumer def verify(self, provider_url, provider_setup, extra_provider_headers={}): try: self.interaction.verify_with_callable_setup(provider_url, provider_setup, extra_provider_headers) except (Failed, AssertionError) as e: raise Failed(str(e)) from None def finish(self): if self.consumer and self.publish_results and self.provider_version: self.consumer.publish_result(self.provider_version) def flatten_pacts(pacts): for consumer in pacts: last = consumer.interactions[-1] for interaction in consumer.interactions: if interaction is last: yield (interaction, consumer) else: yield (interaction, None) def load_pact_files(file_location): for filename in glob.glob(file_location, recursive=True): yield BrokerPact.load_file(filename, result_factory=PytestResult) def test_id(identifier): interaction, _ = identifier return str(interaction) def pytest_generate_tests(metafunc): if "pact_verifier" in metafunc.fixturenames: broker_url = get_broker_url(metafunc.config) if not broker_url: pact_files_location = metafunc.config.getoption("pact_files") if not pact_files_location: raise ValueError("need a --pact-broker-url or --pact-files option") pact_files = load_pact_files(pact_files_location) metafunc.parametrize( "pact_verifier", flatten_pacts(pact_files), ids=test_id, indirect=True ) else: provider_name = get_provider_name(metafunc.config) if not provider_name: raise ValueError("--pact-broker-url requires the --pact-provider-name option") broker = PactBrokerConfig( broker_url, metafunc.config.getoption("pact_broker_token"), metafunc.config.getoption("pact_verify_consumer_tag", []), ) broker_pacts = BrokerPacts( provider_name, pact_broker=broker, result_factory=PytestResult ) pacts = broker_pacts.consumers() filter_consumer_name = metafunc.config.getoption("pact_verify_consumer") if not filter_consumer_name: filter_consumer_name = metafunc.config.getoption("pact_consumer_name") if filter_consumer_name: warnings.warn( "The --pact-consumer-name command-line option is deprecated " "and will be removed in the 3.0.0 release.", DeprecationWarning, ) if filter_consumer_name: pacts = [pact for pact in pacts if pact.consumer == filter_consumer_name] metafunc.parametrize("pact_verifier", flatten_pacts(pacts), ids=test_id, indirect=True) class PactTestReport(TestReport): """Custom TestReport that allows us to attach an interaction to the result, and then display the interaction's verification result ouput as well as the traceback of the failure. """ @classmethod def from_item_and_call(cls, item, call, interaction): report = super().from_item_and_call(item, call) report.pact_interaction = interaction # the toterminal() call can't reasonably get at this config, so we store it here report.verbosity = item.config.option.verbose return report def toterminal(self, out): out.line("Pact failure details:", bold=True) for text, kw in self.pact_interaction.result.results_for_terminal(): out.line(text, **kw) if self.verbosity > 0: out.line("Traceback:", bold=True) return super().toterminal(out) else: out.line("Traceback not shown, use pytest -v to show it") def pytest_runtest_makereport(item, call): if call.when != "call" or "pact_verifier" not in getattr(item, "fixturenames", []): return # use our custom TestReport subclass if we're reporting on a pact verification call interaction = item.funcargs["pact_verifier"].interaction report = PactTestReport.from_item_and_call(item, call, interaction) if report.failed and item.config.getoption("pact_allow_fail"): # convert the fail into an "expected" fail, which allows the run to pass report.wasxfail = True report.outcome = "passed" return report def pytest_report_teststatus(report, config): if not hasattr(report, "pact_interaction"): return if hasattr(report, "wasxfail"): # wasxfail usually displays an "X" but since it's not *expected* to fail an "f" is a little clearer return "ignore fail", "f", "IGNORE_FAIL" @pytest.fixture() def pact_verifier(pytestconfig, request): interaction, consumer = request.param p = PytestPactVerifier( pytestconfig.getoption("pact_publish_results"), pytestconfig.getoption("pact_provider_version"), interaction, consumer, ) yield p p.finish()
4337
import logging import os import re import uuid from pathlib import Path from ludwig.constants import CHECKSUM, META, TEST, TRAINING, VALIDATION from ludwig.data.cache.util import calculate_checksum from ludwig.utils import data_utils from ludwig.utils.fs_utils import delete, path_exists logger = logging.getLogger(__name__) def alphanum(v): """Filters a string to only its alphanumeric characters.""" return re.sub(r"\W+", "", v) class DatasetCache: def __init__(self, config, checksum, cache_map, dataset_manager): self.config = config self.checksum = checksum self.cache_map = cache_map self.dataset_manager = dataset_manager def get(self): training_set_metadata_fp = self.cache_map[META] if not path_exists(training_set_metadata_fp): return None cache_training_set_metadata = data_utils.load_json(training_set_metadata_fp) cached_training_set = self.cache_map[TRAINING] if path_exists(self.cache_map[TRAINING]) else None cached_test_set = self.cache_map[TEST] if path_exists(self.cache_map[TEST]) else None cached_validation_set = self.cache_map[VALIDATION] if path_exists(self.cache_map[VALIDATION]) else None valid = self.checksum == cache_training_set_metadata.get(CHECKSUM) and cached_training_set is not None return valid, cache_training_set_metadata, cached_training_set, cached_test_set, cached_validation_set def put(self, training_set, test_set, validation_set, training_set_metadata): logger.info("Writing preprocessed training set cache") training_set = self.dataset_manager.save( self.cache_map[TRAINING], training_set, self.config, training_set_metadata, TRAINING, ) if test_set is not None: logger.info("Writing preprocessed test set cache") test_set = self.dataset_manager.save( self.cache_map[TEST], test_set, self.config, training_set_metadata, TEST, ) if validation_set is not None: logger.info("Writing preprocessed validation set cache") validation_set = self.dataset_manager.save( self.cache_map[VALIDATION], validation_set, self.config, training_set_metadata, VALIDATION, ) logger.info("Writing train set metadata") data_utils.save_json(self.cache_map[META], training_set_metadata) return training_set, test_set, validation_set, training_set_metadata def delete(self): for fname in self.cache_map.values(): if path_exists(fname): delete(fname) class CacheManager: def __init__(self, dataset_manager, cache_dir=None): self._dataset_manager = dataset_manager self._cache_dir = cache_dir def get_dataset_cache(self, config, dataset=None, training_set=None, test_set=None, validation_set=None): if dataset is not None: key = self.get_cache_key(dataset, config) cache_map = { META: self.get_cache_path(dataset, key, META, "json"), TRAINING: self.get_cache_path(dataset, key, TRAINING), TEST: self.get_cache_path(dataset, key, TEST), VALIDATION: self.get_cache_path(dataset, key, VALIDATION), } return DatasetCache(config, key, cache_map, self._dataset_manager) else: key = self.get_cache_key(training_set, config) cache_map = { META: self.get_cache_path(training_set, key, META, "json"), TRAINING: self.get_cache_path(training_set, key, TRAINING), TEST: self.get_cache_path(test_set, key, TEST), VALIDATION: self.get_cache_path(validation_set, key, VALIDATION), } return DatasetCache(config, key, cache_map, self._dataset_manager) def get_cache_key(self, dataset, config): if not isinstance(dataset, str): # TODO(travis): could try hashing the in-memory dataset, but this is tricky for Dask return str(uuid.uuid1()) return calculate_checksum(dataset, config) def get_cache_path(self, dataset, key, tag, ext=None): if not isinstance(dataset, str): dataset = None if self._cache_dir is None and dataset is not None: # Use the input dataset filename (minus the extension) as the cache path stem = Path(dataset).stem else: # To avoid collisions across different directories, we use the unique checksum # as the cache path stem = alphanum(key) ext = ext or self.data_format cache_fname = f"{stem}.{tag}.{ext}" return os.path.join(self.get_cache_directory(dataset), cache_fname) def get_cache_directory(self, input_fname): if self._cache_dir is None: if input_fname is not None: return os.path.dirname(input_fname) return "." return self._cache_dir def can_cache(self, skip_save_processed_input): return self._dataset_manager.can_cache(skip_save_processed_input) @property def data_format(self): return self._dataset_manager.data_format
4351
from guillotina.contrib.workflows.interfaces import IWorkflowChangedEvent from guillotina.events import ObjectEvent from zope.interface import implementer @implementer(IWorkflowChangedEvent) class WorkflowChangedEvent(ObjectEvent): """An object has been moved""" def __init__(self, object, workflow, action, comments): ObjectEvent.__init__(self, object) self.object = object self.workflow = workflow self.action = action self.comments = comments
4353
import pydbhub from typing import Any, Dict, List, Tuple from json.decoder import JSONDecodeError import requests import io def send_request_json(query_url: str, data: Dict[str, Any]) -> Tuple[List[Any], str]: """ send_request_json sends a request to DBHub.io, formatting the returned result as JSON Parameters ---------- query_url : str url of the API endpoint data : Dict[str, Any] data to be processed to the server. Returns ------- Tuple[List[Any], str] The returned data is - a list of JSON object. - a string describe error if occurs """ try: headers = {'User-Agent': f'pydbhub v{pydbhub.__version__}'} response = requests.post(query_url, data=data, headers=headers) response.raise_for_status() return response.json(), None except JSONDecodeError as e: return None, e.args[0] except TypeError as e: return None, e.args[0] except requests.exceptions.HTTPError as e: try: return response.json(), e.args[0] except JSONDecodeError: return None, e.args[0] except requests.exceptions.RequestException as e: cause = e.args(0) return None, str(cause.args[0]) def send_request(query_url: str, data: Dict[str, Any]) -> Tuple[List[bytes], str]: """ send_request sends a request to DBHub.io. Parameters ---- query_url : str url of the API endpoint data : Dict[str, Any] data to be processed to the server.------ Returns ------- List[bytes] database file is returned as a list of bytes """ try: headers = {'User-Agent': f'pydbhub v{pydbhub.__version__}'} response = requests.post(query_url, data=data, headers=headers) response.raise_for_status() return response.content, None except requests.exceptions.HTTPError as e: return None, e.args[0] except requests.exceptions.RequestException as e: cause = e.args(0) return None, str(cause.args[0]) def send_upload(query_url: str, data: Dict[str, Any], db_bytes: io.BufferedReader) -> Tuple[List[Any], str]: """ send_upload uploads a database to DBHub.io. Parameters ---------- query_url : str url of the API endpoint. data : Dict[str, Any] data to be processed to the server. db_bytes : io.BufferedReader A buffered binary stream of the database file. Returns ------- Tuple[List[Any], str] The returned data is - a list of JSON object. - a string describe error if occurs """ try: headers = {'User-Agent': f'pydbhub v{pydbhub.__version__}'} files = {"file": db_bytes} response = requests.post(query_url, data=data, headers=headers, files=files) response.raise_for_status() if response.status_code != 201: # The returned status code indicates something went wrong try: return response.json(), str(response.status_code) except JSONDecodeError: return None, str(response.status_code) return response.json(), None except requests.exceptions.HTTPError as e: try: return response.json(), e.args[0] except JSONDecodeError: return None, e.args[0] except requests.exceptions.RequestException as e: cause = e.args(0) return None, str(cause.args[0])
4374
from __future__ import print_function import time import weeutil.weeutil import weewx.manager import weewx.xtypes archive_sqlite = {'database_name': '/home/weewx/archive/weepwr.sdb', 'driver': 'weedb.sqlite'} archive_mysql = {'database_name': 'weewx', 'user': 'weewx', 'password': '<PASSWORD>', 'driver': 'weedb.mysql'} sql_str = "SELECT %s(%s), MIN(usUnits), MAX(usUnits) FROM %s " \ "WHERE dateTime > ? AND dateTime <= ?" % ('avg', 'outTemp', 'archive') timespan = weeutil.weeutil.TimeSpan(1573245000, 1573246800) timespan = weeutil.weeutil.TimeSpan(1573245000, 1573245000 + 600) print('timespan=', timespan) with weewx.manager.Manager.open(archive_sqlite) as db_manager: interpolate_dict = { 'aggregate_type': 'diff', 'obs_type': 'ch8_a_energy2', 'table_name': db_manager.table_name, 'start': timespan.start, 'stop': timespan.stop, } SQL_TEMPLATE = "SELECT (ch8_a_energy2 - (SELECT ch8_a_energy2 FROM archive WHERE dateTime=%(start)s)) / (%(stop)s - %(start)s) FROM archive WHERE dateTime=%(stop)s;" SQL_TEMPLATE = """Select a.dateTime as StartTime , b.dateTime as EndTime , b.dateTime-a.dateTime as TimeChange , b.ch8_a_energy2-a.ch8_a_energy2 as ValueChange FROM archive a Inner Join archive b ON b.dateTime>=1573245000 AND b.dateTime<=(1573245000 + 600)""" SQL_TEMPLATE = """Select a.dateTime as StartTime, b.datetime as EndTime, b.dateTime-a.dateTime as TimeChange, b.ch8_a_energy2-a.ch8_a_energy2 as ValueChange FROM archive a, archive b WHERE b.dateTime = (Select MAX(c.dateTime) FROM archive c WHERE c.dateTime<=(1573245000+600)) AND a.dateTime = (SELECT MIN(dateTime) FROM archive WHERE dateTime>=1573245000);""" SQL_TEMPLATE = """Select a.dateTime as StartTime, b.datetime as EndTime, b.dateTime-a.dateTime as TimeChange, b.ch8_a_energy2-a.ch8_a_energy2 as ValueChange FROM archive a, archive b WHERE b.dateTime = (Select MAX(dateTime) FROM archive WHERE dateTime<=(1573245000+600)) AND a.dateTime = (SELECT MIN(dateTime) FROM archive WHERE dateTime>=1573245000);""" SQL_TEMPLATE = "SELECT (b.%(obs_type)s - a.%(obs_type)s) / (b.dateTime-a.dateTime) "\ "FROM archive a, archive b "\ "WHERE b.dateTime = (SELECT MAX(dateTime) FROM archive WHERE dateTime <= %(stop)s) "\ "AND a.dateTime = (SELECT MIN(dateTime) FROM archive WHERE dateTime >= %(start)s);" sql_stmt = SQL_TEMPLATE % interpolate_dict print(sql_stmt) # Get the number of records with db_manager.connection.cursor() as cursor: for row in cursor.execute(sql_stmt): print(row)
4406
from django.db.models.fields.files import (FieldFile, ImageField, ImageFileDescriptor) from django.utils.translation import ugettext as _ from .backends import get_backend_class from .files import VideoFile class VideoFileDescriptor(ImageFileDescriptor): pass class VideoFieldFile(VideoFile, FieldFile): def delete(self, save=True): # Clear the video info cache if hasattr(self, '_info_cache'): del self._info_cache super(VideoFieldFile, self).delete(save=save) class VideoField(ImageField): attr_class = VideoFieldFile descriptor_class = VideoFileDescriptor description = _("Video") def __init__(self, verbose_name=None, name=None, duration_field=None, **kwargs): self.duration_field = duration_field super(VideoField, self).__init__(verbose_name, name, **kwargs) def check(self, **kwargs): errors = super(ImageField, self).check(**kwargs) errors.extend(self._check_backend()) return errors def _check_backend(self): backend = get_backend_class() return backend.check() def to_python(self, data): # use FileField method return super(ImageField, self).to_python(data) def update_dimension_fields(self, instance, force=False, *args, **kwargs): _file = getattr(instance, self.attname) # we need a real file if not _file._committed: return # write `width` and `height` super(VideoField, self).update_dimension_fields(instance, force, *args, **kwargs) if not self.duration_field: return # Nothing to update if we have no file and not being forced to update. if not _file and not force: return if getattr(instance, self.duration_field) and not force: return # get duration if file is defined duration = _file.duration if _file else None # update duration setattr(instance, self.duration_field, duration) def formfield(self, **kwargs): # use normal FileFieldWidget for now return super(ImageField, self).formfield(**kwargs)
4420
import math import os from copy import deepcopy from ast import literal_eval import pandas as pd from math import factorial import random from collections import Counter, defaultdict import sys from nltk import word_tokenize from tqdm import tqdm, trange import argparse import numpy as np import re import csv from sklearn.model_selection import train_test_split from swda.swda import CorpusReader, Transcript, Utterance act2word = {1:"inform",2:"question", 3:"directive", 4:"commissive"} def permute(sents, sent_DAs, amount): """ return a list of different! permuted sentences and their respective dialog acts """ """ if amount is greater than the possible amount of permutations, only the uniquely possible ones are returned """ assert len(sents) == len(sent_DAs), "length of permuted sentences and list of DAs must be equal" if amount == 0: return [] permutations = [list(range(len(sents)))] amount = min(amount, factorial(len(sents))-1) for i in range(amount): permutation = np.random.permutation(len(sents)) while permutation.tolist() in permutations: permutation = np.random.permutation(len(sents)) permutations.append(permutation.tolist()) return permutations[1:] #the first one is the original, which was included s.t. won't be generated def draw_rand_sent(act_utt_df, sent_len, amount): """ df is supposed to be a pandas dataframe with colums 'act' and 'utt' (utterance), with act being a number from 1 to 4 and utt being a sentence """ permutations = [] for _ in range(amount): (utt, da, name, ix) = draw_rand_sent_from_df(act_utt_df) sent_insert_ix = random.randint(0, sent_len-1) permutations.append((utt, da, name, ix, sent_insert_ix)) return permutations def draw_rand_sent_from_df(df): ix = random.randint(0, len(df['utt'])-1) return literal_eval(df['utt'][ix]), df['act'][ix], df['dialogue'][ix], df['ix'][ix] def half_perturb(sents, sent_DAs, amount): assert len(sents) == len(sent_DAs), "length of permuted sentences and list of DAs must be equal" permutations = [list(range(len(sents)))] for _ in range(amount): while True: speaker = random.randint(0,1) # choose one of the speakers speaker_ix = list(filter(lambda x: (x-speaker) % 2 == 0, range(len(sents)))) permuted_speaker_ix = np.random.permutation(speaker_ix) new_sents = list(range(len(sents))) for (i_to, i_from) in zip(speaker_ix, permuted_speaker_ix): new_sents[i_to] = i_from if (not new_sents == permutations[0]) and ( not new_sents in permutations or len(permutations) > math.factorial(len(speaker_ix))): permutations.append(new_sents) break return permutations[1:] def utterance_insertions(length, amount): possible_permutations = [] original = list(range(length)) for ix in original: for y in range(length): if ix == y: continue ix_removed = original[0:ix] + ([] if ix == length-1 else original[ix+1:]) ix_removed.insert(y, ix) possible_permutations.append(deepcopy(ix_removed)) permutations = [] for _ in range(amount): i = random.randint(0, len(possible_permutations)-1) permutations.append(possible_permutations[i]) return permutations class DailyDialogConverter: def __init__(self, data_dir, tokenizer, word2id, task='', ranking_dataset = True): self.data_dir = data_dir self.act_utt_file = os.path.join(data_dir, 'act_utt_name.txt') self.tokenizer = tokenizer self.word2id = word2id self.output_file = None self.task = task self.ranking_dataset = ranking_dataset self.perturbation_statistics = 0 self.setname = os.path.split(data_dir)[1] assert self.setname == 'train' or self.setname == 'validation' or self.setname == 'test', "wrong data dir name" def create_act_utt(self): dial_file = os.path.join(self.data_dir, "dialogues_{}.txt".format(self.setname)) act_file = os.path.join(self.data_dir, "dialogues_act_{}.txt".format(self.setname)) output_file = os.path.join(self.data_dir, 'act_utt_name.txt'.format(self.task)) df = open(dial_file, 'r') af = open(act_file, 'r') of = open(output_file, 'w') csv_writer = csv.writer(of, delimiter='|') for line_count, (dial, act) in tqdm(enumerate(zip(df, af)), total=11118): seqs = dial.split('__eou__') seqs = seqs[:-1] if len(seqs) < 5: continue tok_seqs = [self.tokenizer(seq) for seq in seqs] tok_seqs = [[w.lower() for w in utt] for utt in tok_seqs] tok_seqs = [self.word2id(seq) for seq in tok_seqs] acts = act.split(' ') acts = acts[:-1] acts = [int(act) for act in acts] for utt_i, (act, utt) in enumerate(zip(acts, tok_seqs)): dialog_name = "{}_{}".format(self.setname, line_count) row = (act, utt, dialog_name,utt_i) csv_writer.writerow(row) def convert_dset(self, amounts): # data_dir is supposed to be the dir with the respective train/test/val-dataset files print("Creating {} perturbations for task {}".format(amounts, self.task)) dial_file = os.path.join(self.data_dir, "dialogues_{}.txt".format(self.setname)) act_file = os.path.join(self.data_dir, "dialogues_act_{}.txt".format(self.setname)) self.output_file = os.path.join(self.data_dir, 'coherency_dset_{}.txt'.format(self.task)) root_data_dir = os.path.split(self.data_dir)[0] shuffled_path = os.path.join(root_data_dir, "shuffled_{}".format(self.task)) if not os.path.isdir(shuffled_path): os.mkdir(shuffled_path) assert os.path.isfile(dial_file) and os.path.isfile(act_file), "could not find input files" assert os.path.isfile(self.act_utt_file), "missing act_utt.txt in data_dir" with open(self.act_utt_file, 'r') as f: act_utt_df = pd.read_csv(f, sep='|', names=['act','utt','dialogue','ix']) rand_generator = lambda: draw_rand_sent_from_df(act_utt_df) df = open(dial_file, 'r') af = open(act_file, 'r') of = open(self.output_file, 'w') discarded = 0 for line_count, (dial, act) in tqdm(enumerate(zip(df, af)), total=11118): seqs = dial.split('__eou__') seqs = seqs[:-1] if len(seqs) < 5: discarded += 1 continue tok_seqs = [self.tokenizer(seq) for seq in seqs] tok_seqs = [[w.lower() for w in utt] for utt in tok_seqs] tok_seqs = [self.word2id(seq) for seq in tok_seqs] acts = act.split(' ') acts = acts[:-1] acts = [int(act) for act in acts] if self.task == 'up': permuted_ixs = permute(tok_seqs, acts, amounts) elif self.task == 'us': permuted_ixs = draw_rand_sent(act_utt_df, len(tok_seqs), amounts) elif self.task == 'hup': permuted_ixs = half_perturb(tok_seqs, acts, amounts) elif self.task == 'ui': permuted_ixs = utterance_insertions(len(tok_seqs), amounts) shuffle_file = os.path.join(shuffled_path, "{}_{}.csv".format(self.setname, line_count)) with open(shuffle_file, "w") as f: csv_writer = csv.writer(f) for perm in permuted_ixs: if self.task == 'us': (utt, da, name, ix, insert_ix) = perm row = [name, ix,insert_ix] csv_writer.writerow(row) else: csv_writer.writerow(perm) self.perturbation_statistics += len(permuted_ixs) if self.task == 'us': for p in permuted_ixs: (insert_sent, insert_da, name, ix, insert_ix) = p a = " ".join([str(a) for a in acts]) u = str(tok_seqs) p_a = deepcopy(acts) p_a[insert_ix] = insert_da pa = " ".join([str(a) for a in p_a]) p_u = deepcopy(tok_seqs) p_u[insert_ix] = self.word2id(insert_sent) of.write("{}|{}|{}|{}|{}\n".format("0",a,u,pa,p_u)) of.write("{}|{}|{}|{}|{}\n".format("1",pa,p_u,a,u)) else: for p in permuted_ixs: a = " ".join([str(a) for a in acts]) u = str(tok_seqs) pa = [acts[i] for i in p] p_a = " ".join([str(a) for a in pa]) pu = [tok_seqs[i] for i in p] p_u = str(pu) of.write("{}|{}|{}|{}|{}\n".format("0",a,u,p_a,p_u)) of.write("{}|{}|{}|{}|{}\n".format("1",p_a,p_u,a,u)) print(discarded) class SwitchboardConverter: def __init__(self, data_dir, tokenizer, word2id, task='', seed=42): self.corpus = CorpusReader(data_dir) self.data_dir = data_dir self.tokenizer = tokenizer self.word2id = word2id self.task = task self.utt_num = 0 for utt in self.corpus.iter_utterances(): self.utt_num += 1 self.trans_num = 0 for trans in self.corpus.iter_transcripts(): self.trans_num += 1 self.da2num = switchboard_da_mapping() # CAUTION: make sure that for each task the seed is the same s.t. the splits will be the same! train_ixs, val_ixs = train_test_split(range(self.trans_num), shuffle=True, train_size=0.8, random_state=seed) val_ixs, test_ixs = train_test_split(val_ixs, shuffle=True, train_size=0.5, random_state=seed) self.train_ixs, self.val_ixs, self.test_ixs = train_ixs, val_ixs, test_ixs self.utt_da_pairs = [] prev_da = "%" for i, utt in enumerate(self.corpus.iter_utterances()): sentence = re.sub(r"([+/\}\[\]]|\{\w)", "", utt.text) sentence = self.word2id(self.tokenizer(sentence)) act = utt.damsl_act_tag() if act == None: act = "%" if act == "+": act = prev_da _, swda_name = os.path.split(utt.swda_filename) swda_name = swda_name[:-4] if swda_name.endswith('.csv') else swda_name ix = utt.utterance_index self.utt_da_pairs.append((sentence, act, swda_name, ix)) def draw_rand_sent(self): r = random.randint(0, len(self.utt_da_pairs)-1) return self.utt_da_pairs[r] def create_vocab(self): print("Creating Vocab file for Switchboard") cnt = Counter() for utt in self.corpus.iter_utterances(): sentence = re.sub(r"([+/\}\[\]]|\{\w)", "", utt.text) sentence = self.tokenizer(sentence) for w in sentence: cnt[w] += 1 itos_file = os.path.join(self.data_dir, "itos.txt") itosf = open(itos_file, "w") for (word, _) in cnt.most_common(25000): itosf.write("{}\n".format(word)) #getKeysByValue def swda_permute(self, sents, amount, speaker_ixs): if amount == 0: return [] permutations = [list(range(len(sents)))] segment_permutations = [] amount = min(amount, factorial(len(sents))-1) segm_ixs = self.speaker_segment_ixs(speaker_ixs) segments = list(set(segm_ixs.values())) for i in range(amount): while True: permutation = [] segm_perm = np.random.permutation(len(segments)) segment_permutations.append(segm_perm) for segm_ix in segm_perm: utt_ixs = sorted(getKeysByValue(segm_ixs, segm_ix)) permutation = permutation + utt_ixs if permutation not in permutations: break permutations.append(permutation) return permutations[1:] , segment_permutations #the first one is the original, which was included s.t. won't be generated def speaker_segment_ixs(self, speaker_ixs): i = 0 segment_indices = dict() prev_speaker = speaker_ixs[0] for j,speaker in enumerate(speaker_ixs): if speaker != prev_speaker: prev_speaker = speaker i += 1 segment_indices[j] = i return segment_indices def swda_half_perturb(self, amount, speaker_ixs): segm_ixs = self.speaker_segment_ixs(speaker_ixs) segments = list(set(segm_ixs.values())) segment_permutations = [] permutations = [list(segm_ixs.keys())] for _ in range(amount): speaker = random.randint(0,1) # choose one of the speakers speaker_to_perm = list(filter(lambda x: (x-speaker) % 2 == 0, segments)) speaker_orig = list(filter(lambda x: (x-speaker) % 2 != 0, segments)) #TODO: rename either speaker_ix or speaker_ixs, they are something different, but the names are too close if len(speaker_to_perm) < 2: return [] while True: permuted_speaker_ix = np.random.permutation(speaker_to_perm).tolist() new_segments = [None]*(len(speaker_orig)+len(permuted_speaker_ix)) if speaker == 0 : new_segments[::2] = permuted_speaker_ix new_segments[1::2] = speaker_orig else: new_segments[1::2] = permuted_speaker_ix new_segments[::2] = speaker_orig segment_permutations.append(new_segments) permutation = [] for segm_ix in new_segments: utt_ixs = sorted(getKeysByValue(segm_ixs, segm_ix)) permutation = permutation + utt_ixs if not permutation in permutations: permutations.append(permutation) break return permutations[1:], segment_permutations def swda_utterance_insertion(self, speaker_ixs, amounts): segment_ixs = self.speaker_segment_ixs(speaker_ixs) segments = list(set(segment_ixs.values())) segment_permutations = [] permutations = [] i = 0 for _ in range(amounts): while True: # actually: do ... while permutation not in permutations i_from = random.randint(0, len(segments)-1) i_to = random.randint(0, len(segments)-2) segm_perm = deepcopy(segments) rem_elem = segments[i_from] segm_perm = segm_perm[0:i_from] + segm_perm[i_from+1:] segm_perm = segm_perm[0:i_to] + [rem_elem] + segm_perm[i_to:] permutation = [] for segm_ix in segm_perm: utt_ixs = sorted(getKeysByValue(segment_ixs, segm_ix)) permutation = permutation + utt_ixs if permutation not in permutations: permutations.append(permutation) segment_permutations.append(segm_perm) break return permutations, segment_permutations def swda_utterance_sampling(self, speaker_ixs, amount): segm_ixs = self.speaker_segment_ixs(speaker_ixs) segments = list(set(segm_ixs.values())) permutations = [] for i in range(amount): (sentence, act, swda_name, ix) = self.draw_rand_sent() insert_ix = random.choice(segments) permutations.append((sentence, act, swda_name, ix, insert_ix)) return permutations def convert_dset(self, amounts): # create distinct train/validation/test files. they'll correspond to the created # splits from the constructor train_output_file = os.path.join(self.data_dir, 'train', 'coherency_dset_{}.txt'.format(self.task)) val_output_file = os.path.join(self.data_dir, 'validation', 'coherency_dset_{}.txt'.format(self.task)) test_output_file = os.path.join(self.data_dir, 'test', 'coherency_dset_{}.txt'.format(self.task)) if not os.path.exists(os.path.join(self.data_dir, 'train')): os.makedirs(os.path.join(self.data_dir, 'train')) if not os.path.exists(os.path.join(self.data_dir, 'validation')): os.makedirs(os.path.join(self.data_dir, 'validation')) if not os.path.exists(os.path.join(self.data_dir, 'test')): os.makedirs(os.path.join(self.data_dir, 'test')) trainfile = open(train_output_file, 'w') valfile = open(val_output_file, 'w') testfile = open(test_output_file, 'w') shuffled_path = os.path.join(self.data_dir, "shuffled_{}".format(self.task)) if not os.path.isdir(shuffled_path): os.mkdir(shuffled_path) for i,trans in enumerate(tqdm(self.corpus.iter_transcripts(display_progress=False), total=1155)): utterances = [] acts = [] speaker_ixs = [] prev_act = "%" for utt in trans.utterances: sentence = re.sub(r"([+/\}\[\]]|\{\w)", "", utt.text) sentence = self.word2id(self.tokenizer(sentence)) utterances.append(sentence) act = utt.damsl_act_tag() if act == None: act = "%" if act == "+": act = prev_act acts.append(self.da2num[act]) prev_act = act if "A" in utt.caller: speaker_ixs.append(0) else: speaker_ixs.append(1) if self.task == 'up': permuted_ixs , segment_perms = self.swda_permute(utterances, amounts, speaker_ixs) elif self.task == 'us': permuted_ixs = self.swda_utterance_sampling(speaker_ixs, amounts) elif self.task == 'hup': permuted_ixs , segment_perms = self.swda_half_perturb(amounts, speaker_ixs) elif self.task == 'ui': permuted_ixs, segment_perms = self.swda_utterance_insertion(speaker_ixs, amounts) swda_fname = os.path.split(trans.swda_filename)[1] shuffle_file = os.path.join(shuffled_path, swda_fname) # [:-4] with open(shuffle_file, "w") as f: csv_writer = csv.writer(f) if self.task == 'us': for perm in permuted_ixs: (utt, da, name, ix, insert_ix) = perm row = [name, ix,insert_ix] csv_writer.writerow(row) else: for perm in segment_perms: csv_writer.writerow(perm) if self.task == 'us': for p in permuted_ixs: a = " ".join([str(x) for x in acts]) u = str(utterances) insert_sent, insert_da, name, ix, insert_ix = p insert_da = self.da2num[insert_da] p_a = deepcopy(acts) p_a[insert_ix] = insert_da pa = " ".join([str(x) for x in p_a]) p_u = deepcopy(utterances) p_u[insert_ix] = insert_sent if i in self.train_ixs: trainfile.write("{}|{}|{}|{}|{}\n".format("0",a,u,pa,p_u)) trainfile.write("{}|{}|{}|{}|{}\n".format("1",pa,p_u,a,u)) if i in self.val_ixs: valfile.write("{}|{}|{}|{}|{}\n".format("0",a,u,pa,p_u)) valfile.write("{}|{}|{}|{}|{}\n".format("1",pa,p_u,a,u)) if i in self.test_ixs: testfile.write("{}|{}|{}|{}|{}\n".format("0",a,u,pa,p_u)) testfile.write("{}|{}|{}|{}|{}\n".format("1",pa,p_u,a,u)) else: for p in permuted_ixs: a = " ".join([str(x) for x in acts]) u = str(utterances) pa = [acts[i] for i in p] p_a = " ".join([str(x) for x in pa]) pu = [utterances[i] for i in p] p_u = str(pu) if i in self.train_ixs: trainfile.write("{}|{}|{}|{}|{}\n".format("0",a,u,p_a,p_u)) trainfile.write("{}|{}|{}|{}|{}\n".format("1",p_a,p_u,a,u)) if i in self.val_ixs: valfile.write("{}|{}|{}|{}|{}\n".format("0",a,u,p_a,p_u)) valfile.write("{}|{}|{}|{}|{}\n".format("1",p_a,p_u,a,u)) if i in self.test_ixs: testfile.write("{}|{}|{}|{}|{}\n".format("0",a,u,p_a,p_u)) testfile.write("{}|{}|{}|{}|{}\n".format("1",p_a,p_u,a,u)) def main(): parser = argparse.ArgumentParser() parser.add_argument("--datadir", required=True, type=str, help="""The input directory where the files of the corpus are located. """) parser.add_argument("--corpus", required=True, type=str, help="""the name of the corpus to use, currently either 'DailyDialog' or 'Switchboard' """) parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--amount', type=int, default=20, help="random seed for initialization") parser.add_argument('--word2id', action='store_true', help= "convert the words to ids") parser.add_argument('--task', required=True, type=str, default="up", help="""for which task the dataset should be created. alternatives: up (utterance permutation) us (utterance sampling) hup (half utterance petrurbation) ui (utterance insertion, nothing directly added!)""") args = parser.parse_args() random.seed(args.seed) np.random.seed(args.seed) if args.word2id: f = open(os.path.join(args.datadir, "itos.txt"), "r") word2id_dict = dict() for i, word in enumerate(f): word2id_dict[word[:-1].lower()] = i word2id = lambda x: [word2id_dict[y] for y in x] # don't convert words to ids (yet). It gets done in the glove wrapper of mtl_coherence.py else: word2id = lambda x: x tokenizer = word_tokenize if args.corpus == 'DailyDialog': converter = DailyDialogConverter(args.datadir, tokenizer, word2id, task=args.task) converter.create_act_utt() elif args.corpus == 'Switchboard': converter = SwitchboardConverter(args.datadir, tokenizer, word2id, args.task, args.seed) converter.create_vocab() converter.convert_dset(amounts=args.amount) def getKeysByValue(dictOfElements, valueToFind): listOfKeys = list() for item in dictOfElements.items(): if item[1] == valueToFind: listOfKeys.append(item[0]) return listOfKeys def switchboard_da_mapping(): mapping_dict = dict({ "sd": 1, "b": 2, "sv": 3, "aa": 4, "%-": 5, "ba": 6, "qy": 7, "x": 8, "ny": 9, "fc": 10, "%": 11, "qw": 12, "nn": 13, "bk": 14, "h": 15, "qy^d": 16, "o": 17, "bh": 18, "^q": 19, "bf": 20, "na": 21, "ny^e": 22, "ad": 23, "^2": 24, "b^m": 25, "qo": 26, "qh": 27, "^h": 28, "ar": 29, "ng": 30, "nn^e": 31, "br": 32, "no": 33, "fp": 34, "qrr": 35, "arp": 36, "nd": 37, "t3": 38, "oo": 39, "co": 40, "cc": 41, "t1": 42, "bd": 43, "aap": 44, "am": 45, "^g": 46, "qw^d": 47, "fa": 48, "ft":49 }) d = defaultdict(lambda: 11) for (k, v) in mapping_dict.items(): d[k] = v return d if __name__ == "__main__": main()
4442
import os import sys import unittest from tests.tests_bin_class.test_performance import * if __name__ == "__main__": unittest.main()
4486
import string import requests import sys import myparser import re class search_twitter: def __init__(self, word, limit): self.word = word.replace(' ', '%20') self.results = "" self.totalresults = "" self.server = "www.google.com" self.hostname = "www.google.com" self.userAgent = "(Mozilla/5.0 (Windows; U; Windows NT 6.0;en-US; rv:1.9.2) Gecko/20100116 Firefox/3.7" self.quantity = "100" self.limit = int(limit) self.counter = 0 def do_search(self): try: urly="https://"+ self.server + "/search?num=100&start=" + str(self.counter) + "&hl=en&meta=&q=site%3Atwitter.com%20intitle%3A%22on+Twitter%22%20" + self.word except Exception, e: print e headers = {'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:34.0) Gecko/20100101 Firefox/34.0'} try: r=requests.get(urly,headers=headers) except Exception,e: print e self.results = r.content self.totalresults += self.results def get_people(self): rawres = myparser.parser(self.totalresults, self.word) return rawres.people_twitter() def process(self): while (self.counter < self.limit): self.do_search() self.counter += 100 print "\tSearching " + str(self.counter) + " results.."
4493
def gen(): i = 0 while 1: yield i i += 1 g = gen() try: g.pend_throw except AttributeError: print("SKIP") raise SystemExit print(next(g)) print(next(g)) g.pend_throw(ValueError()) v = None try: v = next(g) except Exception as e: print("raised", repr(e)) print("ret was:", v) # It's legal to pend exception in a just-started generator, just the same # as it's legal to .throw() into it. g = gen() g.pend_throw(ValueError()) try: next(g) except ValueError: print("ValueError from just-started gen")
4511
import math import numpy as np import numpy.random as npr import torch import torch.utils.data as data import torch.utils.data.sampler as torch_sampler from torch.utils.data.dataloader import default_collate from torch._six import int_classes as _int_classes from core.config import cfg from roi_data.minibatch import get_minibatch import utils.blob as blob_utils # from model.rpn.bbox_transform import bbox_transform_inv, clip_boxes class RoiDataLoader(data.Dataset): def __init__(self, roidb, num_classes, training=True): self._roidb = roidb self._num_classes = num_classes self.training = training self.DATA_SIZE = len(self._roidb) def __getitem__(self, index_tuple): index, ratio = index_tuple single_db = [self._roidb[index]] blobs, valid = get_minibatch(single_db, self._num_classes) #TODO: Check if minibatch is valid ? If not, abandon it. # Need to change _worker_loop in torch.utils.data.dataloader.py. # Squeeze batch dim # for key in blobs: # if key != 'roidb': # blobs[key] = blobs[key].squeeze(axis=0) blobs['data'] = blobs['data'].squeeze(axis=0) return blobs def __len__(self): return self.DATA_SIZE def cal_minibatch_ratio(ratio_list): """Given the ratio_list, we want to make the RATIO same for each minibatch on each GPU. Note: this only work for 1) cfg.TRAIN.MAX_SIZE is ignored during `prep_im_for_blob` and 2) cfg.TRAIN.SCALES containing SINGLE scale. Since all prepared images will have same min side length of cfg.TRAIN.SCALES[0], we can pad and batch images base on that. """ DATA_SIZE = len(ratio_list) ratio_list_minibatch = np.empty((DATA_SIZE,)) num_minibatch = int(np.ceil(DATA_SIZE / cfg.TRAIN.IMS_PER_BATCH)) # Include leftovers for i in range(num_minibatch): left_idx = i * cfg.TRAIN.IMS_PER_BATCH right_idx = min((i+1) * cfg.TRAIN.IMS_PER_BATCH - 1, DATA_SIZE - 1) if ratio_list[right_idx] < 1: # for ratio < 1, we preserve the leftmost in each batch. target_ratio = ratio_list[left_idx] elif ratio_list[left_idx] > 1: # for ratio > 1, we preserve the rightmost in each batch. target_ratio = ratio_list[right_idx] else: # for ratio cross 1, we make it to be 1. target_ratio = 1 ratio_list_minibatch[left_idx:(right_idx+1)] = target_ratio return ratio_list_minibatch class MinibatchSampler(torch_sampler.Sampler): def __init__(self, ratio_list, ratio_index): self.ratio_list = ratio_list self.ratio_index = ratio_index self.num_data = len(ratio_list) def __iter__(self): rand_perm = npr.permutation(self.num_data) ratio_list = self.ratio_list[rand_perm] ratio_index = self.ratio_index[rand_perm] # re-calculate minibatch ratio list ratio_list_minibatch = cal_minibatch_ratio(ratio_list) return iter(zip(ratio_index.tolist(), ratio_list_minibatch.tolist())) def __len__(self): return self.num_data class BatchSampler(torch_sampler.BatchSampler): r"""Wraps another sampler to yield a mini-batch of indices. Args: sampler (Sampler): Base sampler. batch_size (int): Size of mini-batch. drop_last (bool): If ``True``, the sampler will drop the last batch if its size would be less than ``batch_size`` Example: >>> list(BatchSampler(range(10), batch_size=3, drop_last=False)) [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] >>> list(BatchSampler(range(10), batch_size=3, drop_last=True)) [[0, 1, 2], [3, 4, 5], [6, 7, 8]] """ def __init__(self, sampler, batch_size, drop_last): if not isinstance(sampler, torch_sampler.Sampler): raise ValueError("sampler should be an instance of " "torch.utils.data.Sampler, but got sampler={}" .format(sampler)) if not isinstance(batch_size, _int_classes) or isinstance(batch_size, bool) or \ batch_size <= 0: raise ValueError("batch_size should be a positive integeral value, " "but got batch_size={}".format(batch_size)) if not isinstance(drop_last, bool): raise ValueError("drop_last should be a boolean value, but got " "drop_last={}".format(drop_last)) self.sampler = sampler self.batch_size = batch_size self.drop_last = drop_last def __iter__(self): batch = [] for idx in self.sampler: batch.append(idx) # Difference: batch.append(int(idx)) if len(batch) == self.batch_size: yield batch batch = [] if len(batch) > 0 and not self.drop_last: yield batch def __len__(self): if self.drop_last: return len(self.sampler) // self.batch_size else: return (len(self.sampler) + self.batch_size - 1) // self.batch_size def collate_minibatch(list_of_blobs): """Stack samples seperately and return a list of minibatches A batch contains NUM_GPUS minibatches and image size in different minibatch may be different. Hence, we need to stack smaples from each minibatch seperately. """ Batch = {key: [] for key in list_of_blobs[0]} # Because roidb consists of entries of variable length, it can't be batch into a tensor. # So we keep roidb in the type of "list of ndarray". lists = [] for blobs in list_of_blobs: lists.append({'data' : blobs.pop('data'), 'rois' : blobs.pop('rois'), 'labels' : blobs.pop('labels')}) for i in range(0, len(list_of_blobs), cfg.TRAIN.IMS_PER_BATCH): mini_list = lists[i:(i + cfg.TRAIN.IMS_PER_BATCH)] minibatch = default_collate(mini_list) for key in minibatch: Batch[key].append(minibatch[key]) return Batch
4566
from .basic_controller import BasicMAC from .cate_broadcast_comm_controller import CateBCommMAC from .cate_broadcast_comm_controller_full import CateBCommFMAC from .cate_broadcast_comm_controller_not_IB import CateBCommNIBMAC from .tar_comm_controller import TarCommMAC from .cate_pruned_broadcast_comm_controller import CatePBCommMAC REGISTRY = {"basic_mac": BasicMAC, "cate_broadcast_comm_mac": CateBCommMAC, "cate_broadcast_comm_mac_full": CateBCommFMAC, "cate_broadcast_comm_mac_not_IB": CateBCommNIBMAC, "tar_comm_mac": TarCommMAC, "cate_pruned_broadcast_comm_mac": CatePBCommMAC}
4569
from ..base import BaseModel # returned from https://vk.com/dev/account.getActiveOffers class ActiveOffer(BaseModel): id: str = None title: str = None instruction: str = None instruction_html: str = None short_description: str = None description: str = None img: str = None tag: str = None price: int = None
4571
import re import numbers import collections import logging from collections.abc import Iterable import itertools import aws_error_utils from .lookup import Ids, lookup_accounts_for_ou from .format import format_account_id LOGGER = logging.getLogger(__name__) _Context = collections.namedtuple("_Context", [ "session", "ids", "principal", "principal_filter", "permission_set", "permission_set_filter", "target", "target_filter", "get_principal_names", "get_permission_set_names", "get_target_names", "ou_recursive", "cache", "filter_cache" ]) def _filter(filter_cache, key, func, args): if not func: return True if key not in filter_cache: filter_cache[key] = func(*args) return filter_cache[key] def _flatten(list_of_lists): return list(itertools.chain(*list_of_lists)) def _is_principal_tuple(principal): try: return all([ len(principal) == 2, isinstance(principal[0], str), principal[0] in ["GROUP", "USER"], isinstance(principal[1], str), ]) except: return False def _process_principal(principal): if not principal: return None if isinstance(principal, str): return [(None, principal)] if _is_principal_tuple(principal): return [tuple(principal)] else: return _flatten(_process_principal(p) for p in principal) def _process_permission_set(ids, permission_set): if not permission_set: return None if not isinstance(permission_set, str) and isinstance(permission_set, Iterable): return _flatten(_process_permission_set(ids, ps) for ps in permission_set) if permission_set.startswith("arn"): permission_set_arn = permission_set elif permission_set.startswith("ssoins-") or permission_set.startswith("ins-"): permission_set_arn = f"arn:aws:sso:::permissionSet/{permission_set}" elif permission_set.startswith("ps-"): permission_set_arn = f"arn:aws:sso:::permissionSet/{ids.instance_id}/{permission_set}" else: raise TypeError(f"Invalid permission set id {permission_set}") return [permission_set_arn] def _is_target_tuple(target): try: return all([ len(target) == 2, isinstance(target[0], str), target[0] in ["AWS_OU", "AWS_ACCOUNT"], isinstance(target[1], str), ]) except: return False def _process_target(target): if not target: return None if isinstance(target, numbers.Number): return [("AWS_ACCOUNT", format_account_id(target))] if isinstance(target, str): if re.match(r"^\d+$", target): return [("AWS_ACCOUNT", format_account_id(target))] elif re.match(r"^r-[a-z0-9]{4,32}$", target) or re.match(r"^ou-[a-z0-9]{4,32}-[a-z0-9]{8,32}$", target): return [("AWS_OU", target)] else: raise TypeError(f"Invalid target {target}") elif _is_target_tuple(target): target_type, target_id = target if target_type not in ["AWS_ACCOUNT", "AWS_OU"]: raise TypeError(f"Invalid target type {target_type}") return [(target_type, target_id)] else: value = _flatten(_process_target(t) for t in target) return value def _get_account_iterator(target, context: _Context): def target_iterator(): target_name = None if context.get_target_names: organizations_client = context.session.client("organizations") account = organizations_client.describe_account(AccountId=target[1])["Account"] if account.get("Name"): target_name = account["Name"] value = (*target, target_name) if not _filter(context.filter_cache, value[1], context.target_filter, value): LOGGER.debug(f"Account is filtered: {value}") else: LOGGER.debug(f"Visiting single account: {value}") yield value return target_iterator def _get_ou_iterator(target, context: _Context): def target_iterator(): target_name = None # if context.get_target_names: # organizations_client = context.session.client("organizations") # ou = organizations_client.describe_organizational_unit(OrganizationalUnitId=target[1])["OrganizationalUnit"] # if ou.get("Name"): # target_name = ou("Name") value = (*target, target_name) accounts = lookup_accounts_for_ou(context.session, value[1], recursive=context.ou_recursive) for account in accounts: yield "AWS_ACCOUNT", account["Id"], account["Name"] return target_iterator def _get_single_target_iterator(target, context: _Context): target_type = target[0] if target_type == "AWS_ACCOUNT": return _get_account_iterator(target, context) elif target_type == "AWS_OU": return _get_ou_iterator(target, context) else: raise TypeError(f"Invalid target type {target_type}") def _get_all_accounts_iterator(context: _Context): def target_iterator(): organizations_client = context.session.client("organizations") accounts_paginator = organizations_client.get_paginator("list_accounts") for response in accounts_paginator.paginate(): LOGGER.debug(f"ListAccounts page: {response}") for account in response["Accounts"]: account_id = account["Id"] account_name = account["Name"] value = ("AWS_ACCOUNT", account_id, account_name) if not _filter(context.filter_cache, account_id, context.target_filter, value): LOGGER.debug(f"Account is filtered: {value}") continue LOGGER.debug(f"Visiting account: {value}") yield value return target_iterator def _get_target_iterator(context: _Context): if context.target: iterables = [_get_single_target_iterator(t, context) for t in context.target] def target_iterator(): return itertools.chain(*[it() for it in iterables]) return target_iterator else: LOGGER.debug(f"Iterating for all accounts") return _get_all_accounts_iterator(context) def _get_single_permission_set_iterator(permission_set, context: _Context): permission_set_arn = permission_set permission_set_id = permission_set_arn.split("/")[-1] def permission_set_iterator(target_type, target_id, target_name): if not context.get_permission_set_names: permission_set_name = None else: sso_admin_client = context.session.client("sso-admin") response = sso_admin_client.describe_permission_set( InstanceArn=context.ids.instance_arn, PermissionSetArn=permission_set_arn ) LOGGER.debug(f"DescribePermissionSet response: {response}") permission_set_name = response["PermissionSet"]["Name"] if not _filter(context.filter_cache, permission_set_arn, context.permission_set_filter, (permission_set_arn, permission_set_name)): LOGGER.debug(f"Single permission set is filtered: {(permission_set_id, permission_set_name)}") else: LOGGER.debug(f"Visiting single permission set {(permission_set_id, permission_set_name)}") yield permission_set_arn, permission_set_id, permission_set_name return permission_set_iterator def _get_all_permission_sets_iterator(context: _Context): def permission_set_iterator(target_type, target_id, target_name): if target_type != "AWS_ACCOUNT": raise TypeError(f"Unsupported target type {target_type}") sso_admin_client = context.session.client("sso-admin") permission_sets_paginator = sso_admin_client.get_paginator("list_permission_sets_provisioned_to_account") for response in permission_sets_paginator.paginate( InstanceArn=context.ids.instance_arn, AccountId=target_id): LOGGER.debug(f"ListPermissionSetsProvisionedToAccount {target_id} page: {response}") if "PermissionSets" not in response: continue for permission_set_arn in response["PermissionSets"]: permission_set_id = permission_set_arn.split("/", 2)[-1] if not context.get_permission_set_names: permission_set_name = None else: if permission_set_arn not in context.cache: response = sso_admin_client.describe_permission_set( InstanceArn=context.ids.instance_arn, PermissionSetArn=permission_set_arn ) LOGGER.debug(f"DescribePermissionSet response: {response}") context.cache[permission_set_arn] = response["PermissionSet"]["Name"] permission_set_name = context.cache[permission_set_arn] if not _filter(context.filter_cache, permission_set_arn, context.permission_set_filter, (permission_set_arn, permission_set_name)): LOGGER.debug(f"Permission set is filtered: {(permission_set_id, permission_set_name)}") continue LOGGER.debug(f"Visiting permission set: {(permission_set_id, permission_set_name)}") yield permission_set_arn, permission_set_id, permission_set_name return permission_set_iterator def _get_permission_set_iterator(context: _Context): if context.permission_set: iterables = [_get_single_permission_set_iterator(ps, context) for ps in context.permission_set] def permission_set_iterator(target_type, target_id, target_name): return itertools.chain(*[it(target_type, target_id, target_name) for it in iterables]) return permission_set_iterator else: LOGGER.debug("Iterating for all permission sets") return _get_all_permission_sets_iterator(context) def _get_principal_iterator(context: _Context): def principal_iterator( target_type, target_id, target_name, permission_set_arn, permission_set_id, permission_set_name): if target_type != "AWS_ACCOUNT": raise TypeError(f"Unsupported target type {target_type}") sso_admin_client = context.session.client("sso-admin") identity_store_client = context.session.client("identitystore") assignments_paginator = sso_admin_client.get_paginator("list_account_assignments") for response in assignments_paginator.paginate( InstanceArn=context.ids.instance_arn, AccountId=target_id, PermissionSetArn=permission_set_arn): LOGGER.debug(f"ListAccountAssignments for {target_id} {permission_set_arn.split('/')[-1]} page: {response}") if not response["AccountAssignments"] and not "NextToken" in response: LOGGER.debug(f"No assignments for {target_id} {permission_set_arn.split('/')[-1]}") for assignment in response["AccountAssignments"]: principal_type = assignment["PrincipalType"] principal_id = assignment["PrincipalId"] LOGGER.debug(f"Visiting principal {principal_type}:{principal_id}") if context.principal: for principal in context.principal: type_matches = (principal[0] is None or principal[0] != principal_type) if type_matches and principal[1] == principal_id: LOGGER.debug(f"Found principal {principal_type}:{principal_id}") break else: LOGGER.debug(f"Principal {principal_type}:{principal_id} does not match principals") continue principal_key = (principal_type, principal_id) if not context.get_principal_names: principal_name = None else: if principal_key not in context.cache: if principal_type == "GROUP": try: response = identity_store_client.describe_group( IdentityStoreId=context.ids.identity_store_id, GroupId=principal_id ) LOGGER.debug(f"DescribeGroup response: {response}") context.cache[principal_key] = response["DisplayName"] except aws_error_utils.catch_aws_error("ResourceNotFoundException"): context.cache[principal_key] = None elif principal_type == "USER": try: response = identity_store_client.describe_user( IdentityStoreId=context.ids.identity_store_id, UserId=principal_id ) LOGGER.debug(f"DescribeUser response: {response}") context.cache[principal_key] = response["UserName"] except aws_error_utils.catch_aws_error("ResourceNotFoundException"): context.cache[principal_key] = None else: raise ValueError(f"Unknown principal type {principal_type}") principal_name = context.cache[principal_key] if not _filter(context.filter_cache, principal_key, context.principal_filter, (principal_type, principal_id, principal_name)): if context.principal: LOGGER.debug(f"Principal is filtered: {principal_type}:{principal_id}") else: LOGGER.debug(f"Principal is filtered: {principal_type}:{principal_id}") continue LOGGER.debug(f"Visiting principal: {principal_type}:{principal_id}") yield principal_type, principal_id, principal_name return principal_iterator Assignment = collections.namedtuple("Assignment", [ "instance_arn", "principal_type", "principal_id", "principal_name", "permission_set_arn", "permission_set_name", "target_type", "target_id", "target_name", ]) def list_assignments( session, instance_arn=None, identity_store_id=None, principal=None, principal_filter=None, permission_set=None, permission_set_filter=None, target=None, target_filter=None, get_principal_names=False, get_permission_set_names=False, get_target_names=False, ou_recursive=False): """Iterate over AWS SSO assignments. Args: session (boto3.Session): boto3 session to use instance_arn (str): The SSO instance to use, or it will be looked up using ListInstances identity_store_id (str): The identity store to use if principal names are being retrieved or it will be looked up using ListInstances principal: A principal specification or list of principal specifications. A principal specification is a principal id or a 2-tuple of principal type and id. principal_filter: A callable taking principal type, principal id, and principal name (which may be None), and returning True if the principal should be included. permission_set: A permission set arn or id, or a list of the same. permission_set_filter: A callable taking permission set arn and name (name may be None), returning True if the permission set should be included. target: A target specification or list of target specifications. A target specification is an account or OU id, or a 2-tuple of target type, which is either AWS_ACCOUNT or AWS_OU, and target id. target_filter: A callable taking target type, target id, and target name (which may be None), and returning True if the target should be included. get_principal_names (bool): Retrieve names for principals in assignments. get_permission_set_names (bool): Retrieve names for permission sets in assignments. get_target_names (bool): Retrieve names for targets in assignments. ou_recursive (bool): Set to True if an OU is provided as a target to get all accounts including those in child OUs. Returns: An iterator over Assignment namedtuples """ ids = Ids(lambda: session, instance_arn, identity_store_id) return _list_assignments( session, ids, principal=principal, principal_filter=principal_filter, permission_set=permission_set, permission_set_filter=permission_set_filter, target=target, target_filter=target_filter, get_principal_names=get_principal_names, get_permission_set_names=get_permission_set_names, get_target_names=get_target_names, ou_recursive=ou_recursive, ) def _list_assignments( session, ids, principal=None, principal_filter=None, permission_set=None, permission_set_filter=None, target=None, target_filter=None, get_principal_names=False, get_permission_set_names=False, get_target_names=False, ou_recursive=False): principal = _process_principal(principal) permission_set = _process_permission_set(ids, permission_set) target = _process_target(target) cache = {} filter_cache = {} context = _Context( session = session, ids=ids, principal=principal, principal_filter=principal_filter, permission_set=permission_set, permission_set_filter=permission_set_filter, target=target, target_filter=target_filter, get_principal_names=get_principal_names, get_permission_set_names=get_permission_set_names, get_target_names=get_target_names, ou_recursive=ou_recursive, cache=cache, filter_cache=filter_cache, ) target_iterator = _get_target_iterator(context) permission_set_iterator = _get_permission_set_iterator(context) principal_iterator = _get_principal_iterator(context) for target_type, target_id, target_name in target_iterator(): for permission_set_arn, permission_set_id, permission_set_name, in permission_set_iterator(target_type, target_id, target_name): for principal_type, principal_id, principal_name in principal_iterator( target_type, target_id, target_name, permission_set_arn, permission_set_id, permission_set_name): assignment = Assignment( ids.instance_arn, principal_type, principal_id, principal_name, permission_set_arn, permission_set_name, target_type, target_id, target_name, ) LOGGER.debug(f"Visiting assignment: {assignment}") yield assignment if __name__ == "__main__": import boto3 import sys import json logging.basicConfig(level=logging.INFO) kwargs = {} for v in sys.argv[1:]: if hasattr(logging, v): LOGGER.setLevel(getattr(logging, v)) else: kwargs = json.loads(v) def fil(*args): print(args) return True kwargs["target_filter"] = fil try: session = boto3.Session() print(",".join(Assignment._fields)) for value in list_assignments(session, **kwargs): print(",".join(v or "" for v in value)) except KeyboardInterrupt: pass
4588
from pathlib import PosixPath import configparser from typing import Dict, Optional, Any, List from inspect import cleandoc import shutil import tensorhive import os import logging log = logging.getLogger(__name__) class CONFIG_FILES: # Where to copy files # (TensorHive tries to load these by default) config_dir = PosixPath.home() / '.config/TensorHive' MAIN_CONFIG_PATH = str(config_dir / 'main_config.ini') HOSTS_CONFIG_PATH = str(config_dir / 'hosts_config.ini') MAILBOT_CONFIG_PATH = str(config_dir / 'mailbot_config.ini') # Where to get file templates from # (Clone file when it's not found in config directory) tensorhive_package_dir = PosixPath(__file__).parent MAIN_CONFIG_TEMPLATE_PATH = str(tensorhive_package_dir / 'main_config.ini') HOSTS_CONFIG_TEMPLATE_PATH = str(tensorhive_package_dir / 'hosts_config.ini') MAILBOT_TEMPLATE_CONFIG_PATH = str(tensorhive_package_dir / 'mailbot_config.ini') ALEMBIC_CONFIG_PATH = str(tensorhive_package_dir / 'alembic.ini') MIGRATIONS_CONFIG_PATH = str(tensorhive_package_dir / 'migrations') class ConfigInitilizer: '''Makes sure that all default config files exist''' def __init__(self): # 1. Check if all config files exist all_exist = PosixPath(CONFIG_FILES.MAIN_CONFIG_PATH).exists() and \ PosixPath(CONFIG_FILES.HOSTS_CONFIG_PATH).exists() and \ PosixPath(CONFIG_FILES.MAILBOT_CONFIG_PATH).exists() if not all_exist: log.warning('[•] Detected missing default config file(s), recreating...') self.recreate_default_configuration_files() log.info('[•] All configs already exist, skipping...') def recreate_default_configuration_files(self) -> None: try: # 1. Create directory for stroing config files CONFIG_FILES.config_dir.mkdir(parents=True, exist_ok=True) # 2. Clone templates safely from `tensorhive` package self.safe_copy(src=CONFIG_FILES.MAIN_CONFIG_TEMPLATE_PATH, dst=CONFIG_FILES.MAIN_CONFIG_PATH) self.safe_copy(src=CONFIG_FILES.HOSTS_CONFIG_TEMPLATE_PATH, dst=CONFIG_FILES.HOSTS_CONFIG_PATH) self.safe_copy(src=CONFIG_FILES.MAILBOT_TEMPLATE_CONFIG_PATH, dst=CONFIG_FILES.MAILBOT_CONFIG_PATH) # 3. Change config files permission rw_owner_only = 0o600 os.chmod(CONFIG_FILES.MAIN_CONFIG_PATH, rw_owner_only) os.chmod(CONFIG_FILES.HOSTS_CONFIG_PATH, rw_owner_only) os.chmod(CONFIG_FILES.MAILBOT_CONFIG_PATH, rw_owner_only) except Exception: log.error('[✘] Unable to recreate configuration files.') def safe_copy(self, src: str, dst: str) -> None: '''Safe means that it won't override existing configuration''' if PosixPath(dst).exists(): log.info('Skipping, file already exists: {}'.format(dst)) else: shutil.copy(src, dst) log.info('Copied {} to {}'.format(src, dst)) class ConfigLoader: @staticmethod def load(path, displayed_title=''): import configparser config = configparser.ConfigParser(strict=False) full_path = PosixPath(path).expanduser() if config.read(str(full_path)): log.info('[•] Reading {} config from {}'.format(displayed_title, full_path)) else: log.warning('[✘] Configuration file not found ({})'.format(full_path)) log.info('Using default {} settings from config.py'.format(displayed_title)) return config ConfigInitilizer() config = ConfigLoader.load(CONFIG_FILES.MAIN_CONFIG_PATH, displayed_title='main') def display_config(cls): ''' Displays all uppercase class atributes (class must be defined first) Example usage: display_config(API_SERVER) ''' print('[{class_name}]'.format(class_name=cls.__name__)) for key, value in cls.__dict__.items(): if key.isupper(): print('{} = {}'.format(key, value)) def check_env_var(name: str): '''Makes sure that env variable is declared''' if not os.getenv(name): msg = cleandoc( ''' {env} - undeclared environment variable! Try this: `export {env}="..."` ''').format(env=name).split('\n') log.warning(msg[0]) log.warning(msg[1]) class SSH: section = 'ssh' HOSTS_CONFIG_FILE = config.get(section, 'hosts_config_file', fallback=CONFIG_FILES.HOSTS_CONFIG_PATH) TEST_ON_STARTUP = config.getboolean(section, 'test_on_startup', fallback=True) TIMEOUT = config.getfloat(section, 'timeout', fallback=10.0) NUM_RETRIES = config.getint(section, 'number_of_retries', fallback=1) KEY_FILE = config.get(section, 'key_file', fallback='~/.config/TensorHive/ssh_key') def hosts_config_to_dict(path: str) -> Dict: # type: ignore '''Parses sections containing hostnames''' hosts_config = ConfigLoader.load(path, displayed_title='hosts') result = {} for section in hosts_config.sections(): # We want to parse only sections which describe target hosts if section == 'proxy_tunneling': continue hostname = section result[hostname] = { 'user': hosts_config.get(hostname, 'user'), 'port': hosts_config.getint(hostname, 'port', fallback=22) } return result def proxy_config_to_dict(path: str) -> Optional[Dict]: # type: ignore '''Parses [proxy_tunneling] section''' config = ConfigLoader.load(path, displayed_title='proxy') section = 'proxy_tunneling' # Check if section is present and if yes, check if tunneling is enabled if config.has_section(section) and config.getboolean(section, 'enabled', fallback=False): return { 'proxy_host': config.get(section, 'proxy_host'), 'proxy_user': config.get(section, 'proxy_user'), 'proxy_port': config.getint(section, 'proxy_port', fallback=22) } else: return None AVAILABLE_NODES = hosts_config_to_dict(HOSTS_CONFIG_FILE) PROXY = proxy_config_to_dict(HOSTS_CONFIG_FILE) class DB: section = 'database' default_path = '~/.config/TensorHive/database.sqlite' def uri_for_path(path: str) -> str: # type: ignore return 'sqlite:///{}'.format(PosixPath(path).expanduser()) SQLALCHEMY_DATABASE_URI = uri_for_path(config.get(section, 'path', fallback=default_path)) TEST_DATABASE_URI = 'sqlite://' # Use in-memory (before: sqlite:///test_database.sqlite) class API: section = 'api' TITLE = config.get(section, 'title', fallback='TensorHive API') URL_HOSTNAME = config.get(section, 'url_hostname', fallback='0.0.0.0') URL_PREFIX = config.get(section, 'url_prefix', fallback='api') SPEC_FILE = config.get(section, 'spec_file', fallback='api_specification.yml') IMPL_LOCATION = config.get(section, 'impl_location', fallback='tensorhive.api.controllers') import yaml respones_file_path = str(PosixPath(__file__).parent / 'controllers/responses.yml') with open(respones_file_path, 'r') as file: RESPONSES = yaml.safe_load(file) class APP_SERVER: section = 'web_app.server' BACKEND = config.get(section, 'backend', fallback='gunicorn') HOST = config.get(section, 'host', fallback='0.0.0.0') PORT = config.getint(section, 'port', fallback=5000) WORKERS = config.getint(section, 'workers', fallback=4) LOG_LEVEL = config.get(section, 'loglevel', fallback='warning') class API_SERVER: section = 'api.server' BACKEND = config.get(section, 'backend', fallback='gevent') HOST = config.get(section, 'host', fallback='0.0.0.0') PORT = config.getint(section, 'port', fallback=1111) DEBUG = config.getboolean(section, 'debug', fallback=False) class MONITORING_SERVICE: section = 'monitoring_service' ENABLED = config.getboolean(section, 'enabled', fallback=True) ENABLE_GPU_MONITOR = config.getboolean(section, 'enable_gpu_monitor', fallback=True) UPDATE_INTERVAL = config.getfloat(section, 'update_interval', fallback=2.0) class PROTECTION_SERVICE: section = 'protection_service' ENABLED = config.getboolean(section, 'enabled', fallback=True) UPDATE_INTERVAL = config.getfloat(section, 'update_interval', fallback=2.0) NOTIFY_ON_PTY = config.getboolean(section, 'notify_on_pty', fallback=True) NOTIFY_VIA_EMAIL = config.getboolean(section, 'notify_via_email', fallback=False) class MAILBOT: mailbot_config = ConfigLoader.load(CONFIG_FILES.MAILBOT_CONFIG_PATH, displayed_title='mailbot') section = 'general' INTERVAL = mailbot_config.getfloat(section, 'interval', fallback=10.0) MAX_EMAILS_PER_PROTECTION_INTERVAL = mailbot_config.getint(section, 'max_emails_per_protection_interval', fallback=50) NOTIFY_INTRUDER = mailbot_config.getboolean(section, 'notify_intruder', fallback=True) NOTIFY_ADMIN = mailbot_config.getboolean(section, 'notify_admin', fallback=False) ADMIN_EMAIL = mailbot_config.get(section, 'admin_email', fallback=None) section = 'smtp' SMTP_LOGIN = mailbot_config.get(section, 'email', fallback=None) SMTP_PASSWORD = mailbot_config.get(section, 'password', fallback=None) SMTP_SERVER = mailbot_config.get(section, 'smtp_server', fallback=None) SMTP_PORT = mailbot_config.getint(section, 'smtp_port', fallback=587) section = 'template/intruder' INTRUDER_SUBJECT = mailbot_config.get(section, 'subject') INTRUDER_BODY_TEMPLATE = mailbot_config.get(section, 'html_body') section = 'template/admin' ADMIN_SUBJECT = mailbot_config.get(section, 'subject') ADMIN_BODY_TEMPLATE = mailbot_config.get(section, 'html_body') class USAGE_LOGGING_SERVICE: section = 'usage_logging_service' default_path = '~/.config/TensorHive/logs/' def full_path(path: str) -> str: # type: ignore return str(PosixPath(path).expanduser()) ENABLED = config.getboolean(section, 'enabled', fallback=True) UPDATE_INTERVAL = config.getfloat(section, 'update_interval', fallback=2.0) LOG_DIR = full_path(config.get(section, 'log_dir', fallback=default_path)) LOG_CLEANUP_ACTION = config.getint(section, 'log_cleanup_action', fallback=2) class JOB_SCHEDULING_SERVICE: section = 'job_scheduling_service' ENABLED = config.getboolean(section, 'enabled', fallback=True) UPDATE_INTERVAL = config.getfloat(section, 'update_interval', fallback=30.0) STOP_TERMINATION_ATTEMPTS_AFTER = config.getfloat(section, 'stop_termination_attempts_after_mins', fallback=5.0) SCHEDULE_QUEUED_JOBS_WHEN_FREE_MINS = config.getint(section, "schedule_queued_jobs_when_free_mins", fallback=30) class AUTH: from datetime import timedelta section = 'auth' def config_get_parsed(option: str, fallback: Any) -> List[str]: # type: ignore ''' Parses value for option from string to a valid python list. Fallback value is returned when anything goes wrong (e.g. option or value not present) Example .ini file, function called with arguments: option='some_option', fallback=None [some_section] some_option = ['foo', 'bar'] Will return: ['foo', 'bar'] ''' import ast try: raw_arguments = config.get('auth', option) parsed_arguments = ast.literal_eval(raw_arguments) return parsed_arguments except (configparser.Error, ValueError): log.warning('Parsing [auth] config section failed for option "{}", using fallback value: {}'.format( option, fallback)) return fallback FLASK_JWT = { 'SECRET_KEY': config.get(section, 'secrect_key', fallback='jwt-some-secret'), 'JWT_BLACKLIST_ENABLED': config.getboolean(section, 'jwt_blacklist_enabled', fallback=True), 'JWT_BLACKLIST_TOKEN_CHECKS': config_get_parsed('jwt_blacklist_token_checks', fallback=['access', 'refresh']), 'BUNDLE_ERRORS': config.getboolean(section, 'bundle_errors', fallback=True), 'JWT_ACCESS_TOKEN_EXPIRES': timedelta(minutes=config.getint(section, 'jwt_access_token_expires_minutes', fallback=1)), 'JWT_REFRESH_TOKEN_EXPIRES': timedelta(days=config.getint(section, 'jwt_refresh_token_expires_days', fallback=1)), 'JWT_TOKEN_LOCATION': config_get_parsed('jwt_token_location', fallback=['headers']) }
4626
from django.template import loader, RequestContext from django.http import Http404, HttpResponse from django.core.xheaders import populate_xheaders from django.core.paginator import ObjectPaginator, InvalidPage from django.core.exceptions import ObjectDoesNotExist def object_list(request, queryset, paginate_by=None, page=None, allow_empty=False, template_name=None, template_loader=loader, extra_context=None, context_processors=None, template_object_name='object', mimetype=None): """ Generic list of objects. Templates: ``<app_label>/<model_name>_list.html`` Context: object_list list of objects is_paginated are the results paginated? results_per_page number of objects per page (if paginated) has_next is there a next page? has_previous is there a prev page? page the current page next the next page previous the previous page pages number of pages, total hits number of objects, total last_on_page the result number of the last of object in the object_list (1-indexed) first_on_page the result number of the first object in the object_list (1-indexed) """ if extra_context is None: extra_context = {} queryset = queryset._clone() if paginate_by: paginator = ObjectPaginator(queryset, paginate_by) if not page: page = request.GET.get('page', 1) try: page = int(page) object_list = paginator.get_page(page - 1) except (InvalidPage, ValueError): if page == 1 and allow_empty: object_list = [] else: raise Http404 c = RequestContext(request, { '%s_list' % template_object_name: object_list, 'is_paginated': paginator.pages > 1, 'results_per_page': paginate_by, 'has_next': paginator.has_next_page(page - 1), 'has_previous': paginator.has_previous_page(page - 1), 'page': page, 'next': page + 1, 'previous': page - 1, 'last_on_page': paginator.last_on_page(page - 1), 'first_on_page': paginator.first_on_page(page - 1), 'pages': paginator.pages, 'hits' : paginator.hits, }, context_processors) else: c = RequestContext(request, { '%s_list' % template_object_name: queryset, 'is_paginated': False }, context_processors) if not allow_empty and len(queryset) == 0: raise Http404 for key, value in extra_context.items(): if callable(value): c[key] = value() else: c[key] = value if not template_name: model = queryset.model template_name = "%s/%s_list.html" % (model._meta.app_label, model._meta.object_name.lower()) t = template_loader.get_template(template_name) return HttpResponse(t.render(c), mimetype=mimetype) def object_detail(request, queryset, object_id=None, slug=None, slug_field=None, template_name=None, template_name_field=None, template_loader=loader, extra_context=None, context_processors=None, template_object_name='object', mimetype=None): """ Generic detail of an object. Templates: ``<app_label>/<model_name>_detail.html`` Context: object the object """ if extra_context is None: extra_context = {} model = queryset.model if object_id: queryset = queryset.filter(pk=object_id) elif slug and slug_field: queryset = queryset.filter(**{slug_field: slug}) else: raise AttributeError, "Generic detail view must be called with either an object_id or a slug/slug_field." try: obj = queryset.get() except ObjectDoesNotExist: raise Http404, "No %s found matching the query" % (model._meta.verbose_name) if not template_name: template_name = "%s/%s_detail.html" % (model._meta.app_label, model._meta.object_name.lower()) if template_name_field: template_name_list = [getattr(obj, template_name_field), template_name] t = template_loader.select_template(template_name_list) else: t = template_loader.get_template(template_name) c = RequestContext(request, { template_object_name: obj, }, context_processors) for key, value in extra_context.items(): if callable(value): c[key] = value() else: c[key] = value response = HttpResponse(t.render(c), mimetype=mimetype) populate_xheaders(request, response, model, getattr(obj, obj._meta.pk.name)) return response
4729
import unittest from musket_core import coders import numpy as np import pandas as pd import os import math fl=__file__ fl=os.path.dirname(fl) class TestCoders(unittest.TestCase): def test_binary_num(self): a=np.array([0,1,0,1]) bc=coders.get_coder("binary",a, None) self.assertEqual(bc[0], 0, "should be zero") self.assertEqual(bc[1], 1, "should be one") v=bc._decode(np.array([0.6])) self.assertEqual(v, 1, "should be one") v=bc._decode(np.array([0.2])) self.assertEqual(v, 0, "should be zero") pass def test_binary_str(self): a=np.array(["0","1","0","1"]) bc=coders.get_coder("binary",a, None) self.assertEqual(bc[0], 0, "should be zero") self.assertEqual(bc[1], 1, "should be one") v=bc._decode(np.array([0.6])) self.assertEqual(v, "1", "should be one") v=bc._decode(np.array([0.2])) self.assertEqual(v, "0", "should be zero") pass def test_binary_str2(self): a=np.array(["","1","","1"]) bc=coders.get_coder("binary",a, None) self.assertEqual(bc[0], 0, "should be zero") self.assertEqual(bc[1], 1, "should be one") v=bc._decode(np.array([0.6])) self.assertEqual(v, "1", "should be one") v=bc._decode(np.array([0.2])) self.assertEqual(v, "", "should be zero") pass def test_binary_bool(self): a=np.array([True,False,True,False]) bc=coders.get_coder("binary",a, None) self.assertEqual(bc[0], 1, "should be zero") self.assertEqual(bc[1], 0, "should be one") v=bc._decode(np.array([0.6])) self.assertEqual(v, True, "should be one") v=bc._decode(np.array([0.2])) self.assertEqual(v, False, "should be zero") pass def test_categorical_num(self): a=np.array([0,1,2,1]) bc=coders.get_coder("categorical_one_hot",a, None) self.assertEqual(bc[0][0], True, "should be zero") self.assertEqual(bc[0][1], False, "should be one") v=bc._decode(np.array([0.3,0.4,0.45])) self.assertEqual(v, 2, "should be one") v=bc._decode(np.array([0.2,0.1,0.1])) self.assertEqual(v, 0, "should be zero") pass def test_categorical_str(self): a=np.array(["a","b","c","b"]) bc=coders.get_coder("categorical_one_hot",a, None) self.assertEqual(bc[0][0], True, "should be zero") self.assertEqual(bc[0][1], False, "should be one") v=bc._decode(np.array([0.3,0.4,0.45])) self.assertEqual(v, "c", "should be one") v=bc._decode(np.array([0.2,0.1,0.1])) self.assertEqual(v, "a", "should be zero") pass def test_categorical_str2(self): a=np.array(["","b","c","b"]) bc=coders.get_coder("categorical_one_hot",a, None) self.assertEqual(bc[0][0], True, "should be zero") self.assertEqual(bc[0][1], False, "should be one") v=bc._decode(np.array([0.3,0.4,0.45])) self.assertEqual(v, "c", "should be one") v=bc._decode(np.array([0.2,0.1,0.1])) self.assertEqual(v, "", "should be zero") pass def test_categorical_pd(self): a=np.array([math.nan,1,2,1]) bc=coders.get_coder("categorical_one_hot",a, None) self.assertEqual(bc[0][2], True, "should be zero") self.assertEqual(bc[0][1], False, "should be one") v=bc._decode(np.array([0.3,0.4,0.45])) self.assertEqual(math.isnan(v),True, "should be one") v=bc._decode(np.array([0.2,0.1,0.1])) self.assertEqual(v, 1, "should be zero") pass def test_multiclass(self): a=np.array(["1 2","0 2","0",""]) bc=coders.get_coder("multi_class",a, None) val=bc[0] self.assertEqual((val==np.array([False,True,True])).sum(), 3,"Fixing format") for i in range(len(a)): val=bc[i] r=bc._decode(val) self.assertEqual(r, a[i], "Decoding should work also") pass def test_multiclass1(self): a=np.array(["1_2","0_2","0",""]) bc=coders.get_coder("multi_class",a, None) val=bc[0] self.assertEqual((val==np.array([False,True,True])).sum(), 3,"Fixing format") for i in range(len(a)): val=bc[i] r=bc._decode(val) self.assertEqual(r, a[i], "Decoding should work also") pass def test_multiclass2(self): a=np.array(["1","","",""]) bc=coders.get_coder("multi_class",a, None) val=bc[0] self.assertEqual((val==np.array([True])).sum(), 1,"Fixing format") for i in range(len(a)): val=bc[i] r=bc._decode(val) self.assertEqual(r, a[i], "Decoding should work also") pass
4732
from ..dojo_test_case import DojoTestCase from dojo.models import Test from dojo.tools.intsights.parser import IntSightsParser class TestIntSightsParser(DojoTestCase): def test_intsights_parser_with_one_critical_vuln_has_one_findings_json( self): testfile = open("unittests/scans/intsights/intsights_one_vul.json") parser = IntSightsParser() findings = parser.get_findings(testfile, Test()) testfile.close() self.assertEqual(1, len(findings)) finding = list(findings)[0] self.assertEqual( '5c80dbf83b4a3900078b6be6', finding.unique_id_from_tool) self.assertEqual( 'HTTP headers weakness in initech.com web server', finding.title) self.assertEquals('Critical', finding.severity) self.assertEquals( "https://dashboard.intsights.com/#/threat-command/alerts?search=5c80dbf83b4a3900078b6be6", finding.references) def test_intsights_parser_with_one_critical_vuln_has_one_findings_csv( self): testfile = open("unittests/scans/intsights/intsights_one_vuln.csv") parser = IntSightsParser() findings = parser.get_findings(testfile, Test()) testfile.close() self.assertEqual(1, len(findings)) finding = list(findings)[0] self.assertEqual( "mn7xy83finmmth4ja363rci9", finding.unique_id_from_tool) self.assertEqual( "HTTP headers weakness in company-domain.com web server", finding.title) def test_intsights_parser_with_many_vuln_has_many_findings_json(self): testfile = open("unittests/scans/intsights/intsights_many_vul.json") parser = IntSightsParser() findings = parser.get_findings(testfile, Test()) testfile.close() self.assertEqual(3, len(findings)) def test_intsights_parser_with_many_vuln_has_many_findings_csv(self): testfile = open("unittests/scans/intsights/intsights_many_vuln.csv") parser = IntSightsParser() findings = parser.get_findings(testfile, Test()) testfile.close() self.assertEqual(9, len(findings)) def test_intsights_parser_invalid_text_with_error_csv(self): with self.assertRaises(ValueError): testfile = open( "unittests/scans/intsights/intsights_invalid_file.txt") parser = IntSightsParser() findings = parser.get_findings(testfile, Test())
4740
import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt # NOT -> ParameterModule # NOT -> children_and_parameters # NOT -> flatten_model # NOT -> lr_range # NOT -> scheduling functions # NOT -> SmoothenValue # YES -> lr_find # NOT -> plot_lr_find # NOT TO BE MODIFIED class ParameterModule(nn.Module): "Register a lone parameter 'p' in a module" def __init__(self, p:nn.Parameter): super().__init__() self.val = p def forward(self, x): return x # NOT TO BE MODIFIED # To be used to flatten_model def children_and_parameters(m:nn.Module): "Return the children of `m` and its direct parameters not registered in modules." children = list(m.children()) children_p = sum([[id(p) for p in c.parameters()] for c in m.children()],[]) for p in m.parameters(): if id(p) not in children_p: children.append(ParameterModule(p)) return children # NOT TO BE MODIFIED flatten_model = lambda m: sum(map(flatten_model,children_and_parameters(m)),[]) if len(list(m.children())) else [m] # NOT TO BE MODIFIED def lr_range(model, lr): """ Build differential learning rate from lr. It will give you the Arguments: model :- torch.nn.Module lr :- float or slice Returns: Depending upon lr """ if not isinstance(lr, slice): return lr num_layer = len([nn.Sequential(*flatten_model(model))]) if lr.start: mult = lr.stop / lr.start step = mult**(1/(num_layer-1)) res = np.array([lr.start*(step**i) for i in range(num_layer)]) else: res = [lr.stop/10.]*(num_layer-1) + [lr.stop] return np.array(res) # NOT TO BE MODIFIED # These are the functions that would give us the values of lr. Liks for linearly # increasing lr we would use annealing_linear. # You can add your own custom function, for producing lr. # By defualt annealing_exp is used for both lr and momentum def annealing_no(start, end, pct:float): "No annealing, always return `start`." return start def annealing_linear(start, end, pct:float): "Linearly anneal from `start` to `end` as pct goes from 0.0 to 1.0." return start + pct * (end-start) def annealing_exp(start, end, pct:float): "Exponentially anneal from `start` to `end` as pct goes from 0.0 to 1.0." return start * (end/start) ** pct def annealing_cos(start, end, pct:float): "Cosine anneal from `start` to `end` as pct goes from 0.0 to 1.0." cos_out = np.cos(np.pi * pct) + 1 return end + (start-end)/2 * cos_out def do_annealing_poly(start, end, pct:float, degree): return end + (start-end) * (1-pct)**degree # NOT TO BE MODIFIED class Stepper(): """ Used to step from start, end ('vals') over 'n_iter' iterations on a schedule. We will create a stepper object and then use one of the above annelaing functions, to step from start lr to end lr. """ def __init__(self, vals, n_iter:int, func=None): self.start, self.end = (vals[0], vals[1]) if isinstance(vals, tuple) else (vals,0) self.n_iter = max(1, n_iter) if func is None: self.func = annealing_linear if isinstance(vals, tuple) else annealing_no else: self.func = func self.n = 0 def step(self): "Return next value along annealed schedule" self.n += 1 return self.func(self.start, self.end, self.n/self.n_iter) @property def is_done(self)->bool: "Return 'True' if schedule completed" return self.n >= self.n_iter # NOT TO BE MODIFIED class SmoothenValue(): "Create a smooth moving average for a value (loss, etc) using `beta`." def __init__(self, beta:float): self.beta,self.n,self.mov_avg = beta,0,0 def add_value(self, val:float)->None: "Add `val` to calculate updated smoothed value." self.n += 1 self.mov_avg = self.beta * self.mov_avg + (1 - self.beta) * val self.smooth = self.mov_avg / (1 - self.beta ** self.n) # TO BE MODIFIED IN SOME CASES def lr_find(data_loader, model, loss_fn, opt, wd:int=0, start_lr:float=1e-7, end_lr:float=10, num_it:int=100, stop_div:bool=True, smooth_beta:float=0.98, use_gpu:bool=True, device=torch.device('cuda'), anneal_func=annealing_exp): """ The main function that you will call to plot learning_rate vs losses graph. It is the only function from lr_find.py that you will call. By default it will use GPU. It assumes your model is already on GPU if you use use_gpu. Arguments:- data_loader :- torch.utils.data.DataLoader model :- torch.nn.Module loss_fn :- torch.nn.LossFunction opt :- torch.optim.Optimizer wd :- weight decay (default=0). start_lr :- The learning rate from where to start in lr_find (default=1e-7) end_lr :- The learning rate at which to end lr_find (default=10) num_it :- Number of iterations for lr_find (default=100) stop_div :- If the loss diverges, then stop early (default=True) smooth_beta :- The beta value to smoothen the running avergae of the loss function (default=0.98) use_gpu :- True (train on GPU) else CPU anneal_func :- The step function you want to use (default exp) device :- Torch device to use for training model (default GPU) Returns: losses :- list of smoothened version of losses lrs :- list of all lrs that we test """ model.train() stop = False flag = False best_loss = 0. iteration = 0 losses = [] lrs = [] lrs.append(start_lr) start_lr = lr_range(model, start_lr) start_lr = np.array(start_lr) if isinstance(start_lr, (tuple, list)) else start_lr end_lr = lr_range(model, end_lr) end_lr = np.array(end_lr) if isinstance(end_lr, (tuple, list)) else end_lr sched = Stepper((start_lr, end_lr), num_it, anneal_func) smoothener = SmoothenValue(smooth_beta) epochs = int(np.ceil(num_it/len(data_loader))) # save model_dict model_state = model.state_dict() opt_state = opt.state_dict() # Set optimizer learning_rate = start_lr for group in opt.param_groups: group['lr'] = sched.start for i in range(epochs): for data in data_loader: opt.zero_grad() ################### TO BE MODIFIED ################### # Depending on your model, you will have to modify your # data pipeline and how you give inputs to your model. inputs, labels = data if use_gpu: inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) loss = loss_fn(outputs, labels) ##################################################### if use_gpu: smoothener.add_value(loss.detach().cpu()) else: smoothener.add_value(loss.detach()) smooth_loss = smoothener.smooth losses.append(smooth_loss) loss.backward() ################### TO BE MODIFIED ################### # For AdamW. If you want to use Adam, comment these lines for group in opt.param_groups: for param in group['params']: param.data = param.data.add(-wd * group['lr'], param.data) ##################################################### opt.step() # Change lr new_lr = sched.step() lrs.append(new_lr) for group in opt.param_groups: group['lr'] = new_lr ################### TO BE MODIFIED ################### # You necessarily don't want to change it. But in cases # when you are maximizing the loss, then you will have # to change it. if iteration == 0 or smooth_loss < best_loss: best_loss = smooth_loss iteration += 1 if sched.is_done or (stop_div and (smooth_loss > 4*best_loss or torch.isnan(loss))): flag = True break ##################################################### if iteration%10 == 0: print(f'Iteration: {iteration}') if flag: break # Load state dict model.load_state_dict(model_state) opt.load_state_dict(opt_state) lrs.pop() print(f'LR Finder is complete.') return losses, lrs # NOT TO BE MODIFIED def plot_lr_find(losses, lrs, skip_start:int=10, skip_end:int=5, suggestion:bool=False, return_fig:bool=None): """ It will take the losses and lrs returned by lr_find as input. Arguments:- skip_start -> It will skip skip_start lrs from the start skip_end -> It will skip skip_end lrs from the end suggestion -> If you want to see the point where the gradient changes most return_fig -> True then get the fig in the return statement """ lrs = lrs[skip_start:-skip_end] if skip_end > 0 else lrs[skip_start:] losses = losses[skip_start:-skip_end] if skip_end > 0 else losses[skip_start:] losses = [x.item() for x in losses] fig, ax = plt.subplots(1, 1) ax.plot(lrs, losses) ax.set_ylabel("Loss") ax.set_xlabel("Learning Rate") ax.set_xscale('log') ax.xaxis.set_major_formatter(plt.FormatStrFormatter('%.0e')) if suggestion: try: mg = (np.gradient(np.array(losses))).argmin() except: print("Failed to compute the gradients, there might not be enough points.") return print(f"Min numerical gradient: {lrs[mg]:.2E}") ax.plot(lrs[mg], losses[mg], markersize=10, marker='o', color='red') if return_fig is not None: return fig
4754
import unittest from unittest import TestCase from misc import verify class TestVerify(TestCase): """Tests misc.py verifies function.""" def test_verify__with_zero_threshold_and_expected_succeeds(self): """Test passes when expected rate, actual rate and threshold are all zero.""" result = verify(metric="Query failure rate", actual=0.0, expected=0.0, threshold=0.0) self.assertEqual(result, 0) def test_verify__fails_when_positive_delta_is_larger_than_postive_threshold(self): """Test fails when positive delta between actual rate and expected rate exceeds positive threshold.""" result = verify(metric="Update latency", actual=200, expected=100, threshold=0.1) self.assertEqual(result, 1) def test_verify__fails_when_negative_delta_is_smaller_than_negative_threshold(self): """Test fails when negative delta between actual rate and expected rate exceeds negative threshold.""" result = verify(metric="Update latency", actual=50, expected=100, threshold=-0.01) self.assertEqual(result, 1) def test_verify__fails_when_negative_delta_and_positive_threshold(self): """Test fails when delta between actual rate and expected rate exceeds threshold.""" result = verify(metric="Update latency", actual=50, expected=100, threshold=0.01) self.assertEqual(result, 0) if __name__ == "__main__": unittest.main()
4763
import re from rest_framework import serializers from .models import Collection, CollectionIcon class CollectionSerializer(serializers.ModelSerializer): """Collections's serializer""" class Meta: model = Collection read_only = ('token', ) class CollectionIconSerializer(serializers.ModelSerializer): """CollectionIcon's Serializer. """ class Meta: model = CollectionIcon def validate_width(self, attrs, source): width = attrs[source] if width < 1.0: raise serializers.ValidationError('Width should be greater than 1.0') return attrs def validate_name(self, attrs, source): name = attrs[source].lower() name = re.sub(r'[^a-z0-9\-]', '-', name).strip('-') name = re.sub(r'-+', '-', name) if name: attrs[source] = name else: raise serializers.ValidationError('Invalid name') return attrs def validate(self, attrs): packicon = attrs.get('packicon') svg_d = attrs.get('svg_d') width = attrs.get('width') if packicon or (svg_d and width): return attrs raise serializers.ValidationError( 'Either a packicon or the shape of icon should be given' )
4789
from braintree.configuration import Configuration from braintree.resource import Resource class AccountUpdaterDailyReport(Resource): def __init__(self, gateway, attributes): Resource.__init__(self, gateway, attributes) if "report_url" in attributes: self.report_url = attributes.pop("report_url") if "report_date" in attributes: self.report_date = attributes.pop("report_date") def __repr__(self): detail_list = ["report_url", "report_date"] return super(AccountUpdaterDailyReport, self).__repr__(detail_list)
4817
from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import matplotlib.colors as colors from numpy import array from numpy import max map = Basemap(llcrnrlon=-0.5,llcrnrlat=39.8,urcrnrlon=4.,urcrnrlat=43., resolution='i', projection='tmerc', lat_0 = 39.5, lon_0 = 1) map.readshapefile('../sample_files/lightnings', 'lightnings') x = [] y = [] c = [] for info, lightning in zip(map.lightnings_info, map.lightnings): x.append(lightning[0]) y.append(lightning[1]) if float(info['amplitude']) < 0: c.append(-1 * float(info['amplitude'])) else: c.append(float(info['amplitude'])) plt.figure(0) map.drawcoastlines() map.readshapefile('../sample_files/comarques', 'comarques') map.hexbin(array(x), array(y)) map.colorbar(location='bottom') plt.figure(1) map.drawcoastlines() map.readshapefile('../sample_files/comarques', 'comarques') map.hexbin(array(x), array(y), gridsize=20, mincnt=1, cmap='summer', bins='log') map.colorbar(location='bottom', format='%.1f', label='log(# lightnings)') plt.figure(2) map.drawcoastlines() map.readshapefile('../sample_files/comarques', 'comarques') map.hexbin(array(x), array(y), gridsize=20, mincnt=1, cmap='summer', norm=colors.LogNorm()) cb = map.colorbar(location='bottom', format='%d', label='# lightnings') cb.set_ticks([1, 5, 10, 15, 20, 25, 30]) cb.set_ticklabels([1, 5, 10, 15, 20, 25, 30]) plt.figure(3) map.drawcoastlines() map.readshapefile('../sample_files/comarques', 'comarques') map.hexbin(array(x), array(y), C = array(c), reduce_C_function = max, gridsize=20, mincnt=1, cmap='YlOrBr', linewidths=0.5, edgecolors='k') map.colorbar(location='bottom', label='Mean amplitude (kA)') plt.show()
4819
import html from collections import namedtuple from pathlib import Path from typing import List, Dict import requests from bs4 import BeautifulSoup from lxml import etree from lxml.etree import XPath Emoji = namedtuple('Emoji', 'char name') class EmojiExtractor(object): def __init__(self): self.all_emojis = self.fetch_emoji_list() self.annotations = self.fetch_annotations() self.base_emojis = self.fetch_base_emojis() def fetch_emoji_list(self: 'EmojiExtractor') -> List[Emoji]: print('Downloading list of all emojis') data = requests.get( 'https://unicode.org/emoji/charts-14.0/full-emoji-list.html', timeout=120 ) # type: requests.Response html = BeautifulSoup(data.text, 'lxml') emojis = [] for row in html.find('table').find_all('tr'): if not row.th: emoji = row.find('td', {'class': 'chars'}).string description = row.find('td', {'class': 'name'}).string.replace('⊛ ', '') emojis.append(Emoji(emoji, description)) return emojis def fetch_annotations(self: 'EmojiExtractor') -> Dict[chr, List[str]]: print('Downloading annotations') data = requests.get( 'https://raw.githubusercontent.com/unicode-org/cldr/latest/common/annotations/en.xml', timeout=60 ) # type: requests.Response xpath = XPath('./annotations/annotation[not(@type="tts")]') return {element.get('cp'): element.text.split(' | ') for element in xpath(etree.fromstring(data.content))} def fetch_base_emojis(self: 'EmojiExtractor') -> List[chr]: print('Downloading list of human emojis...') data = requests.get( 'https://unicode.org/Public/14.0.0/ucd/emoji/emoji-data.txt', timeout=60 ) # type: requests.Response started = False emojis = [] for line in data.text.split('\n'): if not started and line != '# All omitted code points have Emoji_Modifier_Base=No ': continue started = True if line == '# Total elements: 132': break if line and not line.startswith('#'): emojis.extend(self.resolve_character_range(line.split(';')[0].strip())) return emojis def resolve_character_range(self, line: str) -> List[str]: try: (start, end) = line.split('..') return [chr(char) for char in range(int(start, 16), int(end, 16) + 1)] except ValueError: return [self.resolve_character(line)] def resolve_character(self, string: str) -> str: return "".join(chr(int(character, 16)) for character in string.split(' ')) def write_symbol_file(self: 'EmojiExtractor'): print('Writing collected emojis to symbol file') with Path('../picker/data/emojis.csv').open('w') as symbol_file: for entry in self.compile_entries(self.all_emojis): symbol_file.write(entry + "\n") def compile_entries(self: 'EmojiExtractor', emojis: List[Emoji]) -> List[str]: annotated_emojis = [] for emoji in emojis: entry = f"{emoji.char} {html.escape(emoji.name)}" if emoji.char in self.annotations: entry += f" <small>({html.escape(', '.join([annotation for annotation in self.annotations[emoji.char] if annotation != emoji.name]))})</small>" annotated_emojis.append(entry) return annotated_emojis def write_metadata_file(self: 'EmojiExtractor'): print('Writing metadata to metadata file') with Path('../picker/copyme.py').open('w') as metadata_file: metadata_file.write('skin_tone_selectable_emojis={\'') metadata_file.write('\', \''.join(self.base_emojis)) metadata_file.write('\'}\n') def extract(self: 'EmojiExtractor'): self.write_symbol_file() self.write_metadata_file()
4851
import glob import bs4 import gzip import pickle import re import os from concurrent.futures import ProcessPoolExecutor as PPE import json from pathlib import Path from hashlib import sha256 import shutil Path('json').mkdir(exist_ok=True) def sanitize(text): text = re.sub(r'(\t|\n|\r)', '', text) text = re.sub(r'\xa0', '', text) text = re.sub(r'\\r', '', text) text = re.sub('地図で物件の周辺環境をチェック!', '', text) return text def is_train(x): if '線' in x: return False else: return True def pmap(arg): key, fns = arg SIZE = len(fns) for index, fn in enumerate(fns): try: print('now', key,index, 'size', SIZE, fn) html = gzip.decompress(open(fn, 'rb').read()) soup = bs4.BeautifulSoup(html, 'lxml') if soup.find('link', {'rel':'canonical'}) is None: Path(fn).unlink() continue canonical = soup.find('link', {'rel':'canonical'})['href'] if '/detail/' not in canonical: Path(fn).unlink() continue basic_table = soup.find('div', {'class':'detail_basicInfo'}) if basic_table is None: Path(fn).unlink() continue basic_table = basic_table.find('table') # ズレの処理 tds = list(basic_table.find_all('td')) tds.pop(0) #print(tds.pop(0).text) tds = [td for td in tds if is_train(td)] print(len(basic_table.find_all('th')), len(tds)) if len(basic_table.find_all('th')) == 13 and len(tds) == 14: tds.pop(4) ... basic_obj = {sanitize(th.text):sanitize(td.text) for th, td in zip(basic_table.find_all('th'),tds)} detail_obj = {} for table in soup.find('div', {'class':'detail_specTable'}).find_all('table'): #print(table) for th, td in zip(table.find_all('th'), table.find_all('td')): detail_obj[sanitize(th.text)] = sanitize(td.text) obj = {'basic':basic_obj, 'detail':detail_obj, 'canonical':canonical, 'title':soup.title.text} last_fn = fn.split('/')[-1] shutil.move(fn, f'parsed_htmls/{last_fn}' ) with open(f'json/{last_fn}', 'w') as fp: fp.write(json.dumps(obj, indent=2, ensure_ascii=False)) except Exception as ex: #Path(fn).unlink() print(ex) #detail_table = soup.find('table', {'class':'bukken_detail_table'}) #detail_obj = {re.sub(r'\t', '', th.text):re.sub(r'(\t|\n)', '', td.text) for th, td in zip(detail_table.find_all('th'), detail_table.find_all('td'))} #print(detail_obj) #urls = [sha256(bytes(v, 'utf8')).hexdigest() for v in json.load(fp=open('./hash_url.json')).values()] #fns = [f'./htmls/{url}' for url in urls] import random files = glob.glob('./htmls/*') random.shuffle(files) args = {} for index, fn in enumerate(files): key = index%8 if args.get(key) is None: args[key] = [] args[key].append(fn) args = [(key,fns) for key,fns in args.items()] #[pmap(arg) for arg in args] with PPE(max_workers=8) as exe: exe.map(pmap, args)
4891
md_template_d144 = """verbosity=0 xcFunctional=PBE FDtype=4th [Mesh] nx=160 ny=80 nz=80 [Domain] ox=0. oy=0. oz=0. lx=42.4813 ly=21.2406 lz=21.2406 [Potentials] pseudopotential=pseudo.D_tm_pbe [Poisson] solver=@ max_steps_initial=@50 max_steps=@50 reset=@ bcx=periodic bcy=periodic bcz=periodic [Run] type=MD [MD] type=@ num_steps=@ dt=@15. [XLBOMD] dissipation=@5 align=@ [Quench] max_steps=@5 max_steps_tight=@ atol=1.e-@10 num_lin_iterations=3 ortho_freq=100 [SpreadPenalty] type=@energy damping=@ [email protected] [email protected] [Orbitals] initial_type=Gaussian initial_width=1.5 overallocate_factor=@2. [ProjectedMatrices] solver=@short_sighted [LocalizationRegions] radius=@8. auxiliary_radius=@ [email protected] [Restart] input_filename=wave.out input_level=3 interval=@ """ md_template_H2O_64 = """verbosity=1 xcFunctional=PBE FDtype=4th [Mesh] nx=128 ny=128 nz=128 [Domain] ox=0. oy=0. oz=0. lx=23.4884 ly=23.4884 lz=23.4884 [Potentials] pseudopotential=pseudo.O_ONCV_PBE_SG15 pseudopotential=pseudo.D_ONCV_PBE_SG15 [Poisson] solver=@ max_steps=@ [Run] type=MD [Quench] max_steps=1000 atol=1.e-@ [MD] type=@ num_steps=@ dt=10. print_interval=5 [XLBOMD] dissipation=@ align=@ [Restart] input_filename=wave.out input_level=4 output_level=4 interval=@ """ quench_template_H2O_64 = """verbosity=1 xcFunctional=PBE FDtype=4th [Mesh] nx=128 ny=128 nz=128 [Domain] ox=0. oy=0. oz=0. lx=23.4884 ly=23.4884 lz=23.4884 [Potentials] pseudopotential=pseudo.O_ONCV_PBE_SG15 pseudopotential=pseudo.D_ONCV_PBE_SG15 [Run] type=QUENCH [Quench] max_steps=1000 atol=1.e-8 [Orbitals] initial_type=Fourier [Restart] output_level=4 """ quench_template_d144 = """verbosity=1 xcFunctional=PBE FDtype=4th [Mesh] nx=160 ny=80 nz=80 [Domain] ox=0. oy=0. oz=0. lx=42.4813 ly=21.2406 lz=21.2406 [Potentials] pseudopotential=pseudo.D_tm_pbe [Poisson] solver=@ max_steps_initial=@50 max_steps=@50 bcx=periodic bcy=periodic bcz=periodic [Run] type=QUENCH [Quench] max_steps=200 atol=1.e-7 num_lin_iterations=3 ortho_freq=100 [SpreadPenalty] type=@energy damping=@ [email protected] [email protected] [Orbitals] initial_type=Gaussian initial_width=1.5 [ProjectedMatrices] solver=@short_sighted [LocalizationRegions] radius=@8. [Restart] output_type=distributed """ H2O_64_params={ 'nodes': '32', 'ntasks': '256', 'omp_num_threads': 8 if omp_num_threads == 4 else omp_num_threads, 'cores_per_task': '2', 'potentials': 'ln -s $maindir/potentials/pseudo.O_ONCV_PBE_SG15\nln -s $maindir/potentials/pseudo.D_ONCV_PBE_SG15', 'lrs': '', 'jobname': 'H2O_64', } d144_params={ 'nodes': '8', 'walltime': '01:30:00', 'ntasks': '125', 'omp_num_threads': omp_num_threads, 'cores_per_task': '1', 'potentials': 'ln -s $maindir/potentials/pseudo.D_tm_pbe', 'lrs': '-l lrs.in', 'jobname': 'd144', } vulcan_params={ 'queue': 'psmall', 'scratch_path': '/p/lscratchv/mgmolu/dunn27/mgmol/', 'gres': 'lscratchv', 'exe': 'mgmol-bgq', } cab_params={ 'queue': 'pbatch', 'scratch_path': '/p/lscratchd/dunn27/mgmol/', 'gres': 'lscratchd', 'omp_num_threads': '1', 'exe': 'mgmol-pel', 'walltime': '01:30:00', } runfile_quench_template="""#!/bin/tcsh #MSUB -l nodes={nodes},walltime={walltime} #MSUB -o mgmol.out #MSUB -q {queue} #MSUB -A comp #MSUB -l gres={gres} #MSUB -N {jobname} rm -f queued echo ' ' > running use boost-nompi-1.55.0 export BOOST_ROOT=/usr/local/tools/boost-nompi-1.55.0 export Boost_NO_SYSTEM_PATHS=ON setenv OMP_NUM_THREADS {omp_num_threads} set ntasks = {ntasks} set maindir = $home/mgmol set exe = $maindir/bin/{exe} set datadir = `pwd` set scratchdir = {scratch_path}`basename $datadir` mkdir $scratchdir cd $scratchdir echo ' ' > running set cfg_quench = mgmol_quench.cfg cp $datadir/$cfg_quench . cp $datadir/coords.in . cp $datadir/lrs.in . {potentials} #1st run srun -n $ntasks -c {cores_per_task} $exe -c $cfg_quench -i coords.in {lrs} #restart rm -f wave.out set restart_file=`ls -ld * | awk '/snapshot0/ {{ print $9 }}' | tail -n1` ln -s -f $restart_file wave.out rm -f running echo ' ' > queued """ runfile_md_template="""#!/bin/tcsh #MSUB -l nodes={nodes},walltime={walltime} #MSUB -o mgmol.out #MSUB -q {queue} #MSUB -A comp #MSUB -l gres={gres} #MSUB -N {jobname} rm -f queued echo ' ' > running use boost-nompi-1.55.0 export BOOST_ROOT=/usr/local/tools/boost-nompi-1.55.0 export Boost_NO_SYSTEM_PATHS=ON setenv OMP_NUM_THREADS {omp_num_threads} set ntasks = {ntasks} set maindir = $home/mgmol set exe = $maindir/bin/{exe} set datadir = `pwd` set scratchdir = {scratch_path}`basename $datadir` mkdir $scratchdir cd $scratchdir echo ' ' > running set cfg_md = mgmol_md.cfg cp $datadir/$cfg_md . #restart rm -f wave.out set restart_file=`ls -ld * | awk '/snapshot0/ {{ print $9 }}' | tail -n1` ln -s -f $restart_file wave.out #MD run srun -n $ntasks -c {cores_per_task} $exe -c $cfg_md #restart rm -f wave.out set restart_file=`ls -ld * | awk '/snapshot0/ {{ print $9 }}' | tail -n1` ln -s -f $restart_file wave.out rm -f running echo ' ' > queued """
4902
import torch import argparse import os import sys import cv2 import time class Configuration(): def __init__(self): self.EXP_NAME = 'mobilenetv2_cfbi' self.DIR_ROOT = './' self.DIR_DATA = os.path.join(self.DIR_ROOT, 'datasets') self.DIR_DAVIS = os.path.join(self.DIR_DATA, 'DAVIS') self.DIR_YTB = os.path.join(self.DIR_DATA, 'YTB/train') self.DIR_YTB_EVAL = os.path.join(self.DIR_DATA, 'YTB/valid') self.DIR_RESULT = os.path.join(self.DIR_ROOT, 'result', self.EXP_NAME) self.DIR_CKPT = os.path.join(self.DIR_RESULT, 'ckpt') self.DIR_LOG = os.path.join(self.DIR_RESULT, 'log') self.DIR_IMG_LOG = os.path.join(self.DIR_RESULT, 'log', 'img') self.DIR_TB_LOG = os.path.join(self.DIR_RESULT, 'log', 'tensorboard') self.DIR_EVALUATION = os.path.join(self.DIR_RESULT, 'eval') self.DATASETS = ['youtubevos'] self.DATA_WORKERS = 4 self.DATA_RANDOMCROP = (465, 465) self.DATA_RANDOMFLIP = 0.5 self.DATA_MAX_CROP_STEPS = 5 self.DATA_MIN_SCALE_FACTOR = 1. self.DATA_MAX_SCALE_FACTOR = 1.3 self.DATA_SHORT_EDGE_LEN = 480 self.DATA_RANDOM_REVERSE_SEQ = True self.DATA_DAVIS_REPEAT = 30 self.DATA_CURR_SEQ_LEN = 3 self.DATA_RANDOM_GAP_DAVIS = 3 self.DATA_RANDOM_GAP_YTB = 3 self.PRETRAIN = True self.PRETRAIN_FULL = False self.PRETRAIN_MODEL = './pretrain_models/mobilenetv2-deeplabv3p.pth.tar' self.MODEL_BACKBONE = 'mobilenet' self.MODEL_MODULE = 'networks.cfbi.cfbi' self.MODEL_OUTPUT_STRIDE = 16 self.MODEL_ASPP_OUTDIM = 256 self.MODEL_SHORTCUT_DIM = 48 self.MODEL_SEMANTIC_EMBEDDING_DIM = 100 self.MODEL_HEAD_EMBEDDING_DIM = 256 self.MODEL_PRE_HEAD_EMBEDDING_DIM = 64 self.MODEL_GN_GROUPS = 32 self.MODEL_GN_EMB_GROUPS = 25 self.MODEL_MULTI_LOCAL_DISTANCE = [2, 4, 6, 8, 10, 12] self.MODEL_LOCAL_DOWNSAMPLE = True self.MODEL_REFINE_CHANNELS = 64 # n * 32 self.MODEL_LOW_LEVEL_INPLANES = 256 if self.MODEL_BACKBONE == 'resnet' else 24 self.MODEL_RELATED_CHANNELS = 64 self.MODEL_EPSILON = 1e-5 self.MODEL_MATCHING_BACKGROUND = True self.MODEL_GCT_BETA_WD = True self.MODEL_FLOAT16_MATCHING = True self.MODEL_FREEZE_BN = True self.MODEL_FREEZE_BACKBONE = False self.TRAIN_TOTAL_STEPS = 100000 self.TRAIN_START_STEP = 0 self.TRAIN_LR = 0.01 self.TRAIN_MOMENTUM = 0.9 self.TRAIN_COSINE_DECAY = False self.TRAIN_WARM_UP_STEPS = 1000 self.TRAIN_WEIGHT_DECAY = 15e-5 self.TRAIN_POWER = 0.9 self.TRAIN_GPUS = 4 self.TRAIN_BATCH_SIZE = 8 self.TRAIN_START_SEQ_TRAINING_STEPS = self.TRAIN_TOTAL_STEPS / 2 self.TRAIN_TBLOG = False self.TRAIN_TBLOG_STEP = 60 self.TRAIN_LOG_STEP = 20 self.TRAIN_IMG_LOG = False self.TRAIN_TOP_K_PERCENT_PIXELS = 0.15 self.TRAIN_HARD_MINING_STEP = self.TRAIN_TOTAL_STEPS / 2 self.TRAIN_CLIP_GRAD_NORM = 5. self.TRAIN_SAVE_STEP = 1000 self.TRAIN_MAX_KEEP_CKPT = 8 self.TRAIN_RESUME = False self.TRAIN_RESUME_CKPT = None self.TRAIN_RESUME_STEP = 0 self.TRAIN_AUTO_RESUME = True self.TRAIN_GLOBAL_ATROUS_RATE = 1 self.TRAIN_LOCAL_ATROUS_RATE = 1 self.TRAIN_GLOBAL_CHUNKS = 20 self.TRAIN_DATASET_FULL_RESOLUTION = True self.TEST_GPU_ID = 0 self.TEST_DATASET = 'youtubevos' self.TEST_DATASET_FULL_RESOLUTION = False self.TEST_DATASET_SPLIT = ['val'] self.TEST_CKPT_PATH = None self.TEST_CKPT_STEP = None # if "None", evaluate the latest checkpoint. self.TEST_FLIP = False self.TEST_MULTISCALE = [1] self.TEST_MIN_SIZE = None self.TEST_MAX_SIZE = 800 * 1.3 if self.TEST_MULTISCALE == [1] else 800 self.TEST_WORKERS = 4 self.TEST_GLOBAL_CHUNKS = 4 self.TEST_GLOBAL_ATROUS_RATE = 2 self.TEST_LOCAL_ATROUS_RATE = 1 # dist self.DIST_ENABLE = True self.DIST_BACKEND = "gloo" self.DIST_URL = "file://./sharefile" self.DIST_START_GPU = 0 self.__check() def __check(self): if not torch.cuda.is_available(): raise ValueError('config.py: cuda is not avalable') if self.TRAIN_GPUS == 0: raise ValueError('config.py: the number of GPU is 0') for path in [self.DIR_RESULT, self.DIR_CKPT, self.DIR_LOG, self.DIR_EVALUATION, self.DIR_IMG_LOG, self.DIR_TB_LOG]: if not os.path.isdir(path): os.makedirs(path) cfg = Configuration()
4956
import random import math from functools import partial import json import pysndfx import librosa import numpy as np import torch from ops.audio import ( read_audio, compute_stft, trim_audio, mix_audio_and_labels, shuffle_audio, cutout ) SAMPLE_RATE = 44100 class Augmentation: """A base class for data augmentation transforms""" pass class MapLabels: def __init__(self, class_map, drop_raw=True): self.class_map = class_map def __call__(self, dataset, **inputs): labels = np.zeros(len(self.class_map), dtype=np.float32) for c in inputs["raw_labels"]: labels[self.class_map[c]] = 1.0 transformed = dict(inputs) transformed["labels"] = labels transformed.pop("raw_labels") return transformed class MixUp(Augmentation): def __init__(self, p): self.p = p def __call__(self, dataset, **inputs): transformed = dict(inputs) if np.random.uniform() < self.p: first_audio, first_labels = inputs["audio"], inputs["labels"] random_sample = dataset.random_clean_sample() new_audio, new_labels = mix_audio_and_labels( first_audio, random_sample["audio"], first_labels, random_sample["labels"] ) transformed["audio"] = new_audio transformed["labels"] = new_labels return transformed class FlipAudio(Augmentation): def __init__(self, p): self.p = p def __call__(self, dataset, **inputs): transformed = dict(inputs) if np.random.uniform() < self.p: transformed["audio"] = np.flipud(inputs["audio"]) return transformed class AudioAugmentation(Augmentation): def __init__(self, p): self.p = p def __call__(self, dataset, **inputs): transformed = dict(inputs) if np.random.uniform() < self.p: effects_chain = ( pysndfx.AudioEffectsChain() .reverb( reverberance=random.randrange(50), room_scale=random.randrange(50), stereo_depth=random.randrange(50) ) .pitch(shift=random.randrange(-300, 300)) .overdrive(gain=random.randrange(2, 10)) .speed(random.uniform(0.9, 1.1)) ) transformed["audio"] = effects_chain(inputs["audio"]) return transformed class LoadAudio: def __init__(self): pass def __call__(self, dataset, **inputs): audio, sr = read_audio(inputs["filename"]) transformed = dict(inputs) transformed["audio"] = audio transformed["sr"] = sr return transformed class STFT: eps = 1e-4 def __init__(self, n_fft, hop_size): self.n_fft = n_fft self.hop_size = hop_size def __call__(self, dataset, **inputs): stft = compute_stft( inputs["audio"], window_size=self.n_fft, hop_size=self.hop_size, eps=self.eps) transformed = dict(inputs) transformed["stft"] = np.transpose(stft) return transformed class AudioFeatures: eps = 1e-4 def __init__(self, descriptor, verbose=True): name, *args = descriptor.split("_") self.feature_type = name if name == "stft": n_fft, hop_size = args self.n_fft = int(n_fft) self.hop_size = int(hop_size) self.n_features = self.n_fft // 2 + 1 self.padding_value = 0.0 if verbose: print( "\nUsing STFT features with params:\n", "n_fft: {}, hop_size: {}".format( n_fft, hop_size ) ) elif name == "mel": n_fft, hop_size, n_mel = args self.n_fft = int(n_fft) self.hop_size = int(hop_size) self.n_mel = int(n_mel) self.n_features = self.n_mel self.padding_value = 0.0 if verbose: print( "\nUsing mel features with params:\n", "n_fft: {}, hop_size: {}, n_mel: {}".format( n_fft, hop_size, n_mel ) ) elif name == "raw": self.n_features = 1 self.padding_value = 0.0 if verbose: print( "\nUsing raw waveform features." ) def __call__(self, dataset, **inputs): transformed = dict(inputs) if self.feature_type == "stft": # stft = compute_stft( # inputs["audio"], # window_size=self.n_fft, hop_size=self.hop_size, # eps=self.eps, log=True # ) transformed["signal"] = np.expand_dims(inputs["audio"], -1) elif self.feature_type == "mel": stft = compute_stft( inputs["audio"], window_size=self.n_fft, hop_size=self.hop_size, eps=self.eps, log=False ) transformed["signal"] = np.expand_dims(inputs["audio"], -1) elif self.feature_type == "raw": transformed["signal"] = np.expand_dims(inputs["audio"], -1) return transformed class SampleSegment(Augmentation): def __init__(self, ratio=(0.3, 0.9), p=1.0): self.min, self.max = ratio self.p = p def __call__(self, dataset, **inputs): transformed = dict(inputs) if np.random.uniform() < self.p: original_size = inputs["audio"].size target_size = int(np.random.uniform(self.min, self.max) * original_size) start = np.random.randint(original_size - target_size - 1) transformed["audio"] = inputs["audio"][start:start+target_size] return transformed class ShuffleAudio(Augmentation): def __init__(self, chunk_length=0.5, p=0.5): self.chunk_length = chunk_length self.p = p def __call__(self, dataset, **inputs): transformed = dict(inputs) if np.random.uniform() < self.p: transformed["audio"] = shuffle_audio( transformed["audio"], self.chunk_length, sr=transformed["sr"]) return transformed class CutOut(Augmentation): def __init__(self, area=0.25, p=0.5): self.area = area self.p = p def __call__(self, dataset, **inputs): transformed = dict(inputs) if np.random.uniform() < self.p: transformed["audio"] = cutout( transformed["audio"], self.area) return transformed class SampleLongAudio: def __init__(self, max_length): self.max_length = max_length def __call__(self, dataset, **inputs): transformed = dict(inputs) if (inputs["audio"].size / inputs["sr"]) > self.max_length: max_length = self.max_length * inputs["sr"] start = np.random.randint(0, inputs["audio"].size - max_length) transformed["audio"] = inputs["audio"][start:start+max_length] return transformed class OneOf: def __init__(self, transforms): self.transforms = transforms def __call__(self, dataset, **inputs): transform = random.choice(self.transforms) return transform(**inputs) class DropFields: def __init__(self, fields): self.to_drop = fields def __call__(self, dataset, **inputs): transformed = dict() for name, input in inputs.items(): if not name in self.to_drop: transformed[name] = input return transformed class RenameFields: def __init__(self, mapping): self.mapping = mapping def __call__(self, dataset, **inputs): transformed = dict(inputs) for old, new in self.mapping.items(): transformed[new] = transformed.pop(old) return transformed class Compose: def __init__(self, transforms): self.transforms = transforms def switch_off_augmentations(self): for t in self.transforms: if isinstance(t, Augmentation): t.p = 0.0 def __call__(self, dataset=None, **inputs): for t in self.transforms: inputs = t(dataset=dataset, **inputs) return inputs class Identity: def __call__(self, dataset=None, **inputs): return inputs
5005
import torch import torch.nn as nn class EstimatorCV(): def __init__(self, feature_num, class_num): super(EstimatorCV, self).__init__() self.class_num = class_num self.CoVariance = torch.zeros(class_num, feature_num, feature_num)#.cuda() self.Ave = torch.zeros(class_num, feature_num)#.cuda() self.Amount = torch.zeros(class_num)#.cuda() def update_CV(self, features, labels): N = features.size(0) C = self.class_num A = features.size(1) NxCxFeatures = features.view( N, 1, A ).expand( N, C, A ) onehot = torch.zeros(N, C)#.cuda() onehot.scatter_(1, labels.view(-1, 1), 1) NxCxA_onehot = onehot.view(N, C, 1).expand(N, C, A) features_by_sort = NxCxFeatures.mul(NxCxA_onehot) Amount_CxA = NxCxA_onehot.sum(0) Amount_CxA[Amount_CxA == 0] = 1 ave_CxA = features_by_sort.sum(0) / Amount_CxA var_temp = features_by_sort - \ ave_CxA.expand(N, C, A).mul(NxCxA_onehot) var_temp = torch.bmm( var_temp.permute(1, 2, 0), var_temp.permute(1, 0, 2) ).div(Amount_CxA.view(C, A, 1).expand(C, A, A)) sum_weight_CV = onehot.sum(0).view(C, 1, 1).expand(C, A, A) sum_weight_AV = onehot.sum(0).view(C, 1).expand(C, A) weight_CV = sum_weight_CV.div( sum_weight_CV + self.Amount.view(C, 1, 1).expand(C, A, A) ) weight_CV[weight_CV != weight_CV] = 0 weight_AV = sum_weight_AV.div( sum_weight_AV + self.Amount.view(C, 1).expand(C, A) ) weight_AV[weight_AV != weight_AV] = 0 additional_CV = weight_CV.mul(1 - weight_CV).mul( torch.bmm( (self.Ave - ave_CxA).view(C, A, 1), (self.Ave - ave_CxA).view(C, 1, A) ) ) self.CoVariance = (self.CoVariance.mul(1 - weight_CV) + var_temp .mul(weight_CV)).detach() + additional_CV.detach() self.Ave = (self.Ave.mul(1 - weight_AV) + ave_CxA.mul(weight_AV)).detach() self.Amount += onehot.sum(0) class ISDALoss(nn.Module): def __init__(self, feature_num, class_num): super(ISDALoss, self).__init__() self.estimator = EstimatorCV(feature_num, class_num) self.class_num = class_num self.cross_entropy = nn.CrossEntropyLoss() def isda_aug(self, fc, features, y, labels, cv_matrix, ratio): N = features.size(0) C = self.class_num A = features.size(1) weight_m = list(fc.parameters())[0] NxW_ij = weight_m.expand(N, C, A) NxW_kj = torch.gather(NxW_ij, 1, labels.view(N, 1, 1) .expand(N, C, A)) CV_temp = cv_matrix[labels] # sigma2 = ratio * \ # torch.bmm(torch.bmm(NxW_ij - NxW_kj, # CV_temp).view(N * C, 1, A), # (NxW_ij - NxW_kj).view(N * C, A, 1)).view(N, C) sigma2 = ratio * \ torch.bmm(torch.bmm(NxW_ij - NxW_kj, CV_temp), (NxW_ij - NxW_kj).permute(0, 2, 1)) sigma2 = sigma2.mul(torch.eye(C)#.cuda() .expand(N, C, C)).sum(2).view(N, C) aug_result = y + 0.5 * sigma2 return aug_result def forward(self, model, fc, x, target_x, ratio): features = model(x) y = fc(features) self.estimator.update_CV(features.detach(), target_x) isda_aug_y = self.isda_aug(fc, features, y, target_x, self.estimator.CoVariance.detach(), ratio) loss = self.cross_entropy(isda_aug_y, target_x) return loss, y
5017
from functools import partial from selenium.webdriver import Firefox from selenium.webdriver.support.ui import ( WebDriverWait ) def esperar_elemento(elemento, webdriver): print(f'Tentando encontrar "{elemento}"') if webdriver.find_elements_by_css_selector(elemento): return True return False esperar_botao = partial(esperar_elemento, 'button') esperar_sucesso = partial(esperar_elemento, '#finished') url = 'https://selenium.dunossauro.live/aula_09_a.html' driver = Firefox() wdw = WebDriverWait(driver, 10) driver.get(url) wdw.until(esperar_botao, 'Deu ruim') driver.find_element_by_css_selector('button').click() wdw.until( esperar_sucesso, 'A mensagem de sucesso não apareceu' ) sucesso = driver.find_element_by_css_selector('#finished') assert sucesso.text == 'Carregamento concluído'
5039
import logging from web3 import Web3 import sys import time import meditation.meditation as meditation if __name__ == "__main__": log_format = '%(asctime)s|%(name)s|%(levelname)s: %(message)s' logger = logging.getLogger("DFK-meditation") logger.setLevel(logging.DEBUG) logging.basicConfig(level=logging.INFO, format=log_format, stream=sys.stdout) rpc_server = 'https://api.harmony.one' logger.info("Using RPC server " + rpc_server) private_key = None # set private key account_address = '0x2E7669F61eA77F02445A015FBdcFe2DE47083E02' gas_price_gwei = 10 tx_timeout_seconds = 30 w3 = Web3(Web3.HTTPProvider(rpc_server)) active_meditations = meditation.get_active_meditations(account_address, rpc_server) logger.info("Pending meditation on address " + str(account_address) + ": "+str(active_meditations)) level = 1 hero_id = 1 required_runes = meditation.get_required_runes(level, rpc_server) meditation.start_meditation(1, meditation.stat2id('strength'), meditation.stat2id('endurance'), meditation.stat2id('luck'), meditation.ZERO_ADDRESS, private_key, w3.eth.getTransactionCount(account_address), gas_price_gwei, tx_timeout_seconds, rpc_server, logger) hero_meditation = meditation.get_hero_meditation(hero_id, rpc_server) logger.info("Pending meditation "+str(hero_meditation)) time.sleep(5) meditation.complete_meditation(hero_id, private_key, w3.eth.getTransactionCount(account_address), gas_price_gwei, tx_timeout_seconds, rpc_server, logger)
5042
import pygame import random pygame.init() clock = pygame.time.Clock() fps = 60 #game window bottom_panel = 150 screen_width = 800 screen_height = 400 + bottom_panel screen = pygame.display.set_mode((screen_width, screen_height)) pygame.display.set_caption('Battle') #define game variables current_fighter = 1 total_fighters = 3 action_cooldown = 0 action_wait_time = 90 attack = False potion = False clicked = False #define fonts font = pygame.font.SysFont('Times New Roman', 26) #define colours red = (255, 0, 0) green = (0, 255, 0) #load images #background image background_img = pygame.image.load('img/Background/background.png').convert_alpha() #panel image panel_img = pygame.image.load('img/Icons/panel.png').convert_alpha() #sword image sword_img = pygame.image.load('img/Icons/sword.png').convert_alpha() #create function for drawing text def draw_text(text, font, text_col, x, y): img = font.render(text, True, text_col) screen.blit(img, (x, y)) #function for drawing background def draw_bg(): screen.blit(background_img, (0, 0)) #function for drawing panel def draw_panel(): #draw panel rectangle screen.blit(panel_img, (0, screen_height - bottom_panel)) #show knight stats draw_text(f'{knight.name} HP: {knight.hp}', font, red, 100, screen_height - bottom_panel + 10) for count, i in enumerate(bandit_list): #show name and health draw_text(f'{i.name} HP: {i.hp}', font, red, 550, (screen_height - bottom_panel + 10) + count * 60) #fighter class class Fighter(): def __init__(self, x, y, name, max_hp, strength, potions): self.name = name self.max_hp = max_hp self.hp = max_hp self.strength = strength self.start_potions = potions self.potions = potions self.alive = True self.animation_list = [] self.frame_index = 0 self.action = 0#0:idle, 1:attack, 2:hurt, 3:dead self.update_time = pygame.time.get_ticks() #load idle images temp_list = [] for i in range(8): img = pygame.image.load(f'img/{self.name}/Idle/{i}.png') img = pygame.transform.scale(img, (img.get_width() * 3, img.get_height() * 3)) temp_list.append(img) self.animation_list.append(temp_list) #load attack images temp_list = [] for i in range(8): img = pygame.image.load(f'img/{self.name}/Attack/{i}.png') img = pygame.transform.scale(img, (img.get_width() * 3, img.get_height() * 3)) temp_list.append(img) self.animation_list.append(temp_list) self.image = self.animation_list[self.action][self.frame_index] self.rect = self.image.get_rect() self.rect.center = (x, y) def update(self): animation_cooldown = 100 #handle animation #update image self.image = self.animation_list[self.action][self.frame_index] #check if enough time has passed since the last update if pygame.time.get_ticks() - self.update_time > animation_cooldown: self.update_time = pygame.time.get_ticks() self.frame_index += 1 #if the animation has run out then reset back to the start if self.frame_index >= len(self.animation_list[self.action]): self.idle() def idle(self): #set variables to attack animation self.action = 0 self.frame_index = 0 self.update_time = pygame.time.get_ticks() def attack(self, target): #deal damage to enemy rand = random.randint(-5, 5) damage = self.strength + rand target.hp -= damage #check if target has died if target.hp < 1: target.hp = 0 target.alive = False #set variables to attack animation self.action = 1 self.frame_index = 0 self.update_time = pygame.time.get_ticks() def draw(self): screen.blit(self.image, self.rect) class HealthBar(): def __init__(self, x, y, hp, max_hp): self.x = x self.y = y self.hp = hp self.max_hp = max_hp def draw(self, hp): #update with new health self.hp = hp #calculate health ratio ratio = self.hp / self.max_hp pygame.draw.rect(screen, red, (self.x, self.y, 150, 20)) pygame.draw.rect(screen, green, (self.x, self.y, 150 * ratio, 20)) knight = Fighter(200, 260, 'Knight', 30, 10, 3) bandit1 = Fighter(550, 270, 'Bandit', 20, 6, 1) bandit2 = Fighter(700, 270, 'Bandit', 20, 6, 1) bandit_list = [] bandit_list.append(bandit1) bandit_list.append(bandit2) knight_health_bar = HealthBar(100, screen_height - bottom_panel + 40, knight.hp, knight.max_hp) bandit1_health_bar = HealthBar(550, screen_height - bottom_panel + 40, bandit1.hp, bandit1.max_hp) bandit2_health_bar = HealthBar(550, screen_height - bottom_panel + 100, bandit2.hp, bandit2.max_hp) run = True while run: clock.tick(fps) #draw background draw_bg() #draw panel draw_panel() knight_health_bar.draw(knight.hp) bandit1_health_bar.draw(bandit1.hp) bandit2_health_bar.draw(bandit2.hp) #draw fighters knight.update() knight.draw() for bandit in bandit_list: bandit.update() bandit.draw() #control player actions #reset action variables attack = False potion = False target = None #make sure mouse is visible pygame.mouse.set_visible(True) pos = pygame.mouse.get_pos() for count, bandit in enumerate(bandit_list): if bandit.rect.collidepoint(pos): #hide mouse pygame.mouse.set_visible(False) #show sword in place of mouse cursor screen.blit(sword_img, pos) if clicked == True: attack = True target = bandit_list[count] #player action if knight.alive == True: if current_fighter == 1: action_cooldown += 1 if action_cooldown >= action_wait_time: #look for player action #attack if attack == True and target != None: knight.attack(target) current_fighter += 1 action_cooldown = 0 #enemy action for count, bandit in enumerate(bandit_list): if current_fighter == 2 + count: if bandit.alive == True: action_cooldown += 1 if action_cooldown >= action_wait_time: #attack bandit.attack(knight) current_fighter += 1 action_cooldown = 0 else: current_fighter += 1 #if all fighters have had a turn then reset if current_fighter > total_fighters: current_fighter = 1 for event in pygame.event.get(): if event.type == pygame.QUIT: run = False if event.type == pygame.MOUSEBUTTONDOWN: clicked = True else: clicked = False pygame.display.update() pygame.quit()
5048
from .supervise import * def get_losses(name, **kwargs): name = name.lower() if name == 'rhloss': loss = RHLoss(**kwargs) elif name == 'xtloss': loss = XTLoss(**kwargs) else: raise NotImplementedError('Loss [{:s}] is not supported.'.format(name)) return loss
5077
from stix_shifter_utils.stix_translation.src.json_to_stix import json_to_stix_translator from stix_shifter_utils.stix_translation.src.utils.transformer_utils import get_module_transformers from stix_shifter_modules.aws_athena.entry_point import EntryPoint import unittest MODULE = "aws_athena" entry_point = EntryPoint() map_data = entry_point.get_results_translator().map_data data_source = { "type": "identity", "id": "identity--f431f809-377b-45e0-aa1c-6a4751cae5ff", "name": "aws_athena", "identity_class": "events" } options = {} class TestAwsResultsToStix(unittest.TestCase): """ class to perform unit test case for Aws Athena logs translate results """ @staticmethod def get_first(itr, constraint): """ return the obj in the itr if constraint is true """ return next( (obj for obj in itr if constraint(obj)), None ) @staticmethod def get_first_of_type(itr, typ): """ to check whether the object belongs to respective stix object """ return TestAwsResultsToStix.get_first(itr, lambda o: isinstance(o, dict) and o.get('type') == typ) def test_common_prop(self): """ to test the common stix object properties """ data = { "guardduty": { "accountid": 979326520502, "region": "us-east-1", "type": "UnauthorizedAccess:EC2/SSHBruteForce", "resource_instancedetails_networkinterfaces_0_privatednsname": "ip-172-31-60-104.ec2.internal", "resource_instancedetails_networkinterfaces_0_privateipaddress": "172.31.60.104", "resource_instancedetails_networkinterfaces_0_subnetid": "subnet-ea9d6be4", "resource_instancedetails_networkinterfaces_0_publicdnsname": "ec2-18-210-22-128.compute-1." "amazonaws.com", "resource_instancedetails_networkinterfaces_0_vpcid": "vpc-10db926a", "resource_instancedetails_networkinterfaces_0_publicip": "172.16.31.10", "resource_instancedetails_networkinterfaces_0_networkinterfaceid": "eni-0203098cca62c3f21", "resource_instancedetails_networkinterfaces_0_securitygroups_0_groupid": "sg-018edb43fcc81525f", "resource_instancedetails_networkinterfaces_0_securitygroups_0_groupname": "launch-wizard-13", "resource_instancedetails_imageid": "ami-0015fcaa5516c75ed", "resource_instancedetails_instanceid": "i-031cb81e1f32a36e1", "resource_instancedetails_availabilityzone": "us-east-1f", "service_eventfirstseen": "2020-07-31T06:19:09Z", "service_action_networkconnectionaction_protocol": "TCP", "service_action_networkconnectionaction_remoteportdetails_port": "38420", "service_action_networkconnectionaction_remoteipdetails_country_countryname": "Sweden", "service_action_networkconnectionaction_remoteipdetails_ipaddressv4": "172.16.31.10", "service_action_networkconnectionaction_remoteipdetails_city_cityname": "\u00d6rebro", "service_action_networkconnectionaction_localportdetails_port": "22", "service_eventlastseen": "2020-09-12T09:19:40Z", "severity": 2, "title": "85.224.242.94 is performing SSH brute force attacks against i-031cb81e1f32a36e1.", "arn": "arn:aws:guardduty:us-east-1:979326520502:detector/6ab6e6ee780ed494f3b7ca56acdc74df/finding/" "7ab9d1cb6248e05a0e419a79528761cb", "createdat": "2020-07-31T06:37:13.745Z", "description": "172.16.31.10 is performing SSH brute force attacks against i-031cb81e1f32a36e1. " "Brute force attacks are used to gain unauthorized access to your instance by " "guessing the SSH password.", "finding_id": "7ab9d1cb6248e05a0e419a79528761cb", "partition": "aws", "resource": { "instancedetails": { "imagedescription": "Provided by Red Hat, Inc.", "instancestate": "running", "instancetype": "t2.large", "launchtime": "2020-09-11T23:16:03Z", "tags": { "0": { "key": "Name", "value": "ArcSight Logger" } } }, "resourcetype": "Instance" }, "schemaversion": 2.0, "service": { "action": { "actiontype": "NETWORK_CONNECTION", "networkconnectionaction": { "connectiondirection": "INBOUND", "localportdetails": { "portname": "SSH" }, "remoteipdetails": { "geolocation": { "lat": "59.2741", "lon": "15.2066" }, "organization": { "asn": "2119", "asnorg": "Telenor Norge AS", "isp": "Telenor Sverige AB", "org": "Telenor Sverige AB" } }, "remoteportdetails": { "portname": "Unknown" } } }, "count": "20", "detectorid": "6ab6e6ee780ed494f3b7ca56acdc74df", "resourcerole": "TARGET", "servicename": "guardduty" }, "updatedat": "2020-09-12T09:25:34.086Z" } } result_bundle = json_to_stix_translator.convert_to_stix( data_source, map_data, [data], get_module_transformers(MODULE), options) assert result_bundle['type'] == 'bundle' result_bundle_objects = result_bundle['objects'] result_bundle_identity = result_bundle_objects[0] assert result_bundle_identity['type'] == data_source['type'] assert result_bundle_identity['id'] == data_source['id'] assert result_bundle_identity['name'] == data_source['name'] assert result_bundle_identity['identity_class'] == data_source['identity_class'] observed_data = result_bundle_objects[1] assert observed_data['id'] is not None assert observed_data['type'] == "observed-data" assert observed_data['created_by_ref'] == result_bundle_identity['id'] assert observed_data['created'] is not None assert observed_data['modified'] is not None assert observed_data['number_observed'] is not None def test_vpc_flow_network_json_to_stix(self): """to test network stix object properties""" data = { "vpcflow": { "account": 979326520502, "interfaceid": "eni-04b762de832716892", "sourceaddress": "192.168.127.12", "destinationaddress": "172.31.62.249", "sourceport": 58387, "destinationport": 51289, "protocol": "tcp", "starttime": 1592547796, "endtime": 1592547798, "action": "REJECT", "date": "2020-06-19", "logstatus": "OK", "numbytes": 40, "region": "us-east-1", "version": 2 } } result_bundle = json_to_stix_translator.convert_to_stix( data_source, map_data, [data], get_module_transformers(MODULE), options) result_bundle_objects = result_bundle['objects'] result_bundle_identity = result_bundle_objects[0] assert result_bundle_identity['type'] == data_source['type'] observed_data = result_bundle_objects[1] assert 'objects' in observed_data objects = observed_data['objects'] network_obj = TestAwsResultsToStix.get_first_of_type(objects.values(), 'network-traffic') assert network_obj is not None, 'network-traffic object type not found' assert network_obj.keys() == {'type', 'src_ref', 'dst_ref', 'src_port', 'dst_port', 'protocols', 'start', 'end'} assert network_obj['type'] == 'network-traffic' assert network_obj['src_ref'] == '1' assert network_obj['dst_ref'] == '4' assert network_obj['src_port'] == 58387 assert network_obj['dst_port'] == 51289 assert network_obj['protocols'] == ['tcp'] assert network_obj['start'] == '2020-06-19T06:23:16.000Z' assert network_obj['end'] == '2020-06-19T06:23:18.000Z' def test_vpc_flow_custom_attr_json_to_stix(self): """to test network stix object properties""" data = { "vpcflow": { "account": 979326520502, "interfaceid": "eni-04b762de832716892", "sourceaddress": "192.168.127.12", "destinationaddress": "172.31.62.249", "sourceport": 58387, "destinationport": 51289, "protocol": "tcp", "starttime": 1592547796, "endtime": 1592547798, "action": "REJECT", "date": "2020-06-19", "logstatus": "OK", "numbytes": 40, "region": "us-east-1", "version": 2 } } options = {"unmapped_fallback": True} result_bundle = json_to_stix_translator.convert_to_stix( data_source, map_data, [data], get_module_transformers(MODULE), options) result_bundle_objects = result_bundle['objects'] result_bundle_identity = result_bundle_objects[0] assert result_bundle_identity['type'] == data_source['type'] observed_data = result_bundle_objects[1] assert 'objects' in observed_data objects = observed_data['objects'] custom_object = TestAwsResultsToStix.get_first_of_type(objects.values(), 'x-aws-athena') assert custom_object.keys() == {'type', 'interfaceid', 'date', 'logstatus', 'numbytes', 'region', 'version'} assert custom_object['date'] == '2020-06-19' assert custom_object['logstatus'] == 'OK' assert custom_object['numbytes'] == 40 assert custom_object['region'] == 'us-east-1' assert custom_object['version'] == 2 def test_guardduty_network_json_to_stix(self): """to test network stix object properties""" data = { "guardduty": { "accountid": 979326520502, "region": "us-east-1", "type": "UnauthorizedAccess:EC2/SSHBruteForce", "resource_instancedetails_networkinterfaces_0_privatednsname": "ip-172-31-60-104.ec2.internal", "resource_instancedetails_networkinterfaces_0_privateipaddress": "172.31.60.104", "resource_instancedetails_networkinterfaces_0_subnetid": "subnet-ea9d6be4", "resource_instancedetails_networkinterfaces_0_publicdnsname": "ec2-18-210-22-128.compute-1." "amazonaws.com", "resource_instancedetails_networkinterfaces_0_vpcid": "vpc-10db926a", "resource_instancedetails_networkinterfaces_0_publicip": "172.16.31.10", "resource_instancedetails_networkinterfaces_0_networkinterfaceid": "eni-0203098cca62c3f21", "resource_instancedetails_networkinterfaces_0_securitygroups_0_groupid": "sg-018edb43fcc81525f", "resource_instancedetails_networkinterfaces_0_securitygroups_0_groupname": "launch-wizard-13", "resource_instancedetails_imageid": "ami-0015fcaa5516c75ed", "resource_instancedetails_instanceid": "i-031cb81e1f32a36e1", "resource_instancedetails_availabilityzone": "us-east-1f", "service_eventfirstseen": "2020-07-31T06:19:09Z", "service_action_networkconnectionaction_protocol": "TCP", "service_action_networkconnectionaction_remoteportdetails_port": "38420", "service_action_networkconnectionaction_remoteipdetails_country_countryname": "Sweden", "service_action_networkconnectionaction_remoteipdetails_ipaddressv4": "172.16.31.10", "service_action_networkconnectionaction_remoteipdetails_city_cityname": "rebro", "service_action_networkconnectionaction_localportdetails_port": "22", "service_eventlastseen": "2020-09-12T09:19:40Z", "severity": 2, "title": "172.16.31.10 is performing SSH brute force attacks against i-031cb81e1f32a36e1.", "arn": "arn:aws:guardduty:us-east-1:979326520502:detector/6ab6e6ee780ed494f3b7ca56acdc74df/finding" "/7ab9d1cb6248e05a0e419a79528761cb", "createdat": "2020-07-31T06:37:13.745Z", "description": "172.16.31.10 is performing SSH brute force attacks against i-031cb81e1f32a36e1. " "Brute force attacks are used to gain unauthorized access to your instance by " "guessing the SSH password.", "finding_id": "7ab9d1cb6248e05a0e419a79528761cb", "partition": "aws", "resource": { "instancedetails": { "imagedescription": "Provided by Red Hat, Inc.", "instancestate": "running", "instancetype": "t2.large", "launchtime": "2020-09-11T23:16:03Z", "tags": { "0": { "key": "Name", "value": "<NAME>" } } }, "resourcetype": "Instance" }, "schemaversion": 2.0, "service": { "action": { "actiontype": "NETWORK_CONNECTION", "networkconnectionaction": { "connectiondirection": "INBOUND", "localportdetails": { "portname": "SSH" }, "remoteipdetails": { "geolocation": { "lat": "59.2741", "lon": "15.2066" }, "organization": { "asn": "2119", "asnorg": "Telenor Norge AS", "isp": "Telenor Sverige AB", "org": "Telenor Sverige AB" } }, "remoteportdetails": { "portname": "Unknown" } } }, "count": "20", "detectorid": "6ab6e6ee780ed494f3b7ca56acdc74df", "resourcerole": "TARGET", "servicename": "guardduty" }, "updatedat": "2020-09-12T09:25:34.086Z" } } result_bundle = json_to_stix_translator.convert_to_stix( data_source, map_data, [data], get_module_transformers(MODULE), options) result_bundle_objects = result_bundle['objects'] result_bundle_identity = result_bundle_objects[0] assert result_bundle_identity['type'] == data_source['type'] observed_data = result_bundle_objects[1] assert 'objects' in observed_data objects = observed_data['objects'] network_obj = TestAwsResultsToStix.get_first_of_type(objects.values(), 'network-traffic') assert network_obj is not None, 'network-traffic object type not found' assert network_obj.keys() == {'type', 'dst_port', 'src_ref', 'dst_ref', 'src_port', 'protocols'} assert network_obj['type'] == 'network-traffic' assert network_obj['dst_port'] == 38420 assert network_obj['src_ref'] == '3' assert network_obj['dst_ref'] == '9' assert network_obj['src_port'] == 22 assert network_obj['protocols'] == ['tcp'] def test_guardduty_custom_attr_json_to_stix(self): """to test network stix object properties""" data = { "guardduty": { "accountid": 979326520502, "region": "us-east-1", "type": "UnauthorizedAccess:EC2/SSHBruteForce", "resource_instancedetails_networkinterfaces_0_privatednsname": "ip-172-31-60-104.ec2.internal", "resource_instancedetails_networkinterfaces_0_privateipaddress": "172.31.60.104", "resource_instancedetails_networkinterfaces_0_subnetid": "subnet-ea9d6be4", "resource_instancedetails_networkinterfaces_0_publicdnsname": "ec2-18-210-22-128.compute-1." "amazonaws.com", "resource_instancedetails_networkinterfaces_0_vpcid": "vpc-10db926a", "resource_instancedetails_networkinterfaces_0_publicip": "172.16.31.10", "resource_instancedetails_networkinterfaces_0_networkinterfaceid": "eni-0203098cca62c3f21", "resource_instancedetails_networkinterfaces_0_securitygroups_0_groupid": "sg-018edb43fcc81525f", "resource_instancedetails_networkinterfaces_0_securitygroups_0_groupname": "launch-wizard-13", "resource_instancedetails_imageid": "ami-0015fcaa5516c75ed", "resource_instancedetails_instanceid": "i-031cb81e1f32a36e1", "resource_instancedetails_availabilityzone": "us-east-1f", "service_eventfirstseen": "2020-07-31T06:19:09Z", "service_action_networkconnectionaction_protocol": "TCP", "service_action_networkconnectionaction_remoteportdetails_port": "38420", "service_action_networkconnectionaction_remoteipdetails_country_countryname": "Sweden", "service_action_networkconnectionaction_remoteipdetails_ipaddressv4": "172.16.31.10", "service_action_networkconnectionaction_remoteipdetails_city_cityname": "rebro", "service_action_networkconnectionaction_localportdetails_port": "22", "service_eventlastseen": "2020-09-12T09:19:40Z", "severity": 2, "title": "172.16.31.10 is performing SSH brute force attacks against i-031cb81e1f32a36e1.", "arn": "arn:aws:guardduty:us-east-1:979326520502:detector/6ab6e6ee780ed494f3b7ca56acdc74df/finding/" "7ab9d1cb6248e05a0e419a79528761cb", "createdat": "2020-07-31T06:37:13.745Z", "description": "172.16.31.10 is performing SSH brute force attacks against i-031cb81e1f32a36e1." " Brute force attacks are used to gain unauthorized access to your instance by guessing " "the SSH password.", "finding_id": "7ab9d1cb6248e05a0e419a79528761cb", "partition": "aws", "resource": { "instancedetails": { "imagedescription": "Provided by Red Hat, Inc.", "instancestate": "running", "instancetype": "t2.large", "launchtime": "2020-09-11T23:16:03Z", "tags": { "0": { "key": "Name", "value": "ArcSight Logger" } } }, "resourcetype": "Instance" }, "schemaversion": 2.0, "service": { "action": { "actiontype": "NETWORK_CONNECTION", "networkconnectionaction": { "connectiondirection": "INBOUND", "localportdetails": { "portname": "SSH" }, "remoteipdetails": { "geolocation": { "lat": "59.2741", "lon": "15.2066" }, "organization": { "asn": "2119", "asnorg": "Telenor Norge AS", "isp": "Telenor Sverige AB", "org": "Telenor Sverige AB" } }, "remoteportdetails": { "portname": "Unknown" } } }, "count": "20", "detectorid": "6ab6e6ee780ed494f3b7ca56acdc74df", "resourcerole": "TARGET", "servicename": "guardduty" }, "updatedat": "2020-09-12T09:25:34.086Z" } } options = {"unmapped_fallback": True} result_bundle = json_to_stix_translator.convert_to_stix( data_source, map_data, [data], get_module_transformers(MODULE), options) result_bundle_objects = result_bundle['objects'] result_bundle_identity = result_bundle_objects[0] assert result_bundle_identity['type'] == data_source['type'] observed_data = result_bundle_objects[1] assert 'objects' in observed_data objects = observed_data['objects'] custom_object = TestAwsResultsToStix.get_first_of_type(objects.values(), 'x-aws-athena') assert custom_object.keys() == {'type', 'service_action_networkconnectionaction_remoteipdetails_country_countryname', 'finding_id', 'arn', 'createdat', 'partition', 'resource', 'schemaversion', 'service', 'updatedat'} assert custom_object['arn'] == 'arn:aws:guardduty:us-east-1:979326520502:detector/6ab6e6ee780ed' \ '494f3b7ca56acdc74df/finding/7ab9d1cb6248e05a0e419a79528761cb' assert custom_object['finding_id'] == '7ab9d1cb6248e05a0e419a79528761cb' assert custom_object['createdat'] == '2020-07-31T06:37:13.745Z' assert custom_object['partition'] == 'aws' assert custom_object['schemaversion'] == 2.0 assert custom_object['updatedat'] == '2020-09-12T09:25:34.086Z'
5112
from llvmlite import ir import xml.etree.ElementTree as et int32 = ir.IntType(32) int64 = ir.IntType(64) int1 = ir.IntType(1) void_type = ir.VoidType() function_names = [] registers, functions, uniques, extracts = {}, {}, {}, {} internal_functions = {} memory = {} flags = ["ZF", "CF", "OF", "SF"] pointers = ["RSP", "RIP", "RBP", "EBP", "ESP"] def lift(filename): root = et.parse(filename).getroot() module = ir.Module(name="lifted") for register in root.find('globals').findall('register'): if register.get('name') in flags: var = ir.GlobalVariable(module, ir.IntType(1), register.get('name')) var.initializer = ir.Constant(ir.IntType(1), None) var.linkage = 'internal' registers[register.get('name')] = var elif register.get('name') in pointers: var = ir.GlobalVariable(module, ir.PointerType(ir.IntType(8)), register.get('name')) var.initializer = ir.Constant(ir.PointerType(ir.IntType(8)), None) var.linkage = 'internal' registers[register.get('name')] = var else: var = ir.GlobalVariable(module, ir.IntType(8 * int(register.get('size'))), register.get('name')) var.initializer = ir.Constant(ir.IntType(8 * int(register.get('size'))), None) var.linkage = 'internal' registers[register.get('name')] = var for memory_location in root.find('memory').findall('memory'): var = ir.GlobalVariable(module, ir.IntType(8 * int(memory_location.get('size'))), memory_location.get('name')) var.initializer = ir.Constant(ir.IntType(8 * int(memory_location.get('size'))), None) var.linkage = 'internal' memory[memory_location.get('name')] = var func_return = ir.VoidType() fnty = ir.FunctionType(func_return, []) ir_func = ir.Function(module, fnty, "intra_function_branch") internal_functions["intra_function_branch"] = ir_func func_return = ir.VoidType() fnty = ir.FunctionType(func_return, []) ir_func = ir.Function(module, fnty, "call_indirect") internal_functions["call_indirect"] = ir_func func_return = ir.VoidType() fnty = ir.FunctionType(func_return, []) ir_func = ir.Function(module, fnty, "bit_extraction") internal_functions["bit_extraction"] = ir_func for function in root.findall('function'): name = function.get('name') x = 1 while name in function_names: name = name + "_" + str(x) x += 1 function_names.append(name) address = function.get('address') functions[address] = [build_function(name, module), function] for address in functions: ir_func, function = functions[address] populate_func(ir_func, function) return module def populate_func(ir_func, function): builders, blocks = build_cfg(function, ir_func) if blocks == {}: return populate_cfg(function, builders, blocks) def build_function(name, module): func_return = ir.VoidType() fnty = ir.FunctionType(func_return, []) ir_func = ir.Function(module, fnty, name) return ir_func def build_cfg(function, ir_func): builders, blocks = {}, {} instructions = function.find("instructions") if instructions: block = ir_func.append_basic_block("entry") blocks["entry"] = block builders["entry"] = ir.IRBuilder(block) for instruction in instructions: address = instruction.find("address").text block = ir_func.append_basic_block(address) blocks[address] = block builders[address] = ir.IRBuilder(block) return builders, blocks # noinspection DuplicatedCode def populate_cfg(function, builders, blocks): builder = builders["entry"] stack_size = 10 * 1024 * 1024 stack = builder.alloca(ir.IntType(8), stack_size, name="stack") stack_top = builder.gep(stack, [ir.Constant(int64, stack_size - 8)], name="stack_top") builder.store(stack_top, registers["RSP"]) builder.branch(list(blocks.values())[1]) block_iterator = 1 instr = 0 quiter = False for instruction in function.find("instructions"): if quiter: break address = instruction.find("address").text if address in builders: builder = builders[address] pcodes = instruction.find("pcodes") pc = 0 no_branch = True for pcode in pcodes: pc += 1 mnemonic = pcode.find("name") if mnemonic.text == "COPY": output = pcode.find("output") if output.text in flags and pcode.find("input_0").get("storage") == "constant": source = ir.Constant(ir.IntType(1), int(pcode.find("input_0").text, 0)) else: source = fetch_input_varnode(builder, pcode.find("input_0")) update_output(builder, pcode.find("output"), source) elif mnemonic.text == "LOAD": input_1 = pcode.find("input_1") output = pcode.find("output") rhs = fetch_input_varnode(builder, input_1) if input_1.get("storage") == "unique" and output.get("storage") == "unique": # This is incorrect. This is treating it as a copy, should load the memory address in the input 1 update_output(builder, output, rhs) else: if input_1.text in pointers: rhs = builder.gep(rhs, [ir.Constant(int64, 0)]) result = builder.load(rhs) update_output(builder, output, result) elif mnemonic.text == "STORE": input_1 = pcode.find("input_1") # target input_2 = pcode.find("input_2") # source rhs = fetch_input_varnode(builder, input_2) lhs = fetch_output_varnode(input_1) lhs2 = builder.gep(lhs, [ir.Constant(int64, 0)]) if lhs2.type != rhs.type.as_pointer(): lhs2 = builder.bitcast(lhs2, rhs.type.as_pointer()) builder.store(rhs, lhs2) elif mnemonic.text == "BRANCH": value = pcode.find("input_0").text[2:-2] if value in functions: target = functions[value][0] builder.call(target, []) elif value in blocks: target = blocks[value] builder.branch(target) no_branch = False else: # weird jump into some label in another function # might be solved with callbr instruction? builder.call(internal_functions["intra_function_branch"], []) elif mnemonic.text == "CBRANCH": true_target = blocks[pcode.find("input_0").text[2:-2]] false_target = list(blocks.values())[block_iterator + 1] condition = fetch_input_varnode(builder, pcode.find("input_1")) no_branch = False builder.cbranch(condition, true_target, false_target) elif mnemonic.text == "BRANCHIND": no_branch = False target = fetch_input_varnode(builder, pcode.find("input_0")) if not target.type.is_pointer: target = builder.inttoptr(target, target.type.as_pointer()) builder.branch_indirect(target) elif mnemonic.text == "CALL": target = functions[pcode.find("input_0").text[2:-2]][0] builder.call(target, []) elif mnemonic.text == "CALLIND": # target = pcode.find("input_0").text[2:-2] builder.call(internal_functions["call_indirect"], []) elif mnemonic.text == "USERDEFINED": raise Exception("Not implemented") elif mnemonic.text == "RETURN": input_1 = pcode.find("input_1") no_branch = False if input_1 is None: builder.ret_void() else: raise Exception("Return value being passed") elif mnemonic.text == "PIECE": raise Exception("PIECE operation needs to be tested") elif mnemonic.text == "SUBPIECE": output = pcode.find("output") input_0 = pcode.find("input_0") input_1 = pcode.find("input_1") if input_1.text == "0x0": val = fetch_input_varnode(builder, input_0) result = builder.trunc(val, ir.IntType(int(output.get("size")) * 8)) update_output(builder, output, result) else: builder.call(internal_functions['bit_extraction'], []) elif mnemonic.text == "INT_EQUAL": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) lhs, rhs = int_comparison_check_inputs(builder, lhs, rhs) result = builder.icmp_unsigned('==', lhs, rhs) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "INT_NOTEQUAL": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) lhs, rhs = int_comparison_check_inputs(builder, lhs, rhs) result = builder.icmp_unsigned('!=', lhs, rhs) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "INT_LESS": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) lhs, rhs = int_comparison_check_inputs(builder, lhs, rhs) result = builder.icmp_unsigned('<', lhs, rhs) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "INT_SLESS": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) lhs, rhs = int_comparison_check_inputs(builder, lhs, rhs) result = builder.icmp_signed('<', lhs, rhs) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "INT_LESSEQUAL": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) lhs, rhs = int_comparison_check_inputs(builder, lhs, rhs) result = builder.icmp_unsigned('<=', lhs, rhs) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "INT_SLESS_EQUAL": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) lhs, rhs = int_comparison_check_inputs(builder, lhs, rhs) result = builder.icmp_signed('<=', lhs, rhs) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "INT_ZEXT": rhs = fetch_input_varnode(builder, pcode.find("input_0")) if rhs.type.is_pointer: rhs = builder.ptrtoint(rhs, rhs.type.pointee) output = builder.zext(rhs, ir.IntType(int(pcode.find("output").get("size")) * 8)) update_output(builder, pcode.find("output"), output) elif mnemonic.text == "INT_SEXT": rhs = fetch_input_varnode(builder, pcode.find("input_0")) if rhs.type.is_pointer: rhs = builder.ptrtoint(rhs, rhs.type.pointee) output = builder.sext(rhs, ir.IntType(int(pcode.find("output").get("size")) * 8)) update_output(builder, pcode.find("output"), output) elif mnemonic.text == "INT_ADD": input_0 = pcode.find("input_0") input_1 = pcode.find("input_1") lhs = fetch_input_varnode(builder, input_0) rhs = fetch_input_varnode(builder, input_1) target = ir.IntType(int(pcode.find("output").get("size")) * 8) if input_0.text in pointers and input_1.get("storage") == "constant": result = builder.gep(lhs, [ir.Constant(int64, int(input_1.text, 16))]) else: lhs, rhs = int_check_inputs(builder, lhs, rhs, target) result = builder.add(lhs, rhs) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "INT_SUB": input_0 = pcode.find("input_0") input_1 = pcode.find("input_1") lhs = fetch_input_varnode(builder, input_0) rhs = fetch_input_varnode(builder, input_1) target = ir.IntType(int(pcode.find("output").get("size")) * 8) if input_0.text in pointers and input_1.get("storage") == "constant": result = builder.gep(lhs, [ir.Constant(int64, -int(input_1.text, 16))]) else: lhs, rhs = int_check_inputs(builder, lhs, rhs, target) result = builder.sub(lhs, rhs) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "INT_CARRY": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) lhs, rhs = int_comparison_check_inputs(builder, lhs, rhs) result = builder.uadd_with_overflow(lhs, rhs) result = builder.extract_value(result, 1) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "INT_SCARRY": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) lhs, rhs = int_comparison_check_inputs(builder, lhs, rhs) result = builder.sadd_with_overflow(lhs, rhs) result = builder.extract_value(result, 1) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "INT_SBORROW": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) lhs, rhs = int_comparison_check_inputs(builder, lhs, rhs) result = builder.sadd_with_overflow(lhs, rhs) result = builder.extract_value(result, 1) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "INT_2COMP": val = fetch_input_varnode(builder, pcode.find("input_0")) result = builder.not_(val) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "INT_NEGATE": val = fetch_input_varnode(builder, pcode.find("input_0")) result = builder.neg(val) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "INT_XOR": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) target = ir.IntType(int(pcode.find("output").get("size")) * 8) lhs, rhs = int_check_inputs(builder, lhs, rhs, target) output = builder.xor(lhs, rhs) update_output(builder, pcode.find("output"), output) elif mnemonic.text == "INT_AND": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) target = ir.IntType(int(pcode.find("output").get("size")) * 8) lhs, rhs = int_check_inputs(builder, lhs, rhs, target) output = builder.and_(lhs, rhs) update_output(builder, pcode.find("output"), output) elif mnemonic.text == "INT_OR": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) target = ir.IntType(int(pcode.find("output").get("size")) * 8) lhs, rhs = int_check_inputs(builder, lhs, rhs, target) output = builder.or_(lhs, rhs) update_output(builder, pcode.find("output"), output) elif mnemonic.text == "INT_LEFT": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) target = ir.IntType(int(pcode.find("output").get("size")) * 8) lhs, rhs = check_shift_inputs(builder, lhs, rhs, target) output = builder.shl(lhs, rhs) update_output(builder, pcode.find("output"), output) elif mnemonic.text == "INT_RIGHT": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) target = ir.IntType(int(pcode.find("output").get("size")) * 8) lhs, rhs = check_shift_inputs(builder, lhs, rhs, target) output = builder.lshr(lhs, rhs) update_output(builder, pcode.find("output"), output) elif mnemonic.text == "INT_SRIGHT": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) target = ir.IntType(int(pcode.find("output").get("size")) * 8) lhs, rhs = check_shift_inputs(builder, lhs, rhs, target) output = builder.ashr(lhs, rhs) update_output(builder, pcode.find("output"), output) elif mnemonic.text == "INT_MULT": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) target = ir.IntType(int(pcode.find("output").get("size")) * 8) lhs, rhs = int_check_inputs(builder, lhs, rhs, target) output = builder.mul(lhs, rhs) update_output(builder, pcode.find("output"), output) elif mnemonic.text == "INT_DIV": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) target = ir.IntType(int(pcode.find("output").get("size")) * 8) lhs, rhs = int_check_inputs(builder, lhs, rhs, target) output = builder.div(lhs, rhs) update_output(builder, pcode.find("output"), output) elif mnemonic.text == "INT_REM": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) target = ir.IntType(int(pcode.find("output").get("size")) * 8) lhs, rhs = int_check_inputs(builder, lhs, rhs, target) output = builder.urem(lhs, rhs) update_output(builder, pcode.find("output"), output) elif mnemonic.text == "INT_SDIV": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) target = ir.IntType(int(pcode.find("output").get("size")) * 8) lhs, rhs = int_check_inputs(builder, lhs, rhs, target) output = builder.sdiv(lhs, rhs) update_output(builder, pcode.find("output"), output) elif mnemonic.text == "INT_SREM": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) target = ir.IntType(int(pcode.find("output").get("size")) * 8) lhs, rhs = int_check_inputs(builder, lhs, rhs, target) output = builder.srem(lhs, rhs) update_output(builder, pcode.find("output"), output) elif mnemonic.text == "BOOL_NEGATE": lhs = fetch_input_varnode(builder, pcode.find("input_0")) result = builder.neg(lhs) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "BOOL_XOR": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) result = builder.xor(lhs, rhs) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "BOOL_AND": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) result = builder.and_(lhs, rhs) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "BOOL_OR": lhs = fetch_input_varnode(builder, pcode.find("input_0")) rhs = fetch_input_varnode(builder, pcode.find("input_1")) result = builder.or_(lhs, rhs) update_output(builder, pcode.find("output"), result) elif mnemonic.text == "FLOAT_EQUAL": raise Exception("Not implemented") elif mnemonic.text == "FLOAT_NOTEQUAL": raise Exception("Not implemented") elif mnemonic.text == "FLOAT_LESS": raise Exception("Not implemented") elif mnemonic.text == "FLOAT_LESSEQUAL": raise Exception("Not implemented") elif mnemonic.text == "FLOAT_ADD": raise Exception("Not implemented") elif mnemonic.text == "FLOAT_SUB": raise Exception("Not implemented") elif mnemonic.text == "FLOAT_MULT": raise Exception("Not implemented") elif mnemonic.text == "FLOAT_DIV": raise Exception("Not implemented") elif mnemonic.text == "FLOAT_NEG": raise Exception("Not implemented") elif mnemonic.text == "FLOAT_ABS": raise Exception("Not implemented") elif mnemonic.text == "FLOAT_SQRT": raise Exception("Not implemented") elif mnemonic.text == "FLOAT_CEIL": raise Exception("Not implemented") elif mnemonic.text == "FLOAT_FLOOR": raise Exception("Not implemented") elif mnemonic.text == "FLOAT_ROUND": raise Exception("Not implemented") elif mnemonic.text == "FLOAT_NAN": raise Exception("Not implemented") elif mnemonic.text == "INT2FLOAT": raise Exception("Not implemented") elif mnemonic.text == "FLOAT2FLOAT": raise Exception("Not implemented") elif mnemonic.text == "TRUNC": raise Exception("Not implemented") elif mnemonic.text == "CPOOLREF": raise Exception("Not implemented") elif mnemonic.text == "NEW": raise Exception("Not implemented") elif mnemonic.text == "MULTIEQUAL": raise Exception("Not implemented") elif mnemonic.text == "INDIRECT": raise Exception("Not implemented") elif mnemonic.text == "PTRADD": raise Exception("Not implemented") elif mnemonic.text == "PTRSUB": raise Exception("Not implemented") elif mnemonic.text == "CAST": raise Exception("Not implemented") else: raise Exception("Not a standard pcode instruction") block_iterator += 1 instr += 1 if block_iterator < len(blocks) and no_branch: builder.branch(list(blocks.values())[block_iterator]) def fetch_input_varnode(builder, name): var_type = name.get("storage") var_size = int(name.get("size")) * 8 if var_type == "register": return builder.load(registers[name.text]) elif var_type == "unique": if name.text not in list(uniques.keys()): raise Exception("Temporary variable referenced before defined") return uniques[name.text] elif var_type == "constant": var = ir.Constant(ir.IntType(var_size), int(name.text, 0)) return var elif var_type == "memory": return memory[name.text] def update_output(builder, name, output): var_type = name.get("storage") if var_type == "register": reg = registers[name.text] if reg.type != output.type.as_pointer(): reg = builder.bitcast(reg, output.type.as_pointer()) builder.store(output, reg) elif var_type == "unique": uniques[name.text] = output def fetch_output_varnode(name): var_type = name.get("storage") if var_type == "register": return registers[name.text] elif var_type == "unique": if name.text not in uniques: uniques[name.text] = None return uniques[name.text] def int_check_inputs(builder, lhs, rhs, target): if lhs.type != target: if lhs.type.is_pointer: lhs2 = lhs lhs = builder.ptrtoint(lhs, target) if lhs2 == rhs: rhs = lhs if rhs.type != target and lhs != rhs: if rhs.type.is_pointer: rhs = builder.ptrtoint(rhs, target) return lhs, rhs def check_shift_inputs(builder, lhs, rhs, target): if lhs.type != target: if lhs.type.is_pointer: lhs = builder.ptrtoint(lhs, target) else: lhs = builder.zext(lhs, target) if rhs.type != target: if rhs.type.is_pointer: rhs = builder.ptrtoint(rhs, target) else: rhs = builder.zext(rhs, target) return lhs, rhs def int_comparison_check_inputs(builder, lhs, rhs): # For integer comparison operations. We assume rhs is the correct type. if lhs.type.is_pointer: lhs = builder.ptrtoint(lhs, rhs.type) return lhs, rhs
5123
from shovel import task @task def hello(name='Foo'): '''Prints "Hello, " followed by the provided name. Examples: shovel bar.hello shovel bar.hello --name=Erin http://localhost:3000/bar.hello?Erin''' print('Hello, %s' % name) @task def args(*args): '''Echos back all the args you give it. This exists mostly to demonstrate the fact that shovel is compatible with variable argument functions. Examples: shovel bar.args 1 2 3 4 http://localhost:3000/bar.args?1&2&3&4''' for arg in args: print('You said "%s"' % arg) @task def kwargs(**kwargs): '''Echos back all the kwargs you give it. This exists mostly to demonstrate that shovel is compatible with the keyword argument functions. Examples: shovel bar.kwargs --foo=5 --bar 5 --howdy hey http://localhost:3000/bar.kwargs?foo=5&bar=5&howdy=hey''' for key, val in kwargs.items(): print('You said "%s" => "%s"' % (key, val))
5132
from datetime import datetime with open('/home/neo4j/neo4j-community-3.5.1/logs/debug.log', 'r') as log: begin = [] end = [] for line in log: if 'Index population started' in line: begin.append(line[:23]) elif 'Index creation finished' in line: end.append(line[:23]) if len(begin) == 0 or len(begin) > 9: print("Something went wrong. Please check debug.log") elif len(begin) != len(end): print("{}/{} Done. Please come back later.".format(len(end), len(begin))) else: elapsed_time = 0 for i in range(0,9): begin_tmp = datetime.strptime(begin[i], '%Y-%m-%d %H:%M:%S.%f') end_tmp = datetime.strptime(end[i],'%Y-%m-%d %H:%M:%S.%f') elapsed_time += (end_tmp-begin_tmp).total_seconds() print("Done in {} s".format(elapsed_time))
5161
import _winreg import os def get_shared_cache_folder(): """ Look in the registry for the configured cache folder. If there is no entry, then we create one. :return: """ _winreg.aReg = _winreg.ConnectRegistry(None, _winreg.HKEY_CURRENT_USER) try: key = _winreg.OpenKey(_winreg.aReg, r"SOFTWARE\CCP\EVEONLINE") path, _ = _winreg.QueryValueEx(key, "CACHEFOLDER") except OSError: return None return path def set_shared_cache_folder(folder_path): if not os.path.isdir(folder_path): try: os.makedirs(folder_path) except OSError: raise ValueError("Could not create directory {}".format(folder_path)) folder_path = os.path.normpath(folder_path) + os.sep key_eveonline = _winreg.CreateKey(_winreg.aReg, r"SOFTWARE\CCP\EVEONLINE") _winreg.SetValueEx(key_eveonline, "CACHEFOLDER", 0, _winreg.REG_SZ, folder_path) key_eveprobe = _winreg.CreateKey(_winreg.aReg, r"SOFTWARE\CCP\EVEPROBE") _winreg.SetValueEx(key_eveprobe, "CACHEFOLDER", 0, _winreg.REG_SZ, folder_path) def get_index_path(hint): return hint
5171
from xagents import a2c, acer, ddpg, dqn, ppo, td3, trpo from xagents.a2c.agent import A2C from xagents.acer.agent import ACER from xagents.base import OffPolicy from xagents.ddpg.agent import DDPG from xagents.dqn.agent import DQN from xagents.ppo.agent import PPO from xagents.td3.agent import TD3 from xagents.trpo.agent import TRPO from xagents.utils.cli import play_args, train_args, tune_args from xagents.utils.common import register_models __author__ = 'schissmantics' __email__ = '<EMAIL>' __license__ = 'MIT' __version__ = '1.0.1' agents = { 'a2c': {'module': a2c, 'agent': A2C}, 'acer': {'module': acer, 'agent': ACER}, 'dqn': {'module': dqn, 'agent': DQN}, 'ppo': {'module': ppo, 'agent': PPO}, 'td3': {'module': td3, 'agent': TD3}, 'trpo': {'module': trpo, 'agent': TRPO}, 'ddpg': {'module': ddpg, 'agent': DDPG}, } register_models(agents) commands = { 'train': (train_args, 'fit', 'Train given an agent and environment'), 'play': ( play_args, 'play', 'Play a game given a trained agent and environment', ), 'tune': ( tune_args, '', 'Tune hyperparameters given an agent, hyperparameter specs, and environment', ), }
5184
from exchange_sockets.exchange_websocket import ExchangeWebSocket from singletones.custom_logger import MyLogger import websocket import threading from time import sleep from time import time import json import ssl logger = MyLogger() class BitstampWebsocket(ExchangeWebSocket): def __init__(self, pairs_n_streams): super().__init__('Bitstamp', pairs_n_streams) self.possible_streams = ['live_trades', 'diff_order_book'] self.streams = [] def init_streams(self): for pair, streams in self.pairs_n_streams.items(): for sub_stream in streams.split(','): if self.has_stream(sub_stream): cur = dict() cur['event'] = 'bts:subscribe' cur['data'] = {'channel': "{}_{}".format(sub_stream, pair)} self.streams.append(cur) def start_multiple_websocket(self, init_streams=True): super().start_multiple_websocket(init_streams=init_streams) websocket.enableTrace(True) self.ws = websocket.WebSocketApp("wss://ws.bitstamp.net", on_open=self.__on_open, on_message=self.__on_message, on_error=self.__on_error, on_close=self.__on_close) self.wst = threading.Thread(target=lambda: self.ws.run_forever(sslopt={'cert_reqs': ssl.CERT_NONE})) self.wst.daemon = True self.wst.start() logger.debug("Started thread") # Wait for connect before continuing conn_timeout = 15 while not self.ws.sock or not self.ws.sock.connected and conn_timeout: sleep(1) conn_timeout -= 1 if not conn_timeout: logger.error("%s Couldn't connect to %s! Exiting.", self.node, self.exchange) self.close_socket() else: logger.info('{} socket is started:\n{}\n{}'.format(self.exchange, self.node, str(self.streams))) def save_trades(self, message): data = message['data'] channel = message['channel'] symbol = channel.split('_')[-1] stream = channel[:-(len(symbol) + 1)] append_data = "{},{},{},{}\n".format(data['timestamp'], data['price'], data['amount'], data['type']) self.file_manager.save_data_to_file(self.exchange, stream, symbol, append_data) def save_level2_orderbook(self, message): data = message['data'] channel = message['channel'] symbol = channel.split('_')[-1] stream = channel[:-(len(symbol) + 1)] all_data = {} data_time = data['timestamp'] for side in ['bids', 'asks']: for cur in data[side]: if not all_data.get(symbol, None): all_data[symbol] = [] price = cur[0] size = cur[1] all_data[symbol].append("{},{},{}\n".format( data_time, price, size if side == "bids" else "-{}".format(size))) for symbol, l2_ob_data in all_data.items(): for l2_ob in l2_ob_data: self.file_manager.save_data_to_file(self.exchange, stream, symbol, l2_ob) def __on_message(self, ws, message): if message is None: return try: self.last_msg_time = int(time()) message = json.loads(message) channel = message['channel'] if channel.startswith('diff_order_book'): self.save_level2_orderbook(message) elif channel.startswith('live_trades'): self.save_trades(message) except Exception as e: logger.debug(str(e)) def __on_error(self, ws, error): self.on_error = True logger.error("On error\n{}\n{} {}".format(self.node, self.exchange, error)) def __on_close(self, ws): logger.info("On close\n{}".format(self.exchange)) def __on_open(self, ws): logger.info("On Open\n{}".format(self.exchange)) if self.streams: for stream in self.streams: logger.info('Subscribing to %s', json.dumps(stream)) self.ws.send(json.dumps(stream)) sleep(2) else: logger.error('%s. Stream is not initialized', self.exchange) def close_socket(self): self.exited = True if self.ws: self.ws.close()
5211
from copy import copy, deepcopy import sqlite3 from hashlib import md5 import time import os import os.path as osp from base64 import b64encode, b64decode from zlib import compress, decompress import itertools as it import logging # instead of pickle we use dill, so we can save dynamically defined # classes import dill from wepy.sim_manager import Manager from wepy.orchestration.configuration import Configuration from wepy.orchestration.snapshot import SimApparatus, SimSnapshot from wepy.util.kv import KV, SQLITE3_INMEMORY_URI, gen_uri class OrchestratorError(Exception): """ """ pass class Orchestrator(): """ """ # we freeze the pickle protocol for making hashes, because we care # more about stability than efficiency of newer versions HASH_PICKLE_PROTOCOL = 3 DEFAULT_WORKDIR = Configuration.DEFAULT_WORKDIR DEFAULT_CONFIG_NAME = Configuration.DEFAULT_CONFIG_NAME DEFAULT_NARRATION = Configuration.DEFAULT_NARRATION DEFAULT_MODE = Configuration.DEFAULT_MODE DEFAULT_CHECKPOINT_FILENAME = "checkpoint.orch.sqlite" ORCH_FILENAME_TEMPLATE = "{config}{narration}.orch.sqlite" # the default way to oepn up the whole parent database DEFAULT_ORCHESTRATION_MODE = 'x' # mode to open the individual kv stores on the parent database KV_MODE = 'r+' # default timeout for connecting to a database SQLITE3_DEFAULT_TIMEOUT = 5 # the fields to return (and their order) as a record for a run # query RUN_SELECT_FIELDS = ('last_cycle_idx', 'config_hash') def __init__(self, orch_path=None, mode='x', append_only=False, ): self._mode = mode self._append_only = append_only # handle the path and convert to a proper URI for the database # given the path and the mode self._db_uri = gen_uri(orch_path, mode) # run table: start_hash, end_hash, num_cycles, configuration_id # get a raw connection to the database self._db = sqlite3.connect(self.db_uri, uri=True, timeout=self.SQLITE3_DEFAULT_TIMEOUT) self._closed = False # set isolation level to autocommit self._db.isolation_level = None # we can use read_uncommited only in append_only mode (no # updates) because you never have to worry about dirty reads # since you can't update if self.append_only: self._db.execute("PRAGMA read_uncommited=1") # we make a table for the run data, if it doesn't already # exist c = self._db.cursor().execute(self.create_run_table_query) # initialize or open each of the separate KV-stores (tables in # the same SQLite3 database) # change the mode for the KV stores since we already created the database # metadata: default init walkers, default apparatus, default # configuration self.metadata_kv = KV(db_url=self.db_uri, table='meta', mode='a', value_types=None, append_only=self.append_only) # snapshots self.snapshot_kv = KV(db_url=self.db_uri, table='snapshots', primary_key='snaphash', value_name='snapshot', mode='a', append_only=self.append_only) # configurations self.configuration_kv = KV(db_url=self.db_uri, table='configurations', primary_key='config_hash', value_name='config', mode='a', append_only=self.append_only) @property def mode(self): return self._mode @property def append_only(self): return self._append_only def close(self): if self._closed == True: raise IOError("The database connection is already closed") else: # close all the connections self.metadata_kv.close() self.configuration_kv.close() self.snapshot_kv.close() self._db.close() self._closed = True @property def db_uri(self): return self._db_uri @property def orch_path(self): # if it is not an in-memory database we parse off the path and # return that if self.db_uri == SQLITE3_INMEMORY_URI: return None else: # URIs have the following form: protocol:url?query # destructure the URI _, tail = self.db_uri.split(':') if len(tail.split('?')) > 1: url, _ = tail.split('?') else: url = tail return url @classmethod def serialize(cls, snapshot): """Serialize a snapshot to a compressed, encoded, pickle string representation. Currently uses the dill module for pickling because the base pickle module is inadequate. However, it is mostly compatible and can be read natively with pickle but this usage is officially not supported. Instead use the deserialize_snapshot. Also compresses with default zlib compression and is encoded in base64. The object will always have a deepcopy performed on it so that all of the extraneous references to it are avoided since there is no (AFAIK) way to make sure all references to an object are deleted. NOTE: Perhaps there is a way and that should be done (and tested) to see if it provides stable pickles (i.e. pickles that always hash to the same value). To avoid the overhead of copying large objects. Parameters ---------- snapshot : SimSnapshot object The snapshot of the simulation you want to serialize. Returns ------- serial_str : str Serialized string of the snapshot object """ serial_str = b64encode( compress( dill.dumps( deepcopy(snapshot), protocol=cls.HASH_PICKLE_PROTOCOL, recurse=True) ) ) return serial_str # core methods for serializing python objects, used for snapshots, # apparatuses, configurations, and the initial walker list @classmethod def deserialize(cls, serial_str): """Deserialize an unencoded string snapshot to an object. Parameters ---------- serial_str : str Serialized string of the snapshot object Returns ------- snapshot : SimSnapshot object Simulation snapshot object """ return dill.loads(decompress(b64decode(serial_str))) # defaults getters and setters def set_default_sim_apparatus(self, sim_apparatus): # serialize the apparatus and then set it serial_app = self.serialize(sim_apparatus) self.metadata_kv['default_sim_apparatus'] = serial_app def set_default_init_walkers(self, init_walkers): # serialize the apparatus and then set it serial_walkers = self.serialize(init_walkers) self.metadata_kv['default_init_walkers'] = serial_walkers def set_default_configuration(self, configuration): # serialize the apparatus and then set it serial_config = self.serialize(configuration) config_hash = self.hash_snapshot(serial_config) self.metadata_kv['default_configuration_hash'] = config_hash self.configuration_kv[config_hash] = serial_config def set_default_snapshot(self, snapshot): snaphash = self.add_snapshot(snapshot) # then save the hash in the metadata self.metadata_kv['default_snapshot_hash'] = snaphash return snaphash def gen_default_snapshot(self): # generate the snapshot sim_start_hash = self.gen_start_snapshot(self.get_default_init_walkers()) # then save the hash in the metadata self.metadata_kv['default_snapshot_hash'] = sim_start_hash return sim_start_hash def get_default_sim_apparatus(self): return self.deserialize(self.metadata_kv['default_sim_apparatus']) def get_default_init_walkers(self): return self.deserialize(self.metadata_kv['default_init_walkers']) def get_default_configuration(self): config_hash = self.metadata_kv['default_configuration_hash'] return self.get_configuration(config_hash) def get_default_configuration_hash(self): return self.metadata_kv['default_configuration_hash'] def get_default_snapshot(self): start_hash = self.metadata_kv['default_snapshot_hash'] return self.get_snapshot(start_hash) def get_default_snapshot_hash(self): return self.metadata_kv['default_snapshot_hash'] @classmethod def hash_snapshot(cls, serial_str): """ Parameters ---------- serial_str : Returns ------- """ return md5(serial_str).hexdigest() def get_snapshot(self, snapshot_hash): """Returns a copy of a snapshot. Parameters ---------- snapshot_hash : Returns ------- """ return self.deserialize(self.snapshot_kv[snapshot_hash]) def get_configuration(self, config_hash): """Returns a copy of a snapshot. Parameters ---------- config_hash : Returns ------- """ return self.deserialize(self.configuration_kv[config_hash]) @property def snapshot_hashes(self): """ """ # iterate over the snapshot kv return list(self.snapshot_kv.keys()) @property def configuration_hashes(self): """ """ # iterate over the snapshot kv return list(self.configuration_kv.keys()) def add_snapshot(self, snapshot): """ Parameters ---------- snapshot : Returns ------- """ # serialize the snapshot using the protocol for doing so serialized_snapshot = self.serialize(snapshot) # get the hash of the snapshot snaphash = self.hash_snapshot(serialized_snapshot) # check that the hash is not already in the snapshots if any([True if snaphash == md5 else False for md5 in self.snapshot_hashes]): # just skip the rest of the function and return the hash return snaphash # save the snapshot in the KV store self.snapshot_kv[snaphash] = serialized_snapshot return snaphash def add_serial_snapshot(self, serial_snapshot): # get the hash of the snapshot snaphash = self.hash_snapshot(serial_snapshot) # check that the hash is not already in the snapshots if any([True if snaphash == md5 else False for md5 in self.snapshot_hashes]): # just skip the rest of the function and return the hash return snaphash # save the snapshot in the KV store self.snapshot_kv[snaphash] = serial_snapshot return snaphash def gen_start_snapshot(self, init_walkers): """ Parameters ---------- init_walkers : Returns ------- """ # make a SimSnapshot object using the initial walkers and start_snapshot = SimSnapshot(init_walkers, self.get_default_sim_apparatus()) # save the snapshot, and generate its hash sim_start_md5 = self.add_snapshot(start_snapshot) return sim_start_md5 @property def default_snapshot_hash(self): """ """ return self.metadata_kv['default_snapshot_hash'] @property def default_snapshot(self): """ """ return self.get_snapshot(self.default_snapshot_hash) def snapshot_registered(self, snapshot): """Check whether a snapshot is already in the database, based on the hash of it. This serializes the snapshot so may be slow. Parameters ---------- snapshot : SimSnapshot object The snapshot object you want to query for. Returns ------- """ # serialize and hash the snapshot snaphash = self.hash_snapshot(self.serialize(snapshot)) # then check it return self.snapshot_hash_registered(snaphash) def snapshot_hash_registered(self, snapshot_hash): """Check whether a snapshot hash is already in the database. Parameters ---------- snapshot_hash : str The string hash of the snapshot. Returns ------- """ if any([True if snapshot_hash == h else False for h in self.snapshot_hashes]): return True else: return False def configuration_hash_registered(self, config_hash): """Check whether a snapshot hash is already in the database. Parameters ---------- snapshot_hash : str The string hash of the snapshot. Returns ------- """ if any([True if config_hash == h else False for h in self.configuration_hashes]): return True else: return False ### run methods def add_configuration(self, configuration): serialized_config = self.serialize(configuration) config_hash = self.hash_snapshot(serialized_config) # check that the hash is not already in the snapshots if any([True if config_hash == md5 else False for md5 in self.configuration_hashes]): # just skip the rest of the function and return the hash return config_hash # save the snapshot in the KV store self.configuration_kv[config_hash] = serialized_config return config_hash def add_serial_configuration(self, serial_configuration): # get the hash of the configuration snaphash = self.hash_snapshot(serial_configuration) # check that the hash is not already in the configurations if any([True if snaphash == md5 else False for md5 in self.configuration_hashes]): # just skip the rest of the function and return the hash return snaphash # save the configuration in the KV store self.configuration_kv[snaphash] = serial_configuration return snaphash @property def create_run_table_query(self): create_run_table_query = """ CREATE TABLE IF NOT EXISTS runs (start_hash TEXT NOT NULL, end_hash TEXT NOT NULL, config_hash NOT NULL, last_cycle_idx INTEGER NOT NULL, PRIMARY KEY (start_hash, end_hash)) """ return create_run_table_query @property def add_run_record_query(self): add_run_row_query = """ INSERT INTO runs (start_hash, end_hash, config_hash, last_cycle_idx) VALUES (?, ?, ?, ?) """ return add_run_row_query @property def update_run_record_query(self): q = """ UPDATE runs SET config_hash = ?, last_cycle_idx = ? WHERE start_hash=? AND end_hash=? """ return q @property def delete_run_record_query(self): q = """ DELETE FROM runs WHERE start_hash=? AND end_hash=? """ return q def _add_run_record(self, start_hash, end_hash, configuration_hash, cycle_idx): params = (start_hash, end_hash, configuration_hash, cycle_idx) # do it as a transaction c = self._db.cursor() # run the insert c.execute(self.add_run_record_query, params) def _delete_run_record(self, start_hash, end_hash): params = (start_hash, end_hash) cursor = self._db.cursor() cursor.execute(self.delete_run_record_query, params) def _update_run_record(self, start_hash, end_hash, new_config_hash, new_last_cycle_idx): params = (new_config_hash, new_last_cycle_idx, start_hash, end_hash) # do it as a transaction c = self._db.cursor() # run the update c.execute(self.update_run_record_query, params) def register_run(self, start_hash, end_hash, config_hash, cycle_idx): """ Parameters ---------- start_hash : end_hash : config_hash : cycle_idx : int The cycle of the simulation run the checkpoint was generated for. Returns ------- """ # check that the hashes are for snapshots in the orchestrator # if one is not registered raise an error if not self.snapshot_hash_registered(start_hash): raise OrchestratorError( "snapshot start_hash {} is not registered with the orchestrator".format( start_hash)) if not self.snapshot_hash_registered(end_hash): raise OrchestratorError( "snapshot end_hash {} is not registered with the orchestrator".format( end_hash)) if not self.configuration_hash_registered(config_hash): raise OrchestratorError( "config hash {} is not registered with the orchestrator".format( config_hash)) # save the configuration and get it's id self._add_run_record(start_hash, end_hash, config_hash, cycle_idx) def get_run_records(self): get_run_record_query = """ SELECT * FROM runs """.format(fields=', '.join(self.RUN_SELECT_FIELDS)) cursor = self._db.cursor() cursor.execute(get_run_record_query) records = cursor.fetchall() return records def get_run_record(self, start_hash, end_hash): get_run_record_query = """ SELECT {fields} FROM runs WHERE start_hash=? AND end_hash=? """.format(fields=', '.join(self.RUN_SELECT_FIELDS)) params = (start_hash, end_hash) cursor = self._db.cursor() cursor.execute(get_run_record_query, params) record = cursor.fetchone() return record def run_last_cycle_idx(self, start_hash, end_hash): record = self.get_run_record(start_hash, end_hash) last_cycle_idx = record[self.RUN_SELECT_FIELDS.index('last_cycle_idx')] return last_cycle_idx def run_configuration(self, start_hash, end_hash): record = self.get_run_record(start_hash, end_hash) config_hash = record[self.RUN_SELECT_FIELDS.index('config_hash')] # get the configuration object and deserialize it return self.deserialize(self.configuration_kv[config_hash]) def run_configuration_hash(self, start_hash, end_hash): record = self.get_run_record(start_hash, end_hash) config_hash = record[self.RUN_SELECT_FIELDS.index('config_hash')] return config_hash def run_hashes(self): return [(rec[0], rec[1]) for rec in self.get_run_records()] def run_continues(self, start_hash, end_hash): """Given a start hash and end hash for a run, find the run that this continues. Parameters ---------- start_hash : end_hash : Returns ------- run_id """ # loop through the runs in this orchestrator until we find one # where the start_hash matches the end hash runs = self.run_hashes() run_idx = 0 while True: run_start_hash, run_end_hash = runs[run_idx] # if the start hash of the queried run is the same as the # end hash for this run we have found it if start_hash == run_end_hash: return (run_start_hash, run_end_hash) run_idx += 1 # if the index is over the number of runs we quit and # return None as no match if run_idx >= len(runs): return None def _init_checkpoint_db(self, start_hash, configuration, checkpoint_dir, mode='x'): logging.debug("Initializing checkpoint orch database") # make the checkpoint with the default filename at the checkpoint directory checkpoint_path = osp.join(checkpoint_dir, self.DEFAULT_CHECKPOINT_FILENAME) # create a new database in the mode specified logging.debug("Creating checkpoint database") checkpoint_orch = Orchestrator(checkpoint_path, mode=mode) # add the starting snapshot, bypassing the serialization stuff logging.debug("Setting the starting snapshot") checkpoint_orch.snapshot_kv[start_hash] = self.snapshot_kv[start_hash] # if we have a new configuration at runtime serialize and # hash it serialized_config = self.serialize(configuration) config_hash = self.hash_snapshot(serialized_config) # save the configuration as well checkpoint_orch.configuration_kv[config_hash] = serialized_config checkpoint_orch.close() logging.debug("closing connection to checkpoint database") return checkpoint_path, config_hash def _save_checkpoint(self, checkpoint_snapshot, config_hash, checkpoint_db_path, cycle_idx, ): """ Parameters ---------- checkpoint_snapshot : config_hash : checkpoint_db_path : mode : (Default value = 'wb') Returns ------- """ # orchestrator wrapper to the db logging.debug("Opening the checkpoint orch database") checkpoint_orch = Orchestrator(checkpoint_db_path, mode='r+') # connection to the db cursor = checkpoint_orch._db.cursor() # we replicate the code for adding the snapshot here because # we want it to occur transactionally the delete and add # serialize the snapshot using the protocol for doing so serialized_snapshot = self.serialize(checkpoint_snapshot) # get the hash of the snapshot snaphash = self.hash_snapshot(serialized_snapshot) # the queries for deleting and inserting the new run record delete_query = """ DELETE FROM runs WHERE start_hash=? AND end_hash=? """ insert_query = """ INSERT INTO runs (start_hash, end_hash, config_hash, last_cycle_idx) VALUES (?, ?, ?, ?) """ # if there are any runs in the checkpoint orch remove the # final snapshot delete_params = None if len(checkpoint_orch.run_hashes()) > 0: start_hash, old_checkpoint_hash = checkpoint_orch.run_hashes()[0] delete_params = (start_hash, old_checkpoint_hash) else: start_hash = list(checkpoint_orch.snapshot_kv.keys())[0] # the config should already be in the orchestrator db insert_params = (start_hash, snaphash, config_hash, cycle_idx) # start this whole process as a transaction so we don't get # something weird in between logging.debug("Starting transaction for updating run table in checkpoint") cursor.execute("BEGIN TRANSACTION") # add the new one, using a special method for setting inside # of a transaction logging.debug("setting the new checkpoint snapshot into the KV") cursor = checkpoint_orch.snapshot_kv.set_in_tx(cursor, snaphash, serialized_snapshot) logging.debug("finished") # if we need to delete the old end of the run snapshot and the # run record for it if delete_params is not None: logging.debug("Old run record needs to be removed") # remove the old run from the run table logging.debug("Deleting the old run record") cursor.execute(delete_query, delete_params) logging.debug("finished") # register the new run in the run table logging.debug("Inserting the new run record") cursor.execute(insert_query, insert_params) logging.debug("finished") # end the transaction logging.debug("Finishing transaction") cursor.execute("COMMIT") logging.debug("Transaction committed") # we do the removal of the old snapshot outside of the # transaction since it is slow and can cause timeouts to # occur. Furthermore, it is okay if it is in the checkpoint as # the run record is what matters as long as the new checkpoint # is there. # delete the old snapshot if we need to if delete_params is not None: # WARN: occasionally and for unknown reasons we have found # that the final checkpoint hash is the same as the one # before. (The case where the last snapshot is on the same # cycle as a backup is already covered). So as a last # resort, we check that they don't have the same hash. If # they do we don't delete it! if snaphash != old_checkpoint_hash: logging.debug("Deleting the old snapshot") del checkpoint_orch.snapshot_kv[old_checkpoint_hash] logging.debug("finished") else: logging.warn("Final snapshot has same hash as the previous checkpoint. Not deleting the previous one.") checkpoint_orch.close() logging.debug("closed the checkpoint orch connection") @staticmethod def gen_sim_manager(start_snapshot, configuration): """ Parameters ---------- start_snapshot : configuration : Returns ------- """ # construct the sim manager, in a wepy specific way sim_manager = Manager(start_snapshot.walkers, runner=start_snapshot.apparatus.filters[0], boundary_conditions=start_snapshot.apparatus.filters[1], resampler=start_snapshot.apparatus.filters[2], # configuration options work_mapper=configuration.work_mapper, reporters=configuration.reporters, sim_monitor=configuration.monitor, ) return sim_manager def run_snapshot_by_time(self, start_hash, run_time, n_steps, checkpoint_freq=None, checkpoint_dir=None, configuration=None, configuration_hash=None, checkpoint_mode='x'): """For a finished run continue it but resetting all the state of the resampler and boundary conditions Parameters ---------- start_hash : run_time : n_steps : checkpoint_freq : (Default value = None) checkpoint_dir : (Default value = None) configuration : (Default value = None) configuration_hash : (Default value = None) checkpoint_mode : (Default value = None) Returns ------- """ # you must have a checkpoint dir if you ask for a checkpoint # frequency if checkpoint_freq is not None and checkpoint_dir is None: raise ValueError("Must provide a directory for the checkpoint file " "is a frequency is specified") if configuration_hash is not None and configuration is not None: raise ValueError("Cannot specify both a hash of an existing configuration" "and provide a runtime configuration") # if no configuration was specified we use the default one, oth elif (configuration is None) and (configuration_hash is None): configuration = self.get_default_configuration() # if a configuration hash was given only then we retrieve that # configuration since we must pass configurations to the # checkpoint DB initialization elif configuration_hash is not None: configuration = self.configuration_kv[configuration_hash] # check that the directory for checkpoints exists, and create # it if it doesn't and isn't already created if checkpoint_dir is not None: checkpoint_dir = osp.realpath(checkpoint_dir) os.makedirs(checkpoint_dir, exist_ok=True) # if the checkpoint dir is not specified don't create a # checkpoint db orch checkpoint_db_path = None if checkpoint_dir is not None: logging.debug("Initialization of checkpoint database is requested") checkpoint_db_path, configuration_hash = self._init_checkpoint_db(start_hash, configuration, checkpoint_dir, mode=checkpoint_mode) logging.debug("finished initializing checkpoint database") # get the snapshot and the configuration to use for the sim_manager start_snapshot = self.get_snapshot(start_hash) # generate the simulation manager given the snapshot and the # configuration sim_manager = self.gen_sim_manager(start_snapshot, configuration) # handle and process the optional arguments for running simulation if 'runner' in configuration.apparatus_opts: runner_opts = configuration.apparatus_opts['runner'] else: runner_opts = None # run the init subroutine for the simulation manager logging.debug("Running sim_manager.init") sim_manager.init() # run each cycle manually creating checkpoints when necessary logging.debug("Starting run loop") walkers = sim_manager.init_walkers cycle_idx = 0 start_time = time.time() while time.time() - start_time < run_time: logging.debug("Running cycle {}".format(cycle_idx)) # run the cycle walkers, filters = sim_manager.run_cycle( walkers, n_steps, cycle_idx, runner_opts=runner_opts, ) # check to see if a checkpoint is necessary if (checkpoint_freq is not None): if (cycle_idx % checkpoint_freq == 0): logging.debug("Checkpoint is required for this cycle") # make the checkpoint snapshot logging.debug("Generating the simulation snapshot") checkpoint_snapshot = SimSnapshot(walkers, SimApparatus(filters)) # save the checkpoint (however that is implemented) logging.debug("saving the checkpoint to the database") self._save_checkpoint(checkpoint_snapshot, configuration_hash, checkpoint_db_path, cycle_idx) logging.debug("finished saving the checkpoint to the database") # increase the cycle index for the next cycle cycle_idx += 1 logging.debug("Finished the run cycle") # the cycle index was set for the next cycle which didn't run # so we decrement it last_cycle_idx = cycle_idx - 1 logging.debug("Running sim_manager.cleanup") # run the cleanup subroutine sim_manager.cleanup() # run the segment given the sim manager and run parameters end_snapshot = SimSnapshot(walkers, SimApparatus(filters)) logging.debug("Run finished") # return the things necessary for saving to the checkpoint if # that is what is wanted later on return end_snapshot, configuration_hash, checkpoint_db_path, last_cycle_idx def orchestrate_snapshot_run_by_time(self, snapshot_hash, run_time, n_steps, checkpoint_freq=None, checkpoint_dir=None, orchestrator_path=None, configuration=None, # these can reparametrize the paths # for both the orchestrator produced # files as well as the configuration work_dir=None, config_name=None, narration=None, mode=None, # extra kwargs will be passed to the # configuration.reparametrize method **kwargs): """ Parameters ---------- snapshot_hash : run_time : n_steps : checkpoint_freq : (Default value = None) checkpoint_dir : (Default value = None) orchestrator_path : (Default value = None) configuration : (Default value = None) # these can reparametrize the paths# for both the orchestrator produced# files as well as the configurationwork_dir : (Default value = None) config_name : (Default value = None) narration : (Default value = None) mode : (Default value = None) # extra kwargs will be passed to the# configuration.reparametrize method**kwargs : Returns ------- """ # for writing the orchestration files we set the default mode # if mode is not given if mode is None: # the orchestrator mode is used for pickling the # orchestrator and so must be in bytes mode orch_mode = self.DEFAULT_ORCHESTRATION_MODE # there are two possible uses for the path reparametrizations: # the configuration and the orchestrator file paths. If both # of those are explicitly specified by passing in the whole # configuration object or both of checkpoint_dir, # orchestrator_path then those reparametrization kwargs will # not be used. As this is likely not the intention of the user # we will raise an error. If there is even one use for them no # error will be raised. # first check if any reparametrizations were even requested parametrizations_requested = (True if work_dir is not None else False, True if config_name is not None else False, True if narration is not None else False, True if mode is not None else False,) # check if there are any available targets for reparametrization reparametrization_targets = (True if configuration is None else False, True if checkpoint_dir is None else False, True if orchestrator_path is None else False) # if paramatrizations were requested and there are no targets # we need to raise an error if any(parametrizations_requested) and not any(reparametrization_targets): raise OrchestratorError("Reparametrizations were requested but none are possible," " due to all possible targets being already explicitly given") # if any paths were not given and no defaults for path # parameters we want to fill in the defaults for them. This # will also fill in any missing parametrizations with defaults # we do this by just setting the path parameters if they # aren't set, then later the parametrization targets will be # tested for if they have been set or not, and if they haven't # then these will be used to generate paths for them. if work_dir is None: work_dir = self.DEFAULT_WORKDIR if config_name is None: config_name = self.DEFAULT_CONFIG_NAME if narration is None: narration = self.DEFAULT_NARRATION if mode is None: mode = self.DEFAULT_MODE # if no configuration was specified use the default one if configuration is None: configuration = self.get_default_configuration() # reparametrize the configuration with the given path # parameters and anything else in kwargs. If they are none # this will have no effect anyhow logging.debug("Reparametrizing the configuration") configuration = configuration.reparametrize(work_dir=work_dir, config_name=config_name, narration=narration, mode=mode, **kwargs) # make parametric paths for the checkpoint directory and the # orchestrator pickle to be made, unless they are explicitly given if checkpoint_dir is None: # the checkpoint directory will be in the work dir logging.debug("checkpoint directory defaulted to the work_dir") checkpoint_dir = work_dir logging.debug("In the orchestrate run, calling to run_snapshot by time") # then actually run the simulation with checkpointing. This # returns the end snapshot and doesn't write out anything to # orchestrators other than the checkpointing (end_snapshot, configuration_hash, checkpoint_db_path, last_cycle_idx) =\ self.run_snapshot_by_time(snapshot_hash, run_time, n_steps, checkpoint_freq=checkpoint_freq, checkpoint_dir=checkpoint_dir, configuration=configuration, checkpoint_mode=orch_mode) logging.debug("Finished running snapshot by time") # if the last cycle in the run was a checkpoint skip this step # of saving a checkpoint do_final_checkpoint = True # make sure the checkpoint_freq is defined before testing it if checkpoint_freq is not None: if checkpoint_freq % last_cycle_idx == 0: logging.debug("Last cycle saved a checkpoint, no need to save one") do_final_checkpoint = False if do_final_checkpoint: logging.debug("Saving a final checkpoint for the end of the run") # now that it is finished we save the final snapshot to the # checkpoint file. This is done transactionally using the # SQLite transaction functionality (either succeeds or doesn't # happen) that way we don't have worry about data integrity # loss. Here we also don't have to worry about other processes # interacting with the checkpoint which makes it isolated. self._save_checkpoint(end_snapshot, configuration_hash, checkpoint_db_path, last_cycle_idx) logging.debug("Finished saving the final checkpoint for the run") # then return the final orchestrator logging.debug("Getting a connection to that orch to retun") checkpoint_orch = Orchestrator(checkpoint_db_path, mode='r+', append_only=True) return checkpoint_orch def reconcile_orchestrators(host_path, *orchestrator_paths): """ Parameters ---------- template_orchestrator : *orchestrators : Returns ------- """ if not osp.exists(host_path): assert len(orchestrator_paths) > 1, \ "If the host path is a new orchestrator, must give at least 2 orchestrators to merge." # open the host orchestrator at the location which will have all # of the new things put into it from the other orchestrators. If # it doesn't already exist it will be created otherwise open # read-write. new_orch = Orchestrator(orch_path=host_path, mode='a', append_only=True) # TODO deprecate, if there is no defaults we can't set them since # the mode is append only, we don't really care about these so # don't set them, otherwise do some mode logic to figure this out # and open in write mode and set defaults, then change to append # only # # if this is an existing orchestrator copy the default # # sim_apparatus and init_walkers # try: # default_app = new_orch.get_default_sim_apparatus() # except KeyError: # # no default apparatus, that is okay # pass # else: # # set it # new_orch.set_default_sim_apparatus(default_app) # # same for the initial walkers # try: # default_walkers = new_orch.get_default_init_walkers() # except KeyError: # # no default apparatus, that is okay # pass # else: # # set it # new_orch.set_default_sim_apparatus(default_walkers) for orch_path in orchestrator_paths: # open it in read-write fail if doesn't exist orch = Orchestrator(orch_path=orch_path, mode='r+', append_only=True) # add in all snapshots from each orchestrator, by the hash not the # snapshots themselves, we trust they are correct for snaphash in orch.snapshot_hashes: # check that the hash is not already in the snapshots if any([True if snaphash == md5 else False for md5 in new_orch.snapshot_hashes]): # skip it and move on continue # if it is not copy it over without deserializing new_orch.snapshot_kv[snaphash] = orch.snapshot_kv[snaphash] # add in the configurations for the runs from each # orchestrator, by the hash not the snapshots themselves, we # trust they are correct for run_id in orch.run_hashes(): config_hash = orch.run_configuration_hash(*run_id) # check that the hash is not already in the snapshots if any([True if config_hash == md5 else False for md5 in new_orch.configuration_hashes]): # skip it and move on continue # if it is not set it new_orch.configuration_kv[config_hash] = orch.configuration_kv[config_hash] # concatenate the run table with an SQL union from an attached # database attached_table_name = "other" # query to attach the foreign database attach_query = """ ATTACH '{}' AS {} """.format(orch_path, attached_table_name) # query to update the runs tabel with new unique runs union_query = """ INSERT INTO runs SELECT * FROM ( SELECT * FROM {}.runs EXCEPT SELECT * FROM runs ) """.format(attached_table_name) # query to detach the table detach_query = """ DETACH {} """.format(attached_table_name) # then run the queries cursor = new_orch._db.cursor() try: cursor.execute('BEGIN TRANSACTION') cursor.execute(attach_query) cursor.execute(union_query) cursor.execute('COMMIT') cursor.execute(detach_query) except: cursor.execute('COMMIT') import pdb; pdb.set_trace() cursor.execute("SELECT * FROM (SELECT * FROM other.runs EXCEPT SELECT * FROM runs)") recs = cursor.fetchall() return new_orch
5229
import logging from typing import Match, Any, Dict import aiohttp from discord import Message from MoMMI import comm_event, command, MChannel, always_command logger = logging.getLogger(__name__) @comm_event("ss14") async def ss14_nudge(channel: MChannel, message: Any, meta: str) -> None: try: config: Dict[str, Any] = channel.module_config(f"ss14.servers.{meta}") except ValueError: return expect_password = config["password"] if expect_password != message.get("password"): return if "type" not in message or "contents" not in message: return contents = message["contents"] type = message["type"] if type == "ooc": final_message = f"\u200B**OOC**: `{contents['sender']}`: {contents['contents']}" else: return await channel.send(final_message) @always_command("ss14_relay", unsafe=True) async def ss14_relay(channel: MChannel, match: Match, message: Message) -> None: if not channel.internal_name: return content = message.content content = content.strip() if not content or content[0] == "\u200B": return server = None config: Any for config in channel.server_config("modules.ss14", []): if config["discord_channel"] != channel.internal_name: continue server = config["server"] if not server: return config = channel.module_config(f"ss14.servers.{server}") password = config["password"] url = config["api_url"] + "/ooc" async with aiohttp.ClientSession() as session: async with session.post(url, json={"password": password, "sender": message.author.name, "contents": content}) as resp: r = await resp.text() logger.error(f"{resp.status}")
5239
import array import struct import time from fcntl import ioctl from typing import IO from platypush.backend import Backend from platypush.message.event.joystick import JoystickConnectedEvent, JoystickDisconnectedEvent, \ JoystickButtonPressedEvent, JoystickButtonReleasedEvent, JoystickAxisEvent class JoystickLinuxBackend(Backend): """ This backend intercepts events from joystick devices through the native Linux API implementation. It is loosely based on https://gist.github.com/rdb/8864666, which itself uses the `Linux kernel joystick API <https://www.kernel.org/doc/Documentation/input/joystick-api.txt>`_ to interact with the devices. Triggers: * :class:`platypush.message.event.joystick.JoystickConnectedEvent` when the joystick is connected. * :class:`platypush.message.event.joystick.JoystickDisconnectedEvent` when the joystick is disconnected. * :class:`platypush.message.event.joystick.JoystickButtonPressedEvent` when a joystick button is pressed. * :class:`platypush.message.event.joystick.JoystickButtonReleasedEvent` when a joystick button is released. * :class:`platypush.message.event.joystick.JoystickAxisEvent` when an axis value of the joystick changes. """ # These constants were borrowed from linux/input.h axis_names = { 0x00: 'x', 0x01: 'y', 0x02: 'z', 0x03: 'rx', 0x04: 'ry', 0x05: 'rz', 0x06: 'throttle', 0x07: 'rudder', 0x08: 'wheel', 0x09: 'gas', 0x0a: 'brake', 0x10: 'hat0x', 0x11: 'hat0y', 0x12: 'hat1x', 0x13: 'hat1y', 0x14: 'hat2x', 0x15: 'hat2y', 0x16: 'hat3x', 0x17: 'hat3y', 0x18: 'pressure', 0x19: 'distance', 0x1a: 'tilt_x', 0x1b: 'tilt_y', 0x1c: 'tool_width', 0x20: 'volume', 0x28: 'misc', } button_names = { 0x120: 'trigger', 0x121: 'thumb', 0x122: 'thumb2', 0x123: 'top', 0x124: 'top2', 0x125: 'pinkie', 0x126: 'base', 0x127: 'base2', 0x128: 'base3', 0x129: 'base4', 0x12a: 'base5', 0x12b: 'base6', 0x12f: 'dead', 0x130: 'a', 0x131: 'b', 0x132: 'c', 0x133: 'x', 0x134: 'y', 0x135: 'z', 0x136: 'tl', 0x137: 'tr', 0x138: 'tl2', 0x139: 'tr2', 0x13a: 'select', 0x13b: 'start', 0x13c: 'mode', 0x13d: 'thumbl', 0x13e: 'thumbr', 0x220: 'dpad_up', 0x221: 'dpad_down', 0x222: 'dpad_left', 0x223: 'dpad_right', # XBox 360 controller uses these codes. 0x2c0: 'dpad_left', 0x2c1: 'dpad_right', 0x2c2: 'dpad_up', 0x2c3: 'dpad_down', } def __init__(self, device: str = '/dev/input/js0', *args, **kwargs): """ :param device: Joystick device to monitor (default: ``/dev/input/js0``). """ super().__init__(*args, **kwargs) self.device = device self._axis_states = {} self._button_states = {} self._axis_map = [] self._button_map = [] def _init_joystick(self, dev: IO): # Get the device name. buf = array.array('B', [0] * 64) ioctl(dev, 0x80006a13 + (0x10000 * len(buf)), buf) # JSIOCGNAME(len) js_name = buf.tobytes().rstrip(b'\x00').decode('utf-8') # Get number of axes and buttons. buf = array.array('B', [0]) ioctl(dev, 0x80016a11, buf) # JSIOCGAXES num_axes = buf[0] buf = array.array('B', [0]) ioctl(dev, 0x80016a12, buf) # JSIOCGBUTTONS num_buttons = buf[0] # Get the axis map. buf = array.array('B', [0] * 0x40) ioctl(dev, 0x80406a32, buf) # JSIOCGAXMAP for axis in buf[:num_axes]: axis_name = self.axis_names.get(axis, 'unknown(0x%02x)' % axis) self._axis_map.append(axis_name) self._axis_states[axis_name] = 0.0 # Get the button map. buf = array.array('H', [0] * 200) ioctl(dev, 0x80406a34, buf) # JSIOCGBTNMAP for btn in buf[:num_buttons]: btn_name = self.button_names.get(btn, 'unknown(0x%03x)' % btn) self._button_map.append(btn_name) self._button_states[btn_name] = 0 self.bus.post(JoystickConnectedEvent(device=self.device, name=js_name, axes=self._axis_map, buttons=self._button_map)) def run(self): super().run() self.logger.info(f'Opening {self.device}...') while not self.should_stop(): # Open the joystick device. try: jsdev = open(self.device, 'rb') self._init_joystick(jsdev) except Exception as e: self.logger.debug(f'Joystick device on {self.device} not available: {e}') time.sleep(5) continue # Joystick event loop while not self.should_stop(): try: evbuf = jsdev.read(8) if evbuf: _, value, evt_type, number = struct.unpack('IhBB', evbuf) if evt_type & 0x80: # Initial state notification continue if evt_type & 0x01: button = self._button_map[number] if button: self._button_states[button] = value evt_class = JoystickButtonPressedEvent if value else JoystickButtonReleasedEvent # noinspection PyTypeChecker self.bus.post(evt_class(device=self.device, button=button)) if evt_type & 0x02: axis = self._axis_map[number] if axis: fvalue = value / 32767.0 self._axis_states[axis] = fvalue # noinspection PyTypeChecker self.bus.post(JoystickAxisEvent(device=self.device, axis=axis, value=fvalue)) except OSError as e: self.logger.warning(f'Connection to {self.device} lost: {e}') self.bus.post(JoystickDisconnectedEvent(device=self.device)) break
5258
import idna class AddressMismatch(ValueError): ''' In order to set up reverse resolution correctly, the ENS name should first point to the address. This exception is raised if the name does not currently point to the address. ''' pass class InvalidName(idna.IDNAError): ''' This exception is raised if the provided name does not meet the syntax standards specified in `EIP 137 name syntax <https://github.com/ethereum/EIPs/blob/master/EIPS/eip-137.md#name-syntax>`_. For example: names may not start with a dot, or include a space. ''' pass class UnauthorizedError(Exception): ''' Raised if the sending account is not the owner of the name you are trying to modify. Make sure to set ``from`` in the ``transact`` keyword argument to the owner of the name. ''' pass class UnownedName(Exception): ''' Raised if you are trying to modify a name that no one owns. If working on a subdomain, make sure the subdomain gets created first with :meth:`~ens.main.ENS.setup_address`. ''' pass class BidTooLow(ValueError): ''' Raised if you bid less than the minimum amount ''' pass class InvalidBidHash(ValueError): ''' Raised if you supply incorrect data to generate the bid hash. ''' pass class InvalidLabel(ValueError): ''' Raised if you supply an invalid label ''' pass class OversizeTransaction(ValueError): ''' Raised if a transaction you are trying to create would cost so much gas that it could not fit in a block. For example: when you try to start too many auctions at once. ''' pass class UnderfundedBid(ValueError): ''' Raised if you send less wei with your bid than you declared as your intent to bid. ''' pass
5261
from typing import List from typing import Optional from typing import Union from models.vps import VpsStatus from schemas.base import APIModel from schemas.base import BasePagination from schemas.base import BaseSchema from schemas.base import BaseSuccessfulResponseModel class VpsSshKeySchema(APIModel): name: str public_key: str = None private_key: str = None isp_id: int ssh_key_id: Optional[str] date_created: Optional[str] fingerprint: Optional[str] class VpsSpecPlanSchema(APIModel): name: str plan_code: Union[str, int] region_codes: List = None bandwidth: float ram: int vcpu: int disk: int price_monthly: Union[float, int, str] = None price_hourly: Union[float, int, str] = None price_yearly: Union[float, int, str] = None class VpsSpecRegionSchema(APIModel): name: str region_code: Union[str, int] features: List[str] = None plan_codes: List[Union[str, int]] = [] class VpsSpecOsSchema(APIModel): name: str os_code: Union[str, int] region_codes: List[Union[str, int]] = [] plan_codes: List[Union[str, int]] = [] class VpsSpecSchema(APIModel): region: List[VpsSpecRegionSchema] = [] plan: List[VpsSpecPlanSchema] = [] os: List[VpsSpecOsSchema] = [] class VpsSpecResponse(BaseSuccessfulResponseModel): result: VpsSpecSchema class VpsCreateSchema(APIModel): hostname: str isp_id: int region_code: str os_code: str plan_code: str ssh_keys: List[str] = [] status: int = VpsStatus.init remark: str = None class VpsItemSchema(BaseSchema): isp_id: int ip: Union[int, str, None] server_id: Optional[str] hostname: str os: Optional[str] plan: Optional[str] region: Optional[str] status: int status_name: str status_msg: Optional[str] isp_provider_name: str class VpsItemResponse(BaseSuccessfulResponseModel): result: VpsItemSchema class VpsPaginationSchema(BasePagination): items: Optional[List[VpsItemSchema]] class VpsPaginationResponse(BaseSuccessfulResponseModel): result: VpsPaginationSchema class VpsSshKeyResponseSchema(BaseSuccessfulResponseModel): result: List[VpsSshKeySchema]
5266
from django.urls import reverse from consents.models import Consent, Term from workshops.models import KnowledgeDomain, Person, Qualification from workshops.tests.base import TestBase class TestAutoUpdateProfile(TestBase): def setUp(self): self._setUpAirports() self._setUpLessons() self._setUpLanguages() self.user = Person.objects.create_user( username="user", personal="", family="", email="<EMAIL>", password="<PASSWORD>", ) self.person_consent_required_terms(self.user) Qualification.objects.create(person=self.user, lesson=self.git) Qualification.objects.create(person=self.user, lesson=self.sql) self.physics = KnowledgeDomain.objects.create(name="physics") self.chemistry = KnowledgeDomain.objects.create(name="chemistry") self.user.domains.add(self.physics) self.user.languages.add(self.english) self.user.languages.add(self.french) self.client.login(username="user", password="<PASSWORD>") def test_load_form(self): rv = self.client.get(reverse("autoupdate_profile")) self.assertEqual(rv.status_code, 200) def test_update_profile(self): term_slugs = [ "may-contact", "may-publish-name", "public-profile", ] terms_by_term_slug = { term.slug: term for term in Term.objects.filter(slug__in=term_slugs) .active() .prefetch_active_options() } consent_data = { f"consents-{slug}": terms_by_term_slug[slug].active_options[0].pk for slug in term_slugs } data = { "personal": "admin", "middle": "", "family": "Smith", "email": "<EMAIL>", "gender": Person.UNDISCLOSED, "airport": self.airport_0_0.pk, "github": "changed", "twitter": "", "url": "", "username": "changed", "affiliation": "", "languages": [self.latin.pk, self.french.pk], "domains": [self.chemistry.pk], "lessons": [self.git.pk, self.matlab.pk], "consents-person": self.user.pk, **consent_data, } rv = self.client.post(reverse("autoupdate_profile"), data, follow=True) self.assertEqual(rv.status_code, 200) content = rv.content.decode("utf-8") self.assertNotIn("Fix errors below", content) self.user.refresh_from_db() self.assertEqual(self.user.username, "user") # username is read-only self.assertEqual(self.user.github, None) # github is read-only self.assertEqual(self.user.family, "Smith") self.assertEqual(set(self.user.lessons.all()), {self.git, self.matlab}) self.assertEqual(list(self.user.domains.all()), [self.chemistry]) self.assertEqual(set(self.user.languages.all()), {self.french, self.latin}) updated_consents_by_term_slug = { consent.term.slug: consent for consent in Consent.objects.filter( term__slug__in=term_slugs, person=self.user ) .active() .select_related("term") } for slug in term_slugs: self.assertEqual( updated_consents_by_term_slug[slug].term_option.pk, consent_data[f"consents-{slug}"], )
5329
import libcst as cst import libcst.matchers as m from fixit import CstLintRule from fixit import InvalidTestCase as Invalid from fixit import ValidTestCase as Valid class UseFstringRule(CstLintRule): MESSAGE: str = ( "As mentioned in the [Contributing Guidelines]" + "(https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md), " + "please do not use printf style formatting or `str.format()`. " + "Use [f-string](https://realpython.com/python-f-strings/) instead to be " + "more readable and efficient." ) VALID = [ Valid("assigned='string'; f'testing {assigned}'"), Valid("'simple string'"), Valid("'concatenated' + 'string'"), Valid("b'bytes %s' % 'string'.encode('utf-8')"), ] INVALID = [ Invalid("'hello, {name}'.format(name='you')"), Invalid("'hello, %s' % 'you'"), Invalid("r'raw string value=%s' % val"), ] def visit_Call(self, node: cst.Call) -> None: if m.matches( node, m.Call( func=m.Attribute(value=m.SimpleString(), attr=m.Name(value="format")) ), ): self.report(node) def visit_BinaryOperation(self, node: cst.BinaryOperation) -> None: if ( m.matches( node, m.BinaryOperation(left=m.SimpleString(), operator=m.Modulo()) ) # SimpleString can be bytes and fstring don't support bytes. # https://www.python.org/dev/peps/pep-0498/#no-binary-f-strings and isinstance( cst.ensure_type(node.left, cst.SimpleString).evaluated_value, str ) ): self.report(node)
5355
from pathlib import Path from typing import Dict from errors.common.exception import DppError class DppArgparseError(DppError): pass class DppArgparseTaxonomyNotFoundError(DppArgparseError): def __init__(self, taxonomy_name: str): super().__init__(f"taxonomy '{taxonomy_name}' does not exist") self.taxonomy_name: str = taxonomy_name class DppArgparseNotProjectDirectory(DppArgparseError): def __init__(self, path: Path): super().__init__(f"directory '{str(path)}' is not a defect taxonomy project") self.path: Path = path class DppArgparseDefectIndexError(DppArgparseError): def __init__(self, index: int): super().__init__(f"invalid index '{index}' of defects") self.index: int = index class DppArgparseFileNotFoundError(DppArgparseError, FileNotFoundError): def __init__(self, path: str): super().__init__() self.path: str = path class DppArgparseInvalidEnvironment(DppArgparseError): def __init__(self, value: str): super().__init__( f"invalid environment variable format '{value}' (should be KEY=VALUE)" ) self.value: str = value class DppArgparseInvalidConfigError(DppArgparseError): def __init__(self): super().__init__() class DppArgparseConfigCorruptedError(DppArgparseError): def __init__(self, data: Dict): super().__init__(f"config is corrupted: {data}") self.data = data class DppArgparseInvalidCaseExpressionError(DppArgparseError): def __init__(self, index: int, name: str, cases: int, expr: str): super().__init__( f"Defect#{index} of {name} has {cases} test cases, but expression was: {expr}" ) self.index: int = index self.name: str = name self.cases: int = cases self.expr: str = expr
5371
import numpy as np DEFAULT_FILE_PATH = "utils/datasets/glove.6B.50d.txt" def loadWordVectors(tokens, filepath=DEFAULT_FILE_PATH, dimensions=50): """Read pretrained GloVe vectors""" wordVectors = np.zeros((len(tokens), dimensions)) with open(filepath) as ifs: for line in ifs: line = line.strip() if not line: continue row = line.split() token = row[0] if token not in tokens: continue data = [float(x) for x in row[1:]] if len(data) != dimensions: raise RuntimeError("wrong number of dimensions") wordVectors[tokens[token]] = np.asarray(data) return wordVectors
5412
import copy import json from oic.utils.authn.client import CLIENT_AUTHN_METHOD from oic.utils.keyio import KeyJar from oic.utils.keyio import KeyBundle __author__ = 'roland' import logging logger = logging.getLogger(__name__) class OIDCError(Exception): pass def flow2sequence(operations, item): flow = operations.FLOWS[item] return [operations.PHASES[phase] for phase in flow["sequence"]] class OIDCTestSetup(object): def __init__(self, client_cls, config, test_defs): """ :param config: Imported configuration module :return: """ self.client_cls = client_cls self.config = config self.test_features = [] self.client = self.create_client(**config.CLIENT) self.test_defs = test_defs def create_client(self, **kwargs): """ Instantiate a _client instance :param: Keyword arguments Keys are ["srv_discovery_url", "client_info", "client_registration", "provider_info". "keys] :return: _client instance """ _key_set = set(kwargs.keys()) args = {} _client = self.client_cls(client_authn_method=CLIENT_AUTHN_METHOD, behaviour=kwargs["behaviour"], verify_ssl=self.config.VERIFY_SSL, **args) # The behaviour parameter is not significant for the election process _key_set.discard("behaviour") try: setattr(_client, "allow", kwargs["allow"]) except KeyError: pass else: _key_set.discard("allow") try: jwks = self.construct_jwks(_client, kwargs["keys"]) except KeyError: pass else: # export JWKS f = open("export/jwk.json", "w") f.write(json.dumps(jwks)) f.close() _client.jwks_uri = self.config.CLIENT["key_export_url"] self.test_features = _key_set try: _client.client_prefs = copy.copy(kwargs["preferences"]) except KeyError: pass else: _key_set.discard("preferences") if "client_info" in _key_set: _client.redirect_uris = self.config.CLIENT[ "client_info"]["redirect_uris"] elif "client_registration" in _key_set: reg_info = self.config.CLIENT["client_registration"] _client.redirect_uris = reg_info["redirect_uris"] _client.client_id = reg_info["client_id"] _client.client_secret = reg_info["client_secret"] return _client @staticmethod def construct_jwks(_client, key_conf): """ Construct the jwks """ if _client.keyjar is None: _client.keyjar = KeyJar() kbl = [] kid_template = "a%d" kid = 0 for typ, info in key_conf.items(): kb = KeyBundle(source="file://%s" % info["key"], fileformat="der", keytype=typ) for k in kb.keys(): k.serialize() k.kid = kid_template % kid kid += 1 _client.kid[k.use][k.kty] = k.kid _client.keyjar.add_kb("", kb) kbl.append(kb) jwks = {"keys": []} for kb in kbl: # ignore simple keys jwks["keys"].extend([k.to_dict() for k in kb.keys() if k.kty != 'oct']) return jwks def make_sequence(self, flow): """ Translate a flow name into a sequence of request/responses. :param flow: Which test flow to use :return: test sequence and test definitions """ sequence = flow2sequence(self.test_defs, flow) res = {"sequence": sequence, "tests": {"pre": [], "post": []}, "flow": [flow], "block": [], "mode": "", "expect_exception": False} _flow = self.test_defs.FLOWS[flow] for param in ["tests", "block", "mode", "expect_exception"]: try: res[param] = _flow[param] except KeyError: pass return res def add_init(self, test_spec): """ Add _client registration and provider info gathering if necessary :param test_spec: :return: """ _seq = test_spec["sequence"] _flow = test_spec["flow"] if "client_info" in self.test_features and \ "registration" not in test_spec["block"]: _register = True # May not be the first item in the sequence for sq in _seq: try: if sq[0].request == "RegistrationRequest": _register = False except TypeError: pass if _register: _ext = self.test_defs.PHASES["oic-registration"] _seq.insert(0, _ext) _flow.insert(0, "oic-registration") if "srv_discovery_url" in self.test_features: op_spec = self.test_defs.PHASES["provider-discovery"] if op_spec not in _seq: _seq.insert(0, op_spec) _flow.insert(0, "provider-discovery") return test_spec def request_and_return(conv, url, response=None, method="GET", body=None, body_type="json", state="", http_args=None, **kwargs): """ :param url: The URL to which the request should be sent :param response: Response type :param method: Which HTTP method to use :param body: A message body if any :param body_type: The format of the body of the return message :param http_args: Arguments for the HTTP _client :return: A cls or ErrorResponse instance or the HTTP response instance if no response body was expected. """ if http_args is None: http_args = {} _cli = conv._client try: _resp = _cli.http_request(url, method, data=body, **http_args) except Exception: raise conv.position = url conv.last_response = _resp conv.last_content = _resp.content if not "keyjar" in kwargs: kwargs["keyjar"] = conv.keyjar _response = _cli.parse_request_response(_resp, response, body_type, state, **kwargs) conv.protocol_response.append((_response, _resp.content)) return _response def test_summation(conv, sid): status = 0 for item in conv.test_output: if item["status"] > status: status = item["status"] if status == 0: status = 1 info = { "id": sid, "status": status, "tests": conv.test_output } return info
5433
from .base_options import BaseOptions class TestOptions(BaseOptions): """Test Option Class""" def __init__(self): super(TestOptions, self).__init__() self.parser.add_argument('--load_checkpoint_path', required=True, type=str, help='checkpoint path') self.parser.add_argument('--save_result_path', required=True, type=str, help='save result path') self.parser.add_argument('--max_val_samples', default=None, type=int, help='max val data') self.parser.add_argument('--batch_size', default=256, type=int, help='batch_size') self.is_train = False
5578
import re import setuptools README_FILENAME = "README.md" VERSION_FILENAME = "observed.py" VERSION_RE = r"^__version__ = ['\"]([^'\"]*)['\"]" # Get version information with open(VERSION_FILENAME, "r") as version_file: mo = re.search(VERSION_RE, version_file.read(), re.M) if mo: version = mo.group(1) else: msg = "Unable to find version string in %s." % (version_file,) raise RuntimeError(msg) # Get description information with open(README_FILENAME, "r") as description_file: long_description = description_file.read() setuptools.setup( name="observed", version=version, author="<NAME>", author_email="<EMAIL>", description="Observer pattern for functions and bound methods", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/DanielSank/observed", py_modules=["observed"], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], )
5579
import os import json import numpy as np import pickle from typing import Any from pycocotools.coco import COCO from torch.utils.data import Dataset class DetectionMSCOCODataset(Dataset): def __init__(self, annotation_file: str, image_dir: str): self._annotation_file = annotation_file self._image_dir = image_dir self._cache_file = self._annotation_file + ".cache" self._coco = COCO(self._annotation_file) self._img_ids = self._coco.getImgIds() self._cat_ids = self._coco.getCatIds() self._ann_ids = self._coco.getAnnIds() self._data = "coco" self._classes = { ind: cat_id for ind, cat_id in enumerate(self._cat_ids) } self._coco_to_class_map = { value: key for key, value in self._classes.items() } self._load_data() self._db_inds = np.arange(len(self._image_names)) self._load_coco_data() def _load_data(self): print("loading from cache file: {}".format(self._cache_file)) if not os.path.exists(self._cache_file): print("No cache file found...") self._extract_data() with open(self._cache_file, "wb") as f: pickle.dump([self._detections, self._image_names], f) print("Cache file created") else: with open(self._cache_file, "rb") as f: self._detections, self._image_names = pickle.load(f) def _load_coco_data(self): with open(self._annotation_file, "r") as f: data = json.load(f) coco_ids = self._coco.getImgIds() eval_ids = { self._coco.loadImgs(coco_id)[0]["file_name"]: coco_id for coco_id in coco_ids } self._coco_categories = data["categories"] self._coco_eval_ids = eval_ids def class_name(self, cid): cat_id = self._classes[cid] cat = self._coco.loadCats([cat_id])[0] return cat["name"] def _extract_data(self): self._image_names = [ self._coco.loadImgs(img_id)[0]["file_name"] for img_id in self._img_ids ] self._detections = {} for ind, (coco_image_id, image_name) in enumerate(zip(self._img_ids, self._image_names)): image = self._coco.loadImgs(coco_image_id)[0] bboxes = [] categories = [] for cat_id in self._cat_ids: annotation_ids = self._coco.getAnnIds(imgIds=image["id"], catIds=cat_id) annotations = self._coco.loadAnns(annotation_ids) category = self._coco_to_class_map[cat_id] for annotation in annotations: bbox = np.array(annotation["bbox"]) bbox[[2, 3]] += bbox[[0, 1]] bboxes.append(bbox) categories.append(category) self._detections[image_name] = [{ 'bbox': bbox.astype(np.float32), 'category_id': category, 'category_name': self.class_name(category) } for bbox, category in zip(bboxes, categories)] def __getitem__(self, ind: int) -> Any: image_name = self._image_names[ind] return { 'image_name': os.path.join(self._image_dir, image_name), 'detections': self._detections[image_name] } def __len__(self) -> int: return len(self._img_ids) def get_num_classes(self) -> int: return len(self._cat_ids)
5671
from django.contrib import admin from wouso.core.security.models import Report admin.site.register(Report)
5673
from __future__ import annotations from typing import TypeVar, Generic, Callable, Optional, Any, cast, Tuple import rx from returns import pipeline from returns.functions import identity from returns.maybe import Maybe, Nothing from rx import Observable from rx.subject import BehaviorSubject from . import ReactiveValue, ReactiveView from .value import Modifier T = TypeVar("T") class ReactiveProperty(Generic[T], ReactiveValue[T]): def __init__( self, init_value: Maybe[T] = Nothing, read_only=False, modifier: Callable[[Any], Modifier] = lambda _: identity, validator: Callable[[Any, T], T] = lambda _, v: v) -> None: super().__init__(read_only) self._init_value = init_value self._modifier = modifier self._validator = validator @property def init_value(self) -> Maybe[T]: return self._init_value @property def validator(self) -> Callable[[T, Any], T]: return self._validator @property def modifier(self) -> Callable[[Any], Modifier]: return self._modifier def as_view(self) -> ReactiveView[T]: return ReactiveView(self.context, self.read_only) def pipe(self, modifiers: Callable[[Any], Tuple[Modifier, ...]]) -> ReactiveProperty: def stack(obj: Any): # FIXME: Not sure why both PyCharm and Mypy fails to resolve pipeline.pipe(). Should investigate later. # noinspection PyUnresolvedReferences return pipeline.pipe(*([self.modifier(obj)] + list(modifiers(obj)))) # type:ignore return ReactiveProperty(self.init_value, self.read_only, stack, self.validator) def validate(self, validator: Callable[[Any, T], T]) -> ReactiveProperty[T]: if validator is None: raise ValueError("Argument 'modifier' is required.") def validate(obj: Any, v: T) -> T: return validator(obj, self.validator(obj, v)) return ReactiveProperty(self.init_value, self.read_only, self.modifier, validate) class PropertyData(ReactiveValue.Data[T]): def __init__( self, name: str, init_value: Maybe[T], modifier: Modifier, validator: Callable[[T], T]): assert name is not None assert init_value is not None assert modifier is not None assert validator is not None self._validator = validator self._property: Optional[BehaviorSubject] = None obs: Observable if init_value != Nothing: self._property = BehaviorSubject(init_value.map(validator).unwrap()) obs = self._property else: obs = rx.empty() super().__init__(name, obs, modifier) # Must override to appease Mypy... I hate Python. @property def value(self) -> T: return super().value @value.setter def value(self, value: T): self._check_disposed() if self.initialized: assert self._property is not None self._property.on_next(self.validator(value)) else: self._property = BehaviorSubject(self.validator(value)) self.observable = self._property @property def validator(self) -> Callable[[T], T]: return self._validator def dispose(self) -> None: assert self._property is not None self._check_disposed() self._property.on_completed() super().dispose() def _create_data(self, obj: Any) -> PropertyData: assert obj is not None assert self.name is not None def validate(v: T) -> T: return self.validator(obj, v) return self.PropertyData(self.name, self.init_value, self.modifier(obj), validate) def _get_data(self, obj: Any) -> PropertyData: assert obj is not None return cast(ReactiveProperty.PropertyData, super()._get_data(obj)) def _set_value(self, obj: Any, data: ReactiveValue.Data, value: Any) -> None: assert obj is not None assert isinstance(data, ReactiveProperty.PropertyData) data.value = value
5676
import time import Queue import random import socket import struct import logging import threading from convert import * from protocol import ethernet, ip, tcp, udp ETH_P_IP = 0x0800 # IP protocol ETH_P_ALL = 0x0003 # Every packet NSCRIPT_PATH = 'nscript' # NSCRIPT PATH PAYLOAD = { 53:('\x5d\x0d\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06' 'google\x03com\x00\x00\x01\x00\x01'), # 'google.com' DNS Lookup 161:('\x30\x26\x02\x01\x01\x04\x06public\xa1\x19\x02' '\x04\x56\x9f\x5a\xdd\x02\x01\x00\x02\x01\x00\x30\x0b\x30\x09\x06' '\x05\x2b\x06\x01\x02\x01\x05\x00'), # SNMP GetNextRequest|public|2c version|1.3.6.1.2.1 123:('\x17\x00\x02\x05'), # NTP systats commands lacks 38 null bytes (just to save bandwidth) 1900:('M-SEARCH * HTTP/1.1\r\nHOST: 192.168.127.12:1900\r\n' 'MAN: "ssdp:discover"\r\nMX: 2\r\nST: ssdp:all\r\n\r\n') } class Generator(object): def __init__(self, size): self.size = size self.inc = size/4 if self.inc<1: self.inc = 1 self.base = -self.inc self.num = self.base self.index = 0 def __iter__(self): return self def next(self): if (self.num+self.inc)>=self.size: self.next_index() self.next_base() self.num = self.num + self.inc return self.num def next_base(self): self.base = 0 self.base-= self.index self.num = self.base def next_index(self): self.index+=1 if self.index>=self.inc: raise StopIteration def suspend(self): return self.size, self.inc, self.base, self.num, self.index def resume(self, size, inc, base, num, index): self.size = size self.inc = inc self.base = base self.num = num self.index = index class ScriptEngine(object): def __init__(self, imports): self.imports = imports self.event = threading.Event() self.queues = {} self.thread = [] def Load(self): for script in self.imports: q = Queue.Queue() s = __import__('{}.{}'.format(NSCRIPT_PATH, script), fromlist=[NSCRIPT_PATH]) t = threading.Thread(target=s.run, args=(q, self.event)) self.thread.append(t) t.setDaemon(True) t.start() self.queues[script] = q def Feed(self, host, port): for scr in self.imports: for r in self.imports[scr]: if port in xrange(r[0], r[1]): self.queues[scr].put((host, port)) break def Cleanup(self): while Alive(self.thread): time.sleep(10) class nscan(object): def __init__(self, options): self.options = options self.hosts = self.split(options.hosts, options.threads) self.ports = options.ports self.srcp = random.randint(1, 65535)#self.PickPort() # source port self.smac = options.smac self.dmac = options.dmac self.ifname = options.ifname self.siface = options.siface self.diface = options.diface self.banner = options.banner self.count = options.count self.cooldown = options.cooldown self.queue = Queue.Queue() if options.stype.upper()=='U': self.stype = socket.IPPROTO_UDP else: self.stype = socket.IPPROTO_TCP self.events = { 'send': threading.Event(), 'recv': threading.Event()} self.threads = { 'send': [], 'recv': None} def __Transport(self, src, dst=0): if self.stype==socket.IPPROTO_TCP: transport = tcp.TCP(src, dst) transport.seqn = 0xDEADC0DE else: transport = udp.UDP(src, dst) return transport def __Pack(self, transport, src, dst): if self.stype==socket.IPPROTO_TCP: transport.payload = '' else: transport.payload = PAYLOAD.get(transport.dstp, '\x00\r\n\r\n') packed = transport.pack(src, dst) return packed + transport.payload def __CookieCheck(self, data): check = False dstp = struct.unpack('!H', data[22:24])[0] if self.stype==socket.IPPROTO_UDP: if dstp==self.srcp: check = True else: ackn = struct.unpack('!L', data[28:32])[0] flags = struct.unpack('B', data[33])[0] & 0b010010 # SYN-ACK if dstp==self.srcp and ackn==0xDEADC0DF and flags==18: check = True return check def init(self): generators = [] for h in self.hosts: g = Generator(h[1]-h[0]) generators.append(g) t = threading.Thread(target=self.send, args=(h, self.srcp, g)) t.setDaemon(True) self.threads['send'].append(t) t = threading.Thread(target=self.recv) t.setDaemon(True) self.threads['recv'] = t if 'resume' in dir(self.options): i = 0 for g in generators: g.resume(*self.options.indexes[i]) i+=1 return self.threads, self.events, self.queue, generators def run(self): self.events['send'].set() self.events['recv'].set() for t in self.threads['send']: t.start() self.threads['recv'].start() def send(self, hosts, srcp, gen): if 'ppp' in self.ifname: family = socket.AF_INET proto = socket.IPPROTO_RAW eth = '' else: family = socket.AF_PACKET proto = ETH_P_IP eth = ethernet.ETHER(mac2byte(self.smac), mac2byte(self.dmac), ETH_P_IP).pack() sock = socket.socket(family, socket.SOCK_RAW, proto) transport = self.__Transport(srcp, 0) npacket = 0 self.events['send'].wait() target = hosts[0] while self.events['send'].isSet(): try: target = hosts[0] + gen.next() iph = ip.IP(self.diface, dec2dot(target), self.stype) except StopIteration: break for port_list in self.ports: for port in range(port_list[0], port_list[1]): if self.events['send'].isSet(): transport.dstp = port packet = eth + iph.pack() + self.__Pack(transport, iph.src, iph.dst) #tcph.pack(iph.src, iph.dst) sock.sendto(packet, (dec2dot(target), 0)) # self.ifname npacket+=1 if not npacket%self.cooldown[0]: time.sleep(self.cooldown[1]) else: break logging.info('[SEND] Sent: {} packets'.format(npacket)) sock.close() def recv(self): sock = socket.socket(socket.AF_INET, socket.SOCK_RAW, self.stype) sock.bind(('', self.srcp)) sock.settimeout(5) self.events['recv'].wait() counter = 0 while self.events['recv'].isSet(): try: data, sa_ll = sock.recvfrom(65535) if self.__CookieCheck(data): self.queue.put(Extract(data)) counter += 1 if counter==self.count: self.events['send'].clear() break except socket.timeout: continue sock.close() logging.info('[RECV] Received: {} packets'.format(counter)) def split(self, hosts, n): ''' Split host range into n parts (multithreaded) ''' nhosts = hosts[1] - hosts[0] # number of hosts nparts = nhosts/n + 1 host_parts = [] start = hosts[0] while True: if len(host_parts)<n-1: end = start + nparts host_parts.append((start, end)) start = end else: host_parts.append((start, hosts[1])) break return host_parts def PickPort(self): while True: srcp = random.randrange(10000, 65535) if srcp not in self.sport: self.sport.append(srcp) break return srcp def Extract(packet): src = socket.inet_ntoa(packet[12:16]) srcp = struct.unpack('!H', packet[20:22])[0] return src, srcp def Alive(thread_list): ''' check if thread is alive ''' alive = False for t in thread_list: if t.isAlive(): alive = True break return alive
5692
import warnings import numba import numpy as np import strax import straxen DEFAULT_MAX_SAMPLES = 20_000 @straxen.mini_analysis(requires=('records',), warn_beyond_sec=10, default_time_selection='touching') def records_matrix(records, time_range, seconds_range, config, to_pe, max_samples=DEFAULT_MAX_SAMPLES, ignore_max_sample_warning=False): """Return (wv_matrix, times, pms) - wv_matrix: (n_samples, n_pmt) array with per-PMT waveform intensity in PE/ns - times: time labels in seconds (corr. to rows) - pmts: PMT numbers (corr. to columns) Both times and pmts have one extra element. :param max_samples: Maximum number of time samples. If window and dt conspire to exceed this, waveforms will be downsampled. :param ignore_max_sample_warning: If True, suppress warning when this happens. Example: wvm, ts, ys = st.records_matrix(run_id, seconds_range=(1., 1.00001)) plt.pcolormesh(ts, ys, wvm.T, norm=matplotlib.colors.LogNorm()) plt.colorbar(label='Intensity [PE / ns]') """ if len(records): dt = records[0]['dt'] samples_per_record = len(records[0]['data']) else: # Defaults here do not matter, nothing will be plotted anyway dt = 10, 110 record_duration = samples_per_record * dt window = time_range[1] - time_range[0] if window / dt > max_samples: with np.errstate(divide='ignore', invalid='ignore'): # Downsample. New dt must be # a) multiple of old dt dts = np.arange(0, record_duration + dt, dt).astype(np.int) # b) divisor of record duration dts = dts[record_duration / dts % 1 == 0] # c) total samples < max_samples dts = dts[window / dts < max_samples] if len(dts): # Pick lowest dt that satisfies criteria dt = dts.min() else: # Records will be downsampled to single points dt = max(record_duration, window // max_samples) if not ignore_max_sample_warning: warnings.warn(f"Matrix would exceed max_samples {max_samples}, " f"downsampling to dt = {dt} ns.") wvm = _records_to_matrix( records, t0=time_range[0], n_channels=config['n_tpc_pmts'], dt=dt, window=window) wvm = wvm.astype(np.float32) * to_pe.reshape(1, -1) / dt # Note + 1, so data for sample 0 will range from 0-1 in plot ts = (np.arange(wvm.shape[0] + 1) * dt / int(1e9) + seconds_range[0]) ys = np.arange(wvm.shape[1] + 1) return wvm, ts, ys @straxen.mini_analysis(requires=('raw_records',), warn_beyond_sec=3e-3, default_time_selection='touching') def raw_records_matrix(context, run_id, raw_records, time_range, ignore_max_sample_warning=False, max_samples=DEFAULT_MAX_SAMPLES, **kwargs): # Convert raw to records. We may not be able to baseline correctly # at the start of the range due to missing zeroth fragments records = strax.raw_to_records(raw_records) strax.baseline(records, allow_sloppy_chunking=True) strax.zero_out_of_bounds(records) return context.records_matrix(run_id=run_id, records=records, time_range=time_range, max_samples=max_samples, ignore_max_sample_warning=ignore_max_sample_warning, **kwargs) @numba.njit def _records_to_matrix(records, t0, window, n_channels, dt=10): n_samples = (window // dt) + 1 # Use 32-bit integers, so downsampling saturated samples doesn't # cause wraparounds # TODO: amplitude bit shift! y = np.zeros((n_samples, n_channels), dtype=np.int32) if not len(records): return y samples_per_record = len(records[0]['data']) for r in records: if r['channel'] > n_channels: continue if dt >= samples_per_record * r['dt']: # Downsample to single sample -> store area idx = (r['time'] - t0) // dt if idx >= len(y): print(len(y), idx) raise IndexError('Despite n_samples = window // dt + 1, our ' 'idx is too high?!') y[idx, r['channel']] += r['area'] continue # Assume out-of-bounds data has been zeroed, so we do not # need to do r['data'][:r['length']] here. # This simplifies downsampling. w = r['data'].astype(np.int32) if dt > r['dt']: # Downsample duration = samples_per_record * r['dt'] assert duration % dt == 0, "Cannot downsample fractionally" # .astype here keeps numba happy ... ?? w = w.reshape(duration // dt, -1).sum(axis=1).astype(np.int32) elif dt < r['dt']: raise ValueError("Upsampling not yet implemented") (r_start, r_end), (y_start, y_end) = strax.overlap_indices( r['time'] // dt, len(w), t0 // dt, n_samples) # += is paranoid, data in individual channels should not overlap # but... https://github.com/AxFoundation/strax/issues/119 y[y_start:y_end, r['channel']] += w[r_start:r_end] return y
5707
from collections import defaultdict import json import re import redis import threading import time import traceback import uuid import base64 import binascii TTL = 2 hash_keys = ('cmd', 'user') cmd_hash_keys = { 'comment': ('addr',), 'extra_comment': ('addr',), 'area_comment': ('addr',), 'rename': ('addr',), 'stackvar_renamed': ('addr', 'offset', 'name',), 'struc_created': ('struc_name', 'is_union',), 'struc_deleted': ('struc_name',), 'struc_renamed': ('old_name', 'new_name',), 'struc_member_created': ('struc_name', 'offset', 'member_name', 'size', 'flag',), 'struc_member_deleted': ('struc_name', 'offset',), 'struc_member_renamed': ('struc_name', 'offset', 'member_name',), 'struc_member_changed': ('struc_name', 'offset', 'size',), } key_dec = { 'c': 'cmd', 'a': 'addr', 'u': 'user', 't': 'text', 'i': 'uuid', 'b': 'blocks' } key_enc = dict((v, k) for k, v in key_dec.items()) nick_filter = re.compile(r'[^a-zA-Z0-9_\-]') def decode(data): d = json.loads(data) return dict((key_dec.get(k, k), v) for k, v in d.items()) def dtokey(d): return tuple(((k, v) for k, v in sorted(d.items()) if k not in ('user', 'ts', 'uuid'))) def remove_ttl(a): now = time.time() return [d for d in a if now - d[0] < TTL] class Client: def __init__(self, host, port, nick, password=None): self.r = redis.StrictRedis(host=host, port=port, password=password, socket_connect_timeout=5) self.r.info() self.nick = nick_filter.sub('_', nick) self.ps = {} self.nolock = threading.Lock() self.nosend = defaultdict(list) self.uuid = str(base64.b64encode(binascii.unhexlify(uuid.uuid4().hex)).decode('ascii')) def debounce(self, no, data): dkey = dtokey(data) now = time.time() with self.nolock: for data in no: ts = data[0] key = data[1:] if dkey == key and now - ts < TTL: no.remove(data) return True return False def _sub_thread(self, ps, cb, key): for item in ps.listen(): try: if item['type'] == 'message': data = decode(item['data']) if 'user' in data: data['user'] = nick_filter.sub('_', data['user']) # reject our own messages if data.get('uuid') == self.uuid: continue with self.nolock: self.nosend[key] = remove_ttl(self.nosend[key]) self.nosend[key].append((time.time(),) + dtokey(data)) cb(key, data) elif item['type'] == 'subscribe': decoded = [] for data in self.r.lrange(key, 0, -1): try: decoded.append(decode(data)) except Exception: print('error decoding history', data) traceback.print_exc() state = [] dedup = set() for data in reversed(decoded): cmd = data.get('cmd') if cmd: keys = hash_keys + cmd_hash_keys.get(cmd, ()) hashkey = tuple([str(data.get(k)) for k in keys]) if all(hashkey): if hashkey in dedup: continue dedup.add(hashkey) state.append(data) for data in reversed(state): try: with self.nolock: self.nosend[key].append((time.time(),) + dtokey(data)) cb(key, data, replay=True) except Exception: print('error replaying history', data) traceback.print_exc() else: print('unknown redis push', item) except Exception: print('error processing item', item) traceback.print_exc() def join(self, key, cb): ps = self.r.pubsub() ps.subscribe(key) t = threading.Thread(target=self._sub_thread, args=(ps, cb, key)) t.daemon = True t.start() self.ps[key] = ps self.publish(key, {'cmd': 'join'}, perm=False) def leave(self, key): ps = self.ps.pop(key, None) if ps: ps.unsubscribe(key) def publish(self, key, data, perm=True, send_uuid=True): if self.debounce(self.nosend[key], data): return data['user'] = self.nick data['ts'] = self.r.time()[0] if send_uuid: data['uuid'] = self.uuid data = dict((key_enc.get(k, k), v) for k, v in data.items()) data = json.dumps(data, separators=(',', ':'), sort_keys=True) if perm: self.r.rpush(key, data) self.r.publish(key, data) def push(self, key, data, send_uuid=True): if send_uuid: data['uuid'] = self.uuid data = dict((key_enc.get(k, k), v) for k, v in data.items()) data = json.dumps(data, separators=(',', ':'), sort_keys=True) self.r.lpush(key, data)
5712
import sys import unittest import os import tempfile from netCDF4 import Dataset import numpy as np from numpy.testing import assert_array_equal FILE_NAME = tempfile.NamedTemporaryFile(suffix='.nc', delete=False).name VL_NAME = 'vlen_type' VL_BASETYPE = np.int16 DIM1_NAME = 'lon' DIM2_NAME = 'lat' nlons = 5; nlats = 5 VAR1_NAME = 'ragged' VAR2_NAME = 'strings' VAR3_NAME = 'strings_alt' VAR4_NAME = 'string_scalar' VAR5_NAME = 'vlen_scalar' data = np.empty(nlats*nlons,object) datas = np.empty(nlats*nlons,object) nn = 0 for n in range(nlats*nlons): nn = nn + 1 data[n] = np.arange(nn,dtype=VL_BASETYPE) datas[n] = ''.join([chr(i) for i in range(97,97+nn+1)]) data = np.reshape(data,(nlats,nlons)) datas = np.reshape(datas,(nlats,nlons)) class VariablesTestCase(unittest.TestCase): def setUp(self): self.file = FILE_NAME f = Dataset(self.file,'w') vlen_t = f.createVLType(VL_BASETYPE, VL_NAME) f.createDimension(DIM1_NAME,nlons) f.createDimension(DIM2_NAME,nlats) ragged = f.createVariable(VAR1_NAME, vlen_t,\ (DIM2_NAME,DIM1_NAME)) strings = f.createVariable(VAR2_NAME, str, (DIM2_NAME,DIM1_NAME)) strings_alt = f.createVariable(VAR3_NAME, datas.astype(str).dtype, (DIM2_NAME, DIM1_NAME)) string_scalar = f.createVariable(VAR4_NAME,str,()) vlen_scalar = f.createVariable(VAR5_NAME,vlen_t,()) ragged[:] = data ragged[-1,-1] = data[-1,-1] strings[:] = datas strings[-2,-2] = datas[-2,-2] strings_alt[:] = datas.astype(str) string_scalar[...] = 'foo' #issue458 vlen_scalar[...] = np.array([1,2,3],np.int16) f.close() def tearDown(self): # Remove the temporary files os.remove(self.file) def runTest(self): """testing vlen variables""" f = Dataset(self.file, 'r') v = f.variables[VAR1_NAME] vs = f.variables[VAR2_NAME] vs_alt = f.variables[VAR3_NAME] assert list(f.vltypes.keys()) == [VL_NAME] assert f.vltypes[VL_NAME].dtype == VL_BASETYPE assert f.variables['string_scalar'][...] == 'foo' assert_array_equal(f.variables['vlen_scalar'][...],np.array([1,2,3],np.int16)) data2 = v[:] data2s = vs[:] for i in range(nlons): for j in range(nlats): assert_array_equal(data2[j,i], data[j,i]) assert datas[j,i] == data2s[j,i] assert_array_equal(datas, vs_alt[:]) f.close() class TestInvalidDataType(unittest.TestCase): def runTest(self): f = Dataset(FILE_NAME, 'w', format='NETCDF3_CLASSIC') f.createDimension('x', 1) # using assertRaisesRegext as a context manager # only works with python >= 2.7 (issue #497) #with self.assertRaisesRegexp(ValueError, 'strings are only supported'): # f.createVariable('foo', str, ('x',)) try: f.createVariable('foo', str, ('x',)) except ValueError: pass f.close() os.remove(FILE_NAME) class TestScalarVlenString(unittest.TestCase): # issue 333 def runTest(self): f = Dataset(FILE_NAME, 'w', format='NETCDF4') teststring = f.createVariable('teststring', str) stringout = "yyyymmdd_hhmmss" teststring[()] = stringout f.close() f = Dataset(FILE_NAME) assert f.variables['teststring'][:] == stringout f.close() os.remove(FILE_NAME) class TestIntegerIndex(unittest.TestCase): # issue 526 def runTest(self): strtest = Dataset(FILE_NAME, 'w', format='NETCDF4') strtest.createDimension('tenstrings', 10) strtest.createVariable('tenstrings', str, ['tenstrings']) strtest['tenstrings'][np.int32(5)] = 'asdf' strtest['tenstrings'][6.0] = 'asdf' strtest.close() f = Dataset(FILE_NAME) assert f.variables['tenstrings'][np.int32(5)] == 'asdf' assert f.variables['tenstrings'][6.0] == 'asdf' f.close() os.remove(FILE_NAME) class TestObjectArrayIndexing(unittest.TestCase): def setUp(self): self.file = FILE_NAME f = Dataset(self.file,'w') vlen_t = f.createVLType(VL_BASETYPE, VL_NAME) f.createDimension(DIM1_NAME,nlons) f.createDimension(DIM2_NAME,nlats) strings_alt = f.createVariable(VAR3_NAME, datas.astype(str).dtype, (DIM2_NAME, DIM1_NAME)) strings_alt[:] = datas.astype(str) f.close() def tearDown(self): # Remove the temporary files os.remove(self.file) def runTest(self): """testing vlen variables""" f = Dataset(self.file, 'r') vs_alt = f.variables[VAR3_NAME] unicode_strings = vs_alt[:] fancy_indexed = unicode_strings[0][[1,2,4]] assert fancy_indexed[0] == 'abc' assert fancy_indexed[1] == 'abcd' assert fancy_indexed[2] == 'abcdef' f.close() class VlenAppendTestCase(unittest.TestCase): def setUp(self): import netCDF4 if netCDF4.__netcdf4libversion__ < "4.4.1": self.skip = True try: self.skipTest("This test requires NetCDF 4.4.1 or later.") except AttributeError: # workaround for Python 2.6 (skipTest(reason) is new # in Python 2.7) pass else: self.skip = False self.file = FILE_NAME f = Dataset(self.file, 'w') vlen_type = f.createVLType(np.float64, 'vltest') f.createDimension('x', None) v = f.createVariable('vl', vlen_type, 'x') w = f.createVariable('vl2', np.float64, 'x') f.close() def tearDown(self): # Remove the temporary files os.remove(self.file) def runTest(self): """testing appending to vlen variables (issue #527).""" # workaround for Python 2.6 if self.skip: return f = Dataset(self.file, 'a') w = f.variables["vl2"] v = f.variables["vl"] w[0:3] = np.arange(3, dtype=np.float64) v[0] # sometimes crashes v[0].tolist() # sometimes crashes v[0].size # BOOM! f.close() class Vlen_ScaledInts(unittest.TestCase): def setUp(self): self.file = FILE_NAME nc = Dataset(self.file, 'w') vlen_type = nc.createVLType(np.uint8, 'vltest') nc.createDimension('x', None) v = nc.createVariable('vl', vlen_type, 'x') v.scale_factor = 1./254. v.missing_value=np.array(255,np.uint8) # random lengths between 1 and 1000 ilen = np.random.randint(1,1000,size=100) n = 0 for nlen in ilen: data = np.random.uniform(low=0.0, high=1.0, size=nlen) v[n] = data if n==99: self.data = data n += 1 nc.close() def tearDown(self): # Remove the temporary files os.remove(self.file) def runTest(self): """testing packing float vlens as scaled integers (issue #1003).""" nc = Dataset(self.file) data = nc['vl'][-1] # check max error of compression err = np.abs(data - self.data) assert(err.max() < nc['vl'].scale_factor) # turn off auto-scaling nc.set_auto_maskandscale(False) data = nc['vl'][-1] assert(data[-1] == np.around(self.data[-1]/nc['vl'].scale_factor)) nc.close() if __name__ == '__main__': unittest.main()
5726
import uuid import pickle import pytest import argparse from collections import namedtuple from six import text_type from allure.common import AllureImpl, StepContext from allure.constants import Status, AttachmentType, Severity, \ FAILED_STATUSES, Label, SKIPPED_STATUSES from allure.utils import parent_module, parent_down_from_module, labels_of, \ all_of, get_exception_message, now, mangle_testnames from allure.structure import TestCase, TestStep, Attach, TestSuite, Failure, TestLabel def pytest_addoption(parser): parser.getgroup("reporting").addoption('--alluredir', action="store", dest="allurereportdir", metavar="DIR", default=None, help="Generate Allure report in the specified directory (may not exist)") severities = [v for (_, v) in all_of(Severity)] def label_type(name, legal_values=set()): """ argparse-type factory for labelish things. processed value is set of tuples (name, value). :param name: of label type (for future TestLabel things) :param legal_values: a `set` of values that are legal for this label, if any limit whatsoever :raises ArgumentTypeError: if `legal_values` are given and there are values that fall out of that """ def a_label_type(string): atoms = set(string.split(',')) if legal_values and not atoms < legal_values: raise argparse.ArgumentTypeError('Illegal {} values: {}, only [{}] are allowed'.format(name, ', '.join(atoms - legal_values), ', '.join(legal_values))) return set((name, v) for v in atoms) return a_label_type parser.getgroup("general").addoption('--allure_severities', action="store", dest="allureseverities", metavar="SEVERITIES_SET", default={}, type=label_type(name=Label.SEVERITY, legal_values=set(severities)), help="""Comma-separated list of severity names. Tests only with these severities will be run. Possible values are:%s.""" % ', '.join(severities)) parser.getgroup("general").addoption('--allure_features', action="store", dest="allurefeatures", metavar="FEATURES_SET", default={}, type=label_type(name=Label.FEATURE), help="""Comma-separated list of feature names. Run tests that have at least one of the specified feature labels.""") parser.getgroup("general").addoption('--allure_stories', action="store", dest="allurestories", metavar="STORIES_SET", default={}, type=label_type(name=Label.STORY), help="""Comma-separated list of story names. Run tests that have at least one of the specified story labels.""") def pytest_configure(config): reportdir = config.option.allurereportdir if reportdir: # we actually record something allure_impl = AllureImpl(reportdir) testlistener = AllureTestListener(config) pytest.allure._allurelistener = testlistener config.pluginmanager.register(testlistener) if not hasattr(config, 'slaveinput'): # on xdist-master node do all the important stuff config.pluginmanager.register(AllureAgregatingListener(allure_impl, config)) config.pluginmanager.register(AllureCollectionListener(allure_impl)) class AllureTestListener(object): """ Per-test listener. Is responsible for recording in-test data and for attaching it to the test report thing. The per-test reports are handled by `AllureAgregatingListener` at the `pytest_runtest_logreport` hook. """ def __init__(self, config): self.config = config self.environment = {} self.test = None # FIXME: that flag makes us pre-report failures in the makereport hook. # it is here to cope with xdist's begavior regarding -x. # see self.pytest_runtest_makereport and AllureAgregatingListener.pytest_sessionfinish self._magicaldoublereport = hasattr(self.config, 'slaveinput') and self.config.getvalue("maxfail") @pytest.mark.hookwrapper def pytest_runtest_protocol(self, item, nextitem): try: # for common items description = item.function.__doc__ except AttributeError: # for doctests that has no `function` attribute description = item.reportinfo()[2] self.test = TestCase(name='.'.join(mangle_testnames([x.name for x in parent_down_from_module(item)])), description=description, start=now(), attachments=[], labels=labels_of(item), status=None, steps=[], id=str(uuid.uuid4())) # for later resolution in AllureAgregatingListener.pytest_sessionfinish self.stack = [self.test] yield self.test = None self.stack = [] def attach(self, title, contents, attach_type): """ Store attachment object in current state for later actual write in the `AllureAgregatingListener.write_attach` """ attach = Attach(source=contents, # we later re-save those, oh my... title=title, type=attach_type) self.stack[-1].attachments.append(attach) def dynamic_issue(self, *issues): """ Attaches ``issues`` to the current active case """ if self.test: self.test.labels.extend([TestLabel(name=Label.ISSUE, value=issue) for issue in issues]) def description(self, description): """ Sets description for the test """ if self.test: self.test.description = description def start_step(self, name): """ Starts an new :py:class:`allure.structure.TestStep` with given ``name``, pushes it to the ``self.stack`` and returns the step. """ step = TestStep(name=name, title=name, start=now(), attachments=[], steps=[]) self.stack[-1].steps.append(step) self.stack.append(step) return step def stop_step(self): """ Stops the step at the top of ``self.stack`` """ step = self.stack.pop() step.stop = now() def _fill_case(self, report, call, pyteststatus, status): """ Finalizes with important data :param report: py.test's `TestReport` :param call: py.test's `CallInfo` :param pyteststatus: the failed/xfailed/xpassed thing :param status: a :py:class:`allure.constants.Status` entry """ [self.attach(name, contents, AttachmentType.TEXT) for (name, contents) in dict(report.sections).items()] self.test.stop = now() self.test.status = status if status in FAILED_STATUSES: self.test.failure = Failure(message=get_exception_message(call.excinfo, pyteststatus, report), trace=report.longrepr or hasattr(report, 'wasxfail') and report.wasxfail) elif status in SKIPPED_STATUSES: skip_message = type(report.longrepr) == tuple and report.longrepr[2] or report.wasxfail trim_msg_len = 89 short_message = skip_message.split('\n')[0][:trim_msg_len] # FIXME: see pytest.runner.pytest_runtest_makereport self.test.failure = Failure(message=(short_message + '...' * (len(skip_message) > trim_msg_len)), trace=status == Status.PENDING and report.longrepr or short_message != skip_message and skip_message or '') def report_case(self, item, report): """ Adds `self.test` to the `report` in a `AllureAggegatingListener`-understood way """ parent = parent_module(item) # we attach a four-tuple: (test module ID, test module name, test module doc, environment, TestCase) report.__dict__.update(_allure_result=pickle.dumps((parent.nodeid, parent.module.__name__, parent.module.__doc__ or '', self.environment, self.test))) @pytest.mark.hookwrapper def pytest_runtest_makereport(self, item, call): """ Decides when to actually report things. pytest runs this (naturally) three times -- with report.when being: setup <--- fixtures are to be initialized in this one call <--- when this finishes the main code has finished teardown <--- tears down fixtures (that still possess important info) `setup` and `teardown` are always called, but `call` is called only if `setup` passes. See :py:func:`_pytest.runner.runtestprotocol` for proofs / ideas. The "other side" (AllureAggregatingListener) expects us to send EXACTLY ONE test report (it wont break, but it will duplicate cases in the report -- which is bad. So we work hard to decide exact moment when we call `_stop_case` to do that. This method may benefit from FSM (we keep track of what has already happened via self.test.status) Expected behavior is: FAILED when call fails and others OK BROKEN when either setup OR teardown are broken (and call may be anything) PENDING if skipped and xfailed SKIPPED if skipped and not xfailed """ report = (yield).get_result() status = self.config.hook.pytest_report_teststatus(report=report) status = status and status[0] if report.when == 'call': if report.passed: self._fill_case(report, call, status, Status.PASSED) elif report.failed: self._fill_case(report, call, status, Status.FAILED) # FIXME: this is here only to work around xdist's stupid -x thing when in exits BEFORE THE TEARDOWN test log. Meh, i should file an issue to xdist if self._magicaldoublereport: # to minimize ze impact self.report_case(item, report) elif report.skipped: if hasattr(report, 'wasxfail'): self._fill_case(report, call, status, Status.PENDING) else: self._fill_case(report, call, status, Status.CANCELED) elif report.when == 'setup': # setup / teardown if report.failed: self._fill_case(report, call, status, Status.BROKEN) elif report.skipped: if hasattr(report, 'wasxfail'): self._fill_case(report, call, status, Status.PENDING) else: self._fill_case(report, call, status, Status.CANCELED) elif report.when == 'teardown': # as teardown is always called for testitem -- report our status here if not report.passed: if self.test.status not in FAILED_STATUSES: # if test was OK but failed at teardown => broken self._fill_case(report, call, status, Status.BROKEN) else: # mark it broken so, well, someone has idea of teardown failure # still, that's no big deal -- test has already failed # TODO: think about that once again self.test.status = Status.BROKEN # if a test isn't marked as "unreported" or it has failed, add it to the report. if not item.get_marker("unreported") or self.test.status in FAILED_STATUSES: self.report_case(item, report) def pytest_runtest_setup(item): item_labels = set((l.name, l.value) for l in labels_of(item)) # see label_type arg_labels = set().union(item.config.option.allurefeatures, item.config.option.allurestories, item.config.option.allureseverities) if arg_labels and not item_labels & arg_labels: pytest.skip('Not suitable with selected labels: %s.' % ', '.join(text_type(l) for l in sorted(arg_labels))) class LazyInitStepContext(StepContext): """ This is a step context used for decorated steps. It provides a possibility to create step decorators, being initiated before pytest_configure, when no AllureListener initiated yet. """ def __init__(self, allure_helper, title): self.allure_helper = allure_helper self.title = title self.step = None @property def allure(self): listener = self.allure_helper.get_listener() # if listener has `stack` we are inside a test # record steps only when that # FIXME: this breaks encapsulation a lot if hasattr(listener, 'stack'): return listener class AllureHelper(object): """ This object holds various utility methods used from ``pytest.allure`` namespace, like ``pytest.allure.attach`` """ def __init__(self): self._allurelistener = None # FIXME: this gets injected elsewhere, like in the pytest_configure def get_listener(self): return self._allurelistener def attach(self, name, contents, type=AttachmentType.TEXT): # @ReservedAssignment """ Attaches ``contents`` to a current context with given ``name`` and ``type``. """ if self._allurelistener: self._allurelistener.attach(name, contents, type) def label(self, name, *value): """ A decorator factory that returns ``pytest.mark`` for a given label. """ allure_label = getattr(pytest.mark, '%s.%s' % (Label.DEFAULT, name)) return allure_label(*value) def severity(self, severity): """ A decorator factory that returns ``pytest.mark`` for a given allure ``level``. """ return self.label(Label.SEVERITY, severity) def feature(self, *features): """ A decorator factory that returns ``pytest.mark`` for a given features. """ return self.label(Label.FEATURE, *features) def story(self, *stories): """ A decorator factory that returns ``pytest.mark`` for a given stories. """ return self.label(Label.STORY, *stories) def issue(self, *issues): """ A decorator factory that returns ``pytest.mark`` for a given issues. """ return self.label(Label.ISSUE, *issues) def dynamic_issue(self, *issues): """ Mark test ``issues`` from inside. """ if self._allurelistener: self._allurelistener.dynamic_issue(*issues) def description(self, description): """ Sets description for the test """ if self._allurelistener: self._allurelistener.description(description) def testcase(self, *testcases): """ A decorator factory that returns ``pytest.mark`` for a given testcases. """ return self.label(Label.TESTCASE, *testcases) def step(self, title): """ A contextmanager/decorator for steps. TODO: when moving to python 3, rework this with ``contextlib.ContextDecorator``. Usage examples:: import pytest def test_foo(): with pytest.allure.step('mystep'): assert False @pytest.allure.step('make test data') def make_test_data_bar(): raise ValueError('No data today') def test_bar(): assert make_test_data_bar() @pytest.allure.step def make_test_data_baz(): raise ValueError('No data today') def test_baz(): assert make_test_data_baz() @pytest.fixture() @pytest.allure.step('test fixture') def steppy_fixture(): return 1 def test_baz(steppy_fixture): assert steppy_fixture """ if callable(title): return LazyInitStepContext(self, title.__name__)(title) else: return LazyInitStepContext(self, title) def single_step(self, text): """ Writes single line to report. """ if self._allurelistener: with self.step(text): pass def environment(self, **env_dict): if self._allurelistener: self._allurelistener.environment.update(env_dict) @property def attach_type(self): return AttachmentType @property def severity_level(self): return Severity def __getattr__(self, attr): """ Provides fancy shortcuts for severity:: # these are the same pytest.allure.CRITICAL pytest.allure.severity(pytest.allure.severity_level.CRITICAL) """ if attr in dir(Severity) and not attr.startswith('_'): return self.severity(getattr(Severity, attr)) else: raise AttributeError MASTER_HELPER = AllureHelper() def pytest_namespace(): return {'allure': MASTER_HELPER} class AllureAgregatingListener(object): """ Listens to pytest hooks to generate reports for common tests. """ def __init__(self, impl, config): self.impl = impl # module's nodeid => TestSuite object self.suites = {} def pytest_sessionfinish(self): """ We are done and have all the results in `self.suites` Lets write em down. But first we kinda-unify the test cases. We expect cases to come from AllureTestListener -- and the have ._id field to manifest their identity. Of all the test cases in suite.testcases we leave LAST with the same ID -- becase logreport can be sent MORE THAN ONE TIME (namely, if the test fails and then gets broken -- to cope with the xdist's -x behavior we have to have tests even at CALL failures) TODO: do it in a better, more efficient way """ for s in self.suites.values(): if s.tests: # nobody likes empty suites s.stop = max(case.stop for case in s.tests) known_ids = set() refined_tests = [] for t in s.tests[::-1]: if t.id not in known_ids: known_ids.add(t.id) refined_tests.append(t) s.tests = refined_tests[::-1] with self.impl._reportfile('%s-testsuite.xml' % uuid.uuid4()) as f: self.impl._write_xml(f, s) self.impl.store_environment() def write_attach(self, attachment): """ Writes attachment object from the `AllureTestListener` to the FS, fixing it fields :param attachment: a :py:class:`allure.structure.Attach` object """ # OMG, that is bad attachment.source = self.impl._save_attach(attachment.source, attachment.type) attachment.type = attachment.type.mime_type def pytest_runtest_logreport(self, report): if hasattr(report, '_allure_result'): module_id, module_name, module_doc, environment, testcase = pickle.loads(report._allure_result) report._allure_result = None # so actual pickled data is garbage-collected, see https://github.com/allure-framework/allure-python/issues/98 self.impl.environment.update(environment) for a in testcase.iter_attachments(): self.write_attach(a) self.suites.setdefault(module_id, TestSuite(name=module_name, description=module_doc, tests=[], labels=[], start=testcase.start, # first case starts the suite! stop=None)).tests.append(testcase) CollectFail = namedtuple('CollectFail', 'name status message trace') class AllureCollectionListener(object): """ Listens to pytest collection-related hooks to generate reports for modules that failed to collect. """ def __init__(self, impl): self.impl = impl self.fails = [] def pytest_collectreport(self, report): if not report.passed: if report.failed: status = Status.BROKEN else: status = Status.CANCELED self.fails.append(CollectFail(name=mangle_testnames(report.nodeid.split("::"))[-1], status=status, message=get_exception_message(None, None, report), trace=report.longrepr)) def pytest_sessionfinish(self): """ Creates a testsuite with collection failures if there were any. """ if self.fails: self.impl.start_suite(name='test_collection_phase', title='Collection phase', description='This is the tests collection phase. Failures are modules that failed to collect.') for fail in self.fails: self.impl.start_case(name=fail.name.split(".")[-1]) self.impl.stop_case(status=fail.status, message=fail.message, trace=fail.trace) self.impl.stop_suite()
5734
from matplotlib.colors import ListedColormap cm3 = ListedColormap(['#0000aa', '#ff2020', '#50ff50']) cm2 = ListedColormap(['#0000aa', '#ff2020'])
5754
import sys sys.path.append('../../') import constants as cnst import os os.environ['PYTHONHASHSEED'] = '2' import tqdm from model.stg2_generator import StyledGenerator import numpy as np from my_utils.visualize_flame_overlay import OverLayViz from my_utils.flm_dynamic_fit_overlay import camera_ringnetpp from my_utils.generate_gif import generate_from_flame_sequence from my_utils.generic_utils import save_set_of_images from my_utils import compute_fid import constants from dataset_loaders import fast_image_reshape import torch from my_utils import generic_utils from my_utils.eye_centering import position_to_given_location def ge_gen_in(flm_params, textured_rndr, norm_map, normal_map_cond, texture_cond): if normal_map_cond and texture_cond: return torch.cat((textured_rndr, norm_map), dim=1) elif normal_map_cond: return norm_map elif texture_cond: return textured_rndr else: return flm_params # General settings save_images = True code_size = 236 use_inst_norm = True core_tensor_res = 4 resolution = 256 alpha = 1 step_max = int(np.log2(resolution) - 2) root_out_dir = f'{cnst.output_root}sample/' num_smpl_to_eval_on = 1000 use_styled_conv_stylegan2 = True flength = 5000 cam_t = np.array([0., 0., 0]) camera_params = camera_ringnetpp((512, 512), trans=cam_t, focal=flength) run_ids_1 = [29, ] # with sqrt(2) # run_ids_1 = [7, 24, 8, 3] # run_ids_1 = [7, 8, 3] settings_for_runs = \ {24: {'name': 'vector_cond', 'model_idx': '216000_1', 'normal_maps_as_cond': False, 'rendered_flame_as_condition': False, 'apply_sqrt2_fac_in_eq_lin': False}, 29: {'name': 'full_model', 'model_idx': '294000_1', 'normal_maps_as_cond': True, 'rendered_flame_as_condition': True, 'apply_sqrt2_fac_in_eq_lin': True}, 7: {'name': 'flm_rndr_tex_interp', 'model_idx': '051000_1', 'normal_maps_as_cond': False, 'rendered_flame_as_condition': True, 'apply_sqrt2_fac_in_eq_lin': False}, 3: {'name': 'norm_mp_tex_interp', 'model_idx': '203000_1', 'normal_maps_as_cond': True, 'rendered_flame_as_condition': False, 'apply_sqrt2_fac_in_eq_lin': False}, 8: {'name': 'norm_map_rend_flm_no_tex_interp', 'model_idx': '009000_1', 'normal_maps_as_cond': True, 'rendered_flame_as_condition': True, 'apply_sqrt2_fac_in_eq_lin': False},} overlay_visualizer = OverLayViz() # overlay_visualizer.setup_renderer(mesh_file=None) flm_params = np.zeros((num_smpl_to_eval_on, code_size)).astype('float32') fl_param_dict = np.load(cnst.all_flame_params_file, allow_pickle=True).item() for i, key in enumerate(fl_param_dict): flame_param = fl_param_dict[key] flame_param = np.hstack((flame_param['shape'], flame_param['exp'], flame_param['pose'], flame_param['cam'], flame_param['tex'], flame_param['lit'].flatten())) # tz = camera_params['f'][0] / (camera_params['c'][0] * flame_param[:, 156:157]) # flame_param[:, 156:159] = np.concatenate((flame_param[:, 157:], tz), axis=1) # import ipdb; ipdb.set_trace() flm_params[i, :] = flame_param.astype('float32') if i == num_smpl_to_eval_on - 1: break batch_size = 64 flame_decoder = overlay_visualizer.deca.flame.eval() for run_idx in run_ids_1: # import ipdb; ipdb.set_trace() generator_1 = torch.nn.DataParallel( StyledGenerator(embedding_vocab_size=69158, rendered_flame_ascondition=settings_for_runs[run_idx]['rendered_flame_as_condition'], normal_maps_as_cond=settings_for_runs[run_idx]['normal_maps_as_cond'], core_tensor_res=core_tensor_res, w_truncation_factor=1.0, apply_sqrt2_fac_in_eq_lin=settings_for_runs[run_idx]['apply_sqrt2_fac_in_eq_lin'], n_mlp=8)).cuda() model_idx = settings_for_runs[run_idx]['model_idx'] ckpt1 = torch.load(f'{cnst.output_root}checkpoint/{run_idx}/{model_idx}.model') generator_1.load_state_dict(ckpt1['generator_running']) generator_1 = generator_1.eval() # images = np.zeros((num_smpl_to_eval_on, 3, resolution, resolution)).astype('float32') pbar = tqdm.tqdm(range(0, num_smpl_to_eval_on, batch_size)) pbar.set_description('Generating_images') flame_mesh_imgs = None mdl_id = 'mdl2_' if settings_for_runs[run_idx]['name'] == 'full_model': mdl_id = 'mdl1_' for batch_idx in pbar: flm_batch = flm_params[batch_idx:batch_idx+batch_size, :] flm_batch = torch.from_numpy(flm_batch).cuda() flm_batch = position_to_given_location(flame_decoder, flm_batch) batch_size_true = flm_batch.shape[0] if settings_for_runs[run_idx]['normal_maps_as_cond'] or \ settings_for_runs[run_idx]['rendered_flame_as_condition']: cam = flm_batch[:, constants.DECA_IDX['cam'][0]:constants.DECA_IDX['cam'][1]:] shape = flm_batch[:, constants.INDICES['SHAPE'][0]:constants.INDICES['SHAPE'][1]] exp = flm_batch[:, constants.INDICES['EXP'][0]:constants.INDICES['EXP'][1]] pose = flm_batch[:, constants.INDICES['POSE'][0]:constants.INDICES['POSE'][1]] # import ipdb; ipdb.set_trace() light_code = \ flm_batch[:, constants.DECA_IDX['lit'][0]:constants.DECA_IDX['lit'][1]:].view((batch_size_true, 9, 3)) texture_code = flm_batch[:, constants.DECA_IDX['tex'][0]:constants.DECA_IDX['tex'][1]:] norma_map_img, _, _, _, rend_flm = \ overlay_visualizer.get_rendered_mesh(flame_params=(shape, exp, pose, light_code, texture_code), camera_params=cam) rend_flm = torch.clamp(rend_flm, 0, 1) * 2 - 1 norma_map_img = torch.clamp(norma_map_img, 0, 1) * 2 - 1 rend_flm = fast_image_reshape(rend_flm, height_out=256, width_out=256, mode='bilinear') norma_map_img = fast_image_reshape(norma_map_img, height_out=256, width_out=256, mode='bilinear') else: rend_flm = None norma_map_img = None gen_1_in = ge_gen_in(flm_batch, rend_flm, norma_map_img, settings_for_runs[run_idx]['normal_maps_as_cond'], settings_for_runs[run_idx]['rendered_flame_as_condition']) # torch.manual_seed(2) identity_embeddings = torch.randint(low=0, high=69158, size=(gen_1_in.shape[0], ), dtype=torch.long, device='cuda') mdl_1_gen_images = generic_utils.get_images_from_flame_params( flame_params=gen_1_in.cpu().numpy(), pose=None, model=generator_1, step=step_max, alpha=alpha, input_indices=identity_embeddings.cpu().numpy()) # import ipdb; ipdb.set_trace() images = torch.clamp(mdl_1_gen_images, -1, 1).cpu().numpy() flame_mesh_imgs = torch.clamp(rend_flm, -1, 1).cpu().numpy() save_path_current_id = os.path.join(root_out_dir, 'inter_model_comparison', settings_for_runs[run_idx]['name']) save_set_of_images(path=save_path_current_id, prefix=f'{mdl_id}_{batch_idx}', images=(images + 1) / 2, show_prog_bar=True) #save flam rndr save_path_current_id_flm_rndr = os.path.join(root_out_dir, 'inter_model_comparison', settings_for_runs[run_idx]['name']) save_set_of_images(path=save_path_current_id_flm_rndr, prefix=f'mesh_{batch_idx}', images=(flame_mesh_imgs + 1) / 2, show_prog_bar=True) # save_set_of_images(path=save_path_this_expt, prefix='mesh_', images=((norma_map_img + 1) / 2).cpu().numpy()) # save_set_of_images(path=save_path_this_expt, prefix='mdl1_', images=((mdl_1_gen_images + 1) / 2).cpu().numpy()) # save_set_of_images(path=save_path_this_expt, prefix='mdl2_', images=((mdl_2_gen_images + 1) / 2).cpu().numpy())
5761
import unittest import numpy as np from numpy.testing import assert_almost_equal from dymos.utils.hermite import hermite_matrices class TestHermiteMatrices(unittest.TestCase): def test_quadratic(self): # Interpolate with values and rates provided at [-1, 1] in tau space tau_given = [-1.0, 1.0] tau_eval = np.linspace(-1, 1, 100) # In time space use the boundaries [-2, 2] dt_dtau = 4.0 / 2.0 # Provide values for y = t**2 and its time-derivative y_given = [4.0, 4.0] ydot_given = [-4.0, 4.0] # Get the hermite matrices. Ai, Bi, Ad, Bd = hermite_matrices(tau_given, tau_eval) # Interpolate y and ydot at tau_eval points in tau space. y_i = np.dot(Ai, y_given) + dt_dtau * np.dot(Bi, ydot_given) ydot_i = (1.0 / dt_dtau) * np.dot(Ad, y_given) + np.dot(Bd, ydot_given) # Compute our function as a point of comparison. y_computed = (tau_eval * dt_dtau)**2 ydot_computed = 2.0 * (tau_eval * dt_dtau) # Check results assert_almost_equal(y_i, y_computed) assert_almost_equal(ydot_i, ydot_computed) def test_cubic(self): # Interpolate with values and rates provided at [-1, 1] in tau space tau_given = [-1.0, 0.0, 1.0] tau_eval = np.linspace(-1, 1, 101) # In time space use the boundaries [-2, 2] dt_dtau = 4.0 / 2.0 # Provide values for y = t**2 and its time-derivative y_given = [-8.0, 0.0, 8.0] ydot_given = [12.0, 0.0, 12.0] # Get the hermite matrices. Ai, Bi, Ad, Bd = hermite_matrices(tau_given, tau_eval) # Interpolate y and ydot at tau_eval points in tau space. y_i = np.dot(Ai, y_given) + dt_dtau * np.dot(Bi, ydot_given) ydot_i = (1.0 / dt_dtau) * np.dot(Ad, y_given) + np.dot(Bd, ydot_given) # Compute our function as a point of comparison. y_computed = (tau_eval * dt_dtau)**3 ydot_computed = 3.0 * (tau_eval * dt_dtau)**2 # Check results assert_almost_equal(y_i, y_computed) assert_almost_equal(ydot_i, ydot_computed) if __name__ == '__main__': # pragma: no cover unittest.main()
5778
import tensorflow as tf from typing import Optional from tf_fourier_features import fourier_features class FourierFeatureMLP(tf.keras.Model): def __init__(self, units: int, final_units: int, gaussian_projection: Optional[int], activation: str = 'relu', final_activation: str = "linear", num_layers: int = 1, gaussian_scale: float = 1.0, use_bias: bool = True, **kwargs): """ Fourier Feature Projection model from the paper [Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains](https://people.eecs.berkeley.edu/~bmild/fourfeat/). Used to create a multi-layer MLP with optional FourierFeatureProjection layer. Args: units: Number of hidden units in the intermediate layers. final_units: Number of hidden units in the final layer. activation: Activation in the hidden layers. final_activation: Activation function of the final layer. num_layers: Number of layers in the network. gaussian_projection: Projection dimension for the gaussian kernel in fourier feature projection layer. Can be None, negative or positive integer. If None, then fourier feature map layer is not used. If <=0, uses identity matrix (basic projection) without gaussian kernel. If >=1, uses gaussian projection matrix of specified dim. gaussian_scale: Scale of the gaussian kernel in fourier feature projection layer. Note: If the scale is too small, convergence will slow down and obtain poor results. If the scale is too large (>50), convergence will be fast but results will be grainy. Try grid search for scales in the range [10 - 50]. use_bias: Boolean whether to use bias or not. # References: - [Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains](https://people.eecs.berkeley.edu/~bmild/fourfeat/) """ super().__init__(**kwargs) layers = [] if gaussian_projection is not None: layers.append(fourier_features.FourierFeatureProjection( gaussian_projection=gaussian_projection, gaussian_scale=gaussian_scale, **kwargs )) for _ in range(num_layers - 1): layers.append(tf.keras.layers.Dense(units, activation=activation, use_bias=use_bias, bias_initializer='he_uniform', **kwargs)) self.network = tf.keras.Sequential(layers) self.final_dense = tf.keras.layers.Dense(final_units, activation=final_activation, use_bias=use_bias, bias_initializer='he_uniform', **kwargs) def call(self, inputs, training=None, mask=None): features = self.network(inputs) output = self.final_dense(features) return output
5787
from conans import ConanFile, AutoToolsBuildEnvironment, MSBuild, tools from conans.errors import ConanInvalidConfiguration import os import shutil required_conan_version = ">=1.33.0" class LibStudXmlConan(ConanFile): name = "libstudxml" description = "A streaming XML pull parser and streaming XML serializer implementation for modern, standard C++." topics = ("xml", "xml-parser", "serialization") url = "https://github.com/conan-io/conan-center-index" homepage = "https://www.codesynthesis.com/projects/libstudxml/" license = "MIT" settings = "os", "compiler", "build_type", "arch" exports_sources = "patches/*" options = { "shared": [True, False], "fPIC": [True, False], } default_options = { "shared": False, "fPIC": True, } _autotools = None @property def _source_subfolder(self): return "source_subfolder" def config_options(self): if self.settings.os == "Windows": del self.options.fPIC def configure(self): if self.options.shared: del self.options.fPIC def requirements(self): self.requires("expat/2.4.1") def validate(self): if self.settings.compiler == "Visual Studio": if tools.Version(self.settings.compiler.version) < "9": raise ConanInvalidConfiguration("Visual Studio {} is not supported.".format(self.settings.compiler.version)) @property def _settings_build(self): return getattr(self, "settings_build", self.settings) def build_requirements(self): if self.settings.compiler != "Visual Studio": self.build_requires("gnu-config/cci.20201022") self.build_requires("libtool/2.4.6") if self._settings_build.os == "Windows" and not tools.get_env("CONAN_BASH_PATH"): self.build_requires("msys2/cci.latest") def source(self): tools.get(**self.conan_data["sources"][self.version], destination=self._source_subfolder, strip_root=True) def _configure_autotools(self): if not self._autotools: args = ["--with-external-expat"] if self.options.shared: args.extend(["--enable-shared", "--disable-static"]) else: args.extend(["--disable-shared", "--enable-static"]) self._autotools = AutoToolsBuildEnvironment(self, win_bash=tools.os_info.is_windows) self._autotools.configure(configure_dir=self._source_subfolder, args=args) return self._autotools def _build_vs(self): vc_ver = int(tools.Version(self.settings.compiler.version).major) sln_path = None def get_sln_path(): return os.path.join(self._source_subfolder, "libstudxml-vc{}.sln".format(vc_ver)) sln_path = get_sln_path() while not os.path.exists(sln_path): vc_ver -= 1 sln_path = get_sln_path() proj_path = os.path.join(self._source_subfolder, "xml", "libstudxml-vc{}.vcxproj".format(vc_ver)) if not self.options.shared: tools.replace_in_file(proj_path, "DynamicLibrary", "StaticLibrary") tools.replace_in_file(proj_path, "LIBSTUDXML_DYNAMIC_LIB", "LIBSTUDXML_STATIC_LIB") msbuild = MSBuild(self) msbuild.build(sln_path, platforms={"x86": "Win32"}) @property def _user_info_build(self): return getattr(self, "user_info_build", self.deps_user_info) def _build_autotools(self): shutil.copy(self._user_info_build["gnu-config"].CONFIG_SUB, os.path.join(self._source_subfolder, "config", "config.sub")) shutil.copy(self._user_info_build["gnu-config"].CONFIG_GUESS, os.path.join(self._source_subfolder, "config", "config.guess")) if self.settings.compiler.get_safe("libcxx") == "libc++": # libc++ includes a file called 'version', and since libstudxml adds source_subfolder as an # include dir, libc++ ends up including their 'version' file instead, causing a compile error tools.remove_files_by_mask(self._source_subfolder, "version") with tools.chdir(self._source_subfolder): self.run("{} -fiv".format(tools.get_env("AUTORECONF")), win_bash=tools.os_info.is_windows) autotools = self._configure_autotools() autotools.make() def build(self): for patch in self.conan_data.get("patches", {}).get(self.version, []): tools.patch(**patch) if self.settings.compiler == "Visual Studio": self._build_vs() else: self._build_autotools() def package(self): self.copy(pattern="LICENSE", dst="licenses", src=self._source_subfolder) if self.settings.compiler == "Visual Studio": self.copy("xml/value-traits", dst="include", src=self._source_subfolder) self.copy("xml/serializer", dst="include", src=self._source_subfolder) self.copy("xml/qname", dst="include", src=self._source_subfolder) self.copy("xml/parser", dst="include", src=self._source_subfolder) self.copy("xml/forward", dst="include", src=self._source_subfolder) self.copy("xml/exception", dst="include", src=self._source_subfolder) self.copy("xml/content", dst="include", src=self._source_subfolder) self.copy("xml/*.ixx", dst="include", src=self._source_subfolder) self.copy("xml/*.txx", dst="include", src=self._source_subfolder) self.copy("xml/*.hxx", dst="include", src=self._source_subfolder) self.copy("xml/*.h", dst="include", src=self._source_subfolder) suffix = "" if self.settings.arch == "x86_64": suffix = "64" if self.options.shared: self.copy("*.lib", dst="lib", src=os.path.join(self._source_subfolder, "lib" + suffix)) self.copy("*.dll", dst="bin", src=os.path.join(self._source_subfolder, "bin" + suffix)) else: self.copy("*.lib", dst="lib", src=os.path.join(self._source_subfolder, "bin" + suffix)) else: autotools = self._configure_autotools() autotools.install() tools.remove_files_by_mask(os.path.join(self.package_folder, "lib"), "libstudxml.la") tools.rmdir(os.path.join(self.package_folder, "lib", "pkgconfig")) tools.rmdir(os.path.join(self.package_folder, "share")) def package_info(self): self.cpp_info.libs = tools.collect_libs(self) self.cpp_info.names["pkg_config"] = "libstudxml" # If built with makefile, static library mechanism is provided by their buildsystem already if self.settings.compiler == "Visual Studio" and not self.options.shared: self.cpp_info.defines = ["LIBSTUDXML_STATIC_LIB=1"]
5820
import collections import copy import intervaltree from .label import Label class LabelList: """ Represents a list of labels which describe an utterance. An utterance can have multiple label-lists. Args: idx (str): An unique identifier for the label-list within a corpus for one utterance. labels (list): The list containing the :py:class:`audiomate.annotations.Label`. Attributes: utterance (Utterance): The utterance this label-list is belonging to. label_tree (IntervalTree): The interval-tree storing the labels. Example: >>> label_list = LabelList(idx='transcription', labels=[ >>> Label('this', 0, 2), >>> Label('is', 2, 4), >>> Label('timmy', 4, 8) >>> ]) """ __slots__ = ['idx', 'label_tree', 'utterance'] def __init__(self, idx='default', labels=None): self.idx = idx self.utterance = None self.label_tree = intervaltree.IntervalTree() if labels is not None: self.update(labels) def __eq__(self, other): data_this = (self.idx, self.label_tree) data_other = (other.idx, other.label_tree) return data_this == data_other def __iter__(self): for interval in self.label_tree: yield interval.data def __len__(self): return self.label_tree.__len__() def __copy__(self): # utterance is ignored intentionally, # since it is kind of a weak ref return LabelList( idx=self.idx, labels=[iv.data for iv in self.label_tree] ) def __deepcopy__(self, memo): # utterance is ignored intentionally, # since it is kind of a weak ref return LabelList( idx=self.idx, labels=copy.deepcopy([iv.data for iv in self.label_tree], memo) ) @property def labels(self): """ Return list of labels. """ return list(self) @property def start(self): """ Return start of the earliest starting label (lower bound). """ return self.label_tree.begin() @property def end(self): """ Return end of the lastly ending label (upper bound). """ return self.label_tree.end() @property def total_length(self): """ Return the cumulative length of all labels (Number of characters). """ return sum(label.length for label in self.labels) # # Alteration # def add(self, label): """ Add a label to the end of the list. Args: label (Label): The label to add. """ label.label_list = self self.label_tree.addi(label.start, label.end, label) def addl(self, value, start=0.0, end=float('inf')): """ Shortcut for ``add(Label(value, start, end))``. """ self.add(Label(value, start=start, end=end)) def update(self, labels): """ Add a list of labels to the end of the list. Args: labels (list): Labels to add. """ ivs = [] for label in labels: label.label_list = self ivs.append(intervaltree.Interval(label.start, label.end, label)) self.label_tree.update(ivs) def apply(self, fn): """ Apply the given function `fn` to every label in this label list. `fn` is a function of one argument that receives the current label which can then be edited in place. Args: fn (func): Function to apply to every label Example: >>> ll = LabelList(labels=[ ... Label('a_label', 1.0, 2.0), ... Label('another_label', 2.0, 3.0) ... ]) >>> def shift_labels(label): ... label.start += 1.0 ... label.end += 1.0 ... >>> ll.apply(shift_labels) >>> ll.labels [Label(a_label, 2.0, 3.0), Label(another_label, 3.0, 4.0)] """ for label in self.labels: fn(label) def merge_overlaps(self, threshold=0.0): """ Merge overlapping labels with the same value. Two labels are considered overlapping, if ``l2.start - l1.end < threshold``. Args: threshold (float): Maximal distance between two labels to be considered as overlapping. (default: 0.0) Example: >>> ll = LabelList(labels=[ ... Label('a_label', 1.0, 2.0), ... Label('a_label', 1.5, 2.7), ... Label('b_label', 1.0, 2.0), ... ]) >>> ll.merge_overlapping_labels() >>> ll.labels [ Label('a_label', 1.0, 2.7), Label('b_label', 1.0, 2.0), ] """ updated_labels = [] all_intervals = self.label_tree.copy() # recursivly find a group of overlapping labels with the same value def recursive_overlaps(interval): range_start = interval.begin - threshold range_end = interval.end + threshold direct_overlaps = all_intervals.overlap(range_start, range_end) all_overlaps = [interval] all_intervals.discard(interval) for overlap in direct_overlaps: if overlap.data.value == interval.data.value: all_overlaps.extend(recursive_overlaps(overlap)) return all_overlaps # For every remaining interval # - Find overlapping intervals recursively # - Remove them # - Create a concatenated new label while not all_intervals.is_empty(): next_interval = list(all_intervals)[0] overlapping = recursive_overlaps(next_interval) ov_start = float('inf') ov_end = 0.0 ov_value = next_interval.data.value for overlap in overlapping: ov_start = min(ov_start, overlap.begin) ov_end = max(ov_end, overlap.end) all_intervals.discard(overlap) updated_labels.append(Label( ov_value, ov_start, ov_end )) # Replace the old labels with the updated ones self.label_tree.clear() self.update(updated_labels) # # Statistics # def label_total_duration(self): """ Return for each distinct label value the total duration of all occurrences. Returns: dict: A dictionary containing for every label-value (key) the total duration in seconds (value). Example: >>> ll = LabelList(labels=[ >>> Label('a', 3, 5), >>> Label('b', 5, 8), >>> Label('a', 8, 10), >>> Label('b', 10, 14), >>> Label('a', 15, 18.5) >>> ]) >>> ll.label_total_duration() {'a': 7.5 'b': 7.0} """ durations = collections.defaultdict(float) for label in self: durations[label.value] += label.duration return durations def label_values(self): """ Return a list of all occuring label values. Returns: list: Lexicographically sorted list (str) of label values. Example: >>> ll = LabelList(labels=[ >>> Label('a', 3.2, 4.5), >>> Label('b', 5.1, 8.9), >>> Label('c', 7.2, 10.5), >>> Label('d', 10.5, 14), >>> Label('d', 15, 18) >>> ]) >>> ll.label_values() ['a', 'b', 'c', 'd'] """ all_labels = {l.value for l in self} return sorted(all_labels) def label_count(self): """ Return for each label the number of occurrences within the list. Returns: dict: A dictionary containing for every label-value (key) the number of occurrences (value). Example: >>> ll = LabelList(labels=[ >>> Label('a', 3.2, 4.5), >>> Label('b', 5.1, 8.9), >>> Label('a', 7.2, 10.5), >>> Label('b', 10.5, 14), >>> Label('a', 15, 18) >>> ]) >>> ll.label_count() {'a': 3 'b': 2} """ occurrences = collections.defaultdict(int) for label in self: occurrences[label.value] += 1 return occurrences def all_tokens(self, delimiter=' '): """ Return a list of all tokens occurring in the label-list. Args: delimiter (str): The delimiter used to split labels into tokens. See :meth:`audiomate.annotations.Label.tokenized` Returns: :class:`set`: A set of distinct tokens. """ tokens = set() for label in self: tokens = tokens.union(set(label.tokenized(delimiter=delimiter))) return tokens # # Query Label Values # def join(self, delimiter=' ', overlap_threshold=0.1): """ Return a string with all labels concatenated together. The order of the labels is defined by the start of the label. If the overlapping between two labels is greater than ``overlap_threshold``, an Exception is thrown. Args: delimiter (str): A string to join two consecutive labels. overlap_threshold (float): Maximum overlap between two consecutive labels. Returns: str: A string with all labels concatenated together. Example: >>> ll = LabelList(idx='some', labels=[ >>> Label('a', start=0, end=4), >>> Label('b', start=3.95, end=6.0), >>> Label('c', start=7.0, end=10.2), >>> Label('d', start=10.3, end=14.0) >>> ]) >>> ll.join(' - ') 'a - b - c - d' """ sorted_by_start = sorted(self.labels) concat_values = [] last_label_end = None for label in sorted_by_start: if last_label_end is None or (last_label_end - label.start < overlap_threshold and last_label_end > 0): concat_values.append(label.value) last_label_end = label.end else: raise ValueError('Labels overlap, not able to define the correct order') return delimiter.join(concat_values) def tokenized(self, delimiter=' ', overlap_threshold=0.1): """ Return a ordered list of tokens based on all labels. Joins all token from all labels (``label.tokenized()```). If the overlapping between two labels is greater than ``overlap_threshold``, an Exception is thrown. Args: delimiter (str): The delimiter used to split labels into tokens. (default: space) overlap_threshold (float): Maximum overlap between two consecutive labels. Returns: str: A list containing tokens of all labels ordered according to the label order. Example: >>> ll = LabelList(idx='some', labels=[ >>> Label('a d q', start=0, end=4), >>> Label('b', start=3.95, end=6.0), >>> Label('c a', start=7.0, end=10.2), >>> Label('f g', start=10.3, end=14.0) >>> ]) >>> ll.tokenized(delimiter=' ', overlap_threshold=0.1) ['a', 'd', 'q', 'b', 'c', 'a', 'f', 'g'] """ sorted_by_start = sorted(self.labels) tokens = [] last_label_end = None for label in sorted_by_start: if last_label_end is None or (last_label_end - label.start < overlap_threshold and last_label_end > 0): tokens.extend(label.tokenized(delimiter=delimiter)) last_label_end = label.end else: raise ValueError('Labels overlap, not able to define the correct order') return tokens # # Restructuring # def separated(self): """ Create a separate Label-List for every distinct label-value. Returns: dict: A dictionary with distinct label-values as keys. Every value is a LabelList containing only labels with the same value. Example: >>> ll = LabelList(idx='some', labels=[ >>> Label('a', start=0, end=4), >>> Label('b', start=3.95, end=6.0), >>> Label('a', start=7.0, end=10.2), >>> Label('b', start=10.3, end=14.0) >>> ]) >>> s = ll.separate() >>> s['a'].labels [Label('a', start=0, end=4), Label('a', start=7.0, end=10.2)] >>> s['b'].labels [Label('b', start=3.95, end=6.0), Label('b', start=10.3, end=14.0)] """ separated_lls = collections.defaultdict(LabelList) for label in self.labels: separated_lls[label.value].add(label) for ll in separated_lls.values(): ll.idx = self.idx return separated_lls def labels_in_range(self, start, end, fully_included=False): """ Return a list of labels, that are within the given range. Also labels that only overlap are included. Args: start(float): Start-time in seconds. end(float): End-time in seconds. fully_included(bool): If ``True``, only labels fully included in the range are returned. Otherwise also overlapping ones are returned. (default ``False``) Returns: list: List of labels in the range. Example: >>> ll = LabelList(labels=[ >>> Label('a', 3.2, 4.5), >>> Label('b', 5.1, 8.9), >>> Label('c', 7.2, 10.5), >>> Label('d', 10.5, 14) >>>]) >>> ll.labels_in_range(6.2, 10.1) [Label('b', 5.1, 8.9), Label('c', 7.2, 10.5)] """ if fully_included: intervals = self.label_tree.envelop(start, end) else: intervals = self.label_tree.overlap(start, end) return [iv.data for iv in intervals] def ranges(self, yield_ranges_without_labels=False, include_labels=None): """ Generate all ranges of the label-list. A range is defined as a part of the label-list for which the same labels are defined. Args: yield_ranges_without_labels(bool): If True also yields ranges for which no labels are defined. include_labels(list): If not empty, only the label values in the list will be considered. Returns: generator: A generator which yields one range (tuple start/end/list-of-labels) at a time. Example: >>> ll = LabelList(labels=[ >>> Label('a', 3.2, 4.5), >>> Label('b', 5.1, 8.9), >>> Label('c', 7.2, 10.5), >>> Label('d', 10.5, 14) >>>]) >>> ranges = ll.ranges() >>> next(ranges) (3.2, 4.5, [ < audiomate.annotations.Label at 0x1090527c8 > ]) >>> next(ranges) (4.5, 5.1, []) >>> next(ranges) (5.1, 7.2, [ < audiomate.annotations.label.Label at 0x1090484c8 > ]) """ tree_copy = self.label_tree.copy() # Remove labels not included if include_labels is not None: for iv in list(tree_copy): if iv.data.value not in include_labels: tree_copy.remove(iv) def reduce(x, y): x.append(y) return x # Split labels when overlapping and merge equal ranges to a list of labels tree_copy.split_overlaps() tree_copy.merge_equals(data_reducer=reduce, data_initializer=[]) intervals = sorted(tree_copy) last_end = intervals[0].begin # yield range by range for iv in intervals: # yield an empty range if necessary if yield_ranges_without_labels and iv.begin > last_end: yield (last_end, iv.begin, []) yield (iv.begin, iv.end, iv.data) last_end = iv.end def split(self, cutting_points, shift_times=False, overlap=0.0): """ Split the label-list into x parts and return them as new label-lists. x is defined by the number of cutting-points (``x == len(cutting_points) + 1``). The result is a list of label-lists corresponding to each part. Label-list 0 contains labels between ``0`` and ``cutting_points[0]``. Label-list 1 contains labels between ``cutting_points[0]`` and ``cutting_points[1]``. And so on. Args: cutting_points(list): List of floats defining the points in seconds, where the label-list is splitted. shift_times(bool): If True, start and end-time are shifted in splitted label-lists. So the start is relative to the cutting point and not to the beginning of the original label-list. overlap(float): Amount of overlap in seconds. This amount is subtracted from a start-cutting-point, and added to a end-cutting-point. Returns: list: A list of of: class: `audiomate.annotations.LabelList`. Example: >>> ll = LabelList(labels=[ >>> Label('a', 0, 5), >>> Label('b', 5, 10), >>> Label('c', 11, 15), >>>]) >>> >>> res = ll.split([4.1, 8.9, 12.0]) >>> len(res) 4 >>> res[0].labels [Label('a', 0.0, 4.1)] >>> res[1].labels [ Label('a', 4.1, 5.0), Label('b', 5.0, 8.9) ] >>> res[2].labels [ Label('b', 8.9, 10.0), Label('c', 11.0, 12.0) ] >>> res[3].labels [Label('c', 12.0, 15.0)] If ``shift_times = True``, the times are adjusted to be relative to the cutting-points for every label-list but the first. >>> ll = LabelList(labels=[ >>> Label('a', 0, 5), >>> Label('b', 5, 10), >>>]) >>> >>> res = ll.split([4.6]) >>> len(res) 4 >>> res[0].labels [Label('a', 0.0, 4.6)] >>> res[1].labels [ Label('a', 0.0, 0.4), Label('b', 0.4, 5.4) ] """ if len(cutting_points) == 0: raise ValueError('At least one cutting-point is needed!') # we have to loop in sorted order cutting_points = sorted(cutting_points) splits = [] iv_start = 0.0 for i in range(len(cutting_points) + 1): if i < len(cutting_points): iv_end = cutting_points[i] else: iv_end = float('inf') # get all intervals intersecting range intervals = self.label_tree.overlap( iv_start - overlap, iv_end + overlap ) cp_splits = LabelList(idx=self.idx) # Extract labels from intervals with updated times for iv in intervals: label = copy.deepcopy(iv.data) label.start = max(0, iv_start - overlap, label.start) label.end = min(iv_end + overlap, label.end) if shift_times: orig_start = max(0, iv_start - overlap) label.start -= orig_start label.end -= orig_start cp_splits.add(label) splits.append(cp_splits) iv_start = iv_end return splits # # Convenience Constructors # @classmethod def create_single(cls, value, idx='default'): """ Create a label-list with a single label containing the given value. """ return LabelList(idx=idx, labels=[ Label(value=value) ]) @classmethod def with_label_values(cls, values, idx='default'): """ Create a new label-list containing labels with the given values. All labels will have default start/end values of 0 and ``inf``. Args: values(list): List of values(str) that should be created and appended to the label-list. idx(str): The idx of the label-list. Returns: (LabelList): New label-list. Example: >>> ll = LabelList.with_label_values(['a', 'x', 'z'], idx='letters') >>> ll.idx 'letters' >>> ll.labels [ Label('a', 0, inf), Label('x', 0, inf), Label('z', 0, inf), ] """ ll = LabelList(idx=idx) for label_value in values: ll.add(Label(label_value)) return ll
5831
import asyncio import functools import time import weakref from collections import defaultdict from typing import AsyncIterable from typing import Awaitable from typing import Callable from typing import Dict from typing import List from typing import Optional from typing import TypeVar T = TypeVar("T") # NOTE: this method is not thread-safe due to lack of locking while checking # and updating the cache def async_ttl_cache( ttl: Optional[float] = 300, cleanup_self: bool = False, *, cache: Optional[Dict] = None, ) -> Callable[ [Callable[..., Awaitable[T]]], Callable[..., Awaitable[T]] # wrapped # inner ]: async def call_or_get_from_cache(cache, async_func, args_for_key, args, kwargs): # Please note that anything which is put into `key` will be in the # cache forever, potentially causing memory leaks. The most common # case is the `self` arg pointing to a huge object. To mitigate that # we're using `args_for_key`, which is supposed not contain any huge # objects. key = functools._make_key(args_for_key, kwargs, typed=False) try: future, last_update = cache[key] if ttl is not None and time.time() - last_update > ttl: raise KeyError except KeyError: future = asyncio.ensure_future(async_func(*args, **kwargs)) # set the timestamp to +infinity so that we always wait on the in-flight request. cache[key] = (future, float("Inf")) try: value = await future except Exception: # Only update the cache if it's the same future we awaited and # it hasn't already been updated by another coroutine # Note also that we use get() in case the key was deleted from the # cache by another coroutine if cache.get(key) == (future, float("Inf")): del cache[key] raise else: if cache.get(key) == (future, float("Inf")): cache[key] = (future, time.time()) return value if cleanup_self: instance_caches: Dict = cache if cache is not None else defaultdict(dict) def on_delete(w): del instance_caches[w] def outer(wrapped): @functools.wraps(wrapped) async def inner(self, *args, **kwargs): w = weakref.ref(self, on_delete) self_cache = instance_caches[w] return await call_or_get_from_cache( self_cache, wrapped, args, (self,) + args, kwargs ) return inner else: cache2: Dict = cache if cache is not None else {} # Should be Dict[Any, T] but that doesn't work. def outer(wrapped): @functools.wraps(wrapped) async def inner(*args, **kwargs): return await call_or_get_from_cache(cache2, wrapped, args, args, kwargs) return inner return outer async def aiter_to_list(aiter: AsyncIterable[T],) -> List[T]: return [x async for x in aiter] def async_timeout( seconds: int = 10, ) -> Callable[ [Callable[..., Awaitable[T]]], Callable[..., Awaitable[T]] # wrapped # inner ]: def outer(wrapped): @functools.wraps(wrapped) async def inner(*args, **kwargs): return await asyncio.wait_for(wrapped(*args, **kwargs), timeout=seconds) return inner return outer
5837
import os import sys from glob import glob def create_list(images_dir, output_file, img_ext=".jpg"): ImgList = os.listdir(images_dir) val_list = [] for img in ImgList: img,ext = img.split(".") val_list.append(img) with open(os.path.join(images_dir, output_file),'w') as fid: for line in val_list[:-1]: fid.write(line + "\n") fid.write(val_list[-1]) def main(): if len(sys.argv) < 2: print("Requires images directory") sys.exit(1) elif len(sys.argv) < 3: images_dir = sys.argv[1] output_file = "image_list.txt" else: images_dir = sys.argv[1] output_file = sys.argv[2] create_list(images_dir, output_file) if __name__=="__main__": main()
5842
import shlex from os import path from itertools import imap, ifilter from urlparse import urljoin from .css import CSSParser, iter_events def parse_config_stmt(line, prefix="spritemapper."): line = line.strip() if line.startswith(prefix) and "=" in line: (key, value) = line.split("=", 1) return (key[len(prefix):].strip(), value.strip()) def iter_config_stmts(data): return ifilter(None, imap(parse_config_stmt, data.splitlines())) def iter_css_config(parser): for ev in iter_events(parser, lexemes=("comment",)): for v in iter_config_stmts(ev.comment): yield v class CSSConfig(object): def __init__(self, parser=None, base=None, root=None, fname=None): if fname and root is None: root = path.dirname(fname) self.root = root self._data = dict(base) if base else {} if parser is not None: self._data.update(iter_css_config(parser)) def __iter__(self): # this is mostly so you can go CSSConfig(base=CSSConfig(..)) return self._data.iteritems() @classmethod def from_file(cls, fname): with open(fname, "rb") as fp: return cls(CSSParser.from_file(fp), fname=fname) def normpath(self, p): """Normalize a possibly relative path *p* to the root.""" return path.normpath(path.join(self.root, p)) def absurl(self, p): """Make an absolute reference to *p* from any configured base URL.""" base = self.base_url if base: p = urljoin(base, p) return p @property def base_url(self): return self._data.get("base_url") @property def sprite_dirs(self): if "sprite_dirs" not in self._data: return elif self._data.get("output_image"): raise RuntimeError("cannot have sprite_dirs " "when output_image is set") sdirs = shlex.split(self._data["sprite_dirs"]) return map(self.normpath, sdirs) @property def output_image(self): if "output_image" in self._data: return self.normpath(self._data["output_image"]) @property def is_mapping_recursive(self): rv = self._data.get("recursive") if rv and self._data.get("output_image"): raise RuntimeError("cannot have recursive spritemapping " "when output_image is set") elif rv is None: return not self._data.get("output_image") else: return bool(rv) @property def padding(self): return self._data.get("padding", (1, 1)) @property def anneal_steps(self): return int(self._data.get("anneal_steps", 9200)) def get_spritemap_out(self, dn): "Get output image filename for spritemap directory *dn*." if "output_image" in self._data: return self.output_image return dn + ".png" def get_spritemap_url(self, fname): "Get output image URL for spritemap *fname*." return self.absurl(path.relpath(fname, self.root)) def get_css_out(self, fname): "Get output image filename for spritemap directory *fname*." (dirn, base) = path.split(fname) if "output_css" in self._data: (base, ext) = path.splitext(base) names = dict(filename=fname, dirname=dirn, basename=base, extension=ext) return self.normpath(self._data["output_css"].format(**names)) else: return path.join(dirn, "sm_" + base) def print_config(fname): from pprint import pprint from .css import CSSParser with open(fname, "rb") as fp: print "%s\n%s\n" % (fname, "=" * len(fname)) pprint(dict(iter_css_config(CSSParser.read_file(fp)))) print def main(): import sys for fn in sys.argv[1:]: print_config(fn) if __name__ == "__main__": main()
5888
from mushroom_rl.utils.plots import PlotItemBuffer, DataBuffer from mushroom_rl.utils.plots.plot_item_buffer import PlotItemBufferLimited class RewardPerStep(PlotItemBuffer): """ Class that represents a plot for the reward at every step. """ def __init__(self, plot_buffer): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used. """ title = "Step_Reward" curves_params = [dict(data_buffer=plot_buffer)] super().__init__(title, curves_params) class RewardPerEpisode(PlotItemBuffer): """ Class that represents a plot for the accumulated reward per episode. """ def __init__(self, plot_buffer): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used. """ title = "Episode_Reward" curves_params = [dict(data_buffer=plot_buffer)] super().__init__(title, curves_params) class Actions(PlotItemBufferLimited): """ Class that represents a plot for the actions. """ def __init__(self, plot_buffers, maxs=None, mins=None): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used; maxs(list, None): list of max values of each data buffer plotted. If an element is None, no max line is drawn; mins(list, None): list of min values of each data buffer plotted. If an element is None, no min line is drawn. """ title = "Actions" super().__init__(title, plot_buffers, maxs=maxs, mins=mins) class Observations(PlotItemBufferLimited): """ Class that represents a plot for the observations. """ def __init__(self, plot_buffers, maxs=None, mins=None, dotted_limits=None): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used; maxs(list, None): list of max values of each data buffer plotted. If an element is None, no max line is drawn; mins(list, None): list of min values of each data buffer plotted. If an element is None, no min line is drawn. dotted_limits (list, None): list of booleans. If True, the corresponding limit is dotted; otherwise, it is printed as a solid line. """ title = "Observations" super().__init__(title, plot_buffers, maxs=maxs, mins=mins, dotted_limits=dotted_limits) class LenOfEpisodeTraining(PlotItemBuffer): """ Class that represents a plot for the length of the episode. """ def __init__(self, plot_buffer): """ Constructor. Args: plot_buffer (DataBuffer): data buffer to be used; """ title = "Len of Episode" plot_params = [dict(data_buffer=plot_buffer)] super().__init__(title, plot_params)
5898
import json import csv import sys import os import re import codecs import logging from logging.config import dictConfig import click import yaml from sqlalchemy import create_engine from jsontableschema_sql import Storage from smart_open import smart_open from . import postgres from . import carto csv.field_size_limit(sys.maxsize) def get_logger(logging_config): try: with open(logging_config) as file: config = yaml.load(file) dictConfig(config) except: FORMAT = '[%(asctime)-15s] %(levelname)s [%(name)s] %(message)s' logging.basicConfig(format=FORMAT, level=logging.INFO, stream=sys.stderr) logger = logging.getLogger('the_el') def exception_handler(type, value, tb): logger.exception("Uncaught exception: {}".format(str(value)), exc_info=(type, value, tb)) sys.excepthook = exception_handler return logger @click.group() def main(): pass def get_connection_string(connection_string): connection_string = os.getenv('CONNECTION_STRING', connection_string) if connection_string == None: raise Exception('`CONNECTION_STRING` environment variable or `--connection-string` option required') return connection_string def create_storage_adaptor(connection_string, db_schema, geometry_support, from_srid=None, to_srid=None): engine = create_engine(connection_string) storage = Storage(engine, dbschema=db_schema, geometry_support=geometry_support, from_srid=from_srid, to_srid=to_srid, views=True) return engine, storage def fopen(file, mode='r'): if file == None: if mode == 'r': return sys.stdin elif mode == 'w': return sys.stdout else: return smart_open(file, mode=mode) def get_table_schema(table_schema_path): with fopen(table_schema_path) as file: contents = file.read() if not isinstance(contents, str): contents = contents.decode('utf-8') return json.loads(contents) @main.command() @click.argument('table_name') @click.option('--connection-string') @click.option('-o','--output-file') @click.option('--db-schema') @click.option('--geometry-support') def describe_table(table_name, connection_string, output_file, db_schema, geometry_support): connection_string = get_connection_string(connection_string) engine, storage = create_storage_adaptor(connection_string, db_schema, geometry_support) descriptor = storage.describe(table_name) with fopen(output_file, mode='w') as file: json.dump(descriptor, file) @main.command() @click.argument('table_name') @click.argument('table_schema_path') @click.option('--connection-string') @click.option('--db-schema') @click.option('--indexes-fields') @click.option('--geometry-support') @click.option('--if-not-exists', is_flag=True, default=False) @click.option('--logging-config', default='logging_config.conf') def create_table(table_name, table_schema_path, connection_string, db_schema, indexes_fields, geometry_support, if_not_exists, logging_config): logger = get_logger(logging_config) table_schema = get_table_schema(table_schema_path) if indexes_fields != None: indexes_fields = indexes_fields.split(',') if re.match(carto.carto_connection_string_regex, connection_string) != None: load_postgis = geometry_support == 'postgis' logger.info('{} - Creating table using Carto'.format(table_name)) return carto.create_table(logger, table_name, load_postgis, table_schema, if_not_exists, indexes_fields, connection_string) connection_string = get_connection_string(connection_string) engine, storage = create_storage_adaptor(connection_string, db_schema, geometry_support) logger.info('{} - Creating table using SQLAlchemy'.format(table_name)) storage.create(table_name, table_schema, indexes_fields=indexes_fields) @main.command() @click.argument('table_name') @click.option('--table-schema-path') @click.option('--connection-string') @click.option('-f','--input-file') @click.option('--db-schema') @click.option('--geometry-support') @click.option('--from-srid') @click.option('--skip-headers', is_flag=True) @click.option('--indexes-fields') @click.option('--upsert', is_flag=True) @click.option('--truncate/--no-truncate', is_flag=True, default=False) @click.option('--logging-config', default='logging_config.conf') def write(table_name, table_schema_path, connection_string, input_file, db_schema, geometry_support, from_srid, skip_headers, indexes_fields, upsert, truncate, logging_config): logger = get_logger(logging_config) table_schema = get_table_schema(table_schema_path) ## TODO: csv settings? use Frictionless Data csv standard? ## TODO: support line delimted json? with fopen(input_file) as file: rows = csv.reader(file) if skip_headers: next(rows) if re.match(carto.carto_connection_string_regex, connection_string) != None: load_postgis = geometry_support == 'postgis' if indexes_fields != None: indexes_fields = indexes_fields.split(',') logger.info('{} - Writing to table using Carto'.format(table_name)) carto.load(logger, db_schema, table_name, load_postgis, table_schema, connection_string, rows, indexes_fields, truncate) else: connection_string = get_connection_string(connection_string) engine, storage = create_storage_adaptor(connection_string, db_schema, geometry_support, from_srid=from_srid) ## TODO: truncate? carto does. Makes this idempotent logger.info('{} - Writing to table using SQLAlchemy'.format(table_name)) if table_schema_path != None: table_schema = get_table_schema(table_schema_path) storage.describe(table_name, descriptor=table_schema) else: storage.describe(table_name) if upsert: postgres.upsert(engine, db_schema, table_name, table_schema, rows) elif geometry_support == None and engine.dialect.driver == 'psycopg2': postgres.copy_from(engine, table_name, table_schema, rows) else: storage.write(table_name, rows) @main.command() @click.argument('table_name') @click.option('--connection-string') @click.option('-o','--output-file') @click.option('--db-schema') @click.option('--geometry-support') @click.option('--from-srid') @click.option('--to-srid') @click.option('--logging-config', default='logging_config.conf') def read(table_name, connection_string, output_file, db_schema, geometry_support, from_srid, to_srid, logging_config): logger = get_logger(logging_config) connection_string = get_connection_string(connection_string) engine, storage = create_storage_adaptor(connection_string, db_schema, geometry_support, from_srid=from_srid, to_srid=to_srid) ## TODO: csv settings? use Frictionless Data csv standard? ## TODO: support line delimited json? with fopen(output_file, mode='w') as file: writer = csv.writer(file) descriptor = storage.describe(table_name) fields = map(lambda x: x['name'], descriptor['fields']) writer.writerow(fields) if geometry_support == None and engine.dialect.driver == 'psycopg2': postgres.copy_to(engine, table_name, file) else: for row in storage.iter(table_name): row_out = [] for field in row: if isinstance(field, dict) or isinstance(field, list): field = json.dumps(field) row_out.append(field) writer.writerow(row_out) @main.command() @click.argument('new_table_name') @click.argument('old_table_name') @click.option('--connection-string') @click.option('--db-schema') @click.option('--select-users', help='Users to grant SELECT on updated table') @click.option('--logging-config', default='logging_config.conf') def swap_table(new_table_name, old_table_name, connection_string, db_schema, select_users, logging_config): logger = get_logger(logging_config) if re.match(carto.carto_connection_string_regex, connection_string) != None: if select_users != None: select_users = select_users.split(',') else: select_users = [] logger.info('Swapping tables using Carto: {} - {}'.format(new_table_name, old_table_name)) return carto.swap_table(logger, db_schema, new_table_name, old_table_name, select_users, connection_string) connection_string = get_connection_string(connection_string) engine = create_engine(connection_string) if engine.dialect.driver == 'psycopg2': logger.info('Swapping tables using psycopg2: {} - {}'.format(new_table_name, old_table_name)) conn = engine.raw_connection() try: with conn.cursor() as cur: sql = 'ALTER TABLE "{}" RENAME TO "{}_old";'.format(old_table_name, old_table_name) +\ 'ALTER TABLE "{}" RENAME TO "{}";'.format(new_table_name, old_table_name) +\ 'DROP TABLE "{}_old";'.format(old_table_name) cur.execute(sql) conn.commit() except: conn.rollback() raise conn.close() elif engine.dialect.driver == 'cx_oracle': logger.info('Swapping tables using cx_Oracle: {} - {}'.format(new_table_name, old_table_name)) conn = engine.connect() if select_users != None: select_users = select_users.split(',') else: select_users = [] grants_sql = [] for user in select_users: grants_sql.append('GRANT SELECT ON {} TO {}'.format(old_table_name, user.strip())) # Oracle does not allow table modification within a transaction, so make individual transactions: sql1 = 'ALTER TABLE {} RENAME TO {}_old'.format(old_table_name, old_table_name) sql2 = 'ALTER TABLE {} RENAME TO {}'.format(new_table_name, old_table_name) sql3 = 'DROP TABLE {}_old'.format(old_table_name) try: conn.execute(sql1) except: logger.error("Could not rename {} table. Does it exist?".format(old_table_name)) raise try: conn.execute(sql2) except: logger.error("Could not rename {} table. Does it exist?".format(new_table_name)) rb_sql = 'ALTER TABLE {}_old RENAME TO {}'.format(old_table_name, old_table_name) conn.execute(rb_sql) raise try: conn.execute(sql3) except: logger.error("Could not drop {}_old table. Do you have permission?".format(old_table_name)) rb_sql1 = 'DROP TABLE {}'.format(old_table_name) conn.execute(rb_sql1) rb_sql2 = 'ALTER TABLE {}_old RENAME TO {}'.format(old_table_name, old_table_name) conn.execute(rb_sql2) raise try: for sql in grants_sql: conn.execute(sql) except: logger.error("Could not grant all permissions to {}.".format(old_table_name)) raise else: raise Exception('`{}` not supported by swap_table'.format(engine.dialect.driver))
5906
import os.path from .. import * class TestMixed(IntegrationTest): def __init__(self, *args, **kwargs): super().__init__(os.path.join('languages', 'mixed'), *args, **kwargs) def test_build(self): self.build(executable('program')) self.assertOutput([executable('program')], 'hello from c++!\n') class TestMixedLibrary(IntegrationTest): def __init__(self, *args, **kwargs): super().__init__(os.path.join('languages', 'mixed_library'), *args, **kwargs) def test_build(self): self.build(executable('program')) self.assertOutput([executable('program')], 'hello, library!\n') @skip_if('fortran' not in test_features, 'skipping fortran tests') # XXX: This fails on macOS, probably because of a version mismatch somewhere. @skip_if(env.host_platform.genus == 'darwin', 'fortran on os x is weird') class TestMixedFortran(IntegrationTest): def __init__(self, *args, **kwargs): super().__init__(os.path.join('languages', 'mixed_fortran'), *args, **kwargs) def test_build(self): self.build(executable('program')) self.assertOutput([executable('program')], 'hello from f77!\n')
5907
from collections import namedtuple # Basic example Point = namedtuple('Point', ['x', 'y']) p = Point(11, y=22) print(p[0] + p[1]) x, y = p print(x, y) print(p.x + p.y) print(Point(x=11, y=22)) from collections import namedtuple import csv f = open("users.csv", "r") next(f) reader = csv.reader(f) student_list = [] for row in reader: student_list.append(row) print(row) print(student_list) columns = ["user_id", "integration_id", "login_id", "password", "first_name", "last_name", "full_name", "sortable_name", "short_name", "email", "status"] Student = namedtuple('Student', columns) student_namedtupe_list = [] for row in student_list: student = Student(*row) student_namedtupe_list.append(student) print(student_namedtupe_list[0]) print(student_namedtupe_list[0].full_name)
5945
import torch __author__ = 'Andres' def calc_gradient_penalty_bayes(discriminator, real_data, fake_data, gamma): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") batch_size = real_data.size()[0] alpha = torch.rand(batch_size, 1, 1, 1) alpha = alpha.expand(real_data.size()).to(device) interpolates = alpha * real_data + ((1 - alpha) * fake_data) interpolates = torch.autograd.Variable(interpolates, requires_grad=True).to(device) disc_interpolates = discriminator(interpolates) gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolates, grad_outputs=torch.ones(disc_interpolates.size()).to(device), create_graph=True, retain_graph=True, only_inputs=True)[0] gradient_penalty = ((gradients.norm(2) - 1) ** 2) * gamma return gradient_penalty
5949
import os import sys import unittest import torch import torch._C from pathlib import Path from test_nnapi import TestNNAPI from torch.testing._internal.common_utils import TEST_WITH_ASAN # Make the helper files in test/ importable pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(pytorch_test_dir) if __name__ == "__main__": raise RuntimeError( "This test file is not meant to be run directly, use:\n\n" "\tpython test/test_jit.py TESTNAME\n\n" "instead." ) """ Unit Tests for Nnapi backend with delegate Inherits most tests from TestNNAPI, which loads Android NNAPI models without the delegate API. """ # First skip is needed for IS_WINDOWS or IS_MACOS to skip the tests. # Second skip is because ASAN is currently causing an error. # It is still unclear how to resolve this. T95764916 torch_root = Path(__file__).resolve().parent.parent.parent lib_path = torch_root / 'build' / 'lib' / 'libnnapi_backend.so' @unittest.skipIf(not os.path.exists(lib_path), "Skipping the test as libnnapi_backend.so was not found") @unittest.skipIf(TEST_WITH_ASAN, "Unresolved bug with ASAN") class TestNnapiBackend(TestNNAPI): def setUp(self): super().setUp() # Save default dtype module = torch.nn.PReLU() self.default_dtype = module.weight.dtype # Change dtype to float32 (since a different unit test changed dtype to float64, # which is not supported by the Android NNAPI delegate) # Float32 should typically be the default in other files. torch.set_default_dtype(torch.float32) # Load nnapi delegate library torch.ops.load_library(str(lib_path)) # Override def call_lowering_to_nnapi(self, traced_module, args): compile_spec = {"forward": {"inputs": args}} return torch._C._jit_to_backend("nnapi", traced_module, compile_spec) def test_tensor_input(self): # Lower a simple module args = torch.tensor([[1.0, -1.0, 2.0, -2.0]]).unsqueeze(-1).unsqueeze(-1) module = torch.nn.PReLU() traced = torch.jit.trace(module, args) # Argument input is a single Tensor self.call_lowering_to_nnapi(traced, args) # Argument input is a Tensor in a list self.call_lowering_to_nnapi(traced, [args]) # Test exceptions for incorrect compile specs def test_compile_spec_santiy(self): args = torch.tensor([[1.0, -1.0, 2.0, -2.0]]).unsqueeze(-1).unsqueeze(-1) module = torch.nn.PReLU() traced = torch.jit.trace(module, args) errorMsgTail = r""" method_compile_spec should contain a Tensor or Tensor List which bundles input parameters: shape, dtype, quantization, and dimorder. For input shapes, use 0 for run/load time flexible input. method_compile_spec must use the following format: {"forward": {"inputs": at::Tensor}} OR {"forward": {"inputs": c10::List<at::Tensor>}}""" # No forward key compile_spec = {"backward": {"inputs": args}} with self.assertRaisesRegex(RuntimeError, "method_compile_spec does not contain the \"forward\" key." + errorMsgTail): torch._C._jit_to_backend("nnapi", traced, compile_spec) # No dictionary under the forward key compile_spec = {"forward": 1} with self.assertRaisesRegex(RuntimeError, "method_compile_spec does not contain a dictionary with an \"inputs\" key, " "under it's \"forward\" key." + errorMsgTail): torch._C._jit_to_backend("nnapi", traced, compile_spec) # No inputs key (in the dictionary under the forward key) compile_spec = {"forward": {"not inputs": args}} with self.assertRaisesRegex(RuntimeError, "method_compile_spec does not contain a dictionary with an \"inputs\" key, " "under it's \"forward\" key." + errorMsgTail): torch._C._jit_to_backend("nnapi", traced, compile_spec) # No Tensor or TensorList under the inputs key compile_spec = {"forward": {"inputs": 1}} with self.assertRaisesRegex(RuntimeError, "method_compile_spec does not contain either a Tensor or TensorList, under it's \"inputs\" key." + errorMsgTail): torch._C._jit_to_backend("nnapi", traced, compile_spec) compile_spec = {"forward": {"inputs": [1]}} with self.assertRaisesRegex(RuntimeError, "method_compile_spec does not contain either a Tensor or TensorList, under it's \"inputs\" key." + errorMsgTail): torch._C._jit_to_backend("nnapi", traced, compile_spec) def tearDown(self): # Change dtype back to default (Otherwise, other unit tests will complain) torch.set_default_dtype(self.default_dtype)
5974
import inspect def get_default_args(func): """Get default arguments of a function. """ signature = inspect.signature(func) return { k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty }
6018
from typing import Union from unittest import mock import graphene import pytest from django.core.exceptions import ValidationError from django.db.models import Q from django.template.defaultfilters import slugify from graphene.utils.str_converters import to_camel_case from saleor.core.taxes import zero_money from saleor.graphql.core.utils import snake_to_camel_case from saleor.graphql.product.enums import AttributeTypeEnum, AttributeValueType from saleor.graphql.product.filters import filter_attributes_by_product_types from saleor.graphql.product.mutations.attributes import validate_value_is_unique from saleor.graphql.product.types.attributes import resolve_attribute_value_type from saleor.product import AttributeInputType from saleor.product.error_codes import ProductErrorCode from saleor.product.models import ( Attribute, AttributeProduct, AttributeValue, AttributeVariant, Category, Collection, Product, ProductType, ProductVariant, ) from saleor.product.utils.attributes import associate_attribute_values_to_instance from tests.api.utils import get_graphql_content def test_validate_value_is_unique(color_attribute): value = color_attribute.values.first() # a new value but with existing slug should raise an error with pytest.raises(ValidationError): validate_value_is_unique(color_attribute, AttributeValue(slug=value.slug)) # a new value with a new slug should pass validate_value_is_unique( color_attribute, AttributeValue(slug="spanish-inquisition") ) # value that already belongs to the attribute shouldn't be taken into account validate_value_is_unique(color_attribute, value) def test_get_single_attribute_by_pk(user_api_client, color_attribute_without_values): attribute_gql_id = graphene.Node.to_global_id( "Attribute", color_attribute_without_values.id ) query = """ query($id: ID!) { attribute(id: $id) { id slug } } """ content = get_graphql_content( user_api_client.post_graphql(query, {"id": attribute_gql_id}) ) assert content["data"]["attribute"], "Should have found an attribute" assert content["data"]["attribute"]["id"] == attribute_gql_id assert content["data"]["attribute"]["slug"] == color_attribute_without_values.slug QUERY_ATTRIBUTES = """ query { attributes(first: 20) { edges { node { id name slug values { id name slug } } } } } """ def test_attributes_query(user_api_client, product): attributes = Attribute.objects query = QUERY_ATTRIBUTES response = user_api_client.post_graphql(query) content = get_graphql_content(response) attributes_data = content["data"]["attributes"]["edges"] assert attributes_data assert len(attributes_data) == attributes.count() def test_attributes_query_hidden_attribute(user_api_client, product, color_attribute): query = QUERY_ATTRIBUTES # hide the attribute color_attribute.visible_in_storefront = False color_attribute.save(update_fields=["visible_in_storefront"]) attribute_count = Attribute.objects.get_visible_to_user( user_api_client.user ).count() assert attribute_count == 1 response = user_api_client.post_graphql(query) content = get_graphql_content(response) attributes_data = content["data"]["attributes"]["edges"] assert len(attributes_data) == attribute_count def test_attributes_query_hidden_attribute_as_staff_user( staff_api_client, product, color_attribute, permission_manage_products ): query = QUERY_ATTRIBUTES # hide the attribute color_attribute.visible_in_storefront = False color_attribute.save(update_fields=["visible_in_storefront"]) attribute_count = Attribute.objects.all().count() # The user doesn't have the permission yet to manage products, # the user shouldn't be able to see the hidden attributes assert Attribute.objects.get_visible_to_user(staff_api_client.user).count() == 1 # The user should now be able to see the attributes staff_api_client.user.user_permissions.add(permission_manage_products) response = staff_api_client.post_graphql(query) content = get_graphql_content(response) attributes_data = content["data"]["attributes"]["edges"] assert len(attributes_data) == attribute_count QUERY_PRODUCT_AND_VARIANTS_ATTRIBUTES = """ { products(first: 1) { edges { node { attributes { attribute { slug } values { slug } value { slug } } variants { attributes { attribute { slug } values { slug } value { slug } } } } } } } """ @pytest.mark.parametrize("is_staff", (False, True)) def test_resolve_attributes_with_hidden( user_api_client, product, color_attribute, size_attribute, staff_user, is_staff, permission_manage_products, ): """Ensure non-staff users don't see hidden attributes, and staff users having the 'manage product' permission can. """ query = QUERY_PRODUCT_AND_VARIANTS_ATTRIBUTES api_client = user_api_client variant = product.variants.first() product_attribute = color_attribute variant_attribute = size_attribute expected_product_attribute_count = product.attributes.count() - 1 expected_variant_attribute_count = variant.attributes.count() - 1 if is_staff: api_client.user = staff_user expected_product_attribute_count += 1 expected_variant_attribute_count += 1 staff_user.user_permissions.add(permission_manage_products) # Hide one product and variant attribute from the storefront for attribute in (product_attribute, variant_attribute): attribute.visible_in_storefront = False attribute.save(update_fields=["visible_in_storefront"]) product = get_graphql_content(api_client.post_graphql(query))["data"]["products"][ "edges" ][0]["node"] assert len(product["attributes"]) == expected_product_attribute_count assert len(product["variants"][0]["attributes"]) == expected_variant_attribute_count def test_resolve_attribute_values(user_api_client, product, staff_user): """Ensure the attribute values are properly resolved.""" query = QUERY_PRODUCT_AND_VARIANTS_ATTRIBUTES api_client = user_api_client variant = product.variants.first() assert product.attributes.count() == 1 assert variant.attributes.count() == 1 product_attribute_values = list( product.attributes.first().values.values_list("slug", flat=True) ) variant_attribute_values = list( variant.attributes.first().values.values_list("slug", flat=True) ) assert len(product_attribute_values) == 1 assert len(variant_attribute_values) == 1 product = get_graphql_content(api_client.post_graphql(query))["data"]["products"][ "edges" ][0]["node"] product_attributes = product["attributes"] variant_attributes = product["variants"][0]["attributes"] assert len(product_attributes) == len(product_attribute_values) assert len(variant_attributes) == len(variant_attribute_values) assert product_attributes[0]["attribute"]["slug"] == "color" assert product_attributes[0]["values"][0]["slug"] == product_attribute_values[0] assert product_attributes[0]["value"]["slug"] == product_attribute_values[0] assert variant_attributes[0]["attribute"]["slug"] == "size" assert variant_attributes[0]["values"][0]["slug"] == variant_attribute_values[0] assert variant_attributes[0]["value"]["slug"] == variant_attribute_values[0] def test_resolve_attribute_values_non_assigned_to_node( user_api_client, product, staff_user ): """Ensure the attribute values are properly resolved when an attribute is part of the product type but not of the node (product/variant), thus no values should be resolved. """ query = QUERY_PRODUCT_AND_VARIANTS_ATTRIBUTES api_client = user_api_client variant = product.variants.first() product_type = product.product_type # Create dummy attributes unassigned_product_attribute = Attribute.objects.create(name="P", slug="product") unassigned_variant_attribute = Attribute.objects.create(name="V", slug="variant") # Create a value for each dummy attribute to ensure they are not returned # by the product or variant as they are not associated to them AttributeValue.objects.bulk_create( [ AttributeValue(slug="a", name="A", attribute=unassigned_product_attribute), AttributeValue(slug="b", name="B", attribute=unassigned_product_attribute), ] ) # Assign the dummy attributes to the product type and push them at the top # through a sort_order=0 as the other attributes have sort_order=null AttributeProduct.objects.create( attribute=unassigned_product_attribute, product_type=product_type, sort_order=0 ) AttributeVariant.objects.create( attribute=unassigned_variant_attribute, product_type=product_type, sort_order=0 ) assert product.attributes.count() == 1 assert variant.attributes.count() == 1 product = get_graphql_content(api_client.post_graphql(query))["data"]["products"][ "edges" ][0]["node"] product_attributes = product["attributes"] variant_attributes = product["variants"][0]["attributes"] assert len(product_attributes) == 2, "Non-assigned attr from the PT may be missing" assert len(variant_attributes) == 2, "Non-assigned attr from the PT may be missing" assert product_attributes[0]["attribute"]["slug"] == "product" assert product_attributes[0]["values"] == [] assert variant_attributes[0]["value"] is None assert variant_attributes[0]["attribute"]["slug"] == "variant" assert variant_attributes[0]["values"] == [] assert variant_attributes[0]["value"] is None def test_attributes_filter_by_product_type_with_empty_value(): """Ensure passing an empty or null value is ignored and the queryset is simply returned without any modification. """ qs = Attribute.objects.all() assert filter_attributes_by_product_types(qs, "...", "") is qs assert filter_attributes_by_product_types(qs, "...", None) is qs def test_attributes_filter_by_product_type_with_unsupported_field(): """Ensure using an unknown field to filter attributes by raises a NotImplemented exception. """ qs = Attribute.objects.all() with pytest.raises(NotImplementedError) as exc: filter_attributes_by_product_types(qs, "in_space", "a-value") assert exc.value.args == ("Filtering by in_space is unsupported",) def test_attributes_filter_by_non_existing_category_id(): """Ensure using a non-existing category ID returns an empty query set.""" category_id = graphene.Node.to_global_id("Category", -1) mocked_qs = mock.MagicMock() qs = filter_attributes_by_product_types(mocked_qs, "in_category", category_id) assert qs == mocked_qs.none.return_value @pytest.mark.parametrize("test_deprecated_filter", [True, False]) @pytest.mark.parametrize("tested_field", ["inCategory", "inCollection"]) def test_attributes_in_collection_query( user_api_client, product_type, category, collection, collection_with_products, test_deprecated_filter, tested_field, ): if "Collection" in tested_field: filtered_by_node_id = graphene.Node.to_global_id("Collection", collection.pk) elif "Category" in tested_field: filtered_by_node_id = graphene.Node.to_global_id("Category", category.pk) else: raise AssertionError(tested_field) expected_qs = Attribute.objects.filter( Q(attributeproduct__product_type_id=product_type.pk) | Q(attributevariant__product_type_id=product_type.pk) ) # Create another product type and attribute that shouldn't get matched other_category = Category.objects.create(name="Other Category", slug="other-cat") other_attribute = Attribute.objects.create(name="Other", slug="other") other_product_type = ProductType.objects.create( name="Other type", has_variants=True, is_shipping_required=True ) other_product_type.product_attributes.add(other_attribute) other_product = Product.objects.create( name=f"Another Product", product_type=other_product_type, category=other_category, price=zero_money(), is_published=True, ) # Create another collection with products but shouldn't get matched # as we don't look for this other collection other_collection = Collection.objects.create( name="Other Collection", slug="other-collection", is_published=True, description="Description", ) other_collection.products.add(other_product) query = """ query($nodeID: ID!) { attributes(first: 20, %(filter_input)s) { edges { node { id name slug } } } } """ if test_deprecated_filter: query = query % {"filter_input": f"{tested_field}: $nodeID"} else: query = query % {"filter_input": "filter: { %s: $nodeID }" % tested_field} variables = {"nodeID": filtered_by_node_id} content = get_graphql_content(user_api_client.post_graphql(query, variables)) attributes_data = content["data"]["attributes"]["edges"] flat_attributes_data = [attr["node"]["slug"] for attr in attributes_data] expected_flat_attributes_data = list(expected_qs.values_list("slug", flat=True)) assert flat_attributes_data == expected_flat_attributes_data CREATE_ATTRIBUTES_QUERY = """ mutation createAttribute($name: String!, $values: [AttributeValueCreateInput]) { attributeCreate(input: {name: $name, values: $values}) { errors { field message } productErrors { field message code } attribute { name slug values { name slug } productTypes(first: 10) { edges { node { id } } } } } } """ def test_create_attribute_and_attribute_values( staff_api_client, permission_manage_products ): query = CREATE_ATTRIBUTES_QUERY attribute_name = "<NAME>" name = "Value name" variables = {"name": attribute_name, "values": [{"name": name}]} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) assert not content["data"]["attributeCreate"]["errors"] data = content["data"]["attributeCreate"] # Check if the attribute was correctly created assert data["attribute"]["name"] == attribute_name assert data["attribute"]["slug"] == slugify( attribute_name ), "The default slug should be the slugified name" assert ( data["attribute"]["productTypes"]["edges"] == [] ), "The attribute should not have been assigned to a product type" # Check if the attribute values were correctly created assert len(data["attribute"]["values"]) == 1 assert data["attribute"]["values"][0]["name"] == name assert data["attribute"]["values"][0]["slug"] == slugify(name) @pytest.mark.parametrize( "input_slug, expected_slug, expected_error", ( ("my-slug", "my-slug", []), (None, "my-name", []), ( "", None, [{"field": "slug", "message": "The attribute's slug cannot be blank."}], ), ), ) def test_create_attribute_with_given_slug( staff_api_client, permission_manage_products, input_slug, expected_slug, expected_error, ): staff_api_client.user.user_permissions.add(permission_manage_products) query = """ mutation createAttribute( $name: String!, $slug: String) { attributeCreate(input: {name: $name, slug: $slug}) { errors { field message } attribute { slug } } } """ attribute_name = "My Name" variables = {"name": attribute_name, "slug": input_slug} content = get_graphql_content(staff_api_client.post_graphql(query, variables)) # Check if the error is as expected: null or something else assert content["data"]["attributeCreate"]["errors"] == expected_error # Check if the slug was correctly set if no error was expected if expected_error is None: assert content["data"]["attributeCreate"]["attribute"]["slug"] == expected_slug @pytest.mark.parametrize( "name_1, name_2, error_msg, error_code", ( ( "Red color", "Red color", "Provided values are not unique.", ProductErrorCode.UNIQUE, ), ( "Red color", "red color", "Provided values are not unique.", ProductErrorCode.UNIQUE, ), ), ) def test_create_attribute_and_attribute_values_errors( staff_api_client, name_1, name_2, error_msg, error_code, permission_manage_products, product_type, ): query = CREATE_ATTRIBUTES_QUERY variables = {"name": "Example name", "values": [{"name": name_1}, {"name": name_2}]} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) errors = content["data"]["attributeCreate"]["errors"] assert errors assert errors[0]["field"] == "values" assert errors[0]["message"] == error_msg product_errors = content["data"]["attributeCreate"]["productErrors"] assert product_errors[0]["code"] == error_code.name UPDATE_ATTRIBUTE_QUERY = """ mutation updateAttribute( $id: ID!, $name: String!, $addValues: [AttributeValueCreateInput]!, $removeValues: [ID]!) { attributeUpdate( id: $id, input: { name: $name, addValues: $addValues, removeValues: $removeValues}) { errors { field message } productErrors { field message code } attribute { name slug values { name slug } productTypes(first: 10) { edges { node { id } } } } } } """ def test_update_attribute_name( staff_api_client, color_attribute, permission_manage_products ): query = UPDATE_ATTRIBUTE_QUERY attribute = color_attribute name = "<NAME>" node_id = graphene.Node.to_global_id("Attribute", attribute.id) variables = {"name": name, "id": node_id, "addValues": [], "removeValues": []} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) attribute.refresh_from_db() data = content["data"]["attributeUpdate"] assert data["attribute"]["name"] == name == attribute.name assert data["attribute"]["productTypes"]["edges"] == [] def test_update_attribute_remove_and_add_values( staff_api_client, color_attribute, permission_manage_products ): query = UPDATE_ATTRIBUTE_QUERY attribute = color_attribute name = "<NAME>" attribute_value_name = "Red Color" node_id = graphene.Node.to_global_id("Attribute", attribute.id) attribute_value_id = attribute.values.first().id value_id = graphene.Node.to_global_id("AttributeValue", attribute_value_id) variables = { "name": name, "id": node_id, "addValues": [{"name": attribute_value_name}], "removeValues": [value_id], } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) attribute.refresh_from_db() data = content["data"]["attributeUpdate"] assert not data["errors"] assert data["attribute"]["name"] == name == attribute.name assert not attribute.values.filter(pk=attribute_value_id).exists() assert attribute.values.filter(name=attribute_value_name).exists() def test_update_empty_attribute_and_add_values( staff_api_client, color_attribute_without_values, permission_manage_products ): query = UPDATE_ATTRIBUTE_QUERY attribute = color_attribute_without_values name = "<NAME>" attribute_value_name = "Yellow Color" node_id = graphene.Node.to_global_id("Attribute", attribute.id) variables = { "name": name, "id": node_id, "addValues": [{"name": attribute_value_name}], "removeValues": [], } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) get_graphql_content(response) attribute.refresh_from_db() assert attribute.values.count() == 1 assert attribute.values.filter(name=attribute_value_name).exists() @pytest.mark.parametrize( "name_1, name_2, error_msg, error_code", ( ( "Red color", "Red color", "Provided values are not unique.", ProductErrorCode.UNIQUE, ), ( "Red color", "red color", "Provided values are not unique.", ProductErrorCode.UNIQUE, ), ), ) def test_update_attribute_and_add_attribute_values_errors( staff_api_client, name_1, name_2, error_msg, error_code, color_attribute, permission_manage_products, ): query = UPDATE_ATTRIBUTE_QUERY attribute = color_attribute node_id = graphene.Node.to_global_id("Attribute", attribute.id) variables = { "name": "Example name", "id": node_id, "removeValues": [], "addValues": [{"name": name_1}, {"name": name_2}], } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) errors = content["data"]["attributeUpdate"]["errors"] assert errors assert errors[0]["field"] == "addValues" assert errors[0]["message"] == error_msg product_errors = content["data"]["attributeUpdate"]["productErrors"] assert product_errors[0]["code"] == error_code.name def test_update_attribute_and_remove_others_attribute_value( staff_api_client, color_attribute, size_attribute, permission_manage_products ): query = UPDATE_ATTRIBUTE_QUERY attribute = color_attribute node_id = graphene.Node.to_global_id("Attribute", attribute.id) size_attribute = size_attribute.values.first() attr_id = graphene.Node.to_global_id("AttributeValue", size_attribute.pk) variables = { "name": "Example name", "id": node_id, "slug": "example-slug", "addValues": [], "removeValues": [attr_id], } response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) errors = content["data"]["attributeUpdate"]["errors"] assert errors assert errors[0]["field"] == "removeValues" err_msg = "Value %s does not belong to this attribute." % str(size_attribute) assert errors[0]["message"] == err_msg product_errors = content["data"]["attributeUpdate"]["productErrors"] assert product_errors[0]["code"] == ProductErrorCode.INVALID.name def test_delete_attribute( staff_api_client, color_attribute, permission_manage_products, product_type ): attribute = color_attribute query = """ mutation deleteAttribute($id: ID!) { attributeDelete(id: $id) { errors { field message } attribute { id } } } """ node_id = graphene.Node.to_global_id("Attribute", attribute.id) variables = {"id": node_id} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["attributeDelete"] assert data["attribute"]["id"] == variables["id"] with pytest.raises(attribute._meta.model.DoesNotExist): attribute.refresh_from_db() CREATE_ATTRIBUTE_VALUE_QUERY = """ mutation createAttributeValue( $attributeId: ID!, $name: String!) { attributeValueCreate( attribute: $attributeId, input: {name: $name}) { productErrors { field message code } attribute { values { name } } attributeValue { name type slug } } } """ def test_create_attribute_value( staff_api_client, color_attribute, permission_manage_products ): attribute = color_attribute query = CREATE_ATTRIBUTE_VALUE_QUERY attribute_id = graphene.Node.to_global_id("Attribute", attribute.id) name = "<NAME>" variables = {"name": name, "attributeId": attribute_id} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["attributeValueCreate"] assert not data["productErrors"] attr_data = data["attributeValue"] assert attr_data["name"] == name assert attr_data["slug"] == slugify(name) assert attr_data["type"] == "STRING" assert name in [value["name"] for value in data["attribute"]["values"]] def test_create_attribute_value_not_unique_name( staff_api_client, color_attribute, permission_manage_products ): attribute = color_attribute query = CREATE_ATTRIBUTE_VALUE_QUERY attribute_id = graphene.Node.to_global_id("Attribute", attribute.id) value_name = attribute.values.first().name variables = {"name": value_name, "attributeId": attribute_id} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["attributeValueCreate"] assert data["productErrors"] assert data["productErrors"][0]["code"] == ProductErrorCode.ALREADY_EXISTS.name assert data["productErrors"][0]["field"] == "name" def test_create_attribute_value_capitalized_name( staff_api_client, color_attribute, permission_manage_products ): attribute = color_attribute query = CREATE_ATTRIBUTE_VALUE_QUERY attribute_id = graphene.Node.to_global_id("Attribute", attribute.id) value_name = attribute.values.first().name variables = {"name": value_name.upper(), "attributeId": attribute_id} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["attributeValueCreate"] assert data["productErrors"] assert data["productErrors"][0]["code"] == ProductErrorCode.ALREADY_EXISTS.name assert data["productErrors"][0]["field"] == "name" UPDATE_ATTRIBUTE_VALUE_QUERY = """ mutation updateChoice( $id: ID!, $name: String!) { attributeValueUpdate( id: $id, input: {name: $name}) { errors { field message } attributeValue { name slug } attribute { values { name } } } } """ def test_update_attribute_value( staff_api_client, pink_attribute_value, permission_manage_products ): query = UPDATE_ATTRIBUTE_VALUE_QUERY value = pink_attribute_value node_id = graphene.Node.to_global_id("AttributeValue", value.id) name = "Crimson name" variables = {"name": name, "id": node_id} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["attributeValueUpdate"] value.refresh_from_db() assert data["attributeValue"]["name"] == name == value.name assert data["attributeValue"]["slug"] == slugify(name) assert name in [value["name"] for value in data["attribute"]["values"]] def test_update_attribute_value_name_not_unique( staff_api_client, pink_attribute_value, permission_manage_products ): query = UPDATE_ATTRIBUTE_VALUE_QUERY value = pink_attribute_value.attribute.values.create( name="<NAME>", slug="example-name", value="#RED" ) node_id = graphene.Node.to_global_id("AttributeValue", value.id) variables = {"name": pink_attribute_value.name, "id": node_id} response = staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) content = get_graphql_content(response) data = content["data"]["attributeValueUpdate"] assert data["errors"] assert data["errors"][0]["message"] assert data["errors"][0]["field"] == "name" def test_delete_attribute_value( staff_api_client, color_attribute, pink_attribute_value, permission_manage_products ): value = color_attribute.values.get(name="Red") query = """ mutation updateChoice($id: ID!) { attributeValueDelete(id: $id) { attributeValue { name slug } } } """ node_id = graphene.Node.to_global_id("AttributeValue", value.id) variables = {"id": node_id} staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) with pytest.raises(value._meta.model.DoesNotExist): value.refresh_from_db() @pytest.mark.parametrize( "raw_value, expected_type", [ ("#0000", AttributeValueType.COLOR), ("#FF69B4", AttributeValueType.COLOR), ("rgb(255, 0, 0)", AttributeValueType.COLOR), ("hsl(0, 100%, 50%)", AttributeValueType.COLOR), ("hsla(120, 60%, 70%, 0.3)", AttributeValueType.COLOR), ("rgba(100%, 255, 0, 0)", AttributeValueType.COLOR), ("http://example.com", AttributeValueType.URL), ("https://example.com", AttributeValueType.URL), ("ftp://example.com", AttributeValueType.URL), ("example.com", AttributeValueType.STRING), ("Foo", AttributeValueType.STRING), ("linear-gradient(red, yellow)", AttributeValueType.GRADIENT), ("radial-gradient(#0000, yellow)", AttributeValueType.GRADIENT), ], ) def test_resolve_attribute_value_type(raw_value, expected_type): assert resolve_attribute_value_type(raw_value) == expected_type def test_resolve_assigned_attribute_without_values(api_client, product_type, product): """Ensure the attributes assigned to a product type are resolved even if the product doesn't provide any value for it or is not directly associated to it. """ # Retrieve the product's variant variant = product.variants.get() # Remove all attributes and values from the product and its variant product.attributesrelated.clear() variant.attributesrelated.clear() # Retrieve the product and variant's attributes products = get_graphql_content( api_client.post_graphql( """ { products(first: 10) { edges { node { attributes { attribute { slug } values { name } } variants { attributes { attribute { slug } values { name } } } } } } } """ ) )["data"]["products"]["edges"] # Ensure we are only working on one product and variant, the ones we are testing assert len(products) == 1 assert len(products[0]["node"]["variants"]) == 1 # Retrieve the nodes data product = products[0]["node"] variant = product["variants"][0] # Ensure the product attributes values are all None assert len(product["attributes"]) == 1 assert product["attributes"][0]["attribute"]["slug"] == "color" assert product["attributes"][0]["values"] == [] # Ensure the variant attributes values are all None assert variant["attributes"][0]["attribute"]["slug"] == "size" assert variant["attributes"][0]["values"] == [] ASSIGN_ATTR_QUERY = """ mutation assign($productTypeId: ID!, $operations: [AttributeAssignInput]!) { attributeAssign(productTypeId: $productTypeId, operations: $operations) { errors { field message } productType { id productAttributes { id } variantAttributes { id } } } } """ def test_assign_attributes_to_product_type( staff_api_client, permission_manage_products, attribute_list ): product_type = ProductType.objects.create(name="Default Type", has_variants=True) product_type_global_id = graphene.Node.to_global_id("ProductType", product_type.pk) query = ASSIGN_ATTR_QUERY operations = [] variables = {"productTypeId": product_type_global_id, "operations": operations} product_attributes_ids = {attr.pk for attr in attribute_list[:2]} variant_attributes_ids = {attr.pk for attr in attribute_list[2:]} for attr_id in product_attributes_ids: operations.append( {"type": "PRODUCT", "id": graphene.Node.to_global_id("Attribute", attr_id)} ) for attr_id in variant_attributes_ids: operations.append( {"type": "VARIANT", "id": graphene.Node.to_global_id("Attribute", attr_id)} ) content = get_graphql_content( staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) )["data"]["attributeAssign"] assert not content["errors"], "Should have succeeded" assert content["productType"]["id"] == product_type_global_id assert len(content["productType"]["productAttributes"]) == len( product_attributes_ids ) assert len(content["productType"]["variantAttributes"]) == len( variant_attributes_ids ) found_product_attrs_ids = { int(graphene.Node.from_global_id(attr["id"])[1]) for attr in content["productType"]["productAttributes"] } found_variant_attrs_ids = { int(graphene.Node.from_global_id(attr["id"])[1]) for attr in content["productType"]["variantAttributes"] } assert found_product_attrs_ids == product_attributes_ids assert found_variant_attrs_ids == variant_attributes_ids def test_assign_variant_attribute_to_product_type_with_disabled_variants( staff_api_client, permission_manage_products, product_type_without_variant, color_attribute_without_values, ): """The assignAttribute mutation should raise an error when trying to add an attribute as a variant attribute when the product type doesn't support variants""" product_type = product_type_without_variant attribute = color_attribute_without_values staff_api_client.user.user_permissions.add(permission_manage_products) product_type_global_id = graphene.Node.to_global_id("ProductType", product_type.pk) query = ASSIGN_ATTR_QUERY operations = [ {"type": "VARIANT", "id": graphene.Node.to_global_id("Attribute", attribute.pk)} ] variables = {"productTypeId": product_type_global_id, "operations": operations} content = get_graphql_content(staff_api_client.post_graphql(query, variables))[ "data" ]["attributeAssign"] assert content["errors"] == [ { "field": "operations", "message": "Variants are disabled in this product type.", } ] def test_assign_variant_attribute_having_unsupported_input_type( staff_api_client, permission_manage_products, product_type, size_attribute ): """The assignAttribute mutation should raise an error when trying to use an attribute as a variant attribute when the attribute's input type doesn't support variants""" attribute = size_attribute attribute.input_type = AttributeInputType.MULTISELECT attribute.save(update_fields=["input_type"]) product_type.variant_attributes.clear() staff_api_client.user.user_permissions.add(permission_manage_products) product_type_global_id = graphene.Node.to_global_id("ProductType", product_type.pk) query = ASSIGN_ATTR_QUERY operations = [ {"type": "VARIANT", "id": graphene.Node.to_global_id("Attribute", attribute.pk)} ] variables = {"productTypeId": product_type_global_id, "operations": operations} content = get_graphql_content(staff_api_client.post_graphql(query, variables))[ "data" ]["attributeAssign"] assert content["errors"] == [ { "field": "operations", "message": ( "Attributes having for input types ['multiselect'] cannot be assigned " "as variant attributes" ), } ] @pytest.mark.parametrize( "product_type_attribute_type, gql_attribute_type", ( (AttributeTypeEnum.PRODUCT, AttributeTypeEnum.VARIANT), (AttributeTypeEnum.VARIANT, AttributeTypeEnum.PRODUCT), (AttributeTypeEnum.PRODUCT, AttributeTypeEnum.PRODUCT), (AttributeTypeEnum.VARIANT, AttributeTypeEnum.VARIANT), ), ) def test_assign_attribute_to_product_type_having_already_that_attribute( staff_api_client, permission_manage_products, color_attribute_without_values, product_type_attribute_type, gql_attribute_type, ): """The assignAttribute mutation should raise an error when trying to add an attribute already contained in the product type.""" product_type = ProductType.objects.create(name="Type") attribute = color_attribute_without_values staff_api_client.user.user_permissions.add(permission_manage_products) product_type_global_id = graphene.Node.to_global_id("ProductType", product_type.pk) if product_type_attribute_type == AttributeTypeEnum.PRODUCT: product_type.product_attributes.add(attribute) elif product_type_attribute_type == AttributeTypeEnum.VARIANT: product_type.variant_attributes.add(attribute) else: raise ValueError(f"Unknown: {product_type}") query = ASSIGN_ATTR_QUERY operations = [ { "type": gql_attribute_type.value, "id": graphene.Node.to_global_id("Attribute", attribute.pk), } ] variables = {"productTypeId": product_type_global_id, "operations": operations} content = get_graphql_content(staff_api_client.post_graphql(query, variables))[ "data" ]["attributeAssign"] assert content["errors"] == [ { "field": "operations", "message": "Color (color) have already been assigned to this product type.", } ] UNASSIGN_ATTR_QUERY = """ mutation unAssignAttribute( $productTypeId: ID!, $attributeIds: [ID]! ) { attributeUnassign(productTypeId: $productTypeId, attributeIds: $attributeIds) { errors { field message } productType { id variantAttributes { id } productAttributes { id } } } } """ def test_unassign_attributes_from_product_type( staff_api_client, permission_manage_products, attribute_list ): product_type = ProductType.objects.create(name="Type") product_type_global_id = graphene.Node.to_global_id("ProductType", product_type.pk) variant_attribute, *product_attributes = attribute_list product_type.product_attributes.add(*product_attributes) product_type.variant_attributes.add(variant_attribute) remaining_attribute_global_id = graphene.Node.to_global_id( "Attribute", product_attributes[1].pk ) query = UNASSIGN_ATTR_QUERY variables = { "productTypeId": product_type_global_id, "attributeIds": [ graphene.Node.to_global_id("Attribute", product_attributes[0].pk) ], } content = get_graphql_content( staff_api_client.post_graphql( query, variables, permissions=[permission_manage_products] ) )["data"]["attributeUnassign"] assert not content["errors"] assert content["productType"]["id"] == product_type_global_id assert len(content["productType"]["productAttributes"]) == 1 assert len(content["productType"]["variantAttributes"]) == 1 assert ( content["productType"]["productAttributes"][0]["id"] == remaining_attribute_global_id ) def test_unassign_attributes_not_in_product_type( staff_api_client, permission_manage_products, color_attribute_without_values ): """The unAssignAttribute mutation should not raise any error when trying to remove an attribute that is not/no longer in the product type.""" staff_api_client.user.user_permissions.add(permission_manage_products) product_type = ProductType.objects.create(name="Type") product_type_global_id = graphene.Node.to_global_id("ProductType", product_type.pk) query = UNASSIGN_ATTR_QUERY variables = { "productTypeId": product_type_global_id, "attributeIds": [ graphene.Node.to_global_id("Attribute", color_attribute_without_values.pk) ], } content = get_graphql_content(staff_api_client.post_graphql(query, variables))[ "data" ]["attributeUnassign"] assert not content["errors"] assert content["productType"]["id"] == product_type_global_id assert len(content["productType"]["productAttributes"]) == 0 assert len(content["productType"]["variantAttributes"]) == 0 def test_retrieve_product_attributes_input_type( staff_api_client, product, permission_manage_products ): query = """ { products(first: 10) { edges { node { attributes { values { type inputType } } } } } } """ found_products = get_graphql_content( staff_api_client.post_graphql(query, permissions=[permission_manage_products]) )["data"]["products"]["edges"] assert len(found_products) == 1 for gql_attr in found_products[0]["node"]["attributes"]: assert len(gql_attr["values"]) == 1 assert gql_attr["values"][0]["type"] == "STRING" assert gql_attr["values"][0]["inputType"] == "DROPDOWN" @pytest.mark.parametrize( "attribute, expected_value", ( ("filterable_in_storefront", True), ("filterable_in_dashboard", True), ("visible_in_storefront", True), ("available_in_grid", True), ("value_required", False), ("storefront_search_position", 0), ), ) def test_retrieving_the_restricted_attributes_restricted( staff_api_client, color_attribute, permission_manage_products, attribute, expected_value, ): """Checks if the attributes are restricted and if their default value is the expected one.""" attribute = to_camel_case(attribute) query = ( """ { attributes(first: 10) { edges { node { %s } } } } """ % attribute ) found_attributes = get_graphql_content( staff_api_client.post_graphql(query, permissions=[permission_manage_products]) )["data"]["attributes"]["edges"] assert len(found_attributes) == 1 assert found_attributes[0]["node"][attribute] == expected_value ATTRIBUTES_RESORT_QUERY = """ mutation ProductTypeReorderAttributes( $productTypeId: ID! $moves: [ReorderInput]! $type: AttributeTypeEnum! ) { productTypeReorderAttributes( productTypeId: $productTypeId moves: $moves type: $type ) { productType { id variantAttributes { id slug } productAttributes { id } } errors { field message } } } """ def test_sort_attributes_within_product_type_invalid_product_type( staff_api_client, permission_manage_products ): """Try to reorder an invalid product type (invalid ID).""" product_type_id = graphene.Node.to_global_id("ProductType", -1) attribute_id = graphene.Node.to_global_id("Attribute", -1) variables = { "type": "VARIANT", "productTypeId": product_type_id, "moves": [{"id": attribute_id, "sortOrder": 1}], } content = get_graphql_content( staff_api_client.post_graphql( ATTRIBUTES_RESORT_QUERY, variables, permissions=[permission_manage_products] ) )["data"]["productTypeReorderAttributes"] assert content["errors"] == [ { "field": "productTypeId", "message": f"Couldn't resolve to a product type: {product_type_id}", } ] def test_sort_attributes_within_product_type_invalid_id( staff_api_client, permission_manage_products, color_attribute ): """Try to reorder an attribute not associated to the given product type.""" product_type = ProductType.objects.create(name="Dummy Type") product_type_id = graphene.Node.to_global_id("ProductType", product_type.id) attribute_id = graphene.Node.to_global_id("Attribute", color_attribute.id) variables = { "type": "VARIANT", "productTypeId": product_type_id, "moves": [{"id": attribute_id, "sortOrder": 1}], } content = get_graphql_content( staff_api_client.post_graphql( ATTRIBUTES_RESORT_QUERY, variables, permissions=[permission_manage_products] ) )["data"]["productTypeReorderAttributes"] assert content["errors"] == [ { "field": "moves", "message": f"Couldn't resolve to an attribute: {attribute_id}", } ] @pytest.mark.parametrize( "attribute_type, relation_field, backref_field", ( ("VARIANT", "variant_attributes", "attributevariant"), ("PRODUCT", "product_attributes", "attributeproduct"), ), ) def test_sort_attributes_within_product_type( staff_api_client, attribute_list, permission_manage_products, attribute_type, relation_field, backref_field, ): attributes = attribute_list assert len(attributes) == 3 staff_api_client.user.user_permissions.add(permission_manage_products) product_type = ProductType.objects.create(name="Dummy Type") product_type_id = graphene.Node.to_global_id("ProductType", product_type.id) m2m_attributes = getattr(product_type, relation_field) m2m_attributes.set(attributes) sort_method = getattr(m2m_attributes, f"{relation_field}_sorted") attributes = list(sort_method()) assert len(attributes) == 3 variables = { "type": attribute_type, "productTypeId": product_type_id, "moves": [ { "id": graphene.Node.to_global_id("Attribute", attributes[0].pk), "sortOrder": +1, }, { "id": graphene.Node.to_global_id("Attribute", attributes[2].pk), "sortOrder": -1, }, ], } expected_order = [attributes[1].pk, attributes[2].pk, attributes[0].pk] content = get_graphql_content( staff_api_client.post_graphql(ATTRIBUTES_RESORT_QUERY, variables) )["data"]["productTypeReorderAttributes"] assert not content["errors"] assert ( content["productType"]["id"] == product_type_id ), "Did not return the correct product type" gql_attributes = content["productType"][snake_to_camel_case(relation_field)] assert len(gql_attributes) == len(expected_order) for attr, expected_pk in zip(gql_attributes, expected_order): gql_type, gql_attr_id = graphene.Node.from_global_id(attr["id"]) assert gql_type == "Attribute" assert int(gql_attr_id) == expected_pk ATTRIBUTE_VALUES_RESORT_QUERY = """ mutation attributeReorderValues($attributeId: ID!, $moves: [ReorderInput]!) { attributeReorderValues(attributeId: $attributeId, moves: $moves) { attribute { id values { id } } errors { field message } } } """ def test_sort_values_within_attribute_invalid_product_type( staff_api_client, permission_manage_products ): """Try to reorder an invalid attribute (invalid ID).""" attribute_id = graphene.Node.to_global_id("Attribute", -1) value_id = graphene.Node.to_global_id("AttributeValue", -1) variables = { "attributeId": attribute_id, "moves": [{"id": value_id, "sortOrder": 1}], } content = get_graphql_content( staff_api_client.post_graphql( ATTRIBUTE_VALUES_RESORT_QUERY, variables, permissions=[permission_manage_products], ) )["data"]["attributeReorderValues"] assert content["errors"] == [ { "field": "attributeId", "message": f"Couldn't resolve to an attribute: {attribute_id}", } ] def test_sort_values_within_attribute_invalid_id( staff_api_client, permission_manage_products, color_attribute ): """Try to reorder a value not associated to the given attribute.""" attribute_id = graphene.Node.to_global_id("Attribute", color_attribute.id) value_id = graphene.Node.to_global_id("AttributeValue", -1) variables = { "type": "VARIANT", "attributeId": attribute_id, "moves": [{"id": value_id, "sortOrder": 1}], } content = get_graphql_content( staff_api_client.post_graphql( ATTRIBUTE_VALUES_RESORT_QUERY, variables, permissions=[permission_manage_products], ) )["data"]["attributeReorderValues"] assert content["errors"] == [ { "field": "moves", "message": f"Couldn't resolve to an attribute value: {value_id}", } ] def test_sort_values_within_attribute( staff_api_client, color_attribute, permission_manage_products ): attribute = color_attribute AttributeValue.objects.create(attribute=attribute, name="Green", slug="green") values = list(attribute.values.all()) assert len(values) == 3 staff_api_client.user.user_permissions.add(permission_manage_products) attribute_id = graphene.Node.to_global_id("Attribute", attribute.id) m2m_values = attribute.values m2m_values.set(values) assert values == sorted( values, key=lambda o: o.sort_order if o.sort_order is not None else o.pk ), "The values are not properly ordered" variables = { "attributeId": attribute_id, "moves": [ { "id": graphene.Node.to_global_id("AttributeValue", values[0].pk), "sortOrder": +1, }, { "id": graphene.Node.to_global_id("AttributeValue", values[2].pk), "sortOrder": -1, }, ], } expected_order = [values[1].pk, values[2].pk, values[0].pk] content = get_graphql_content( staff_api_client.post_graphql(ATTRIBUTE_VALUES_RESORT_QUERY, variables) )["data"]["attributeReorderValues"] assert not content["errors"] assert content["attribute"]["id"] == attribute_id gql_values = content["attribute"]["values"] assert len(gql_values) == len(expected_order) actual_order = [] for attr, expected_pk in zip(gql_values, expected_order): gql_type, gql_attr_id = graphene.Node.from_global_id(attr["id"]) assert gql_type == "AttributeValue" actual_order.append(int(gql_attr_id)) assert actual_order == expected_order ATTRIBUTES_FILTER_QUERY = """ query($filters: AttributeFilterInput!) { attributes(first: 10, filter: $filters) { edges { node { name slug } } } } """ def test_search_attributes(api_client, color_attribute, size_attribute): variables = {"filters": {"search": "color"}} attributes = get_graphql_content( api_client.post_graphql(ATTRIBUTES_FILTER_QUERY, variables) )["data"]["attributes"]["edges"] assert len(attributes) == 1 assert attributes[0]["node"]["slug"] == "color" def test_filter_attributes_if_filterable_in_dashboard( api_client, color_attribute, size_attribute ): color_attribute.filterable_in_dashboard = False color_attribute.save(update_fields=["filterable_in_dashboard"]) variables = {"filters": {"filterableInDashboard": True}} attributes = get_graphql_content( api_client.post_graphql(ATTRIBUTES_FILTER_QUERY, variables) )["data"]["attributes"]["edges"] assert len(attributes) == 1 assert attributes[0]["node"]["slug"] == "size" def test_filter_attributes_if_available_in_grid( api_client, color_attribute, size_attribute ): color_attribute.available_in_grid = False color_attribute.save(update_fields=["available_in_grid"]) variables = {"filters": {"availableInGrid": True}} attributes = get_graphql_content( api_client.post_graphql(ATTRIBUTES_FILTER_QUERY, variables) )["data"]["attributes"]["edges"] assert len(attributes) == 1 assert attributes[0]["node"]["slug"] == "size" def test_filter_attributes_by_global_id_list(api_client, attribute_list): global_ids = [ graphene.Node.to_global_id("Attribute", attribute.pk) for attribute in attribute_list[:2] ] variables = {"filters": {"ids": global_ids}} expected_slugs = sorted([attribute_list[0].slug, attribute_list[1].slug]) attributes = get_graphql_content( api_client.post_graphql(ATTRIBUTES_FILTER_QUERY, variables) )["data"]["attributes"]["edges"] assert len(attributes) == 2 received_slugs = sorted( [attributes[0]["node"]["slug"], attributes[1]["node"]["slug"]] ) assert received_slugs == expected_slugs ATTRIBUTES_SORT_QUERY = """ query($sortBy: AttributeSortingInput) { attributes(first: 10, sortBy: $sortBy) { edges { node { slug } } } } """ def test_sort_attributes_by_slug(api_client): Attribute.objects.bulk_create( [ Attribute(name="MyAttribute", slug="b"), Attribute(name="MyAttribute", slug="a"), ] ) variables = {"sortBy": {"field": "SLUG", "direction": "ASC"}} attributes = get_graphql_content( api_client.post_graphql(ATTRIBUTES_SORT_QUERY, variables) )["data"]["attributes"]["edges"] assert len(attributes) == 2 assert attributes[0]["node"]["slug"] == "a" assert attributes[1]["node"]["slug"] == "b" @pytest.mark.parametrize( "sort_field, m2m_model", ( ("DASHBOARD_VARIANT_POSITION", AttributeVariant), ("DASHBOARD_PRODUCT_POSITION", AttributeProduct), ), ) def test_sort_attributes_by_position_in_product_type( api_client, color_attribute, size_attribute, sort_field: str, m2m_model: Union[AttributeVariant, AttributeProduct], ): """Sorts attributes for dashboard custom ordering inside a given product type.""" product_type = ProductType.objects.create(name="My Product Type") m2m_model.objects.create( product_type=product_type, attribute=color_attribute, sort_order=0 ) m2m_model.objects.create( product_type=product_type, attribute=size_attribute, sort_order=1 ) variables = {"sortBy": {"field": sort_field, "direction": "DESC"}} attributes = get_graphql_content( api_client.post_graphql(ATTRIBUTES_SORT_QUERY, variables) )["data"]["attributes"]["edges"] assert len(attributes) == 2 assert attributes[0]["node"]["slug"] == "size" assert attributes[1]["node"]["slug"] == "color" def test_sort_attributes_by_default_sorting(api_client): """Don't provide any sorting, this should sort by name by default.""" Attribute.objects.bulk_create( [Attribute(name="A", slug="b"), Attribute(name="B", slug="a")] ) attributes = get_graphql_content( api_client.post_graphql(ATTRIBUTES_SORT_QUERY, {}) )["data"]["attributes"]["edges"] assert len(attributes) == 2 assert attributes[0]["node"]["slug"] == "b" assert attributes[1]["node"]["slug"] == "a" @pytest.mark.parametrize("is_variant", (True, False)) def test_attributes_of_products_are_sorted( staff_api_client, product, color_attribute, is_variant ): """Ensures the attributes of products and variants are sorted.""" variant = product.variants.first() if is_variant: query = """ query($id: ID!) { productVariant(id: $id) { attributes { attribute { id } } } } """ else: query = """ query($id: ID!) { product(id: $id) { attributes { attribute { id } } } } """ # Create a dummy attribute with a higher ID # This will allow us to make sure it is always the last attribute # when sorted by ID. Thus, we are sure the query is actually passing the test. other_attribute = Attribute.objects.create(name="Other", slug="other") # Add the attribute to the product type if is_variant: product.product_type.variant_attributes.set([color_attribute, other_attribute]) else: product.product_type.product_attributes.set([color_attribute, other_attribute]) # Retrieve the M2M object for the attribute vs the product type if is_variant: m2m_rel_other_attr = other_attribute.attributevariant.last() else: m2m_rel_other_attr = other_attribute.attributeproduct.last() # Push the last attribute to the top and let the others to None m2m_rel_other_attr.sort_order = 0 m2m_rel_other_attr.save(update_fields=["sort_order"]) # Assign attributes to the product node = variant if is_variant else product # type: Union[Product, ProductVariant] node.attributesrelated.clear() associate_attribute_values_to_instance( node, color_attribute, color_attribute.values.first() ) # Sort the database attributes by their sort order and ID (when None) expected_order = [other_attribute.pk, color_attribute.pk] # Make the node ID if is_variant: node_id = graphene.Node.to_global_id("ProductVariant", variant.pk) else: node_id = graphene.Node.to_global_id("Product", product.pk) # Retrieve the attributes data = get_graphql_content(staff_api_client.post_graphql(query, {"id": node_id}))[ "data" ] attributes = data["productVariant" if is_variant else "product"]["attributes"] actual_order = [ int(graphene.Node.from_global_id(attr["attribute"]["id"])[1]) for attr in attributes ] # Compare the received data against our expectations assert actual_order == expected_order
6043
import copy from typing import Callable, Dict, List, Optional import torch import torch.nn as nn import torch.optim as optim from ai_traineree import DEVICE from ai_traineree.agents import AgentBase from ai_traineree.agents.agent_utils import soft_update from ai_traineree.buffers import NStepBuffer, PERBuffer from ai_traineree.buffers.buffer_factory import BufferFactory from ai_traineree.loggers import DataLogger from ai_traineree.networks.heads import RainbowNet from ai_traineree.types import ActionType, AgentState, BufferState, DoneType, NetworkState, ObsType, RewardType from ai_traineree.types.dataspace import DataSpace from ai_traineree.utils import to_numbers_seq, to_tensor class RainbowAgent(AgentBase): """Rainbow agent as described in [1]. Rainbow is a DQN agent with some improvments that were suggested before 2017. As mentioned by the authors it's not exhaustive improvment but all changes are in relatively separate areas so their connection makes sense. These improvements are: * Priority Experience Replay * Multi-step * Double Q net * Dueling nets * NoisyNet * CategoricalNet for Q estimate Consider this class as a particular version of the DQN agent. [1] "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Hessel et al. (DeepMind team) https://arxiv.org/abs/1710.02298 """ model = "Rainbow" def __init__( self, obs_space: DataSpace, action_space: DataSpace, state_transform: Optional[Callable]=None, reward_transform: Optional[Callable]=None, **kwargs ): """ A wrapper over the DQN thus majority of the logic is in the DQNAgent. Special treatment is required because the Rainbow agent uses categorical nets which operate on probability distributions. Each action is taken as the estimate from such distributions. Parameters: obs_space (DataSpace): Dataspace describing the input. action_space (DataSpace): Dataspace describing the output. state_transform (optional func): reward_transform (optional func): Keyword parameters: pre_network_fn (function that takes input_shape and returns network): Used to preprocess state before it is used in the value- and advantage-function in the dueling nets. hidden_layers (tuple of ints): Shape of the hidden layers in fully connected network. Default: (100, 100). lr (default: 1e-3): Learning rate value. gamma (float): Discount factor. Default: 0.99. tau (float): Soft-copy factor. Default: 0.002. update_freq (int): Number of steps between each learning step. Default 1. batch_size (int): Number of samples to use at each learning step. Default: 80. buffer_size (int): Number of most recent samples to keep in memory for learning. Default: 1e5. warm_up (int): Number of samples to observe before starting any learning step. Default: 0. number_updates (int): How many times to use learning step in the learning phase. Default: 1. max_grad_norm (float): Maximum norm of the gradient used in learning. Default: 10. using_double_q (bool): Whether to use Double Q Learning network. Default: True. n_steps (int): Number of lookahead steps when estimating reward. See :ref:`NStepBuffer`. Default: 3. v_min (float): Lower bound for distributional value V. Default: -10. v_max (float): Upper bound for distributional value V. Default: 10. num_atoms (int): Number of atoms (discrete states) in the value V distribution. Default: 21. """ super().__init__(**kwargs) self.device = self._register_param(kwargs, "device", DEVICE, update=True) self.obs_space = obs_space self.action_space = action_space self._config['obs_space'] = self.obs_space self._config['action_space'] = self.action_space self.action_size = action_space.to_feature() self.lr = float(self._register_param(kwargs, 'lr', 3e-4)) self.gamma = float(self._register_param(kwargs, 'gamma', 0.99)) self.tau = float(self._register_param(kwargs, 'tau', 0.002)) self.update_freq = int(self._register_param(kwargs, 'update_freq', 1)) self.batch_size = int(self._register_param(kwargs, 'batch_size', 80, update=True)) self.buffer_size = int(self._register_param(kwargs, 'buffer_size', int(1e5), update=True)) self.warm_up = int(self._register_param(kwargs, 'warm_up', 0)) self.number_updates = int(self._register_param(kwargs, 'number_updates', 1)) self.max_grad_norm = float(self._register_param(kwargs, 'max_grad_norm', 10)) self.iteration: int = 0 self.using_double_q = bool(self._register_param(kwargs, "using_double_q", True)) self.state_transform = state_transform if state_transform is not None else lambda x: x self.reward_transform = reward_transform if reward_transform is not None else lambda x: x v_min = float(self._register_param(kwargs, "v_min", -10)) v_max = float(self._register_param(kwargs, "v_max", 10)) self.num_atoms = int(self._register_param(kwargs, "num_atoms", 21, drop=True)) self.z_atoms = torch.linspace(v_min, v_max, self.num_atoms, device=self.device) self.z_delta = self.z_atoms[1] - self.z_atoms[0] self.buffer = PERBuffer(**kwargs) self.__batch_indices = torch.arange(self.batch_size, device=self.device) self.n_steps = int(self._register_param(kwargs, "n_steps", 3)) self.n_buffer = NStepBuffer(n_steps=self.n_steps, gamma=self.gamma) # Note that in case a pre_network is provided, e.g. a shared net that extracts pixels values, # it should be explicitly passed in kwargs kwargs["hidden_layers"] = to_numbers_seq(self._register_param(kwargs, "hidden_layers", (100, 100))) self.net = RainbowNet(obs_space.shape, self.action_size, num_atoms=self.num_atoms, **kwargs) self.target_net = RainbowNet(obs_space.shape, self.action_size, num_atoms=self.num_atoms, **kwargs) self.optimizer = optim.Adam(self.net.parameters(), lr=self.lr) self.dist_probs = None self._loss = float('nan') @property def loss(self): return {'loss': self._loss} @loss.setter def loss(self, value): if isinstance(value, dict): value = value['loss'] self._loss = value def step(self, obs: ObsType, action: ActionType, reward: RewardType, next_obs: ObsType, done: DoneType) -> None: """Letting the agent to take a step. On some steps the agent will initiate learning step. This is dependent on the `update_freq` value. Parameters: obs (ObservationType): Observation. action (int): Discrete action associated with observation. reward (float): Reward obtained for taking action at state. next_obs (ObservationType): Observation in a state where the action took. done: (bool) Whether in terminal (end of episode) state. """ assert isinstance(action, int), "Rainbow expects discrete action (int)" self.iteration += 1 t_obs = to_tensor(self.state_transform(obs)).float().to("cpu") t_next_obs = to_tensor(self.state_transform(next_obs)).float().to("cpu") reward = self.reward_transform(reward) # Delay adding to buffer to account for n_steps (particularly the reward) self.n_buffer.add( state=t_obs.numpy(), action=[int(action)], reward=[reward], done=[done], next_state=t_next_obs.numpy() ) if not self.n_buffer.available: return self.buffer.add(**self.n_buffer.get().get_dict()) if self.iteration < self.warm_up: return if len(self.buffer) >= self.batch_size and (self.iteration % self.update_freq) == 0: for _ in range(self.number_updates): self.learn(self.buffer.sample()) # Update networks only once - sync local & target soft_update(self.target_net, self.net, self.tau) def act(self, obs: ObsType, eps: float = 0.) -> int: """ Returns actions for given state as per current policy. Parameters: state: Current available state from the environment. epislon: Epsilon value in the epislon-greedy policy. """ # Epsilon-greedy action selection if self._rng.random() < eps: # TODO: Update with action_space.sample() once implemented assert len(self.action_space.shape) == 1, "Only 1D is supported right now" return self._rng.randint(self.action_space.low, self.action_space.high) t_obs = to_tensor(self.state_transform(obs)).float().unsqueeze(0).to(self.device) self.dist_probs = self.net.act(t_obs) q_values = (self.dist_probs * self.z_atoms).sum(-1) return int(q_values.argmax(-1)) # Action maximizes state-action value Q(s, a) def learn(self, experiences: Dict[str, List]) -> None: """ Parameters: experiences: Contains all experiences for the agent. Typically sampled from the memory buffer. Five keys are expected, i.e. `state`, `action`, `reward`, `next_state`, `done`. Each key contains a array and all arrays have to have the same length. """ rewards = to_tensor(experiences['reward']).float().to(self.device) dones = to_tensor(experiences['done']).type(torch.int).to(self.device) states = to_tensor(experiences['state']).float().to(self.device) next_states = to_tensor(experiences['next_state']).float().to(self.device) actions = to_tensor(experiences['action']).type(torch.long).to(self.device) assert rewards.shape == dones.shape == (self.batch_size, 1) assert states.shape == next_states.shape == (self.batch_size,) + self.obs_space.shape assert actions.shape == (self.batch_size, 1) # Discrete domain with torch.no_grad(): prob_next = self.target_net.act(next_states) q_next = (prob_next * self.z_atoms).sum(-1) * self.z_delta if self.using_double_q: duel_prob_next = self.net.act(next_states) a_next = torch.argmax((duel_prob_next * self.z_atoms).sum(-1), dim=-1) else: a_next = torch.argmax(q_next, dim=-1) prob_next = prob_next[self.__batch_indices, a_next, :] m = self.net.dist_projection(rewards, 1 - dones, self.gamma ** self.n_steps, prob_next) assert m.shape == (self.batch_size, self.num_atoms) log_prob = self.net(states, log_prob=True) assert log_prob.shape == (self.batch_size,) + self.action_size + (self.num_atoms,) log_prob = log_prob[self.__batch_indices, actions.squeeze(), :] assert log_prob.shape == m.shape == (self.batch_size, self.num_atoms) # Cross-entropy loss error and the loss is batch mean error = -torch.sum(m * log_prob, 1) assert error.shape == (self.batch_size,) loss = error.mean() assert loss >= 0 self.optimizer.zero_grad() loss.backward() nn.utils.clip_grad_norm_(self.net.parameters(), self.max_grad_norm) self.optimizer.step() self._loss = float(loss.item()) if hasattr(self.buffer, 'priority_update'): assert (~torch.isnan(error)).any() self.buffer.priority_update(experiences['index'], error.detach().cpu().numpy()) # Update networks - sync local & target soft_update(self.target_net, self.net, self.tau) def state_dict(self) -> Dict[str, dict]: """Returns agent's state dictionary. Returns: State dicrionary for internal networks. """ return {"net": self.net.state_dict(), "target_net": self.target_net.state_dict()} def log_metrics(self, data_logger: DataLogger, step: int, full_log: bool=False): data_logger.log_value("loss/agent", self._loss, step) if full_log and self.dist_probs is not None: assert len(self.action_space.shape) == 1, "Only 1D actions currently supported" action_size = self.action_size[0] for action_idx in range(action_size): dist = self.dist_probs[0, action_idx] data_logger.log_value(f'dist/expected_{action_idx}', (dist*self.z_atoms).sum().item(), step) data_logger.add_histogram( f'dist/Q_{action_idx}', min=self.z_atoms[0], max=self.z_atoms[-1], num=len(self.z_atoms), sum=dist.sum(), sum_squares=dist.pow(2).sum(), bucket_limits=self.z_atoms+self.z_delta, bucket_counts=dist, global_step=step ) # This method, `log_metrics`, isn't executed on every iteration but just in case we delay plotting weights. # It simply might be quite costly. Thread wisely. if full_log: for idx, layer in enumerate(self.net.value_net.layers): if hasattr(layer, "weight"): data_logger.create_histogram(f"value_net/layer_weights_{idx}", layer.weight.cpu(), step) if hasattr(layer, "bias") and layer.bias is not None: data_logger.create_histogram(f"value_net/layer_bias_{idx}", layer.bias.cpu(), step) for idx, layer in enumerate(self.net.advantage_net.layers): if hasattr(layer, "weight"): data_logger.create_histogram(f"advantage_net/layer_{idx}", layer.weight.cpu(), step) if hasattr(layer, "bias") and layer.bias is not None: data_logger.create_histogram(f"advantage_net/layer_bias_{idx}", layer.bias.cpu(), step) def get_state(self) -> AgentState: """Provides agent's internal state.""" return AgentState( model=self.model, obs_space=self.obs_space, action_space=self.action_space, config=self._config, buffer=copy.deepcopy(self.buffer.get_state()), network=copy.deepcopy(self.get_network_state()), ) def get_network_state(self) -> NetworkState: return NetworkState(net=dict(net=self.net.state_dict(), target_net=self.target_net.state_dict())) @staticmethod def from_state(state: AgentState) -> AgentBase: config = copy.copy(state.config) config.update({'obs_space': state.obs_space, 'action_space': state.action_space}) agent = RainbowAgent(**config) if state.network is not None: agent.set_network(state.network) if state.buffer is not None: agent.set_buffer(state.buffer) return agent def set_network(self, network_state: NetworkState) -> None: self.net.load_state_dict(network_state.net['net']) self.target_net.load_state_dict(network_state.net['target_net']) def set_buffer(self, buffer_state: BufferState) -> None: self.buffer = BufferFactory.from_state(buffer_state) def save_state(self, path: str) -> None: """Saves agent's state into a file. Parameters: path: String path where to write the state. """ agent_state = self.get_state() torch.save(agent_state, path) def load_state(self, path: str) -> None: """Loads state from a file under provided path. Parameters: path: String path indicating where the state is stored. """ agent_state = torch.load(path) self._config = agent_state.get('config', {}) self.__dict__.update(**self._config) self.net.load_state_dict(agent_state['net']) self.target_net.load_state_dict(agent_state['target_net']) def save_buffer(self, path: str) -> None: """Saves data from the buffer into a file under provided path. Parameters: path: String path where to write the buffer. """ import json dump = self.buffer.dump_buffer(serialize=True) with open(path, 'w') as f: json.dump(dump, f) def load_buffer(self, path: str) -> None: """Loads data into the buffer from provided file path. Parameters: path: String path indicating where the buffer is stored. """ import json with open(path, 'r') as f: buffer_dump = json.load(f) self.buffer.load_buffer(buffer_dump) def __eq__(self, o: object) -> bool: return super().__eq__(o) \ and isinstance(o, type(self)) \ and self._config == o._config \ and self.buffer == o.buffer \ and self.get_network_state() == o.get_network_state()
6047
import pytest from pathlib import Path from blendtorch import btt BLENDDIR = Path(__file__).parent/'blender' class MyEnv(btt.env.OpenAIRemoteEnv): def __init__(self, background=True, **kwargs): super().__init__(version='1.0.0') self.launch(scene=BLENDDIR/'env.blend', script=BLENDDIR / 'env.blend.py', background=background, **kwargs) # For Blender 2.9 if we pass scene='', the tests below fail since # _env_post_step() is not called. Its unclear currently why this happens. def _run_remote_env(background): env = MyEnv(background=background) obs = env.reset() assert obs == 0. obs, reward, done, info = env.step(0.1) assert obs == pytest.approx(0.1) assert reward == 0. assert not done assert info['count'] == 2 # 1 is already set by reset() obs, reward, done, info = env.step(0.6) assert obs == pytest.approx(0.6) assert reward == 1. assert not done assert info['count'] == 3 for _ in range(8): obs, reward, done, info = env.step(0.6) assert done obs = env.reset() assert obs == 0. obs, reward, done, info = env.step(0.1) assert obs == pytest.approx(0.1) assert reward == 0. assert not done assert info['count'] == 2 env.close() @pytest.mark.background def test_remote_env(): _run_remote_env(background=True) def test_remote_env_ui(): _run_remote_env(background=False)
6078
import numpy as np import scipy as sp import scipy.sparse.linalg as splinalg def eig2_nL(g, tol_eigs = 1.0e-6, normalize:bool = True, dim:int=1): """ DESCRIPTION ----------- Computes the eigenvector that corresponds to the second smallest eigenvalue of the normalized Laplacian matrix then it uses sweep cut to round the solution. PARAMETERS (mandatory) ---------------------- g: graph object PARAMETERS (optional) --------------------- dim: positive, int default == 1 The number of eigenvectors or dimensions to compute. tol_eigs: positive float, double default == 1.0e-6 Tolerance for computation of the eigenvector that corresponds to the second smallest eigenvalue of the normalized Laplacian matrix. normalize: bool, default == True True if we should return the eigenvectors of the generalized eigenvalue problem associated with the normalized Laplacian. This should be on unless you know what you are doing. RETURNS ------ p: Eigenvector or Eigenvector matrixthat corresponds to the second smallest eigenvalue of the normalized Laplacian matrix and larger eigenvectors if dim >= 0. """ n = g.adjacency_matrix.shape[0] D_sqrt_neg = sp.sparse.spdiags(g.dn_sqrt.transpose(), 0, n, n) L = sp.sparse.identity(n) - D_sqrt_neg.dot((g.adjacency_matrix.dot(D_sqrt_neg))) emb_eig_val, p = splinalg.eigsh(L, which='SM', k=1+dim, tol = tol_eigs) F = np.real(p[:,1:]) if normalize: F *= g.dn_sqrt[:,np.newaxis] return F, emb_eig_val """ Random walks and local cuts in graphs, Chung, LAA 2007 We just form the sub-matrix of the Laplacian and use the eigenvector there. """ def eig2nL_subgraph(g, ref_nodes, tol_eigs = 1.0e-6, normalize: bool = True): A_sub = g.adjacency_matrix.tocsr()[ref_nodes, :].tocsc()[:, ref_nodes] nref = len(ref_nodes) D_sqrt_neg = sp.sparse.spdiags(g.dn_sqrt[ref_nodes].transpose(), 0, nref, nref) L_sub = sp.sparse.identity(nref) - D_sqrt_neg.dot((A_sub.dot(D_sqrt_neg))) emb_eig_val, emb_eig = splinalg.eigsh(L_sub, which='SM', k=1, tol=tol_eigs) emb_eig *= -1 if max(emb_eig) < 0 else 1 f = emb_eig[:,0] if normalize: f *= g.dn_sqrt[ref_nodes] return ((ref_nodes,f), emb_eig_val)
6092
import torch import torch.nn as nn import torch.nn.functional as F class PGDModel(nn.Module): """ code adapted from https://github.com/karandwivedi42/adversarial/blob/master/main.py """ def __init__(self, basic_net, config): super(PGDModel, self).__init__() self.basic_net = basic_net self.rand = config['random_start'] self.step_size = config['step_size'] self.epsilon = config['epsilon'] self.num_steps = config['num_steps'] assert config['loss_func'] == 'xent', 'Only xent supported for now.' def forward(self, inputs, targets, attack=False): if not attack: return self.basic_net(inputs) x = inputs.clone() if self.rand: x = x + torch.zeros_like(x).uniform_(-self.epsilon, self.epsilon) for _ in range(self.num_steps): x.requires_grad_() with torch.enable_grad(): logits = self.basic_net(x) loss = F.cross_entropy(logits, targets, reduction='sum') grad = torch.autograd.grad(loss, x)[0] x = x.detach() + self.step_size * torch.sign(grad.detach()) x = torch.min(torch.max(x, inputs.detach() - self.epsilon), inputs.detach() + self.epsilon) x = torch.clamp(x, 0, 1) return self.basic_net(x) class PGDL2Model(nn.Module): """ code adapted from https://github.com/karandwivedi42/adversarial/blob/master/main.py """ def __init__(self, basic_net, config): super(PGDL2Model, self).__init__() self.basic_net = basic_net self.epsilon = config['epsilon'] self.rand = config['random_start'] self.step_size = config['step_size'] self.num_steps = config['num_steps'] assert config['loss_func'] == 'xent', 'Only xent supported for now.' def forward(self, inputs, targets, attack=False): if not attack: return self.basic_net(inputs) x = inputs.clone() if self.rand: x = x + torch.zeros_like(x).normal_(0, self.step_size) for _ in range(self.num_steps): x.requires_grad_() with torch.enable_grad(): logits = self.basic_net(x) loss = F.cross_entropy(logits, targets, reduction='sum') grad = torch.autograd.grad(loss, x)[0].detach() grad_norm = grad.view(x.size(0), -1).norm(2, 1) delta = self.step_size * grad / grad_norm.view(x.size(0), 1, 1, 1) x = x.detach() + delta diff = (x - inputs).view(x.size(0), -1).renorm(2, 0, self.epsilon) x = diff.view(x.size()) + inputs x.clamp_(0, 1) return self.basic_net(x)
6119
import numpy as np def rot_to_angle(rot): return np.arccos(0.5*np.trace(rot)-0.5) def rot_to_heading(rot): # This function calculates the heading angle of the rot matrix w.r.t. the y-axis new_rot = rot[0:3:2, 0:3:2] # remove the mid row and column corresponding to the y-axis new_rot = new_rot/np.linalg.det(new_rot) return np.arctan2(new_rot[1, 0], new_rot[0, 0])
6121
import logging logger = logging.getLogger(__name__) import random import chainercv import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D # NOQA from pose.hand_dataset.geometry_utils import normalize_joint_zyx from pose.hand_dataset.image_utils import normalize_depth # Decimal Code (R,G,B) BASE_COLOR = { "RED": (255, 0, 0), "GREEN": (0, 255, 0), "BLUE": (0, 0, 255), "YELLOW": (255, 255, 0), "CYAN": (0, 255, 255), "MAGENTA": (255, 0, 255), } def vis_image(img, ax=None): """ extend chainercv.visualizations.vis_image """ C, H, W = img.shape if C == 1: if ax is None: fig = plt.figure() ax = fig.add_subplot(1, 1, 1) # remove channnel dimension ax.imshow(img.squeeze()) else: ax = chainercv.visualizations.vis_image(img, ax) return ax def preprocess(point, ax, img): input_point = np.asarray(point) if input_point.ndim == 2: input_point = np.expand_dims(point, axis=0) H, W = None, None if ax is None: fig = plt.figure() if input_point.shape[-1] == 3: ax = fig.add_subplot(1, 1, 1, projection="3d") else: ax = fig.add_subplot(1, 1, 1) if img is not None: ax = vis_image(img, ax=ax) _, H, W = img.shape return input_point, ax, H, W def vis_point(point, img=None, color=None, ax=None): """ Visualize points in an image, customized to our purpose. Base implementation is taken from chainercv.visualizations.vis_image """ point, ax, H, W = preprocess(point, ax, img) n_inst = len(point) c = np.asarray(color) / 255. if color is not None else None for i in range(n_inst): # note that the shape of `point[i]` is (K,N) and the format of one is (y, x), (z,y,x). # (K, N) -> (N, K) pts = point[i].transpose() # (K,N) -> (N,K) # resort coordinate order : yx -> xy or zyx -> xyz pts = pts[::-1] ax.scatter(*pts, c=c) if W is not None: ax.set_xlim(left=0, right=W) if H is not None: ax.set_ylim(bottom=H - 1, top=0) return ax def vis_edge(point, indices, img=None, color=None, ax=None): """ Visualize edges in an image """ point, ax, H, W = preprocess(point, ax, img) n_inst = len(point) if color is not None: color = np.asarray(color) / 255. else: color = [None] * len(indices) for i in range(n_inst): # note that the shape of `point[i]` is (K,N) and the format of one is (y, x) or (z,y,x). pts = point[i] for ((s, t), c) in zip(indices, color): # Select point which consists edge. It is a pair or point (start, target). # Note that [::-1] does resort coordinate order: yx -> xy or zyx -> xyz edge = pts[[s, t]].transpose() edge = edge[::-1] ax.plot(*edge, c=c) if W is not None: ax.set_xlim(left=0, right=W) if H is not None: ax.set_ylim(bottom=H - 1, top=0) return ax def vis_pose(point, indices, img=None, point_color=None, edge_color=None, ax=None): ax = vis_point(point, img=img, color=point_color, ax=ax) vis_edge(point, indices, img=img, color=edge_color, ax=ax) def visualize_both(dataset, keypoint_names, edges, color_map, normalize=False): import random idx = random.randint(0, len(dataset) - 1) logger.info("get example") example = dataset.get_example(idx) logger.info("Done get example") fig = plt.figure(figsize=(8, 8)) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223, projection="3d") ax4 = fig.add_subplot(224, projection="3d") color = [color_map[k] for k in keypoint_names] edge_color = [color_map[s, t] for s, t in edges] depth = example["depth"].astype(np.float32) depth_joint = example["depth_joint"] depth_camera = example["depth_camera"] depth_vu, depth_z = depth_camera.zyx2vu(depth_joint, return_z=True) z_size = example["param"]["z_size"] if normalize: depth = normalize_depth(depth, z_com=depth_z.mean(), z_size=z_size) depth_joint = normalize_joint_zyx(depth_joint, depth_camera, z_size) rgb = example["rgb"] rgb_joint = example["rgb_joint"] rgb_camera = example["rgb_camera"] rgb_vu = rgb_camera.zyx2vu(rgb_joint) rgb_joint = normalize_joint_zyx(rgb_joint, rgb_camera, z_size) print(example["param"]) vis_point(rgb_vu, img=rgb, color=color, ax=ax1) vis_edge(rgb_vu, indices=edges, color=edge_color, ax=ax1) vis_point(rgb_joint, color=color, ax=ax3) vis_edge(rgb_joint, indices=edges, color=edge_color, ax=ax3) vis_point(depth_vu, img=depth, color=color, ax=ax2) vis_edge(depth_vu, indices=edges, color=edge_color, ax=ax2) vis_point(depth_joint, color=color, ax=ax4) vis_edge(depth_joint, indices=edges, color=edge_color, ax=ax4) for ax in [ax3, ax4]: ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") ax.view_init(-65, -90) plt.savefig("output.png") plt.show() def visualize_rgb(dataset, keypoint_names, edges, color_map, idx=None): import random if idx is None: idx = random.randint(0, len(dataset) - 1) logger.info("get example") example = dataset.get_example(idx) logger.info("Done get example") fig = plt.figure(figsize=(5, 10)) ax1 = fig.add_subplot(211) ax3 = fig.add_subplot(212, projection="3d") color = [color_map[k] for k in keypoint_names] edge_color = [color_map[s, t] for s, t in edges] rgb = example["rgb"] rgb_joint = example["rgb_joint"] rgb_camera = example["rgb_camera"] rgb_vu = rgb_camera.zyx2vu(rgb_joint) vis_point(rgb_vu, img=rgb, color=color, ax=ax1) vis_edge(rgb_vu, indices=edges, color=edge_color, ax=ax1) vis_point(rgb_joint, color=color, ax=ax3) vis_edge(rgb_joint, indices=edges, color=edge_color, ax=ax3) for ax in [ax3]: ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") ax.view_init(-65, -90) plt.savefig("output.png") plt.show() def visualize_depth(dataset, keypoint_names, edges, color_map, normalize=False): idx = random.randint(0, len(dataset) - 1) logger.info("get example") example = dataset.get_example(idx) logger.info("Done get example") fig = plt.figure(figsize=(5, 10)) ax2 = fig.add_subplot(211) ax4 = fig.add_subplot(212, projection="3d") color = [color_map[k] for k in keypoint_names] edge_color = [color_map[s, t] for s, t in edges] depth = example["depth"].astype(np.float32) depth_joint = example["depth_joint"] depth_camera = example["depth_camera"] depth_vu, depth_z = depth_camera.zyx2vu(depth_joint, return_z=True) z_size = example["param"]["z_size"] if normalize: depth = normalize_depth(depth, z_com=depth_z.mean(), z_size=z_size) depth_joint = normalize_joint_zyx(depth_joint, depth_camera, z_size) print(example["param"]) vis_point(depth_vu, img=depth, color=color, ax=ax2) vis_edge(depth_vu, indices=edges, color=edge_color, ax=ax2) vis_point(depth_joint, color=color, ax=ax4) vis_edge(depth_joint, indices=edges, color=edge_color, ax=ax4) for ax in [ax4]: ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") ax.view_init(-65, -90) plt.savefig("output.png") plt.show()
6125
from typing import List, Tuple, Union import numpy as np import scipy.special from PIL import Image, ImageFilter class RandomBetaMorphology: def __init__( self, filter_size_min: int, filter_size_max: int, alpha: float, beta: float ) -> None: assert filter_size_min % 2 != 0, "Filter size must be odd" assert filter_size_max % 2 != 0, "Filter size must be odd" self.filter_size_min = filter_size_min self.filter_size_max = filter_size_max self.alpha = alpha self.beta = beta self.filter_sizes, self.filter_probs = self._create_filter_distribution( filter_size_min, filter_size_max, alpha, beta ) @staticmethod def _create_filter_distribution( filter_size_min: int, filter_size_max: int, alpha: float, beta: float ) -> Tuple[List[int], Union[List[float], np.ndarray]]: n = (filter_size_max - filter_size_min) // 2 + 1 if n < 2: return [filter_size_min], np.asarray([1.0], dtype=np.float32) filter_sizes = [] filter_probs = [] for k in range(n): filter_sizes.append(filter_size_min + 2 * k) filter_probs.append( scipy.special.comb(n, k) * scipy.special.beta(alpha + k, n - k + beta) ) np_filter_probs = np.asarray(filter_probs, dtype=np.float32) np_filter_probs = filter_probs / np_filter_probs.sum() return filter_sizes, np_filter_probs def sample_filter_size(self): filter_size = np.random.choice(self.filter_sizes, p=self.filter_probs) return filter_size def __call__(self, *args, **kwargs): return NotImplementedError def __repr__(self) -> str: return ( f"vision.{self.__class__.__name__}(" f"filter_size_min={self.filter_size_min}, " f"filter_size_max={self.filter_size_max}, " f"alpha={self.alpha}, beta={self.beta})" ) class Dilate(RandomBetaMorphology): def __init__( self, filter_size_min: int = 3, filter_size_max: int = 7, alpha: float = 1, beta: float = 3, ) -> None: super().__init__(filter_size_min, filter_size_max, alpha, beta) def __call__(self, img: Image) -> Image: filter_size = self.sample_filter_size() return img.filter(ImageFilter.MaxFilter(filter_size)) class Erode(RandomBetaMorphology): def __init__( self, filter_size_min: int = 3, filter_size_max: int = 5, alpha: float = 1, beta: float = 3, ) -> None: super().__init__(filter_size_min, filter_size_max, alpha, beta) def __call__(self, img: Image) -> Image: filter_size = self.sample_filter_size() return img.filter(ImageFilter.MinFilter(filter_size)) if __name__ == "__main__": import argparse from PIL import ImageOps parser = argparse.ArgumentParser() parser.add_argument("--operation", choices=("dilate", "erode"), default="dilate") parser.add_argument("images", type=argparse.FileType("rb"), nargs="+") args = parser.parse_args() transformer = Dilate() if args.operation == "dilate" else Erode() for f in args.images: x = Image.open(f, "r").convert("L") x = ImageOps.invert(x) y = transformer(x) w, h = x.size z = Image.new("L", (w, 2 * h)) z.paste(x, (0, 0)) z.paste(y, (0, h)) z = z.resize(size=(w // 2, h), resample=Image.BICUBIC) z.show() input()
6157
import json from typing import Dict, Optional import requests from federation.hostmeta.parsers import ( parse_nodeinfo_document, parse_nodeinfo2_document, parse_statisticsjson_document, parse_mastodon_document, parse_matrix_document, parse_misskey_document) from federation.utils.network import fetch_document HIGHEST_SUPPORTED_NODEINFO_VERSION = 2.1 def fetch_mastodon_document(host): doc, status_code, error = fetch_document(host=host, path='/api/v1/instance') if not doc: return try: doc = json.loads(doc) except json.JSONDecodeError: return return parse_mastodon_document(doc, host) def fetch_matrix_document(host: str) -> Optional[Dict]: doc, status_code, error = fetch_document(host=host, path='/_matrix/federation/v1/version') if not doc: return try: doc = json.loads(doc) except json.JSONDecodeError: return return parse_matrix_document(doc, host) def fetch_misskey_document(host: str, mastodon_document: Dict=None) -> Optional[Dict]: try: response = requests.post(f'https://{host}/api/meta') # ¯\_(ツ)_/¯ except Exception: return try: doc = response.json() except json.JSONDecodeError: return if response.status_code == 200: return parse_misskey_document(doc, host, mastodon_document=mastodon_document) def fetch_nodeinfo_document(host): doc, status_code, error = fetch_document(host=host, path='/.well-known/nodeinfo') if not doc: return try: doc = json.loads(doc) except json.JSONDecodeError: return url, highest_version = '', 0.0 if doc.get('0'): # Buggy NodeInfo from certain old Hubzilla versions url = doc.get('0', {}).get('href') elif isinstance(doc.get('links'), dict): # Another buggy NodeInfo from certain old Hubzilla versions url = doc.get('links').get('href') else: for link in doc.get('links'): version = float(link.get('rel').split('/')[-1]) if highest_version < version <= HIGHEST_SUPPORTED_NODEINFO_VERSION: url, highest_version = link.get('href'), version if not url: return doc, status_code, error = fetch_document(url=url) if not doc: return try: doc = json.loads(doc) except json.JSONDecodeError: return return parse_nodeinfo_document(doc, host) def fetch_nodeinfo2_document(host): doc, status_code, error = fetch_document(host=host, path='/.well-known/x-nodeinfo2') if not doc: return try: doc = json.loads(doc) except json.JSONDecodeError: return return parse_nodeinfo2_document(doc, host) def fetch_statisticsjson_document(host): doc, status_code, error = fetch_document(host=host, path='/statistics.json') if not doc: return try: doc = json.loads(doc) except json.JSONDecodeError: return return parse_statisticsjson_document(doc, host)
6171
for ch in "Hello world!": d = ord(ch) h = hex(d) o = oct(d) b = bin(d) print ch, d, h, o, b
6178
from KeyValueTree import KeyValueTree from truth.models import KeyValue as TruthKeyValue, Truth from systems.models import KeyValue as KeyValue from django.test.client import RequestFactory from api_v2.keyvalue_handler import KeyValueHandler import json factory = RequestFactory() class Rack: rack_name = None tree = None kv = None ru = None width = None systems = [] ethernet_patch_panel_24 = [] ethernet_patch_panel_48 = [] def __init__(self, rack_name): self.systems = [] self.rack_name = rack_name self.kv = Truth.objects.select_related('truth_key_value').get(name=self.rack_name) self.system_list = KeyValue.objects.select_related('system').filter(value__contains="truth:%s" % (self.rack_name)) self.ethernet_patch_panel_24 = self._get_ethernet_patch_panels(self.kv, 'ethernet', 24) self.ethernet_patch_panel_48 = self._get_ethernet_patch_panels(self.kv, 'ethernet', 48) import pdb h = KeyValueHandler() for s in self.system_list: request = factory.get('/api/v2/keyvalue/?keystore=%s' % (s.system.hostname), follow=True) tree = h.read(request) system_ru = self._get_system_ru(tree) system_image = self._get_system_image(tree) system_slot = self._get_system_slot(tree) self.systems.append({ "system_name":s.system.hostname, "system_id":s.system.id, "system_ru":system_ru, "system_image":system_image, 'system_slot':system_slot, 'operating_system':str(s.system.operating_system), 'server_model': str(s.system.server_model), 'oob_ip': str(s.system.oob_ip), }) self.systems = sorted(self.systems, key=lambda k: k['system_slot']) try: self.ru = self.kv.keyvalue_set.get(key='rack_ru').value except: self.ru = 42 try: self.width = self.kv.keyvalue_set.get(key='rack_width').value except: self.width = 30 def _get_ethernet_patch_panels(self, tree, type, port_count): ret = [] for i in tree.keyvalue_set.all(): match_string = "%i_port_%s_patch_panel" % (port_count, type) if str(i.key) == match_string: ret.append(i.value) return ret def _get_system_ru(self, tree): for i in tree.iterkeys(): try: if 'system_ru' in i.split(':'): return tree[i] except: pass return 4 def _get_system_image(self, tree): for i in tree.iterkeys(): try: if 'system_image' in i.split(':'): return tree[i] except: pass return None def _get_system_slot(self, tree): for i in tree.iterkeys(): try: if 'system_slot' in i.split(':'): return tree[i] except: pass return 1
6226
from django.core.exceptions import NON_FIELD_ERRORS from rest_framework import status, viewsets, serializers from rest_framework.decorators import list_route from rest_framework.response import Response from rest_framework.serializers import ModelSerializer from jet_django.filters.model_aggregate import AggregateFilter from jet_django.filters.model_group import GroupFilter from jet_django.pagination import CustomPageNumberPagination from jet_django.permissions import HasProjectPermissions, ModifyNotInDemo from jet_django.serializers.reorder import reorder_serializer_factory class AggregateSerializer(serializers.Serializer): y_func = serializers.IntegerField() def __init__(self, *args, **kwargs): if 'y_func_serializer' in kwargs: self.fields['y_func'] = kwargs.pop('y_func_serializer') super().__init__(*args, **kwargs) class GroupSerializer(serializers.Serializer): group = serializers.CharField() y_func = serializers.IntegerField() def __init__(self, *args, **kwargs): if 'group_serializer' in kwargs: self.fields['group'] = kwargs.pop('group_serializer') if 'y_func_serializer' in kwargs: self.fields['y_func'] = kwargs.pop('y_func_serializer') super().__init__(*args, **kwargs) def model_viewset_factory(build_model, build_filter_class, build_serializer_class, build_detail_serializer_class, build_queryset, build_actions, ordering_field): ReorderSerializer = reorder_serializer_factory(build_queryset, ordering_field) class Viewset(viewsets.ModelViewSet): model = build_model queryset = build_queryset pagination_class = CustomPageNumberPagination filter_class = build_filter_class authentication_classes = () permission_classes = (HasProjectPermissions, ModifyNotInDemo) def get_serializer_class(self): if self.action == 'aggregate': return AggregateSerializer elif self.action == 'group': return GroupSerializer elif self.action == 'retrieve': return build_detail_serializer_class else: return build_serializer_class @list_route(methods=['get']) def aggregate(self, request): queryset = self.filter_queryset(self.get_queryset()) y_func = request.GET['_y_func'].lower() y_column = request.GET.get('_y_column', 'id') y_field = self.model._meta.get_field(y_column) y_serializer_class, y_serializer_kwargs = ModelSerializer().build_standard_field(y_column, y_field) y_serializer = y_serializer_class(**y_serializer_kwargs) queryset = AggregateFilter().filter(queryset, { 'y_func': y_func, 'y_column': y_column }) serializer = self.get_serializer( queryset, y_func_serializer=y_serializer ) return Response(serializer.data) @list_route(methods=['get']) def group(self, request): queryset = self.filter_queryset(self.get_queryset()) x_column = request.GET['_x_column'] x_lookup_name = request.GET.get('_x_lookup') y_func = request.GET['_y_func'].lower() y_column = request.GET.get('_y_column', 'id') x_field = self.model._meta.get_field(x_column) x_lookup = x_field.class_lookups.get(x_lookup_name) y_field = self.model._meta.get_field(y_column) if x_lookup: x_field = x_lookup('none').output_field x_serializer_class, x_serializer_kwargs = ModelSerializer().build_standard_field(x_column, x_field) x_serializer = x_serializer_class(**x_serializer_kwargs) y_serializer_class, y_serializer_kwargs = ModelSerializer().build_standard_field(y_column, y_field) y_serializer = y_serializer_class(**y_serializer_kwargs) queryset = GroupFilter().filter(queryset, { 'x_column': x_column, 'x_lookup': x_lookup, 'y_func': y_func, 'y_column': y_column }) serializer = self.get_serializer( queryset, many=True, group_serializer=x_serializer, y_func_serializer=y_serializer ) return Response(serializer.data) def get_serializer(self, *args, **kwargs): """ Return the serializer instance that should be used for validating and deserializing input, and for serializing output. """ serializer_class = self.get_serializer_class() kwargs['context'] = self.get_serializer_context() return serializer_class(*args, **kwargs) @list_route(methods=['post']) def reorder(self, request): serializer = ReorderSerializer(data=request.data) serializer.is_valid(raise_exception=True) serializer.save() return Response(serializer.data) @list_route(methods=['post']) def reset_order(self, request): i = 1 for instance in build_queryset: setattr(instance, ordering_field, i) instance.save() i += 1 return Response({}) for action in build_actions: def route(self, request): form = action(data=request.data) if not form.is_valid(): return Response(form.errors, status=status.HTTP_400_BAD_REQUEST) queryset = form.filer_queryset(self.get_queryset()) try: result = form.save(queryset) except Exception as e: return Response({NON_FIELD_ERRORS: str(e)}, status=status.HTTP_400_BAD_REQUEST) return Response({'action': form._meta.name, 'result': result}) decorator = list_route(methods=['post']) route = decorator(route) setattr(Viewset, action._meta.name, route) return Viewset
6248
import os import numpy as np from scipy.io import loadmat data = loadmat("data/hipp_2dtrack_a/smJun03p2.dat") N = 49 data = reshape(data, 3, length(data)/3); data = data'; size(data) % 43799-by-3 fclose(fid); % sampling time Ts = 0.0333; duration = size(data,1) * Ts; % in second Tmax = data(end, 3); Tmin = data(1,3); time_edges = [Tmin: 0.25: Tmax]; % 250 ms per bin % interpolated rat's position in time bins Rat_pos = interp1(data(:, 3), [data(:, 1), data(:, 2)], time_edges'); vel = abs(diff(Rat_pos, 1, 1 )); % row difference vel = [vel(1, :); vel]; % 250 ms rat_vel = 4 * sqrt(vel(:, 1).^2 + vel(:, 2).^2); % unit: cm/s vel_ind = find(rat_vel >= 10); % RUN velocity threshold % using RUN only T = length(vel_ind); % using Run + pause periods T = length(time_edges); AllSpikeData = zeros(C,T); for i=1:C str = ['Cell_num' num2str(i)]; fid = fopen(str, 'r'); cell_data = fscanf(fid, '%f'); cell_data = reshape(cell_data, 3, length(cell_data)/3)'; spike_time = cell_data(:, 3); spike_pos = cell_data(:, 1:2); [spike_time_count, bin] = histc(spike_time, time_edges); % column vector % if analyzing the RUN period only uncomment this % spike_time_count = spike_time_count(vel_ind); AllSpikeData(i, :) = spike_time_count'; fclose(fid); end
6264
import clr clr.AddReference('RevitAPI') from Autodesk.Revit.DB import * def GetViewTemplate(view): if not view: return None elif hasattr(view, "ViewTemplateId"): if view.ViewTemplateId.IntegerValue == -1: return None else: return view.Document.GetElement(view.ViewTemplateId) else: return None views = UnwrapElement(IN[0]) if isinstance(IN[0], list): OUT = [GetViewTemplate(x) for x in views] else: OUT = GetViewTemplate(views)