id
stringlengths
3
8
content
stringlengths
100
981k
8710
import strawberryfields as sf from strawberryfields import ops from strawberryfields.utils import random_interferometer from strawberryfields.apps import data, sample, subgraph, plot import plotly import networkx as nx import numpy as np class GBS: def __init__(self, samples =[], min_pho = 16, max_pho = 30, subgraph_size = 8, max_count = 2000): self.samples = samples self.min_pho = min_pho self.max_pho = max_pho self.subgraph_size = subgraph_size self.max_count = max_count def graphDensity(self, samples, min_pho, max_pho, subgraph_size, max_count): dense = subgraph.search(samples, pl_graph, subgraph_size, min_pho, max_count=max_count) dense_freq = [] for k in range(subgraph_size, min_pho+1): dense_freq.append([k,len(dense[k])]) return dense, dense_freq def graphFreqScore(self, d_freqs, max_freq): x,y = [], [] for i in range(len(d_freqs)): for j in range(len(d_freqs[i])): n,f = d_freqs[i][j][0],d_freqs[i][j][1] x.append(n*f) N = len(d_freq[i]) y.append((1/max_freq)*(np.sum(x)/N)) x = [] min_y = np.min(y) y = [min_y/x for x in y] return y, y.index(max(y)) def runJob(self, eng): num_subsystem = 8 prog = sf.Program(num_subsystem, name="remote_job") U = random_interferometer(4) with prog.context as q: # Initial squeezed states # Allowed values are r=1.0 or r=0.0 ops.S2gate(1.0) | (q[0], q[4]) ops.S2gate(1.0) | (q[1], q[5]) ops.S2gate(1.0) | (q[3], q[7]) # Interferometer on the signal modes (0-3) ops.Interferometer(U) | (q[0], q[1], q[2], q[3]) ops.BSgate(0.543, 0.123) | (q[2], q[0]) ops.Rgate(0.453) | q[1] ops.MZgate(0.65, -0.54) | (q[2], q[3]) # *Same* interferometer on the idler modes (4-7) ops.Interferometer(U) | (q[4], q[5], q[6], q[7]) ops.BSgate(0.543, 0.123) | (q[6], q[4]) ops.Rgate(0.453) | q[5] ops.MZgate(0.65, -0.54) | (q[6], q[7]) ops.MeasureFock() | q eng = eng results =eng.run(prog, shots=10) # state = results.state # measurements = results.samples return results.samples
8741
import boto3 from logger import logger class States: def __init__(self, boto3_session=None): self.boto3_session = boto3_session or boto3.Session() self.client = self.boto3_session.client('stepfunctions') def fail(self, task_token, error, cause): params = dict(taskToken=task_token, error=error, cause=cause) logger.info('SEND TASK FAILURE %s', logger.json(params)) return self.client.send_task_failure(**params) def heartbeat(self, task_token): params = dict(taskToken=task_token) logger.info('SEND TASK HEARTBEAT %s', logger.json(params)) return self.client.send_task_heartbeat(**params) def succeed(self, task_token, output): params = dict(taskToken=task_token, output=output) logger.info('SEND TASK SUCCESS %s', logger.json(params)) return self.client.send_task_success(**params)
8743
from typing import Union import pandas as pd from kts.core.frame import KTSFrame AnyFrame = Union[pd.DataFrame, KTSFrame]
8782
import pytz from rest_auth.serializers import TokenSerializer from rest_framework.authtoken.models import Token from rest_framework.exceptions import ValidationError from rest_framework.fields import ( CharField, CurrentUserDefault, HiddenField, UUIDField, ChoiceField, ) from rest_framework.serializers import ModelSerializer, Serializer from rest_framework.validators import UniqueValidator from django.contrib.auth.hashers import check_password from open.users.models import User class SimpleUserReadSerializer(ModelSerializer): class Meta: model = User fields = ( "name", "uuid", ) class UserReadSerializer(ModelSerializer): class Meta: model = User fields = ( "name", "uuid", "signed_up_from", "date_joined", "username", "email", "created", "modified", ) class UserTokenSerializer(TokenSerializer): user = UserReadSerializer() class Meta: model = Token fields = ["key", "user"] # TODO - this view and serializer is on hold as you figure out registration (later) class UserCreateSerializer(ModelSerializer): username = CharField(validators=[UniqueValidator(queryset=User.objects.all())]) # need to make email optional ... prob should think through signup form a little email = CharField( validators=[UniqueValidator(queryset=User.objects.all())], required=False ) password = CharField(write_only=True, min_length=8) signed_up_from = CharField( write_only=True, min_length=8, required=False, default="", trim_whitespace=True ) timezone_string = ChoiceField( choices=pytz.all_timezones, required=False, default="US/Eastern" ) class Meta: model = User fields = ["username", "email", "password", "signed_up_from", "timezone_string"] # TODO test - does this work with just username / no email, etc. def create(self, validated_data): username = validated_data.pop("username") password = validated_data.pop("password") is_betterself_user = False if validated_data["signed_up_from"] == "betterself": is_betterself_user = True validated_data["is_betterself_user"] = is_betterself_user user = User.objects.create(username=username, **validated_data) user.set_password(password) user.save() return user class UserDeleteSerializer(Serializer): # most of this is actually redundant, i don't need to have a validation step, but i do this # out of paranoia reasons that someone may delete their account by mistake password = CharField() user = HiddenField(default=CurrentUserDefault()) uuid = UUIDField() def validate(self, data): user = data["user"] validated_password = check_password(data["password"], user.password) if not validated_password: raise ValidationError("Invalid Password Entered") validated_uuid = str(user.uuid) == str(data["uuid"]) if not validated_uuid: raise ValidationError("Invalid UUID", str(user.uuid)) validate_user = user.username != "<EMAIL>" if not validate_user: raise ValidationError( f"This is a protected user and cannot be deleted. {user.username}" ) return data
8784
import torch import torch.nn as nn import torch.nn.functional as F from .discriminator import Discriminator from .identity import Identity class MultiScaleDiscriminator(nn.Module): def __init__(self): super(MultiScaleDiscriminator, self).__init__() self.discriminators = nn.ModuleList( [Discriminator() for _ in range(3)] ) self.pooling = nn.ModuleList( [Identity()] + [nn.AvgPool1d(kernel_size=4, stride=2, padding=2) for _ in range(1, 3)] ) def forward(self, x): ret = list() for pool, disc in zip(self.pooling, self.discriminators): x = pool(x) ret.append(disc(x)) return ret # [(feat, score), (feat, score), (feat, score)]
8791
from typing import Optional, Dict, Any, List, Union from allennlp.common.checks import ConfigurationError class MetricTracker: """ This class tracks a metric during training for the dual purposes of early stopping and for knowing whether the current value is the best so far. It mimics the PyTorch `state_dict` / `load_state_dict` interface, so that it can be checkpointed along with your model and optimizer. Some metrics improve by increasing; others by decreasing. You can provide a `metric_name` that starts with "+" to indicate an increasing metric, or "-" to indicate a decreasing metric. # Parameters metric_name : `Union[str, List[str]]` Specifies the metric or metrics to track. Metric names have to start with "+" for increasing metrics or "-" for decreasing ones. If you specify more than one, it tracks the sum of the increasing metrics metrics minus the sum of the decreasing metrics. patience : `int`, optional (default = `None`) If provided, then `should_stop_early()` returns True if we go this many epochs without seeing a new best value. """ def __init__( self, metric_name: Union[str, List[str]], patience: Optional[int] = None, ) -> None: self._patience = patience self._best_so_far: Optional[float] = None self._epochs_with_no_improvement = 0 self._is_best_so_far = True self._epoch_number = 0 self.best_epoch: Optional[int] = None self.best_epoch_metrics: Dict[str, float] = {} if isinstance(metric_name, str): metric_name = [metric_name] self.tracked_metrics = [] for name in metric_name: if name.startswith("+"): self.tracked_metrics.append((1.0, name[1:])) elif name.startswith("-"): self.tracked_metrics.append((-1.0, name[1:])) else: raise ConfigurationError("metric_name must start with + or -") def clear(self) -> None: """ Clears out the tracked metrics, but keeps the patience """ self._best_so_far = None self._epochs_with_no_improvement = 0 self._is_best_so_far = True self._epoch_number = 0 self.best_epoch = None self.best_epoch_metrics.clear() def state_dict(self) -> Dict[str, Any]: """ A `Trainer` can use this to serialize the state of the metric tracker. """ return { "best_so_far": self._best_so_far, "epochs_with_no_improvement": self._epochs_with_no_improvement, "is_best_so_far": self._is_best_so_far, "epoch_number": self._epoch_number, "best_epoch": self.best_epoch, "best_epoch_metrics": self.best_epoch_metrics, } def load_state_dict(self, state_dict: Dict[str, Any]) -> None: """ A `Trainer` can use this to hydrate a metric tracker from a serialized state. """ self._best_so_far = state_dict["best_so_far"] self._epochs_with_no_improvement = state_dict["epochs_with_no_improvement"] self._is_best_so_far = state_dict["is_best_so_far"] self._epoch_number = state_dict["epoch_number"] self.best_epoch = state_dict["best_epoch"] # Even though we don't promise backwards compatibility for the --recover flag, # it's particularly easy and harmless to provide it here, so we do it. self.best_epoch_metrics = state_dict.get("best_epoch_metrics", {}) def add_metrics(self, metrics: Dict[str, float]) -> None: """ Record a new value of the metric and update the various things that depend on it. """ combined_score = self.combined_score(metrics) new_best = (self._best_so_far is None) or (combined_score > self._best_so_far) if new_best: self._best_so_far = combined_score self._epochs_with_no_improvement = 0 self._is_best_so_far = True self.best_epoch = self._epoch_number else: self._epochs_with_no_improvement += 1 self._is_best_so_far = False self._epoch_number += 1 def is_best_so_far(self) -> bool: """ Returns true if the most recent value of the metric is the best so far. """ return self._is_best_so_far def should_stop_early(self) -> bool: """ Returns true if improvement has stopped for long enough. """ if self._patience is None: return False else: return self._epochs_with_no_improvement >= self._patience def combined_score(self, metrics: Dict[str, float]) -> float: try: return sum( factor * metrics[metric_name] for factor, metric_name in self.tracked_metrics ) except KeyError as e: raise ConfigurationError( f"You configured the trainer to use the {e.args[0]} " "metric for early stopping, but the model did not produce that metric." )
8798
import FWCore.ParameterSet.Config as cms from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer l1tGct = DQMEDAnalyzer('L1TGCT', gctCentralJetsSource = cms.InputTag("gctDigis","cenJets"), gctForwardJetsSource = cms.InputTag("gctDigis","forJets"), gctTauJetsSource = cms.InputTag("gctDigis","tauJets"), gctIsoTauJetsSource = cms.InputTag("gctDigis","fake"), gctEnergySumsSource = cms.InputTag("gctDigis"), gctIsoEmSource = cms.InputTag("gctDigis","isoEm"), gctNonIsoEmSource = cms.InputTag("gctDigis","nonIsoEm"), monitorDir = cms.untracked.string("L1T/L1TGCT"), verbose = cms.untracked.bool(False), stage1_layer2_ = cms.bool(False), DQMStore = cms.untracked.bool(True), disableROOToutput = cms.untracked.bool(True), filterTriggerType = cms.int32(1) )
8804
from setuptools import setup setup( name='modestpy', version='0.1', description='FMI-compliant model identification package', url='https://github.com/sdu-cfei/modest-py', keywords='fmi fmu optimization model identification estimation', author='<NAME>, Center for Energy Informatics SDU', author_email='<EMAIL>, <EMAIL>', license='BSD', platforms=['Windows', 'Linux'], packages=[ 'modestpy', 'modestpy.estim', 'modestpy.estim.ga_parallel', 'modestpy.estim.ga', 'modestpy.estim.ps', 'modestpy.estim.scipy', 'modestpy.fmi', 'modestpy.utilities', 'modestpy.test'], include_package_data=True, install_requires=[ 'fmpy[complete]', 'scipy', 'pandas', 'matplotlib', 'numpy', 'pyDOE', 'modestga' ], classifiers=[ 'Programming Language :: Python :: 3' ] )
8810
import copy import inspect import json import logging import pytest import re import os import shutil import subprocess import time from datetime import datetime, timedelta from configparser import ConfigParser, ExtendedInterpolation from typing import Dict, List, Optional from pyhttpd.certs import CertificateSpec from .md_cert_util import MDCertUtil from pyhttpd.env import HttpdTestSetup, HttpdTestEnv from pyhttpd.result import ExecResult log = logging.getLogger(__name__) class MDTestSetup(HttpdTestSetup): def __init__(self, env: 'HttpdTestEnv'): super().__init__(env=env) def make(self): super().make(add_modules=["proxy_connect", "md"]) if "pebble" == self.env.acme_server: self._make_pebble_conf() def _make_pebble_conf(self): our_dir = os.path.dirname(inspect.getfile(MDTestSetup)) conf_src_dir = os.path.join(our_dir, 'pebble') conf_dest_dir = os.path.join(self.env.gen_dir, 'pebble') if not os.path.exists(conf_dest_dir): os.makedirs(conf_dest_dir) for name in os.listdir(conf_src_dir): src_path = os.path.join(conf_src_dir, name) m = re.match(r'(.+).template', name) if m: self._make_template(src_path, os.path.join(conf_dest_dir, m.group(1))) elif os.path.isfile(src_path): shutil.copy(src_path, os.path.join(conf_dest_dir, name)) class MDTestEnv(HttpdTestEnv): MD_S_UNKNOWN = 0 MD_S_INCOMPLETE = 1 MD_S_COMPLETE = 2 MD_S_EXPIRED = 3 MD_S_ERROR = 4 EMPTY_JOUT = {'status': 0, 'output': []} DOMAIN_SUFFIX = "%d.org" % time.time() LOG_FMT_TIGHT = '%(levelname)s: %(message)s' @classmethod def get_acme_server(cls): return os.environ['ACME'] if 'ACME' in os.environ else "pebble" @classmethod def has_acme_server(cls): return cls.get_acme_server() != 'none' @classmethod def has_acme_eab(cls): return cls.get_acme_server() == 'pebble' @classmethod def is_pebble(cls) -> bool: return cls.get_acme_server() == 'pebble' @classmethod def lacks_ocsp(cls): return cls.is_pebble() def __init__(self, pytestconfig=None, setup_dirs=True): super().__init__(pytestconfig=pytestconfig, local_dir=os.path.dirname(inspect.getfile(MDTestEnv)), interesting_modules=["md"]) self._acme_server = self.get_acme_server() self._acme_tos = "accepted" self._acme_ca_pemfile = os.path.join(self.gen_dir, "apache/acme-ca.pem") if "pebble" == self._acme_server: self._acme_url = "https://localhost:14000/dir" self._acme_eab_url = "https://localhost:14001/dir" elif "boulder" == self._acme_server: self._acme_url = "http://localhost:4001/directory" self._acme_eab_url = None else: raise Exception(f"unknown ACME server type: {self._acme_server}") self._acme_server_down = False self._acme_server_ok = False self._a2md_bin = os.path.join(self.bin_dir, 'a2md') self._default_domain = f"test1.{self.http_tld}" self._store_dir = "./md" self.set_store_dir_default() self.add_cert_specs([ CertificateSpec(domains=[f"expired.{self._http_tld}"], valid_from=timedelta(days=-100), valid_to=timedelta(days=-10)), CertificateSpec(domains=["localhost"], key_type='rsa2048'), ]) self.httpd_error_log.set_ignored_lognos([ #"AH10045", # mod_md complains that there is no vhost for an MDomain "AH10105", # mod_md does not find a vhost with SSL enabled for an MDomain "AH10085" # mod_ssl complains about fallback certificates ]) if self.lacks_ocsp(): self.httpd_error_log.set_ignored_patterns([ re.compile(r'.*certificate with serial \S+ has no OCSP responder URL.*'), ]) if setup_dirs: self._setup = MDTestSetup(env=self) self._setup.make() self.issue_certs() self.clear_store() def set_store_dir_default(self): dirpath = "md" if self.httpd_is_at_least("2.5.0"): dirpath = os.path.join("state", dirpath) self.set_store_dir(dirpath) def set_store_dir(self, dirpath): self._store_dir = os.path.join(self.server_dir, dirpath) if self.acme_url: self.a2md_stdargs([self.a2md_bin, "-a", self.acme_url, "-d", self._store_dir, "-C", self.acme_ca_pemfile, "-j"]) self.a2md_rawargs([self.a2md_bin, "-a", self.acme_url, "-d", self._store_dir, "-C", self.acme_ca_pemfile]) def get_apxs_var(self, name: str) -> str: p = subprocess.run([self._apxs, "-q", name], capture_output=True, text=True) if p.returncode != 0: return "" return p.stdout.strip() @property def acme_server(self): return self._acme_server @property def acme_url(self): return self._acme_url @property def acme_tos(self): return self._acme_tos @property def a2md_bin(self): return self._a2md_bin @property def acme_ca_pemfile(self): return self._acme_ca_pemfile @property def store_dir(self): return self._store_dir def get_request_domain(self, request): return "%s-%s" % (re.sub(r'[_]', '-', request.node.originalname), MDTestEnv.DOMAIN_SUFFIX) def get_method_domain(self, method): return "%s-%s" % (re.sub(r'[_]', '-', method.__name__.lower()), MDTestEnv.DOMAIN_SUFFIX) def get_module_domain(self, module): return "%s-%s" % (re.sub(r'[_]', '-', module.__name__.lower()), MDTestEnv.DOMAIN_SUFFIX) def get_class_domain(self, c): return "%s-%s" % (re.sub(r'[_]', '-', c.__name__.lower()), MDTestEnv.DOMAIN_SUFFIX) # --------- cmd execution --------- _a2md_args = [] _a2md_args_raw = [] def a2md_stdargs(self, args): self._a2md_args = [] + args def a2md_rawargs(self, args): self._a2md_args_raw = [] + args def a2md(self, args, raw=False) -> ExecResult: preargs = self._a2md_args if raw: preargs = self._a2md_args_raw log.debug("running: {0} {1}".format(preargs, args)) return self.run(preargs + args) def check_acme(self): if self._acme_server_ok: return True if self._acme_server_down: pytest.skip(msg="ACME server not running") return False if self.is_live(self.acme_url, timeout=timedelta(seconds=0.5)): self._acme_server_ok = True return True else: self._acme_server_down = True pytest.fail(msg="ACME server not running", pytrace=False) return False def get_ca_pem_file(self, hostname: str) -> Optional[str]: pem_file = super().get_ca_pem_file(hostname) if pem_file is None: pem_file = self.acme_ca_pemfile return pem_file # --------- access local store --------- def purge_store(self): log.debug("purge store dir: %s" % self._store_dir) assert len(self._store_dir) > 1 if os.path.exists(self._store_dir): shutil.rmtree(self._store_dir, ignore_errors=False) os.makedirs(self._store_dir) def clear_store(self): log.debug("clear store dir: %s" % self._store_dir) assert len(self._store_dir) > 1 if not os.path.exists(self._store_dir): os.makedirs(self._store_dir) for dirpath in ["challenges", "tmp", "archive", "domains", "accounts", "staging", "ocsp"]: shutil.rmtree(os.path.join(self._store_dir, dirpath), ignore_errors=True) def clear_ocsp_store(self): assert len(self._store_dir) > 1 dirpath = os.path.join(self._store_dir, "ocsp") log.debug("clear ocsp store dir: %s" % dir) if os.path.exists(dirpath): shutil.rmtree(dirpath, ignore_errors=True) def authz_save(self, name, content): dirpath = os.path.join(self._store_dir, 'staging', name) os.makedirs(dirpath) open(os.path.join(dirpath, 'authz.json'), "w").write(content) def path_store_json(self): return os.path.join(self._store_dir, 'md_store.json') def path_account(self, acct): return os.path.join(self._store_dir, 'accounts', acct, 'account.json') def path_account_key(self, acct): return os.path.join(self._store_dir, 'accounts', acct, 'account.pem') def store_domains(self): return os.path.join(self._store_dir, 'domains') def store_archives(self): return os.path.join(self._store_dir, 'archive') def store_stagings(self): return os.path.join(self._store_dir, 'staging') def store_challenges(self): return os.path.join(self._store_dir, 'challenges') def store_domain_file(self, domain, filename): return os.path.join(self.store_domains(), domain, filename) def store_archived_file(self, domain, version, filename): return os.path.join(self.store_archives(), "%s.%d" % (domain, version), filename) def store_staged_file(self, domain, filename): return os.path.join(self.store_stagings(), domain, filename) def path_fallback_cert(self, domain): return os.path.join(self._store_dir, 'domains', domain, 'fallback-pubcert.pem') def path_job(self, domain): return os.path.join(self._store_dir, 'staging', domain, 'job.json') def replace_store(self, src): shutil.rmtree(self._store_dir, ignore_errors=False) shutil.copytree(src, self._store_dir) def list_accounts(self): return os.listdir(os.path.join(self._store_dir, 'accounts')) def check_md(self, domain, md=None, state=-1, ca=None, protocol=None, agreement=None, contacts=None): domains = None if isinstance(domain, list): domains = domain domain = domains[0] if md: domain = md path = self.store_domain_file(domain, 'md.json') with open(path) as f: md = json.load(f) assert md if domains: assert md['domains'] == domains if state >= 0: assert md['state'] == state if ca: assert md['ca']['url'] == ca if protocol: assert md['ca']['proto'] == protocol if agreement: assert md['ca']['agreement'] == agreement if contacts: assert md['contacts'] == contacts def pkey_fname(self, pkeyspec=None): if pkeyspec and not re.match(r'^rsa( ?\d+)?$', pkeyspec.lower()): return "privkey.{0}.pem".format(pkeyspec) return 'privkey.pem' def cert_fname(self, pkeyspec=None): if pkeyspec and not re.match(r'^rsa( ?\d+)?$', pkeyspec.lower()): return "pubcert.{0}.pem".format(pkeyspec) return 'pubcert.pem' def check_md_complete(self, domain, pkey=None): md = self.get_md_status(domain) assert md assert 'state' in md, "md is unexpected: {0}".format(md) assert md['state'] is MDTestEnv.MD_S_COMPLETE, "unexpected state: {0}".format(md['state']) assert os.path.isfile(self.store_domain_file(domain, self.pkey_fname(pkey))) assert os.path.isfile(self.store_domain_file(domain, self.cert_fname(pkey))) def check_md_credentials(self, domain): if isinstance(domain, list): domains = domain domain = domains[0] else: domains = [domain] # check private key, validate certificate, etc MDCertUtil.validate_privkey(self.store_domain_file(domain, 'privkey.pem')) cert = MDCertUtil(self.store_domain_file(domain, 'pubcert.pem')) cert.validate_cert_matches_priv_key(self.store_domain_file(domain, 'privkey.pem')) # check SANs and CN assert cert.get_cn() == domain # compare lists twice in opposite directions: SAN may not respect ordering san_list = list(cert.get_san_list()) assert len(san_list) == len(domains) assert set(san_list).issubset(domains) assert set(domains).issubset(san_list) # check valid dates interval not_before = cert.get_not_before() not_after = cert.get_not_after() assert not_before < datetime.now(not_before.tzinfo) assert not_after > datetime.now(not_after.tzinfo) # --------- check utilities --------- def check_json_contains(self, actual, expected): # write all expected key:value bindings to a copy of the actual data ... # ... assert it stays unchanged test_json = copy.deepcopy(actual) test_json.update(expected) assert actual == test_json def check_file_access(self, path, exp_mask): actual_mask = os.lstat(path).st_mode & 0o777 assert oct(actual_mask) == oct(exp_mask) def check_dir_empty(self, path): assert os.listdir(path) == [] def get_http_status(self, domain, path, use_https=True): r = self.get_meta(domain, path, use_https, insecure=True) return r.response['status'] def get_cert(self, domain, tls=None, ciphers=None): return MDCertUtil.load_server_cert(self._httpd_addr, self.https_port, domain, tls=tls, ciphers=ciphers) def get_server_cert(self, domain, proto=None, ciphers=None): args = [ "openssl", "s_client", "-status", "-connect", "%s:%s" % (self._httpd_addr, self.https_port), "-CAfile", self.acme_ca_pemfile, "-servername", domain, "-showcerts" ] if proto is not None: args.extend(["-{0}".format(proto)]) if ciphers is not None: args.extend(["-cipher", ciphers]) r = self.run(args) # noinspection PyBroadException try: return MDCertUtil.parse_pem_cert(r.stdout) except: return None def verify_cert_key_lenghts(self, domain, pkeys): for p in pkeys: cert = self.get_server_cert(domain, proto="tls1_2", ciphers=p['ciphers']) if 0 == p['keylen']: assert cert is None else: assert cert, "no cert returned for cipher: {0}".format(p['ciphers']) assert cert.get_key_length() == p['keylen'], "key length, expected {0}, got {1}".format( p['keylen'], cert.get_key_length() ) def get_meta(self, domain, path, use_https=True, insecure=False): schema = "https" if use_https else "http" port = self.https_port if use_https else self.http_port r = self.curl_get(f"{schema}://{domain}:{port}{path}", insecure=insecure) assert r.exit_code == 0 assert r.response assert r.response['header'] return r def get_content(self, domain, path, use_https=True): schema = "https" if use_https else "http" port = self.https_port if use_https else self.http_port r = self.curl_get(f"{schema}://{domain}:{port}{path}") assert r.exit_code == 0 return r.stdout def get_json_content(self, domain, path, use_https=True, insecure=False, debug_log=True): schema = "https" if use_https else "http" port = self.https_port if use_https else self.http_port url = f"{schema}://{domain}:{port}{path}" r = self.curl_get(url, insecure=insecure, debug_log=debug_log) if r.exit_code != 0: log.error(f"curl get on {url} returned {r.exit_code}" f"\nstdout: {r.stdout}" f"\nstderr: {r.stderr}") assert r.exit_code == 0, r.stderr return r.json def get_certificate_status(self, domain) -> Dict: return self.get_json_content(domain, "/.httpd/certificate-status", insecure=True) def get_md_status(self, domain, via_domain=None, use_https=True, debug_log=False) -> Dict: if via_domain is None: via_domain = self._default_domain return self.get_json_content(via_domain, f"/md-status/{domain}", use_https=use_https, debug_log=debug_log) def get_server_status(self, query="/", via_domain=None, use_https=True): if via_domain is None: via_domain = self._default_domain return self.get_content(via_domain, "/server-status%s" % query, use_https=use_https) def await_completion(self, names, must_renew=False, restart=True, timeout=60, via_domain=None, use_https=True): try_until = time.time() + timeout renewals = {} names = names.copy() while len(names) > 0: if time.time() >= try_until: return False for name in names: mds = self.get_md_status(name, via_domain=via_domain, use_https=use_https) if mds is None: log.debug("not managed by md: %s" % name) return False if 'renewal' in mds: renewal = mds['renewal'] renewals[name] = True if 'finished' in renewal and renewal['finished'] is True: if (not must_renew) or (name in renewals): log.debug(f"domain cert was renewed: {name}") names.remove(name) if len(names) != 0: time.sleep(0.1) if restart: time.sleep(0.1) return self.apache_restart() == 0 return True def is_renewing(self, name): stat = self.get_certificate_status(name) return 'renewal' in stat def await_renewal(self, names, timeout=60): try_until = time.time() + timeout while len(names) > 0: if time.time() >= try_until: return False for name in names: md = self.get_md_status(name) if md is None: log.debug("not managed by md: %s" % name) return False if 'renewal' in md: names.remove(name) if len(names) != 0: time.sleep(0.1) return True def await_error(self, domain, timeout=60, via_domain=None, use_https=True, errors=1): try_until = time.time() + timeout while True: if time.time() >= try_until: return False md = self.get_md_status(domain, via_domain=via_domain, use_https=use_https) if md: if 'state' in md and md['state'] == MDTestEnv.MD_S_ERROR: return md if 'renewal' in md and 'errors' in md['renewal'] \ and md['renewal']['errors'] >= errors: return md time.sleep(0.1) return None def await_file(self, fpath, timeout=60): try_until = time.time() + timeout while True: if time.time() >= try_until: return False if os.path.isfile(fpath): return True time.sleep(0.1) def check_file_permissions(self, domain): md = self.a2md(["list", domain]).json['output'][0] assert md acct = md['ca']['account'] assert acct self.check_file_access(self.path_store_json(), 0o600) # domains self.check_file_access(self.store_domains(), 0o700) self.check_file_access(os.path.join(self.store_domains(), domain), 0o700) self.check_file_access(self.store_domain_file(domain, 'privkey.pem'), 0o600) self.check_file_access(self.store_domain_file(domain, 'pubcert.pem'), 0o600) self.check_file_access(self.store_domain_file(domain, 'md.json'), 0o600) # archive self.check_file_access(self.store_archived_file(domain, 1, 'md.json'), 0o600) # accounts self.check_file_access(os.path.join(self._store_dir, 'accounts'), 0o755) self.check_file_access(os.path.join(self._store_dir, 'accounts', acct), 0o755) self.check_file_access(self.path_account(acct), 0o644) self.check_file_access(self.path_account_key(acct), 0o644) # staging self.check_file_access(self.store_stagings(), 0o755) def get_ocsp_status(self, domain, proto=None, cipher=None, ca_file=None): stat = {} args = [ "openssl", "s_client", "-status", "-connect", "%s:%s" % (self._httpd_addr, self.https_port), "-CAfile", ca_file if ca_file else self.acme_ca_pemfile, "-servername", domain, "-showcerts" ] if proto is not None: args.extend(["-{0}".format(proto)]) if cipher is not None: args.extend(["-cipher", cipher]) r = self.run(args, debug_log=False) ocsp_regex = re.compile(r'OCSP response: +([^=\n]+)\n') matches = ocsp_regex.finditer(r.stdout) for m in matches: if m.group(1) != "": stat['ocsp'] = m.group(1) if 'ocsp' not in stat: ocsp_regex = re.compile(r'OCSP Response Status:\s*(.+)') matches = ocsp_regex.finditer(r.stdout) for m in matches: if m.group(1) != "": stat['ocsp'] = m.group(1) verify_regex = re.compile(r'Verify return code:\s*(.+)') matches = verify_regex.finditer(r.stdout) for m in matches: if m.group(1) != "": stat['verify'] = m.group(1) return stat def await_ocsp_status(self, domain, timeout=10, ca_file=None): try_until = time.time() + timeout while True: if time.time() >= try_until: break stat = self.get_ocsp_status(domain, ca_file=ca_file) if 'ocsp' in stat and stat['ocsp'] != "no response sent": return stat time.sleep(0.1) raise TimeoutError(f"ocsp respopnse not available: {domain}") def create_self_signed_cert(self, name_list, valid_days, serial=1000, path=None): dirpath = path if not path: dirpath = os.path.join(self.store_domains(), name_list[0]) return MDCertUtil.create_self_signed_cert(dirpath, name_list, valid_days, serial)
8869
from mock import patch from django.contrib.contenttypes.models import ContentType from django.contrib.sites.models import Site from django.contrib.auth import get_user_model from django.core import exceptions from django_dynamic_fixture import G from django_webtest import WebTest from icekit.models import Layout from icekit.page_types.layout_page.models import LayoutPage from icekit.utils import fluent_contents from . import models User = get_user_model() class MapItemTestCase(WebTest): def setUp(self): self.embed_code = ''' <iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d3312.0476344648832!2d151.19845715159963!3d-33.88842702741586!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x6b12b1d842ee9aa9%3A0xb0a19ac433ef0be8!2sThe+Interaction+Consortium!5e0!3m2!1sen!2sau!4v1496201264670" width="600" height="450" frameborder="0" style="border:0" allowfullscreen ></iframe> ''' self.cleaned_embed_code = '<iframe allowfullscreen="" frameborder="0" src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d3312.0476344648832!2d151.19845715159963!3d-33.88842702741586!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x6b12b1d842ee9aa9%3A0xb0a19ac433ef0be8!2sThe+Interaction+Consortium!5e0!3m2!1sen!2sau!4v1496201264670" style="border: 0;"></iframe>' self.layout_1 = G( Layout, template_name='icekit/layouts/default.html', ) self.layout_1.content_types.add( ContentType.objects.get_for_model(LayoutPage)) self.layout_1.save() self.staff_1 = User.objects.create( email='<EMAIL>', is_staff=True, is_active=True, is_superuser=True, ) self.page_1 = LayoutPage() self.page_1.title = 'Test Page' self.page_1.slug = 'test-page' self.page_1.parent_site = Site.objects.first() self.page_1.layout = self.layout_1 self.page_1.author = self.staff_1 self.page_1.status = LayoutPage.PUBLISHED self.page_1.save() self.map_1 = fluent_contents.create_content_instance( models.MapItem, self.page_1, _embed_code=self.embed_code, ) self.map_item = models.MapItem( parent_type=ContentType.objects.get_for_model(type(self.page_1)), parent_id=self.page_1.id, placeholder=self.page_1.get_placeholder_by_slot('main')[0], _embed_code=self.embed_code, ) self.page_1.publish() def test_map_renders(self): response = self.app.get(self.page_1.get_published().get_absolute_url()) response.mustcontain(self.cleaned_embed_code) def test_cleaned_embed_code(self): self.assertEqual(self.map_1._cleaned_embed_code.strip(), self.cleaned_embed_code)
8881
import GeneralStats as gs import numpy as np from scipy.stats import skew from scipy.stats import kurtosistest import pandas as pd if __name__ == "__main__": gen=gs.GeneralStats() data=np.array([[1, 1, 2, 2, 3],[2, 2, 3, 3, 5],[1, 4, 3, 3, 3],[2, 4, 5, 5, 3]]) data1=np.array([1,2,3,4,5]) print("data = ", data) print("data1 = ", data1) res=gen.average(data,rowvar=True) res1=gen.average(data1,rowvar=True) print("data平均值 = ",res) print("data1平均值 = ",res1) data=np.array([[1, 1, 2, 2, 3],[2, 2, 3, 3, 5],[1, 4, 3, 3, 3],[2, 4, 5, 5, 3]]) data1=np.array([1,2,3,4,5]) res=gen.median(data,rowvar=True) res1=gen.median(data1,rowvar=True) print("data中位值 = ",res) print("data1中位值 = ",res1) data=np.array([[1, 1, 2, 2, 3],[2, 2, 3, 3, 5],[1, 4, 3, 3, 3],[2, 4, 5, 5, 3]]) data1=np.array([1,2,3,4,5]) res=gen.mode(data,rowvar=True) res1=gen.mode(data1,rowvar=True) print("data众数值 = ",res) print("data1众数值 = ",res1) data=np.array([[1, 1, 2, 2, 3],[2, 2, 3, 3, 5],[1, 4, 3, 3, 3],[2, 4, 5, 5, 3]]) data1=np.array([1,2,3,4,5]) res=gen.quantile(data,0.5,rowvar=True,interpolation='lower') #若元素个数为偶数,则模式为'midpoint'的0.5分位数值等价于中位数 res1=gen.quantile(data1,0.5,rowvar=True,interpolation='lower') #若元素个数为奇数,则模式为'lower'的0.5分位数值等价于中位数 print("data 0.5分位数值 = ",res) print("data1 0.5分位数值 = ",res1) res=gen.quantile(data,0.25,rowvar=True,interpolation='lower') res1=gen.quantile(data1,0.25,rowvar=True,interpolation='lower') print("data 0.25分位数值s = ",res) print("data1 0.25分位数值 = ",res1) res=gen.quantile(data,0.75,rowvar=True,interpolation='lower') res1=gen.quantile(data1,0.75,rowvar=True,interpolation='lower') print("data 0.75分位数值 = ",res) print("data1 0.75分位数值 = ",res1) res=gen.quantile(data,1.0,rowvar=True,interpolation='lower') res1=gen.quantile(data1,1.0,rowvar=True,interpolation='lower') print("data 1.0分位数值 = ",res) print("data1 1.0分位数值 = ",res1) data=np.array([[1, 1, 2, 2, 3],[2, 2, 3, 3, 5],[1, 4, 3, 3, 3],[2, 4, 5, 5, 3]]) data1=np.array([1,2,3,4,5]) res=gen.range(data,rowvar=True) res1=gen.range(data1,rowvar=True) print("data极差 = ",res) print("data1极差 = ",res1) data=np.array([[1, 1, 2, 2, 3],[2, 2, 3, 3, 5],[1, 4, 3, 3, 3],[2, 4, 5, 5, 3]]) data1=np.array([1,2,3,4,5]) res=gen.variance(data,rowvar=True) res1=gen.variance(data1,rowvar=True) print("data方差 = ",res) print("data1方差 = ",res1) data=np.array([[1, 1, 2, 2, 3],[2, 2, 3, 3, 5],[1, 4, 3, 3, 3],[2, 4, 5, 5, 3]]) data1=np.array([1,2,3,4,5]) res=gen.standard_dev(data,rowvar=True) res1=gen.standard_dev(data1,rowvar=True) print("data标准差 = ",res) print("data1标准差 = ",res1) data=np.array([[1, 1, 2, 2, 3],[2, 2, 3, 3, 5],[1, 4, 3, 3, 3],[2, 4, 5, 5, 3]]) data1=np.array([1,2,3,4,5]) res=gen.skewness(data,rowvar=True) res1=gen.skewness(data1,rowvar=True) print("data偏度 = ",res) print("data1偏度 = ",res1) res=np.array([skew(data[0]),skew(data[1]),skew(data[2]),skew(data[3])]) print("使用scipy skew方法验证的data偏度 = ",res) res1=np.array(skew(data1)) print("使用scipy skew方法验证的data1偏度 = ",res1) data=np.array([[1, 1, 2, 2, 3],[2, 2, 3, 3, 5],[1, 4, 3, 3, 3],[2, 4, 5, 5, 3]]) data1=np.array([53, 61, 49, 66, 78, 47]) res=gen.kurtosis(data,rowvar=True) res1=gen.kurtosis(data1,rowvar=True) print("data峰度 = ",res) print("data1峰度 = ",res1) data_0=pd.Series(data[0]) data_1=pd.Series(data[1]) data_2=pd.Series(data[2]) data_3=pd.Series(data[3]) print("使用pandas kurt方法验证的data峰度 = ",[data_0.kurt(),data_1.kurt(),data_2.kurt(),data_3.kurt()]) data1=pd.Series(data1) print("使用pandas kurt方法验证的data1峰度 = ",data1.kurt())
8884
import os import re from typing import Tuple from pfio._typing import Union from pfio.container import Container from pfio.io import IO, create_fs_handler class FileSystemDriverList(object): def __init__(self): # TODO(tianqi): dynamically create this list # as well as the patterns upon loading the pfio module. self.scheme_list = ["hdfs", "posix"] self.posix_pattern = re.compile(r"file:\/\/(?P<path>.+)") self.hdfs_pattern = re.compile(r"(?P<path>hdfs:\/\/.+)") self.pattern_list = {"hdfs": self.hdfs_pattern, "posix": self.posix_pattern, } def _determine_fs_type(self, path: str) -> Tuple[str, str, bool]: if None is not path: for fs_type, pattern in self.pattern_list.items(): ret = pattern.match(path) if ret: return (fs_type, ret.groupdict()["path"], True) return ("posix", path, False) def format_path(self, fs: IO, path: str) -> Tuple[str, bool]: fs_type = fs.type if fs_type in self.pattern_list.keys(): pattern = self.pattern_list[fs_type] ret = pattern.match(path) if ret: return (ret.groupdict()["path"], True) else: return (path, False) else: return (path, False) def get_handler_from_path(self, path: str) -> Tuple[IO, str, bool]: (fs_type, actual_path, is_URI) = self._determine_fs_type(path) handler = create_fs_handler(fs_type) return (handler, actual_path, is_URI) def get_handler_for_root(self, uri_or_handler_name: str) -> Tuple[IO, str, bool]: if uri_or_handler_name in self.pattern_list.keys(): return (create_fs_handler(uri_or_handler_name), "", False) else: (new_handler, actual_path, is_URI) = self.get_handler_from_path( uri_or_handler_name) new_handler.root = actual_path return (new_handler, actual_path, is_URI) def is_supported_scheme(self, scheme: str) -> bool: return scheme in self.scheme_list class DefaultContext(object): def __init__(self): self._fs_handler_list = FileSystemDriverList() self._root = "" self._default_context = \ self._fs_handler_list.get_handler_for_root("posix")[0] def set_root(self, uri_or_handler: Union[str, IO]) -> None: # TODO(check) if root is directory if isinstance(uri_or_handler, IO): handler = uri_or_handler self._root = "" else: (handler, self._root, is_URI) = \ self.get_handler_by_name(uri_or_handler) assert handler is not None if self._root: if not handler.isdir(self._root): raise RuntimeError("the URI does not point to a directory") self._default_context = handler def get_handler(self, path: str = "") -> Tuple[IO, str]: (handler, formatted_path, is_URI) = self._fs_handler_list.get_handler_from_path(path) if not is_URI: actual_path = os.path.join(self._root, formatted_path) return (self._default_context, actual_path) else: return (handler, formatted_path) def open_as_container(self, path: str) -> Container: (handler, formatted_path, is_URI) = self._fs_handler_list.get_handler_from_path(path) if not is_URI: actual_path = os.path.join(self._root, formatted_path) handler = self._default_context else: actual_path = formatted_path self._root = "" return handler.open_as_container(actual_path) def get_handler_by_name(self, path: str) -> Tuple[IO, str, bool]: return self._fs_handler_list.get_handler_for_root(path) def get_root_dir(self) -> str: return self._root def is_supported_scheme(self, scheme: str) -> bool: return self._fs_handler_list.is_supported_scheme(scheme)
8890
from django.contrib.contenttypes.models import ContentType from django.test import TestCase from django.test.client import Client from model_mommy import mommy from devices.models import Device from users.models import Lageruser class HistoryTests(TestCase): def setUp(self): self.client = Client() self.admin = Lageruser.objects.create_superuser('test', '<EMAIL>', "test") self.client.login(username="test", password="<PASSWORD>") def test_global_view(self): response = self.client.get('/history/global/') self.assertEqual(response.status_code, 200) def test_list_view(self): content_type = ContentType.objects.get(model='device') device = mommy.make(Device) response = self.client.get('/history/%i/%i/' % (content_type.pk, device.pk)) self.assertEqual(response.status_code, 200) def test_detail_view(self): device = mommy.make(Device) response = self.client.post('/devices/%i/edit/' % device.pk, data={ 'name': 'test', 'creator': self.admin.pk, }) self.assertEqual(response.status_code, 302) response = self.client.get('/history/version/1/') self.assertEqual(response.status_code, 200)
8901
from backend.common.models.mytba import MyTBAModel class Favorite(MyTBAModel): """ In order to make strongly consistent DB requests, instances of this class should be created with a parent that is the associated Account key. """ def __init__(self, *args, **kwargs): super(Favorite, self).__init__(*args, **kwargs)
8935
from ad9833 import AD9833 # DUMMY classes for testing without board class SBI(object): def __init__(self): pass def send(self, data): print(data) class Pin(object): def __init__(self): pass def low(self): print(" 0") def high(self): print(" 1") # Code SBI1 = SBI() PIN3 = Pin() wave = AD9833(SBI1, PIN3) wave.set_freq(14500) wave.set_type(2) wave.send() print(wave.shape_type)
8957
from distdeepq import models # noqa from distdeepq.build_graph import build_act, build_train # noqa from distdeepq.simple import learn, load, make_session # noqa from distdeepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer # noqa from distdeepq.static import * from distdeepq.plots import PlotMachine
8973
from argparse import ArgumentParser import os import numpy as np from joblib import dump from mldftdat.workflow_utils import SAVE_ROOT from mldftdat.models.gp import * from mldftdat.data import load_descriptors, filter_descriptors import yaml def parse_settings(args): fname = args.datasets_list[0] if args.suffix is not None: fname = fname + '_' + args.suffix fname = os.path.join(SAVE_ROOT, 'DATASETS', args.functional, args.basis, args.version, fname) print(fname) with open(os.path.join(fname, 'settings.yaml'), 'r') as f: d = yaml.load(f, Loader=yaml.Loader) args.gg_a0 = d.get('a0') args.gg_amin = d.get('amin') args.gg_facmul = d.get('fac_mul') def parse_dataset(args, i, val=False): if val: fname = args.validation_set[2*i] n = int(args.validation_set[2*i+1]) else: fname = args.datasets_list[2*i] n = int(args.datasets_list[2*i+1]) if args.suffix is not None: fname = fname + '_' + args.suffix fname = os.path.join(SAVE_ROOT, 'DATASETS', args.functional, args.basis, args.version, fname) print(fname) X, y, rho_data = load_descriptors(fname) if val: # offset in case repeat datasets are used X, y, rho_data = X[n//2+1:,:], y[n//2+1:], rho_data[:,n//2+1:] X, y, rho, rho_data = filter_descriptors(X, y, rho_data, tol=args.density_cutoff) print(X.shape, n) if args.randomize: inds = np.arange(X.shape[0]) np.random.shuffle(inds) X = X[inds,:] y = y[inds] rho = rho[inds] rho_data = rho_data[:,inds] return X[::n,:], y[::n], rho[::n], rho_data[:,::n] def parse_list(lststr, T=int): return [T(substr) for substr in lststr.split(',')] def main(): parser = ArgumentParser(description='Trains a GP exchange model') parser.add_argument('save_file', type=str) parser.add_argument('feature_file', type=str, help='serialized FeatureList object in yaml format') parser.add_argument('datasets_list', nargs='+', help='pairs of dataset names and inverse sampling densities') parser.add_argument('basis', metavar='basis', type=str, help='basis set code') parser.add_argument('--functional', metavar='functional', type=str, default=None, help='exchange-correlation functional, HF for Hartree-Fock') parser.add_argument('-r', '--randomize', action='store_true') parser.add_argument('-c', '--density-cutoff', type=float, default=1e-4) #parser.add_argument('-m', '--model-class', type=str, default=None) #parser.add_argument('-k', '--kernel', help='kernel initialization strategy', type=str, default=None) parser.add_argument('-s', '--seed', help='random seed', default=0, type=int) parser.add_argument('-vs', '--validation-set', nargs='+') parser.add_argument('-d', '--delete-k', action='store_true', help='Delete L (LL^T=K the kernel matrix) to save disk space. Need to refit when reloading to calculate covariance.') parser.add_argument('--heg', action='store_true', help='HEG exact constraint') parser.add_argument('--tail', action='store_true', help='atomic tail exact constraint') parser.add_argument('-o', '--desc-order', default=None, help='comma-separated list of descriptor order with no spaces. must start with 0,1.') parser.add_argument('-l', '--length-scale', default=None, help='comma-separated list initial length-scale guesses') parser.add_argument('--length-scale-mul', type=float, default=1.0, help='Used for automatic length-scale initial guess') parser.add_argument('-a', '--agpr', action='store_true', help='Whether to use Additive RBF. If False, use RBF') parser.add_argument('-as', '--agpr-scale', default=None) parser.add_argument('-ao', '--agpr-order', default=2, type=int) parser.add_argument('-an', '--agpr-nsingle', default=1, type=int) parser.add_argument('-x', '--xed-y-code', default='CHACHIYO', type=str) parser.add_argument('-on', '--optimize-noise', action='store_true', help='Whether to optimzie exponent of density noise.') parser.add_argument('-v', '--version', default='c', type=str, help='version of descriptor set. Default c') parser.add_argument('--suffix', default=None, type=str, help='customize data directories with this suffix') args = parser.parse_args() parse_settings(args) np.random.seed(args.seed) feature_list = FeatureList.load(args.feature_file) if args.length_scale is not None: args.length_scale = parse_list(args.length_scale, T=float) if args.agpr_scale is not None: args.agpr_scale = parse_list(args.agpr_scale, T=float) if args.desc_order is not None: args.desc_order = parse_list(args.desc_order) assert len(args.datasets_list) % 2 == 0, 'Need pairs of entries for datasets list.' assert len(args.datasets_list) != 0, 'Need training data' nd = len(args.datasets_list) // 2 if args.validation_set is None: nv = 0 else: assert len(args.validation_set) % 2 == 0, 'Need pairs of entries for datasets list.' nv = len(args.validation_set) // 2 X, y, rho, rho_data = parse_dataset(args, 0) for i in range(1, nd): Xn, yn, rhon, rho_datan, = parse_dataset(args, i) X = np.append(X, Xn, axis=0) y = np.append(y, yn, axis=0) rho = np.append(rho, rhon, axis=0) rho_data = np.append(rho_data, rho_datan, axis=1) if nv != 0: Xv, yv, rhov, rho_datav = parse_dataset(args, 0, val=True) for i in range(1, nv): Xn, yn, rhon, rho_datan, = parse_dataset(args, i, val=True) Xv = np.append(Xv, Xn, axis=0) yv = np.append(yv, yn, axis=0) rhov = np.append(rhov, rhon, axis=0) rho_datav = np.append(rho_datav, rho_datan, axis=1) gpcls = DFTGPR gpr = gpcls.from_settings(X, feature_list, args) gpr.fit(X, y, add_heg=args.heg, add_tail=args.tail) #if args.heg: # gpr.add_heg_limit() print('FINAL KERNEL', gpr.gp.kernel_) if nv != 0: pred = gpr.xed_to_y(gpr.predict(Xv), Xv) abserr = np.abs(pred - gpr.xed_to_y(yv, Xv)) print('MAE VAL SET', np.mean(abserr)) # Always attach the arguments to the object to keep track of settings. gpr.args = args if args.delete_k: gpr.L_ = None dump(gpr, args.save_file) if __name__ == '__main__': main()
8980
from __future__ import print_function # Python 2/3 compatibility from gremlin_python import statics from gremlin_python.structure.graph import Graph from gremlin_python.process.graph_traversal import __ from gremlin_python.process.strategies import * from gremlin_python.driver.driver_remote_connection import DriverRemoteConnection #initializing the graph object graph = Graph() #creating connection with the remote remoteConn = DriverRemoteConnection('wss://<endpoint>:8182/gremlin','g') g = graph.traversal().withRemote(DriverRemoteConnection('wss://<endpoint>:8182/gremlin','g')) print('Connection created.') #clearing out all the vertices to start fresh g.V().drop().iterate() print('Deleting everything and starting clean.') #Adding some vertices (nodes) gerald = g.addV('person').property('age','81').property('first_name','Gerald').property('stays_in','Portland').next() edith = g.addV('person').property('age','78').property('first_name','Edith').property('stays_in','Portland').next() peter = g.addV('person').property('age','52').property('first_name','Shane').property('stays_in','Seattle').next() mary = g.addV('person').property('age','50').property('first_name','Mary').property('stays_in','Seattle').next() betty = g.addV('person').property('age','19').property('first_name','Betty').property('stays_in','Chicago').next() print('Added some vertices (nodes).') #Adding relationships (edges) edge = g.V().has('first_name', 'Gerald').addE('husband_of').to(g.V().has('first_name', 'Edith')).property('married_since','1947').next() edge = g.V().has('first_name', 'Edith').addE('wife_of').to(g.V().has('first_name', 'Gerald')).property('married_since','1947').next() edge = g.V().has('first_name', 'Shane').addE('son_of').to(g.V().has('first_name', 'Gerald')).property('known_since','1964').next() edge = g.V().has('first_name', 'Gerald').addE('father_of').to(g.V().has('first_name', 'Shane')).property('known_since','1964').next() edge = g.V().has('first_name', 'Shane').addE('son_of').to(g.V().has('first_name', 'Edith')).property('known_since','1964').next() edge = g.V().has('first_name', 'Edith').addE('mother_of').to(g.V().has('first_name', 'Shane')).property('known_since','1964').next() edge = g.V().has('first_name', 'Shane').addE('husband_of').to(g.V().has('first_name', 'Mary')).property('known_since','1989').next() edge = g.V().has('first_name', 'Mary').addE('wife_of').to(g.V().has('first_name', 'Shane')).property('known_since','1989').next() edge = g.V().has('first_name', 'Shane').addE('father_of').to(g.V().has('first_name', 'Betty')).property('known_since','1991').next() edge = g.V().has('first_name', 'Betty').addE('daughter_of').to(g.V().has('first_name', 'Shane')).property('known_since','1991').next() edge = g.V().has('first_name', 'Mary').addE('mother_of').to(g.V().has('first_name', 'Betty')).property('known_since','1991').next() edge = g.V().has('first_name', 'Betty').addE('daughter_of').to(g.V().has('first_name', 'Mary')).property('known_since','1991').next() #print out all the node's first names print('\n Printing first name from all nodes:') print(g.V().first_name.toList()) #print out all the properties of person whose's first name is Shane print('\n Printing all properties of person whose first name is Shane:') print(g.V().has('person','first_name','Shane').valueMap().next()) #traversing the graph starting with Betty to then Shane to then Edith print('\n Finding Betty and then looking up her parents:') print(g.V().has('first_name', 'Betty').out('daughter_of').out('son_of').valueMap().toList()) #Print out all the nodes print('\n Printing out all the nodes:') people = g.V().valueMap().toList() print(people) #Print out all the connections (edges) print('\n Print out all the connections (edges):') connections = g.E().valueMap().toList() print(connections) #Closing the connection remoteConn.close() print('Connection closed!')
9012
class Solution: def findDuplicate(self, nums: List[int]) -> int: p1, p2 = nums[0], nums[nums[0]] while nums[p1] != nums[p2]: p1 = nums[p1] p2 = nums[nums[p2]] p2 = 0 while nums[p1] != nums[p2]: p1 = nums[p1] p2 = nums[p2] return nums[p1]
9015
import json from threading import Semaphore import ee from flask import request from google.auth import crypt from google.oauth2 import service_account from google.oauth2.credentials import Credentials service_account_credentials = None import logging export_semaphore = Semaphore(5) get_info_semaphore = Semaphore(2) def init_service_account_credentials(args): global service_account_credentials with open(args['gee_key_path'], 'r') as file_: key_data = file_.read() signer = crypt.RSASigner.from_string(key_data) service_account_credentials = service_account.Credentials( signer=signer, service_account_email=args['gee_email'], token_uri=ee.oauth.TOKEN_URI, scopes=ee.oauth.SCOPES + ['https://www.googleapis.com/auth/drive'] ) def init_ee(): credentials = service_account_credentials if 'sepal-user' in request.headers: user = json.loads(request.headers['sepal-user']) googleTokens = user.get('googleTokens', None) if googleTokens: credentials = Credentials(googleTokens['accessToken']) ee.InitializeThread(credentials) def to_asset_id(asset_path): asset_roots = ee.data.getAssetRoots() if not asset_roots: raise Exception('User has no GEE asset roots') return asset_roots[0]['id'] + '/' + asset_path def delete_asset_collection(asset_id): logging.info('Recursively deleting ' + asset_id) if ee.data.getInfo(asset_id): images = ee.data.getList({ 'id': asset_id, 'fields': 'id' }) for image in images: ee.data.deleteAsset(image['id']) logging.info('Deleted ' + image['id']) ee.data.deleteAsset(asset_id) logging.info('Deleted ' + asset_id) def create_asset_image_collection(asset_id): delete_asset_collection(asset_id) ee.data.create_assets( asset_ids=[asset_id], asset_type=ee.data.ASSET_TYPE_IMAGE_COLL, mk_parents=True ) def create_asset_folder(asset_id): ee.data.create_assets( asset_ids=[asset_id], asset_type=ee.data.ASSET_TYPE_FOLDER, mk_parents=True ) def get_info(ee_object): try: get_info_semaphore.acquire() return ee_object.getInfo() finally: get_info_semaphore.release()
9044
from __future__ import absolute_import import torch from torch.nn import functional class FPN(torch.nn.Module): def __init__(self, out_channels): super(FPN, self).__init__() self.out_channels = out_channels self.P5 = torch.nn.MaxPool2d(kernel_size=1, stride=2, padding=0) self.P4_conv1 = torch.nn.Conv2d(512, self.out_channels, kernel_size=1, stride=1, padding=0) self.P4_conv2 = torch.nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1) self.P3_conv1 = torch.nn.Conv2d(512, self.out_channels, kernel_size=1, stride=1, padding=0) self.P3_conv2 = torch.nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1) self.P2_conv1 = torch.nn.Conv2d(256, self.out_channels, kernel_size=1, stride=1, padding=0) self.P2_conv2 = torch.nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1) normal_init(self.P4_conv1, 0, 0.01) normal_init(self.P4_conv2, 0, 0.01) normal_init(self.P3_conv1, 0, 0.01) normal_init(self.P3_conv2, 0, 0.01) normal_init(self.P2_conv1, 0, 0.01) normal_init(self.P2_conv2, 0, 0.01) def forward(self, C2, C3, C4): p4_out = self.P4_conv1(C4) p5_out = self.P5(p4_out) p3_out = self._upsample_add(p4_out, self.P3_conv1(C3)) p2_out = self._upsample_add(p3_out, self.P2_conv1(C2)) p4_out = self.P4_conv2(p4_out) p3_out = self.P3_conv2(p3_out) p2_out = self.P2_conv2(p2_out) return p2_out, p3_out, p4_out, p5_out def _upsample_add(self, x, y): '''Upsample and add two feature maps. Args: x: (Variable) top feature map to be upsampled. y: (Variable) lateral feature map. Returns: (Variable) added feature map. Note in PyTorch, when input size is odd, the upsampled feature map with `F.upsample(..., scale_factor=2, mode='nearest')` maybe not equal to the lateral feature map size. e.g. original input size: [N,_,15,15] -> conv2d feature map size: [N,_,8,8] -> upsampled feature map size: [N,_,16,16] So we choose bilinear upsample which supports arbitrary output sizes. ''' _,_,H,W = y.size() return functional.interpolate(x, size=(H,W), mode='bilinear') + y def normal_init(m, mean, stddev, truncated=False): """ weight initalizer: truncated normal and random normal. """ # x is a parameter if truncated: m.weight.data.normal_().fmod_(2).mul_(stddev).add_(mean) # not a perfect approximation else: m.weight.data.normal_(mean, stddev) m.bias.data.zero_()
9046
from distutils.core import setup setup( name="arweave-python-client", packages = ['arweave'], # this must be the same as the name above version="1.0.15.dev0", description="Client interface for sending transactions on the Arweave permaweb", author="<NAME>", author_email="<EMAIL>", url="https://github.com/MikeHibbert/arweave-python-client", download_url="https://github.com/MikeHibbert/arweave-python-client", keywords=['arweave', 'crypto'], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=[ 'arrow', 'python-jose', 'pynacl', 'pycryptodome', 'cryptography', 'requests', 'psutil' ], )
9061
from PHPUnitKit.tests import unittest from PHPUnitKit.plugin import is_valid_php_version_file_version class TestIsValidPhpVersionFileVersion(unittest.TestCase): def test_invalid_values(self): self.assertFalse(is_valid_php_version_file_version('')) self.assertFalse(is_valid_php_version_file_version(' ')) self.assertFalse(is_valid_php_version_file_version('foobar')) self.assertFalse(is_valid_php_version_file_version('masterfoo')) self.assertFalse(is_valid_php_version_file_version('.')) self.assertFalse(is_valid_php_version_file_version('x')) self.assertFalse(is_valid_php_version_file_version('x.x')) self.assertFalse(is_valid_php_version_file_version('x.x.x')) self.assertFalse(is_valid_php_version_file_version('x')) self.assertFalse(is_valid_php_version_file_version('snapshot')) def test_master_branch_version(self): self.assertTrue(is_valid_php_version_file_version('master')) def test_specific_semver_versions(self): self.assertTrue(is_valid_php_version_file_version('5.0.0')) self.assertTrue(is_valid_php_version_file_version('5.0.1')) self.assertTrue(is_valid_php_version_file_version('5.0.7')) self.assertTrue(is_valid_php_version_file_version('5.0.30')) self.assertTrue(is_valid_php_version_file_version('5.0.32')) self.assertTrue(is_valid_php_version_file_version('5.1.0')) self.assertTrue(is_valid_php_version_file_version('5.1.1')) self.assertTrue(is_valid_php_version_file_version('5.1.3')) self.assertTrue(is_valid_php_version_file_version('5.1.27')) self.assertTrue(is_valid_php_version_file_version('7.0.0')) self.assertTrue(is_valid_php_version_file_version('7.1.19')) def test_minor_versions(self): self.assertTrue(is_valid_php_version_file_version('5.6')) self.assertTrue(is_valid_php_version_file_version('7.1')) self.assertTrue(is_valid_php_version_file_version('7.2')) def test_major_dot_x_versions(self): self.assertTrue(is_valid_php_version_file_version('5.x')) self.assertTrue(is_valid_php_version_file_version('6.x')) self.assertTrue(is_valid_php_version_file_version('7.x')) self.assertTrue(is_valid_php_version_file_version('8.x')) def test_major_dot_minor_dot_x_versions(self): self.assertTrue(is_valid_php_version_file_version('7.0.x')) self.assertTrue(is_valid_php_version_file_version('7.1.x')) self.assertTrue(is_valid_php_version_file_version('7.2.x')) def test_snapshot_versions(self): self.assertTrue(is_valid_php_version_file_version('5.4snapshot')) self.assertTrue(is_valid_php_version_file_version('5.5snapshot')) self.assertTrue(is_valid_php_version_file_version('5.6snapshot')) self.assertTrue(is_valid_php_version_file_version('7.0snapshot')) self.assertTrue(is_valid_php_version_file_version('7.1snapshot')) self.assertTrue(is_valid_php_version_file_version('7.0.0snapshot')) self.assertTrue(is_valid_php_version_file_version('7.1.0snapshot')) self.assertTrue(is_valid_php_version_file_version('7.1.1snapshot'))
9063
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cmsplugin_cascade', '0006_bootstrapgallerypluginmodel'), ] operations = [ ]
9064
Credits = [ ('Bootstrap', 'https://getbootstrap.com', 'The Bootstrap team', 'MIT'), ('Bottle', 'http://bottlepy.org', '<NAME>', 'MIT'), ('Cheroot', 'https://github.com/cherrypy/cheroot', 'CherryPy Team', 'BSD 3-Clause "New" or "Revised" License'), ('Click', 'https://github.com/pallets/click', 'Pallets', 'BSD 3-Clause "New" or "Revised" License'), ('ConfigUpdater', 'https://github.com/pyscaffold/configupdater', '<NAME>', 'MIT'), ('Glide', 'https://github.com/glidejs/glide', '@jedrzejchalubek', 'MIT'), ('JQuery', 'https://jquery.com', 'The jQuery Foundation', 'MIT'), ('jquery.pep.js', 'http://pep.briangonzalez.org', '@briangonzalez', 'MIT'), ('js-md5', 'https://github.com/emn178/js-md5', '@emn178', 'MIT'), ('PySocks', 'https://github.com/Anorov/PySocks', '@Anorov', 'Custom DAN HAIM'), ('RapydScript-NG', 'https://github.com/kovidgoyal/rapydscript-ng', '@kovidgoyal', 'BSD 2-Clause "Simplified" License'), ('Requests', 'https://requests.kennethreitz.org', '<NAME>', 'Apache License, Version 2.0'), ('scrollMonitor', 'https://github.com/stutrek/scrollmonitor', '@stutrek', 'MIT'), ('Smoothie Charts', 'https://github.com/joewalnes/smoothie', '@drewnoakes', 'MIT'), ('stem', 'https://stem.torproject.org', '<NAME> and The Tor Project', 'GNU LESSER GENERAL PUBLIC LICENSE') ]
9102
from core.celery.config import ERIGONES_TASK_USER from que.tasks import execute, get_task_logger from vms.models import SnapshotDefine, Snapshot, BackupDefine, Backup, IPAddress logger = get_task_logger(__name__) def is_vm_missing(vm, msg): """ Check failed command output and return True if VM is not on compute node. """ check_str = vm.hostname + ': No such zone configured' return check_str in msg def vm_delete_snapshots_of_removed_disks(vm): """ This helper function deletes snapshots for VM with changing disk IDs. Bug #chili-363 ++ Bug #chili-220 - removing snapshot and backup definitions for removed disks. """ removed_disk_ids = [Snapshot.get_real_disk_id(i) for i in vm.create_json_update_disks().get('remove_disks', [])] if removed_disk_ids: Snapshot.objects.filter(vm=vm, disk_id__in=removed_disk_ids).delete() SnapshotDefine.objects.filter(vm=vm, disk_id__in=removed_disk_ids).delete() Backup.objects.filter(vm=vm, disk_id__in=removed_disk_ids, last=True).update(last=False) BackupDefine.objects.filter(vm=vm, disk_id__in=removed_disk_ids).delete() return removed_disk_ids def _reset_allowed_ip_usage(vm, ip): """Helper function used below. It sets the IP usage back to VM [1] only if other VMs, which use the address in allowed_ips are in notcreated state.""" if all(other_vm.is_notcreated() for other_vm in ip.vms.exclude(uuid=vm.uuid)): ip.usage = IPAddress.VM ip.save() def _is_ip_ok(ip_queryset, vm_ip, vm_network_uuid): """Helper function used below. Return True if vm_ip (string) is "dhcp" or is found in the IPAddress queryset and has the expected usage flag and subnet uuid.""" if vm_ip == 'dhcp': return True return any(ip.ip == vm_ip and ip.subnet.uuid == vm_network_uuid and ip.usage == IPAddress.VM_REAL for ip in ip_queryset) def vm_update_ipaddress_usage(vm): """ This helper function is responsible for updating IPAddress.usage and IPAddress.vm of server IPs (#chili-615,1029), by removing association from IPs that, are not set on any NIC and: - when a VM is deleted all IP usages are set to IPAddress.VM (in DB) and - when a VM is created or updated all IP usages are set to IPAddress.VM_REAL (on hypervisor) and Always call this function _only_ after vm.json_active is synced with vm.json!!! In order to properly understand this code you have understand the association between an IPAddress and Vm model. This function may raise a ValueError if the VM and IP address were not properly associated (e.g. via vm_define_nic). """ current_ips = set(vm.json_active_get_ips(primary_ips=True, allowed_ips=False)) current_ips.update(vm.json_get_ips(primary_ips=True, allowed_ips=False)) current_allowed_ips = set(vm.json_active_get_ips(primary_ips=False, allowed_ips=True)) current_allowed_ips.update(vm.json_get_ips(primary_ips=False, allowed_ips=True)) # Return old IPs back to IP pool, so they can be used again vm.ipaddress_set.exclude(ip__in=current_ips).update(vm=None, usage=IPAddress.VM) # Remove association of removed vm.allowed_ips for ip in vm.allowed_ips.exclude(ip__in=current_allowed_ips): ip.vms.remove(vm) _reset_allowed_ip_usage(vm, ip) if vm.is_notcreated(): # Server was deleted from hypervisor vm.ipaddress_set.filter(usage=IPAddress.VM_REAL).update(usage=IPAddress.VM) for ip in vm.allowed_ips.filter(usage=IPAddress.VM_REAL): _reset_allowed_ip_usage(vm, ip) return # Server was updated or created vm.ipaddress_set.filter(usage=IPAddress.VM).update(usage=IPAddress.VM_REAL) vm.allowed_ips.filter(usage=IPAddress.VM).update(usage=IPAddress.VM_REAL) # The VM configuration may be changed directly on the hypervisor, thus the VM could have # new NICs and IP addresses which configuration bypassed our API - issue #168. vm_ips = vm.ipaddress_set.select_related('subnet').filter(usage=IPAddress.VM_REAL) vm_allowed_ips = vm.allowed_ips.select_related('subnet').filter(usage=IPAddress.VM_REAL) # For issue #168 we have to check the VM<->IPAddress association in a loop for each NIC, because we need to # match the NIC.network_uuid with a Subnet. for nic_id, nic in enumerate(vm.json_active_get_nics(), 1): network_uuid = nic.get('network_uuid', None) if network_uuid: ip = nic.get('ip', '') allowed_ips = nic.get('allowed_ips', []) if ip: logger.debug('VM: %s | NIC ID: %s | NIC network: %s | IP address: %s', vm, nic_id, network_uuid, ip) if not _is_ip_ok(vm_ips, ip, network_uuid): raise ValueError('VM %s NIC ID %s IP address %s is not properly associated with VM!' % (vm, nic_id, ip)) for ip in allowed_ips: logger.debug('VM: %s | NIC ID: %s | NIC network: %s | IP address: %s', vm, nic_id, network_uuid, ip) if not _is_ip_ok(vm_allowed_ips, ip, network_uuid): raise ValueError('VM %s NIC ID %s allowed IP address %s is not properly associated with VM!' % (vm, nic_id, ip)) else: raise ValueError('VM %s NIC ID %s does not have a network uuid!' % (vm, nic_id)) def vm_deploy(vm, force_stop=False): """ Internal API call used for finishing VM deploy; Actually cleaning the json and starting the VM. """ if force_stop: # VM is running without OS -> stop cmd = 'vmadm stop %s -F >/dev/null 2>/dev/null; vmadm get %s 2>/dev/null' % (vm.uuid, vm.uuid) else: # VM is stopped and deployed -> start cmd = 'vmadm start %s >/dev/null 2>/dev/null; vmadm get %s 2>/dev/null' % (vm.uuid, vm.uuid) msg = 'Deploy server' lock = 'vmadm deploy ' + vm.uuid meta = { 'output': { 'returncode': 'returncode', 'stderr': 'message', 'stdout': 'json' }, 'replace_stderr': ((vm.uuid, vm.hostname),), 'msg': msg, 'vm_uuid': vm.uuid } callback = ('api.vm.base.tasks.vm_deploy_cb', {'vm_uuid': vm.uuid}) return execute(ERIGONES_TASK_USER, None, cmd, meta=meta, lock=lock, callback=callback, queue=vm.node.fast_queue, nolog=True, ping_worker=False, check_user_tasks=False) def vm_reset(vm): """ Internal API call used for VM reboots in emergency situations. """ cmd = 'vmadm stop %s -F; vmadm start %s' % (vm.uuid, vm.uuid) return execute(ERIGONES_TASK_USER, None, cmd, callback=False, queue=vm.node.fast_queue, nolog=True, check_user_tasks=False) def vm_update(vm): """ Internal API used for updating VM if there were changes in json detected. """ logger.info('Running PUT vm_manage(%s), because something (vnc port?) has changed', vm) from api.vm.base.views import vm_manage from api.utils.request import get_dummy_request from api.utils.views import call_api_view request = get_dummy_request(vm.dc, method='PUT', system_user=True) res = call_api_view(request, 'PUT', vm_manage, vm.hostname) if res.status_code == 201: logger.warn('PUT vm_manage(%s) was successful: %s', vm, res.data) else: logger.error('PUT vm_manage(%s) failed: %s (%s): %s', vm, res.status_code, res.status_text, res.data)
9109
class Solution: # @param n, an integer # @return an integer def reverseBits(self, n):
9123
import ipfsapi c = ipfsapi.connect() peer_id = c.key_list()['Keys'][1]['Id'] c.name_publish('QmYjYGKXqo36GDt6f6qvp9qKAsrc72R9y88mQSLvogu8Ub', key='another_key') result = c.cat('/ipns/' + peer_id) print(result)
9150
import torch DEVICE = torch.device("cuda") SAVED_CHECKPOINTS = [32*1000, 100*1000, 150*1000, 200*1000, 300*1000, 400*1000] SAVED_CHECKPOINTS += [10*1000, 20*1000, 30*1000, 40*1000, 50*1000, 60*1000, 70*1000, 80*1000, 90*1000] SAVED_CHECKPOINTS += [25*1000, 50*1000, 75*1000] SAVED_CHECKPOINTS = set(SAVED_CHECKPOINTS)
9189
import re # regex for a user or channel mention at the beginning of a message # example matches: " <@UJQ07L30Q> ", "<#C010P8N1ABB|interns>" # interactive playground: https://regex101.com/r/2Z7eun/2 MENTION_PATTERN = r"(?:^\s?<@(.*?)>\s?)|(?:^\s?<#(.*?)\|.*?>\s?)" def get_set_element(_set): """get the element from the set to which the iterator points; returns an arbitrary item """ for element in _set: return element def get_person_from_match(user_id, match): """given a Match, return the Person corresponding to the passed user ID """ if match.person_1.user_id == user_id: return match.person_1 elif match.person_2.user_id == user_id: return match.person_2 else: raise Exception(f"Person with user ID \"{user_id}\" is not part of " f"the passed match ({match}).") def get_other_person_from_match(user_id, match): """given a Match, return the Person corresponding to the user who is NOT the passed user ID (i.e. the other Person) """ if match.person_1.user_id == user_id: return match.person_2 elif match.person_2.user_id == user_id: return match.person_1 else: raise Exception(f"Person with user ID \"{user_id}\" is not part of " f"the passed match ({match}).") def blockquote(message): """return `message` with markdown blockquote formatting (start each line with "> ") """ if message: return re.sub(r"^", "> ", message, flags=re.MULTILINE) else: return None def get_mention(message): """get the user or channel ID mentioned at the beginning of a message, if any """ match = re.search(MENTION_PATTERN, message) if match: # return the first not-None value in the match group tuple, be it a # user or channel mention # https://stackoverflow.com/a/18533669 return next(group for group in match.group(1, 2) if group is not None) else: return None def remove_mention(message): """remove the user or channel mention from the beginning of a message, if any """ return re.sub(MENTION_PATTERN, "", message, count=1)
9200
from . import FishBase from . import FishGlobals class FishCollection: def __init__(self): self.fishList = [] def __len__(self): return len(self.fishList) def getFish(self): return self.fishList def makeFromNetLists(self, genusList, speciesList, weightList): self.fishList = [] for genus, species, weight in zip(genusList, speciesList, weightList): self.fishList.append(FishBase.FishBase(genus, species, weight)) def getNetLists(self): genusList = [] speciesList = [] weightList = [] for fish in self.fishList: genusList.append(fish.getGenus()) speciesList.append(fish.getSpecies()) weightList.append(fish.getWeight()) return [genusList, speciesList, weightList] def hasFish(self, genus, species): for fish in self.fishList: if fish.getGenus() == genus and fish.getSpecies() == species: return 1 return 0 def hasGenus(self, genus): for fish in self.fishList: if fish.getGenus() == genus: return 1 return 0 def __collect(self, newFish, updateCollection): for fish in self.fishList: if fish.getGenus() == newFish.getGenus() and fish.getSpecies() == newFish.getSpecies(): if fish.getWeight() < newFish.getWeight(): if updateCollection: fish.setWeight(newFish.getWeight()) return FishGlobals.COLLECT_NEW_RECORD else: return FishGlobals.COLLECT_NO_UPDATE if updateCollection: self.fishList.append(newFish) return FishGlobals.COLLECT_NEW_ENTRY def collectFish(self, newFish): return self.__collect(newFish, updateCollection=1) def getCollectResult(self, newFish): return self.__collect(newFish, updateCollection=0) def __str__(self): numFish = len(self.fishList) txt = 'Fish Collection (%s fish):' % numFish for fish in self.fishList: txt += '\n' + str(fish) return txt
9212
import random from typing import Optional, Tuple, Union import numpy as np import torch from torch import Tensor from torch_geometric.utils import coalesce, degree, remove_self_loops from .num_nodes import maybe_num_nodes def negative_sampling(edge_index: Tensor, num_nodes: Optional[Union[int, Tuple[int, int]]] = None, num_neg_samples: Optional[int] = None, method: str = "sparse", force_undirected: bool = False) -> Tensor: r"""Samples random negative edges of a graph given by :attr:`edge_index`. Args: edge_index (LongTensor): The edge indices. num_nodes (int or Tuple[int, int], optional): The number of nodes, *i.e.* :obj:`max_val + 1` of :attr:`edge_index`. If given as a tuple, then :obj:`edge_index` is interpreted as a bipartite graph with shape :obj:`(num_src_nodes, num_dst_nodes)`. (default: :obj:`None`) num_neg_samples (int, optional): The (approximate) number of negative samples to return. If set to :obj:`None`, will try to return a negative edge for every positive edge. (default: :obj:`None`) method (string, optional): The method to use for negative sampling, *i.e.*, :obj:`"sparse"` or :obj:`"dense"`. This is a memory/runtime trade-off. :obj:`"sparse"` will work on any graph of any size, while :obj:`"dense"` can perform faster true-negative checks. (default: :obj:`"sparse"`) force_undirected (bool, optional): If set to :obj:`True`, sampled negative edges will be undirected. (default: :obj:`False`) :rtype: LongTensor """ assert method in ['sparse', 'dense'] size = num_nodes bipartite = isinstance(size, (tuple, list)) size = maybe_num_nodes(edge_index) if size is None else size size = (size, size) if not bipartite else size force_undirected = False if bipartite else force_undirected idx, population = edge_index_to_vector(edge_index, size, bipartite, force_undirected) if idx.numel() >= population: return edge_index.new_empty((2, 0)) if num_neg_samples is None: num_neg_samples = edge_index.size(1) if force_undirected: num_neg_samples = num_neg_samples // 2 prob = 1. - idx.numel() / population # Probability to sample a negative. sample_size = int(1.1 * num_neg_samples / prob) # (Over)-sample size. neg_idx = None if method == 'dense': # The dense version creates a mask of shape `population` to check for # invalid samples. mask = idx.new_ones(population, dtype=torch.bool) mask[idx] = False for _ in range(3): # Number of tries to sample negative indices. rnd = sample(population, sample_size, idx.device) rnd = rnd[mask[rnd]] # Filter true negatives. neg_idx = rnd if neg_idx is None else torch.cat([neg_idx, rnd]) if neg_idx.numel() >= num_neg_samples: neg_idx = neg_idx[:num_neg_samples] break mask[neg_idx] = False else: # 'sparse' # The sparse version checks for invalid samples via `np.isin`. idx = idx.to('cpu') for _ in range(3): # Number of tries to sample negative indices. rnd = sample(population, sample_size, device='cpu') mask = np.isin(rnd, idx) if neg_idx is not None: mask |= np.isin(rnd, neg_idx.to('cpu')) mask = torch.from_numpy(mask).to(torch.bool) rnd = rnd[~mask].to(edge_index.device) neg_idx = rnd if neg_idx is None else torch.cat([neg_idx, rnd]) if neg_idx.numel() >= num_neg_samples: neg_idx = neg_idx[:num_neg_samples] break return vector_to_edge_index(neg_idx, size, bipartite, force_undirected) def batched_negative_sampling( edge_index: Tensor, batch: Union[Tensor, Tuple[Tensor, Tensor]], num_neg_samples: Optional[int] = None, method: str = "sparse", force_undirected: bool = False, ) -> Tensor: r"""Samples random negative edges of multiple graphs given by :attr:`edge_index` and :attr:`batch`. Args: edge_index (LongTensor): The edge indices. batch (LongTensor or Tuple[LongTensor, LongTensor]): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific example. If given as a tuple, then :obj:`edge_index` is interpreted as a bipartite graph connecting two different node types. num_neg_samples (int, optional): The number of negative samples to return. If set to :obj:`None`, will try to return a negative edge for every positive edge. (default: :obj:`None`) method (string, optional): The method to use for negative sampling, *i.e.*, :obj:`"sparse"` or :obj:`"dense"`. This is a memory/runtime trade-off. :obj:`"sparse"` will work on any graph of any size, while :obj:`"dense"` can perform faster true-negative checks. (default: :obj:`"sparse"`) force_undirected (bool, optional): If set to :obj:`True`, sampled negative edges will be undirected. (default: :obj:`False`) :rtype: LongTensor """ if isinstance(batch, Tensor): src_batch, dst_batch = batch, batch else: src_batch, dst_batch = batch[0], batch[1] split = degree(src_batch[edge_index[0]], dtype=torch.long).tolist() edge_indices = torch.split(edge_index, split, dim=1) num_src = degree(src_batch, dtype=torch.long) cum_src = torch.cat([src_batch.new_zeros(1), num_src.cumsum(0)[:-1]]) if isinstance(batch, Tensor): num_nodes = num_src.tolist() cumsum = cum_src else: num_dst = degree(dst_batch, dtype=torch.long) cum_dst = torch.cat([dst_batch.new_zeros(1), num_dst.cumsum(0)[:-1]]) num_nodes = torch.stack([num_src, num_dst], dim=1).tolist() cumsum = torch.stack([cum_src, cum_dst], dim=1).unsqueeze(-1) neg_edge_indices = [] for i, edge_index in enumerate(edge_indices): edge_index = edge_index - cumsum[i] neg_edge_index = negative_sampling(edge_index, num_nodes[i], num_neg_samples, method, force_undirected) neg_edge_index += cumsum[i] neg_edge_indices.append(neg_edge_index) return torch.cat(neg_edge_indices, dim=1) def structured_negative_sampling(edge_index, num_nodes: Optional[int] = None, contains_neg_self_loops: bool = True): r"""Samples a negative edge :obj:`(i,k)` for every positive edge :obj:`(i,j)` in the graph given by :attr:`edge_index`, and returns it as a tuple of the form :obj:`(i,j,k)`. Args: edge_index (LongTensor): The edge indices. num_nodes (int, optional): The number of nodes, *i.e.* :obj:`max_val + 1` of :attr:`edge_index`. (default: :obj:`None`) contains_neg_self_loops (bool, optional): If set to :obj:`False`, sampled negative edges will not contain self loops. (default: :obj:`True`) :rtype: (LongTensor, LongTensor, LongTensor) """ num_nodes = maybe_num_nodes(edge_index, num_nodes) row, col = edge_index.cpu() pos_idx = row * num_nodes + col if not contains_neg_self_loops: loop_idx = torch.arange(num_nodes) * (num_nodes + 1) pos_idx = torch.cat([pos_idx, loop_idx], dim=0) rand = torch.randint(num_nodes, (row.size(0), ), dtype=torch.long) neg_idx = row * num_nodes + rand mask = torch.from_numpy(np.isin(neg_idx, pos_idx)).to(torch.bool) rest = mask.nonzero(as_tuple=False).view(-1) while rest.numel() > 0: # pragma: no cover tmp = torch.randint(num_nodes, (rest.size(0), ), dtype=torch.long) rand[rest] = tmp neg_idx = row[rest] * num_nodes + tmp mask = torch.from_numpy(np.isin(neg_idx, pos_idx)).to(torch.bool) rest = rest[mask] return edge_index[0], edge_index[1], rand.to(edge_index.device) def structured_negative_sampling_feasible( edge_index: Tensor, num_nodes: Optional[int] = None, contains_neg_self_loops: bool = True) -> bool: r"""Returns :obj:`True` if :meth:`~torch_geometric.utils.structured_negative_sampling` is feasible on the graph given by :obj:`edge_index`. :obj:`~torch_geometric.utils.structured_negative_sampling` is infeasible if atleast one node is connected to all other nodes. Args: edge_index (LongTensor): The edge indices. num_nodes (int, optional): The number of nodes, *i.e.* :obj:`max_val + 1` of :attr:`edge_index`. (default: :obj:`None`) contains_neg_self_loops (bool, optional): If set to :obj:`False`, sampled negative edges will not contain self loops. (default: :obj:`True`) :rtype: bool """ num_nodes = maybe_num_nodes(edge_index, num_nodes) max_num_neighbors = num_nodes edge_index = coalesce(edge_index, num_nodes=num_nodes) if not contains_neg_self_loops: edge_index, _ = remove_self_loops(edge_index) max_num_neighbors -= 1 # Reduce number of valid neighbors deg = degree(edge_index[0], num_nodes) # True if there exists no node that is connected to all other nodes. return bool(torch.all(deg < max_num_neighbors)) ############################################################################### def sample(population: int, k: int, device=None) -> Tensor: if population <= k: return torch.arange(population, device=device) else: return torch.tensor(random.sample(range(population), k), device=device) def edge_index_to_vector( edge_index: Tensor, size: Tuple[int, int], bipartite: bool, force_undirected: bool = False, ) -> Tuple[Tensor, int]: row, col = edge_index if bipartite: # No need to account for self-loops. idx = (row * size[1]).add_(col) population = size[0] * size[1] return idx, population elif force_undirected: assert size[0] == size[1] num_nodes = size[0] # We only operate on the upper triangular matrix: mask = row < col row, col = row[mask], col[mask] offset = torch.arange(1, num_nodes, device=row.device).cumsum(0)[row] idx = row.mul_(num_nodes).add_(col).sub_(offset) population = (num_nodes * (num_nodes + 1)) // 2 - num_nodes return idx, population else: assert size[0] == size[1] num_nodes = size[0] # We remove self-loops as we do not want to take them into account # when sampling negative values. mask = row != col row, col = row[mask], col[mask] col[row < col] -= 1 idx = row.mul_(num_nodes - 1).add_(col) population = num_nodes * num_nodes - num_nodes return idx, population def vector_to_edge_index(idx: Tensor, size: Tuple[int, int], bipartite: bool, force_undirected: bool = False) -> Tensor: if bipartite: # No need to account for self-loops. row = idx.div(size[1], rounding_mode='floor') col = idx % size[1] return torch.stack([row, col], dim=0) elif force_undirected: assert size[0] == size[1] num_nodes = size[0] offset = torch.arange(1, num_nodes, device=idx.device).cumsum(0) end = torch.arange(num_nodes, num_nodes * num_nodes, num_nodes, device=idx.device) row = torch.bucketize(idx, end.sub_(offset), right=True) col = offset[row].add_(idx) % num_nodes return torch.stack([torch.cat([row, col]), torch.cat([col, row])], 0) else: assert size[0] == size[1] num_nodes = size[0] row = idx.div(num_nodes - 1, rounding_mode='floor') col = idx % (num_nodes - 1) col[row <= col] += 1 return torch.stack([row, col], dim=0)
9215
class WebException(Exception): pass class ParserException(Exception): """ 解析异常 """ pass class ApiException(Exception): """ api异常 """ pass class WsException(Exception): """ 轮询异常 """ pass class SsoException(Exception): """ sso异常 """ pass class LibException(Exception): """ lib异常 """ pass class AccountException(Exception): """ 账号异常(账号失效) """ pass class FlowException(Exception): """ 认证流量异常 """ pass
9223
import pytest from onnx import TensorProto from onnx import helper as oh import finn.core.onnx_exec as oxe from finn.core.modelwrapper import ModelWrapper from finn.transformation.streamline.reorder import MoveTransposePastJoinAdd from finn.util.basic import gen_finn_dt_tensor def create_model(perm): if perm == [0, 3, 1, 2]: in_shape = [1, 128, 1, 256] out_shape = [1, 256, 128, 1] if perm == [0, 2, 3, 1]: in_shape = [1, 256, 128, 1] out_shape = [1, 128, 1, 256] Transpose1_node = oh.make_node( "Transpose", inputs=["in_transpose1"], outputs=["out_transpose1"], perm=perm ) Transpose2_node = oh.make_node( "Transpose", inputs=["in_transpose2"], outputs=["out_transpose2"], perm=perm ) Join1_node = oh.make_node( "Add", inputs=["out_transpose1", "out_transpose2"], outputs=["out_join1"] ) in_transpose1 = oh.make_tensor_value_info( "in_transpose1", TensorProto.FLOAT, in_shape ) in_transpose2 = oh.make_tensor_value_info( "in_transpose2", TensorProto.FLOAT, in_shape ) out_transpose1 = oh.make_tensor_value_info( "out_transpose1", TensorProto.FLOAT, out_shape ) out_transpose2 = oh.make_tensor_value_info( "out_transpose2", TensorProto.FLOAT, out_shape ) out_join1 = oh.make_tensor_value_info("out_join1", TensorProto.FLOAT, out_shape) graph = oh.make_graph( nodes=[Transpose1_node, Transpose2_node, Join1_node], name="test_graph", inputs=[in_transpose1, in_transpose2], outputs=[out_join1], value_info=[ out_transpose1, out_transpose2, ], ) onnx_model = oh.make_model(graph, producer_name="test_model") model = ModelWrapper(onnx_model) return model # Permutation of transpose node @pytest.mark.parametrize("perm", [[0, 3, 1, 2], [0, 2, 3, 1]]) def test_move_identical_op_past_join_op(perm): model = create_model(perm) # Create input data input0_tensor_name = model.graph.input[0].name input1_tensor_name = model.graph.input[1].name # Note: it is assumed that both tensors have the same shape and data type input_shape = model.get_tensor_shape(input0_tensor_name) input_dtype = model.get_tensor_datatype(input0_tensor_name) input_val = gen_finn_dt_tensor(input_dtype, input_shape) input_dict = {} input_dict[input0_tensor_name] = input_val input_dict[input1_tensor_name] = input_val model_transformed = model.transform(MoveTransposePastJoinAdd()) assert oxe.compare_execution(model, model_transformed, input_dict) # Check if order changed node0_input0_model = model.find_consumers(model.graph.input[0].name)[0].op_type node1_input1_model = model.find_consumers(model.graph.input[1].name)[0].op_type node0_input0_model_transformed = model_transformed.find_consumers( model_transformed.graph.input[0].name )[0].op_type node1_input1_model_transformed = model_transformed.find_consumers( model_transformed.graph.input[1].name )[0].op_type assert node0_input0_model != node0_input0_model_transformed assert node1_input1_model != node1_input1_model_transformed
9238
import unittest from nanoservice import Responder from nanoservice import Requester class BaseTestCase(unittest.TestCase): def setUp(self): addr = 'inproc://test' self.client = Requester(addr) self.service = Responder(addr) self.service.register('divide', lambda x, y: x / y) self.service.register('echo', lambda x: x) def tearDown(self): self.client.socket.close() self.service.socket.close() class TestClient(BaseTestCase): def test_build_payload(self): payload = self.client.build_payload('echo', 'My Name') method, args, ref = payload self.assertTrue(method == 'echo') self.assertTrue(len(payload) == 3) def test_encoder(self): data = {'name': '<NAME>'} encoded = self.client.encode(data) decoded = self.client.decode(encoded) self.assertEqual(data, decoded) def test_call_wo_receive(self): # Requester side ops method, args = 'echo', 'hello world' payload = self.client.build_payload(method, args) self.client.socket.send(self.client.encode(payload)) # Responder side ops method, args, ref = self.service.receive() self.assertEqual(method, 'echo') self.assertEqual(args, 'hello world') self.assertEqual(ref, payload[2]) def test_basic_socket_operation(self): msg = 'abc' self.client.socket.send(msg) res = self.service.socket.recv().decode('utf-8') self.assertEqual(msg, res) def test_timeout(self): c = Requester('inproc://timeout', timeouts=(1, 1)) c.socket.send('hello') self.assertRaises(Exception, c.socket.recv) if __name__ == '__main__': unittest.main()
9241
import unittest class LexerTestCase(unittest.TestCase): def makeLexer(self, text): from spi import Lexer lexer = Lexer(text) return lexer def test_tokens(self): from spi import TokenType records = ( ('234', TokenType.INTEGER_CONST, 234), ('3.14', TokenType.REAL_CONST, 3.14), ('*', TokenType.MUL, '*'), ('DIV', TokenType.INTEGER_DIV, 'DIV'), ('/', TokenType.FLOAT_DIV, '/'), ('+', TokenType.PLUS, '+'), ('-', TokenType.MINUS, '-'), ('(', TokenType.LPAREN, '('), (')', TokenType.RPAREN, ')'), (':=', TokenType.ASSIGN, ':='), ('.', TokenType.DOT, '.'), ('number', TokenType.ID, 'number'), (';', TokenType.SEMI, ';'), ('BEGIN', TokenType.BEGIN, 'BEGIN'), ('END', TokenType.END, 'END'), ('PROCEDURE', TokenType.PROCEDURE, 'PROCEDURE'), ) for text, tok_type, tok_val in records: lexer = self.makeLexer(text) token = lexer.get_next_token() self.assertEqual(token.type, tok_type) self.assertEqual(token.value, tok_val) def test_lexer_exception(self): from spi import LexerError lexer = self.makeLexer('<') with self.assertRaises(LexerError): lexer.get_next_token() class ParserTestCase(unittest.TestCase): def makeParser(self, text): from spi import Lexer, Parser lexer = Lexer(text) parser = Parser(lexer) return parser def test_expression_invalid_syntax_01(self): from spi import ParserError, ErrorCode parser = self.makeParser( """ PROGRAM Test; VAR a : INTEGER; BEGIN a := 10 * ; {Invalid syntax} END. """ ) with self.assertRaises(ParserError) as cm: parser.parse() the_exception = cm.exception self.assertEqual(the_exception.error_code, ErrorCode.UNEXPECTED_TOKEN) self.assertEqual(the_exception.token.value, ';') self.assertEqual(the_exception.token.lineno, 6) def test_expression_invalid_syntax_02(self): from spi import ParserError, ErrorCode parser = self.makeParser( """ PROGRAM Test; VAR a : INTEGER; BEGIN a := 1 (1 + 2); {Invalid syntax} END. """ ) with self.assertRaises(ParserError) as cm: parser.parse() the_exception = cm.exception self.assertEqual(the_exception.error_code, ErrorCode.UNEXPECTED_TOKEN) self.assertEqual(the_exception.token.value, '(') self.assertEqual(the_exception.token.lineno, 6) def test_maximum_one_VAR_block_is_allowed(self): from spi import ParserError, ErrorCode # zero VARs parser = self.makeParser( """ PROGRAM Test; BEGIN END. """ ) parser.parse() # one VAR parser = self.makeParser( """ PROGRAM Test; VAR a : INTEGER; BEGIN END. """ ) parser.parse() parser = self.makeParser( """ PROGRAM Test; VAR a : INTEGER; VAR b : INTEGER; BEGIN a := 5; b := a + 10; END. """ ) with self.assertRaises(ParserError) as cm: parser.parse() the_exception = cm.exception self.assertEqual(the_exception.error_code, ErrorCode.UNEXPECTED_TOKEN) self.assertEqual(the_exception.token.value, 'VAR') self.assertEqual(the_exception.token.lineno, 5) # second VAR class SemanticAnalyzerTestCase(unittest.TestCase): def runSemanticAnalyzer(self, text): from spi import Lexer, Parser, SemanticAnalyzer lexer = Lexer(text) parser = Parser(lexer) tree = parser.parse() semantic_analyzer = SemanticAnalyzer() semantic_analyzer.visit(tree) return semantic_analyzer def test_semantic_duplicate_id_error(self): from spi import SemanticError, ErrorCode with self.assertRaises(SemanticError) as cm: self.runSemanticAnalyzer( """ PROGRAM Test; VAR a : INTEGER; a : REAL; {Duplicate identifier} BEGIN a := 5; END. """ ) the_exception = cm.exception self.assertEqual(the_exception.error_code, ErrorCode.DUPLICATE_ID) self.assertEqual(the_exception.token.value, 'a') self.assertEqual(the_exception.token.lineno, 5) def test_semantic_id_not_found_error(self): from spi import SemanticError, ErrorCode with self.assertRaises(SemanticError) as cm: self.runSemanticAnalyzer( """ PROGRAM Test; VAR a : INTEGER; BEGIN a := 5 + b; END. """ ) the_exception = cm.exception self.assertEqual(the_exception.error_code, ErrorCode.ID_NOT_FOUND) self.assertEqual(the_exception.token.value, 'b') class TestCallStack: def __init__(self): self._records = [] def push(self, ar): self._records.append(ar) def pop(self): # do nothing pass def peek(self): return self._records[-1] class InterpreterTestCase(unittest.TestCase): def makeInterpreter(self, text): from spi import Lexer, Parser, SemanticAnalyzer, Interpreter lexer = Lexer(text) parser = Parser(lexer) tree = parser.parse() semantic_analyzer = SemanticAnalyzer() semantic_analyzer.visit(tree) interpreter = Interpreter(tree) interpreter.call_stack = TestCallStack() return interpreter def test_integer_arithmetic_expressions(self): for expr, result in ( ('3', 3), ('2 + 7 * 4', 30), ('7 - 8 DIV 4', 5), ('14 + 2 * 3 - 6 DIV 2', 17), ('7 + 3 * (10 DIV (12 DIV (3 + 1) - 1))', 22), ('7 + 3 * (10 DIV (12 DIV (3 + 1) - 1)) DIV (2 + 3) - 5 - 3 + (8)', 10), ('7 + (((3 + 2)))', 12), ('- 3', -3), ('+ 3', 3), ('5 - - - + - 3', 8), ('5 - - - + - (3 + 4) - +2', 10), ): interpreter = self.makeInterpreter( """PROGRAM Test; VAR a : INTEGER; BEGIN a := %s END. """ % expr ) interpreter.interpret() ar = interpreter.call_stack.peek() self.assertEqual(ar['a'], result) def test_float_arithmetic_expressions(self): for expr, result in ( ('3.14', 3.14), ('2.14 + 7 * 4', 30.14), ('7.14 - 8 / 4', 5.14), ): interpreter = self.makeInterpreter( """PROGRAM Test; VAR a : REAL; BEGIN a := %s END. """ % expr ) interpreter.interpret() ar = interpreter.call_stack.peek() self.assertEqual(ar['a'], result) def test_procedure_call(self): text = """\ program Main; procedure Alpha(a : integer; b : integer); var x : integer; begin x := (a + b ) * 2; end; begin { Main } Alpha(3 + 5, 7); end. { Main } """ interpreter = self.makeInterpreter(text) interpreter.interpret() ar = interpreter.call_stack.peek() self.assertEqual(ar['a'], 8) self.assertEqual(ar['b'], 7) self.assertEqual(ar['x'], 30) self.assertEqual(ar.nesting_level, 2) def test_program(self): text = """\ PROGRAM Part12; VAR number : INTEGER; a, b : INTEGER; y : REAL; PROCEDURE P1; VAR a : REAL; k : INTEGER; PROCEDURE P2; VAR a, z : INTEGER; BEGIN {P2} z := 777; END; {P2} BEGIN {P1} END; {P1} BEGIN {Part12} number := 2; a := number ; b := 10 * a + 10 * number DIV 4; y := 20 / 7 + 3.14 END. {Part12} """ interpreter = self.makeInterpreter(text) interpreter.interpret() ar = interpreter.call_stack.peek() self.assertEqual(len(ar.members.keys()), 4) self.assertEqual(ar['number'], 2) self.assertEqual(ar['a'], 2) self.assertEqual(ar['b'], 25) self.assertAlmostEqual(ar['y'], float(20) / 7 + 3.14) # 5.9971... if __name__ == '__main__': unittest.main()
9245
def contains_word(first_word, second_word, bibliographic_entry): contains_first_word = first_word in bibliographic_entry contains_second_word = second_word in bibliographic_entry if contains_first_word and contains_second_word: return 2 elif contains_first_word or contains_second_word: return 1 else: return 0 if __name__ == "__main__": bibliographic_entry = "<NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., " \ "<NAME>. (2017). Research Articles in Simplified HTML: a Web-first format for " \ "HTML-based scholarly articles. PeerJ Computer Science 3: e132. e2513. " \ "DOI: https://doi.org/10.7717/peerj-cs.132" print(contains_word("Peroni", "Osborne", bibliographic_entry)) print(contains_word("Peroni", "Asprino", bibliographic_entry)) print(contains_word("Reforgiato", "Osborne", bibliographic_entry)) print(contains_word("Reforgiato", "Asprino", bibliographic_entry))
9256
from YouTubeFacesDB import generate_ytf_database ############################################################################### # Create the dataset ############################################################################### generate_ytf_database( directory= '../data',#'/scratch/vitay/Datasets/YouTubeFaces', # Location of the YTF dataset filename='ytfdb.h5', # Name of the HDF5 file to write to labels=10, # Number of labels to randomly select max_number=-1, # Maximum number of images to use size=(100, 100), # Size of the images color=False, # Black and white bw_first=True, # Final shape is (1, w, h) cropped=True # The original images are cropped to the faces )
9262
from rest_framework import serializers from punkweb_boards.conf.settings import SHOUTBOX_DISABLED_TAGS from punkweb_boards.models import ( BoardProfile, Category, Subcategory, Thread, Post, Conversation, Message, Report, Shout, ) class BoardProfileSerializer(serializers.ModelSerializer): post_count = serializers.ReadOnlyField() can_shout = serializers.ReadOnlyField() rendered_username = serializers.ReadOnlyField() rendered_rank = serializers.ReadOnlyField() class Meta: model = BoardProfile fields = "__all__" class CategorySerializer(serializers.ModelSerializer): class Meta: model = Category exclude = ("auth_req",) class SubcategorySerializer(serializers.ModelSerializer): last_thread = serializers.ReadOnlyField(source="last_thread.id") last_thread_title = serializers.ReadOnlyField(source="last_thread.title") last_thread_created = serializers.ReadOnlyField( source="last_thread.created" ) last_thread_user = serializers.ReadOnlyField( source="last_thread.user.profile.rendered_username" ) parent_name = serializers.ReadOnlyField(source="parent.name") thread_count = serializers.ReadOnlyField() post_count = serializers.ReadOnlyField() can_post = serializers.SerializerMethodField() def get_can_post(self, obj): return obj.can_post(self.context.get("request").user) class Meta: model = Subcategory exclude = ("auth_req",) class ThreadSerializer(serializers.ModelSerializer): last_post = serializers.ReadOnlyField(source="last_post.id") last_post_created = serializers.ReadOnlyField(source="last_post.created") last_post_username = serializers.ReadOnlyField( source="last_post.user.username" ) last_post_rendered_username = serializers.ReadOnlyField( source="last_post.user.profile.rendered_username" ) user_username = serializers.ReadOnlyField(source="user.username") user_rendered_username = serializers.ReadOnlyField( source="user.profile.rendered_username" ) user_image = serializers.ReadOnlyField(source="user.profile.avatar") user_post_count = serializers.ReadOnlyField( source="user.profile.post_count" ) user_join_date = serializers.ReadOnlyField(source="user.created") flagged = serializers.ReadOnlyField(source="reported") posts_count = serializers.ReadOnlyField() can_edit = serializers.SerializerMethodField() def get_can_edit(self, obj): return obj.can_edit(self.context.get("request").user) class Meta: model = Thread fields = "__all__" read_only_fields = ( "pinned", "closed", "user", "upvoted_by", "downvoted_by", ) class PostSerializer(serializers.ModelSerializer): flagged = serializers.ReadOnlyField(source="reported") can_edit = serializers.SerializerMethodField() def get_can_edit(self, obj): return obj.can_edit(self.context.get("request").user) class Meta: model = Post fields = "__all__" read_only_fields = ("user", "upvoted_by", "downvoted_by") class ConversationSerializer(serializers.ModelSerializer): last_message = serializers.ReadOnlyField(source="last_message.id") last_message_title = serializers.ReadOnlyField(source="last_message.title") last_message_created = serializers.ReadOnlyField( source="last_message.created" ) last_message_user = serializers.ReadOnlyField( source="last_message.user.profile.rendered_username" ) message_count = serializers.ReadOnlyField() class Meta: model = Conversation fields = "__all__" read_only_fields = ("unread_by",) class MessageSerializer(serializers.ModelSerializer): class Meta: model = Message fields = "__all__" read_only_fields = ("user",) class ShoutSerializer(serializers.ModelSerializer): username = serializers.ReadOnlyField(source="user.username") rendered_username = serializers.ReadOnlyField( source="user.profile.rendered_username" ) class Meta: model = Shout fields = ( "id", "user", "username", "rendered_username", "content", "_content_rendered", "created", "modified", ) read_only_fields = ("user",) def create(self, validated_data): for key in SHOUTBOX_DISABLED_TAGS: key_tag = "[{}]".format(key).lower() if ( key_tag[: len(key_tag) - 1] in validated_data.get("content").lower() ): raise serializers.ValidationError( { "notAllowed": "{} is not allowed in the shoutbox".format( key_tag ) } ) return Shout.objects.create(**validated_data)
9278
from collections import MutableMapping, Container from datetime import datetime, timedelta from pyvalid import accepts class LimitedTimeTable(MutableMapping, Container): def __init__(self, time_span): self.__storage = dict() self.__time_span = None self.time_span = time_span @property def time_span(self): return self.__time_span @time_span.setter @accepts(object, timedelta) def time_span(self, value): self.__time_span = value @property def oldest(self): value = None if self.__len__() > 0: value = min(self.__storage.keys()) return value @property def newest(self): value = None if self.__len__() > 0: value = max(self.__storage.keys()) return value def oldest_keys(self, size): for key in self.__get_slice(0, size): yield key def oldest_values(self, size): for key in self.oldest_keys(size): yield self.__storage.get(key) def oldest_items(self, size): for key in self.oldest_keys(size): yield (key, self.__storage.get(key)) def newest_keys(self, size): for key in self.__get_slice(-size, None): yield key def newest_values(self, size): for key in self.newest_keys(size): yield self.__storage.get(key) def newest_items(self, size): for key in self.newest_keys(size): yield (key, self.__storage.get(key)) def __get_slice(self, start, end): keys = sorted(self.keys()) return keys[start:end] def __getitem__(self, item): return self.__storage.__getitem__(item) @accepts(object, datetime, object) def __setitem__(self, key, value): now = datetime.now() if key > now: raise ValueError('Can\'t set item from future!') oldest = self.oldest if (oldest is not None) and (oldest != key): longest_time_span = now - oldest # Item is too old for current timetable if longest_time_span >= self.time_span: self.__delitem__(oldest) return self.__storage.__setitem__(key, value) def __delitem__(self, key): return self.__storage.__delitem__(key) def __len__(self): return self.__storage.__len__() def __iter__(self): return self.__storage.__iter__() def __contains__(self, item): return self.__storage.__contains__(item) __all__ = ['LimitedTimeTable']
9327
import numpy as np import scipy.interpolate import scipy.ndimage from sklearn.feature_extraction.image import extract_patches_2d, reconstruct_from_patches_2d def _calc_patch_grid_dims(shape, patch_size, patch_stride): x_w, x_h, x_c = shape num_rows = 1 + (x_h - patch_size) // patch_stride num_cols = 1 + (x_w - patch_size) // patch_stride return num_rows, num_cols def make_patch_grid(x, patch_size, patch_stride=1): '''x shape: (num_channels, rows, cols)''' x = x.transpose(2, 1, 0) patches = extract_patches_2d(x, (patch_size, patch_size)) x_w, x_h, x_c = x.shape num_rows, num_cols = _calc_patch_grid_dims(x.shape, patch_size, patch_stride) patches = patches.reshape((num_rows, num_cols, patch_size, patch_size, x_c)) patches = patches.transpose((0, 1, 4, 2, 3)) #patches = np.rollaxis(patches, -1, 2) return patches def combine_patches_grid(in_patches, out_shape): '''Reconstruct an image from these `patches` input shape: (rows, cols, channels, patch_row, patch_col) ''' num_rows, num_cols = in_patches.shape[:2] num_channels = in_patches.shape[-3] patch_size = in_patches.shape[-1] num_patches = num_rows * num_cols in_patches = np.reshape(in_patches, (num_patches, num_channels, patch_size, patch_size)) # (patches, channels, pr, pc) in_patches = np.transpose(in_patches, (0, 2, 3, 1)) # (patches, p, p, channels) recon = reconstruct_from_patches_2d(in_patches, out_shape) return recon.transpose(2, 1, 0).astype(np.float32) class PatchMatcher(object): '''A matcher of image patches inspired by the PatchMatch algorithm. image shape: (width, height, channels) ''' def __init__(self, input_shape, target_img, patch_size=1, patch_stride=1, jump_size=0.5, num_propagation_steps=5, num_random_steps=5, random_max_radius=1.0, random_scale=0.5): self.input_shape = input_shape self.patch_size = patch_size self.patch_stride = patch_stride self.jump_size = jump_size self.num_propagation_steps = num_propagation_steps self.num_random_steps = num_random_steps self.random_max_radius = random_max_radius self.random_scale = random_scale self.num_input_rows, self.num_input_cols = _calc_patch_grid_dims(input_shape, patch_size, patch_stride) self.target_patches = make_patch_grid(target_img, patch_size) self.target_patches_normed = self.normalize_patches(self.target_patches) self.coords = np.random.uniform(0.0, 1.0, # TODO: switch to pixels (2, self.num_input_rows, self.num_input_cols))# * [[[self.num_input_rows]],[[self.num_input_cols]]] self.similarity = np.zeros(input_shape[:2:-1], dtype=np.float32) self.min_propagration_row = 1.0 / self.num_input_rows self.min_propagration_col = 1.0 / self.num_input_cols self.delta_row = np.array([[[self.min_propagration_row]], [[0.0]]]) self.delta_col = np.array([[[0.0]], [[self.min_propagration_col]]]) def update(self, input_img, reverse_propagation=False): input_patches = self.get_patches_for(input_img) self.update_with_patches(self.normalize_patches(input_patches), reverse_propagation=reverse_propagation) def update_with_patches(self, input_patches, reverse_propagation=False): self._propagate(input_patches, reverse_propagation=reverse_propagation) self._random_update(input_patches) def get_patches_for(self, img): return make_patch_grid(img, self.patch_size); def normalize_patches(self, patches): norm = np.sqrt(np.sum(np.square(patches), axis=(2, 3, 4), keepdims=True)) return patches / norm def _propagate(self, input_patches, reverse_propagation=False): if reverse_propagation: roll_direction = 1 else: roll_direction = -1 sign = float(roll_direction) for step_i in range(self.num_propagation_steps): new_coords = self.clip_coords(np.roll(self.coords, roll_direction, 1) + self.delta_row * sign) coords_row, similarity_row = self.eval_state(new_coords, input_patches) new_coords = self.clip_coords(np.roll(self.coords, roll_direction, 2) + self.delta_col * sign) coords_col, similarity_col = self.eval_state(new_coords, input_patches) self.coords, self.similarity = self.take_best(coords_row, similarity_row, coords_col, similarity_col) def _random_update(self, input_patches): for alpha in range(1, self.num_random_steps + 1): # NOTE this should actually stop when the move is < 1 new_coords = self.clip_coords(self.coords + np.random.uniform(-self.random_max_radius, self.random_max_radius, self.coords.shape) * self.random_scale ** alpha) self.coords, self.similarity = self.eval_state(new_coords, input_patches) def eval_state(self, new_coords, input_patches): new_similarity = self.patch_similarity(input_patches, new_coords) delta_similarity = new_similarity - self.similarity coords = np.where(delta_similarity > 0, new_coords, self.coords) best_similarity = np.where(delta_similarity > 0, new_similarity, self.similarity) return coords, best_similarity def take_best(self, coords_a, similarity_a, coords_b, similarity_b): delta_similarity = similarity_a - similarity_b best_coords = np.where(delta_similarity > 0, coords_a, coords_b) best_similarity = np.where(delta_similarity > 0, similarity_a, similarity_b) return best_coords, best_similarity def patch_similarity(self, source, coords): '''Check the similarity of the patches specified in coords.''' target_vals = self.lookup_coords(self.target_patches_normed, coords) err = source * target_vals return np.sum(err, axis=(2, 3, 4)) def clip_coords(self, coords): # TODO: should this all be in pixel space? coords = np.clip(coords, 0.0, 1.0) return coords def lookup_coords(self, x, coords): x_shape = np.expand_dims(np.expand_dims(x.shape, -1), -1) i_coords = np.round(coords * (x_shape[:2] - 1)).astype('int32') return x[i_coords[0], i_coords[1]] def get_reconstruction(self, patches=None, combined=None): if combined is not None: patches = make_patch_grid(combined, self.patch_size) if patches is None: patches = self.target_patches patches = self.lookup_coords(patches, self.coords) recon = combine_patches_grid(patches, self.input_shape) return recon def scale(self, new_shape, new_target_img): '''Create a new matcher of the given shape and replace its state with a scaled up version of the current matcher's state. ''' new_matcher = PatchMatcher(new_shape, new_target_img, patch_size=self.patch_size, patch_stride=self.patch_stride, jump_size=self.jump_size, num_propagation_steps=self.num_propagation_steps, num_random_steps=self.num_random_steps, random_max_radius=self.random_max_radius, random_scale=self.random_scale) new_matcher.coords = congrid(self.coords, new_matcher.coords.shape, method='neighbour') new_matcher.similarity = congrid(self.similarity, new_matcher.coords.shape, method='neighbour') return new_matcher def congrid(a, newdims, method='linear', centre=False, minusone=False): '''Arbitrary resampling of source array to new dimension sizes. Currently only supports maintaining the same number of dimensions. To use 1-D arrays, first promote them to shape (x,1). Uses the same parameters and creates the same co-ordinate lookup points as IDL''s congrid routine, which apparently originally came from a VAX/VMS routine of the same name. method: neighbour - closest value from original data nearest and linear - uses n x 1-D interpolations using scipy.interpolate.interp1d (see Numerical Recipes for validity of use of n 1-D interpolations) spline - uses ndimage.map_coordinates centre: True - interpolation points are at the centres of the bins False - points are at the front edge of the bin minusone: For example- inarray.shape = (i,j) & new dimensions = (x,y) False - inarray is resampled by factors of (i/x) * (j/y) True - inarray is resampled by(i-1)/(x-1) * (j-1)/(y-1) This prevents extrapolation one element beyond bounds of input array. ''' if not a.dtype in [np.float64, np.float32]: a = np.cast[float](a) m1 = np.cast[int](minusone) ofs = np.cast[int](centre) * 0.5 old = np.array( a.shape ) ndims = len( a.shape ) if len( newdims ) != ndims: print("[congrid] dimensions error. " \ "This routine currently only support " \ "rebinning to the same number of dimensions.") return None newdims = np.asarray( newdims, dtype=float ) dimlist = [] if method == 'neighbour': for i in range( ndims ): base = np.indices(newdims)[i] dimlist.append( (old[i] - m1) / (newdims[i] - m1) \ * (base + ofs) - ofs ) cd = np.array( dimlist ).round().astype(int) newa = a[list( cd )] return newa elif method in ['nearest','linear']: # calculate new dims for i in range( ndims ): base = np.arange( newdims[i] ) dimlist.append( (old[i] - m1) / (newdims[i] - m1) \ * (base + ofs) - ofs ) # specify old dims olddims = [np.arange(i, dtype = np.float) for i in list( a.shape )] # first interpolation - for ndims = any mint = scipy.interpolate.interp1d( olddims[-1], a, kind=method ) newa = mint( dimlist[-1] ) trorder = [ndims - 1] + range( ndims - 1 ) for i in range( ndims - 2, -1, -1 ): newa = newa.transpose( trorder ) mint = scipy.interpolate.interp1d( olddims[i], newa, kind=method ) newa = mint( dimlist[i] ) if ndims > 1: # need one more transpose to return to original dimensions newa = newa.transpose( trorder ) return newa elif method in ['spline']: oslices = [ slice(0,j) for j in old ] oldcoords = np.ogrid[oslices] nslices = [ slice(0,j) for j in list(newdims) ] newcoords = np.mgrid[nslices] newcoords_dims = range(np.rank(newcoords)) #make first index last newcoords_dims.append(newcoords_dims.pop(0)) newcoords_tr = newcoords.transpose(newcoords_dims) # makes a view that affects newcoords newcoords_tr += ofs deltas = (np.asarray(old) - m1) / (newdims - m1) newcoords_tr *= deltas newcoords_tr -= ofs newa = scipy.ndimage.map_coordinates(a, newcoords) return newa else: print("Congrid error: Unrecognized interpolation type.\n", \ "Currently only \'neighbour\', \'nearest\',\'linear\',", \ "and \'spline\' are supported.") return None if __name__ == '__main__': import sys import time from scipy.misc import imsave from image_analogy.img_utils import load_image, preprocess_image, deprocess_image content_image_path, style_image_path, output_prefix = sys.argv[1:] jump_size = 1.0 num_steps = 7 patch_size = 1 patch_stride = 1 feat_chans = 512 feat_style_shape = (feat_chans, 12, 18) feat_style = np.random.uniform(0.0, 1.0, feat_style_shape) feat_in_shape = (feat_chans, 17, 10) feat_in = np.random.uniform(0.0, 1.0, feat_in_shape) matcher = PatchMatcher(feat_in_shape[::-1], feat_style, patch_size=patch_size) feat_in_normed = matcher.normalize_patches(matcher.get_patches_for(feat_in)) for i in range(num_steps): matcher.update_with_patches(feat_in_normed) r = matcher.get_reconstruction() content_img_img = load_image(content_image_path) content_n_channels, content_n_rows, content_n_cols = content_img_img.shape[::-1] content_img = preprocess_image(content_img_img, content_n_cols, content_n_rows)[0]#.transpose((2,1,0)) style_img = load_image(style_image_path) style_n_channels, style_n_rows, style_n_cols = content_img_img.shape[::-1] style_img = preprocess_image( load_image(style_image_path), style_n_cols, style_n_rows)[0]#.transpose((2,1,0)) pg = make_patch_grid(content_img, patch_size) result = combine_patches_grid(pg, content_img.shape[::-1]) outimg = deprocess_image(result, contrast_percent=0) imsave(output_prefix + '_bestre.png', outimg) # # # matcher = PatchMatcher((content_n_cols, content_n_rows, content_n_channels), style_img, patch_size=patch_size) for i in range(num_steps): start = time.time() matcher.update(content_img, reverse_propagation=bool(i % 2)) print(matcher.similarity.min(), matcher.similarity.max(), matcher.similarity.mean()) end = time.time() #print end-start start = time.time() result = matcher.get_reconstruction(patches=matcher.target_patches) print(result.shape) end = time.time() print(end-start) outimg = deprocess_image(result, contrast_percent=0) # # imsave takes (rows, cols, channels) imsave(output_prefix + '_best.png', outimg)
9339
class Solution: def maximalSquare(self, matrix: List[List[str]]) -> int: if not matrix: return 0 m, n = len(matrix), len(matrix[0]) dp = [[0]*n for _ in range(m)] res = 0 for i in range(m): dp[i][0] = int(matrix[i][0]) for j in range(n): dp[0][j] = int(matrix[0][j]) for i in range(1, m): for j in range(1, n): if matrix[i][j] == '1': dp[i][j] = min(dp[i-1][j],dp[i-1][j-1],dp[i][j-1])+1 res = max(res, dp[i][j]) return res**2
9375
import gym from gym import spaces, error, utils from gym.utils import seeding import numpy as np from scipy.spatial.distance import pdist, squareform import configparser from os import path import matplotlib.pyplot as plt from matplotlib.pyplot import gca font = {'family' : 'sans-serif', 'weight' : 'bold', 'size' : 14} class FlockingEnv(gym.Env): def __init__(self): config_file = path.join(path.dirname(__file__), "params_flock.cfg") config = configparser.ConfigParser() config.read(config_file) config = config['flock'] self.fig = None self.line1 = None self.filter_len = int(config['filter_length']) self.nx_system = 4 self.n_nodes = int(config['network_size']) self.comm_radius = float(config['comm_radius']) self.dt = float(config['system_dt']) self.v_max = float(config['max_vel_init']) self.v_bias = self.v_max # 0.5 * self.v_max self.r_max = float(config['max_rad_init']) self.std_dev = float(config['std_dev']) * self.dt self.pooling = [] if config.getboolean('sum_pooling'): self.pooling.append(np.nansum) if config.getboolean('min_pooling'): self.pooling.append(np.nanmin) if config.getboolean('max_pooling'): self.pooling.append(np.nanmax) self.n_pools = len(self.pooling) # number of features and outputs self.n_features = int(config['N_features']) self.nx = int(self.n_features / self.n_pools / self.filter_len) self.nu = int(config['N_outputs']) # outputs self.x_agg = np.zeros((self.n_nodes, self.nx * self.filter_len, self.n_pools)) self.x = np.zeros((self.n_nodes, self.nx_system)) self.u = np.zeros((self.n_nodes, self.nu)) self.mean_vel = np.zeros((self.n_nodes, self.nu)) # TODO self.max_accel = 40 self.max_z = 200 # self.b = np.ones((self.n_nodes,1)) # self.action_space = spaces.Box(low=-self.max_accel, high=self.max_accel, shape=(self.n_nodes, 2), dtype=np.float32 ) # self.observation_space = spaces.Box(low=-self.max_z, high=self.max_z, shape=( # self.n_nodes, self.nx * self.filter_len * self.n_pools) , dtype=np.float32) self.action_space = spaces.Box(low=-self.max_accel, high=self.max_accel, shape=(2,) , dtype=np.float32 ) self.observation_space = spaces.Box(low=-self.max_z, high=self.max_z, shape=(self.n_features, ), dtype=np.float32) self.seed() def render(self, mode='human'): if self.fig is None: plt.ion() fig = plt.figure() ax = fig.add_subplot(111) line1, = ax.plot(self.x[:, 0], self.x[:, 1], 'bo') # Returns a tuple of line objects, thus the comma ax.plot([0], [0], 'kx') plt.ylim(-1.0 * self.r_max, 1.0 * self.r_max) plt.xlim(-1.0 * self.r_max, 1.0 * self.r_max) a = gca() a.set_xticklabels(a.get_xticks(), font) a.set_yticklabels(a.get_yticks(), font) plt.title('GNN Controller') self.fig = fig self.line1 = line1 self.line1.set_xdata(self.x[:, 0]) self.line1.set_ydata(self.x[:, 1]) self.fig.canvas.draw() self.fig.canvas.flush_events() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, u): x = self.x x_ = np.zeros((self.n_nodes, self.nx_system)) #u = np.vstack((np.zeros((self.n_leaders, 2)), u)) # x position x_[:, 0] = x[:, 0] + x[:, 2] * self.dt # y position x_[:, 1] = x[:, 1] + x[:, 3] * self.dt # x velocity x_[:, 2] = x[:, 2] + 0.1 * u[:, 0] * self.dt + np.random.normal(0, self.std_dev,(self.n_nodes,)) # y velocity x_[:, 3] = x[:, 3] + 0.1 * u[:, 1] * self.dt + np.random.normal(0, self.std_dev,(self.n_nodes,)) # TODO - check the 0.1 self.x = x_ self.x_agg = self.aggregate(self.x, self.x_agg) self.u = u return self._get_obs(), -self.instant_cost(), False, {} def instant_cost(self): # sum of differences in velocities return np.sum(np.var(self.x[:, 2:4], axis=0)) #+ np.sum(np.square(self.u)) * 0.00001 #return np.sum(np.square(self.x[:,2:4] - self.mean_vel)) def _get_obs(self): reshaped = self.x_agg.reshape((self.n_nodes, self.n_features)) clipped = np.clip(reshaped, a_min=-self.max_z, a_max=self.max_z) return clipped #[self.n_leaders:, :] def reset(self): x = np.zeros((self.n_nodes, self.nx_system)) degree = 0 min_dist = 0 while degree < 2 or min_dist < 0.1: # < 0.25: # 0.25: #0.5: #min_dist < 0.25: # randomly initialize the state of all agents length = np.sqrt(np.random.uniform(0, self.r_max, size=(self.n_nodes,))) angle = np.pi * np.random.uniform(0, 2, size=(self.n_nodes,)) x[:, 0] = length * np.cos(angle) x[:, 1] = length * np.sin(angle) bias = np.random.uniform(low=-self.v_bias, high=self.v_bias, size=(2,)) x[:, 2] = np.random.uniform(low=-self.v_max, high=self.v_max, size=(self.n_nodes,)) + bias[0] x[:, 3] = np.random.uniform(low=-self.v_max, high=self.v_max, size=(self.n_nodes,)) + bias[1] # compute distances between agents x_t_loc = x[:, 0:2] # x,y location determines connectivity a_net = squareform(pdist(x_t_loc.reshape((self.n_nodes, 2)), 'euclidean')) # no self loops a_net = a_net + 2 * self.comm_radius * np.eye(self.n_nodes) # compute minimum distance between agents and degree of network min_dist = np.min(np.min(a_net)) a_net = a_net < self.comm_radius degree = np.min(np.sum(a_net.astype(int), axis=1)) self.mean_vel = np.mean(x[:,2:4],axis=0) self.x = x self.x_agg = np.zeros((self.n_nodes, self.nx * self.filter_len, self.n_pools)) self.x_agg = self.aggregate(self.x, self.x_agg) return self._get_obs() # def render(self, mode='human'): # pass def close(self): pass def aggregate(self, xt, x_agg): """ Perform aggegration operation for all possible pooling operations using helper functions get_pool and get_comms Args: x_agg (): Last time step's aggregated info xt (): Current state of all agents Returns: Aggregated state values """ x_features = self.get_x_features(xt) a_net = self.get_connectivity(xt) for k in range(0, self.n_pools): comm_data = self.get_comms(np.dstack((x_features, self.get_features(x_agg[:, :, k]))), a_net) x_agg[:, :, k] = self.get_pool(comm_data, self.pooling[k]) return x_agg def get_connectivity(self, x): """ Get the adjacency matrix of the network based on agent locations by computing pairwise distances using pdist Args: x (): current states of all agents Returns: adjacency matrix of network """ x_t_loc = x[:, 0:2] # x,y location determines connectivity a_net = squareform(pdist(x_t_loc.reshape((self.n_nodes, 2)), 'euclidean')) a_net = (a_net < self.comm_radius).astype(float) np.fill_diagonal(a_net, 0) return a_net def get_x_features(self, xt): # TODO """ Compute the non-linear features necessary for implementing Turner 2003 Args: xt (): current state of all agents Returns: matrix of features for each agent """ diff = xt.reshape((self.n_nodes, 1, self.nx_system)) - xt.reshape((1, self.n_nodes, self.nx_system)) r2 = np.multiply(diff[:, :, 0], diff[:, :, 0]) + np.multiply(diff[:, :, 1], diff[:, :, 1]) + np.eye( self.n_nodes) return np.dstack((diff[:, :, 2], np.divide(diff[:, :, 0], np.multiply(r2, r2)), np.divide(diff[:, :, 0], r2), diff[:, :, 3], np.divide(diff[:, :, 1], np.multiply(r2, r2)), np.divide(diff[:, :, 1], r2))) def get_features(self, agg): """ Matrix of Args: agg (): the aggregated matrix from the last time step Returns: matrix of aggregated features from all nodes at current time """ return np.tile(agg[:, :-self.nx].reshape((self.n_nodes, 1, -1)), (1, self.n_nodes, 1)) # TODO check indexing def get_comms(self, mat, a_net): """ Enforces that agents who are not connected in the network cannot observe each others' states Args: mat (): matrix of state information for the whole graph a_net (): adjacency matrix for flock network (weighted networks unsupported for now) Returns: mat (): sparse matrix with NaN values where agents can't communicate """ a_net[a_net == 0] = np.nan return mat * a_net.reshape(self.n_nodes, self.n_nodes, 1) def get_pool(self, mat, func): """ Perform pooling operations on the matrix of state information. The replacement of values with NaNs for agents who can't communicate must already be enforced. Args: mat (): matrix of state information func (): pooling function (np.nansum(), np.nanmin() or np.nanmax()). Must ignore NaNs. Returns: information pooled from neighbors for each agent """ return func(mat, axis=1).reshape((self.n_nodes, self.n_features)) # TODO check this axis = 1 def controller(self): """ The controller for flocking from Turner 2003. Args: x (): the current state Returns: the optimal action """ x = self.x s_diff = x.reshape((self.n_nodes, 1, self.nx_system)) - x.reshape((1, self.n_nodes, self.nx_system)) r2 = np.multiply(s_diff[:, :, 0], s_diff[:, :, 0]) + np.multiply(s_diff[:, :, 1], s_diff[:, :, 1]) + np.eye( self.n_nodes) p = np.dstack((s_diff, self.potential_grad(s_diff[:, :, 0], r2), self.potential_grad(s_diff[:, :, 1], r2))) p_sum = np.nansum(p, axis=1).reshape((self.n_nodes, self.nx_system + 2)) return np.hstack(((- p_sum[:, 4] - p_sum[:, 2]).reshape((-1, 1)), (- p_sum[:, 3] - p_sum[:, 5]).reshape(-1, 1))) def potential_grad(self, pos_diff, r2): """ Computes the gradient of the potential function for flocking proposed in Turner 2003. Args: pos_diff (): difference in a component of position among all agents r2 (): distance squared between agents Returns: corresponding component of the gradient of the potential """ grad = -2.0 * np.divide(pos_diff, np.multiply(r2, r2)) + 2 * np.divide(pos_diff, r2) grad[r2 > self.comm_radius] = 0 return grad
9395
from datetime import datetime # ensure an rpc peer is added def addpeer(p, rpcpeer): pid = rpcpeer['id'] if pid not in p.persist['peerstate']: p.persist['peerstate'][pid] = { 'connected': rpcpeer['connected'], 'last_seen': datetime.now() if rpcpeer['connected'] else None, 'avail': 1.0 if rpcpeer['connected'] else 0.0 } # exponetially smooth online/offline states of peers def trace_availability(p, rpcpeers): p.persist['availcount'] += 1 leadwin = max(min(p.avail_window, p.persist['availcount'] * p.avail_interval), p.avail_interval) samples = leadwin / p.avail_interval alpha = 1.0 / samples beta = 1.0 - alpha for rpcpeer in rpcpeers['peers']: pid = rpcpeer['id'] addpeer(p, rpcpeer) if rpcpeer['connected']: p.persist['peerstate'][pid]['last_seen'] = datetime.now() p.persist['peerstate'][pid]['connected'] = True p.persist['peerstate'][pid]['avail'] = 1.0 * alpha + p.persist['peerstate'][pid]['avail'] * beta else: p.persist['peerstate'][pid]['connected'] = False p.persist['peerstate'][pid]['avail'] = 0.0 * alpha + p.persist['peerstate'][pid]['avail'] * beta
9402
import paddle.fluid as fluid from paddle.fluid.initializer import MSRA from paddle.fluid.param_attr import ParamAttr class MobileNetV2SSD: def __init__(self, img, num_classes, img_shape): self.img = img self.num_classes = num_classes self.img_shape = img_shape def ssd_net(self, scale=1.0): # 300x300 bottleneck_params_list = [(1, 16, 1, 1), (6, 24, 2, 2), (6, 32, 3, 2), (6, 64, 4, 2), (6, 96, 3, 1)] # conv1 input = self.conv_bn_layer(input=self.img, num_filters=int(32 * scale), filter_size=3, stride=2, padding=1, if_act=True) # bottleneck sequences in_c = int(32 * scale) for layer_setting in bottleneck_params_list: t, c, n, s = layer_setting input = self.invresi_blocks(input=input, in_c=in_c, t=t, c=int(c * scale), n=n, s=s) in_c = int(c * scale) # 19x19 module11 = input tmp = self.invresi_blocks(input=input, in_c=in_c, t=6, c=int(160 * scale), n=3, s=2) # 10x10 module13 = self.invresi_blocks(input=tmp, in_c=int(160 * scale), t=6, c=int(320 * scale), n=1, s=1) module14 = self.extra_block(module13, 256, 512, 1) # 5x5 module15 = self.extra_block(module14, 128, 256, 1) # 3x3 module16 = self.extra_block(module15, 128, 256, 1) # 2x2 module17 = self.extra_block(module16, 64, 128, 1) mbox_locs, mbox_confs, box, box_var = fluid.layers.multi_box_head( inputs=[module11, module13, module14, module15, module16, module17], image=self.img, num_classes=self.num_classes, min_ratio=20, max_ratio=90, min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0], max_sizes=[[], 150.0, 195.0, 240.0, 285.0, 300.0], aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]], base_size=self.img_shape[2], offset=0.5, flip=True) return mbox_locs, mbox_confs, box, box_var def conv_bn_layer(self, input, filter_size, num_filters, stride, padding, num_groups=1, if_act=True, use_cudnn=True): parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA()) conv = fluid.layers.conv2d(input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding, groups=num_groups, use_cudnn=use_cudnn, param_attr=parameter_attr, bias_attr=False) bn = fluid.layers.batch_norm(input=conv) if if_act: return fluid.layers.relu6(bn) else: return bn def shortcut(self, input, data_residual): return fluid.layers.elementwise_add(input, data_residual) def inverted_residual_unit(self, input, num_in_filter, num_filters, ifshortcut, stride, filter_size, padding, expansion_factor): num_expfilter = int(round(num_in_filter * expansion_factor)) channel_expand = self.conv_bn_layer(input=input, num_filters=num_expfilter, filter_size=1, stride=1, padding=0, num_groups=1, if_act=True) bottleneck_conv = self.conv_bn_layer(input=channel_expand, num_filters=num_expfilter, filter_size=filter_size, stride=stride, padding=padding, num_groups=num_expfilter, if_act=True, use_cudnn=False) linear_out = self.conv_bn_layer(input=bottleneck_conv, num_filters=num_filters, filter_size=1, stride=1, padding=0, num_groups=1, if_act=False) if ifshortcut: out = self.shortcut(input=input, data_residual=linear_out) return out else: return linear_out def invresi_blocks(self, input, in_c, t, c, n, s): first_block = self.inverted_residual_unit(input=input, num_in_filter=in_c, num_filters=c, ifshortcut=False, stride=s, filter_size=3, padding=1, expansion_factor=t) last_residual_block = first_block last_c = c for i in range(1, n): last_residual_block = self.inverted_residual_unit(input=last_residual_block, num_in_filter=last_c, num_filters=c, ifshortcut=True, stride=1, filter_size=3, padding=1, expansion_factor=t) return last_residual_block def conv_bn(self, input, filter_size, num_filters, stride, padding, num_groups=1, act='relu', use_cudnn=True): parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA()) conv = fluid.layers.conv2d(input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding, groups=num_groups, use_cudnn=use_cudnn, param_attr=parameter_attr, bias_attr=False) return fluid.layers.batch_norm(input=conv, act=act) def extra_block(self, input, num_filters1, num_filters2, num_groups): # 1x1 conv pointwise_conv = self.conv_bn(input=input, filter_size=1, num_filters=int(num_filters1), stride=1, num_groups=int(num_groups), padding=0) # 3x3 conv normal_conv = self.conv_bn(input=pointwise_conv, filter_size=3, num_filters=int(num_filters2), stride=2, num_groups=int(num_groups), padding=1) return normal_conv def build_ssd(img, num_classes, img_shape): ssd_model = MobileNetV2SSD(img, num_classes, img_shape) return ssd_model.ssd_net() if __name__ == '__main__': data = fluid.data(name='data', shape=[None, 3, 300, 300]) build_ssd(data, 21, img_shape=[3, 300, 300])
9513
import sys from os.path import dirname, abspath, join cur_folder = dirname(abspath(__file__)) sys.path.insert(0, join(dirname(cur_folder), 'src')) sys.path.insert(0, dirname(cur_folder)) print(cur_folder)
9523
import os import logging import dateutil import pickle from six.moves.urllib.parse import urlparse from libtaxii import get_message_from_http_response, VID_TAXII_XML_11 from libtaxii.messages_11 import PollRequest, PollFulfillmentRequest from libtaxii.messages_11 import PollResponse, generate_message_id from libtaxii.clients import HttpClient from certau import version_string class SimpleTaxiiClient(HttpClient): """A simple interface to libtaxii for sending TAXII client messages. Args: username: a username for HTTP basic authentication password: a password for HTTP basic authentication key_file: a file containing a private key (for SSL certificate-based authentication) cert_file: a file containing a certificate (for SSL certificate-based authentication) ca_file: a file containing the CA's certificate (for verifying the server's certificate) """ def __init__(self, username=None, password=<PASSWORD>, key_file=None, cert_file=None, ca_file=None): super(SimpleTaxiiClient, self).__init__() self._logger = logging.getLogger() self.username = username self.password = password self.key_file = key_file self.cert_file = cert_file self.ca_file = ca_file def setup_authentication(self, use_ssl): """Setup the appropriate credentials and authentication type. Initialises the authentication settings for the connection. Args: use_ssl: should this connection use SSL """ self.set_use_https(use_ssl) credentials = dict() if self.username and self.password: credentials['username'] = self.username credentials['password'] = self.password if use_ssl and self.key_file and self.cert_file: credentials['key_file'] = self.key_file credentials['cert_file'] = self.cert_file if credentials: self.set_auth_credentials(credentials) if self.username and self.password: if use_ssl and self.key_file and self.cert_file: self.set_auth_type(HttpClient.AUTH_CERT_BASIC) self._logger.debug("TAXII authentication using private key " "(%s), certificate (%s), and credentials " "for user '%s'", self.key_file, self.cert_file, self.username) else: self.set_auth_type(HttpClient.AUTH_BASIC) self._logger.debug("TAXII authentication using credentials " "for user '%s'", self.username) elif use_ssl and self.key_file and self.cert_file: self.set_auth_type(HttpClient.AUTH_CERT) self._logger.debug("TAXII authentication using private key (%s) " "and certificate (%s) only", self.key_file, self.cert_file) else: self.set_auth_type(HttpClient.AUTH_NONE) self._logger.debug("no TAXII authentication") # CA certificate verification if use_ssl and self.ca_file: self.set_verify_server(verify_server=True, ca_file=self.ca_file) self._logger.debug("SSL - verification using CA file (%s)", self.ca_file) @staticmethod def create_poll_request(collection, subscription_id=None, begin_timestamp=None, end_timestamp=None): """Create a poll request message using supplied parameters.""" request_kwargs = dict( message_id=generate_message_id(), collection_name=collection, exclusive_begin_timestamp_label=begin_timestamp, inclusive_end_timestamp_label=end_timestamp, ) if subscription_id: request_kwargs['subscription_id'] = subscription_id else: request_kwargs['poll_parameters'] = PollRequest.PollParameters() return PollRequest(**request_kwargs) @staticmethod def create_fulfillment_request(collection, result_id, part_number): return PollFulfillmentRequest( message_id=generate_message_id(), collection_name=collection, result_id=result_id, result_part_number=part_number, ) def send_taxii_message(self, request, host, path, port): # Send the request message and return the response http_response = self.call_taxii_service2( host=host, path=path, message_binding=VID_TAXII_XML_11, post_data=request.to_xml(), port=port, user_agent='{} (libtaxii)'.format(version_string) ) response = get_message_from_http_response( http_response=http_response, in_response_to=request.message_id, ) return response @staticmethod def get_poll_time(filename, poll_url, collection): if os.path.isfile(filename): with open(filename, 'rb') as state_file: poll_state = pickle.load(state_file) if isinstance(poll_state, dict) and poll_url in poll_state: if collection in poll_state[poll_url]: time_string = poll_state[poll_url][collection] return dateutil.parser.parse(time_string) return None @staticmethod def save_poll_time(filename, poll_url, collection, timestamp): if timestamp is not None: poll_state = dict() if os.path.isfile(filename): with open(filename, 'rb') as state_file: poll_state = pickle.load(state_file) if not isinstance(poll_state, dict): raise Exception('unexpected content encountered when ' 'reading TAXII poll state file') if poll_url not in poll_state: poll_state[poll_url] = dict() poll_state[poll_url][collection] = str(timestamp) with open(filename, 'wb') as state_file: pickle.dump(poll_state, state_file, protocol=2) def poll(self, poll_url, collection, subscription_id=None, begin_timestamp=None, end_timestamp=None, state_file=None): """Send the TAXII poll request to the server using the given URL.""" # Parse the poll_url to get the parts required by libtaxii url_parts = urlparse(poll_url) # Allow credentials to be provided in poll_url if url_parts.username and url_parts.password: self.username = url_parts.username self.password = url_parts.password self._logger.debug('updating username and password from poll_url') if url_parts.scheme not in ['http', 'https']: raise Exception('invalid scheme in poll_url (%s); expected ' '"http" or "https"', poll_url) use_ssl = True if url_parts.scheme == 'https' else False # Initialise the authentication settings self.setup_authentication(use_ssl) if state_file and not begin_timestamp: begin_timestamp = self.get_poll_time( filename=state_file, poll_url=poll_url, collection=collection, ) request = self.create_poll_request( collection=collection, subscription_id=subscription_id, begin_timestamp=begin_timestamp, end_timestamp=end_timestamp, ) self._logger.debug('sending poll request (url=%s, collection=%s)', poll_url, collection) response = self.send_taxii_message( request=request, host=url_parts.hostname, path=url_parts.path, port=url_parts.port, ) first = True poll_end_time = None while True: if not isinstance(response, PollResponse): raise Exception('didn\'t get a poll response') self._logger.debug('received poll response ' '(content_blocks=%d, result_id=%s, more=%s)', len(response.content_blocks), response.result_id, 'True' if response.more else 'False') # Save end timestamp from first PollResponse if first: poll_end_time = response.inclusive_end_timestamp_label if len(response.content_blocks) == 0: if first: self._logger.info('poll response contained ' 'no content blocks') break for content_block in response.content_blocks: yield content_block if not response.more: break # Send a fulfilment request if first: # Initialise fulfilment request values part_number = response.result_part_number result_id = response.result_id first = False part_number += 1 request = self.create_fulfillment_request( collection=collection, result_id=result_id, part_number=part_number, ) self._logger.debug('sending fulfilment request ' '(result_id=%s, part_number=%d)', result_id, part_number) response = self.send_taxii_message( request=request, host=url_parts.hostname, path=url_parts.path, port=url_parts.port, ) # Update the timestamp for the latest poll if state_file and poll_end_time: self.save_poll_time( filename=state_file, poll_url=poll_url, collection=collection, timestamp=poll_end_time, )
9548
description = 'Mezei spin flipper using TTI power supply' group = 'optional' tango_base = 'tango://miractrl.mira.frm2:10000/mira/' devices = dict( dct1 = device('nicos.devices.entangle.PowerSupply', description = 'current in first channel of supply (flipper current)', tangodevice = tango_base + 'tti1/out1', timeout = 1, precision = 0.01, ), dct2 = device('nicos.devices.entangle.PowerSupply', description = 'current in second channel of supply (compensation current)', tangodevice = tango_base + 'tti1/out2', timeout = 1, precision = 0.01, ), flip = device('nicos.devices.polarized.MezeiFlipper', description = 'Mezei flipper before sample (in shielding table)', flip = 'dct1', corr = 'dct2', ), )
9563
import abc import logging from typing import Any, Dict, List, Optional from homeassistant.components.water_heater import WaterHeaterEntity from homeassistant.const import ( TEMP_FAHRENHEIT, TEMP_CELSIUS ) from gehomesdk import ErdCode, ErdMeasurementUnits from ...const import DOMAIN from .ge_erd_entity import GeEntity _LOGGER = logging.getLogger(__name__) class GeWaterHeater(GeEntity, WaterHeaterEntity, metaclass=abc.ABCMeta): """Mock temperature/operation mode supporting device as a water heater""" @property def heater_type(self) -> str: raise NotImplementedError @property def operation_list(self) -> List[str]: raise NotImplementedError @property def unique_id(self) -> str: return f"{DOMAIN}_{self.serial_or_mac}_{self.heater_type}" @property def name(self) -> Optional[str]: return f"{self.serial_or_mac} {self.heater_type.title()}" @property def temperature_unit(self): measurement_system = self.appliance.get_erd_value(ErdCode.TEMPERATURE_UNIT) if measurement_system == ErdMeasurementUnits.METRIC: return TEMP_CELSIUS return TEMP_FAHRENHEIT @property def supported_features(self): raise NotImplementedError
9577
import sys import socket conn = socket.create_connection(('0.0.0.0', 8080)) msgs = [ # 0 Keep-Alive, Transfer-Encoding chunked 'GET / HTTP/1.1\r\nConnection: Keep-Alive\r\n\r\n', # 1,2,3 Close, EOF "encoding" 'GET / HTTP/1.1\r\n\r\n', 'GET / HTTP/1.1\r\nConnection: close\r\n\r\n', 'GET / HTTP/1.0\r\nConnection: Keep-Alive\r\n\r\n', # 4 Bad Request 'GET /%20%20% HTTP/1.1\r\n\r\n', # 5 Bug #14 'GET /%20abc HTTP/1.0\r\n\r\n', # 6 Content-{Length, Type} 'GET / HTTP/1.0\r\nContent-Length: 11\r\n' 'Content-Type: text/blah\r\nContent-Fype: bla\r\n' 'Content-Tength: bla\r\n\r\nhello world', # 7 POST memory leak 'POST / HTTP/1.0\r\nContent-Length: 1000\r\n\r\n%s' % ('a'*1000), # 8,9 CVE-2015-0219 'GET / HTTP/1.1\r\nFoo_Bar: bad\r\n\r\n', 'GET / HTTP/1.1\r\nFoo-Bar: good\r\nFoo_Bar: bad\r\n\r\n' ] conn.send(msgs[int(sys.argv[1])].encode()) while 1: data = conn.recv(100) if not data: break print(repr(data)) if data.endswith(b'0\r\n\r\n'): if raw_input('new request? Y/n') == 'n': exit() conn.send(b'GET / HTTP/1.1\r\nConnection: Keep-Alive\r\n\r\n')
9586
BIG_CONSTANT = "YES" def group_by(xs, grouper): groups = {} for x in xs: group = grouper(x) if group not in groups: groups[group] = [] groups[group].append(x) return groups print(group_by([1, 2, 3, 4, 5, 6], lambda x: "even" if x % 2 == 0 else "odd"))
9591
from typing import Optional import pandas as pd from ruptures import Binseg from ruptures.base import BaseCost from sklearn.linear_model import LinearRegression from etna.transforms.base import PerSegmentWrapper from etna.transforms.decomposition.change_points_trend import BaseEstimator from etna.transforms.decomposition.change_points_trend import TDetrendModel from etna.transforms.decomposition.change_points_trend import _OneSegmentChangePointsTrendTransform class _OneSegmentTrendTransform(_OneSegmentChangePointsTrendTransform): """_OneSegmentTrendTransform adds trend as a feature.""" def __init__( self, in_column: str, out_column: str, change_point_model: BaseEstimator, detrend_model: TDetrendModel, **change_point_model_predict_params, ): """Init _OneSegmentTrendTransform. Parameters ---------- in_column: name of column to apply transform to out_column: name of added column change_point_model: model to get trend change points detrend_model: model to get trend from data change_point_model_predict_params: params for change_point_model predict method """ self.out_column = out_column super().__init__( in_column=in_column, change_point_model=change_point_model, detrend_model=detrend_model, **change_point_model_predict_params, ) def transform(self, df: pd.DataFrame) -> pd.DataFrame: """Add column with trend, got from the detrend_model. Parameters ---------- df: data to get trend from Returns ------- pd.DataFrame: df with trend column """ df._is_copy = False series = df[self.in_column] trend_series = self._predict_per_interval_model(series=series) df[self.out_column] = trend_series return df def inverse_transform(self, df: pd.DataFrame) -> pd.DataFrame: """Inverse transform dataframe. Parameters ---------- df: one segment dataframe Returns ------- pd.DataFrame: given dataframe """ return df class _TrendTransform(PerSegmentWrapper): """_TrendTransform adds trend as a feature. Creates column 'regressor_<in_column>_trend'.""" def __init__( self, in_column: str, out_column: str, change_point_model: BaseEstimator, detrend_model: TDetrendModel, **change_point_model_predict_params, ): """Init _TrendTransform. Parameters ---------- in_column: name of column to apply transform to out_column: name of added column change_point_model: model to get trend change points detrend_model: model to get trend in data change_point_model_predict_params: params for change_point_model predict method """ super().__init__( transform=_OneSegmentTrendTransform( in_column=in_column, out_column=out_column, change_point_model=change_point_model, detrend_model=detrend_model, **change_point_model_predict_params, ) ) class TrendTransform(_TrendTransform): """TrendTransform adds trend as a feature. TrendTransform uses Binseg model as a change point detection model in _TrendTransform. """ def __init__( self, in_column: str, out_column: Optional[str] = None, detrend_model: TDetrendModel = LinearRegression(), model: str = "ar", custom_cost: Optional[BaseCost] = None, min_size: int = 2, jump: int = 1, n_bkps: int = 5, pen: Optional[float] = None, epsilon: Optional[float] = None, ): """Init TrendTransform. Parameters ---------- in_column: name of column to apply transform to out_column: name of added column. Don't forget to add regressor prefix if necessary. If not given, use 'regressor_{self.__repr__()}' detrend_model: model to get trend in data model: binseg segment model, ["l1", "l2", "rbf",...]. Not used if 'custom_cost' is not None. custom_cost: binseg custom cost function min_size: minimum segment length necessary to decide it is a stable trend segment jump: jump value can speed up computations: if jump==k, the algo will use every k-th value for change points search. n_bkps: number of change points to find pen: penalty value (>0) epsilon: reconstruction budget (>0) """ self.in_column = in_column self.out_column = out_column self.detrend_model = detrend_model self.model = model self.custom_cost = custom_cost self.min_size = min_size self.jump = jump self.n_bkps = n_bkps self.pen = pen self.epsilon = epsilon super().__init__( in_column=self.in_column, out_column=self.out_column if self.out_column is not None else f"regressor_{self.__repr__()}", change_point_model=Binseg( model=self.model, custom_cost=self.custom_cost, min_size=self.min_size, jump=self.jump ), detrend_model=self.detrend_model, n_bkps=self.n_bkps, pen=self.pen, epsilon=self.epsilon, )
9616
from __future__ import division import torch import torch.autograd as autograd import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import numpy as np import sys import os import time # # TORCH INSTALLATION: refer to https://pytorch.org/get-started/locally/ # def update_progress(job_title, progress): length = 20 # modify this to change the length block = int(round(length*progress)) msg = "\r{0}: [{1}] {2}%".format(job_title, "#"*block + "-"*(length-block), round(progress*100, 2)) if progress >= 1: msg += " DONE\r\n" sys.stdout.write(msg) sys.stdout.flush() def cls(): os.system('cls' if os.name=='nt' else 'clear') cls() ################################################################################################################ # Initialize torch tensor for coordiantes coords_data = [[ 0.0 , 0.0 , 0.0 ], [ 1.0/(2.0**0.5), 0.0 , 1.0/(2.0**0.5)], [ 1.0/(2.0**0.5), 0.0 ,-1.0/(2.0**0.5)], [ 2.0**0.5 , 0.0 , 0.0 ], [ 0.0 , 1.0 , 0.0 ], [ 1.0/(2.0**0.5), 1.0 , 1.0/(2.0**0.5)], [ 1.0/(2.0**0.5), 1.0 ,-1.0/(2.0**0.5)], [ 2.0**0.5 , 1.0 , 0.0 ], ] coords = torch.tensor(coords_data,requires_grad=True,dtype=torch.float64) nnodes_r = coords.size(0) nnodes_ie = 8 nnodes_if = 4 nterms_s = 8 ndirs = 3 coord_sys = 'CARTESIAN' # Define matrix of polynomial basis terms at support nodes val_r_data = [[ 1.0,-1.0,-1.0,-1.0, 1.0, 1.0, 1.0,-1.0], [ 1.0,-1.0,-1.0, 1.0,-1.0,-1.0, 1.0, 1.0], [ 1.0, 1.0,-1.0,-1.0,-1.0, 1.0,-1.0, 1.0], [ 1.0, 1.0,-1.0, 1.0, 1.0,-1.0,-1.0,-1.0], [ 1.0,-1.0, 1.0,-1.0, 1.0,-1.0,-1.0, 1.0], [ 1.0,-1.0, 1.0, 1.0,-1.0, 1.0,-1.0,-1.0], [ 1.0, 1.0, 1.0,-1.0,-1.0,-1.0, 1.0,-1.0], [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], ] val_r = torch.tensor(val_r_data,requires_grad=False,dtype=torch.float64) # Define matrices at interpolation nodes (quadrature, level = 1) val_i_data = [[ 1.0,-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0), 1.0/3.0, 1.0/3.0, 1.0/3.0,-1.0/3.0*np.sqrt(1.0/3.0)], [ 1.0,-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),-1.0/3.0,-1.0/3.0, 1.0/3.0, 1.0/3.0*np.sqrt(1.0/3.0)], [ 1.0, np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),-1.0/3.0, 1.0/3.0,-1.0/3.0, 1.0/3.0*np.sqrt(1.0/3.0)], [ 1.0, np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0), 1.0/3.0,-1.0/3.0,-1.0/3.0,-1.0/3.0*np.sqrt(1.0/3.0)], [ 1.0,-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0), 1.0/3.0,-1.0/3.0,-1.0/3.0, 1.0/3.0*np.sqrt(1.0/3.0)], [ 1.0,-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),-1.0/3.0, 1.0/3.0,-1.0/3.0,-1.0/3.0*np.sqrt(1.0/3.0)], [ 1.0, np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),-1.0/3.0,-1.0/3.0, 1.0/3.0,-1.0/3.0*np.sqrt(1.0/3.0)], [ 1.0, np.sqrt(1.0/3.0), np.sqrt(1.0/3.0), np.sqrt(1.0/3.0), 1.0/3.0, 1.0/3.0, 1.0/3.0, 1.0/3.0*np.sqrt(1.0/3.0)], ] val_i = torch.tensor(val_i_data,requires_grad=False,dtype=torch.float64) ddxi_i_data = [[ 0.0,0.0,0.0,1.0,-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),0.0, 1.0/3.0], [ 0.0,0.0,0.0,1.0,-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),0.0, 1.0/3.0], [ 0.0,0.0,0.0,1.0, np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),0.0,-1.0/3.0], [ 0.0,0.0,0.0,1.0, np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),0.0,-1.0/3.0], [ 0.0,0.0,0.0,1.0,-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),0.0,-1.0/3.0], [ 0.0,0.0,0.0,1.0,-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),0.0,-1.0/3.0], [ 0.0,0.0,0.0,1.0, np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),0.0, 1.0/3.0], [ 0.0,0.0,0.0,1.0, np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),0.0, 1.0/3.0], ] ddxi_i = torch.tensor(ddxi_i_data,requires_grad=False,dtype=torch.float64) ddeta_i_data = [[ 0.0,1.0,0.0,0.0,-np.sqrt(1.0/3.0),0.0,-np.sqrt(1.0/3.0), 1.0/3.0], [ 0.0,1.0,0.0,0.0, np.sqrt(1.0/3.0),0.0,-np.sqrt(1.0/3.0),-1.0/3.0], [ 0.0,1.0,0.0,0.0,-np.sqrt(1.0/3.0),0.0,-np.sqrt(1.0/3.0), 1.0/3.0], [ 0.0,1.0,0.0,0.0, np.sqrt(1.0/3.0),0.0,-np.sqrt(1.0/3.0),-1.0/3.0], [ 0.0,1.0,0.0,0.0,-np.sqrt(1.0/3.0),0.0, np.sqrt(1.0/3.0),-1.0/3.0], [ 0.0,1.0,0.0,0.0, np.sqrt(1.0/3.0),0.0, np.sqrt(1.0/3.0), 1.0/3.0], [ 0.0,1.0,0.0,0.0,-np.sqrt(1.0/3.0),0.0, np.sqrt(1.0/3.0),-1.0/3.0], [ 0.0,1.0,0.0,0.0, np.sqrt(1.0/3.0),0.0, np.sqrt(1.0/3.0), 1.0/3.0], ] ddeta_i = torch.tensor(ddeta_i_data,requires_grad=False,dtype=torch.float64) ddzeta_i_data= [[ 0.0,0.0,1.0,0.0,0.0,-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0), 1.0/3.0], [ 0.0,0.0,1.0,0.0,0.0, np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),-1.0/3.0], [ 0.0,0.0,1.0,0.0,0.0,-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),-1.0/3.0], [ 0.0,0.0,1.0,0.0,0.0, np.sqrt(1.0/3.0), np.sqrt(1.0/3.0), 1.0/3.0], [ 0.0,0.0,1.0,0.0,0.0,-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0), 1.0/3.0], [ 0.0,0.0,1.0,0.0,0.0, np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),-1.0/3.0], [ 0.0,0.0,1.0,0.0,0.0,-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),-1.0/3.0], [ 0.0,0.0,1.0,0.0,0.0, np.sqrt(1.0/3.0), np.sqrt(1.0/3.0), 1.0/3.0], ] ddzeta_i = torch.tensor(ddzeta_i_data,requires_grad=False,dtype=torch.float64) # Define element interpolation nodes weights for linear element weights_e_data = [1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0] weights_e = torch.tensor(weights_e_data,requires_grad=False,dtype=torch.float64) # Define val_f for each face # Face 1, XI_MIN val_1_data = [[ 1.0,-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),-1.0, np.sqrt(1.0/3.0), np.sqrt(1.0/3.0), 1.0/3.0,-1.0/3.0], [ 1.0, np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),-1.0,-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),-1.0/3.0, 1.0/3.0], [ 1.0,-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),-1.0, np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),-1.0/3.0, 1.0/3.0], [ 1.0, np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),-1.0,-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0), 1.0/3.0,-1.0/3.0], ] val_1 = torch.tensor(val_1_data,requires_grad=False,dtype=torch.float64) # Face 2, XI_MAX val_2_data = [[ 1.0,-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),1.0,-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0), 1.0/3.0, 1.0/3.0], [ 1.0, np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),1.0, np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),-1.0/3.0,-1.0/3.0], [ 1.0,-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),1.0,-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),-1.0/3.0,-1.0/3.0], [ 1.0, np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),1.0, np.sqrt(1.0/3.0), np.sqrt(1.0/3.0), 1.0/3.0, 1.0/3.0], ] val_2 = torch.tensor(val_2_data,requires_grad=False,dtype=torch.float64) # Face 3, ETA_MIN val_3_data = [[ 1.0,-1.0,-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0), 1.0/3.0, np.sqrt(1.0/3.0),-1.0/3.0], [ 1.0,-1.0,-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),-1.0/3.0, np.sqrt(1.0/3.0), 1.0/3.0], [ 1.0,-1.0, np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),-1.0/3.0,-np.sqrt(1.0/3.0), 1.0/3.0], [ 1.0,-1.0, np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0), 1.0/3.0,-np.sqrt(1.0/3.0),-1.0/3.0], ] val_3 = torch.tensor(val_3_data,requires_grad=False,dtype=torch.float64) # Face 4, ETA_MAX val_4_data = [[ 1.0,1.0,-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0), 1.0/3.0,-np.sqrt(1.0/3.0), 1.0/3.0], [ 1.0,1.0,-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),-1.0/3.0,-np.sqrt(1.0/3.0),-1.0/3.0], [ 1.0,1.0, np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),-1.0/3.0, np.sqrt(1.0/3.0),-1.0/3.0], [ 1.0,1.0, np.sqrt(1.0/3.0), np.sqrt(1.0/3.0), np.sqrt(1.0/3.0), 1.0/3.0, np.sqrt(1.0/3.0), 1.0/3.0], ] val_4 = torch.tensor(val_4_data,requires_grad=False,dtype=torch.float64) # Face 5, ZETA_MIN val_5_data = [[ 1.0,-np.sqrt(1.0/3.0),-1.0,-np.sqrt(1.0/3.0), 1.0/3.0, np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),-1.0/3.0], [ 1.0,-np.sqrt(1.0/3.0),-1.0, np.sqrt(1.0/3.0),-1.0/3.0,-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0), 1.0/3.0], [ 1.0, np.sqrt(1.0/3.0),-1.0,-np.sqrt(1.0/3.0),-1.0/3.0, np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0), 1.0/3.0], [ 1.0, np.sqrt(1.0/3.0),-1.0, np.sqrt(1.0/3.0), 1.0/3.0,-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),-1.0/3.0], ] val_5 = torch.tensor(val_5_data,requires_grad=False,dtype=torch.float64) # Face 6, ZETA_MAX val_6_data = [[ 1.0,-np.sqrt(1.0/3.0),1.0,-np.sqrt(1.0/3.0), 1.0/3.0,-np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0), 1.0/3.0], [ 1.0,-np.sqrt(1.0/3.0),1.0, np.sqrt(1.0/3.0),-1.0/3.0, np.sqrt(1.0/3.0),-np.sqrt(1.0/3.0),-1.0/3.0], [ 1.0, np.sqrt(1.0/3.0),1.0,-np.sqrt(1.0/3.0),-1.0/3.0,-np.sqrt(1.0/3.0), np.sqrt(1.0/3.0),-1.0/3.0], [ 1.0, np.sqrt(1.0/3.0),1.0, np.sqrt(1.0/3.0), 1.0/3.0, np.sqrt(1.0/3.0), np.sqrt(1.0/3.0), 1.0/3.0], ] val_6 = torch.tensor(val_6_data,requires_grad=False,dtype=torch.float64) #-------------------------------------------------------------------- # Matrix modes_to_nodes val_r_inv = torch.inverse(val_r) # Computes coordiantes modes coords_modes = torch.mm(val_r_inv,coords) # Initialized coordiantes interp_coords = torch.mm(val_i,coords_modes) # Initialized jacobian jacobian = torch.empty(3,3,nnodes_ie, dtype=torch.float64) for inode in range(0,nnodes_ie): jacobian[0,0,inode] = torch.dot(ddxi_i[inode,:] , coords_modes[:,0]) jacobian[0,1,inode] = torch.dot(ddeta_i[inode,:] , coords_modes[:,0]) jacobian[0,2,inode] = torch.dot(ddzeta_i[inode,:] , coords_modes[:,0]) jacobian[1,0,inode] = torch.dot(ddxi_i[inode,:] , coords_modes[:,1]) jacobian[1,1,inode] = torch.dot(ddeta_i[inode,:] , coords_modes[:,1]) jacobian[1,2,inode] = torch.dot(ddzeta_i[inode,:] , coords_modes[:,1]) jacobian[2,0,inode] = torch.dot(ddxi_i[inode,:] , coords_modes[:,2]) jacobian[2,1,inode] = torch.dot(ddeta_i[inode,:] , coords_modes[:,2]) jacobian[2,2,inode] = torch.dot(ddzeta_i[inode,:] , coords_modes[:,2]) update_progress("Computing Jacobian ", inode/(nnodes_ie-1)) if coord_sys == 'CYLINDRICAL': scaling_factor = torch.mm(val_i,coords_modes[:,0]) for inode in range(0,nnodes_ie): jacobian[1,0,inode] = jacobian[1,0,inode] * scaling_factor[inode] jacobian[1,1,inode] = jacobian[1,1,inode] * scaling_factor[inode] jacobian[1,2,inode] = jacobian[1,2,inode] * scaling_factor[inode] # Matrics and Determinant metrics = torch.empty(3,3,nnodes_ie, dtype=torch.float64) jinv = torch.empty(nnodes_ie, dtype=torch.float64) for inode in range(0,nnodes_ie): ijacobian = torch.empty(3,3, dtype=torch.float64) imetric = torch.empty(3,3, dtype=torch.float64) for irow in range(0,3): for icol in range(0,3): ijacobian[irow,icol] = jacobian[irow,icol,inode] # Compute jacobian for the ith node update_progress("Computing Jinv and Metric ", inode/(nnodes_ie-1)) jinv[inode] = torch.det(ijacobian) imetric = torch.inverse(ijacobian) for irow in range(0,3): for icol in range(0,3): metrics[irow,icol,inode] = imetric[irow,icol] # Compute inverse Mass matrix invmass = torch.empty(nterms_s,nterms_s,nnodes_ie, dtype=torch.float64) mass = torch.empty(nterms_s,nterms_s,nnodes_ie, dtype=torch.float64) val_tmp = torch.empty(nterms_s,nnodes_ie, dtype=torch.float64) i = 1 for iterm in range(0,nterms_s): for inode in range(0,nnodes_ie): val_tmp[inode,iterm] = val_i[inode,iterm] * weights_e[inode] * jinv[inode] update_progress("Computing invmass ", i/(nterms_s*nnodes_ie)) i += 1 mass = torch.mm(torch.t(val_tmp),val_i) invmass = torch.inverse(mass) # Compute BR2_VOL for each face br2_vol_face1 = torch.mm(val_i,torch.mm(invmass,torch.t(val_1))) br2_vol_face2 = torch.mm(val_i,torch.mm(invmass,torch.t(val_2))) br2_vol_face3 = torch.mm(val_i,torch.mm(invmass,torch.t(val_3))) br2_vol_face4 = torch.mm(val_i,torch.mm(invmass,torch.t(val_4))) br2_vol_face5 = torch.mm(val_i,torch.mm(invmass,torch.t(val_5))) br2_vol_face6 = torch.mm(val_i,torch.mm(invmass,torch.t(val_6))) update_progress("Computing br2_vol ", 1) # Compute BR2_FACE for each face br2_face_face1 = torch.mm(val_1,torch.mm(invmass,torch.t(val_1))) br2_face_face2 = torch.mm(val_2,torch.mm(invmass,torch.t(val_2))) br2_face_face3 = torch.mm(val_3,torch.mm(invmass,torch.t(val_3))) br2_face_face4 = torch.mm(val_4,torch.mm(invmass,torch.t(val_4))) br2_face_face5 = torch.mm(val_5,torch.mm(invmass,torch.t(val_5))) br2_face_face6 = torch.mm(val_6,torch.mm(invmass,torch.t(val_6))) update_progress("Computing br2_face ", 1) # Grad1, Grad2, and Grad3 grad1 = torch.empty(nnodes_ie,nterms_s, dtype=torch.float64) grad2 = torch.empty(nnodes_ie,nterms_s, dtype=torch.float64) grad3 = torch.empty(nnodes_ie,nterms_s, dtype=torch.float64) i = 1 for iterm in range(0,nterms_s): for inode in range(0,nnodes_ie): grad1[inode,iterm] = metrics[0,0,inode] * ddxi_i[inode,iterm] + metrics[1,0,inode] * ddeta_i[inode,iterm] + metrics[2,0,inode] * ddzeta_i[inode,iterm] grad2[inode,iterm] = metrics[0,1,inode] * ddxi_i[inode,iterm] + metrics[1,1,inode] * ddeta_i[inode,iterm] + metrics[2,1,inode] * ddzeta_i[inode,iterm] grad3[inode,iterm] = metrics[0,2,inode] * ddxi_i[inode,iterm] + metrics[1,2,inode] * ddeta_i[inode,iterm] + metrics[2,2,inode] * ddzeta_i[inode,iterm] update_progress("Computing grad1, grad2, grad3 ", i/(nnodes_ie*nterms_s)) i += 1 #WRITE_____________________ # # Metrics # f = open("metrics.txt","w") i = 1 for inode in range (0,nnodes_ie): f.write("Metric interpolation node %d \n" % (inode+1)) array = np.zeros([3, 3]) for irow in range(0,3): for icol in range(0,3): array[irow,icol] = metrics[irow,icol,inode].item() update_progress("Writing metrics to file ", i/(nnodes_ie*9)) i += 1 np.savetxt(f,array) f.close() # # jinv # f = open("jinv.txt","w") array = np.zeros([1]) i = 1 for inode in range (0,nnodes_ie): f.write("Jinv interpolation node %d \n" % (inode+1)) array[0] = jinv[inode].item() np.savetxt(f,array) update_progress("Writing jinv to file ", i/(nnodes_ie)) i += 1 f.close() # # Grad1 # f = open("grad1.txt","w") f.write("Grad1 \n") array = np.zeros([nnodes_ie,nterms_s]) i = 1 for inode in range (0,nnodes_ie): for iterm in range(0,nterms_s): array[inode,iterm] = grad1[inode,iterm].item() update_progress("Writing grad1 to file ", i/(nnodes_ie*nterms_s)) i += 1 np.savetxt(f,array) f.close() # # Grad2 # f = open("grad2.txt","w") f.write("Grad2 \n") array = np.zeros([nnodes_ie,nterms_s]) i = 1 for inode in range (0,nnodes_ie): for iterm in range(0,nterms_s): array[inode,iterm] = grad2[inode,iterm].item() update_progress("Writing grad2 to file ", i/(nnodes_ie*nterms_s)) i += 1 np.savetxt(f,array) f.close() # # Grad3 # f = open("grad3.txt","w") f.write("Grad3 \n") array = np.zeros([nnodes_ie,nterms_s]) i = 1 for inode in range (0,nnodes_ie): for iterm in range(0,nterms_s): array[inode,iterm] = grad3[inode,iterm].item() update_progress("Writing grad3 to file ", i/(nnodes_ie*nterms_s)) i += 1 np.savetxt(f,array) f.close() # # dmetric_dx # f = open("dmetric_dx.txt","w") i = 1 for inode in range (0,nnodes_ie): for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): array = np.zeros([3,3]) f.write("dmetric_dx interpolation node %s, diff_node %s, diff_dir %s \n" % (inode+1,inode_diff+1,idir+1)) for irow in range(0,3): for icol in range(0,3): data = metrics[irow,icol,inode] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dmetric_dx to file ", i/(nnodes_ie*nnodes_r*ndirs*3*3)) # This avoid to accumulate derivatives dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() # # interp_coords_dx # f = open("dinterp_xcoords_dx.txt","w") i = 1 f.write("xcoord interpolation, coord 1, row=node, col=nnodes_r*dir \n") array = np.zeros([nnodes_ie,nnodes_r*ndirs]) for inode in range (0,nnodes_ie): data = interp_coords[inode,0] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): if idir == 0: index = inode_diff elif idir == 1: index = nnodes_r + inode_diff elif idir == 2: index = 2*nnodes_r + inode_diff array[inode,index] = ddata_np[inode_diff,idir] update_progress("Writing interp_xcoords_dx to file ", i/(nnodes_ie*nnodes_r*3)) i += 1 # This avoid to accumulate derivatives dummy = coords.grad.data.zero_() np.savetxt(f,array) f.close() f = open("dinterp_ycoords_dx.txt","w") i = 1 f.write("ycoord interpolation, coord 2, row=node, col=nnodes_r*dir \n") array = np.zeros([nnodes_ie,nnodes_r*ndirs]) for inode in range (0,nnodes_ie): data = interp_coords[inode,1] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): if idir == 0: index = inode_diff elif idir == 1: index = nnodes_r + inode_diff elif idir == 2: index = 2*nnodes_r + inode_diff array[inode,index] = ddata_np[inode_diff,idir] update_progress("Writing interp_ycoords_dx to file ", i/(nnodes_ie*nnodes_r*3)) i += 1 # This avoid to accumulate derivatives dummy = coords.grad.data.zero_() np.savetxt(f,array) f.close() f = open("dinterp_zcoords_dx.txt","w") i = 1 f.write("zcoord interpolation, coord 3, row=node, col=nnodes_r*dir \n") array = np.zeros([nnodes_ie,nnodes_r*ndirs]) for inode in range (0,nnodes_ie): data = interp_coords[inode,2] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): if idir == 0: index = inode_diff elif idir == 1: index = nnodes_r + inode_diff elif idir == 2: index = 2*nnodes_r + inode_diff array[inode,index] = ddata_np[inode_diff,idir] update_progress("Writing interp_zcoords_dx to file ", i/(nnodes_ie*nnodes_r*3)) i += 1 # This avoid to accumulate derivatives dummy = coords.grad.data.zero_() np.savetxt(f,array) f.close() # # djinv_dx # f = open("djinv_dx.txt","w") i = 1 for inode in range (0,nnodes_ie): array = np.zeros([nnodes_r,ndirs]) f.write("djinv_dx interpolation node %s, row=inode_diff, col=dir \n" % (inode+1)) for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): data = jinv[inode] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[inode_diff,idir] = ddata_np[inode_diff,idir] update_progress("Writing djinv_dx to file ", i/(nnodes_ie*nnodes_r*ndirs)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() # # dmass_dx # f = open("dmass_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dmass_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nterms_s,nterms_s]) for irow in range(0,nterms_s): for icol in range(0,nterms_s): data = mass[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dmass_dx to file ", i/(nterms_s*nnodes_r*ndirs*nterms_s)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() # # dinvmass_dx # f = open("dinvmass_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dinvmass_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nterms_s,nterms_s]) for irow in range(0,nterms_s): for icol in range(0,nterms_s): data = invmass[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dinvmass_dx to file ", i/(nterms_s*nnodes_r*ndirs*nterms_s)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() # # dbr2_vol_dx # # f = open("dbr2_vol_face1_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dbr2_vol_face1_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nnodes_ie,nnodes_if]) for irow in range(0,nnodes_ie): for icol in range(0,nnodes_if): data = br2_vol_face1[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dbr2_vol_face1_dx to file ", i/(nnodes_ie*nnodes_r*ndirs*nnodes_if)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() f = open("dbr2_vol_face2_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dbr2_vol_face2_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nnodes_ie,nnodes_if]) for irow in range(0,nnodes_ie): for icol in range(0,nnodes_if): data = br2_vol_face2[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dbr2_vol_face2_dx to file ", i/(nnodes_ie*nnodes_r*ndirs*nnodes_if)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() f = open("dbr2_vol_face3_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dbr2_vol_face3_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nnodes_ie,nnodes_if]) for irow in range(0,nnodes_ie): for icol in range(0,nnodes_if): data = br2_vol_face3[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dbr2_vol_face3_dx to file ", i/(nnodes_ie*nnodes_r*ndirs*nnodes_if)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() f = open("dbr2_vol_face4_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dbr2_vol_face4_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nnodes_ie,nnodes_if]) for irow in range(0,nnodes_ie): for icol in range(0,nnodes_if): data = br2_vol_face4[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dbr2_vol_face4_dx to file ", i/(nnodes_ie*nnodes_r*ndirs*nnodes_if)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() f = open("dbr2_vol_face5_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dbr2_vol_face5_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nnodes_ie,nnodes_if]) for irow in range(0,nnodes_ie): for icol in range(0,nnodes_if): data = br2_vol_face5[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dbr2_vol_face5_dx to file ", i/(nnodes_ie*nnodes_r*ndirs*nnodes_if)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() f = open("dbr2_vol_face6_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dbr2_vol_face6_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nnodes_ie,nnodes_if]) for irow in range(0,nnodes_ie): for icol in range(0,nnodes_if): data = br2_vol_face6[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dbr2_vol_face6_dx to file ", i/(nnodes_ie*nnodes_r*ndirs*nnodes_if)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() # # dbr2_face_dx # # f = open("dbr2_face_face1_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dbr2_face_face1_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nnodes_if,nnodes_if]) for irow in range(0,nnodes_if): for icol in range(0,nnodes_if): data = br2_face_face1[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dbr2_face_face1_dx to file ", i/(nnodes_if*nnodes_r*ndirs*nnodes_if)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() f = open("dbr2_face_face2_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dbr2_face_face2_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nnodes_if,nnodes_if]) for irow in range(0,nnodes_if): for icol in range(0,nnodes_if): data = br2_face_face2[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dbr2_face_face2_dx to file ", i/(nnodes_if*nnodes_r*ndirs*nnodes_if)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() f = open("dbr2_face_face3_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dbr2_face_face3_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nnodes_if,nnodes_if]) for irow in range(0,nnodes_if): for icol in range(0,nnodes_if): data = br2_face_face3[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dbr2_face_face3_dx to file ", i/(nnodes_if*nnodes_r*ndirs*nnodes_if)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() f = open("dbr2_face_face4_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dbr2_face_face4_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nnodes_if,nnodes_if]) for irow in range(0,nnodes_if): for icol in range(0,nnodes_if): data = br2_face_face4[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dbr2_face_face4_dx to file ", i/(nnodes_if*nnodes_r*ndirs*nnodes_if)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() f = open("dbr2_face_face5_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dbr2_face_face5_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nnodes_if,nnodes_if]) for irow in range(0,nnodes_if): for icol in range(0,nnodes_if): data = br2_face_face5[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dbr2_face_face5_dx to file ", i/(nnodes_if*nnodes_r*ndirs*nnodes_if)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() f = open("dbr2_face_face6_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dbr2_face_face6_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nnodes_if,nnodes_if]) for irow in range(0,nnodes_if): for icol in range(0,nnodes_if): data = br2_face_face6[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dbr2_face_face6_dx to file ", i/(nnodes_if*nnodes_r*ndirs*nnodes_if)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() # # dgrad1_dx # f = open("dgrad1_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dgrad1_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nnodes_ie,nterms_s]) for irow in range(0,nnodes_ie): for icol in range(0,nterms_s): data = grad1[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dgrad1_dx to file ", i/(nnodes_ie*nnodes_r*ndirs*nterms_s)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() # # dgrad2_dx # f = open("dgrad2_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dgrad2_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nnodes_ie,nterms_s]) for irow in range(0,nnodes_ie): for icol in range(0,nterms_s): data = grad2[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dgrad2_dx to file ", i/(nnodes_ie*nnodes_r*ndirs*nterms_s)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close() # # dgrad3_dx # f = open("dgrad3_dx.txt","w") i = 1 for inode_diff in range(0,nnodes_r): for idir in range(0,ndirs): f.write("dgrad3_dx => diff_node %s, diff_dir %s \n" % (inode_diff+1,idir+1)) array = np.zeros([nnodes_ie,nterms_s]) for irow in range(0,nnodes_ie): for icol in range(0,nterms_s): data = grad3[irow,icol] data.backward(retain_graph=True) ddata = coords.grad ddata_np = ddata.numpy() array[irow,icol] = ddata_np[inode_diff,idir] update_progress("Writing dgrad3_dx to file ", i/(nnodes_ie*nnodes_r*ndirs*nterms_s)) dummy = coords.grad.data.zero_() i += 1 np.savetxt(f,array) f.close()
9637
from importlib import _bootstrap from . import util import collections import imp import sys import unittest class PathHookTests(unittest.TestCase): """Test the path hook for extension modules.""" # XXX Should it only succeed for pre-existing directories? # XXX Should it only work for directories containing an extension module? def hook(self, entry): return _bootstrap._file_path_hook(entry) def test_success(self): # Path hook should handle a directory where a known extension module # exists. self.assertTrue(hasattr(self.hook(util.PATH), 'find_module')) def test_main(): from test.support import run_unittest run_unittest(PathHookTests) if __name__ == '__main__': test_main()
9687
from typing import Dict, Union from graphql import ( GraphQLBoolean, GraphQLFloat, GraphQLInputField, GraphQLInt, GraphQLList, GraphQLNonNull, GraphQLScalarType, GraphQLString, ) from sqlalchemy import ARRAY, Boolean, Float, Integer from sqlalchemy.dialects.postgresql import ARRAY as PGARRAY from sqlalchemy.types import TypeEngine def get_graphql_type_from_column(column_type: TypeEngine) -> Union[GraphQLScalarType, GraphQLList]: if isinstance(column_type, Integer): return GraphQLInt if isinstance(column_type, Float): return GraphQLFloat if isinstance(column_type, Boolean): return GraphQLBoolean if isinstance(column_type, (ARRAY, PGARRAY)): return GraphQLList(get_graphql_type_from_column(column_type.item_type)) return GraphQLString def get_base_comparison_fields(graphql_type: Union[GraphQLScalarType, GraphQLList]) -> Dict[str, GraphQLInputField]: return { "_eq": GraphQLInputField(graphql_type), "_neq": GraphQLInputField(graphql_type), "_in": GraphQLInputField(GraphQLList(GraphQLNonNull(graphql_type))), "_nin": GraphQLInputField(GraphQLList(GraphQLNonNull(graphql_type))), "_lt": GraphQLInputField(graphql_type), "_gt": GraphQLInputField(graphql_type), "_gte": GraphQLInputField(graphql_type), "_lte": GraphQLInputField(graphql_type), "_is_null": GraphQLInputField(GraphQLBoolean), } def get_string_comparison_fields() -> Dict[str, GraphQLInputField]: return {"_like": GraphQLInputField(GraphQLString), "_nlike": GraphQLInputField(GraphQLString)}
9734
from django.contrib.auth import update_session_auth_hash from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth.models import User from django.contrib.auth.views import (LoginView, PasswordResetConfirmView, PasswordResetView) from django.http import HttpResponse, HttpResponseNotAllowed from django.shortcuts import render from django.urls import reverse_lazy from django.views.generic import CreateView, DeleteView, UpdateView from users.forms import (SignInForm, SignUpForm, UserPasswordResetForm, UserProfileForm, UserSetPasswordForm) from users.mixins import LockDuringEditMixin from users.models import Lock, UserSession class SignUp(CreateView): model = User form_class = SignUpForm template_name = "registration/signup.html" success_url = reverse_lazy("dashboard:dashboard") class SignIn(LoginView): form_class = SignInForm class Profile(LoginRequiredMixin, LockDuringEditMixin, UpdateView): model = User form_class = UserProfileForm template_name = "registration/profile.html" success_url = reverse_lazy("users:profile") def get_object(self): return self.request.user def form_valid(self, form): response = super().form_valid(form) update_session_auth_hash(self.request, self.object) # this will delete the current user session # and create anew UserSession.objects.create(user=self.object, session_id=self.request.session.session_key) return response class UserPasswordResetView(PasswordResetView): form_class = UserPasswordResetForm class UserPasswordResetConfirmView(PasswordResetConfirmView): form_class = UserSetPasswordForm def unlock(request, pk): if request.method == "POST": lock = Lock.objects.filter(pk=pk).delete() return HttpResponse('') return HttpResponseNotAllowed(["POST"])
9771
import io import hashlib import logging import os import struct import random from HintList import getHint, getHintGroup, Hint from Utils import local_path #builds out general hints based on location and whether an item is required or not def buildGossipHints(world, rom): stoneAddresses = [0x938e4c, 0x938EA8, 0x938F04, 0x938F60, 0x938FBC, 0x939018, 0x939074, 0x9390D0, 0x93912C, 0x939188, 0x9391E4, 0x939240, 0x93929C, 0x9392F8, 0x939354, 0x9393B0, 0x93940C, 0x939468, 0x9394C4, 0x939520, 0x93957C, 0x9395D8, 0x939634, 0x939690, 0x9396EC, 0x939748, 0x9397A4, 0x939800, 0x93985C, 0x9398B8, 0x939914, 0x939970] #address for gossip stone text boxes, byte limit is 92 alwaysLocations = getHintGroup('alwaysLocation')#These location will always have a hint somewhere in the world. sometimesSpace = (int((len(stoneAddresses) - len(alwaysLocations)*2)/2)) sometimesLocations = getHintGroup('location')#A random selection of these locations will be in the hint pool. random.shuffle(sometimesLocations) sometimesLocations = sometimesLocations[0:sometimesSpace] hintList = alwaysLocations hintList.extend(alwaysLocations) hintList.extend(sometimesLocations) locationData = [] for hint in hintList: for locationWorld in world.get_locations(): if hint.name == locationWorld.name: locationData.extend([locationWorld]) #hopefully fixes weird VC error where the last character from a previous text box would sometimes spill over into the next box. for address in range(stoneAddresses[0], 0x9399D8): rom.write_byte(address, 0x08) #shuffles the stone addresses for randomization, always locations will be placed first and twice random.shuffle(stoneAddresses) #loops through shuffled locations and addresses and builds hint. while locationData: currentLoc = locationData.pop(0) Block_code = getBytes((getHint(currentLoc.name).text)) if currentLoc.item.type == 'Map' or currentLoc.item.type == 'Compass' or currentLoc.item.type == 'BossKey' or currentLoc.item.type == 'SmallKey': Block_code.extend(getBytes((getHint(currentLoc.item.type).text))) else: Block_code.extend(getBytes((getHint(currentLoc.item.name).text))) endText(Block_code) if len(Block_code) > 92: print('Too many characters in hint') Block_code = getBytes("I am Error.") Block_code.extend(getBytes(currentLoc.name)) Block_code.extend(getBytes('&')) Block_code.extend(getBytes(currentLoc.item.name)) rom.write_bytes(stoneAddresses.pop(0), Block_code) junkHints = getHintGroup('junkHint') random.shuffle(junkHints) while stoneAddresses: junkHint = junkHints.pop() Block_code = getBytes(junkHint.text) endText(Block_code) rom.write_bytes(stoneAddresses.pop(0), Block_code) return rom # builds boss reward text that is displayed at the temple of time altar for child and adult, pull based off of item in a fixed order. def buildBossRewardHints(world, rom): bossRewardsSpiritualStones = ['Kokiri Emerald', 'Goron Ruby', 'Zora Sapphire'] bossRewardsMedallions = ['Forest Medallion', 'Fire Medallion', 'Water Medallion', 'Shadow Medallion', 'Spirit Medallion', 'Light Medallion'] # text that appears at altar as a child. Block_code = [] Block_code = getBytes(getHint('Spiritual Stone Text Start').text) for reward in bossRewardsSpiritualStones: buildBossString(Block_code, reward, world) Block_code = setRewardColor(Block_code) Block_code.extend(getBytes(getHint('Spiritual Stone Text End').text)) Block_code.extend([0x0B]) endText(Block_code) rom.write_bytes(0x95ED95, Block_code) # text that appears at altar as an adult. Block_code = [] for reward in bossRewardsMedallions: buildBossString(Block_code, reward, world) Block_code = setRewardColor(Block_code) Block_code.extend(getBytes(getHint('Medallion Text End').text)) Block_code.extend([0x0B]) endText(Block_code) rom.write_bytes(0x95DB94, Block_code) return rom # pulls text string from hintlist for reward after sending the location to hintlist. def buildBossString(Block_code, reward, world): for location in world.get_locations(): if location.item.name == reward: Block_code.extend([0x08]) Block_code.extend(getBytes(getHint(location.name).text)) return Block_code # alternates through color set commands in child and adult boss reward hint strings setting the colors at the start of the string to correspond with the reward found at the location. # skips over color commands at the end of stings to set color back to white. def setRewardColor(Block_code): rewardColors = [0x42, 0x41, 0x43, 0x45, 0x46, 0x44] colorWhite = True for i, byte in enumerate(Block_code): if byte == 0x05 and colorWhite: Block_code[i + 1] = rewardColors.pop(0) colorWhite = False elif byte == 0x05 and not colorWhite: colorWhite = True return Block_code #sets the end of text byte in the text box. def endText(byteArray): return byteArray.extend([0x02]) # reads array of characters and converts them to an array of bytes. def getBytes(string): byteCode = [] for char in string: if char == '^': byteCode.extend([0x04])#box break elif char == '&': byteCode.extend([0x01])#new line elif char == '@': byteCode.extend([0x0F])#print player name elif char == '#': byteCode.extend([0x05, 0x40]) #sets color to white else: char = char.encode('utf-8') char = char.hex() byte = int('0x' + char, 16) byteCode.extend([byte]) return byteCode
9790
import os import pickle import time import timeit import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import numpy as np import torch import tempfile import horovod.torch as hvd from horovod.ray import RayExecutor from ray_shuffling_data_loader.torch_dataset import (TorchShufflingDataset) from ray_shuffling_data_loader.data_generation import (generate_data, DATA_SPEC) import argparse DEFAULT_DATA_DIR = "s3://shuffling-data-loader-benchmarks/data/" numpy_to_torch_dtype = { np.bool: torch.bool, np.uint8: torch.uint8, np.int8: torch.int8, np.int16: torch.int16, np.int32: torch.int32, np.int64: torch.int64, np.float16: torch.float16, np.float32: torch.float32, np.float64: torch.float64, np.complex64: torch.complex64, np.complex128: torch.complex128 } # Training settings parser = argparse.ArgumentParser(description="PyTorch MNIST Example") parser.add_argument( "--batch-size", type=int, default=250000, metavar="N", help="input batch size for training (default: 64)") parser.add_argument( "--test-batch-size", type=int, default=250000, metavar="N", help="input batch size for testing (default: 1000)") parser.add_argument( "--epochs", type=int, default=10, metavar="N", help="number of epochs to train (default: 10)") parser.add_argument( "--lr", type=float, default=0.01, metavar="LR", help="learning rate (default: 0.01)") parser.add_argument( "--momentum", type=float, default=0.5, metavar="M", help="SGD momentum (default: 0.5)") parser.add_argument( "--no-cuda", action="store_true", default=False, help="disables CUDA training") parser.add_argument( "--seed", type=int, default=42, metavar="S", help="random seed (default: 42)") parser.add_argument( "--log-interval", type=int, default=10, metavar="N", help=("how many batches to wait before logging training " "status")) parser.add_argument( "--fp16-allreduce", action="store_true", default=False, help="use fp16 compression during allreduce") parser.add_argument( "--use-adasum", action="store_true", default=False, help="use adasum algorithm to do reduction") parser.add_argument( "--gradient-predivide-factor", type=float, default=1.0, help=("apply gradient predivide factor in optimizer " "(default: 1.0)")) parser.add_argument("--num-workers", type=int, default=None) parser.add_argument("--num-hosts", type=int, default=None) parser.add_argument("--num-workers-per-host", type=int, default=None) parser.add_argument("--cpus-per-worker", type=int, default=1) parser.add_argument("--mock-train-step-time", type=float, default=1.0) # Synthetic training data generation settings. parser.add_argument("--cache-files", action="store_true", default=False) parser.add_argument("--num-rows", type=int, default=2 * (10**7)) parser.add_argument("--num-files", type=int, default=25) parser.add_argument("--max-row-group-skew", type=float, default=0.0) parser.add_argument("--num-row-groups-per-file", type=int, default=5) parser.add_argument("--data-dir", type=str, default=DEFAULT_DATA_DIR) # Shuffling data loader settings. parser.add_argument("--num-reducers", type=int, default=32) parser.add_argument("--max-concurrent-epochs", type=int, default=2) parser.add_argument("--address", default="auto") class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x) def train_main(args, filenames): # Horovod: initialize library. hvd.init() torch.manual_seed(args.seed) if torch.cuda.is_available() and not args.no_cuda: # Horovod: pin GPU to local rank. torch.cuda.set_device(hvd.local_rank()) torch.cuda.manual_seed(args.seed) # Horovod: limit # of CPU threads to be used per worker. torch.set_num_threads(1) rank = hvd.rank() train_dataset = create_dataset( filenames, batch_size=args.batch_size, rank=rank, num_epochs=args.epochs, world_size=hvd.size(), num_reducers=args.num_reducers, max_concurrent_epochs=args.max_concurrent_epochs) model = Net() # By default, Adasum doesn"t need scaling up learning rate. lr_scaler = hvd.size() if not args.use_adasum else 1 if torch.cuda.is_available() and not args.no_cuda: # Move model to GPU. model.cuda() # If using GPU Adasum allreduce, scale learning rate by local_size. if args.use_adasum and hvd.nccl_built(): lr_scaler = hvd.local_size() # Horovod: scale learning rate by lr_scaler. optimizer = optim.SGD( model.parameters(), lr=args.lr * lr_scaler, momentum=args.momentum) # Horovod: broadcast parameters & optimizer state. hvd.broadcast_parameters(model.state_dict(), root_rank=0) hvd.broadcast_optimizer_state(optimizer, root_rank=0) # Horovod: (optional) compression algorithm. compression = (hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none) # Horovod: wrap optimizer with DistributedOptimizer. optimizer = hvd.DistributedOptimizer( optimizer, named_parameters=model.named_parameters(), compression=compression, op=hvd.Adasum if args.use_adasum else hvd.Average, gradient_predivide_factor=args.gradient_predivide_factor) def _train(epoch): model.train() # Horovod: set epoch to sampler for shuffling. train_dataset.set_epoch(epoch) start_epoch = timeit.default_timer() last_batch_time = start_epoch batch_wait_times = [] for batch_idx, (data, target) in enumerate(train_dataset): batch_wait_times.append(timeit.default_timer() - last_batch_time) if torch.cuda.is_available() and not args.no_cuda: if isinstance(data, list): data = [t.cuda() for t in data] target = target.cuda() optimizer.zero_grad() # output = model(data) if batch_idx % args.log_interval == 0: print( f"Processing batch {batch_idx} in epoch {epoch} on worker " f"{rank}.") time.sleep(args.mock_train_step_time) # TODO(Clark): Add worker synchronization barrier here. # loss = F.nll_loss(output, target) # loss.backward() # optimizer.step() last_batch_time = timeit.default_timer() epoch_duration = timeit.default_timer() - start_epoch avg_batch_wait_time = np.mean(batch_wait_times) std_batch_wait_time = np.std(batch_wait_times) max_batch_wait_time = np.max(batch_wait_times) min_batch_wait_time = np.min(batch_wait_times) print(f"\nEpoch {epoch}, worker {rank} stats over " f"{len(batch_wait_times)} steps: {epoch_duration:.3f}") print(f"Mean batch wait time: {avg_batch_wait_time:.3f}s +- " f"{std_batch_wait_time}") print(f"Max batch wait time: {max_batch_wait_time:.3f}s") print(f"Min batch wait time: {min_batch_wait_time:.3f}s") return batch_wait_times print(f"Starting training on worker {rank}.") batch_wait_times = [] for epoch in range(args.epochs): batch_wait_times.extend(_train(epoch)) batch_wait_times.pop(0) print(f"Done training on worker {rank}.") avg_batch_wait_time = np.mean(batch_wait_times) std_batch_wait_time = np.std(batch_wait_times) max_batch_wait_time = np.max(batch_wait_times) min_batch_wait_time = np.min(batch_wait_times) print(f"\nWorker {rank} training stats over {args.epochs} epochs:") print(f"Mean batch wait time: {avg_batch_wait_time:.3f}s +- " f"{std_batch_wait_time}") print(f"Max batch wait time: {max_batch_wait_time:.3f}s") print(f"Min batch wait time: {min_batch_wait_time:.3f}s") # TODO(Clark): Add logic to the dataset abstraction so we don't have to do # this. if rank == 0: print("Waiting in rank 0 worker to let other workers consume queue...") time.sleep(10) print("Done waiting in rank 0 worker.") def create_dataset(filenames, *, batch_size, rank, num_epochs, world_size, num_reducers, max_concurrent_epochs): print(f"Creating Torch shuffling dataset for worker {rank} with " f"{batch_size} batch size, {num_epochs} epochs, {num_reducers} " f"reducers, and {world_size} trainers.") feature_columns = list(DATA_SPEC.keys()) feature_types = [ numpy_to_torch_dtype[dtype] for _, _, dtype in DATA_SPEC.values() ] label_column = feature_columns.pop() label_type = feature_types.pop() return TorchShufflingDataset( filenames, num_epochs, world_size, batch_size, rank, num_reducers=num_reducers, max_concurrent_epochs=max_concurrent_epochs, feature_columns=feature_columns, feature_types=feature_types, label_column=label_column, label_type=label_type) if __name__ == "__main__": args = parser.parse_args() from ray_shuffling_data_loader.stats import human_readable_size import ray print("Connecting to Ray cluster...") ray.init(address=args.address) num_rows = args.num_rows num_files = args.num_files num_row_groups_per_file = args.num_row_groups_per_file max_row_group_skew = args.max_row_group_skew data_dir = args.data_dir cache_path = os.path.join(tempfile.gettempdir(), "data_cache") filenames = None if args.cache_files and os.path.exists(cache_path): try: with open(cache_path, "rb") as f: filenames, num_bytes = pickle.load(f) except Exception as exc: print(f"Cache load failed - {exc}") if not filenames: print(f"Generating {num_rows} rows over {num_files} files, with " f"{num_row_groups_per_file} row groups per file and at most " f"{100 * max_row_group_skew:.1f}% row group skew.") filenames, num_bytes = generate_data(num_rows, num_files, num_row_groups_per_file, max_row_group_skew, data_dir) if args.cache_files: with open(os.path.join(tempfile.gettempdir(), "data_cache"), "wb") as f: pickle.dump((filenames, num_bytes), f) print(f"Generated {len(filenames)} files containing {num_rows} rows " f"with {num_row_groups_per_file} row groups per file, totalling " f"{human_readable_size(num_bytes)}.") print("Create Ray executor") worker_kwargs = {} num_workers = args.num_workers num_hosts = args.num_hosts num_workers_per_host = args.num_workers_per_host if num_workers is not None: if num_hosts is not None: raise ValueError( "Only one of --num-workers and --num-hosts should be used.") worker_kwargs["num_workers"] = num_workers elif num_hosts is not None: worker_kwargs["num_hosts"] = num_hosts if num_workers_per_host is None: raise ValueError("When giving --num-hosts, --num-workers-per-host " "must also be given.") worker_kwargs["num_workers_per_host"] = num_workers_per_host cpus_per_worker = args.cpus_per_worker settings = RayExecutor.create_settings(timeout_s=30) executor = RayExecutor( settings, use_gpu=True, gpus_per_worker=1, cpus_per_worker=cpus_per_worker, **worker_kwargs) executor.start() executor.run(train_main, args=[args, filenames]) executor.shutdown() print("Done consuming batches.")
9839
import uos as os import time def countdown(): for i in range(5, 0, -1): print("start stubbing in {}...".format(i)) time.sleep(1) import createstubs # import stub_lvgl try: # only run import if no stubs yet os.listdir("stubs") print("stub folder was found, stubbing is not automatically started") except OSError: countdown()
9871
import gym from gym import spaces, error, utils from gym.utils import seeding import numpy as np import configparser from os import path import matplotlib.pyplot as plt from matplotlib.pyplot import gca font = {'family': 'sans-serif', 'weight': 'bold', 'size': 14} class MappingEnv(gym.Env): def __init__(self): # config_file = path.join(path.dirname(__file__), "params_flock.cfg") # config = configparser.ConfigParser() # config.read(config_file) # config = config['flock'] self.nearest_agents = 7 self.nearest_targets = 7 self.mean_pooling = True # normalize the adjacency matrix by the number of neighbors or not self.centralized = True # number states per agent self.nx_system = 4 # number of actions per agent self.nu = 2 # default problem parameters self.n_agents = 100 # int(config['network_size']) # self.comm_radius = 0.9 # float(config['comm_radius']) self.dt = 0.1 # #float(config['system_dt']) self.v_max = 5.0 # float(config['max_vel_init']) self.v_bias = self.v_max # intitialize state matrices self.x = None self.u = None self.mean_vel = None self.init_vel = None self.greedy_action = None self.diff = None self.r2 = None self.adj_mat = None self.adj_mat_mean = None self.diff_targets = None self.r2_targets = None self.target_observed = None self.state_network = None self.state_values = None self.reward = None self.max_accel = 1 # self.action_space = spaces.Box(low=-self.max_accel, high=self.max_accel, shape=(2 * self.n_agents,), # dtype=np.float32) # # self.observation_space = spaces.Box(low=-np.Inf, high=np.Inf, shape=(self.n_agents, ), # dtype=np.float32) # target initialization self.px_max = 100 self.py_max = 100 x = np.linspace(-1.0 * self.px_max, self.px_max, self.n_agents) y = np.linspace(-1.0 * self.py_max, self.py_max, self.n_agents) tx, ty = np.meshgrid(x, y) tx = tx.reshape((-1, 1)) ty = ty.reshape((-1, 1)) self.obs_rad = 2.0 self.obs_rad2 = self.obs_rad * self.obs_rad self.target_x = np.stack((tx, ty), axis=1).reshape((-1, 2)) self.target_unobserved = np.ones((self.n_agents * self.n_agents, 2), dtype=np.bool) # rendering initialization self.fig = None self.ax = None self.line1 = None self.line2 = None self.action_scalar = 10.0 self.seed() def reset(self): x = np.zeros((self.n_agents, self.nx_system)) self.target_unobserved = np.ones((self.n_agents * self.n_agents, 2), dtype=np.bool) x[:, 0] = np.random.uniform(low=-self.px_max, high=self.px_max, size=(self.n_agents,)) x[:, 1] = np.random.uniform(low=-self.py_max, high=self.py_max, size=(self.n_agents,)) #bias = np.random.uniform(low=-self.v_bias, high=self.v_bias, size=(2,)) x[:, 2] = np.random.uniform(low=-self.v_max, high=self.v_max, size=(self.n_agents,)) #+ bias[0] x[:, 3] = np.random.uniform(low=-self.v_max, high=self.v_max, size=(self.n_agents,)) #+ bias[1] # keep good initialization self.mean_vel = np.mean(x[:, 2:4], axis=0) self.init_vel = x[:, 2:4] self.x = x # self.a_net = self.get_connectivity(self.x) self.compute_helpers() return self.state_values, self.state_network def params_from_cfg(self, args): # TODO pass # # self.comm_radius = args.getfloat('comm_radius') # # self.comm_radius2 = self.comm_radius * self.comm_radius # # self.vr = 1 / self.comm_radius2 + np.log(self.comm_radius2) # # # # self.n_agents = args.getint('n_agents') # # self.r_max = self.r_max * np.sqrt(self.n_agents) # # # self.action_space = spaces.Box(low=-self.max_accel, high=self.max_accel, shape=(2 * self.n_agents,), # # dtype=np.float32) # # # # self.observation_space = spaces.Box(low=-np.Inf, high=np.Inf, shape=(self.n_agents, self.n_features), # # dtype=np.float32) # # self.v_max = args.getfloat('v_max') # self.v_bias = self.v_max # self.dt = args.getfloat('dt') def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, u): # u = np.reshape(u, (-1, 2)) assert u.shape == (self.n_agents, self.nu) u = np.clip(u, a_min=-self.max_accel, a_max=self.max_accel) self.u = u * self.action_scalar old_x = np.copy(self.x) # x position self.x[:, 0] = self.x[:, 0] + self.x[:, 2] * self.dt + self.u[:, 0] * self.dt * self.dt * 0.5 # y position self.x[:, 1] = self.x[:, 1] + self.x[:, 3] * self.dt + self.u[:, 1] * self.dt * self.dt * 0.5 # x velocity self.x[:, 2] = self.x[:, 2] + self.u[:, 0] * self.dt # y velocity self.x[:, 3] = self.x[:, 3] + self.u[:, 1] * self.dt # clip velocities self.x[:, 2:4] = np.clip(self.x[:, 2:4], -1.0*self.v_max, self.v_max) dist_traveled = np.sum(np.linalg.norm(self.x[:, 0:2] - old_x[:, 0:2], axis=1)) self.compute_helpers() done = (0 == np.sum(self.target_unobserved)) return (self.state_values, self.state_network), 10.0 * self.reward - dist_traveled, done, {} def compute_helpers(self): # TODO - check this, and initialize stuff in the init(), and try to make more efficient # Neighbors computations self.diff = self.x.reshape((self.n_agents, 1, self.nx_system)) - self.x.reshape( (1, self.n_agents, self.nx_system)) self.r2 = np.multiply(self.diff[:, :, 0], self.diff[:, :, 0]) + np.multiply(self.diff[:, :, 1], self.diff[:, :, 1]) np.fill_diagonal(self.r2, np.Inf) nearest = np.argsort(self.r2, axis=1) obs_neigh = np.zeros((self.n_agents, self.nearest_agents * 4)) self.adj_mat = np.zeros((self.n_agents, self.n_agents)) for i in range(self.nearest_agents): ind2, ind3 = np.meshgrid(nearest[:, i], range(4), indexing='ij') ind1, _ = np.meshgrid(range(self.n_agents), range(4), indexing='ij') obs_neigh[:, i * self.nx_system:(i + 1) * self.nx_system] = np.reshape( self.diff[ind1.flatten(), ind2.flatten(), ind3.flatten()], (-1, 4)) self.adj_mat[:, nearest[:, i]] = 1.0 # Normalize the adjacency matrix by the number of neighbors - results in mean pooling, instead of sum pooling n_neighbors = np.reshape(np.sum(self.adj_mat, axis=1), (self.n_agents, 1)) # correct - checked this n_neighbors[n_neighbors == 0] = 1 self.adj_mat_mean = self.adj_mat / n_neighbors # Targets computations self.diff_targets = self.x[:, 0:2].reshape((self.n_agents, 1, 2)) - self.target_x[ self.target_unobserved].reshape( (1, -1, 2)) self.r2_targets = np.multiply(self.diff_targets[:, :, 0], self.diff_targets[:, :, 0]) + np.multiply( self.diff_targets[:, :, 1], self.diff_targets[:, :, 1]) nearest_targets = np.argsort(self.r2_targets, axis=1) obs_target = np.zeros((self.n_agents, self.nearest_targets * 2)) for i in range(min(self.nearest_targets, np.shape(nearest_targets)[1])): ind2, ind3 = np.meshgrid(nearest_targets[:, i], range(2), indexing='ij') ind1, _ = np.meshgrid(range(self.n_agents), range(2), indexing='ij') obs_target[:, i * 2:(i + 1) * 2] = np.reshape( self.diff_targets[ind1.flatten(), ind2.flatten(), ind3.flatten()], (-1, 2)) self.target_observed = np.any(self.r2_targets < self.obs_rad2, axis=0).reshape((-1, 1)) self.target_unobserved[self.target_unobserved] = np.tile(np.logical_not(self.target_observed), (1, 2)).flatten() self.reward = np.sum(self.target_observed.astype(np.int)) self.state_values = np.hstack((obs_neigh, obs_target)) self.greedy_action = -1.0 * obs_target[:, 0:2] if self.mean_pooling: self.state_network = self.adj_mat_mean else: self.state_network = self.adj_mat def controller(self): """ The controller for flocking from Turner 2003. Returns: the optimal action """ # TODO # return np.zeros((self.n_agents, 2)) return self.greedy_action / 10.0 def render(self, mode='human'): """ Render the environment with agents as points in 2D space """ if self.fig is None: plt.ion() fig = plt.figure() self.ax = fig.add_subplot(111) line1, = self.ax.plot(self.x[:, 0], self.x[:, 1], 'bo') locs = self.target_x[self.target_unobserved].reshape((-1, 2)) line2, = self.ax.plot(locs[:, 0], locs[:, 1], 'rx') plt.ylim(-1.0 * self.py_max, 1.0 * self.py_max) plt.xlim(-1.0 * self.px_max, 1.0 * self.px_max) a = gca() a.set_xticklabels(a.get_xticks(), font) a.set_yticklabels(a.get_yticks(), font) plt.title('GNN Controller') self.fig = fig self.line1 = line1 self.line2 = line2 # TODO render unobserved targets else: self.line1.set_xdata(self.x[:, 0]) self.line1.set_ydata(self.x[:, 1]) locs = self.target_x[self.target_unobserved].reshape((-1,2)) self.line2.set_xdata(locs[:, 0]) self.line2.set_ydata(locs[:, 1]) self.fig.canvas.draw() self.fig.canvas.flush_events() def close(self): pass
9908
import io import os import numpy as np import pandas import json import logging #<== Optional. Log to console, file, kafka from pipeline_monitor import prometheus_monitor as monitor #<== Optional. Monitor runtime metrics from pipeline_logger import log import tensorflow as tf from tensorflow.contrib import predictor from keras.models import Sequential, load_model from keras.preprocessing import sequence from keras.preprocessing.text import Tokenizer from collections import OrderedDict _logger = logging.getLogger('pipeline-logger') _logger.setLevel(logging.INFO) _logger_stream_handler = logging.StreamHandler() _logger_stream_handler.setLevel(logging.INFO) _logger.addHandler(_logger_stream_handler) __all__ = ['invoke'] #<== Optional. Being a good Python citizen. _labels = { #<== Optional. Used for metrics/labels 'name': 'injection', 'tag': 'v1', 'type': 'tensorflow', 'runtime': 'python', 'chip': 'cpu', } def _initialize_upon_import(): #<== Optional. Called once upon server startup ''' Initialize / Restore Model Object. ''' model = load_model('securitai-lstm-model.h5') model.load_weights('securitai-lstm-weights.h5') model.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics = ['accuracy']) return model # This is called unconditionally at *module import time*... _model = _initialize_upon_import() #@log(labels=_labels, logger=_logger) #<== Optional. Sample and compare predictions def invoke(request): #<== Required. Called on every prediction '''Where the magic happens...''' with monitor(labels=_labels, name="transform_request"): #<== Optional. Expose fine-grained metrics transformed_request = _transform_request(request) #<== Optional. Transform input (json) into TensorFlow (tensor) with monitor(labels=_labels, name="invoke"): #<== Optional. Calls _model.predict() response = _model.predict(transformed_request) with monitor(labels=_labels, name="transform_response"): #<== Optional. Transform TensorFlow (tensor) into output (json) transformed_response = _transform_response(response) return transformed_response #<== Required. Returns the predicted value(s) def _transform_request(request): request_str = request.decode('utf-8') # tokenize the csv request and create json X = pandas.read_csv(io.StringIO(request_str), engine='python', quotechar='|', header=None).values[:,0] for index, item in enumerate(X): reqJson = json.loads(item, object_pairs_hook=OrderedDict) del reqJson['http']['timestamp'] del reqJson['http']['headers'] del reqJson['http']['source'] del reqJson['http']['route'] del reqJson['http']['responsePayload'] X[index] = json.dumps(reqJson, separators=(',', ':')) tokenizer = Tokenizer(filters='\t\n', char_level=True) tokenizer.fit_on_texts(X) # this used to be [log_entry] seq = tokenizer.texts_to_sequences([request_str]) max_log_length = 1024 log_entry_processed = sequence.pad_sequences(seq, maxlen=max_log_length) return log_entry_processed def _transform_response(response): return response[0] if __name__ == '__main__': with open('./pipeline_test_request.csv', 'rb') as fb: request_bytes = fb.read() response_bytes = invoke(request_bytes) print(response_bytes)
9915
from datetime import timedelta from typing import Union, List, Optional import click import pandas as pd from flask import current_app as app from flask.cli import with_appcontext from flexmeasures import Sensor from flexmeasures.data import db from flexmeasures.data.schemas.generic_assets import GenericAssetIdField from flexmeasures.data.schemas.sensors import SensorIdField from flexmeasures.data.models.generic_assets import GenericAsset from flexmeasures.data.models.time_series import TimedBelief from flexmeasures.data.utils import save_to_db @click.group("edit") def fm_edit_data(): """FlexMeasures: Edit data.""" @fm_edit_data.command("attribute") @with_appcontext @click.option( "--asset-id", "assets", required=False, multiple=True, type=GenericAssetIdField(), help="Add/edit attribute to this asset. Follow up with the asset's ID.", ) @click.option( "--sensor-id", "sensors", required=False, multiple=True, type=SensorIdField(), help="Add/edit attribute to this sensor. Follow up with the sensor's ID.", ) @click.option( "--attribute", "attribute_key", required=True, help="Add/edit this attribute. Follow up with the name of the attribute.", ) @click.option( "--float", "attribute_float_value", required=False, type=float, help="Set the attribute to this float value.", ) @click.option( "--bool", "attribute_bool_value", required=False, type=bool, help="Set the attribute to this bool value.", ) @click.option( "--str", "attribute_str_value", required=False, type=str, help="Set the attribute to this string value.", ) @click.option( "--int", "attribute_int_value", required=False, type=int, help="Set the attribute to this integer value.", ) @click.option( "--null", "attribute_null_value", required=False, is_flag=True, default=False, help="Set the attribute to a null value.", ) def edit_attribute( attribute_key: str, assets: List[GenericAsset], sensors: List[Sensor], attribute_null_value: bool, attribute_float_value: Optional[float] = None, attribute_bool_value: Optional[bool] = None, attribute_str_value: Optional[str] = None, attribute_int_value: Optional[int] = None, ): """Edit (or add) an asset attribute or sensor attribute.""" if not assets and not sensors: raise ValueError("Missing flag: pass at least one --asset-id or --sensor-id.") # Parse attribute value attribute_value = parse_attribute_value( attribute_float_value=attribute_float_value, attribute_bool_value=attribute_bool_value, attribute_str_value=attribute_str_value, attribute_int_value=attribute_int_value, attribute_null_value=attribute_null_value, ) # Set attribute for asset in assets: asset.attributes[attribute_key] = attribute_value db.session.add(asset) for sensor in sensors: sensor.attributes[attribute_key] = attribute_value db.session.add(sensor) db.session.commit() print("Successfully edited/added attribute.") @fm_edit_data.command("resample-data") @with_appcontext @click.option( "--sensor-id", "sensor_ids", multiple=True, required=True, help="Resample data for this sensor. Follow up with the sensor's ID. This argument can be given multiple times.", ) @click.option( "--event-resolution", "event_resolution_in_minutes", type=int, required=True, help="New event resolution as an integer number of minutes.", ) @click.option( "--from", "start_str", required=False, help="Resample only data from this datetime onwards. Follow up with a timezone-aware datetime in ISO 6801 format.", ) @click.option( "--until", "end_str", required=False, help="Resample only data until this datetime. Follow up with a timezone-aware datetime in ISO 6801 format.", ) @click.option( "--skip-integrity-check", is_flag=True, help="Whether to skip checking the resampled time series data for each sensor." " By default, an excerpt and the mean value of the original" " and resampled data will be shown for manual approval.", ) def resample_sensor_data( sensor_ids: List[int], event_resolution_in_minutes: int, start_str: Optional[str] = None, end_str: Optional[str] = None, skip_integrity_check: bool = False, ): """Assign a new event resolution to an existing sensor and resample its data accordingly.""" event_resolution = timedelta(minutes=event_resolution_in_minutes) event_starts_after = pd.Timestamp(start_str) # note that "" or None becomes NaT event_ends_before = pd.Timestamp(end_str) for sensor_id in sensor_ids: sensor = Sensor.query.get(sensor_id) if sensor.event_resolution == event_resolution: print(f"{sensor} already has the desired event resolution.") continue df_original = sensor.search_beliefs( most_recent_beliefs_only=False, event_starts_after=event_starts_after, event_ends_before=event_ends_before, ).sort_values("event_start") df_resampled = df_original.resample_events(event_resolution).sort_values( "event_start" ) if not skip_integrity_check: message = "" if sensor.event_resolution < event_resolution: message += f"Downsampling {sensor} to {event_resolution} will result in a loss of data. " click.confirm( message + f"Data before:\n{df_original}\nData after:\n{df_resampled}\nMean before: {df_original['event_value'].mean()}\nMean after: {df_resampled['event_value'].mean()}\nContinue?", abort=True, ) # Update sensor sensor.event_resolution = event_resolution db.session.add(sensor) # Update sensor data query = TimedBelief.query.filter(TimedBelief.sensor == sensor) if not pd.isnull(event_starts_after): query = query.filter(TimedBelief.event_start >= event_starts_after) if not pd.isnull(event_ends_before): query = query.filter( TimedBelief.event_start + sensor.event_resolution <= event_ends_before ) query.delete() save_to_db(df_resampled, bulk_save_objects=True) db.session.commit() print("Successfully resampled sensor data.") app.cli.add_command(fm_edit_data) def parse_attribute_value( attribute_null_value: bool, attribute_float_value: Optional[float] = None, attribute_bool_value: Optional[bool] = None, attribute_str_value: Optional[str] = None, attribute_int_value: Optional[int] = None, ) -> Union[float, int, bool, str, None]: """Parse attribute value.""" if not single_true( [attribute_null_value] + [ v is not None for v in [ attribute_float_value, attribute_bool_value, attribute_str_value, attribute_int_value, ] ] ): raise ValueError("Cannot set multiple values simultaneously.") if attribute_null_value: return None elif attribute_float_value is not None: return float(attribute_float_value) elif attribute_bool_value is not None: return bool(attribute_bool_value) elif attribute_int_value is not None: return int(attribute_int_value) return attribute_str_value def single_true(iterable) -> bool: i = iter(iterable) return any(i) and not any(i)
9946
import bpy from bpy.props import * from ...nodes.BASE.node_base import RenderNodeBase class RenderNodeGetListIndex(RenderNodeBase): """A simple input node""" bl_idname = 'RenderNodeGetListIndex' bl_label = 'Get List Index' def init(self, context): self.create_output('RenderNodeSocketInt', "index", 'Index') def process(self,context,id,path): node = self.id_data.nodes.get(bpy.context.window_manager.rsn_active_list) if not node or node.bl_idname != 'RenderNodeTaskRenderListNode': return self.outputs[0].set_value(node.active_index) def register(): bpy.utils.register_class(RenderNodeGetListIndex) def unregister(): bpy.utils.unregister_class(RenderNodeGetListIndex)
9989
import pytest from stable_baselines import A2C, ACER, ACKTR, DeepQ, DDPG, PPO1, PPO2, TRPO from stable_baselines.ddpg import AdaptiveParamNoiseSpec from stable_baselines.common.identity_env import IdentityEnv, IdentityEnvBox from stable_baselines.common.vec_env import DummyVecEnv PARAM_NOISE_DDPG = AdaptiveParamNoiseSpec(initial_stddev=float(0.2), desired_action_stddev=float(0.2)) # Hyperparameters for learning identity for each RL model LEARN_FUNC_DICT = { 'a2c': lambda e: A2C(policy="MlpPolicy", env=e).learn(total_timesteps=1000), 'acer': lambda e: ACER(policy="MlpPolicy", env=e).learn(total_timesteps=1000), 'acktr': lambda e: ACKTR(policy="MlpPolicy", env=e).learn(total_timesteps=1000), 'deepq': lambda e: DeepQ(policy="MlpPolicy", env=e).learn(total_timesteps=1000), 'ddpg': lambda e: DDPG(policy="MlpPolicy", env=e, param_noise=PARAM_NOISE_DDPG).learn(total_timesteps=1000), 'ppo1': lambda e: PPO1(policy="MlpPolicy", env=e).learn(total_timesteps=1000), 'ppo2': lambda e: PPO2(policy="MlpPolicy", env=e).learn(total_timesteps=1000), 'trpo': lambda e: TRPO(policy="MlpPolicy", env=e).learn(total_timesteps=1000), } @pytest.mark.slow @pytest.mark.parametrize("model_name", ['a2c', 'acer', 'acktr', 'deepq', 'ppo1', 'ppo2', 'trpo']) def test_identity(model_name): """ Test if the algorithm (with a given policy) can learn an identity transformation (i.e. return observation as an action) :param model_name: (str) Name of the RL model """ env = DummyVecEnv([lambda: IdentityEnv(10)]) model = LEARN_FUNC_DICT[model_name](env) n_trials = 1000 obs = env.reset() action_shape = model.predict(obs, deterministic=False)[0].shape action, _ = model.predict(obs, deterministic=True) assert action.shape == action_shape for _ in range(n_trials): new_action = model.predict(obs, deterministic=True)[0] assert action == model.predict(obs, deterministic=True)[0] assert new_action.shape == action_shape # Free memory del model, env @pytest.mark.slow @pytest.mark.parametrize("model_name", ['a2c', 'ddpg', 'ppo1', 'ppo2', 'trpo']) def test_identity_continuous(model_name): """ Test if the algorithm (with a given policy) can learn an identity transformation (i.e. return observation as an action) :param model_name: (str) Name of the RL model """ env = DummyVecEnv([lambda: IdentityEnvBox(eps=0.5)]) model = LEARN_FUNC_DICT[model_name](env) n_trials = 1000 obs = env.reset() action_shape = model.predict(obs, deterministic=False)[0].shape action, _ = model.predict(obs, deterministic=True) assert action.shape == action_shape for _ in range(n_trials): new_action = model.predict(obs, deterministic=True)[0] assert action == model.predict(obs, deterministic=True)[0] assert new_action.shape == action_shape
9990
import tensorflow as tf from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import tag_constants export_dir = './reference/00000002' graph_pb = './creditcardfraud.pb' builder = tf.saved_model.builder.SavedModelBuilder(export_dir) with tf.gfile.GFile(graph_pb, "rb") as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) sigs = {} with tf.Session(graph=tf.Graph()) as sess: # name="" is important to ensure we don't get spurious prefixing tf.import_graph_def(graph_def, name="") g = tf.get_default_graph() inp1 = g.get_tensor_by_name("transaction:0") inp2 = g.get_tensor_by_name("reference:0") out = g.get_tensor_by_name("output:0") sigs[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = \ tf.saved_model.signature_def_utils.predict_signature_def( {"transaction": inp1, "reference": inp2}, {"output": out}) builder.add_meta_graph_and_variables(sess, [tag_constants.SERVING], signature_def_map=sigs) builder.save()
10008
import pytest from starsessions import SessionBackend @pytest.mark.asyncio async def test_cookie_read_write(cookie: SessionBackend, session_payload: dict) -> None: new_id = await cookie.write(session_payload, "session_id") assert await cookie.read(new_id) == session_payload @pytest.mark.asyncio async def test_cookie_remove(cookie: SessionBackend) -> None: await cookie.remove("session_id") @pytest.mark.asyncio async def test_cookie_exists(cookie: SessionBackend) -> None: assert await cookie.exists("session_id") is False @pytest.mark.asyncio async def test_cookie_generate_id(cookie: SessionBackend) -> None: new_id = await cookie.generate_id() assert isinstance(new_id, str)
10015
import math import numpy as np import torch import torch.nn as nn from ....ops.pointnet2.pointnet2_stack import pointnet2_modules as pointnet2_stack_modules from ....ops.pointnet2.pointnet2_stack import pointnet2_utils as pointnet2_stack_utils from ....utils import common_utils from ...backbones_2d.transformer import TransformerEncoderLayer3D, TransformerEncoder from ...roi_heads.target_assigner.proposal_target_layer import ProposalTargetLayer from ...model_utils.model_nms_utils import class_agnostic_nms def bilinear_interpolate_torch(im, x, y): """ Args: im: (H, W, C) [y, x] x: (N) y: (N) Returns: """ x0 = torch.floor(x).long() x1 = x0 + 1 y0 = torch.floor(y).long() y1 = y0 + 1 x0 = torch.clamp(x0, 0, im.shape[1] - 1) x1 = torch.clamp(x1, 0, im.shape[1] - 1) y0 = torch.clamp(y0, 0, im.shape[0] - 1) y1 = torch.clamp(y1, 0, im.shape[0] - 1) Ia = im[y0, x0] Ib = im[y1, x0] Ic = im[y0, x1] Id = im[y1, x1] wa = (x1.type_as(x) - x) * (y1.type_as(y) - y) wb = (x1.type_as(x) - x) * (y - y0.type_as(y)) wc = (x - x0.type_as(x)) * (y1.type_as(y) - y) wd = (x - x0.type_as(x)) * (y - y0.type_as(y)) ans = torch.t((torch.t(Ia) * wa)) + torch.t(torch.t(Ib) * wb) + torch.t(torch.t(Ic) * wc) + torch.t(torch.t(Id) * wd) return ans def sample_points_with_roi(rois, points, sample_radius_with_roi, num_max_points_of_part=200000): """ Args: rois: (M, 7 + C) points: (N, 3) sample_radius_with_roi: num_max_points_of_part: Returns: sampled_points: (N_out, 3) """ if points.shape[0] < num_max_points_of_part: distance = (points[:, None, :] - rois[None, :, 0:3]).norm(dim=-1) min_dis, min_dis_roi_idx = distance.min(dim=-1) roi_max_dim = (rois[min_dis_roi_idx, 3:6] / 2).norm(dim=-1) point_mask = min_dis < roi_max_dim + sample_radius_with_roi else: start_idx = 0 point_mask_list = [] while start_idx < points.shape[0]: distance = (points[start_idx:start_idx + num_max_points_of_part, None, :] - rois[None, :, 0:3]).norm(dim=-1) min_dis, min_dis_roi_idx = distance.min(dim=-1) roi_max_dim = (rois[min_dis_roi_idx, 3:6] / 2).norm(dim=-1) cur_point_mask = min_dis < roi_max_dim + sample_radius_with_roi point_mask_list.append(cur_point_mask) start_idx += num_max_points_of_part point_mask = torch.cat(point_mask_list, dim=0) sampled_points = points[:1] if point_mask.sum() == 0 else points[point_mask, :] return sampled_points, point_mask def sector_fps(points, num_sampled_points, num_sectors): """ Args: points: (N, 3) num_sampled_points: int num_sectors: int Returns: sampled_points: (N_out, 3) """ sector_size = np.pi * 2 / num_sectors point_angles = torch.atan2(points[:, 1], points[:, 0]) + np.pi sector_idx = (point_angles / sector_size).floor().clamp(min=0, max=num_sectors) xyz_points_list = [] xyz_batch_cnt = [] num_sampled_points_list = [] for k in range(num_sectors): mask = (sector_idx == k) cur_num_points = mask.sum().item() if cur_num_points > 0: xyz_points_list.append(points[mask]) xyz_batch_cnt.append(cur_num_points) ratio = cur_num_points / points.shape[0] num_sampled_points_list.append( min(cur_num_points, math.ceil(ratio * num_sampled_points)) ) if len(xyz_batch_cnt) == 0: xyz_points_list.append(points) xyz_batch_cnt.append(len(points)) num_sampled_points_list.append(num_sampled_points) print(f'Warning: empty sector points detected in SectorFPS: points.shape={points.shape}') xyz = torch.cat(xyz_points_list, dim=0) xyz_batch_cnt = torch.tensor(xyz_batch_cnt, device=points.device).int() sampled_points_batch_cnt = torch.tensor(num_sampled_points_list, device=points.device).int() sampled_pt_idxs = pointnet2_stack_utils.stack_farthest_point_sample( xyz.contiguous(), xyz_batch_cnt, sampled_points_batch_cnt ).long() sampled_points = xyz[sampled_pt_idxs] return sampled_points class VoxelSetAbstractionTransFusionv5(nn.Module): def __init__(self, model_cfg, voxel_size, point_cloud_range, num_bev_features=None, num_rawpoint_features=None, **kwargs): super().__init__() self.model_cfg = model_cfg self.voxel_size = voxel_size self.point_cloud_range = point_cloud_range SA_cfg = self.model_cfg.SA_LAYER self.SA_layers = nn.ModuleList() self.linears_in = nn.ModuleList() self.linears_out = nn.ModuleList() self.fusion_channel = sum([x[-1] for x in SA_cfg[self.model_cfg.FEATURES_SOURCE[-2]].MLPS]) # self.fusion_channel = 16 self.SA_layer_names = [] self.downsample_times_map = {} c_in = 0 if 'bev' in self.model_cfg.FEATURES_SOURCE: c_bev = num_bev_features c_in += c_bev if c_bev == self.fusion_channel: self.linears_in.append(nn.Identity()) self.linears_out.append(nn.Identity()) else: self.linears_in.append(nn.Sequential( nn.Linear(c_bev, self.fusion_channel, bias=False), nn.BatchNorm1d(self.fusion_channel))) self.linears_out.append(nn.Sequential( nn.Linear(self.fusion_channel, c_bev, bias=False), nn.BatchNorm1d(c_bev))) if 'raw_points' in self.model_cfg.FEATURES_SOURCE: mlps = SA_cfg['raw_points'].MLPS for k in range(len(mlps)): mlps[k] = [num_rawpoint_features - 3] + mlps[k] self.SA_rawpoints = pointnet2_stack_modules.StackSAModuleMSG( radii=SA_cfg['raw_points'].POOL_RADIUS, nsamples=SA_cfg['raw_points'].NSAMPLE, mlps=mlps, use_xyz=True, pool_method='max_pool' ) cur = sum([x[-1] for x in mlps]) if cur == self.fusion_channel: self.linears_in.append(nn.Identity()) self.linears_out.append(nn.Identity()) else: self.linears_in.append(nn.Sequential( nn.Linear(cur, self.fusion_channel, bias=False), nn.BatchNorm1d(self.fusion_channel))) self.linears_out.append(nn.Sequential( nn.Linear(self.fusion_channel, cur, bias=False), nn.BatchNorm1d(cur))) c_in += cur for src_name in self.model_cfg.FEATURES_SOURCE: if src_name in ['bev', 'raw_points']: continue self.downsample_times_map[src_name] = SA_cfg[src_name].DOWNSAMPLE_FACTOR mlps = SA_cfg[src_name].MLPS for k in range(len(mlps)): mlps[k] = [mlps[k][0]] + mlps[k] cur_layer = pointnet2_stack_modules.StackSAModuleMSG( radii=SA_cfg[src_name].POOL_RADIUS, nsamples=SA_cfg[src_name].NSAMPLE, mlps=mlps, use_xyz=True, pool_method='max_pool', ) self.SA_layers.append(cur_layer) cur = sum([x[-1] for x in mlps]) if cur == self.fusion_channel: self.linears_in.append(nn.Identity()) self.linears_out.append(nn.Identity()) else: self.linears_in.append(nn.Sequential( nn.Linear(cur, self.fusion_channel, bias=False), nn.BatchNorm1d(self.fusion_channel))) self.linears_out.append(nn.Sequential( nn.Linear(self.fusion_channel, cur, bias=False), nn.BatchNorm1d(cur))) self.SA_layer_names.append(src_name) c_in += cur self.vsa_point_feature_fusion = nn.Sequential( nn.Linear(c_in, self.model_cfg.NUM_OUTPUT_FEATURES, bias=False), nn.BatchNorm1d(self.model_cfg.NUM_OUTPUT_FEATURES), nn.ReLU(), ) self.num_point_features = self.model_cfg.NUM_OUTPUT_FEATURES self.num_point_features_before_fusion = c_in if self.model_cfg.NORM: self.transnorm = nn.LayerNorm(c_in) else: self.transnorm = None if self.model_cfg.NORM2: self.transnorm2 = nn.LayerNorm(self.fusion_channel) else: self.transnorm2 = None # multi_location self.trans_layer = TransformerEncoder(TransformerEncoderLayer3D(c_in, self.model_cfg.FUSION_HEAD), self.model_cfg.NUM_LAYERS, self.transnorm) # have multi-modality + multi-scale self.trans_fusion_layer = TransformerEncoder(TransformerEncoderLayer3D(self.fusion_channel, self.model_cfg.FUSION2_HEAD), self.model_cfg.NUM_LAYERS2, self.transnorm2) self.reduce_radius = self.model_cfg.REDUCE_RADIUS**2 self.topks = self.model_cfg.NMS_CONFIG.TOPK self.max_keypoints = self.model_cfg.NMS_CONFIG.MAX_POINTS self.res1_actn_1 = nn.Sequential( nn.LayerNorm(c_in), nn.ReLU()) self.res1_actn_2 = nn.Sequential( nn.LayerNorm(c_in), nn.ReLU()) def interpolate_from_bev_features(self, keypoints, bev_features, batch_size, bev_stride): x_idxs = (keypoints[:, :, 0] - self.point_cloud_range[0]) / self.voxel_size[0] y_idxs = (keypoints[:, :, 1] - self.point_cloud_range[1]) / self.voxel_size[1] x_idxs = x_idxs / bev_stride y_idxs = y_idxs / bev_stride point_bev_features_list = [] for k in range(batch_size): cur_x_idxs = x_idxs[k] cur_y_idxs = y_idxs[k] cur_bev_features = bev_features[k].permute(1, 2, 0) # (H, W, C) point_bev_features = bilinear_interpolate_torch(cur_bev_features, cur_x_idxs, cur_y_idxs) point_bev_features_list.append(point_bev_features.unsqueeze(dim=0)) point_bev_features = torch.cat(point_bev_features_list, dim=0) # (B, N, C0) return point_bev_features def get_sampled_points(self, batch_dict): batch_size = batch_dict['batch_size'] if self.model_cfg.POINT_SOURCE == 'raw_points': src_points = batch_dict['points'][:, 1:4] batch_indices = batch_dict['points'][:, 0].long() elif self.model_cfg.POINT_SOURCE == 'voxel_centers': src_points = common_utils.get_voxel_centers( batch_dict['voxel_coords'][:, 1:4], downsample_times=1, voxel_size=self.voxel_size, point_cloud_range=self.point_cloud_range ) batch_indices = batch_dict['voxel_coords'][:, 0].long() else: raise NotImplementedError keypoints_list = [] for bs_idx in range(batch_size): bs_mask = (batch_indices == bs_idx) sampled_points = src_points[bs_mask].unsqueeze(dim=0) # (1, N, 3) if self.model_cfg.SAMPLE_METHOD == 'FPS': cur_pt_idxs = pointnet2_stack_utils.furthest_point_sample( sampled_points[:, :, 0:3].contiguous(), self.model_cfg.NUM_KEYPOINTS ).long() if sampled_points.shape[1] < self.model_cfg.NUM_KEYPOINTS: empty_num = self.model_cfg.NUM_KEYPOINTS - sampled_points.shape[1] cur_pt_idxs[0, -empty_num:] = cur_pt_idxs[0, :empty_num] keypoints = sampled_points[0][cur_pt_idxs[0]].unsqueeze(dim=0) elif self.model_cfg.SAMPLE_METHOD == 'FastFPS': raise NotImplementedError else: raise NotImplementedError keypoints_list.append(keypoints) keypoints = torch.cat(keypoints_list, dim=0) # (B, M, 3) return keypoints def get_sampled_points_post(self, batch_dict, keypoints): batch_size = batch_dict['batch_size'] src_points = keypoints keypoints_list = [] for bs_idx in range(batch_size): sampled_points = src_points[bs_idx].unsqueeze(dim=0) # (1, N, 3) if sampled_points.shape[1] < self.max_keypoints: cur_count = sampled_points.shape[1] cur_pt_idxs = torch.arange(0, self.max_keypoints) empty_num = self.max_keypoints - cur_count while empty_num >= cur_count: cur_pt_idxs[cur_count:cur_count * 2] = cur_pt_idxs[:cur_count] empty_num -= cur_count cur_count *= 2 if cur_count < self.max_keypoints: assert empty_num == self.max_keypoints - cur_count cur_pt_idxs[-empty_num:] = cur_pt_idxs[:empty_num] keypoint = sampled_points[0][cur_pt_idxs].unsqueeze(dim=0) else: cur_pt_idxs = pointnet2_stack_utils.furthest_point_sample( sampled_points[:, :, 0:3].contiguous(), self.max_keypoints ).long() if sampled_points.shape[1] < self.max_keypoints: empty_num = self.max_keypoints - sampled_points.shape[1] cur_pt_idxs[0, -empty_num:] = cur_pt_idxs[0, :empty_num] keypoint = sampled_points[0][cur_pt_idxs[0]].unsqueeze(dim=0) keypoints_list.append(keypoint) keypoint = torch.cat(keypoints_list, dim=0) # (B, M, 3) return keypoint def reduce_points(self, batch_dict): batch_indices = batch_dict['points'][:, 0].long() masks = [] for bs_idx, roi in enumerate(batch_dict['batch_cls_preds']): bs_mask = (batch_indices == bs_idx) pts = batch_dict['points'][bs_mask].unsqueeze(dim=1)[:, :, 1: 4] # (N, 1, 3) s, _ = torch.max(batch_dict['batch_cls_preds'][bs_idx], dim=1) top, idx = torch.topk(s, self.topks) c = batch_dict['batch_box_preds'][bs_idx][idx][:, :3].unsqueeze(dim=0) dist = (pts - c)**2 dist, _ = dist.sum(dim=-1).min(dim=1) mask = (dist <= self.reduce_radius) masks.extend(mask) batch_dict['points'] = batch_dict['points'][masks] return batch_dict def reduce_points_post(self, keypoints, batch_dict): keypoints_list = [] for bs_idx, roi in enumerate(batch_dict['batch_cls_preds']): pts = keypoints[bs_idx].unsqueeze(dim=1) s, _ = torch.max(batch_dict['batch_cls_preds'][bs_idx], dim=1) top, idx = torch.topk(s, self.topks) c = batch_dict['batch_box_preds'][bs_idx][idx][:, :3].unsqueeze(dim=0) dist = (pts - c)**2 dist, _ = dist.sum(dim=-1).min(dim=1) mask = (dist <= self.reduce_radius) keypoints_list.append(keypoints[bs_idx][mask]) return keypoints_list def forward(self, batch_dict): """ Args: batch_dict: batch_size: keypoints: (B, num_keypoints, 3) multi_scale_3d_features: { 'x_conv4': ... } points: optional (N, 1 + 3 + C) [bs_idx, x, y, z, ...] spatial_features: optional spatial_features_stride: optional Returns: point_features: (N, C) point_coords: (N, 4) """ if self.model_cfg.POINT_SOURCE == 'raw_points' and self.reduce_radius > 0: # batch_dict = self.reduce_points(batch_dict) keypoints = self.get_sampled_points(batch_dict) keypoint_lst = self.reduce_points_post(keypoints, batch_dict) keypoints = self.get_sampled_points_post(batch_dict, keypoint_lst) else: keypoints = self.get_sampled_points(batch_dict) point_features_list = [] if 'bev' in self.model_cfg.FEATURES_SOURCE: point_bev_features = self.interpolate_from_bev_features( keypoints, batch_dict['spatial_features'], batch_dict['batch_size'], bev_stride=batch_dict['spatial_features_stride'] ) point_features_list.append(point_bev_features) batch_size, num_keypoints, _ = keypoints.shape new_xyz = keypoints.view(-1, 3) new_xyz_batch_cnt = new_xyz.new_zeros(batch_size).int().fill_(num_keypoints) if 'raw_points' in self.model_cfg.FEATURES_SOURCE: raw_points = batch_dict['points'] xyz = raw_points[:, 1:4] xyz_batch_cnt = xyz.new_zeros(batch_size).int() for bs_idx in range(batch_size): xyz_batch_cnt[bs_idx] = (raw_points[:, 0] == bs_idx).sum() point_features = raw_points[:, 4:].contiguous() if raw_points.shape[1] > 4 else None pooled_points, pooled_features = self.SA_rawpoints( xyz=xyz.contiguous(), xyz_batch_cnt=xyz_batch_cnt, new_xyz=new_xyz, new_xyz_batch_cnt=new_xyz_batch_cnt, features=point_features, ) point_features_list.append(pooled_features.view(batch_size, num_keypoints, -1)) for k, src_name in enumerate(self.SA_layer_names): cur_coords = batch_dict['multi_scale_3d_features'][src_name].indices xyz = common_utils.get_voxel_centers( cur_coords[:, 1:4], downsample_times=self.downsample_times_map[src_name], voxel_size=self.voxel_size, point_cloud_range=self.point_cloud_range ) xyz_batch_cnt = xyz.new_zeros(batch_size).int() for bs_idx in range(batch_size): xyz_batch_cnt[bs_idx] = (cur_coords[:, 0] == bs_idx).sum() pooled_points, pooled_features = self.SA_layers[k]( xyz=xyz.contiguous(), xyz_batch_cnt=xyz_batch_cnt, new_xyz=new_xyz, new_xyz_batch_cnt=new_xyz_batch_cnt, features=batch_dict['multi_scale_3d_features'][src_name].features.contiguous(), ) point_features_list.append(pooled_features.view(batch_size, num_keypoints, -1)) point_features_list_new = [] for i, x in enumerate(point_features_list): feat = self.linears_in[i](x.view(batch_size * num_keypoints, -1)) point_features_list_new.append(feat.view(1, batch_size * num_keypoints, -1)) fusion_feat = torch.cat(point_features_list_new, dim=0) # have multi-modality + multi-scale trans1_feat_list = self.trans_fusion_layer(fusion_feat).view(len(fusion_feat), batch_size, num_keypoints, -1) trans1_feat_projected_list = [] for i, x in enumerate(trans1_feat_list): feat = self.linears_out[i](x.view(batch_size * num_keypoints, -1)) trans1_feat_projected_list.append(feat.view(batch_size, num_keypoints, -1)) # multi_location point_features_main1 = torch.cat(point_features_list, dim=2) point_features_res1 = self.res1_actn_1(torch.cat(trans1_feat_projected_list, dim=2)) point_features_main2 = point_features_res1 + point_features_main1 point_features_res2 = self.res1_actn_2(self.trans_layer(point_features_main2.permute(1, 0, 2)).permute(1, 0, 2)) point_features = point_features_main2 + point_features_res2 batch_idx = torch.arange(batch_size, device=keypoints.device).view(-1, 1).repeat(1, keypoints.shape[1]).view(-1) point_coords = torch.cat((batch_idx.view(-1, 1).float(), keypoints.view(-1, 3)), dim=1) batch_dict['point_features_before_fusion'] = point_features.reshape(-1, point_features.shape[-1]) point_features = self.vsa_point_feature_fusion(point_features.reshape(-1, point_features.shape[-1])) batch_dict['point_features'] = point_features # (BxN, C) batch_dict['point_coords'] = point_coords # (BxN, 4) return batch_dict class VoxelSetAbstraction(nn.Module): def __init__(self, model_cfg, voxel_size, point_cloud_range, num_bev_features=None, num_rawpoint_features=None, **kwargs): super().__init__() self.model_cfg = model_cfg self.voxel_size = voxel_size self.point_cloud_range = point_cloud_range SA_cfg = self.model_cfg.SA_LAYER self.SA_layers = nn.ModuleList() self.SA_layer_names = [] self.downsample_times_map = {} c_in = 0 for src_name in self.model_cfg.FEATURES_SOURCE: if src_name in ['bev', 'raw_points']: continue self.downsample_times_map[src_name] = SA_cfg[src_name].DOWNSAMPLE_FACTOR if SA_cfg[src_name].get('INPUT_CHANNELS', None) is None: input_channels = SA_cfg[src_name].MLPS[0][0] \ if isinstance(SA_cfg[src_name].MLPS[0], list) else SA_cfg[src_name].MLPS[0] else: input_channels = SA_cfg[src_name]['INPUT_CHANNELS'] cur_layer, cur_num_c_out = pointnet2_stack_modules.build_local_aggregation_module( input_channels=input_channels, config=SA_cfg[src_name] ) self.SA_layers.append(cur_layer) self.SA_layer_names.append(src_name) c_in += cur_num_c_out if 'bev' in self.model_cfg.FEATURES_SOURCE: c_bev = num_bev_features c_in += c_bev if 'raw_points' in self.model_cfg.FEATURES_SOURCE: self.SA_rawpoints, cur_num_c_out = pointnet2_stack_modules.build_local_aggregation_module( input_channels=num_rawpoint_features - 3, config=SA_cfg['raw_points'] ) c_in += cur_num_c_out self.vsa_point_feature_fusion = nn.Sequential( nn.Linear(c_in, self.model_cfg.NUM_OUTPUT_FEATURES, bias=False), nn.BatchNorm1d(self.model_cfg.NUM_OUTPUT_FEATURES), nn.ReLU(), ) self.num_point_features = self.model_cfg.NUM_OUTPUT_FEATURES self.num_point_features_before_fusion = c_in def interpolate_from_bev_features(self, keypoints, bev_features, batch_size, bev_stride): """ Args: keypoints: (N1 + N2 + ..., 4) bev_features: (B, C, H, W) batch_size: bev_stride: Returns: point_bev_features: (N1 + N2 + ..., C) """ x_idxs = (keypoints[:, 1] - self.point_cloud_range[0]) / self.voxel_size[0] y_idxs = (keypoints[:, 2] - self.point_cloud_range[1]) / self.voxel_size[1] x_idxs = x_idxs / bev_stride y_idxs = y_idxs / bev_stride point_bev_features_list = [] for k in range(batch_size): bs_mask = (keypoints[:, 0] == k) cur_x_idxs = x_idxs[bs_mask] cur_y_idxs = y_idxs[bs_mask] cur_bev_features = bev_features[k].permute(1, 2, 0) # (H, W, C) point_bev_features = bilinear_interpolate_torch(cur_bev_features, cur_x_idxs, cur_y_idxs) point_bev_features_list.append(point_bev_features) point_bev_features = torch.cat(point_bev_features_list, dim=0) # (N1 + N2 + ..., C) return point_bev_features def sectorized_proposal_centric_sampling(self, roi_boxes, points): """ Args: roi_boxes: (M, 7 + C) points: (N, 3) Returns: sampled_points: (N_out, 3) """ sampled_points, _ = sample_points_with_roi( rois=roi_boxes, points=points, sample_radius_with_roi=self.model_cfg.SPC_SAMPLING.SAMPLE_RADIUS_WITH_ROI, num_max_points_of_part=self.model_cfg.SPC_SAMPLING.get('NUM_POINTS_OF_EACH_SAMPLE_PART', 200000) ) sampled_points = sector_fps( points=sampled_points, num_sampled_points=self.model_cfg.NUM_KEYPOINTS, num_sectors=self.model_cfg.SPC_SAMPLING.NUM_SECTORS ) return sampled_points def get_sampled_points(self, batch_dict): """ Args: batch_dict: Returns: keypoints: (N1 + N2 + ..., 4), where 4 indicates [bs_idx, x, y, z] """ batch_size = batch_dict['batch_size'] if self.model_cfg.POINT_SOURCE == 'raw_points': src_points = batch_dict['points'][:, 1:4] batch_indices = batch_dict['points'][:, 0].long() elif self.model_cfg.POINT_SOURCE == 'voxel_centers': src_points = common_utils.get_voxel_centers( batch_dict['voxel_coords'][:, 1:4], downsample_times=1, voxel_size=self.voxel_size, point_cloud_range=self.point_cloud_range ) batch_indices = batch_dict['voxel_coords'][:, 0].long() else: raise NotImplementedError keypoints_list = [] for bs_idx in range(batch_size): bs_mask = (batch_indices == bs_idx) sampled_points = src_points[bs_mask].unsqueeze(dim=0) # (1, N, 3) if self.model_cfg.SAMPLE_METHOD == 'FPS': cur_pt_idxs = pointnet2_stack_utils.farthest_point_sample( sampled_points[:, :, 0:3].contiguous(), self.model_cfg.NUM_KEYPOINTS ).long() if sampled_points.shape[1] < self.model_cfg.NUM_KEYPOINTS: times = int(self.model_cfg.NUM_KEYPOINTS / sampled_points.shape[1]) + 1 non_empty = cur_pt_idxs[0, :sampled_points.shape[1]] cur_pt_idxs[0] = non_empty.repeat(times)[:self.model_cfg.NUM_KEYPOINTS] keypoints = sampled_points[0][cur_pt_idxs[0]].unsqueeze(dim=0) elif self.model_cfg.SAMPLE_METHOD == 'SPC': cur_keypoints = self.sectorized_proposal_centric_sampling( roi_boxes=batch_dict['rois'][bs_idx], points=sampled_points[0] ) bs_idxs = cur_keypoints.new_ones(cur_keypoints.shape[0]) * bs_idx keypoints = torch.cat((bs_idxs[:, None], cur_keypoints), dim=1) else: raise NotImplementedError keypoints_list.append(keypoints) keypoints = torch.cat(keypoints_list, dim=0) # (B, M, 3) or (N1 + N2 + ..., 4) if len(keypoints.shape) == 3: batch_idx = torch.arange(batch_size, device=keypoints.device).view(-1, 1).repeat(1, keypoints.shape[1]).view(-1, 1) keypoints = torch.cat((batch_idx.float(), keypoints.view(-1, 3)), dim=1) return keypoints @staticmethod def aggregate_keypoint_features_from_one_source( batch_size, aggregate_func, xyz, xyz_features, xyz_bs_idxs, new_xyz, new_xyz_batch_cnt, filter_neighbors_with_roi=False, radius_of_neighbor=None, num_max_points_of_part=200000, rois=None ): """ Args: aggregate_func: xyz: (N, 3) xyz_features: (N, C) xyz_bs_idxs: (N) new_xyz: (M, 3) new_xyz_batch_cnt: (batch_size), [N1, N2, ...] filter_neighbors_with_roi: True/False radius_of_neighbor: float num_max_points_of_part: int rois: (batch_size, num_rois, 7 + C) Returns: """ xyz_batch_cnt = xyz.new_zeros(batch_size).int() if filter_neighbors_with_roi: point_features = torch.cat((xyz, xyz_features), dim=-1) if xyz_features is not None else xyz point_features_list = [] for bs_idx in range(batch_size): bs_mask = (xyz_bs_idxs == bs_idx) _, valid_mask = sample_points_with_roi( rois=rois[bs_idx], points=xyz[bs_mask], sample_radius_with_roi=radius_of_neighbor, num_max_points_of_part=num_max_points_of_part, ) point_features_list.append(point_features[bs_mask][valid_mask]) xyz_batch_cnt[bs_idx] = valid_mask.sum() valid_point_features = torch.cat(point_features_list, dim=0) xyz = valid_point_features[:, 0:3] xyz_features = valid_point_features[:, 3:] if xyz_features is not None else None else: for bs_idx in range(batch_size): xyz_batch_cnt[bs_idx] = (xyz_bs_idxs == bs_idx).sum() pooled_points, pooled_features = aggregate_func( xyz=xyz.contiguous(), xyz_batch_cnt=xyz_batch_cnt, new_xyz=new_xyz, new_xyz_batch_cnt=new_xyz_batch_cnt, features=xyz_features.contiguous(), ) return pooled_features def forward(self, batch_dict): """ Args: batch_dict: batch_size: keypoints: (B, num_keypoints, 3) multi_scale_3d_features: { 'x_conv4': ... } points: optional (N, 1 + 3 + C) [bs_idx, x, y, z, ...] spatial_features: optional spatial_features_stride: optional Returns: point_features: (N, C) point_coords: (N, 4) """ keypoints = self.get_sampled_points(batch_dict) point_features_list = [] if 'bev' in self.model_cfg.FEATURES_SOURCE: point_bev_features = self.interpolate_from_bev_features( keypoints, batch_dict['spatial_features'], batch_dict['batch_size'], bev_stride=batch_dict['spatial_features_stride'] ) point_features_list.append(point_bev_features) batch_size = batch_dict['batch_size'] new_xyz = keypoints[:, 1:4].contiguous() new_xyz_batch_cnt = new_xyz.new_zeros(batch_size).int() for k in range(batch_size): new_xyz_batch_cnt[k] = (keypoints[:, 0] == k).sum() if 'raw_points' in self.model_cfg.FEATURES_SOURCE: raw_points = batch_dict['points'] pooled_features = self.aggregate_keypoint_features_from_one_source( batch_size=batch_size, aggregate_func=self.SA_rawpoints, xyz=raw_points[:, 1:4], xyz_features=raw_points[:, 4:].contiguous() if raw_points.shape[1] > 4 else None, xyz_bs_idxs=raw_points[:, 0], new_xyz=new_xyz, new_xyz_batch_cnt=new_xyz_batch_cnt, filter_neighbors_with_roi=self.model_cfg.SA_LAYER['raw_points'].get('FILTER_NEIGHBOR_WITH_ROI', False), radius_of_neighbor=self.model_cfg.SA_LAYER['raw_points'].get('RADIUS_OF_NEIGHBOR_WITH_ROI', None), rois=batch_dict.get('rois', None) ) point_features_list.append(pooled_features) for k, src_name in enumerate(self.SA_layer_names): cur_coords = batch_dict['multi_scale_3d_features'][src_name].indices cur_features = batch_dict['multi_scale_3d_features'][src_name].features.contiguous() xyz = common_utils.get_voxel_centers( cur_coords[:, 1:4], downsample_times=self.downsample_times_map[src_name], voxel_size=self.voxel_size, point_cloud_range=self.point_cloud_range ) pooled_features = self.aggregate_keypoint_features_from_one_source( batch_size=batch_size, aggregate_func=self.SA_layers[k], xyz=xyz.contiguous(), xyz_features=cur_features, xyz_bs_idxs=cur_coords[:, 0], new_xyz=new_xyz, new_xyz_batch_cnt=new_xyz_batch_cnt, filter_neighbors_with_roi=self.model_cfg.SA_LAYER[src_name].get('FILTER_NEIGHBOR_WITH_ROI', False), radius_of_neighbor=self.model_cfg.SA_LAYER[src_name].get('RADIUS_OF_NEIGHBOR_WITH_ROI', None), rois=batch_dict.get('rois', None) ) point_features_list.append(pooled_features) point_features = torch.cat(point_features_list, dim=-1) batch_dict['point_features_before_fusion'] = point_features.view(-1, point_features.shape[-1]) point_features = self.vsa_point_feature_fusion(point_features.view(-1, point_features.shape[-1])) batch_dict['point_features'] = point_features # (BxN, C) batch_dict['point_coords'] = keypoints # (BxN, 4) return batch_dict
10019
from ariadne import make_executable_schema, load_schema_from_path from ariadne.asgi import GraphQL from resolvers import query, skill, person, eye_color, mutation # import schema from GraphQL file type_defs = load_schema_from_path("./schema.gql") schema = make_executable_schema( type_defs, query, skill, person, eye_color, mutation ) app = GraphQL(schema, debug=True)
10042
from collections import defaultdict import graphene import pytest from django.core.exceptions import ValidationError from ....shipping.error_codes import ShippingErrorCode from ..mutations import BaseChannelListingMutation def test_validate_duplicated_channel_ids(channel_PLN, channel_USD): # given channel_id = graphene.Node.to_global_id("Channel", channel_USD.id) second_channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) errors = defaultdict(list) # when result = BaseChannelListingMutation.validate_duplicated_channel_ids( [channel_id], [second_channel_id], errors, ShippingErrorCode.DUPLICATED_INPUT_ITEM.value, ) # then assert result is None assert errors["input"] == [] def test_validate_duplicated_channel_ids_with_duplicates(channel_PLN): # given channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) second_channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) error_code = ShippingErrorCode.DUPLICATED_INPUT_ITEM.value errors = defaultdict(list) # when result = BaseChannelListingMutation.validate_duplicated_channel_ids( [channel_id], [second_channel_id], errors, error_code ) # then assert result is None assert errors["input"][0].code == error_code def test_validate_duplicated_channel_values(channel_PLN, channel_USD): # given channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) second_channel_id = graphene.Node.to_global_id("Channel", channel_USD.id) error_code = ShippingErrorCode.DUPLICATED_INPUT_ITEM.value errors = defaultdict(list) field = "add_channels" # when result = BaseChannelListingMutation.validate_duplicated_channel_values( [channel_id, second_channel_id], field, errors, error_code ) # then assert result is None assert errors[field] == [] def test_validate_duplicated_channel_values_with_duplicates(channel_PLN): # given channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) second_channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) error_code = ShippingErrorCode.DUPLICATED_INPUT_ITEM.value errors = defaultdict(list) field = "add_channels" # when result = BaseChannelListingMutation.validate_duplicated_channel_values( [channel_id, second_channel_id], field, errors, error_code ) # then assert result is None assert errors[field][0].code == error_code def test_clean_channels_add_channels(channel_PLN): # given channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) error_code = ShippingErrorCode.DUPLICATED_INPUT_ITEM.value errors = defaultdict(list) # when result = BaseChannelListingMutation.clean_channels( None, {"add_channels": [{"channel_id": channel_id}]}, errors, error_code ) # then assert result == { "add_channels": [{"channel_id": channel_id, "channel": channel_PLN}], "remove_channels": [], } assert errors["input"] == [] def test_clean_channels_remove_channels(channel_PLN): # given channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) error_code = ShippingErrorCode.DUPLICATED_INPUT_ITEM.value errors = defaultdict(list) # when result = BaseChannelListingMutation.clean_channels( None, {"remove_channels": [channel_id]}, errors, error_code ) # then assert result == {"add_channels": [], "remove_channels": [str(channel_PLN.id)]} assert errors["input"] == [] def test_test_clean_channels_with_errors(channel_PLN): # given channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) error_code = ShippingErrorCode.DUPLICATED_INPUT_ITEM.value errors = defaultdict(list) # when result = BaseChannelListingMutation.clean_channels( None, {"remove_channels": [channel_id, channel_id]}, errors, error_code ) # then assert result == {} assert errors["remove_channels"][0].code == error_code def test_test_clean_channels_invalid_object_type(channel_PLN): # given channel_id = graphene.Node.to_global_id("Product", channel_PLN.id) error_code = ShippingErrorCode.GRAPHQL_ERROR.value errors = defaultdict(list) # when with pytest.raises(ValidationError) as error: BaseChannelListingMutation.clean_channels( None, {"remove_channels": [channel_id]}, errors, error_code ) # then assert ( error.value.error_dict["remove_channels"][0].message == f"Must receive Channel id: {channel_id}." )
10065
import unittest from shapy.framework.tcelements import * from shapy.framework.executor import run from tests import TCTestCase class TestIngress(TCTestCase): def setUp(self): self.interface = Interface('lo') def test_ingress_filter(self): q = IngressQdisc() q.add(RedirectFilter('dst 127.0.0.3', 'eth0')) self.interface.add_ingress(q) self.interface.set_shaping()
10093
import argparse from time import sleep, time from collections import defaultdict from sqlalchemy import orm, text, insert, delete from sqlalchemy.orm import selectinload import models from app import db from app import logger from scripts.queue import JsonWorks, JsonAuthors, JsonConcepts, JsonInstitutions, JsonVenues from util import elapsed def run(**kwargs): entity_type = kwargs.get("entity") method_name = kwargs.get("method") if entity_type == "work" and method_name == "add_everything": queue_table = "queue.work_add_everything" elif method_name == "store": queue_table = f"queue.{entity_type.lower()}_store" else: queue_table = f"queue.{method_name.lower()}" if single_id := kwargs.get('id'): if objects := get_objects(entity_type, [single_id]): logger.info(f'found object {objects[0]}') store_objects(objects) db.session.commit() else: logger.warn(f'found no object with id {single_id}') else: objects_updated = 0 limit = kwargs.get('limit') chunk = kwargs.get('chunk') total_count = 0 while limit is None or objects_updated < limit: loop_start = time() if object_ids := fetch_queue_chunk_ids(queue_table, chunk): objects = get_objects(entity_type, object_ids) for obj in objects: method_start_time = time() total_count += 1 print(f"*** #{total_count} starting {obj}.{method_name}() method") method_to_run = getattr(obj, method_name) method_to_run() print(f">>> finished {obj}.{method_name}(). took {elapsed(method_start_time, 4)} seconds") # print(1/0) logger.info('committing') start_time = time() if method_name == "store": store_json_objects(objects) else: db.session.commit() # fail loudly for now logger.info(f'commit took {elapsed(start_time, 4)}s') finish_object_ids(queue_table, object_ids) objects_updated += len(objects) logger.info(f'processed chunk of {chunk} objects in {elapsed(loop_start, 2)} seconds') else: logger.info('nothing ready in the queue, waiting 5 seconds...') sleep(5) def store_json_objects(objects): delete_dict_all_objects = defaultdict(list) insert_dict_all_objects = defaultdict(list) for count, obj in enumerate(objects): obj.delete_dict = defaultdict(list) for row in obj.insert_dicts: for table_name, insert_dict in row.items(): insert_dict_all_objects[table_name] += [insert_dict] obj.delete_dict[table_name] += [insert_dict["id"]] for table_name, ids in obj.delete_dict.items(): delete_dict_all_objects[table_name] += ids start_time = time() for table_name, delete_ids in delete_dict_all_objects.items(): my_table = globals()[table_name] db.session.remove() db.session.execute(delete(my_table).where(my_table.id.in_(delete_ids))) db.session.commit() print("delete done") for table_name, all_insert_strings in insert_dict_all_objects.items(): my_table = globals()[table_name] db.session.remove() db.session.execute(insert(my_table).values(all_insert_strings)) db.session.commit() print("insert and commit took {} seconds".format(elapsed(start_time, 2))) def fetch_queue_chunk_ids(queue_table, chunk_size): text_query = f""" with chunk as ( select id from {queue_table} where started is null order by finished asc nulls first, rand limit :chunk for update skip locked ) update {queue_table} set started = now() from chunk where {queue_table}.id = chunk.id returning chunk.id; """ logger.info(f'getting {chunk_size} ids from the queue') start_time = time() ids = [ row[0] for row in db.engine.execute(text(text_query).bindparams(chunk=chunk_size).execution_options(autocommit=True)).all() ] logger.info(f'got {len(ids)} ids from the queue in {elapsed(start_time, 4)}s') logger.info(f'got these ids: {ids}') return ids def finish_object_ids(queue_table, object_ids): # logger.info(f'finishing queue chunk') start_time = time() query_text = f''' update {queue_table} set finished = now(), started=null where id = any(:ids) ''' db.session.execute(text(query_text).bindparams(ids=object_ids)) db.session.commit() # logger.info(f'finished saving finish_objects in {elapsed(start_time, 4)}s') def get_objects(entity_type, object_ids): logger.info(f'getting {len(object_ids)} objects') start_time = time() if entity_type == "work": objects = db.session.query(models.Work).options( selectinload(models.Work.records).selectinload(models.Record.journals).raiseload('*'), selectinload(models.Work.records).raiseload('*'), selectinload(models.Work.locations), selectinload(models.Work.journal).raiseload('*'), selectinload(models.Work.references).raiseload('*'), selectinload(models.Work.references_unmatched).raiseload('*'), selectinload(models.Work.mesh), selectinload(models.Work.counts_by_year).raiseload('*'), selectinload(models.Work.abstract), selectinload(models.Work.extra_ids).raiseload('*'), selectinload(models.Work.related_works).raiseload('*'), selectinload(models.Work.affiliations).selectinload(models.Affiliation.author).selectinload(models.Author.orcids).raiseload('*'), selectinload(models.Work.affiliations).selectinload(models.Affiliation.author).raiseload('*'), selectinload(models.Work.affiliations).selectinload(models.Affiliation.institution).selectinload(models.Institution.ror).raiseload('*'), selectinload(models.Work.affiliations).selectinload(models.Affiliation.institution).raiseload('*'), selectinload(models.Work.concepts).selectinload(models.WorkConcept.concept).raiseload('*'), selectinload(models.Work.concepts_full).raiseload('*'), orm.Load(models.Work).raiseload('*') ).filter(models.Work.paper_id.in_(object_ids)).all() elif entity_type == "author": objects = db.session.query(models.Author).options( selectinload(models.Author.counts_by_year_papers), selectinload(models.Author.counts_by_year_citations), selectinload(models.Author.alternative_names), selectinload(models.Author.author_concepts), selectinload(models.Author.orcids).selectinload(models.AuthorOrcid.orcid_data), selectinload(models.Author.last_known_institution).selectinload(models.Institution.ror).raiseload('*'), selectinload(models.Author.last_known_institution).raiseload('*'), orm.Load(models.Author).raiseload('*') ).filter(models.Author.author_id.in_(object_ids)).all() elif entity_type == "venue": objects = db.session.query(models.Venue).options( selectinload(models.Venue.counts_by_year_papers), selectinload(models.Venue.counts_by_year_citations), orm.Load(models.Venue).raiseload('*') ).filter(models.Venue.journal_id.in_(object_ids)).all() elif entity_type == "institution": objects = db.session.query(models.Institution).filter(models.Institution.affiliation_id.in_(object_ids)).all() elif entity_type == "concept": objects = db.session.query(models.Concept).filter(models.Concept.field_of_study_id.in_(object_ids)).all() logger.info(f'got {len(objects)} objects in {elapsed(start_time, 4)}s') return objects # python -m scripts.fast_queue --entity=work --method=add_everything --limit=3 if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run fast queue.") parser.add_argument('--entity', type=str, help="the entity type to run") parser.add_argument('--method', type=str, help="the method to run") parser.add_argument('--id', nargs="?", type=str, help="id of the one thing you want to update (case sensitive)") parser.add_argument('--limit', "-l", nargs="?", type=int, help="how many objects to work on") parser.add_argument( '--chunk', "-ch", nargs="?", default=100, type=int, help="how many objects to take off the queue at once" ) parsed_args = parser.parse_args() run(**vars(parsed_args))
10113
import re from collections import Counter def is_isogram(word): if not isinstance(word, str) or word == '': return False word = {j for i,j in Counter( re.sub('[^a-z]', '', word.lower()) ).most_common() } return len(word) == 1
10136
import krpc import time import math from simple_pid import PID conn = krpc.connect(name="UI Test") vessel = conn.space_center.active_vessel kerbin_frame = vessel.orbit.body.reference_frame orb_frame = vessel.orbital_reference_frame srf_frame = vessel.surface_reference_frame surface_gravity = vessel.orbit.body.surface_gravity current_met = conn.add_stream(getattr, vessel, 'met') current_roll = conn.add_stream(getattr, vessel.flight(), 'roll') current_pitch = conn.add_stream(getattr, vessel.flight(), 'pitch') current_heading = conn.add_stream(getattr, vessel.flight(), 'heading') current_alt = conn.add_stream(getattr, vessel.flight(), 'surface_altitude') lowest = conn.add_stream(vessel.bounding_box, srf_frame) current_drag = conn.add_stream(getattr, vessel.flight(), 'drag') current_aero = conn.add_stream(getattr, vessel.flight(), 'aerodynamic_force') current_speed = conn.add_stream(getattr, vessel.flight(kerbin_frame), 'speed') vessel.control.activate_next_stage() vessel.control.sas = True time.sleep(.2) vessel.control.sas_mode = conn.space_center.SASMode.retrograde def bottom_altitude(): return max(0, current_alt() - abs(lowest()[0][0])) for engine in vessel.parts.engines: engine.gimbal_locked = True while True: aero_amp = math.sqrt(current_aero()[0] ** 2 + current_aero()[1] ** 2 + current_aero()[2] ** 2) time_to_zero = current_speed() / ((((vessel.max_thrust * .9) + aero_amp) / vessel.mass) + vessel.orbit.body.surface_gravity) if (time_to_zero * current_speed()) >= bottom_altitude() - current_speed(): print(current_speed()) print(f"Start Hover Slam Burn") vessel.control.throttle = .9 break while current_speed() > 50: print(current_speed()) time.sleep(.01) pass print(f"Switch to Stab") for leg in vessel.parts.legs: leg.deployed = True pid1 = PID(.15, 0, .5, setpoint=0) pid1.output_limits = (0, 1) pid1.sample_time = 0.01 while bottom_altitude() > 1: vessel.control.throttle = pid1(bottom_altitude()) # pid1.setpoint *= .98 time.sleep(.01) vessel.control.sas_mode = conn.space_center.SASMode.radial vessel.control.throttle = 0
10139
import datetime import os from io import BytesIO import logging from functools import wraps from copy import deepcopy from collections import Counter import slugify import yaml import mistune import requests from flask import \ Blueprint, Flask, render_template, abort, send_file, make_response from flask_cors import CORS from flask_jsonpify import jsonify from flask_basicauth import BasicAuth from datapackage_pipelines.status import status_mgr from datapackage_pipelines.utilities.stat_utils import user_facing_stats YAML_DUMPER = yaml.CDumper if 'CDumper' in yaml.__dict__ else yaml.Dumper def datestr(x): if x is None: return '' return str(datetime.datetime.fromtimestamp(x)) def yamlize(x): ret = yaml.dump(x, default_flow_style=False, Dumper=YAML_DUMPER) return ret markdown = mistune.Markdown(hard_wrap=True) status = status_mgr() def make_hierarchies(statuses): def group(lvl): pipelines = list(filter(lambda x: len(x['id']) == 1, lvl)) children_ = list(filter(lambda x: len(x['id']) > 1, lvl)) groups_ = {} for child in children_: child_key = child['id'].pop(0) groups_.setdefault(child_key, []).append(child) children_ = dict( (k, group(v)) for k, v in groups_.items() ) for p in pipelines: p['id'] = p['id'][0] return { 'pipelines': pipelines, 'children': children_ } def flatten(children_): for k, v in children_.items(): v['children'] = flatten(v['children']) child_keys = list(v['children'].keys()) if len(child_keys) == 1 and len(v['pipelines']) == 0: child_key = child_keys[0] children_['/'.join([k, child_key])] = v['children'][child_key] del children_[k] return children_ statuses = [ { 'id': st['id'].split('/'), 'title': st.get('title'), 'stats': st.get('stats'), 'slug': st.get('slug') } for st in statuses ] groups = group(statuses) children = groups.get('children', {}) groups['children'] = flatten(children) return groups def basic_auth_required(view_func): """ A decorator that can be used to protect specific views with HTTP basic access authentication. Conditional on having BASIC_AUTH_USERNAME and BASIC_AUTH_PASSWORD set as env vars. """ @wraps(view_func) def wrapper(*args, **kwargs): if app.config.get('BASIC_AUTH_ACTIVE', False): if basic_auth.authenticate(): return view_func(*args, **kwargs) else: return basic_auth.challenge() else: return view_func(*args, **kwargs) return wrapper blueprint = Blueprint('dpp', 'dpp') @blueprint.route("") @blueprint.route("<path:pipeline_path>") @basic_auth_required def main(pipeline_path=None): pipeline_ids = sorted(status.all_pipeline_ids()) # If we have a pipeline_path, filter the pipeline ids. if pipeline_path is not None: if not pipeline_path.startswith('./'): pipeline_path = './' + pipeline_path pipeline_ids = [p for p in pipeline_ids if p.startswith(pipeline_path)] statuses = [] for pipeline_id in pipeline_ids: pipeline_status = status.get(pipeline_id) ex = pipeline_status.get_last_execution() success_ex = pipeline_status.get_last_successful_execution() pipeline_obj = { 'id': pipeline_id.lstrip('./'), 'title': pipeline_status.pipeline_details.get('title'), 'stats': user_facing_stats(ex.stats) if ex else None, 'slug': slugify.slugify(pipeline_id), 'trigger': ex.trigger if ex else None, 'error_log': pipeline_status.errors(), 'state': pipeline_status.state(), 'pipeline': pipeline_status.pipeline_details, 'message': pipeline_status.state().capitalize(), 'dirty': pipeline_status.dirty(), 'runnable': pipeline_status.runnable(), 'class': {'INIT': 'primary', 'QUEUED': 'primary', 'INVALID': 'danger', 'RUNNING': 'warning', 'SUCCEEDED': 'success', 'FAILED': 'danger' }[pipeline_status.state()], 'ended': datestr(ex.finish_time) if ex else None, 'started': datestr(ex.start_time) if ex else None, 'last_success': datestr(success_ex.finish_time) if success_ex else None, } statuses.append(pipeline_obj) def state_and_not_dirty(state, p): return p.get('state') == state and not p.get('dirty') def state_or_dirty(state, p): return p.get('state') == state or p.get('dirty') categories = [ ['ALL', 'All Pipelines', lambda _, __: True], ['INVALID', "Can't start", lambda _, p: not p['runnable']], ['QUEUED', 'Waiting to run', lambda state, p: p['state'] == state], ['RUNNING', 'Running', state_and_not_dirty], ['FAILED', 'Failed Execution', state_and_not_dirty], ['SUCCEEDED', 'Successful Execution', state_and_not_dirty], ] for item in categories: item.append([p for p in deepcopy(statuses) if item[2](item[0], p)]) item.append(len(item[-1])) item.append(make_hierarchies(item[-2])) return render_template('dashboard.html', categories=categories, yamlize=yamlize, markdown=markdown) @blueprint.route("api/raw/status") @basic_auth_required def pipeline_raw_api_status(): pipelines = sorted(status.all_statuses(), key=lambda x: x.get('id')) for pipeline in pipelines: # can get the full details from api/raw/<path:pipeline_id> for attr in ["pipeline", "reason", "error_log"]: if attr in pipeline: del pipeline[attr] return jsonify(pipelines) @blueprint.route("api/raw/<path:pipeline_id>") @basic_auth_required def pipeline_raw_api(pipeline_id): if not pipeline_id.startswith('./'): pipeline_id = './' + pipeline_id pipeline_status = status.get(pipeline_id) if not pipeline_status.pipeline_details: abort(404) last_execution = pipeline_status.get_last_execution() last_successful_execution = pipeline_status.get_last_successful_execution() ret = { "id": pipeline_id, "cache_hash": pipeline_status.cache_hash, "dirty": pipeline_status.dirty(), "queued": last_execution.queue_time if last_execution else None, "started": last_execution.start_time if last_execution else None, "ended": last_execution.finish_time if last_execution else None, "reason": last_execution.log if last_execution else None, "error_log": pipeline_status.errors(), "stats": last_execution.stats if last_execution else None, "success": last_execution.success if last_execution else None, "last_success": last_successful_execution.finish_time if last_successful_execution else None, "trigger": last_execution.trigger if last_execution else None, "pipeline": pipeline_status.pipeline_details, "source": pipeline_status.source_spec, "message": pipeline_status.state().capitalize(), "state": pipeline_status.state(), } return jsonify(ret) @blueprint.route("api/<field>/<path:pipeline_id>") @basic_auth_required def pipeline_api(field, pipeline_id): if not pipeline_id.startswith('./'): pipeline_id = './' + pipeline_id pipeline_status = status.get(pipeline_id) if not pipeline_status.pipeline_details: abort(404) ret = None if field == 'pipeline': ret = pipeline_status.pipeline_details ret = yamlize(ret) elif field == 'source': ret = pipeline_status.source_spec ret = yamlize(ret) elif field == 'log': ex = pipeline_status.get_last_execution() ret = ex.log if ex else '' else: abort(400) ret = ret.split('\n') ret = {'text': ret} return jsonify(ret) def _make_badge_response(subject, text, colour): image_url = 'https://img.shields.io/badge/{}-{}-{}.svg'.format( subject, text, colour) r = requests.get(image_url) buffer_image = BytesIO(r.content) buffer_image.seek(0) res = make_response(send_file(buffer_image, mimetype='image/svg+xml')) res.headers['Cache-Control'] = \ 'max-age=0, no-cache, no-store, must-revalidate' res.headers['Expires'] = '0' return res @blueprint.route("badge/<path:pipeline_id>") def badge(pipeline_id): '''An individual pipeline status''' if not pipeline_id.startswith('./'): pipeline_id = './' + pipeline_id pipeline_status = status.get(pipeline_id) status_color = 'lightgray' if pipeline_status.pipeline_details: status_text = pipeline_status.state().lower() last_execution = pipeline_status.get_last_execution() success = last_execution.success if last_execution else None if success is True: stats = last_execution.stats if last_execution else None record_count = stats.get('count_of_rows') if record_count is not None: status_text += ' (%d records)' % record_count status_color = 'brightgreen' elif success is False: status_color = 'red' else: status_text = "not found" return _make_badge_response('pipeline', status_text, status_color) @blueprint.route("badge/collection/<path:pipeline_path>") def badge_collection(pipeline_path): '''Status badge for a collection of pipelines.''' all_pipeline_ids = sorted(status.all_pipeline_ids()) if not pipeline_path.startswith('./'): pipeline_path = './' + pipeline_path # Filter pipeline ids to only include those that start with pipeline_path. path_pipeline_ids = \ [p for p in all_pipeline_ids if p.startswith(pipeline_path)] statuses = [] for pipeline_id in path_pipeline_ids: pipeline_status = status.get(pipeline_id) if pipeline_status is None: abort(404) status_text = pipeline_status.state().lower() statuses.append(status_text) status_color = 'lightgray' status_counter = Counter(statuses) if status_counter: if len(status_counter) == 1 and status_counter['succeeded'] > 0: status_color = 'brightgreen' elif status_counter['failed'] > 0: status_color = 'red' elif status_counter['failed'] == 0: status_color = 'yellow' status_text = \ ', '.join(['{} {}'.format(v, k) for k, v in status_counter.items()]) else: status_text = "not found" return _make_badge_response('pipelines', status_text, status_color) app = Flask(__name__) app.config['JSONIFY_PRETTYPRINT_REGULAR'] = True if os.environ.get('DPP_BASIC_AUTH_USERNAME', False) \ and os.environ.get('DPP_BASIC_AUTH_PASSWORD', False): app.config['BASIC_AUTH_USERNAME'] = os.environ['DPP_BASIC_AUTH_USERNAME'] app.config['BASIC_AUTH_PASSWORD'] = os.environ['DPP_BASIC_AUTH_PASSWORD'] app.config['BASIC_AUTH_ACTIVE'] = True basic_auth = BasicAuth(app) CORS(app) url_prefix = os.environ.get('DPP_BASE_PATH', '/') if not url_prefix.endswith('/'): url_prefix += '/' logging.info('Serving on path %s', url_prefix) app.register_blueprint(blueprint, url_prefix=url_prefix)
10158
from asyncio import Future from greenlet import getcurrent import psycopg2 from psycopg2 import * # noqa from psycopg2 import extensions, OperationalError __version__ = psycopg2.__version__ def psycopg2_wait_callback(conn): """A wait callback to allow greenlet to work with Psycopg. The caller must be from a greenlet other than the main one. :param conn: psycopg2 connection or file number This function must be invoked from a coroutine with parent, therefore invoking it from the main greenlet will raise an exception. """ while True: state = conn.poll() if state == extensions.POLL_OK: # Done with waiting break elif state == extensions.POLL_READ: _wait_fd(conn) elif state == extensions.POLL_WRITE: _wait_fd(conn, read=False) else: # pragma nocover raise OperationalError("Bad result from poll: %r" % state) # INTERNALS def _wait_fd(conn, read=True): '''Wait for an event on file descriptor ``fd``. :param conn: file descriptor :param read: wait for a read event if ``True``, otherwise a wait for write event. This function must be invoked from a coroutine with parent, therefore invoking it from the main greenlet will raise an exception. ''' current = getcurrent() parent = current.parent assert parent, '"_wait_fd" must be called by greenlet with a parent' try: fileno = conn.fileno() except AttributeError: fileno = conn future = Future() # When the event on fd occurs switch back to the current greenlet if read: future._loop.add_reader(fileno, _done_wait_fd, fileno, future, read) else: future._loop.add_writer(fileno, _done_wait_fd, fileno, future, read) # switch back to parent greenlet parent.switch(future) # Back on the child greenlet. Raise error if there is one future.result() def _done_wait_fd(fd, future, read): try: if read: future._loop.remove_reader(fd) else: future._loop.remove_writer(fd) except Exception as exc: future.set_exception(exc) else: future.set_result(None) try: extensions.POLL_OK except AttributeError: # pragma nocover from pulsar import ImproperlyConfigured raise ImproperlyConfigured( 'Psycopg2 does not have support for asynchronous connections. ' 'You need at least version 2.2.0 of Psycopg2.') extensions.set_wait_callback(psycopg2_wait_callback)
10162
import numpy as np from visual_dynamics.policies import CameraTargetPolicy class RandomOffsetCameraTargetPolicy(CameraTargetPolicy): def __init__(self, env, target_env, camera_node_name, agent_node_name, target_node_name, height=12.0, radius=16.0, angle=(-np.pi/4, np.pi/4), tightness=0.1, hra_interpolation=True): self.height = height self.radius = radius self.angle = angle offset = self.sample_offset() super(RandomOffsetCameraTargetPolicy, self).__init__(env, target_env, camera_node_name, agent_node_name, target_node_name, offset, tightness=tightness, hra_interpolation=hra_interpolation) def reset(self): self.offset = self.sample_offset() state = super(RandomOffsetCameraTargetPolicy, self).reset() # self.offset = self.sample_offset() return state def sample_offset(self): height = np.random.uniform(*self.height) if isinstance(self.height, (list, tuple)) else self.height radius = np.random.uniform(*self.radius) if isinstance(self.radius, (list, tuple)) else self.radius angle = np.random.uniform(*self.angle) if isinstance(self.angle, (list, tuple)) else self.angle return np.array([radius * np.sin(angle), -radius * np.cos(angle), height]) def _get_config(self): config = super(RandomOffsetCameraTargetPolicy, self)._get_config() config.pop('offset') config.update({'height': self.height, 'radius': self.radius, 'angle': self.angle}) return config
10194
import typer def name_callback(value: str): if value != "Camila": raise typer.BadParameter("Only Camila is allowed") return value def main(name: str = typer.Option(..., callback=name_callback)): typer.echo(f"Hello {name}") if __name__ == "__main__": typer.run(main)
10201
from typing import List, Dict import json from gtmcore.http import ConcurrentRequestManager, ConcurrentRequest from gtmcore.environment.packagemanager import PackageManager, PackageResult, PackageMetadata from gtmcore.container import container_for_context from gtmcore.labbook import LabBook from gtmcore.logging import LMLogger logger = LMLogger.get_logger() class CondaPackageManagerBase(PackageManager): """Class to implement the conda package manager """ def __init__(self): # String to be set in child classes indicating which python version you are checking. Typically should be either # python 3.6* or python 2.7* self.python_depends_str = None # String of the name of the conda environment (e.g. py36 or py27, as created via container build) self.python_env = None # Note, currently we hard code channel config. Future changes to support the user specifying channels # will modify this behavior self.channel_priority = ['conda-forge', 'anaconda'] self.request_mgr = ConcurrentRequestManager() def list_versions(self, package_name: str, labbook: LabBook, username: str) -> List[str]: """Method to list all available versions of a package based on the package name Args: package_name: Name of the package to query labbook: Subject LabBook username: username of current user Returns: list(str): Version strings """ # Check for package in channels, picking out version by priority request_list = list() for channel in self.channel_priority: request_list.append(ConcurrentRequest(f"https://api.anaconda.org/package/{channel}/{package_name}", headers={'Accept': 'application/json'})) responses = self.request_mgr.resolve_many(request_list) versions = None for response in responses: if response.status_code != 200: continue versions = response.json.get('versions') break if not versions: raise ValueError(f"Package {package_name} not found in channels {' ,'.join(self.channel_priority)}.") versions.reverse() return versions def list_installed_packages(self, labbook: LabBook, username: str) -> List[Dict[str, str]]: """Method to get a list of all packages that are currently installed Note, this will return results for the computer/container in which it is executed. To get the properties of a LabBook container, a docker exec command would be needed from the Gigantum application container. return format is a list of dicts with the format (name: <package name>, version: <version string>) Returns: list """ project_container = container_for_context(username, labbook=labbook) result = project_container.run_container("conda list --no-pip --json", wait_for_output=True) if result: data = json.loads(result) if data: return [{"name": x['name'], 'version': x['version']} for x in data] else: return [] def validate_packages(self, package_list: List[Dict[str, str]], labbook: LabBook, username: str) \ -> List[PackageResult]: """Method to validate a list of packages, and if needed fill in any missing versions Should check both the provided package name and version. If the version is omitted, it should be generated from the latest version. Args: package_list(list): A list of dictionaries of packages to validate labbook(str): The labbook instance username(str): The username for the logged in user Returns: namedtuple: namedtuple indicating if the package and version are valid """ result = list() # Check for package in channels, picking out version by priority request_list = list() for pkg in package_list: for channel in self.channel_priority: request_list.append(ConcurrentRequest(f"https://api.anaconda.org/package/{channel}/{pkg['package']}", headers={'Accept': 'application/json'})) responses = self.request_mgr.resolve_many(request_list) # Repack into groups by package responses_per_package = list(zip(*(iter(responses),) * len(self.channel_priority))) for package, responses in zip(package_list, responses_per_package): versions = None latest_version = None for response in responses: if response.status_code != 200: continue versions = response.json.get('versions') latest_version = response.json.get('latest_version') break if not versions: # Package is not found result.append(PackageResult(package=package['package'], version=package.get('version'), error=True)) continue if package.get('version'): # Package has been set, so validate it if package.get('version') in versions: # Both package name and version are valid result.append(PackageResult(package=package['package'], version=package.get('version'), error=False)) else: # The package version is not in the list, so invalid result.append(PackageResult(package=package['package'], version=package.get('version'), error=True)) else: # You need to look up the latest version since not included result.append(PackageResult(package=package['package'], version=str(latest_version), error=False)) return result def get_packages_metadata(self, package_list: List[str], labbook: LabBook, username: str) -> List[PackageMetadata]: """Method to get package metadata Args: package_list: List of package names labbook(str): The labbook instance username(str): The username for the logged in user Returns: list """ def _extract_metadata(data): """Extraction method to pull out the docs URL and description""" latest_val = data.get('latest_version') description_val = data.get('summary').strip() docs_val = data.get('doc_url') if not docs_val: docs_val = data.get('html_url') return latest_val, description_val, docs_val # Check for package in channels, picking out version by priority request_list = list() for pkg in package_list: for channel in self.channel_priority: request_list.append(ConcurrentRequest(f"https://api.anaconda.org/package/{channel}/{pkg}", headers={'Accept': 'application/json'}, extraction_function=_extract_metadata)) responses = self.request_mgr.resolve_many(request_list) # Repack into groups by package responses_per_package = list(zip(*(iter(responses),) * len(self.channel_priority))) result = list() for package, responses in zip(package_list, responses_per_package): data = None for response in responses: if response.status_code == 200: data = response.extracted_json break if data: latest_version, description, docs_url = data result.append(PackageMetadata(package_manager="conda", package=package, latest_version=latest_version, description=description, docs_url=docs_url)) else: result.append(PackageMetadata(package_manager="conda", package=package, latest_version=None, description=None, docs_url=None)) return result def generate_docker_install_snippet(self, packages: List[Dict[str, str]], single_line: bool = False) -> List[str]: """Method to generate a docker snippet to install 1 or more packages Note: Because conda be so slow to solve environments with conda-forge included, always single line it. Args: packages(list(dict)): A list of package names and versions to install single_line(bool): If true, collapse Returns: list """ package_strings = [f"{x['name']}={x['version']}" for x in packages] if single_line: return [f"RUN conda install -yq {' '.join(package_strings)}"] else: return [f"RUN conda install -yq {' '.join(package_strings)}"] class Conda3PackageManager(CondaPackageManagerBase): """Class to implement the conda3 package manager """ def __init__(self): super().__init__() self.python_depends_str = 'python 3.6*' self.python_env = 'py36' class Conda2PackageManager(CondaPackageManagerBase): """Class to implement the conda2 package manager """ def __init__(self): super().__init__() self.python_depends_str = 'python 2.7*' self.python_env = 'py27'
10213
import os from shutil import rmtree from tempfile import mkdtemp from unittest import TestCase from enjoliver import generator class GenerateGroupTestCase(TestCase): api_uri = None test_matchbox_path = None test_resources_path = None tests_path = None @classmethod def setUpClass(cls): cls.tests_path = mkdtemp(dir='/tmp') cls.test_matchbox_path = os.path.join(cls.tests_path, 'test_matchbox') cls.test_resources_path = os.path.join(cls.tests_path, 'test_resources') os.mkdir(cls.test_matchbox_path) os.mkdir(cls.test_resources_path) os.mkdir(os.path.join(cls.test_matchbox_path, 'groups')) cls.api_uri = "http://127.0.0.1:5000" @classmethod def tearDownClass(cls): rmtree(cls.tests_path) class TestGenerateGroups(GenerateGroupTestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.gen = generator.GenerateGroup( api_uri=cls.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="TestGenerateProfiles", matchbox_path=cls.test_matchbox_path ) cls.gen.profiles_path = cls.test_resources_path def test_instantiate_generate_group_with_incorrect_parameters(self): with self.assertRaises(TypeError): generator.GenerateGroup() def test_instantiate_generate_group_with_non_existing_matchbox_path(self): with self.assertRaises(OSError): generator.GenerateGroup( api_uri='foobar', _id='foo', name='foo-bar', profile='foo-bar-baz', matchbox_path='/foo/bar' ) def test_instantiate_generate_group(self): sandbox = mkdtemp(dir='/tmp') os.mkdir(os.path.join(sandbox, 'groups')) generator.GenerateGroup( api_uri='foobar', _id='foo', name='foo-bar', profile='foo-bar-baz', matchbox_path=sandbox ) rmtree(sandbox) def test_00_uri(self): ip = self.gen.api_uri self.assertIsNotNone(ip) def test_01_metadata(self): expect = {'etcd_initial_cluster': '', 'api_uri': '%s' % self.gen.api_uri, 'ssh_authorized_keys': []} self.gen._metadata() self.assertEqual(expect['api_uri'], self.gen._target_data["metadata"]["api_uri"]) def test_990_generate(self): expect = { 'profile': 'etcd-proxy.yaml', 'metadata': { 'api_uri': '%s' % self.gen.api_uri, 'ssh_authorized_keys': [] }, 'id': 'etcd-proxy', 'name': 'etcd-proxy' } new = generator.GenerateGroup( api_uri=self.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="etcd-proxy.yaml", matchbox_path=self.test_matchbox_path ) result = new.generate() self.assertEqual(expect["profile"], result["profile"]) self.assertEqual(expect["id"], result["id"]) self.assertEqual(expect["name"], result["name"]) self.assertEqual(expect["metadata"]["api_uri"], result["metadata"]["api_uri"]) def test_991_dump(self): _id = "etcd-test-%s" % self.test_991_dump.__name__ new = generator.GenerateGroup( api_uri=self.api_uri, _id=_id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path ) self.assertTrue(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) self.assertFalse(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) new = generator.GenerateGroup( api_uri=self.api_uri, _id=_id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path, selector={"one": "selector"} ) self.assertTrue(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) os.remove("%s/groups/%s.json" % (self.test_matchbox_path, _id)) class TestGenerateGroupsSelectorLower(GenerateGroupTestCase): @classmethod def setUpClass(cls): super().setUpClass() os.environ["MATCHBOX_URI"] = "http://127.0.0.1:8080" os.environ["API_URI"] = "http://127.0.0.1:5000" cls.gen = generator.GenerateGroup( api_uri=cls.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="TestGenerateProfiles", selector={"mac": "08:00:27:37:28:2e"}, matchbox_path=cls.test_matchbox_path ) def test_00_api_uri(self): ip = self.gen.api_uri self.assertIsNotNone(ip) def test_01_metadata(self): expect = { 'api_uri': "%s" % self.gen.api_uri, 'ssh_authorized_keys': [] } self.gen._metadata() self.gen._target_data["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, self.gen._target_data["metadata"]) def test_02_selector(self): expect = {'mac': '08:00:27:37:28:2e'} self.gen._selector() self.assertEqual(expect, self.gen._target_data["selector"]) def test_990_generate(self): expect = { 'profile': 'etcd-proxy.yaml', 'metadata': { 'api_uri': self.gen.api_uri, 'selector': {'mac': '08:00:27:37:28:2e'}, 'ssh_authorized_keys': [] }, 'id': 'etcd-proxy', 'name': 'etcd-proxy', 'selector': {'mac': '08:00:27:37:28:2e'} } new = generator.GenerateGroup( api_uri=self.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="etcd-proxy.yaml", selector={"mac": "08:00:27:37:28:2e"}, matchbox_path=self.test_matchbox_path) result = new.generate() result["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, result) def test_991_dump(self): _id = "etcd-test-%s" % self.test_991_dump.__name__ new = generator.GenerateGroup( api_uri=self.api_uri, _id="%s" % _id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path, selector={"mac": "08:00:27:37:28:2e"} ) self.assertTrue(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) os.remove("%s/groups/%s.json" % (self.test_matchbox_path, _id)) class TestGenerateGroupsSelectorUpper(GenerateGroupTestCase): @classmethod def setUpClass(cls): super().setUpClass() os.environ["MATCHBOX_URI"] = "http://127.0.0.1:8080" os.environ["API_URI"] = "http://127.0.0.1:5000" cls.gen = generator.GenerateGroup( api_uri=cls.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="TestGenerateProfiles", selector={"mac": "08:00:27:37:28:2E"}, matchbox_path=cls.test_matchbox_path ) def test_00_ip_address(self): ip = self.gen.api_uri self.assertIsNotNone(ip) def test_01_metadata(self): expect = { 'api_uri': "%s" % self.gen.api_uri, 'ssh_authorized_keys': [] } self.gen._metadata() self.gen._target_data["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, self.gen._target_data["metadata"]) def test_02_selector(self): expect = {'mac': '08:00:27:37:28:2e'} self.gen._selector() self.assertEqual(expect, self.gen._target_data["selector"]) def test_990_generate(self): expect = { 'profile': 'etcd-proxy.yaml', 'metadata': { 'api_uri': "%s" % self.gen.api_uri, 'selector': {'mac': '08:00:27:37:28:2e'}, 'ssh_authorized_keys': [] }, 'id': 'etcd-proxy', 'name': 'etcd-proxy', 'selector': {'mac': '08:00:27:37:28:2e'} } new = generator.GenerateGroup( api_uri=self.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="etcd-proxy.yaml", selector={"mac": "08:00:27:37:28:2e"}, matchbox_path=self.test_matchbox_path ) result = new.generate() result["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, result) def test_991_dump(self): _id = "etcd-test-%s" % self.test_991_dump.__name__ new = generator.GenerateGroup( api_uri=self.api_uri, _id="%s" % _id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path, selector={"mac": "08:00:27:37:28:2e"} ) new.dump() self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) os.remove("%s/groups/%s.json" % (self.test_matchbox_path, _id)) class TestGenerateGroupsExtraMetadata(GenerateGroupTestCase): @classmethod def setUpClass(cls): super().setUpClass() os.environ["MATCHBOX_URI"] = "http://127.0.0.1:8080" os.environ["API_URI"] = "http://127.0.0.1:5000" cls.gen = generator.GenerateGroup( api_uri=cls.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="TestGenerateProfiles", selector={"mac": "08:00:27:37:28:2E"}, metadata={"etcd_initial_cluster": "static0=http://192.168.1.1:2379", "api_seed": "http://192.168.1.2:5000"}, matchbox_path=cls.test_matchbox_path ) def test_00_api_uri(self): ip = self.gen.api_uri self.assertIsNotNone(ip) def test_01_metadata(self): expect = {'etcd_initial_cluster': 'static0=http://192.168.1.1:2379', 'api_uri': "%s" % self.gen.api_uri, 'api_seed': 'http://192.168.1.2:5000', 'ssh_authorized_keys': []} self.gen._metadata() self.gen._target_data["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, self.gen._target_data["metadata"]) def test_02_selector(self): expect = {'mac': '08:00:27:37:28:2e'} self.gen._selector() self.assertEqual(expect, self.gen._target_data["selector"]) def test_990_generate(self): expect = { 'profile': 'etcd-proxy.yaml', 'metadata': { 'api_uri': "%s" % self.gen.api_uri, 'selector': {'mac': '08:00:27:37:28:2e'}, 'ssh_authorized_keys': [] }, 'id': 'etcd-proxy', 'name': 'etcd-proxy', 'selector': {'mac': '08:00:27:37:28:2e'} } new = generator.GenerateGroup( api_uri=self.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="etcd-proxy.yaml", selector={"mac": "08:00:27:37:28:2e"}, matchbox_path=self.test_matchbox_path ) result = new.generate() result["metadata"]["ssh_authorized_keys"] = [] self.assertEqual(expect, result) def test_991_dump(self): _id = "etcd-test-%s" % self.test_991_dump.__name__ new = generator.GenerateGroup( api_uri=self.api_uri, _id="%s" % _id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path, selector={"mac": "08:00:27:37:28:2e"} ) self.assertTrue(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) os.remove("%s/groups/%s.json" % (self.test_matchbox_path, _id)) self.assertTrue(new.dump()) for i in range(10): self.assertFalse(new.dump()) new.api_uri = "http://google.com" self.assertTrue(new.dump()) self.assertFalse(new.dump())
10243
from itertools import chain from django.conf import settings from django.contrib.gis.db import models as gis_models from django.db import models, router, transaction from django.utils import timezone from django.utils.translation import gettext_lazy as _ from ..fields import CleaningJsonField from ..validators import DictListValidator, TextField, TimestampField from .constants import GK25FIN_SRID from .enforcement_domain import EnforcementDomain from .mixins import TimestampedModelMixin from .parking import Parking class PermitArea(TimestampedModelMixin): name = models.CharField(max_length=40, verbose_name=_('name')) domain = models.ForeignKey( EnforcementDomain, on_delete=models.PROTECT, related_name='permit_areas') identifier = models.CharField(max_length=10, verbose_name=_('identifier')) geom = gis_models.MultiPolygonField( srid=GK25FIN_SRID, verbose_name=_('geometry')) permitted_user = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.PROTECT, verbose_name=_("permitted_user")) class Meta: unique_together = [('domain', 'identifier')] ordering = ('identifier',) def __str__(self): return '{}/{}: {}'.format(self.domain.code, self.identifier, self.name) class PermitSeriesQuerySet(models.QuerySet): def active(self): return self.filter(active=True) def latest_active(self): return self.active().order_by('-modified_at').first() def prunable(self, time_limit=None): limit = time_limit or ( timezone.now() - settings.PARKKIHUBI_PERMITS_PRUNABLE_AFTER) return self.filter(created_at__lt=limit, active=False) class PermitSeries(TimestampedModelMixin, models.Model): active = models.BooleanField(default=False) owner = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.PROTECT, verbose_name=_("owner")) objects = PermitSeriesQuerySet.as_manager() class Meta: ordering = ('created_at', 'id') verbose_name = _("permit series") verbose_name_plural = _("permit series") @classmethod def delete_prunable_series(cls, time_limit=None): prunable = cls.objects.prunable(time_limit) Permit.objects.filter(series__in=prunable).delete() prunable.delete() def __str__(self): return str(self.id) class PermitQuerySet(models.QuerySet): def active(self): return self.filter(series__active=True) def by_time(self, timestamp): lookup_items = PermitLookupItem.objects.by_time(timestamp) return self.filter(lookup_items__in=lookup_items).distinct() def by_subject(self, registration_number): lookup_items = PermitLookupItem.objects.by_subject(registration_number) return self.filter(lookup_items__in=lookup_items).distinct() def by_area(self, area): lookup_items = PermitLookupItem.objects.by_area(area) return self.filter(lookup_items__in=lookup_items).distinct() def bulk_create(self, permits, *args, **kwargs): for permit in permits: assert isinstance(permit, Permit) permit.full_clean() with transaction.atomic(using=self.db, savepoint=False): created_permits = super().bulk_create(permits, *args, **kwargs) PermitLookupItem.objects.using(self.db).bulk_create( chain(*(x._make_lookup_items() for x in created_permits))) return created_permits class Permit(TimestampedModelMixin, models.Model): domain = models.ForeignKey( EnforcementDomain, on_delete=models.PROTECT, related_name='permits') series = models.ForeignKey(PermitSeries, on_delete=models.PROTECT) external_id = models.CharField(max_length=50, null=True, blank=True) subjects = CleaningJsonField(blank=True, validators=[DictListValidator({ 'start_time': TimestampField(), 'end_time': TimestampField(), 'registration_number': TextField(max_length=20), })]) areas = CleaningJsonField(blank=True, validators=[DictListValidator({ 'start_time': TimestampField(), 'end_time': TimestampField(), 'area': TextField(max_length=10), })]) objects = PermitQuerySet.as_manager() class Meta: unique_together = [('series', 'external_id')] indexes = [ models.Index(fields=['series', 'id']), ] ordering = ('series', 'id') def __str__(self): return 'Permit {id} ({series}{active}/{external_id} {dom})'.format( id=self.id, dom=self.domain.code, series=self.series, active='*' if self.series.active else '', external_id=self.external_id) def save(self, using=None, *args, **kwargs): self.full_clean() using = using or router.db_for_write(type(self), instance=self) with transaction.atomic(using=using, savepoint=False): super(Permit, self).save(using=using, *args, **kwargs) self.lookup_items.all().using(using).delete() new_lookup_items = self._make_lookup_items() PermitLookupItem.objects.using(using).bulk_create(new_lookup_items) def _make_lookup_items(self): for area in self.areas: for subject in self.subjects: max_start_time = max(subject['start_time'], area['start_time']) min_end_time = min(subject['end_time'], area['end_time']) if max_start_time >= min_end_time: continue yield PermitLookupItem( permit=self, registration_number=Parking.normalize_reg_num( subject['registration_number']), area=PermitArea.objects.get(identifier=area['area'], domain=self.domain), start_time=max_start_time, end_time=min_end_time ) class PermitLookupItemQuerySet(models.QuerySet): def active(self): return self.filter(permit__series__active=True) def by_time(self, timestamp): return self.filter(start_time__lte=timestamp, end_time__gte=timestamp) def by_subject(self, registration_number): normalized_reg_num = Parking.normalize_reg_num(registration_number) return self.filter(registration_number=normalized_reg_num) def by_area(self, area): return self.filter(area=area) class PermitLookupItem(models.Model): permit = models.ForeignKey( Permit, related_name="lookup_items", on_delete=models.CASCADE) registration_number = models.CharField(max_length=20) area = models.ForeignKey(PermitArea, on_delete=models.PROTECT, default=None, null=True, blank=True) start_time = models.DateTimeField() end_time = models.DateTimeField() objects = PermitLookupItemQuerySet.as_manager() class Meta: indexes = [ models.Index(fields=[ 'registration_number', 'start_time', 'end_time', 'area', 'permit']), ] ordering = ('registration_number', 'start_time', 'end_time') def __str__(self): return ( '{start_time:%Y-%m-%d %H:%M} -- {end_time:%Y-%m-%d %H:%M} / ' '{registration_number} / {area}' ).format( start_time=self.start_time, end_time=self.end_time, registration_number=self.registration_number, area=self.area.identifier)
10251
from builtins import str from builtins import range from builtins import object import logging import inspect import os class CustomAttr(object): """This type handles non-flat data-types like int, str, bool. """ def __init__(self, key, value): self._value = value self._key = key def validate(self): pass def post_validation(self): pass class CustomAttrTlsContainer(CustomAttr): def __init__(self, key, value): super(CustomAttrTlsContainer, self).__init__(key, value) def validate(self): return True def post_validation(self): return self._value def validate_custom_attributes(custom_attributes_dict, section, custom_attributes): section_dict = {} if custom_attributes and section in custom_attributes_dict: for key, value in list(custom_attributes.items()): if key in custom_attributes_dict[section]: #Sanitize the value try: type_attr = custom_attributes_dict[section][key]['type'] limits = custom_attributes_dict[section][key]['limits'] if type_attr == 'int': value = int(value) if value in range(limits[0], limits[1]): section_dict.update({key:value}) else: logging.info("Skipping key: %s, value: %s due to" \ "validation failure" % (key, value)) elif type_attr == 'str': if len(value) in range(limits[0], limits[1]): section_dict.update({key:value}) else: logging.info("Skipping key: %s, value: %s due to" \ "validation failure" % (key, value)) elif type_attr == 'bool': if value in limits: if value == 'True': value = '' elif value == 'False': value = 'no ' section_dict.update({key:value}) else: logging.info("Skipping key: %s, value: %s due to" \ "validation failure" % (key, value)) elif inspect.isclass(eval(type_attr)): new_custom_attr = eval(type_attr)(key, value) if new_custom_attr.validate(): value = new_custom_attr.post_validation() section_dict.update({key:value}) else: logging.info("Skipping key: %s, value: %s due to" \ "validation failure" % (key, value)) except Exception as e: logging.error(str(e)) continue return section_dict
10287
import pytest from flask_resty import Api from flask_resty.testing import assert_response # ----------------------------------------------------------------------------- @pytest.fixture(autouse=True) def routes(app): api = Api(app, "/api") api.add_ping("/ping") # ----------------------------------------------------------------------------- def test_ping(base_client): response = base_client.get("/ping") assert_response(response, 200) assert response.get_data(as_text=True) == ""
10345
import numpy as np import pytest from pandas import ( DataFrame, Series, concat, ) import pandas._testing as tm @pytest.mark.parametrize("func", ["cov", "corr"]) def test_ewm_pairwise_cov_corr(func, frame): result = getattr(frame.ewm(span=10, min_periods=5), func)() result = result.loc[(slice(None), 1), 5] result.index = result.index.droplevel(1) expected = getattr(frame[1].ewm(span=10, min_periods=5), func)(frame[5]) tm.assert_series_equal(result, expected, check_names=False) @pytest.mark.parametrize("name", ["cov", "corr"]) def test_ewm_corr_cov(name): A = Series(np.random.randn(50), index=np.arange(50)) B = A[2:] + np.random.randn(48) A[:10] = np.NaN B[-10:] = np.NaN result = getattr(A.ewm(com=20, min_periods=5), name)(B) assert np.isnan(result.values[:14]).all() assert not np.isnan(result.values[14:]).any() @pytest.mark.parametrize("min_periods", [0, 1, 2]) @pytest.mark.parametrize("name", ["cov", "corr"]) def test_ewm_corr_cov_min_periods(name, min_periods): # GH 7898 A = Series(np.random.randn(50), index=np.arange(50)) B = A[2:] + np.random.randn(48) A[:10] = np.NaN B[-10:] = np.NaN result = getattr(A.ewm(com=20, min_periods=min_periods), name)(B) # binary functions (ewmcov, ewmcorr) with bias=False require at # least two values assert np.isnan(result.values[:11]).all() assert not np.isnan(result.values[11:]).any() # check series of length 0 empty = Series([], dtype=np.float64) result = getattr(empty.ewm(com=50, min_periods=min_periods), name)(empty) tm.assert_series_equal(result, empty) # check series of length 1 result = getattr(Series([1.0]).ewm(com=50, min_periods=min_periods), name)( Series([1.0]) ) tm.assert_series_equal(result, Series([np.NaN])) @pytest.mark.parametrize("name", ["cov", "corr"]) def test_different_input_array_raise_exception(name): A = Series(np.random.randn(50), index=np.arange(50)) A[:10] = np.NaN msg = "other must be a DataFrame or Series" # exception raised is Exception with pytest.raises(ValueError, match=msg): getattr(A.ewm(com=20, min_periods=5), name)(np.random.randn(50)) def create_mock_weights(obj, com, adjust, ignore_na): if isinstance(obj, DataFrame): if not len(obj.columns): return DataFrame(index=obj.index, columns=obj.columns) w = concat( [ create_mock_series_weights( obj.iloc[:, i], com=com, adjust=adjust, ignore_na=ignore_na ) for i, _ in enumerate(obj.columns) ], axis=1, ) w.index = obj.index w.columns = obj.columns return w else: return create_mock_series_weights(obj, com, adjust, ignore_na) def create_mock_series_weights(s, com, adjust, ignore_na): w = Series(np.nan, index=s.index) alpha = 1.0 / (1.0 + com) if adjust: count = 0 for i in range(len(s)): if s.iat[i] == s.iat[i]: w.iat[i] = pow(1.0 / (1.0 - alpha), count) count += 1 elif not ignore_na: count += 1 else: sum_wts = 0.0 prev_i = -1 count = 0 for i in range(len(s)): if s.iat[i] == s.iat[i]: if prev_i == -1: w.iat[i] = 1.0 else: w.iat[i] = alpha * sum_wts / pow(1.0 - alpha, count - prev_i) sum_wts += w.iat[i] prev_i = count count += 1 elif not ignore_na: count += 1 return w @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) def test_ewm_consistency_mean(consistency_data, adjust, ignore_na, min_periods): x, is_constant, no_nans = consistency_data com = 3.0 result = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).mean() weights = create_mock_weights(x, com=com, adjust=adjust, ignore_na=ignore_na) expected = ( x.multiply(weights).cumsum().divide(weights.cumsum()).fillna(method="ffill") ) expected[ x.expanding().count() < (max(min_periods, 1) if min_periods else 1) ] = np.nan tm.assert_equal(result, expected.astype("float64")) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) def test_ewm_consistency_consistent(consistency_data, adjust, ignore_na, min_periods): x, is_constant, no_nans = consistency_data com = 3.0 if is_constant: count_x = x.expanding().count() mean_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).mean() # check that correlation of a series with itself is either 1 or NaN corr_x_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).corr(x) exp = x.max() if isinstance(x, Series) else x.max().max() # check mean of constant series expected = x * np.nan expected[count_x >= max(min_periods, 1)] = exp tm.assert_equal(mean_x, expected) # check correlation of constant series with itself is NaN expected[:] = np.nan tm.assert_equal(corr_x_x, expected) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) def test_ewm_consistency_var_debiasing_factors( consistency_data, adjust, ignore_na, min_periods ): x, is_constant, no_nans = consistency_data com = 3.0 # check variance debiasing factors var_unbiased_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=False) var_biased_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=True) weights = create_mock_weights(x, com=com, adjust=adjust, ignore_na=ignore_na) cum_sum = weights.cumsum().fillna(method="ffill") cum_sum_sq = (weights * weights).cumsum().fillna(method="ffill") numerator = cum_sum * cum_sum denominator = numerator - cum_sum_sq denominator[denominator <= 0.0] = np.nan var_debiasing_factors_x = numerator / denominator tm.assert_equal(var_unbiased_x, var_biased_x * var_debiasing_factors_x) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("bias", [True, False]) def test_moments_consistency_var( consistency_data, adjust, ignore_na, min_periods, bias ): x, is_constant, no_nans = consistency_data com = 3.0 mean_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).mean() var_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) assert not (var_x < 0).any().any() if bias: # check that biased var(x) == mean(x^2) - mean(x)^2 mean_x2 = ( (x * x) .ewm(com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na) .mean() ) tm.assert_equal(var_x, mean_x2 - (mean_x * mean_x)) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("bias", [True, False]) def test_moments_consistency_var_constant( consistency_data, adjust, ignore_na, min_periods, bias ): x, is_constant, no_nans = consistency_data com = 3.0 if is_constant: count_x = x.expanding(min_periods=min_periods).count() var_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) # check that variance of constant series is identically 0 assert not (var_x > 0).any().any() expected = x * np.nan expected[count_x >= max(min_periods, 1)] = 0.0 if not bias: expected[count_x < 2] = np.nan tm.assert_equal(var_x, expected) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("bias", [True, False]) def test_ewm_consistency_std(consistency_data, adjust, ignore_na, min_periods, bias): x, is_constant, no_nans = consistency_data com = 3.0 var_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) std_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).std(bias=bias) assert not (var_x < 0).any().any() assert not (std_x < 0).any().any() # check that var(x) == std(x)^2 tm.assert_equal(var_x, std_x * std_x) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("bias", [True, False]) def test_ewm_consistency_cov(consistency_data, adjust, ignore_na, min_periods, bias): x, is_constant, no_nans = consistency_data com = 3.0 var_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) assert not (var_x < 0).any().any() cov_x_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).cov(x, bias=bias) assert not (cov_x_x < 0).any().any() # check that var(x) == cov(x, x) tm.assert_equal(var_x, cov_x_x) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("bias", [True, False]) def test_ewm_consistency_series_cov_corr( consistency_data, adjust, ignore_na, min_periods, bias ): x, is_constant, no_nans = consistency_data com = 3.0 if isinstance(x, Series): var_x_plus_y = ( (x + x) .ewm(com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na) .var(bias=bias) ) var_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) var_y = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) cov_x_y = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).cov(x, bias=bias) # check that cov(x, y) == (var(x+y) - var(x) - # var(y)) / 2 tm.assert_equal(cov_x_y, 0.5 * (var_x_plus_y - var_x - var_y)) # check that corr(x, y) == cov(x, y) / (std(x) * # std(y)) corr_x_y = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).corr(x, bias=bias) std_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).std(bias=bias) std_y = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).std(bias=bias) tm.assert_equal(corr_x_y, cov_x_y / (std_x * std_y)) if bias: # check that biased cov(x, y) == mean(x*y) - # mean(x)*mean(y) mean_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).mean() mean_y = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).mean() mean_x_times_y = ( (x * x) .ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ) .mean() ) tm.assert_equal(cov_x_y, mean_x_times_y - (mean_x * mean_y))
10391
import unittest from freeplane_importer.importer import Importer from mock import Mock from mock import MagicMock from mock import call from freeplane_importer.model_not_found_exception import ModelNotFoundException class TestImporter(unittest.TestCase): def setUp(self): self.mock_collection = Mock() self.mock_model = MagicMock() self.mock_collection.models.byName.return_value = self.mock_model self.mock_note = MagicMock() self.mock_note.model.return_value = self.mock_model self.mock_collection.newNote.return_value = self.mock_note self.mock_collection.models.fieldNames.return_value = [] self.importer = Importer(self.mock_collection) self.mock_collection.db.scalar.return_value = None self.note = { 'id': 100, 'deck': 'History', 'model': 'Basic', 'fields': {} } def test_it_should_initialise_the_correct_model(self): self.importer.import_note(self.note) self.mock_collection.models.setCurrent.assert_called_with( self.mock_model) def test_it_should_select_the_correct_deck(self): self.mock_collection.decks.id.return_value = 100 self.importer = Importer(self.mock_collection) self.importer.import_note(self.note) self.mock_model.__setitem__.assert_called_with('did', 100) self.mock_collection.decks.id.assert_called_with('History') def test_it_should_find_the_correct_model(self): self.importer.import_note(self.note) self.mock_collection.models.byName.assert_called_with('Basic') def test_it_should_return_true_if_note_was_added_successfully(self): self.assertTrue(self.importer.import_note(self.note)) def test_it_should_raise_a_no_model_exception_if_the_model_does_not_exist(self): self.mock_collection.models.byName.return_value = None self.assertRaises(ModelNotFoundException, self.importer.import_note, self.note) def test_it_should_create_a_new_note(self): self.importer.import_note(self.note) self.mock_collection.newNote.assert_called_with() def test_it_should_get_the_field_names_from_the_model(self): self.importer.import_note(self.note) self.mock_collection.models.fieldNames.assert_called_with( self.mock_model) def test_it_should_save_the_node_id_if_the_first_field_is_named_id_in_lowercase(self): self.mock_collection.models.fieldNames.return_value = ['id'] self.importer.import_note(self.note) self.mock_note.__setitem__.assert_called_with('id', 100) def test_it_should_save_the_node_id_if_the_first_field_is_named_id_in_uppercase(self): self.mock_collection.models.fieldNames.return_value = ['ID'] self.importer.import_note(self.note) self.mock_note.__setitem__.assert_called_with('ID', 100) def test_it_should_populate_the_note_with_the_field_values(self): self.note['fields'] = { 'Front': 'Front value', 'Back': 'Back value' } self.mock_collection.models.fieldNames.return_value = ['Front', 'Back'] self.importer.import_note(self.note) self.mock_note.__setitem__.assert_has_calls( [call('Front', 'Front value'), call('Back', 'Back value')]) def test_it_should_ignore_fields_that_do_not_exist_in_the_model(self): self.note['fields'] = { 'Front': 'Front value', 'Back': 'Back value' } self.mock_collection.models.fieldNames.return_value = ['Front'] self.importer.import_note(self.note) self.assertFalse('Back' in self.mock_note) def test_it_should_save_the_note_changes(self): self.importer.import_note(self.note) self.mock_note.flush.assert_called_with() def test_it_should_attempt_to_find_an_existing_note_with_the_given_node_id(self): self.mock_collection.getNote.return_value = self.mock_note self.mock_collection.db.scalar.return_value = 123 self.importer.import_note(self.note) self.mock_collection.getNote.assert_called_with(123) def test_it_should_add_the_note_to_the_collection_if_it_is_new(self): del self.mock_note.mod self.importer.import_note(self.note) self.mock_collection.addNote.assert_called_with(self.mock_note) def test_it_should_not_add_the_note_to_the_collection_if_it_is_not_new(self): self.importer.import_note(self.note) self.assertEqual(0, self.mock_collection.addNote.call_count)
10400
import os import sys import numpy as np import matplotlib.pyplot as plt import flopy def run(): workspace = os.path.join("lake") # make sure workspace directory exists if not os.path.exists(workspace): os.makedirs(workspace) fext = "png" narg = len(sys.argv) iarg = 0 if narg > 1: while iarg < narg - 1: iarg += 1 basearg = sys.argv[iarg].lower() if basearg == "--pdf": fext = "pdf" # save the starting path cwdpth = os.getcwd() # change to the working directory os.chdir(workspace) # We are creating a square model with a specified head equal to `h1` along all boundaries. # The head at the cell in the center in the top layer is fixed to `h2`. First, set the name # of the model and the parameters of the model: the number of layers `Nlay`, the number of rows # and columns `N`, lengths of the sides of the model `L`, aquifer thickness `H`, hydraulic # conductivity `Kh` name = "lake_example" h1 = 100 h2 = 90 Nlay = 10 N = 101 L = 400.0 H = 50.0 Kh = 1.0 # Create a MODFLOW model and store it (in this case in the variable `ml`, but you can call it # whatever you want). The modelname will be the name given to all MODFLOW files (input and output). # The exe_name should be the full path to your MODFLOW executable. The version is either 'mf2k' # for MODFLOW2000 or 'mf2005'for MODFLOW2005. ml = flopy.modflow.Modflow( modelname=name, exe_name="mf2005", version="mf2005" ) # Define the discretization of the model. All layers are given equal thickness. The `bot` array # is build from the `Hlay` values to indicate top and bottom of each layer, and `delrow` and # `delcol` are computed from model size `L` and number of cells `N`. Once these are all computed, # the Discretization file is built. bot = np.linspace(-H / Nlay, -H, Nlay) delrow = delcol = L / (N - 1) dis = flopy.modflow.ModflowDis( ml, nlay=Nlay, nrow=N, ncol=N, delr=delrow, delc=delcol, top=0.0, botm=bot, laycbd=0, ) # Next we specify the boundary conditions and starting heads with the Basic package. The `ibound` # array will be `1` in all cells in all layers, except for along the boundary and in the cell at # the center in the top layer where it is set to `-1` to indicate fixed heads. The starting heads # are used to define the heads in the fixed head cells (this is a steady simulation, so none of # the other starting values matter). So we set the starting heads to `h1` everywhere, except for # the head at the center of the model in the top layer. Nhalf = int((N - 1) / 2) ibound = np.ones((Nlay, N, N), dtype=int) ibound[:, 0, :] = -1 ibound[:, -1, :] = -1 ibound[:, :, 0] = -1 ibound[:, :, -1] = -1 ibound[0, Nhalf, Nhalf] = -1 start = h1 * np.ones((N, N)) start[Nhalf, Nhalf] = h2 # create external ibound array and starting head files files = [] hfile = f"{name}_strt.ref" np.savetxt(hfile, start) hfiles = [] for kdx in range(Nlay): file = f"{name}_ib{kdx + 1:02d}.ref" files.append(file) hfiles.append(hfile) np.savetxt(file, ibound[kdx, :, :], fmt="%5d") bas = flopy.modflow.ModflowBas(ml, ibound=files, strt=hfiles) # The aquifer properties (really only the hydraulic conductivity) are defined with the # LPF package. lpf = flopy.modflow.ModflowLpf(ml, hk=Kh) # Finally, we need to specify the solver we want to use (PCG with default values), and the # output control (using the default values). Then we are ready to write all MODFLOW input # files and run MODFLOW. pcg = flopy.modflow.ModflowPcg(ml) oc = flopy.modflow.ModflowOc(ml) ml.write_input() ml.run_model() # change back to the starting directory os.chdir(cwdpth) # Once the model has terminated normally, we can read the heads file. First, a link to the heads # file is created with `HeadFile`. The link can then be accessed with the `get_data` function, by # specifying, in this case, the step number and period number for which we want to retrieve data. # A three-dimensional array is returned of size `nlay, nrow, ncol`. Matplotlib contouring functions # are used to make contours of the layers or a cross-section. hds = flopy.utils.HeadFile(os.path.join(workspace, f"{name}.hds")) h = hds.get_data(kstpkper=(0, 0)) x = y = np.linspace(0, L, N) c = plt.contour(x, y, h[0], np.arange(90, 100.1, 0.2)) plt.clabel(c, fmt="%2.1f") plt.axis("scaled") outfig = os.path.join(workspace, f"lake1.{fext}") fig = plt.gcf() fig.savefig(outfig, dpi=300) print("created...", outfig) x = y = np.linspace(0, L, N) c = plt.contour(x, y, h[-1], np.arange(90, 100.1, 0.2)) plt.clabel(c, fmt="%1.1f") plt.axis("scaled") outfig = os.path.join(workspace, f"lake2.{fext}") fig = plt.gcf() fig.savefig(outfig, dpi=300) print("created...", outfig) z = np.linspace(-H / Nlay / 2, -H + H / Nlay / 2, Nlay) c = plt.contour(x, z, h[:, 50, :], np.arange(90, 100.1, 0.2)) plt.axis("scaled") outfig = os.path.join(workspace, f"lake3.{fext}") fig = plt.gcf() fig.savefig(outfig, dpi=300) print("created...", outfig) return 0 if __name__ == "__main__": success = run()
10423
import os from functools import partial from io import BytesIO import numpy as np import PIL.Image import scipy.misc import tensorflow as tf graph = tf.Graph() sess = tf.InteractiveSession(graph=graph) model_fn = "./models/tensorflow_inception_graph.pb" with tf.gfile.FastGFile(model_fn, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) t_input = tf.placeholder(tf.float32, name="input") imagenet_mean = 117.0 t_preprocessed = tf.expand_dims(t_input-imagenet_mean, 0) tf.import_graph_def(graph_def, {"input": t_preprocessed}) def load_inception(): graph = tf.Graph() sess = tf.InteractiveSession(graph=graph) model_fn = "./models/tensorflow_inception_graph.pb" with tf.gfile.FastGFile(model_fn, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) # 定义t_input为我们输入的图像 t_input = tf.placeholder(np.float32, name='input') imagenet_mean = 117.0 # 输入图像需要经过处理才能送入网络中 # expand_dims是加一维,从[height, width, channel]变成[1, height, width, channel] # t_input - imagenet_mean是减去一个均值 t_preprocessed = tf.expand_dims(t_input - imagenet_mean, 0) tf.import_graph_def(graph_def, {'input': t_preprocessed}) # 找到所有卷积层 layers = [op.name for op in graph.get_operations() if op.type == "Conv2D" and "import/" in op.name] # 输出卷积层层数 print('Number of layers', len(layers)) # 特别地,输出mixed4d_3x3_bottleneck_pre_relu的形状 name = 'mixed4d_3x3_bottleneck_pre_relu' print('shape of %s: %s' %(name, str(graph.get_tensor_by_name('import/' + name + ':0').get_shape()))) def savearray(img_array, img_name): scipy.misc.toimage(img_array).save(img_name) print('img saved: %s' % img_name) def visstd(a, s=0.1): return (a-a.mean())/max(a.std(), 1e-4)*s+0.5 def resize_ratio(img, ratio): min = img.min() max = img.max() img = (img - min) / (max - min) * 255 img = np.float32(scipy.misc.imresize(img, ratio)) img = img / 255 * (max - min) + min return img def resize(img, hw): min = img.min() max = img.max() img = (img - min) / (max - min) * 255 img = np.float32(scipy.misc.imresize(img, hw)) img = img / 255 * (max - min) + min return img def calc_grad_tiled(img, t_grad, tile_size=512): sz = tile_size h, w = img.shape[:2] sx, sy = np.random.randint(sz, size=2) img_shift = np.roll(np.roll(img, sx, 1), sy, 0) # 先在行上做整体移动,再在列上做整体移动 grad = np.zeros_like(img) for y in range(0, max(h - sz // 2, sz), sz): for x in range(0, max(w - sz // 2, sz), sz): sub = img_shift[y:y + sz, x:x + sz] g = sess.run(t_grad, {t_input: sub}) grad[y:y + sz, x:x + sz] = g return np.roll(np.roll(grad, -sx, 1), -sy, 0) k = np.float32([1, 4, 6, 4, 1]) k = np.outer(k, k) k5x5 = k[:, :, None, None] / k.sum() * np.eye(3, dtype=np.float32) # 将拉普拉斯金字塔还原到原始图像 def lap_merge(levels): img = levels[0] for hi in levels[1:]: with tf.name_scope('merge'): img = tf.nn.conv2d_transpose(img, k5x5 * 4, tf.shape(hi), [1, 2, 2, 1]) + hi return img # 对img做标准化。 def normalize_std(img, eps=1e-10): with tf.name_scope('normalize'): std = tf.sqrt(tf.reduce_mean(tf.square(img))) return img / tf.maximum(std, eps) # 拉普拉斯金字塔标准化 def lap_normalize(img, scale_n=4): img = tf.expand_dims(img, 0) tlevels = lap_split_n(img, scale_n) # 每一层都做一次normalize_std tlevels = list(map(normalize_std, tlevels)) out = lap_merge(tlevels) return out[0, :, :, :] # 这个函数将图像分为低频和高频成分 def lap_split(img): with tf.name_scope('split'): # 做过一次卷积相当于一次“平滑”,因此lo为低频成分 lo = tf.nn.conv2d(img, k5x5, [1, 2, 2, 1], 'SAME') # 低频成分放缩到原始图像一样大小得到lo2,再用原始图像img减去lo2,就得到高频成分hi lo2 = tf.nn.conv2d_transpose(lo, k5x5 * 4, tf.shape(img), [1, 2, 2, 1]) hi = img - lo2 return lo, hi # 这个函数将图像img分成n层拉普拉斯金字塔 def lap_split_n(img, n): levels = [] for i in range(n): # 调用lap_split将图像分为低频和高频部分 # 高频部分保存到levels中 # 低频部分再继续分解 img, hi = lap_split(img) levels.append(hi) levels.append(img) return levels[::-1] def tffunc(*argtypes): placeholders = list(map(tf.placeholder, argtypes)) def wrap(f): out = f(*placeholders) def wrapper(*args, **kw): return out.eval(dict(zip(placeholders, args)), session=kw.get('session')) return wrapper return wrap def render_deepdream(img0, iter_n=10, step=1.5, octave_n=4, octave_scale=1.4): name = 'mixed4d_3x3_bottleneck_pre_relu' channel = 139 t_obj = graph.get_tensor_by_name("import/%s:0" % name) t_score = tf.reduce_mean(t_obj) t_grad = tf.gradients(t_score, t_input)[0] lap_n=4 # 将lap_normalize转换为正常函数 lap_norm_func = tffunc(np.float32)(partial(lap_normalize, scale_n=lap_n)) img = img0 # 同样将图像进行金字塔分解 # 此时提取高频、低频的方法比较简单。直接缩放就可以 octaves = [] for i in range(octave_n-1): hw = img.shape[:2] lo = resize(img, np.int32(np.float32(hw) / octave_scale)) hi = img - resize(lo, hw) img = lo octaves.append(hi) # 先生成低频的图像,再依次放大并加上高频 for octave in range(octave_n): if octave > 0: hi = octaves[-octave] img = resize(img, hi.shape[:2]) + hi for i in range(iter_n): g = calc_grad_tiled(img, t_grad) img += g * (step / (np.abs(g).mean() + 1e-7)) # 唯一的区别在于我们使用lap_norm_func来标准化g! # g = lap_norm_func(g) # img += g * step print('.', end=' ') img = img.clip(0, 255) savearray(img, './predict_img/deepdream.jpg') if __name__ == '__main__': img0 = PIL.Image.open('./images/test.jpg') img0 = np.float32(img0) render_deepdream(img0)
10470
from flask import Flask, current_app from flask import render_template from flask import jsonify from jieba.analyse import extract_tags import string from DB import chinaSQL from DB import worldSQL app = Flask(__name__, template_folder='../../web', static_folder='../../static') @app.route('/', methods=["get", "post"]) def hello_world(): return render_template("china.html") @app.route('/china', methods=["get", "post"]) def china(): return render_template("china.html") @app.route('/world', methods=["get", "post"]) def world(): return render_template("world.html") @app.route('/favicon.ico') def favicon(): return current_app.send_static_file('image/favicon-32x32-sun.ico') @app.route("/time") def time(): data = chinaSQL.time() return str(data[0]) @app.route("/chinaEightNumber") def chinaEightNumber(): data = chinaSQL.chinaEightNumber() return jsonify({"confirmTotal": data[0], "healTotal": data[1], "deadTotal": data[2], "nowConfirmTotal": data[3], "suspectTotal": data[4], "nowSevereTotal": data[5], "importedCaseTotal": data[6], "noInfectTotal": data[7], "confirmAdd": data[8], "healAdd": data[9], "deadAdd": data[10], "nowConfirmAdd": data[11], "suspectAdd": data[12], "nowSevereAdd": data[13], "importedCaseAdd": data[14], "noInfectAdd": data[15] }) @app.route('/chinaMap', methods=['GET']) def chinaMap(): data = chinaSQL.chinaMap() confirmToday, nowConfirmTotal, confirmTotal, healTotal, deadTotal = [], [], [], [], [] for a, b, c, d, e, f in data: confirmToday.append({"name": a, "value": b}) nowConfirmTotal.append({"name": a, "value": c}) confirmTotal.append({"name": a, "value": d}) healTotal.append({"name": a, "value": e}) deadTotal.append({"name": a, "value": f}) return jsonify({"confirmToday": confirmToday, "nowConfirmTotal": nowConfirmTotal, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal}) @app.route('/chinaProvinceMap', methods=['GET']) def chinaProvinceMap(): data = chinaSQL.chinaProvinceMap() confirmToday, nowConfirmTotal, confirmTotal, healTotal, deadTotal = [], [], [], [], [] for a, b, c, d, e, f in data: confirmToday.append({"name": a + "市", "value": b}) nowConfirmTotal.append({"name": a + "市", "value": c}) confirmTotal.append({"name": a + "市", "value": d}) healTotal.append({"name": a + "市", "value": e}) deadTotal.append({"name": a + "市", "value": f}) return jsonify({"confirmToday": confirmToday, "nowConfirmTotal": nowConfirmTotal, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal}) @app.route("/nationalTotal") def nationalTotal(): data = chinaSQL.nationalTotal() day, \ confirmChinaDayList, \ healChinaDayList, \ deadChinaDayList, \ importedCaseChinaDayList = [], [], [], [], [] for a, b, c, d, e in data: day.append(a.strftime("%m-%d")) confirmChinaDayList.append(b) healChinaDayList.append(c) deadChinaDayList.append(d) importedCaseChinaDayList.append(e) return jsonify({"day": day, "confirmChinaDayList": confirmChinaDayList, "healChinaDayList": healChinaDayList, "deadChinaDayList": deadChinaDayList, "importedCaseChinaDayList": importedCaseChinaDayList }) @app.route("/dailyAdditionsNationwide") def dailyAdditionsNationwide(): data = chinaSQL.dailyAdditionsNationwide() day, \ confirmChinaDayAddList, \ healChinaDayAddList, \ deadChinaDayAddList, \ importedCaseChinaDayAddList = [], [], [], [], [] for a, b, c, d, e in data[7:]: day.append(a.strftime("%m-%d")) confirmChinaDayAddList.append(b) healChinaDayAddList.append(c) deadChinaDayAddList.append(d) importedCaseChinaDayAddList.append(e) return jsonify({"day": day, "confirmChinaDayAddList": confirmChinaDayAddList, "healChinaDayAddList": healChinaDayAddList, "deadChinaDayAddList": deadChinaDayAddList, "importedCaseChinaDayAddList": importedCaseChinaDayAddList }) @app.route("/dailyCasesNationwide") def dailyCasesNationwide(): data = chinaSQL.dailyCasesNationwide() day, \ suspectChinaDayList, \ noInfectChinaDayList, \ nowConfirmChinaDayList, \ nowSevereChinaDayList = [], [], [], [], [] for a, b, c, d, e in data[7:]: day.append(a.strftime("%m-%d")) suspectChinaDayList.append(b) noInfectChinaDayList.append(c) nowConfirmChinaDayList.append(d) nowSevereChinaDayList.append(e) return jsonify({"day": day, "suspectChinaDayList": suspectChinaDayList, "noInfectChinaDayList": noInfectChinaDayList, "nowConfirmChinaDayList": nowConfirmChinaDayList, "nowSevereChinaDayList": nowSevereChinaDayList }) @app.route("/nationalCumulativeCureMortalityRate") def nationalCumulativeCureMortalityRate(): data = chinaSQL.nationalCumulativeCureMortalityRate() day, \ healRateChinaDayList, \ deadRateChinaDayList = [], [], [] for a, b, c in data[7:]: day.append(a.strftime("%m-%d")) healRateChinaDayList.append(b) deadRateChinaDayList.append(c) return jsonify({"day": day, "healRateChinaDayList": healRateChinaDayList, "deadRateChinaDayList": deadRateChinaDayList }) @app.route("/detailedDataByProvince") def detailedDataByProvince(): data = chinaSQL.detailedDataByProvince() provinceName, \ confirmTotal, \ healTotal, \ deadTotal, \ healRateTotal, \ deadRateTotal = [], [], [], [], [], [] for a, b, c, d, e, f in data: provinceName.append(a) confirmTotal.append(b) healTotal.append(c) deadTotal.append(d) healRateTotal.append(e) deadRateTotal.append(f) return jsonify({"provinceName": provinceName, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal, "healRateTotal": healRateTotal, "deadRateTotal": deadRateTotal }) @app.route("/cumulativeNumberOfConfirmedCasesInAllProvinces") def cumulativeNumberOfConfirmedCasesInAllProvinces(): data = chinaSQL.cumulativeNumberOfConfirmedCasesInAllProvinces() provincedetails = [] for provinceName, confirmTotal in data: provincedetails.append({"name": provinceName, "value": confirmTotal}) return jsonify({"data": provincedetails}) @app.route("/currentConfirmedDataInAllProvinces") def currentConfirmedDataInAllProvinces(): data = chinaSQL.currentConfirmedDataInAllProvinces() provinceName, \ nowConfirmTotal, \ confirmToday, \ suspectTotal = [], [], [], [] for a, b, c, d in data: provinceName.append(a) nowConfirmTotal.append(b) confirmToday.append(c) suspectTotal.append(d) return jsonify({"provinceName": provinceName, "nowConfirmTotal": nowConfirmTotal, "confirmToday": confirmToday, "suspectTotal": suspectTotal }) @app.route("/existingDiagnosticClassificationInChina") def existingDiagnosticClassificationInChina(): data = chinaSQL.existingDiagnosticClassificationInChina() nowconfirmstatis = [] nowconfirmstatis.append({"name": '港澳台现存确诊', "value": data[0][0]}) nowconfirmstatis.append({"name": '境外输入现存确诊', "value": data[0][1]}) nowconfirmstatis.append({"name": '31省本土现有确诊', "value": data[0][2]}) return jsonify({"data": nowconfirmstatis}) @app.route("/totalNumberOfOverseasImportsFromTop10Provinces") def totalNumberOfOverseasImportsFromTop10Provinces(): data = chinaSQL.totalNumberOfOverseasImportsFromTop10Provinces() importstatis = [] for province, importedCase in data: importstatis.append({"name": province, "value": importedCase}) return jsonify({"data": importstatis}) @app.route("/eachProvinceComparesYesterdayData") def eachProvinceComparesYesterdayData(): data = chinaSQL.eachProvinceComparesYesterdayData() province, \ nowConfirm, \ confirmAdd, \ heal, \ dead, \ zero = [], [], [], [], [], [] for a, b, c, d, e, f in data: province.append(a) nowConfirm.append(b) confirmAdd.append(c) heal.append(d) dead.append(e) zero.append(f) return jsonify({"province": province, "nowConfirm": nowConfirm, "confirmAdd": confirmAdd, "heal": heal, "dead": dead, "zero": zero }) @app.route("/hubeiNonHubeiNationalCumulativeData") def hubeiNonHubeiNationalCumulativeData(): data = chinaSQL.hubeiNonHubeiNationalCumulativeData() day, \ hubeiNowConfirm, \ hubeiHeal, \ hubeiDead, \ notHubeiNowConfirm, \ notHubeiHeal, \ notHubeiDead, \ countryNowConfirm, \ countryHeal, \ countryDead = [], [], [], [], [], [], [], [], [], [] for a, b, c, d, e, f, g, h, i, j in data: day.append(a.strftime("%m-%d")) hubeiNowConfirm.append(b) hubeiHeal.append(c) hubeiDead.append(d) notHubeiNowConfirm.append(e) notHubeiHeal.append(f) notHubeiDead.append(g) countryNowConfirm.append(h) countryHeal.append(i) countryDead.append(j) return jsonify({"day": day, "hubeiNowConfirm": hubeiNowConfirm, "hubeiHeal": hubeiHeal, "hubeiDead": hubeiDead, "notHubeiNowConfirm": notHubeiNowConfirm, "notHubeiHeal": notHubeiHeal, "notHubeiDead": notHubeiDead, "countryNowConfirm": countryNowConfirm, "countryHeal": countryHeal, "countryDead": countryDead }) @app.route("/hubeiNonHubeiNationalCureMortalityRate") def hubeiNonHubeiNationalCureMortalityRate(): data = chinaSQL.hubeiNonHubeiNationalCureMortalityRate() day, \ hubeiHealRate, \ hubeiDeadRate, \ notHubeiHealRate, \ notHubeiDeadRate, \ countryHealRate, \ countryDeadRate = [], [], [], [], [], [], [] for a, b, c, d, e, f, g in data: day.append(a.strftime("%m-%d")) hubeiHealRate.append(b) hubeiDeadRate.append(c) notHubeiHealRate.append(d) notHubeiDeadRate.append(e) countryHealRate.append(f) countryDeadRate.append(g) return jsonify({"day": day, "hubeiHealRate": hubeiHealRate, "hubeiDeadRate": hubeiDeadRate, "notHubeiHealRate": notHubeiHealRate, "notHubeiDeadRate": notHubeiDeadRate, "countryHealRate": countryHealRate, "countryDeadRate": countryDeadRate }) @app.route("/hubeiNonHubeiNationalDailyNew") def hubeiNonHubeiNationalDailyNew(): data = chinaSQL.hubeiNonHubeiNationalDailyNew() day, \ hubei, \ notHubei, \ country = [], [], [], [] for a, b, c, d in data[7:]: day.append(a.strftime("%m-%d")) hubei.append(b) notHubei.append(c) country.append(d) return jsonify({"day": day, "hubei": hubei, "notHubei": notHubei, "country": country }) @app.route("/wuhanNotWuhanNotHubeiNewlyConfirmed") def wuhanNotWuhanNotHubeiNewlyConfirmed(): data = chinaSQL.wuhanNotWuhanNotHubeiNewlyConfirmed() day, \ wuhan, \ notWuhan, \ notHubei = [], [], [], [] for a, b, c, d in data: day.append(a.strftime("%m-%d")) wuhan.append(b) notWuhan.append(c) notHubei.append(d) return jsonify({"day": day, "wuhan": wuhan, "notWuhan": notWuhan, "notHubei": notHubei }) @app.route("/totalConfirmedTop20UrbanAreas") def totalConfirmedTop20UrbanAreas(): data = chinaSQL.totalConfirmedTop20UrbanAreas() cityName, \ deadRateTotal, \ healRateTotal = [], [], [] for a, b, c in data: cityName.append(a) deadRateTotal.append(b) healRateTotal.append(c) return jsonify({"cityName": cityName, "deadRateTotal": deadRateTotal, "healRateTotal": healRateTotal }) @app.route("/existingConfirmedTop20UrbanAreas") def existingConfirmedTop20UrbanAreas(): data = chinaSQL.existingConfirmedTop20UrbanAreas() cityName, \ nowConfirmTotal, \ confirmToday, \ suspectTotal = [], [], [], [] for a, b, c, d in data: cityName.append(a) nowConfirmTotal.append(b) confirmToday.append(c) suspectTotal.append(d) return jsonify({"cityName": cityName, "nowConfirmTotal": nowConfirmTotal, "confirmToday": confirmToday, "suspectTotal": suspectTotal }) @app.route("/urbanDataOfHubeiProvince") def urbanDataOfHubeiProvince(): data = chinaSQL.urbanDataOfHubeiProvince() cityName, \ confirmTotal, \ healTotal, \ deadTotal = [], [], [], [] for a, b, c, d in data: cityName.append(a) confirmTotal.append(b) healTotal.append(c) deadTotal.append(d) return jsonify({"cityName": cityName, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal }) @app.route("/accumulativeDataExceptHubeiProvince") def accumulativeDataExceptHubeiProvince(): data = chinaSQL.accumulativeDataExceptHubeiProvince() cityName, \ confirmTotal, \ healTotal, \ deadTotal = [], [], [], [] for a, b, c, d in data: cityName.append(a) confirmTotal.append(b) healTotal.append(c) deadTotal.append(d) return jsonify({"cityName": cityName, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal }) @app.route("/provincesWithFatalCasesNationwide") def provincesWithFatalCasesNationwide(): data = chinaSQL.provincesWithFatalCasesNationwide() provincedetails = [] provincedetails.append({"name": "无死亡病例省份数量", "value": data[0][0]}) provincedetails.append({"name": "有死亡病例省份数量", "value": data[0][1]}) return jsonify({"data": provincedetails}) @app.route("/numberOfDeathsInCities") def numberOfDeathsInCities(): data = chinaSQL.numberOfDeathsInCities() dataCityCount = [] dataCityCount.append({"name": "无死亡病例城市数量", "value": data[0][0]}) dataCityCount.append({"name": "有死亡病例城市数量", "value": data[0][1]}) return jsonify({"data": dataCityCount}) @app.route("/outbreakOut") def outbreakOut(): data = chinaSQL.outbreakOut() d = [] for i in data: k = i[0].rstrip(string.digits) v = i[0][len(k):] ks = extract_tags(k) for j in ks: if not j.isdigit(): d.append({"name": j, "value": v}) return jsonify({"kws": d}) @app.route("/worldFourNumber") def worldFourNumber(): data = worldSQL.worldFourNumber() return jsonify({"nowConfirm": data[0], "confirm": data[1], "heal": data[2], "dead": data[3], "nowConfirmAdd": data[4], "confirmAdd": data[5], "healAdd": data[6], "deadAdd": data[7] }) @app.route('/worldMapNoChina', methods=['GET']) def worldMapNoChina(): data = worldSQL.worldMapNoChina() nowConfirm, confirm, heal, dead = [], [], [], [] for a, b, c, d, e in data: nowConfirm.append({"name": a, "value": b}) confirm.append({"name": a, "value": c}) heal.append({"name": a, "value": d}) dead.append({"name": a, "value": e}) data1 = worldSQL.worldMapChina() nowConfirm.append({"name": "中国", "value": data1[0][0]}) confirm.append({"name": "中国", "value": data1[0][1]}) heal.append({"name": "中国", "value": data1[0][2]}) dead.append({"name": "中国", "value": data1[0][3]}) return jsonify({"nowConfirm": nowConfirm, "confirm": confirm, "heal": heal, "dead": dead }) @app.route("/globalCumulativeTrend") def globalCumulativeTrend(): data = worldSQL.globalCumulativeTrend() day, \ confirm, \ heal, \ dead, \ newAddConfirm = [], [], [], [], [] for a, b, c, d, e in data: day.append(a.strftime("%m-%d")) confirm.append(b) heal.append(c) dead.append(d) newAddConfirm.append(e) return jsonify({"day": day, "confirm": confirm, "heal": heal, "dead": dead, "newAddConfirm": newAddConfirm }) @app.route("/globalCumulativeCureMortality") def globalCumulativeCureMortality(): data = worldSQL.globalCumulativeCureMortality() day, \ healRate, \ deadRate = [], [], [] for a, b, c in data: day.append(a.strftime("%m-%d")) healRate.append(b) deadRate.append(c) return jsonify({"day": day, "healRate": healRate, "deadRate": deadRate }) @app.route("/foreignCumulativeDiagnosisTop10Countries") def foreignCumulativeDiagnosisTop10Countries(): data = worldSQL.foreignCumulativeDiagnosisTop10Countries() name, \ nowConfirm, \ confirm, \ heal, \ dead = [], [], [], [], [] for a, b, c, d, e in data: name.append(a) nowConfirm.append(b) confirm.append(c) heal.append(d) dead.append(e) return jsonify({"name": name, "nowConfirm": nowConfirm, "confirm": confirm, "heal": heal, "dead": dead }) @app.route("/theTop10CountriesGrewFastestInSevenDays") def theTop10CountriesGrewFastestInSevenDays(): data = worldSQL.theTop10CountriesGrewFastestInSevenDays() nation, \ day7, \ day, \ rate = [], [], [], [] for a, b, c, d in data: nation.append(a) day7.append(b) day.append(c) rate.append(d) return jsonify({"nation": nation, "day7": day7, "day0": day, "rate": rate }) @app.route("/overseasCountriesWithMoreThan10000ConfirmedCases") def overseasCountriesWithMoreThan10000ConfirmedCases(): data = worldSQL.overseasCountriesWithMoreThan10000ConfirmedCases() foreignlist = [] for name, confirm in data: foreignlist.append({"name": name, "value": confirm}) return jsonify({"data": foreignlist}) @app.route("/overseasCountriesWithMoreThan10000HaveBeenConfirmedCases") def overseasCountriesWithMoreThan10000HaveBeenConfirmedCases(): data = worldSQL.overseasCountriesWithMoreThan10000HaveBeenConfirmedCases() foreignlist = [] for name, nowConfirm in data: foreignlist.append({"name": name, "value": nowConfirm}) return jsonify({"data": foreignlist}) @app.route("/newCasesInTheTop10CountriesWithin24Hours") def newCasesInTheTop10CountriesWithin24Hours(): data = worldSQL.newCasesInTheTop10CountriesWithin24Hours() nationAddConfirm = [] for nation, addConfirm in data: nationAddConfirm.append({"name": nation, "value": addConfirm}) return jsonify({"data": nationAddConfirm}) @app.route("/theNumberOfForeignCountriesWithConfirmedCases") def theNumberOfForeignCountriesWithConfirmedCases(): data = worldSQL.theNumberOfForeignCountriesWithConfirmedCases() foreignlist = [] for continent, count in data: foreignlist.append({"name": continent, "value": count}) return jsonify({"data": foreignlist}) if __name__ == '__main__': app.run()
10476
import os def create_project(path): dirs = ['configs', 'module', 'data'] dirs = [os.path.join(path, d) for d in dirs] for d in dirs: os.makedirs(d) train_script = r""" import ever as er def train(trainer_name): trainer = er.trainer.get_trainer(trainer_name)() trainer.run() """ with open(os.path.join(path, 'train.py'), 'w') as f: f.write(train_script) print('created project in {}'.format(path))
10482
import json import sys def compatible_loads(json_data): """ Function json.loads in python 3.0 - 3.5 can't handle bytes, so this function handle it. :param json_data: :return: unicode (str if it's python 3) """ if isinstance(json_data, bytes) and (3, 0) <= sys.version_info < (3, 6): json_data = json_data.decode("utf-8") return json.loads(json_data) def get_massage_from_io_error(error): """ :param: IOError :return: error message """ if sys.version_info >= (3, 0): return error.strerror else: return error.message
10502
import unittest from stringsheet.parser import create_spreadsheet_values from stringsheet.parser import create_language_sheet_values from stringsheet.parser import parse_resources class BaseTestCase(unittest.TestCase): def setUp(self): self.resources = parse_resources('test-resources/res') class CreateSpreadsheetValuesTestCase(BaseTestCase): def setUp(self): super(CreateSpreadsheetValuesTestCase, self).setUp() self.values = create_spreadsheet_values(self.resources) def test_rows_are_valid(self): rows = [ ['id', 'comment', 'default', 'de', 'pl', 'zh-rCN', 'zh-rTW'], ['a_string', '', 'A string', '', '', '', ''], ['partly_added', '', 'Partly added', 'Partly added (de)', '', '', ''], ['string', 'String with comment', 'String', 'String (de)', 'String (pl)', 'String (zh-rCN)', 'String (zh-rTW)'], ['string_2', '', 'String 2', '', '', '', ''], ['array[0]', 'Item comment', 'First', '', '', '', ''], ['array[1]', '', 'Second', '', '', '', ''], ['array_comment[0]', 'Array comment', 'Some item', '', '', '', ''], ['array_comment[1]', 'Array comment', 'More items', '', '', '', ''], ['array_comment[2]', 'Comment', 'More', '', '', '', ''], ['plural{zero}', 'Parent comment', 'Other', '', '', '', ''], ['plural{one}', 'Parent comment', 'One', '', '', '', ''], ['plural{two}', 'Parent comment', 'Other', '', '', '', ''], ['plural{few}', 'Parent comment', 'Other', '', '', '', ''], ['plural{many}', 'Parent comment', 'Other', '', '', '', ''], ['plural{other}', 'Comment', 'Other', '', '', '', ''], ['plurals{zero}', 'Item comment', 'Zero', '', '', '', ''], ['plurals{one}', '', 'One', '', '', '', ''], ['plurals{two}', '', 'Two', '', '', '', ''], ['plurals{few}', '', 'Few', '', '', '', ''], ['plurals{many}', '', 'Many', '', '', '', ''], ['plurals{other}', '', 'Other', '', '', '', ''], ] self.assertEqual(len(rows), len(self.values)) for index, row in enumerate(rows): self.assertEqual(row, self.values[index]) class CreateLanguageSpreadsheetValuesTestCase(BaseTestCase): def setUp(self): super(CreateLanguageSpreadsheetValuesTestCase, self).setUp() self.values = create_language_sheet_values(self.resources, 'de') def test_rows_are_valid(self): rows = [ ['id', 'comment', 'default', 'de'], ['a_string', '', 'A string', ''], ['partly_added', '', 'Partly added', 'Partly added (de)'], ['string', 'String with comment', 'String', 'String (de)'], ['string_2', '', 'String 2', ''], ['array[0]', 'Item comment', 'First', ''], ['array[1]', '', 'Second', ''], ['array_comment[0]', 'Array comment', 'Some item', ''], ['array_comment[1]', 'Array comment', 'More items', ''], ['array_comment[2]', 'Comment', 'More', ''], ['plural{zero}', 'Parent comment', 'Other', ''], ['plural{one}', 'Parent comment', 'One', ''], ['plural{two}', 'Parent comment', 'Other', ''], ['plural{few}', 'Parent comment', 'Other', ''], ['plural{many}', 'Parent comment', 'Other', ''], ['plural{other}', 'Comment', 'Other', ''], ['plurals{zero}', 'Item comment', 'Zero', ''], ['plurals{one}', '', 'One', ''], ['plurals{two}', '', 'Two', ''], ['plurals{few}', '', 'Few', ''], ['plurals{many}', '', 'Many', ''], ['plurals{other}', '', 'Other', ''], ] self.assertEqual(len(rows), len(self.values)) for index, row in enumerate(rows): self.assertEqual(row, self.values[index]) class CreateTemplateSpreadsheetValuesTestCase(BaseTestCase): def setUp(self): super(CreateTemplateSpreadsheetValuesTestCase, self).setUp() self.values = create_language_sheet_values(self.resources, 'Template') def test_rows_are_valid(self): rows = [ ['id', 'comment', 'default', 'language-id'], ['a_string', '', 'A string', ''], ['partly_added', '', 'Partly added', ''], ['string', 'String with comment', 'String', ''], ['string_2', '', 'String 2', ''], ['array[0]', 'Item comment', 'First', ''], ['array[1]', '', 'Second', ''], ['array_comment[0]', 'Array comment', 'Some item', ''], ['array_comment[1]', 'Array comment', 'More items', ''], ['array_comment[2]', 'Comment', 'More', ''], ['plural{zero}', 'Parent comment', 'Other', ''], ['plural{one}', 'Parent comment', 'One', ''], ['plural{two}', 'Parent comment', 'Other', ''], ['plural{few}', 'Parent comment', 'Other', ''], ['plural{many}', 'Parent comment', 'Other', ''], ['plural{other}', 'Comment', 'Other', ''], ['plurals{zero}', 'Item comment', 'Zero', ''], ['plurals{one}', '', 'One', ''], ['plurals{two}', '', 'Two', ''], ['plurals{few}', '', 'Few', ''], ['plurals{many}', '', 'Many', ''], ['plurals{other}', '', 'Other', ''], ] self.assertEqual(len(rows), len(self.values)) for index, row in enumerate(rows): self.assertEqual(row, self.values[index]) if __name__ == '__main__': unittest.main()
10504
import os, sys import numpy as np from sedflow import obs as Obs from sedflow import train as Train from provabgs import infer as Infer from provabgs import models as Models #################################################### # input #################################################### sample = sys.argv[1] itrain = int(sys.argv[2]) nhidden = int(sys.argv[3]) nblocks = int(sys.argv[4]) niter = int(sys.argv[5]) i0 = int(sys.argv[6]) i1 = int(sys.argv[7]) #################################################### # compile NSA failures #################################################### # u, g, r, i, z, sigma_u, sigma_g, sigma_r, sigma_i, sigma_z, redshift y_nsa = Obs.load_nsa_data(test_set=False) igals = np.load('/scratch/network/chhahn/sedflow/nsa_fail/fail.igals.npy') # convert to flux y_flux = Train.mag2flux(y_nsa[:,:5]) y_ivar = Train.sigma_mag2flux(y_nsa[:,5:10], y_nsa[:,:5])**-2 y_zred = y_nsa[:,-1] #################################################### # setup inference #################################################### # SPS parameter priors prior_sps = Infer.load_priors([ Infer.UniformPrior(7., 12.5, label='sed'), Infer.FlatDirichletPrior(4, label='sed'), # flat dirichilet priors Infer.UniformPrior(0., 1., label='sed'), # burst fraction Infer.UniformPrior(1e-2, 13.27, label='sed'), # tburst Infer.LogUniformPrior(4.5e-5, 1.5e-2, label='sed'), # log uniform priors on ZH coeff Infer.LogUniformPrior(4.5e-5, 1.5e-2, label='sed'), # log uniform priors on ZH coeff Infer.UniformPrior(0., 3., label='sed'), # uniform priors on dust1 Infer.UniformPrior(0., 3., label='sed'), # uniform priors on dust2 Infer.UniformPrior(-2., 1., label='sed') # uniform priors on dust_index ]) # SPS model m_sps = Models.NMF(burst=True, emulator=True) def run_mcmc(i_obs): # desi MCMC object nsa_mcmc = Infer.nsaMCMC(model=m_sps, prior=prior_sps) fmcmc = os.path.join('/scratch/network/chhahn/sedflow/nsa_fail', 'mcmc.nsa.%i.hdf5' % i_obs) if not os.path.isfile(fmcmc): print('%s running' % os.path.basename(fmcmc)) if not np.all(np.isfinite(y_flux[i_obs])): print('NaN photometry', y_flux[i_obs]) return None if not np.all(np.isfinite(y_ivar[i_obs])): print('NaN ivar', y_ivar[i_obs]) return None # run MCMC zeus_chain = nsa_mcmc.run( bands='sdss', # u, g, r, i, z photo_obs=y_flux[i_obs], photo_ivar_obs=y_ivar[i_obs], zred=y_zred[i_obs], vdisp=0., sampler='zeus', nwalkers=30, burnin=0, opt_maxiter=2000, niter=niter, progress=True, writeout=fmcmc) else: print('%s already exists' % os.path.basename(fmcmc)) return None for i in range(i0, i1+1): run_mcmc(igals[i])
10515
import os import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder def read_dataset_from_npy(path): """ Read dataset from .npy file """ data = np.load(path, allow_pickle=True) return data[()]['X'], data[()]['y'], data[()]['train_idx'], data[()]['test_idx'] def read_dataset(ucr_root_dir, dataset_name, shot): """ Read univariate dataset from UCR """ dataset_dir = os.path.join(ucr_root_dir, dataset_name) df_train = pd.read_csv(os.path.join(dataset_dir, dataset_name+'_TRAIN.tsv'), sep='\t', header=None) df_test = pd.read_csv(os.path.join(dataset_dir, dataset_name+'_TEST.tsv'), sep='\t', header=None) y_train = df_train.values[:, 0].astype(np.int64) y_test = df_test.values[:, 0].astype(np.int64) y = np.concatenate((y_train, y_test)) le = LabelEncoder() le.fit(y) y = le.transform(y) X_train = df_train.drop(columns=[0]).astype(np.float32) X_test = df_test.drop(columns=[0]).astype(np.float32) X_train.columns = range(X_train.shape[1]) X_test.columns = range(X_test.shape[1]) X_train = X_train.values X_test = X_test.values X = np.concatenate((X_train, X_test)) idx = np.array([i for i in range(len(X))]) np.random.shuffle(idx) train_idx, test_idx = idx[:int(len(idx)*0.8)], idx[int(len(idx)*0.8):] tmp = [[] for _ in range(len(np.unique(y)))] for i in train_idx: tmp[y[i]].append(i) train_idx = [] for _tmp in tmp: train_idx.extend(_tmp[:shot]) # znorm X[np.isnan(X)] = 0 std_ = X.std(axis=1, keepdims=True) std_[std_ == 0] = 1.0 X = (X - X.mean(axis=1, keepdims=True)) / std_ # add a dimension to make it multivariate with one dimension X = X.reshape((X.shape[0], 1, X.shape[1])) return X, y, train_idx, test_idx def read_multivariate_dataset(root_dir, dataset_name, shot): """ Read multivariate dataset """ X = np.load(os.path.join(root_dir, dataset_name+".npy"), allow_pickle=True) y = np.loadtxt(os.path.join(root_dir, dataset_name+'_label.txt')) y = y.astype(np.int64) dim = X[0].shape[0] max_length = 0 for _X in X: if _X.shape[1] > max_length: max_length = _X.shape[1] X_list = [] for i in range(len(X)): _X = np.zeros((dim, max_length)) _X[:, :X[i].shape[1]] = X[i] X_list.append(_X) X = np.array(X_list, dtype=np.float32) le = LabelEncoder() le.fit(y) y = le.transform(y) idx = np.array([i for i in range(len(X))]) np.random.shuffle(idx) train_idx, test_idx = idx[:int(len(idx)*0.8)], idx[int(len(idx)*0.8):] tmp = [[] for _ in range(len(np.unique(y)))] for i in train_idx: tmp[y[i]].append(i) train_idx = [] for _tmp in tmp: train_idx.extend(_tmp[:shot]) # znorm std_ = X.std(axis=2, keepdims=True) std_[std_ == 0] = 1.0 X = (X - X.mean(axis=2, keepdims=True)) / std_ return X, y, train_idx, test_idx def read_X(ucr_root_dir, dataset_name): """ Read the raw time-series """ dataset_dir = os.path.join(ucr_root_dir, dataset_name) df_train = pd.read_csv(os.path.join(dataset_dir, dataset_name+'_TRAIN.tsv'), sep='\t', header=None) df_test = pd.read_csv(os.path.join(dataset_dir, dataset_name+'_TEST.tsv'), sep='\t', header=None) X_train = df_train.drop(columns=[0]).astype(np.float32) X_test = df_test.drop(columns=[0]).astype(np.float32) X_train.columns = range(X_train.shape[1]) X_test.columns = range(X_test.shape[1]) X_train = X_train.values X_test = X_test.values X = np.concatenate((X_train, X_test), axis=0) return X class Logger: def __init__(self, f): self.f = f def log(self, content): print(content) self.f.write(content + '\n') self.f.flush()
10546
from ctypes import c_uint32, c_void_p, string_at from rotypes.idldsl import define_winrt_com_method, GUID from rotypes.inspectable import IInspectable, IUnknown @GUID('905a0fef-bc53-11df-8c49-001e4fc686da') class IBufferByteAccess(IUnknown): pass @GUID('905A0FE0-BC53-11DF-8C49-001E4FC686DA') class IBuffer(IInspectable): def __len__(self): return self.Length def __bytes__(self): byteaccess = self.astype(IBufferByteAccess) ptr = byteaccess.Buffer() return string_at(ptr, len(self)) define_winrt_com_method(IBufferByteAccess, 'Buffer', retval=c_void_p) define_winrt_com_method(IBuffer, 'get_Capacity', propget=c_uint32) define_winrt_com_method(IBuffer, 'get_Length', propget=c_uint32) define_winrt_com_method(IBuffer, 'put_Length', propput=c_uint32)
10550
import csv import json import pickle import logging import re import pandas import gzip import os import numpy as np from random import randint, random from tqdm import tqdm from retriever.dense_retriever import DenseRetriever from models.tokenization import tokenize from typing import Union, List class InputExample: """ Structure for one input example with texts, the label and a unique id """ def __init__(self, guid: str, texts: List[str], label: Union[int, float]): """ Creates one InputExample with the given texts, guid and label str.strip() is called on both texts. :param guid id for the example :param texts the texts for the example :param label the label for the example """ self.guid = guid self.texts = [text.strip() for text in texts] self.label = label def get_texts(self): return self.texts def get_label(self): return self.label class LoggingHandler(logging.Handler): def __init__(self, level=logging.NOTSET): super().__init__(level) def emit(self, record): try: msg = self.format(record) tqdm.write(msg) self.flush() except (KeyboardInterrupt, SystemExit): raise except: self.handleError(record) def get_examples(filename, max_examples=0): examples = [] id = 0 with open(filename, encoding='utf8') as file: for j, line in enumerate(file): line = line.rstrip('\n') sample = json.loads(line) label = sample['label'] guid = "%s-%d" % (filename, id) id += 1 if label == 'entailment': label = 0 elif label == 'contradiction': label = 1 else: label = 2 examples.append(InputExample(guid=guid, texts=[sample['s1'], sample['s2']], label=label)) if 0 < max_examples <= len(examples): break return examples def get_qa_examples(filename, max_examples=0, dev=False): examples = [] id = 0 with open(filename, encoding='utf8') as file: for j, line in enumerate(file): line = line.rstrip('\n') sample = json.loads(line) label = sample['relevant'] guid = "%s-%d" % (filename, id) id += 1 examples.append(InputExample(guid=guid, texts=[sample['question'], sample['answer']], label=label)) if not dev: if label == 1: for _ in range(13): examples.append(InputExample(guid=guid, texts=[sample['question'], sample['answer']], label=label)) if 0 < max_examples <= len(examples): break return examples def map_label(label): labels = {"relevant": 0, "irrelevant": 1} return labels[label.strip().lower()] def get_qar_examples(filename, max_examples=0): examples = [] id = 0 with open(filename, encoding='utf8') as file: for j, line in enumerate(file): line = line.rstrip('\n') sample = json.loads(line) guid = "%s-%d" % (filename, id) id += 1 examples.append(InputExample(guid=guid, texts=[sample['question'], sample['answer']], label=1.0)) if 0 < max_examples <= len(examples): break return examples def get_qar_artificial_examples(): examples = [] id = 0 print('Loading passages...') passages = [] file = open('data/msmarco/collection.tsv', 'r', encoding='utf8') while True: line = file.readline() if not line: break line = line.rstrip('\n').split('\t') passages.append(line[1]) print('Loaded passages') with open('data/qar/qar_artificial_queries.csv') as f: for i, line in enumerate(f): queries = line.rstrip('\n').split('|') for query in queries: guid = "%s-%d" % ('', id) id += 1 examples.append(InputExample(guid=guid, texts=[query, passages[i]], label=1.0)) return examples def get_single_examples(filename, max_examples=0): examples = [] id = 0 with open(filename, encoding='utf8') as file: for j, line in enumerate(file): line = line.rstrip('\n') sample = json.loads(line) guid = "%s-%d" % (filename, id) id += 1 examples.append(InputExample(guid=guid, texts=[sample['text']], label=1)) if 0 < max_examples <= len(examples): break return examples def get_qnli_examples(filename, max_examples=0, no_contradictions=False, fever_only=False): examples = [] id = 0 with open(filename, encoding='utf8') as file: for j, line in enumerate(file): line = line.rstrip('\n') sample = json.loads(line) label = sample['label'] if label == 'contradiction' and no_contradictions: continue if sample['evidence'] == '': continue if fever_only and sample['source'] != 'fever': continue guid = "%s-%d" % (filename, id) id += 1 examples.append(InputExample(guid=guid, texts=[sample['statement'].strip(), sample['evidence'].strip()], label=1.0)) if 0 < max_examples <= len(examples): break return examples def get_retrieval_examples(filename, negative_corpus='data/msmarco/collection.tsv', max_examples=0, no_statements=True, encoder_model=None, negative_samples_num=4): examples = [] queries = [] passages = [] negative_passages = [] id = 0 with open(filename, encoding='utf8') as file: for j, line in enumerate(file): line = line.rstrip('\n') sample = json.loads(line) if 'evidence' in sample and sample['evidence'] == '': continue guid = "%s-%d" % (filename, id) id += 1 if sample['type'] == 'question': query = sample['question'] passage = sample['answer'] else: query = sample['statement'] passage = sample['evidence'] query = query.strip() passage = passage.strip() if sample['type'] == 'statement' and no_statements: continue queries.append(query) passages.append(passage) if sample['source'] == 'natural-questions': negative_passages.append(passage) if max_examples == len(passages): break if encoder_model is not None: # Load MSMARCO passages logging.info('Loading MSM passages...') with open(negative_corpus) as file: for line in file: p = line.rstrip('\n').split('\t')[1] negative_passages.append(p) logging.info('Building ANN index...') dense_retriever = DenseRetriever(model=encoder_model, batch_size=1024, use_gpu=True) dense_retriever.create_index_from_documents(negative_passages) results = dense_retriever.search(queries=queries, limit=100, probes=256) negative_samples = [ [negative_passages[p[0]] for p in r if negative_passages[p[0]] != passages[i]][:negative_samples_num] for i, r in enumerate(results) ] # print(queries[0]) # print(negative_samples[0][0]) for i in range(len(queries)): texts = [queries[i], passages[i]] + negative_samples[i] examples.append(InputExample(guid=guid, texts=texts, label=1.0)) else: for i in range(len(queries)): texts = [queries[i], passages[i]] examples.append(InputExample(guid=guid, texts=texts, label=1.0)) return examples def get_pair_input(tokenizer, sent1, sent2, max_len=256): text = "[CLS] {} [SEP] {} [SEP]".format(sent1, sent2) tokenized_text = tokenizer.tokenize(text)[:max_len] indexed_tokens = tokenizer.encode(text)[:max_len] segments_ids = [] sep_flag = False for i in range(len(tokenized_text)): if tokenized_text[i] == '[SEP]' and not sep_flag: segments_ids.append(0) sep_flag = True elif sep_flag: segments_ids.append(1) else: segments_ids.append(0) return indexed_tokens, segments_ids def build_batch(tokenizer, text_list, max_len=256): token_id_list = [] segment_list = [] attention_masks = [] longest = -1 for pair in text_list: sent1, sent2 = pair ids, segs = get_pair_input(tokenizer, sent1, sent2, max_len=max_len) if ids is None or segs is None: continue token_id_list.append(ids) segment_list.append(segs) attention_masks.append([1] * len(ids)) if len(ids) > longest: longest = len(ids) if len(token_id_list) == 0: return None, None, None # padding assert (len(token_id_list) == len(segment_list)) for ii in range(len(token_id_list)): token_id_list[ii] += [0] * (longest - len(token_id_list[ii])) attention_masks[ii] += [1] * (longest - len(attention_masks[ii])) segment_list[ii] += [1] * (longest - len(segment_list[ii])) return token_id_list, segment_list, attention_masks def load_unsupervised_dataset(dataset_file): print('Loading dataset...') x = pickle.load(open(dataset_file, "rb")) print('Done') return x, len(x[0]) def load_supervised_dataset(dataset_file): print('Loading dataset...') d = pickle.load(open(dataset_file, "rb")) print('Done') return d[0], d[1]
10559
import typing as t from gradient_boosting_model.config.core import config import numpy as np import pandas as pd from marshmallow import fields, Schema, ValidationError class HouseDataInputSchema(Schema): Alley = fields.Str(allow_none=True) BedroomAbvGr = fields.Integer() BldgType = fields.Str() BsmtCond = fields.Str(allow_none=True) BsmtExposure = fields.Str(allow_none=True) BsmtFinSF1 = fields.Float(allow_none=True) BsmtFinSF2 = fields.Float(allow_none=True) BsmtFinType1 = fields.Str(allow_none=True) BsmtFinType2 = fields.Str(allow_none=True) BsmtFullBath = fields.Float(allow_none=True) BsmtHalfBath = fields.Float(allow_none=True) BsmtQual = fields.Str(allow_none=True) BsmtUnfSF = fields.Float() CentralAir = fields.Str() Condition1 = fields.Str() Condition2 = fields.Str() Electrical = fields.Str(allow_none=True) EnclosedPorch = fields.Integer() ExterCond = fields.Str() ExterQual = fields.Str() Exterior1st = fields.Str(allow_none=True) Exterior2nd = fields.Str(allow_none=True) Fence = fields.Str(allow_none=True) FireplaceQu = fields.Str(allow_none=True) Fireplaces = fields.Integer() Foundation = fields.Str() FullBath = fields.Integer() Functional = fields.Str(allow_none=True) GarageArea = fields.Float() GarageCars = fields.Float() GarageCond = fields.Str(allow_none=True) GarageFinish = fields.Str(allow_none=True) GarageQual = fields.Str(allow_none=True) GarageType = fields.Str(allow_none=True) GarageYrBlt = fields.Float(allow_none=True) GrLivArea = fields.Integer() HalfBath = fields.Integer() Heating = fields.Str() HeatingQC = fields.Str() HouseStyle = fields.Str() Id = fields.Integer() KitchenAbvGr = fields.Integer() KitchenQual = fields.Str(allow_none=True) LandContour = fields.Str() LandSlope = fields.Str() LotArea = fields.Integer() LotConfig = fields.Str() LotFrontage = fields.Float(allow_none=True) LotShape = fields.Str() LowQualFinSF = fields.Integer() MSSubClass = fields.Integer() MSZoning = fields.Str(allow_none=True) MasVnrArea = fields.Float(allow_none=True) MasVnrType = fields.Str(allow_none=True) MiscFeature = fields.Str(allow_none=True) MiscVal = fields.Integer() MoSold = fields.Integer() Neighborhood = fields.Str() OpenPorchSF = fields.Integer() OverallCond = fields.Integer() OverallQual = fields.Integer() PavedDrive = fields.Str() PoolArea = fields.Integer() PoolQC = fields.Str(allow_none=True) RoofMatl = fields.Str() RoofStyle = fields.Str() SaleCondition = fields.Str() SaleType = fields.Str(allow_none=True) ScreenPorch = fields.Integer() Street = fields.Str() TotRmsAbvGrd = fields.Integer() TotalBsmtSF = fields.Float() Utilities = fields.Str(allow_none=True) WoodDeckSF = fields.Integer() YearBuilt = fields.Integer() YearRemodAdd = fields.Integer() YrSold = fields.Integer() FirstFlrSF = fields.Integer() SecondFlrSF = fields.Integer() ThreeSsnPortch = fields.Integer() def drop_na_inputs(*, input_data: pd.DataFrame) -> pd.DataFrame: """Check model inputs for na values and filter.""" validated_data = input_data.copy() if input_data[config.model_config.numerical_na_not_allowed].isnull().any().any(): validated_data = validated_data.dropna( axis=0, subset=config.model_config.numerical_na_not_allowed ) return validated_data def validate_inputs( *, input_data: pd.DataFrame ) -> t.Tuple[pd.DataFrame, t.Optional[dict]]: """Check model inputs for unprocessable values.""" # convert syntax error field names (beginning with numbers) input_data.rename(columns=config.model_config.variables_to_rename, inplace=True) validated_data = drop_na_inputs(input_data=input_data) # set many=True to allow passing in a list schema = HouseDataInputSchema(many=True) errors = None try: # replace numpy nans so that Marshmallow can validate schema.load(validated_data.replace({np.nan: None}).to_dict(orient="records")) except ValidationError as exc: errors = exc.messages return validated_data, errors
10561
import os from rlbot.agents.base_agent import BOT_CONFIG_AGENT_HEADER from rlbot.agents.base_dotnet_agent import BaseDotNetAgent from rlbot.parsing.custom_config import ConfigHeader, ConfigObject class DotNetBot(BaseDotNetAgent): def get_port_file_path(self): # Look for a port.cfg file in the same directory as THIS python file. return os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__), 'port.cfg')) def load_config(self, config_header: ConfigHeader): self.dotnet_executable_path = config_header.getpath('dotnet_executable_path') self.logger.info(".NET executable is configured as {}".format(self.dotnet_executable_path)) @staticmethod def create_agent_configurations(config: ConfigObject): params = config.get_header(BOT_CONFIG_AGENT_HEADER) params.add_value('dotnet_executable_path', str, default=None, description='Relative path to the executable that runs the .NET executable.')
10594
import itertools from typing import Sequence, Iterator # Source: https://github.com/Cog-Creators/Red-DiscordBot/blob/V3/develop/redbot/core/utils/chat_formatting.py def error(text: str) -> str: """Get text prefixed with an error emoji. Returns ------- str The new message. """ return "\N{NO ENTRY SIGN} {}".format(text) def warning(text: str) -> str: """Get text prefixed with a warning emoji. Returns ------- str The new message. """ return "\N{WARNING SIGN} {}".format(text) def info(text: str) -> str: """Get text prefixed with an info emoji. Returns ------- str The new message. """ return "\N{INFORMATION SOURCE} {}".format(text) def question(text: str) -> str: """Get text prefixed with a question emoji. Returns ------- str The new message. """ return "\N{BLACK QUESTION MARK ORNAMENT} {}".format(text) def bold(text: str) -> str: """Get the given text in bold. Parameters ---------- text : str The text to be marked up. Returns ------- str The marked up text. """ return "**{}**".format(text) def box(text: str, lang: str = "") -> str: """Get the given text in a code block. Parameters ---------- text : str The text to be marked up. lang : `str`, optional The syntax highlighting language for the codeblock. Returns ------- str The marked up text. """ ret = "```{}\n{}\n```".format(lang, text) return ret def inline(text: str) -> str: """Get the given text as inline code. Parameters ---------- text : str The text to be marked up. Returns ------- str The marked up text. """ return "`{}`".format(text) def italics(text: str) -> str: """Get the given text in italics. Parameters ---------- text : str The text to be marked up. Returns ------- str The marked up text. """ return "*{}*".format(text) def bordered(*columns: Sequence[str], ascii_border: bool = False) -> str: """Get two blocks of text in a borders. Note ---- This will only work with a monospaced font. Parameters ---------- *columns : `sequence` of `str` The columns of text, each being a list of lines in that column. ascii_border : bool Whether or not the border should be pure ASCII. Returns ------- str The bordered text. """ borders = { "TL": "-" if ascii_border else "┌", # Top-left "TR": "-" if ascii_border else "┐", # Top-right "BL": "-" if ascii_border else "└", # Bottom-left "BR": "-" if ascii_border else "┘", # Bottom-right "HZ": "-" if ascii_border else "─", # Horizontal "VT": "|" if ascii_border else "│", # Vertical } sep = " " * 4 # Separator between boxes widths = tuple( max(len(row) for row in column) + 9 for column in columns ) # width of each col colsdone = [False] * len(columns) # whether or not each column is done lines = [sep.join("{TL}" + "{HZ}" * width + "{TR}" for width in widths)] for line in itertools.zip_longest(*columns): row = [] for colidx, column in enumerate(line): width = widths[colidx] done = colsdone[colidx] if column is None: if not done: # bottom border of column column = "{HZ}" * width row.append("{BL}" + column + "{BR}") colsdone[colidx] = True # mark column as done else: # leave empty row.append(" " * (width + 2)) else: column += " " * (width - len(column)) # append padded spaces row.append("{VT}" + column + "{VT}") lines.append(sep.join(row)) final_row = [] for width, done in zip(widths, colsdone): if not done: final_row.append("{BL}" + "{HZ}" * width + "{BR}") else: final_row.append(" " * (width + 2)) lines.append(sep.join(final_row)) return "\n".join(lines).format(**borders) def pagify( text: str, delims: Sequence[str] = ["\n"], *, priority: bool = False, escape_mass_mentions: bool = True, shorten_by: int = 8, page_length: int = 2000 ) -> Iterator[str]: """Generate multiple pages from the given text. Note ---- This does not respect code blocks or inline code. Parameters ---------- text : str The content to pagify and send. delims : `sequence` of `str`, optional Characters where page breaks will occur. If no delimiters are found in a page, the page will break after ``page_length`` characters. By default this only contains the newline. Other Parameters ---------------- priority : `bool` Set to :code:`True` to choose the page break delimiter based on the order of ``delims``. Otherwise, the page will always break at the last possible delimiter. escape_mass_mentions : `bool` If :code:`True`, any mass mentions (here or everyone) will be silenced. shorten_by : `int` How much to shorten each page by. Defaults to 8. page_length : `int` The maximum length of each page. Defaults to 2000. Yields ------ `str` Pages of the given text. """ in_text = text page_length -= shorten_by while len(in_text) > page_length: this_page_len = page_length if escape_mass_mentions: this_page_len -= in_text.count("@here", 0, page_length) + in_text.count( "@everyone", 0, page_length ) closest_delim = (in_text.rfind(d, 1, this_page_len) for d in delims) if priority: closest_delim = next((x for x in closest_delim if x > 0), -1) else: closest_delim = max(closest_delim) closest_delim = closest_delim if closest_delim != -1 else this_page_len if escape_mass_mentions: to_send = escape(in_text[:closest_delim], mass_mentions=True) else: to_send = in_text[:closest_delim] if not to_send.strip(): yield to_send in_text = in_text[closest_delim:] if not in_text.strip(): if escape_mass_mentions: yield escape(in_text, mass_mentions=True) else: yield in_text def strikethrough(text: str) -> str: """Get the given text with a strikethrough. Parameters ---------- text : str The text to be marked up. Returns ------- str The marked up text. """ return "~~{}~~".format(text) def underline(text: str) -> str: """Get the given text with an underline. Parameters ---------- text : str The text to be marked up. Returns ------- str The marked up text. """ return "__{}__".format(text) def escape(text: str, *, mass_mentions: bool = False, formatting: bool = False) -> str: """Get text with all mass mentions or markdown escaped. Parameters ---------- text : str The text to be escaped. mass_mentions : `bool`, optional Set to :code:`True` to escape mass mentions in the text. formatting : `bool`, optional Set to :code:`True` to escpae any markdown formatting in the text. Returns ------- str The escaped text. """ if mass_mentions: text = text.replace("@everyone", "@\u200beveryone") text = text.replace("@here", "@\u200bhere") if formatting: text = ( text.replace("`", "\\`") .replace("*", "\\*") .replace("_", "\\_") .replace("~", "\\~") ) return text
10617
import torch import torch.nn as nn import torch.nn.functional as F from modules import Conv, ResBlock class Wavenet_Student(nn.Module): def __init__(self, num_blocks_student=[1, 1, 1, 1, 1, 1], num_layers=10, front_channels=32, residual_channels=64, gate_channels=128, skip_channels=64, kernel_size=3, cin_channels=80, causal=True): super(Wavenet_Student, self).__init__() self.num_blocks = num_blocks_student self.num_flow = len(self.num_blocks) self.num_layers = num_layers self.iafs = nn.ModuleList() for i in range(self.num_flow): self.iafs.append(Wavenet_Flow(out_channels=2, num_blocks=self.num_blocks[i], num_layers=self.num_layers, front_channels=front_channels, residual_channels=residual_channels, gate_channels=gate_channels, skip_channels=skip_channels, kernel_size=kernel_size, cin_channels=cin_channels, causal=causal)) def forward(self, z, c): return self.iaf(z, c) def iaf(self, z, c_up): mu_tot, logs_tot = 0., 0. for i, iaf in enumerate(self.iafs): mu_logs = iaf(z, c_up) mu = mu_logs[:, 0:1, :-1] logs = mu_logs[:, 1:, :-1] mu_tot = mu_tot * torch.exp(logs) + mu logs_tot = logs_tot + logs z = z[:, :, 1:] * torch.exp(logs) + mu z = F.pad(z, pad=(1, 0), mode='constant', value=0) return z, mu_tot, logs_tot def receptive_field(self): receptive_field = 1 for iaf in self.iafs: receptive_field += iaf.receptive_field_size() - 1 return receptive_field def generate(self, z, c_up): x, _, _ = self.iaf(z, c_up) return x def remove_weight_norm(self): for iaf in self.iafs: iaf.remove_weight_norm() class Wavenet_Flow(nn.Module): def __init__(self, out_channels=1, num_blocks=1, num_layers=10, front_channels=32, residual_channels=64, gate_channels=32, skip_channels=None, kernel_size=3, cin_channels=80, causal=True): super(Wavenet_Flow, self). __init__() self.causal = causal self.num_blocks = num_blocks self.num_layers = num_layers self.front_channels = front_channels self.out_channels = out_channels self.gate_channels = gate_channels self.residual_channels = residual_channels self.skip_channels = skip_channels self.cin_channels = cin_channels self.kernel_size = kernel_size self.front_conv = nn.Sequential( Conv(1, self.residual_channels, self.front_channels, causal=self.causal), nn.ReLU() ) self.res_blocks = nn.ModuleList() self.res_blocks_fast = nn.ModuleList() for b in range(self.num_blocks): for n in range(self.num_layers): self.res_blocks.append(ResBlock(self.residual_channels, self.gate_channels, self.skip_channels, self.kernel_size, dilation=2**n, cin_channels=self.cin_channels, local_conditioning=True, causal=self.causal, mode='SAME')) self.final_conv = nn.Sequential( nn.ReLU(), Conv(self.skip_channels, self.skip_channels, 1, causal=self.causal), nn.ReLU(), Conv(self.skip_channels, self.out_channels, 1, causal=self.causal) ) def forward(self, x, c): return self.wavenet(x, c) def wavenet(self, tensor, c=None): h = self.front_conv(tensor) skip = 0 for i, f in enumerate(self.res_blocks): h, s = f(h, c) skip += s out = self.final_conv(skip) return out def receptive_field_size(self): num_dir = 1 if self.causal else 2 dilations = [2 ** (i % self.num_layers) for i in range(self.num_layers * self.num_blocks)] return num_dir * (self.kernel_size - 1) * sum(dilations) + 1 + (self.front_channels - 1) def remove_weight_norm(self): for f in self.res_blocks: f.remove_weight_norm()
10618
try: from gevent import monkey monkey.patch_all() except ImportError: # fine if no gevent is available pass import base64 import logging from unittest.mock import Mock from flask.app import Flask from flask_testing import TestCase from openbrokerapi.api import BrokerCredentials from openbrokerapi.log_util import basic_config class BrokerTestCase(TestCase): auth_header = 'Basic ' + base64.b64encode(b":").decode("ascii") def create_app(self): from openbrokerapi.api import get_blueprint app = Flask(__name__) self.broker = Mock() app.register_blueprint( get_blueprint(self.broker, BrokerCredentials("", ""), basic_config(level=logging.WARN) ) ) return app
10652
import openmoc import openmoc.log as log import openmoc.plotter as plotter import openmoc.materialize as materialize log.set_log_level('NORMAL') ############################################################################### ########################### Creating Materials ############################ ############################################################################### log.py_printf('NORMAL', 'Importing materials data from HDF5...') materials = openmoc.materialize.load_from_hdf5('c5g7-mgxs.h5', '../') ############################################################################### ########################### Creating Surfaces ############################# ############################################################################### log.py_printf('NORMAL', 'Creating surfaces...') xmin = openmoc.XPlane(x=-5.0, name='xmin') xmax = openmoc.XPlane(x= 5.0, name='xmax') ymin = openmoc.YPlane(y=-5.0, name='ymin') ymax = openmoc.YPlane(y= 5.0, name='ymax') zmin = openmoc.ZPlane(z=-5.0, name='zmin') zmax = openmoc.ZPlane(z= 5.0, name='zmax') xmin.setBoundaryType(openmoc.REFLECTIVE) xmax.setBoundaryType(openmoc.REFLECTIVE) ymin.setBoundaryType(openmoc.REFLECTIVE) ymax.setBoundaryType(openmoc.REFLECTIVE) zmin.setBoundaryType(openmoc.REFLECTIVE) zmax.setBoundaryType(openmoc.REFLECTIVE) ############################################################################### ############################# Creating Cells ############################## ############################################################################### log.py_printf('NORMAL', 'Creating cells...') fuel = openmoc.Cell(name='fuel') fuel.setFill(materials['UO2']) moderator = openmoc.Cell(name='moderator') moderator.setFill(materials['UO2']) root_cell = openmoc.Cell(name='root cell') root_cell.addSurface(halfspace=+1, surface=xmin) root_cell.addSurface(halfspace=-1, surface=xmax) root_cell.addSurface(halfspace=+1, surface=ymin) root_cell.addSurface(halfspace=-1, surface=ymax) root_cell.addSurface(halfspace=+1, surface=zmin) root_cell.addSurface(halfspace=-1, surface=zmax) ############################################################################### ########################### Creating Universes ############################ ############################################################################### log.py_printf('NORMAL', 'Creating universes...') fue_univ = openmoc.Universe(name='homogeneous fue cell') fue_univ.addCell(fuel) mod_univ = openmoc.Universe(name='homogeneous mod cell') mod_univ.addCell(moderator) root_universe = openmoc.Universe(name='root universe') root_universe.addCell(root_cell) ############################################################################### ########################### Creating Lattices ############################# ############################################################################### log.py_printf('NORMAL', 'Creating simple 10 x 10 lattice...') f = fue_univ lattice = openmoc.Lattice(name='10x10 lattice') lattice.setWidth(width_x=1.0, width_y=1.0, width_z=1.0) lattice.setUniverses([[[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]], [[f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f], [f, f, f, f, f, f, f, f, f, f]]]) root_cell.setFill(lattice) ############################################################################### ########################## Creating the Geometry ########################## ############################################################################### log.py_printf('NORMAL', 'Creating geometry...') geometry = openmoc.Geometry() geometry.setRootUniverse(root_universe) geometry.initializeFlatSourceRegions()