id
stringlengths
3
8
content
stringlengths
100
981k
10679
import numpy as np import matplotlib.pyplot as plt TOTAL = 200 STEP = 0.25 EPS = 0.1 INITIAL_THETA = [9, 14] def func(x): return 0.2 * x + 3 def generate_sample(total=TOTAL): x = 0 while x < total * STEP: yield func(x) + np.random.uniform(-1, 1) * np.random.uniform(2, 8) x += STEP def cost_function(A, Y, theta): return (Y - A@theta).T@(Y - A@theta) def batch_descent(A, Y, speed=0.001): theta = np.array(INITIAL_THETA.copy(), dtype=np.float32) theta.reshape((len(theta), 1)) previous_cost = 10 ** 6 current_cost = cost_function(A, Y, theta) while np.abs(previous_cost - current_cost) > EPS: previous_cost = current_cost derivatives = [0] * len(theta) # --------------------------------------------- for j in range(len(theta)): summ = 0 for i in range(len(Y)): summ += (Y[i] - A[i]@theta) * A[i][j] derivatives[j] = summ # Выполнение требования одновремменности theta[0] += speed * derivatives[0] theta[1] += speed * derivatives[1] # --------------------------------------------- current_cost = cost_function(A, Y, theta) print("Batch cost:", current_cost) plt.plot(theta[0], theta[1], 'ro') return theta def stochastic_descent(A, Y, speed=0.1): theta = np.array(INITIAL_THETA.copy(), dtype=np.float32) previous_cost = 10 ** 6 current_cost = cost_function(A, Y, theta) while np.abs(previous_cost - current_cost) > EPS: previous_cost = current_cost # -------------------------------------- # for i in range(len(Y)): i = np.random.randint(0, len(Y)) derivatives = [0] * len(theta) for j in range(len(theta)): derivatives[j] = (Y[i] - A[i]@theta) * A[i][j] theta[0] += speed * derivatives[0] theta[1] += speed * derivatives[1] # -------------------------------------- current_cost = cost_function(A, Y, theta) print("Stochastic cost:", current_cost) plt.plot(theta[0], theta[1], 'ro') return theta X = np.arange(0, TOTAL * STEP, STEP) Y = np.array([y for y in generate_sample(TOTAL)]) # Нормализацию вкрячил, чтобы парабалоид красивый был X = (X - X.min()) / (X.max() - X.min()) A = np.empty((TOTAL, 2)) A[:, 0] = 1 A[:, 1] = X theta = np.linalg.pinv(A).dot(Y) print(theta, cost_function(A, Y, theta)) import time start = time.clock() theta_stochastic = stochastic_descent(A, Y, 0.1) print("St:", time.clock() - start, theta_stochastic) start = time.clock() theta_batch = batch_descent(A, Y, 0.001) print("Btch:", time.clock() - start, theta_batch)
10726
from guniflask.config import settings from guniflask.web import blueprint, get_route @blueprint class ConfigController: def __init__(self): pass @get_route('/settings/<name>') def get_setting(self, name): return {name: settings[name]}
10791
import unittest import numpy as np from openmdao.utils.assert_utils import assert_near_equal from wisdem.optimization_drivers.dakota_driver import DakotaOptimizer try: import dakota except ImportError: dakota = None @unittest.skipIf(dakota is None, "only run if Dakota is installed.") class TestDakotaOptimization(unittest.TestCase): def test_2D_opt_max_iterations(self): bounds = {"x": np.array([[0.0, 1.0], [0.0, 1.0]])} desvars = {"x": np.array([0.0, 0.25])} outputs = ["y"] template_dir = "template_dir/" model_string = "from weis.multifidelity.models.testbed_components import simple_2D_high_model as model" output_scalers = [1.0] options = {"method": "coliny_cobyla", "max_function_evaluations": 3} opt = DakotaOptimizer(template_dir) results = opt.optimize(desvars, outputs, bounds, model_string, output_scalers, options) assert_near_equal(np.min(np.array(results["y"])), -9.5) def test_2D_opt_EGO(self): bounds = {"x": np.array([[0.0, 1.0], [0.0, 1.0]])} desvars = {"x": np.array([0.0, 0.25])} outputs = ["y"] template_dir = "template_dir/" model_string = "from weis.multifidelity.models.testbed_components import simple_2D_high_model as model" output_scalers = [1.0] options = {"initial_samples": 5, "method": "efficient_global", "seed": 123456} opt = DakotaOptimizer(template_dir) results = opt.optimize(desvars, outputs, bounds, model_string, output_scalers, options) assert_near_equal(np.min(np.array(results["y"])), -9.999996864) def test_two_variables(self): bounds = {"x": np.array([[0.0, 1.0], [0.0, 1.0]]), "z": [1.0, 2.0]} desvars = {"x": np.array([0.0, 0.25]), "z": 1.5} outputs = ["y"] template_dir = "template_dir/" model_string = "from weis.multifidelity.models.testbed_components import simple_two_variable as model" output_scalers = [1.0] options = {"method": "coliny_cobyla", "max_function_evaluations": 3} opt = DakotaOptimizer(template_dir) results = opt.optimize(desvars, outputs, bounds, model_string, output_scalers, options) assert_near_equal(np.min(np.array(results["y"])), 1.0) def test_constraint(self): bounds = {"x": np.array([[0.0, 1.0], [0.0, 1.0]])} desvars = {"x": np.array([0.0, 0.25])} outputs = ["y", "con"] template_dir = "template_dir/" model_string = "from weis.multifidelity.models.testbed_components import simple_2D_low_model as model" output_scalers = [1.0, 1.0] options = {"method": "coliny_cobyla", "max_function_evaluations": 3} opt = DakotaOptimizer(template_dir) results = opt.optimize(desvars, outputs, bounds, model_string, output_scalers, options) assert_near_equal(np.min(np.array(results["y"])), 0.5) assert_near_equal(np.min(np.array(results["con"])), 0.0) if __name__ == "__main__": unittest.main()
10832
import base64 import requests class RemotePkcs1Signer(object): """ Client-side Signer subclass, that calls the Signing Service over HTTP to sign things """ # standard headers for request headers = { 'Content-Type': 'application/json', 'Accept': 'application/json' } def __init__(self, host, port, key, algorithm="SIGNATURE_RSA_PKCS1_SHA256", keyfile=None): """ :param host: host of the remote HTTP service :param port: port of the remote HTTP service :param key: see signing_service.py, in our case we use the hash of the related cert to identify the key :param algorithm: which algorithm to use :param keyfile: unused, this is a wart :( """ self.endpoint = "http://{}:{}/".format(host, port) self.key = key self.algorithm = algorithm def sign(self, data): plaintext_base64 = base64.b64encode(data) plaintext_key = u'0' payload = { "key": self.key, "plaintext": [{ "key": plaintext_key, "value": plaintext_base64 }], "algorithm": self.algorithm } response = requests.post(self.endpoint, headers=self.__class__.headers, json=payload).json() signature = base64.b64decode(response[u'signature'][plaintext_key]) return signature
10893
from pudzu.charts import * from pudzu.sandbox.bamboo import * import seaborn as sns # generate map df = pd.read_csv("datasets/euvotes.csv").set_index('country') palette = tmap(RGBA, sns.cubehelix_palette(11, start=0.2, rot=-0.75)) ranges = [20000000,10000000,5000000,2000000,1000000,500000,200000,100000,0] def votecolfn(n): return palette[8 - next(i for i,x in enumerate(ranges) if n >= x)] def colorfn(c): if c not in df.index: return "white" if c in ['Sea', 'Borders'] else "grey" return votecolfn(int(df.loc[c].votes)) def labelfn(c): if c not in df.index: return None dfc = df.loc[c] label = "{name} '{year}\n({votes:.2g}M)".format(name=dfc.leader.split(" ")[-1], year=dfc.year[2:], votes=int(dfc.votes) / 1000000) return Image.from_text(label, arial(14, bold=True), align="center", padding=2) map = map_chart("maps/Europe.png", colorfn, labelfn) # legend def box(c): return Image.new("RGBA", (30, 30), c).place(Image.from_text("", arial(16, bold=True), "black", bg=c)) vote_arr = Image.from_array([ [box(votecolfn(n)), Image.from_text("<0.1M" if n < 100000 else ">{:.2g}M".format(n/1000000), arial(16), padding=(10,0))] for n in ranges ], bg="white", xalign=0) vote_leg = Image.from_column([Image.from_text("# votes", arial(16, bold=True)), vote_arr], bg="white", xalign=0, padding=(0,5)) note_leg = Image.from_text("Multi-party national elections for executive head or party.", arial(16), max_width=100, bg="white", padding=(0,2)) legend = Image.from_column([vote_leg, note_leg], bg="white", xalign=0, padding=5).pad(1, "black") chart = map.place(legend, align=(1,0), padding=10) title = Image.from_column([ Image.from_text("EUROPEAN POPULAR VOTE RECORDS", arial(48, bold=True)), Image.from_text("candidate or party with the highest absolute popular vote", arial(36))], bg="white") img = Image.from_column([title, chart], bg="white", padding=2) img.place(Image.from_text("/u/Udzu", font("arial", 16), fg="black", bg="white", padding=5).pad((1,1,0,0), "black"), align=1, padding=10, copy=False) img.save("output/euvotes.png")
10959
import sys import unittest sys.path.append("../main") from sshtransport import * class FakeSocket(object): def __init__(self): self.recv_buffer = b"" self.send_buffer = b"" def recv(self, n): resp = self.recv_buffer[:n] self.recv_buffer = self.recv_buffer[n:] return resp def send(self, x): self.send_buffer += x class TestIdentificationString(unittest.TestCase): def test_recv(self): conn = FakeSocket() conn.recv_buffer = b"SSH-2.00-SecureMcShellface_1.0\r\n" idstr = IdentificationString(recvfrom=conn) self.assertEqual(idstr.protoversion, "2.00") self.assertEqual(idstr.softwareversion, "SecureMcShellface_1.0") def test_send(self): conn = FakeSocket() idstr = IdentificationString(protoversion="2.00", softwareversion="SecureMcShellface_1.0") idstr.send(conn) self.assertEqual(conn.send_buffer, b"SSH-2.00-SecureMcShellface_1.0\r\n") class TestBinaryPacket(unittest.TestCase): def test_recv(self): conn = FakeSocket() conn.recv_buffer = b"\x00\x00\x00\x14\x07Hello World!\x00\x00\x00\x00\x00\x00\x00" binpkt = BinaryPacket(recvfrom=conn) self.assertEqual(binpkt.payload, b"Hello World!") self.assertEqual(binpkt.mac, b"") def test_send(self): conn = FakeSocket() binpkt = BinaryPacket(payload=b"Hello World!") binpkt.send(conn) self.assertEqual(conn.send_buffer, b"\x00\x00\x00\x14\x07Hello World!\x00\x00\x00\x00\x00\x00\x00")
10982
import numpy as np types = ["int", "float", "double"] def randi(*args): return np.random.randint(-10, 10, size=args) rngs = {"int": randi, "float": np.random.randn, "double": np.random.randn} embodiments = { "function": "R.%s(A,B).AllClose(C)", "op": "(A %s B).AllClose(C)", "inline_op": "(R = A, R %s B).AllClose(C)", "inline_function": "( R = A, R.%s(B) ).AllClose(C)" } tests = { '+': ("Addition", "Add", [], []), '*': ("Multiplication", "Multiply", [], []), '-': ("Subtraction", "Subtract", [], []), '/': ("Division", "Divide", ["int"], []), 'dp': ("Dot product", "Dot", [], ["op", "inline_op"]) } for type in types: rng = rngs[type] for op, details in tests.iteritems(): test_title, function, exclude, ignore = details if type in exclude: break iop = op + "=" ifunction = "Inline" + function names = { "function": function, "op": op, "inline_op": iop, "inline_function": ifunction } n = 7 m = 7 A = rng(n, m) B = rng(n, m) if op == "+": C = A + B elif op == "/": C = A / B elif op == "-": C = A - B elif op == "*": C = A * B elif op == "dp": C = np.dot(A, B) m1 = " ;\n".join([" ".join([str(y) for y in x]) for x in A]) m2 = " ;\n".join([" ".join([str(y) for y in x]) for x in B]) m3 = " ;\n".join([" ".join([str(y) for y in x]) for x in C]) print """ SCENARIO("%s") { _M<%s> A,B,C,R; R.Resize( %d, %d ); A = _M<%s>(R\"(\n%s\n)\"); B = _M<%s>(R\"(\n%s\n)\"); C = _M<%s>(R\"(\n%s\n)\"); """ % (test_title + " for " + type, type, n, m, type, m1, type, m2, type, m3) for method, emb in embodiments.iteritems(): if method in ignore: continue name = names[method] tt = emb % name print "EXPECT( %s );" % tt print "};" print
11000
import os.path import tcprepl import BigWorld def echo(s): '''Send string to client''' if tcprepl.write_client is not None: tcprepl.write_client(s) def exec_file(filename, exec_globals=None): ''' Execute file Try to find file named `filename` and execute it. If `exec_globals` is specified it is used as globals-dict in exec context. ''' if exec_globals is None: exec_globals = {} if not os.path.isfile(filename): filename = BigWorld.wg_resolveFileName(filename) with open(filename, 'r') as f: code = f.read() exec code in exec_globals
11024
import os.path as osp import sys import subprocess subprocess.call(['pip', 'install', 'cvbase']) import cvbase as cvb import torch from torch.autograd import gradcheck sys.path.append(osp.abspath(osp.join(__file__, '../../'))) from biupdownsample import biupsample_naive, BiupsampleNaive from biupdownsample import bidownsample_naive, BidownsampleNaive feat = torch.randn(2, 64, 2, 2, requires_grad=True, device='cuda:0').double() mask = torch.randn( 2, 100, 4, 4, requires_grad=True, device='cuda:0').sigmoid().double() print('Gradcheck for biupsample naive...') test = gradcheck(BiupsampleNaive(5, 4, 2), (feat, mask), atol=1e-4, eps=1e-4) print(test) feat = torch.randn( 2, 1024, 100, 100, requires_grad=True, device='cuda:0').float() mask = torch.randn( 2, 25, 200, 200, requires_grad=True, device='cuda:0').sigmoid().float() loop_num = 500 time_naive_forward = 0 time_naive_backward = 0 bar = cvb.ProgressBar(loop_num) timer = cvb.Timer() for i in range(loop_num): x = biupsample_naive(feat.clone(), mask.clone(), 5, 1, 2) torch.cuda.synchronize() time_naive_forward += timer.since_last_check() x.sum().backward(retain_graph=True) torch.cuda.synchronize() time_naive_backward += timer.since_last_check() bar.update() forward_speed = (time_naive_forward + 1e-3) * 1e3 / loop_num backward_speed = (time_naive_backward + 1e-3) * 1e3 / loop_num print('\nBiupsample naive time forward: ' f'{forward_speed} ms/iter | time backward: {backward_speed} ms/iter') # --------------------------------------------------------------- feat = torch.randn(2, 64, 4, 4, requires_grad=True, device='cuda:0').double() mask = torch.randn( 2, 16, 4, 4, requires_grad=True, device='cuda:0').double() print('Gradcheck for bidownsample naive...') test = gradcheck(BidownsampleNaive(4, 1, 1), (feat, mask), atol=1e-4, eps=1e-4) print(test) feat = torch.randn( 2, 512, 200, 200, requires_grad=True, device='cuda:0').float() mask = torch.randn( 2, 100, 100, 100, requires_grad=True, device='cuda:0').sigmoid().float() loop_num = 500 time_naive_forward = 0 time_naive_backward = 0 bar = cvb.ProgressBar(loop_num) timer = cvb.Timer() for i in range(loop_num): x = bidownsample_naive(feat.clone(), mask.clone(), 10, 1, 2) torch.cuda.synchronize() time_naive_forward += timer.since_last_check() x.sum().backward(retain_graph=True) torch.cuda.synchronize() time_naive_backward += timer.since_last_check() bar.update() forward_speed = (time_naive_forward + 1e-3) * 1e3 / loop_num backward_speed = (time_naive_backward + 1e-3) * 1e3 / loop_num print('\nBidownsample naive time forward: ' f'{forward_speed} ms/iter | time backward: {backward_speed} ms/iter')
11047
import torch from torch import nn from torch.nn import functional as F class BicubicDownSample(nn.Module): def bicubic_kernel(self, x, a=-0.50): """ This equation is exactly copied from the website below: https://clouard.users.greyc.fr/Pantheon/experiments/rescaling/index-en.html#bicubic """ abs_x = torch.abs(x) if abs_x <= 1.0: return (a + 2.0) * torch.pow(abs_x, 3.0) - (a + 3.0) * torch.pow(abs_x, 2.0) + 1 elif 1.0 < abs_x < 2.0: return a * torch.pow(abs_x, 3) - 5.0 * a * torch.pow(abs_x, 2.0) + 8.0 * a * abs_x - 4.0 * a else: return 0.0 def __init__(self, factor=4, cuda=True, padding="reflect"): super().__init__() self.factor = factor size = factor * 4 k = torch.tensor( [self.bicubic_kernel((i - torch.floor(torch.tensor(size / 2)) + 0.5) / factor) for i in range(size)], dtype=torch.float32, ) k = k / torch.sum(k) # k = torch.einsum('i,j->ij', (k, k)) k1 = torch.reshape(k, shape=(1, 1, size, 1)) self.k1 = torch.cat([k1, k1, k1], dim=0) k2 = torch.reshape(k, shape=(1, 1, 1, size)) self.k2 = torch.cat([k2, k2, k2], dim=0) self.cuda = ".cuda" if cuda else "" self.padding = padding for param in self.parameters(): param.requires_grad = False def forward(self, x, nhwc=False, clip_round=False, byte_output=False): # x = torch.from_numpy(x).type('torch.FloatTensor') filter_height = self.factor * 4 filter_width = self.factor * 4 stride = self.factor pad_along_height = max(filter_height - stride, 0) pad_along_width = max(filter_width - stride, 0) filters1 = self.k1.type("torch{}.FloatTensor".format(self.cuda)) filters2 = self.k2.type("torch{}.FloatTensor".format(self.cuda)) # compute actual padding values for each side pad_top = pad_along_height // 2 pad_bottom = pad_along_height - pad_top pad_left = pad_along_width // 2 pad_right = pad_along_width - pad_left # apply mirror padding if nhwc: x = torch.transpose(torch.transpose(x, 2, 3), 1, 2) # NHWC to NCHW # downscaling performed by 1-d convolution x = F.pad(x, (0, 0, pad_top, pad_bottom), self.padding) x = F.conv2d(input=x, weight=filters1, stride=(stride, 1), groups=3) if clip_round: x = torch.clamp(torch.round(x), 0.0, 255.0) x = F.pad(x, (pad_left, pad_right, 0, 0), self.padding) x = F.conv2d(input=x, weight=filters2, stride=(1, stride), groups=3) if clip_round: x = torch.clamp(torch.round(x), 0.0, 255.0) if nhwc: x = torch.transpose(torch.transpose(x, 1, 3), 1, 2) if byte_output: return x.type("torch.{}.ByteTensor".format(self.cuda)) else: return x
11052
import nose2.tools from typing import Union from app.util import has_attributes class SampleClass: pass class TestUtil: @nose2.tools.params( ('SET_VALUE', True), (None, False), ('NO_ATTRIBUTE', False), (False, True), ('', True), (0, True), ) def test_has_attributes(self, value: Union[bool, int, str, None], ans: bool) -> None: obj = SampleClass() if value != 'NO_ATTRIBUTE': setattr(obj, 'attr', value) has_attr = has_attributes(obj, 'attr') assert has_attr is ans
11065
import os class config: host = 'zhangxuanyang.zhangxuanyang.ws2.hh-c.brainpp.cn' username = 'admin' port = 5672 exp_name = os.path.dirname(os.path.abspath(__file__)) exp_name = '-'.join(i for i in exp_name.split(os.path.sep) if i); test_send_pipe = exp_name + '-test-send_pipe' test_recv_pipe = exp_name + '-test-recv_pipe' net_cache = 'model_and_data/checkpoint_epoch_50.pth.tar' initial_net_cache = 'model_and_data/checkpoint_epoch_0.pth.tar' layers = 14 edges = 14 model_input_size = (1, 3, 224, 224) # Candidate operators blocks_keys = [ 'none', 'max_pool_3x3', 'avg_pool_3x3', 'skip_connect', 'sep_conv_3x3', 'sep_conv_5x5', 'dil_conv_3x3', 'dil_conv_5x5' ] op_num = len(blocks_keys) # Operators encoding NONE = 0 MAX_POOLING_3x3 = 1 AVG_POOL_3x3 = 2 SKIP_CONNECT = 3 SEP_CONV_3x3 = 4 SEP_CONV_5x5 = 5 DIL_CONV_3x3 = 6 DIL_CONV_5x5 = 7 time_limit=None #time_limit=0.050 speed_input_shape=[32,3,224,224] flops_limit=True max_flops=600*1e6 # max_flops=None max_epochs=20 select_num = 10 population_num = 50 mutation_num = 25 m_prob = 0.1 crossover_num = 25 momentum = 0.7 eps = 1e-5 # Enumerate all paths of a single cell paths = [[0, 2, 3, 4, 5], [0, 2, 3, 5], [0, 2, 4, 5], [0, 2, 5], [0, 3, 4, 5], [0, 3, 5], [0, 4, 5], [0, 5], [1, 2, 3, 4, 5], [1, 2, 3, 5], [1, 2, 4, 5], [1, 2, 5], [1, 3, 4, 5], [1, 3, 5], [1, 4, 5], [1, 5], [0, 2, 3, 4], [0, 2, 4], [0, 3, 4], [0, 4], [1, 2, 3, 4], [1, 2, 4], [1, 3, 4], [1, 4], [0, 2, 3], [0, 3], [1, 2, 3], [1, 3], [0, 2], [1, 2]] for i in ['exp_name']: print('{}: {}'.format(i,eval('config.{}'.format(i))))
11067
from btypes.big_endian import * cstring_sjis = CString('shift-jis') class Header(Struct): string_count = uint16 __padding__ = Padding(2) class Entry(Struct): string_hash = uint16 string_offset = uint16 def unsigned_to_signed_byte(b): return b - 0x100 if b & 0x80 else b def calculate_hash(string): h = 0 for b in string: h = (h*3 + unsigned_to_signed_byte(b)) & 0xFFFF return h def pack(stream, strings): strings = [string.encode('shift-jis') for string in strings] header = Header() header.string_count = len(strings) Header.pack(stream, header) offset = Header.sizeof() + Entry.sizeof()*len(strings) for string in strings: entry = Entry() entry.string_hash = calculate_hash(string) entry.string_offset = offset Entry.pack(stream, entry) offset += len(string) + 1 for string in strings: stream.write(string) stream.write(b'\0') def unpack(stream): base = stream.tell() header = Header.unpack(stream) entries = [Entry.unpack(stream) for _ in range(header.string_count)] strings = [] for entry in entries: stream.seek(base + entry.string_offset) strings.append(cstring_sjis.unpack(stream)) return strings
11118
r"""Train a neural network to predict feedback for a program string.""" from __future__ import division from __future__ import print_function from __future__ import absolute_import import os import sys import random import numpy as np from tqdm import tqdm import torch import torch.optim as optim import torch.utils.data as data import torch.nn.functional as F from .models import ProgramRNN from .utils import AverageMeter, save_checkpoint, merge_args_with_dict from .datasets import load_dataset from .config import default_hyperparams from .rubric_utils.load_params import get_label_params, get_max_seq_len if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('dataset', type=str, help='annotated|synthetic') parser.add_argument('problem_id', type=int, help='1|2|3|4|5|6|7|8') parser.add_argument('out_dir', type=str, help='where to save outputs') parser.add_argument('--cuda', action='store_true', default=False, help='enables CUDA training [default: False]') args = parser.parse_args() args.cuda = args.cuda and torch.cuda.is_available() merge_args_with_dict(args, default_hyperparams) device = torch.device('cuda' if args.cuda else 'cpu') args.max_seq_len = get_max_seq_len(args.problem_id) label_dim, _, _, _, _ = get_label_params(args.problem_id) # reproducibility torch.manual_seed(args.seed) np.random.seed(args.seed) if not os.path.isdir(args.out_dir): os.makedirs(args.out_dir) train_dataset = load_dataset( args.dataset, args.problem_id, 'train', vocab=None, max_seq_len=args.max_seq_len, min_occ=args.min_occ) val_dataset = load_dataset( args.dataset, args.problem_id, 'val', vocab=train_dataset.vocab, max_seq_len=args.max_seq_len, min_occ=args.min_occ) test_dataset = load_dataset(args.dataset, args.problem_id, 'test', vocab=train_dataset.vocab, max_seq_len=args.max_seq_len, min_occ=args.min_occ) train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True) val_loader = data.DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False) test_loader = data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False) model = ProgramRNN( args.z_dim, label_dim, train_dataset.vocab_size, embedding_dim=args.embedding_dim, hidden_dim=args.hidden_dim, num_layers=args.num_layers) model = model.to(device) optimizer = optim.Adam(model.parameters(), lr=args.lr) def train(epoch): model.train() loss_meter = AverageMeter() acc_meter = AverageMeter() for batch_idx, (seq, length, label, _) in enumerate(train_loader): assert label is not None batch_size = len(seq) seq = seq.to(device) length = length.to(device) label = label.to(device) optimizer.zero_grad() label_out = model(seq, length) loss = F.binary_cross_entropy(label_out, label) loss.backward() loss_meter.update(loss.item(), batch_size) optimizer.step() acc = np.mean(torch.round(label_out).detach().numpy() == label.detach().numpy()) acc_meter.update(acc, batch_size) if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.4f}'.format( epoch, batch_idx * batch_size, len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss_meter.avg, acc_meter.avg)) print('====> Epoch: {}\tLoss: {:.4f}\tAccuracy: {:.4f}'.format( epoch, loss_meter.avg, acc_meter.avg)) return loss_meter.avg, acc_meter.avg def test(epoch, loader, name='Test'): model.eval() loss_meter = AverageMeter() acc_meter = AverageMeter() with torch.no_grad(): with tqdm(total=len(loader)) as pbar: for (seq, length, label, _) in loader: assert label is not None batch_size = len(seq) seq = seq.to(device) length = length.to(device) label = label.to(device) label_out = model(seq, length) loss = F.binary_cross_entropy(label_out, label) loss_meter.update(loss.item(), batch_size) acc = np.mean(torch.round(label_out.cpu()).numpy() == label.cpu().numpy()) acc_meter.update(acc, batch_size) pbar.update() print('====> {} Epoch: {}\tLoss: {:.4f}\tAccuracy: {:.4f}'.format( name, epoch, loss_meter.avg, acc_meter.avg)) return loss_meter.avg, acc_meter.avg best_loss = sys.maxint track_train_loss = np.zeros(args.epochs) track_val_loss = np.zeros(args.epochs) track_test_loss = np.zeros(args.epochs) track_train_acc = np.zeros(args.epochs) track_val_acc = np.zeros(args.epochs) track_test_acc = np.zeros(args.epochs) for epoch in xrange(1, args.epochs + 1): train_loss, train_acc = train(epoch) val_loss, val_acc = test(epoch, val_loader, name='Val') test_loss, test_acc = test(epoch, test_loader, name='Test') track_train_loss[epoch - 1] = train_loss track_val_loss[epoch - 1] = val_loss track_test_loss[epoch - 1] = test_loss track_train_acc[epoch - 1] = train_acc track_val_acc[epoch - 1] = val_acc track_test_acc[epoch - 1] = test_acc is_best = val_loss < best_loss best_loss = min(val_loss, best_loss) save_checkpoint({ 'state_dict': model.state_dict(), 'cmd_line_args': args, 'vocab': train_dataset.vocab, }, is_best, folder=args.out_dir) np.save(os.path.join(args.out_dir, 'train_loss.npy'), track_train_loss) np.save(os.path.join(args.out_dir, 'val_loss.npy'), track_val_loss) np.save(os.path.join(args.out_dir, 'test_loss.npy'), track_test_loss) np.save(os.path.join(args.out_dir, 'train_acc.npy'), track_train_acc) np.save(os.path.join(args.out_dir, 'val_acc.npy'), track_val_acc) np.save(os.path.join(args.out_dir, 'test_acc.npy'), track_test_acc)
11138
import os from os import getcwd #---------------------------------------------# # 训练前一定要注意修改classes # 种类顺序需要和model_data下的txt一样 #---------------------------------------------# classes = ["cat", "dog"] sets = ["train", "test"] wd = getcwd() for se in sets: list_file = open('cls_' + se + '.txt', 'w') datasets_path = "datasets/" + se types_name = os.listdir(datasets_path) for type_name in types_name: if type_name not in classes: continue cls_id = classes.index(type_name) photos_path = os.path.join(datasets_path, type_name) photos_name = os.listdir(photos_path) for photo_name in photos_name: _, postfix = os.path.splitext(photo_name) if postfix not in ['.jpg', '.png', '.jpeg']: continue list_file.write(str(cls_id) + ";" + '%s/%s'%(wd, os.path.join(photos_path, photo_name))) list_file.write('\n') list_file.close()
11160
from nerwhal.backends.flashtext_backend import FlashtextBackend from nerwhal.recognizer_bases import FlashtextRecognizer def test_single_recognizer(embed): class TestRecognizer(FlashtextRecognizer): TAG = "XX" SCORE = 1.0 @property def keywords(self): return ["abc", "cde"] backend = FlashtextBackend() backend.register_recognizer(TestRecognizer) text = "Das ist abc und cde." ents = backend.run(text) assert embed(text, ents) == "Das ist XX und XX." assert ents[0].start_char == 8 assert ents[0].end_char == 11 assert ents[0].tag == "XX" assert ents[0].text == "abc" assert ents[0].score == 1.0 assert ents[0].recognizer == "TestRecognizer" def test_multiple_recognizers(embed): class TestRecognizerA(FlashtextRecognizer): TAG = "A" SCORE = 1.0 @property def keywords(self): return ["abc"] class TestRecognizerB(FlashtextRecognizer): TAG = "B" SCORE = 0.5 @property def keywords(self): return ["cde"] backend = FlashtextBackend() backend.register_recognizer(TestRecognizerA) backend.register_recognizer(TestRecognizerB) text = "Das ist abc und cde." ents = backend.run(text) assert embed(text, ents) == "Das ist A und B." assert ents[0].tag == "A" assert ents[0].score == 1.0 assert ents[1].tag == "B" assert ents[1].score == 0.5 def test_overlapping_recognizers(embed): class TestRecognizerA(FlashtextRecognizer): TAG = "A" SCORE = 1.0 @property def keywords(self): return ["abc", "cde"] class TestRecognizerB(FlashtextRecognizer): TAG = "B" SCORE = 0.5 @property def keywords(self): return ["cde", "fgh"] backend = FlashtextBackend() backend.register_recognizer(TestRecognizerA) backend.register_recognizer(TestRecognizerB) text = "Das ist cde." ents = backend.run(text) # Recognizer B overwrites the keyword "cde" assert embed(text, ents) == "Das ist B."
11161
import boto3 import sys import time import logging import getpass def new_rdsmysql(dbname, instanceID, storage, dbInstancetype, dbusername): masterPass = getpass.getpass('DBMasterPassword: ') if len(masterPass) < 10: logging.warning('Password is not at least 10 characters. Please try again') time.sleep(5) exit else: None try: rds_instance = boto3.client('rds') create_instance = rds_instance.create_db_instance( DBName = dbname, DBInstanceIdentifier = instanceID, AllocatedStorage = int(storage), DBInstanceClass = dbInstancetype, Engine = 'mysql', MasterUsername = dbusername, MasterUserPassword = str(<PASSWORD>), MultiAZ = True, EngineVersion = '5.7.23', AutoMinorVersionUpgrade = False, LicenseModel = 'general-public-license', PubliclyAccessible = False, Tags = [ { 'Key': 'Name', 'Value' : dbname } ] ) print(create_instance) except Exception as e: logging.warning('An error has occured') print(e) dbname = sys.argv[1] instanceID = sys.argv[2] storage = sys.argv[3] dbInstancetype = sys.argv[4] dbusername = sys.argv[5] new_rdsmysql(dbname, instanceID, storage, dbInstancetype, dbusername)
11163
import pytest import cudf import mock from cuxfilter.charts.core.non_aggregate.core_non_aggregate import ( BaseNonAggregate, ) from cuxfilter.dashboard import DashBoard from cuxfilter import DataFrame from cuxfilter.layouts import chart_view class TestCoreNonAggregateChart: def test_variables(self): bnac = BaseNonAggregate() # BaseChart variables assert bnac.chart_type is None assert bnac.x is None assert bnac.y is None assert bnac.aggregate_fn == "count" assert bnac.color is None assert bnac.height == 0 assert bnac.width == 0 assert bnac.add_interaction is True assert bnac.chart is None assert bnac.source is None assert bnac.source_backup is None assert bnac.data_points == 0 assert bnac._library_specific_params == {} assert bnac.stride is None assert bnac.stride_type == int assert bnac.min_value == 0.0 assert bnac.max_value == 0.0 assert bnac.x_label_map == {} assert bnac.y_label_map == {} assert bnac.title == "" # test chart name setter bnac.x = "x" bnac.y = "y" bnac.chart_type = "test_chart_type" assert bnac.name == "x_y_count_test_chart_type_" # BaseNonAggregateChart variables assert bnac.use_data_tiles is False assert bnac.reset_event is None assert bnac.x_range is None assert bnac.y_range is None assert bnac.aggregate_col is None def test_label_mappers(self): bnac = BaseNonAggregate() library_specific_params = { "x_label_map": {"a": 1, "b": 2}, "y_label_map": {"a": 1, "b": 2}, } bnac.library_specific_params = library_specific_params assert bnac.x_label_map == {"a": 1, "b": 2} assert bnac.y_label_map == {"a": 1, "b": 2} @pytest.mark.parametrize("chart, _chart", [(None, None), (1, 1)]) def test_view(self, chart, _chart): bnac = BaseNonAggregate() bnac.chart = chart bnac.width = 400 bnac.title = "test_title" assert str(bnac.view()) == str( chart_view(_chart, width=bnac.width, title=bnac.title) ) def test_get_selection_geometry_callback(self): bnac = BaseNonAggregate() df = cudf.DataFrame({"a": [1, 2, 2], "b": [3, 4, 5]}) dashboard = DashBoard(dataframe=DataFrame.from_dataframe(df)) assert ( bnac.get_selection_geometry_callback(dashboard).__name__ == "selection_callback" ) assert callable(type(bnac.get_selection_geometry_callback(dashboard))) def test_box_selection_callback(self): bnac = BaseNonAggregate() bnac.x = "a" bnac.y = "b" bnac.chart_type = "temp" self.result = None def t_function(data, patch_update=False): self.result = data bnac.reload_chart = t_function df = cudf.DataFrame({"a": [1, 2, 2], "b": [3, 4, 5]}) dashboard = DashBoard(dataframe=DataFrame.from_dataframe(df)) dashboard._active_view = bnac class evt: geometry = dict(x0=1, x1=2, y0=3, y1=4, type="rect") t = bnac.get_selection_geometry_callback(dashboard) t(evt) assert self.result.equals(df.query("1<=a<=2 and 3<=b<=4")) def test_lasso_election_callback(self): bnac = BaseNonAggregate() bnac.x = "a" bnac.y = "b" bnac.chart_type = "temp" def t_function(data, patch_update=False): self.result = data bnac.reload_chart = t_function df = cudf.DataFrame({"a": [1, 2, 2], "b": [3, 4, 5]}) dashboard = DashBoard(dataframe=DataFrame.from_dataframe(df)) class evt: geometry = dict(x=[1, 1, 2], y=[1, 2, 1], type="poly") final = True t = bnac.get_selection_geometry_callback(dashboard) with mock.patch("cuspatial.point_in_polygon") as pip: pip.return_value = cudf.DataFrame( {"selection": [True, False, True]} ) t(evt) assert pip.called @pytest.mark.parametrize( "data, _data", [ (cudf.DataFrame(), cudf.DataFrame()), ( cudf.DataFrame({"a": [1, 2, 2], "b": [3, 4, 5]}), cudf.DataFrame({"a": [1, 2, 2], "b": [3, 4, 5]}), ), ], ) def test_calculate_source(self, data, _data): """ Calculate source just calls to the format_source_data function which is implemented by chart types inheriting this class. """ bnac = BaseNonAggregate() self.result = None def t_function(data, patch_update=False): self.result = data bnac.format_source_data = t_function bnac.calculate_source(data) assert self.result.equals(_data) @pytest.mark.parametrize( "x_range, y_range, query, local_dict", [ ( (1, 2), (3, 4), "@x_min<=x<=@x_max and @y_min<=y<=@y_max", {"x_min": 1, "x_max": 2, "y_min": 3, "y_max": 4}, ), ( (0, 2), (3, 5), "@x_min<=x<=@x_max and @y_min<=y<=@y_max", {"x_min": 0, "x_max": 2, "y_min": 3, "y_max": 5}, ), ], ) def test_compute_query_dict(self, x_range, y_range, query, local_dict): bnac = BaseNonAggregate() bnac.chart_type = "test" bnac.x = "x" bnac.y = "y" bnac.x_range = x_range bnac.y_range = y_range df = cudf.DataFrame({"x": [1, 2, 2], "y": [3, 4, 5]}) dashboard = DashBoard(dataframe=DataFrame.from_dataframe(df)) bnac.compute_query_dict( dashboard._query_str_dict, dashboard._query_local_variables_dict ) bnac_key = ( f"{bnac.x}_{bnac.y}" f"{'_' + bnac.aggregate_col if bnac.aggregate_col else ''}" f"_{bnac.aggregate_fn}_{bnac.chart_type}_{bnac.title}" ) assert dashboard._query_str_dict[bnac_key] == query for key in local_dict: assert ( dashboard._query_local_variables_dict[key] == local_dict[key] ) @pytest.mark.parametrize( "add_interaction, reset_event, event_1, event_2", [ (True, None, "selection_callback", None), (True, "test_event", "selection_callback", "reset_callback"), (False, "test_event", None, "reset_callback"), ], ) def test_add_events(self, add_interaction, reset_event, event_1, event_2): bnac = BaseNonAggregate() bnac.add_interaction = add_interaction bnac.reset_event = reset_event df = cudf.DataFrame({"a": [1, 2, 2], "b": [3, 4, 5]}) dashboard = DashBoard(dataframe=DataFrame.from_dataframe(df)) self.event_1 = None self.event_2 = None def t_func(fn): self.event_1 = fn.__name__ def t_func1(event, fn): self.event_2 = fn.__name__ bnac.add_selection_geometry_event = t_func bnac.add_event = t_func1 bnac.add_events(dashboard) assert self.event_1 == event_1 assert self.event_2 == event_2 def test_add_reset_event(self): bnac = BaseNonAggregate() bnac.chart_type = "test" bnac.x = "a" bnac.x_range = (0, 2) bnac.y_range = (3, 5) df = cudf.DataFrame({"a": [1, 2, 2], "b": [3, 4, 5]}) dashboard = DashBoard(dataframe=DataFrame.from_dataframe(df)) dashboard._active_view = bnac def t_func1(event, fn): fn("event") bnac.add_event = t_func1 bnac.add_reset_event(dashboard) assert bnac.x_range is None assert bnac.y_range is None def test_query_chart_by_range(self): bnac = BaseNonAggregate() bnac.chart_type = "test" bnac.x = "a" bnac_1 = BaseNonAggregate() bnac_1.chart_type = "test" bnac_1.x = "b" query_tuple = (4, 5) df = cudf.DataFrame({"a": [1, 2, 3, 4], "b": [3, 4, 5, 6]}) bnac.source = df self.result = None self.patch_update = None def t_func(data, patch_update): self.result = data self.patch_update = patch_update # creating a dummy reload chart fn as its not implemented in core # non aggregate chart class bnac.reload_chart = t_func bnac.query_chart_by_range( active_chart=bnac_1, query_tuple=query_tuple, datatile=None ) assert self.result.to_string() == " a b\n1 2 4\n2 3 5" assert self.patch_update is False @pytest.mark.parametrize( "new_indices, result", [ ([4, 5], " a b\n1 2 4\n2 3 5"), ([], " a b\n0 1 3\n1 2 4\n2 3 5\n3 4 6"), ([3], " a b\n0 1 3"), ], ) def test_query_chart_by_indices(self, new_indices, result): bnac = BaseNonAggregate() bnac.chart_type = "test" bnac.x = "a" bnac_1 = BaseNonAggregate() bnac_1.chart_type = "test" bnac_1.x = "b" new_indices = new_indices df = cudf.DataFrame({"a": [1, 2, 3, 4], "b": [3, 4, 5, 6]}) bnac.source = df self.result = None self.patch_update = None def t_func(data, patch_update): self.result = data self.patch_update = patch_update # creating a dummy reload chart fn as its not implemented in core # non aggregate chart class bnac.reload_chart = t_func bnac.query_chart_by_indices( active_chart=bnac_1, old_indices=[], new_indices=new_indices, datatile=None, ) assert self.result.to_string() == result assert self.patch_update is False
11175
import numpy as np import ROOT from dummy_distributions import dummy_pt_eta counts, test_in1, test_in2 = dummy_pt_eta() f = ROOT.TFile.Open("samples/testSF2d.root") sf = f.Get("scalefactors_Tight_Electron") xmin, xmax = sf.GetXaxis().GetXmin(), sf.GetXaxis().GetXmax() ymin, ymax = sf.GetYaxis().GetXmin(), sf.GetYaxis().GetXmax() test_out = np.empty_like(test_in1) for i, (eta, pt) in enumerate(zip(test_in1, test_in2)): if xmax <= eta: eta = xmax - 1.0e-5 elif eta < xmin: eta = xmin if ymax <= pt: pt = ymax - 1.0e-5 elif pt < ymin: pt = ymin ib = sf.FindBin(eta, pt) test_out[i] = sf.GetBinContent(ib) print(repr(test_out))
11184
import argparse import matplotlib.pyplot as plt import torch from pytorch_warmup import * def get_rates(warmup_cls, beta2, max_step): rates = [] p = torch.nn.Parameter(torch.arange(10, dtype=torch.float32)) optimizer = torch.optim.Adam([{'params': p}], lr=1.0, betas=(0.9, beta2)) lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda step: 1.0) warmup_scheduler = warmup_cls(optimizer) for step in range(1, max_step+1): rates.append(optimizer.param_groups[0]['lr']) optimizer.zero_grad() optimizer.step() lr_scheduler.step() warmup_scheduler.dampen() return rates parser = argparse.ArgumentParser(description='Warmup schedule') parser.add_argument('--output', type=str, default='none', choices=['none', 'png', 'pdf'], help='Output file type (default: none)') args = parser.parse_args() beta2 = 0.999 max_step = 3000 plt.plot(range(1, max_step+1), get_rates(RAdamWarmup, beta2, max_step), label='RAdam') plt.plot(range(1, max_step+1), get_rates(UntunedExponentialWarmup, beta2, max_step), label='Untuned Exponential') plt.plot(range(1, max_step+1), get_rates(UntunedLinearWarmup, beta2, max_step), label='Untuned Linear') plt.legend() plt.title('Warmup Schedule') plt.xlabel('Iteration') plt.ylabel(r'Warmup factor $(\omega_t)$') if args.output == 'none': plt.show() else: plt.savefig(f'warmup_schedule.{args.output}')
11199
from __future__ import absolute_import from io import BytesIO import zstd from .base import BaseCompressor, BaseDecompressor from ..protocol import CompressionMethod, CompressionMethodByte from ..reader import read_binary_uint32 from ..writer import write_binary_uint32, write_binary_uint8 class Compressor(BaseCompressor): method = CompressionMethod.ZSTD method_byte = CompressionMethodByte.ZSTD def get_compressed_data(self, extra_header_size): rv = BytesIO() data = self.get_value() compressed = zstd.compress(data) header_size = extra_header_size + 4 + 4 # sizes write_binary_uint32(header_size + len(compressed), rv) write_binary_uint32(len(data), rv) rv.write(compressed) return rv.getvalue() class Decompressor(BaseDecompressor): method = CompressionMethod.ZSTD method_byte = CompressionMethodByte.ZSTD def get_decompressed_data(self, method_byte, compressed_hash, extra_header_size): size_with_header = read_binary_uint32(self.stream) compressed_size = size_with_header - extra_header_size - 4 compressed = BytesIO(self.stream.read(compressed_size)) block_check = BytesIO() write_binary_uint8(method_byte, block_check) write_binary_uint32(size_with_header, block_check) block_check.write(compressed.getvalue()) self.check_hash(block_check.getvalue(), compressed_hash) compressed = compressed.read(compressed_size - 4) return zstd.decompress(compressed)
11206
import numpy as np import sys import os sys.path.append('utils/') from config import * from utils import * sys.path.append(pycaffe_dir) import time import pdb import random import pickle as pkl import caffe from multiprocessing import Pool from threading import Thread import random import h5py import itertools import math import re glove_dim = 300 glove_path = 'data/glove.6B.%dd.txt' %glove_dim #glove_path = 'data/glove_debug_path.txt' #for debugging if glove_path == 'data/glove_debug_path.txt': print "continue?" pdb.set_trace() possible_segments = [(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)] for i in itertools.combinations(range(6), 2): possible_segments.append(i) length_prep_word = 40 length_prep_character = 250 vocab_file = 'data/vocab_glove_complete.txt' def word_tokenize(s): sent = s.lower() sent = re.sub('[^A-Za-z0-9\s]+',' ', sent) return sent.split() def sentences_to_words(sentences): words = [] for s in sentences: words.extend(word_tokenize(str(s.lower()))) return words class glove_embedding(object): ''' Creates glove embedding object ''' def __init__(self, glove_file=glove_path): glove_txt = open(glove_file).readlines() glove_txt = [g.strip() for g in glove_txt] glove_vector = [g.split(' ') for g in glove_txt] glove_words = [g[0] for g in glove_vector] glove_vecs = [g[1:] for g in glove_vector] glove_array = np.zeros((glove_dim, len(glove_words))) glove_dict = {} for i, w in enumerate(glove_words): glove_dict[w] = i for i, vec in enumerate(glove_vecs): glove_array[:,i] = np.array(vec) self.glove_array = glove_array self.glove_dict = glove_dict self.glove_words = glove_words class zero_language_vector(object): def __init__(self, data): self.dim = glove_dim def get_vector_dim(self): return self.dim def get_vocab_size(self): return 0 def preprocess(self, data): embedding = np.zeros((self.get_vector_dim(),)) for d in data: d['language_input'] = embedding d['gt'] = (d['gt'][0], d['gt'][1]) return data class recurrent_language(object): def get_vocab_size(self): return len(self.vocab_dict.keys()) def preprocess_sentence(self, words): vector_dim = self.get_vector_dim() sentence_mat = np.zeros((len(words), vector_dim)) count_words = 0 for i, w in enumerate(words): try: sentence_mat[count_words,:] = self.vocab_dict[w] count_words += 1 except: if '<unk>' in self.vocab_dict.keys(): sentence_mat[count_words,:] = self.vocab_dict['<unk>'] count_words += 1 else: pass sentence_mat = sentence_mat[:count_words] return sentence_mat def preprocess(self, data): for d in data: words = sentences_to_words([d['description']]) d['language_input'] = self.preprocess(words) return data class recurrent_word(recurrent_language): def __init__(self, data): self.data = data vocab = open(vocab_file).readlines() vocab = [v.strip() for v in vocab] if '<unk>' not in vocab: vocab.append('<unk>') vocab_dict = {} for i, word in enumerate(vocab): vocab_dict[word] = i self.vocab_dict = vocab_dict def get_vector_dim(self): return 1 class recurrent_embedding(recurrent_language): def read_embedding(self): print "Reading glove embedding" embedding = glove_embedding(glove_path) self.embedding = embedding def get_vector_dim(self): return glove_dim def __init__(self, data): self.read_embedding() embedding = self.embedding vector_dim = self.get_vector_dim() self.data = data self.data = data vocab = open(vocab_file).readlines() vocab = [v.strip() for v in vocab] if '<unk>' in vocab: vocab.remove('<unk>') #don't have an <unk> vector. Alternatively, could map to random vector... vocab_dict = {} for i, word in enumerate(vocab): try: vocab_dict[word] = embedding.glove_array[:,embedding.glove_dict[word]] except: print "%s not in glove embedding" %word self.vocab_dict = vocab_dict def preprocess(self, data): vector_dim = self.get_vector_dim() for d in data: d['language_input'] = sentences_to_words([d['description']]) return data def get_vocab_dict(self): return self.vocab_dict #Methods for extracting visual features def feature_process_base(start, end, features): return np.mean(features[start:end+1,:], axis = 0) def feature_process_norm(start, end, features): base_feature = np.mean(features[start:end+1,:], axis = 0) return base_feature/(np.linalg.norm(base_feature) + 0.00001) def feature_process_context(start, end, features): feature_dim = features.shape[1] full_feature = np.zeros((feature_dim*2,)) if np.sum(features[5,:]) > 0: full_feature[:feature_dim] = feature_process_norm(0,6, features) else: full_feature[:feature_dim] = feature_process_norm(0,5, features) full_feature[feature_dim:feature_dim*2] = feature_process_norm(start, end, features) return full_feature feature_process_dict = {'feature_process_base': feature_process_base, 'feature_process_norm': feature_process_norm, 'feature_process_context': feature_process_context, } class extractData(object): """ General class to extract data. """ def increment(self): #uses iteration, batch_size, data_list, and num_data to extract next batch identifiers next_batch = [None]*self.batch_size if self.iteration + self.batch_size >= self.num_data: next_batch[:self.num_data-self.iteration] = self.data_list[self.iteration:] next_batch[self.num_data-self.iteration:] = self.data_list[:self.batch_size -(self.num_data-self.iteration)] random.shuffle(self.data_list) self.iteration = self.num_data - self.iteration else: next_batch = self.data_list[self.iteration:self.iteration+self.batch_size] self.iteration += self.batch_size assert self.iteration > -1 assert len(next_batch) == self.batch_size return next_batch class extractLanguageFeatures(extractData): def __init__(self, dataset, params, result=None): self.data_list = range(len(dataset)) self.num_data = len(self.data_list) self.dataset = dataset self.iteration = 0 self.vocab_dict = params['vocab_dict'] self.batch_size = params['batch_size'] self.num_glove_centroids = self.vocab_dict.values()[0].shape[0] self.T = params['sentence_length'] if isinstance(result, dict): self.result = result self.query_key = params['query_key'] self.cont_key = params['cont_key'] self.top_keys = [self.query_key, self.cont_key] self.top_shapes = [(self.T, self.batch_size, self.num_glove_centroids), (self.T, self.batch_size)] else: print "Will only be able to run in test mode" def get_features(self, query): feature = np.zeros((self.T, self.num_glove_centroids)) cont = np.zeros((self.T,)) len_query = min(len(query), self.T) if len_query < len(query): query = query[:len_query] for count_word, word in enumerate(query): try: feature[-(len_query)+count_word,:] = self.vocab_dict[word] except: feature[-(len_query)+count_word,:] = np.zeros((glove_dim,)) cont[-(len_query-1):] = 1 assert np.sum(feature[:-len_query,:]) == 0 return feature, cont def get_data_test(self, data): query = data['language_input'] return self.get_features(query) def get_data(self, next_batch): data = self.dataset query_mat = np.zeros((self.T, self.batch_size, self.num_glove_centroids)) cont = np.zeros((self.T, self.batch_size)) for i, nb in enumerate(next_batch): query = data[nb]['language_input'] query_mat[:,i,:], cont[:,i] = self.get_features(query) self.result[self.query_key] = query_mat self.result[self.cont_key] = cont class extractVisualFeatures(extractData): def __init__(self, dataset, params, result): self.data_list = range(len(dataset)) self.feature_process_algo = params['feature_process'] self.loc_feature = params['loc_feature'] self.num_data = len(self.data_list) self.dataset = dataset self.iteration = 0 self.loc = params['loc_feature'] loss_type = params['loss_type'] assert loss_type in ['triplet', 'inter', 'intra'] self.inter = False self.intra = False if loss_type in ['triplet', 'inter']: self.inter = True if loss_type in ['triplet', 'intra']: self.intra = True self.batch_size = params['batch_size'] self.num_glove_centroids = params['num_glove_centroids'] features_h5py = h5py.File(params['features']) features = {} for key in features_h5py.keys(): features[key] = np.array(features_h5py[key]) features_h5py.close() self.features = features assert self.feature_process_algo in feature_process_dict.keys() self.feature_process = feature_process_dict[self.feature_process_algo] self.feature_dim = self.feature_process(0,0,self.features[self.dataset[0]['video']]).shape[-1] self.result = result self.feature_key_p = params['feature_key_p'] self.feature_time_stamp_p = params['feature_time_stamp_p'] self.feature_time_stamp_n = params['feature_time_stamp_n'] self.top_keys = [self.feature_key_p, self.feature_time_stamp_p, self.feature_time_stamp_n] self.top_shapes = [(self.batch_size, self.feature_dim), (self.batch_size, 2), (self.batch_size,2)] if self.inter: self.feature_key_inter = 'features_inter' self.top_keys.append(self.feature_key_inter) self.top_shapes.append((self.batch_size, self.feature_dim)) if self.intra: self.feature_key_intra = 'features_intra' self.top_keys.append(self.feature_key_intra) self.top_shapes.append((self.batch_size, self.feature_dim)) self.possible_annotations = possible_segments def get_data_test(self, d): video_feats = self.features[d['video']] features = np.zeros((len(self.possible_annotations), self.feature_dim)) loc_feats = np.zeros((len(self.possible_annotations), 2)) for i, p in enumerate(self.possible_annotations): features[i,:] = self.feature_process(p[0], p[1], video_feats) loc_feats[i,:] = [p[0]/6., p[1]/6.] return features, loc_feats def get_data(self, next_batch): feature_process = self.feature_process data = self.dataset features_p = np.zeros((self.batch_size, self.feature_dim)) if self.inter: features_inter = np.zeros((self.batch_size, self.feature_dim)) if self.intra: features_intra = np.zeros((self.batch_size, self.feature_dim)) features_time_stamp_p = np.zeros((self.batch_size, 2)) features_time_stamp_n = np.zeros((self.batch_size, 2)) for i, nb in enumerate(next_batch): rint = random.randint(0,len(data[nb]['times'])-1) gt_s = data[nb]['times'][rint][0] gt_e = data[nb]['times'][rint][1] possible_n = list(set(self.possible_annotations) - set(((gt_s,gt_e),))) random.shuffle(possible_n) n = possible_n[0] assert n != (gt_s, gt_e) video = data[nb]['video'] feats = self.features[video] if self.inter: other_video = data[nb]['video'] while (other_video == video): other_video_index = int(random.random()*len(data)) other_video = data[other_video_index]['video'] feats_inter = self.features[other_video] features_p[i,:] = feature_process(gt_s, gt_e, feats) if self.intra: features_intra[i,:] = feature_process(n[0], n[1], feats) if self.inter: try: features_inter[i,:] = feature_process(gt_s, gt_e, feats_inter) except: pdb.set_trace() if self.loc: features_time_stamp_p[i,0] = gt_s/6. features_time_stamp_p[i,1] = gt_e/6. features_time_stamp_n[i,0] = n[0]/6. features_time_stamp_n[i,1] = n[1]/6. else: features_time_stamp_p[i,0] = 0 features_time_stamp_p[i,1] = 0 features_time_stamp_n[i,0] = 0 features_time_stamp_n[i,1] = 0 assert not math.isnan(np.mean(self.features[data[nb]['video']][n[0]:n[1]+1,:])) assert not math.isnan(np.mean(self.features[data[nb]['video']][gt_s:gt_e+1,:])) self.result[self.feature_key_p] = features_p self.result[self.feature_time_stamp_p] = features_time_stamp_p self.result[self.feature_time_stamp_n] = features_time_stamp_n if self.inter: self.result[self.feature_key_inter] = features_inter if self.intra: self.result[self.feature_key_intra] = features_intra class batchAdvancer(object): def __init__(self, extractors): self.extractors = extractors self.increment_extractor = extractors[0] def __call__(self): #The batch advancer just calls each extractor next_batch = self.increment_extractor.increment() for e in self.extractors: e.get_data(next_batch) class python_data_layer(caffe.Layer): """ General class to extract data. """ def setup(self, bottom, top): random.seed(10) self.params = eval(self.param_str) params = self.params assert 'top_names' in params.keys() #set up prefetching self.thread_result = {} self.thread = None self.setup_extractors() self.batch_advancer = batchAdvancer(self.data_extractors) shape_dict = {} self.top_names = [] for de in self.data_extractors: for top_name, top_shape in zip(de.top_keys, de.top_shapes): shape_dict[top_name] = top_shape self.top_names.append((params['top_names'].index(top_name), top_name)) self.dispatch_worker() self.top_shapes = [shape_dict[tn[1]] for tn in self.top_names] print 'Outputs:', self.top_names if len(top) != len(self.top_names): raise Exception('Incorrect number of outputs (expected %d, got %d)' % (len(self.top_names), len(top))) self.join_worker() #for top_index, name in enumerate(self.top_names.keys()): top_count = 0 for top_index, name in self.top_names: shape = self.top_shapes[top_count] print 'Top name %s has shape %s.' %(name, shape) top[top_index].reshape(*shape) top_count += 1 def reshape(self, bottom, top): pass def forward(self, bottom, top): if self.thread is not None: self.join_worker() for top_index, name in self.top_names: top[top_index].data[...] = self.thread_result[name] self.dispatch_worker() def dispatch_worker(self): assert self.thread is None self.thread = Thread(target=self.batch_advancer) self.thread.start() def join_worker(self): assert self.thread is not None self.thread.join() self.thread = None def backward(self, top, propoagate_down, bottom): pass feature_process_dict = {'feature_process_base': feature_process_base, 'feature_process_norm': feature_process_norm, 'feature_process_context': feature_process_context, } language_feature_process_dict = {'zero_language': zero_language_vector, 'recurrent_embedding': recurrent_embedding} class dataLayer_ExtractPairedLanguageVision(python_data_layer): def setup_extractors(self): assert 'top_names' in self.params.keys() assert 'descriptions' in self.params.keys() assert 'features' in self.params.keys() if 'batch_size' not in self.params.keys(): self.params['batch_size'] = 120 self.params['query_key'] = 'query' self.params['feature_key_n'] = 'features_n' self.params['feature_key_p'] = 'features_p' self.params['feature_key_t'] = 'features_t' self.params['feature_time_stamp_p'] = 'features_time_stamp_p' self.params['feature_time_stamp_n'] = 'features_time_stamp_n' self.params['cont_key'] = 'cont' language_extractor_fcn = extractLanguageFeatures visual_extractor_fcn = extractVisualFeatures language_process = recurrent_embedding data_orig = read_json(self.params['descriptions']) random.shuffle(data_orig) language_processor = language_process(data_orig) data = language_processor.preprocess(data_orig) self.params['vocab_dict'] = language_processor.vocab_dict num_glove_centroids = language_processor.get_vector_dim() self.params['num_glove_centroids'] = num_glove_centroids visual_feature_extractor = visual_extractor_fcn(data, self.params, self.thread_result) textual_feature_extractor = language_extractor_fcn(data, self.params, self.thread_result) self.data_extractors = [visual_feature_extractor, textual_feature_extractor]
11216
from fuzzconfig import FuzzConfig import nonrouting import fuzzloops import re cfgs = [ FuzzConfig(job="SYSCONFIG40", device="LIFCL-40", sv="../shared/empty_40.v", tiles=["CIB_R0C75:EFB_0", "CIB_R0C72:BANKREF0", "CIB_R0C77:EFB_1_OSC", "CIB_R0C79:EFB_2", "CIB_R0C81:I2C_EFB_3", "CIB_R0C85:PMU", "CIB_R0C87:MIB_CNR_32_FAFD", "CIB_R1C87:IREF_P33", "CIB_R2C87:POR"]), FuzzConfig(job="SYSCONFIG17", device="LIFCL-17", sv="../shared/empty_17.v", tiles=["CIB_R1C75:IREF_15K", "CIB_R0C75:PPT_QOUT_15K", "CIB_R0C74:PVTCAL33_15K", "CIB_R0C73:POR_15K", "CIB_R0C72:I2C_15K", "CIB_R0C71:OSC_15K", "CIB_R0C70:PMU_15K", "CIB_R0C66:EFB_15K"]) ] def main(): for cfg in cfgs: cfg.setup() empty = cfg.build_design(cfg.sv, {}) cfg.sv = "../shared/empty_presyn_40.v" cfg.struct_mode = False def get_substs(k, v): return dict(sysconfig="{}={}".format(k, v)) nonrouting.fuzz_enum_setting(cfg, empty, "SYSCONFIG.MASTER_SPI_PORT", ["DISABLE", "SERIAL", "DUAL", "QUAD"], lambda x: get_substs("MASTER_SPI_PORT", x), False, assume_zero_base=True, desc="status of master SPI port after configuration") nonrouting.fuzz_enum_setting(cfg, empty, "SYSCONFIG.SLAVE_SPI_PORT", ["DISABLE", "SERIAL", "DUAL", "QUAD"], lambda x: get_substs("SLAVE_SPI_PORT", x), False, assume_zero_base=True, desc="status of slave SPI port after configuration") nonrouting.fuzz_enum_setting(cfg, empty, "SYSCONFIG.SLAVE_I2C_PORT", ["DISABLE", "ENABLE"], lambda x: get_substs("SLAVE_I2C_PORT", x), False, assume_zero_base=True, desc="status of slave I2C port after configuration") nonrouting.fuzz_enum_setting(cfg, empty, "SYSCONFIG.SLAVE_I3C_PORT", ["DISABLE", "ENABLE"], lambda x: get_substs("SLAVE_I3C_PORT", x), False, assume_zero_base=True, desc="status of slave I3C port after configuration") nonrouting.fuzz_enum_setting(cfg, empty, "SYSCONFIG.JTAG_PORT", ["DISABLE", "ENABLE"], lambda x: get_substs("JTAG_PORT", x), False, assume_zero_base=True, desc="status of JTAG port after configuration") nonrouting.fuzz_enum_setting(cfg, empty, "SYSCONFIG.DONE_PORT", ["DISABLE", "ENABLE"], lambda x: get_substs("DONE_PORT", x), False, assume_zero_base=True, desc="use DONE output after configuration") nonrouting.fuzz_enum_setting(cfg, empty, "SYSCONFIG.INITN_PORT", ["DISABLE", "ENABLE"], lambda x: get_substs("INITN_PORT", x), False, assume_zero_base=True, desc="use INITN input after configuration") nonrouting.fuzz_enum_setting(cfg, empty, "SYSCONFIG.PROGRAMN_PORT", ["DISABLE", "ENABLE"], lambda x: get_substs("PROGRAMN_PORT", x), False, assume_zero_base=True, desc="use PROGRAMN input after configuration") if __name__ == "__main__": main()
11240
import unittest import numpy as np from astroNN.lamost import wavelength_solution, pseudo_continuum class LamostToolsTestCase(unittest.TestCase): def test_wavelength_solution(self): wavelength_solution() wavelength_solution(dr=5) self.assertRaises(ValueError, wavelength_solution, dr=1) def test_norm(self): pseudo_continuum(np.ones(3909), np.ones(3909)) if __name__ == '__main__': unittest.main()
11302
import os import json STOPWORDS_JSON_PATH = os.path.join( os.path.dirname(os.path.abspath(__file__)), os.pardir, "corpora/stopwords.json" ) with open(STOPWORDS_JSON_PATH, "r", encoding="utf-8") as f: STOPWORD = json.load(f)["stopwords"]
11393
import FWCore.ParameterSet.Config as cms from RecoEgamma.ElectronIdentification.Identification.mvaElectronID_tools import * # Documentation of the MVA # https://twiki.cern.ch/twiki/bin/viewauth/CMS/MultivariateElectronIdentificationRun2 # https://rembserj.web.cern.ch/rembserj/notes/Electron_MVA_ID_2017_documentation # # In this file we define the locations of the MVA weights, cuts on the MVA values # for specific working points, and configure those cuts in VID # # The tag is an extra string attached to the names of the products # such as ValueMaps that needs to distinguish cases when the same MVA estimator # class is used with different tuning/weights mvaTag = "Fall17NoIsoV1" # There are 6 categories in this MVA. They have to be configured in this strict order # (cuts and weight files order): # 0 EB1 (eta<0.8) pt 5-10 GeV | pt < ptSplit && |eta| < ebSplit # 1 EB2 (eta>=0.8) pt 5-10 GeV | pt < ptSplit && |eta| >= ebSplit && |eta| < ebeeSplit # 2 EE pt 5-10 GeV | pt < ptSplit && |eta| >= ebeeSplit # 3 EB1 (eta<0.8) pt 10-inf GeV | pt >= ptSplit && |eta| < ebSplit # 4 EB2 (eta>=0.8) pt 10-inf GeV | pt >= ptSplit && |eta| >= ebSplit && |eta| < ebeeSplit # 5 EE pt 10-inf GeV | pt >= ptSplit && |eta| >= ebeeSplit mvaFall17WeightFiles_V1 = cms.vstring( "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB1_5_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB2_5_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EE_5_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB1_10_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB2_10_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EE_10_2017_puinfo_BDT.weights.xml.gz" ) ## The working point for this MVA that is expected to have about 90% signal # WP tuned to give about 90 and 80% signal efficiecny for electrons from Drell-Yan with pT > 25 GeV # The working point for the low pt categories is just taken over from the high pt idName90 = "mvaEleID-Fall17-noIso-V1-wp90" MVA_WP90 = EleMVA_WP( idName = idName90, mvaTag = mvaTag, cutCategory0 = "0.9165112826974601 - exp(-pt / 2.7381703555094217) * 1.03549199648109", # EB1 low pt cutCategory1 = "0.8655738322220173 - exp(-pt / 2.4027944652597073) * 0.7975615613282494", # EB2 low pt cutCategory2 = "-3016.035055227131 - exp(-pt / -52140.61856333602) * -3016.3029387236506", # EE low pt cutCategory3 = "0.9616542816132922 - exp(-pt / 8.757943837889817) * 3.1390200321591206", # EB1 cutCategory4 = "0.9319258011430132 - exp(-pt / 8.846057432565809) * 3.5985063793347787", # EB2 cutCategory5 = "0.8899260780999244 - exp(-pt / 10.124234115859881) * 4.352791250718547", # EE ) idName80 = "mvaEleID-Fall17-noIso-V1-wp80" MVA_WP80 = EleMVA_WP( idName = idName80, mvaTag = mvaTag, cutCategory0 = "0.9530240956555949 - exp(-pt / 2.7591425841003647) * 0.4669644718545271", # EB1 low pt cutCategory1 = "0.9336564763961019 - exp(-pt / 2.709276284272272) * 0.33512286599215946", # EB2 low pt cutCategory2 = "0.9313133688365339 - exp(-pt / 1.5821934800715558) * 3.8889462619659265", # EE low pt cutCategory3 = "0.9825268564943458 - exp(-pt / 8.702601455860762) * 1.1974861596609097", # EB1 cutCategory4 = "0.9727509457929913 - exp(-pt / 8.179525631018565) * 1.7111755094657688", # EB2 cutCategory5 = "0.9562619539540145 - exp(-pt / 8.109845366281608) * 3.013927699126942", # EE ) ### WP tuned for HZZ analysis with very high efficiency (about 98%) # The working points were found by requiring the same signal efficiencies in # each category as for the Spring 16 HZZ ID # (see RecoEgamma/ElectronIdentification/python/Identification/mvaElectronID_Spring16_HZZ_V1_cff.py) idNamewpLoose = "mvaEleID-Fall17-noIso-V1-wpLoose" MVA_WPLoose = EleMVA_WP( idName = idNamewpLoose, mvaTag = mvaTag, cutCategory0 = "-0.13285867293779202", # EB1 low pt cutCategory1 = "-0.31765300958836074", # EB2 low pt cutCategory2 = "-0.0799205914718861" , # EE low pt cutCategory3 = "-0.856871961305474" , # EB1 cutCategory4 = "-0.8107642141584835" , # EB2 cutCategory5 = "-0.7179265933023059" # EE ) # # Finally, set up VID configuration for all cuts # # Create the PSet that will be fed to the MVA value map producer mvaEleID_Fall17_noIso_V1_producer_config = cms.PSet( mvaName = cms.string(mvaClassName), mvaTag = cms.string(mvaTag), # Category parameters nCategories = cms.int32(6), categoryCuts = cms.vstring(*EleMVA_6CategoriesCuts), # Weight files and variable definitions weightFileNames = mvaFall17WeightFiles_V1, variableDefinition = cms.string("RecoEgamma/ElectronIdentification/data/ElectronMVAEstimatorRun2Fall17V1Variables.txt") ) # Create the VPset's for VID cuts mvaEleID_Fall17_V1_wpLoose = configureVIDMVAEleID( MVA_WPLoose ) mvaEleID_Fall17_V1_wp90 = configureVIDMVAEleID( MVA_WP90 ) mvaEleID_Fall17_V1_wp80 = configureVIDMVAEleID( MVA_WP80 ) mvaEleID_Fall17_V1_wpLoose.isPOGApproved = cms.untracked.bool(True) mvaEleID_Fall17_V1_wp90.isPOGApproved = cms.untracked.bool(True) mvaEleID_Fall17_V1_wp80.isPOGApproved = cms.untracked.bool(True)
11404
from typing import Union, List import pexpect from figcli.utils.utils import Utils import sys class FiggyAction: """ Actions prevent cyclic dependencies, and are designed for leveraging FiggyCli for cleanup steps when running inside of tests. """ def __init__(self, command, extra_args=""): self.c = Utils.default_colors() self.command = command self.extra_args = extra_args self._child = self.spawn(command) print(f"{self.c.fg_yl}Executing action: {self._child.args}{self.c.rs}") self._child.logfile = sys.stdout self._child.delaybeforesend = .5 def spawn(self, command: str): return pexpect.spawn(command, timeout=10, encoding='utf-8') def expect_multiple(self, regexes: List[str]): print(f'Expecting: {regexes}') return self._child.expect(regexes) def expect(self, regex: Union[List[str], str], retry=True): print(f'Expecting: {regex}') expect_list = [regex] + [pexpect.TIMEOUT] if isinstance(regex, str) else regex + [pexpect.TIMEOUT] result = self._child.expect(expect_list) if result == len(expect_list) - 1 and retry: self.alert(f"EXPECT FAILED: {regex} initiating retry!") self._child = self.spawn(self.command) return self.expect(regex, retry=False) else: return result def sendline(self, line: str): print(f'Sending: {line}') self._child.sendline(line) def wait(self): self._child.wait() def alert(self, msg: str): print(f"{self.c.fg_yl}-----------------------------------------{self.c.rs}") print(f"{self.c.fg_rd} ALERT: {msg}{self.c.rs}") print(f"{self.c.fg_yl}-----------------------------------------{self.c.rs}")
11411
import contextlib import os import tempfile import warnings from enum import Enum import mip class IISFinderAlgorithm(Enum): DELETION_FILTER = 1 ADDITIVE_ALGORITHM = 2 class SubRelaxationInfeasible(Exception): pass class NonRelaxableModel(Exception): pass class ConflictFinder: """This class groups some IIS (Irreducible Infeasible Set) search algorithms""" def __init__(self, model: mip.Model): if model.status == mip.OptimizationStatus.LOADED: print("model not runned yet, checking if feasible or not") model.emphasis = 1 # feasibility model.preprocess = 1 # -1 automatic, 0 off, 1 on. model.optimize() assert ( model.status == mip.OptimizationStatus.INFEASIBLE ), "model is not linear infeasible" self.model = model def find_iis( self, method: IISFinderAlgorithm = IISFinderAlgorithm.DELETION_FILTER, cbc_verbose: bool = False ) -> mip.ConstrList: """main method to find an IIS, this method is just a grouping of the other implementations Args: model (mip.Model): Infeasible model where to find the IIS method (str, optional): name of the method to use ["deletion-filter", "additive_algorithm"]. Defaults to 'deletion-filter". Returns: mip.ConstrList: IIS constraint list """ # assert ,is not because time limit with contextlib.nullcontext() if cbc_verbose else ignore_output() as iow: if method == IISFinderAlgorithm.DELETION_FILTER: return self.deletion_filter() if method == IISFinderAlgorithm.ADDITIVE_ALGORITHM: return self.additive_algorithm() def deletion_filter(self) -> mip.ConstrList: """deletion filter algorithm for search an IIS Args: model (mip.Model): Infeasible model Returns: mip.ConstrList: IIS """ # 1. create a model with all constraints but one aux_model = self.model.copy() aux_model.objective = 1 aux_model.emphasis = 1 # feasibility aux_model.preprocess = 1 # -1 automatic, 0 off, 1 on. print("starting deletion_filter algorithm") for inc_crt in self.model.constrs: aux_model_inc_crt = aux_model.constr_by_name( inc_crt.name ) # find constraint by name aux_model.remove(aux_model_inc_crt) # temporally remove inc_crt aux_model.optimize() status = aux_model.status # 2. test feasibility, if feasible, return dropped constraint to the set # 2.1 else removed it permanently # print('status {}'.format(status)) if status == mip.OptimizationStatus.INFEASIBLE: # print("removing permanently {}".format(inc_crt.name)) continue elif status in [ mip.OptimizationStatus.FEASIBLE, mip.OptimizationStatus.OPTIMAL, ]: aux_model.add_constr( inc_crt.expr, name=inc_crt.name, priority=inc_crt.priority ) iis = aux_model.constrs return iis def additive_algorithm(self) -> mip.ConstrList: """Additive algorithm to find an IIS Returns: mip.ConstrList: IIS """ # Create some aux models to test feasibility of the set of constraints aux_model_testing = mip.Model() for var in self.model.vars: aux_model_testing.add_var( name=var.name, lb=var.lb, ub=var.ub, var_type=var.var_type, # obj= var.obj, # column=var.column #!! libc++abi.dylib: terminating with uncaught exception of type CoinError ) aux_model_testing.objective = 1 aux_model_testing.emphasis = 1 # feasibility aux_model_testing.preprocess = 1 # -1 automatic, 0 off, 1 on. aux_model_iis = ( aux_model_testing.copy() ) # a second aux model to test feasibility of the incumbent iis # algorithm start all_constraints = self.model.constrs testing_crt_set = mip.ConstrList(model=aux_model_testing) # T iis = mip.ConstrList(model=aux_model_iis) # I while True: for crt in all_constraints: testing_crt_set.add(crt.expr, name=crt.name) aux_model_testing.constrs = testing_crt_set aux_model_testing.optimize() if aux_model_testing.status == mip.OptimizationStatus.INFEASIBLE: iis.add(crt.expr, name=crt.name) aux_model_iis.constrs = iis aux_model_iis.optimize() if aux_model_iis.status == mip.OptimizationStatus.INFEASIBLE: return iis elif aux_model_iis.status in [ mip.OptimizationStatus.FEASIBLE, mip.OptimizationStatus.OPTIMAL, ]: testing_crt_set = mip.ConstrList(model=aux_model_testing) for ( crt ) in ( iis ): # basically this loop is for set T=I // aux_model_iis = iis.copy() testing_crt_set.add(crt.expr, name=crt.name) break def deletion_filter_milp_ir_lc_bd(self) -> mip.ConstrList: """Integer deletion filter algorithm (milp_ir_lc_bd) Raises: NotImplementedError: [description] Returns: mip.ConstrList: [description] """ raise NotImplementedError("WIP") # major constraint sets definition t_aux_model = mip.Model(name="t_auxiliary_model") iis_aux_model = mip.Model(name="t_auxiliary_model") linear_constraints = mip.ConstrList( model=t_aux_model ) # all the linear model constraints variable_bound_constraints = mip.ConstrList( model=t_aux_model ) # all the linear model constrants related specifically for the variable bounds integer_varlist_crt = mip.VarList( model=t_aux_model ) # the nature vars constraints for vartype in Integer/Binary # fill the above sets with the constraints for crt in self.model.constrs: linear_constraints.add(crt.expr, name=crt.name) for var in self.model.vars: if var.lb != -mip.INF: variable_bound_constraints.add( var >= var.lb, name="{}_lb_crt".format(var.name) ) if var.ub != mip.INF: variable_bound_constraints.add( var <= var.ub, name="{}_ub_crt".format(var.name) ) for var in self.model.vars: if var.var_type in (mip.INTEGER, mip.BINARY): integer_varlist_crt.add(var) status = "IIS" # add all LC,BD to the incumbent, T= LC + BD for ( var ) in ( self.model.vars ): # add all variables as if they where CONTINUOUS and without bonds (because this will be separated) iis_aux_model.add_var( name=var.name, lb=-mip.INF, ub=mip.INF, var_type=mip.CONTINUOUS ) for crt in linear_constraints + variable_bound_constraints: iis_aux_model.add_constr(crt.expr, name=crt.name, priority=crt.priority) iis_aux_model.optimize() if iis_aux_model.status == mip.OptimizationStatus.INFEASIBLE: # if infeasible means that this is a particular version of an LP return self.deletion_filter() # (STEP 2) # add all the integer constraints to the model iis_aux_model.vars.remove( [var for var in integer_varlist_crt] ) # remove all integer variables for var in integer_varlist_crt: iis_aux_model.add_var( name=var.name, lb=-mip.INF, ub=mip.INF, var_type=var.var_type, # this will add the var with his original type ) # filter IR constraints that create infeasibility (STEP 1) for var in integer_varlist_crt: iis_aux_model.vars.remove(iis_aux_model.var_by_name(var.name)) iis_aux_model.add_var( name=var.name, lb=-mip.INF, ub=mip.INF, var_type=mip.CONTINUOUS, # relax the integer constraint over var ) iis_aux_model.optimize() # if infeasible then update incumbent T = T-{ir_var_crt} # else continue # STEP 2 filter lc constraints # STEP 3 filter BD constraints # return IS o IIS def deletion_filter_milp_lc_ir_bd(self) -> mip.ConstrList: raise NotImplementedError # TODO class ConflictRelaxer: def __init__(self, model: mip.Model): if model.status == mip.OptimizationStatus.LOADED: print("model not runned yet, checking if feasible or not") model.emphasis = 1 # feasibility model.preprocess = 1 # -1 automatic, 0 off, 1 on. model.optimize() assert ( model.status == mip.OptimizationStatus.INFEASIBLE ), "model is not linear infeasible" self.model = model self.iis_num_iterations = 0 self.iis_iterations = [] self.relax_slack_iterations = [] @property def slack_by_crt(self) -> dict: answ = {} for slack_dict_iter in self.relax_slack_iterations: for crt_name in slack_dict_iter.keys(): if crt_name in answ.keys(): answ[crt_name] += slack_dict_iter[crt_name] else: answ[crt_name] = slack_dict_iter[crt_name] return answ def hierarchy_relaxer( self, relaxer_objective: str = "min_abs_slack_val", default_priority: mip.constants.ConstraintPriority = mip.constants.ConstraintPriority.MANDATORY, cbc_verbose: bool = False ) -> mip.Model: """hierarchy relaxer algorithm, it's gonna find a IIS and then relax it using the objective function defined (`relaxer_objective`) and then update the model with the relaxed constraints. This process runs until there's not more IIS on the model. Args: relaxer_objective (str, optional): objective function of the relaxer model (IIS relaxer model). Defaults to 'min_abs_slack_val'. default_priority (ConstraintPriority, optional): If a constraint does not have a supported substring priority in the name, it will assign a default priority. Defaults to ConstraintPriority.MANDATORY. Raises: NonRelaxableModel: [description] Returns: mip.Model: relaxed model """ relaxed_model = self.model.copy() relaxed_model._status = self.model._status # TODO solve this in a different way # map unmaped constraitns to default for crt in relaxed_model.constrs: if not crt.priority: crt.priority = default_priority iis_it = 0 iis_dict = {} taboo_list_iis = [] cf = ConflictFinder(relaxed_model) while True: # 1. find iis iis = cf.find_iis(IISFinderAlgorithm.DELETION_FILTER) self.iis_iterations.append([crt.name for crt in iis]) # track iteration self.iis_num_iterations += 1 # track iteration iis_priority_set = set([crt.priority for crt in iis]) # check if "relaxable" model mapping if iis_priority_set == set([mip.constants.ConstraintPriority.MANDATORY]): raise NonRelaxableModel("Infeasible model, is not possible to relax MANDATORY constraints") # 2. relax iis with contextlib.nullcontext() if cbc_verbose else ignore_output() as iow: for level, relaxing_level in enumerate(sorted(iis_priority_set, key=lambda x: x.value)): # highest case (raise exception) if relaxing_level == mip.constants.ConstraintPriority.MANDATORY: raise NonRelaxableModel("Infeasible model, is not possible to relax MANDATORY constraints") try: slack_dict = self.relax_iis(iis, relaxer_objective=relaxer_objective, lowest_priority=relaxing_level) except SubRelaxationInfeasible as e: warnings.warn(f'Warning relaxing more than one level, currently on l{level} : {relaxing_level}') continue else: # relaxable iis, this is will continue with the next iteration then break self.relax_slack_iterations.append(slack_dict) # 3. add the slack variables to the original problem with contextlib.nullcontext() if cbc_verbose else ignore_output() as iow: relaxed_model = self.relax_constraints(relaxed_model, slack_dict) # 4. check if feasible relaxed_model.emphasis = 1 # feasibility with contextlib.nullcontext() if cbc_verbose else ignore_output() as iow: relaxed_model.optimize() if relaxed_model.status in [ mip.OptimizationStatus.FEASIBLE, mip.OptimizationStatus.OPTIMAL, ]: print("finished relaxation process !") break else: print( "relaxed the current IIS, still infeasible, searching for a new IIS to relax" ) print("relaxed constraints {0}".format(list(slack_dict.keys()))) iis_it += 1 # print(f'found iis_{iis_it} = {[crt.name for crt in iis]}') iis_dict[iis_it] = {} iis_crt = [crt.name for crt in iis] iis_dict[iis_it]['iis'] = [{'name': crt.name, 'priority': str(crt.priority).split('.')[1]} for crt in iis] print(f'found iis_{iis_it} : len = {len(iis_crt)} in_taboo = {(iis_crt in taboo_list_iis)}') taboo_list_iis.append(iis_crt) iis_dict[iis_it]['slack'] = slack_dict return relaxed_model @classmethod def relax_iis( cls, iis: mip.ConstrList, relaxer_objective: str = "min_abs_slack_val", lowest_priority: 'mip.constants.ConstraintPriority' = None ) -> dict: """This function is the sub module that finds the optimum relaxation for an IIS, given a crt priority mapping and a objective function Args: iis (mip.ConstrList): IIS constraint list relaxer_objective (str, optional): objective function to use when relaxing. Defaults to 'min_abs_slack_val'. Returns: dict: a slack variable dictionary with the value of the {constraint_name:slack.value} pair to be added to each constraint in order to make the IIS feasible """ relax_iis_model = mip.Model() if lowest_priority is None: lowest_priority = min([crt.priority for crt in iis]) to_relax_crts = [crt for crt in iis if crt.priority == lowest_priority or crt.priority < lowest_priority] # create a model that only contains the iis slack_vars = {} abs_slack_vars = {} abs_slack_cod_vars = {} for crt in iis: # print(crt.name, crt.priority) for var in crt._Constr__model.vars: relax_iis_model.add_var( name=var.name, lb=var.lb, ub=var.ub, var_type=var.var_type, obj=var.obj, ) if crt in to_relax_crts: # if this is a -to be relax- constraint slack_vars[crt.name] = relax_iis_model.add_var( name="{0}__{1}".format(crt.name, "slack"), lb=-mip.INF, ub=mip.INF, var_type=mip.CONTINUOUS, ) abs_slack_vars[crt.name] = relax_iis_model.add_var( name="{0}_abs".format(slack_vars[crt.name].name), lb=0, ub=mip.INF, var_type=mip.CONTINUOUS, ) # add relaxed constraint to model relax_expr = crt.expr + slack_vars[crt.name] relax_iis_model.add_constr( relax_expr, name="{}_relaxed".format(crt.name), ) # add abs(slack) variable encoding constraints relax_iis_model.add_constr( abs_slack_vars[crt.name] >= slack_vars[crt.name], name="{}_positive_min_bound".format(slack_vars[crt.name].name), ) relax_iis_model.add_constr( abs_slack_vars[crt.name] >= -slack_vars[crt.name], name="{}_negative_min_bound".format(slack_vars[crt.name].name), ) else: # if not to be relaxed we added directly to the model relax_iis_model.add_constr( crt.expr, name="{}_original".format(crt.name), priority=crt.priority ) # find the min abs value of the slack variables relax_iis_model.objective = mip.xsum(list(abs_slack_vars.values())) relax_iis_model.sense = mip.MINIMIZE relax_iis_model.optimize() if relax_iis_model.status == mip.OptimizationStatus.INFEASIBLE: raise SubRelaxationInfeasible("sub relaxation model infeasible, this could mean that in the IIS the mandatory constraints are infeasible sometimes") slack_dict = {} for crt in to_relax_crts: slack_dict[crt.name] = slack_vars[crt.name].x return slack_dict @classmethod def relax_constraints(cls, relaxed_model: mip.Model, slack_dict: dict) -> mip.Model: """this method creates a modification of the model `relaxed_model` where all the constraints in the slack_dict are modified in order to add the slack values to make the IIS disappear Args: relaxed_model (mip.Model): model to relax slack_dict (dict): pairs {constraint_name: slack_var.value} Returns: mip.Model: a modification of the original model where all the constraints are modified with the slack values """ for crt_name in slack_dict.keys(): crt_original = relaxed_model.constr_by_name(crt_name) relax_expr = crt_original.expr + slack_dict[crt_name] relaxed_model.add_constr( relax_expr, name=crt_original.name, priority=crt_original.priority ) relaxed_model.remove(crt_original) # remove constraint return relaxed_model @contextlib.contextmanager def ignore_output(): with tempfile.TemporaryFile() as f: orig_std_out = os.dup(1) os.dup2(f.fileno(), 1) yield # pause the coroutine to execute the with code os.dup2(orig_std_out, 1) os.close(orig_std_out)
11416
from channels import Group # websocket.connect def ws_add(message): Group("chat").add(message.reply_channel) # websocket.receive def ws_message(message): Group("chat").send({ "text": message.content['text'], }) # websocket.disconnect def ws_disconnect(message): Group("chat").discard(message.reply_channel)
11469
import re regex = re.compile('[^a-zA-Z]') def score_word(word, corpus=None): word = regex.sub('', word) # leave only alpha score = 0 consec_bonus = 2 for i, letter in enumerate(word): if letter.islower(): continue if i > 0 and word[i-1].upper(): score += consec_bonus if i == 0: score += 10 elif (i == 1) or (i == len(word)-1): score += 3 else: score += 1 if (i >= 1) and (corpus is not None) and (word[i:].lower() in corpus): score += len(word[i:])-1 return score def score_acronym(capitalized_acronym, corpus=None): """ For each capitalized letter in the acronym: * 10 points if first letter in a word (with exception of first letter) * 3 point if second or last letter in a word * 1 point otherwise * N bonus points if begins an N-length valid sub-word (ex: multiVariable -> 8 bonus points) * 2 bonus points if immediately following a capitalizd letter """ return sum([score_word(word, corpus=corpus) for word in capitalized_acronym.split(' ')]) - 10
11474
from pypy.module.cpyext.test.test_api import BaseApiTest class TestIterator(BaseApiTest): def test_check_iter(self, space, api): assert api.PyIter_Check(space.iter(space.wrap("a"))) assert api.PyIter_Check(space.iter(space.newlist([]))) assert not api.PyIter_Check(space.w_type) assert not api.PyIter_Check(space.wrap(2)) def test_getIter(self, space, api): w_iter = api.PyObject_GetIter(space.wrap([1, 2, 3])) assert space.unwrap(api.PyIter_Next(w_iter)) == 1 assert space.unwrap(api.PyIter_Next(w_iter)) == 2 assert space.unwrap(api.PyIter_Next(w_iter)) == 3 assert api.PyIter_Next(w_iter) is None assert not api.PyErr_Occurred() def test_iternext_error(self,space, api): assert api.PyIter_Next(space.w_None) is None assert api.PyErr_Occurred() is space.w_TypeError api.PyErr_Clear()
11483
import argparse import json import numpy as np import os import torch import data_ import models import utils from matplotlib import cm, pyplot as plt from tensorboardX import SummaryWriter from torch import optim from torch.utils import data from tqdm import tqdm from utils import io parser = argparse.ArgumentParser() # CUDA parser.add_argument('--use_gpu', type=bool, default=True, help='Whether to use GPU.') # data parser.add_argument('--dataset_name', type=str, default='spirals', help='Name of dataset to use.') parser.add_argument('--n_data_points', default=int(1e6), help='Number of unique data points in training set.') parser.add_argument('--batch_size', type=int, default=256, help='Size of batch used for training.') parser.add_argument('--num_workers', type=int, default=0, help='Number of workers used in data loaders.') # MADE parser.add_argument('--n_residual_blocks_made', default=4, help='Number of residual blocks in MADE.') parser.add_argument('--hidden_dim_made', default=256, help='Dimensionality of hidden layers in MADE.') parser.add_argument('--activation_made', default='relu', help='Activation function for MADE.') parser.add_argument('--use_batch_norm_made', default=False, help='Whether to use batch norm in MADE.') parser.add_argument('--dropout_probability_made', default=None, help='Dropout probability for MADE.') # energy net parser.add_argument('--context_dim', default=64, help='Dimensionality of context vector.') parser.add_argument('--n_residual_blocks_energy_net', default=4, help='Number of residual blocks in energy net.') parser.add_argument('--hidden_dim_energy_net', default=128, help='Dimensionality of hidden layers in energy net.') parser.add_argument('--energy_upper_bound', default=0, help='Max value for output of energy net.') parser.add_argument('--activation_energy_net', default='relu', help='Activation function for energy net.') parser.add_argument('--use_batch_norm_energy_net', default=False, help='Whether to use batch norm in energy net.') parser.add_argument('--dropout_probability_energy_net', default=None, help='Dropout probability for energy net.') parser.add_argument('--scale_activation', default='softplus', help='Activation to use for scales in proposal mixture components.') parser.add_argument('--apply_context_activation', default=False, help='Whether to apply activation to context vector.') # proposal parser.add_argument('--n_mixture_components', default=10, help='Number of proposal mixture components (per dimension).') parser.add_argument('--proposal_component', default='gaussian', help='Type of location-scale family distribution ' 'to use in proposal mixture.') parser.add_argument('--n_proposal_samples_per_input', default=20, help='Number of proposal samples used to estimate ' 'normalizing constant during training.') parser.add_argument('--n_proposal_samples_per_input_validation', default=100, help='Number of proposal samples used to estimate ' 'normalizing constant during validation.') parser.add_argument('--mixture_component_min_scale', default=1e-3, help='Minimum scale for proposal mixture components.') # optimization parser.add_argument('--learning_rate', default=5e-4, help='Learning rate for Adam.') parser.add_argument('--n_total_steps', default=int(4e5), help='Number of total training steps.') parser.add_argument('--alpha_warm_up_steps', default=5000, help='Number of warm-up steps for AEM density.') parser.add_argument('--hard_alpha_warm_up', default=True, help='Whether to use a hard warm up for alpha') # logging and checkpoints parser.add_argument('--monitor_interval', default=100, help='Interval in steps at which to report training stats.') parser.add_argument('--visualize_interval', default=10000, help='Interval in steps at which to report training stats.') parser.add_argument('--save_interval', default=10000, help='Interval in steps at which to save model.') # reproducibility parser.add_argument('--seed', default=1638128, help='Random seed for PyTorch and NumPy.') args = parser.parse_args() torch.manual_seed(args.seed) np.random.seed(args.seed) if args.use_gpu and torch.cuda.is_available(): device = torch.device('cuda') torch.set_default_tensor_type('torch.cuda.FloatTensor') else: device = torch.device('cpu') # Generate data train_dataset = data_.load_plane_dataset(args.dataset_name, args.n_data_points) train_loader = data_.InfiniteLoader( dataset=train_dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_epochs=None ) # Generate test grid data n_points_per_axis = 512 bounds = np.array([ [-4, 4], [-4, 4] ]) grid_dataset = data_.TestGridDataset(n_points_per_axis=n_points_per_axis, bounds=bounds) grid_loader = data.DataLoader( dataset=grid_dataset, batch_size=1000, drop_last=False ) # various dimensions for autoregressive and energy nets dim = 2 # D output_dim_multiplier = args.context_dim + 3 * args.n_mixture_components # K + 3M # Create MADE made = models.ResidualMADE( input_dim=dim, n_residual_blocks=args.n_residual_blocks_made, hidden_dim=args.hidden_dim_made, output_dim_multiplier=output_dim_multiplier, conditional=False, activation=utils.parse_activation(args.activation_made), use_batch_norm=args.use_batch_norm_made, dropout_probability=args.dropout_probability_made ).to(device) # create energy net energy_net = models.ResidualEnergyNet( input_dim=(args.context_dim + 1), n_residual_blocks=args.n_residual_blocks_energy_net, hidden_dim=args.hidden_dim_energy_net, energy_upper_bound=args.energy_upper_bound, activation=utils.parse_activation(args.activation_energy_net), use_batch_norm=args.use_batch_norm_energy_net, dropout_probability=args.dropout_probability_energy_net ).to(device) # create AEM aem = models.AEM( autoregressive_net=made, energy_net=energy_net, context_dim=args.context_dim, n_proposal_mixture_components=args.n_mixture_components, proposal_component_family=args.proposal_component, n_proposal_samples_per_input=args.n_proposal_samples_per_input, mixture_component_min_scale=args.mixture_component_min_scale, apply_context_activation=args.apply_context_activation ).to(device) # make optimizer parameters = list(made.parameters()) + list(energy_net.parameters()) optimizer = optim.Adam(parameters, lr=args.learning_rate) scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.n_total_steps) # create summary writer and write to log directory timestamp = io.get_timestamp() log_dir = os.path.join(io.get_log_root(), args.dataset_name, timestamp) writer = SummaryWriter(log_dir=log_dir) filename = os.path.join(log_dir, 'config.json') with open(filename, 'w') as file: json.dump(vars(args), file) # Training loop tbar = tqdm(range(args.n_total_steps)) alpha = 0 for step in tbar: aem.train() scheduler.step(step) optimizer.zero_grad() # training step batch = next(train_loader).to(device) log_density, log_proposal_density, _, log_normalizer = aem(batch) mean_log_density = torch.mean(log_density) mean_log_proposal_density = torch.mean(log_proposal_density) mean_log_normalizer = torch.mean(log_normalizer) if args.alpha_warm_up_steps is not None: if args.hard_alpha_warm_up: alpha = float(step > args.alpha_warm_up_steps) else: alpha = torch.Tensor([min(step / args.alpha_warm_up_steps, 1)]) loss = - (alpha * mean_log_density + mean_log_proposal_density) else: loss = - (mean_log_density + mean_log_proposal_density) loss.backward() optimizer.step() if (step + 1) % args.monitor_interval == 0: s = 'Loss: {:.4f}, log p: {:.4f}, log q: {:.4f}'.format( loss.item(), mean_log_density.item(), mean_log_proposal_density.item() ) tbar.set_description(s) # write summaries summaries = { 'loss': loss.detach(), 'log-prob-aem': mean_log_density.detach(), 'log-prob-proposal': mean_log_proposal_density.detach(), 'log-normalizer': mean_log_normalizer.detach(), 'learning-rate': torch.Tensor(scheduler.get_lr()), } for summary, value in summaries.items(): writer.add_scalar(tag=summary, scalar_value=value, global_step=step) if (step + 1) % args.visualize_interval == 0: # Plotting aem.eval() aem.set_n_proposal_samples_per_input_validation( args.n_proposal_samples_per_input_validation) log_density_np = [] log_proposal_density_np = [] for batch in grid_loader: batch = batch.to(device) log_density, log_proposal_density, unnormalized_log_density, log_normalizer = aem( batch) log_density_np = np.concatenate(( log_density_np, utils.tensor2numpy(log_density) )) log_proposal_density_np = np.concatenate(( log_proposal_density_np, utils.tensor2numpy(log_proposal_density) )) fig, axs = plt.subplots(1, 3, figsize=(7.5, 2.5)) axs[0].hist2d(train_dataset.data[:, 0], train_dataset.data[:, 1], range=bounds, bins=512, cmap=cm.viridis, rasterized=False) axs[0].set_xticks([]) axs[0].set_yticks([]) axs[1].pcolormesh(grid_dataset.X, grid_dataset.Y, np.exp(log_proposal_density_np).reshape(grid_dataset.X.shape)) axs[1].set_xlim(bounds[0]) axs[1].set_ylim(bounds[1]) axs[1].set_xticks([]) axs[1].set_yticks([]) axs[2].pcolormesh(grid_dataset.X, grid_dataset.Y, np.exp(log_density_np).reshape(grid_dataset.X.shape)) axs[2].set_xlim(bounds[0]) axs[2].set_ylim(bounds[1]) axs[2].set_xticks([]) axs[2].set_yticks([]) plt.tight_layout() path = os.path.join(io.get_output_root(), 'pytorch', '{}.png'.format(args.dataset_name)) if not os.path.exists(path): os.makedirs(io.get_output_root()) plt.savefig(path, dpi=300) writer.add_figure(tag='test-grid', figure=fig, global_step=step) plt.close() if (step + 1) % args.save_interval == 0: path = os.path.join(io.get_checkpoint_root(), 'pytorch', '{}.t'.format(args.dataset_name)) if not os.path.exists(path): os.makedirs(io.get_checkpoint_root()) torch.save(aem.state_dict(), path) path = os.path.join(io.get_checkpoint_root(), 'pytorch', '{}-{}.t'.format(args.dataset_name, timestamp)) torch.save(aem.state_dict(), path)
11502
import logging import os.path as path from typing import List, Optional, Tuple from psychopy import core, visual from bcipy.acquisition.marker_writer import NullMarkerWriter, MarkerWriter from bcipy.helpers.task import SPACE_CHAR from bcipy.helpers.stimuli import resize_image from bcipy.helpers.system_utils import get_screen_resolution from bcipy.helpers.triggers import TriggerCallback, _calibration_trigger class RSVPDisplay(object): """RSVP Display Object for inquiry Presentation. Animates a inquiry in RSVP. Mode should be determined outside. """ def __init__( self, window: visual.Window, static_clock, experiment_clock: core.Clock, marker_writer: Optional[MarkerWriter] = None, task_color: List[str] = ['white'], task_font: str = 'Times', task_pos: Tuple[float, float] = (-.8, .9), task_height: float = 0.2, task_text: str = '1/100', info_color: List[str] = ['white'], info_text: List[str] = ['Information Text'], info_font: List[str] = ['Times'], info_pos=[(.8, .9)], info_height=[0.2], stim_font='Times', stim_pos=(-.8, .9), stim_height=0.2, stim_inquiry: List[str] = ['a'] * 10, stim_colors: List[str] = ['white'] * 10, stim_timing: List[float] = [1] * 10, is_txt_stim: bool = True, static_time: float = .05, trigger_type: str = 'image', space_char: SPACE_CHAR = SPACE_CHAR): """Initialize RSVP window parameters and objects. PARAMETERS: ---------- # Experiment window(visual.Window): PsychoPy Window static_clock(TODO): no idea experiment_clock(core.Clock): Clock used to timestamp experiment marker_writer(MarkerWriter): object used to write triggers to the daq stream. # Task task_color(list[string]): Color of the task string. Shares the length of the task_text. If of length 1 the entire task bar shares the same color. task_font(string): Font of task string task_pos(tuple): position of task string task_height(float): height for task string task_text(string): text of the task bar # Info info_text(list[string]): Text list for information texts info_color(list[string]): Color of the information text string info_font(list[string]): Font of the information text string info_pos(list[tuple]): Position of the information text string info_height(list[float]): Height of the information text string # Stimuli stim_height(float): height of the stimuli object stim_pos(tuple): position of stimuli stim_font(string): font of the stimuli stim_inquiry(list[string]): list of elements to flash stim_colors(list[string]): list of colors for stimuli stim_timing(list[float]): timing for each letter flash """ self.window = window self.refresh_rate = window.getActualFrameRate() self.logger = logging.getLogger(__name__) self.stimuli_inquiry = stim_inquiry self.stimuli_colors = stim_colors self.stimuli_timing = stim_timing self.is_txt_stim = is_txt_stim self.staticPeriod = static_clock self.static_time = static_time self.experiment_clock = experiment_clock self.timing_clock = core.Clock() # Used to handle writing the marker stimulus self.marker_writer = marker_writer or NullMarkerWriter() # Length of the stimuli (number of flashes) self.stim_length = len(stim_inquiry) # Informational Parameters self.info_text = info_text # Stim parameters self.stimuli_font = stim_font self.stimuli_height = stim_height self.stimuli_pos = stim_pos # Trigger Items self.first_run = True self.trigger_type = trigger_type self.trigger_callback = TriggerCallback() # Callback used on presentation of first stimulus. self.first_stim_callback = lambda _sti: None self.size_list_sti = [] self.space_char = space_char self.task = visual.TextStim(win=self.window, color=task_color[0], height=task_height, text=task_text, font=task_font, pos=task_pos, wrapWidth=None, colorSpace='rgb', opacity=1, depth=-6.0) # Create multiple text objects based on input self.text = [] for idx in range(len(self.info_text)): self.text.append(visual.TextStim( win=self.window, color=info_color[idx], height=info_height[idx], text=self.info_text[idx], font=info_font[idx], pos=info_pos[idx], wrapWidth=None, colorSpace='rgb', opacity=1, depth=-6.0)) # Create Stimuli Object if self.is_txt_stim: self.sti = visual.TextStim( win=self.window, color='white', height=self.stimuli_height, text='+', font=self.stimuli_font, pos=self.stimuli_pos, wrapWidth=None, colorSpace='rgb', opacity=1, depth=-6.0) else: self.sti = visual.ImageStim( win=self.window, image=None, mask=None, pos=self.stimuli_pos, ori=0.0) def draw_static(self): """Draw static elements in a stimulus.""" self.task.draw() for idx in range(len(self.text)): self.text[idx].draw() def schedule_to(self, ele_list=[], time_list=[], color_list=[]): """Schedule stimuli elements (works as a buffer). Args: ele_list(list[string]): list of elements of stimuli time_list(list[float]): list of timings of stimuli color_list(list[string]): colors of elements of stimuli """ self.stimuli_inquiry = ele_list self.stimuli_timing = time_list self.stimuli_colors = color_list def update_task(self, text: str, color_list: List[str], pos: Tuple[float]): """Update Task Object. PARAMETERS: ----------- text: text for task color_list: list of the colors for each char pos: position of task """ self.task.text = text self.task.color = color_list[0] self.task.pos = pos def do_inquiry(self): """Do inquiry. Animates a inquiry of flashing letters to achieve RSVP. """ # init an array for timing information timing = [] if self.first_run: # play a inquiry start sound to help orient triggers first_stim_timing = _calibration_trigger( self.experiment_clock, trigger_type=self.trigger_type, display=self.window, on_trigger=self.marker_writer.push_marker) timing.append(first_stim_timing) self.first_stim_time = first_stim_timing[-1] self.first_run = False # generate a inquiry (list of stimuli with meta information) inquiry = self._generate_inquiry() # do the inquiry for idx in range(len(inquiry)): self.is_first_stim = (idx == 0) # set a static period to do all our stim setting. # will warn if ISI value is violated. self.staticPeriod.name = 'Stimulus Draw Period' self.staticPeriod.start(self.stimuli_timing[idx]) # Reset the timing clock to start presenting self.window.callOnFlip( self.trigger_callback.callback, self.experiment_clock, inquiry[idx]['sti_label']) self.window.callOnFlip(self.marker_writer.push_marker, inquiry[idx]['sti_label']) if idx == 0 and callable(self.first_stim_callback): self.first_stim_callback(inquiry[idx]['sti']) # Draw stimulus for n frames inquiry[idx]['sti'].draw() self.draw_static() self.window.flip() core.wait((inquiry[idx]['time_to_present'] - 1) / self.refresh_rate) # End static period self.staticPeriod.complete() # append timing information if self.is_txt_stim: timing.append(self.trigger_callback.timing) else: timing.append(self.trigger_callback.timing) self.trigger_callback.reset() # draw in static and flip once more self.draw_static() self.window.flip() return timing def _generate_inquiry(self): """Generate inquiry. Generate stimuli for next RSVP inquiry. """ stim_info = [] for idx in range(len(self.stimuli_inquiry)): current_stim = {} # turn ms timing into frames! Much more accurate! current_stim['time_to_present'] = int(self.stimuli_timing[idx] * self.refresh_rate) # check if stimulus needs to use a non-default size if self.size_list_sti: this_stimuli_size = self.size_list_sti[idx] else: this_stimuli_size = self.stimuli_height # Set the Stimuli attrs if self.stimuli_inquiry[idx].endswith('.png'): current_stim['sti'] = self.create_stimulus(mode='image', height_int=this_stimuli_size) current_stim['sti'].image = self.stimuli_inquiry[idx] current_stim['sti'].size = resize_image( current_stim['sti'].image, current_stim['sti'].win.size, this_stimuli_size) current_stim['sti_label'] = path.splitext( path.basename(self.stimuli_inquiry[idx]))[0] else: # text stimulus current_stim['sti'] = self.create_stimulus(mode='text', height_int=this_stimuli_size) txt = self.stimuli_inquiry[idx] # customize presentation of space char. current_stim['sti'].text = txt if txt != SPACE_CHAR else self.space_char current_stim['sti'].color = self.stimuli_colors[idx] current_stim['sti_label'] = txt # test whether the word will be too big for the screen text_width = current_stim['sti'].boundingBox[0] if text_width > self.window.size[0]: monitor_width, monitor_height = get_screen_resolution() text_height = current_stim['sti'].boundingBox[1] # If we are in full-screen, text size in Psychopy norm units # is monitor width/monitor height if self.window.size[0] == monitor_width: new_text_width = monitor_width / monitor_height else: # If not, text width is calculated relative to both # monitor size and window size new_text_width = ( self.window.size[1] / monitor_height) * ( monitor_width / monitor_height) new_text_height = (text_height * new_text_width) / text_width current_stim['sti'].height = new_text_height stim_info.append(current_stim) return stim_info def update_task_state(self, text: str, color_list: List[str]) -> None: """Update task state. Removes letters or appends to the right. Args: text(string): new text for task state color_list(list[string]): list of colors for each """ task_state_text = visual.TextStim( win=self.window, font=self.task.font, text=text) x_task_position = task_state_text.boundingBox[0] / \ self.window.size[0] - 1 task_pos = (x_task_position, 1 - self.task.height) self.update_task(text=text, color_list=color_list, pos=task_pos) def wait_screen(self, message, color): """Wait Screen. Args: message(string): message to be displayed while waiting """ # Construct the wait message wait_message = visual.TextStim(win=self.window, font=self.stimuli_font, text=message, height=.1, color=color, pos=(0, -.5), wrapWidth=2, colorSpace='rgb', opacity=1, depth=-6.0) # Try adding our BCI logo. Pass if not found. try: wait_logo = visual.ImageStim( self.window, image='bcipy/static/images/gui_images/bci_cas_logo.png', pos=(0, .5), mask=None, ori=0.0) wait_logo.size = resize_image( 'bcipy/static/images/gui_images/bci_cas_logo.png', self.window.size, 1) wait_logo.draw() except Exception: self.logger.debug('Cannot load logo image') pass # Draw and flip the screen. wait_message.draw() self.window.flip() def create_stimulus(self, height_int: int, mode: str = 'text'): """Create Stimulus. Returns a TextStim or ImageStim object. Args: height_int: The height of the stimulus mode: "text" or "image", determines which to return """ if mode == 'text': return visual.TextStim( win=self.window, color='white', height=height_int, text='+', font=self.stimuli_font, pos=self.stimuli_pos, wrapWidth=None, colorSpace='rgb', opacity=1, depth=-6.0) if mode == 'image': return visual.ImageStim( win=self.window, image=None, mask=None, units='', pos=self.stimuli_pos, size=(height_int, height_int), ori=0.0)
11540
from __future__ import division import itertools import json import math import os import random import shutil import subprocess import sys durationA = str(5) durationB = str(4) durationC = str(1) def main(): if len(sys.argv) > 1: nbDepth = int(sys.argv[1]) if nbDepth < 2 : nbDepth =2 else : nbDepth =2 mainFolder = "depth" if not os.path.exists(mainFolder): subprocess.call(["mkdir", mainFolder]) generateDomain("depth", nbDepth) #print "Every file has been written. Exiting" def generateDomain(folderName, nbDepth): domainFilename = folderName + "/" + folderName + "-flat" + str(nbDepth) + ".dom.anml" printDomainToFile(domainFilename, nbDepth) domainFilename = folderName + "/" + folderName + "-hier" + str(nbDepth) + ".dom.anml" printDomainHierToFile(domainFilename, nbDepth) def printDomainToFile(domainFilename, nbDepth): with open(domainFilename, "w") as f: for i in range(0, nbDepth): f.write("predicate a" + str(i+1) +"();\n") f.write("predicate b" + str(i+1) +"();\n") f.write("predicate c" + str(i+1) +"();\n") f.write("predicate d" + str(i+1) +"();\n") f.write("predicate e" + str(i+1) +"();\n") f.write("\naction An" + str(i+1) + " () {\n") f.write("\tduration := " + durationA + ";\n") if i > 0: f.write("\t[start] {\n") f.write("\t\tb"+ str(i) +" == true;\n") f.write("\t\td"+ str(i) +" == true;\n") f.write("\t\te"+ str(i) +" == true;\n") f.write("\t};\n") f.write("\t[start] a" + str(i+1) + " := true;\n") f.write("\t[end] {\n") f.write("\t\ta" + str(i+1) + " := false;\n") f.write("\t\tb" + str(i+1) + " := true;\n") f.write("\t\td" + str(i+1) + " := false;\n") f.write("\t};\n") f.write("};\n") f.write("\naction Bn" + str(i+1) + " () {\n") f.write("\tduration := " + durationB + ";\n") f.write("\t[start] a" + str(i+1) + " == true;\n") f.write("\t[start] c" + str(i+1) + " := true;\n") f.write("\t[end] {\n") f.write("\t\tc" + str(i+1) + " := false;\n") f.write("\t\td" + str(i+1) + " := true;\n") f.write("\t};\n") f.write("};\n") f.write("\naction Cn" + str(i+1) + " () {\n") f.write("\tduration := " + durationC + ";\n") f.write("\t[start] c" + str(i+1) + " == true;\n") f.write("\t[end] {\n") f.write("\t\tb" + str(i+1) + " := false;\n") f.write("\t\te" + str(i+1) + " := true;\n") f.write("\t};\n") f.write("};\n") ######################## problem ############### f.write("\n/*******Problem************/\n") f.write("[all] contains{\n") f.write("\tCn" + str(nbDepth) +"();\n") f.write("};") def printDomainHierToFile(domainFilename, nbDepth): with open(domainFilename, "w") as f: for i in range(0, nbDepth): if i == 0: f.write("\naction An" + str(i+1) + " () {\n") f.write("\tmotivated;\n") f.write("\tduration := " + durationA + ";\n") f.write("};\n") else: f.write("\naction An" + str(i+1) + " () {\n") f.write("\tmotivated;\n") f.write("\tduration := " + durationA + ";\n") f.write("\ta : ABC" + str(i) + "();\n") f.write("\t end(a) < start;\n") f.write("};\n") f.write("\naction Bn" + str(i+1) + " () {\n") f.write("\tduration := " + durationB + ";\n") f.write("\tmotivated;\n") f.write("};\n") f.write("\naction Cn" + str(i+1) + " () {\n") f.write("\tduration := " + durationC + ";\n") f.write("\tmotivated;\n") f.write("};\n") f.write("\naction ABC" + str(i+1) + " () {\n") f.write("\t[all] contains {\n") f.write("\t\t b" + str(i+1) + " : An" + str(i+1) + "();\n") f.write("\t\t d" + str(i+1) + " : Bn" + str(i+1) + "();\n") f.write("\t\t e" + str(i+1) + " : Cn" + str(i+1) + "();\n") f.write("\t};\n") f.write("\tstart(b" + str(i+1) + ") < start(d" + str(i+1) + ");\n") f.write("\tend(d" + str(i+1) + ") < end(b" + str(i+1) + ");\n") f.write("\tstart(d" + str(i+1) + ") < start(e" + str(i+1) + ");\n") f.write("\tend(e" + str(i+1) + ") < end(d" + str(i+1) + ");\n") f.write("};\n") #################### problem ############# f.write("\n/*******Problem************/\n") f.write("[all] contains{\n") f.write("\tCn" + str(nbDepth) +"();\n") f.write("};") if __name__ == "__main__": main()
11543
import decimal from django import template register = template.Library() @register.simple_tag def can_change_status(payment_request, user): return payment_request.can_user_change_status(user) @register.simple_tag def can_delete(payment_request, user): return payment_request.can_user_delete(user) @register.simple_tag def can_edit(payment_request, user): return payment_request.can_user_edit(user) @register.simple_tag def percentage(value, total): if not total: return decimal.Decimal(0) unrounded_total = (value / total) * 100 # round using Decimal since we're dealing with currency rounded_total = unrounded_total.quantize( decimal.Decimal('0.0'), rounding=decimal.ROUND_DOWN, ) return rounded_total
11564
class _FuncStorage: def __init__(self): self._function_map = {} def insert_function(self, name, function): self._function_map[name] = function def get_all_functions(self): return self._function_map
11587
from typing import List, Type from apiron.service.base import ServiceBase class DiscoverableService(ServiceBase): """ A Service whose hosts are determined via a host resolver. A host resolver is any class with a :func:`resolve` method that takes a service name as its sole argument and returns a list of host names that correspond to that service. """ host_resolver_class: Type service_name: str @classmethod def get_hosts(cls) -> List[str]: return cls.host_resolver_class.resolve(cls.service_name) def __str__(self) -> str: return self.service_name def __repr__(self) -> str: klass = self.__class__ return "{klass}(service_name={service_name}, host_resolver={host_resolver})".format( klass=klass.__name__, service_name=klass.service_name, host_resolver=klass.host_resolver_class.__name__ )
11594
import pytest from apostello import models @pytest.mark.slow @pytest.mark.django_db class TestContactForm: """Test the sending of SMS.""" def test_number_permissions_staff_exception(self, recipients, users): """Test sending a message now.""" calvin = recipients["calvin"] # check good post: prof = users["staff"].profile prof.can_see_contact_nums = False prof.save() r = users["c_staff"].post( f"/api/v2/recipients/{calvin.pk}/", { "pk": calvin.pk, "first_name": calvin.first_name, "last_name": calvin.last_name, "number": "+447900000000", "do_not_reply": calvin.do_not_reply, }, ) assert r.status_code == 200 calvin.refresh_from_db() assert calvin.number == "+447900000000" def test_number_permissions_no_perm(self, recipients, users): calvin = recipients["calvin"] r = users["c_in"].post( f"/api/v2/recipients/{calvin.pk}/", { "pk": calvin.pk, "first_name": calvin.first_name, "last_name": calvin.last_name, "number": "+447900000000", "do_not_reply": calvin.do_not_reply, }, ) assert r.status_code == 400 assert "You do not have permission to change the number field." in r.json()["errors"]["__all__"] def test_number_permissions_with_perm(self, recipients, users): calvin = recipients["calvin"] # check good post: prof = users["notstaff2"].profile prof.can_see_contact_nums = True prof.save() r = users["c_in"].post( f"/api/v2/recipients/{calvin.pk}/", { "pk": calvin.pk, "first_name": calvin.first_name, "last_name": calvin.last_name, "number": "+447900000001", "do_not_reply": calvin.do_not_reply, }, ) assert r.status_code == 200 calvin.refresh_from_db() assert calvin.number == "+447900000001" def test_notes_permissions_staff_exception(self, recipients, users): """Test sending a message now.""" calvin = recipients["calvin"] # check good post: prof = users["staff"].profile prof.can_see_contact_notes = False prof.save() r = users["c_staff"].post( f"/api/v2/recipients/{calvin.pk}/", { "pk": calvin.pk, "first_name": calvin.first_name, "last_name": calvin.last_name, "number": calvin.number, "do_not_reply": calvin.do_not_reply, "notes": "hi there", }, ) assert r.status_code == 200 calvin.refresh_from_db() assert calvin.notes == "hi there" def test_notes_permissions_no_perm(self, recipients, users): calvin = recipients["calvin"] r = users["c_in"].post( f"/api/v2/recipients/{calvin.pk}/", { "pk": calvin.pk, "first_name": calvin.first_name, "last_name": calvin.last_name, "do_not_reply": calvin.do_not_reply, "notes": "hi there", }, ) assert r.status_code == 400 assert "You do not have permission to change the notes field." in r.json()["errors"]["__all__"] calvin.refresh_from_db() assert not (calvin.notes == "hi there") def test_notes_permissions_with_perm(self, recipients, users): calvin = recipients["calvin"] # check good post: prof = users["notstaff2"].profile prof.can_see_contact_notes = True prof.save() r = users["c_in"].post( f"/api/v2/recipients/{calvin.pk}/", { "pk": calvin.pk, "first_name": calvin.first_name, "last_name": calvin.last_name, "do_not_reply": calvin.do_not_reply, "notes": "something something", }, ) assert r.status_code == 200 calvin.refresh_from_db() assert calvin.notes == "something something"
11636
import re import types from functools import partial LITERAL_TYPE = types.StringTypes + (int, float, long, bool, ) class Spec(object): """ This object, when overridden with an object that implements a file format specification, will perform validation on a given parsed version of the format input. SPEC Node Documentation: ======================== expected_type: A type object whose type the object should match. required_nodes: A list of nodes that are required for the current node. required_nodes_when: A dict of node name/lambda pairs. If the lambda evaluates to True, a node whose name corresponds to the node name is required. The current node is passed as a parameter to the lambda as the only argument. disallowed_nodes: A list of nodes that explicitly are disallowed in the current node. allowed_once_nodes: A list of nodes that are allowed only once. allowed_nodes: A list of nodes that are allowed multiple times. unknown_node_level: The message type to return when an unknown node is encountered. child_nodes: A dict of node definitions for nodes that can exist within this node. max_length: For sequence values only. An integer describing the maximum length of the string. not_empty: A boolean value describing whether the string/list/dict can be empty. values: A list of possible values for the node. Only applies to lists and literal nodes. value_matches: If `values` is not set, the value must match this regex. Only applies to string nodes. process: A lambda function that returns a function to process the node. The lambda accepts one parameter (self) and should return a function that accepts two parameters (self, node). child_process: A lambda function (similar to `process` that returns a function to process a child node. The lambda accepts one parameter (self) and should return a function that accepts three parameters (self, node_name, node). If this is set, no further testing will take place on child nodes. """ SPEC_NAME = "Specification" MORE_INFO = "You can find more info online." SPEC = None def __init__(self, data, err): self.data = self.parse(data) self.err = err self.error = partial(self._err_message, self.err.error) self.warning = partial(self._err_message, self.err.warning) self.notice = partial(self._err_message, self.err.notice) self.err_map = {"error": self.error, "warning": self.warning, "notice": self.notice} self.path = [] def _err_message(self, func, *args, **kwargs): if self.path: nodepath = "Node: %s" % self._get_path() if isinstance(kwargs["description"], list): kwargs["description"].append(nodepath) else: kwargs["description"] = [ kwargs["description"], nodepath] func(*args, **kwargs) def _message(self, type_, *args, **kwargs): kwargs[type_] = kwargs.pop("message") self.err_map[type_](*args, **kwargs) def validate(self): # Validate the root node. root_name, root_node = self.get_root_node(self.data) root_val_result = self.validate_root_node(root_node) if root_val_result == False: return # Iterate the tree and validate as we go. self.iterate(root_name, root_node, self.SPEC) def parse(self, data): pass def validate_root_node(self, node): pass def get_root_node(self, data): """ We expect this function to return a tuple: ("Root Node Name", root_node) """ def has_attribute(self, node, key): pass def get_attribute(self, node, key): pass def has_child(self, node, child_name): pass def get_children(self, node): """ This function should return a list of (child_name, child)-form tuples. """ def iterate(self, branch_name, branch, spec_branch): self.path.append(branch_name) self._iterate(branch_name, branch, spec_branch) self.path.pop() def _get_path(self): return ' > '.join(self.path) def _iterate(self, branch_name, branch, spec_branch): """Iterate the tree of nodes and validate as we go.""" # Check that the node is of the proper type. If it isn't, then we need # to stop iterating at this point. exp_type = spec_branch.get("expected_type") if (exp_type and not isinstance(branch, exp_type) or # Handle `isinstance(True, int) == True` :( (isinstance(branch, bool) and (exp_type == int if isinstance(exp_type, type) else bool not in exp_type))): self.error( err_id=("spec", "iterate", "bad_type"), error="%s's `%s` was of an unexpected type." % (self.SPEC_NAME, branch_name), description=["While validating a %s, a `%s` was encountered " "which is of an improper type." % (self.SPEC_NAME, branch_name), "Found: %s" % repr(branch), self.MORE_INFO]) return # Handle any generic processing. if "process" in spec_branch: # Let the spec processor resolve the processor and then run the # processor. spec_branch["process"](self)(branch) if "not_empty" in spec_branch and not branch: self.error( err_id=("spec", "iterate", "empty"), error="`%s` is empty." % branch_name, description=["A value was expected for `%s`, but one wasn't " "found." % branch_name, self.MORE_INFO]) # If the node isn't an object... if not isinstance(branch, dict): if "values" in spec_branch and branch not in spec_branch["values"]: self.error( err_id=("spec", "iterate", "bad_value"), error="`%s` contains an invalid value in %s" % (branch_name, self.SPEC_NAME), description=["A `%s` was encountered while validating a " "`%s` containing the value '%s'. This value " "is not appropriate for this type of " "element." % (branch_name, self.SPEC_NAME, branch), self.MORE_INFO]) elif ("value_matches" in spec_branch and isinstance(branch, types.StringTypes)): raw_pattern = spec_branch["value_matches"] if not re.match(raw_pattern, branch): self.error( err_id=("spec", "iterate", "value_pattern_fail"), error="`%s` contains an invalid value in %s" % (branch_name, self.SPEC_NAME), description=["A `%s` was encountered while validating " "a `%s`. Its value does not match the " "pattern required for `%s`s." % (branch_name, self.SPEC_NAME, branch_name), "Found value: %s" % branch, "Pattern: %s" % raw_pattern, self.MORE_INFO]) if ("max_length" in spec_branch and len(branch) > spec_branch["max_length"]): self.error( err_id=("spec", "iterate", "max_length"), error="`%s` has exceeded its maximum length." % branch_name, description=["`%s` has a maximum length (%d), which has " "been exceeded (%d)." % (branch_name, spec_branch["max_length"], len(branch)), self.MORE_INFO]) # The rest of the tests are for child items. if not isinstance(branch, (list, tuple)): return if "child_nodes" in spec_branch: for child in branch: self.iterate(branch_name + " descendant", child, spec_branch["child_nodes"]) # We've got nothing else to do with lists. return # If we need to process the child nodes individually, do that now. if "child_process" in spec_branch: processor = spec_branch["child_process"](self) for child_name, child in self.get_children(branch): processor(child_name, child) # If there's nothing else to do, don't go down that path. if ("required_nodes" not in spec_branch and "required_nodes_when" not in spec_branch and "disallowed_nodes" not in spec_branch): return considered_nodes = set() # Check that all required node as present. if "required_nodes" in spec_branch: considered_nodes.update(spec_branch["required_nodes"]) for req_node in [n for n in spec_branch["required_nodes"] if not self.has_child(branch, n)]: self.error( err_id=("spec", "iterate", "missing_req"), error="%s expecting `%s`" % (self.SPEC_NAME, req_node), description=["The '%s' node of the %s expects a `%s` " "element, which was not found." % (branch_name, self.SPEC_NAME, req_node), self.MORE_INFO]) # Check that conditionally required nodes are present. if "required_nodes_when" in spec_branch: considered_nodes.update(spec_branch["required_nodes_when"].keys()) for req_node in [name for name, cond in spec_branch["required_nodes_when"].items() if cond(branch) and not self.has_child(branch, name)]: self.error( err_id=("spec", "iterate", "missing_req_cond"), error="%s expecting `%s`" % (self.SPEC_NAME, req_node), description=["The '%s' node, under the current " "circumstances, is missing a `%s` element. " "This is a required condition of a %s." % (branch_name, req_node, self.SPEC_NAME), self.MORE_INFO]) # Check that there are no disallowed nodes. if "disallowed_nodes" in spec_branch: disallowed_nodes = spec_branch["disallowed_nodes"] considered_nodes.update(disallowed_nodes) for dnode in [n for n in disallowed_nodes if self.has_child(branch, n)]: self.error( err_id=("spec", "iterate", "disallowed"), error="%s found `%s`, which is not allowed." % (self.SPEC_NAME, dnode), description=["The '%s' node contains `%s`, which is a " "disallowed element. It should be removed." % (branch_name, dnode), self.MORE_INFO]) if ("allowed_nodes" not in spec_branch and "allowed_once_nodes" not in spec_branch): return # Check that allowed nodes are obeyed. allowed_nodes = set(spec_branch.setdefault("allowed_nodes", [])) allowed_once_nodes = spec_branch.setdefault("allowed_once_nodes", []) allowed_nodes.update(allowed_once_nodes) child_node_specs = spec_branch.setdefault("child_nodes", {}) seen_nodes = set() warned_nodes = set() for child_name, child in self.get_children(branch): cspec_branch = None # Process the node first. if child_name in child_node_specs: cspec_branch = child_node_specs[child_name] elif "*" in child_node_specs: cspec_branch = child_node_specs["*"] if cspec_branch is not None: # If it's a lazily evaluated branch, evaluate it now. if isinstance(cspec_branch, types.LambdaType): cspec_branch = cspec_branch(self) # Iterate the node. self.iterate(child_name, child, cspec_branch) # If we've seen a node before that's only supposed to be seen a # single time, warn about it. if child_name in allowed_once_nodes and child_name in seen_nodes: # Don't warn about the same node multiple times. if child_name in warned_nodes: continue self.error( err_id=("spec", "iterate", "allow_once_multiple"), error="%s found `%s` more than once." % (self.SPEC_NAME, child_name), description=["%ss may only contain a single `%s` element, " "however, it was encountered multiple times." % (self.SPEC_NAME, child_name), self.MORE_INFO]) continue # Remember that we've seen this node. seen_nodes.add(child_name) if child_name in considered_nodes: continue # If the child isn't allowed, throw an error. if child_name not in allowed_nodes and "*" not in allowed_nodes: self._message( spec_branch.get("unknown_node_level", "warning"), err_id=("spec", "iterate", "not_allowed"), message="`%s` is not a recognized element within a %s" % (child_name, self.SPEC_NAME), description=["While iterating a %s, a `%s` was found " "within a %s, which is not valid." % (self.SPEC_NAME, child_name, branch_name), self.MORE_INFO])
11639
import json import logging from http import HTTPStatus from typing import Any, Dict, List, Optional, Tuple, Type, Union import werkzeug from flask import Blueprint, Flask, Response, abort, jsonify from flask.views import MethodView from flask_cors import CORS from gevent.pywsgi import WSGIServer from geventwebsocket import Resource as WebsocketResource, WebSocketServer from marshmallow import Schema from marshmallow.exceptions import ValidationError from webargs.flaskparser import parser from werkzeug.exceptions import NotFound from rotkehlchen.api.rest import RestAPI, api_response, wrap_in_fail_result from rotkehlchen.api.v1.parser import ignore_kwarg_parser, resource_parser from rotkehlchen.api.v1.resources import ( AaveBalancesResource, AaveHistoryResource, AccountingReportDataResource, AccountingReportsResource, AdexBalancesResource, AdexHistoryResource, AllAssetsResource, AllBalancesResource, AssetIconsResource, AssetMovementsResource, AssetsReplaceResource, AssetsTypesResource, AssetUpdatesResource, AssociatedLocations, AsyncTasksResource, AvalancheTransactionsResource, BalancerBalancesResource, BalancerEventsHistoryResource, BalancerTradesHistoryResource, BinanceAvailableMarkets, BinanceUserMarkets, BlockchainBalancesResource, BlockchainsAccountsResource, BTCXpubResource, CompoundBalancesResource, CompoundHistoryResource, CounterpartiesResource, CurrentAssetsPriceResource, DatabaseBackupsResource, DatabaseInfoResource, DataImportResource, DBSnapshotDeletingResource, DBSnapshotDownloadingResource, DBSnapshotExportingResource, DBSnapshotImportingResource, DefiBalancesResource, ERC20TokenInfo, ERC20TokenInfoAVAX, Eth2DailyStatsResource, Eth2StakeDepositsResource, Eth2StakeDetailsResource, Eth2ValidatorsResource, EthereumAirdropsResource, EthereumAssetsResource, EthereumModuleDataResource, EthereumModuleResource, EthereumTransactionsResource, ExchangeBalancesResource, ExchangeRatesResource, ExchangesDataResource, ExchangesResource, ExternalServicesResource, HistoricalAssetsPriceResource, HistoryActionableItemsResource, HistoryBaseEntryResource, HistoryDownloadingResource, HistoryExportingResource, HistoryProcessingResource, HistoryStatusResource, IgnoredActionsResource, IgnoredAssetsResource, InfoResource, LedgerActionsResource, LiquityStakingHistoryResource, LiquityStakingResource, LiquityTrovesHistoryResource, LiquityTrovesResource, LoopringBalancesResource, MakerdaoDSRBalanceResource, MakerdaoDSRHistoryResource, MakerdaoVaultDetailsResource, MakerdaoVaultsResource, ManuallyTrackedBalancesResource, MessagesResource, NamedEthereumModuleDataResource, NamedOracleCacheResource, NFTSBalanceResource, NFTSResource, OraclesResource, OwnedAssetsResource, PeriodicDataResource, PickleDillResource, PingResource, QueriedAddressesResource, ReverseEnsResource, SettingsResource, StakingResource, StatisticsAssetBalanceResource, StatisticsNetvalueResource, StatisticsRendererResource, StatisticsValueDistributionResource, SushiswapBalancesResource, SushiswapEventsHistoryResource, SushiswapTradesHistoryResource, TagsResource, TradesResource, UniswapBalancesResource, UniswapEventsHistoryResource, UniswapTradesHistoryResource, UserAssetsResource, UserPasswordChangeResource, UserPremiumKeyResource, UserPremiumSyncResource, UsersByNameResource, UsersResource, WatchersResource, YearnVaultsBalancesResource, YearnVaultsHistoryResource, YearnVaultsV2BalancesResource, YearnVaultsV2HistoryResource, create_blueprint, ) from rotkehlchen.api.websockets.notifier import RotkiNotifier, RotkiWSApp from rotkehlchen.logging import RotkehlchenLogsAdapter URLS = List[ Union[ Tuple[str, Type[MethodView]], Tuple[str, Type[MethodView], str], ] ] URLS_V1: URLS = [ ('/users', UsersResource), ('/watchers', WatchersResource), ('/users/<string:name>', UsersByNameResource), ('/users/<string:name>/password', UserPasswordChangeResource), ('/premium', UserPremiumKeyResource), ('/premium/sync', UserPremiumSyncResource), ('/settings', SettingsResource), ('/tasks/', AsyncTasksResource), ('/tasks/<int:task_id>', AsyncTasksResource, 'specific_async_tasks_resource'), ('/exchange_rates', ExchangeRatesResource), ('/external_services/', ExternalServicesResource), ('/oracles', OraclesResource), ('/oracles/<string:oracle>/cache', NamedOracleCacheResource), ('/exchanges', ExchangesResource), ('/exchanges/balances', ExchangeBalancesResource), ( '/exchanges/balances/<string:location>', ExchangeBalancesResource, 'named_exchanges_balances_resource', ), ('/assets/<string:asset>/icon', AssetIconsResource), ('/trades', TradesResource), ('/ledgeractions', LedgerActionsResource), ('/asset_movements', AssetMovementsResource), ('/tags', TagsResource), ('/exchanges/binance/pairs', BinanceAvailableMarkets), ('/exchanges/binance/pairs/<string:name>', BinanceUserMarkets), ('/exchanges/data/', ExchangesDataResource), ('/exchanges/data/<string:location>', ExchangesDataResource, 'named_exchanges_data_resource'), ('/balances/blockchains', BlockchainBalancesResource), ( '/balances/blockchains/<string:blockchain>', BlockchainBalancesResource, 'named_blockchain_balances_resource', ), ('/balances/', AllBalancesResource), ('/balances/manual', ManuallyTrackedBalancesResource), ('/statistics/netvalue', StatisticsNetvalueResource), ('/statistics/balance/<string:asset>', StatisticsAssetBalanceResource), ('/statistics/value_distribution', StatisticsValueDistributionResource), ('/statistics/renderer', StatisticsRendererResource), ('/messages/', MessagesResource), ('/periodic/', PeriodicDataResource), ('/history/', HistoryProcessingResource), ('/history/status', HistoryStatusResource), ('/history/export/', HistoryExportingResource), ('/history/download/', HistoryDownloadingResource), ('/history/events', HistoryBaseEntryResource), ('/history/actionable_items', HistoryActionableItemsResource), ('/reports/', AccountingReportsResource), ( '/reports/<int:report_id>', AccountingReportsResource, 'per_report_resource', ), ( '/reports/<int:report_id>/data', AccountingReportDataResource, 'per_report_data_resource', ), ('/queried_addresses', QueriedAddressesResource), ('/blockchains/ETH/transactions', EthereumTransactionsResource), ( '/blockchains/ETH/transactions/<string:address>', EthereumTransactionsResource, 'per_address_ethereum_transactions_resource', ), ('/blockchains/ETH2/validators', Eth2ValidatorsResource), ('/blockchains/ETH2/stake/deposits', Eth2StakeDepositsResource), ('/blockchains/ETH2/stake/details', Eth2StakeDetailsResource), ('/blockchains/ETH2/stake/dailystats', Eth2DailyStatsResource), ('/blockchains/ETH/defi', DefiBalancesResource), ('/blockchains/ETH/airdrops', EthereumAirdropsResource), ('/blockchains/ETH/erc20details/', ERC20TokenInfo), ('/blockchains/ETH/modules/<string:module_name>/data', NamedEthereumModuleDataResource), ('/blockchains/ETH/modules/data', EthereumModuleDataResource), ('/blockchains/ETH/modules/data/counterparties', CounterpartiesResource), ('/blockchains/ETH/modules/', EthereumModuleResource), ('/blockchains/ETH/modules/makerdao/dsrbalance', MakerdaoDSRBalanceResource), ('/blockchains/ETH/modules/makerdao/dsrhistory', MakerdaoDSRHistoryResource), ('/blockchains/ETH/modules/makerdao/vaults', MakerdaoVaultsResource), ('/blockchains/ETH/modules/makerdao/vaultdetails', MakerdaoVaultDetailsResource), ('/blockchains/ETH/modules/aave/balances', AaveBalancesResource), ('/blockchains/ETH/modules/aave/history', AaveHistoryResource), ('/blockchains/ETH/modules/adex/balances', AdexBalancesResource), ('/blockchains/ETH/modules/adex/history', AdexHistoryResource), ('/blockchains/ETH/modules/balancer/balances', BalancerBalancesResource), ('/blockchains/ETH/modules/balancer/history/trades', BalancerTradesHistoryResource), ('/blockchains/ETH/modules/balancer/history/events', BalancerEventsHistoryResource), ('/blockchains/ETH/modules/compound/balances', CompoundBalancesResource), ('/blockchains/ETH/modules/compound/history', CompoundHistoryResource), ('/blockchains/ETH/modules/uniswap/balances', UniswapBalancesResource), ('/blockchains/ETH/modules/uniswap/history/events', UniswapEventsHistoryResource), ('/blockchains/ETH/modules/uniswap/history/trades', UniswapTradesHistoryResource), ('/blockchains/ETH/modules/sushiswap/balances', SushiswapBalancesResource), ('/blockchains/ETH/modules/sushiswap/history/events', SushiswapEventsHistoryResource), ('/blockchains/ETH/modules/sushiswap/history/trades', SushiswapTradesHistoryResource), ('/blockchains/ETH/modules/yearn/vaults/balances', YearnVaultsBalancesResource), ('/blockchains/ETH/modules/yearn/vaults/history', YearnVaultsHistoryResource), ('/blockchains/ETH/modules/yearn/vaultsv2/balances', YearnVaultsV2BalancesResource), ('/blockchains/ETH/modules/yearn/vaultsv2/history', YearnVaultsV2HistoryResource), ('/blockchains/ETH/modules/liquity/balances', LiquityTrovesResource), ('/blockchains/ETH/modules/liquity/events/trove', LiquityTrovesHistoryResource), ('/blockchains/ETH/modules/liquity/events/staking', LiquityStakingHistoryResource), ('/blockchains/ETH/modules/liquity/staking', LiquityStakingResource), ('/blockchains/ETH/modules/pickle/dill', PickleDillResource), ('/blockchains/ETH/modules/loopring/balances', LoopringBalancesResource), ('/blockchains/<string:blockchain>', BlockchainsAccountsResource), ('/blockchains/BTC/xpub', BTCXpubResource), ('/blockchains/AVAX/transactions', AvalancheTransactionsResource), ( '/blockchains/AVAX/transactions/<string:address>', AvalancheTransactionsResource, 'per_address_avalanche_transactions_resource', ), ('/blockchains/AVAX/erc20details/', ERC20TokenInfoAVAX), ('/assets', OwnedAssetsResource), ('/assets/types', AssetsTypesResource), ('/assets/replace', AssetsReplaceResource), ('/assets/all', AllAssetsResource), ('/assets/ethereum', EthereumAssetsResource), ('/assets/prices/current', CurrentAssetsPriceResource), ('/assets/prices/historical', HistoricalAssetsPriceResource), ('/assets/ignored', IgnoredAssetsResource), ('/assets/updates', AssetUpdatesResource), ('/assets/user', UserAssetsResource), ('/actions/ignored', IgnoredActionsResource), ('/info', InfoResource), ('/ping', PingResource), ('/import', DataImportResource), ('/nfts', NFTSResource), ('/nfts/balances', NFTSBalanceResource), ('/database/info', DatabaseInfoResource), ('/database/backups', DatabaseBackupsResource), ('/locations/associated', AssociatedLocations), ('/staking/kraken', StakingResource), ('/snapshot/download', DBSnapshotDownloadingResource), ('/snapshot/export', DBSnapshotExportingResource), ('/snapshot/import', DBSnapshotImportingResource), ('/snapshot/delete', DBSnapshotDeletingResource), ('/ens/reverse', ReverseEnsResource), ] logger = logging.getLogger(__name__) log = RotkehlchenLogsAdapter(logger) def setup_urls( rest_api: RestAPI, blueprint: Blueprint, urls: URLS, ) -> None: for url_tuple in urls: if len(url_tuple) == 2: route, resource_cls = url_tuple # type: ignore endpoint = resource_cls.__name__.lower() elif len(url_tuple) == 3: route, resource_cls, endpoint = url_tuple # type: ignore else: raise ValueError(f"Invalid URL format: {url_tuple!r}") blueprint.add_url_rule( route, view_func=resource_cls.as_view(endpoint, rest_api_object=rest_api), ) def endpoint_not_found(e: NotFound) -> Response: msg = 'invalid endpoint' # The isinstance check is because I am not sure if `e` is always going to # be a "NotFound" error here if isinstance(e, NotFound): msg = e.description return api_response(wrap_in_fail_result(msg), HTTPStatus.NOT_FOUND) @parser.error_handler # type: ignore @resource_parser.error_handler @ignore_kwarg_parser.error_handler def handle_request_parsing_error( err: ValidationError, _request: werkzeug.local.LocalProxy, _schema: Schema, error_status_code: Optional[int], # pylint: disable=unused-argument error_headers: Optional[Dict], # pylint: disable=unused-argument ) -> None: """ This handles request parsing errors generated for example by schema field validation failing.""" msg = str(err) if isinstance(err.messages, dict): # first key is just the location. Ignore key = list(err.messages.keys())[0] msg = json.dumps(err.messages[key]) elif isinstance(err.messages, list): msg = ','.join(err.messages) err_response = jsonify(result=None, message=msg) err_response.status_code = HTTPStatus.BAD_REQUEST abort(err_response) class APIServer(): _api_prefix = '/api/1' def __init__( self, rest_api: RestAPI, ws_notifier: RotkiNotifier, cors_domain_list: List[str] = None, ) -> None: flask_app = Flask(__name__) if cors_domain_list: CORS(flask_app, origins=cors_domain_list) blueprint = create_blueprint(self._api_prefix) setup_urls( blueprint=blueprint, rest_api=rest_api, urls=URLS_V1, ) self.rest_api = rest_api self.rotki_notifier = ws_notifier self.flask_app = flask_app self.blueprint = blueprint self.wsgiserver: Optional[WSGIServer] = None self.flask_app.register_blueprint(self.blueprint) self.ws_server: Optional[WebSocketServer] = None self.flask_app.errorhandler(HTTPStatus.NOT_FOUND)(endpoint_not_found) self.flask_app.register_error_handler(Exception, self.unhandled_exception) @staticmethod def unhandled_exception(exception: Exception) -> Response: """ Flask.errorhandler when an exception wasn't correctly handled """ log.critical( 'Unhandled exception when processing endpoint request', exc_info=True, exception=str(exception), ) return api_response(wrap_in_fail_result(str(exception)), HTTPStatus.INTERNAL_SERVER_ERROR) def run(self, host: str = '127.0.0.1', port: int = 5042, **kwargs: Any) -> None: """This is only used for the data faker and not used in production""" self.flask_app.run(host=host, port=port, **kwargs) def start( self, host: str = '127.0.0.1', rest_port: int = 5042, websockets_port: int = 5043, ) -> None: """This is used to start the API server in production""" wsgi_logger = logging.getLogger(__name__ + '.pywsgi') self.wsgiserver = WSGIServer( listener=(host, rest_port), application=self.flask_app, log=wsgi_logger, error_log=wsgi_logger, ) msg = f'rotki REST API server is running at: {host}:{rest_port}' print(msg) log.info(msg) self.wsgiserver.start() self.ws_server = WebSocketServer( listener=(host, websockets_port), application=WebsocketResource([ ('^/', RotkiWSApp), ]), debug=False, environ={'rotki_notifier': self.rotki_notifier}, ) msg = f'rotki Websockets API server is running at: {host}:{websockets_port}' print(msg) log.info(msg) self.ws_server.start() def stop(self, timeout: int = 5) -> None: """Stops the API server. If handlers are running after timeout they are killed""" if self.wsgiserver is not None: self.wsgiserver.stop(timeout) self.wsgiserver = None if self.ws_server is not None: self.ws_server.stop(timeout) self.wsgiserver = None self.rest_api.stop()
11644
from django.db import models from django.contrib.auth.models import AbstractBaseUser, PermissionsMixin, AbstractUser from django.utils import timezone from django.utils.translation import gettext as _ from django import forms from django.contrib.auth.hashers import make_password from django.contrib.auth import get_user_model from django.contrib.auth.models import User from phonenumber_field.modelfields import PhoneNumberField from datetime import datetime class CarTrip(models.Model): class Meta: verbose_name = _('carTrip') verbose_name_plural = _('cartrips') def __str__(self): return f'{self.driver_name} Car Trip' driver_name = models.CharField(max_length=200) destination = models.CharField(max_length=200) number_of_seats = models.IntegerField('number of seats') trip_date = models.CharField(max_length=200) pub_date = models.DateTimeField('date published') @classmethod def create(cls , driver_name, destination, number_of_seats, trip_date): trip = cls(driver_name= driver_name, destination=destination, number_of_seats=number_of_seats, trip_date=trip_date, pub_date=datetime.now() ) return trip def was_published_recently(self): now = timezone.now() return now - datetime.timedelta(days=1) <= self.pub_date <= now class Relation(models.Model): class Meta: verbose_name = _('relation') verbose_name_plural = _('relation') trip_number = models.IntegerField('trip_number') hiker_name = models.CharField(max_length=200) def __str__(self ): return f'{self.hiker_name} going on trip id = {self.trip_number}' @classmethod def create(cls , trip_number, hiker_name): rel = cls(trip_number=trip_number, hiker_name=hiker_name, ) return rel
11671
import threading, queue, time, os, pickle # from queue import Queue import numpy as np import tensorflow as tf import sarnet_td3.common.tf_util as U from tensorflow.python.keras.backend import set_session lock = threading.Lock() class MultiTrainTD3(threading.Thread): def __init__(self, input_queue, output_queue, args=(), kwargs=None): threading.Thread.__init__(self, args=(), kwargs=None) self.input_queue = input_queue self.output_queue = output_queue self.daemon = True self.trainers = args[0] self.args = args[1] self.buffer_op = args[2] self.num_env = args[3] self.sess = args[4] self.num_agents = args[5] self.num_adversaries = args[6] self.ep_rewards = [[0.0] for _ in range(self.num_env)] self.ep_end_rewards = [[0.0] for _ in range(self.num_env)] self.ep_success = [[0.0] for _ in range(self.num_env)] self.agent_rewards = [[[0.0] for _ in range(self.num_agents)] for _ in range(self.num_env)] self.agent_info = [[[[]] for i in range(self.num_agents)] for _ in range(self.num_env)] # self.agent_info = [[[[]]] for _ in range(self.num_env)] self.final_ep_rewards = [] # Shape: (batch, #) sum of rewards for training curve self.final_ep_end_rewards = [] self.final_ep_ag_rewards = [] # agent rewards for training curve self.save_rate = self.args.max_episode_len * 100 self.save_n_ep = self.num_env * 10 self.print_step = -int(self.save_n_ep / self.num_env) self.q_h_init = np.zeros(shape=(self.num_env, self.args.critic_units)) self.mem_init = np.zeros(shape=(self.num_env, self.args.value_units)) self.time_prev = time.time() def run(self): # print(threading.currentThread().getName(), self.receive_messages) with self.sess.as_default(): # Freeze graph to avoid memory leaks # self.sess.graph.finalize() while True: try: action, p_index, data = self.input_queue.get() if action is "None": # If you send `None`, the thread will exit. return elif action is "get_action": out = self.get_action(data, p_index) self.output_queue.put(out) elif action is "get_qdebug": out = self.get_qdebug(data, p_index) self.output_queue.put(out) elif action is "get_loss": out = self.get_loss(data, p_index) self.output_queue.put(out) elif action is "write_tboard": self.write_tboard(data) elif action is "add_to_buffer": self.buffer_op.collect_exp(data) elif action is "save_rew_info": self.save_rew_info(data) elif action is "save_benchmark": out = self.save_benchmark(data) self.output_queue.put(out) elif action is "reset_rew_info": self.reset_rew_info() elif action is "save_model_rew": if not (self.args.benchmark or self.args.display): self.save_model(data) self.plot_rewards(data) except queue.Empty: continue def get_action(self, data, p_index): with lock: agent = self.trainers[p_index] obs_n_t, h_n_t, c_n_t, mem_n_t, q1_h_t, is_train = data obs_n_t = np.stack(obs_n_t, axis=-2) # This returns [agent, batch, dim] obs_n_t = np.expand_dims(obs_n_t, axis=1) # This adds [agent, time, batch, dim] p_input_j = agent.prep_input(obs_n_t, h_n_t, c_n_t, mem_n_t, q1_h_t[p_index], is_train) # print(np.shape(obs_n_t)) act_j_t, state_j_t1, mem_j_t1, attn_j_t = agent.action(p_input_j, is_train) if self.args.encoder_model == "LSTM" or self.args.encoder_model != "DDPG": c_j_t1, h_j_t1 = state_j_t1 else: h_j_t1 = state_j_t1 c_j_t1 = state_j_t1 if agent.comm_type in {"DDPG", "COMMNET", "IC3NET"}: mem_j_t1 = np.zeros(shape=(self.num_env, self.args.value_units)) return act_j_t, h_j_t1, c_j_t1, mem_j_t1, attn_j_t def get_qdebug(self, data, p_index): with lock: # with sess.as_default(): agent = self.trainers[p_index] obs_n_t, action_n_t, q1_h_n_t, q2_h_n_t = data obs_n_t = np.stack(obs_n_t, axis=-2) # This returns [agent, batch, dim] obs_n_t = np.expand_dims(obs_n_t, axis=1) # This adds [agent, time, batch, dim] q1_j_input = agent.prep_q_input(obs_n_t, action_n_t, q1_h_n_t[p_index]) _, q1_h_j_t1 = agent.q1_debug['q_values'](*(q1_j_input)) if self.args.td3: q2_input = agent.prep_q_input(obs_n_t, action_n_t, q2_h_n_t[p_index]) _, q2_h_j_t1 = agent.q2_debug['q_values'](*(q2_input)) else: q2_h_j_t1 = [] return q1_h_j_t1, q2_h_j_t1 def get_loss(self, data, p_index): with lock: # with sess.as_default(): agent = self.trainers[p_index] train_step = data loss = agent.update(self.trainers, self.buffer_op, train_step) return loss def write_tboard(self, data): with lock: loss, train_step, writer, summary_ops, summary_vars, num_agents = data # Tensorboard episode_b_rewards = [] for j in range(self.num_env): if self.args.env_type == "mpe": episode_b_rewards.append(np.mean(self.ep_rewards[j][self.print_step:])) else: episode_b_rewards.append(np.mean(self.ep_success[j][self.print_step:])) episode_b_rewards = np.mean(np.array(episode_b_rewards)) num_steps = train_step * self.num_env # Add to tensorboard only when actor agent is updated if loss[0][1] is not None: fd = {} for i, key in enumerate(summary_vars): if i == 0: fd[key] = episode_b_rewards else: agnt_idx = int((i - 1) / 5) if agnt_idx == num_agents: agnt_idx -= 1 if loss[agnt_idx] is not None: fd[key] = loss[agnt_idx][int((i - 1) % 5)] summary_str = U.get_session().run(summary_ops, feed_dict=fd) writer.add_summary(summary_str, num_steps) writer.flush() def save_rew_info(self, data): with lock: rew_n, info_n, ep_step = data # rew_n (num_env, num_agents) if self.args.env_type == "mpe": for j in range(self.num_env): for i, rew in enumerate(rew_n[j]): if ep_step >= self.args.max_episode_len - 10: # Compute only last 10 episode step rewards self.ep_end_rewards[j][-1] += rew self.ep_rewards[j][-1] += rew self.agent_rewards[j][i][-1] += rew elif self.args.env_type == "ic3net": for j in range(self.num_env): self.ep_success[j][-1] += info_n[j] if self.args.benchmark and self.args.env_type == "mpe": for j in range(self.num_env): for i, info in enumerate(info_n[j]): self.agent_info[j][i][-1].append(info) def reset_rew_info(self): with lock: for j in range(self.num_env): self.ep_rewards[j].append(0) self.ep_success[j].append(0) self.ep_end_rewards[j].append(0) for i in range(self.num_agents): self.agent_rewards[j][i].append(0) if self.args.benchmark: for j in range(self.num_env): for i in range(self.num_agents): self.agent_info[j][i].append([[]]) def save_benchmark(self, data): with lock: exp_name, exp_itr = data benchmark_dir = os.path.join('./exp_data', exp_name, exp_itr, self.args.benchmark_dir) if not os.path.exists(benchmark_dir): os.mkdir(benchmark_dir) file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.benchmark_dir + '/' + exp_name + '.pkl' print('Finished benchmarking, now saving...') # pickle_info = [self.agent_info[j] for j in range(self.num_env)] with open(file_name, 'wb') as fp: # Dump files as [num_env, [# agents, [#ep, [#stps, [dim]]]] pickle.dump(self.agent_info, fp) return "bench_saved" def save_model(self, data): with lock: # train_step = t_step * num_env train_step, num_episodes, time_taken, exp_name, exp_itr, data_file, saver = data # Policy File if num_episodes % (self.save_n_ep) == 0: save_dir = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.save_dir + str(train_step) U.save_state(save_dir, self.sess, saver=saver) # episode_rewards, agent_rewards, final_ep_rewards, final_ep_ag_rewards = rewards if self.args.env_type == "mpe": # print statement depends on whether or not there are adversaries if self.num_adversaries == 0: episode_b_rewards = [] ep_end_b_rewards = [] ep_ag_b_rewards = [] for j in range(self.num_env): episode_b_rewards.append(np.mean(self.ep_rewards[j][self.print_step:])) ep_end_b_rewards.append(np.mean(self.ep_end_rewards[j][self.print_step:])) episode_b_rewards = np.mean(np.array(episode_b_rewards)) ep_end_b_rewards = np.mean(ep_end_b_rewards) / 10. for i in range(self.num_agents): temp_ag_reward = [] for j in range(self.num_env): temp_ag_reward.append(np.mean(self.agent_rewards[j][i][self.print_step:])) ep_ag_b_rewards.append(np.mean(np.array(temp_ag_reward))) print("steps: {}, episodes: {}, mean episode reward: {}, mean end rewards: {}, time: {}".format( train_step, num_episodes, episode_b_rewards, ep_end_b_rewards, round(time.time() - self.time_prev, 3))) with open(data_file, "a+") as f: f.write("\n" + "steps: {}, episodes: {}, mean episode reward: {}, mean end rewards: {}, time: {}".format( train_step, num_episodes, episode_b_rewards, ep_end_b_rewards, round(time.time() - self.time_prev, 3)) + "\n") else: episode_b_rewards = [] ep_end_b_rewards = [] ep_ag_b_rewards = [] for j in range(self.num_env): episode_b_rewards.append(np.mean(self.ep_rewards[j][self.print_step:])) ep_end_b_rewards.append(np.mean(self.ep_end_rewards[j][self.print_step:])) episode_b_rewards = np.mean(np.array(episode_b_rewards)) ep_end_b_rewards = np.mean(ep_end_b_rewards) for i in range(self.num_agents): temp_ag_reward = [] for j in range(self.num_env): temp_ag_reward.append(np.mean(self.agent_rewards[j][i][self.print_step:])) ep_ag_b_rewards.append(np.mean(np.array(temp_ag_reward))) print("steps: {}, episodes: {}, mean episode reward: {}, mean end rewards: {}, agent episode reward: {}, time: {}".format( train_step, num_episodes, episode_b_rewards, ep_end_b_rewards, [rew for rew in ep_ag_b_rewards], round(time.time() - self.time_prev, 3)) + "\n") with open(data_file, "a+") as f: f.write("\n" + "steps: {}, episodes: {}, mean episode reward: {}, mean end rewards: {}, agent episode reward: {}, time: {}".format( train_step, num_episodes, episode_b_rewards, ep_end_b_rewards, [rew for rew in ep_ag_b_rewards], round(time.time() - self.time_prev, 3)) + "\n") # Keep track of final episode reward self.final_ep_rewards.append(episode_b_rewards) self.final_ep_end_rewards.append(ep_end_b_rewards) for rew in ep_ag_b_rewards: self.final_ep_ag_rewards.append(rew) self.time_prev = time.time() def plot_rewards(self, data): with lock: train_step, num_episodes, t_start, exp_name, exp_itr, data_file, saver = data plot_dir = os.path.join('./exp_data', exp_name, exp_itr, self.args.plots_dir) if not os.path.exists(plot_dir): os.mkdir(plot_dir) rew_file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.plots_dir + '/' + exp_name + '_rewards.pkl' with open(rew_file_name, 'wb') as fp: pickle.dump(self.final_ep_rewards, fp) rew_ep_end_file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.plots_dir + '/' + exp_name + '_rewards_ep_end.pkl' with open(rew_ep_end_file_name, 'wb') as fp: pickle.dump(self.final_ep_end_rewards, fp) agrew_file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.plots_dir + '/' + exp_name + '_agrewards.pkl' with open(agrew_file_name, 'wb') as fp: pickle.dump(self.final_ep_ag_rewards, fp) """ REINFORCE Threads """ class MultiTrainVPG(threading.Thread): def __init__(self, input_queue, output_queue, args=(), kwargs=None): threading.Thread.__init__(self, args=(), kwargs=None) self.input_queue = input_queue self.output_queue = output_queue self.daemon = True self.trainers = args[0] self.args = args[1] self.buffer_op = args[2] self.num_env = args[3] self.sess = args[4] self.num_agents = args[5] self.num_adversaries = args[6] self.ep_rewards = [[0.0] for _ in range(self.num_env)] self.ep_success = [[0.0] for _ in range(self.num_env)] self.agent_rewards = [[[0.0] for _ in range(self.num_agents)] for _ in range(self.num_env)] self.agent_info = [[[[]]] for _ in range(self.num_env)] self.final_ep_rewards = [] # Shape: (batch, #) sum of rewards for training curve self.final_ep_ag_rewards = [] # agent rewards for training curve self.save_rate = self.args.max_episode_len * 100 if self.args.env_type == "mpe": self.print_step = -int(self.save_rate / self.num_env) else: # print for episode end only (success rate) self.print_step = -int(self.save_rate / (self.num_env * self.args.max_episode_len)) self.q_h_init = np.zeros(shape=(self.num_env, self.args.critic_units)) self.mem_init = np.zeros(shape=(self.num_env, self.args.value_units)) self.time_prev = time.time() def run(self): # print(threading.currentThread().getName(), self.receive_messages) with self.sess.as_default(): # Freeze graph to avoid memory leaks # self.sess.graph.finalize() while True: try: action, p_index, data = self.input_queue.get() if action is "None": # If you send `None`, the thread will exit. return elif action is "get_action": out = self.get_action(data, p_index) self.output_queue.put(out) elif action is "get_loss": out = self.get_loss(data, p_index) self.output_queue.put(out) elif action is "write_tboard": self.write_tboard(data) elif action is "add_to_buffer": self.buffer_op.collect_exp(data) elif action is "add_to_buffer_reinforce": self.buffer_op.collect_exp(data) elif action is "save_rew_info": self.save_rew_info(data) elif action is "save_benchmark": out = self.save_benchmark(data) self.output_queue.put(out) elif action is "reset_rew_info": self.reset_rew_info() elif action is "save_model_rew": if not (self.args.benchmark or self.args.display): self.save_model(data) self.plot_rewards(data) except queue.Empty: continue def get_action(self, data, p_index): with lock: agent = self.trainers[p_index] obs_n_t, h_n_t, c_n_t, mem_n_t, is_train = data obs_n_t = np.stack(obs_n_t, axis=-2) obs_n_t = np.expand_dims(obs_n_t, axis=1) # This adds [agent, time, batch, dim] p_input_j = agent.prep_input(obs_n_t, h_n_t, c_n_t, mem_n_t, is_train) act_j_t, act_soft_j_t, state_j_t1, mem_j_t1, attn_j_t, value_j_t = agent.action(p_input_j, is_train) if self.args.encoder_model == "LSTM": c_j_t1, h_j_t1 = state_j_t1 else: h_j_t1 = state_j_t1 c_j_t1 = state_j_t1 if agent.comm_type in {"DDPG", "COMMNET", "IC3NET"}: mem_j_t1 = np.zeros(shape=(self.num_env, self.args.value_units)) return act_j_t, act_soft_j_t, h_j_t1, c_j_t1, mem_j_t1, attn_j_t, value_j_t def get_loss(self, data, p_index): with lock: # with sess.as_default(): train_step, buffer_data = data agent = self.trainers[p_index] loss = agent.update(self.trainers, buffer_data, train_step) return loss def write_tboard(self, data): with lock: loss, train_step, writer, summary_ops, summary_vars, num_agents = data # Tensorboard episode_b_rewards = [] for j in range(self.num_env): if self.args.env_type == "mpe": episode_b_rewards.append(np.mean(self.ep_rewards[j][self.print_step:])) else: episode_b_rewards.append(np.mean(self.ep_success[j][self.print_step:])) episode_b_rewards = np.mean(np.array(episode_b_rewards)) num_steps = train_step * self.num_env # Add to tensorboard only when actor agent is updated if loss[0][1] is not None: fd = {} for i, key in enumerate(summary_vars): if i == 0: fd[key] = episode_b_rewards else: agnt_idx = int((i - 1) / 5) if agnt_idx == num_agents: agnt_idx -= 1 if loss[agnt_idx] is not None: fd[key] = loss[agnt_idx][int((i - 1) % 5)] summary_str = U.get_session().run(summary_ops, feed_dict=fd) writer.add_summary(summary_str, num_steps) writer.flush() def save_rew_info(self, data): with lock: rew_n, info_n, terminal = data if self.args.env_type == "mpe": for j in range(self.num_env): for i, rew in enumerate(rew_n[j]): self.ep_rewards[j][-1] += rew self.agent_rewards[j][i][-1] += rew elif self.args.env_type == "ic3net": for j in range(self.num_env): self.ep_success[j][-1] += info_n[j] if self.args.benchmark and self.args.env_type == "mpe": for j in range(self.num_env): for i, info in enumerate(info_n[j]): self.agent_info[-1][i].append(info_n[0]['n']) def reset_rew_info(self): with lock: for j in range(self.num_env): self.ep_rewards[j].append(0) self.ep_success[j].append(0) for i in range(self.num_agents): self.agent_rewards[j][i].append(0) if self.args.benchmark: for j in range(self.num_env): self.agent_info[j].append([[]]) def save_benchmark(self, data): with lock: exp_name, exp_itr = data benchmark_dir = os.path.join('./exp_data', exp_name, exp_itr, self.args.benchmark_dir) if not os.path.exists(benchmark_dir): os.mkdir(benchmark_dir) file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.benchmark_dir + '/' + exp_name + '.pkl' print('Finished benchmarking, now saving...') with open(file_name, 'wb') as fp: pickle.dump(self.ep_success, fp) return "bench_saved" def save_model(self, data): with lock: # train_step = t_step * num_env train_step, num_episodes, time_taken, exp_name, exp_itr, data_file, saver = data # Policy File save_dir = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.save_dir + str(train_step) U.save_state(save_dir, self.sess, saver=saver) episode_b_success = [] for j in range(self.num_env): episode_b_success.append(np.mean(self.ep_success[j][self.print_step:])) episode_b_success = np.mean(np.array(episode_b_success)) / self.args.max_episode_len print("steps: {}, episodes: {}, mean episode success: {}, time: {}".format( train_step, num_episodes, episode_b_success, round(time.time() - self.time_prev, 3)) + "\n") with open(data_file, "a+") as f: f.write("\n" + "steps: {}, episodes: {}, mean episode success: {}, time: {}".format( train_step, num_episodes, episode_b_success, round(time.time() - self.time_prev, 3)) + "\n") self.final_ep_rewards.append(episode_b_success) def plot_rewards(self, data): with lock: train_step, num_episodes, t_start, exp_name, exp_itr, data_file, saver = data plot_dir = os.path.join('./exp_data', exp_name, exp_itr, self.args.plots_dir) if not os.path.exists(plot_dir): os.mkdir(plot_dir) rew_file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.plots_dir + '/' + exp_name + '_rewards.pkl' with open(rew_file_name, 'wb') as fp: pickle.dump(self.final_ep_rewards, fp) def get_gputhreads(trainers, args, buffer_op, num_env, num_agents, num_adv): threads = [] sess = tf.compat.v1.get_default_session() for t in range(args.num_gpu_threads): input_q = queue.Queue() output_q = queue.Queue() if args.policy_grad == "maddpg": threads.append(MultiTrainTD3(input_q, output_q, args=(trainers, args, buffer_op, num_env, sess, num_agents, num_adv))) elif args.policy_grad == "reinforce": threads.append( MultiTrainVPG(input_q, output_q, args=(trainers, args, buffer_op, num_env, sess, num_agents, num_adv))) threads[t].start() time.sleep(1) return threads def close_gputhreads(threads): for t in threads: t.input_queue.put(("None", None, None)) for t in threads: t.join() print('GPU trainers cancelled') return
11690
import numpy as np from stable_baselines import PPO2 from stable_baselines.common.policies import CnnPolicy from stable_baselines.a2c.utils import conv, linear, conv_to_fc from src.envs import CMDP, FrozenLakeEnvCustomMap from src.envs.frozen_lake.frozen_maps import MAPS from src.students import LagrangianStudent, identity_transfer from src.online_learning import ExponetiatedGradient from src.teacher import FrozenLakeEvaluationLogger, TeacherFrozenEnv, \ create_intervention, SmallFrozenTeacherEnv from src.teacher.frozen_lake_env import SmallFrozenTrainingObservation, SmallFrozenNonStationaryBandits from src.envs.frozen_lake.utils import create_intervention_from_map, \ OptimalAgent, add_teacher import tensorflow as tf tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) __all__ = ['create_teacher_env', 'small_base_cenv_fn'] def constraint(info=None, **kwargs): return {'g': float(info['next_state_type'] in 'H')} def small_base_env_fn(): # Base MDP world_map = MAPS['small'] not_slipping_prob = 0.8 env_kwargs = dict(desc=world_map, not_slipping_prob=not_slipping_prob, base_r_mapping=None, timeout=200) return FrozenLakeEnvCustomMap(**env_kwargs) # Base CMDP def small_base_cenv_fn(): return CMDP(small_base_env_fn(), constraint, constraints_values=[0], n_constraints=1, avg_constraint=True) def make_base_small_cenvs(): # Base MDP world_map = MAPS['small'] # # 2 interventions # dist = [1, 1] # tau = [0.1, 0] # buff_size = [1, 0] # avg_constraint = [True, True] # 3 Interventions dist = [2, 1, 1] tau = [0.1, 0.1, 0] buff_size = [1, 1, 0] avg_constraint = [True, True, True] interventions = [] for d, t, b, avg in zip(dist, tau, buff_size, avg_constraint): interventions.append( create_intervention( small_base_cenv_fn, create_intervention_from_map(add_teacher(world_map, d)), [t], b, use_vec=True, avg_constraint=avg) ) assert callable(interventions[0]) test_env = create_intervention( small_base_cenv_fn(), create_intervention_from_map(add_teacher( world_map)), [0.0], 0, avg_constraint=True) return interventions, test_env ############################## TEACHER ENV ################################### def my_small_cnn(scaled_images, **kwargs): activ = tf.nn.relu layer_1 = activ(conv(scaled_images, 'c1', n_filters=32, filter_size=3, stride=1, **kwargs)) layer_2 = activ(conv(layer_1, 'c2', n_filters=64, filter_size=3, stride=1, **kwargs)) layer_3 = conv_to_fc(layer_2) return activ( linear(layer_3, 'fc1', n_hidden=32, init_scale=np.sqrt(2))) def create_teacher_env(new_br_kwargs={}, new_online_kwargs={}, original=False, obs_from_training=False, non_stationary_bandit=False): # Student definition br_kwargs = dict(policy=CnnPolicy, verbose=0, n_steps=128, ent_coef=0.05, cliprange=0.2, learning_rate=1e-3, noptepochs=9, policy_kwargs={'cnn_extractor': my_small_cnn}) br_kwargs.update(new_br_kwargs) # Define online kwargs online_kwargs = dict(B=0.5, eta=1.0) online_kwargs.update(new_online_kwargs) student_cls = LagrangianStudent n_envs = 4 use_sub_proc_env = False student_default_kwargs = {'env': None, 'br_algo': PPO2, 'online_algo': ExponetiatedGradient, 'br_kwargs': br_kwargs, 'online_kwargs': online_kwargs, 'lagrangian_ronuds': 2, 'curriculum_transfer': identity_transfer, 'br_uses_vec_env': True, 'use_sub_proc_env': use_sub_proc_env, 'n_envs': n_envs, } student_ranges_dict = {} # Teacher interventions if original: # To preserve the teacher env interface while training in the # original environment, we introduce a dummy intervention # condition that is always False. def dummy_intervention(**kwargs): return 0 _, test_env = make_base_small_cenvs() intervention = create_intervention( base_cenv=small_base_cenv_fn, interventions=[dummy_intervention], taus=[0], buf_size=0, use_vec=True, avg_constraint=True) interventions = [intervention] else: interventions, test_env = make_base_small_cenvs() learning_steps = 4800 * 2 time_steps_lim = learning_steps * 10 test_episode_timeout = 200 test_episode_number = 5 if obs_from_training: env_cls = SmallFrozenTrainingObservation elif non_stationary_bandit: env_cls = SmallFrozenNonStationaryBandits else: env_cls = SmallFrozenTeacherEnv return env_cls(student_cls=student_cls, student_default_kwargs=student_default_kwargs, interventions=interventions, final_env=test_env, logger_cls=FrozenLakeEvaluationLogger, student_ranges_dict=student_ranges_dict, learning_steps=learning_steps, test_episode_number=test_episode_number, test_episode_timeout=test_episode_timeout, time_steps_lim=time_steps_lim, normalize_obs=False)
11716
import numpy import pytest import os from shutil import rmtree from numpy.testing import assert_allclose import scipy.stats import scipy.integrate import scipy.special from fgivenx.mass import PMF, compute_pmf def gaussian_pmf(y, mu=0, sigma=1): return scipy.special.erfc(numpy.abs(y-mu)/numpy.sqrt(2)/sigma) def test_gaussian(): numpy.random.seed(0) nsamp = 5000 samples = numpy.random.randn(nsamp) y = numpy.random.uniform(-3, 3, 10) m = PMF(samples, y) m_ = gaussian_pmf(y) assert_allclose(m, m_, rtol=3e-1) def test_PMF(): # Compute samples numpy.random.seed(0) nsamp = 100 samples = numpy.concatenate((-5+numpy.random.randn(nsamp//2), 5+numpy.random.randn(nsamp//2))) # Compute PMF y = numpy.random.uniform(-10, 10, 10) m = PMF(samples, y) # Compute PMF via monte carlo N = 100000 kernel = scipy.stats.gaussian_kde(samples) s = kernel.resample(N)[0] m_ = [sum(kernel(s) <= kernel(y_i))/float(N) for y_i in y] assert_allclose(m, m_, atol=3*N**-0.5) # Compute PMF via quadrature m_ = [scipy.integrate.quad(lambda x: kernel(x)*(kernel(x) <= kernel(y_i)), -numpy.inf, numpy.inf, limit=500)[0] for y_i in y] assert_allclose(m, m_, atol=1e-4) assert_allclose([0, 0], PMF(samples, [-1e3, 1e3])) samples = [0, 0] m = PMF(samples, y) assert_allclose(m, numpy.zeros_like(y)) def test_compute_pmf(): with pytest.raises(TypeError): compute_pmf(None, None, wrong_argument=None) cache = '.test_cache/test' numpy.random.seed(0) nsamp = 5000 a, b, e, f = 0, 1, 0, 1 m = numpy.random.normal(a, b, nsamp) c = numpy.random.normal(e, f, nsamp) nx = 100 x = numpy.linspace(-1, 1, nx) fsamps = (numpy.outer(x, m) + c) ny = 100 y = numpy.linspace(-3, 3, ny) assert(not os.path.isfile(cache + '_masses.pkl')) m = compute_pmf(fsamps, y, cache=cache) assert(os.path.isfile(cache + '_masses.pkl')) m_ = [gaussian_pmf(y, a*xi+e, numpy.sqrt(b**2*xi**2+f**2)) for xi in x] assert_allclose(m.transpose(), m_, atol=3e-1) m = compute_pmf(fsamps, y, cache=cache) assert_allclose(m.transpose(), m_, atol=3e-1) rmtree('.test_cache')
11734
import re import time from lemoncheesecake.events import TestSessionSetupEndEvent, TestSessionTeardownEndEvent, \ TestEndEvent, SuiteSetupEndEvent, SuiteTeardownEndEvent, SuiteEndEvent, SteppedEvent from lemoncheesecake.reporting.report import ReportLocation DEFAULT_REPORT_SAVING_STRATEGY = "at_each_failed_test" def _is_end_of_result_event(event): if isinstance(event, TestEndEvent): return ReportLocation.in_test(event.test) if isinstance(event, SuiteSetupEndEvent): return ReportLocation.in_suite_setup(event.suite) if isinstance(event, SuiteTeardownEndEvent): return ReportLocation.in_suite_teardown(event.suite) if isinstance(event, TestSessionSetupEndEvent): return ReportLocation.in_test_session_setup() if isinstance(event, TestSessionTeardownEndEvent): return ReportLocation.in_test_session_teardown() return None def save_at_each_suite_strategy(event, _): return isinstance(event, SuiteEndEvent) def save_at_each_test_strategy(event, _): return _is_end_of_result_event(event) is not None def save_at_each_failed_test_strategy(event, report): location = _is_end_of_result_event(event) if location: result = report.get(location) return result and result.status == "failed" else: return False def save_at_each_log_strategy(event, _): return isinstance(event, SteppedEvent) class SaveAtInterval(object): def __init__(self, interval): self.interval = interval self.last_saving = None def __call__(self, event, report): now = time.time() if self.last_saving: must_be_saved = now > self.last_saving + self.interval if must_be_saved: self.last_saving = now return must_be_saved else: self.last_saving = now # not a saving but an initialization return False def make_report_saving_strategy(expression): # first, try with a static expression static_expressions = { "at_end_of_tests": None, # no need to an intermediate report saving in this case "at_each_suite": save_at_each_suite_strategy, "at_each_test": save_at_each_test_strategy, "at_each_failed_test": save_at_each_failed_test_strategy, "at_each_log": save_at_each_log_strategy, "at_each_event": save_at_each_log_strategy # deprecated since 1.4.5, "at_each_log" must be used instead } try: return static_expressions[expression] except KeyError: pass # second, try with "every_Ns" m = re.compile(r"^every[_ ](\d+)s$").match(expression) if m: return SaveAtInterval(int(m.group(1))) # ok... nothing we know about raise ValueError("Invalid expression '%s' for report saving strategy" % expression)
11750
import pyblish.api import avalon.api from openpype.api import version_up from openpype.action import get_errored_plugins_from_data class IncrementCurrentFile(pyblish.api.InstancePlugin): """Increment the current file. Saves the current scene with an increased version number. """ label = "Increment current file" order = pyblish.api.IntegratorOrder + 9.0 hosts = ["houdini"] families = ["colorbleed.usdrender", "redshift_rop"] targets = ["local"] def process(self, instance): # This should be a ContextPlugin, but this is a workaround # for a bug in pyblish to run once for a family: issue #250 context = instance.context key = "__hasRun{}".format(self.__class__.__name__) if context.data.get(key, False): return else: context.data[key] = True context = instance.context errored_plugins = get_errored_plugins_from_data(context) if any( plugin.__name__ == "HoudiniSubmitPublishDeadline" for plugin in errored_plugins ): raise RuntimeError( "Skipping incrementing current file because " "submission to deadline failed." ) # Filename must not have changed since collecting host = avalon.api.registered_host() current_file = host.current_file() assert ( context.data["currentFile"] == current_file ), "Collected filename from current scene name." new_filepath = version_up(current_file) host.save(new_filepath)
11773
import unittest, tempfile from pygromos.simulations.hpc_queuing.job_scheduling.schedulers import simulation_scheduler from pygromos.data.simulation_parameters_templates import template_md from pygromos.data.topology_templates import blank_topo_template from pygromos.simulations.hpc_queuing.submission_systems import DUMMY from pygromos.files.gromos_system.gromos_system import Gromos_System from pygromos.tests.in_testfiles import in_test_file_path from pygromos.tests.test_files import out_test_root_dir class test_MD_scheduler(unittest.TestCase): submissionSystem = DUMMY def setUp(self) -> None: self.tmp_test_dir = tempfile.mkdtemp(dir=out_test_root_dir, prefix="scheduling_Dummy_") def test_do(self): in_cnf = in_test_file_path+"/cnf/in_cnf1.cnf" out_dir_path = self.tmp_test_dir in_simSystem = Gromos_System(system_name="test_do", work_folder=out_dir_path, in_top_path=blank_topo_template, in_cnf_path=in_cnf, in_imd_path=template_md, in_gromosXX_bin_dir=None, in_gromosPP_bin_dir=None) submission_system = self.submissionSystem() simulation_scheduler.do(in_simSystem=in_simSystem, out_dir_path=out_dir_path, submission_system=submission_system, simulation_run_num=2, verbose= True)
11785
import unittest import unittest.mock from programy.storage.entities.nodes import NodesStore class NodesStoreTest(unittest.TestCase): def test_load(self): store = NodesStore() with self.assertRaises(NotImplementedError): collector = unittest.mock.Mock() store.load(collector)
11788
import unittest class PrefixNotIncluded(unittest.TestCase): def test_not_included(self): pass if __name__ == '__main__': unittest.main()
11836
from django.contrib.auth import get_user_model from rest_auth.registration.serializers import ( RegisterSerializer as BaseRegisterSerializer, ) from rest_auth.registration.serializers import ( SocialLoginSerializer as BaseSocialLoginSerializer, ) from rest_auth.serializers import LoginSerializer as BaseLoginSerializer from rest_auth.serializers import ( PasswordResetConfirmSerializer as BasePasswordResetConfirmSerializer, ) from rest_auth.serializers import UserDetailsSerializer as BaseUserDetailsSerializer from rest_framework import serializers from rest_framework.exceptions import ValidationError from core.models import Profile # noinspection PyAbstractClass class LoginSerializer(BaseLoginSerializer): """ Extends the default LoginSerializer in order to return custom error messages """ def validate(self, attrs): try: return super().validate(attrs) except serializers.ValidationError as ex: ex.detail = "The email or password you entered is incorrect!" raise ex # noinspection PyAbstractClass class PasswordResetConfirmSerializer(BasePasswordResetConfirmSerializer): """ Extends the default PasswordResetConfirmSerializer in order to return custom error messages """ def validate(self, attrs): try: return super().validate(attrs) except serializers.ValidationError as ex: if "new_password2" in ex.detail: ex.detail = ex.detail["new_password2"][0] else: ex.detail = "Could not reset password. Reset token expired or invalid." raise ex # noinspection PyAbstractClass class CustomSocialLoginSerializer(BaseSocialLoginSerializer): """ Extends default SocialLoginSerializer to add additional details to some failed login attempts """ def validate(self, attrs): try: res = super().validate(attrs) return res except ValidationError as ex: if "User is already registered with this e-mail address." in ex.detail: ex.detail[0] = ( "User is already registered with this e-mail address. " "Please login using the form above." ) raise ex # noinspection PyAbstractClass class RegisterSerializer(BaseRegisterSerializer): email = serializers.EmailField(required=True) password = serializers.CharField(write_only=True) first_name = serializers.CharField(write_only=True) last_name = serializers.CharField(write_only=True) # legacy compat zip = serializers.CharField(write_only=True, required=False) zipcode = serializers.CharField(write_only=True, required=False) # Overrides the default required password fields password1 = None password2 = None def get_cleaned_data(self): return { "username": self.validated_data.get("email", ""), "email": self.validated_data.get("email", ""), # allauth uses password1 internally for creation "password1": self.validated_data.get("password", ""), "first_name": self.validated_data.get("first_name", ""), "last_name": self.validated_data.get("last_name", ""), "zipcode": self.validated_data.get("zipcode", ""), } def validate(self, data): return data UserModel = get_user_model() class ProfileSerializer(serializers.ModelSerializer): class Meta: model = Profile fields = "__all__" class UserDetailsSerializer(BaseUserDetailsSerializer): profile = ProfileSerializer() class Meta: model = UserModel fields = ("username", "email", "first_name", "last_name", "profile") read_only_fields = ("email",) def to_representation(self, instance: UserModel) -> dict: """Move fields from Profile to user representation.""" representation = super().to_representation(instance) profile = representation.pop("profile") representation["zipcode"] = profile["zipcode"] representation["is_mentor"] = profile["is_mentor"] return representation class UserSerializer(BaseUserDetailsSerializer): profile = ProfileSerializer() class Meta: model = UserModel fields = ("username", "email", "first_name", "last_name", "profile") read_only_fields = ("email",) def to_representation(self, instance: UserModel) -> dict: """Move fields from Profile to user representation.""" representation = super().to_representation(instance) profile = representation.pop("profile") profile.pop("user") for key, val in profile.items(): representation[key] = val return representation
11838
import os import shutil import sys import tarfile def include_package(envoy_api_protos, rst_file_path, prefix): # `envoy_api_rst_files` is a list of file paths for .proto.rst files # generated by protodoc # # we are only interested in the proto files generated for envoy protos, # not for non-envoy dependencies if ("pkg/" + prefix) not in rst_file_path: return None # derive the "canonical" path from the filepath canonical = f"{rst_file_path.split('pkg/' + prefix)[1]}" # we are only interested in the actual v3 protos, not their dependencies if (prefix + canonical) not in envoy_api_protos: return None return canonical def main(): proto_srcs = sys.argv[1] envoy_api_rst_files = sys.argv[1:-1] output_filename = sys.argv[-1] with open(proto_srcs) as f: # the contents of `proto_srcs` are the result of a bazel genquery, # containing bazel target rules, eg: # # @envoy_api//envoy/watchdog/v3:abort_action.proto # # this transforms them to a list with a "canonical" form of: # # envoy/watchdog/v3/abort_action.proto.rst # envoy_api_protos = [ f"{src.split('//')[1].replace(':', '/')}.rst" for src in f.read().split("\n") if src ] for rst_file_path in envoy_api_rst_files: canonical = include_package(envoy_api_protos, rst_file_path, "envoy/") if canonical is None: canonical = include_package(envoy_api_protos, rst_file_path, "contrib/envoy/") if canonical is None: continue target = os.path.join("rst-out/api-v3", canonical) if not os.path.exists(os.path.dirname(target)): os.makedirs(os.path.dirname(target)) shutil.copy(rst_file_path, target) # output the generated rst files to a tarfile for consumption # by other bazel rules with tarfile.open(output_filename, "w") as tar: tar.add("rst-out", arcname=".") if __name__ == "__main__": main()
11866
from mock.mock import patch import os import pytest import ca_test_common import ceph_volume_simple_activate fake_cluster = 'ceph' fake_container_binary = 'podman' fake_container_image = 'quay.ceph.io/ceph/daemon:latest' fake_id = '42' fake_uuid = '0c4a7eca-0c2a-4c12-beff-08a80f064c52' fake_path = '/etc/ceph/osd/{}-{}.json'.format(fake_id, fake_uuid) class TestCephVolumeSimpleActivateModule(object): @patch('ansible.module_utils.basic.AnsibleModule.exit_json') def test_with_check_mode(self, m_exit_json): ca_test_common.set_module_args({ 'osd_id': fake_id, 'osd_fsid': fake_uuid, '_ansible_check_mode': True }) m_exit_json.side_effect = ca_test_common.exit_json with pytest.raises(ca_test_common.AnsibleExitJson) as result: ceph_volume_simple_activate.main() result = result.value.args[0] assert not result['changed'] assert result['cmd'] == ['ceph-volume', '--cluster', fake_cluster, 'simple', 'activate', fake_id, fake_uuid] assert result['rc'] == 0 assert not result['stdout'] assert not result['stderr'] @patch('ansible.module_utils.basic.AnsibleModule.exit_json') @patch('ansible.module_utils.basic.AnsibleModule.run_command') def test_with_failure(self, m_run_command, m_exit_json): ca_test_common.set_module_args({ 'osd_id': fake_id, 'osd_fsid': fake_uuid }) m_exit_json.side_effect = ca_test_common.exit_json stdout = '' stderr = 'error' rc = 2 m_run_command.return_value = rc, stdout, stderr with pytest.raises(ca_test_common.AnsibleExitJson) as result: ceph_volume_simple_activate.main() result = result.value.args[0] assert result['changed'] assert result['cmd'] == ['ceph-volume', '--cluster', fake_cluster, 'simple', 'activate', fake_id, fake_uuid] assert result['rc'] == rc assert result['stderr'] == stderr @patch('ansible.module_utils.basic.AnsibleModule.exit_json') @patch('ansible.module_utils.basic.AnsibleModule.run_command') def test_activate_all_osds(self, m_run_command, m_exit_json): ca_test_common.set_module_args({ 'osd_all': True }) m_exit_json.side_effect = ca_test_common.exit_json stdout = '' stderr = '' rc = 0 m_run_command.return_value = rc, stdout, stderr with pytest.raises(ca_test_common.AnsibleExitJson) as result: ceph_volume_simple_activate.main() result = result.value.args[0] assert result['changed'] assert result['cmd'] == ['ceph-volume', '--cluster', fake_cluster, 'simple', 'activate', '--all'] assert result['rc'] == rc assert result['stderr'] == stderr assert result['stdout'] == stdout @patch.object(os.path, 'exists', return_value=True) @patch('ansible.module_utils.basic.AnsibleModule.exit_json') @patch('ansible.module_utils.basic.AnsibleModule.run_command') def test_activate_path_exists(self, m_run_command, m_exit_json, m_os_path): ca_test_common.set_module_args({ 'path': fake_path }) m_exit_json.side_effect = ca_test_common.exit_json stdout = '' stderr = '' rc = 0 m_run_command.return_value = rc, stdout, stderr with pytest.raises(ca_test_common.AnsibleExitJson) as result: ceph_volume_simple_activate.main() result = result.value.args[0] assert result['changed'] assert result['cmd'] == ['ceph-volume', '--cluster', fake_cluster, 'simple', 'activate', '--file', fake_path] assert result['rc'] == rc assert result['stderr'] == stderr assert result['stdout'] == stdout @patch.object(os.path, 'exists', return_value=False) @patch('ansible.module_utils.basic.AnsibleModule.fail_json') def test_activate_path_not_exists(self, m_fail_json, m_os_path): ca_test_common.set_module_args({ 'path': fake_path }) m_fail_json.side_effect = ca_test_common.fail_json with pytest.raises(ca_test_common.AnsibleFailJson) as result: ceph_volume_simple_activate.main() result = result.value.args[0] assert result['msg'] == '{} does not exist'.format(fake_path) assert result['rc'] == 1 @patch('ansible.module_utils.basic.AnsibleModule.exit_json') @patch('ansible.module_utils.basic.AnsibleModule.run_command') def test_activate_without_systemd(self, m_run_command, m_exit_json): ca_test_common.set_module_args({ 'osd_id': fake_id, 'osd_fsid': fake_uuid, 'systemd': False }) m_exit_json.side_effect = ca_test_common.exit_json stdout = '' stderr = '' rc = 0 m_run_command.return_value = rc, stdout, stderr with pytest.raises(ca_test_common.AnsibleExitJson) as result: ceph_volume_simple_activate.main() result = result.value.args[0] assert result['changed'] assert result['cmd'] == ['ceph-volume', '--cluster', fake_cluster, 'simple', 'activate', fake_id, fake_uuid, '--no-systemd'] assert result['rc'] == rc assert result['stderr'] == stderr assert result['stdout'] == stdout @patch.dict(os.environ, {'CEPH_CONTAINER_BINARY': fake_container_binary}) @patch.dict(os.environ, {'CEPH_CONTAINER_IMAGE': fake_container_image}) @patch('ansible.module_utils.basic.AnsibleModule.exit_json') @patch('ansible.module_utils.basic.AnsibleModule.run_command') def test_activate_with_container(self, m_run_command, m_exit_json): ca_test_common.set_module_args({ 'osd_id': fake_id, 'osd_fsid': fake_uuid, }) m_exit_json.side_effect = ca_test_common.exit_json stdout = '' stderr = '' rc = 0 m_run_command.return_value = rc, stdout, stderr with pytest.raises(ca_test_common.AnsibleExitJson) as result: ceph_volume_simple_activate.main() result = result.value.args[0] assert result['changed'] assert result['cmd'] == [fake_container_binary, 'run', '--rm', '--privileged', '--ipc=host', '--net=host', '-v', '/etc/ceph:/etc/ceph:z', '-v', '/var/lib/ceph/:/var/lib/ceph/:z', '-v', '/var/log/ceph/:/var/log/ceph/:z', '-v', '/run/lvm/:/run/lvm/', '-v', '/run/lock/lvm/:/run/lock/lvm/', '--entrypoint=ceph-volume', fake_container_image, '--cluster', fake_cluster, 'simple', 'activate', fake_id, fake_uuid] assert result['rc'] == rc assert result['stderr'] == stderr assert result['stdout'] == stdout
11871
import System dataKey, _ = IN OUT = System.AppDomain.CurrentDomain.GetData("_Dyn_Wireless_%s" % dataKey)
11920
from typing import Any, Dict, Tuple import torch from torch_geometric.nn import GATConv from torch_sparse import SparseTensor, set_diag from rgnn_at_scale.aggregation import ROBUST_MEANS from rgnn_at_scale.models.gcn import GCN class RGATConv(GATConv): """Extension of Pytorch Geometric's `GCNConv` to execute a robust aggregation function: - soft_k_medoid - soft_medoid (not scalable) - k_medoid - medoid (not scalable) - dimmedian Parameters ---------- mean : str, optional The desired mean (see above for the options), by default 'soft_k_medoid' mean_kwargs : Dict[str, Any], optional Arguments for the mean, by default dict(k=64, temperature=1.0, with_weight_correction=True) """ def __init__(self, mean='soft_k_medoid', mean_kwargs: Dict[str, Any] = dict(k=64, temperature=1.0, with_weight_correction=True), **kwargs): kwargs['in_channels'] = 2 * [kwargs['in_channels']] super().__init__(**kwargs) self._mean = ROBUST_MEANS[mean] if mean is not None else None self._mean_kwargs = mean_kwargs def forward(self, arguments: Tuple[torch.Tensor, SparseTensor] = None) -> torch.Tensor: """Predictions based on the input. Parameters ---------- arguments : Sequence[torch.Tensor] [x, edge indices] or [x, edge indices, edge weights], by default None Returns ------- torch.Tensor the output of `GCNConv`. Raises ------ NotImplementedError if the arguments are not of length 2 or 3 """ if len(arguments) == 2: x, edge_index = arguments edge_weight = None elif len(arguments) == 3: x, edge_index, edge_weight = arguments else: raise NotImplementedError("This method is just implemented for two or three arguments") assert isinstance(edge_index, SparseTensor), 'GAT requires a SparseTensor as input' assert edge_weight is None, 'The weights must be passed via a SparseTensor' H, C = self.heads, self.out_channels assert x.dim() == 2, 'Static graphs not supported in `GATConv`.' x_l = x_r = self.lin_l(x).view(-1, H, C) alpha_l = (x_l * self.att_l).sum(dim=-1) alpha_r = (x_r * self.att_r).sum(dim=-1) if self.add_self_loops: edge_index = set_diag(edge_index) # propagate_type: (x: OptPairTensor, alpha: OptPairTensor) out = self.propagate(edge_index, x=(x_l, x_r), alpha=(alpha_l, alpha_r)) alpha = self._alpha * edge_index.storage.value()[:, None] self._alpha = None if self.concat: out = out.view(-1, self.heads * self.out_channels) else: out = out.mean(dim=1) if self.bias is not None: out += self.bias attention_matrix = edge_index.set_value(alpha, layout='coo') attention_matrix.storage._value = attention_matrix.storage._value.squeeze() x = self.lin_l(x) if self._mean is not None: x = self._mean(attention_matrix, x, **self._mean_kwargs) else: x = attention_matrix @ x x += self.bias return x class RGAT(GCN): """Generic Reliable Graph Neural Network (RGNN) implementation which currently supports a GCN architecture with the aggregation functions: - soft_k_medoid - soft_medoid (not scalable) - k_medoid - medoid (not scalable) - dimmedian and with the adjacency preprocessings: - SVD: <NAME>, <NAME>, <NAME>, and <NAME>. All you need is Low (rank): Defending against adversarial attacks on graphs. - GDC: <NAME>, <NAME>, and <NAME>. Diffusion Improves Graph Learning. - Jaccard: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. Adversarial examples for graph data: Deep insights into attack and defense. Parameters ---------- mean : str, optional The desired mean (see above for the options), by default 'soft_k_medoid' mean_kwargs : Dict[str, Any], optional Arguments for the mean, by default dict(k=64, temperature=1.0, with_weight_correction=True) """ def __init__(self, mean: str = 'soft_k_medoid', mean_kwargs: Dict[str, Any] = dict(k=64, temperature=1.0, with_weight_correction=True), **kwargs): self._mean_kwargs = dict(mean_kwargs) self._mean = mean super().__init__(**kwargs) assert not self.do_checkpoint, 'Checkpointing is not supported' def _build_conv_layer(self, in_channels: int, out_channels: int): return RGATConv(mean=self._mean, mean_kwargs=self._mean_kwargs, in_channels=in_channels, out_channels=out_channels) def _cache_if_option_is_set(self, callback, x, edge_idx, edge_weight): return SparseTensor.from_edge_index(edge_idx, edge_weight, (x.shape[0], x.shape[0])), None
11957
import os from pathlib import Path import requests import shutil import sys from distutils.version import LooseVersion import time from tqdm import tqdm from docly.parser import parser as py_parser from docly.tokenizers import tokenize_code_string from docly import __version__ # from c2nl.objects import Code UPDATE_CHECK_URL = "http://3.80.2.138:8584/vercheck/check-version/" # UPDATE_CHECK_URL = "http://127.0.0.1:5000/vercheck/check-version/" interaction_cache = lambda : Path(Path.home() / ".docly" / "interaction_cache") CACHE_DIR = (Path().home() / ".docly" / "file_cache") cache_exists = lambda : CACHE_DIR.exists() make_cache_dir = lambda : os.mkdir(str(CACHE_DIR)) def _compare_installed_version_with_latest(v1, v2): try: current_version = LooseVersion(v1) latest_version = LooseVersion(v2) assert current_version == latest_version return True except AssertionError: return False def look_for_update(): with requests.sessions.Session() as s: try: r = s.get(UPDATE_CHECK_URL, timeout=2) r.raise_for_status() if not _compare_installed_version_with_latest(__version__, r.text): i_c = interaction_cache() return True return False except Exception: i_c = interaction_cache() if not i_c.exists(): os.mkdir(i_c) if not (i_c / "icache.txt").exists(): with open((i_c / "icache.txt"), "w") as f: f.write(str(int(time.time())) + "\n") else: with open((i_c / "icache.txt"), "a") as f: f.write(str(int(time.time())) + "\n") return False def is_dir(base_path): if isinstance(base_path, Path): return base_path.is_dir() elif isinstance(base_path, str): return Path(base_path).is_dir() else: return False def is_python_file(file_path): if isinstance(file_path, Path): return file_path.suffix == ".py" elif isinstance(file_path, str): return Path(file_path).suffix == ".py" else: return False def is_ipynb_notebook(file_path): if isinstance(file_path, Path): return file_path.suffix == ".ipynb" elif isinstance(file_path, str): return Path(file_path).suffix == ".ipynb" else: return False def download_from_url(url, dst): """ @param: url to download file @param: dst place to put the file """ file_size = int(requests.head(url).headers["Content-Length"]) if os.path.exists(dst): first_byte = os.path.getsize(dst) else: first_byte = 0 if first_byte >= file_size: return file_size header = {"Range": "bytes=%s-%s" % (first_byte, file_size)} pbar = tqdm( total=file_size, initial=first_byte, unit='B', unit_scale=True, desc=dst.split('/')[-1]) req = requests.get(url, headers=header, stream=True) with(open(dst, 'ab')) as f: for chunk in req.iter_content(chunk_size=1024): if chunk: f.write(chunk) pbar.update(1024) pbar.close() return file_size def check_out_path(target_path: Path): """" This function recursively yields all contents of a pathlib.Path object """ yield target_path for file in target_path.iterdir(): if file.is_dir(): yield from check_out_path(file) else: yield file.absolute() def process_file(file_path: Path, ts_lib_path: str, use_old=False): result, parser_obj = py_parser.parse(file_path, ts_lib_path) func_and_params = parser_obj.get_all_function_names_with_params() if result: for func_name, data in py_parser.get_func_body_and_docstr(parser_obj): # print(py_toeknizer.tokenize_code_string(func_body)) # code.tokens = tokenizer.tokenize(func_body).data # code.text = func_body (func_body, docstr), start, end = data ret_start = (start[0]+1, start[1]) params = func_and_params[func_name] code_str = [tokenize_code_string(func_body)] if use_old else func_body yield code_str, params, ret_start, func_name, docstr.strip() def query_yes_no(question, default="yes"): """Ask a yes/no question and return their answer. "question" is a string that is presented to the user. "default" is the presumed answer if the user just hits <Enter>. It must be "yes", "no", or None (meaning an answer is required of the user). The "answer" return value is True for "yes" or False for "no". """ valid = {"yes": True, "y": True, "ye": True, "no": False, "n": False} if default is None: prompt = " [y/n] " elif default == "yes": prompt = " [Y/n] " elif default == "no": prompt = " [y/N] " else: raise ValueError("invalid default answer: '{}}'".format(default)) while True: print(question + prompt) choice = input().lower() if default is not None and choice == '': return valid[default] elif choice in valid: return valid[choice] else: print("Please respond with 'yes' or 'no' " "(or 'y' or 'n').\n")
12008
import os import cv2 import time import json import random import inspect import argparse import numpy as np from tqdm import tqdm from dataloaders import make_data_loader from models.sync_batchnorm.replicate import patch_replication_callback from models.vs_net import * from utils.loss import loss_dict from utils.lr_scheduler import LR_Scheduler from utils.saver import Saver from utils.summaries import TensorboardSummary from utils.metrics import Evaluator from utils import utils from torch.autograd import Variable import os.path as osp from configs import * import warnings warnings.filterwarnings("ignore") class Trainer(object): def __init__(self, cfg): self.cfg = cfg # Define Saver self.saver = Saver(cfg) # Define Tensorboard Summary self.summary = TensorboardSummary(self.cfg["log_tb_dir"]) self.summary.create_summary() # Define Dataloader kwargs = {"num_workers": cfg["num_workers"], "pin_memory": True} self.train_loader, self.val_loader, self.test_loader, dset = make_data_loader( cfg, **kwargs) # read landmark centers self.id2center = np.array(json.load( open(osp.join(cfg["data_dir"], "id2centers.json")))).astype(np.float64) self.coding_book = torch.zeros( (len(self.id2center), cfg["seg_channel"]), dtype=torch.float32).cuda() torch.nn.init.xavier_uniform(self.coding_book) print("coding book size = {}".format(self.coding_book.shape)) # generate color map unique_label = np.arange(len(self.id2center)) unique_label = unique_label.astype( np.int64) * 6364136223846793005 + 1442695040888963407 color_map = np.zeros((unique_label.shape[0], 3), np.uint8) color_map[:, 0] = np.bitwise_and(unique_label, 0xff) color_map[:, 1] = np.bitwise_and(np.right_shift(unique_label, 4), 0xff) color_map[:, 2] = np.bitwise_and(np.right_shift(unique_label, 8), 0xff) self.color_map = np.array(color_map) self.coding_book = Variable(self.coding_book, requires_grad=True) # Define network model = VSNet(backbone=cfg["backbone"], seg_decoder=cfg["seg_decoder"], vertex_decoder=cfg["vertex_decoder"], seg_channel=cfg["seg_channel"], vertex_channel=cfg["vertex_channel"], output_stride=cfg["out_stride"], sync_bn=cfg["sync_bn"]) train_params = [{"params": model.get_1x_lr_params(), "lr": cfg["lr"]}, {"params": model.get_10x_lr_params(), "lr": cfg["lr"] * 10}, {"params": self.coding_book, "lr": cfg["lr"] * 10} ] # Define Optimizer if cfg["optimizer"] == "SGD": optimizer = torch.optim.SGD(train_params, momentum=cfg["momentum"], weight_decay=cfg["weight_decay"], nesterov=cfg["nesterov"]) elif cfg["optimizer"] == "Adam": optimizer = torch.optim.Adam(train_params, lr=cfg["lr"], weight_decay=cfg["weight_decay"], amsgrad=True) else: raise NotImplementedError # Define Criterion self.seg_criterion = loss_dict[cfg["seg_loss_type"]] self.vertex_criterion = loss_dict[cfg["vertex_loss_type"]] self.model, self.optimizer = model, optimizer # Define Evaluator self.evaluator = Evaluator( self.coding_book.shape[0], cfg["vertex_channel"]) # Define lr scheduler self.scheduler = LR_Scheduler(mode=cfg["lr_scheduler"], base_lr=cfg["lr"], num_epochs=cfg["epochs"], iters_per_epoch=len( self.train_loader), lr_step=cfg["lr_step"]) self.model = torch.nn.DataParallel(self.model) patch_replication_callback(self.model) self.model = self.model.cuda() # Resuming checkpoint self.best_pred = {"mIoU": 0.0, "Acc": 0.0, "Acc": 0.0, "FWIoU": 0.0, "translation_median": 1000} if cfg["resume"] is not None and cfg["resume"] == True: print(os.path.isfile(cfg["resume_checkpoint"])) if not os.path.isfile(cfg["resume_checkpoint"]): raise RuntimeError("=> no checkpoint found at {}" .format( cfg["resume_checkpoint"])) checkpoint = torch.load(cfg["resume_checkpoint"]) cfg.opt["start_epoch"] = checkpoint["epoch"] - 1 self.model.module.load_state_dict(checkpoint["state_dict"]) if not cfg["ft"]: self.optimizer.load_state_dict(checkpoint["optimizer"]) self.best_pred = checkpoint["best_pred"] if "coding_book" in checkpoint.keys(): assert self.coding_book.shape == checkpoint["coding_book"].shape self.coding_book = checkpoint["coding_book"] else: print("Alert! coding book does not exist in the checkpoint") print("=> loaded checkpoint {} (epoch {})" .format(cfg["resume"], checkpoint["epoch"])) def validation(self, epoch): print("=================================") print("validation") print("=================================") self.model.eval() self.evaluator.reset() tbar = tqdm(self.val_loader, desc="\r") num_iter_val = len(self.val_loader) test_loss = 0.0 num_images = 0 ten_count = [] five_count = [] three_count = [] one_count = [] translation_list = [] angular_list = [] reproject_list = [] test_seg_loss = 0.0 test_ver_loss = 0.0 for i, data in enumerate(tbar): image, seg_target, vertex_target = [d.cuda() for d in data[:3]] valid_mask = data[-1].cuda() pose_target, camera_k_matrix, ori_img = data[3:] seg_target = seg_target.long() valid_mask = (seg_target.detach() > 0).float() with torch.no_grad(): seg_pred, vertex_pred, seg_pred_x4s = self.model( image) loss_seg = 0 if self.cfg["seg_decoder"]: loss_seg = self.seg_criterion(seg_pred, seg_target, self.coding_book, margin=self.cfg["seg_loss_margin"], seg_k=self.cfg["seg_k"], valid_mask=valid_mask) test_seg_loss += loss_seg.item() self.summary.add_scalar( "val/loss_seg_iter", loss_seg.item(), i + num_iter_val * epoch) loss_vertex = 0 if self.cfg["vertex_decoder"]: loss_vertex = self.vertex_criterion(vertex_pred, vertex_target, valid_mask) test_ver_loss += loss_vertex.item() self.summary.add_scalar( "val/loss_vertex_iter", loss_vertex.item(), i + num_iter_val * epoch) loss = 0 if self.cfg["seg_decoder"]: loss += loss_seg if self.cfg["vertex_decoder"]: loss += loss_vertex * self.cfg["vertex_loss_ratio"] test_loss += loss.item() tbar.set_description("Test loss: %.9f" % (test_loss / (i + 1))) self.summary.add_scalar( "val/total_loss_iter", loss.item(), i + num_iter_val * epoch) global_step = i * \ self.cfg["val_batch_size"] + image.data.shape[0] # evaluate seg_pred seg_target = seg_target.detach().squeeze() if self.cfg["seg_decoder"]: seg_pred, knn = utils.evaluate_segmentation(seg_pred_x4s, self.coding_book, seg_target.size(), self.cfg["use_own_nn"]) else: seg_pred = seg_target # evaluate vertex pt3d_filter, pt2d_filter, _ = utils.evaluate_vertex_v2(vertex_pred, seg_pred, self.id2center, inlier_thresh=0.999, min_mask_num=self.cfg["val_label_filter_threshsold"]) # pt3d_filter, pt2d_filter = utils.evaluate_vertex(vertex_target, seg_pred, self.id2center) camera_k_matrix = camera_k_matrix.squeeze().numpy() translation_distance, angular_distance, error = 1e9, 1e9, 1e9 if pt2d_filter.shape[0] > 6: # pnp ret, pose_pred = utils.pnp( pt3d_filter, pt2d_filter, camera_k_matrix) error = utils.reproject_error( pt3d_filter, pt2d_filter, pose_pred, camera_k_matrix) translation_distance, angular_distance = utils.cm_degree_metric( pose_pred, pose_target) print(translation_distance, angular_distance, error, i) ten_count.append(translation_distance < 10 and angular_distance < 10) five_count.append(translation_distance < 5 and angular_distance < 5) three_count.append(translation_distance < 3 and angular_distance < 3) one_count.append(translation_distance < 1 and angular_distance < 1) translation_list.append(translation_distance) angular_list.append(angular_distance) reproject_list.append(error) # Add batch sample into evaluator if self.cfg["seg_decoder"]: self.evaluator.add_seg_batch(seg_target, seg_pred) if self.cfg["visualize_segmenation"]: self.summary.visualize_seg_image(ori_img, seg_pred, seg_target, epoch, i, global_step, self.color_map) if self.cfg["vertex_decoder"]: # evaluate vertex_pred vertex_target, vertex_pred = vertex_target.squeeze(), vertex_pred.squeeze() self.evaluator.add_vertex_batch(vertex_target, vertex_pred) # vertex acc的计算 if self.cfg["visualize_voting"]: if self.cfg["visualize_landmark"] != None and self.cfg["visualize_landmark"]: self.summary.visualize_vertex_image(ori_img, vertex_pred, vertex_target, epoch, i, global_step, pt2d_filter, True) else: self.summary.visualize_vertex_image(ori_img, vertex_pred, vertex_target, epoch, i, global_step) mIoU, Acc, Acc_class, FWIoU = self.summary.visualize_seg_evaluator( self.evaluator, epoch, "val/seg/") print("Validation:") print("[Epoch: %d, numImages: %5d]" % (epoch, num_images)) print("Loss: %.9f" % (test_loss / num_iter_val)) self.summary.add_scalar("val/total_loss_epoch", test_loss / num_iter_val, epoch) self.summary.add_scalar("val/total_seg_epoch", test_seg_loss / num_iter_val, epoch) self.summary.add_scalar("val/total_ver_epoch", test_ver_loss / num_iter_val, epoch) self.summary.add_scalar("val/pnp/10cm_epoch", np.mean(ten_count), epoch) self.summary.add_scalar("val/pnp/5cm_epoch", np.mean(five_count), epoch) self.summary.add_scalar("val/pnp/3cm_epoch", np.mean(three_count), epoch) self.summary.add_scalar("val/pnp/1cm_epoch", np.mean(one_count), epoch) self.summary.add_scalar( "val/pnp/translation_median_epoch", np.median(translation_list), epoch) self.summary.add_scalar( "val/pnp/angular_median_epoch", np.median(angular_list), epoch) new_pred = {"mIoU": mIoU.item(), "Acc": Acc.item(), "Acc_class": Acc_class.item(), "FWIoU": FWIoU.item(), "10cm": np.mean(ten_count), "5cm": np.mean(five_count), "3cm": np.mean(three_count), "1cm": np.mean(one_count), "translation_median": np.median(translation_list), "angular_list": np.median(angular_list)} print(new_pred) if new_pred["translation_median"] < self.best_pred["translation_median"]: is_best = True self.best_pred = new_pred self.saver.save_checkpoint({ "epoch": epoch + 1, "state_dict": self.model.module.state_dict(), "optimizer": self.optimizer.state_dict(), "best_pred": self.best_pred, "coding_book": self.coding_book }, is_best, save_model=self.cfg["save_model"]) def main(): parser = argparse.ArgumentParser( description="PyTorch Landmark Segmentation Training") parser.add_argument("--dataset", type=str, choices=["7scenes_loc", "cambridge_loc"], help="experiment config file") parser.add_argument("--scene", type=str, default="", help="experiment scene") parser.add_argument("--gpu-id", type=str, default="", help="experiment gpu id") parser.add_argument("--use-aug", type=str, default="", choices=["", "true", "false"], help="experiment use aug") parser.add_argument("--config", type=str, default=None, help="experiment config file") parser.add_argument("--debug", type=str, default="", choices=["", "true", "false"], help="debug") parser.add_argument("--resume", type=str, default="true", choices=["", "true", "false"], help="resume") args = parser.parse_args() debug = None if args.debug != "": debug = (args.debug == "true") if args.dataset == "7scenes_loc": cfg = SevenScenesLocConfig(args.config, debug) elif args.dataset == "cambridge_loc": cfg = CambridgeLocConfig(args.config, debug) if args.scene != "": cfg.opt["scene"] = args.scene if args.gpu_id != "": cfg.opt["devices"] = args.gpu_id if args.use_aug == "true": cfg.opt["use_aug"] = True if args.resume == "true": cfg.opt["resume"] = True cfg.opt["resume_checkpoint"] = cfg["export_dir"] + \ '/ckpts/checkpoint-backup.pth.tar' cfg.print_opt() cfg.set_environmental_variables() torch.manual_seed(cfg["seed"]) torch.cuda.manual_seed(cfg["seed"]) np.random.seed(cfg["seed"]) random.seed(cfg["seed"]) trainer = Trainer(cfg) print("Starting Epoch:", trainer.cfg["start_epoch"]) print("Total Epoches:", trainer.cfg["epochs"]) trainer.validation(trainer.cfg["start_epoch"]) trainer.summary.close() if __name__ == "__main__": main()
12009
import numpy as np import gzip import pickle import os import urllib.request class MNIST: host = 'http://yann.lecun.com/exdb/mnist/' filenames = { 'train': ('train-images-idx3-ubyte.gz', 'train-labels-idx1-ubyte.gz'), 'test': ('t10k-images-idx3-ubyte.gz', 't10k-labels-idx1-ubyte.gz'), } dataset_filename = 'mnist.pkl.gz' train_samples = 50000 validation_samples = 10000 test_samples = 10000 def __init__(self): self.current_dir = os.path.dirname(__file__) if not self.is_dataset_available(): print('Dataset not available! It will be downloaded and decoded, and can be take a while, please wait!') datasets = self.get_base_datasets_filenames() for dataset in datasets: if not self.is_base_dataset_downloaded(dataset): print(f'Downloading {dataset}...') self.download_dataset(dataset) print('Decoding files and saving it...') self.decode_and_save() print('Deleting base files (downloaded)...') for dataset in datasets: self.delete_dataset(dataset) print('Done.') def is_dataset_available(self): return os.path.exists(os.path.join(self.current_dir, self.dataset_filename)) def get_base_datasets_filenames(self): return self.filenames['train'] + self.filenames['test'] def is_base_dataset_downloaded(self, filename): return os.path.exists(os.path.join(self.current_dir, filename)) def download_dataset(self, filename): url = self.host + filename dest = os.path.join(self.current_dir, filename) urllib.request.urlretrieve(url, dest) def delete_dataset(self, filename): os.remove(os.path.join(self.current_dir, filename)) def decode_and_save(self): data = {} for key, (images_filename, labels_filename) in self.filenames.items(): with gzip.open(os.path.join(self.current_dir, images_filename), 'rb') as file: images = np.frombuffer(file.read(), np.uint8, offset=16).reshape(-1, 28*28) with gzip.open(os.path.join(self.current_dir, labels_filename), 'rb') as file: labels = np.frombuffer(file.read(), np.uint8, offset=8) data[key] = (images, labels) training = tuple(x[:self.train_samples] for x in data['train']) validation = tuple(x[self.train_samples:] for x in data['train']) test = tuple(data['test']) with gzip.open(os.path.join(self.current_dir, self.dataset_filename), 'wb') as file: pickle.dump((training, validation, test), file) def load(self): with gzip.open(os.path.join(self.current_dir, self.dataset_filename), 'rb') as file: training, validation, test = pickle.load(file) return training, validation, test
12038
from amitools.binfmt.BinImage import * from .ELFFile import * from .ELF import * from .ELFReader import ELFReader from .DwarfDebugLine import DwarfDebugLine class BinFmtELF: """Handle Amiga m68k binaries in ELF format (usually from AROS)""" def is_image(self, path): """check if a given file is a supported ELF file""" with open(path, "rb") as f: return self.is_image_fobj(f) def is_image_fobj(self, fobj): """check if a given fobj is a supported ELF file""" try: pos = fobj.tell() # read identifier ident = ELFIdentifier() ident_data = fobj.read(16) ident.parse(ident_data) # read header hdr = ELFHeader() hdr_data = fobj.read(36) hdr.parse(hdr_data) # seek back fobj.seek(pos, 0) # check header return self.is_supported_elf(ident, hdr) except ELFParseError: return False def is_supported_elf(self, ident, hdr): """check ELF header if its a m68k binary""" if hdr.machine != EM_68K: return False if ident.osabi not in (ELFOSABI_SYSV, ELFOSABI_AROS): return False return True def load_image(self, path): """load a BinImage from an ELF file given via path""" with open(path, "rb") as f: return self.load_image_fobj(f) def load_image_fobj(self, fobj): """load a BinImage from an ELF file given via file object""" # read elf file reader = ELFReader() elf = reader.load(fobj) # create bin image and assign elf file bi = BinImage(BIN_IMAGE_TYPE_ELF) bi.set_file_data(elf) # walk through elf sections sect_to_seg = {} for sect in elf.sections: # determine segment type seg_type = None name = sect.name_str flags = 0 if name == b".text": seg_type = SEGMENT_TYPE_CODE elif name == b".data": seg_type = SEGMENT_TYPE_DATA elif name == b".rodata": seg_type = SEGMENT_TYPE_DATA flags = SEGMENT_FLAG_READ_ONLY elif name == b".bss": seg_type = SEGMENT_TYPE_BSS # we got a segment if seg_type is not None: size = sect.header.size data = sect.data seg = Segment(seg_type, size, data, flags) bi.add_segment(seg) # assign section to segment seg.set_file_data(sect) sect_to_seg[sect] = seg # now run through segments to add relocations bi_segs = bi.get_segments() for seg in bi_segs: # retrieve associated ELF section sect = seg.get_file_data() # any relocations? rela = sect.get_rela() num_rela = len(rela) if num_rela > 0: self.add_elf_rela(sect, seg, sect_to_seg) # any symbols? symbols = sect.get_symbols() num_syms = len(symbols) if num_syms > 0: self.add_elf_symbols(symbols, seg) # try to add debug info ddl = DwarfDebugLine() got = ddl.decode(elf) if got: self.add_debug_line(ddl, bi, sect_to_seg) return bi def add_elf_rela(self, sect, seg, sect_to_seg): for tgt_sect in sect.get_rela_sections(): # is this a relocation to a used section? if tgt_sect in sect_to_seg: to_seg = sect_to_seg[tgt_sect] rl = Relocations(to_seg) seg.add_reloc(to_seg, rl) # add relocations for rel in sect.get_rela_by_section(tgt_sect): r = Reloc(rel.offset, addend=rel.section_addend) rl.add_reloc(r) def add_elf_symbols(self, symbols, seg): symtab = SymbolTable() seg.set_symtab(symtab) for sym in symbols: # add entry off = sym.value name = sym.name_str file_sym = sym.file_sym if file_sym is not None: file_name = file_sym.name_str else: file_name = None symbol = Symbol(off, name, file_name) symtab.add_symbol(symbol) def add_debug_line(self, ddl, bi, sect_to_seg): seg_to_dl = {} matrix = ddl.get_matrix() for row in matrix: sect = row.section if sect in sect_to_seg: segment = sect_to_seg[sect] # fetch debug info if segment in seg_to_dl: dl, file_to_df = seg_to_dl[segment] else: dl = DebugLine() file_to_df = {} segment.set_debug_line(dl) seg_to_dl[segment] = (dl, file_to_df) # fetch file instance fid = row.file if fid in file_to_df: df = file_to_df[fid] else: df = DebugLineFile(ddl.get_file_name(fid), ddl.get_file_dir(fid)) dl.add_file(df) file_to_df[fid] = df # add entry e = DebugLineEntry(row.address, row.line) df.add_entry(e) # mini test if __name__ == "__main__": import sys bf = BinFmtELF() for a in sys.argv[1:]: if bf.is_image(a): print("loading", a) bi = bf.load_image(a) print(bi) else: print("NO ELF:", a)
12049
import tvm import sys import time import numpy as np from tvm.tensor_graph.testing.models import resnet from tvm.tensor_graph.core import ForwardGraph, BackwardGraph, compute, \ GraphTensor, GraphOp, PyTIRGraph from tvm.tensor_graph.nn import CELoss, SGD from tvm.tensor_graph.core.schedule_generator import ConnectedSet, GPUScheduleBaseSet, \ GPUScheduleMasterBaseSet, form_connected_sets, GPUScheduleMasterSet, \ SingleCut, form_cut_candidates, LayoutTransform from tvm.tensor_graph.core.utils import flatten_tir_graph from tvm.tensor_graph.core.space import PrimitiveSpace, PartitionSpace, ForwardGraphSpace from tvm.tensor_graph.core.tuner import RandomPrimitiveTuner, RandomPartitionTuner, RandomForwardTuner from tvm.tensor_graph.core.scheduler import PrimitiveScheduler as Scheduler from tvm.tensor_graph.core.scheduler import schedule_all from tvm.tensor_graph.core.build_graph import build_all from tvm.tensor_graph.core.runtime import run_all def test1(): print("test 1 ##############################") batch = 64 img_shape = [batch, 3, 224, 224] num_classes = 1000 label_shape = [batch, num_classes] dtype = "float32" model = resnet.resnet50(num_classes=1000) img_tensor = GraphTensor(img_shape, dtype=dtype, name="image") label_tensor = GraphTensor(label_shape, dtype=dtype, name="label") # get output_tensor output_tensor = model(img_tensor) # get the weights tensors weights_tensors = [] for w in model.weights(): weights_tensors.append(w) # this is data img_np = np.random.uniform(-1, 1, img_shape).astype(dtype) label_np = np.random.uniform(-1, 1, [batch, num_classes]).astype(dtype) ce_loss = CELoss(label_tensor) sgd = SGD(0.002) fwd_graph = ForwardGraph([img_tensor], [output_tensor], weights_tensors) begin = time.time() # change data layout forward_space = ForwardGraphSpace() forward_tuner = RandomForwardTuner(forward_space) layout_generator = LayoutTransform(fwd_graph, forward_space, forward_tuner) fgraph = layout_generator.generate() after_layout = time.time() # autodiff bgraph = fgraph.make_backward(ce_loss, sgd) after_autodiff = time.time() # make tir graph inputs = [x.tvm_tensor for x in bgraph.inputs] weights = [x.tvm_tensor for x in bgraph.weights] outputs = [x.tvm_tensor for x in bgraph.outputs] # labels = [x.tvm_tensor for x in bgraph.labels] # loss = bgraph.loss.tvm_tensor # gradients = [x.tvm_tensor for x in bgraph.gradients] # updates = [x.tvm_tensor for x in bgraph.updates] labels = [] loss = None gradients = [] lr = None updates = [] tgraph = PyTIRGraph( inputs, labels, outputs, weights, loss, gradients, lr, updates) after_tir_graph = time.time() # subgraph partition partition_space = PartitionSpace() partition_tuner = RandomPartitionTuner(partition_space) cut_candidates = form_cut_candidates(tgraph) # print(cut_candidates) for i, candidate in enumerate(cut_candidates): name = "graph_cut_" + str(i) partition_generator = SingleCut(tgraph, name, candidate, partition_space, partition_tuner) partition_generator.generate() # for op, stat in tgraph.op_stat_dict.items(): # print(op, " head=", stat.head) tgraph.partition_graph() after_partition = time.time() print("num subgraphs:", len(tgraph.subgraphs)) target = "cuda" dev = 0 # update the op stat dict of subgraphs # do auto-schedule total_build_trials = 0 build_time_record = [] for mark, subgraph in tgraph.subgraphs.items(): # print("subgraph", mark) tensors = list(subgraph.outputs.keys()) + list(subgraph.loss.keys()) \ + list(subgraph.gradients.keys()) + list(subgraph.updates.keys()) ops = [x.op for x in tensors] op_list, down_graph = flatten_tir_graph(ops, output_first=True) op_stat_dict = {} for op in op_list: v = tgraph.op_map[op] if v in tgraph.op_stat_dict: op_stat_dict[op] = tgraph.op_stat_dict[v] c_list = form_connected_sets(subgraph, op_stat_dict, tensors, ops, down_graph) # print("c_list_length=", len(c_list)) # print("check connected set") # for connected_set in c_list: # print(connected_set) scheduler = Scheduler() # sch = tgraph.schedules[mark] for i, connected_set in enumerate(c_list): name = "subgraph_" + str(mark) + "_connect_" + str(i) assert not connected_set.empty() build_success = False for trial in range(10): total_build_trials += 1 tgraph.create_schedule_for(mark=mark) sch = tgraph.schedules[mark] if connected_set.has_master(): if connected_set.iso_base(): PrimitiveScheduler = GPUScheduleMasterBaseSet else: PrimitiveScheduler = GPUScheduleMasterSet primitive_generator = PrimitiveScheduler( name, subgraph, connected_set, down_graph, op_stat_dict, scheduler) else: PrimitiveScheduler = GPUScheduleBaseSet primitive_generator = PrimitiveScheduler( name, connected_set, scheduler) primitive_generator.generate(sch) # try: # print(tvm.lower(sch, tgraph.bufs[mark], simple_mode=True)) # except Exception as e: # print(e) # print("prologue") # for p in connected_set.prologue: # print(p.body) # print("epilogue") # for e in connected_set.epilogue: # print(e.body) # print("base") # print(connected_set.base.body) # print("master") # print(connected_set.master.body) # print(connected_set.master.input_tensors) # for op, master in connected_set.prologue.items(): # in_input = False # for inp in master.input_tensors: # if op == inp.op: # in_input = True # break # if not in_input: # print(op, "not in the inputs of", master) build_beg = time.time() build_success = tgraph.build_for(target, mark=mark) build_end = time.time() build_time_record.append(build_end - build_beg) if build_success: break if not build_success: raise RuntimeError("Can't build for subgraph", mark) after_schedule = time.time() tgraph.set_inputs({bgraph.inputs[0].tvm_tensor: img_np}) # tgraph.set_labels({bgraph.labels[0].tvm_tensor: label_np}) # tgraph.set_lr(optimize_engine.get_lr()) tgraph.allocate_buffer(target, dev) beg = time.time() for mark in tgraph.call_order: func = tgraph.functions[mark] bufs = tgraph.bufs[mark] real_bufs = [tgraph.tvm_array_dict[tgraph.subgraphs[mark].index[x]] for x in bufs] func_beg = time.time() func(*real_bufs) func_end = time.time() print((func_end - func_beg) * 1e3, "ms") end = time.time() print("End to end time:", (end - beg) * 1e3, "ms") print("total build trails=", total_build_trials) print("layout change time cost=", (after_layout - begin) * 1e3, "ms") print("autodiff time cost=", (after_autodiff - after_layout) * 1e3, "ms") print("make tir_graph time cost=", (after_tir_graph - after_autodiff) * 1e3, "ms") print("subgraph partition time cost=", (after_partition - after_tir_graph) * 1e3, "ms") print("schedule time cost=", (after_schedule - after_partition) * 1e3, "ms. average=", (after_schedule - after_partition) * 1e3 / total_build_trials, "ms") print("average build time cost=", np.array(build_time_record).mean() * 1e3, "ms") print("total build time cost=", (after_schedule - begin) * 1e3, "ms") print("Success!") def test2(file=sys.stdout): print("test 2 ##############################") batch = 64 img_shape = [batch, 3, 224, 224] num_classes = 1000 label_shape = [batch, num_classes] dtype = "float32" model = resnet.resnet50(num_classes=1000) img_tensor = GraphTensor(img_shape, dtype=dtype, name="image") label_tensor = GraphTensor(label_shape, dtype=dtype, name="label") # get output_tensor output_tensor = model(img_tensor) # get the weights tensors weights_tensors = [] for w in model.weights(): weights_tensors.append(w) # this is data img_np = np.random.uniform(-1, 1, img_shape).astype(dtype) label_np = np.random.uniform(-1, 1, [batch, num_classes]).astype(dtype) ce_loss = CELoss(label_tensor) sgd = SGD(0.002) fwd_graph = ForwardGraph([img_tensor], [output_tensor], weights_tensors) tir_graph = schedule_all(fwd_graph, loss=ce_loss, optimizer=sgd, inference=False) print(len(tir_graph.subgraphs)) print("different subgraphs:", len(set(tir_graph.subgraph_features.values())), file=file) print("direrent ops:", len(set(tir_graph.op_feature_dict.values())), file=file) print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") for k, v in tir_graph.op_map.items(): print(k.name, v.name, file=file) print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") tmp = {} for f in set(tir_graph.op_feature_dict.values()): if f.split(")")[-1] not in tmp: tmp[f.split(")")[-1]] = [] tmp[f.split(")")[-1]].append(f) print("different kinds of ops:", len(tmp), file=file) for k, v in tmp.items(): print(k, file=file) for vv in v: print(" ", vv, file=file) print("####################################################", file=file) tmp = {} for f in set(tir_graph.subgraph_features.values()): key = ";".join([x.split(")")[-1] for x in f.split(";")]) if key not in tmp: tmp[key] = [] tmp[key].append(f) print("different kinds of subgraphs:", len(tmp), file=file) for k, v in tmp.items(): print(k, file=file) for vv in v: print(" ", vv, file=file) for k, v in tir_graph.subgraph_features.items(): key = ";".join([x.split(")")[-1] for x in v.split(";")]) if key == "collect_3_dim4;grad_bn2d_to_conv2d_nchw_8;grad_bn2d_var_to_conv2d_nchw_10;grad_bn2d_mean_to_conv2d_nchw_2;collect_2_dim1": i = 1 for op in tir_graph.subgraphs[k].op_list: print(i, ". #####") i += 1 print(op.body) print(op.input_tensors) break # target = "cuda" # dev = 0 # print("begin schedule") # beg_build = time.time() # build_all(fwd_graph, tir_graph, target=target, build_trial=10) # end_build = time.time() # print("num functions:", len(tir_graph.shared_functions)) # print("build time cost=", (end_build - beg_build) * 1e3, "ms") # try: # run_all(tir_graph, [img_np], [label_np], sgd.get_lr(), target=target, dev=dev) # except Exception as e: # print("run error:", e) print("Success", file=file) def test3(): print("test 3 ##############################") batch = 64 img_shape = [batch, 3, 224, 224] num_classes = 1000 label_shape = [batch, num_classes] dtype = "float32" model = resnet.resnet50(num_classes=1000) img_tensor = GraphTensor(img_shape, dtype=dtype, name="image") label_tensor = GraphTensor(label_shape, dtype=dtype, name="label") # get output_tensor output_tensor = model(img_tensor) # get the weights tensors weights_tensors = [] for w in model.weights(): weights_tensors.append(w) # this is data img_np = np.random.uniform(-1, 1, img_shape).astype(dtype) label_np = np.random.uniform(-1, 1, [batch, num_classes]).astype(dtype) ce_loss = CELoss(label_tensor) sgd = SGD(0.002) fwd_graph = ForwardGraph([img_tensor], [output_tensor], weights_tensors) tir_graph = schedule_all(fwd_graph) print(len(tir_graph.subgraphs)) print("different subgraphs:", len(set(tir_graph.subgraph_features.values()))) print("direrent ops:", len(set(tir_graph.op_feature_dict.values()))) tmp = {} # for f in set(tir_graph.op_feature_dict.values()): # if f.split(")")[-1] not in tmp: # tmp[f.split(")")[-1]] = [] # tmp[f.split(")")[-1]].append(f) # for k, v in tmp.items(): # print(k) # for vv in v: # print(" ", vv) print("####################################################") tmp = {} # for f in set(tir_graph.subgraph_features.values()): # key = ";".join([x.split(")")[-1] for x in f.split(";")]) # if key not in tmp: # tmp[key] = [] # tmp[key].append(f) print("different kinds of subgraphs:", len(tmp)) for k, v in tmp.items(): print(k) for vv in v: print(" ", vv) # target = "cuda" # dev = 1 # print("begin build") # beg_build = time.time() # build_all(fwd_graph, tir_graph, target=target, build_trial=10) # end_build = time.time() # print("num functions:", len(tir_graph.shared_functions)) # print("build time cost=", (end_build - beg_build) * 1e3, "ms") # try: # run_all(tir_graph, [img_np], target=target, dev=dev) # except Exception as e: # print("run error:", e) print("Success") if __name__ == "__main__": with open("trace_resnet_subgraph.log", "w") as fout: test2(file=fout) # test3()
12058
import sys from typing import Generator from typing import List from typing import Optional import pytest from _pytest.pytester import Pytester def test_one_dir_pythonpath(pytester: Pytester, file_structure) -> None: pytester.makefile(".ini", pytest="[pytest]\npythonpath=sub\n") result = pytester.runpytest("test_foo.py") assert result.ret == 0 result.assert_outcomes(passed=1) def test_two_dirs_pythonpath(pytester: Pytester, file_structure) -> None: pytester.makefile(".ini", pytest="[pytest]\npythonpath=sub sub2\n") result = pytester.runpytest("test_foo.py", "test_bar.py") assert result.ret == 0 result.assert_outcomes(passed=2) def test_unconfigure_unadded_dir_pythonpath(pytester: Pytester) -> None: pytester.makeconftest( """ def pytest_configure(config): config.addinivalue_line("pythonpath", "sub") """ ) pytester.makepyfile( """ import sys def test_something(): pass """ ) result = pytester.runpytest() result.assert_outcomes(passed=1) def test_clean_up_pythonpath(pytester: Pytester) -> None: """Test that the srcpaths plugin cleans up after itself.""" pytester.makefile(".ini", pytest="[pytest]\npythonpath=I_SHALL_BE_REMOVED\n") pytester.makepyfile(test_foo="""def test_foo(): pass""") before: Optional[List[str]] = None after: Optional[List[str]] = None class Plugin: @pytest.hookimpl(hookwrapper=True, tryfirst=True) def pytest_unconfigure(self) -> Generator[None, None, None]: nonlocal before, after before = sys.path.copy() yield after = sys.path.copy() result = pytester.runpytest_inprocess(plugins=[Plugin()]) assert result.ret == 0 assert before is not None assert after is not None assert any("I_SHALL_BE_REMOVED" in entry for entry in before) assert not any("I_SHALL_BE_REMOVED" in entry for entry in after)
12080
from cytoolz.functoolz import ( curry, ) from eth_utils import ( to_dict, to_tuple, ) @curry @to_dict def normalize_dict(value, normalizers): for key, item in value.items(): normalizer = normalizers[key] yield key, normalizer(item) @curry @to_tuple def normalize_array(value, normalizer): """ This is just `map` but it's nice to have it return a consisten type (tuple). """ for item in value: yield normalizer(item) @curry def normalize_if(value, conditional_fn, normalizer): if conditional_fn(value): return normalizer(value) else: return value
12090
import os import shutil import unittest from base64 import b64encode from sonLib.bioio import TestStatus from sonLib.bioio import getTempFile from sonLib.bioio import getTempDirectory from sonLib.bioio import system from toil.job import Job from toil.common import Toil from cactus.shared.common import cactus_call, ChildTreeJob class TestCase(unittest.TestCase): def setUp(self): self.testNo = TestStatus.getTestSetup(1, 5, 10, 100) self.tempDir = getTempDirectory(os.getcwd()) self.tempFiles = [] unittest.TestCase.setUp(self) def tearDown(self): unittest.TestCase.tearDown(self) system("rm -rf %s" % self.tempDir) @TestStatus.shortLength def testCactusCall(self): inputFile = getTempFile(rootDir=self.tempDir) with open("/dev/urandom", "rb") as randText: with open(inputFile, 'w') as fh: fh.write(b64encode(randText.read(1024)).decode()) with open(inputFile) as fh: input = "".join(fh.read().split("\n")) #Send input to container's stdin through a file, get output #from stdout output = "".join(cactus_call(infile=inputFile, check_output=True, parameters=["docker_test_script"]).split("\n")) self.assertEqual(input, output) #Send input as string, get output from stdout output = "".join(cactus_call(stdin_string=input, check_output=True, parameters=["docker_test_script"]).split("\n")) self.assertEqual(input, output) @TestStatus.shortLength def testCactusCallPipes(self): inputFile = getTempFile(rootDir=self.tempDir) with open(inputFile, 'w') as f: f.write('foobar\n') # using 'cat' here rather than infile is intentional; it tests # whether the directory is mounted into containers correctly. output = cactus_call(parameters=[['cat', inputFile], ['sed', 's/foo/baz/g'], ['awk', '{ print "quux" $0 }']], check_output=True) self.assertEqual(output, 'quuxbazbar\n') @TestStatus.mediumLength def testChildTreeJob(self): """Check that the ChildTreeJob class runs all children.""" numChildren = 100 flagDir = getTempDirectory() options = Job.Runner.getDefaultOptions(getTempDirectory()) shutil.rmtree(options.jobStore) with Toil(options) as toil: toil.start(CTTestParent(flagDir, numChildren)) # Check that all jobs ran for i in range(numChildren): self.assertTrue(os.path.exists(os.path.join(flagDir, str(i)))) shutil.rmtree(flagDir) class CTTestParent(ChildTreeJob): def __init__(self, flagDir, numChildren): self.flagDir = flagDir self.numChildren = numChildren super(CTTestParent, self).__init__() def run(self, fileStore): for i in range(self.numChildren): self.addChild(CTTestChild(self.flagDir, i)) class CTTestChild(Job): def __init__(self, flagDir, index): self.flagDir = flagDir self.index = index super(CTTestChild, self).__init__() def run(self, fileStore): # Mark that this job has run using a flag file path = os.path.join(self.flagDir, str(self.index)) with open(path, 'w') as f: # Empty file f.write('') if __name__ == '__main__': unittest.main()
12096
import json class TrainingSpecification: template = """ { "TrainingSpecification": { "TrainingImage": "IMAGE_REPLACE_ME", "SupportedHyperParameters": [ { "Description": "Grow a tree with max_leaf_nodes in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes", "Name": "max_leaf_nodes", "Type": "Integer", "Range": { "IntegerParameterRangeSpecification": { "MinValue": "1", "MaxValue": "100000" } }, "IsTunable": true, "IsRequired": false, "DefaultValue": "100" } ], "SupportedTrainingInstanceTypes": INSTANCES_REPLACE_ME, "SupportsDistributedTraining": false, "MetricDefinitions": METRICS_REPLACE_ME, "TrainingChannels": CHANNELS_REPLACE_ME, "SupportedTuningJobObjectiveMetrics": TUNING_OBJECTIVES_REPLACE_ME } } """ def get_training_specification_dict( self, ecr_image, supports_gpu, supported_channels=None, supported_metrics=None, supported_tuning_job_objective_metrics=None, ): return json.loads( self.get_training_specification_json( ecr_image, supports_gpu, supported_channels, supported_metrics, supported_tuning_job_objective_metrics, ) ) def get_training_specification_json( self, ecr_image, supports_gpu, supported_channels=None, supported_metrics=None, supported_tuning_job_objective_metrics=None, ): if supported_channels is None: print("Please provide at least one supported channel") raise ValueError("Please provide at least one supported channel") if supported_metrics is None: supported_metrics = [] if supported_tuning_job_objective_metrics is None: supported_tuning_job_objective_metrics = [] return ( self.template.replace("IMAGE_REPLACE_ME", ecr_image) .replace("INSTANCES_REPLACE_ME", self.get_supported_instances(supports_gpu)) .replace( "CHANNELS_REPLACE_ME", json.dumps([ob.__dict__ for ob in supported_channels], indent=4, sort_keys=True), ) .replace( "METRICS_REPLACE_ME", json.dumps([ob.__dict__ for ob in supported_metrics], indent=4, sort_keys=True), ) .replace( "TUNING_OBJECTIVES_REPLACE_ME", json.dumps( [ob.__dict__ for ob in supported_tuning_job_objective_metrics], indent=4, sort_keys=True, ), ) ) @staticmethod def get_supported_instances(supports_gpu): cpu_list = [ "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", ] gpu_list = [ "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", ] list_to_return = cpu_list if supports_gpu: list_to_return = cpu_list + gpu_list return json.dumps(list_to_return)
12108
from django.conf import settings from django.contrib.auth.decorators import user_passes_test from django.core.paginator import Paginator from django.core.urlresolvers import reverse from django.http import Http404, HttpResponseRedirect, HttpResponse from django.shortcuts import render_to_response from django.template import RequestContext from django.utils.encoding import smart_unicode, iri_to_uri from django.utils.translation import ugettext_lazy as _ from django.views.decorators.cache import never_cache from rosetta.conf import settings as rosetta_settings from rosetta.polib import pofile from rosetta.poutil import find_pos, pagination_range from rosetta.signals import entry_changed, post_save import re import rosetta import datetime import unicodedata import hashlib import os def home(request): """ Displays a list of messages to be translated """ def fix_nls(in_, out_): """Fixes submitted translations by filtering carriage returns and pairing newlines at the begging and end of the translated string with the original """ if 0 == len(in_) or 0 == len(out_): return out_ if "\r" in out_ and "\r" not in in_: out_ = out_.replace("\r", '') if "\n" == in_[0] and "\n" != out_[0]: out_ = "\n" + out_ elif "\n" != in_[0] and "\n" == out_[0]: out_ = out_.lstrip() if "\n" == in_[-1] and "\n" != out_[-1]: out_ = out_ + "\n" elif "\n" != in_[-1] and "\n" == out_[-1]: out_ = out_.rstrip() return out_ version = rosetta.get_version(True) if 'rosetta_i18n_fn' in request.session: rosetta_i18n_fn = request.session.get('rosetta_i18n_fn') rosetta_i18n_app = get_app_name(rosetta_i18n_fn) rosetta_i18n_lang_code = request.session['rosetta_i18n_lang_code'] rosetta_i18n_lang_bidi = rosetta_i18n_lang_code.split('-')[0] in settings.LANGUAGES_BIDI rosetta_i18n_write = request.session.get('rosetta_i18n_write', True) if rosetta_i18n_write: rosetta_i18n_pofile = pofile(rosetta_i18n_fn) for entry in rosetta_i18n_pofile: entry.md5hash = hashlib.md5(entry.msgid.encode("utf8") + entry.msgstr.encode("utf8")).hexdigest() else: rosetta_i18n_pofile = request.session.get('rosetta_i18n_pofile') if 'filter' in request.GET: if request.GET.get('filter') in ('untranslated', 'translated', 'fuzzy', 'all'): filter_ = request.GET.get('filter') request.session['rosetta_i18n_filter'] = filter_ return HttpResponseRedirect(reverse('rosetta-home')) rosetta_i18n_filter = request.session.get('rosetta_i18n_filter', 'all') if '_next' in request.POST: rx = re.compile(r'^m_([0-9a-f]+)') rx_plural = re.compile(r'^m_([0-9a-f]+)_([0-9]+)') file_change = False for key, value in request.POST.items(): md5hash = None plural_id = None if rx_plural.match(key): md5hash = str(rx_plural.match(key).groups()[0]) # polib parses .po files into unicode strings, but # doesn't bother to convert plural indexes to int, # so we need unicode here. plural_id = unicode(rx_plural.match(key).groups()[1]) elif rx.match(key): md5hash = str(rx.match(key).groups()[0]) if md5hash is not None: entry = rosetta_i18n_pofile.find(md5hash, 'md5hash') # If someone did a makemessage, some entries might # have been removed, so we need to check. if entry: old_msgstr = entry.msgstr if plural_id is not None: plural_string = fix_nls(entry.msgstr_plural[plural_id], value) entry.msgstr_plural[plural_id] = plural_string else: entry.msgstr = fix_nls(entry.msgid, value) is_fuzzy = bool(request.POST.get('f_%s' % md5hash, False)) old_fuzzy = 'fuzzy' in entry.flags if old_fuzzy and not is_fuzzy: entry.flags.remove('fuzzy') elif not old_fuzzy and is_fuzzy: entry.flags.append('fuzzy') file_change = True if old_msgstr != value or old_fuzzy != is_fuzzy: entry_changed.send(sender=entry, user=request.user, old_msgstr=old_msgstr, old_fuzzy=old_fuzzy, pofile=rosetta_i18n_fn, language_code=rosetta_i18n_lang_code, ) else: request.session['rosetta_last_save_error'] = True if file_change and rosetta_i18n_write: try: # Provide defaults in case authorization is not required. request.user.first_name = getattr(request.user, 'first_name', 'Anonymous') request.user.last_name = getattr(request.user, 'last_name', 'User') request.user.email = getattr(request.user, 'email', '<EMAIL>') rosetta_i18n_pofile.metadata['Last-Translator'] = unicodedata.normalize('NFKD', u"%s %s <%s>" % (request.user.first_name, request.user.last_name, request.<EMAIL>.email)).encode('ascii', 'ignore') rosetta_i18n_pofile.metadata['X-Translated-Using'] = u"django-rosetta %s" % rosetta.get_version(False) rosetta_i18n_pofile.metadata['PO-Revision-Date'] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M%z') except UnicodeDecodeError: pass try: rosetta_i18n_pofile.save() rosetta_i18n_pofile.save_as_mofile(rosetta_i18n_fn.replace('.po', '.mo')) post_save.send(sender=None, language_code=rosetta_i18n_lang_code, request=request) # Try auto-reloading via the WSGI daemon mode reload mechanism if rosetta_settings.WSGI_AUTO_RELOAD and \ 'mod_wsgi.process_group' in request.environ and \ request.environ.get('mod_wsgi.process_group', None) and \ 'SCRIPT_FILENAME' in request.environ and \ int(request.environ.get('mod_wsgi.script_reloading', '0')): try: os.utime(request.environ.get('SCRIPT_FILENAME'), None) except OSError: pass # Try auto-reloading via uwsgi daemon reload mechanism if rosetta_settings.UWSGI_AUTO_RELOAD: try: import uwsgi # pretty easy right? uwsgi.reload() except: # we may not be running under uwsgi :P pass except: request.session['rosetta_i18n_write'] = False request.session['rosetta_i18n_pofile'] = rosetta_i18n_pofile # Retain query arguments query_arg = '' if 'query' in request.REQUEST: query_arg = '?query=%s' % request.REQUEST.get('query') if 'page' in request.GET: if query_arg: query_arg = query_arg + '&' else: query_arg = '?' query_arg = query_arg + 'page=%d' % int(request.GET.get('page')) return HttpResponseRedirect(reverse('rosetta-home') + iri_to_uri(query_arg)) rosetta_i18n_lang_name = _(request.session.get('rosetta_i18n_lang_name')) rosetta_i18n_lang_code = request.session.get('rosetta_i18n_lang_code') if 'query' in request.REQUEST and request.REQUEST.get('query', '').strip(): query = request.REQUEST.get('query').strip() rx = re.compile(re.escape(query), re.IGNORECASE) paginator = Paginator([e for e in rosetta_i18n_pofile if not e.obsolete and rx.search(smart_unicode(e.msgstr) + smart_unicode(e.msgid) + u''.join([o[0] for o in e.occurrences]))], rosetta_settings.MESSAGES_PER_PAGE) else: if rosetta_i18n_filter == 'untranslated': paginator = Paginator(rosetta_i18n_pofile.untranslated_entries(), rosetta_settings.MESSAGES_PER_PAGE) elif rosetta_i18n_filter == 'translated': paginator = Paginator(rosetta_i18n_pofile.translated_entries(), rosetta_settings.MESSAGES_PER_PAGE) elif rosetta_i18n_filter == 'fuzzy': paginator = Paginator([e for e in rosetta_i18n_pofile.fuzzy_entries() if not e.obsolete], rosetta_settings.MESSAGES_PER_PAGE) else: paginator = Paginator([e for e in rosetta_i18n_pofile if not e.obsolete], rosetta_settings.MESSAGES_PER_PAGE) if 'page' in request.GET and int(request.GET.get('page')) <= paginator.num_pages and int(request.GET.get('page')) > 0: page = int(request.GET.get('page')) else: page = 1 messages = paginator.page(page).object_list if rosetta_settings.MAIN_LANGUAGE and rosetta_settings.MAIN_LANGUAGE != rosetta_i18n_lang_code: main_language = None for language in settings.LANGUAGES: if language[0] == rosetta_settings.MAIN_LANGUAGE: main_language = _(language[1]) break fl = ("/%s/" % rosetta_settings.MAIN_LANGUAGE).join(rosetta_i18n_fn.split("/%s/" % rosetta_i18n_lang_code)) po = pofile(fl) main_messages = [] for message in messages: message.main_lang = po.find(message.msgid).msgstr needs_pagination = paginator.num_pages > 1 if needs_pagination: if paginator.num_pages >= 10: page_range = pagination_range(1, paginator.num_pages, page) else: page_range = range(1, 1 + paginator.num_pages) ADMIN_MEDIA_PREFIX = settings.STATIC_URL ENABLE_TRANSLATION_SUGGESTIONS = rosetta_settings.BING_APP_ID and rosetta_settings.ENABLE_TRANSLATION_SUGGESTIONS BING_APP_ID = rosetta_settings.BING_APP_ID MESSAGES_SOURCE_LANGUAGE_NAME = rosetta_settings.MESSAGES_SOURCE_LANGUAGE_NAME MESSAGES_SOURCE_LANGUAGE_CODE = rosetta_settings.MESSAGES_SOURCE_LANGUAGE_CODE if 'rosetta_last_save_error' in request.session: del(request.session['rosetta_last_save_error']) rosetta_last_save_error = True return render_to_response('rosetta/pofile.html', locals(), context_instance=RequestContext(request)) else: return list_languages(request) home = never_cache(home) home = user_passes_test(lambda user: can_translate(user), settings.LOGIN_URL)(home) def download_file(request): import zipfile from StringIO import StringIO # original filename rosetta_i18n_fn = request.session.get('rosetta_i18n_fn', None) # in-session modified catalog rosetta_i18n_pofile = request.session.get('rosetta_i18n_pofile', None) # language code rosetta_i18n_lang_code = request.session.get('rosetta_i18n_lang_code', None) if not rosetta_i18n_lang_code or not rosetta_i18n_pofile or not rosetta_i18n_fn: return HttpResponseRedirect(reverse('rosetta-home')) try: if len(rosetta_i18n_fn.split('/')) >= 5: offered_fn = '_'.join(rosetta_i18n_fn.split('/')[-5:]) else: offered_fn = rosetta_i18n_fn.split('/')[-1] po_fn = str(rosetta_i18n_fn.split('/')[-1]) mo_fn = str(po_fn.replace('.po', '.mo')) # not so smart, huh zipdata = StringIO() zipf = zipfile.ZipFile(zipdata, mode="w") zipf.writestr(po_fn, unicode(rosetta_i18n_pofile).encode("utf8")) zipf.writestr(mo_fn, rosetta_i18n_pofile.to_binary()) zipf.close() zipdata.seek(0) response = HttpResponse(zipdata.read()) response['Content-Disposition'] = 'attachment; filename=%s.%s.zip' % (offered_fn, rosetta_i18n_lang_code) response['Content-Type'] = 'application/x-zip' return response except Exception: return HttpResponseRedirect(reverse('rosetta-home')) download_file = never_cache(download_file) download_file = user_passes_test(lambda user: can_translate(user), settings.LOGIN_URL)(download_file) def list_languages(request): """ Lists the languages for the current project, the gettext catalog files that can be translated and their translation progress """ languages = [] if 'filter' in request.GET: if request.GET.get('filter') in ('project', 'third-party', 'django', 'all'): filter_ = request.GET.get('filter') request.session['rosetta_i18n_catalog_filter'] = filter_ return HttpResponseRedirect(reverse('rosetta-pick-file')) rosetta_i18n_catalog_filter = request.session.get('rosetta_i18n_catalog_filter', 'project') third_party_apps = rosetta_i18n_catalog_filter in ('all', 'third-party') django_apps = rosetta_i18n_catalog_filter in ('all', 'django') project_apps = rosetta_i18n_catalog_filter in ('all', 'project') has_pos = False for language in settings.LANGUAGES: pos = find_pos(language[0], project_apps=project_apps, django_apps=django_apps, third_party_apps=third_party_apps) has_pos = has_pos or len(pos) languages.append( (language[0], _(language[1]), [(get_app_name(l), os.path.realpath(l), pofile(l)) for l in pos], ) ) ADMIN_MEDIA_PREFIX = settings.STATIC_URL version = rosetta.get_version(True) return render_to_response('rosetta/languages.html', locals(), context_instance=RequestContext(request)) list_languages = never_cache(list_languages) list_languages = user_passes_test(lambda user: can_translate(user), settings.LOGIN_URL)(list_languages) def get_app_name(path): app = path.split("/locale")[0].split("/")[-1] return app def lang_sel(request, langid, idx): """ Selects a file to be translated """ if langid not in [l[0] for l in settings.LANGUAGES]: raise Http404 else: rosetta_i18n_catalog_filter = request.session.get('rosetta_i18n_catalog_filter', 'project') third_party_apps = rosetta_i18n_catalog_filter in ('all', 'third-party') django_apps = rosetta_i18n_catalog_filter in ('all', 'django') project_apps = rosetta_i18n_catalog_filter in ('all', 'project') file_ = find_pos(langid, project_apps=project_apps, django_apps=django_apps, third_party_apps=third_party_apps)[int(idx)] request.session['rosetta_i18n_lang_code'] = langid request.session['rosetta_i18n_lang_name'] = unicode([l[1] for l in settings.LANGUAGES if l[0] == langid][0]) request.session['rosetta_i18n_fn'] = file_ po = pofile(file_) for entry in po: entry.md5hash = hashlib.md5(entry.msgid.encode("utf8") + entry.msgstr.encode("utf8")).hexdigest() request.session['rosetta_i18n_pofile'] = po try: os.utime(file_, None) request.session['rosetta_i18n_write'] = True except OSError: request.session['rosetta_i18n_write'] = False return HttpResponseRedirect(reverse('rosetta-home')) lang_sel = never_cache(lang_sel) lang_sel = user_passes_test(lambda user: can_translate(user), settings.LOGIN_URL)(lang_sel) def can_translate(user): if not getattr(settings, 'ROSETTA_REQUIRES_AUTH', True): return True if not user.is_authenticated(): return False elif user.is_superuser and user.is_staff: return True else: try: from django.contrib.auth.models import Group translators = Group.objects.get(name='translators') return translators in user.groups.all() except Group.DoesNotExist: return False
12124
from typing import TypedDict from .utils.Classes.String import String from .utils.assert_string import assert_string from .utils.merge import merge class _IsStrongPasswordOptions(TypedDict): min_length: int min_uppercase: int min_lowercase: int min_numbers: int min_symbols: int return_score: bool points_per_unique: int points_per_repeat: float points_for_containing_upper: int points_for_containing_lower: int points_for_containing_number: int points_for_containing_symbol: int class _Analysis(TypedDict): length: int unique_chars: int uppercase_count: int lowercase_count: int number_count: int symbol_count: int default_options: _IsStrongPasswordOptions = { "min_length": 8, "min_uppercase": 1, "min_lowercase": 1, "min_numbers": 1, "min_symbols": 1, "return_score": False, "points_per_unique": 1, "points_per_repeat": 0.5, "points_for_containing_lower": 10, "points_for_containing_upper": 10, "points_for_containing_number": 10, "points_for_containing_symbol": 10, } def count_chars(pw: String): result = {} for char in pw: if char in result: result[char] += result[char] + 1 else: result[char] = 1 return result def analyze_password(pw: String) -> _Analysis: upper_case_regex = r"^[A-Z]$" lower_case_regex = r"^[a-z]$" number_regex = r"^[0-9]$" symbol_regex = r"^[-#!$@%^&*()_+|~=`{}\[\]:\";'<>?,./ ]$" char_map = count_chars(pw) analysis: _Analysis = { "length": pw.length, "unique_chars": len([*char_map]), "uppercase_count": 0, "lowercase_count": 0, "number_count": 0, "symbol_count": 0, } for char in [*char_map]: char = String(char) if char.match(upper_case_regex): analysis["uppercase_count"] += char_map[char] elif char.match(lower_case_regex): analysis["lowercase_count"] += char_map[char] elif char.match(number_regex): analysis["number_count"] += char_map[char] elif char.match(symbol_regex): analysis["symbol_count"] += char_map[char] return analysis def score_password(analysis: _Analysis, options: _IsStrongPasswordOptions): points = 0 points += analysis["unique_chars"] * options["points_per_unique"] points += (analysis["length"] - analysis["unique_chars"]) * options["points_per_unique"] if analysis["uppercase_count"] > 0: points += options["points_for_containing_upper"] if analysis["lowercase_count"] > 0: points += options["points_for_containing_lower"] if analysis["number_count"] > 0: points += options["points_for_containing_number"] if analysis["symbol_count"] > 0: points += options["points_for_containing_symbol"] return points def is_strong_password(input: str, options: _IsStrongPasswordOptions = {}) -> bool: input = assert_string(input) options = merge(options, default_options) analysis = analyze_password(input) if options["return_score"]: return score_password(analysis, options) return ( analysis["length"] >= options["min_length"] and analysis["uppercase_count"] >= options["min_uppercase"] and analysis["lowercase_count"] >= options["min_lowercase"] and analysis["number_count"] >= options["min_numbers"] and analysis["symbol_count"] >= options["min_symbols"] )
12130
import pytest @pytest.fixture(scope="session") def test_data(): from pathlib import Path module_dir = Path(__file__).resolve().parent test_dir = module_dir / "test_data" return test_dir.resolve() @pytest.fixture(scope="session") def database(): return "jobflow_test" @pytest.fixture(scope="session") def mongo_jobstore(database): from maggma.stores import MongoStore from jobflow import JobStore store = JobStore(MongoStore(database, "outputs")) store.connect() return store @pytest.fixture(scope="function") def memory_jobstore(): from maggma.stores import MemoryStore from jobflow import JobStore store = JobStore(MemoryStore()) store.connect() return store @pytest.fixture(scope="function") def memory_data_jobstore(): from maggma.stores import MemoryStore from jobflow import JobStore store = JobStore(MemoryStore(), additional_stores={"data": MemoryStore()}) store.connect() return store @pytest.fixture def clean_dir(): import os import shutil import tempfile old_cwd = os.getcwd() newpath = tempfile.mkdtemp() os.chdir(newpath) yield os.chdir(old_cwd) shutil.rmtree(newpath) @pytest.fixture(scope="session") def debug_mode(): return False @pytest.fixture(scope="session") def lpad(database, debug_mode): from fireworks import LaunchPad lpad = LaunchPad(name=database) lpad.reset("", require_password=False) yield lpad if not debug_mode: lpad.reset("", require_password=False) for coll in lpad.db.list_collection_names(): lpad.db[coll].drop() @pytest.fixture def no_pydot(monkeypatch): import builtins import_orig = builtins.__import__ def mocked_import(name, *args, **kwargs): if name == "pydot": raise ImportError() return import_orig(name, *args, **kwargs) monkeypatch.setattr(builtins, "__import__", mocked_import) @pytest.fixture def no_matplotlib(monkeypatch): import builtins import_orig = builtins.__import__ def mocked_import(name, *args, **kwargs): if name == "matplotlib": raise ImportError() return import_orig(name, *args, **kwargs) monkeypatch.setattr(builtins, "__import__", mocked_import)
12147
from __future__ import unicode_literals from __future__ import print_function import moya from moya.compat import text_type from requests_oauthlib import OAuth1Session def get_credentials(provider, credentials): client_id = credentials.client_id or provider.get('client_id', None) client_secret = credentials.client_secret or provider.get('client_secret', None) return client_id, client_secret @moya.expose.macro('get_oauth_resource_owner') def get_oauth_resource_owner(app, provider, credentials): client_id, client_secret = get_credentials(provider, credentials) oauth = OAuth1Session(client_id, client_secret=client_secret) request_token_url = provider['request_token_url'] response = oauth.fetch_request_token(request_token_url) resource_owner_key = response.get('oauth_token') resource_owner_secret = response.get('oauth_token_secret') result = { "key": resource_owner_key, "secret": resource_owner_secret } return result @moya.expose.macro('get_oauth_authorize_url') def get_oauth_authorize_url(app, provider, credentials): context = moya.pilot.context client_id, client_secret = get_credentials(provider, credentials) resource_owner_key = context['.session.oauth1.resource_owner.key'] resource_owner_secret = context['.session.oauth1.resource_owner.secret'] oauth = OAuth1Session(client_id, client_secret=client_secret, resource_owner_key=resource_owner_key, resource_owner_secret=resource_owner_secret) authorization_url = oauth.authorization_url(provider['authorization_base_url']) return authorization_url @moya.expose.macro('get_oauth_access_token') def get_oauth_access_token(app, provider, credentials, verifier): context = moya.pilot.context client_id, client_secret = get_credentials(provider, credentials) resource_owner_key = context['.session.oauth1.resource_owner.key'] resource_owner_secret = context['.session.oauth1.resource_owner.secret'] oauth = OAuth1Session(client_id, client_secret=client_secret, resource_owner_key=resource_owner_key, resource_owner_secret=resource_owner_secret, verifier=verifier) access_token_url = provider['access_token_url'] oauth_tokens = oauth.fetch_access_token(access_token_url) return oauth_tokens @moya.expose.macro('get_oauth_profile') def get_oauth_profile(app, provider, credentials, verifier): context = moya.pilot.context client_id, client_secret = get_credentials(provider, credentials) resource_owner_key = context['.session.oauth1.resource_owner.key'] resource_owner_secret = context['.session.oauth1.resource_owner.secret'] resources = provider.get('resources', {}) session = OAuth1Session(client_id, client_secret=client_secret, resource_owner_key=resource_owner_key, resource_owner_secret=resource_owner_secret, verifier=verifier) access_token_url = provider['access_token_url'] try: oauth_tokens = session.fetch_access_token(access_token_url) except Exception as e: app.throw('moya.logins.access-fail', text_type(e)) info = {} for scope, scope_url in sorted(resources.items()): try: response = session.get(scope_url) except Exception as e: app.throw('moya.logins.get-scope-fail', text_type(e), diagnosis="There may be a connectivity issue getting scope information.", scope=scope, scope_url=scope_url) try: info[scope] = scope_data = response.json() #if(context['.debug']): # context['.console'].obj(context, scope_data) except: pass provider_profile = provider.get('profile', {}) profile = {} context['_oauth_info'] = info with context.frame('_oauth_info'): for k, v in provider_profile.items(): try: profile[k] = context.eval(v) except: pass return {'profile': profile, 'info': info}
12170
import asyncio import logging import traceback import uuid from typing import Optional, Tuple, Any, Callable from pesto.ws.core.payload_parser import PayloadParser, PestoConfig from pesto.ws.core.pesto_feature import PestoFeatures from pesto.ws.core.utils import load_class, async_exec from pesto.ws.features.algorithm_wrapper import AlgorithmWrapper from pesto.ws.features.converter.image.image_roi import ImageROI, DummyImageROI from pesto.ws.features.payload_converter import PayloadConverter from pesto.ws.features.payload_debug import PayloadDebug from pesto.ws.features.response_serializer import ResponseSerializer from pesto.ws.features.schema_validation import SchemaValidation from pesto.ws.features.stateful_response import StatefulResponse from pesto.ws.features.stateless_response import StatelessResponse from pesto.ws.service.describe import DescribeService from pesto.ws.service.job_result import ResultType log = logging.getLogger(__name__) class ProcessService: PROCESS_CLASS_NAME = 'algorithm.process.Process' _algorithm: Optional[Callable] = None _describe = None @staticmethod def init(): if ProcessService._algorithm is not None: raise ValueError('Process Service already loaded !') try: log.info('ProcessService.init() ...') ProcessService._algorithm = load_class(ProcessService.PROCESS_CLASS_NAME)() if hasattr(ProcessService._algorithm, 'on_start'): log.info('ProcessService.on_start() ...') ProcessService._algorithm.on_start() log.info('ProcessService.on_start() ... Done !') log.info('ProcessService.init() ... Done !') except: traceback.print_exc() log.warning('Algorithm {}.on_start() failure !'.format(ProcessService.PROCESS_CLASS_NAME)) def __init__(self, url_root: str): self.url_root = url_root @property def service_description(self): if ProcessService._describe is None: ProcessService._describe = DescribeService(self.url_root).compute_describe() return ProcessService._describe def process(self, payload: dict) -> dict: config = PayloadParser.parse(payload) image_roi: Optional[ImageROI] = config.get(PestoConfig.roi) # if no ROI: None active_roi: ImageROI = image_roi or DummyImageROI() # bypass compute crop info and remove margins in pipeline job_id = str(uuid.uuid4().time_low) is_stateful = self.service_description['asynchronous'] is True input_schema = self.service_description['input'] output_schema = self.service_description['output'] common_pipeline = filter(None, [ SchemaValidation(schema=input_schema), active_roi.compute_crop_infos(), PayloadConverter(image_roi=image_roi, schema=input_schema), PayloadDebug(schema=input_schema), AlgorithmWrapper(ProcessService._algorithm), active_roi.remove_margin(), ResponseSerializer(schema=output_schema, job_id=job_id), ]) if is_stateful: pipeline = [ *common_pipeline, StatefulResponse(self.url_root, job_id) ] else: pipeline = [ *common_pipeline, StatelessResponse(self.url_root, job_id, output_schema) ] return PestoFeatures(pipeline).process(payload) async def async_process(self, request_payload: dict) -> Tuple[Any, ResultType]: return await asyncio.wait_for( async_exec(lambda: self.process(request_payload)), timeout=None )
12172
import configparser import os import typing from sitri.providers.base import ConfigProvider class IniConfigProvider(ConfigProvider): """Config provider for Initialization file (Ini).""" provider_code = "ini" def __init__( self, ini_path: str = "./config.ini", ): """ :param ini_path: path to ini file """ self.configparser = configparser.ConfigParser() with open(os.path.abspath(ini_path)) as f: self.configparser.read_file(f) self._sections = None @property def sections(self): if not self._sections: self._sections = list(self.configparser.keys()) return self._sections def get(self, key: str, section: str, **kwargs) -> typing.Optional[typing.Any]: # type: ignore """Get value from ini file. :param key: key or path for search :param section: section of ini file """ if section not in self.sections: return None return self.configparser[section].get(key) def keys(self, section: str, **kwargs) -> typing.List[str]: # type: ignore """Get keys of section. :param section: section of ini file """ if section not in self.sections: return [] return list(self.configparser[section].keys())
12175
from kinetics.reaction_classes.reaction_base_class import Reaction class Generic(Reaction): """ This Reaction class allows you to specify your own rate equation. Enter the parameter names in params, and the substrate names used in the reaction in species. Type the rate equation as a string in rate_equation, using these same names. Enter the substrates used up, and the products made in the reaction as normal. """ def __init__(self, params=[], species=[], rate_equation='', substrates=[], products=[]): super().__init__() self.reaction_substrate_names = species self.parameter_names=params self.rate_equation = rate_equation self.substrates = substrates self.products = products def calculate_rate(self, substrates, parameters): for i, name in enumerate(self.reaction_substrate_names): locals().update({name: substrates[i]}) for i, name in enumerate(self.parameter_names): locals().update({name: parameters[i]}) rate = eval(self.rate_equation, locals(), globals()) return rate
12180
import json import requests from .exceptions import ( RequestsError, RequestsTimeoutError, RPCError ) _default_endpoint = 'http://localhost:9500' _default_timeout = 30 def base_request(method, params=None, endpoint=_default_endpoint, timeout=_default_timeout) -> str: """ Basic RPC request Parameters --------- method: str RPC Method to call params: :obj:`list`, optional Parameters for the RPC method endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- str Raw output from the request Raises ------ TypeError If params is not a list or None RequestsTimeoutError If request timed out RequestsError If other request error occured """ if params is None: params = [] elif not isinstance(params, list): raise TypeError(f'invalid type {params.__class__}') try: payload = { "id": "1", "jsonrpc": "2.0", "method": method, "params": params } headers = { 'Content-Type': 'application/json' } resp = requests.request('POST', endpoint, headers=headers, data=json.dumps(payload), timeout=timeout, allow_redirects=True) return resp.content except requests.exceptions.Timeout as err: raise RequestsTimeoutError(endpoint) from err except requests.exceptions.RequestException as err: raise RequestsError(endpoint) from err def rpc_request(method, params=None, endpoint=_default_endpoint, timeout=_default_timeout) -> dict: """ RPC request Parameters --------- method: str RPC Method to call params: :obj:`list`, optional Parameters for the RPC method endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- dict Returns dictionary representation of RPC response Example format: { "jsonrpc": "2.0", "id": 1, "result": ... } Raises ------ RPCError If RPC response returned a blockchain error See Also -------- base_request """ raw_resp = base_request(method, params, endpoint, timeout) try: resp = json.loads(raw_resp) if 'error' in resp: raise RPCError(method, endpoint, str(resp['error'])) return resp except json.decoder.JSONDecodeError as err: raise RPCError(method, endpoint, raw_resp) from err # TODO: Add GET requests
12184
from __future__ import print_function import argparse, sys from .utils import is_textfile def contains_crlf(filename): with open(filename, mode='rb') as file_checked: for line in file_checked.readlines(): if line.endswith(b'\r\n'): return True return False def main(argv=None): parser = argparse.ArgumentParser() parser.add_argument('filenames', nargs='*', help='filenames to check') args = parser.parse_args(argv) text_files = [f for f in args.filenames if is_textfile(f)] files_with_crlf = [f for f in text_files if contains_crlf(f)] return_code = 0 for file_with_crlf in files_with_crlf: print('CRLF end-lines detected in file: {0}'.format(file_with_crlf)) return_code = 1 return return_code if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
12200
from KratosMultiphysics import ParallelEnvironment, IsDistributedRun if IsDistributedRun(): from KratosMultiphysics.mpi import DataCommunicatorFactory import KratosMultiphysics.KratosUnittest as UnitTest import math class TestDataCommunicatorFactory(UnitTest.TestCase): def setUp(self): self.registered_comms = [] self.default_data_communicator = ParallelEnvironment.GetDefaultDataCommunicator() self.original_default = ParallelEnvironment.GetDefaultDataCommunicatorName() def tearDown(self): if len(self.registered_comms) > 0: ParallelEnvironment.SetDefaultDataCommunicator(self.original_default) for comm_name in self.registered_comms: ParallelEnvironment.UnregisterDataCommunicator(comm_name) def markForCleanUp(self,comm_name): self.registered_comms.append(comm_name) @UnitTest.skipUnless(IsDistributedRun(), "Test is distributed.") def testDataCommunicatorDuplication(self): duplicate_comm = DataCommunicatorFactory.DuplicateAndRegister(self.default_data_communicator, "Duplicate") self.markForCleanUp("Duplicate") # to clean up during tearDown self.assertEqual(duplicate_comm.Rank(), self.default_data_communicator.Rank()) self.assertEqual(duplicate_comm.Size(), self.default_data_communicator.Size()) @UnitTest.skipUnless(IsDistributedRun(), "Test is distributed.") def testDataCommunicatorSplit(self): rank = self.default_data_communicator.Rank() size = self.default_data_communicator.Size() split_comm = DataCommunicatorFactory.SplitAndRegister(self.default_data_communicator, rank % 2, 0, "EvenOdd") self.markForCleanUp("EvenOdd") # to clean up during tearDown expected_rank = rank // 2 if rank % 2 == 0: expected_size = math.ceil(size/2) else: expected_size = math.floor(size/2) self.assertEqual(split_comm.Rank(), expected_rank) self.assertEqual(split_comm.Size(), expected_size) @UnitTest.skipUnless(IsDistributedRun() and ParallelEnvironment.GetDefaultSize() > 1, "Test requires at least two ranks.") def testDataCommunicatorCreateFromRange(self): rank = self.default_data_communicator.Rank() size = self.default_data_communicator.Size() # Create a communicator using all ranks except the first ranks = [i for i in range(1,size)] range_comm = DataCommunicatorFactory.CreateFromRanksAndRegister(self.default_data_communicator, ranks, "AllExceptFirst") self.markForCleanUp("AllExceptFirst") # to clean up during tearDown if rank == 0: self.assertTrue(range_comm.IsNullOnThisRank()) self.assertFalse(range_comm.IsDefinedOnThisRank()) else: self.assertEqual(range_comm.Rank(), rank-1) self.assertEqual(range_comm.Size(), size-1) @UnitTest.skipUnless(IsDistributedRun() and ParallelEnvironment.GetDefaultSize() > 2, "Test requires at least three ranks.") def testDataCommunicatorCreateUnion(self): rank = self.default_data_communicator.Rank() size = self.default_data_communicator.Size() # Create a communicator using all ranks except the first all_except_first = DataCommunicatorFactory.CreateFromRanksAndRegister(self.default_data_communicator, [i for i in range(1,size)], "AllExceptFirst") self.markForCleanUp("AllExceptFirst") # to clean up during tearDown all_except_last = DataCommunicatorFactory.CreateFromRanksAndRegister(self.default_data_communicator, [i for i in range(0,size-1)], "AllExceptLast") self.markForCleanUp("AllExceptLast") # to clean up during tearDown # Create union communicator (should contain all ranks) union_comm = DataCommunicatorFactory.CreateUnionAndRegister(all_except_first, all_except_last, self.default_data_communicator, "Union") self.markForCleanUp("Union") # to clean up during tearDown self.assertFalse(union_comm.IsNullOnThisRank()) self.assertEqual(union_comm.Rank(), rank) self.assertEqual(union_comm.Size(), size) @UnitTest.skipUnless(IsDistributedRun() and ParallelEnvironment.GetDefaultSize() > 2, "Test requires at least three ranks.") def testDataCommunicatorCreateIntersection(self): rank = self.default_data_communicator.Rank() size = self.default_data_communicator.Size() # Create a communicator using all ranks except the first all_except_first = DataCommunicatorFactory.CreateFromRanksAndRegister(self.default_data_communicator, [i for i in range(1,size)], "AllExceptFirst") self.markForCleanUp("AllExceptFirst") # to clean up during tearDown all_except_last = DataCommunicatorFactory.CreateFromRanksAndRegister(self.default_data_communicator, [i for i in range(0,size-1)], "AllExceptLast") self.markForCleanUp("AllExceptLast") # to clean up during tearDown intersection_comm = DataCommunicatorFactory.CreateIntersectionAndRegister( all_except_first, all_except_last, self.default_data_communicator, "Intersection") self.markForCleanUp("Intersection") # to clean up during tearDown if rank == 0 or rank == size - 1: # The first and last ranks do not participate in the intersection communicator self.assertTrue(intersection_comm.IsNullOnThisRank()) else: self.assertEqual(intersection_comm.Rank(), rank - 1 ) self.assertEqual(intersection_comm.Size(), size - 2 ) if __name__ == "__main__": UnitTest.main()
12201
from __future__ import print_function try: import vkaudiotoken except ImportError: import path_hack from vkaudiotoken import supported_clients import sys import requests import json token = sys.argv[1] user_agent = supported_clients.KATE.user_agent sess = requests.session() sess.headers.update({'User-Agent': user_agent}) def prettyprint(result): print(json.dumps(json.loads(result.content.decode('utf-8')), indent=2)) prettyprint(sess.get( "https://api.vk.com/method/audio.getById", params=[('access_token', token), ('audios', '371745461_456289486,-41489995_202246189'), ('v', '5.95')] ))
12205
import pytest from Thycotic import Client, \ secret_password_get_command, secret_username_get_command, \ secret_get_command, secret_password_update_command, secret_checkout_command, secret_checkin_command, \ secret_delete_command, folder_create_command, folder_delete_command, folder_update_command from test_data.context import GET_PASSWORD_BY_ID_CONTEXT, GET_USERNAME_BY_ID_CONTENT, \ SECRET_GET_CONTENT, SECRET_PASSWORD_UPDATE_CONTEXT, SECRET_CHECKOUT_CONTEXT, SECRET_CHECKIN_CONTEXT, \ SECRET_DELETE_CONTEXT, FOLDER_CREATE_CONTEXT, FOLDER_DELETE_CONTEXT, FOLDER_UPDATE_CONTEXT from test_data.http_responses import GET_PASSWORD_BY_ID_RAW_RESPONSE, GET_USERNAME_BY_ID_RAW_RESPONSE, \ SECRET_GET_RAW_RESPONSE, SECRET_PASSWORD_UPDATE_RAW_RESPONSE, SECRET_CHECKOUT_RAW_RESPONSE, \ SECRET_CHECKIN_RAW_RESPONSE, SECRET_DELETE_RAW_RESPONSE, FOLDER_CREATE_RAW_RESPONSE, FOLDER_DELETE_RAW_RESPONSE, \ FOLDER_UPDATE_RAW_RESPONSE GET_PASSWORD_BY_ID_ARGS = {"secret_id": "4"} GET_USERNAME_BY_ID_ARGS = {"secret_id": "4"} SECRET_GET_ARGS = {"secret_id": "4"} SECRET_PASSWORD_UPDATE_ARGS = {"secret_id": "4", "newpassword": "<PASSWORD>"} SECRET_CHECKOUT_ARGS = {"secret_id": "4"} SECRET_CHECKIN_ARGS = {"secret_id": "4"} SECRET_DELETE_ARGS = {"id": "9"} FOLDER_CREATE_ARGS = {"folderName": "xsoarFolderTest3", "folderTypeId": "1", "parentFolderId": "3"} FOLDER_DELETE_ARGS = {"folder_id": "9"} FOLDER_UPDATE_ARGS = {"id": "12", "folderName": "xsoarTF3New"} @pytest.mark.parametrize('command, args, http_response, context', [ (secret_password_get_command, GET_PASSWORD_BY_ID_ARGS, GET_PASSWORD_BY_ID_RAW_RESPONSE, GET_PASSWORD_BY_ID_CONTEXT), (secret_username_get_command, GET_USERNAME_BY_ID_ARGS, GET_USERNAME_BY_ID_RAW_RESPONSE, GET_USERNAME_BY_ID_CONTENT), (secret_get_command, SECRET_GET_ARGS, SECRET_GET_RAW_RESPONSE, SECRET_GET_CONTENT), (secret_password_update_command, SECRET_PASSWORD_UPDATE_ARGS, SECRET_PASSWORD_UPDATE_RAW_RESPONSE, SECRET_PASSWORD_UPDATE_CONTEXT), (secret_checkout_command, SECRET_CHECKOUT_ARGS, SECRET_CHECKOUT_RAW_RESPONSE, SECRET_CHECKOUT_CONTEXT), (secret_checkin_command, SECRET_CHECKIN_ARGS, SECRET_CHECKIN_RAW_RESPONSE, SECRET_CHECKIN_CONTEXT), (secret_delete_command, SECRET_DELETE_ARGS, SECRET_DELETE_RAW_RESPONSE, SECRET_DELETE_CONTEXT), (folder_create_command, FOLDER_CREATE_ARGS, FOLDER_CREATE_RAW_RESPONSE, FOLDER_CREATE_CONTEXT), (folder_delete_command, FOLDER_DELETE_ARGS, FOLDER_DELETE_RAW_RESPONSE, FOLDER_DELETE_CONTEXT), (folder_update_command, FOLDER_UPDATE_ARGS, FOLDER_UPDATE_RAW_RESPONSE, FOLDER_UPDATE_CONTEXT) ]) def test_thycotic_commands(command, args, http_response, context, mocker): mocker.patch.object(Client, '_generate_token') client = Client(server_url="https://thss.softwarium.net/SecretServer", username="xsoar1", password="<PASSWORD>", proxy=False, verify=False) mocker.patch.object(Client, '_http_request', return_value=http_response) outputs = command(client, **args) results = outputs.to_context() assert results.get("EntryContext") == context
12215
import numpy as np from radix import radixConvert c = radixConvert() a = np.load("../../data/5/layer4.npy") print(a.shape) a = a*128 a = np.around(a).astype(np.int16) print(a) a = np.load('../../data/6.npy') a = a*128 a = np.around(a).astype(np.int8) print(a.shape) for i in range(84): print(i) print(a[i]) ''' a = a*128 print(a) for i in range(a.shape[0]): for j in range(a.shape[1]): if a[i][j] > 127: a[i][j] = 127 a = np.around(a).astype(np.int8) print(a) print(a[4][17]) weight_file = open('f1_rom.coe', 'w') weight_file.write('MEMORY_INITIALIZATION_RADIX=2;\n') weight_file.write('MEMORY_INITIALIZATION_VECTOR=\n') for i in range(32): for j in range(32): if(i < 2 or i > 29): weight_file.write(c.dec2Bincmpmt('0', 8)+';\n') elif(j < 2 or j > 29): weight_file.write(c.dec2Bincmpmt('0', 8)+';\n') else: weight_file.write(c.dec2Bincmpmt(str(a[i-2][j-2]), 8)+',\n') '''
12216
class Wrapper(object): wrapper_classes = {} @classmethod def wrap(cls, obj): return cls(obj) def __init__(self, wrapped): self.__dict__['wrapped'] = wrapped def __getattr__(self, name): return getattr(self.wrapped, name) def __setattr__(self, name, value): setattr(self.wrapped, name, value) def __delattr__(self, name): delattr(self.wrapped, name) def __str__(self): return str(self.wrapped) def __repr__(self): return repr(self.wrapped)
12221
if not __name__ == "__main__": print("Started <Pycraft_StartupAnimation>") class GenerateStartupScreen: def __init__(self): pass def Start(self): try: self.Display.fill(self.BackgroundCol) self.mod_Pygame__.display.flip() self.mod_Pygame__.display.set_caption(f"Pycraft: v{self.version}: Welcome") PresentsFont = self.mod_Pygame__.font.Font(self.mod_OS__.path.join(self.base_folder, ("Fonts\\Book Antiqua.ttf")), 35) PycraftFont = self.mod_Pygame__.font.Font(self.mod_OS__.path.join(self.base_folder, ("Fonts\\Book Antiqua.ttf")), 60) NameFont = self.mod_Pygame__.font.Font(self.mod_OS__.path.join(self.base_folder, ("Fonts\\Book Antiqua.ttf")), 45) NameText = NameFont.render("<NAME>", True, self.FontCol) NameTextWidth = NameText.get_width() NameTextHeight = NameText.get_height() PresentsText = PresentsFont.render("presents", True, self.FontCol) PycraftText = PycraftFont.render("Pycraft", True, self.FontCol) PycraftTextWidth = PycraftText.get_width() PycraftTextHeight = PycraftText.get_height() iteration = 0 clock = self.mod_Pygame__.time.Clock() if self.RunFullStartup == True: while iteration <= (60*3): self.realWidth, self.realHeight = self.mod_Pygame__.display.get_window_size() self.Display.fill(self.BackgroundCol) self.Display.blit(NameText, ((self.realWidth-NameTextWidth)/2, (self.realHeight-NameTextHeight)/2)) iteration += 1 if self.realWidth < 1280: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, 1280, self.SavedHeight) if self.realHeight < 720: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, self.SavedWidth, 720) self.mod_Pygame__.display.flip() clock.tick(60) for event in self.mod_Pygame__.event.get(): if event.type == self.mod_Pygame__.QUIT: self.Stop_Thread_Event.set() self.Thread_StartLongThread.join() self.Thread_AdaptiveMode.join() self.Thread_StartLongThread.join() self.mod_Pygame__.quit() self.mod_Sys__.exit("Thanks for playing") quit() iteration = 0 while iteration <= (60*2): self.realWidth, self.realHeight = self.mod_Pygame__.display.get_window_size() self.Display.fill(self.BackgroundCol) self.Display.blit(NameText, ((self.realWidth-NameTextWidth)/2, (self.realHeight-NameTextHeight)/2)) self.Display.blit(PresentsText, ((((self.realWidth-NameTextWidth)/2)+120), ((self.realHeight-NameTextHeight)/2)+30)) iteration += 1 if self.realWidth < 1280: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, 1280, self.SavedHeight) if self.realHeight < 720: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, self.SavedWidth, 720) self.mod_Pygame__.display.flip() clock.tick(60) for event in self.mod_Pygame__.event.get(): if event.type == self.mod_Pygame__.QUIT: self.Stop_Thread_Event.set() self.Thread_StartLongThread.join() self.Thread_AdaptiveMode.join() self.Thread_StartLongThread.join() self.mod_Pygame__.quit() self.mod_Sys__.exit("Thanks for playing") quit() iteration = 0 while iteration <= (60*3): self.realWidth, self.realHeight = self.mod_Pygame__.display.get_window_size() self.Display.fill(self.BackgroundCol) self.Display.blit(PycraftText, ((self.realWidth-PycraftTextWidth)/2, (self.realHeight-PycraftTextHeight)/2)) iteration += 1 if self.realWidth < 1280: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, 1280, self.SavedHeight) if self.realHeight < 720: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, self.SavedWidth, 720) self.mod_Pygame__.display.flip() clock.tick(60) for event in self.mod_Pygame__.event.get(): if event.type == self.mod_Pygame__.QUIT: self.Stop_Thread_Event.set() self.Thread_StartLongThread.join() self.Thread_AdaptiveMode.join() self.Thread_StartLongThread.join() self.mod_Pygame__.quit() self.mod_Sys__.exit("Thanks for playing") quit() y = 0 while True: self.realWidth, self.realHeight = self.mod_Pygame__.display.get_window_size() self.Display.fill(self.BackgroundCol) self.Display.blit(PycraftText, ((self.realWidth-PycraftTextWidth)/2, ((self.realHeight-PycraftTextHeight)/2)-y)) y += 2 if self.realWidth < 1280: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, 1280, self.SavedHeight) if self.realHeight < 720: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, self.SavedWidth, 720) self.mod_Pygame__.display.flip() clock.tick(60) for event in self.mod_Pygame__.event.get(): if event.type == self.mod_Pygame__.QUIT: self.Stop_Thread_Event.set() self.Thread_StartLongThread.join() self.Thread_AdaptiveMode.join() self.Thread_StartLongThread.join() self.mod_Pygame__.quit() self.mod_Sys__.exit("Thanks for playing") quit() if ((self.realHeight-PycraftTextHeight)/2)-y <= 0: self.RunFullStartup = False return None except Exception as Message: self.RunFullStartup = False return Message else: print("You need to run this as part of Pycraft") import tkinter as tk from tkinter import messagebox root = tk.Tk() root.withdraw() messagebox.showerror("Startup Fail", "You need to run this as part of Pycraft, please run the 'main.py' file") quit()
12277
from django.db.models.signals import post_init from factory import DjangoModelFactory, Sequence, SubFactory from factory.django import mute_signals from affiliates.banners import models class CategoryFactory(DjangoModelFactory): FACTORY_FOR = models.Category name = Sequence(lambda n: 'test{0}'.format(n)) class BannerFactory(DjangoModelFactory): ABSTRACT_FACTORY = True category = SubFactory(CategoryFactory) name = Sequence(lambda n: 'test{0}'.format(n)) destination = 'https://mozilla.org/' visible = True class ImageBannerFactory(BannerFactory): FACTORY_FOR = models.ImageBanner @mute_signals(post_init) class ImageVariationFactory(DjangoModelFactory): ABSTRACT_FACTORY = True color = 'Blue' locale = 'en-us' image = 'uploads/image_banners/test.png' class ImageBannerVariationFactory(ImageVariationFactory): FACTORY_FOR = models.ImageBannerVariation banner = SubFactory(ImageBannerFactory) class TextBannerFactory(BannerFactory): FACTORY_FOR = models.TextBanner class TextBannerVariationFactory(DjangoModelFactory): FACTORY_FOR = models.TextBannerVariation banner = SubFactory(TextBannerFactory) locale = 'en-us' text = Sequence(lambda n: 'test{0}'.format(n)) class FirefoxUpgradeBannerFactory(BannerFactory): FACTORY_FOR = models.FirefoxUpgradeBanner @mute_signals(post_init) class FirefoxUpgradeBannerVariationFactory(ImageVariationFactory): FACTORY_FOR = models.FirefoxUpgradeBannerVariation banner = SubFactory(FirefoxUpgradeBannerFactory) image = 'uploads/firefox_upgrade_banners/test.png' upgrade_image = 'uploads/firefox_upgrade_banners/test_upgrade.png'
12297
from flask import Flask, jsonify, request, render_template, redirect from flask_pymongo import PyMongo from werkzeug import secure_filename import base64 app = Flask(__name__) app.config['MONGO_DBNAME'] = 'restdb' app.config['MONGO_URI'] = 'mongodb://localhost:27017/restdb' mongo = PyMongo(app) @app.route('/') def index(): return render_template("index.html") @app.route('/w') def webcam(): return render_template("webcam.html") @app.route('/img') def img(): i = request.query_string f = open('a.png','wb') f.write(i.decode('base64')) return "success <img src='" + i + "'>" @app.route('/hello') def hello(): return "hello world" @app.route('/star', methods=['GET']) def get_all_stars(): star = mongo.db.stars output = [] for s in star.find(): output.append({'name' : s['name'], 'distance' : s['distance']}) return jsonify(output) @app.route('/star/', methods=['GET']) def get_one_star(name): star = mongo.db.stars s = star.find_one({'name' : name}) if s: output = {'name': s['name'], 'distance': s['distance']} else: output = "No such name" return jsonify(output) @app.route('/star', methods=['POST']) def add_star(): star = mongo.db.stars name = request.json['name'] distance = request.json['distance'] star_id = star.insert({'name': name, 'distance': distance}) new_star = star.find_one({'_id': star_id}) output = {'name' : new_star['name'], 'distance' : new_star['distance']} return jsonify(output) @app.route('/uploader', methods=['POST']) def upload_file(): f = request.files['file'] f.save(secure_filename('1')) return "uploaded" if __name__ == '__main__': app.run(debug=True)
12315
from test.test_base import TestBase class TestMath(TestBase): def test_isclose(self): _test = self._assert_execute _test('ㄹ (ㄱㅇㄱ ㄱㅇㄱ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ ㄴ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄴ', 'True') _test('ㅂ ㅅ ㅂ ㅂㅎㄹ (ㄱㅇㄱ ㄱㅇㄱ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ ㄴ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄴ', 'True') _test('ㅂ ㅅ ㅈ ㅂㅎㄹ (ㄱㅇㄱ ㄱㅇㄱ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ ㄴ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄴ', 'True') _test('ㅈㅈㅈ ㄴㄱ ㅅㅎㄷ ㅅㅈㅈ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'False') _test('ㅈㅈㅈㅈㅈㅈㅈ ㄴㄱ ㅅㅎㄷ ㅅㅈㅈㅈㅈㅈㅈ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'False') _test('ㅅㄷㄱ ㅈ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ (ㅂ ㅅ ㅂ ㅂㅎㄹ) (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'False') _test('ㄴㅈㄱㄹㄴㄹㄱ ㅅㄴㅂㄱㄱㄴㄱ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ (ㅂ ㅅ ㅂ ㅂㅎㄹ) (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('(ㅂ ㅅ ㅈ ㅂㅎㄹ) (ㄱ ㅂ ㅅ ㅂ ㅂㅎㄹ ㅄㅎㄷ) ㅅㅎㄷ, ㄴㄱ, (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('ㄱㄴ ㄷ (ㄱㅇㄱ ㄴㅇㄱ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㄴㅇㄱ ㅅㅎㄷ, ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄷ', 'True') _test('ㄱㄴ ㄹ (ㄱㅇㄱ ㄴㅇㄱ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㄴㅇㄱ ㅅㅎㄷ, ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄷ', 'True') _test('ㄱㄴ ㅁ (ㄱㅇㄱ ㄴㅇㄱ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㄴㅇㄱ ㅅㅎㄷ, ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄷ', 'True') _test('ㄴㄱ ㄷ (ㄱㅇㄱ ㄴㅇㄱ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㄴㅇㄱ ㅅㅎㄷ, ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄷ', 'True') _test('ㄴㄱ ㄹ (ㄱㅇㄱ ㄴㅇㄱ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㄴㅇㄱ ㅅㅎㄷ, ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄷ', 'True') _test('ㄴㄱ ㅁ (ㄱㅇㄱ ㄴㅇㄱ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㄴㅇㄱ ㅅㅎㄷ, ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ)ㅎㄷ', 'True') def test_isnan(self): _test = self._assert_execute _test('(ㅂ ㅅ ㄴ ㅂㅎㄹ) (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ) (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄱ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄴ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('(ㅂ ㅅ ㄴ ㅂㅎㄹ) ㄴ ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('ㄱ (ㅂ ㅅ ㄴ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('ㄴ (ㅂ ㅅ ㄴ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㄴ ㅂㅎㄹ) (ㅂ ㅅ ㄴ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ) (ㅂ ㅅ ㄴ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㄴ ㅂㅎㄹ) (ㅂ ㅅ ㅁ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('ㅂ ㅅ ㅁ ㅂㅎㄹ ㄴㄱ ㄱㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ) ㄴ ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄱ (ㅂ ㅅ ㅁ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄴ (ㅂ ㅅ ㅁ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ) (ㅂ ㅅ ㅁ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄱ (ㅂ ㅅ ㅁ ㅂㅎㄹ ㄴㄱ ㄱㅎㄷ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄱ (ㅂ ㅅ ㅁ ㅂㅎㄹ ㄴㄱ ㄱㅎㄷ) ㅄㅎㄷ (ㅂ ㅅ ㄴㄴ ㅂㅎㄹ)ㅎㄴ', 'False') def test_isinf(self): _test = self._assert_execute _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ) (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㄴ ㅂㅎㄹ) (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄱ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄴ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㅂ ㅅ ㅁ ㅂㅎㄹ ㄴㄱ ㄱㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ) ㄴ ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ ㄴㄱ ㄱㅎㄷ) ㄴ ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ) (ㅂ ㅅ ㄴ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('ㄱ (ㅂ ㅅ ㅁ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('ㄴ (ㅂ ㅅ ㅁ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㄴ ㅂㅎㄹ) (ㅂ ㅅ ㅁ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㅁ ㅂㅎㄹ) (ㅂ ㅅ ㅁ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('ㄱ (ㅂ ㅅ ㅁ ㅂㅎㄹ ㄴㄱ ㄱㅎㄷ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'True') _test('(ㅂ ㅅ ㄴ ㅂㅎㄹ) ㄴ ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄱ (ㅂ ㅅ ㄴ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('ㄴ (ㅂ ㅅ ㄴ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'False') _test('(ㅂ ㅅ ㄴ ㅂㅎㄹ) (ㅂ ㅅ ㄴ ㅂㅎㄹ) ㅄㅎㄷ (ㅂ ㅅ ㅁㄴ ㅂㅎㄹ)ㅎㄴ', 'False') def test_abs(self): _test = self._assert_execute _test('ㄱ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0') _test('ㄱ ㄷ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.0') _test('ㄱ ㅄㅎㄴ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.0') _test('ㄴ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '1') _test('ㄴㄱ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '1') _test('ㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '2') _test('ㄷㄱ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '2') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.5') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.5') _test('ㅁ ㄴㄱ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.25') _test('ㅁㄱ ㄴㄱ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.25') _test('ㄴ ㅄㅎㄴ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '1.0') _test('ㄴㄱ ㅄㅎㄴ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '1.0') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㅄㅎㄴ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.5') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅄㅎㄴ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.5') _test('ㄱ ㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '1.0') _test('ㄱ ㄴㄱ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '1.0') _test('ㄱ ㄷ ㄴㄱ ㅅㅎㄷ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.5') _test('ㄱ ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ', '0.5') _test('ㄹ ㅁ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㅂ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㄹㄱ ㅁ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㅂ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㄹ ㅁㄱ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㅂ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㄹㄱ ㅁㄱ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㅂ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㅂ ㅁㄴㄱ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㅂㄴㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㅂㄱ ㅁㄴㄱ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㅂㄴㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㅂ ㅁㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㅂㄴㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㅂㄱ ㅁㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㅂㄴㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㄴㄱ ㄷ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㄴㄱ ㄹ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㄴㄱ ㅁ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㅁㄱ ㄷ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㄱㄴ ㄹ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') _test('ㄱㄷ ㅁ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅂ ㅅ ㄱ ㅂㅎㅀㄷ', 'True') def test_log(self): _test = self._assert_execute _test('ㄴ [((ㅂ ㅅ ㅈ ㅂㅎㄹ) (ㄱㅇㄱ ㅂ ㅅ ㄺ ㅂㅎㅀㄴ) ㅅㅎㄷ) ㄱㅇㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ [(ㅂ ㅅ ㅈ ㅂㅎㄹ (ㄱㅇㄱ ㅂ ㅅ ㄺ ㅂㅎㅀㄴ) ㅅㅎㄷ) ㄱㅇㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄷㄱ [(ㅂ ㅅ ㅈ ㅂㅎㄹ (ㄱㅇㄱ ㅂ ㅅ ㄺ ㅂㅎㅀㄴ) ㅅㅎㄷ) ㄱㅇㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄷ [(ㅂ ㅅ ㅈ ㅂㅎㄹ (ㄱㅇㄱ ㅂ ㅅ ㄺ ㅂㅎㅀㄴ) ㅅㅎㄷ) ㄱㅇㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ ㄹ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ [(ㅂ ㅅ ㅈ ㅂㅎㄹ (ㄱㅇㄱ ㅂ ㅅ ㄺ ㅂㅎㅀㄴ) ㅅㅎㄷ) ㄱㅇㄱ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') def test_trig(self): _test = self._assert_execute _test('ㄱ (ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ) ㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('[ㅈㄱ ㅅㄱ ㅂㄱ ㅁㄱ ㄺ ㄷㄱ ㄴㄱ ㄱ ㄴ ㄷ ㄹ ㅁ ㅂ ㅅ ㅈ] ㅁㅀㅈㄴㄱ [ㅂ ㅅ ㅂ ㅂㅎㄹ (ㄱㅇㄱ ㄷ ㄱㅎㄷ ㄷ ㄴㄱ ㅅㅎㄷ ㄷㅎㄷ) ㄱㅎㄷ (ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ) ㄴ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ] ㅁㄷㅎㄷ (ㄱ ㅁㅂㅎㄴ)ㅎㄴ', 'True') _test('[ㅈㄱ ㅅㄱ ㅂㄱ ㅁㄱ ㄺ ㄷㄱ ㄴㄱ ㄱ ㄴ ㄷ ㄹ ㅁ ㅂ ㅅ ㅈ] ㅁㅀㅈㄴㄱ [ㅂ ㅅ ㅂ ㅂㅎㄹ (ㄱㅇㄱ ㄷ ㄱㅎㄷ ㄷㄱ ㄴㄱ ㅅㅎㄷ ㄷㅎㄷ) ㄱㅎㄷ (ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ) ㄴㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ] ㅁㄷㅎㄷ (ㄱ ㅁㅂㅎㄴ)ㅎㄴ', 'True') _test('ㄱ (ㅂ ㅅ ㄳ ㅂㅎㅀㄴ) ㄴ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('[ㅈㄱ ㅅㄱ ㅂㄱ ㅁㄱ ㄺ ㄷㄱ ㄴㄱ ㄱ ㄴ ㄷ ㄹ ㅁ ㅂ ㅅ ㅈ] ㅁㅀㅈㄴㄱ [ㅂ ㅅ ㅂ ㅂㅎㄹ (ㄱㅇㄱ ㄷ ㄱㅎㄷ) ㄱㅎㄷ (ㅂ ㅅ ㄳ ㅂㅎㅀㄴ) ㄴ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ] ㅁㄷㅎㄷ (ㄱ ㅁㅂㅎㄴ)ㅎㄴ', 'True') _test('[ㅈㄱ ㅅㄱ ㅂㄱ ㅁㄱ ㄺ ㄷㄱ ㄴㄱ ㄱ ㄴ ㄷ ㄹ ㅁ ㅂ ㅅ ㅈ] ㅁㅀㅈㄴㄱ [ㅂ ㅅ ㅂ ㅂㅎㄹ (ㄱㅇㄱ ㄷ ㄱㅎㄷ ㄴ ㄷㅎㄷ) ㄱㅎㄷ (ㅂ ㅅ ㄳ ㅂㅎㅀㄴ) ㄴㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ] ㅁㄷㅎㄷ (ㄱ ㅁㅂㅎㄴ)ㅎㄴ', 'True') _test('ㄱ (ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ) ㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('(ㅂ ㅅ ㅂ ㅂㅎㄹ ㅁ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ) (ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ) ㄴ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('(ㅂ ㅅ ㅂ ㅂㅎㄹ ㅁㄱ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ) (ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ) ㄴㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('(ㅂ ㅅ ㅂ ㅂㅎㄹ ㄹ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ) (ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ) (ㄹ ㄷ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ) (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('(ㅂ ㅅ ㅂ ㅂㅎㄹ ㅅ ㄴㄱ ㅅㅎㄷ ㄱㅎㄷ) (ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ) (ㄹ ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅅㅎㄷ) (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷ', 'True') _test('ㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ) ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄴ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ) ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ) ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄷ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ) ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄷㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ) ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㅂ ㅅ ㅂ ㅂㅎㄹ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ) ㄴ ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅅㅎㄷ) (ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄷㄱ ㅅㅎㄷ) ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄴ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅅㅎㄷ) (ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄷㄱ ㅅㅎㄷ) ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅅㅎㄷ) (ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄷㄱ ㅅㅎㄷ) ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄷ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅅㅎㄷ) (ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄷㄱ ㅅㅎㄷ) ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㄷㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅅㅎㄷ) (ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄷㄱ ㅅㅎㄷ) ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') _test('ㅂ ㅅ ㅂ ㅂㅎㄹ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㄴ ㅄㅎㄷ ㅂ ㅅ ㅈㄷ ㅂㅎㅀㄴ ㄷ ㅅㅎㄷ) (ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㄷㄱ ㅅㅎㄷ) ㅂ ㅅ ㄱ ㅂㅎㅀㄷㅎ]ㅎㄴ', 'True') def test_asin(self): _test = self._assert_execute _test('ㄱ [(ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ [(ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ [(ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄱ ㄴ ㅄㅎㄷ [(ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ ㄴ ㅄㅎㄷ [(ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ[(ㄱㅇㄱ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ[(ㄱㅇㄱ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄱ ㄴ ㅄㅎㄷ[(ㄱㅇㄱ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ ㄴ ㅄㅎㄷ[(ㄱㅇㄱ ㅂ ㅅ ㄴㅅ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') def test_acos(self): _test = self._assert_execute _test('ㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄱ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄱ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄱ ㄴ ㅄㅎㄷ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄱ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ ㄴ ㅄㅎㄷ [(ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ ㅂ ㅅ ㅅㄱ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ[(ㄱㅇㄱ ㅂ ㅅ ㅅㄱ ㅂㅎㅀㄴ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ[(ㄱㅇㄱ ㅂ ㅅ ㅅㄱ ㅂㅎㅀㄴ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄱ ㄴ ㅄㅎㄷ[(ㄱㅇㄱ ㅂ ㅅ ㅅㄱ ㅂㅎㅀㄴ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ ㄴ ㅄㅎㄷ[(ㄱㅇㄱ ㅂ ㅅ ㅅㄱ ㅂㅎㅀㄴ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') def test_atan(self): _test = self._assert_execute _test('ㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄱ ㄴ ㅄㅎㄷ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ ㄴ ㅄㅎㄷ [(ㄱㅇㄱ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄱ [(ㄱㅇㄱ ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄴ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴ[(ㄱㅇㄱ ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄴ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') _test('ㄴㄱ[(ㄱㅇㄱ ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄴ ㅂ ㅅ ㄷㄴ ㅂㅎㅀㄴ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ]ㅎㄴ', 'True') def test_atan2(self): _test = self._assert_execute _test('ㄱ ㄴ ㅂ ㅅ ㄴㄷ ㅂㅎㄹ ㅎㄷ', '0.0') _test('ㄱ ㄴㄱ ㅂ ㅅ ㄴㄷ ㅂㅎㄹ ㅎㄷ (ㅂ ㅅ ㅂ ㅂㅎㄹ)ㄶㄷ', 'True') _test('(ㄴ ㄱ ㅂ ㅅ ㄴㄷ ㅂㅎㄹ ㅎㄷ) ㄷ ㄱㅎㄷ (ㅂ ㅅ ㅂ ㅂㅎㄹ)ㄶㄷ', 'True') _test('(ㄴㄱ ㄱ ㅂ ㅅ ㄴㄷ ㅂㅎㄹ ㅎㄷ) ㄷㄱ ㄱㅎㄷ (ㅂ ㅅ ㅂ ㅂㅎㄹ)ㄶㄷ', 'True') _test('[ㄴ ㄴㄱ ㄷ ㄷㄱ ㄹ ㄺ ㅁㅀㅅ] [(ㄱㅇㄱ ㅂ ㅅ ㅅㄴ ㅂㅎㅀㄴ, ㄱㅇㄱ ㅂ ㅅ ㄳ ㅂㅎㅀㄴ, ㅂ ㅅ ㄴㄷ ㅂㅎㅀㄷ) ㄱㅇㄱ (ㅂ ㅅ ㄱ ㅂㅎㄹ)ㅎㄷㅎ] ㅁㄷㅎㄷ (ㄱ ㅁㅂㅎㄴ)ㅎㄴ', 'True') def test_trunc(self): _test = self._assert_execute _test('ㄱ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㅁ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㅁㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄷ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄴ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄴㄱ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '-2') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄱ ㅂㅎㅁ)ㅎㄴ', '-2') def test_floor(self): _test = self._assert_execute _test('ㄱ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㅁ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㅁㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄴ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄴㄱ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '-2') _test('ㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '-2') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄴ ㅂㅎㅁ)ㅎㄴ', '-3') def test_round(self): _test = self._assert_execute _test('ㄱ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㅁ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㅁㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄷ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄴ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄴㄱ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '-2') _test('ㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '-2') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄷ ㅂㅎㅁ)ㅎㄴ', '-2') def test_ceil(self): _test = self._assert_execute _test('ㄱ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㅁ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㅁㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄷ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㄴ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄴㄱ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '-2') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '3') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㄹ ㅂㅎㅁ)ㅎㄴ', '-2') def test_round_to_inf(self): _test = self._assert_execute _test('ㄱ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '0') _test('ㅁ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㅁㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄴ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '1') _test('ㄴㄱ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '-1') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㄹ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '-2') _test('ㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '2') _test('ㄷㄱ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '-2') _test('ㄷ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '3') _test('ㄷㄱ ㄴㄱ ㅅㅎㄷ ㅂ ㄱㅎㄷ (ㅂ ㅅ ㅂㄹ ㅁ ㅂㅎㅁ)ㅎㄴ', '-3')
12335
from enum import Enum as _Enum class UsageType(_Enum): CONTROL_LINEAR = () CONTROL_ON_OFF = () CONTROL_MOMENTARY = () CONTROL_ONE_SHOT = () CONTROL_RE_TRIGGER = () DATA_SELECTOR = () DATA_STATIC_VALUE = () DATA_STATIC_FLAG = () DATA_DYNAMIC_VALUE = () DATA_DYNAMIC_FLAG = () COLLECTION_NAMED_ARRAY = () COLLECTION_APPLICATION = () COLLECTION_LOGICAL = () COLLECTION_PHYSICAL = () COLLECTION_USAGE_SWITCH = () COLLECTION_USAGE_MODIFIER = () def __new__(cls): value = len(cls.__members__) + 1 obj = object.__new__(cls) obj._value_ = value return obj @classmethod def control_usage_types(cls): return ( UsageType.CONTROL_LINEAR, UsageType.CONTROL_ON_OFF, UsageType.CONTROL_MOMENTARY, UsageType.CONTROL_ONE_SHOT, UsageType.CONTROL_RE_TRIGGER, ) @classmethod def data_usage_types(cls): return ( UsageType.DATA_SELECTOR, UsageType.DATA_STATIC_VALUE, UsageType.DATA_STATIC_FLAG, UsageType.DATA_DYNAMIC_VALUE, UsageType.DATA_DYNAMIC_FLAG, ) @classmethod def collection_usage_types(cls): return ( UsageType.COLLECTION_NAMED_ARRAY, # UsageType.collection_application, # Commented out as it is used for top level collections only UsageType.COLLECTION_LOGICAL, UsageType.COLLECTION_PHYSICAL, UsageType.COLLECTION_USAGE_SWITCH, UsageType.COLLECTION_USAGE_MODIFIER ) class Usage: def __init__(self, value, usage_types): if not isinstance(usage_types, list): usage_types = [usage_types,] for usage_type in usage_types: if not isinstance(usage_type, UsageType): raise ValueError("usage_type {} is not instance of {}".format( usage_type.__class__.__name__, UsageType.__name__) ) self.value = value self.usage_types = usage_types class UsagePage(_Enum): def __init__(self, item): if not isinstance(item, Usage): raise ValueError("{} is not a valid {}".format(item.__name__, self.__class__.__name__)) self.index = item.value & 0xFFFF self.usage = item self.usage_types = item.usage_types @classmethod def get_usage(cls, value): for key, member in cls.__members__.items(): if not isinstance(member.value, Usage): continue if member.index == value: return member raise ValueError("{} is not a valid {}".format(value, cls.__name__)) @classmethod def _get_usage_page_index(cls): raise NotImplementedError() @classmethod def find_usage_page(cls, value): if not hasattr(cls, "usage_page_map"): cls.usage_page_map = {usage_page._get_usage_page_index(): usage_page for usage_page in cls.__subclasses__()} if value in cls.usage_page_map.keys(): return cls.usage_page_map[value] if value not in range(0xFF00,0xFFFF): raise ValueError("Reserved or missing usage page 0x{:04X}".format(value)) raise NotImplementedError("Yet to support Vendor defined usage pages") class UsageRange: def __init__(self, usage_page: UsagePage.__class__ = None, minimum = None, maximum = None): self.usage_page = usage_page self.minimum = minimum self.maximum = maximum def get_range(self): if self.minimum is None or self.maximum is None: raise ValueError("Usage Minimum and Usage Maximum must be set") if isinstance(self.minimum, UsagePage): if not isinstance(self.maximum, UsagePage): raise ValueError("UsageRange type mismatch in minimum and maximum usages") self.usage_page = self.minimum.__class__ return [self.usage_page.get_usage(value) for value in range(self.minimum.index & 0xFFFF, (self.maximum.index & 0xFFFF) + 1)] if self.minimum & ~0xFFFF: self.usage_page = UsagePage.find_usage_page((self.minimum & ~0xFFFF) >> 16) return [self.usage_page.get_usage(value) for value in range(self.minimum & 0xFFFF, (self.maximum & 0xFFFF) + 1)]
12344
import time, copy import asyncio class TempRefManager: def __init__(self): self.refs = [] self.running = False def add_ref(self, ref, lifetime, on_shutdown): expiry_time = time.time() + lifetime self.refs.append((ref, expiry_time, on_shutdown)) def purge_all(self): """Purges all refs, regardless of expiry time Only call this when Seamless is shutting down""" while len(self.refs): ref, _, on_shutdown = self.refs.pop(0) if not on_shutdown: continue try: ref() except: pass def purge(self): """Purges expired refs""" t = time.time() for item in copy.copy(self.refs): ref, expiry_time, _ = item if expiry_time < t: self.refs.remove(item) ref() async def loop(self): if self.running: return self.running = True while 1: try: self.purge() except Exception: import traceback traceback.print_exc() await asyncio.sleep(0.05) self.running = False temprefmanager = TempRefManager() coro = temprefmanager.loop() import asyncio task = asyncio.ensure_future(coro) import atexit atexit.register(lambda *args, **kwargs: task.cancel())
12354
import torch import json import os from torch.utils.data import DataLoader,Dataset import torchvision.transforms as transforms from PIL import Image import numpy as np data_folder = "./dataset/images" press_times = json.load(open("./dataset/dataset.json")) image_roots = [os.path.join(data_folder,image_file) \ for image_file in os.listdir(data_folder)] class JumpDataset(Dataset): def __init__(self,transform = None): self.image_roots = image_roots self.press_times = press_times self.transform = transform def __len__(self): return len(self.image_roots) def __getitem__(self,idx): image_root = self.image_roots[idx] image_name = image_root.split("/")[-1] image = Image.open(image_root) image = image.convert('RGB') image = image.resize((224,224), resample=Image.LANCZOS) #image = np.array(image, dtype=np.float32) if self.transform is not None: image = self.transform(image) press_time = self.press_times[image_name] return image,press_time def jump_data_loader(): normalize = transforms.Normalize(mean=[0.92206, 0.92206, 0.92206], std=[0.08426, 0.08426, 0.08426]) transform = transforms.Compose([transforms.ToTensor(),normalize]) dataset = JumpDataset(transform=transform) return DataLoader(dataset,batch_size = 32,shuffle = True)
12355
import json from grafana_backup.dashboardApi import create_snapshot def main(args, settings, file_path): grafana_url = settings.get('GRAFANA_URL') http_post_headers = settings.get('HTTP_POST_HEADERS') verify_ssl = settings.get('VERIFY_SSL') client_cert = settings.get('CLIENT_CERT') debug = settings.get('DEBUG') with open(file_path, 'r') as f: data = f.read() snapshot = json.loads(data) try: snapshot['name'] = snapshot['dashboard']['title'] except KeyError: snapshot['name'] = "Untitled Snapshot" (status, content) = create_snapshot(json.dumps(snapshot), grafana_url, http_post_headers, verify_ssl, client_cert, debug) if status == 200: print("create snapshot: {0}, status: {1}, msg: {2}".format(snapshot['name'], status, content)) else: print("creating snapshot {0} failed with status {1}".format(snapshot['name'], status))
12361
from numpy import array, rad2deg, pi, mgrid, argmin from matplotlib.pylab import contour import matplotlib.pyplot as plt import mplstereonet from obspy.imaging.beachball import aux_plane from focal_mech.lib.classify_mechanism import classify, translate_to_sphharm from focal_mech.io.read_hash import read_demo, read_hash_solutions from focal_mech.util.hash_routines import hash_to_classifier from focal_mech.lib.sph_harm import get_sph_harm from focal_mech.lib.correlate import corr_shear hash_solns = read_hash_solutions("example1.out") # we want solutions that are symetric polarity_data = read_demo("north1.phase", "scsn.reverse", reverse=True) inputs = hash_to_classifier(polarity_data, parity=1) event = 3146815 result = classify(*inputs[event], kernel_degree=2) Alm = translate_to_sphharm(*result, kernel_degree=2) coeffs = array([Alm[0,0], Alm[1,-1], Alm[1,0], Alm[1,1], Alm[2,-2], Alm[2,-1], Alm[2,0], Alm[2,1], Alm[2,2]]) svm_soln, f = corr_shear(Alm) resolution = (200,400) longi, lati, Z = get_sph_harm(resolution=resolution) mech = coeffs.dot(Z).real longi.shape = resolution lati.shape = resolution mech.shape = resolution c = contour(longi, lati, mech, [0]) pth1 = c.collections[0].get_paths()[0].vertices pth1 = rad2deg(pth1) pth2 = c.collections[0].get_paths()[1].vertices pth2 = rad2deg(pth2) hash_focal = rad2deg(hash_solns[event]) event2 = 3158361 result = classify(*inputs[event2], kernel_degree=2) Alm = translate_to_sphharm(*result, kernel_degree=2) coeffs = array([Alm[0,0], Alm[1,-1], Alm[1,0], Alm[1,1], Alm[2,-2], Alm[2,-1], Alm[2,0], Alm[2,1], Alm[2,2]]) svm_soln2, f = corr_shear(Alm) resolution = (200,400) longi, lati, Z = get_sph_harm(resolution=resolution) mech = coeffs.dot(Z).real longi.shape = resolution lati.shape = resolution mech.shape = resolution c = contour(longi, lati, mech, [0]) pth3 = c.collections[0].get_paths()[0].vertices pth3 = rad2deg(pth3) pth4 = c.collections[0].get_paths()[1].vertices pth4 = rad2deg(pth4) hash_focal2 = rad2deg(hash_solns[event2]) event3 = 3153955 result = classify(*inputs[event3], kernel_degree=2) Alm = translate_to_sphharm(*result, kernel_degree=2) coeffs = array([Alm[0,0], Alm[1,-1], Alm[1,0], Alm[1,1], Alm[2,-2], Alm[2,-1], Alm[2,0], Alm[2,1], Alm[2,2]]) svm_soln3, f = corr_shear(Alm) resolution = (200,400) longi, lati, Z = get_sph_harm(resolution=resolution) mech = coeffs.dot(Z).real longi.shape = resolution lati.shape = resolution mech.shape = resolution c = contour(longi, lati, mech, [0]) pth5 = c.collections[0].get_paths()[0].vertices pth5 = rad2deg(pth5) pth6 = c.collections[0].get_paths()[1].vertices pth6 = rad2deg(pth6) hash_focal3 = rad2deg(hash_solns[event3]) fig = plt.figure(facecolor="white", figsize=(10,20)) ax = fig.add_subplot(221, projection='stereonet') ax.rake(pth1[:,0], pth1[:,1] +90.0, 90.0, ':', color='red', linewidth=3) ax.rake(pth2[:,0], pth2[:,1] +90.0, 90.0, ':', color='red', linewidth=3) strike, dip, rake = svm_soln ax.plane(strike, dip, '-r', linewidth=2) strike, dip, rake = aux_plane(*svm_soln) ax.plane(strike, dip, '-r', linewidth=2) strike, dip, rake = hash_focal ax.plane(strike-90, dip, 'g-', linewidth=2) strike, dip, rake = aux_plane(*hash_focal) ax.plane(strike-90, dip,'g-', linewidth=2) azi = rad2deg(polarity_data[event][:,0]) toa = rad2deg(polarity_data[event][:,1]) polarity = polarity_data[event][:,2] for a, t, p in zip(azi, toa, polarity): if p > 0: ax.pole(a, t,'o', markeredgecolor='red', markerfacecolor='red') else: ax.pole(a, t,'o', markeredgecolor='blue', markerfacecolor='white') ax.grid() ax = fig.add_subplot(222, projection='stereonet') ax.rake(pth3[:,0], pth3[:,1] +90.0, 90.0, ':', color='red', linewidth=3) ax.rake(pth4[:,0], pth4[:,1] +90.0, 90.0, ':', color='red', linewidth=3) strike, dip, rake = svm_soln2 ax.plane(strike, dip, '-r', linewidth=2) strike, dip, rake = aux_plane(*svm_soln2) ax.plane(strike, dip, '-r', linewidth=2) strike, dip, rake = hash_focal2 ax.plane(strike-90, dip, 'g-', linewidth=2) strike, dip, rake = aux_plane(*hash_focal2) ax.plane(strike-90, dip,'g-', linewidth=2) azi = rad2deg(polarity_data[event2][:,0]) toa = rad2deg(polarity_data[event2][:,1]) polarity = polarity_data[event2][:,2] for a, t, p in zip(azi, toa, polarity): if p > 0: ax.pole(a, t,'o', markeredgecolor='red', markerfacecolor='red') else: ax.pole(a, t,'o', markeredgecolor='blue', markerfacecolor='white') ax.grid() ax = fig.add_subplot(224, projection='stereonet') ax.rake(pth5[:,0], pth5[:,1] +90.0, 90.0, ':', color='red', linewidth=3) ax.rake(pth6[:,0], pth6[:,1] +90.0, 90.0, ':', color='red', linewidth=3) strike, dip, rake = svm_soln3 ax.plane(strike, dip, '-r', linewidth=2) strike, dip, rake = aux_plane(*svm_soln3) ax.plane(strike, dip, '-r', linewidth=2) strike, dip, rake = hash_focal3 ax.plane(strike-90, dip, 'g-', linewidth=2) strike, dip, rake = aux_plane(*hash_focal3) ax.plane(strike-90, dip,'g-', linewidth=2) azi = rad2deg(polarity_data[event3][:,0]) toa = rad2deg(polarity_data[event3][:,1]) polarity = polarity_data[event3][:,2] for a, t, p in zip(azi, toa, polarity): if p > 0: ax.pole(a, t,'o', markeredgecolor='red', markerfacecolor='red') else: ax.pole(a, t,'o', markeredgecolor='blue', markerfacecolor='white') ax.grid() plt.tight_layout(pad=4.0, h_pad=20.0) plt.show()
12443
import math from mathutils import Euler import bpy from .portal2_entity_classes import * from .portal_entity_handlers import PortalEntityHandler local_entity_lookup_table = PortalEntityHandler.entity_lookup_table.copy() local_entity_lookup_table.update(entity_class_handle) class Portal2EntityHandler(PortalEntityHandler): entity_lookup_table = local_entity_lookup_table pointlight_power_multiplier = 1000 def handle_prop_weighted_cube(self, entity: prop_weighted_cube, entity_raw: dict): obj = self._handle_entity_with_model(entity, entity_raw) self._put_into_collection('prop_weighted_cube', obj, 'props') def handle_prop_testchamber_door(self, entity: prop_testchamber_door, entity_raw: dict): obj = self._handle_entity_with_model(entity, entity_raw) self._put_into_collection('prop_testchamber_door', obj, 'props') def handle_prop_floor_button(self, entity: prop_floor_button, entity_raw: dict): obj = self._handle_entity_with_model(entity, entity_raw) self._put_into_collection('prop_floor_button', obj, 'props') def handle_prop_floor_ball_button(self, entity: prop_floor_ball_button, entity_raw: dict): obj = self._handle_entity_with_model(entity, entity_raw) self._put_into_collection('prop_floor_ball_button', obj, 'props') def handle_prop_floor_cube_button(self, entity: prop_floor_cube_button, entity_raw: dict): obj = self._handle_entity_with_model(entity, entity_raw) self._put_into_collection('prop_floor_cube_button', obj, 'props') def handle_prop_under_floor_button(self, entity: prop_under_floor_button, entity_raw: dict): obj = self._handle_entity_with_model(entity, entity_raw) self._put_into_collection('prop_under_floor_button', obj, 'props') def handle_prop_tractor_beam(self, entity: prop_tractor_beam, entity_raw: dict): obj = self._handle_entity_with_model(entity, entity_raw) self._put_into_collection('prop_tractor_beam', obj, 'props') def handle_logic_playmovie(self, entity: logic_playmovie, entity_raw: dict): obj = bpy.data.objects.new(self._get_entity_name(entity), None) self._set_location(obj, entity.origin) self._set_icon_if_present(obj, entity) self._set_entity_data(obj, {'entity': entity_raw}) self._put_into_collection('logic_playmovie', obj, 'logic') def handle_trigger_paint_cleanser(self, entity: trigger_paint_cleanser, entity_raw: dict): if 'model' not in entity_raw: return model_id = int(entity_raw.get('model')[1:]) mesh_object = self._load_brush_model(model_id, self._get_entity_name(entity)) self._set_location_and_scale(mesh_object, parse_float_vector(entity_raw.get('origin', '0 0 0'))) self._set_rotation(mesh_object, parse_float_vector(entity_raw.get('angles', '0 0 0'))) self._set_entity_data(mesh_object, {'entity': entity_raw}) self._put_into_collection('trigger_paint_cleanser', mesh_object, 'triggers') def handle_trigger_catapult(self, entity: trigger_catapult, entity_raw: dict): if 'model' not in entity_raw: return model_id = int(entity_raw.get('model')[1:]) mesh_object = self._load_brush_model(model_id, self._get_entity_name(entity)) self._set_location_and_scale(mesh_object, parse_float_vector(entity_raw.get('origin', '0 0 0'))) self._set_rotation(mesh_object, parse_float_vector(entity_raw.get('angles', '0 0 0'))) self._set_entity_data(mesh_object, {'entity': entity_raw}) self._put_into_collection('trigger_catapult', mesh_object, 'triggers') def handle_npc_wheatley_boss(self, entity: npc_wheatley_boss, entity_raw: dict): obj = self._handle_entity_with_model(entity, entity_raw) self._put_into_collection('npc_wheatley_boss', obj, 'npc') def handle_prop_exploding_futbol(self, entity: prop_exploding_futbol, entity_raw: dict): obj = self._handle_entity_with_model(entity, entity_raw) self._put_into_collection('prop_exploding_futbol', obj, 'props') def handle_prop_exploding_futbol_socket(self, entity: prop_exploding_futbol_socket, entity_raw: dict): obj = self._handle_entity_with_model(entity, entity_raw) self._put_into_collection('prop_exploding_futbol', obj, 'props') def handle_prop_exploding_futbol_spawnert(self, entity: prop_exploding_futbol_spawner, entity_raw: dict): obj = self._handle_entity_with_model(entity, entity_raw) self._put_into_collection('prop_exploding_futbol_spawner', obj, 'props')
12454
import sys import webbrowser import os from comicstreamerlib.folders import AppFolders from PyQt4 import QtGui,QtCore class SystemTrayIcon(QtGui.QSystemTrayIcon): def __init__(self, icon, app): QtGui.QSystemTrayIcon.__init__(self, icon, None) self.app = app self.menu = QtGui.QMenu(None) exitAction = self.menu.addAction("Exit") self.setContextMenu(self.menu) exitAction.triggered.connect( self.quit ) def quit(self): QtCore.QCoreApplication.quit() class QtBasedGui(): def __init__(self, apiServer): self.apiServer = apiServer self.app = QtGui.QApplication(sys.argv) pixmap = QtGui.QPixmap(AppFolders.imagePath("trout.png")) icon = QtGui.QIcon( pixmap.scaled(16,16)) self.trayIcon = SystemTrayIcon(icon,self) self.trayIcon.show() def run(self): try: self.app.exec_() except KeyboardInterrupt: pass if __name__ == '__main__': QtGui().run()
12532
from urllib.parse import urlparse from quart import current_app as app, request, jsonify def filter_referrers(): filters = app.config.get('REFERRERS_FILTER') if not filters: return None referrer = request.referrer if referrer: parsed = urlparse(referrer) for filter in filters: if parsed.hostname.endswith(filter): return None return jsonify({ 'ok': False, 'error': 'Unauthorized', }), 403
12535
from django.contrib import admin from django.conf import settings from django.core.exceptions import ImproperlyConfigured from . import models if settings.HAS_ADDITIONAL_USER_DATA: try: class UserProfileInline(admin.TabularInline): model = models.UserProfile extra = 0 except (Exception, KeyError) as e: raise ImproperlyConfigured("User/admin.py:: Multi Vendor is turned on.") class UserAdmin(admin.ModelAdmin): list_display = ['get_full_name', 'email', 'is_verified'] search_fields = ['get_full_name', 'email', 'date_joined', 'username'] list_filter = ('groups',) if settings.HAS_ADDITIONAL_USER_DATA: inlines = [ UserProfileInline, ] def save_model(self, request, obj, form, change): if 'password' in form.changed_data: obj.set_password(request.POST['password']) obj.save() admin.site.register(models.User, UserAdmin) admin.site.register(models.IpAddress) admin.site.register(models.CityFromIpAddress) admin.site.register(models.Marketing)
12558
import data_algebra import data_algebra.test_util from data_algebra.data_ops import * # https://github.com/WinVector/data_algebra import data_algebra.util import data_algebra.SQLite def test_compount_where_and(): d = data_algebra.default_data_model.pd.DataFrame( { "a": ["a", "b", None, None], "b": ["c", None, "d", None], "x": [1, 2, None, None], "y": [3, None, 4, None], } ) ops = describe_table(d, table_name="d").select_rows( 'a == "a" and b == "c" and x > 0 and y < 4' ) db_handle = data_algebra.SQLite.SQLiteModel().db_handle(conn=None) sql = db_handle.to_sql(ops) assert isinstance(sql, str) expect = data_algebra.default_data_model.pd.DataFrame( {"a": ["a"], "b": ["c"], "x": [1.0], "y": [3.0],} ) data_algebra.test_util.check_transform(ops=ops, data=d, expect=expect) def test_compount_where_amp(): d = data_algebra.default_data_model.pd.DataFrame( { "a": ["a", "b", None, None], "b": ["c", None, "d", None], "x": [1, 2, None, None], "y": [3, None, 4, None], } ) ops = describe_table(d, table_name="d").select_rows( 'a == "a" & b == "c" & x > 0 & y < 4' ) db_handle = data_algebra.SQLite.SQLiteModel().db_handle(conn=None) sql = db_handle.to_sql(ops) assert isinstance(sql, str) expect = data_algebra.default_data_model.pd.DataFrame( {"a": ["a"], "b": ["c"], "x": [1.0], "y": [3.0],} ) data_algebra.test_util.check_transform(ops=ops, data=d, expect=expect)
12592
from pheasant.renderers.jupyter.jupyter import Jupyter jupyter = Jupyter() jupyter.findall("{{3}}3{{5}}") jupyter.page
12598
import tensorflow as tf from ..fastspeech.model import ( TFFastSpeechEncoder, TFTacotronPostnet, TFFastSpeechLayer, ) from ..speechsplit.model import InterpLnr import numpy as np import copy class Encoder_6(tf.keras.layers.Layer): def __init__(self, config, hparams, **kwargs): super(Encoder_6, self).__init__(name='Encoder_6', **kwargs) self.dim_neck_3 = hparams.dim_neck_3 self.freq_3 = hparams.freq_3 self.dim_f0 = hparams.dim_f0 self.dim_enc_3 = hparams.dim_enc_3 self.dim_emb = hparams.dim_spk_emb self.chs_grp = hparams.chs_grp self.before_dense_1 = tf.keras.layers.Dense( units=self.dim_enc_3, dtype=tf.float32, name='before_dense_1' ) config_1 = copy.deepcopy(config) config_1.hidden_size = self.dim_enc_3 self.layer_1 = [ TFFastSpeechLayer(config_1, name='layer_._{}'.format(i)) for i in range(config_1.num_hidden_layers) ] self.encoder_dense_1 = tf.keras.layers.Dense( units=self.dim_neck_3, dtype=tf.float32, name='encoder_dense_1', ) self.interp = InterpLnr(hparams) def call(self, x, attention_mask, training=True): x = self.before_dense_1(x) for no, layer_module in enumerate(self.layer_1): x = layer_module([x, attention_mask], training=training)[0] x = self.interp( x, tf.tile([tf.shape(x)[1]], [tf.shape(x)[0]]), training=training, ) x = self.encoder_dense_1(x) return x class Encoder_7(tf.keras.layers.Layer): def __init__(self, config, hparams, **kwargs): super(Encoder_7, self).__init__(name='Encoder_7', **kwargs) self.config = config self.dim_neck = hparams.dim_neck self.dim_neck_3 = hparams.dim_neck_3 self.dim_freq = hparams.dim_freq self.dim_enc = hparams.dim_enc self.dim_enc_3 = hparams.dim_enc_3 self.before_dense_1 = tf.keras.layers.Dense( units=self.dim_enc, dtype=tf.float32, name='before_dense_1' ) self.before_dense_2 = tf.keras.layers.Dense( units=self.dim_enc_3, dtype=tf.float32, name='before_dense_2' ) config_1 = copy.deepcopy(config) config_1.hidden_size = self.dim_enc self.layer_1 = [ TFFastSpeechLayer(config_1, name='layer_._{}'.format(i)) for i in range(config_1.num_hidden_layers) ] config_2 = copy.deepcopy(config) config_2.hidden_size = self.dim_enc_3 self.layer_2 = [ TFFastSpeechLayer(config_2, name='layer_._{}'.format(i)) for i in range(config_2.num_hidden_layers) ] self.encoder_dense_1 = tf.keras.layers.Dense( units=self.dim_neck, dtype=tf.float32, name='encoder_dense_1' ) self.encoder_dense_2 = tf.keras.layers.Dense( units=self.dim_neck_3, dtype=tf.float32, name='encoder_dense_2', ) self.interp = InterpLnr(hparams) def call(self, x_f0, attention_mask, training=True): x = x_f0[:, :, : self.dim_freq] f0 = x_f0[:, :, self.dim_freq:] x = self.before_dense_1(x) f0 = self.before_dense_2(f0) seq_length = tf.shape(x_f0)[1] for no, layer_module in enumerate(self.layer_1): x = layer_module([x, attention_mask], training=training)[0] f0 = self.layer_2[no]([f0, attention_mask], training=training)[0] x_f0 = tf.concat((x, f0), axis=2) x_f0 = self.interp( x_f0, tf.tile([tf.shape(x_f0)[1]], [tf.shape(x)[0]]), training=training, ) x = x_f0[:, :, : self.dim_enc] f0 = x_f0[:, :, self.dim_enc:] x = x_f0[:, :, : self.dim_enc] f0 = x_f0[:, :, self.dim_enc:] x = self.encoder_dense_1(x) f0 = self.encoder_dense_2(f0) return x, f0 class Encoder_t(tf.keras.layers.Layer): def __init__(self, config, hparams, **kwargs): super(Encoder_t, self).__init__(name='Encoder_t', **kwargs) self.dim_neck_2 = hparams.dim_neck_2 self.freq_2 = hparams.freq_2 self.dim_freq = hparams.dim_freq self.dim_enc_2 = hparams.dim_enc_2 self.dim_emb = hparams.dim_spk_emb self.chs_grp = hparams.chs_grp config = copy.deepcopy(config) config.num_hidden_layers = 1 config.hidden_size = self.dim_enc_2 self.config = config self.before_dense = tf.keras.layers.Dense( units=self.dim_enc_2, dtype=tf.float32, name='before_dense_1' ) self.encoder = TFFastSpeechEncoder(config, name='encoder') self.encoder_dense = tf.keras.layers.Dense( units=self.dim_neck_2, dtype=tf.float32, name='encoder_dense' ) def call(self, x, attention_mask, training=True): x = self.before_dense(x) seq_length = tf.shape(x)[1] f = self.encoder([x, attention_mask], training=training)[0] return self.encoder_dense(f) class Decoder_3(tf.keras.layers.Layer): def __init__(self, config, hparams, **kwargs): super(Decoder_3, self).__init__(name='Decoder_3', **kwargs) self.config = config self.encoder = TFFastSpeechEncoder(config, name='encoder') self.before_dense = tf.keras.layers.Dense( units=config.hidden_size, dtype=tf.float32, name='before_dense_1', ) self.linear_projection = tf.keras.layers.Dense( units=hparams.dim_freq, dtype=tf.float32, name='self.linear_projection', ) def call(self, x, attention_mask, training=True): x = self.before_dense(x) seq_length = tf.shape(x)[1] f = self.encoder([x, attention_mask], training=training)[0] return self.linear_projection(f) class Decoder_4(tf.keras.layers.Layer): def __init__(self, config, hparams, **kwargs): super(Decoder_4, self).__init__(name='Decoder_4', **kwargs) self.config = config self.encoder = TFFastSpeechEncoder(config, name='encoder') self.before_dense = tf.keras.layers.Dense( units=config.hidden_size, dtype=tf.float32, name='before_dense_1', ) self.linear_projection = tf.keras.layers.Dense( units=hparams.dim_f0, dtype=tf.float32, name='self.linear_projection', ) def call(self, x, attention_mask, training=True): x = self.before_dense(x) seq_length = tf.shape(x)[1] f = self.encoder([x, attention_mask], training=training)[0] return self.linear_projection(f) class Model(tf.keras.Model): def __init__(self, config, hparams, **kwargs): super(Model, self).__init__(name='speechsplit', **kwargs) self.encoder_1 = Encoder_7( config.encoder_self_attention_params, hparams ) self.encoder_2 = Encoder_t( config.encoder_self_attention_params, hparams ) self.decoder = Decoder_3(config.decoder_self_attention_params, hparams) self.freq = hparams.freq self.freq_2 = hparams.freq_2 self.freq_3 = hparams.freq_3 def call(self, x_f0, x_org, c_trg, mel_lengths, training=True): max_length = tf.cast(tf.reduce_max(mel_lengths), tf.int32) attention_mask = tf.sequence_mask( lengths=mel_lengths, maxlen=max_length, dtype=tf.float32 ) attention_mask.set_shape((None, None)) codes_x, codes_f0 = self.encoder_1( x_f0, attention_mask, training=training ) codes_2 = self.encoder_2(x_org, attention_mask, training=training) code_exp_1 = codes_x code_exp_3 = codes_f0 code_exp_2 = codes_2 c_trg = tf.tile(tf.expand_dims(c_trg, 1), (1, tf.shape(x_f0)[1], 1)) encoder_outputs = tf.concat( (code_exp_1, code_exp_2, code_exp_3, c_trg), axis=-1 ) mel_outputs = self.decoder( encoder_outputs, attention_mask, training=training ) return codes_x, codes_f0, codes_2, encoder_outputs, mel_outputs class Model_F0(tf.keras.Model): def __init__(self, config, hparams, **kwargs): super(Model_F0, self).__init__(name='speechsplit_f0', **kwargs) self.encoder_2 = Encoder_t( config.encoder_self_attention_params, hparams ) self.encoder_3 = Encoder_6( config.encoder_self_attention_params, hparams ) self.decoder = Decoder_4(config.decoder_self_attention_params, hparams) self.freq_2 = hparams.freq_2 self.freq_3 = hparams.freq_3 def call(self, x_org, f0_trg, mel_lengths, training=True): max_length = tf.cast(tf.reduce_max(mel_lengths), tf.int32) attention_mask = tf.sequence_mask( lengths=mel_lengths, maxlen=max_length, dtype=tf.float32 ) attention_mask.set_shape((None, None)) codes_2 = self.encoder_2(x_org, attention_mask, training=training) code_exp_2 = codes_2 codes_3 = self.encoder_3(f0_trg, attention_mask, training=training) code_exp_3 = codes_3 self.o = [code_exp_2, code_exp_3] encoder_outputs = tf.concat((code_exp_2, code_exp_3), axis=-1) mel_outputs = self.decoder( encoder_outputs, attention_mask, training=training ) return codes_2, codes_3, encoder_outputs, mel_outputs
12605
from ..utilities import ( has_same_structure, is_equivalent_molecule, is_equivalent_building_block, are_equivalent_functional_groups, ) def test_with_functional_groups(building_block, get_functional_groups): """ Test :meth:`.BuildingBlock.with_functional_groups`. Parameters ---------- building_block : :class:`.BuildingBlock` The building block to test. get_functional_groups : :class:`callable` Takes a single parameter, `building_block` and returns the `functional_groups` parameter to use for this test. Returns ------- None : :class:`NoneType` """ # Save clone to check immutability. clone = building_block.clone() _test_with_functional_groups( building_block=building_block, functional_groups=tuple(get_functional_groups(building_block)), ) is_equivalent_building_block(building_block, clone) has_same_structure(building_block, clone) def _test_with_functional_groups(building_block, functional_groups): """ Test :meth:`.BuildingBlock.with_functional_groups`. Parameters ---------- building_block : :class:`.BuildingBlock` The building block to test. functional_groups : :class:`tuple` of :class:`.FunctionalGroup` The functional groups the new building block should hold. Returns ------- None : :class:`NoneType` """ new = building_block.with_functional_groups(functional_groups) are_equivalent_functional_groups( new.get_functional_groups(), functional_groups, ) is_equivalent_molecule(building_block, new) has_same_structure(building_block, new)
12651
from pathlib import Path import logging from .logger import Logger from .log_formatter import LogFormatter class FileLogger(Logger): fmt = LogFormatter(use_colour=False, output_ts=False) logger = None def __init__(self, folder, format=None): if format is None: format = ("%(asctime)s|%(levelname)s|%(message)s",) formatter = logging.Formatter(format) log_file = Path(folder, "sayn.log") if not log_file.parent.exists(): log_file.parent.mkdir(parents=True) handler = logging.FileHandler(log_file) handler.setLevel(logging.DEBUG) handler.setFormatter(formatter) logger = logging.getLogger(__name__) logger.addHandler(handler) logger.setLevel(logging.DEBUG) self.logger = logger def print(self, s=None): if s is not None: if s["level"] == "info": func = self.logger.info elif s["level"] == "error": func = self.logger.error elif s["level"] == "warning": func = self.logger.warning else: func = self.logger.debug s = s["message"] if isinstance(s, str): s = [s] elif not isinstance(s, list): raise ValueError("error in logging print") func(f"{s[0]}") for e in s[1:]: for l in e.split("\n"): func(f"{l}")
12654
from flask import request, session, url_for from requests_oauthlib import OAuth2Session class OAuth2Login(object): def __init__(self, app=None): if app: self.init_app(app) self.app = app def get_config(self, app, name, default_value=None): return app.config.get(self.config_prefix + name, default_value) def init_app(self, app): self.client_id = self.get_config(app, "CLIENT_ID") self.client_secret = self.get_config(app, "CLIENT_SECRET") self.scope = self.get_config(app, "SCOPE", self.default_scope).split(",") self.redirect_scheme = self.get_config(app, "REDIRECT_SCHEME", "https") app.add_url_rule( self.get_config(app, "REDIRECT_PATH", self.default_redirect_path), self.redirect_endpoint, self.login, ) @property def redirect_uri(self): return url_for( self.redirect_endpoint, _external=True, _scheme=self.redirect_scheme, ) def session(self): return OAuth2Session( self.client_id, redirect_uri=self.redirect_uri, scope=self.scope, ) def authorization_url(self, **kwargs): sess = self.session() auth_url, state = sess.authorization_url(self.auth_url, **kwargs) session[self.state_session_key] = state return auth_url def login(self): sess = self.session() # Get token try: sess.fetch_token( self.token_url, code=request.args["code"], client_secret=self.client_secret, ) # TODO: Check state except Warning: # Ignore warnings pass except Exception as e: return self.login_failure_func(e) # Get profile try: profile = self.get_profile(sess) except Exception as e: return self.login_failure_func(e) return self.login_success_func(sess.token, profile) def login_success(self, f): self.login_success_func = f return f def login_failure(self, f): self.login_failure_func = f return f def get_profile(self, sess): raise NotImplementedError
12671
from typing import List from pydantic import BaseModel from icolos.core.containers.compound import Conformer, unroll_conformers from icolos.utils.enums.step_enums import StepRMSDEnum, StepDataManipulationEnum from icolos.core.workflow_steps.step import _LE from icolos.core.workflow_steps.calculation.base import StepCalculationBase _SR = StepRMSDEnum() _SDM = StepDataManipulationEnum() class StepRMSD(StepCalculationBase, BaseModel): def __init__(self, **data): super().__init__(**data) # extend parameters if _SR.METHOD not in self.settings.additional.keys(): self.settings.additional[_SR.METHOD] = _SR.METHOD_ALIGNMOL def _calculate_RMSD(self, conformers: List[Conformer]): for conf in conformers: rmsd_matrix = self._calculate_rms_matrix( conformers=[conf] + conf.get_extra_data()[_SDM.KEY_MATCHED], rms_method=self._get_rms_method(), ) # use the specified tag name if it is the first value and append an index in case there are more for idx, col in enumerate(rmsd_matrix.columns[1:]): combined_tag = "".join([_SR.RMSD_TAG, "" if idx == 0 else str(idx)]) rmsd_value = rmsd_matrix.iloc[[0]][col][0] conf.get_molecule().SetProp(combined_tag, str(rmsd_value)) conf.get_extra_data()[_SDM.KEY_MATCHED][idx].get_molecule().SetProp( combined_tag, str(rmsd_value) ) def execute(self): # this assumes that the conformers that are to be matched for the calculation of the RMSD matrix, are attached # as a list in a generic data field with a specified key conformers = unroll_conformers(compounds=self.get_compounds()) self._calculate_RMSD(conformers=conformers) self._logger.log( f"Annotated {len(conformers)} conformers with RMSD values (tag: {_SR.RMSD_TAG}).", _LE.INFO, ) # TODO: add a nice pandas DF with the RMSD values to a generic data field
12678
from enum import Enum import pytest import gino from gino.dialects.aiomysql import AsyncEnum pytestmark = pytest.mark.asyncio db = gino.Gino() class MyEnum(Enum): ONE = "one" TWO = "two" class Blog(db.Model): __tablename__ = "s_blog" id = db.Column(db.BigInteger(), primary_key=True) title = db.Column(db.Unicode(255), index=True, comment="Title Comment") visits = db.Column(db.BigInteger(), default=0) comment_id = db.Column(db.ForeignKey("s_comment.id")) number = db.Column(db.Enum(MyEnum), nullable=False, default=MyEnum.TWO) number2 = db.Column(AsyncEnum(MyEnum), nullable=False, default=MyEnum.TWO) class Comment(db.Model): __tablename__ = "s_comment" id = db.Column(db.BigInteger(), primary_key=True) blog_id = db.Column(db.ForeignKey("s_blog.id", name="blog_id_fk")) blog_seq = db.Sequence("blog_seq", metadata=db, schema="schema_test") async def test(engine, define=True): async with engine.acquire() as conn: assert not await engine.dialect.has_table(conn, "non_exist") Blog.__table__.comment = "Blog Comment" db.bind = engine await db.gino.create_all() await Blog.number.type.create_async(engine, checkfirst=True) await Blog.number2.type.create_async(engine, checkfirst=True) await db.gino.create_all(tables=[Blog.__table__], checkfirst=True) await blog_seq.gino.create(checkfirst=True) await Blog.__table__.gino.create(checkfirst=True) await db.gino.drop_all() await db.gino.drop_all(tables=[Blog.__table__], checkfirst=True) await Blog.__table__.gino.drop(checkfirst=True) await blog_seq.gino.drop(checkfirst=True) if define: class Comment2(db.Model): __tablename__ = "s_comment_2" id = db.Column(db.BigInteger(), primary_key=True) blog_id = db.Column(db.ForeignKey("s_blog.id")) await db.gino.create_all() await db.gino.drop_all()
12685
from homeassistant.components.climate import ClimateEntity from homeassistant.components.climate.const import (HVAC_MODE_AUTO, PRESET_AWAY, PRESET_COMFORT, PRESET_ECO, PRESET_NONE, SUPPORT_PRESET_MODE) from homeassistant.const import TEMP_CELSIUS HEATZY_TO_HA_STATE = { '\u8212\u9002': PRESET_COMFORT, '\u7ecf\u6d4e': PRESET_ECO, '\u89e3\u51bb': PRESET_AWAY, '\u505c\u6b62': PRESET_NONE, } HA_TO_HEATZY_STATE = { PRESET_COMFORT: [1, 1, 0], PRESET_ECO: [1, 1, 1], PRESET_AWAY: [1, 1, 2], PRESET_NONE: [1, 1, 3], } class HeatzyPiloteV1Thermostat(ClimateEntity): def __init__(self, api, device): self._api = api self._device = device @property def temperature_unit(self): """Return the unit of measurement used by the platform.""" return TEMP_CELSIUS @property def supported_features(self): """Return the list of supported features.""" return SUPPORT_PRESET_MODE @property def unique_id(self): """Return a unique ID.""" return self._device.get('did') @property def name(self): return self._device.get('dev_alias') @property def hvac_modes(self): """Return the list of available hvac operation modes. Need to be a subset of HVAC_MODES. """ return [ HVAC_MODE_AUTO ] @property def hvac_mode(self): """Return hvac operation ie. heat, cool mode. Need to be one of HVAC_MODE_*. """ return HVAC_MODE_AUTO @property def preset_modes(self): """Return a list of available preset modes. Requires SUPPORT_PRESET_MODE. """ return [ PRESET_NONE, PRESET_COMFORT, PRESET_ECO, PRESET_AWAY ] @property def preset_mode(self): """Return the current preset mode, e.g., home, away, temp. Requires SUPPORT_PRESET_MODE. """ return HEATZY_TO_HA_STATE.get(self._device.get('attr').get('mode')) async def async_set_preset_mode(self, preset_mode): """Set new preset mode.""" await self._api.async_control_device(self.unique_id, { 'raw': HA_TO_HEATZY_STATE.get(preset_mode), }) await self.async_update() async def async_update(self): """Retrieve latest state.""" self._device = await self._api.async_get_device(self.unique_id)
12699
from transformer import Encoder from torch import nn,optim from torch.nn.functional import cross_entropy,softmax, relu from torch.utils.data import DataLoader from torch.utils.data.dataloader import default_collate import torch import utils import os import pickle class GPT(nn.Module): def __init__(self, model_dim, max_len, num_layer, num_head, n_vocab, lr, max_seg=3, drop_rate=0.2,padding_idx=0): super().__init__() self.padding_idx = padding_idx self.n_vocab = n_vocab self.max_len = max_len self.word_emb = nn.Embedding(n_vocab,model_dim) self.word_emb.weight.data.normal_(0,0.1) self.segment_emb = nn.Embedding(num_embeddings= max_seg, embedding_dim=model_dim) self.segment_emb.weight.data.normal_(0,0.1) self.position_emb = torch.empty(1,max_len,model_dim) nn.init.kaiming_normal_(self.position_emb,mode='fan_out', nonlinearity='relu') self.position_emb = nn.Parameter(self.position_emb) self.encoder = Encoder(n_head=num_head, emb_dim=model_dim, drop_rate=drop_rate, n_layer=num_layer) self.task_mlm = nn.Linear(in_features=model_dim, out_features=n_vocab) self.task_nsp = nn.Linear(in_features=model_dim*self.max_len, out_features=2) self.opt = optim.Adam(self.parameters(),lr) def forward(self,seqs, segs, training=False): embed = self.input_emb(seqs, segs) z = self.encoder(embed, training, mask = self.mask(seqs)) # [n, step, model_dim] mlm_logits = self.task_mlm(z) # [n, step, n_vocab] nsp_logits = self.task_nsp(z.reshape(z.shape[0],-1)) # [n, n_cls] return mlm_logits, nsp_logits def step(self, seqs, segs, seqs_, nsp_labels): self.opt.zero_grad() mlm_logits, nsp_logits = self(seqs, segs, training=True) pred_loss = cross_entropy(mlm_logits.reshape(-1,self.n_vocab),seqs_.reshape(-1)) nsp_loss = cross_entropy(nsp_logits,nsp_labels.reshape(-1)) loss = pred_loss + 0.2 * nsp_loss loss.backward() self.opt.step() return loss.cpu().data.numpy(), mlm_logits def input_emb(self,seqs, segs): # device = next(self.parameters()).device # self.position_emb = self.position_emb.to(device) return self.word_emb(seqs) + self.segment_emb(segs) + self.position_emb def mask(self, seqs): device = next(self.parameters()).device batch_size, seq_len = seqs.shape mask = torch.triu(torch.ones((seq_len,seq_len), dtype=torch.long), diagonal=1).to(device) # [seq_len ,seq_len] pad = torch.eq(seqs,self.padding_idx) # [n, seq_len] mask = torch.where(pad[:,None,None,:],1,mask[None,None,:,:]).to(device) # [n, 1, seq_len, seq_len] return mask>0 # [n, 1, seq_len, seq_len] @property def attentions(self): attentions = { "encoder": [l.mh.attention.cpu().data.numpy() for l in self.encoder.encoder_layers] } return attentions def train(): MODEL_DIM = 256 N_LAYER = 4 LEARNING_RATE = 1e-4 dataset = utils.MRPCData("./MRPC",2000) print("num word: ",dataset.num_word) model = GPT( model_dim=MODEL_DIM, max_len=dataset.max_len-1, num_layer=N_LAYER, num_head=4, n_vocab=dataset.num_word, lr=LEARNING_RATE, max_seg=dataset.num_seg, drop_rate=0.2, padding_idx=dataset.pad_id ) if torch.cuda.is_available(): print("GPU train avaliable") device =torch.device("cuda") model = model.cuda() else: device = torch.device("cpu") model = model.cpu() loader = DataLoader(dataset,batch_size=32,shuffle=True) for epoch in range(100): for batch_idx, batch in enumerate(loader): seqs, segs,xlen,nsp_labels = batch seqs, segs,nsp_labels = seqs.type(torch.LongTensor).to(device), segs.type(torch.LongTensor).to(device),nsp_labels.to(device) # pred: [n, step, n_vocab] loss,pred = model.step(seqs=seqs[:,:-1], segs= segs[:,:-1], seqs_=seqs[:,1:], nsp_labels=nsp_labels) if batch_idx %100 == 0: pred = pred[0].cpu().data.numpy().argmax(axis = 1) # [step] print( "Epoch: ",epoch, "|batch: ", batch_idx, "| loss: %.3f" % loss, "\n| tgt: ", " ".join([dataset.i2v[i] for i in seqs[0, 1:].cpu().data.numpy()[:xlen[0].sum()+1]]), "\n| prd: ", " ".join([dataset.i2v[i] for i in pred[:xlen[0].sum()+1]]), ) os.makedirs("./visual/models/gpt",exist_ok=True) torch.save(model.state_dict(),"./visual/models/gpt/model.pth") export_attention(model,device,dataset) def export_attention(model,device,data,name="gpt"): model.load_state_dict(torch.load("./visual/models/gpt/model.pth",map_location=device)) seqs, segs,xlen,nsp_labels = data[:32] seqs, segs,xlen,nsp_labels = torch.from_numpy(seqs),torch.from_numpy(segs),torch.from_numpy(xlen),torch.from_numpy(nsp_labels) seqs, segs,nsp_labels = seqs.type(torch.LongTensor).to(device), segs.type(torch.LongTensor).to(device),nsp_labels.to(device) model(seqs[:,:-1],segs[:,:-1],False) seqs = seqs.cpu().data.numpy() data = {"src": [[data.i2v[i] for i in seqs[j]] for j in range(len(seqs))], "attentions": model.attentions} path = "./visual/tmp/%s_attention_matrix.pkl" % name os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, "wb") as f: pickle.dump(data, f) if __name__ == "__main__": train()