id
stringlengths
3
8
content
stringlengths
100
981k
12708
from __future__ import absolute_import # flake8: noqa # import apis into api package import speechpro.cloud.speech.synthesis.rest.cloud_client.api.session_api import speechpro.cloud.speech.synthesis.rest.cloud_client.api.synthesize_api
12714
import socket import requests import json import xml.etree.ElementTree as ET class Camera(object): def __init__(self): """ create camera object """ self.xml_url = self.discover() self.name, self.api_version, self.services = self.connect(self.xml_url) self.camera_endpoint_url = self.services["camera"] + "/camera" self.available_apis = self.do("getAvailableApiList")["result"] # prepare camera for rec mode if "startRecMode" in self.available_apis[0]: self.do("startRecMode") self.available_apis = self.do("getAvailableApiList")["result"] self.connected = False def discover(self): """ discover camera using upnp ssdp method, return url for device xml """ msg = ( "M-SEARCH * HTTP/1.1\r\n" "HOST: 172.16.58.3:1900\r\n" 'MAN: "ssdp:discover" \r\n' "MX: 2\r\n" "ST: urn:schemas-sony-com:service:ScalarWebAPI:1\r\n" "\r\n" ).encode() # Set up UDP socket s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) s.settimeout(2) s.sendto(msg, ("172.16.58.3", 1900)) try: while True: data, addr = s.recvfrom(65507) decoded_data = data.decode() # get xml url from ssdp response for item in decoded_data.split("\n"): if "LOCATION" in item: return item.strip().split(" ")[ 1 ] # get location url from ssdp response self.connected = True except socket.timeout: raise ConnectionError("you are not connected to the camera's wifi") def connect(self, xml_url): """ returns name, api_version, api_service_urls on success """ device_xml_request = requests.get(xml_url) xml_file = str(device_xml_request.content.decode()) xml = ET.fromstring(xml_file) name = xml.find( "{urn:schemas-upnp-org:device-1-0}device/{urn:schemas-upnp-org:device-1-0}friendlyName" ).text api_version = xml.find( "{urn:schemas-upnp-org:device-1-0}device/{urn:schemas-sony-com:av}X_ScalarWebAPI_DeviceInfo/{urn:schemas-sony-com:av}X_ScalarWebAPI_Version" ).text service_list = xml.find( "{urn:schemas-upnp-org:device-1-0}device/{urn:schemas-sony-com:av}X_ScalarWebAPI_DeviceInfo/{urn:schemas-sony-com:av}X_ScalarWebAPI_ServiceList" ) api_service_urls = {} for service in service_list: service_type = service.find( "{urn:schemas-sony-com:av}X_ScalarWebAPI_ServiceType" ).text action_url = service.find( "{urn:schemas-sony-com:av}X_ScalarWebAPI_ActionList_URL" ).text api_service_urls[service_type] = action_url return name, api_version, api_service_urls def info(self): """ returns camera info(name, api version, supported services, available apis) in a dictionary """ return { "name": self.name, "api version": self.api_version, "supported services": list(self.services.keys()), "available apis": self.available_apis, } def post_request(self, url, method, param=[]): """ sends post request to url with method and param as json """ if type(param) is not list: param = [param] json_request = {"method": method, "params": param, "id": 1, "version": "1.0"} request = requests.post(url, json.dumps(json_request)) response = json.loads(request.content) if "error" in list(response.keys()): print("Error: ") print(response) else: return response def do(self, method, param=[]): """ this calls to camera service api, require method and param args """ # TODO: response handler, return result of do, etc response = self.post_request(self.camera_endpoint_url, method, param) return response class ConnectionError(Exception): pass
12724
import pandas as pd import smartplots3_setup def createSetup(name,expansion_factor,percapita_factor,plot_size,settings): plt_setup_smart={ 'name': name, 'expansion_factor':expansion_factor, 'percapita_factor':percapita_factor, 'scenarios_itr': [], 'scenarios_id':[], 'scenarios_year':[], 'plot_size': plot_size, 'bottom_labels': [], 'top_labels': [], 'plots_folder': "makeplots3" } plt_setup_smart['name']=name plt_setup_smart['expansion_factor']=expansion_factor plt_setup_smart['plot_size']=plot_size plt_setup_smart['scenarios_year']=[] plt_setup_smart['scenarios_id']=[] plt_setup_smart['scenarios_itr']=[] plt_setup_smart['top_labels']=[] for (scenarios_year,scenarios_id,scenarios_itr,bottom_label,top_label) in settings: plt_setup_smart['scenarios_year'].append(scenarios_year) plt_setup_smart['scenarios_id'].append(scenarios_id) plt_setup_smart['scenarios_itr'].append(scenarios_itr) plt_setup_smart['top_labels'].append(top_label) plt_setup_smart['bottom_labels'].append(bottom_label) return plt_setup_smart def createSettingRow(scenarios_year,scenarios_id,scenarios_itr,bottom_label,top_label): return (scenarios_year,scenarios_id,scenarios_itr,bottom_label,top_label) scenarios_lables = { "Base_CL_CT": "Base0", "Base_STL_STT_BAU": "Base2", "Base_STL_STT_VTO": "Base3", "Base_LTL_LTT_BAU": "Base5", "Base_LTL_LTT_VTO": "Base6", "A_STL_STT_BAU": "A2", "A_STL_STT_VTO": "A3", "B_LTL_LTT_BAU": "B5", "B_LTL_LTT_VTO": "B6", "C_LTL_LTT_BAU": "C5", "C_LTL_LTT_VTO": "C6" } output_folder = "/home/ubuntu/git/jupyter/data/28thOct2019" # Base_CL_CT # A_STL_STT_BAU settings=[] settings.append(createSettingRow(2010,1,15,scenarios_lables["Base_CL_CT"], "")) settings.append(createSettingRow(2025,6,15,scenarios_lables["A_STL_STT_BAU"], "")) settings.append(createSettingRow(2025,7,15,scenarios_lables["A_STL_STT_VTO"], "")) settings.append(createSettingRow(2040,8,15,scenarios_lables["B_LTL_LTT_BAU"], "")) settings.append(createSettingRow(2040,9,15,scenarios_lables["B_LTL_LTT_VTO"], "")) settings.append(createSettingRow(2040,10,15,scenarios_lables["C_LTL_LTT_BAU"], "")) settings.append(createSettingRow(2040,11,15,scenarios_lables["C_LTL_LTT_VTO"], "")) plt_setup_smart3 = createSetup('7scenarios', (7.75/0.315) * 27.0 / 21.3, 27.0/21.3, (8, 4.5), settings) #smartplots3_setup.pltRealizedModeSplitByTrips(plt_setup_smart3, output_folder) #smartplots3_setup.pltModeSplitInPMTPerCapita(plt_setup_smart3, output_folder) #smartplots3_setup.pltAveragePersonSpeed_allModes(plt_setup_smart3, output_folder) #smartplots3_setup.pltAveragePersonSpeed_car(plt_setup_smart3, output_folder) #smartplots3_setup.pltModeSplitInVMT(plt_setup_smart3, output_folder) #smartplots3_setup.pltRHEmptyPooled(plt_setup_smart3, output_folder) #smartplots3_setup.pltRHWaitTime(plt_setup_smart3, output_folder) #smartplots3_setup.pltLdvTechnologySplitInVMT(plt_setup_smart3, output_folder) settings=[] settings.append(createSettingRow(2010,1,15,scenarios_lables["Base_CL_CT"], "")) settings.append(createSettingRow(2025,2,15,scenarios_lables["Base_STL_STT_BAU"], "")) settings.append(createSettingRow(2025,3,15,scenarios_lables["Base_STL_STT_VTO"], "")) settings.append(createSettingRow(2040,4,15,scenarios_lables["Base_LTL_LTT_BAU"], "")) settings.append(createSettingRow(2040,5,15,scenarios_lables["Base_LTL_LTT_VTO"], "")) settings.append(createSettingRow(2025,6,15,scenarios_lables["A_STL_STT_BAU"], "")) settings.append(createSettingRow(2025,7,15,scenarios_lables["A_STL_STT_VTO"], "")) settings.append(createSettingRow(2040,8,15,scenarios_lables["B_LTL_LTT_BAU"], "")) settings.append(createSettingRow(2040,9,15,scenarios_lables["B_LTL_LTT_VTO"], "")) settings.append(createSettingRow(2040,10,15,scenarios_lables["C_LTL_LTT_BAU"], "")) settings.append(createSettingRow(2040,11,15,scenarios_lables["C_LTL_LTT_VTO"], "")) plt_setup_smart3_base = createSetup('11scenarios', (7.75/0.315) * 27.0 / 21.3, 27.0/21.3, (10, 4.5), settings) smartplots3_setup.pltEnergyPerCapita(plt_setup_smart3_base, output_folder) smartplots3_setup.pltRealizedModeSplitByTrips(plt_setup_smart3_base, output_folder) smartplots3_setup.pltModeSplitInPMTPerCapita(plt_setup_smart3_base, output_folder) smartplots3_setup.pltAveragePersonSpeed_allModes(plt_setup_smart3_base, output_folder) smartplots3_setup.pltAveragePersonSpeed_car(plt_setup_smart3_base, output_folder) smartplots3_setup.pltModeSplitInVMT(plt_setup_smart3_base, output_folder) smartplots3_setup.pltRHEmptyPooled(plt_setup_smart3_base, output_folder) smartplots3_setup.pltRHWaitTime(plt_setup_smart3_base, output_folder) smartplots3_setup.pltLdvTechnologySplitInVMT(plt_setup_smart3_base, output_folder) #smartplots3_setup.pltMEP(plt_setup_smart3, output_folder, [15071,21151,22872,29014,27541,36325,45267]) smartplots3_setup.tableSummary(plt_setup_smart3_base, output_folder)
12726
import os import sys def main(): print 'const char* ya_get_symbolizer_gen() {' print ' return "{}";'.format(os.path.join(os.path.dirname(sys.argv[1]), 'llvm-symbolizer')) print '}' if __name__ == '__main__': main()
12735
from django.contrib.auth import SESSION_KEY from django.core.cache import cache from django.conf import settings from django.http import HttpResponse, HttpResponseServerError from proxy_server.response import AJAX_REQUEST import httplib, json, proxy_server def invoke_backend_service(method, function_path, json_data=dict(), request=None, response_token=True, public=False, secure=False): error_message = None try: if public is False and request is None: error_message = 'A private web service must receive Django\'s request' raise Exception if response_token is True and request is None: error_message = 'A web service cannot expect a response token and not receive Django\'s request' raise Exception if not hasattr(settings, 'BACKEND_HOST'): error_message = 'No backend host and/or port specified' raise Exception if secure: if hasattr(settings, 'BACKEND_PORT'): conn = httplib.HTTPSConnection(settings.BACKEND_HOST, settings.BACKEND_PORT) else: conn = httplib.HTTPSConnection(settings.BACKEND_HOST) else: if hasattr(settings, 'BACKEND_PORT'): conn = httplib.HTTPConnection(settings.BACKEND_HOST, settings.BACKEND_PORT) else: conn = httplib.HTTPConnection(settings.BACKEND_HOST) headers = proxy_server.RESTFUL_HEADER headers[proxy_server.API_KEY] = settings.SECRET_KEY if request is not None: pk = cache.get(AJAX_REQUEST, None) if pk: request.user.pk = pk cache.delete(AJAX_REQUEST) headers[proxy_server.USER_TOKEN] = request.user.pk headers[proxy_server.CLIENT_IP] = request.META.get(proxy_server.HTTP_FROM) try: conn.request(method, function_path, json.dumps(json_data), headers) except: error_message = 'Could not connect to service' raise Exception response = conn.getresponse() response_data = response.read() conn.close() if response.status == 403: return 403, None if response.status == 204: if response_token is True: error_message = 'Backend server didn\'t respond with a token' raise Exception return 204, None else: try: response_json = json.loads(response_data) except: error_message = 'Unknown response format' raise Exception if response_token is True: user_dict = None if SESSION_KEY in request.session: user_dict = cache.get(request.session[SESSION_KEY]) cache.delete(request.session[SESSION_KEY]) request.session[SESSION_KEY] = response_json[proxy_server.USER_TOKEN] request.user.pk = response_json[proxy_server.USER_TOKEN] request.session[proxy_server.EXPIRATION_DATE] = response_json[proxy_server.EXPIRATION_DATE] if user_dict: user_dict['pk'] = request.user.pk cache.set(request.session[SESSION_KEY], user_dict) if response.status == 200: if response_token is True and proxy_server.USER_TOKEN not in response_json: error_message = 'Server expected user token in response' raise Exception result = None if proxy_server.RESPONSE in response_json: result = response_json[proxy_server.RESPONSE] return 200, result else: code = response.status if proxy_server.ERROR in response_json: error_message = response_json[proxy_server.ERROR][proxy_server.MESSAGE] raise Exception(code) else: error_message = response.reason raise Exception(code) except Exception as e: if error_message is None: error_message = 'Unknown error in service invocation' code = int(str(e)) if e is not None and isinstance(str(e), int) else 500 error = { 'error': { 'code': code, 'type': 'ProxyServerError', 'message': error_message } } return code, error def invoke_backend_service_as_proxy(request, method, function_path, json_data=dict(), response_token=True, secure=False): error_message = None try: if not hasattr(settings, 'BACKEND_HOST'): error_message = 'No backend host and/or port specified' raise Exception if secure: if hasattr(settings, 'BACKEND_PORT'): conn = httplib.HTTPSConnection(settings.BACKEND_HOST, settings.BACKEND_PORT) else: conn = httplib.HTTPSConnection(settings.BACKEND_HOST) else: if hasattr(settings, 'BACKEND_PORT'): conn = httplib.HTTPConnection(settings.BACKEND_HOST, settings.BACKEND_PORT) else: conn = httplib.HTTPConnection(settings.BACKEND_HOST) headers = proxy_server.RESTFUL_HEADER headers[proxy_server.USER_TOKEN] = request.META.get(proxy_server.HTTP_USER_TOKEN) headers[proxy_server.CLIENT_IP] = request.META.get(proxy_server.HTTP_FROM) headers[proxy_server.API_KEY] = request.META.get(proxy_server.HTTP_API_KEY) try: conn.request(method, function_path, json.dumps(json_data), headers) except: error_message = 'Could not connect to service' raise Exception response = conn.getresponse() response_data = response.read() conn.close() if response.status == 403: resp = HttpResponse(status=response.status, reason=response.reason) for header, value in response.getheaders(): resp[header] = value for header in proxy_server.HOP_BY_HOP: del resp[header] resp[proxy_server.HEADER_SERVER] = proxy_server.VALUE_SERVER return resp if response.status == 204: if response_token is True: error_message = 'Backend server didn\'t respond with a token' raise Exception resp = HttpResponse(status=response.status, content_type='application/json', reason=response.reason) for header, value in response.getheaders(): resp[header] = value for header in proxy_server.HOP_BY_HOP: del resp[header] resp[proxy_server.HEADER_SERVER] = proxy_server.VALUE_SERVER return resp else: try: response_json = json.loads(response_data) except: error_message = 'Unknown response format' raise Exception if response.status == 200: if response_token is True and proxy_server.USER_TOKEN not in response_json: error_message = 'Server expected user token in response' raise Exception resp = HttpResponse(response_data, status=response.status, content_type='application/json', reason=response.reason) for header, value in response.getheaders(): resp[header] = value for header in proxy_server.HOP_BY_HOP: del resp[header] resp[proxy_server.HEADER_SERVER] = proxy_server.VALUE_SERVER return resp except Exception as e: if error_message is None: error_message = 'Unknown error in service invocation' code = int(str(e)) if e is not None and isinstance(str(e), int) else 500 error = { 'error': { 'code': code, 'type': 'ProxyServerError', 'message': error_message } } return HttpResponseServerError(json.dumps(error), content_type='application/json')
12787
from mysql.connector.pooling import MySQLConnectionPool from ._connect import _parse_kwargs, _patch_MySQLConnection class MySQLConnectionPool(MySQLConnectionPool): def set_config(self, **kwargs): kwargs = _parse_kwargs(kwargs) super(MySQLConnectionPool, self).set_config(**kwargs) def add_connection(self, cnx=None): with _patch_MySQLConnection(include_pooling=True): super().add_connection(cnx)
12812
from django.db import models class SoftDeleteManager(models.Manager): def save_soft_delete(self): self.is_deleted = True self.save() return True def get_soft_delete(self): return self.filter(is_deleted=True) def get_unsoft_delete(self): return self.filter(is_deleted=False)
12849
from core.terraform.resources import BaseTerraformVariable class TerraformVariable(BaseTerraformVariable): """ Base resource class for Terraform tfvar variable Attributes: variable_dict_input (dict/none): Var dict values available_args (dict): Instance configurations variable_type (str): Define the variable i.e. terraform list var or terraform dict var etc """ variable_dict_input = None variable_type = None available_args = { 'variable_name': {'required': True}, 'variable_type': {'required': False}, 'default_value': {'required': False} }
12871
import os scrapy_project_path = '/Users/kingname/book/chapter_12/DeploySpider' os.chdir(scrapy_project_path) #切换工作区,进入爬虫工程根目录执行命令 os.system('scrapyd-deploy') import json import time import requests start_url = 'http://45.76.110.210:6800/schedule.json' start_data = {'project': 'DeploySpider', 'spider': 'Example'} end_url = 'http://172.16.31.10:6800/cancel.json' end_data = {'project': 'DeploySpider'} result = requests.post(start_url, data=start_data, auth=('kingname', 'genius')).text result = requests.post(end_url, data=end_data, auth=('kingname', 'genius')).text # result_dict = json.loads(result) # job_id = result_dict['jobid'] # print(f'启动的爬虫,jobid为:{job_id}') # # time.sleep(5) # end_data['job'] = job_id # result = requests.post(end_url, data=end_data).text # print(result)
12891
import traceback import re import sys import logging """ ********** Note by wvmarle: This file contains the complete code from chained_exception.py plus the error handling code from GlacierWrapper.py, allowing it to be used in other modules like glaciercorecalls as well. ********** """ class GlacierException(Exception): """ An extension of the built-in Exception class, this handles an additional cause keyword argument, adding it as cause attribute to the exception message. It logs the error message (amount of information depends on the log level) and passes it on to a higher level to handle. Furthermore it allows for the upstream handler to call for a complete stack trace or just a simple error and cause message. TODO: describe usage. """ ERRORCODE = {'InternalError': 127, # Library internal error. 'UndefinedErrorCode': 126, # Undefined code. 'NoResults': 125, # Operation yielded no results. 'GlacierConnectionError': 1, # Can not connect to Glacier. 'SdbConnectionError': 2, # Can not connect to SimpleDB. 'CommandError': 3, # Command line is invalid. 'VaultNameError': 4, # Invalid vault name. 'DescriptionError': 5, # Invalid archive description. 'IdError': 6, # Invalid upload/archive/job ID given. 'RegionError': 7, # Invalid region given. 'FileError': 8, # Error related to reading/writing a file. 'ResumeError': 9, # Problem resuming a multipart upload. 'NotReady': 10, # Requested download is not ready yet. 'BookkeepingError': 11, # Bookkeeping not available. 'SdbCommunicationError': 12, # Problem reading/writing SimpleDB data. 'ResourceNotFoundException': 13, # Glacier can not find the requested resource. 'InvalidParameterValueException': 14, # Parameter not accepted. 'DownloadError': 15, # Downloading an archive failed. 'SNSConnectionError': 126, # Can not connect to SNS 'SNSConfigurationError': 127, # Problem with configuration file 'SNSParameterError':128, # Problem with arguments passed to SNS } def __init__(self, message, code=None, cause=None): """ Constructor. Logs the error. :param message: the error message. :type message: str :param code: the error code. :type code: str :param cause: explanation on what caused the error. :type cause: str """ self.logger = logging.getLogger(self.__class__.__name__) self.exitcode = self.ERRORCODE[code] if code in self.ERRORCODE else 254 self.code = code if cause: self.logger.error('ERROR: %s'% cause) self.cause = cause if isinstance(cause, tuple) else (cause,) self.stack = traceback.format_stack()[:-2] else: self.logger.error('An error occurred, exiting.') self.cause = () # Just wrap up a cause-less exception. # Get the stack trace for this exception. self.stack = ( traceback.format_stack()[:-2] + traceback.format_tb(sys.exc_info()[2])) # ^^^ let's hope the information is still there; caller must take # care of this. self.message = message self.logger.info(self.fetch(message=True)) self.logger.debug(self.fetch(stack=True)) if self.exitcode == 254: self.logger.debug('Unknown error code: %s.'% code) # Works as a generator to help get the stack trace and the cause # written out. def causeTree(self, indentation=' ', alreadyMentionedTree=[], stack=False, message=False): """ Returns a complete stack tree, an error message, or both. Returns a warning if neither stack or message are True. """ if stack: yield "Traceback (most recent call last):\n" ellipsed = 0 for i, line in enumerate(self.stack): if (ellipsed is not False and i < len(alreadyMentionedTree) and line == alreadyMentionedTree[i]): ellipsed += 1 else: if ellipsed: yield " ... (%d frame%s repeated)\n" % ( ellipsed, "" if ellipsed == 1 else "s") ellipsed = False # marker for "given out" yield line if message: exc = self if self.message is None else self.message for line in traceback.format_exception_only(exc.__class__, exc): yield line if self.cause: yield ("Caused by: %d exception%s\n" % (len(self.cause), "" if len(self.cause) == 1 else "s")) for causePart in self.cause: if hasattr(causePart,"causeTree"): for line in causePart.causeTree(indentation, self.stack): yield re.sub(r'([^\n]*\n)', indentation + r'\1', line) else: for line in traceback.format_exception_only(causePart.__class__, causePart): yield re.sub(r'([^\n]*\n)', indentation + r'\1', line) if not message and not stack: yield ('No output. Specify message=True and/or stack=True \ to get output when calling this function.\n') def write(self, stream=None, indentation=' ', message=False, stack=False): """ Writes the error details to sys.stderr or a stream. """ stream = sys.stderr if stream is None else stream for line in self.causeTree(indentation, message=message, stack=stack): stream.write(line) def fetch(self, indentation=' ', message=False, stack=False): """ Fetches the error details and returns them as string. """ out = '' for line in self.causeTree(indentation, message=message, stack=stack): out += line return out class InputException(GlacierException): """ Exception that is raised when there is someting wrong with the user input. """ VaultNameError = 1 VaultDescriptionError = 2 def __init__(self, message, code=None, cause=None): """ Handles the exception. :param message: the error message. :type message: str :param code: the error code. :type code: :param cause: explanation on what caused the error. :type cause: str """ GlacierException.__init__(self, message, code=code, cause=cause) class ConnectionException(GlacierException): """ Exception that is raised when there is something wrong with the connection. """ GlacierConnectionError = 1 SdbConnectionError = 2 def __init__(self, message, code=None, cause=None): """ Handles the exception. :param message: the error message. :type message: str :param code: the error code. :type code: :param cause: explanation on what caused the error. :type cause: str """ GlacierException.__init__(self, message, code=code, cause=cause) class CommunicationException(GlacierException): """ Exception that is raised when there is something wrong in the communication with an external library like boto. """ def __init__(self, message, code=None, cause=None): """ Handles the exception. :param message: the error message. :type message: str :param code: the error code. :type code: :param cause: explanation on what caused the error. :type cause: str """ GlacierException.__init__(self, message, code=code, cause=cause) class ResponseException(GlacierException): """ Exception that is raised when there is an http response error. """ def __init__(self, message, code=None, cause=None): GlacierException.__init__(self, message, code=code, cause=cause) if __name__ == '__main__': class ChildrenException(Exception): def __init__(self, message): Exception.__init__(self, message) class ParentException(GlacierException): def __init__(self, message, cause=None): if cause: GlacierException.__init__(self, message, cause=cause) else: GlacierException.__init__(self, message) try: try: raise ChildrenException("parent") except ChildrenException, e: raise ParentException("children", cause=e) except ParentException, e: e.write(indentation='|| ')
12898
from ..alert_code import AlertCode class EVMNodeAlertCode(AlertCode): NoChangeInBlockHeight = 'evm_node_alert_1' BlockHeightUpdatedAlert = 'evm_node_alert_2' BlockHeightDifferenceIncreasedAboveThresholdAlert = 'evm_node_alert_3' BlockHeightDifferenceDecreasedBelowThresholdAlert = 'evm_node_alert_4' InvalidUrlAlert = 'evm_node_alert_5' ValidUrlAlert = 'evm_node_alert_6' NodeWentDownAtAlert = 'evm_node_alert_7' NodeBackUpAgainAlert = 'evm_node_alert_8' NodeStillDownAlert = 'evm_node_alert_9'
12910
import discord def check(ctx): def inner(m): return m.author == ctx.author return inner def Membercheck(ctx): def inner(m): return m.author == ctx.guild.me return inner def warn_permission(ctx, Member): if isinstance(ctx.channel, discord.TextChannel): return ctx.author.guild_permissions.manage_messages and ctx.author.top_role > Member.top_role and ctx.author.guild_permissions >= Member.guild_permissions #bug with user with same permissions maybe and other stuff(seems fixed for right now, leaving note just in case.) if isinstance(ctx.channel, discord.DMChannel): return True def cleanup_permission(ctx): if isinstance(ctx.channel, discord.TextChannel): return ctx.author.guild_permissions.manage_messages if isinstance(ctx.channel, discord.DMChannel): return True def mutual_guild_check(ctx, user): mutual_guilds = set(ctx.author.mutual_guilds) mutual_guilds2 = set(user.mutual_guilds) return bool(mutual_guilds.intersection(mutual_guilds2)) async def filter_commands(ctx, command_list): async def check(cmd, ctx): try: return await cmd.can_run(ctx) except: return False return [cmd for cmd in command_list if await check(cmd, ctx)]
12921
import numpy as np from mpi4py import MPI from src.imagine.goal_generator.simple_sentence_generator import SentenceGeneratorHeuristic from src import logger class GoalSampler: def __init__(self, policy_language_model, reward_language_model, goal_dim, one_hot_encoder, params): self.policy_language_model = policy_language_model self.reward_language_model = reward_language_model self.goal_dim = goal_dim self.params = params self.nb_feedbacks = 0 self.nb_positive_feedbacks = 0 self.nb_negative_feedbacks = 0 self.feedback2id = dict() self.id2feedback = dict() self.id2oracleid = dict() self.feedback2one_hot = dict() self.id2one_hot = dict() self.feedback_memory = dict(memory_id=[], string=[], iter_discovery=[], target_counter=[], reached_counter=[], oracle_id=[], f1_score=[], policy_encoding=[], reward_encoding=[], imagined=[], ) self.imagined_goals = dict(string=[], competence=[], lp=[]) self.one_hot_encoder = one_hot_encoder self.goal_generator = SentenceGeneratorHeuristic(params['train_descriptions'], params['test_descriptions'], sentences=None, method=params['conditions']['imagination_method']) self.nb_discovered_goals = 0 self.score_target_goals = None self.perceived_learning_progress = None self.perceived_competence = None self.feedback_stats = None self.rank = MPI.COMM_WORLD.Get_rank() self.num_cpus = params['experiment_params']['n_cpus'] self.rollout_batch_size = params['experiment_params']['rollout_batch_size'] self.not_imagined_goal_ids = np.array([]) self.imagined_goal_ids = np.array([]) def store_reward_function(self, reward_function): self.reward_function = reward_function def update_embeddings(self): # embeddings must be updated when the language model is udpated for i, goal_str in enumerate(self.feedback_memory['string']): if self.reward_language_model is not None: reward_encoding = self.reward_language_model.encode(goal_str) self.feedback_memory['reward_encoding'][i] = reward_encoding.copy() policy_encoding = self.policy_language_model.encode(goal_str) self.feedback_memory['policy_encoding'][i] = policy_encoding.copy() def add_entries_to_feedback_memory(self, str_list, episode_count, imagined): for goal_str in str_list: if goal_str not in self.feedback2id.keys(): memory_id = self.nb_discovered_goals if goal_str in self.params['train_descriptions']: oracle_id = self.params['train_descriptions'].index(goal_str) else: oracle_id = None one_hot = self.one_hot_encoder.encode(goal_str.lower().split(" ")) self.feedback2one_hot[goal_str] = one_hot self.id2one_hot[memory_id] = one_hot if self.reward_language_model is not None: reward_encoding = self.reward_language_model.encode(goal_str) self.feedback_memory['reward_encoding'].append(reward_encoding.copy()) policy_encoding = self.policy_language_model.encode(goal_str) self.feedback2id[goal_str] = memory_id self.id2oracleid[memory_id] = oracle_id self.id2feedback[memory_id] = goal_str self.feedback_memory['memory_id'].append(memory_id) self.feedback_memory['oracle_id'].append(oracle_id) self.feedback_memory['string'].append(goal_str) self.feedback_memory['target_counter'].append(0) self.feedback_memory['reached_counter'].append(0) self.feedback_memory['iter_discovery'].append(episode_count) self.feedback_memory['f1_score'].append(0) self.feedback_memory['policy_encoding'].append(policy_encoding.copy()) self.feedback_memory['imagined'].append(imagined) self.nb_discovered_goals += 1 elif goal_str in self.feedback2id.keys() and not imagined: # if goal previously imagined is discovered later, change its status ind = self.feedback_memory['string'].index(goal_str) if self.feedback_memory['imagined'][ind] == 1: self.feedback_memory['imagined'][ind] = 0 logger.info('Goal already imagined:', goal_str) def update_discovered_goals(self, new_goals_str, episode_count, epoch): # only done in cpu 0 self.add_entries_to_feedback_memory(str_list=new_goals_str, episode_count=episode_count, imagined=0) # Decide whether to generate new goals goal_invention = self.params['conditions']['goal_invention'] imagined = False if 'from_epoch' in goal_invention: from_epoch = int(goal_invention.split('_')[-1]) if epoch > from_epoch: imagined = True if len(new_goals_str) > 0 and imagined: new_imagined_goals = [] inds_not_imagined = np.argwhere(np.array(self.feedback_memory['imagined']) == 0).flatten() self.goal_generator.update_model(np.array(self.feedback_memory['string'])[inds_not_imagined]) generated_goals = self.goal_generator.generate_sentences(n='all') for gen_g in generated_goals: if gen_g not in self.imagined_goals['string']: self.imagined_goals['string'].append(gen_g) self.imagined_goals['competence'].append(0) self.imagined_goals['lp'].append(0) new_imagined_goals.append(gen_g) self.add_entries_to_feedback_memory(str_list=new_imagined_goals, episode_count=episode_count, imagined=1) def update(self, current_episode, all_episodes, partner_available, goals_reached_str, goals_not_reached_str): imagined_inds = np.argwhere(np.array(self.feedback_memory['imagined']) == 1).flatten() not_imagined_inds = np.argwhere(np.array(self.feedback_memory['imagined']) == 0).flatten() self.not_imagined_goal_ids = np.array(self.feedback_memory['memory_id'])[not_imagined_inds] self.imagined_goal_ids = np.array(self.feedback_memory['memory_id'])[imagined_inds] # only done in cpu 0 n_episodes = len(all_episodes) attempted_goals_ids = [] exploit = [] for ep in all_episodes: exploit.append(ep['exploit']) attempted_goals_ids.append(ep['g_id']) if partner_available: # if partner is available, simply encodes what it said assert n_episodes == len(goals_reached_str) == len(goals_not_reached_str) == len(exploit) == len(attempted_goals_ids) # Get indexes in the order of discovery of the attempted goals, reached_goals, not reached_goals goals_reached_ids = [] goals_not_reached_ids = [] for i in range(n_episodes): goals_reached_ids.append([]) goals_not_reached_ids.append([]) for goal_str in goals_reached_str[i]: goals_reached_ids[-1].append(self.feedback2id[goal_str]) for goal_str in goals_not_reached_str[i]: goals_not_reached_ids[-1].append(self.feedback2id[goal_str]) else: goals_reached_ids = [] goals_not_reached_ids = [] final_obs = np.array([ep['obs'][-1] for ep in all_episodes]) # test 50 goals for each episode discovered_goal_ids = np.array(self.feedback_memory['memory_id']) not_imagined_ind = np.argwhere(np.array(self.feedback_memory['imagined']) == 0).flatten() discovered_goal_ids = discovered_goal_ids[not_imagined_ind] n_attempts = min(50, len(discovered_goal_ids)) goals_to_try = np.random.choice(discovered_goal_ids, size=n_attempts, replace=False) obs = np.repeat(final_obs, n_attempts, axis=0) goals = np.tile(goals_to_try, final_obs.shape[0]) rewards = self.reward_function.predict(state=obs, goal_ids=goals)[0] for i in range(len(all_episodes)): pos_goals = goals_to_try[np.where(rewards[i * n_attempts: (i + 1) * n_attempts] == 0)].tolist() goals_reached_ids.append(pos_goals) neg_goals = goals_to_try[np.where(rewards[i * n_attempts: (i + 1) * n_attempts] == -1)].tolist() goals_not_reached_ids.append(neg_goals) return goals_reached_ids, goals_not_reached_ids def share_info_to_all_cpus(self): # share data across cpus self.feedback_memory = MPI.COMM_WORLD.bcast(self.feedback_memory, root=0) self.feedback2id = MPI.COMM_WORLD.bcast(self.feedback2id, root=0) self.id2oracleid = MPI.COMM_WORLD.bcast(self.id2oracleid, root=0) self.id2feedback = MPI.COMM_WORLD.bcast(self.id2feedback, root=0) self.feedback2one_hot = MPI.COMM_WORLD.bcast(self.feedback2one_hot, root=0) self.nb_discovered_goals = MPI.COMM_WORLD.bcast(self.nb_discovered_goals, root=0) self.imagined_goals = MPI.COMM_WORLD.bcast(self.imagined_goals, root=0) self.one_hot_encoder = MPI.COMM_WORLD.bcast(self.one_hot_encoder, root=0) def sample_targets(self, epoch): """ Sample targets for all cpus and all batch, then scatter to the different cpus """ # Decide whether to exploit or not exploit = True if np.random.random() < 0.1 else False strategy = 'random' goal_invention = self.params['conditions']['goal_invention'] imagined = False if 'from_epoch' in goal_invention: from_epoch = int(goal_invention.split('_')[-1]) if epoch > from_epoch: imagined = np.random.random() < self.params['conditions']['p_imagined'] if self.rank == 0: all_goals_str = [] all_goals_encodings = [] all_goals_ids = [] for i in range(self.num_cpus): goals_str = [] goals_encodings = [] goals_ids = [] for j in range(self.rollout_batch_size): # when there is no goal in memory, sample random goal from standard normal distribution if len(self.feedback_memory['memory_id']) == 0: goals_encodings.append(np.random.normal(size=self.goal_dim)) goals_str.append('Random Goal') goals_ids.append(-1) else: if strategy == 'random': if imagined and self.imagined_goal_ids.size > 0: ind = np.random.choice(self.imagined_goal_ids) else: ind = np.random.choice(self.not_imagined_goal_ids) else: raise NotImplementedError goals_encodings.append(self.feedback_memory['policy_encoding'][ind]) goals_str.append(self.id2feedback[ind]) goals_ids.append(ind) all_goals_str.append(goals_str) all_goals_encodings.append(goals_encodings) all_goals_ids.append(goals_ids) else: all_goals_str = [] all_goals_encodings = [] all_goals_ids = [] goals_str = MPI.COMM_WORLD.scatter(all_goals_str, root=0) goals_encodings = MPI.COMM_WORLD.scatter(all_goals_encodings, root=0) goals_ids = MPI.COMM_WORLD.scatter(all_goals_ids, root=0) return exploit, goals_str, goals_encodings, goals_ids, imagined class EvalGoalSampler: def __init__(self, policy_language_model, one_hot_encoder, params): self.descriptions = params['train_descriptions'] self.nb_descriptions = len(self.descriptions) self.count = 0 self.policy_language_model = policy_language_model self.rollout_batch_size = params['evaluation_rollout_params']['rollout_batch_size'] self.params = params def reset(self): self.count = 0 def sample(self, method='robin'): # print(self.descriptions[self.count]) goals_str = [] goals_encodings = [] goals_ids = [] if method == 'robin': ind = self.count elif method == 'random': ind = np.random.randint(self.nb_descriptions) else: raise NotImplementedError for _ in range(self.rollout_batch_size): g_str = self.descriptions[ind] goals_str.append(g_str) policy_encoding = self.policy_language_model.encode(g_str).flatten() goals_encodings.append(policy_encoding) goals_ids.append(ind) self.count += 1 return True, goals_str, goals_encodings, goals_ids
12993
class Config: # helps to store settings for an experiment. def __init__(self, _experiments_folder_path='experiments', _dataset_name='dataset', _column_names='unknown', _types={1:'integer', 2:'string', 3:'float', 4:'boolean', 5:'gender', 6:'unknown', 7:'date-iso-8601', 8:'date-eu', 9:'date-non-std-subtype', 10:'date-non-std', 11:'positive integer', 12:'positive float'}): self.main_experiments_folder = _experiments_folder_path self.dataset_name = _dataset_name self.column_names = _column_names self.types = _types self.types_as_list = list(_types.values()) columns = ['missing', 'catch-all',] for key in _types: columns.append(_types[key]) self.columns = columns
13008
import random import cv2 import numpy as np from augraphy.base.augmentation import Augmentation class NoiseTexturize(Augmentation): """Creates a random noise based texture pattern to emulate paper textures. Consequently applies noise patterns to the original image from big to small. :param sigma_range: Defines bounds of noise fluctuations. :type sigma_range: tuple, optional :param turbulence_range: Defines how quickly big patterns will be replaced with the small ones. The lower value - the more iterations will be performed during texture generation. :type turbulence_range: tuple, optional :param p: The probability this Augmentation will be applied. :type p: float, optional """ def __init__( self, sigma_range=(3, 10), turbulence_range=(2, 5), p=1, ): """Constructor method""" super().__init__(p=p) self.sigma_range = sigma_range self.turbulence_range = turbulence_range # Constructs a string representation of this Augmentation. def __repr__(self): return f"NoiseTexturize(sigma_range={self.sigma_range}, turbulence_range={self.turbulence_range}, p={self.p})" # Applies the Augmentation to input data. def __call__(self, image, layer=None, force=False): if force or self.should_run(): image = image.copy() sigma = random.randint(self.sigma_range[0], self.sigma_range[1]) turbulence = random.randint( self.turbulence_range[0], self.turbulence_range[1], ) result = image.astype(float) rows, cols = image.shape[:2] if len(image.shape) > 2: channel = image.shape[2] else: channel = 0 ratio = cols while not ratio == 1: result += self.noise(cols, rows, channel, ratio, sigma=sigma) ratio = (ratio // turbulence) or 1 cut = np.clip(result, 0, 255) cut = cut.astype(np.uint8) return cut def noise(self, width, height, channel, ratio, sigma): """The function generates an image, filled with gaussian nose. If ratio parameter is specified, noise will be generated for a lesser image and then it will be upscaled to the original size. In that case noise will generate larger square patterns. To avoid multiple lines, the upscale uses interpolation. :param ratio: the size of generated noise "pixels" :param sigma: defines bounds of noise fluctuations """ mean = 0 # assert width % ratio == 0, "Can't scale image with of size {} and ratio {}".format(width, ratio) # assert height % ratio == 0, "Can't scale image with of size {} and ratio {}".format(height, ratio) h = int(height / ratio) w = int(width / ratio) if h == 0: h = 1 if w == 0: w = 1 gaussian = np.vectorize(lambda x: random.gauss(mean, sigma)) result = gaussian(np.array((w, h))) result = cv2.resize( result, dsize=(width, height), interpolation=cv2.INTER_LINEAR, ) # for multiple channels input, convert result to multiple channels if channel: result = np.stack([result, result, result], axis=2) return result
13053
from abc import abstractproperty from ..backend_config.bucket_config import S3BucketConfig from ..storage.helper import StorageHelper class SetupUploadMixin(object): log = abstractproperty() storage_uri = abstractproperty() def setup_upload( self, bucket_name, host=None, access_key=None, secret_key=None, region=None, multipart=True, https=True, verify=True): """ Setup upload options (currently only S3 is supported) :param bucket_name: AWS bucket name :type bucket_name: str :param host: Hostname. Only required in case a Non-AWS S3 solution such as a local Minio server is used) :type host: str :param access_key: AWS access key. If not provided, we'll attempt to obtain the key from the configuration file (bucket-specific, than global) :type access_key: str :param secret_key: AWS secret key. If not provided, we'll attempt to obtain the secret from the configuration file (bucket-specific, than global) :type secret_key: str :param multipart: Server supports multipart. Only required when using a Non-AWS S3 solution that doesn't support multipart. :type multipart: bool :param https: Server supports HTTPS. Only required when using a Non-AWS S3 solution that only supports HTTPS. :type https: bool :param region: Bucket region. Required if the bucket doesn't reside in the default region (us-east-1) :type region: str :param verify: Whether or not to verify SSL certificates. Only required when using a Non-AWS S3 solution that only supports HTTPS with self-signed certificate. :type verify: bool """ self._bucket_config = S3BucketConfig( bucket=bucket_name, host=host, key=access_key, secret=secret_key, multipart=multipart, secure=https, region=region, verify=verify ) self.storage_uri = ('s3://%(host)s/%(bucket_name)s' if host else 's3://%(bucket_name)s') % locals() StorageHelper.add_configuration(self._bucket_config, log=self.log)
13057
import pickle import pandas as pd # cat aa ab ac > dataset.pkl from https://github.com/zhougr1993/DeepInterestNetwork with open('dataset.pkl', 'rb') as f: train_set = pickle.load(f, encoding='bytes') test_set = pickle.load(f, encoding='bytes') cate_list = pickle.load(f, encoding='bytes') user_count, item_count, cate_count = pickle.load(f, encoding='bytes') train_data = [] for sample in train_set: user_id = sample[0] item_id = sample[2] item_history = "^".join([str(i) for i in sample[1]]) label = sample[3] cate_id = cate_list[item_id] cate_history = "^".join([str(i) for i in cate_list[sample[1]]]) train_data.append([label, user_id, item_id, cate_id, item_history, cate_history]) train_df = pd.DataFrame(train_data, columns=['label', 'user_id', 'item_id', 'cate_id', 'item_history', 'cate_history']) train_df.to_csv("train.csv", index=False) test_data = [] for sample in test_set: user_id = sample[0] item_pair = sample[2] item_history = "^".join([str(i) for i in sample[1]]) cate_history = "^".join([str(i) for i in cate_list[sample[1]]]) test_data.append([1, user_id, item_pair[0], cate_list[item_pair[0]], item_history, cate_history]) test_data.append([0, user_id, item_pair[1], cate_list[item_pair[1]], item_history, cate_history]) test_df = pd.DataFrame(test_data, columns=['label', 'user_id', 'item_id', 'cate_id', 'item_history', 'cate_history']) test_df.to_csv("test.csv", index=False)
13061
import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.datasets import make_blobs from sklearn.mixture import GaussianMixture from sklearn.cluster import KMeans from matplotlib.patches import Ellipse # For reproducibility np.random.seed(1000) nb_samples = 300 nb_centers = 2 if __name__ == '__main__': # Create the dataset X, Y = make_blobs(n_samples=nb_samples, n_features=2, center_box=[-1, 1], centers=nb_centers, cluster_std=[1.0, 0.6], random_state=1000) # Show the dataset sns.set() fig, ax = plt.subplots(figsize=(15, 9)) ax.scatter(X[:, 0], X[:, 1], s=120) ax.set_xlabel(r'$x_0$', fontsize=14) ax.set_ylabel(r'$x_1$', fontsize=14) plt.show() # Train the model gm = GaussianMixture(n_components=2, random_state=1000) gm.fit(X) Y_pred = gm.fit_predict(X) print('Means: \n{}'.format(gm.means_)) print('Covariance matrices: \n{}'.format(gm.covariances_)) print('Weights: \n{}'.format(gm.weights_)) m1 = gm.means_[0] m2 = gm.means_[1] c1 = gm.covariances_[0] c2 = gm.covariances_[1] we1 = 1 + gm.weights_[0] we2 = 1 + gm.weights_[1] # Eigendecompose the covariances w1, v1 = np.linalg.eigh(c1) w2, v2 = np.linalg.eigh(c2) nv1 = v1 / np.linalg.norm(v1) nv2 = v2 / np.linalg.norm(v2) print('Eigenvalues 1: \n{}'.format(w1)) print('Eigenvectors 1: \n{}'.format(nv1)) print('Eigenvalues 2: \n{}'.format(w2)) print('Eigenvectors 2: \n{}'.format(nv2)) a1 = np.arccos(np.dot(nv1[:, 1], [1.0, 0.0]) / np.linalg.norm(nv1[:, 1])) * 180.0 / np.pi a2 = np.arccos(np.dot(nv2[:, 1], [1.0, 0.0]) / np.linalg.norm(nv2[:, 1])) * 180.0 / np.pi # Perform K-Means clustering km = KMeans(n_clusters=2, random_state=1000) km.fit(X) Y_pred_km = km.predict(X) # Show the comparison of the results fig, ax = plt.subplots(1, 2, figsize=(22, 9), sharey=True) ax[0].scatter(X[Y_pred == 0, 0], X[Y_pred == 0, 1], s=80, marker='o', label='Gaussian 1') ax[0].scatter(X[Y_pred == 1, 0], X[Y_pred == 1, 1], s=80, marker='d', label='Gaussian 2') g1 = Ellipse(xy=m1, width=w1[1] * 3, height=w1[0] * 3, fill=False, linestyle='dashed', angle=a1, color='black', linewidth=1) g1_1 = Ellipse(xy=m1, width=w1[1] * 2, height=w1[0] * 2, fill=False, linestyle='dashed', angle=a1, color='black', linewidth=2) g1_2 = Ellipse(xy=m1, width=w1[1] * 1.4, height=w1[0] * 1.4, fill=False, linestyle='dashed', angle=a1, color='black', linewidth=3) g2 = Ellipse(xy=m2, width=w2[1] * 3, height=w2[0] * 3, fill=False, linestyle='dashed', angle=a2, color='black', linewidth=1) g2_1 = Ellipse(xy=m2, width=w2[1] * 2, height=w2[0] * 2, fill=False, linestyle='dashed', angle=a2, color='black', linewidth=2) g2_2 = Ellipse(xy=m2, width=w2[1] * 1.4, height=w2[0] * 1.4, fill=False, linestyle='dashed', angle=a2, color='black', linewidth=3) ax[0].set_xlabel(r'$x_0$', fontsize=16) ax[0].set_ylabel(r'$x_1$', fontsize=16) ax[0].add_artist(g1) ax[0].add_artist(g1_1) ax[0].add_artist(g1_2) ax[0].add_artist(g2) ax[0].add_artist(g2_1) ax[0].add_artist(g2_2) ax[0].set_title('Gaussian Mixture', fontsize=16) ax[0].legend(fontsize=16) ax[1].scatter(X[Y_pred_km == 0, 0], X[Y_pred_km == 0, 1], s=80, marker='o', label='Cluster 1') ax[1].scatter(X[Y_pred_km == 1, 0], X[Y_pred_km == 1, 1], s=80, marker='d', label='Cluster 2') ax[1].set_xlabel(r'$x_0$', fontsize=16) ax[1].set_title('K-Means', fontsize=16) ax[1].legend(fontsize=16) # Predict the probability of some sample points print('P([0, -2]=G1) = {:.3f} and P([0, -2]=G2) = {:.3f}'.format(*list(gm.predict_proba([[0.0, -2.0]]).squeeze()))) print('P([1, -1]=G1) = {:.3f} and P([1, -1]=G2) = {:.3f}'.format(*list(gm.predict_proba([[1.0, -1.0]]).squeeze()))) print('P([1, 0]=G1) = {:.3f} and P([1, 0]=G2) = {:.3f}'.format(*list(gm.predict_proba([[1.0, 0.0]]).squeeze()))) plt.show() # Compute AICs, BICs, and log-likelihood n_max_components = 20 aics = [] bics = [] log_likelihoods = [] for n in range(1, n_max_components + 1): gm = GaussianMixture(n_components=n, random_state=1000) gm.fit(X) aics.append(gm.aic(X)) bics.append(gm.bic(X)) log_likelihoods.append(gm.score(X) * nb_samples) # Show the results fig, ax = plt.subplots(1, 3, figsize=(20, 6)) ax[0].plot(range(1, n_max_components + 1), aics) ax[0].set_xticks(range(1, n_max_components + 1)) ax[0].set_xlabel('Number of Gaussians', fontsize=14) ax[0].set_title('AIC', fontsize=14) ax[1].plot(range(1, n_max_components + 1), bics) ax[1].set_xticks(range(1, n_max_components + 1)) ax[1].set_xlabel('Number of Gaussians', fontsize=14) ax[1].set_title('BIC', fontsize=14) ax[2].plot(range(1, n_max_components + 1), log_likelihoods) ax[2].set_xticks(range(1, n_max_components + 1)) ax[2].set_xlabel('Number of Gaussians', fontsize=14) ax[2].set_title('Log-likelihood', fontsize=14) plt.show()
13091
import torch import torch.nn as nn import neuron.ops as ops from neuron.config import registry @registry.register_module class ReID_Metric(nn.Module): def __init__(self, metric_cls, metric_rank): super(ReID_Metric, self).__init__() self.metric_cls = metric_cls self.metric_rank = metric_rank def forward(self, *args): if len(args) == 2: scores = None feats, labels = args elif len(args) == 3: scores, feats, labels = args else: raise ValueError('Expected to have 2 or 3 inputs,' 'but got {}'.format(len(args))) metrics = self.metric_rank(feats, labels) if scores is not None: metrics.update(self.metric_cls(scores, labels)) return metrics
13118
import math # Modify the parameters here UNROLL_FACTOR = 32 DATA_T = 'unsigned short' # Generate the code data_type = DATA_T level = int(math.log2(UNROLL_FACTOR)) for layer in range(level - 1, -1, -1): pair = int(math.pow(2, layer)) for i in range(pair): # data_t tmp_[layer]_[pair] = tmp_[layer+1]_[pair*2]_[pair*2+1] if layer == level - 1: print(f'{data_type} mul_{layer}_{i}_0 = local_A[0][{i*2}] * local_B[0][{i*2}];') print(f'{data_type} add_{layer}_{i} = mul_{layer}_{i}_0 + local_A[0][{i*2+1}] * local_B[0][{i*2+1}];') else: print(f'{data_type} add_{layer}_{i} = add_{layer+1}_{i*2} + add_{layer+1}_{i*2+1};') print('local_C[c7][c6] += add_0_0;')
13173
from .utils import (get_prescription, get_attributes, get_group) from .models import Disease, Result, Score, Question, SurveyResponse from .analysis import cardio_risk_group, diabetes_risk_group, stroke_risk_group from statistics import mean from celery import shared_task @shared_task def worker(session_id): df, attributes = get_attributes(session_id) diseases = list(Disease.objects.all()) supported_methods = { 'cardiovascular disease': cardio_risk_group, 'diabetes': diabetes_risk_group, 'stroke': stroke_risk_group } question_region = Question.objects.get(label='region') session_region = (list(SurveyResponse.objects.filter( session_id=session_id, question_id=question_region.id))[0]).answer results = [] for disease in diseases: illness = disease.illness result_kwargs = { 'session_id': session_id, 'disease': disease, 'region': session_region } if illness not in supported_methods: result_kwargs['risk_factor'] = 0 result_kwargs['prescription'] = 'Method is currently not supported' else: method = supported_methods[illness] score = method(df, attributes[illness]) result_kwargs['risk_factor'] = float(score) result_kwargs['label'] = get_group(score) result_kwargs['prescription'] = get_prescription(score) result_obj = Result.objects.update_or_create( session_id=session_id, disease=disease, defaults=result_kwargs ) results.append(result_obj[0]) score = (1 - mean([res.risk_factor for res in results])) * 100 Score.objects.create(session_id=session_id, score=score)
13177
from functools import wraps from collections import Iterable from django.conf import settings from django.shortcuts import render from django.core.exceptions import PermissionDenied from django.utils.decorators import available_attrs from django.utils.encoding import force_str from django.utils.six.moves.urllib.parse import urlparse from django.utils.six import string_types from django.contrib.auth import REDIRECT_FIELD_NAME from django.shortcuts import resolve_url from waliki.utils import is_authenticated from .models import ACLRule from .settings import (WALIKI_ANONYMOUS_USER_PERMISSIONS, WALIKI_LOGGED_USER_PERMISSIONS, WALIKI_RENDER_403) def check_perms(perms, user, slug, raise_exception=False): """a helper user to check if a user has the permissions for a given slug""" if isinstance(perms, string_types): perms = {perms} else: perms = set(perms) allowed_users = ACLRule.get_users_for(perms, slug) if allowed_users: return user in allowed_users if perms.issubset(set(WALIKI_ANONYMOUS_USER_PERMISSIONS)): return True if is_authenticated(user) and perms.issubset(set(WALIKI_LOGGED_USER_PERMISSIONS)): return True # First check if the user has the permission (even anon users) if user.has_perms(['waliki.%s' % p for p in perms]): return True # In case the 403 handler should be called raise the exception if raise_exception: raise PermissionDenied # As the last resort, show the login form return False def permission_required(perms, login_url=None, raise_exception=False, redirect_field_name=REDIRECT_FIELD_NAME): """ this is analog to django's builtin ``permission_required`` decorator, but improved to check per slug ACLRules and default permissions for anonymous and logged in users if there is a rule affecting a slug, the user needs to be part of the rule's allowed users. If there isn't a matching rule, defaults permissions apply. """ def decorator(view_func): @wraps(view_func, assigned=available_attrs(view_func)) def _wrapped_view(request, *args, **kwargs): if check_perms(perms, request.user, kwargs['slug'], raise_exception=raise_exception): return view_func(request, *args, **kwargs) if is_authenticated(request.user): if WALIKI_RENDER_403: return render(request, 'waliki/403.html', kwargs, status=403) else: raise PermissionDenied path = request.build_absolute_uri() # urlparse chokes on lazy objects in Python 3, force to str resolved_login_url = force_str( resolve_url(login_url or settings.LOGIN_URL)) # If the login url is the same scheme and net location then just # use the path as the "next" url. login_scheme, login_netloc = urlparse(resolved_login_url)[:2] current_scheme, current_netloc = urlparse(path)[:2] if ((not login_scheme or login_scheme == current_scheme) and (not login_netloc or login_netloc == current_netloc)): path = request.get_full_path() from django.contrib.auth.views import redirect_to_login return redirect_to_login( path, resolved_login_url, redirect_field_name) return _wrapped_view return decorator
13211
from discord.ext.commands import BadArgument class InvalidLength(BadArgument): """This exception is thrown whenever a invalid length was provided""" def __init__(self, my_name, _min=None, _max=None, *args: object) -> None: if _min is not None and _max is not None: err = "Length of '" + my_name + "' must be between " + str(_min) + " and " + str(_max) elif _min is None and _max is not None: err = "Length of '" + my_name + "' must be less than " + str(_max) elif _min is not None and _max is None: err = "Lenght of '" + my_name + "' must be more than " + str(_min) super().__init__(err) class OutOfValidRange(BadArgument): """This exception is thrown whenever a value was ot of its valid range""" def __init__(self, name, _min, _max, *args: object) -> None: super().__init__("'" + name + "' must be in range " + str(_min) + " and " + str(_max)) class WrongType(BadArgument): """This exception is thrown whenever a value is of the wrong type""" def __init__(self, name, me, valid_type, *args: object) -> None: super().__init__("'" + name + "' must be of type " + (str(valid_type) if not isinstance(valid_type, list) else ' or '.join(valid_type)) + ", not " + str(type(me))) class InvalidEvent(BadArgument): """This exception is thrown whenever a invalid eventname was passed""" def __init__(self, name, events, *args: object) -> None: super().__init__("Invalid event name, event must be " + " or ".join(events) + ", not " + str(name)) class MissingListenedComponentParameters(BadArgument): """This exception is thrown whenever a callback for a listening component is missing parameters""" def __init__(self, *args: object) -> None: super().__init__("Callback function for listening components needs to accept one parameter (the used component)", *args) class CouldNotParse(BadArgument): """This exception is thrown whenever the libary was unable to parse the data with the given method""" def __init__(self, data, type, method, *args: object) -> None: super().__init__("Could not parse '" + str(data) + " [" + str(type) + "]' with method " + str(method), *args)
13218
from flask import Flask from flask_restful_swagger.swagger import SwaggerRegistry try: from unittest.mock import patch except ImportError: from mock import patch @patch("flask_restful_swagger.swagger._get_current_registry") @patch("flask_restful_swagger.swagger.render_homepage") def test_get_swagger_registry(homepage, registry): mock_registry = { "apiVersion": "mock_version", "swaggerVersion": "mock_swagger_version", "basePath": "mock_path", "spec_endpoint_path": "mock_spec_endpoint_path", "description": "mock_description", } registry.return_value = mock_registry app = Flask(__name__) resource = SwaggerRegistry() bases = [base.__name__ for base in SwaggerRegistry.__mro__] assert sorted(bases) == [ "MethodView", "Resource", "SwaggerRegistry", "View", "object", ] with app.test_request_context(path="/some_path.html"): _ = resource.get() assert homepage.called homepage.assert_called_once_with( "mock_pathmock_spec_endpoint_path/_/resource_list.json" ) with app.test_request_context(path="/some_path"): homepage.reset_mock() response = resource.get() assert not homepage.called assert response == mock_registry
13265
from netCDF4 import Dataset import matplotlib import matplotlib.pyplot as plt from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection import matplotlib.cm as cm import numpy as np #------------------------------------------------------------- def plot_subfigure(axis, array, nCells, nEdgesOnCell, verticesOnCell, xCell, yCell, zCell, xVertex, yVertex, zVertex, cmin, cmax, cmap): xMin = 1.0e30 xMax = -1.0e30 yMin = 1.0e30 yMax = -1.0e30 cmap = plt.get_cmap(cmap) patches = [] colors = [] for iCell in range(0,nCells): if (yCell[iCell] > 0.0): vertices = [] for iVertexOnCell in range(0,nEdgesOnCell[iCell]): iVertex = verticesOnCell[iCell,iVertexOnCell] vertices.append((xVertex[iVertex],zVertex[iVertex])) colors.append(array[iCell]) patches.append(Polygon(vertices)) xMin = min(xMin,xVertex[iVertex]) xMax = max(xMax,xVertex[iVertex]) yMin = min(yMin,zVertex[iVertex]) yMax = max(yMax,zVertex[iVertex]) pc = PatchCollection(patches, cmap=cmap) pc.set_array(np.array(colors)) pc.set_clim(cmin, cmax) axis.add_collection(pc) axis.set_xlim(xMin,xMax) axis.set_ylim(yMin,yMax) axis.set_aspect("equal") axis.ticklabel_format(style='plain') axis.tick_params(axis='x', \ which='both', \ bottom=False, \ top=False, \ labelbottom=False) axis.tick_params(axis='y', \ which='both', \ left=False, \ right=False, \ labelleft=False) #------------------------------------------------------------- def plot_testcase(): nGrids = [2562,10242,40962,163842] testTypes = ["cosine_bell","slotted_cylinder"] methods = ["IR","IR","upwind"] iTimes = [0,-1,-1] for nGrid in nGrids: print("nGrid: ", nGrid) fig, axes = plt.subplots(3,4) iTestType = -1 for testType in testTypes: iTestType += 1 print(" Test type: ", testType) iMethod = -1 for method, iTime in zip(methods,iTimes): iMethod += 1 print(" Method: ", method, ", iTime: ", iTime) filenamein = "./output_%s_%s_%i/output.2000.nc" %(method,testType,nGrid) filein = Dataset(filenamein,"r") nCells = len(filein.dimensions["nCells"]) nEdgesOnCell = filein.variables["nEdgesOnCell"][:] verticesOnCell = filein.variables["verticesOnCell"][:] xCell = filein.variables["xCell"][:] yCell = filein.variables["yCell"][:] zCell = filein.variables["zCell"][:] xVertex = filein.variables["xVertex"][:] yVertex = filein.variables["yVertex"][:] zVertex = filein.variables["zVertex"][:] verticesOnCell[:] = verticesOnCell[:] - 1 iceAreaCategory = filein.variables["iceAreaCategory"][:] filein.close() iceAreaCell = np.sum(iceAreaCategory,axis=(2,3)) plot_subfigure(axes[iMethod,iTestType*2], iceAreaCell[iTime], nCells, nEdgesOnCell, verticesOnCell, xCell, yCell, zCell, xVertex, yVertex, zVertex, 0.0, 1.0, "viridis") iceAreaCellDiff = iceAreaCell[iTime] - iceAreaCell[0] if (iMethod != 0): plot_subfigure(axes[iMethod,iTestType*2+1], iceAreaCellDiff, nCells, nEdgesOnCell, verticesOnCell, xCell, yCell, zCell, xVertex, yVertex, zVertex, -1.0, 1.0, "bwr") else: axes[iMethod,iTestType*2+1].axis('off') plt.savefig("advection_%6.6i.png" %(nGrid),dpi=300) plt.cla() plt.close(fig) #------------------------------------------------------------------------------- if __name__ == "__main__": plot_testcase()
13275
import engine print("Python: Script 2") class Rotation(metaclass=engine.MetaComponent): def __init__(self): self.trans = 5 result = engine.query(Color) print("Python: Query colors from Script 2") for c in result: c.string() print("--------------------")
13335
import os import angr test_location = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', '..', 'binaries', 'tests') def test_vtable_extraction_x86_64(): p = angr.Project(os.path.join(test_location, "x86_64", "cpp_classes"), auto_load_libs=False) vtables_sizes = {0x403cb0: 24, 0x403cd8: 16, 0x403cf8: 16, 0x403d18: 16} vtable_analysis = p.analyses.VtableFinder() vtables = vtable_analysis.vtables_list assert len(vtables) == 4 for vtable in vtables: assert vtable.vaddr in [0x403cb0, 0x403cd8, 0x403cf8, 0x403d18] assert vtables_sizes[vtable.vaddr] == vtable.size if __name__ == "__main__": test_vtable_extraction_x86_64()
13346
from threading import Lock from time import time from ui import Menu from ui.utils import clamp, check_value_lock, to_be_foreground class NumberedMenu(Menu): """ This Menu allows the user to jump to entries using the numpad. If the menu is 10 entries or less the navigation is instant. Otherwise, it lets the user type multiple digits to navigate to entries beyond 10th. The `input_delay` parameter controls how long, and if, the menu waits before considering an input as definitive. If `input_delay` is 0, then only the 10 first entries can be navigated to using the keypad. The `prepend_numbers` parameters controls whether the entries should be prefixed by their number. (default: `True`) """ def __init__(self, *args, **kwargs): self.prepend_numbers = kwargs.pop('prepend_numbers', True) self.input_delay = kwargs.pop('input_delay', 1) Menu.__init__(self, *args, **kwargs) self.__locked_name__ = None self.value_lock = Lock() self.numeric_keymap = {"KEY_{}".format(i): i for i in range(10)} self.last_input_time = 0 self.current_input = None @property def entry_count(self): return len(self.contents) def before_activate(self): Menu.before_activate(self) self.last_input_time = -self.input_delay def idle_loop(self): Menu.idle_loop(self) self.check_character_state() def set_keymap(self): Menu.set_keymap(self) self.i.set_streaming(self.on_key_pressed) def deactivate(self): Menu.deactivate(self) self.i.remove_streaming() @to_be_foreground def on_key_pressed(self, key): if key == "KEY_RIGHT" and self.is_multi_digit(): self.confirm_current_input() if key not in self.numeric_keymap: return if self.is_multi_digit(): self.process_multi_digit_input(key) else: self.process_single_digit_input(key) self.view.refresh() def process_single_digit_input(self, key): self.move_to_entry(self.numeric_keymap[key]) def process_multi_digit_input(self, key): self.last_input_time = time() if not self.current_input: self.current_input = str(self.numeric_keymap[key]) else: self.current_input += str(self.numeric_keymap[key]) def move_to_entry(self, index): if self.pointer == index: # Moving to the same item that's already selected # let's interpret this as KEY_ENTER self.current_input = None self.select_entry() return self.pointer = clamp(index, 0, len(self.contents) - 1) self.current_input = None self.view.refresh() def process_contents(self): Menu.process_contents(self) if self.prepend_numbers: self.prepend_entry_text() def prepend_entry_text(self): # prepend numbers to each entry name if self.is_multi_digit(): self.contents = [["{} {}".format(i, entry[0]), entry[1]] for i, entry in enumerate(self.contents)] else: for i, entry in enumerate(self.contents[:10]): entry[0] = "{} {}".format(i, entry[0]) @check_value_lock def check_character_state(self): if self.is_current_input_finished(): self.move_to_entry(int(self.current_input)) def is_multi_digit(self): return self.input_delay > 0 def is_current_input_finished(self): # nothing in the buffer if not self.current_input: return False # no need to let the user input '100' if we have 20 entries if len(str(self.current_input)) == len(str(self.entry_count)): return True # user typed 2 and we have 19 entries, going to the most likely option if int(self.current_input) * 10 > self.entry_count: return True # user typed 17 and we have 12 entries if int(self.current_input) >= self.entry_count: return True now = time() elapsed = now - self.last_input_time if self.is_multi_digit() and elapsed >= self.input_delay: # delay wait is over return True return False def confirm_current_input(self): if self.current_input is None: return self.move_to_entry(int(self.current_input))
13383
disable_gtk_binaries = True def gtk_dependent_cc_library(**kwargs): if not disable_gtk_binaries: native.cc_library(**kwargs) def gtk_dependent_cc_binary(**kwargs): if not disable_gtk_binaries: native.cc_binary(**kwargs)
13390
from typing import Callable, Optional, Sequence, Tuple, Union import numpy from dexp.processing.utils.nd_slice import nd_split_slices, remove_margin_slice from dexp.processing.utils.normalise import Normalise from dexp.utils import xpArray from dexp.utils.backends import Backend def scatter_gather_i2i( function: Callable, image: xpArray, tiles: Union[int, Tuple[int, ...]], margins: Optional[Union[int, Tuple[int, ...]]] = None, normalise: bool = False, clip: bool = False, to_numpy: bool = True, internal_dtype: Optional[numpy.dtype] = None, ) -> xpArray: """ Image-2-image scatter-gather. 'Scatters' computation of a given unary function by splitting the input array into tiles, computing using a given backend, and reassembling the tiles into a single array of same shape as the inpout that is either backed by the same backend than that of the input image, or that is backed by numpy -- usefull when the compute backend cannot hold the whole input and output images in memory. Parameters ---------- function : unary function image : input image (can be any backend, numpy ) tiles : tile sizes to cut input image into, can be a single integer or a tuple of integers. margins : margins to add to each tile, can be a single integer or a tuple of integers. if None, no margins are added. normalise : normalises the input image. clip : clip after normalisation/denormalisation to_numpy : should the result be a numpy array? Very usefull when the compute backend cannot hold the whole input and output images in memory. internal_dtype : internal dtype for computation Returns ------- Result of applying the unary function to the input image, if to_numpy==True then the image is """ if internal_dtype is None: internal_dtype = image.dtype if type(tiles) == int: tiles = (tiles,) * image.ndim # If None is passed for a tile that means that we don't tile along that axis, we als clip the tile size: tiles = tuple((length if tile is None else min(length, tile)) for tile, length in zip(tiles, image.shape)) if margins is None: margins = (0,) * image.ndim if type(margins) == int: margins = (margins,) * image.ndim if to_numpy: result = numpy.empty(shape=image.shape, dtype=internal_dtype) else: result = Backend.get_xp_module(image).empty_like(image, dtype=internal_dtype) # Normalise: norm = Normalise(Backend.to_backend(image), do_normalise=normalise, clip=clip, quantile=0.005) # image shape: shape = image.shape # We compute the slices objects to cut the input and target images into batches: tile_slices = list(nd_split_slices(shape, chunks=tiles, margins=margins)) tile_slices_no_margins = list(nd_split_slices(shape, chunks=tiles)) # Zipping together slices with and without margins: slices = zip(tile_slices, tile_slices_no_margins) # Number of tiles: number_of_tiles = len(tile_slices) if number_of_tiles == 1: # If there is only one tile, let's not be complicated about it: result = norm.backward(function(norm.forward(image))) if to_numpy: result = Backend.to_numpy(result, dtype=internal_dtype) else: result = Backend.to_backend(result, dtype=internal_dtype) else: _scatter_gather_loop( norm.backward, function, image, internal_dtype, norm.forward, result, shape, slices, to_numpy ) return result def _scatter_gather_loop( denorm_fun: Callable, function: Callable, image: xpArray, internal_dtype: numpy.dtype, norm_fun: Callable, result: Callable, shape: Tuple[int, ...], slices: Sequence[Tuple[slice, ...]], to_numpy: bool, ) -> None: for tile_slice, tile_slice_no_margins in slices: image_tile = image[tile_slice] image_tile = Backend.to_backend(image_tile, dtype=internal_dtype) image_tile = denorm_fun(function(norm_fun(image_tile))) if to_numpy: image_tile = Backend.to_numpy(image_tile, dtype=internal_dtype) else: image_tile = Backend.to_backend(image_tile, dtype=internal_dtype) remove_margin_slice_tuple = remove_margin_slice(shape, tile_slice, tile_slice_no_margins) image_tile = image_tile[remove_margin_slice_tuple] result[tile_slice_no_margins] = image_tile # Dask turned out not too work great here, HUGE overhead compared to the light approach above. # def scatter_gather_dask(backend: Backend, # function, # image, # chunks, # margins=None): # boundary=None # trim=True # align_arrays=True # # image_d = from_array(image, chunks=chunks, asarray=False) # # def function_numpy(_image): # print(_image.shape) # return backend.to_numpy(function(_image)) # # #func, *args, depth=None, boundary=None, trim=True, align_arrays=True, **kwargs # computation= map_overlap(function_numpy, # image_d, # depth=margins, # boundary=boundary, # trim=trim, # align_arrays=align_arrays, # dtype=image.dtype # ) # # #computation.visualize(filename='transpose.png') # result = computation.compute() # # return result
13407
from .config import add_panopticfcn_config from .panoptic_seg import PanopticFCN from .build_solver import build_lr_scheduler
13468
import os import scipy import numpy as np import pandas as pd import torch from torch.autograd import Variable def predict_batch(net, inputs): v = Variable(inputs.cuda(), volatile=True) return net(v).data.cpu().numpy() def get_probabilities(model, loader): model.eval() return np.vstack(predict_batch(model, data[0]) for data in loader) def get_predictions(probs, thresholds): preds = np.copy(probs) preds[preds >= thresholds] = 1 preds[preds < thresholds] = 0 return preds.astype('uint8') def get_argmax(output): val,idx = torch.max(output, dim=1) return idx.data.cpu().view(-1).numpy() def get_targets(loader): targets = None for data in loader: if targets is None: shape = list(data[1].size()) shape[0] = 0 targets = np.empty(shape) target = data[1] if len(target.size()) == 1: target = target.view(-1,1) target = target.numpy() targets = np.vstack([targets, target]) return targets def ensemble_with_method(arr, method): if method == c.MEAN: return np.mean(arr, axis=0) elif method == c.GMEAN: return scipy.stats.mstats.gmean(arr, axis=0) elif method == c.VOTE: return scipy.stats.mode(arr, axis=0)[0][0] raise Exception("Operation not found")
13483
import cv2 cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) import numpy as np import math from functools import wraps def clip(img, dtype, maxval): return np.clip(img, 0, maxval).astype(dtype) def clipped(func): """ wrapper to clip results of transform to image dtype value range """ @wraps(func) def wrapped_function(img, *args, **kwargs): dtype, maxval = img.dtype, np.max(img) return clip(func(img, *args, **kwargs), dtype, maxval) return wrapped_function def fix_shift_values(img, *args): """ shift values are normally specified in uint, but if your data is float - you need to remap values """ if img.dtype == np.float32: return list(map(lambda x: x / 255, args)) return args def vflip(img): return cv2.flip(img, 0) def hflip(img): return cv2.flip(img, 1) def flip(img, code): return cv2.flip(img, code) def transpose(img): return img.transpose(1, 0, 2) if len(img.shape) > 2 else img.transpose(1, 0) def rot90(img, times): img = np.rot90(img, times) return np.ascontiguousarray(img) def rotate(img, angle): """ rotate image on specified angle :param angle: angle in degrees """ height, width = img.shape[0:2] mat = cv2.getRotationMatrix2D((width/2, height/2), angle, 1.0) img = cv2.warpAffine(img, mat, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101) return img def shift_scale_rotate(img, angle, scale, dx, dy): """ :param angle: in degrees :param scale: relative scale """ height, width = img.shape[:2] cc = math.cos(angle/180*math.pi) * scale ss = math.sin(angle/180*math.pi) * scale rotate_matrix = np.array([[cc, -ss], [ss, cc]]) box0 = np.array([[0, 0], [width, 0], [width, height], [0, height], ]) box1 = box0 - np.array([width/2, height/2]) box1 = np.dot(box1, rotate_matrix.T) + np.array([width/2+dx*width, height/2+dy*height]) box0 = box0.astype(np.float32) box1 = box1.astype(np.float32) mat = cv2.getPerspectiveTransform(box0, box1) img = cv2.warpPerspective(img, mat, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101) return img def center_crop(img, height, width): h, w, c = img.shape dy = (h-height)//2 dx = (w-width)//2 y1 = dy y2 = y1 + height x1 = dx x2 = x1 + width img = img[y1:y2, x1:x2, :] return img def shift_hsv(img, hue_shift, sat_shift, val_shift): dtype = img.dtype maxval = np.max(img) img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV).astype(np.int32) h, s, v = cv2.split(img) h = cv2.add(h, hue_shift) h = np.where(h < 0, maxval - h, h) h = np.where(h > maxval, h - maxval, h) h = h.astype(dtype) s = clip(cv2.add(s, sat_shift), dtype, maxval) v = clip(cv2.add(v, val_shift), dtype, maxval) img = cv2.merge((h, s, v)).astype(dtype) img = cv2.cvtColor(img, cv2.COLOR_HSV2RGB) return img def shift_channels(img, r_shift, g_shift, b_shift): img[...,0] = clip(img[...,0] + r_shift, np.uint8, 255) img[...,1] = clip(img[...,1] + g_shift, np.uint8, 255) img[...,2] = clip(img[...,2] + b_shift, np.uint8, 255) return img def clahe(img, clipLimit=2.0, tileGridSize=(8,8)): img_yuv = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) clahe = cv2.createCLAHE(clipLimit=clipLimit, tileGridSize=tileGridSize) img_yuv[:, :, 0] = clahe.apply(img_yuv[:, :, 0]) img_output = cv2.cvtColor(img_yuv, cv2.COLOR_LAB2RGB) return img_output def blur(img, ksize): return cv2.blur(img, (ksize, ksize)) def invert(img): return 255 - img def channel_shuffle(img): ch_arr = [0, 1, 2] np.random.shuffle(ch_arr) img = img[..., ch_arr] return img def img_to_tensor(im, verbose=False): '''AVE edit''' im_out = np.moveaxis(im / (255. if im.dtype == np.uint8 else 1), -1, 0).astype(np.float32) if verbose: print ("augmentations.functiona.py.img_to_tensor(): im_out.shape:", im_out.shape) print ("im_out.unique:", np.unique(im_out)) return im_out def mask_to_tensor(mask, num_classes, verbose=False): '''AVE edit''' if num_classes > 1: mask = img_to_tensor(mask) else: mask = np.expand_dims(mask / (255. if mask.dtype == np.uint8 else 1), 0).astype(np.float32) if verbose: print ("augmentations.functiona.py.img_to_tensor(): mask.shape:", mask.shape) print ("mask.unique:", np.unique(mask)) return mask
13491
test = int(input()) while test > 0 : n,k = map(int,input().split()) p = list(map(int,input().split())) original = 0 later = 0 for i in p : if i > k : later += k original += i else : later += i original += i print(original-later) test -= 1
13503
from .test_tensorboard_rest_api import TestTensorboardRestAPI from .test_tensorboard_server import TestTensorboardServer from .test_tensorboard_endpoints import TestTensorboardEndpoint
13511
from scapy.fields import ByteField, ShortField from scapy.packet import Packet class TPKT(Packet): name = "TPKT" fields_desc = [ByteField("version", 3), ByteField("reserved", 0), ShortField("length", 0x0000)]
13547
import telnetlib import time def send_command_telnetlib(ipaddress, username, password, enable_pass, command): t = telnetlib.Telnet("192.168.100.1") t.read_until(b"Username:") t.write(username.encode("ascii") + b"\n") t.read_until(b"Password:") t.write(password.encode("ascii") + b"\n") t.write(b"enable\n") t.read_until(b"Password:") t.write(enable_pass.encode("ascii") + b"\n") t.read_until(b"#") t.write(b"terminal length 0\n") t.write(command + b"\n") time.sleep(1) result = t.read_until(b"#").decode("utf-8") return result
13563
import io import pytest import pytorch_pfn_extras as ppe from pytorch_pfn_extras.training.extensions import _ipython_module_available from pytorch_pfn_extras.training.extensions.log_report import _pandas_available @pytest.mark.skipif( not _ipython_module_available or not _pandas_available, reason="print report notebook import failed, " "maybe ipython is not installed" ) def test_run_print_report_notebook(): max_epochs = 5 iters_per_epoch = 5 manager = ppe.training.ExtensionsManager( {}, {}, max_epochs, iters_per_epoch=iters_per_epoch) out = io.StringIO() log_report = ppe.training.extensions.LogReport() manager.extend(log_report) extension = ppe.training.extensions.PrintReportNotebook(out=out) manager.extend(extension) for _ in range(max_epochs): for _ in range(iters_per_epoch): with manager.run_iteration(): # Only test it runs without fail # The value is not tested now... pass if __name__ == '__main__': pytest.main([__file__, '-v', '-s'])
13567
import numpy as np def get_conf_thresholded(conf, thresh_log_conf, dtype_np): """Normalizes a confidence score to (0..1). Args: conf (float): Unnormalized confidence. dtype_np (type): Desired return type. Returns: confidence (np.float32): Normalized joint confidence. """ # 1. / (1. + np.exp(-5000. * conf + 5)) # https://www.desmos.com/calculator/olqbvoffua # + 9.5: 0.0019 => 0.5 # + 5 : 0.0010 => 0.5 # + 6.5: 0.0013 => 0.5 return np.where( conf < dtype_np(0.), dtype_np(0.), dtype_np(1.) / (dtype_np(1.) + np.exp(dtype_np(-5000.) * conf + dtype_np(9.5))) ).astype(dtype_np) def get_confs(query_2d_full, frame_id, thresh_log_conf, mx_conf, dtype_np): """ Args: query_2d_full (stealth.logic.skeleton.Skeleton): Skeleton with confidences. frame_id (int): Frame id. Returns: confs (List[float]): Confidences at frame_id. """ confs = np.zeros(query_2d_full.poses.shape[-1], dtype=dtype_np) is_normalized = query_2d_full.is_confidence_normalized() if query_2d_full.has_confidence(frame_id): for joint, conf in query_2d_full.confidence[frame_id].items(): cnf = dtype_np(conf) \ if is_normalized \ else get_conf_thresholded(conf, thresh_log_conf, dtype_np) if mx_conf is not None and mx_conf < cnf: mx_conf = dtype_np(cnf) confs[joint] = dtype_np(cnf) if mx_conf is None: return confs else: assert isinstance(mx_conf, dtype_np) return confs, mx_conf
13585
import string from ...errors import SimValueError from . import MemoryMixin class HexDumperMixin(MemoryMixin): def hex_dump(self, start, size, word_size=4, words_per_row=4, endianness="Iend_BE", symbolic_char='?', unprintable_char='.', solve=False, extra_constraints=None, inspect=False, disable_actions=True): """ Returns a hex dump as a string. The solver, if enabled, is called once for every byte potentially making this function very slow. It is meant to be used mainly as a "visualization" for debugging. Warning: May read and display more bytes than `size` due to rounding. Particularly, if size is less than, or not a multiple of word_size*words_per_line. :param start: starting address from which to print :param size: number of bytes to display :param word_size: number of bytes to group together as one space-delimited unit :param words_per_row: number of words to display per row of output :param endianness: endianness to use when displaying each word (ASCII representation is unchanged) :param symbolic_char: the character to display when a byte is symbolic and has multiple solutions :param unprintable_char: the character to display when a byte is not printable :param solve: whether or not to attempt to solve (warning: can be very slow) :param extra_constraints: extra constraints to pass to the solver is solve is True :param inspect: whether or not to trigger SimInspect breakpoints for the memory load :param disable_actions: whether or not to disable SimActions for the memory load :return: hex dump as a string """ if endianness == "Iend_BE": end = 1 else: end = -1 if extra_constraints is None: extra_constraints = [] # round up size so that chop() works line_size = word_size * words_per_row size = size if size % line_size == 0 else size + line_size - size % line_size raw_mem = super().load(start, size=size, inspect=inspect, disable_actions=disable_actions) i = start dump_str = "" for line in raw_mem.chop(line_size * self.state.arch.byte_width): dump = "%x:" % i group_str = "" for word in line.chop(word_size * self.state.arch.byte_width): word_bytes = "" word_str = "" for byte_ in word.chop(self.state.arch.byte_width)[::end]: byte_value = None if not self.state.solver.symbolic(byte_) or solve: try: byte_value = self.state.solver.eval_one( byte_, extra_constraints=extra_constraints ) except SimValueError: pass if byte_value is not None: word_bytes += "%02x" % byte_value if chr(byte_value) in string.printable[:-5]: word_str += chr(byte_value) else: word_str += unprintable_char else: word_bytes += symbolic_char*2 word_str += symbolic_char dump += ' ' + word_bytes group_str += word_str[::end] # always print ASCII representation in little-endian dump += ' ' + group_str i += line_size dump_str += dump + '\n' return dump_str
13592
import idaapi from idaapi import * inifinite_loops = [ b"\x00\xbf\xfd\xe7", # loop: nop; b loop b"\xfe\xe7", # loop: b loop ] whitelist = [ "Reset_Handler", "main" ] def detect_noret_funcs(): exit_locs_name_pairs = [] for func_addr in Functions(): if get_func_flags(func_addr) & idaapi.FUNC_NORET: name = get_func_name(func_addr) if name not in whitelist: print("noret function: '{}' at 0x{:x}".format(name, func_addr)) exit_locs_name_pairs.append((func_addr, name)) return exit_locs_name_pairs def detect_exit_ats(add_noret_functions=False): # 0. find BKPTs exit_locs = [] # 1. find noret functions if requested if add_noret_functions: exit_locs += detect_noret_funcs() cnt = 0 # 2. find infinite loops and BKPT instructions for segea in Segments(): for funcea in Functions(segea, get_segm_end(segea)): functionName = get_func_name(funcea) for (startea, endea) in Chunks(funcea): for head in Heads(startea, endea): # print(functionName, ":", "0x%08x"%(head), ":", GetDisasm(head)) for loop_code in inifinite_loops: if get_bytes(head, len(loop_code)) == loop_code: print("Found endless loop: 0x{:x} (function {})".format(head, functionName)) exit_locs.append((head, "endless_loop_{:02d}_{}".format(cnt, functionName))) cnt += 1 if print_insn_mnem(head) == 'BKPT': print("Found bkpt: 0x{:x} (function {})".format(head, functionName)) exit_locs.append((head, "bkpt_{:02d}_{}".format(cnt, functionName))) cnt += 1 return exit_locs def print_exit_ats(add_noret_functions=False): exit_locs = detect_exit_ats(add_noret_functions=add_noret_functions) print("exit_at:") for addr, name in exit_locs: print(" {}: 0x{:08x}".format(name, addr)) def dump_exit_ats(filename="exit_ats.yml"): exit_locs = detect_exit_ats() with open(filename, "w") as f: f.write("exit_at:\n") for addr, name in exit_locs: f.write(" {}: 0x{:08x}\n".format(name, addr)) dump_exit_ats()
13606
class Acl(object): def __init__(self, read_acl): self.read_acl = read_acl @staticmethod def from_acl_response(acl_response): '''Takes JSON response from API and converts to ACL object''' if 'read' in acl_response: read_acl = AclType.from_acl_response(acl_response['read']) return Acl(read_acl) else: raise ValueError('Response does not contain read ACL') def to_api_param(self): read_acl_string = self.read_acl.acl_string if read_acl_string is None: return {'read':[]} return {'read':[read_acl_string]} class AclInner(object): def __init__(self, pseudonym, acl_string): self.pseudonym = pseudonym self.acl_string = acl_string def __repr__(self): return 'AclType(pseudonym=%s,acl_string=%s)' % (self.pseudonym, self.acl_string) class AclType(object): public = AclInner('public','user://*') my_algos = AclInner('my_algos','algo://.my/*') private = AclInner('private',None) # Really is an empty list default = my_algos types = (public, my_algos, private) @staticmethod def from_acl_response(acl_list): if len(acl_list) == 0: return AclType.private else: acl_string = acl_list[0] for t in AclType.types: if t.acl_string == acl_string: return t else: raise ValueError('Invalid acl string %s' % (acl_list[0])) class ReadAcl(object): public = Acl(AclType.public) private = Acl(AclType.private) my_algos = Acl(AclType.my_algos)
13622
import os from pathlib import Path from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import IncludeLaunchDescription, SetEnvironmentVariable, Shutdown from launch.launch_description_sources import PythonLaunchDescriptionSource from launch_ros.actions import Node def generate_launch_description(): bringup_dir = Path(get_package_share_directory('rj_robocup')) launch_dir = bringup_dir / 'launch' stdout_linebuf_envvar = SetEnvironmentVariable( 'RCUTILS_CONSOLE_STDOUT_LINE_BUFFERED', '1') grsim = Node(package='rj_robocup', executable='grSim', arguments=[]) radio = Node(package='rj_robocup', executable='sim_radio_node', output='screen', on_exit=Shutdown()) control = Node(package='rj_robocup', executable='control_node', output='screen', on_exit=Shutdown()) config_server = Node(package='rj_robocup', executable='config_server', output='screen', on_exit=Shutdown()) vision_receiver_launch_path = str(launch_dir / "vision_receiver.launch.py") vision_receiver = IncludeLaunchDescription( PythonLaunchDescriptionSource(vision_receiver_launch_path)) ref_receiver = Node(package='rj_robocup', executable='internal_referee_node', output='screen', on_exit=Shutdown()) vision_filter_launch_path = str(launch_dir / "vision_filter.launch.py") vision_filter = IncludeLaunchDescription( PythonLaunchDescriptionSource(vision_filter_launch_path)) return LaunchDescription([ grsim, stdout_linebuf_envvar, config_server, radio, control, vision_receiver, vision_filter, ref_receiver ])
13668
from trainer.normal import NormalTrainer from config import cfg def get_trainer(): pair = { 'normal': NormalTrainer } assert (cfg.train.trainer in pair) return pair[cfg.train.trainer]()
13724
import _plotly_utils.basevalidators class ConnectorValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__(self, plotly_name="connector", parent_name="waterfall", **kwargs): super(ConnectorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Connector"), data_docs=kwargs.pop( "data_docs", """ line :class:`plotly.graph_objects.waterfall.connecto r.Line` instance or dict with compatible properties mode Sets the shape of connector lines. visible Determines if connector lines are drawn. """, ), **kwargs )
13738
import json import regex import nltk.data from nltk.tokenize import word_tokenize import sys sent_detector = nltk.data.load('tokenizers/punkt/english.pickle') def tokenize(string): return word_tokenize(string) def split_paragraphs(text): """ remove urls, lowercase all words and separate paragraphs """ splits = regex.split(r'\n+', text) paras = [] for split in splits[1:]: # skip the titles split = split.strip() if len(split) == 0: continue if 'Section::' in split: continue paras.append(split) paras = " ".join(paras) return sent_detector.tokenize(paras) def split_sent(sent): strings = regex.split('<a |</a>', sent) new_strings = [] count = 0 for s in strings: s = s.strip() if s: if 'href=' in s: s = s.lstrip('href="') href, text = s.split('">') new_strings.append((text, href)) count += 1 else: ss = tokenize(s) new_strings.extend([(_, None) for _ in ss]) return new_strings, count / len(new_strings), count fw = open('out-more.json', 'w') with open('en.json', 'r') as f: for i, line in enumerate(f): data = json.loads(line) entry = {"id": data['id'], "url": data['url'], 'title': data['title']} outputs = [] if len(data['text']) > 50: try: sents = split_paragraphs(data['text']) for sent in sents: if len(sent) < 400: output, ratio, count = split_sent(sent) if count > 1 and ratio >= 0.10 and len(output) >= 8 and output[0][0][0].isupper(): text = [_[0] for _ in output] hyperlink = [_[1] for _ in output] outputs.append((text, hyperlink)) except Exception: pass if len(outputs) > 0: entry['text'] = outputs fw.write(json.dumps(entry) + '\n') sys.stdout.write('finished {}/{} \r'.format(i, 5989879)) fw.close()
13744
from zzcore import StdAns, mysakuya import requests class Ans(StdAns): def GETMSG(self): msg='' try: msg += xs() except: msg += '可能是机器人笑死了!' return msg def xs(): url = "http://api-x.aya1.xyz:6/" text = requests.get(url=url).text return text
13751
import json import math from dataclasses import dataclass from datetime import timedelta from enum import Enum from pathlib import Path from typing import List, Optional import numpy as np from vad.util.time_utils import ( format_timedelta_to_milliseconds, format_timedelta_to_timecode, parse_timecode_to_timedelta, ) class VoiceActivityVersion(Enum): v01 = "v0.1" v02 = "v0.2" v03 = "v0.3" class VoiceActivityMillisecondsVersion(Enum): v01 = "v0.1" v02 = "v0.2" v03 = "v0.3" @dataclass class Activity: start: timedelta end: timedelta @dataclass class VoiceActivity: duration: timedelta activities: List[Activity] probs_sample_rate: Optional[int] probs: Optional[List[float]] @classmethod def load(cls, path: Path): with path.open() as file: voice_activity_data = json.load(file) return VoiceActivity.from_json(voice_activity_data) @classmethod def from_json(cls, voice_activity_data: dict): version = voice_activity_data["version"] if version == VoiceActivityVersion.v01.value: voice_activity = cls( duration=parse_timecode_to_timedelta(voice_activity_data["duration"]), activities=[ Activity( start=parse_timecode_to_timedelta(speech_block["start_time"]), end=parse_timecode_to_timedelta(speech_block["end_time"]), ) for speech_block in voice_activity_data["voice_activity"] ], probs_sample_rate=voice_activity_data.get("probs_sample_rate"), probs=voice_activity_data.get("probs"), ) elif version == VoiceActivityVersion.v02.value: if voice_activity_data["time_format"] == "timecode": voice_activity = cls( duration=parse_timecode_to_timedelta(voice_activity_data["duration"]), activities=[ Activity( start=parse_timecode_to_timedelta(speech_block["start_time"]), end=parse_timecode_to_timedelta(speech_block["end_time"]), ) for speech_block in voice_activity_data["voice_activity"] ], probs_sample_rate=voice_activity_data.get("probs_sample_rate"), probs=voice_activity_data.get("probs"), ) elif voice_activity_data["time_format"] == "millisecond": voice_activity = cls( duration=timedelta(milliseconds=voice_activity_data["duration"]), activities=[ Activity( start=timedelta(milliseconds=speech_block["start_time"]), end=timedelta(milliseconds=speech_block["end_time"]), ) for speech_block in voice_activity_data["voice_activity"] ], probs_sample_rate=voice_activity_data.get("probs_sample_rate"), probs=voice_activity_data.get("probs"), ) else: raise NotImplementedError elif version == VoiceActivityVersion.v03.value: voice_activity = cls( duration=parse_timecode_to_timedelta(voice_activity_data["duration"]), activities=[ Activity( start=parse_timecode_to_timedelta(activity["start"]), end=parse_timecode_to_timedelta(activity["end"]), ) for activity in voice_activity_data["activities"] ], probs_sample_rate=voice_activity_data.get("probs_sample_rate"), probs=voice_activity_data.get("probs"), ) else: raise NotImplementedError return voice_activity def save(self, path: Path, version: VoiceActivityVersion = VoiceActivityVersion.v03): voice_activity_data = self.to_json(version) with path.open("w") as file: json.dump(voice_activity_data, file, ensure_ascii=False, indent=4) def to_json(self, version: VoiceActivityVersion = VoiceActivityVersion.v03): if version == VoiceActivityVersion.v01: voice_activity_formatted = { "version": VoiceActivityVersion.v01.value, "duration": format_timedelta_to_timecode(self.duration), "voice_activity": [ { "start_time": format_timedelta_to_timecode(activity.start), "end_time": format_timedelta_to_timecode(activity.end), } for activity in self.activities ], "probs_sample_rate": self.probs_sample_rate, "probs": self.probs, } elif version == VoiceActivityVersion.v02: voice_activity_formatted = { "version": VoiceActivityVersion.v02.value, "duration": format_timedelta_to_timecode(self.duration), "time_format": "timecode", "voice_activity": [ { "start_time": format_timedelta_to_timecode(activity.start), "end_time": format_timedelta_to_timecode(activity.end), } for activity in self.activities ], "probs_sample_rate": self.probs_sample_rate, "probs": self.probs, } elif version == VoiceActivityVersion.v03: voice_activity_formatted = { "version": VoiceActivityVersion.v03.value, "duration": format_timedelta_to_timecode(self.duration), "activities": [ { "start": format_timedelta_to_timecode(activity.start), "end": format_timedelta_to_timecode(activity.end), } for activity in self.activities ], "probs_sample_rate": self.probs_sample_rate, "probs": self.probs, } else: raise NotImplementedError return voice_activity_formatted def to_milliseconds( self, version: VoiceActivityMillisecondsVersion = VoiceActivityMillisecondsVersion.v03 ): if version == VoiceActivityMillisecondsVersion.v02: voice_activity_milliseconds = { "version": version.value, "duration": format_timedelta_to_milliseconds(self.duration), "time_format": "millisecond", "voice_activity": [ { "start_time": format_timedelta_to_milliseconds(activity.start), "end_time": format_timedelta_to_milliseconds(activity.end), } for activity in self.activities ], "probs_sample_rate": self.probs_sample_rate, "probs": self.probs, } elif version == VoiceActivityMillisecondsVersion.v03: voice_activity_milliseconds = { "version": version.value, "duration": {"total_milliseconds": format_timedelta_to_milliseconds(self.duration)}, "activities": [ { "start": { "total_milliseconds": format_timedelta_to_milliseconds(activity.start) }, "end": { "total_milliseconds": format_timedelta_to_milliseconds(activity.end) }, } for activity in self.activities ], "probs_sample_rate": self.probs_sample_rate, "probs": self.probs, } else: raise NotImplementedError return voice_activity_milliseconds @classmethod def from_milliseconds(cls, voice_activity_data: dict): version = voice_activity_data["version"] # version of milliseconds format if version == VoiceActivityMillisecondsVersion.v02.value: voice_activity = VoiceActivity( duration=timedelta(milliseconds=voice_activity_data["duration"]), activities=[ Activity( start=timedelta(milliseconds=speech_block["start_time"]), end=timedelta(milliseconds=speech_block["end_time"]), ) for speech_block in voice_activity_data["voice_activity"] ], probs_sample_rate=voice_activity_data.get("probs_sample_rate"), probs=voice_activity_data.get("probs"), ) elif version == VoiceActivityMillisecondsVersion.v03.value: voice_activity = VoiceActivity( duration=timedelta( milliseconds=voice_activity_data["duration"]["total_milliseconds"] ), activities=[ Activity( start=timedelta(milliseconds=segment["start"]["total_milliseconds"]), end=timedelta(milliseconds=segment["end"]["total_milliseconds"]), ) for segment in voice_activity_data["activities"] ], probs_sample_rate=voice_activity_data.get("probs_sample_rate"), probs=voice_activity_data.get("probs"), ) else: raise NotImplementedError return voice_activity def to_labels(self, sample_rate: int) -> np.array: total_samples = int(self.duration.total_seconds() * sample_rate) labels = np.zeros(total_samples, dtype=np.long) for activity in self.activities: start_sample = int(activity.start.total_seconds() * sample_rate) end_sample = int(activity.end.total_seconds() * sample_rate) labels[start_sample:end_sample] = 1 return labels
13776
from ..utils import run import logging logger = logging.getLogger(__name__) def process_one_package(path, package, python_version="3"): """Get details about one precise python package in the given image. :param path: path were the docker image filesystem is expanded. :type path: string :param package: name of the python package to get info from. :type package: string :param python_version: version of python to use. can be "2" or "3". default to "3". :type python_version: string :return: list containing package name, version and size :rtype: list[string, string, int] """ command = f"sudo chroot {path} pip{python_version} show {package}" info = get_ipython().getoutput(command) for line in info: if "Name" in line: name = line.split(" ").pop() if "Version" in line: version = line.split(" ").pop() if "Location" in line: location = line.split(" ").pop() result = get_ipython().getoutput( f"du --max-depth=0 {path}{location}/{name}").pop() # If the folder does not exist, try lowercase if "cannot access" in result: result = get_ipython().getoutput( f"du --max-depth=0 {path}{location}/{name.lower()}").pop() # If the lowercase folder do not exist either if "cannot access" not in result: size = int(result.split('\t').pop(0)) # List the files by hand else: command = f"sudo chroot {path} pip{python_version} show {package} -f" info = get_ipython().getoutput(command) flag = False size = 0 for line in info: if flag: command = f"du {path}{location}/{line.strip()}" size += int(get_ipython().getoutput(command).pop().split('\t').pop(0)) if 'Files' in line: flag = True return [name, version, size] def get_python_packages_info(path, python_version="3"): """Get details about all python packages in an image filesystem. :param path: path were the docker image filesystem is expanded. :type path: string :param python_version: version of python to use. can be "2" or "3". default to "3". :type python_version: string :return: list containing lists of each package's name, version and size :rtype: list[list[string, string, int]] """ command = f"sudo chroot {path} pip{python_version} list --format freeze --no-cache-dir 2>/dev/null" packages = [package.split('==') for package in get_ipython().getoutput(command)] package_list = [] for package in packages: try: package_list.append(process_one_package(path, package[0])) except Exception as e: logger.error("Error processing python packages", package[0], e) pass return package_list
13789
from ansible.parsing.yaml.objects import AnsibleMapping from ansiblelater.standard import StandardBase class CheckScmInSrc(StandardBase): sid = "ANSIBLE0005" description = "Use `scm:` key rather than `src: scm+url`" helptext = "usage of `src: scm+url` not recommended" version = "0.1" types = ["rolesfile"] def check(self, candidate, settings): roles, errors = self.get_tasks(candidate, settings) if not errors: for role in roles: if isinstance(role, AnsibleMapping): if "+" in role.get("src"): errors.append(self.Error(role["__line__"], self.helptext)) return self.Result(candidate.path, errors)
13806
from django.core.urlresolvers import resolve from django.shortcuts import render,redirect,HttpResponse from kingadmin.permission_list import perm_dic from django.conf import settings def perm_check(*args,**kwargs): request = args[0] resolve_url_obj = resolve(request.path) current_url_name = resolve_url_obj.url_name # 当前url的url_name print('---perm:',request.user,request.user.is_authenticated(),current_url_name) #match_flag = False match_results = [None,] match_key = None if request.user.is_authenticated() is False: return redirect(settings.LOGIN_URL) for permission_key,permission_val in perm_dic.items(): per_url_name = permission_val[0] per_method = permission_val[1] perm_args = permission_val[2] perm_kwargs = permission_val[3] perm_hook_func = permission_val[4] if len(permission_val)>4 else None if per_url_name == current_url_name: #matches current request url if per_method == request.method: #matches request method # if not perm_args: #if no args defined in perm dic, then set this request to passed perm #逐个匹配参数,看每个参数时候都能对应的上。 args_matched = False #for args only for item in perm_args: request_method_func = getattr(request,per_method) #request.GET/POST if request_method_func.get(item,None):# request字典中有此参数 args_matched = True else: print("arg not match......") args_matched = False break # 有一个参数不能匹配成功,则判定为假,退出该循环。 else:#当列表为空的时候才走这里 args_matched = True #匹配有特定值的参数 kwargs_matched = False for k,v in perm_kwargs.items(): request_method_func = getattr(request, per_method) arg_val = request_method_func.get(k, None) # request字典中有此参数 print("perm kwargs check:",arg_val,type(arg_val),v,type(v)) if arg_val == str(v): #匹配上了特定的参数 及对应的 参数值, 比如,需要request 对象里必须有一个叫 user_id=3的参数 kwargs_matched = True else: kwargs_matched = False break # 有一个参数不能匹配成功,则判定为假,退出该循环。 else: kwargs_matched = True #开始匹配自定义权限钩子函数 perm_hook_matched = False if perm_hook_func: perm_hook_matched = perm_hook_func(request) match_results = [args_matched,kwargs_matched,perm_hook_matched] print("--->match_results ", match_results) if all(match_results): #都匹配上了 match_key = permission_key break if all(match_results): app_name, *per_name = match_key.split('_') print("--->matched ",match_results,match_key) print(app_name, *per_name) perm_obj = '%s.%s' % (app_name,match_key) print("perm str:",perm_obj) if request.user.has_perm(perm_obj): print('当前用户有此权限') return True else: print('当前用户没有该权限') return False else: print("未匹配到权限项,当前用户无权限") def check_permission(func): def inner(*args,**kwargs): if not perm_check(*args,**kwargs): request = args[0] return render(request,'kingadmin/page_403.html') return func(*args,**kwargs) return inner
13821
import os import glob import torch import numpy as np # from PIL import Image, UnidentifiedImageError from torch.utils.data import Dataset from torchvision.datasets import MNIST class ToyDataset(Dataset): def __init__(self, N_K=50, K=4, X=None, Y=None): super().__init__() if X is not None: self.data, self.targets = X, Y else: self.data, self.targets = self._init_data(N_K, K) self.task_ids = torch.arange(self.targets.size(0)) def _init_data(self, N_K, K): X1 = torch.cat([ 0.8 + 0.4 * torch.randn(N_K, 1), 1.5 + 0.4 * torch.randn(N_K, 1), ], dim=-1) Y1 = 0 * torch.ones(X1.size(0)).long() X2 = torch.cat([ 0.5 + 0.6 * torch.randn(N_K, 1), -0.2 - 0.1 * torch.randn(N_K, 1), ], dim=-1) Y2 = 1 * torch.ones(X2.size(0)).long() X3 = torch.cat([ 2.5 - 0.1 * torch.randn(N_K, 1), 1.0 + 0.6 * torch.randn(N_K, 1), ], dim=-1) Y3 = 2 * torch.ones(X3.size(0)).long() X4 = torch.distributions.MultivariateNormal( torch.Tensor([-0.5, 1.5]), covariance_matrix=torch.Tensor([[0.2, 0.1], [0.1, 0.1]])).sample(torch.Size([N_K])) Y4 = 3 * torch.ones(X4.size(0)).long() X = torch.cat([X1, X2, X3, X4], dim=0) X[:, 1] -= 1 X[:, 0] -= 0.5 Y = torch.cat([Y1, Y2, Y3, Y4]) return X, Y def filter_by_class(self, class_list=None): if class_list: mask = torch.zeros_like(self.targets).bool() for c in class_list: mask |= self.targets == c else: mask = torch.ones_like(self.targets).bool() self.task_ids = torch.masked_select(torch.arange(self.targets.size(0)), mask) def __getitem__(self, index): return self.data[self.task_ids[index]], self.targets[self.task_ids[index]] def __len__(self): return self.task_ids.size(0) class SplitMNIST(MNIST): def __init__(self, *args, **kwargs): kwargs['download'] = True super().__init__(*args, **kwargs) self.data = self.data.reshape(self.data.size(0), -1).float() / 255. self.task_ids = torch.arange(self.targets.size(0)) def filter_by_class(self, class_list=None): if class_list: mask = torch.zeros_like(self.targets).bool() for c in class_list: mask |= self.targets == c else: mask = torch.ones_like(self.targets).bool() self.task_ids = torch.masked_select(torch.arange(self.targets.size(0)), mask) def filter_by_idx(self, idx): self.data = self.data[idx] self.targets = self.targets[idx] self.task_ids = torch.arange(self.targets.size(0)) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ return self.data[self.task_ids[index]], self.targets[self.task_ids[index]] def __len__(self): return self.task_ids.size(0) class PermutedMNIST(MNIST): @staticmethod def create_tasks(n=1): return [torch.randperm(784) for _ in range(n)] def __init__(self, *args, **kwargs): kwargs['download'] = True super().__init__(*args, **kwargs) self.data = self.data.reshape(self.data.size(0), -1).float() / 255. self.perm = None def set_task(self, perm): assert self.perm is None, 'Cannot set task again.' self.data = self.data[:, perm] self.perm = perm def filter_by_idx(self, idx): self.data = self.data[idx] self.targets = self.targets[idx] def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ return self.data[index], self.targets[index]
13860
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import tensorflow as tf from fewshot.models.kmeans_utils import compute_logits from fewshot.models.model import Model from fewshot.models.refine_model import RefineModel from fewshot.models.basic_model_VAT import BasicModelVAT from fewshot.models.model_factory import RegisterModel from fewshot.models.nnlib import (concat, weight_variable) from fewshot.utils import logger from fewshot.utils.debug import debug_identity from fewshot.models.SSL_utils import * l2_norm = lambda t: tf.sqrt(tf.reduce_sum(tf.pow(t, 2))) log = logger.get() @RegisterModel("basic-VAT-ENT") class BasicModelVAT_ENT(BasicModelVAT): def get_train_op(self, logits, y_test): loss, train_op = BasicModelVAT.get_train_op(self, logits, y_test) config = self.config ENT_weight = config.ENT_weight VAT_ENT_step_size = config.VAT_ENT_step_size logits = self._unlabel_logits s = tf.shape(logits) s = s[0] p = tf.stop_gradient(self.h_unlabel) affinity_matrix = compute_logits(p, p) - (tf.eye(s, dtype=tf.float32) * 1000.0) # logits = tf.Print(logits, [tf.shape(point_logits)]) ENT_loss = walking_penalty(logits, affinity_matrix) loss += ENT_weight * ENT_loss ENT_opt = tf.train.AdamOptimizer(VAT_ENT_step_size * self.learn_rate, name="Entropy-optimizer") ENT_grads_and_vars = ENT_opt.compute_gradients(loss) train_op = ENT_opt.apply_gradients(ENT_grads_and_vars) for gradient, variable in ENT_grads_and_vars: if gradient is None: gradient = tf.constant(0.0) self.adv_summaries.append(tf.summary.scalar("ENT/gradients/" + variable.name, l2_norm(gradient), family="Grads")) self.adv_summaries.append(tf.summary.histogram("ENT/gradients/" + variable.name, gradient, family="Grads")) self.summaries.append(tf.summary.scalar('entropy loss', ENT_loss)) return loss, train_op
13891
from pydantic import BaseModel, Field, EmailStr class PostSchema(BaseModel): id: int = Field(default=None) title: str = Field(...) content: str = Field(...) class Config: schema_extra = { "example": { "title": "Securing FastAPI applications with JWT.", "content": "In this tutorial, you'll learn how to secure your application by enabling authentication using JWT. We'll be using PyJWT to sign, encode and decode JWT tokens...." } } class UserSchema(BaseModel): fullname: str = Field(...) email: EmailStr = Field(...) password: str = Field(...) class Config: schema_extra = { "example": { "fullname": "<NAME>", "email": "<EMAIL>", "password": "<PASSWORD>" } } class UserLoginSchema(BaseModel): email: EmailStr = Field(...) password: str = Field(...) class Config: schema_extra = { "example": { "email": "<EMAIL>", "password": "<PASSWORD>" } }
13937
import os from fabric.api import env, run, sudo, execute, local, settings, \ hide, open_shell, parallel, serial, put from fabric.decorators import hosts from fabric.contrib.console import confirm import fabric.colors as fab_col import paramiko import getpass from tabulate import tabulate file_hosts = "hosts.txt" paramiko.util.log_to_file("paramiko.log") env.colorize_errors = True # The selected hosts are the hosts in env (at the beginning) selected_hosts = env.hosts running_hosts = {} env.connection_attempts = 2 # env.skip_bad_hosts = True def load_hosts(): """ Load hosts from hosts.txt. A host can either be in form username@host[:port] password or username@host[:port] If no port is specified, port 22 is selected. """ with open(file_hosts, "r") as f: data = f.readlines() for line in data: try: host, password = line.strip().split() except ValueError: host = line.strip() password = None if len(host.split(':')) == 1: host = host + ":22" env.hosts.append(host) if password is not None: env.passwords[host] = password.strip() env.hosts = list(set(env.hosts)) # Remove duplicates def add_host(): """ Add a new host to the running hosts. The user can decide whether to add the host also to the external hosts.txt file. """ name = raw_input("Username: ") host = raw_input("Host: ") port = input("Port: ") new_host = name + "@" + host + ":" + str(port) selected_hosts.append(new_host) password = None if confirm("Authenticate using a password? "): password = getpass.getpass("Password: ").strip() env.passwords[new_host] = password # Append the new host to the hosts file if confirm("Add the new host to the hosts file? "): if password is not None: line = new_host + " " + password + "\n" else: line = new_host + "\n" with open(file_hosts, 'a') as f: f.write(line) def print_hosts(): """ Print selected hosts. If hosts haven't been hand-selected yet, all hosts are selected. """ hosts = map(lambda x: [x, env.passwords.get(x, None)], selected_hosts) print(fab_col.green(tabulate(hosts, ["Host", "Password"]))) def check_hosts(): """ Check if hosts are active or not and print the result. """ global running_hosts running_hosts = dict() for host in selected_hosts: print(fab_col.magenta("\nPing host %d of %d" % (selected_hosts.index(host) + 1, len(selected_hosts)))) response = os.system("ping -c 1 " + host.split("@")[1].split(":")[0]) if response == 0: running_hosts[host] = True else: running_hosts[host] = False # Convert running_hosts in order to print it as table mylist = map(lambda index: [index[0], str(index[1])], running_hosts.items()) print(fab_col.green(tabulate(mylist, ["Host", "Running"]))) def select_running_hosts(): """ Select all active hosts. """ global selected_hosts with hide('stdout'): check_hosts() host_up = filter(lambda x: running_hosts.get(x, False), running_hosts.keys()) selected_hosts = host_up def choose_hosts(): """ Select the hosts to be used. """ global selected_hosts mylist = map(lambda (num, h): [num, h], enumerate(env.hosts)) print(fab_col.blue("Select Hosts (space-separated):")) print(fab_col.blue(tabulate(mylist, ["Number", "Host"]))) choices = raw_input("> ").split() # Avoid letters in string index choices = filter(lambda x: x.isdigit(), choices) # Convert to int list choices = map(int, choices) # Avoid IndexError choices = filter(lambda x: x < len(env.hosts), choices) # Remove duplicates choices = list(set(choices)) # If no hosts are selected, keep the current hosts if len(choices) == 0: return # Get only selected hosts selected_hosts = map(lambda i: env.hosts[i], choices) def run_locally(cmd=None): """ Execute a command locally. """ if cmd is None: cmd = raw_input("Insert command: ") with settings(warn_only=True): local(cmd) # This function cannot have the parallel decorator since # a sudo command must receive the user password @serial def _execute_sudo(command): """ Execute a sudo command on a host. Returns: The results of the execution. """ with settings(warn_only=True): return sudo(command[4:].strip(), shell=True) @parallel def _execute_command(command): """ Execute a command on a host. Returns: The results of the execution. """ with settings(warn_only=True): try: return run(command) except: print(fab_col.red("Error execution in host %s" % env.host)) return None @parallel def run_command(cmd=None): """ Execute a command on hosts. """ if cmd is None: cmd = raw_input("Insert command: ") if cmd.strip()[:4] == "sudo": execute(_execute_sudo, cmd, hosts=selected_hosts) else: execute(_execute_command, cmd, hosts=selected_hosts) @hosts(selected_hosts) def execute_script(): """ Execute a script file. """ # Attention to script name. # Add security checks script_file = raw_input("Name of the script: ") remote_path = "~/" if len(script_file) < 4 or ".." in script_file: # Invalid script print(fab_col.red("Error. Invalid script name.")) return for h in selected_hosts: with settings(host_string=h): with hide('running'): put(script_file, remote_path, mode=777) # Remove the path from the name of the script script_file = script_file.split("/")[-1] # Execution extension = script_file.split(".")[-1] if extension == script_file: print(fab_col.red("Invalid script")) return if extension == 'py': run_command("python " + remote_path + script_file) elif extension == "sh" or extension == "bash": run_command("bash " + remote_path + script_file) else: print(fab_col.red("Extension not supported")) # Delete the script with hide('running', 'stdout'): run_command("rm -f " + remote_path + script_file) def open_sh(): """ Open a shell on a host. """ mylist = map(lambda (num, h): [num, h], enumerate(selected_hosts)) print(fab_col.blue(tabulate(mylist, ["Number", "Host"]))) try: n = input("Open shell in host number: ") h = selected_hosts[n] execute(open_shell, host=h) except (NameError, IndexError): print(fab_col.red("Error: invalid host selection.")) print(fab_col.red("Shell not opened."))
13952
import sys from . import app sys.path.append(str(app.config['LIB_PATH'])) from musicautobot.music_transformer import * from musicautobot.config import * from flask import Response, send_from_directory, send_file, request, jsonify from .save import to_s3 import torch import traceback torch.set_num_threads(4) data = load_data(app.config['DATA_PATH'], app.config['DATA_SAVE_NAME'], num_workers=1) learn = music_model_learner(data, pretrained_path=app.config['MUSIC_MODEL_PATH']) if torch.cuda.is_available(): learn.model.cuda() # learn.to_fp16(loss_scale=512) # fp16 not supported for cpu - https://github.com/pytorch/pytorch/issues/17699 @app.route('/predict/midi', methods=['POST']) def predict_midi(): args = request.form.to_dict() midi = request.files['midi'].read() print('THE ARGS PASSED:', args) bpm = float(args['bpm']) # (AS) TODO: get bpm from midi file instead temperatures = (float(args.get('noteTemp', 1.2)), float(args.get('durationTemp', 0.8))) n_words = int(args.get('nSteps', 200)) seed_len = int(args.get('seedLen', 12)) # debugging 1 - send exact midi back # with open('/tmp/test.mid', 'wb') as f: # f.write(midi) # return send_from_directory('/tmp', 'test.mid', mimetype='audio/midi') # debugging 2 - test music21 conversion # stream = file2stream(midi) # 1. # debugging 3 - test npenc conversion # seed_np = midi2npenc(midi) # music21 can handle bytes directly # stream = npenc2stream(seed_np, bpm=bpm) # debugging 4 - midi in, convert, midi out # stream = file2stream(midi) # 1. # midi_in = Path(stream.write("musicxml")) # print('Midi in:', midi_in) # stream_sep = separate_melody_chord(stream) # midi_out = Path(stream_sep.write("midi")) # print('Midi out:', midi_out) # s3_id = to_s3(midi_out, args) # result = { # 'result': s3_id # } # return jsonify(result) # Main logic try: full = predict_from_midi(learn, midi=midi, n_words=n_words, seed_len=seed_len, temperatures=temperatures) stream = separate_melody_chord(full.to_stream(bpm=bpm)) midi_out = Path(stream.write("midi")) print('Wrote to temporary file:', midi_out) except Exception as e: traceback.print_exc() return jsonify({'error': f'Failed to predict: {e}'}) s3_id = to_s3(midi_out, args) result = { 'result': s3_id } return jsonify(result) # return send_from_directory(midi_out.parent, midi_out.name, mimetype='audio/midi') # @app.route('/midi/song/<path:sid>') # def get_song_midi(sid): # return send_from_directory(file_path/data_dir, htlist[sid]['midi'], mimetype='audio/midi') @app.route('/midi/convert', methods=['POST']) def convert_midi(): args = request.form.to_dict() if 'midi' in request.files: midi = request.files['midi'].read() elif 'midi_path'in args: midi = args['midi_path'] stream = file2stream(midi) # 1. # stream = file2stream(midi).chordify() # 1. stream_out = Path(stream.write('musicxml')) return send_from_directory(stream_out.parent, stream_out.name, mimetype='xml')
13953
from __future__ import absolute_import, division, print_function from tests.core import mock from trakt import Trakt from httmock import HTTMock import pytest def test_likes(): with HTTMock(mock.fixtures, mock.unknown): with Trakt.configuration.auth('mock', 'mock'): likes = Trakt['users'].likes() assert likes is not None likes = list(likes) assert len(likes) == 3 assert likes[0].keys == [ ('trakt', 1519) ] assert likes[1].keys == [ ('trakt', '1238362'), ('slug', 'star-wars-machete') ] assert likes[2].keys == [ ('trakt', '840781'), ('slug', 'star-wars-timeline') ] def test_likes_invalid_response(): with HTTMock(mock.fixtures, mock.unknown): likes = Trakt['users'].likes() assert likes is None def test_likes_invalid_type(): with HTTMock(mock.fixtures, mock.unknown): with pytest.raises(ValueError): likes = Trakt['users'].likes('invalid') assert likes is not None likes = list(likes)
13988
from django.core.exceptions import ValidationError from django.db import models from django.utils.functional import cached_property from django.utils.translation import ugettext_lazy as _ from jsonfield import JSONField from orchestra.models.fields import PrivateFileField from orchestra.models.queryset import group_by from . import settings from .methods import PaymentMethod class PaymentSourcesQueryset(models.QuerySet): def get_default(self): return self.filter(is_active=True).first() class PaymentSource(models.Model): account = models.ForeignKey('accounts.Account', verbose_name=_("account"), related_name='paymentsources') method = models.CharField(_("method"), max_length=32, choices=PaymentMethod.get_choices()) data = JSONField(_("data"), default={}) is_active = models.BooleanField(_("active"), default=True) objects = PaymentSourcesQueryset.as_manager() def __str__(self): return "%s (%s)" % (self.label, self.method_class.verbose_name) @cached_property def method_class(self): return PaymentMethod.get(self.method) @cached_property def method_instance(self): """ Per request lived method_instance """ return self.method_class(self) @cached_property def label(self): return self.method_instance.get_label() @cached_property def number(self): return self.method_instance.get_number() def get_bill_context(self): method = self.method_instance return { 'message': method.get_bill_message(), } def get_due_delta(self): return self.method_instance.due_delta def clean(self): self.data = self.method_instance.clean_data() class TransactionQuerySet(models.QuerySet): group_by = group_by def create(self, **kwargs): source = kwargs.get('source') if source is None or not hasattr(source.method_class, 'process'): # Manual payments don't need processing kwargs['state'] = self.model.WAITTING_EXECUTION amount = kwargs.get('amount') if amount == 0: kwargs['state'] = self.model.SECURED return super(TransactionQuerySet, self).create(**kwargs) def secured(self): return self.filter(state=Transaction.SECURED) def exclude_rejected(self): return self.exclude(state=Transaction.REJECTED) def amount(self): return next(iter(self.aggregate(models.Sum('amount')).values())) or 0 def processing(self): return self.filter(state__in=[Transaction.EXECUTED, Transaction.WAITTING_EXECUTION]) class Transaction(models.Model): WAITTING_PROCESSING = 'WAITTING_PROCESSING' # CREATED WAITTING_EXECUTION = 'WAITTING_EXECUTION' # PROCESSED EXECUTED = 'EXECUTED' SECURED = 'SECURED' REJECTED = 'REJECTED' STATES = ( (WAITTING_PROCESSING, _("Waitting processing")), (WAITTING_EXECUTION, _("Waitting execution")), (EXECUTED, _("Executed")), (SECURED, _("Secured")), (REJECTED, _("Rejected")), ) STATE_HELP = { WAITTING_PROCESSING: _("The transaction is created and requires processing by the " "specific payment method."), WAITTING_EXECUTION: _("The transaction is processed and its pending execution on " "the related financial institution."), EXECUTED: _("The transaction is executed on the financial institution."), SECURED: _("The transaction ammount is secured."), REJECTED: _("The transaction has failed and the ammount is lost, a new transaction " "should be created for recharging."), } bill = models.ForeignKey('bills.bill', verbose_name=_("bill"), related_name='transactions') source = models.ForeignKey(PaymentSource, null=True, blank=True, on_delete=models.SET_NULL, verbose_name=_("source"), related_name='transactions') process = models.ForeignKey('payments.TransactionProcess', null=True, blank=True, on_delete=models.SET_NULL, verbose_name=_("process"), related_name='transactions') state = models.CharField(_("state"), max_length=32, choices=STATES, default=WAITTING_PROCESSING) amount = models.DecimalField(_("amount"), max_digits=12, decimal_places=2) currency = models.CharField(max_length=10, default=settings.PAYMENT_CURRENCY) created_at = models.DateTimeField(_("created"), auto_now_add=True) modified_at = models.DateTimeField(_("modified"), auto_now=True) objects = TransactionQuerySet.as_manager() def __str__(self): return "#%i" % self.id @property def account(self): return self.bill.account def clean(self): if not self.pk: amount = self.bill.transactions.exclude(state=self.REJECTED).amount() if amount >= self.bill.total: raise ValidationError( _("Bill %(number)s already has valid transactions that cover bill total amount (%(amount)s).") % { 'number': self.bill.number, 'amount': amount, } ) def get_state_help(self): if self.source: return self.source.method_instance.state_help.get(self.state) or self.STATE_HELP.get(self.state) return self.STATE_HELP.get(self.state) def mark_as_processed(self): self.state = self.WAITTING_EXECUTION self.save(update_fields=('state', 'modified_at')) def mark_as_executed(self): self.state = self.EXECUTED self.save(update_fields=('state', 'modified_at')) def mark_as_secured(self): self.state = self.SECURED self.save(update_fields=('state', 'modified_at')) def mark_as_rejected(self): self.state = self.REJECTED self.save(update_fields=('state', 'modified_at')) class TransactionProcess(models.Model): """ Stores arbitrary data generated by payment methods while processing transactions """ CREATED = 'CREATED' EXECUTED = 'EXECUTED' ABORTED = 'ABORTED' COMMITED = 'COMMITED' STATES = ( (CREATED, _("Created")), (EXECUTED, _("Executed")), (ABORTED, _("Aborted")), (COMMITED, _("Commited")), ) data = JSONField(_("data"), blank=True) file = PrivateFileField(_("file"), blank=True) state = models.CharField(_("state"), max_length=16, choices=STATES, default=CREATED) created_at = models.DateTimeField(_("created"), auto_now_add=True, db_index=True) updated_at = models.DateTimeField(_("updated"), auto_now=True) class Meta: verbose_name_plural = _("Transaction processes") def __str__(self): return '#%i' % self.id def mark_as_executed(self): self.state = self.EXECUTED for transaction in self.transactions.all(): transaction.mark_as_executed() self.save(update_fields=('state', 'updated_at')) def abort(self): self.state = self.ABORTED for transaction in self.transactions.all(): transaction.mark_as_rejected() self.save(update_fields=('state', 'updated_at')) def commit(self): self.state = self.COMMITED for transaction in self.transactions.processing(): transaction.mark_as_secured() self.save(update_fields=('state', 'updated_at'))
14006
import pytest import os import memcnn.experiment.factory from memcnn.config import Config def test_get_attr_from_module(): a = memcnn.experiment.factory.get_attr_from_module('memcnn.experiment.factory.get_attr_from_module') assert a is memcnn.experiment.factory.get_attr_from_module def test_load_experiment_config(): cfg_fname = os.path.join(Config.get_dir(), 'experiments.json') memcnn.experiment.factory.load_experiment_config(cfg_fname, ['cifar10', 'resnet110']) @pytest.mark.skip(reason="Covered more efficiently by test_train.test_run_experiment") def test_experiment_config_parser(tmp_path): tmp_data_dir = tmp_path / "tmpdata" cfg_fname = os.path.join(Config.get_dir(), 'experiments.json') cfg = memcnn.experiment.factory.load_experiment_config(cfg_fname, ['cifar10', 'resnet110']) memcnn.experiment.factory.experiment_config_parser(cfg, str(tmp_data_dir), workers=None) def test_circular_dependency(tmp_path): p = str(tmp_path / "circular.json") content = u'{ "circ": { "base": "circ" } }' with open(p, 'w') as fh: fh.write(content) with open(p, 'r') as fh: assert fh.read() == content with pytest.raises(RuntimeError): memcnn.experiment.factory.load_experiment_config(p, ['circ'])
14018
import copy, os from ansible import errors def expand_config(config_data): try: all_data = copy.deepcopy(expand_envs(config_data)) return all_data except Exception, e: raise errors.AnsibleFilterError( 'expand_config plugin error: {0}, config_data={1}'.format( str(e), str(config_data))) def expand_envs(obj): if isinstance(obj, dict): return { key: expand_envs(val) for key, val in obj.items()} if isinstance(obj, list): return [ expand_envs(item) for item in obj ] if isinstance(obj, basestring): return os.path.expandvars(obj) return obj class FilterModule(object): ''' Expand Kraken configuration file ''' def filters(self): return { 'expand_config': expand_config }
14047
def formstash_to_querystring(formStash): err = [] for (k, v) in formStash.errors.items(): err.append(("%s--%s" % (k, v)).replace("\n", "+").replace(" ", "+")) err = sorted(err) err = "---".join(err) return err class _UrlSafeException(Exception): @property def as_querystring(self): return str(self).replace("\n", "+").replace(" ", "+") class GarfieldMinusGarfield(Exception): """ An exception for those odd moments """ pass class InvalidTransition(Exception): """raised when a transition is invalid""" pass class ObjectExists(Exception): """raised when an object already exists, no need to create""" pass class ConflictingObject(Exception): """ raised when an object already exists args[0] = tuple(conflicting_object, error_message_string) """ pass class OpenSslError(Exception): pass class OpenSslError_CsrGeneration(OpenSslError): pass class OpenSslError_InvalidKey(OpenSslError): pass class OpenSslError_InvalidCSR(OpenSslError): pass class OpenSslError_InvalidCertificate(OpenSslError): pass class OpenSslError_VersionTooLow(OpenSslError): pass class QueueProcessingError(Exception): pass class AcmeError(_UrlSafeException): pass class AcmeDuplicateAccount(AcmeError): """ args[0] MUST be the duplicate AcmeAccount """ pass class AcmeDuplicateChallenges(AcmeError): pass class AcmeDuplicateChallengesExisting(AcmeDuplicateChallenges): """the first arg should be a list of the active challenges""" def __str__(self): return ( """One or more domains already have active challenges: %s.""" % ", ".join( [ "`%s` (%s)" % (ac.domain.domain_name, ac.acme_challenge_type) for ac in self.args[0] ] ) ) class AcmeDuplicateChallenge(AcmeDuplicateChallenges): """the first arg should be a single active challenge""" def __str__(self): return ( """This domain already has active challenges: `%s`.""" % self.args[0].domain.domain_name ) class AcmeDuplicateOrderlessDomain(AcmeDuplicateChallenges): pass class AcmeServerError(AcmeError): pass class AcmeServer404(AcmeServerError): pass class AcmeCommunicationError(AcmeError): pass class AcmeAuthorizationFailure(AcmeError): """raised when an Authorization fails""" pass class AcmeOrphanedObject(AcmeError): pass class AcmeOrderError(AcmeError): pass class AcmeOrderFatal(AcmeOrderError): """ The AcmeOrder has a fatal error. Authorizations should be killed. """ pass class AcmeOrderCreatedError(AcmeOrderError): """ If an exception occurs AFTER an AcmeOrder is created, raise this. It should have two attributes: args[0] - AcmeOrder args[1] - original exception """ def __str__(self): return "An AcmeOrder-{0} was created but errored".format(self.args[0]) @property def acme_order(self): return self.args[0] @property def original_exception(self): return self.args[1] class AcmeOrderProcessing(AcmeOrderCreatedError): """ raise when the AcmeOrder is `processing` (RFC status) this should generally indicate the user should retry their action """ def __str__(self): return "An AcmeOrder-{0} was created. The order is still processing.".format( self.args[0] ) class AcmeOrderValid(AcmeOrderCreatedError): """ raise when the AcmeOrder is `valid` (RFC status) this should generally indicate the user should retry their action """ def __str__(self): return "An AcmeOrder-{0} was created. The order is valid and the CertificateSigned can be downloaded.".format( self.args[0] ) class AcmeMissingChallenges(AcmeError): """There are no Acme Challenges""" pass class AcmeChallengeFailure(AcmeError): pass class AcmeDomainsInvalid(AcmeError): def __str__(self): return "The following Domains are invalid: {0}".format(", ".join(self.args[0])) class AcmeDomainsBlocklisted(AcmeDomainsInvalid): def __str__(self): return "The following Domains are blocklisted: {0}".format( ", ".join(self.args[0]) ) class AcmeDomainsRequireConfigurationAcmeDNS(AcmeDomainsInvalid): def __str__(self): return "The following Domains are not configured with ACME-DNS: {0}".format( ", ".join(self.args[0]) ) class DomainVerificationError(AcmeError): pass class DisplayableError(_UrlSafeException): pass class InvalidRequest(_UrlSafeException): """ raised when an end-user wants to do something invalid/not-allowed """ pass # class TransitionError(_UrlSafeException): # pass # class OperationsContextError(_UrlSafeException): # pass
14060
from __future__ import absolute_import, print_function, division import unittest from pony.orm.core import * from pony.orm.core import local from pony.orm.tests.testutils import * from pony.orm.tests import setup_database, teardown_database class TestGeneratorDbSession(unittest.TestCase): def setUp(self): db = Database() class Account(db.Entity): id = PrimaryKey(int) amount = Required(int) setup_database(db) self.db = db self.Account = Account with db_session: a1 = Account(id=1, amount=1000) a2 = Account(id=2, amount=2000) a3 = Account(id=3, amount=3000) def tearDown(self): teardown_database(self.db) assert local.db_session is None self.db = self.Account = None @raises_exception(TypeError, 'db_session with `retry` option cannot be applied to generator function') def test1(self): @db_session(retry=3) def f(): yield @raises_exception(TypeError, 'db_session with `ddl` option cannot be applied to generator function') def test2(self): @db_session(ddl=True) def f(): yield @raises_exception(TypeError, 'db_session with `serializable` option cannot be applied to generator function') def test3(self): @db_session(serializable=True) def f(): yield def test4(self): @db_session(immediate=True) def f(): yield @raises_exception(TransactionError, '@db_session-wrapped generator cannot be used inside another db_session') def test5(self): @db_session def f(): yield with db_session: next(f()) def test6(self): @db_session def f(): x = local.db_session self.assertTrue(x is not None) yield self.db._get_cache() self.assertEqual(local.db_session, x) a1 = self.Account[1] yield a1.amount self.assertEqual(local.db_session, x) a2 = self.Account[2] yield a2.amount gen = f() cache = next(gen) self.assertTrue(cache.is_alive) self.assertEqual(local.db_session, None) amount = next(gen) self.assertEqual(amount, 1000) self.assertEqual(local.db_session, None) amount = next(gen) self.assertEqual(amount, 2000) self.assertEqual(local.db_session, None) try: next(gen) except StopIteration: self.assertFalse(cache.is_alive) else: self.fail() def test7(self): @db_session def f(id1): a1 = self.Account[id1] id2 = yield a1.amount a2 = self.Account[id2] amount = yield a2.amount a1.amount -= amount a2.amount += amount commit() gen = f(1) amount1 = next(gen) self.assertEqual(amount1, 1000) amount2 = gen.send(2) self.assertEqual(amount2, 2000) try: gen.send(100) except StopIteration: pass else: self.fail() with db_session: a1 = self.Account[1] self.assertEqual(a1.amount, 900) a2 = self.Account[2] self.assertEqual(a2.amount, 2100) @raises_exception(TransactionError, 'You need to manually commit() changes before suspending the generator') def test8(self): @db_session def f(id1): a1 = self.Account[id1] a1.amount += 100 yield a1.amount for amount in f(1): pass def test9(self): @db_session def f(id1): a1 = self.Account[id1] a1.amount += 100 commit() yield a1.amount for amount in f(1): pass def test10(self): @db_session def f(id1): a1 = self.Account[id1] yield a1.amount a1.amount += 100 with db_session: a = self.Account[1].amount for amount in f(1): pass with db_session: b = self.Account[1].amount self.assertEqual(b, a + 100) def test12(self): @db_session def f(id1): a1 = self.Account[id1] yield a1.amount gen = f(1) next(gen) gen.close() @raises_exception(TypeError, 'error message') def test13(self): @db_session def f(id1): a1 = self.Account[id1] yield a1.amount gen = f(1) next(gen) gen.throw(TypeError('error message')) if __name__ == '__main__': unittest.main()
14087
import os import tensorflow as tf from util import masked_softmax class PolicyNetwork(object): """ Policy Function approximator. """ def __init__(self, input_size, output_size, learning_rate=0.001, summaries_dir=None, scope="policy_estimator"): with tf.variable_scope(scope): # Writes Tensorboard summaries to disk self.summary_writer = None if summaries_dir: summary_dir = os.path.join(summaries_dir, "summaries_{}".format(scope)) if not os.path.exists(summary_dir): os.makedirs(summary_dir) self.summary_writer = tf.summary.FileWriter(summary_dir) self.state = tf.placeholder(dtype=tf.float64, shape=[1, input_size], name="state") self.action = tf.placeholder(dtype=tf.int32, name="action") self.target = tf.placeholder(dtype=tf.float64, name="target") self.mask = tf.placeholder(dtype=tf.float64, shape=[1, output_size], name="mask") # This is just table lookup estimator # self.fc_layer1 = tf.contrib.layers.fully_connected( # inputs=self.state, # num_outputs=len(env.state), # activation_fn=tf.nn.relu) self.output_layer = tf.contrib.layers.fully_connected( inputs=self.state, num_outputs=output_size, activation_fn=None) # self.action_probs = tf.squeeze(tf.nn.softmax(self.output_layer)) self.action_probs = tf.squeeze(masked_softmax(self.output_layer, self.mask)) self.picked_action_prob = tf.gather(self.action_probs, self.action) # Loss and train op self.loss = -tf.log(self.picked_action_prob) * self.target self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) self.train_op = self.optimizer.minimize( self.loss, global_step=tf.train.get_global_step()) def predict(self, state, mask, sess=None): sess = sess or tf.get_default_session() return sess.run(self.action_probs, {self.state: state.reshape(1, -1), self.mask: mask.reshape(1, -1)}) def update(self, state, target, action, mask, sess=None): sess = sess or tf.get_default_session() feed_dict = {self.state: state.reshape(1, -1), self.target: target, self.action: action, self.mask: mask.reshape(1, -1)} _, loss = sess.run([self.train_op, self.loss], feed_dict) return loss def restore(self, sess, checkpoint_file): sess = sess or tf.get_default_session() self.saver = tf.train.Saver(tf.global_variables()) self.saver.restore(sess=sess, save_path=checkpoint_file) class ValueNetwork(object): """ Value Function approximator. """ def __init__(self, input_size, output_size=1, learning_rate=0.01, scope="value_estimator"): with tf.variable_scope(scope): self.state = tf.placeholder(dtype=tf.float64, shape=[1, input_size], name="state") self.target = tf.placeholder(dtype=tf.float64, name="target") # This is just table lookup estimator # self.fc_layer1 = tf.contrib.layers.fully_connected( # inputs=self.state, # num_outputs=input_size, # activation_fn=tf.nn.relu) self.output_layer = tf.contrib.layers.fully_connected( inputs=self.state, num_outputs=output_size, activation_fn=None) self.value_estimate = tf.squeeze(self.output_layer) self.loss = tf.squared_difference(self.value_estimate, self.target) self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) self.train_op = self.optimizer.minimize( self.loss, global_step=tf.train.get_global_step()) def predict(self, state, sess=None): sess = sess or tf.get_default_session() return sess.run(self.value_estimate, {self.state: state.reshape(1, -1)}) def update(self, state, target, sess=None): sess = sess or tf.get_default_session() feed_dict = {self.state: state.reshape(1, -1), self.target: target} _, loss = sess.run([self.train_op, self.loss], feed_dict) return loss class ObjectAwareRewardNetwork(object): """ Object-aware Reward Function approximator. """ def __init__(self, input_size, output_size, action_num, learning_rate=0.01, scope="reward_estimator"): with tf.variable_scope(scope): self.state = tf.placeholder(shape=[1, input_size], dtype=tf.float64, name="state") self.action = tf.placeholder(shape=[], dtype=tf.int32, name="question_idx") self.object = tf.placeholder(shape=[], dtype=tf.int32, name="person_idx") self.target = tf.placeholder(dtype=tf.float64, name="target") object_vec = tf.one_hot(self.object, input_size, dtype=tf.float64) action_vec = tf.one_hot(self.action, action_num, dtype=tf.float64) concat_vec = tf.concat([object_vec, action_vec], 0) self.output_layer = tf.contrib.layers.fully_connected( inputs=tf.concat([self.state, tf.expand_dims(concat_vec, 0)], 1), num_outputs=output_size, activation_fn=tf.nn.sigmoid) self.value_estimate = tf.squeeze(self.output_layer) self.loss = tf.squared_difference(self.value_estimate, self.target) self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) self.train_op = self.optimizer.minimize( self.loss, global_step=tf.train.get_global_step()) def predict(self, state, action, object, sess=None): sess = sess or tf.get_default_session() return sess.run(self.value_estimate, {self.state: state.reshape(1, -1), self.action: action, self.object: object}) def update(self, state, action, object, target, sess=None): sess = sess or tf.get_default_session() feed_dict = {self.state: state.reshape(1, -1), self.action: action, self.object: object, self.target: target} _, loss = sess.run([self.train_op, self.loss], feed_dict) def restore(self, sess, checkpoint_file): sess = sess or tf.get_default_session() self.saver = tf.train.Saver(tf.global_variables()) self.saver.restore(sess=sess, save_path=checkpoint_file) class RewardNetwork(object): """ Reward Function approximator. """ def __init__(self, input_size, output_size, action_num, learning_rate=0.01, scope="reward_estimator"): with tf.variable_scope(scope): self.state = tf.placeholder(shape=[1, input_size], dtype=tf.float64, name="state") self.action = tf.placeholder(shape=[], dtype=tf.int32, name="question_idx") self.target = tf.placeholder(dtype=tf.float64, name="target") action_vec = tf.one_hot(self.action, action_num, dtype=tf.float64) self.output_layer = tf.contrib.layers.fully_connected( inputs=tf.concat([self.state, tf.expand_dims(action_vec, 0)], 1), num_outputs=output_size, activation_fn=tf.nn.sigmoid) self.value_estimate = tf.squeeze(self.output_layer) self.loss = tf.squared_difference(self.value_estimate, self.target) self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) self.train_op = self.optimizer.minimize( self.loss, global_step=tf.train.get_global_step()) def predict(self, state, action, sess=None): sess = sess or tf.get_default_session() return sess.run(self.value_estimate, {self.state: state.reshape(1, -1), self.action: action}) def update(self, state, action, target, sess=None): sess = sess or tf.get_default_session() feed_dict = {self.state: state.reshape(1, -1), self.action: action, self.target: target} _, loss = sess.run([self.train_op, self.loss], feed_dict) def restore(self, sess, checkpoint_file): sess = sess or tf.get_default_session() self.saver = tf.train.Saver(tf.global_variables()) self.saver.restore(sess=sess, save_path=checkpoint_file)
14118
from marshmallow import fields, Schema from .provision import ProvisionActionSchema class InstanceSchema(Schema): type = fields.String(required=True) image_id = fields.String(required=True) availability_zone = fields.String(required=True) ebs_optimized = fields.Boolean() iam_fleet_role = fields.String(required=True) class Meta: ordered = True class AuthSchema(Schema): key_pair_name = fields.String(required=True) identity_file = fields.String(required=True) user = fields.String(required=True) group = fields.String(required=True) class Meta: ordered = True class NetworkSchema(Schema): security_group_id = fields.String(required=True) subnet_id = fields.String() class Meta: ordered = True class ComputeAwsSchema(Schema): provider = fields.String(required=True) instance = fields.Nested(InstanceSchema, required=True) auth = fields.Nested(AuthSchema, required=True) network = fields.Nested(NetworkSchema, required=True) provision_actions = fields.Nested(ProvisionActionSchema, many=True) class Meta: ordered = True
14168
import numpy as np def load_mnist(): # the data, shuffled and split between train and test sets from keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x = np.concatenate((x_train, x_test)) y = np.concatenate((y_train, y_test)) x = x.reshape(-1, 28, 28, 1).astype('float32') x = x/255. print('MNIST:', x.shape) return x, y def load_usps(data_path='./data/usps'): import os if not os.path.exists(data_path+'/usps_train.jf'): if not os.path.exists(data_path+'/usps_train.jf.gz'): os.system('wget http://www-i6.informatik.rwth-aachen.de/~keysers/usps_train.jf.gz -P %s' % data_path) os.system('wget http://www-i6.informatik.rwth-aachen.de/~keysers/usps_test.jf.gz -P %s' % data_path) os.system('gunzip %s/usps_train.jf.gz' % data_path) os.system('gunzip %s/usps_test.jf.gz' % data_path) with open(data_path + '/usps_train.jf') as f: data = f.readlines() data = data[1:-1] data = [list(map(float, line.split())) for line in data] data = np.array(data) data_train, labels_train = data[:, 1:], data[:, 0] with open(data_path + '/usps_test.jf') as f: data = f.readlines() data = data[1:-1] data = [list(map(float, line.split())) for line in data] data = np.array(data) data_test, labels_test = data[:, 1:], data[:, 0] x = np.concatenate((data_train, data_test)).astype('float32') x /= 2.0 x = x.reshape([-1, 16, 16, 1]) y = np.concatenate((labels_train, labels_test)) print('USPS samples', x.shape) return x, y
14187
import pytest from brownie import Wei @pytest.fixture(scope="function", autouse=True) def shared_setup(fn_isolation): pass @pytest.fixture(scope='module') def nocoiner(accounts, lido): assert lido.balanceOf(accounts[9]) == 0 return accounts[9] @pytest.fixture(scope='module') def ape(accounts): return accounts[0] @pytest.fixture(scope='module') def whale(accounts): return accounts[1] @pytest.fixture() def vault(LidoVault, ape): return LidoVault.deploy({"from": ape}) @pytest.fixture(scope='module') def lido(interface, accounts): lido = interface.Lido("0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84") oracle = accounts.at(lido.getOracle(), force=True) return interface.Lido(lido, owner=oracle) class Helpers: @staticmethod def filter_events_from(addr, events): return list(filter(lambda evt: evt.address == addr, events)) @staticmethod def assert_single_event_named(evt_name, tx, evt_keys_dict): receiver_events = Helpers.filter_events_from(tx.receiver, tx.events[evt_name]) assert len(receiver_events) == 1 assert dict(receiver_events[0]) == evt_keys_dict @staticmethod def report_beacon_balance_increase(lido): beacon_stat = lido.getBeaconStat().dict() total_pooled_ether = lido.getTotalPooledEther() new_beacon_balance = Wei(total_pooled_ether * 1.5) + "1 ether" lido.pushBeacon(beacon_stat['beaconValidators'], new_beacon_balance) @pytest.fixture(scope='module') def helpers(): return Helpers
14200
import sys, requests, json, time METRIC_NAME = "builtin:billing.ddu.metrics.byEntity" PAGE_SIZE = 500 sys.tracebacklimit = 0 # python .\dduConsumptionPerMZ.py 2020-08-01T12:00:00+02:00 2020-08-10T12:00:00+02:00 https://mySampleEnv.live.dynatrace.com/api/ abcdefghijklmnop 60 # python .\dduConsumptionPerMZ.py 2020-08-01T12:00:00+02:00 2020-08-10T12:00:00+02:00 https://mySampleEnv.live.dynatrace.com/api/ abcdefghijklmnop 60 MyManagementZone arguments = len(sys.argv) - 1 if arguments != 5 and arguments != 6: print( "The script was called with {} arguments but expected 5 or 6: \nFROM_DATE_AND_TIME TO_DATE_AND_TIME URL_TO_ENVIRONMENT API_TOKEN MAX_REQUESTS_PER_MINUTE [SELECTED_MANAGEMENT_ZONE]\n" "Example: python dduConsumptionPerMZ.py 2020-08-01T12:00:00+02:00 2020-08-10T12:00:00+02:00 https://mySampleEnv.live.dynatrace.com/api/ abcdefghijklmnop 60 [myManagementZone]\n" "Note: The SELECTED_MANAGEMENT_ZONE is optional. Specify it if you only want the calculate the ddu consumption for a single management zone.".format( arguments ) ) exit() FROM = str(sys.argv[1]) TO = str(sys.argv[2]) BASE_URL = str(sys.argv[3]) API_TOKEN = str(sys.argv[4]) MAX_REQUESTS_PER_MINUTE = int(sys.argv[5]) if arguments == 6: SELECTED_MANAGEMENT_ZONE_NAME = str(sys.argv[6]) else: SELECTED_MANAGEMENT_ZONE_NAME = None # Get all available management zones # https://mySampleEnv.live.dynatrace.com/api/config/v1/managementZones # try: response = requests.get( BASE_URL + "config/v1/managementZones", headers={"Authorization": "Api-Token " + API_TOKEN}, ) # Show error message when a connection can’t be established. Terminates the script when there’s an error. response.raise_for_status() allManagemementZones = json.loads(response.content)["values"] # print("Amount of different management zones: ", len(allManagemementZones)) # If the management zone is specified: Get the index of the occurrence if SELECTED_MANAGEMENT_ZONE_NAME != None: for mzIndex, managementZone in enumerate(allManagemementZones): if allManagemementZones[mzIndex].get("name") == SELECTED_MANAGEMENT_ZONE_NAME: SELECTED_MANAGEMENT_ZONE_INDEX = mzIndex # Get all different entityTypes. Due to the high number of different types you can't fetch all at once => Loop through every page with nextPageKey # https://mySampleEnv.live.dynatrace.com/api/v2/entityTypes # https://mySampleEnv.live.dynatrace.com/api/v2/entityTypes?nextPageKey=AQAAADIBAAAAMg== response = requests.get( BASE_URL + "v2/entityTypes", headers={"Authorization": "Api-Token " + API_TOKEN} ) response.raise_for_status() allEntityTypes = json.loads(response.content)["types"] nextPage = json.loads(response.content)["nextPageKey"] while nextPage != None: response = requests.get( BASE_URL + "v2/entityTypes?nextPageKey=" + nextPage, headers={"Authorization": "Api-Token " + API_TOKEN}, ) response.raise_for_status() nextPage = (json.loads(response.content)).get("nextPageKey", None) allEntityTypes.extend(json.loads(response.content)["types"]) # print("Amount of different entity types: ", len(allEntityTypes)) # print() dduConsumptionObjectOfManagementZone = {} # Result JSON Object with Array of dduConsumption for each management zone dduConsumptionPerManagementZone = "[ " dduConsumptionOfEntityType = 0 dduConsumptionOfManagementZone = 0 # https://mySampleEnv.live.dynatrace.com/api/v2/metrics/query?metricSelector=builtin:billing.ddu.metrics.byEntity&entitySelector=type(HOST),mzId(123456789)&from=2020-08-01T12:00:00+02:00 2020-08-10T12:00:00+02:00 # Loop through every entityType of every management zone # If there is a specific management zone selected: "loop through" the single management zone for managementZoneIndex, managementZone in ( enumerate([allManagemementZones[SELECTED_MANAGEMENT_ZONE_INDEX]]) if SELECTED_MANAGEMENT_ZONE_NAME != None else enumerate(allManagemementZones) ): # If a management zone got specified: access it via the index in all management zones if SELECTED_MANAGEMENT_ZONE_NAME != None: managementZoneIndex = SELECTED_MANAGEMENT_ZONE_INDEX for entityTypeIndex, entityType in enumerate(allEntityTypes): """ print( "MZId: {:21} MZName: {:20} ET Name: {:5}".format( allManagemementZones[managementZoneIndex]["id"], allManagemementZones[managementZoneIndex]["name"], allEntityTypes[entityTypeIndex]["type"], ) ) """ # Replace the "+" of Timezone to the encoded %2B response = requests.get( "{}v2/metrics/query?metricSelector={}:splitBy()&entitySelector=mzId({}),type({})&pageSize={}&from={}&to={}".format( BASE_URL, METRIC_NAME, allManagemementZones[managementZoneIndex]["id"], allEntityTypes[entityTypeIndex]["type"], str(PAGE_SIZE), FROM.replace("+", "%2B", 1), TO.replace("+", "%2B", 1), ), headers={"Authorization": "Api-Token " + API_TOKEN}, ) response.raise_for_status() # print("Waiting for ", 60 / MAX_REQUESTS_PER_MINUTE, " seconds") time.sleep(60 / MAX_REQUESTS_PER_MINUTE) dduConsumptionOfMZandETDict = json.loads(response.content)["result"][0]["data"] # If there are any results if dduConsumptionOfMZandETDict: # Filter out every empty usage values and create the sum of ddu usage dduConsumptionOfMZandET = sum( filter(None, dduConsumptionOfMZandETDict[0]["values"]) ) """ print( "Ddu consumption of manangement zone {} and entityType {}: {}".format( allManagemementZones[managementZoneIndex]["name"], allEntityTypes[entityTypeIndex]["type"], round(dduConsumptionOfMZandET, 3), ) ) """ dduConsumptionOfManagementZone += dduConsumptionOfMZandET dduConsumptionOfMZandET = 0 """ print( "Ddu consumption of management zone {}: {}".format( allManagemementZones[managementZoneIndex]["name"], round(dduConsumptionOfManagementZone, 3), ) ) """ # print() # Populate JSON Object dduConsumptionObjectOfManagementZone["MZId"] = allManagemementZones[ managementZoneIndex ]["id"] dduConsumptionObjectOfManagementZone["MZName"] = allManagemementZones[ managementZoneIndex ]["name"] dduConsumptionObjectOfManagementZone["dduConsumption"] = round( dduConsumptionOfManagementZone, 3 ) dduConsumptionOfManagementZone = 0 # <[ > takes 2 chars if len(dduConsumptionPerManagementZone) > 2: dduConsumptionPerManagementZone = ( dduConsumptionPerManagementZone + ", " + json.dumps(dduConsumptionObjectOfManagementZone) ) else: dduConsumptionPerManagementZone = dduConsumptionPerManagementZone + json.dumps( dduConsumptionObjectOfManagementZone ) dduConsumptionPerManagementZone = dduConsumptionPerManagementZone + " ]" print(dduConsumptionPerManagementZone)
14206
import os import matplotlib as mpl import torch import torchvision from data_management import IPDataset, Jitter, SimulateMeasurements from networks import IterativeNet, Tiramisu from operators import Radon # ----- load configuration ----- import config # isort:skip # ----- global configuration ----- mpl.use("agg") device = torch.device("cuda:0") torch.cuda.set_device(0) # ----- measurement configuration ----- theta = torch.linspace(0, 180, 61)[:-1] # 60 lines, exclude endpoint OpA = Radon(config.n, theta) # ----- network configuration ----- subnet_params = { "in_channels": 1, "out_channels": 1, "drop_factor": 0.0, "down_blocks": (5, 7, 9, 12, 15), "up_blocks": (15, 12, 9, 7, 5), "pool_factors": (2, 2, 2, 2, 2), "bottleneck_layers": 20, "growth_rate": 16, "out_chans_first_conv": 16, } subnet = Tiramisu it_net_params = { "num_iter": 1, "lam": 0.0, "lam_learnable": False, "final_dc": False, "resnet_factor": 1.0, "operator": OpA, "inverter": OpA.inv, } # ----- training configuration ----- mseloss = torch.nn.MSELoss(reduction="sum") def loss_func(pred, tar): return mseloss(pred, tar) / pred.shape[0] train_phases = 1 train_params = { "num_epochs": [19], "batch_size": [10], "loss_func": loss_func, "save_path": [ os.path.join( config.RESULTS_PATH, "Radon_Tiramisu_jitter_v6_" "train_phase_{}".format((i + 1) % (train_phases + 1)), ) for i in range(train_phases + 1) ], "save_epochs": 1, "optimizer": torch.optim.Adam, "optimizer_params": [{"lr": 8e-5, "eps": 2e-4, "weight_decay": 5e-4}], "scheduler": torch.optim.lr_scheduler.StepLR, "scheduler_params": {"step_size": 1, "gamma": 1.0}, "acc_steps": [1], "train_transform": torchvision.transforms.Compose( [SimulateMeasurements(OpA), Jitter(5e2, 0.0, 1.0)] ), "val_transform": torchvision.transforms.Compose( [SimulateMeasurements(OpA)], ), "train_loader_params": {"shuffle": True, "num_workers": 0}, "val_loader_params": {"shuffle": False, "num_workers": 0}, } # ----- data configuration ----- train_data_params = { "path": config.DATA_PATH, "device": device, } train_data = IPDataset val_data_params = { "path": config.DATA_PATH, "device": device, } val_data = IPDataset # ------ save hyperparameters ------- os.makedirs(train_params["save_path"][-1], exist_ok=True) with open( os.path.join(train_params["save_path"][-1], "hyperparameters.txt"), "w" ) as file: for key, value in subnet_params.items(): file.write(key + ": " + str(value) + "\n") for key, value in it_net_params.items(): file.write(key + ": " + str(value) + "\n") for key, value in train_params.items(): file.write(key + ": " + str(value) + "\n") for key, value in train_data_params.items(): file.write(key + ": " + str(value) + "\n") for key, value in val_data_params.items(): file.write(key + ": " + str(value) + "\n") file.write("train_phases" + ": " + str(train_phases) + "\n") # ------ construct network and train ----- subnet_tmp = subnet(**subnet_params).to(device) it_net_tmp = IterativeNet( subnet_tmp, **{ "num_iter": 1, "lam": 0.0, "lam_learnable": False, "final_dc": False, "resnet_factor": 1.0, "operator": OpA, "inverter": OpA.inv, } ).to(device) it_net_tmp.load_state_dict( torch.load( "results/Radon_Tiramisu_jitter_v4_train_phase_1/model_weights.pt", map_location=torch.device(device), ) ) subnet = it_net_tmp.subnet it_net = IterativeNet(subnet, **it_net_params).to(device) train_data = train_data("train", **train_data_params) val_data = val_data("val", **val_data_params) for i in range(train_phases): train_params_cur = {} for key, value in train_params.items(): train_params_cur[key] = ( value[i] if isinstance(value, (tuple, list)) else value ) print("Phase {}:".format(i + 1)) for key, value in train_params_cur.items(): print(key + ": " + str(value)) it_net.train_on(train_data, val_data, **train_params_cur)
14217
import pytest from astropy.io import fits import numpy as np from lightkurve.io.kepseismic import read_kepseismic_lightcurve from lightkurve.io.detect import detect_filetype @pytest.mark.remote_data def test_detect_kepseismic(): """Can we detect the correct format for KEPSEISMIC files?""" url = "https://archive.stsci.edu/hlsps/kepseismic/001200000/92147/20d-filter/hlsp_kepseismic_kepler_phot_kplr001292147-20d_kepler_v1_cor-filt-inp.fits" f = fits.open(url) assert detect_filetype(f) == "KEPSEISMIC" @pytest.mark.remote_data def test_read_kepseismic(): """Can we read KEPSEISMIC files?""" url = "https://archive.stsci.edu/hlsps/kepseismic/001200000/92147/20d-filter/hlsp_kepseismic_kepler_phot_kplr001292147-20d_kepler_v1_cor-filt-inp.fits" with fits.open(url, mode="readonly") as hdulist: fluxes = hdulist[1].data["FLUX"] lc = read_kepseismic_lightcurve(url) flux_lc = lc.flux.value # print(flux_lc, fluxes) assert np.sum(fluxes) == np.sum(flux_lc)
14234
import os import json from torchblocks.metrics import SequenceLabelingScore from torchblocks.trainer import SequenceLabelingTrainer from torchblocks.callback import TrainLogger from torchblocks.processor import SequenceLabelingProcessor, InputExample from torchblocks.utils import seed_everything, dict_to_text, build_argparse from torchblocks.utils import prepare_device, get_checkpoints from torchblocks.data import CNTokenizer from torchblocks.data import Vocabulary, VOCAB_NAME from torchblocks.models.nn.lstm_crf import LSTMCRF from torchblocks.models.bases import TrainConfig from torchblocks.models.bases import WEIGHTS_NAME MODEL_CLASSES = { 'lstm-crf': (TrainConfig, LSTMCRF, CNTokenizer) } def build_vocab(data_dir, vocab_dir): ''' 构建vocab ''' vocab = Vocabulary() vocab_path = os.path.join(vocab_dir, VOCAB_NAME) if os.path.exists(vocab_path): vocab.load_vocab(str(vocab_path)) else: files = ["train.json", "dev.json", "test.json"] for file in files: with open(os.path.join(data_dir, file), 'r') as fr: for line in fr: line = json.loads(line.strip()) text = line['text'] vocab.update(list(text)) vocab.build_vocab() vocab.save_vocab(vocab_path) print("vocab size: ", len(vocab)) class CluenerProcessor(SequenceLabelingProcessor): def get_labels(self): """See base class.""" # 默认第一个为X return ["X", "B-address", "B-book", "B-company", 'B-game', 'B-government', 'B-movie', 'B-name', 'B-organization', 'B-position', 'B-scene', "I-address", "I-book", "I-company", 'I-game', 'I-government', 'I-movie', 'I-name', 'I-organization', 'I-position', 'I-scene', "S-address", "S-book", "S-company", 'S-game', 'S-government', 'S-movie', 'S-name', 'S-organization', 'S-position', 'S-scene', 'O', "[START]", "[END]"] def read_data(self, input_file): """Reads a json list file.""" lines = [] with open(input_file, 'r') as f: for line in f: line = json.loads(line.strip()) text = line['text'] label_entities = line.get('label', None) labels = ['O'] * len(text) if label_entities is not None: for key, value in label_entities.items(): for sub_name, sub_index in value.items(): for start_index, end_index in sub_index: assert text[start_index:end_index + 1] == sub_name if start_index == end_index: labels[start_index] = 'S-' + key else: labels[start_index] = 'B-' + key labels[start_index + 1:end_index + 1] = ['I-' + key] * (len(sub_name) - 1) lines.append({"text": text, "labels": labels}) return lines def create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line['text'] labels = line['labels'] examples.append(InputExample(guid=guid, texts=[text_a, None], label_ids=labels)) return examples def main(): parser = build_argparse() parser.add_argument('--markup', type=str, default='bios', choices=['bios', 'bio']) parser.add_argument('--use_crf', action='store_true', default=True) args = parser.parse_args() # output dir if args.model_name is None: args.model_name = args.model_path.split("/")[-1] args.output_dir = args.output_dir + '{}'.format(args.model_name) os.makedirs(args.output_dir, exist_ok=True) # logging prefix = "_".join([args.model_name, args.task_name]) logger = TrainLogger(log_dir=args.output_dir, prefix=prefix) # device logger.info("initializing device") args.device, args.n_gpu = prepare_device(args.gpu, args.local_rank) # build vocab build_vocab(args.data_dir, vocab_dir=args.model_path) seed_everything(args.seed) args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] # data processor logger.info("initializing data processor") tokenizer = tokenizer_class.from_pretrained(args.model_path, do_lower_case=args.do_lower_case) processor = CluenerProcessor(data_dir=args.data_dir, tokenizer=tokenizer, prefix=prefix,add_special_tokens=False) label_list = processor.get_labels() num_labels = len(label_list) id2label = {i: label for i, label in enumerate(label_list)} args.id2label = id2label args.num_labels = num_labels # model logger.info("initializing model and config") config = config_class.from_pretrained(args.model_path, num_labels=num_labels, cache_dir=args.cache_dir if args.cache_dir else None) model = model_class.from_pretrained(args.model_path, config=config) model.to(args.device) # Trainer logger.info("initializing traniner") trainer = SequenceLabelingTrainer(args=args, logger=logger, collate_fn=processor.collate_fn, input_keys=processor.get_input_keys(), metrics=[SequenceLabelingScore(id2label, markup=args.markup)]) # do train if args.do_train: train_dataset = processor.create_dataset(args.train_max_seq_length, 'train.json', 'train', ) eval_dataset = processor.create_dataset(args.eval_max_seq_length, 'dev.json', 'dev') trainer.train(model, train_dataset=train_dataset, eval_dataset=eval_dataset) # do eval if args.do_eval and args.local_rank in [-1, 0]: results = {} eval_dataset = processor.create_dataset(args.eval_max_seq_length, 'dev.json', 'dev') checkpoints = [args.output_dir] if args.eval_all_checkpoints or args.checkpoint_number > 0: checkpoints = get_checkpoints(args.output_dir, args.checkpoint_number, WEIGHTS_NAME) logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("/")[-1].split("-")[-1] model = model_class.from_pretrained(checkpoint, config=config) model.to(args.device) trainer.evaluate(model, eval_dataset, save_preds=True, prefix=str(global_step)) if global_step: result = {"{}_{}".format(global_step, k): v for k, v in trainer.records['result'].items()} results.update(result) output_eval_file = os.path.join(args.output_dir, "eval_results.txt") dict_to_text(output_eval_file, results) # do predict if args.do_predict: test_dataset = processor.create_dataset(args.eval_max_seq_length, 'test.json', 'test') if args.checkpoint_number == 0: raise ValueError("checkpoint number should > 0,but get %d", args.checkpoint_number) checkpoints = get_checkpoints(args.output_dir, args.checkpoint_number, WEIGHTS_NAME) for checkpoint in checkpoints: global_step = checkpoint.split("/")[-1].split("-")[-1] model = model_class.from_pretrained(checkpoint) model.to(args.device) trainer.predict(model, test_dataset=test_dataset, prefix=str(global_step)) if __name__ == "__main__": main()
14242
import unittest import os from six import StringIO from package_manager import util CHECKSUM_TXT = "1915adb697103d42655711e7b00a7dbe398a33d7719d6370c01001273010d069" DEBIAN_JESSIE_OS_RELEASE = """PRETTY_NAME="Distroless" NAME="Debian GNU/Linux" ID="debian" VERSION_ID="8" VERSION="Debian GNU/Linux 8 (jessie)" HOME_URL="https://github.com/GoogleContainerTools/distroless" SUPPORT_URL="https://github.com/GoogleContainerTools/distroless/blob/master/README.md" BUG_REPORT_URL="https://github.com/GoogleContainerTools/distroless/issues/new" """ DEBIAN_STRETCH_OS_RELEASE = """PRETTY_NAME="Distroless" NAME="Debian GNU/Linux" ID="debian" VERSION_ID="9" VERSION="Debian GNU/Linux 9 (stretch)" HOME_URL="https://github.com/GoogleContainerTools/distroless" SUPPORT_URL="https://github.com/GoogleContainerTools/distroless/blob/master/README.md" BUG_REPORT_URL="https://github.com/GoogleContainerTools/distroless/issues/new" """ DEBIAN_BUSTER_OS_RELEASE = """PRETTY_NAME="Distroless" NAME="Debian GNU/Linux" ID="debian" VERSION_ID="10" VERSION="Debian GNU/Linux 10 (buster)" HOME_URL="https://github.com/GoogleContainerTools/distroless" SUPPORT_URL="https://github.com/GoogleContainerTools/distroless/blob/master/README.md" BUG_REPORT_URL="https://github.com/GoogleContainerTools/distroless/issues/new" """ # VERSION and VERSION_ID aren't set on unknown distros DEBIAN_UNKNOWN_OS_RELEASE = """PRETTY_NAME="Distroless" NAME="Debian GNU/Linux" ID="debian" HOME_URL="https://github.com/GoogleContainerTools/distroless" SUPPORT_URL="https://github.com/GoogleContainerTools/distroless/blob/master/README.md" BUG_REPORT_URL="https://github.com/GoogleContainerTools/distroless/issues/new" """ osReleaseForDistro = { "jessie": DEBIAN_JESSIE_OS_RELEASE, "stretch": DEBIAN_STRETCH_OS_RELEASE, "buster": DEBIAN_BUSTER_OS_RELEASE, "???": DEBIAN_UNKNOWN_OS_RELEASE, } class TestUtil(unittest.TestCase): def test_sha256(self): current_dir = os.path.dirname(__file__) filename = os.path.join(current_dir, 'testdata', 'checksum.txt') actual = util.sha256_checksum(filename) self.assertEqual(CHECKSUM_TXT, actual) def test_generate_debian_os_release(self): for distro, expected_output in osReleaseForDistro.items(): output_file = StringIO() util.generate_os_release(distro, output_file) self.assertEqual(expected_output, output_file.getvalue()) if __name__ == '__main__': unittest.main()
14283
import struct from six import binary_type from capnpy import ptr from capnpy.packing import mychr from capnpy.printer import print_buffer class SegmentBuilder(object): def __init__(self, length=None): self.buf = bytearray() def get_length(self): return len(self.buf) def as_string(self): return binary_type(self.buf) def _print(self): print_buffer(self.as_string()) def write_generic(self, ifmt, i, value): struct.pack_into(mychr(ifmt), self.buf, i, value) def write_int8(self, i, value): struct.pack_into('b', self.buf, i, value) def write_uint8(self, i, value): struct.pack_into('B', self.buf, i, value) def write_int16(self, i, value): struct.pack_into('h', self.buf, i, value) def write_uint16(self, i, value): struct.pack_into('H', self.buf, i, value) def write_int32(self, i, value): struct.pack_into('i', self.buf, i, value) def write_uint32(self, i, value): struct.pack_into('I', self.buf, i, value) def write_int64(self, i, value): struct.pack_into('q', self.buf, i, value) def write_uint64(self, i, value): struct.pack_into('Q', self.buf, i, value) def write_float32(self, i, value): struct.pack_into('f', self.buf, i, value) def write_float64(self, i, value): struct.pack_into('d', self.buf, i, value) def write_bool(self, byteoffset, bitoffset, value): current = struct.unpack_from('B', self.buf, byteoffset)[0] current |= (value << bitoffset) struct.pack_into('B', self.buf, byteoffset, current) def write_slice(self, i, src, start, n): self.buf[i:i+n] = src.buf[start:start+n] def allocate(self, length): # XXX: check whether there is a better method to zero-extend the array in PyPy result = len(self.buf) self.buf += b'\x00'*length return result def alloc_struct(self, pos, data_size, ptrs_size): """ Allocate a new struct of the given size, and write the resulting pointer at position i. Return the newly allocated position. """ length = (data_size+ptrs_size) * 8 result = self.allocate(length) offet = result - (pos+8) p = ptr.new_struct(offet//8, data_size, ptrs_size) self.write_int64(pos, p) return result def alloc_list(self, pos, size_tag, item_count, body_length): """ Allocate a new list of the given size, and write the resulting pointer at position i. Return the newly allocated position. """ body_length = ptr.round_up_to_word(body_length) result = self.allocate(body_length) offet = result - (pos+8) p = ptr.new_list(offet//8, size_tag, item_count) self.write_int64(pos, p) return result def alloc_text(self, pos, s, trailing_zero=1): if s is None: self.write_int64(pos, 0) return -1 n = len(s) nn = n + trailing_zero result = self.alloc_list(pos, ptr.LIST_SIZE_8, nn, nn) self.buf[result:result+n] = s # there is no need to write the trailing 0 as the byte is already # guaranteed to be 0 return result def alloc_data(self, pos, s): return self.alloc_text(pos, s, trailing_zero=0) def copy_from_struct(self, dst_pos, structcls, value): if value is None: self.write_int64(dst_pos, 0) return if not isinstance(value, structcls): raise TypeError("Expected %s instance, got %s" % (structcls.__class__.__name__, value)) self.copy_from_pointer(dst_pos, value._seg, value._as_pointer(0), 0) def copy_from_pointer(self, dst_pos, src, p, src_pos): return copy_pointer(src, p, src_pos, self, dst_pos) def copy_inline_struct(self, dst_pos, src, p, src_pos): """ Similar to copy_from_pointer but: 1. it assumes that p is a pointer to a struct 2. it does NOT allocate a new struct in dst_pos: instead, it writes the struct directly into dst_pos """ return _copy_struct_inline(src, p, src_pos, self, dst_pos) def copy_from_list(self, pos, item_type, lst): return copy_from_list(self, pos, item_type, lst) from capnpy.segment._copy_pointer import copy_pointer, _copy_struct_inline from capnpy.segment._copy_list import copy_from_list
14302
from .model import DeepLabResNetModel from .hc_deeplab import HyperColumn_Deeplabv2 from .image_reader import ImageReader, read_data_list, get_indicator_mat, get_batch_1chunk, read_an_image_from_disk, tf_wrap_get_patch, get_batch from .utils import decode_labels, inv_preprocess, prepare_label
14355
import math def fuel_needed(mass): return math.floor(int(mass)/3 - 2) def fuel_needed_recursive(mass): fuel_needed_i = fuel_needed(mass) if (fuel_needed_i <= 0): return 0 return fuel_needed_i + fuel_needed_recursive(fuel_needed_i) total_fuel = 0 total_fuel_recursive = 0 with open("input.txt", "r") as fp: for line in fp: total_fuel += fuel_needed(line) total_fuel_recursive += fuel_needed_recursive(line) print("Total fuel: " + str(total_fuel)) print("Total fuel recursive: " + str(total_fuel_recursive))
14372
import json def get_all_pets(): pets = read_from_file() pets_in_store = [] for k, v in pets.items(): current_pet = {"id": k, **v} pets_in_store.append(current_pet) return pets def remove_pet(id): pets = read_from_file() del pets[id] write_to_file(pets) def update_pet(id, pet): pets = read_from_file() ids = pets.keys() pets[id] = {"name": pet.name, "breed": pet.breed, "price": pet.price} write_to_file(pets) def add_pet(pet): pets = read_from_file() ids = pets.keys() new_id = int(ids[-1]) + 1 pets[new_id] = {"name": pet.name, "breed": pet.breed, "price": pet.price} write_to_file(pets) def get_pet(id): pets = read_from_file() pet = pets[id] pet["id"] = id return pet def write_to_file(content): with open("./pets.json", "w") as pets: pets.write(json.dumps(content)) def read_from_file(): with open("./pets.json", "r") as pets: return json.loads(pets.read())
14422
from .base import * class Input(Layer): def __init__(self, input_shape: Union[List, Tuple], **kwargs): super(Input, self).__init__(input_shape=input_shape, **kwargs) self._shape = input_shape def call(self, x: F.Tensor, *args, **kwargs) -> F.Tensor: self._data = x return self._data class Reshape(Layer): def __init__(self, shape: Tuple, **kwargs): super().__init__(shape=shape, **kwargs) def call(self, x: F.Tensor, *args, **kwargs) -> F.Tensor: self._data = F.view(x, (-1, ) + self._shape, self._data) return self._data def compute_output_shape(self, input_shape: Union[List, Tuple] = None) -> Union[List, Tuple]: return self._shape class ZeroPadding2D(Layer): def __init__(self, padding, **kwargs): self.padding = padding super(ZeroPadding2D, self).__init__(**kwargs) def call(self, x: F.Tensor, *args, **kwargs) -> F.Tensor: self._data = F.pad2d(x, self.padding, self._data) return self._data def compute_output_shape(self, input_shape: Union[List, Tuple] = None) -> Union[List, Tuple]: self._shape = (input_shape[0], input_shape[1] + 2 * self.padding[0], input_shape[2] + 2 * self.padding[1]) return self._shape class Add(Layer): def __call__(self, inbounds: List[Layer], *args, **kwargs): for inbound in inbounds: self._in_bounds.append(inbound) inbound.add_out_bounds(self) self._shape = inbound.shape return self def init_layer_out_tensor(self, x : F.Tensor = None): x = self._in_bounds[0].data if x is None else x if self._data is None or x.shape[0] > self._data.shape_capacity[0]: self._data = Zeros()((x.shape[0],) + self.shape, requires_grad=self.trainable) self._data.to('static') for in_bound in self._in_bounds: self._data.add_in_bounds(in_bound.data) elif x.shape[0] < self._data.shape_capacity[0]: if GLOBAL.TRAINING: self._data.slices(slice(None, x.shape[0], None)) else: self._data = Zeros()((x.shape[0],) + self.shape, requires_grad=self.trainable) self._data.to('static') for in_bound in self._in_bounds: self._data.add_in_bounds(in_bound.data) else: self._data.slices(slice(None, None, None)) def forward(self, x: F.Tensor = None, *args, **kwargs) -> F.Tensor: self._data.zero_() for in_bound in self._in_bounds: GLOBAL.np.add(self._data.eval, in_bound.data.eval, out=self._data.eval) if GLOBAL.TRAINING and in_bound.data.requires_grad: initialize_ops_grad(in_bound.data) self._data.requires_grad = self._data.requires_grad or in_bound.data.requires_grad return self._data def compute_output_shape(self, input_shape: Union[List, Tuple] = None) -> Union[List, Tuple]: return self._shape def backward(self, gradients: F.Tensor = None): for in_bound in self._in_bounds: if in_bound.data.requires_grad: GLOBAL.np.add(in_bound.data.grad.eval, self._data.grad.eval, out=in_bound.data.grad.eval) self._data.zero_grad()
14502
import struct import numpy as np import pandas as pd df_train = pd.read_csv('../data/train_data.csv') df_valid = pd.read_csv('../data/valid_data.csv') df_test = pd.read_csv('../data/test_data.csv') with open('result.dat', 'rb') as f: N, = struct.unpack('i', f.read(4)) no_dims, = struct.unpack('i', f.read(4)) print(N, no_dims) mappedX = struct.unpack('{}d'.format(N * no_dims), f.read(8 * N * no_dims)) mappedX = np.array(mappedX).reshape((N, no_dims)) print(mappedX) tsne_train = mappedX[:len(df_train)] tsne_valid = mappedX[len(df_train):len(df_train)+len(df_valid)] tsne_test = mappedX[len(df_train)+len(df_valid):] assert(len(tsne_train) == len(df_train)) assert(len(tsne_valid) == len(df_valid)) assert(len(tsne_test) == len(df_test)) save_path = '../data/tsne_{}d_30p.npz'.format(no_dims) np.savez(save_path, train=tsne_train, valid=tsne_valid, test=tsne_test) print('Saved: {}'.format(save_path)) # landmarks, = struct.unpack('{}i'.format(N), f.read(4 * N)) # costs, = struct.unpack('{}d'.format(N), f.read(8 * N))
14517
import grasp_net, grasp_params, h5py, aolib.img as ig, os, numpy as np, aolib.util as ut net_pr = grasp_params.im_fulldata_v5() net_pr = grasp_params.gel_im_fulldata_v5() checkpoint_file = '/home/manu/ros_ws/src/manu_research/manu_sawyer/src/tensorflow_model_is_gripping/training/net.tf-6499' gpu = '/gpu:0' db_file = '/media/backup_disk/dataset_manu/ver2/2017-06-22/2017-06-22_212702.hdf5' with h5py.File(db_file, 'r') as db: pre, mid, _ = grasp_net.milestone_frames(db) # sc = lambda x : ig.scale(x, (224, 224)) def sc(x): """ do a center crop (helps with gelsight) """ x = ig.scale(x, (256, 256)) return ut.crop_center(x, 224) u = ig.uncompress crop = grasp_net.crop_kinect inputs = dict( gel0_pre=sc(u(db['GelSightA_image'].value[pre])), gel1_pre=sc(u(db['GelSightB_image'].value[pre])), gel0_post=sc(u(db['GelSightA_image'].value[mid])), gel1_post=sc(u(db['GelSightB_image'].value[mid])), im0_pre=sc(crop(u(db['color_image_KinectA'].value[pre]))), im0_post=sc(crop(u(db['color_image_KinectA'].value[mid]))), # these are probably unnecessary depth0_pre=sc(crop(db['depth_image_KinectA'].value[pre].astype('float32'))), depth0_post=sc(crop(db['depth_image_KinectA'].value[mid].astype('float32')))) net = grasp_net.NetClf(net_pr, checkpoint_file, gpu) prob = net.predict(**inputs) print 'prob = ', prob
14534
from flask import Blueprint from apps.auth.business.wxlogin import WxLoginBusiness from apps.auth.extentions import validation, parse_json_form from library.api.render import json_detail_render wxlogin = Blueprint("wxlogin", __name__) @wxlogin.route('/', methods=['POST']) @validation('POST:wx_user_code') def wxuser_index_handler(): """ @api {post} /v1/wxlogin/ 登录 微信 @apiName WxLogin @apiGroup 用户 @apiDescription 登录微信 @apiParam {string} user_code 用户编码 @apiParamExample {json} Request-Example: { "user_code":"j2qL3QjNXXwa_4A0WJFDNJyPEx88HTHytARgRbr176g" } @apiSuccessExample {json} Success-Response: HTTP/1.1 200 OK { "code": 0, "data": { "token": "<PASSWORD>" }, "message": "" } """ user_code = parse_json_form('wx_user_code') ret, data, msg = WxLoginBusiness.get_user(user_code[0]) return json_detail_render(ret, data, msg)
14542
import pytest from weaverbird.backends.sql_translator.metadata import SqlQueryMetadataManager from weaverbird.backends.sql_translator.steps import translate_filter from weaverbird.backends.sql_translator.types import SQLQuery from weaverbird.pipeline.conditions import ComparisonCondition from weaverbird.pipeline.steps import FilterStep def test_translate_filter(mocker): step = FilterStep( name='filter', condition=ComparisonCondition(column='amount', operator='eq', value=10) ) query = SQLQuery( query_name='SELECT_STEP_0', transformed_query='WITH SELECT_STEP_0 AS (SELECT TOTO, TATA FROM products)', selection_query='SELECT TOTO, TATA FROM SELECT_STEP_0', metadata_manager=SqlQueryMetadataManager( tables_metadata={'table1': {'toto': 'text', 'tata': 'int'}}, ), ) mocker.patch( 'weaverbird.backends.sql_translator.steps.utils.query_transformation.apply_condition', return_value='SELECT TOTO, TATA FROM SELECT_STEP_0 WHERE amount = 10', ) res = translate_filter(step, query, index=1) assert ( res.transformed_query == 'WITH SELECT_STEP_0 AS (SELECT TOTO, TATA FROM products), FILTER_STEP_1 AS (SELECT TOTO, TATA FROM ' 'SELECT_STEP_0 WHERE amount = 10)' ) assert res.selection_query == 'SELECT TOTO, TATA FROM FILTER_STEP_1' def test_translate_filter_error(mocker): step = FilterStep( name='filter', condition=ComparisonCondition(column='amount', operator='eq', value=10) ) query = SQLQuery( query_name='SELECT_STEP_0', transformed_query='WITH SELECT_STEP_0 AS (SELECT * FROM products), SELECT * FROM SELECT_STEP_0', selection_query='SELECT * FROM SELECT_STEP_0', metadata_manager=SqlQueryMetadataManager( tables_metadata={'table1': {'toto': 'text', 'tata': 'int'}}, ), ) mocker.patch( 'weaverbird.backends.sql_translator.steps.filter.apply_condition', side_effect=NotImplementedError, ) with pytest.raises(NotImplementedError): translate_filter(step, query, index=1)
14564
from .repository import Repository from .manager import Manager __all__ = ["Manager", "Repository", "__version__"] __version__ = "0.2.0"
14583
from OpenGL.arrays import vbo from OpenGL.GLES2.VERSION import GLES2_2_0 from OpenGL.GLES2.OES import mapbuffer class Implementation( vbo.Implementation ): """OpenGL-based implementation of VBO interfaces""" def __init__( self ): for name in self.EXPORTED_NAMES: for source in [ GLES2_2_0, mapbuffer ]: for possible in (name,name+'OES'): try: setattr( self, name, getattr( source, possible )) except AttributeError as err: pass else: found = True assert found, name if GLES2_2_0.glBufferData: self.available = True Implementation.register()
14595
from __future__ import print_function import os, sys import pickle import time import glob import numpy as np import torch from model import PVSE from loss import cosine_sim, order_sim from vocab import Vocabulary from data import get_test_loader from logger import AverageMeter from option import parser, verify_input_args ORDER_BATCH_SIZE = 100 def encode_data(model, data_loader, use_gpu=False): """Encode all images and sentences loadable by data_loader""" # switch to evaluate mode model.eval() use_mil = model.module.mil if hasattr(model, 'module') else model.mil # numpy array to keep all the embeddings img_embs, txt_embs = None, None for i, data in enumerate(data_loader): img, txt, txt_len, ids = data if torch.cuda.is_available(): img, txt, txt_len = img.cuda(), txt.cuda(), txt_len.cuda() # compute the embeddings img_emb, txt_emb, _, _, _, _ = model.forward(img, txt, txt_len) del img, txt, txt_len # initialize the output embeddings if img_embs is None: if use_gpu: emb_sz = [len(data_loader.dataset), img_emb.size(1), img_emb.size(2)] \ if use_mil else [len(data_loader.dataset), img_emb.size(1)] img_embs = torch.zeros(emb_sz, dtype=img_emb.dtype, requires_grad=False).cuda() txt_embs = torch.zeros(emb_sz, dtype=txt_emb.dtype, requires_grad=False).cuda() else: emb_sz = (len(data_loader.dataset), img_emb.size(1), img_emb.size(2)) \ if use_mil else (len(data_loader.dataset), img_emb.size(1)) img_embs = np.zeros(emb_sz) txt_embs = np.zeros(emb_sz) # preserve the embeddings by copying from gpu and converting to numpy img_embs[ids] = img_emb if use_gpu else img_emb.data.cpu().numpy().copy() txt_embs[ids] = txt_emb if use_gpu else txt_emb.data.cpu().numpy().copy() return img_embs, txt_embs def i2t(images, sentences, nreps=1, npts=None, return_ranks=False, order=False, use_gpu=False): """ Images->Text (Image Annotation) Images: (nreps*N, K) matrix of images Captions: (nreps*N, K) matrix of sentences """ if use_gpu: assert not order, 'Order embedding not supported in GPU mode' if npts is None: npts = int(images.shape[0] / nreps) index_list = [] ranks, top1 = np.zeros(npts), np.zeros(npts) for index in range(npts): # Get query image im = images[nreps * index] im = im.reshape((1,) + im.shape) # Compute scores if use_gpu: if len(sentences.shape) == 2: sim = im.mm(sentences.t()).view(-1) else: _, K, D = im.shape sim_kk = im.view(-1, D).mm(sentences.view(-1, D).t()) sim_kk = sim_kk.view(im.size(0), K, sentences.size(0), K) sim_kk = sim_kk.permute(0,1,3,2).contiguous() sim_kk = sim_kk.view(im.size(0), -1, sentences.size(0)) sim, _ = sim_kk.max(dim=1) sim = sim.flatten() else: if order: if index % ORDER_BATCH_SIZE == 0: mx = min(images.shape[0], nreps * (index + ORDER_BATCH_SIZE)) im2 = images[nreps * index:mx:nreps] sim_batch = order_sim(torch.Tensor(im2).cuda(), torch.Tensor(sentences).cuda()) sim_batch = sim_batch.cpu().numpy() sim = sim_batch[index % ORDER_BATCH_SIZE] else: sim = np.tensordot(im, sentences, axes=[2, 2]).max(axis=(0,1,3)).flatten() \ if len(sentences.shape) == 3 else np.dot(im, sentences.T).flatten() if use_gpu: _, inds_gpu = sim.sort() inds = inds_gpu.cpu().numpy().copy()[::-1] else: inds = np.argsort(sim)[::-1] index_list.append(inds[0]) # Score rank = 1e20 for i in range(nreps * index, nreps * (index + 1), 1): tmp = np.where(inds == i)[0][0] if tmp < rank: rank = tmp ranks[index] = rank top1[index] = inds[0] # Compute metrics r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) medr = np.floor(np.median(ranks)) + 1 meanr = ranks.mean() + 1 if return_ranks: return (r1, r5, r10, medr, meanr), (ranks, top1) else: return (r1, r5, r10, medr, meanr) def t2i(images, sentences, nreps=1, npts=None, return_ranks=False, order=False, use_gpu=False): """ Text->Images (Image Search) Images: (nreps*N, K) matrix of images Captions: (nreps*N, K) matrix of sentences """ if use_gpu: assert not order, 'Order embedding not supported in GPU mode' if npts is None: npts = int(images.shape[0] / nreps) if use_gpu: ims = torch.stack([images[i] for i in range(0, len(images), nreps)]) else: ims = np.array([images[i] for i in range(0, len(images), nreps)]) ranks, top1 = np.zeros(nreps * npts), np.zeros(nreps * npts) for index in range(npts): # Get query sentences queries = sentences[nreps * index:nreps * (index + 1)] # Compute scores if use_gpu: if len(sentences.shape) == 2: sim = queries.mm(ims.t()) else: sim_kk = queries.view(-1, queries.size(-1)).mm(ims.view(-1, ims.size(-1)).t()) sim_kk = sim_kk.view(queries.size(0), queries.size(1), ims.size(0), ims.size(1)) sim_kk = sim_kk.permute(0,1,3,2).contiguous() sim_kk = sim_kk.view(queries.size(0), -1, ims.size(0)) sim, _ = sim_kk.max(dim=1) else: if order: if nreps * index % ORDER_BATCH_SIZE == 0: mx = min(sentences.shape[0], nreps * index + ORDER_BATCH_SIZE) sentences_batch = sentences[nreps * index:mx] sim_batch = order_sim(torch.Tensor(images).cuda(), torch.Tensor(sentences_batch).cuda()) sim_batch = sim_batch.cpu().numpy() sim = sim_batch[:, (nreps * index) % ORDER_BATCH_SIZE:(nreps * index) % ORDER_BATCH_SIZE + nreps].T else: sim = np.tensordot(queries, ims, axes=[2, 2]).max(axis=(1,3)) \ if len(sentences.shape) == 3 else np.dot(queries, ims.T) inds = np.zeros(sim.shape) for i in range(len(inds)): if use_gpu: _, inds_gpu = sim[i].sort() inds[i] = inds_gpu.cpu().numpy().copy()[::-1] else: inds[i] = np.argsort(sim[i])[::-1] ranks[nreps * index + i] = np.where(inds[i] == index)[0][0] top1[nreps * index + i] = inds[i][0] # Compute metrics r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks) r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks) r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks) medr = np.floor(np.median(ranks)) + 1 meanr = ranks.mean() + 1 if return_ranks: return (r1, r5, r10, medr, meanr), (ranks, top1) else: return (r1, r5, r10, medr, meanr) def convert_old_state_dict(x, model, multi_gpu=False): params = model.state_dict() prefix = ['module.img_enc.', 'module.txt_enc.'] \ if multi_gpu else ['img_enc.', 'txt_enc.'] for i, old_params in enumerate(x): for key, val in old_params.items(): key = prefix[i] + key.replace('module.','').replace('our_model', 'pie_net') assert key in params, '{} not found in model state_dict'.format(key) params[key] = val return params def evalrank(model, args, split='test'): print('Loading dataset') data_loader = get_test_loader(args, vocab) print('Computing results... (eval_on_gpu={})'.format(args.eval_on_gpu)) img_embs, txt_embs = encode_data(model, data_loader, args.eval_on_gpu) n_samples = img_embs.shape[0] nreps = 5 if args.data_name == 'coco' else 1 print('Images: %d, Sentences: %d' % (img_embs.shape[0] / nreps, txt_embs.shape[0])) # 5fold cross-validation, only for MSCOCO mean_metrics = None if args.data_name == 'coco': results = [] for i in range(5): r, rt0 = i2t(img_embs[i*5000:(i + 1)*5000], txt_embs[i*5000:(i + 1)*5000], nreps=nreps, return_ranks=True, order=args.order, use_gpu=args.eval_on_gpu) r = (r[0], r[1], r[2], r[3], r[3] / n_samples, r[4], r[4] / n_samples) print("Image to text: %.2f, %.2f, %.2f, %.2f (%.2f), %.2f (%.2f)" % r) ri, rti0 = t2i(img_embs[i*5000:(i + 1)*5000], txt_embs[i*5000:(i + 1)*5000], nreps=nreps, return_ranks=True, order=args.order, use_gpu=args.eval_on_gpu) if i == 0: rt, rti = rt0, rti0 ri = (ri[0], ri[1], ri[2], ri[3], ri[3] / n_samples, ri[4], ri[4] / n_samples) print("Text to image: %.2f, %.2f, %.2f, %.2f (%.2f), %.2f (%.2f)" % ri) ar = (r[0] + r[1] + r[2]) / 3 ari = (ri[0] + ri[1] + ri[2]) / 3 rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2] print("rsum: %.2f ar: %.2f ari: %.2f" % (rsum, ar, ari)) results += [list(r) + list(ri) + [ar, ari, rsum]] mean_metrics = tuple(np.array(results).mean(axis=0).flatten()) print("-----------------------------------") print("Mean metrics from 5-fold evaluation: ") print("rsum: %.2f" % (mean_metrics[-1] * 6)) print("Average i2t Recall: %.2f" % mean_metrics[-3]) print("Image to text: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % mean_metrics[:7]) print("Average t2i Recall: %.2f" % mean_metrics[-2]) print("Text to image: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % mean_metrics[7:14]) # no cross-validation, full evaluation r, rt = i2t(img_embs, txt_embs, nreps=nreps, return_ranks=True, use_gpu=args.eval_on_gpu) ri, rti = t2i(img_embs, txt_embs, nreps=nreps, return_ranks=True, use_gpu=args.eval_on_gpu) ar = (r[0] + r[1] + r[2]) / 3 ari = (ri[0] + ri[1] + ri[2]) / 3 rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2] r = (r[0], r[1], r[2], r[3], r[3] / n_samples, r[4], r[4] / n_samples) ri = (ri[0], ri[1], ri[2], ri[3], ri[3] / n_samples, ri[4], ri[4] / n_samples) print("rsum: %.2f" % rsum) print("Average i2t Recall: %.2f" % ar) print("Image to text: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % r) print("Average t2i Recall: %.2f" % ari) print("Text to image: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % ri) return mean_metrics if __name__ == '__main__': multi_gpu = torch.cuda.device_count() > 1 args = verify_input_args(parser.parse_args()) opt = verify_input_args(parser.parse_args()) # load vocabulary used by the model with open('./vocab/%s_vocab.pkl' % args.data_name, 'rb') as f: vocab = pickle.load(f) args.vocab_size = len(vocab) # load model and options assert os.path.isfile(args.ckpt) model = PVSE(vocab.word2idx, args) if torch.cuda.is_available(): model = torch.nn.DataParallel(model).cuda() if multi_gpu else model torch.backends.cudnn.benchmark = True model.load_state_dict(torch.load(args.ckpt)) # evaluate metrics = evalrank(model, args, split='test')
14616
import time from adafruit_circuitplayground.express import cpx import simpleio cpx.pixels.auto_write = False cpx.pixels.brightness = 0.3 # Set these based on your ambient temperature for best results! minimum_temp = 24 maximum_temp = 30 while True: # temperature value remapped to pixel position peak = simpleio.map_range(cpx.temperature, minimum_temp, maximum_temp, 0, 10) print(cpx.temperature) print(int(peak)) for i in range(0, 10, 1): if i <= peak: cpx.pixels[i] = (0, 255, 255) else: cpx.pixels[i] = (0, 0, 0) cpx.pixels.show() time.sleep(0.05)
14622
import numpy as np from torch import nn def layer_init(layer, std=np.sqrt(2), bias_const=0.0): """ Simple function to init layers """ nn.init.orthogonal_(layer.weight, std) nn.init.constant_(layer.bias, bias_const) return layer
14709
import numpy as np import matplotlib.pyplot as mp import matplotlib.cm as mpcm import matplotlib.colors as mpc import scipy.stats as ss # plotting settings lw = 1.5 mp.rc('font', family = 'serif') mp.rcParams['text.latex.preamble'] = [r'\boldmath'] mp.rcParams['axes.linewidth'] = lw mp.rcParams['lines.linewidth'] = lw cm = mpcm.get_cmap('plasma') # datafiles ppds = ['cmb', 'loc'] sums = ['ptes', 'prs'] # posterior summaries post_means = np.genfromtxt('gw_grb_h_0_posterior_means.csv', \ delimiter=',') post_vars = np.genfromtxt('gw_grb_h_0_posterior_vars.csv', \ delimiter=',') n_h_0_true = post_means.shape[0] n_bs = post_means.shape[1] print n_bs h_0_true_col = [cm(col) for col in np.linspace(0.2, 0.8, n_h_0_true)] fig, axes = mp.subplots(1, 2, figsize=(12, 5)) for i in range(n_h_0_true): print '* H_0 = {:5.2f}'.format(post_means[i, 0]) to_print = 'posterior mean = {:5.2f} +/- {:4.2f}' print to_print.format(np.mean(post_means[i, 1:]), \ np.std(post_means[i, 1:])) to_print = 'posterior sigma = {:5.2f} +/- {:4.2f}' print to_print.format(np.mean(np.sqrt(post_vars[i, 1:])), \ np.std(np.sqrt(post_vars[i, 1:]))) kde = ss.gaussian_kde(post_means[i, 1:]) grid = np.linspace(np.min(post_means[i, 1:]), \ np.max(post_means[i, 1:]), \ 1000) axes[0].plot(grid, kde.evaluate(grid), color=h_0_true_col[i]) axes[0].axvline(post_means[i, 0], color=h_0_true_col[i], ls='--') kde = ss.gaussian_kde(np.sqrt(post_vars[i, 1:])) grid = np.linspace(np.min(np.sqrt(post_vars[i, 1:])), \ np.max(np.sqrt(post_vars[i, 1:])), \ 1000) axes[1].plot(grid, kde.evaluate(grid), color=h_0_true_col[i], \ label=r'$H_0 = {:5.2f}$'.format(post_vars[i, 0])) axes[0].set_xlabel(r'$\bar{H}_0$', fontsize=18) axes[0].set_ylabel(r'${\rm Pr}(\bar{H}_0)$', fontsize=18) axes[0].tick_params(axis='both', which='major', labelsize=12) axes[1].set_xlabel(r'$\sigma_{H_0}$', fontsize=18) axes[1].set_ylabel(r'${\rm Pr}(\sigma_{H_0})$', fontsize=18) axes[1].tick_params(axis='both', which='major', labelsize=12) axes[1].legend(loc='upper right', fontsize=14) fig.suptitle('Bootstrap-Averaged Posterior Means / Sigmas', \ fontsize=18) fig.savefig('gw_grd_h_0_bs_avg_posterior_moments.pdf', \ bbox_inches = 'tight') mp.close(fig) # PPD summaries for i in range(len(ppds)): for j in range(len(sums)): # read data fname = 'gw_grb_h_0_' + ppds[i] + '_ppd_' + sums[j] data = np.genfromtxt(fname + '.csv', delimiter=',') n_bs = data.shape[1] print n_bs # plot n_h_0_true = data.shape[0] fig, axes = mp.subplots(1, n_h_0_true, \ figsize=(6 * n_h_0_true, 5)) if ppds[i] == 'cmb': fig.suptitle(r'$\hat{H}_0^{\rm CMB}\, {\rm Prediction}$', \ fontsize=18) else: fig.suptitle(r'$\hat{H}_0^{\rm CDL}\, {\rm Prediction}$', \ fontsize=18) if sums[j] == 'ptes': x_label = r'$p$' y_label = r'${\rm Pr}(p)$' else: x_label = r'$\rho$' y_label = r'${\rm Pr}(\rho)$' for k in range(n_h_0_true): kde = ss.gaussian_kde(data[k, 1:]) grid = np.linspace(np.min(data[k, 1:]), \ np.max(data[k, 1:]), \ 1000) axes[k].plot(grid, kde.evaluate(grid), color=cm(0.5)) axes[k].set_xlabel(x_label, fontsize=18) axes[k].set_ylabel(y_label, fontsize=18) axes[k].tick_params(axis='both', which='major', labelsize=12) axes[k].set_title(r'$H_0 = {:5.2f}$'.format(data[k, 0]), \ fontsize=18) # finish plot fig.savefig(fname + '.pdf', bbox_inches = 'tight') mp.close(fig) # quick check of required numbers of samples def rho(d, n, var_ratio, n_event_ref, n_event): d_n_event = n_event_ref / n_event return np.exp(-0.5 * rho_num(d, n, d_n_event) / \ rho_den(var_ratio, d_n_event)) def rho_num(d, n, d_n_event): if d > 0.0: return (d - n * np.sqrt(d_n_event)) ** 2 else: return (d + n * np.sqrt(d_n_event)) ** 2 def rho_den(var_ratio, d_n_event): return var_ratio + d_n_event def num_ratio(d, n, m, var_ratio): term = (m ** 2 * var_ratio - d ** 2) print term return [((-n * d - \ np.sqrt((n * d) ** 2 - term * (m ** 2 - n ** 2))) / \ term) ** 2, \ ((-n * d + \ np.sqrt((n * d) ** 2 - term * (m ** 2 - n ** 2))) / \ term) ** 2] n_ref = 51.0 mu_obs = np.array([67.81, 73.24]) sig_obs = np.array([0.92, 1.74]) n_sigma_sv = 1.0 n_sigma_thresh = 3.0 n_sigma_diff = [(mu_obs[1] - mu_obs[0]) / np.sqrt(post_vars[i, 1]), \ (mu_obs[0] - mu_obs[1]) / np.sqrt(post_vars[i, 1])] var_ratio = [sig_obs[1] ** 2 / post_vars[i, 1], \ sig_obs[0] ** 2 / post_vars[i, 1]] print n_sigma_diff print var_ratio n_req = np.zeros(2) n_req[0] = n_ref * num_ratio(n_sigma_diff[0], n_sigma_sv, \ n_sigma_thresh, var_ratio[0])[0] ln_rho = -2.0 * np.log(rho(n_sigma_diff[0], n_sigma_sv, \ var_ratio[0], n_ref, n_req[0])) print n_req[0], ln_rho, n_sigma_thresh ** 2 n_req[1] = n_ref * num_ratio(n_sigma_diff[1], n_sigma_sv, \ n_sigma_thresh, var_ratio[1])[1] ln_rho = -2.0 * np.log(rho(n_sigma_diff[1], n_sigma_sv, \ var_ratio[1], n_ref, n_req[1])) print n_req[1], ln_rho, n_sigma_thresh ** 2 n_grid = np.arange(n_ref, 5000.0) mp.loglog(n_grid, rho_num(n_sigma_diff[0], n_sigma_sv, n_ref / n_grid), 'r', lw=1.0) mp.plot(n_grid, 1.0 / rho_den(var_ratio[0], n_ref / n_grid), 'g', lw=1.0) mp.plot(n_grid, 1.0 / rho_den(var_ratio[1], n_ref / n_grid), 'b', lw=1.0) mp.plot(n_grid, -2.0 * np.log(rho(n_sigma_diff[0], n_sigma_sv, var_ratio[0], \ n_ref, n_grid)), 'g') mp.plot(n_grid, -2.0 * np.log(rho(n_sigma_diff[1], n_sigma_sv, var_ratio[1], \ n_ref, n_grid)), 'b') mp.axhline(n_sigma_thresh ** 2, color='k', linestyle='-.') mp.axvline(n_req[0], color='g', linestyle='-.') mp.axvline(n_req[1], color='b', linestyle='-.') mp.xlabel(r'$N$') mp.ylabel(r'$f(N)$') mp.xlim(n_ref, 5000) mp.ylim(0.3, 40.0) mp.savefig('gw_grb_h_0_ppd_samp_var_limits.pdf', bbox_inches='tight') mp.show() exit() print num_ratio(4.53, n_sigma_sv, n_sigma_thresh, 2.1) print 5.43, mu_obs[1] - mu_obs[0] print 1.2, np.sqrt(post_vars[i, 1]) print 5.43 / 1.2, n_sigma_diff[0] m = 3.0 n = 1.0 d = 3.77 # 4.53 vrat = 1.46 # 2.1 print ((d*n+np.sqrt((d*n)**2-(vrat*m**2-d**2)*(m**2-n**2)))/(vrat*m**2-d**2))**2
14738
import argparse import os import sys import numpy as np from scipy import misc import cv2 import torch import torch.nn as nn from torch.autograd import Variable from torchvision.models import vgg16, vgg19 from torchvision.utils import save_image from lib.gradients import GradCam, GuidedBackpropGrad from lib.image_utils import preprocess_image, save_cam_image, save_as_gray_image from lib.labels import IMAGENET_LABELS def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--cuda', action='store_true', default=False, help='Use NVIDIA GPU acceleration') parser.add_argument('--img', type=str, default='', help='Input image path') parser.add_argument('--out_dir', type=str, default='./result/cam/', help='Result directory path') args = parser.parse_args() args.cuda = args.cuda and torch.cuda.is_available() if args.cuda: print("Using GPU for acceleration") else: print("Using CPU for computation") if args.img: print('Input image: {}'.format(args.img)) else: print('Input image: raccoon face (scipy.misc.face())') print('Output directory: {}'.format(args.out_dir)) print() return args def main(): args = parse_args() if not os.path.exists(args.out_dir): os.makedirs(args.out_dir) target_layer_names = ['35'] target_index = None # Prepare input image if args.img: img = cv2.imread(args.img, 1) else: img = misc.face() img = np.float32(cv2.resize(img, (224, 224))) / 255 preprocessed_img = preprocess_image(img, args.cuda) model = vgg19(pretrained=True) if args.cuda: model.cuda() # Prediction output = model(preprocessed_img) pred_index = np.argmax(output.data.cpu().numpy()) print('Prediction: {}'.format(IMAGENET_LABELS[pred_index])) # Prepare grad cam grad_cam = GradCam( pretrained_model=model, target_layer_names=target_layer_names, cuda=args.cuda) # Compute grad cam mask = grad_cam(preprocessed_img, target_index) save_cam_image(img, mask, os.path.join(args.out_dir, 'grad_cam.jpg')) print('Saved Grad-CAM image') # Reload preprocessed image preprocessed_img = preprocess_image(img) # Compute guided backpropagation guided_backprop = GuidedBackpropGrad( pretrained_model=model, cuda=args.cuda) guided_backprop_saliency = guided_backprop(preprocessed_img, index=target_index) cam_mask = np.zeros(guided_backprop_saliency.shape) for i in range(guided_backprop_saliency.shape[0]): cam_mask[i, :, :] = mask cam_guided_backprop = np.multiply(cam_mask, guided_backprop_saliency) save_as_gray_image( cam_guided_backprop, os.path.join(args.out_dir, 'guided_grad_cam.jpg')) print('Saved Guided Grad-CAM image') if __name__ == '__main__': main()
14771
from django.views.generic import TemplateView from django_tables2.config import RequestConfig from django_tables2_column_shifter.tables import ( ColumnShiftTableBootstrap2, ColumnShiftTableBootstrap3, ColumnShiftTableBootstrap4, ColumnShiftTableBootstrap5, ) from .models import Author, Book from .tables import get_author_table_class, get_book_table_class class Index(TemplateView): template_name = "testproject/index.html" class Base(object): container_css = "span10 offset1" template_name = "testproject/test_bootstrap2.html" table_class_version = ColumnShiftTableBootstrap2 def get_context_data(self, **kwargs): context = super(Base, self).get_context_data(**kwargs) # Build tabels author_queryset = Author.objects.all() author_table1 = get_author_table_class( self.table_class_version )(author_queryset) author_table2 = get_author_table_class( self.table_class_version )(author_queryset, prefix="authors2") book_queryset = Book.objects.all() book_table = get_book_table_class( self.table_class_version )(book_queryset, prefix="books") # Turn on sorting and pagination RequestConfig(self.request, paginate={'per_page': 2}).configure(author_table1) RequestConfig(self.request, paginate={'per_page': 2}).configure(author_table2) RequestConfig(self.request, paginate={'per_page': 2}).configure(book_table) context['container_css'] = self.container_css context['author_table1'] = author_table1 context['author_table2'] = author_table2 context['book_table'] = book_table context['book_queryset'] = book_queryset return context class Bootstrap2(Base, TemplateView): pass class Bootstrap3(Base, TemplateView): container_css = "col-xs-10 col-xs-offset-1" template_name = "testproject/test_bootstrap3.html" table_class_version = ColumnShiftTableBootstrap3 class Bootstrap4(Base, TemplateView): container_css = "col-xs-10 col-xs-offset-1" template_name = "testproject/test_bootstrap4.html" table_class_version = ColumnShiftTableBootstrap4 class Bootstrap4_1_3(Base, TemplateView): container_css = "col-xs-10 col-xs-offset-1" template_name = "testproject/test_bootstrap4.1.3.html" table_class_version = ColumnShiftTableBootstrap4 class Bootstrap5(Base, TemplateView): container_css = "col-xs-10 col-xs-offset-1" template_name = "testproject/test_bootstrap5.html" table_class_version = ColumnShiftTableBootstrap5
14772
class Workset(WorksetPreview,IDisposable): """ Represents a workset in the document. """ @staticmethod def Create(document,name): """ Create(document: Document,name: str) -> Workset Creates a new workset. document: The document in which the new instance is created. name: The workset name. Returns: Returns the newly created workset. """ pass def Dispose(self): """ Dispose(self: WorksetPreview,A_0: bool) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: WorksetPreview,disposing: bool) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass IsEditable=property(lambda self: object(),lambda self,v: None,lambda self: None) """Whether the workset is editable. Get: IsEditable(self: Workset) -> bool """ IsOpen=property(lambda self: object(),lambda self,v: None,lambda self: None) """Whether the workset is open (rather than closed). Get: IsOpen(self: Workset) -> bool """ IsVisibleByDefault=property(lambda self: object(),lambda self,v: None,lambda self: None) """Whether the workset is visible by default. Get: IsVisibleByDefault(self: Workset) -> bool """ Kind=property(lambda self: object(),lambda self,v: None,lambda self: None) """Kind of the workset. Get: Kind(self: Workset) -> WorksetKind """
14795
import argparse, pdb import gym import numpy as np import os import pickle import random import torch import scipy.misc from gym.envs.registration import register parser = argparse.ArgumentParser() parser.add_argument('-display', type=int, default=0) parser.add_argument('-seed', type=int, default=1) parser.add_argument('-lanes', type=int, default=3) parser.add_argument('-traffic_rate', type=int, default=15) parser.add_argument('-state_image', type=int, default=1) parser.add_argument('-save_images', type=int, default=0) parser.add_argument('-store', type=int, default=1) parser.add_argument('-data_dir', type=str, default='traffic-data/state-action-cost/') parser.add_argument('-fps', type=int, default=30) parser.add_argument('-time_slot', type=int, default=0) parser.add_argument('-map', type=str, default='i80', choices={'ai', 'i80', 'us101', 'lanker', 'peach'}) parser.add_argument('-delta_t', type=float, default=0.1) opt = parser.parse_args() opt.state_image = (opt.state_image == 1) opt.store = (opt.store == 1) random.seed(opt.seed) np.random.seed(opt.seed) torch.manual_seed(opt.seed) os.system("mkdir -p " + opt.data_dir) kwargs = dict( display=opt.display, state_image=opt.state_image, store=opt.store, fps=opt.fps, nb_lanes=opt.lanes, traffic_rate=opt.traffic_rate, data_dir=opt.data_dir, delta_t=opt.delta_t, ) register( id='Traffic-v0', entry_point='traffic_gym:Simulator', kwargs=kwargs ) register( id='I-80-v0', entry_point='map_i80:I80', kwargs=kwargs ) gym.envs.registration.register( id='US-101-v0', entry_point='map_us101:US101', kwargs=kwargs, ) gym.envs.registration.register( id='Lankershim-v0', entry_point='map_lanker:Lankershim', kwargs=kwargs, ) gym.envs.registration.register( id='Peachtree-v0', entry_point='map_peach:Peachtree', kwargs=kwargs, ) env_names = { 'ai': 'Traffic-v0', 'i80': 'I-80-v0', 'us101': 'US-101-v0', 'lanker': 'Lankershim-v0', 'peach': 'Peachtree-v0', } print('Building the environment (loading data, if any)') env = gym.make(env_names[opt.map]) env.reset(frame=0, time_slot=opt.time_slot) done = False while not done: observation, reward, done, info = env.step() env.render() print(f'Data generation for <{opt.map}, time slot {opt.time_slot}> completed')
14822
from demos.setup import np, plt from compecon import BasisChebyshev, BasisSpline from compecon.tools import nodeunif __author__ = 'Randall' # DEMAPP06 Chebychev and cubic spline derivative approximation errors # Function to be approximated def f(x): g = np.zeros((3, x.size)) g[0], g[1], g[2] = np.exp(-x), -np.exp(-x), np.exp(-x) return g # Set degree of approximation and endpoints of approximation interval a = -1 # left endpoint b = 1 # right endpoint n = 10 # order of interpolatioin # Construct refined uniform grid for error ploting x = nodeunif(1001, a, b) # Compute actual and fitted values on grid y, d, s = f(x) # actual # Construct and evaluate Chebychev interpolant C = BasisChebyshev(n, a, b, f=f) # chose basis functions yc = C(x) # values dc = C(x, 1) # first derivative sc = C(x, 2) # second derivative # Construct and evaluate cubic spline interpolant S = BasisSpline(n, a, b, f=f) # chose basis functions ys = S(x) # values ds = S(x, 1) # first derivative ss = S(x, 2) # second derivative # Plot function approximation error plt.figure() plt.subplot(2, 1, 1), plt.plot(x, y - yc[0]) plt.ylabel('Chebychev') plt.title('Function Approximation Error') plt.subplot(2, 1, 2) plt.plot(x, y - ys[0]) plt.ylabel('Cubic Spline') plt.xlabel('x') # Plot first derivative approximation error plt.figure() plt.subplot(2, 1, 1), plt.plot(x, d - dc[0]) plt.ylabel('Chebychev') plt.title('First Derivative Approximation Error') plt.subplot(2, 1, 2) plt.plot(x, d - ds[0], 'm') plt.ylabel('Cubic Spline') plt.xlabel('x') # Plot second derivative approximation error plt.figure() plt.subplot(2, 1, 1), plt.plot(x, s - sc[0]) plt.ylabel('Chebychev') plt.title('Second Derivative Approximation Error') plt.subplot(2, 1, 2) plt.plot(x, s - ss[0], 'm') plt.ylabel('Cubic Spline') plt.xlabel('x') plt.show()
14860
from .pressureprofile import PressureProfile import numpy as np class ArrayPressureProfile(PressureProfile): def __init__(self, array, reverse=False): super().__init__(self.__class__.__name__, array.shape[-1]) if reverse: self.pressure_profile = array[::-1] else: self.pressure_profile = array def compute_pressure_profile(self): """ Sets up the pressure profile for the atmosphere model """ logp = np.log10(self.pressure_profile) gradp = np.gradient(logp) self.pressure_profile_levels = \ 10**np.append(logp-gradp/2, logp[-1]+gradp[-1]/2) @property def profile(self): return self.pressure_profile def write(self, output): pressure = super().write(output) return pressure @classmethod def input_keywords(self): return ['array', 'fromarray',]
14878
import copy import logging import os from typing import Dict, List, Tuple import checksumdir import imageio import numpy as np import torch from torch.utils.data import DataLoader, Dataset from tqdm import tqdm from ..adapter import download_object logger = logging.getLogger("fastface.dataset") class _IdentitiyTransforms: """Dummy tranforms""" def __call__(self, img: np.ndarray, targets: Dict) -> Tuple: return img, targets def default_collate_fn(batch): batch, targets = zip(*batch) batch = np.stack(batch, axis=0).astype(np.float32) batch = torch.from_numpy(batch).permute(0, 3, 1, 2).contiguous() for i, target in enumerate(targets): for k, v in target.items(): if isinstance(v, np.ndarray): targets[i][k] = torch.from_numpy(v) return batch, targets class BaseDataset(Dataset): def __init__(self, ids: List[str], targets: List[Dict], transforms=None, **kwargs): super().__init__() assert isinstance(ids, list), "given `ids` must be list" assert isinstance(targets, list), "given `targets must be list" assert len(ids) == len(targets), "lenght of both lists must be equal" self.ids = ids self.targets = targets self.transforms = _IdentitiyTransforms() if transforms is None else transforms # set given kwargs to the dataset for key, value in kwargs.items(): if hasattr(self, key): # log warning continue setattr(self, key, value) def __getitem__(self, idx: int) -> Tuple: img = self._load_image(self.ids[idx]) targets = copy.deepcopy(self.targets[idx]) # apply transforms img, targets = self.transforms(img, targets) # clip boxes targets["target_boxes"] = self._clip_boxes( targets["target_boxes"], img.shape[:2] ) # discard zero sized boxes targets["target_boxes"] = self._discard_zero_size_boxes(targets["target_boxes"]) return (img, targets) def __len__(self) -> int: return len(self.ids) @staticmethod def _clip_boxes(boxes: np.ndarray, shape: Tuple[int, int]) -> np.ndarray: # TODO pydoc height, width = shape boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(min=0, max=width - 1) boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(min=0, max=height - 1) return boxes @staticmethod def _discard_zero_size_boxes(boxes: np.ndarray) -> np.ndarray: # TODO pydoc scale = (boxes[:, [2, 3]] - boxes[:, [0, 1]]).min(axis=1) return boxes[scale > 0] @staticmethod def _load_image(img_file_path: str): """loads rgb image using given file path Args: img_path (str): image file path to load Returns: np.ndarray: rgb image as np.ndarray """ img = imageio.imread(img_file_path) if not img.flags["C_CONTIGUOUS"]: # if img is not contiguous than fix it img = np.ascontiguousarray(img, dtype=img.dtype) if len(img.shape) == 4: # found RGBA, converting to => RGB img = img[:, :, :3] elif len(img.shape) == 2: # found GRAYSCALE, converting to => RGB img = np.stack([img, img, img], axis=-1) return np.array(img, dtype=np.uint8) def get_dataloader( self, batch_size: int = 1, shuffle: bool = False, num_workers: int = 0, collate_fn=default_collate_fn, pin_memory: bool = False, **kwargs ): return DataLoader( self, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, **kwargs ) def get_mean_std(self) -> Dict: # TODO pydoc mean_sum, mean_sq_sum = np.zeros(3), np.zeros(3) for img, _ in tqdm( self, total=len(self), desc="calculating mean and std for the dataset" ): d = img.astype(np.float32) / 255 mean_sum[0] += np.mean(d[:, :, 0]) mean_sum[1] += np.mean(d[:, :, 1]) mean_sum[2] += np.mean(d[:, :, 2]) mean_sq_sum[0] += np.mean(d[:, :, 0] ** 2) mean_sq_sum[1] += np.mean(d[:, :, 1] ** 2) mean_sq_sum[2] += np.mean(d[:, :, 2] ** 2) mean = mean_sum / len(self) std = (mean_sq_sum / len(self) - mean ** 2) ** 0.5 return {"mean": mean.tolist(), "std": std.tolist()} def get_normalized_boxes(self) -> np.ndarray: # TODO pydoc normalized_boxes = [] for img, targets in tqdm( self, total=len(self), desc="computing normalized target boxes" ): if targets["target_boxes"].shape[0] == 0: continue max_size = max(img.shape) normalized_boxes.append(targets["target_boxes"] / max_size) return np.concatenate(normalized_boxes, axis=0) def get_box_scale_histogram(self) -> Tuple[np.ndarray, np.ndarray]: bins = map(lambda x: 2 ** x, range(10)) total_boxes = [] for _, targets in tqdm(self, total=len(self), desc="getting box sizes"): if targets["target_boxes"].shape[0] == 0: continue total_boxes.append(targets["target_boxes"]) total_boxes = np.concatenate(total_boxes, axis=0) areas = (total_boxes[:, 2] - total_boxes[:, 0]) * ( total_boxes[:, 3] - total_boxes[:, 1] ) return np.histogram(np.sqrt(areas), bins=list(bins)) def download(self, urls: List, target_dir: str): for k, v in urls.items(): keys = list(v["check"].items()) checked_keys = [] for key, md5hash in keys: target_sub_dir = os.path.join(target_dir, key) if not os.path.exists(target_sub_dir): checked_keys.append(False) else: checked_keys.append( checksumdir.dirhash(target_sub_dir, hashfunc="md5") == md5hash ) if sum(checked_keys) == len(keys): logger.debug("found {} at {}".format(k, target_dir)) continue # download adapter = v.get("adapter") kwargs = v.get("kwargs", {}) logger.warning( "{} not found in the {}, downloading...".format(k, target_dir) ) download_object(adapter, dest_path=target_dir, **kwargs)
14909
import json import logging from django.core.management.base import BaseCommand from django.db import transaction from osf.models import AbstractProvider, PreprintProvider, Preprint, Subject from osf.models.provider import rules_to_subjects from scripts import utils as script_utils from osf.models.validators import validate_subject_hierarchy from website.preprints.tasks import on_preprint_updated logger = logging.getLogger(__name__) BEPRESS_PROVIDER = None def validate_input(custom_provider, data, provider_type='osf.preprintprovider', copy=False, add_missing=False): # This function may be run outside of this command (e.g. in the admin app) so we # need to make sure that BEPRESS_PROVIDER is set global BEPRESS_PROVIDER BEPRESS_PROVIDER = AbstractProvider.objects.filter(_id='osf', type='osf.preprintprovider').first() logger.info('Validating data') includes = data.get('include', []) excludes = data.get('exclude', []) customs = data.get('custom', {}) merges = data.get('merge', {}) if copy: included_subjects = rules_to_subjects(custom_provider.subjects_acceptable) else: assert not set(includes) & set(excludes), 'There must be no overlap between includes and excludes' for text in includes: assert Subject.objects.filter(provider=BEPRESS_PROVIDER, text=text).exists(), 'Unable to find included subject with text {}'.format(text) included_subjects = Subject.objects.filter(provider=BEPRESS_PROVIDER, text__in=includes).include_children() logger.info('Successfully validated `include`') for text in excludes: try: Subject.objects.get(provider=BEPRESS_PROVIDER, text=text) except Subject.DoesNotExist: raise RuntimeError('Unable to find excluded subject with text {}'.format(text)) assert included_subjects.filter(text=text).exists(), 'Excluded subject with text {} was not included'.format(text) included_subjects = included_subjects.exclude(text__in=excludes) logger.info('Successfully validated `exclude`') for cust_name, map_dict in customs.items(): assert not included_subjects.filter(text=cust_name).exists(), 'Custom text {} already exists in mapped set'.format(cust_name) assert Subject.objects.filter(provider=BEPRESS_PROVIDER, text=map_dict.get('bepress')).exists(), 'Unable to find specified BePress subject with text {}'.format(map_dict.get('bepress')) if map_dict.get('parent'): # Null parent possible assert map_dict['parent'] in set(customs.keys()) | set(included_subjects.values_list('text', flat=True)), 'Unable to find specified parent with text {} in mapped set'.format(map_dict['parent']) # TODO: hierarchy length validation? Probably more trouble than worth here, done on .save logger.info('Successfully validated `custom`') included_subjects = included_subjects | Subject.objects.filter(text__in=[map_dict['bepress'] for map_dict in customs.values()]) for merged_from, merged_into in merges.items(): assert not included_subjects.filter(text=merged_from).exists(), 'Cannot merge subject "{}" that will be included'.format(merged_from) assert merged_into in set(included_subjects.values_list('text', flat=True)) | set(customs.keys()), 'Unable to determine merge target for "{}"'.format(merged_into) included_subjects = included_subjects | Subject.objects.filter(text__in=merges.keys()) missing_subjects = Subject.objects.filter(id__in=set([hier[-1].id for ps in Preprint.objects.filter(provider=custom_provider) for hier in ps.subject_hierarchy])).exclude(id__in=included_subjects.values_list('id', flat=True)) if not add_missing: assert not missing_subjects.exists(), 'Incomplete mapping -- following subjects in use but not included:\n{}'.format(list(missing_subjects.values_list('text', flat=True))) if isinstance(custom_provider, PreprintProvider): assert custom_provider.share_title not in [None, '', 'bepress'], 'share title not set; please set the share title on this provider before creating a custom taxonomy.' logger.info('Successfully validated mapping completeness') return list(missing_subjects) if add_missing else None def create_subjects_recursive(custom_provider, root_text, exclude_texts, parent=None): logger.info('Duplicating BePress subject {} on {}'.format(root_text, custom_provider._id)) bepress_subj = Subject.objects.get(provider=BEPRESS_PROVIDER, text=root_text) custom_subj = Subject(text=root_text, parent=parent, bepress_subject=bepress_subj, provider=custom_provider) custom_subj.save() # This is not a problem now, as all excluded subjects are leafs, but it could be problematic if non-leafs had their children excluded. # It could also be problematic if they didn't, if any of those children are used by existing preprints. # TODO: Determine correct resolution for child_text in bepress_subj.children.exclude(text__in=exclude_texts).values_list('text', flat=True): create_subjects_recursive(custom_provider, child_text, exclude_texts, parent=custom_subj) def create_from_subjects_acceptable(custom_provider, add_missing=False, missing=None): tries = 0 subjects_to_copy = list(rules_to_subjects(custom_provider.subjects_acceptable)) if missing and add_missing: subjects_to_copy = subjects_to_copy + missing while len(subjects_to_copy): previous_len = len(subjects_to_copy) tries += 1 if tries == 10: raise RuntimeError('Unable to map subjects acceptable with 10 iterations -- subjects remaining: {}'.format(subjects_to_copy)) for subj in list(subjects_to_copy): if map_custom_subject(custom_provider, subj.text, subj.parent.text if subj.parent else None, subj.text): subjects_to_copy.remove(subj) elif add_missing and subj.parent and subj.parent not in subjects_to_copy: # Dirty subjects_to_copy.append(subj.parent) previous_len += 1 else: logger.warn('Failed. Retrying next iteration') new_len = len(subjects_to_copy) if new_len == previous_len: raise RuntimeError('Unable to map any custom subjects on iteration -- subjects remaining: {}'.format(subjects_to_copy)) def do_create_subjects(custom_provider, includes, excludes, copy=False, add_missing=False, missing=None): if copy: create_from_subjects_acceptable(custom_provider, add_missing=add_missing, missing=missing) else: for root_text in includes: create_subjects_recursive(custom_provider, root_text, excludes) def map_custom_subject(custom_provider, name, parent, mapping): logger.info('Attempting to create subject {} on {} from {} with {}'.format(name, custom_provider._id, mapping, 'parent {}'.format(parent) if parent else 'no parent')) if parent: parent_subject = Subject.objects.filter(provider=custom_provider, text=parent).first() else: parent_subject = None bepress_subject = Subject.objects.get(provider=BEPRESS_PROVIDER, text=mapping) if parent and not parent_subject: return False custom_subject = Subject(provider=custom_provider, text=name, parent=parent_subject, bepress_subject=bepress_subject) custom_subject.save() return True def do_custom_mapping(custom_provider, customs): tries = 0 unmapped_customs = customs while len(unmapped_customs): previous_len = len(unmapped_customs) tries += 1 if tries == 10: raise RuntimeError('Unable to map custom subjects with 10 iterations -- invalid input') successes = [] for cust_name, map_dict in unmapped_customs.items(): if map_custom_subject(custom_provider, cust_name, map_dict.get('parent'), map_dict.get('bepress')): successes.append(cust_name) else: logger.warn('Failed. Retrying next iteration') [unmapped_customs.pop(key) for key in successes] new_len = len(unmapped_customs) if new_len == previous_len: raise RuntimeError('Unable to map any custom subjects on iteration -- invalid input') def map_preprints_to_custom_subjects(custom_provider, merge_dict, dry_run=False): for preprint in Preprint.objects.filter(provider=custom_provider): logger.info('Preparing to migrate preprint {}'.format(preprint.id)) old_hier = preprint.subject_hierarchy subjects_to_map = [hier[-1] for hier in old_hier] merged_subject_ids = set(Subject.objects.filter(provider=custom_provider, text__in=[merge_dict[k] for k in set(merge_dict.keys()) & set([s.text for s in subjects_to_map])]).values_list('id', flat=True)) subject_ids_to_map = set(s.id for s in subjects_to_map if s.text not in merge_dict.keys()) aliased_subject_ids = set(Subject.objects.filter(bepress_subject__id__in=subject_ids_to_map, provider=custom_provider).values_list('id', flat=True)) | merged_subject_ids aliased_hiers = [s.object_hierarchy for s in Subject.objects.filter(id__in=aliased_subject_ids)] old_subjects = list(preprint.subjects.values_list('id', flat=True)) preprint.subjects.clear() for hier in aliased_hiers: validate_subject_hierarchy([s._id for s in hier]) for s in hier: preprint.subjects.add(s) # Update preprint in SHARE if not dry_run: on_preprint_updated(preprint._id, old_subjects=old_subjects) preprint.reload() new_hier = [s.object_hierarchy for s in preprint.subjects.exclude(children__in=preprint.subjects.all())] logger.info('Successfully migrated preprint {}.\n\tOld hierarchy:{}\n\tNew hierarchy:{}'.format(preprint.id, old_hier, new_hier)) def migrate(provider=None, provider_type='osf.preprintprovider', share_title=None, data=None, dry_run=False, copy=False, add_missing=False): # This function may be run outside of this command (e.g. in the admin app) so we # need to make sure that BEPRESS_PROVIDER is set global BEPRESS_PROVIDER if not BEPRESS_PROVIDER: BEPRESS_PROVIDER = AbstractProvider.objects.filter(_id='osf', type='osf.preprintprovider').first() custom_provider = AbstractProvider.objects.filter(_id=provider, type=provider_type).first() assert custom_provider, 'Unable to find specified provider: {}'.format(provider) assert custom_provider.id != BEPRESS_PROVIDER.id, 'Cannot add custom mapping to BePress provider' assert not custom_provider.subjects.exists(), 'Provider aldready has a custom taxonomy' if isinstance(custom_provider, PreprintProvider) and custom_provider.share_title in [None, '', 'bepress']: if not share_title: raise RuntimeError('`--share-title` is required if not already set on the provider') custom_provider.share_title = share_title custom_provider.save() missing = validate_input(custom_provider, data, provider_type=provider_type, copy=copy, add_missing=add_missing) do_create_subjects(custom_provider, data['include'], data.get('exclude', []), copy=copy, add_missing=add_missing, missing=missing) do_custom_mapping(custom_provider, data.get('custom', {})) map_preprints_to_custom_subjects(custom_provider, data.get('merge', {}), dry_run=dry_run) class Command(BaseCommand): def add_arguments(self, parser): super(Command, self).add_arguments(parser) parser.add_argument( '--dry', action='store_true', dest='dry_run', help='Run migration and roll back changes to db', ) parser.add_argument( '--data', action='store', dest='data', help='List of targets, of form {\n"include": [<list of subject texts to include at top level, children implicit>],' '\n"exclude": [<list of children to exclude from included trees>],' '\n"custom": [{"<Custom Name": {"parent": <Parent text>", "bepress": "<Bepress Name>"}}, ...]' '\n"merge": {"<Merged from (bepress)>": "<Merged into (custom)", ...}}', ) parser.add_argument( '--provider', action='store', dest='provider', required=True, help='_id of the <provider> object, e.g. "osf". <provider> is expected to not already have a custom taxonomy.' ) parser.add_argument( '--from-subjects-acceptable', action='store_true', dest='from_subjects_acceptable', help='Specifies that the provider\'s `subjects_acceptable` be copied. `data.include` and `exclude` are ignored, the other keys may still be used' ) parser.add_argument( '--add-missing', action='store_true', dest='add_missing', help='Adds "used-but-not-included" subjects.' ) parser.add_argument( '--share-title', action='store', type=str, dest='share_title', help='Sets <provider>.share_title. Ignored if already set on provider, required if not.' ) parser.add_argument( '--type', action='store', type=str, dest='provider_type', help='Specifies provider type [`osf.preprintprovider`, `osf.registrationprovider`, `osf.collectionprovider`]' ) def handle(self, *args, **options): global BEPRESS_PROVIDER provider_type = options.get('provider_type') or 'osf.preprintprovider' BEPRESS_PROVIDER = AbstractProvider.objects.filter(_id='osf', type='osf.preprintprovider').first() dry_run = options.get('dry_run') provider = options['provider'] data = json.loads(options['data'] or '{}') share_title = options.get('share_title') copy = options.get('from_subjects_acceptable') add_missing = options.get('add_missing') if copy: data['include'] = list(Subject.objects.filter(provider=BEPRESS_PROVIDER, parent__isnull=True).values_list('text', flat=True)) if not dry_run: script_utils.add_file_logger(logger, __file__) with transaction.atomic(): migrate(provider=provider, share_title=share_title, provider_type=provider_type, data=data, dry_run=dry_run, copy=copy, add_missing=add_missing) if dry_run: raise RuntimeError('Dry run, transaction rolled back.')
14943
import os def get_dirs(): cwd = os.path.dirname(os.path.realpath(__file__)) local_savedir = cwd local_datadir = cwd local_wandbdir = cwd return local_savedir, local_datadir, local_wandbdir def configure_logging(config, name, model): if config['wandb_on']: import wandb wandb.init(name=name, project='YOUR_PROJECT_NAME', entity='YOUR_ENTITY_NAME', dir=config['wandb_dir'], config=config) wandb.watch(model) def log(key, val): print(f"{key}: {val}") wandb.log({key: val}) checkpoint_path = os.path.join(wandb.run.dir, 'checkpoint.tar') else: def log(key, val): print(f"{key}: {val}") checkpoint_path = './checkpoint.tar' return log, checkpoint_path
14945
import torch from torch import nn from transformers import BertTokenizer, VisualBertModel, VisualBertConfig import numpy as np class VisualBertClassifier(nn.Module): def __init__(self, visual_bert_model, num_classes: int = 8, initial_visual_embedding_dim: int = 96, final_dropout_rate: float = 0.1): """ pooler_output (torch.FloatTensor of shape (batch_size, hidden_size)) — Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. @param initial_visual_embedding_dim: """ super().__init__() self.visual_embedding_projection = nn.Linear(initial_visual_embedding_dim, 2048) self.visual_bert = visual_bert_model self.final_dropout = nn.Dropout(final_dropout_rate) self.out = nn.Linear(768, num_classes) def forward(self, text_input_ids, text_token_type_ids, text_attention_mask, visual_embeds, visual_token_type_ids, visual_attention_mask ): visual_embeds = self.visual_embedding_projection(visual_embeds) output = self.visual_bert(input_ids=text_input_ids, token_type_ids=text_token_type_ids, attention_mask=text_attention_mask, visual_embeds=visual_embeds, visual_token_type_ids=visual_token_type_ids, visual_attention_mask=visual_attention_mask) output = self.final_dropout(output.pooler_output) output = self.out(output) return output if __name__ == '__main__': bert_text_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") inputs = bert_text_tokenizer("What is the man eating?", return_tensors="pt") text_input_ids = inputs.data['input_ids'].to('cuda') text_token_type_ids = inputs.data['token_type_ids'].to('cuda') text_attention_mask = inputs.data['attention_mask'].to('cuda') sample_face_body_embedding_path = "/home/gsoykan20/Desktop/self_development/emotion-recognition-drawings/data/emoreccom_face_body_embeddings_96d/train/0_3_4.jpg.npy" sample_face_body_embedding = np.load(sample_face_body_embedding_path) visual_embeds = torch.from_numpy(sample_face_body_embedding) visual_embeds = visual_embeds.to('cuda') visual_embeds = torch.unsqueeze(visual_embeds, 0) visual_token_type_ids = torch.ones(visual_embeds.shape[:-1], dtype=torch.long).to('cuda') visual_attention_mask = torch.ones(visual_embeds.shape[:-1], dtype=torch.float).to('cuda') classifier = VisualBertClassifier() classifier.to('cuda') classifier.forward(text_input_ids, text_token_type_ids, text_attention_mask, visual_embeds, visual_token_type_ids, visual_attention_mask)
14969
from akagi.data_source import DataSource from akagi.data_file import DataFile class SpreadsheetDataSource(DataSource): '''SpreadsheetSource replesents a data on Google Spreadsheets ''' def __init__(self, sheet_id, sheet_range='A:Z', no_cache=False): self._sheet_id = sheet_id self._sheet_range = sheet_range @property def data_files(self): return [DataFile.spreadsheet(self._sheet_id, self._sheet_range)]
14972
from girder.exceptions import ValidationException from girder.utility import setting_utilities class PluginSettings: AUTO_COMPUTE = 'hashsum_download.auto_compute' @setting_utilities.default(PluginSettings.AUTO_COMPUTE) def _defaultAutoCompute(): return False @setting_utilities.validator(PluginSettings.AUTO_COMPUTE) def _validateAutoCompute(doc): if not isinstance(doc['value'], bool): raise ValidationException('Auto-compute hash setting must be true or false.')
14987
import os from PIL import Image import seaborn as sn import matplotlib.pyplot as plt import torch import torch.nn.functional as F from sidechainnet.utils.sequence import ProteinVocabulary from einops import rearrange # general functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d def broadcat(tensors, dim = -1): num_tensors = len(tensors) shape_lens = set(list(map(lambda t: len(t.shape), tensors))) assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions' shape_len = list(shape_lens)[0] dim = (dim + shape_len) if dim < 0 else dim dims = list(zip(*map(lambda t: list(t.shape), tensors))) expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation' max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims)) expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims)) expanded_dims.insert(dim, (dim, dims[dim])) expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims))) tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes))) return torch.cat(tensors, dim = dim) # singleton msa transformer msa_instances = None def get_msa_transformer(): global msa_instances if not exists(msa_instances): msa_model, alphabet = torch.hub.load("facebookresearch/esm", "esm_msa1_t12_100M_UR50S") batch_converter = alphabet.get_batch_converter() return msa_model, batch_converter return msa_instances # MSA embedding related functions VOCAB = ProteinVocabulary() def ids_to_aa_str(x): assert isinstance(x, list), 'input must be a list' id2aa = VOCAB._int2char is_char = lambda c: isinstance(c, str) and len(c) == 1 out = [] for el in x: if isinstance(el, list): out.append(ids_to_aa_str(el)) elif isinstance(el, int): out.append(id2aa[el]) else: raise TypeError('type must be either list or character') if all(map(is_char, out)): return ''.join(out) return out def aa_str_to_embed_input(x): assert isinstance(x, list), 'input must be a list' out = [] for el in x: if isinstance(el, list): out.append(aa_str_to_embed_input(el)) elif isinstance(el, str): out.append((None, el)) else: raise TypeError('type must be either list or string') return out def apc(x): a1 = x.sum(-1, keepdims=True) a2 = x.sum(-2, keepdims=True) a12 = x.sum((-1, -2), keepdims=True) avg = a1 * a2 avg.div_(a12) normalized = x - avg return normalized def symmetrize(x): return x + x.transpose(-1, -2) def pad_image_to(tensor, size, value = 0.): remainder = size - tensor.shape[-1] tensor = F.pad(tensor, (0, remainder, 0, remainder), value = value) return tensor # getting a single MSA attention embedding, with caching CACHE_PATH = default(os.getenv('CACHE_PATH'), os.path.expanduser('~/.cache.ddpm-proteins')) FETCH_FROM_CACHE = not exists(os.getenv('CLEAR_CACHE')) os.makedirs(CACHE_PATH, exist_ok = True) @torch.no_grad() def get_msa_attention_embedding( model, batch_converter, aa_str, id, fetch_msas_fn = lambda t: [], cache = True ): device = next(model.parameters()).device cache_full_path = os.path.join(CACHE_PATH, f'{id}.pt') if cache and FETCH_FROM_CACHE and os.path.exists(cache_full_path): try: loaded = torch.load(cache_full_path).to(device) except: loaded = None if exists(loaded): return loaded msas = default(fetch_msas_fn(aa_str), []) seq_with_msas = [aa_str, *msas] embed_inputs = aa_str_to_embed_input(seq_with_msas) _, _, msa_batch_tokens = batch_converter(embed_inputs) results = model(msa_batch_tokens.to(device), need_head_weights = True) attentions = results['row_attentions'] attentions = attentions[..., 1:, 1:] attentions = rearrange(attentions, 'b l h m n -> b (l h) m n') attentions = apc(symmetrize(attentions)) if cache: print(f'caching to {cache_full_path}') torch.save(attentions, cache_full_path) return attentions def get_msa_attention_embeddings( model, batch_converter, seqs, ids, fetch_msas_fn = lambda t: [], cache = True ): n = seqs.shape[1] seqs = rearrange(seqs, 'b n -> b () n') aa_strs = ids_to_aa_str(seqs.cpu().tolist()) embeds_list = [get_msa_attention_embedding(model, batch_converter, aa, seq_id, cache = cache) for aa, seq_id in zip(aa_strs, ids)] embeds_list = [pad_image_to(embed, n) for embed in embeds_list] embeds = torch.cat(embeds_list, dim = 0) return embeds # training utils def cycle(loader, thres = 256): while True: for data in loader: if data.seqs.shape[1] <= thres: yield data def save_heatmap(tensor, filepath, dpi = 200, return_image = False): heatmap = sn.heatmap(tensor.cpu().numpy()) figure = heatmap.get_figure() figure.savefig(filepath, dpi = dpi) plt.clf() if not return_image: return return Image.open(filepath)
15007
from . import ( yaw, layout, base_COE, optimization, layout_height, power_density, yaw_wind_rose, power_density_1D, yaw_wind_rose_parallel, )